(Info-desktop-buffer-misc-data): Don't save information
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
d05b383a 2 Copyright (C) 1985,86,88,93,94,95,97,98,1999,2000,01,02,03,2004
4a2f9c6a 3 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
7c299e7a 9the Free Software Foundation; either version 2, or (at your option)
7146af97
JB
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
3b7ad313
EN
19the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
7146af97 21
18160b98 22#include <config.h>
e9b309ac 23#include <stdio.h>
ab6780cd 24#include <limits.h> /* For CHAR_BIT. */
92939d31 25
4455ad75
RS
26#ifdef ALLOC_DEBUG
27#undef INLINE
28#endif
29
68c45bf0 30/* Note that this declares bzero on OSF/1. How dumb. */
2e471eb5 31
68c45bf0 32#include <signal.h>
92939d31 33
7539e11f
KR
34/* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
2e471eb5 37
7539e11f 38#undef HIDE_LISP_IMPLEMENTATION
7146af97 39#include "lisp.h"
ece93c02 40#include "process.h"
d5e35230 41#include "intervals.h"
4c0be5f4 42#include "puresize.h"
7146af97
JB
43#include "buffer.h"
44#include "window.h"
2538fae4 45#include "keyboard.h"
502b9b64 46#include "frame.h"
9ac0d9e0 47#include "blockinput.h"
e54daa22 48#include "charset.h"
e065a56e 49#include "syssignal.h"
34400008 50#include <setjmp.h>
e065a56e 51
ad5f3636
DL
52/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56#undef GC_MALLOC_CHECK
57#endif
58
bf952fb6
DL
59#ifdef HAVE_UNISTD_H
60#include <unistd.h>
61#else
62extern POINTER_TYPE *sbrk ();
63#endif
ee1eea5c 64
d1658221 65#ifdef DOUG_LEA_MALLOC
2e471eb5 66
d1658221 67#include <malloc.h>
3e60b029
DL
68/* malloc.h #defines this as size_t, at least in glibc2. */
69#ifndef __malloc_size_t
d1658221 70#define __malloc_size_t int
3e60b029 71#endif
81d492d5 72
2e471eb5
GM
73/* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
81d492d5
RS
76#define MMAP_MAX_AREAS 100000000
77
2e471eb5
GM
78#else /* not DOUG_LEA_MALLOC */
79
276cbe5a
RS
80/* The following come from gmalloc.c. */
81
276cbe5a 82#define __malloc_size_t size_t
276cbe5a 83extern __malloc_size_t _bytes_used;
3e60b029 84extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
85
86#endif /* not DOUG_LEA_MALLOC */
276cbe5a 87
276cbe5a 88/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 89
276cbe5a
RS
90static __malloc_size_t bytes_used_when_full;
91
2e471eb5
GM
92/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
7cdee936
SM
95#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97#define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
2e471eb5 98
3ef06d12
SM
99#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101#define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
2e471eb5
GM
103/* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
3ef06d12 108#define GC_STRING_BYTES(S) (STRING_BYTES (S))
7cdee936 109#define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
2e471eb5
GM
110
111/* Number of bytes of consing done since the last gc. */
112
7146af97
JB
113int consing_since_gc;
114
310ea200 115/* Count the amount of consing of various sorts of space. */
2e471eb5 116
31ade731
SM
117EMACS_INT cons_cells_consed;
118EMACS_INT floats_consed;
119EMACS_INT vector_cells_consed;
120EMACS_INT symbols_consed;
121EMACS_INT string_chars_consed;
122EMACS_INT misc_objects_consed;
123EMACS_INT intervals_consed;
124EMACS_INT strings_consed;
2e471eb5
GM
125
126/* Number of bytes of consing since GC before another GC should be done. */
310ea200 127
31ade731 128EMACS_INT gc_cons_threshold;
7146af97 129
2e471eb5
GM
130/* Nonzero during GC. */
131
7146af97
JB
132int gc_in_progress;
133
3de0effb
RS
134/* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138int abort_on_gc;
139
299585ee 140/* Nonzero means display messages at beginning and end of GC. */
2e471eb5 141
299585ee
RS
142int garbage_collection_messages;
143
7146af97
JB
144#ifndef VIRT_ADDR_VARIES
145extern
146#endif /* VIRT_ADDR_VARIES */
2e471eb5 147int malloc_sbrk_used;
7146af97
JB
148
149#ifndef VIRT_ADDR_VARIES
150extern
151#endif /* VIRT_ADDR_VARIES */
2e471eb5 152int malloc_sbrk_unused;
7146af97 153
502b9b64 154/* Two limits controlling how much undo information to keep. */
2e471eb5 155
31ade731
SM
156EMACS_INT undo_limit;
157EMACS_INT undo_strong_limit;
7146af97 158
34400008
GM
159/* Number of live and free conses etc. */
160
161static int total_conses, total_markers, total_symbols, total_vector_size;
162static int total_free_conses, total_free_markers, total_free_symbols;
163static int total_free_floats, total_floats;
fd27a537 164
2e471eb5
GM
165/* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
167
276cbe5a
RS
168static char *spare_memory;
169
170/* Amount of spare memory to keep in reserve. */
2e471eb5 171
276cbe5a
RS
172#define SPARE_MEMORY (1 << 14)
173
174/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 175
276cbe5a
RS
176static int malloc_hysteresis;
177
2e471eb5
GM
178/* Non-nil means defun should do purecopy on the function definition. */
179
7146af97
JB
180Lisp_Object Vpurify_flag;
181
74a54b04
RS
182/* Non-nil means we are handling a memory-full error. */
183
184Lisp_Object Vmemory_full;
185
7146af97 186#ifndef HAVE_SHM
2e471eb5 187
379b98b1
PE
188/* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
2e471eb5 190
379b98b1 191EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
7146af97 192#define PUREBEG (char *) pure
2e471eb5 193
9e713715 194#else /* HAVE_SHM */
2e471eb5 195
7146af97
JB
196#define pure PURE_SEG_BITS /* Use shared memory segment */
197#define PUREBEG (char *)PURE_SEG_BITS
4c0be5f4 198
9e713715 199#endif /* HAVE_SHM */
2e471eb5 200
9e713715 201/* Pointer to the pure area, and its size. */
2e471eb5 202
9e713715
GM
203static char *purebeg;
204static size_t pure_size;
205
206/* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
208
209static size_t pure_bytes_used_before_overflow;
7146af97 210
34400008
GM
211/* Value is non-zero if P points into pure space. */
212
213#define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 216 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 217 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 218
2e471eb5
GM
219/* Index in pure at which next pure object will be allocated.. */
220
31ade731 221EMACS_INT pure_bytes_used;
7146af97 222
2e471eb5
GM
223/* If nonzero, this is a warning delivered by malloc and not yet
224 displayed. */
225
7146af97
JB
226char *pending_malloc_warning;
227
bcb61d60 228/* Pre-computed signal argument for use when memory is exhausted. */
2e471eb5 229
74a54b04 230Lisp_Object Vmemory_signal_data;
bcb61d60 231
7146af97
JB
232/* Maximum amount of C stack to save when a GC happens. */
233
234#ifndef MAX_SAVE_STACK
235#define MAX_SAVE_STACK 16000
236#endif
237
238/* Buffer in which we save a copy of the C stack at each GC. */
239
240char *stack_copy;
241int stack_copy_size;
242
2e471eb5
GM
243/* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
245
7146af97 246int ignore_warnings;
350273a4 247
a59de17b 248Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 249
9e713715
GM
250/* Hook run after GC has finished. */
251
252Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
253
2c5bd608
DL
254Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
255EMACS_INT gcs_done; /* accumulated GCs */
256
2e471eb5 257static void mark_buffer P_ ((Lisp_Object));
6793bc63 258extern void mark_kboards P_ ((void));
2e471eb5 259static void gc_sweep P_ ((void));
41c28a37
GM
260static void mark_glyph_matrix P_ ((struct glyph_matrix *));
261static void mark_face_cache P_ ((struct face_cache *));
262
263#ifdef HAVE_WINDOW_SYSTEM
264static void mark_image P_ ((struct image *));
265static void mark_image_cache P_ ((struct frame *));
266#endif /* HAVE_WINDOW_SYSTEM */
267
2e471eb5
GM
268static struct Lisp_String *allocate_string P_ ((void));
269static void compact_small_strings P_ ((void));
270static void free_large_strings P_ ((void));
271static void sweep_strings P_ ((void));
7da0b0d3
RS
272
273extern int message_enable_multibyte;
34400008 274
34400008
GM
275/* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
278
279enum mem_type
280{
281 MEM_TYPE_NON_LISP,
282 MEM_TYPE_BUFFER,
283 MEM_TYPE_CONS,
284 MEM_TYPE_STRING,
285 MEM_TYPE_MISC,
286 MEM_TYPE_SYMBOL,
287 MEM_TYPE_FLOAT,
ece93c02
GM
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
291 MEM_TYPE_VECTOR,
292 MEM_TYPE_PROCESS,
293 MEM_TYPE_HASH_TABLE,
294 MEM_TYPE_FRAME,
295 MEM_TYPE_WINDOW
34400008
GM
296};
297
877935b1 298#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
299
300#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301#include <stdio.h> /* For fprintf. */
302#endif
303
304/* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
306
307Lisp_Object Vdead;
308
877935b1
GM
309#ifdef GC_MALLOC_CHECK
310
311enum mem_type allocated_mem_type;
312int dont_register_blocks;
313
314#endif /* GC_MALLOC_CHECK */
315
316/* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
319 is freed.
320
321 A red-black tree is a balanced binary tree with the following
322 properties:
323
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
330
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
333
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
338 describe them. */
339
340struct mem_node
341{
9f7d9210
RS
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node *left, *right;
345
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node *parent;
877935b1
GM
348
349 /* Start and end of allocated region. */
350 void *start, *end;
351
352 /* Node color. */
353 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 354
877935b1
GM
355 /* Memory type. */
356 enum mem_type type;
357};
358
359/* Base address of stack. Set in main. */
360
361Lisp_Object *stack_base;
362
363/* Root of the tree describing allocated Lisp memory. */
364
365static struct mem_node *mem_root;
366
ece93c02
GM
367/* Lowest and highest known address in the heap. */
368
369static void *min_heap_address, *max_heap_address;
370
877935b1
GM
371/* Sentinel node of the tree. */
372
373static struct mem_node mem_z;
374#define MEM_NIL &mem_z
375
b3303f74 376static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
ece93c02 377static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
bf952fb6 378static void lisp_free P_ ((POINTER_TYPE *));
34400008 379static void mark_stack P_ ((void));
34400008
GM
380static int live_vector_p P_ ((struct mem_node *, void *));
381static int live_buffer_p P_ ((struct mem_node *, void *));
382static int live_string_p P_ ((struct mem_node *, void *));
383static int live_cons_p P_ ((struct mem_node *, void *));
384static int live_symbol_p P_ ((struct mem_node *, void *));
385static int live_float_p P_ ((struct mem_node *, void *));
386static int live_misc_p P_ ((struct mem_node *, void *));
182ff242 387static void mark_maybe_object P_ ((Lisp_Object));
34400008
GM
388static void mark_memory P_ ((void *, void *));
389static void mem_init P_ ((void));
390static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
391static void mem_insert_fixup P_ ((struct mem_node *));
392static void mem_rotate_left P_ ((struct mem_node *));
393static void mem_rotate_right P_ ((struct mem_node *));
394static void mem_delete P_ ((struct mem_node *));
395static void mem_delete_fixup P_ ((struct mem_node *));
396static INLINE struct mem_node *mem_find P_ ((void *));
397
398#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399static void check_gcpros P_ ((void));
400#endif
401
877935b1 402#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 403
1f0b3fd2
GM
404/* Recording what needs to be marked for gc. */
405
406struct gcpro *gcprolist;
407
379b98b1
PE
408/* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
1f0b3fd2 410
382d38fa 411#define NSTATICS 1280
379b98b1 412Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
413
414/* Index of next unused slot in staticvec. */
415
416int staticidx = 0;
417
418static POINTER_TYPE *pure_alloc P_ ((size_t, int));
419
420
421/* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
423
ab6780cd
SM
424#define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
1f0b3fd2 427
ece93c02 428
7146af97 429\f
34400008
GM
430/************************************************************************
431 Malloc
432 ************************************************************************/
433
4455ad75 434/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
435
436void
7146af97
JB
437malloc_warning (str)
438 char *str;
439{
440 pending_malloc_warning = str;
441}
442
34400008 443
4455ad75 444/* Display an already-pending malloc warning. */
34400008 445
d457598b 446void
7146af97
JB
447display_malloc_warning ()
448{
4455ad75
RS
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
7146af97 453 pending_malloc_warning = 0;
7146af97
JB
454}
455
34400008 456
d1658221 457#ifdef DOUG_LEA_MALLOC
1177ecf6 458# define BYTES_USED (mallinfo ().arena)
d1658221 459#else
1177ecf6 460# define BYTES_USED _bytes_used
d1658221
RS
461#endif
462
34400008 463
2e471eb5 464/* Called if malloc returns zero. */
276cbe5a 465
d457598b 466void
7146af97
JB
467memory_full ()
468{
74a54b04
RS
469 Vmemory_full = Qt;
470
276cbe5a 471#ifndef SYSTEM_MALLOC
d1658221 472 bytes_used_when_full = BYTES_USED;
276cbe5a
RS
473#endif
474
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
477 {
478 free (spare_memory);
479 spare_memory = 0;
480 }
481
2e471eb5
GM
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
276cbe5a 484 while (1)
74a54b04 485 Fsignal (Qnil, Vmemory_signal_data);
276cbe5a
RS
486}
487
34400008 488
276cbe5a
RS
489/* Called if we can't allocate relocatable space for a buffer. */
490
491void
492buffer_memory_full ()
493{
2e471eb5
GM
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
276cbe5a
RS
500
501#ifndef REL_ALLOC
502 memory_full ();
503#endif
504
74a54b04
RS
505 Vmemory_full = Qt;
506
2e471eb5
GM
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
bcb61d60 509 while (1)
74a54b04 510 Fsignal (Qnil, Vmemory_signal_data);
7146af97
JB
511}
512
34400008
GM
513
514/* Like malloc but check for no memory and block interrupt input.. */
7146af97 515
c971ff9a 516POINTER_TYPE *
7146af97 517xmalloc (size)
675d5130 518 size_t size;
7146af97 519{
c971ff9a 520 register POINTER_TYPE *val;
7146af97 521
9ac0d9e0 522 BLOCK_INPUT;
c971ff9a 523 val = (POINTER_TYPE *) malloc (size);
9ac0d9e0 524 UNBLOCK_INPUT;
7146af97 525
2e471eb5
GM
526 if (!val && size)
527 memory_full ();
7146af97
JB
528 return val;
529}
530
34400008
GM
531
532/* Like realloc but check for no memory and block interrupt input.. */
533
c971ff9a 534POINTER_TYPE *
7146af97 535xrealloc (block, size)
c971ff9a 536 POINTER_TYPE *block;
675d5130 537 size_t size;
7146af97 538{
c971ff9a 539 register POINTER_TYPE *val;
7146af97 540
9ac0d9e0 541 BLOCK_INPUT;
56d2031b
JB
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
c971ff9a 545 val = (POINTER_TYPE *) malloc (size);
f048679d 546 else
c971ff9a 547 val = (POINTER_TYPE *) realloc (block, size);
9ac0d9e0 548 UNBLOCK_INPUT;
7146af97
JB
549
550 if (!val && size) memory_full ();
551 return val;
552}
9ac0d9e0 553
34400008 554
d7489312 555/* Like free but block interrupt input. */
34400008 556
9ac0d9e0
JB
557void
558xfree (block)
c971ff9a 559 POINTER_TYPE *block;
9ac0d9e0
JB
560{
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
564}
565
c8099634 566
dca7c6a8
GM
567/* Like strdup, but uses xmalloc. */
568
569char *
570xstrdup (s)
943b873e 571 const char *s;
dca7c6a8 572{
675d5130 573 size_t len = strlen (s) + 1;
dca7c6a8
GM
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
577}
578
579
34400008
GM
580/* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
583
918a23a7
RS
584static void *lisp_malloc_loser;
585
675d5130 586static POINTER_TYPE *
34400008 587lisp_malloc (nbytes, type)
675d5130 588 size_t nbytes;
34400008 589 enum mem_type type;
c8099634 590{
34400008 591 register void *val;
c8099634
RS
592
593 BLOCK_INPUT;
877935b1
GM
594
595#ifdef GC_MALLOC_CHECK
596 allocated_mem_type = type;
597#endif
177c0ea7 598
34400008 599 val = (void *) malloc (nbytes);
c8099634 600
831b476c 601#ifndef USE_LSB_TAG
918a23a7
RS
602 /* If the memory just allocated cannot be addressed thru a Lisp
603 object's pointer, and it needs to be,
604 that's equivalent to running out of memory. */
605 if (val && type != MEM_TYPE_NON_LISP)
606 {
607 Lisp_Object tem;
608 XSETCONS (tem, (char *) val + nbytes - 1);
609 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
610 {
611 lisp_malloc_loser = val;
612 free (val);
613 val = 0;
614 }
615 }
831b476c 616#endif
918a23a7 617
877935b1 618#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 619 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
620 mem_insert (val, (char *) val + nbytes, type);
621#endif
177c0ea7 622
dca7c6a8
GM
623 UNBLOCK_INPUT;
624 if (!val && nbytes)
625 memory_full ();
c8099634
RS
626 return val;
627}
628
34400008
GM
629/* Free BLOCK. This must be called to free memory allocated with a
630 call to lisp_malloc. */
631
bf952fb6 632static void
c8099634 633lisp_free (block)
675d5130 634 POINTER_TYPE *block;
c8099634
RS
635{
636 BLOCK_INPUT;
c8099634 637 free (block);
877935b1 638#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
639 mem_delete (mem_find (block));
640#endif
c8099634
RS
641 UNBLOCK_INPUT;
642}
34400008 643
ab6780cd
SM
644/* Allocation of aligned blocks of memory to store Lisp data. */
645/* The entry point is lisp_align_malloc which returns blocks of at most */
646/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
647
648
649/* BLOCK_ALIGN has to be a power of 2. */
650#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
651
652/* Padding to leave at the end of a malloc'd block. This is to give
653 malloc a chance to minimize the amount of memory wasted to alignment.
654 It should be tuned to the particular malloc library used.
19bcad1f
SM
655 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
656 posix_memalign on the other hand would ideally prefer a value of 4
657 because otherwise, there's 1020 bytes wasted between each ablocks.
658 But testing shows that those 1020 will most of the time be efficiently
659 used by malloc to place other objects, so a value of 0 is still preferable
660 unless you have a lot of cons&floats and virtually nothing else. */
661#define BLOCK_PADDING 0
662#define BLOCK_BYTES \
663 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
664
665/* Internal data structures and constants. */
666
ab6780cd
SM
667#define ABLOCKS_SIZE 16
668
669/* An aligned block of memory. */
670struct ablock
671{
672 union
673 {
674 char payload[BLOCK_BYTES];
675 struct ablock *next_free;
676 } x;
677 /* `abase' is the aligned base of the ablocks. */
678 /* It is overloaded to hold the virtual `busy' field that counts
679 the number of used ablock in the parent ablocks.
680 The first ablock has the `busy' field, the others have the `abase'
681 field. To tell the difference, we assume that pointers will have
682 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
683 is used to tell whether the real base of the parent ablocks is `abase'
684 (if not, the word before the first ablock holds a pointer to the
685 real base). */
686 struct ablocks *abase;
687 /* The padding of all but the last ablock is unused. The padding of
688 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
689#if BLOCK_PADDING
690 char padding[BLOCK_PADDING];
ebb8d410 691#endif
ab6780cd
SM
692};
693
694/* A bunch of consecutive aligned blocks. */
695struct ablocks
696{
697 struct ablock blocks[ABLOCKS_SIZE];
698};
699
700/* Size of the block requested from malloc or memalign. */
19bcad1f 701#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
702
703#define ABLOCK_ABASE(block) \
704 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
705 ? (struct ablocks *)(block) \
706 : (block)->abase)
707
708/* Virtual `busy' field. */
709#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
710
711/* Pointer to the (not necessarily aligned) malloc block. */
19bcad1f
SM
712#ifdef HAVE_POSIX_MEMALIGN
713#define ABLOCKS_BASE(abase) (abase)
714#else
ab6780cd 715#define ABLOCKS_BASE(abase) \
03bb6a06 716 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 717#endif
ab6780cd
SM
718
719/* The list of free ablock. */
720static struct ablock *free_ablock;
721
722/* Allocate an aligned block of nbytes.
723 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
724 smaller or equal to BLOCK_BYTES. */
725static POINTER_TYPE *
726lisp_align_malloc (nbytes, type)
727 size_t nbytes;
728 enum mem_type type;
729{
730 void *base, *val;
731 struct ablocks *abase;
732
733 eassert (nbytes <= BLOCK_BYTES);
734
735 BLOCK_INPUT;
736
737#ifdef GC_MALLOC_CHECK
738 allocated_mem_type = type;
739#endif
740
741 if (!free_ablock)
742 {
d7489312
DL
743 int i;
744 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
745
746#ifdef DOUG_LEA_MALLOC
747 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
748 because mapped region contents are not preserved in
749 a dumped Emacs. */
750 mallopt (M_MMAP_MAX, 0);
751#endif
752
19bcad1f
SM
753#ifdef HAVE_POSIX_MEMALIGN
754 {
755 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
756 abase = err ? (base = NULL) : base;
757 }
758#else
ab6780cd
SM
759 base = malloc (ABLOCKS_BYTES);
760 abase = ALIGN (base, BLOCK_ALIGN);
4532fdde
RS
761 if (base == 0)
762 {
763 UNBLOCK_INPUT;
764 memory_full ();
765 }
19bcad1f 766#endif
ab6780cd
SM
767
768 aligned = (base == abase);
769 if (!aligned)
770 ((void**)abase)[-1] = base;
771
772#ifdef DOUG_LEA_MALLOC
773 /* Back to a reasonable maximum of mmap'ed areas. */
774 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
775#endif
776
831b476c 777#ifndef USE_LSB_TAG
f4446bbf
GM
778 /* If the memory just allocated cannot be addressed thru a Lisp
779 object's pointer, and it needs to be, that's equivalent to
780 running out of memory. */
781 if (type != MEM_TYPE_NON_LISP)
782 {
783 Lisp_Object tem;
784 char *end = (char *) base + ABLOCKS_BYTES - 1;
785 XSETCONS (tem, end);
786 if ((char *) XCONS (tem) != end)
787 {
788 lisp_malloc_loser = base;
789 free (base);
790 UNBLOCK_INPUT;
791 memory_full ();
792 }
793 }
831b476c 794#endif
f4446bbf 795
ab6780cd
SM
796 /* Initialize the blocks and put them on the free list.
797 Is `base' was not properly aligned, we can't use the last block. */
798 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
799 {
800 abase->blocks[i].abase = abase;
801 abase->blocks[i].x.next_free = free_ablock;
802 free_ablock = &abase->blocks[i];
803 }
03bb6a06 804 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
ab6780cd 805
19bcad1f 806 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
807 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
808 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
809 eassert (ABLOCKS_BASE (abase) == base);
03bb6a06 810 eassert (aligned == (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
811 }
812
813 abase = ABLOCK_ABASE (free_ablock);
03bb6a06 814 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
815 val = free_ablock;
816 free_ablock = free_ablock->x.next_free;
817
ab6780cd
SM
818#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
819 if (val && type != MEM_TYPE_NON_LISP)
820 mem_insert (val, (char *) val + nbytes, type);
821#endif
822
823 UNBLOCK_INPUT;
824 if (!val && nbytes)
825 memory_full ();
826
827 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
828 return val;
829}
830
831static void
832lisp_align_free (block)
833 POINTER_TYPE *block;
834{
835 struct ablock *ablock = block;
836 struct ablocks *abase = ABLOCK_ABASE (ablock);
837
838 BLOCK_INPUT;
839#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
840 mem_delete (mem_find (block));
841#endif
842 /* Put on free list. */
843 ablock->x.next_free = free_ablock;
844 free_ablock = ablock;
845 /* Update busy count. */
03bb6a06 846 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
d2db1c32 847
03bb6a06 848 if (2 > (long) ABLOCKS_BUSY (abase))
ab6780cd 849 { /* All the blocks are free. */
03bb6a06 850 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
ab6780cd
SM
851 struct ablock **tem = &free_ablock;
852 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
853
854 while (*tem)
855 {
856 if (*tem >= (struct ablock *) abase && *tem < atop)
857 {
858 i++;
859 *tem = (*tem)->x.next_free;
860 }
861 else
862 tem = &(*tem)->x.next_free;
863 }
864 eassert ((aligned & 1) == aligned);
865 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
866 free (ABLOCKS_BASE (abase));
867 }
868 UNBLOCK_INPUT;
869}
3ef06d12
SM
870
871/* Return a new buffer structure allocated from the heap with
872 a call to lisp_malloc. */
873
874struct buffer *
875allocate_buffer ()
876{
877 struct buffer *b
878 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
879 MEM_TYPE_BUFFER);
880 return b;
881}
882
9ac0d9e0
JB
883\f
884/* Arranging to disable input signals while we're in malloc.
885
886 This only works with GNU malloc. To help out systems which can't
887 use GNU malloc, all the calls to malloc, realloc, and free
888 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
889 pairs; unfortunately, we have no idea what C library functions
890 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
891 using GNU malloc. Fortunately, most of the major operating systems
892 can use GNU malloc. */
9ac0d9e0
JB
893
894#ifndef SYSTEM_MALLOC
b3303f74
DL
895#ifndef DOUG_LEA_MALLOC
896extern void * (*__malloc_hook) P_ ((size_t));
897extern void * (*__realloc_hook) P_ ((void *, size_t));
898extern void (*__free_hook) P_ ((void *));
899/* Else declared in malloc.h, perhaps with an extra arg. */
900#endif /* DOUG_LEA_MALLOC */
b0846f52 901static void * (*old_malloc_hook) ();
b0846f52 902static void * (*old_realloc_hook) ();
b0846f52 903static void (*old_free_hook) ();
9ac0d9e0 904
276cbe5a
RS
905/* This function is used as the hook for free to call. */
906
9ac0d9e0
JB
907static void
908emacs_blocked_free (ptr)
909 void *ptr;
910{
911 BLOCK_INPUT;
877935b1
GM
912
913#ifdef GC_MALLOC_CHECK
a83fee2c
GM
914 if (ptr)
915 {
916 struct mem_node *m;
177c0ea7 917
a83fee2c
GM
918 m = mem_find (ptr);
919 if (m == MEM_NIL || m->start != ptr)
920 {
921 fprintf (stderr,
922 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
923 abort ();
924 }
925 else
926 {
927 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
928 mem_delete (m);
929 }
930 }
877935b1 931#endif /* GC_MALLOC_CHECK */
177c0ea7 932
9ac0d9e0
JB
933 __free_hook = old_free_hook;
934 free (ptr);
177c0ea7 935
276cbe5a
RS
936 /* If we released our reserve (due to running out of memory),
937 and we have a fair amount free once again,
938 try to set aside another reserve in case we run out once more. */
939 if (spare_memory == 0
940 /* Verify there is enough space that even with the malloc
941 hysteresis this call won't run out again.
942 The code here is correct as long as SPARE_MEMORY
943 is substantially larger than the block size malloc uses. */
944 && (bytes_used_when_full
d1658221 945 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
675d5130 946 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a 947
b0846f52 948 __free_hook = emacs_blocked_free;
9ac0d9e0
JB
949 UNBLOCK_INPUT;
950}
951
34400008 952
276cbe5a
RS
953/* If we released our reserve (due to running out of memory),
954 and we have a fair amount free once again,
955 try to set aside another reserve in case we run out once more.
956
957 This is called when a relocatable block is freed in ralloc.c. */
958
959void
960refill_memory_reserve ()
961{
962 if (spare_memory == 0)
675d5130 963 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a
RS
964}
965
34400008 966
276cbe5a
RS
967/* This function is the malloc hook that Emacs uses. */
968
9ac0d9e0
JB
969static void *
970emacs_blocked_malloc (size)
675d5130 971 size_t size;
9ac0d9e0
JB
972{
973 void *value;
974
975 BLOCK_INPUT;
976 __malloc_hook = old_malloc_hook;
1177ecf6 977#ifdef DOUG_LEA_MALLOC
d1658221 978 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1177ecf6 979#else
d1658221 980 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 981#endif
877935b1 982
2756d8ee 983 value = (void *) malloc (size);
877935b1
GM
984
985#ifdef GC_MALLOC_CHECK
986 {
987 struct mem_node *m = mem_find (value);
988 if (m != MEM_NIL)
989 {
990 fprintf (stderr, "Malloc returned %p which is already in use\n",
991 value);
992 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
993 m->start, m->end, (char *) m->end - (char *) m->start,
994 m->type);
995 abort ();
996 }
997
998 if (!dont_register_blocks)
999 {
1000 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1001 allocated_mem_type = MEM_TYPE_NON_LISP;
1002 }
1003 }
1004#endif /* GC_MALLOC_CHECK */
177c0ea7 1005
b0846f52 1006 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0
JB
1007 UNBLOCK_INPUT;
1008
877935b1 1009 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1010 return value;
1011}
1012
34400008
GM
1013
1014/* This function is the realloc hook that Emacs uses. */
1015
9ac0d9e0
JB
1016static void *
1017emacs_blocked_realloc (ptr, size)
1018 void *ptr;
675d5130 1019 size_t size;
9ac0d9e0
JB
1020{
1021 void *value;
1022
1023 BLOCK_INPUT;
1024 __realloc_hook = old_realloc_hook;
877935b1
GM
1025
1026#ifdef GC_MALLOC_CHECK
1027 if (ptr)
1028 {
1029 struct mem_node *m = mem_find (ptr);
1030 if (m == MEM_NIL || m->start != ptr)
1031 {
1032 fprintf (stderr,
1033 "Realloc of %p which wasn't allocated with malloc\n",
1034 ptr);
1035 abort ();
1036 }
1037
1038 mem_delete (m);
1039 }
177c0ea7 1040
877935b1 1041 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1042
877935b1
GM
1043 /* Prevent malloc from registering blocks. */
1044 dont_register_blocks = 1;
1045#endif /* GC_MALLOC_CHECK */
1046
2756d8ee 1047 value = (void *) realloc (ptr, size);
877935b1
GM
1048
1049#ifdef GC_MALLOC_CHECK
1050 dont_register_blocks = 0;
1051
1052 {
1053 struct mem_node *m = mem_find (value);
1054 if (m != MEM_NIL)
1055 {
1056 fprintf (stderr, "Realloc returns memory that is already in use\n");
1057 abort ();
1058 }
1059
1060 /* Can't handle zero size regions in the red-black tree. */
1061 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1062 }
177c0ea7 1063
877935b1
GM
1064 /* fprintf (stderr, "%p <- realloc\n", value); */
1065#endif /* GC_MALLOC_CHECK */
177c0ea7 1066
b0846f52 1067 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0
JB
1068 UNBLOCK_INPUT;
1069
1070 return value;
1071}
1072
34400008
GM
1073
1074/* Called from main to set up malloc to use our hooks. */
1075
9ac0d9e0
JB
1076void
1077uninterrupt_malloc ()
1078{
c8099634
RS
1079 if (__free_hook != emacs_blocked_free)
1080 old_free_hook = __free_hook;
b0846f52 1081 __free_hook = emacs_blocked_free;
9ac0d9e0 1082
c8099634
RS
1083 if (__malloc_hook != emacs_blocked_malloc)
1084 old_malloc_hook = __malloc_hook;
b0846f52 1085 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1086
c8099634
RS
1087 if (__realloc_hook != emacs_blocked_realloc)
1088 old_realloc_hook = __realloc_hook;
b0846f52 1089 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1090}
2e471eb5
GM
1091
1092#endif /* not SYSTEM_MALLOC */
1093
1094
7146af97 1095\f
2e471eb5
GM
1096/***********************************************************************
1097 Interval Allocation
1098 ***********************************************************************/
1a4f1e2c 1099
34400008
GM
1100/* Number of intervals allocated in an interval_block structure.
1101 The 1020 is 1024 minus malloc overhead. */
1102
d5e35230
JA
1103#define INTERVAL_BLOCK_SIZE \
1104 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1105
34400008
GM
1106/* Intervals are allocated in chunks in form of an interval_block
1107 structure. */
1108
d5e35230 1109struct interval_block
2e471eb5 1110{
d05b383a 1111 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1112 struct interval intervals[INTERVAL_BLOCK_SIZE];
d05b383a 1113 struct interval_block *next;
2e471eb5 1114};
d5e35230 1115
34400008
GM
1116/* Current interval block. Its `next' pointer points to older
1117 blocks. */
1118
d5e35230 1119struct interval_block *interval_block;
34400008
GM
1120
1121/* Index in interval_block above of the next unused interval
1122 structure. */
1123
d5e35230 1124static int interval_block_index;
34400008
GM
1125
1126/* Number of free and live intervals. */
1127
2e471eb5 1128static int total_free_intervals, total_intervals;
d5e35230 1129
34400008
GM
1130/* List of free intervals. */
1131
d5e35230
JA
1132INTERVAL interval_free_list;
1133
c8099634 1134/* Total number of interval blocks now in use. */
2e471eb5 1135
c8099634
RS
1136int n_interval_blocks;
1137
34400008
GM
1138
1139/* Initialize interval allocation. */
1140
d5e35230
JA
1141static void
1142init_intervals ()
1143{
0930c1a1
SM
1144 interval_block = NULL;
1145 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1146 interval_free_list = 0;
0930c1a1 1147 n_interval_blocks = 0;
d5e35230
JA
1148}
1149
34400008
GM
1150
1151/* Return a new interval. */
d5e35230
JA
1152
1153INTERVAL
1154make_interval ()
1155{
1156 INTERVAL val;
1157
1158 if (interval_free_list)
1159 {
1160 val = interval_free_list;
439d5cb4 1161 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1162 }
1163 else
1164 {
1165 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1166 {
3c06d205
KH
1167 register struct interval_block *newi;
1168
34400008
GM
1169 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1170 MEM_TYPE_NON_LISP);
d5e35230 1171
d5e35230
JA
1172 newi->next = interval_block;
1173 interval_block = newi;
1174 interval_block_index = 0;
c8099634 1175 n_interval_blocks++;
d5e35230
JA
1176 }
1177 val = &interval_block->intervals[interval_block_index++];
1178 }
1179 consing_since_gc += sizeof (struct interval);
310ea200 1180 intervals_consed++;
d5e35230 1181 RESET_INTERVAL (val);
2336fe58 1182 val->gcmarkbit = 0;
d5e35230
JA
1183 return val;
1184}
1185
34400008
GM
1186
1187/* Mark Lisp objects in interval I. */
d5e35230
JA
1188
1189static void
d393c068 1190mark_interval (i, dummy)
d5e35230 1191 register INTERVAL i;
d393c068 1192 Lisp_Object dummy;
d5e35230 1193{
2336fe58
SM
1194 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1195 i->gcmarkbit = 1;
49723c04 1196 mark_object (i->plist);
d5e35230
JA
1197}
1198
34400008
GM
1199
1200/* Mark the interval tree rooted in TREE. Don't call this directly;
1201 use the macro MARK_INTERVAL_TREE instead. */
1202
d5e35230
JA
1203static void
1204mark_interval_tree (tree)
1205 register INTERVAL tree;
1206{
e8720644
JB
1207 /* No need to test if this tree has been marked already; this
1208 function is always called through the MARK_INTERVAL_TREE macro,
1209 which takes care of that. */
1210
1e934989 1211 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1212}
1213
34400008
GM
1214
1215/* Mark the interval tree rooted in I. */
1216
e8720644
JB
1217#define MARK_INTERVAL_TREE(i) \
1218 do { \
2336fe58 1219 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1220 mark_interval_tree (i); \
1221 } while (0)
d5e35230 1222
34400008 1223
2e471eb5
GM
1224#define UNMARK_BALANCE_INTERVALS(i) \
1225 do { \
1226 if (! NULL_INTERVAL_P (i)) \
2336fe58 1227 (i) = balance_intervals (i); \
2e471eb5 1228 } while (0)
d5e35230 1229
cc2d8c6b
KR
1230\f
1231/* Number support. If NO_UNION_TYPE isn't in effect, we
1232 can't create number objects in macros. */
1233#ifndef make_number
1234Lisp_Object
1235make_number (n)
1236 int n;
1237{
1238 Lisp_Object obj;
1239 obj.s.val = n;
1240 obj.s.type = Lisp_Int;
1241 return obj;
1242}
1243#endif
d5e35230 1244\f
2e471eb5
GM
1245/***********************************************************************
1246 String Allocation
1247 ***********************************************************************/
1a4f1e2c 1248
2e471eb5
GM
1249/* Lisp_Strings are allocated in string_block structures. When a new
1250 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1251 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1252 needed, it is taken from that list. During the sweep phase of GC,
1253 string_blocks that are entirely free are freed, except two which
1254 we keep.
7146af97 1255
2e471eb5
GM
1256 String data is allocated from sblock structures. Strings larger
1257 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1258 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1259
2e471eb5
GM
1260 Sblocks consist internally of sdata structures, one for each
1261 Lisp_String. The sdata structure points to the Lisp_String it
1262 belongs to. The Lisp_String points back to the `u.data' member of
1263 its sdata structure.
7146af97 1264
2e471eb5
GM
1265 When a Lisp_String is freed during GC, it is put back on
1266 string_free_list, and its `data' member and its sdata's `string'
1267 pointer is set to null. The size of the string is recorded in the
1268 `u.nbytes' member of the sdata. So, sdata structures that are no
1269 longer used, can be easily recognized, and it's easy to compact the
1270 sblocks of small strings which we do in compact_small_strings. */
7146af97 1271
2e471eb5
GM
1272/* Size in bytes of an sblock structure used for small strings. This
1273 is 8192 minus malloc overhead. */
7146af97 1274
2e471eb5 1275#define SBLOCK_SIZE 8188
c8099634 1276
2e471eb5
GM
1277/* Strings larger than this are considered large strings. String data
1278 for large strings is allocated from individual sblocks. */
7146af97 1279
2e471eb5
GM
1280#define LARGE_STRING_BYTES 1024
1281
1282/* Structure describing string memory sub-allocated from an sblock.
1283 This is where the contents of Lisp strings are stored. */
1284
1285struct sdata
7146af97 1286{
2e471eb5
GM
1287 /* Back-pointer to the string this sdata belongs to. If null, this
1288 structure is free, and the NBYTES member of the union below
34400008 1289 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1290 would return if STRING were non-null). If non-null, STRING_BYTES
1291 (STRING) is the size of the data, and DATA contains the string's
1292 contents. */
1293 struct Lisp_String *string;
7146af97 1294
31d929e5 1295#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1296
31d929e5
GM
1297 EMACS_INT nbytes;
1298 unsigned char data[1];
177c0ea7 1299
31d929e5
GM
1300#define SDATA_NBYTES(S) (S)->nbytes
1301#define SDATA_DATA(S) (S)->data
177c0ea7 1302
31d929e5
GM
1303#else /* not GC_CHECK_STRING_BYTES */
1304
2e471eb5
GM
1305 union
1306 {
1307 /* When STRING in non-null. */
1308 unsigned char data[1];
1309
1310 /* When STRING is null. */
1311 EMACS_INT nbytes;
1312 } u;
177c0ea7 1313
31d929e5
GM
1314
1315#define SDATA_NBYTES(S) (S)->u.nbytes
1316#define SDATA_DATA(S) (S)->u.data
1317
1318#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1319};
1320
31d929e5 1321
2e471eb5
GM
1322/* Structure describing a block of memory which is sub-allocated to
1323 obtain string data memory for strings. Blocks for small strings
1324 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1325 as large as needed. */
1326
1327struct sblock
7146af97 1328{
2e471eb5
GM
1329 /* Next in list. */
1330 struct sblock *next;
7146af97 1331
2e471eb5
GM
1332 /* Pointer to the next free sdata block. This points past the end
1333 of the sblock if there isn't any space left in this block. */
1334 struct sdata *next_free;
1335
1336 /* Start of data. */
1337 struct sdata first_data;
1338};
1339
1340/* Number of Lisp strings in a string_block structure. The 1020 is
1341 1024 minus malloc overhead. */
1342
19bcad1f 1343#define STRING_BLOCK_SIZE \
2e471eb5
GM
1344 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1345
1346/* Structure describing a block from which Lisp_String structures
1347 are allocated. */
1348
1349struct string_block
7146af97 1350{
d05b383a 1351 /* Place `strings' first, to preserve alignment. */
19bcad1f 1352 struct Lisp_String strings[STRING_BLOCK_SIZE];
d05b383a 1353 struct string_block *next;
2e471eb5 1354};
7146af97 1355
2e471eb5
GM
1356/* Head and tail of the list of sblock structures holding Lisp string
1357 data. We always allocate from current_sblock. The NEXT pointers
1358 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1359
2e471eb5 1360static struct sblock *oldest_sblock, *current_sblock;
7146af97 1361
2e471eb5 1362/* List of sblocks for large strings. */
7146af97 1363
2e471eb5 1364static struct sblock *large_sblocks;
7146af97 1365
2e471eb5 1366/* List of string_block structures, and how many there are. */
7146af97 1367
2e471eb5
GM
1368static struct string_block *string_blocks;
1369static int n_string_blocks;
7146af97 1370
2e471eb5 1371/* Free-list of Lisp_Strings. */
7146af97 1372
2e471eb5 1373static struct Lisp_String *string_free_list;
7146af97 1374
2e471eb5 1375/* Number of live and free Lisp_Strings. */
c8099634 1376
2e471eb5 1377static int total_strings, total_free_strings;
7146af97 1378
2e471eb5
GM
1379/* Number of bytes used by live strings. */
1380
1381static int total_string_size;
1382
1383/* Given a pointer to a Lisp_String S which is on the free-list
1384 string_free_list, return a pointer to its successor in the
1385 free-list. */
1386
1387#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1388
1389/* Return a pointer to the sdata structure belonging to Lisp string S.
1390 S must be live, i.e. S->data must not be null. S->data is actually
1391 a pointer to the `u.data' member of its sdata structure; the
1392 structure starts at a constant offset in front of that. */
177c0ea7 1393
31d929e5
GM
1394#ifdef GC_CHECK_STRING_BYTES
1395
1396#define SDATA_OF_STRING(S) \
1397 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1398 - sizeof (EMACS_INT)))
1399
1400#else /* not GC_CHECK_STRING_BYTES */
1401
2e471eb5
GM
1402#define SDATA_OF_STRING(S) \
1403 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1404
31d929e5
GM
1405#endif /* not GC_CHECK_STRING_BYTES */
1406
2e471eb5
GM
1407/* Value is the size of an sdata structure large enough to hold NBYTES
1408 bytes of string data. The value returned includes a terminating
1409 NUL byte, the size of the sdata structure, and padding. */
1410
31d929e5
GM
1411#ifdef GC_CHECK_STRING_BYTES
1412
2e471eb5
GM
1413#define SDATA_SIZE(NBYTES) \
1414 ((sizeof (struct Lisp_String *) \
1415 + (NBYTES) + 1 \
31d929e5 1416 + sizeof (EMACS_INT) \
2e471eb5
GM
1417 + sizeof (EMACS_INT) - 1) \
1418 & ~(sizeof (EMACS_INT) - 1))
1419
31d929e5
GM
1420#else /* not GC_CHECK_STRING_BYTES */
1421
1422#define SDATA_SIZE(NBYTES) \
1423 ((sizeof (struct Lisp_String *) \
1424 + (NBYTES) + 1 \
1425 + sizeof (EMACS_INT) - 1) \
1426 & ~(sizeof (EMACS_INT) - 1))
1427
1428#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1429
1430/* Initialize string allocation. Called from init_alloc_once. */
d457598b
AS
1431
1432void
2e471eb5 1433init_strings ()
7146af97 1434{
2e471eb5
GM
1435 total_strings = total_free_strings = total_string_size = 0;
1436 oldest_sblock = current_sblock = large_sblocks = NULL;
1437 string_blocks = NULL;
1438 n_string_blocks = 0;
1439 string_free_list = NULL;
7146af97
JB
1440}
1441
2e471eb5 1442
361b097f
GM
1443#ifdef GC_CHECK_STRING_BYTES
1444
361b097f
GM
1445static int check_string_bytes_count;
1446
676a7251
GM
1447void check_string_bytes P_ ((int));
1448void check_sblock P_ ((struct sblock *));
1449
1450#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1451
1452
1453/* Like GC_STRING_BYTES, but with debugging check. */
1454
1455int
1456string_bytes (s)
1457 struct Lisp_String *s;
1458{
7cdee936 1459 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
676a7251
GM
1460 if (!PURE_POINTER_P (s)
1461 && s->data
1462 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1463 abort ();
1464 return nbytes;
1465}
177c0ea7 1466
2c5bd608 1467/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1468
361b097f 1469void
676a7251
GM
1470check_sblock (b)
1471 struct sblock *b;
361b097f 1472{
676a7251 1473 struct sdata *from, *end, *from_end;
177c0ea7 1474
676a7251 1475 end = b->next_free;
177c0ea7 1476
676a7251 1477 for (from = &b->first_data; from < end; from = from_end)
361b097f 1478 {
676a7251
GM
1479 /* Compute the next FROM here because copying below may
1480 overwrite data we need to compute it. */
1481 int nbytes;
177c0ea7 1482
676a7251
GM
1483 /* Check that the string size recorded in the string is the
1484 same as the one recorded in the sdata structure. */
1485 if (from->string)
1486 CHECK_STRING_BYTES (from->string);
177c0ea7 1487
676a7251
GM
1488 if (from->string)
1489 nbytes = GC_STRING_BYTES (from->string);
1490 else
1491 nbytes = SDATA_NBYTES (from);
177c0ea7 1492
676a7251
GM
1493 nbytes = SDATA_SIZE (nbytes);
1494 from_end = (struct sdata *) ((char *) from + nbytes);
1495 }
1496}
361b097f 1497
676a7251
GM
1498
1499/* Check validity of Lisp strings' string_bytes member. ALL_P
1500 non-zero means check all strings, otherwise check only most
1501 recently allocated strings. Used for hunting a bug. */
1502
1503void
1504check_string_bytes (all_p)
1505 int all_p;
1506{
1507 if (all_p)
1508 {
1509 struct sblock *b;
1510
1511 for (b = large_sblocks; b; b = b->next)
1512 {
1513 struct Lisp_String *s = b->first_data.string;
1514 if (s)
1515 CHECK_STRING_BYTES (s);
361b097f 1516 }
177c0ea7 1517
676a7251
GM
1518 for (b = oldest_sblock; b; b = b->next)
1519 check_sblock (b);
361b097f 1520 }
676a7251
GM
1521 else
1522 check_sblock (current_sblock);
361b097f
GM
1523}
1524
1525#endif /* GC_CHECK_STRING_BYTES */
1526
1527
2e471eb5
GM
1528/* Return a new Lisp_String. */
1529
1530static struct Lisp_String *
1531allocate_string ()
7146af97 1532{
2e471eb5 1533 struct Lisp_String *s;
7146af97 1534
2e471eb5
GM
1535 /* If the free-list is empty, allocate a new string_block, and
1536 add all the Lisp_Strings in it to the free-list. */
1537 if (string_free_list == NULL)
7146af97 1538 {
2e471eb5
GM
1539 struct string_block *b;
1540 int i;
1541
34400008 1542 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1543 bzero (b, sizeof *b);
1544 b->next = string_blocks;
1545 string_blocks = b;
1546 ++n_string_blocks;
1547
19bcad1f 1548 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1549 {
2e471eb5
GM
1550 s = b->strings + i;
1551 NEXT_FREE_LISP_STRING (s) = string_free_list;
1552 string_free_list = s;
7146af97 1553 }
2e471eb5 1554
19bcad1f 1555 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1556 }
c0f51373 1557
2e471eb5
GM
1558 /* Pop a Lisp_String off the free-list. */
1559 s = string_free_list;
1560 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1561
2e471eb5
GM
1562 /* Probably not strictly necessary, but play it safe. */
1563 bzero (s, sizeof *s);
c0f51373 1564
2e471eb5
GM
1565 --total_free_strings;
1566 ++total_strings;
1567 ++strings_consed;
1568 consing_since_gc += sizeof *s;
c0f51373 1569
361b097f 1570#ifdef GC_CHECK_STRING_BYTES
83a96b4d 1571 if (!noninteractive
e0f712ba 1572#ifdef MAC_OS8
83a96b4d
AC
1573 && current_sblock
1574#endif
1575 )
361b097f 1576 {
676a7251
GM
1577 if (++check_string_bytes_count == 200)
1578 {
1579 check_string_bytes_count = 0;
1580 check_string_bytes (1);
1581 }
1582 else
1583 check_string_bytes (0);
361b097f 1584 }
676a7251 1585#endif /* GC_CHECK_STRING_BYTES */
361b097f 1586
2e471eb5 1587 return s;
c0f51373 1588}
7146af97 1589
7146af97 1590
2e471eb5
GM
1591/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1592 plus a NUL byte at the end. Allocate an sdata structure for S, and
1593 set S->data to its `u.data' member. Store a NUL byte at the end of
1594 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1595 S->data if it was initially non-null. */
7146af97 1596
2e471eb5
GM
1597void
1598allocate_string_data (s, nchars, nbytes)
1599 struct Lisp_String *s;
1600 int nchars, nbytes;
7146af97 1601{
5c5fecb3 1602 struct sdata *data, *old_data;
2e471eb5 1603 struct sblock *b;
5c5fecb3 1604 int needed, old_nbytes;
7146af97 1605
2e471eb5
GM
1606 /* Determine the number of bytes needed to store NBYTES bytes
1607 of string data. */
1608 needed = SDATA_SIZE (nbytes);
7146af97 1609
2e471eb5
GM
1610 if (nbytes > LARGE_STRING_BYTES)
1611 {
675d5130 1612 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1613
1614#ifdef DOUG_LEA_MALLOC
f8608968
GM
1615 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1616 because mapped region contents are not preserved in
d36b182f
DL
1617 a dumped Emacs.
1618
1619 In case you think of allowing it in a dumped Emacs at the
1620 cost of not being able to re-dump, there's another reason:
1621 mmap'ed data typically have an address towards the top of the
1622 address space, which won't fit into an EMACS_INT (at least on
1623 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1624 mallopt (M_MMAP_MAX, 0);
1625#endif
1626
34400008 1627 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
177c0ea7 1628
2e471eb5
GM
1629#ifdef DOUG_LEA_MALLOC
1630 /* Back to a reasonable maximum of mmap'ed areas. */
1631 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1632#endif
177c0ea7 1633
2e471eb5
GM
1634 b->next_free = &b->first_data;
1635 b->first_data.string = NULL;
1636 b->next = large_sblocks;
1637 large_sblocks = b;
1638 }
1639 else if (current_sblock == NULL
1640 || (((char *) current_sblock + SBLOCK_SIZE
1641 - (char *) current_sblock->next_free)
1642 < needed))
1643 {
1644 /* Not enough room in the current sblock. */
34400008 1645 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1646 b->next_free = &b->first_data;
1647 b->first_data.string = NULL;
1648 b->next = NULL;
1649
1650 if (current_sblock)
1651 current_sblock->next = b;
1652 else
1653 oldest_sblock = b;
1654 current_sblock = b;
1655 }
1656 else
1657 b = current_sblock;
5c5fecb3
GM
1658
1659 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1660 old_nbytes = GC_STRING_BYTES (s);
177c0ea7 1661
2e471eb5
GM
1662 data = b->next_free;
1663 data->string = s;
31d929e5
GM
1664 s->data = SDATA_DATA (data);
1665#ifdef GC_CHECK_STRING_BYTES
1666 SDATA_NBYTES (data) = nbytes;
1667#endif
2e471eb5
GM
1668 s->size = nchars;
1669 s->size_byte = nbytes;
1670 s->data[nbytes] = '\0';
1671 b->next_free = (struct sdata *) ((char *) data + needed);
177c0ea7 1672
5c5fecb3
GM
1673 /* If S had already data assigned, mark that as free by setting its
1674 string back-pointer to null, and recording the size of the data
00c9c33c 1675 in it. */
5c5fecb3
GM
1676 if (old_data)
1677 {
31d929e5 1678 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
1679 old_data->string = NULL;
1680 }
1681
2e471eb5
GM
1682 consing_since_gc += needed;
1683}
1684
1685
1686/* Sweep and compact strings. */
1687
1688static void
1689sweep_strings ()
1690{
1691 struct string_block *b, *next;
1692 struct string_block *live_blocks = NULL;
177c0ea7 1693
2e471eb5
GM
1694 string_free_list = NULL;
1695 total_strings = total_free_strings = 0;
1696 total_string_size = 0;
1697
1698 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1699 for (b = string_blocks; b; b = next)
1700 {
1701 int i, nfree = 0;
1702 struct Lisp_String *free_list_before = string_free_list;
1703
1704 next = b->next;
1705
19bcad1f 1706 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
1707 {
1708 struct Lisp_String *s = b->strings + i;
1709
1710 if (s->data)
1711 {
1712 /* String was not on free-list before. */
1713 if (STRING_MARKED_P (s))
1714 {
1715 /* String is live; unmark it and its intervals. */
1716 UNMARK_STRING (s);
177c0ea7 1717
2e471eb5
GM
1718 if (!NULL_INTERVAL_P (s->intervals))
1719 UNMARK_BALANCE_INTERVALS (s->intervals);
1720
1721 ++total_strings;
1722 total_string_size += STRING_BYTES (s);
1723 }
1724 else
1725 {
1726 /* String is dead. Put it on the free-list. */
1727 struct sdata *data = SDATA_OF_STRING (s);
1728
1729 /* Save the size of S in its sdata so that we know
1730 how large that is. Reset the sdata's string
1731 back-pointer so that we know it's free. */
31d929e5
GM
1732#ifdef GC_CHECK_STRING_BYTES
1733 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1734 abort ();
1735#else
2e471eb5 1736 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 1737#endif
2e471eb5
GM
1738 data->string = NULL;
1739
1740 /* Reset the strings's `data' member so that we
1741 know it's free. */
1742 s->data = NULL;
1743
1744 /* Put the string on the free-list. */
1745 NEXT_FREE_LISP_STRING (s) = string_free_list;
1746 string_free_list = s;
1747 ++nfree;
1748 }
1749 }
1750 else
1751 {
1752 /* S was on the free-list before. Put it there again. */
1753 NEXT_FREE_LISP_STRING (s) = string_free_list;
1754 string_free_list = s;
1755 ++nfree;
1756 }
1757 }
1758
34400008 1759 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 1760 the first two of them. */
19bcad1f
SM
1761 if (nfree == STRING_BLOCK_SIZE
1762 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
1763 {
1764 lisp_free (b);
1765 --n_string_blocks;
1766 string_free_list = free_list_before;
1767 }
1768 else
1769 {
1770 total_free_strings += nfree;
1771 b->next = live_blocks;
1772 live_blocks = b;
1773 }
1774 }
1775
1776 string_blocks = live_blocks;
1777 free_large_strings ();
1778 compact_small_strings ();
1779}
1780
1781
1782/* Free dead large strings. */
1783
1784static void
1785free_large_strings ()
1786{
1787 struct sblock *b, *next;
1788 struct sblock *live_blocks = NULL;
177c0ea7 1789
2e471eb5
GM
1790 for (b = large_sblocks; b; b = next)
1791 {
1792 next = b->next;
1793
1794 if (b->first_data.string == NULL)
1795 lisp_free (b);
1796 else
1797 {
1798 b->next = live_blocks;
1799 live_blocks = b;
1800 }
1801 }
1802
1803 large_sblocks = live_blocks;
1804}
1805
1806
1807/* Compact data of small strings. Free sblocks that don't contain
1808 data of live strings after compaction. */
1809
1810static void
1811compact_small_strings ()
1812{
1813 struct sblock *b, *tb, *next;
1814 struct sdata *from, *to, *end, *tb_end;
1815 struct sdata *to_end, *from_end;
1816
1817 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1818 to, and TB_END is the end of TB. */
1819 tb = oldest_sblock;
1820 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1821 to = &tb->first_data;
1822
1823 /* Step through the blocks from the oldest to the youngest. We
1824 expect that old blocks will stabilize over time, so that less
1825 copying will happen this way. */
1826 for (b = oldest_sblock; b; b = b->next)
1827 {
1828 end = b->next_free;
1829 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 1830
2e471eb5
GM
1831 for (from = &b->first_data; from < end; from = from_end)
1832 {
1833 /* Compute the next FROM here because copying below may
1834 overwrite data we need to compute it. */
1835 int nbytes;
1836
31d929e5
GM
1837#ifdef GC_CHECK_STRING_BYTES
1838 /* Check that the string size recorded in the string is the
1839 same as the one recorded in the sdata structure. */
1840 if (from->string
1841 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1842 abort ();
1843#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 1844
2e471eb5
GM
1845 if (from->string)
1846 nbytes = GC_STRING_BYTES (from->string);
1847 else
31d929e5 1848 nbytes = SDATA_NBYTES (from);
177c0ea7 1849
2e471eb5
GM
1850 nbytes = SDATA_SIZE (nbytes);
1851 from_end = (struct sdata *) ((char *) from + nbytes);
177c0ea7 1852
2e471eb5
GM
1853 /* FROM->string non-null means it's alive. Copy its data. */
1854 if (from->string)
1855 {
1856 /* If TB is full, proceed with the next sblock. */
1857 to_end = (struct sdata *) ((char *) to + nbytes);
1858 if (to_end > tb_end)
1859 {
1860 tb->next_free = to;
1861 tb = tb->next;
1862 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1863 to = &tb->first_data;
1864 to_end = (struct sdata *) ((char *) to + nbytes);
1865 }
177c0ea7 1866
2e471eb5
GM
1867 /* Copy, and update the string's `data' pointer. */
1868 if (from != to)
1869 {
a2407477
GM
1870 xassert (tb != b || to <= from);
1871 safe_bcopy ((char *) from, (char *) to, nbytes);
31d929e5 1872 to->string->data = SDATA_DATA (to);
2e471eb5
GM
1873 }
1874
1875 /* Advance past the sdata we copied to. */
1876 to = to_end;
1877 }
1878 }
1879 }
1880
1881 /* The rest of the sblocks following TB don't contain live data, so
1882 we can free them. */
1883 for (b = tb->next; b; b = next)
1884 {
1885 next = b->next;
1886 lisp_free (b);
1887 }
1888
1889 tb->next_free = to;
1890 tb->next = NULL;
1891 current_sblock = tb;
1892}
1893
1894
1895DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
1896 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1897LENGTH must be an integer.
1898INIT must be an integer that represents a character. */)
7ee72033 1899 (length, init)
2e471eb5
GM
1900 Lisp_Object length, init;
1901{
1902 register Lisp_Object val;
1903 register unsigned char *p, *end;
1904 int c, nbytes;
1905
b7826503
PJ
1906 CHECK_NATNUM (length);
1907 CHECK_NUMBER (init);
2e471eb5
GM
1908
1909 c = XINT (init);
1910 if (SINGLE_BYTE_CHAR_P (c))
1911 {
1912 nbytes = XINT (length);
1913 val = make_uninit_string (nbytes);
d5db4077
KR
1914 p = SDATA (val);
1915 end = p + SCHARS (val);
2e471eb5
GM
1916 while (p != end)
1917 *p++ = c;
1918 }
1919 else
1920 {
d942b71c 1921 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5
GM
1922 int len = CHAR_STRING (c, str);
1923
1924 nbytes = len * XINT (length);
1925 val = make_uninit_multibyte_string (XINT (length), nbytes);
d5db4077 1926 p = SDATA (val);
2e471eb5
GM
1927 end = p + nbytes;
1928 while (p != end)
1929 {
1930 bcopy (str, p, len);
1931 p += len;
1932 }
1933 }
177c0ea7 1934
2e471eb5
GM
1935 *p = 0;
1936 return val;
1937}
1938
1939
1940DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
a6266d23 1941 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
7ee72033
MB
1942LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1943 (length, init)
2e471eb5
GM
1944 Lisp_Object length, init;
1945{
1946 register Lisp_Object val;
1947 struct Lisp_Bool_Vector *p;
1948 int real_init, i;
1949 int length_in_chars, length_in_elts, bits_per_value;
1950
b7826503 1951 CHECK_NATNUM (length);
2e471eb5 1952
a097329f 1953 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
1954
1955 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
1956 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
1957 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
1958
1959 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1960 slot `size' of the struct Lisp_Bool_Vector. */
1961 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1962 p = XBOOL_VECTOR (val);
177c0ea7 1963
2e471eb5
GM
1964 /* Get rid of any bits that would cause confusion. */
1965 p->vector_size = 0;
1966 XSETBOOL_VECTOR (val, p);
1967 p->size = XFASTINT (length);
177c0ea7 1968
2e471eb5
GM
1969 real_init = (NILP (init) ? 0 : -1);
1970 for (i = 0; i < length_in_chars ; i++)
1971 p->data[i] = real_init;
177c0ea7 1972
2e471eb5 1973 /* Clear the extraneous bits in the last byte. */
a097329f 1974 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2e471eb5 1975 XBOOL_VECTOR (val)->data[length_in_chars - 1]
a097329f 1976 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
1977
1978 return val;
1979}
1980
1981
1982/* Make a string from NBYTES bytes at CONTENTS, and compute the number
1983 of characters from the contents. This string may be unibyte or
1984 multibyte, depending on the contents. */
1985
1986Lisp_Object
1987make_string (contents, nbytes)
943b873e 1988 const char *contents;
2e471eb5
GM
1989 int nbytes;
1990{
1991 register Lisp_Object val;
9eac9d59
KH
1992 int nchars, multibyte_nbytes;
1993
1994 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
9eac9d59
KH
1995 if (nbytes == nchars || nbytes != multibyte_nbytes)
1996 /* CONTENTS contains no multibyte sequences or contains an invalid
1997 multibyte sequence. We must make unibyte string. */
495a6df3
KH
1998 val = make_unibyte_string (contents, nbytes);
1999 else
2000 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2001 return val;
2002}
2003
2004
2005/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2006
2007Lisp_Object
2008make_unibyte_string (contents, length)
943b873e 2009 const char *contents;
2e471eb5
GM
2010 int length;
2011{
2012 register Lisp_Object val;
2013 val = make_uninit_string (length);
d5db4077
KR
2014 bcopy (contents, SDATA (val), length);
2015 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2016 return val;
2017}
2018
2019
2020/* Make a multibyte string from NCHARS characters occupying NBYTES
2021 bytes at CONTENTS. */
2022
2023Lisp_Object
2024make_multibyte_string (contents, nchars, nbytes)
943b873e 2025 const char *contents;
2e471eb5
GM
2026 int nchars, nbytes;
2027{
2028 register Lisp_Object val;
2029 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2030 bcopy (contents, SDATA (val), nbytes);
2e471eb5
GM
2031 return val;
2032}
2033
2034
2035/* Make a string from NCHARS characters occupying NBYTES bytes at
2036 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2037
2038Lisp_Object
2039make_string_from_bytes (contents, nchars, nbytes)
fcbb914b 2040 const char *contents;
2e471eb5
GM
2041 int nchars, nbytes;
2042{
2043 register Lisp_Object val;
2044 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077
KR
2045 bcopy (contents, SDATA (val), nbytes);
2046 if (SBYTES (val) == SCHARS (val))
2047 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2048 return val;
2049}
2050
2051
2052/* Make a string from NCHARS characters occupying NBYTES bytes at
2053 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2054 string as multibyte. If NCHARS is negative, it counts the number of
2055 characters by itself. */
2e471eb5
GM
2056
2057Lisp_Object
2058make_specified_string (contents, nchars, nbytes, multibyte)
fcbb914b 2059 const char *contents;
2e471eb5
GM
2060 int nchars, nbytes;
2061 int multibyte;
2062{
2063 register Lisp_Object val;
229b28c4
KH
2064
2065 if (nchars < 0)
2066 {
2067 if (multibyte)
2068 nchars = multibyte_chars_in_text (contents, nbytes);
2069 else
2070 nchars = nbytes;
2071 }
2e471eb5 2072 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2073 bcopy (contents, SDATA (val), nbytes);
2e471eb5 2074 if (!multibyte)
d5db4077 2075 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2076 return val;
2077}
2078
2079
2080/* Make a string from the data at STR, treating it as multibyte if the
2081 data warrants. */
2082
2083Lisp_Object
2084build_string (str)
943b873e 2085 const char *str;
2e471eb5
GM
2086{
2087 return make_string (str, strlen (str));
2088}
2089
2090
2091/* Return an unibyte Lisp_String set up to hold LENGTH characters
2092 occupying LENGTH bytes. */
2093
2094Lisp_Object
2095make_uninit_string (length)
2096 int length;
2097{
2098 Lisp_Object val;
2099 val = make_uninit_multibyte_string (length, length);
d5db4077 2100 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2101 return val;
2102}
2103
2104
2105/* Return a multibyte Lisp_String set up to hold NCHARS characters
2106 which occupy NBYTES bytes. */
2107
2108Lisp_Object
2109make_uninit_multibyte_string (nchars, nbytes)
2110 int nchars, nbytes;
2111{
2112 Lisp_Object string;
2113 struct Lisp_String *s;
2114
2115 if (nchars < 0)
2116 abort ();
2117
2118 s = allocate_string ();
2119 allocate_string_data (s, nchars, nbytes);
2120 XSETSTRING (string, s);
2121 string_chars_consed += nbytes;
2122 return string;
2123}
2124
2125
2126\f
2127/***********************************************************************
2128 Float Allocation
2129 ***********************************************************************/
2130
2e471eb5
GM
2131/* We store float cells inside of float_blocks, allocating a new
2132 float_block with malloc whenever necessary. Float cells reclaimed
2133 by GC are put on a free list to be reallocated before allocating
ab6780cd 2134 any new float cells from the latest float_block. */
2e471eb5 2135
d05b383a
SM
2136#define FLOAT_BLOCK_SIZE \
2137 (((BLOCK_BYTES - sizeof (struct float_block *) \
2138 /* The compiler might add padding at the end. */ \
2139 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2140 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2141
2142#define GETMARKBIT(block,n) \
2143 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2144 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2145 & 1)
2146
2147#define SETMARKBIT(block,n) \
2148 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2149 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2150
2151#define UNSETMARKBIT(block,n) \
2152 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2153 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2154
2155#define FLOAT_BLOCK(fptr) \
2156 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2157
2158#define FLOAT_INDEX(fptr) \
2159 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2160
2161struct float_block
2162{
ab6780cd 2163 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2164 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2165 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2166 struct float_block *next;
2e471eb5
GM
2167};
2168
ab6780cd
SM
2169#define FLOAT_MARKED_P(fptr) \
2170 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2171
2172#define FLOAT_MARK(fptr) \
2173 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2174
2175#define FLOAT_UNMARK(fptr) \
2176 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2177
34400008
GM
2178/* Current float_block. */
2179
2e471eb5 2180struct float_block *float_block;
34400008
GM
2181
2182/* Index of first unused Lisp_Float in the current float_block. */
2183
2e471eb5
GM
2184int float_block_index;
2185
2186/* Total number of float blocks now in use. */
2187
2188int n_float_blocks;
2189
34400008
GM
2190/* Free-list of Lisp_Floats. */
2191
2e471eb5
GM
2192struct Lisp_Float *float_free_list;
2193
34400008 2194
966533c9 2195/* Initialize float allocation. */
34400008 2196
2e471eb5
GM
2197void
2198init_float ()
2199{
08b7c2cb
SM
2200 float_block = NULL;
2201 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2202 float_free_list = 0;
08b7c2cb 2203 n_float_blocks = 0;
2e471eb5
GM
2204}
2205
34400008
GM
2206
2207/* Explicitly free a float cell by putting it on the free-list. */
2e471eb5
GM
2208
2209void
2210free_float (ptr)
2211 struct Lisp_Float *ptr;
2212{
2213 *(struct Lisp_Float **)&ptr->data = float_free_list;
2214 float_free_list = ptr;
2215}
2216
34400008
GM
2217
2218/* Return a new float object with value FLOAT_VALUE. */
2219
2e471eb5
GM
2220Lisp_Object
2221make_float (float_value)
2222 double float_value;
2223{
2224 register Lisp_Object val;
2225
2226 if (float_free_list)
2227 {
2228 /* We use the data field for chaining the free list
2229 so that we won't use the same field that has the mark bit. */
2230 XSETFLOAT (val, float_free_list);
2231 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2232 }
2233 else
2234 {
2235 if (float_block_index == FLOAT_BLOCK_SIZE)
2236 {
2237 register struct float_block *new;
2238
ab6780cd
SM
2239 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2240 MEM_TYPE_FLOAT);
2e471eb5 2241 new->next = float_block;
a0668126 2242 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2243 float_block = new;
2244 float_block_index = 0;
2245 n_float_blocks++;
2246 }
a0668126
SM
2247 XSETFLOAT (val, &float_block->floats[float_block_index]);
2248 float_block_index++;
2e471eb5 2249 }
177c0ea7 2250
2e471eb5 2251 XFLOAT_DATA (val) = float_value;
a0668126 2252 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2253 consing_since_gc += sizeof (struct Lisp_Float);
2254 floats_consed++;
2255 return val;
2256}
2257
2e471eb5
GM
2258
2259\f
2260/***********************************************************************
2261 Cons Allocation
2262 ***********************************************************************/
2263
2264/* We store cons cells inside of cons_blocks, allocating a new
2265 cons_block with malloc whenever necessary. Cons cells reclaimed by
2266 GC are put on a free list to be reallocated before allocating
08b7c2cb 2267 any new cons cells from the latest cons_block. */
2e471eb5
GM
2268
2269#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2270 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2271 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2272
2273#define CONS_BLOCK(fptr) \
2274 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2275
2276#define CONS_INDEX(fptr) \
2277 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2278
2279struct cons_block
2280{
08b7c2cb 2281 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2282 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2283 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2284 struct cons_block *next;
2e471eb5
GM
2285};
2286
08b7c2cb
SM
2287#define CONS_MARKED_P(fptr) \
2288 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2289
2290#define CONS_MARK(fptr) \
2291 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2292
2293#define CONS_UNMARK(fptr) \
2294 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2295
34400008
GM
2296/* Current cons_block. */
2297
2e471eb5 2298struct cons_block *cons_block;
34400008
GM
2299
2300/* Index of first unused Lisp_Cons in the current block. */
2301
2e471eb5
GM
2302int cons_block_index;
2303
34400008
GM
2304/* Free-list of Lisp_Cons structures. */
2305
2e471eb5
GM
2306struct Lisp_Cons *cons_free_list;
2307
2308/* Total number of cons blocks now in use. */
2309
2310int n_cons_blocks;
2311
34400008
GM
2312
2313/* Initialize cons allocation. */
2314
2e471eb5
GM
2315void
2316init_cons ()
2317{
08b7c2cb
SM
2318 cons_block = NULL;
2319 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2320 cons_free_list = 0;
08b7c2cb 2321 n_cons_blocks = 0;
2e471eb5
GM
2322}
2323
34400008
GM
2324
2325/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2326
2327void
2328free_cons (ptr)
2329 struct Lisp_Cons *ptr;
2330{
2331 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
34400008
GM
2332#if GC_MARK_STACK
2333 ptr->car = Vdead;
2334#endif
2e471eb5
GM
2335 cons_free_list = ptr;
2336}
2337
2338DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2339 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
7ee72033 2340 (car, cdr)
2e471eb5
GM
2341 Lisp_Object car, cdr;
2342{
2343 register Lisp_Object val;
2344
2345 if (cons_free_list)
2346 {
2347 /* We use the cdr for chaining the free list
2348 so that we won't use the same field that has the mark bit. */
2349 XSETCONS (val, cons_free_list);
2350 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2351 }
2352 else
2353 {
2354 if (cons_block_index == CONS_BLOCK_SIZE)
2355 {
2356 register struct cons_block *new;
08b7c2cb
SM
2357 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2358 MEM_TYPE_CONS);
a0668126 2359 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2360 new->next = cons_block;
2361 cons_block = new;
2362 cons_block_index = 0;
2363 n_cons_blocks++;
2364 }
a0668126
SM
2365 XSETCONS (val, &cons_block->conses[cons_block_index]);
2366 cons_block_index++;
2e471eb5 2367 }
177c0ea7 2368
f3fbd155
KR
2369 XSETCAR (val, car);
2370 XSETCDR (val, cdr);
a0668126 2371 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2372 consing_since_gc += sizeof (struct Lisp_Cons);
2373 cons_cells_consed++;
2374 return val;
2375}
2376
34400008 2377
2e471eb5
GM
2378/* Make a list of 2, 3, 4 or 5 specified objects. */
2379
2380Lisp_Object
2381list2 (arg1, arg2)
2382 Lisp_Object arg1, arg2;
2383{
2384 return Fcons (arg1, Fcons (arg2, Qnil));
2385}
2386
34400008 2387
2e471eb5
GM
2388Lisp_Object
2389list3 (arg1, arg2, arg3)
2390 Lisp_Object arg1, arg2, arg3;
2391{
2392 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2393}
2394
34400008 2395
2e471eb5
GM
2396Lisp_Object
2397list4 (arg1, arg2, arg3, arg4)
2398 Lisp_Object arg1, arg2, arg3, arg4;
2399{
2400 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2401}
2402
34400008 2403
2e471eb5
GM
2404Lisp_Object
2405list5 (arg1, arg2, arg3, arg4, arg5)
2406 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2407{
2408 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2409 Fcons (arg5, Qnil)))));
2410}
2411
34400008 2412
2e471eb5 2413DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2414 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2415Any number of arguments, even zero arguments, are allowed.
2416usage: (list &rest OBJECTS) */)
7ee72033 2417 (nargs, args)
2e471eb5
GM
2418 int nargs;
2419 register Lisp_Object *args;
2420{
2421 register Lisp_Object val;
2422 val = Qnil;
2423
2424 while (nargs > 0)
2425 {
2426 nargs--;
2427 val = Fcons (args[nargs], val);
2428 }
2429 return val;
2430}
2431
34400008 2432
2e471eb5 2433DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2434 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
7ee72033 2435 (length, init)
2e471eb5
GM
2436 register Lisp_Object length, init;
2437{
2438 register Lisp_Object val;
2439 register int size;
2440
b7826503 2441 CHECK_NATNUM (length);
2e471eb5
GM
2442 size = XFASTINT (length);
2443
2444 val = Qnil;
ce070307
GM
2445 while (size > 0)
2446 {
2447 val = Fcons (init, val);
2448 --size;
2449
2450 if (size > 0)
2451 {
2452 val = Fcons (init, val);
2453 --size;
177c0ea7 2454
ce070307
GM
2455 if (size > 0)
2456 {
2457 val = Fcons (init, val);
2458 --size;
177c0ea7 2459
ce070307
GM
2460 if (size > 0)
2461 {
2462 val = Fcons (init, val);
2463 --size;
177c0ea7 2464
ce070307
GM
2465 if (size > 0)
2466 {
2467 val = Fcons (init, val);
2468 --size;
2469 }
2470 }
2471 }
2472 }
2473
2474 QUIT;
2475 }
177c0ea7 2476
7146af97
JB
2477 return val;
2478}
2e471eb5
GM
2479
2480
7146af97 2481\f
2e471eb5
GM
2482/***********************************************************************
2483 Vector Allocation
2484 ***********************************************************************/
7146af97 2485
34400008
GM
2486/* Singly-linked list of all vectors. */
2487
7146af97
JB
2488struct Lisp_Vector *all_vectors;
2489
2e471eb5
GM
2490/* Total number of vector-like objects now in use. */
2491
c8099634
RS
2492int n_vectors;
2493
34400008
GM
2494
2495/* Value is a pointer to a newly allocated Lisp_Vector structure
2496 with room for LEN Lisp_Objects. */
2497
ece93c02
GM
2498static struct Lisp_Vector *
2499allocate_vectorlike (len, type)
1825c68d 2500 EMACS_INT len;
ece93c02 2501 enum mem_type type;
1825c68d
KH
2502{
2503 struct Lisp_Vector *p;
675d5130 2504 size_t nbytes;
1825c68d 2505
d1658221 2506#ifdef DOUG_LEA_MALLOC
f8608968
GM
2507 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2508 because mapped region contents are not preserved in
2509 a dumped Emacs. */
de7515d6 2510 BLOCK_INPUT;
d1658221 2511 mallopt (M_MMAP_MAX, 0);
de7515d6 2512 UNBLOCK_INPUT;
d1658221 2513#endif
177c0ea7 2514
34400008 2515 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
ece93c02 2516 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
177c0ea7 2517
d1658221 2518#ifdef DOUG_LEA_MALLOC
34400008 2519 /* Back to a reasonable maximum of mmap'ed areas. */
de7515d6 2520 BLOCK_INPUT;
81d492d5 2521 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
de7515d6 2522 UNBLOCK_INPUT;
d1658221 2523#endif
177c0ea7 2524
34400008 2525 consing_since_gc += nbytes;
310ea200 2526 vector_cells_consed += len;
1825c68d
KH
2527
2528 p->next = all_vectors;
2529 all_vectors = p;
34400008 2530 ++n_vectors;
1825c68d
KH
2531 return p;
2532}
2533
34400008 2534
ece93c02
GM
2535/* Allocate a vector with NSLOTS slots. */
2536
2537struct Lisp_Vector *
2538allocate_vector (nslots)
2539 EMACS_INT nslots;
2540{
2541 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2542 v->size = nslots;
2543 return v;
2544}
2545
2546
2547/* Allocate other vector-like structures. */
2548
2549struct Lisp_Hash_Table *
2550allocate_hash_table ()
2551{
2552 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2553 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2554 EMACS_INT i;
177c0ea7 2555
ece93c02
GM
2556 v->size = len;
2557 for (i = 0; i < len; ++i)
2558 v->contents[i] = Qnil;
177c0ea7 2559
ece93c02
GM
2560 return (struct Lisp_Hash_Table *) v;
2561}
2562
2563
2564struct window *
2565allocate_window ()
2566{
2567 EMACS_INT len = VECSIZE (struct window);
2568 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2569 EMACS_INT i;
177c0ea7 2570
ece93c02
GM
2571 for (i = 0; i < len; ++i)
2572 v->contents[i] = Qnil;
2573 v->size = len;
177c0ea7 2574
ece93c02
GM
2575 return (struct window *) v;
2576}
2577
2578
2579struct frame *
2580allocate_frame ()
2581{
2582 EMACS_INT len = VECSIZE (struct frame);
2583 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2584 EMACS_INT i;
177c0ea7 2585
ece93c02
GM
2586 for (i = 0; i < len; ++i)
2587 v->contents[i] = make_number (0);
2588 v->size = len;
2589 return (struct frame *) v;
2590}
2591
2592
2593struct Lisp_Process *
2594allocate_process ()
2595{
2596 EMACS_INT len = VECSIZE (struct Lisp_Process);
2597 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2598 EMACS_INT i;
177c0ea7 2599
ece93c02
GM
2600 for (i = 0; i < len; ++i)
2601 v->contents[i] = Qnil;
2602 v->size = len;
177c0ea7 2603
ece93c02
GM
2604 return (struct Lisp_Process *) v;
2605}
2606
2607
2608struct Lisp_Vector *
2609allocate_other_vector (len)
2610 EMACS_INT len;
2611{
2612 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2613 EMACS_INT i;
177c0ea7 2614
ece93c02
GM
2615 for (i = 0; i < len; ++i)
2616 v->contents[i] = Qnil;
2617 v->size = len;
177c0ea7 2618
ece93c02
GM
2619 return v;
2620}
2621
2622
7146af97 2623DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 2624 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033
MB
2625See also the function `vector'. */)
2626 (length, init)
7146af97
JB
2627 register Lisp_Object length, init;
2628{
1825c68d
KH
2629 Lisp_Object vector;
2630 register EMACS_INT sizei;
2631 register int index;
7146af97
JB
2632 register struct Lisp_Vector *p;
2633
b7826503 2634 CHECK_NATNUM (length);
c9dad5ed 2635 sizei = XFASTINT (length);
7146af97 2636
ece93c02 2637 p = allocate_vector (sizei);
7146af97
JB
2638 for (index = 0; index < sizei; index++)
2639 p->contents[index] = init;
2640
1825c68d 2641 XSETVECTOR (vector, p);
7146af97
JB
2642 return vector;
2643}
2644
34400008 2645
a59de17b 2646DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
a6266d23 2647 doc: /* Return a newly created char-table, with purpose PURPOSE.
228299fa
GM
2648Each element is initialized to INIT, which defaults to nil.
2649PURPOSE should be a symbol which has a `char-table-extra-slots' property.
7ee72033
MB
2650The property's value should be an integer between 0 and 10. */)
2651 (purpose, init)
a59de17b 2652 register Lisp_Object purpose, init;
7b07587b
RS
2653{
2654 Lisp_Object vector;
a59de17b 2655 Lisp_Object n;
b7826503 2656 CHECK_SYMBOL (purpose);
0551bde3 2657 n = Fget (purpose, Qchar_table_extra_slots);
b7826503 2658 CHECK_NUMBER (n);
7b07587b
RS
2659 if (XINT (n) < 0 || XINT (n) > 10)
2660 args_out_of_range (n, Qnil);
2661 /* Add 2 to the size for the defalt and parent slots. */
2662 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2663 init);
0551bde3 2664 XCHAR_TABLE (vector)->top = Qt;
c96a008c 2665 XCHAR_TABLE (vector)->parent = Qnil;
a59de17b 2666 XCHAR_TABLE (vector)->purpose = purpose;
7b07587b
RS
2667 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2668 return vector;
2669}
2670
34400008 2671
0551bde3
KH
2672/* Return a newly created sub char table with default value DEFALT.
2673 Since a sub char table does not appear as a top level Emacs Lisp
2674 object, we don't need a Lisp interface to make it. */
2675
2676Lisp_Object
2677make_sub_char_table (defalt)
2678 Lisp_Object defalt;
2679{
2680 Lisp_Object vector
2681 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2682 XCHAR_TABLE (vector)->top = Qnil;
2683 XCHAR_TABLE (vector)->defalt = defalt;
2684 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2685 return vector;
2686}
2687
34400008 2688
7146af97 2689DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 2690 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
2691Any number of arguments, even zero arguments, are allowed.
2692usage: (vector &rest OBJECTS) */)
7ee72033 2693 (nargs, args)
7146af97
JB
2694 register int nargs;
2695 Lisp_Object *args;
2696{
2697 register Lisp_Object len, val;
2698 register int index;
2699 register struct Lisp_Vector *p;
2700
67ba9986 2701 XSETFASTINT (len, nargs);
7146af97
JB
2702 val = Fmake_vector (len, Qnil);
2703 p = XVECTOR (val);
2704 for (index = 0; index < nargs; index++)
2705 p->contents[index] = args[index];
2706 return val;
2707}
2708
34400008 2709
7146af97 2710DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 2711 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
2712The arguments should be the arglist, bytecode-string, constant vector,
2713stack size, (optional) doc string, and (optional) interactive spec.
2714The first four arguments are required; at most six have any
ae8e8122 2715significance.
92cc28b2 2716usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
7ee72033 2717 (nargs, args)
7146af97
JB
2718 register int nargs;
2719 Lisp_Object *args;
2720{
2721 register Lisp_Object len, val;
2722 register int index;
2723 register struct Lisp_Vector *p;
2724
67ba9986 2725 XSETFASTINT (len, nargs);
265a9e55 2726 if (!NILP (Vpurify_flag))
5a053ea9 2727 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
2728 else
2729 val = Fmake_vector (len, Qnil);
9eac9d59
KH
2730
2731 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2732 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2733 earlier because they produced a raw 8-bit string for byte-code
2734 and now such a byte-code string is loaded as multibyte while
2735 raw 8-bit characters converted to multibyte form. Thus, now we
2736 must convert them back to the original unibyte form. */
2737 args[1] = Fstring_as_unibyte (args[1]);
2738
7146af97
JB
2739 p = XVECTOR (val);
2740 for (index = 0; index < nargs; index++)
2741 {
265a9e55 2742 if (!NILP (Vpurify_flag))
7146af97
JB
2743 args[index] = Fpurecopy (args[index]);
2744 p->contents[index] = args[index];
2745 }
50aee051 2746 XSETCOMPILED (val, p);
7146af97
JB
2747 return val;
2748}
2e471eb5 2749
34400008 2750
7146af97 2751\f
2e471eb5
GM
2752/***********************************************************************
2753 Symbol Allocation
2754 ***********************************************************************/
7146af97 2755
2e471eb5
GM
2756/* Each symbol_block is just under 1020 bytes long, since malloc
2757 really allocates in units of powers of two and uses 4 bytes for its
2758 own overhead. */
7146af97
JB
2759
2760#define SYMBOL_BLOCK_SIZE \
2761 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2762
2763struct symbol_block
2e471eb5 2764{
d05b383a 2765 /* Place `symbols' first, to preserve alignment. */
2e471eb5 2766 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
d05b383a 2767 struct symbol_block *next;
2e471eb5 2768};
7146af97 2769
34400008
GM
2770/* Current symbol block and index of first unused Lisp_Symbol
2771 structure in it. */
2772
7146af97
JB
2773struct symbol_block *symbol_block;
2774int symbol_block_index;
2775
34400008
GM
2776/* List of free symbols. */
2777
7146af97
JB
2778struct Lisp_Symbol *symbol_free_list;
2779
c8099634 2780/* Total number of symbol blocks now in use. */
2e471eb5 2781
c8099634
RS
2782int n_symbol_blocks;
2783
34400008
GM
2784
2785/* Initialize symbol allocation. */
2786
7146af97
JB
2787void
2788init_symbol ()
2789{
0930c1a1
SM
2790 symbol_block = NULL;
2791 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 2792 symbol_free_list = 0;
0930c1a1 2793 n_symbol_blocks = 0;
7146af97
JB
2794}
2795
34400008 2796
7146af97 2797DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 2798 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033
MB
2799Its value and function definition are void, and its property list is nil. */)
2800 (name)
54ee42dd 2801 Lisp_Object name;
7146af97
JB
2802{
2803 register Lisp_Object val;
2804 register struct Lisp_Symbol *p;
2805
b7826503 2806 CHECK_STRING (name);
7146af97
JB
2807
2808 if (symbol_free_list)
2809 {
45d12a89 2810 XSETSYMBOL (val, symbol_free_list);
85481507 2811 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
7146af97
JB
2812 }
2813 else
2814 {
2815 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2816 {
3c06d205 2817 struct symbol_block *new;
34400008
GM
2818 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2819 MEM_TYPE_SYMBOL);
7146af97
JB
2820 new->next = symbol_block;
2821 symbol_block = new;
2822 symbol_block_index = 0;
c8099634 2823 n_symbol_blocks++;
7146af97 2824 }
a0668126
SM
2825 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2826 symbol_block_index++;
7146af97 2827 }
177c0ea7 2828
7146af97 2829 p = XSYMBOL (val);
8fe5665d 2830 p->xname = name;
7146af97 2831 p->plist = Qnil;
2e471eb5
GM
2832 p->value = Qunbound;
2833 p->function = Qunbound;
9e713715 2834 p->next = NULL;
2336fe58 2835 p->gcmarkbit = 0;
9e713715
GM
2836 p->interned = SYMBOL_UNINTERNED;
2837 p->constant = 0;
2838 p->indirect_variable = 0;
2e471eb5
GM
2839 consing_since_gc += sizeof (struct Lisp_Symbol);
2840 symbols_consed++;
7146af97
JB
2841 return val;
2842}
2843
3f25e183 2844
2e471eb5
GM
2845\f
2846/***********************************************************************
34400008 2847 Marker (Misc) Allocation
2e471eb5 2848 ***********************************************************************/
3f25e183 2849
2e471eb5
GM
2850/* Allocation of markers and other objects that share that structure.
2851 Works like allocation of conses. */
c0696668 2852
2e471eb5
GM
2853#define MARKER_BLOCK_SIZE \
2854 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2855
2856struct marker_block
c0696668 2857{
d05b383a 2858 /* Place `markers' first, to preserve alignment. */
2e471eb5 2859 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
d05b383a 2860 struct marker_block *next;
2e471eb5 2861};
c0696668 2862
2e471eb5
GM
2863struct marker_block *marker_block;
2864int marker_block_index;
c0696668 2865
2e471eb5 2866union Lisp_Misc *marker_free_list;
c0696668 2867
6b67a518
KS
2868/* Marker blocks which should be freed at end of GC. */
2869
2870struct marker_block *marker_blocks_pending_free;
2871
2e471eb5 2872/* Total number of marker blocks now in use. */
3f25e183 2873
2e471eb5
GM
2874int n_marker_blocks;
2875
2876void
2877init_marker ()
3f25e183 2878{
0930c1a1
SM
2879 marker_block = NULL;
2880 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 2881 marker_free_list = 0;
6b67a518 2882 marker_blocks_pending_free = 0;
0930c1a1 2883 n_marker_blocks = 0;
3f25e183
RS
2884}
2885
2e471eb5
GM
2886/* Return a newly allocated Lisp_Misc object, with no substructure. */
2887
3f25e183 2888Lisp_Object
2e471eb5 2889allocate_misc ()
7146af97 2890{
2e471eb5 2891 Lisp_Object val;
7146af97 2892
2e471eb5 2893 if (marker_free_list)
7146af97 2894 {
2e471eb5
GM
2895 XSETMISC (val, marker_free_list);
2896 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
2897 }
2898 else
7146af97 2899 {
2e471eb5
GM
2900 if (marker_block_index == MARKER_BLOCK_SIZE)
2901 {
2902 struct marker_block *new;
34400008
GM
2903 new = (struct marker_block *) lisp_malloc (sizeof *new,
2904 MEM_TYPE_MISC);
2e471eb5
GM
2905 new->next = marker_block;
2906 marker_block = new;
2907 marker_block_index = 0;
2908 n_marker_blocks++;
2909 }
a0668126
SM
2910 XSETMISC (val, &marker_block->markers[marker_block_index]);
2911 marker_block_index++;
7146af97 2912 }
177c0ea7 2913
2e471eb5
GM
2914 consing_since_gc += sizeof (union Lisp_Misc);
2915 misc_objects_consed++;
2336fe58 2916 XMARKER (val)->gcmarkbit = 0;
2e471eb5
GM
2917 return val;
2918}
2919
42172a6b
RS
2920/* Return a Lisp_Misc_Save_Value object containing POINTER and
2921 INTEGER. This is used to package C values to call record_unwind_protect.
2922 The unwind function can get the C values back using XSAVE_VALUE. */
2923
2924Lisp_Object
2925make_save_value (pointer, integer)
2926 void *pointer;
2927 int integer;
2928{
2929 register Lisp_Object val;
2930 register struct Lisp_Save_Value *p;
2931
2932 val = allocate_misc ();
2933 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2934 p = XSAVE_VALUE (val);
2935 p->pointer = pointer;
2936 p->integer = integer;
2937 return val;
2938}
2939
2e471eb5 2940DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 2941 doc: /* Return a newly allocated marker which does not point at any place. */)
7ee72033 2942 ()
2e471eb5
GM
2943{
2944 register Lisp_Object val;
2945 register struct Lisp_Marker *p;
7146af97 2946
2e471eb5
GM
2947 val = allocate_misc ();
2948 XMISCTYPE (val) = Lisp_Misc_Marker;
2949 p = XMARKER (val);
2950 p->buffer = 0;
2951 p->bytepos = 0;
2952 p->charpos = 0;
ef89c2ce 2953 p->next = NULL;
2e471eb5 2954 p->insertion_type = 0;
7146af97
JB
2955 return val;
2956}
2e471eb5
GM
2957
2958/* Put MARKER back on the free list after using it temporarily. */
2959
2960void
2961free_marker (marker)
2962 Lisp_Object marker;
2963{
ef89c2ce 2964 unchain_marker (XMARKER (marker));
2e471eb5
GM
2965
2966 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2967 XMISC (marker)->u_free.chain = marker_free_list;
2968 marker_free_list = XMISC (marker);
2969
2970 total_free_markers++;
2971}
2972
c0696668 2973\f
7146af97 2974/* Return a newly created vector or string with specified arguments as
736471d1
RS
2975 elements. If all the arguments are characters that can fit
2976 in a string of events, make a string; otherwise, make a vector.
2977
2978 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
2979
2980Lisp_Object
736471d1 2981make_event_array (nargs, args)
7146af97
JB
2982 register int nargs;
2983 Lisp_Object *args;
2984{
2985 int i;
2986
2987 for (i = 0; i < nargs; i++)
736471d1 2988 /* The things that fit in a string
c9ca4659
RS
2989 are characters that are in 0...127,
2990 after discarding the meta bit and all the bits above it. */
e687453f 2991 if (!INTEGERP (args[i])
c9ca4659 2992 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
2993 return Fvector (nargs, args);
2994
2995 /* Since the loop exited, we know that all the things in it are
2996 characters, so we can make a string. */
2997 {
c13ccad2 2998 Lisp_Object result;
177c0ea7 2999
50aee051 3000 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3001 for (i = 0; i < nargs; i++)
736471d1 3002 {
46e7e6b0 3003 SSET (result, i, XINT (args[i]));
736471d1
RS
3004 /* Move the meta bit to the right place for a string char. */
3005 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3006 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3007 }
177c0ea7 3008
7146af97
JB
3009 return result;
3010 }
3011}
2e471eb5
GM
3012
3013
7146af97 3014\f
34400008
GM
3015/************************************************************************
3016 C Stack Marking
3017 ************************************************************************/
3018
13c844fb
GM
3019#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3020
71cf5fa0
GM
3021/* Conservative C stack marking requires a method to identify possibly
3022 live Lisp objects given a pointer value. We do this by keeping
3023 track of blocks of Lisp data that are allocated in a red-black tree
3024 (see also the comment of mem_node which is the type of nodes in
3025 that tree). Function lisp_malloc adds information for an allocated
3026 block to the red-black tree with calls to mem_insert, and function
3027 lisp_free removes it with mem_delete. Functions live_string_p etc
3028 call mem_find to lookup information about a given pointer in the
3029 tree, and use that to determine if the pointer points to a Lisp
3030 object or not. */
3031
34400008
GM
3032/* Initialize this part of alloc.c. */
3033
3034static void
3035mem_init ()
3036{
3037 mem_z.left = mem_z.right = MEM_NIL;
3038 mem_z.parent = NULL;
3039 mem_z.color = MEM_BLACK;
3040 mem_z.start = mem_z.end = NULL;
3041 mem_root = MEM_NIL;
3042}
3043
3044
3045/* Value is a pointer to the mem_node containing START. Value is
3046 MEM_NIL if there is no node in the tree containing START. */
3047
3048static INLINE struct mem_node *
3049mem_find (start)
3050 void *start;
3051{
3052 struct mem_node *p;
3053
ece93c02
GM
3054 if (start < min_heap_address || start > max_heap_address)
3055 return MEM_NIL;
3056
34400008
GM
3057 /* Make the search always successful to speed up the loop below. */
3058 mem_z.start = start;
3059 mem_z.end = (char *) start + 1;
3060
3061 p = mem_root;
3062 while (start < p->start || start >= p->end)
3063 p = start < p->start ? p->left : p->right;
3064 return p;
3065}
3066
3067
3068/* Insert a new node into the tree for a block of memory with start
3069 address START, end address END, and type TYPE. Value is a
3070 pointer to the node that was inserted. */
3071
3072static struct mem_node *
3073mem_insert (start, end, type)
3074 void *start, *end;
3075 enum mem_type type;
3076{
3077 struct mem_node *c, *parent, *x;
3078
ece93c02
GM
3079 if (start < min_heap_address)
3080 min_heap_address = start;
3081 if (end > max_heap_address)
3082 max_heap_address = end;
3083
34400008
GM
3084 /* See where in the tree a node for START belongs. In this
3085 particular application, it shouldn't happen that a node is already
3086 present. For debugging purposes, let's check that. */
3087 c = mem_root;
3088 parent = NULL;
3089
3090#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3091
34400008
GM
3092 while (c != MEM_NIL)
3093 {
3094 if (start >= c->start && start < c->end)
3095 abort ();
3096 parent = c;
3097 c = start < c->start ? c->left : c->right;
3098 }
177c0ea7 3099
34400008 3100#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3101
34400008
GM
3102 while (c != MEM_NIL)
3103 {
3104 parent = c;
3105 c = start < c->start ? c->left : c->right;
3106 }
177c0ea7 3107
34400008
GM
3108#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3109
3110 /* Create a new node. */
877935b1
GM
3111#ifdef GC_MALLOC_CHECK
3112 x = (struct mem_node *) _malloc_internal (sizeof *x);
3113 if (x == NULL)
3114 abort ();
3115#else
34400008 3116 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3117#endif
34400008
GM
3118 x->start = start;
3119 x->end = end;
3120 x->type = type;
3121 x->parent = parent;
3122 x->left = x->right = MEM_NIL;
3123 x->color = MEM_RED;
3124
3125 /* Insert it as child of PARENT or install it as root. */
3126 if (parent)
3127 {
3128 if (start < parent->start)
3129 parent->left = x;
3130 else
3131 parent->right = x;
3132 }
177c0ea7 3133 else
34400008
GM
3134 mem_root = x;
3135
3136 /* Re-establish red-black tree properties. */
3137 mem_insert_fixup (x);
877935b1 3138
34400008
GM
3139 return x;
3140}
3141
3142
3143/* Re-establish the red-black properties of the tree, and thereby
3144 balance the tree, after node X has been inserted; X is always red. */
3145
3146static void
3147mem_insert_fixup (x)
3148 struct mem_node *x;
3149{
3150 while (x != mem_root && x->parent->color == MEM_RED)
3151 {
3152 /* X is red and its parent is red. This is a violation of
3153 red-black tree property #3. */
177c0ea7 3154
34400008
GM
3155 if (x->parent == x->parent->parent->left)
3156 {
3157 /* We're on the left side of our grandparent, and Y is our
3158 "uncle". */
3159 struct mem_node *y = x->parent->parent->right;
177c0ea7 3160
34400008
GM
3161 if (y->color == MEM_RED)
3162 {
3163 /* Uncle and parent are red but should be black because
3164 X is red. Change the colors accordingly and proceed
3165 with the grandparent. */
3166 x->parent->color = MEM_BLACK;
3167 y->color = MEM_BLACK;
3168 x->parent->parent->color = MEM_RED;
3169 x = x->parent->parent;
3170 }
3171 else
3172 {
3173 /* Parent and uncle have different colors; parent is
3174 red, uncle is black. */
3175 if (x == x->parent->right)
3176 {
3177 x = x->parent;
3178 mem_rotate_left (x);
3179 }
3180
3181 x->parent->color = MEM_BLACK;
3182 x->parent->parent->color = MEM_RED;
3183 mem_rotate_right (x->parent->parent);
3184 }
3185 }
3186 else
3187 {
3188 /* This is the symmetrical case of above. */
3189 struct mem_node *y = x->parent->parent->left;
177c0ea7 3190
34400008
GM
3191 if (y->color == MEM_RED)
3192 {
3193 x->parent->color = MEM_BLACK;
3194 y->color = MEM_BLACK;
3195 x->parent->parent->color = MEM_RED;
3196 x = x->parent->parent;
3197 }
3198 else
3199 {
3200 if (x == x->parent->left)
3201 {
3202 x = x->parent;
3203 mem_rotate_right (x);
3204 }
177c0ea7 3205
34400008
GM
3206 x->parent->color = MEM_BLACK;
3207 x->parent->parent->color = MEM_RED;
3208 mem_rotate_left (x->parent->parent);
3209 }
3210 }
3211 }
3212
3213 /* The root may have been changed to red due to the algorithm. Set
3214 it to black so that property #5 is satisfied. */
3215 mem_root->color = MEM_BLACK;
3216}
3217
3218
177c0ea7
JB
3219/* (x) (y)
3220 / \ / \
34400008
GM
3221 a (y) ===> (x) c
3222 / \ / \
3223 b c a b */
3224
3225static void
3226mem_rotate_left (x)
3227 struct mem_node *x;
3228{
3229 struct mem_node *y;
3230
3231 /* Turn y's left sub-tree into x's right sub-tree. */
3232 y = x->right;
3233 x->right = y->left;
3234 if (y->left != MEM_NIL)
3235 y->left->parent = x;
3236
3237 /* Y's parent was x's parent. */
3238 if (y != MEM_NIL)
3239 y->parent = x->parent;
3240
3241 /* Get the parent to point to y instead of x. */
3242 if (x->parent)
3243 {
3244 if (x == x->parent->left)
3245 x->parent->left = y;
3246 else
3247 x->parent->right = y;
3248 }
3249 else
3250 mem_root = y;
3251
3252 /* Put x on y's left. */
3253 y->left = x;
3254 if (x != MEM_NIL)
3255 x->parent = y;
3256}
3257
3258
177c0ea7
JB
3259/* (x) (Y)
3260 / \ / \
3261 (y) c ===> a (x)
3262 / \ / \
34400008
GM
3263 a b b c */
3264
3265static void
3266mem_rotate_right (x)
3267 struct mem_node *x;
3268{
3269 struct mem_node *y = x->left;
3270
3271 x->left = y->right;
3272 if (y->right != MEM_NIL)
3273 y->right->parent = x;
177c0ea7 3274
34400008
GM
3275 if (y != MEM_NIL)
3276 y->parent = x->parent;
3277 if (x->parent)
3278 {
3279 if (x == x->parent->right)
3280 x->parent->right = y;
3281 else
3282 x->parent->left = y;
3283 }
3284 else
3285 mem_root = y;
177c0ea7 3286
34400008
GM
3287 y->right = x;
3288 if (x != MEM_NIL)
3289 x->parent = y;
3290}
3291
3292
3293/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3294
3295static void
3296mem_delete (z)
3297 struct mem_node *z;
3298{
3299 struct mem_node *x, *y;
3300
3301 if (!z || z == MEM_NIL)
3302 return;
3303
3304 if (z->left == MEM_NIL || z->right == MEM_NIL)
3305 y = z;
3306 else
3307 {
3308 y = z->right;
3309 while (y->left != MEM_NIL)
3310 y = y->left;
3311 }
3312
3313 if (y->left != MEM_NIL)
3314 x = y->left;
3315 else
3316 x = y->right;
3317
3318 x->parent = y->parent;
3319 if (y->parent)
3320 {
3321 if (y == y->parent->left)
3322 y->parent->left = x;
3323 else
3324 y->parent->right = x;
3325 }
3326 else
3327 mem_root = x;
3328
3329 if (y != z)
3330 {
3331 z->start = y->start;
3332 z->end = y->end;
3333 z->type = y->type;
3334 }
177c0ea7 3335
34400008
GM
3336 if (y->color == MEM_BLACK)
3337 mem_delete_fixup (x);
877935b1
GM
3338
3339#ifdef GC_MALLOC_CHECK
3340 _free_internal (y);
3341#else
34400008 3342 xfree (y);
877935b1 3343#endif
34400008
GM
3344}
3345
3346
3347/* Re-establish the red-black properties of the tree, after a
3348 deletion. */
3349
3350static void
3351mem_delete_fixup (x)
3352 struct mem_node *x;
3353{
3354 while (x != mem_root && x->color == MEM_BLACK)
3355 {
3356 if (x == x->parent->left)
3357 {
3358 struct mem_node *w = x->parent->right;
177c0ea7 3359
34400008
GM
3360 if (w->color == MEM_RED)
3361 {
3362 w->color = MEM_BLACK;
3363 x->parent->color = MEM_RED;
3364 mem_rotate_left (x->parent);
3365 w = x->parent->right;
3366 }
177c0ea7 3367
34400008
GM
3368 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3369 {
3370 w->color = MEM_RED;
3371 x = x->parent;
3372 }
3373 else
3374 {
3375 if (w->right->color == MEM_BLACK)
3376 {
3377 w->left->color = MEM_BLACK;
3378 w->color = MEM_RED;
3379 mem_rotate_right (w);
3380 w = x->parent->right;
3381 }
3382 w->color = x->parent->color;
3383 x->parent->color = MEM_BLACK;
3384 w->right->color = MEM_BLACK;
3385 mem_rotate_left (x->parent);
3386 x = mem_root;
3387 }
3388 }
3389 else
3390 {
3391 struct mem_node *w = x->parent->left;
177c0ea7 3392
34400008
GM
3393 if (w->color == MEM_RED)
3394 {
3395 w->color = MEM_BLACK;
3396 x->parent->color = MEM_RED;
3397 mem_rotate_right (x->parent);
3398 w = x->parent->left;
3399 }
177c0ea7 3400
34400008
GM
3401 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3402 {
3403 w->color = MEM_RED;
3404 x = x->parent;
3405 }
3406 else
3407 {
3408 if (w->left->color == MEM_BLACK)
3409 {
3410 w->right->color = MEM_BLACK;
3411 w->color = MEM_RED;
3412 mem_rotate_left (w);
3413 w = x->parent->left;
3414 }
177c0ea7 3415
34400008
GM
3416 w->color = x->parent->color;
3417 x->parent->color = MEM_BLACK;
3418 w->left->color = MEM_BLACK;
3419 mem_rotate_right (x->parent);
3420 x = mem_root;
3421 }
3422 }
3423 }
177c0ea7 3424
34400008
GM
3425 x->color = MEM_BLACK;
3426}
3427
3428
3429/* Value is non-zero if P is a pointer to a live Lisp string on
3430 the heap. M is a pointer to the mem_block for P. */
3431
3432static INLINE int
3433live_string_p (m, p)
3434 struct mem_node *m;
3435 void *p;
3436{
3437 if (m->type == MEM_TYPE_STRING)
3438 {
3439 struct string_block *b = (struct string_block *) m->start;
3440 int offset = (char *) p - (char *) &b->strings[0];
3441
3442 /* P must point to the start of a Lisp_String structure, and it
3443 must not be on the free-list. */
176bc847
GM
3444 return (offset >= 0
3445 && offset % sizeof b->strings[0] == 0
d05b383a 3446 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3447 && ((struct Lisp_String *) p)->data != NULL);
3448 }
3449 else
3450 return 0;
3451}
3452
3453
3454/* Value is non-zero if P is a pointer to a live Lisp cons on
3455 the heap. M is a pointer to the mem_block for P. */
3456
3457static INLINE int
3458live_cons_p (m, p)
3459 struct mem_node *m;
3460 void *p;
3461{
3462 if (m->type == MEM_TYPE_CONS)
3463 {
3464 struct cons_block *b = (struct cons_block *) m->start;
3465 int offset = (char *) p - (char *) &b->conses[0];
3466
3467 /* P must point to the start of a Lisp_Cons, not be
3468 one of the unused cells in the current cons block,
3469 and not be on the free-list. */
176bc847
GM
3470 return (offset >= 0
3471 && offset % sizeof b->conses[0] == 0
d05b383a 3472 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3473 && (b != cons_block
3474 || offset / sizeof b->conses[0] < cons_block_index)
3475 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3476 }
3477 else
3478 return 0;
3479}
3480
3481
3482/* Value is non-zero if P is a pointer to a live Lisp symbol on
3483 the heap. M is a pointer to the mem_block for P. */
3484
3485static INLINE int
3486live_symbol_p (m, p)
3487 struct mem_node *m;
3488 void *p;
3489{
3490 if (m->type == MEM_TYPE_SYMBOL)
3491 {
3492 struct symbol_block *b = (struct symbol_block *) m->start;
3493 int offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3494
34400008
GM
3495 /* P must point to the start of a Lisp_Symbol, not be
3496 one of the unused cells in the current symbol block,
3497 and not be on the free-list. */
176bc847
GM
3498 return (offset >= 0
3499 && offset % sizeof b->symbols[0] == 0
d05b383a 3500 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3501 && (b != symbol_block
3502 || offset / sizeof b->symbols[0] < symbol_block_index)
3503 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3504 }
3505 else
3506 return 0;
3507}
3508
3509
3510/* Value is non-zero if P is a pointer to a live Lisp float on
3511 the heap. M is a pointer to the mem_block for P. */
3512
3513static INLINE int
3514live_float_p (m, p)
3515 struct mem_node *m;
3516 void *p;
3517{
3518 if (m->type == MEM_TYPE_FLOAT)
3519 {
3520 struct float_block *b = (struct float_block *) m->start;
3521 int offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3522
ab6780cd
SM
3523 /* P must point to the start of a Lisp_Float and not be
3524 one of the unused cells in the current float block. */
176bc847
GM
3525 return (offset >= 0
3526 && offset % sizeof b->floats[0] == 0
d05b383a 3527 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3528 && (b != float_block
ab6780cd 3529 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3530 }
3531 else
3532 return 0;
3533}
3534
3535
3536/* Value is non-zero if P is a pointer to a live Lisp Misc on
3537 the heap. M is a pointer to the mem_block for P. */
3538
3539static INLINE int
3540live_misc_p (m, p)
3541 struct mem_node *m;
3542 void *p;
3543{
3544 if (m->type == MEM_TYPE_MISC)
3545 {
3546 struct marker_block *b = (struct marker_block *) m->start;
3547 int offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3548
34400008
GM
3549 /* P must point to the start of a Lisp_Misc, not be
3550 one of the unused cells in the current misc block,
3551 and not be on the free-list. */
176bc847
GM
3552 return (offset >= 0
3553 && offset % sizeof b->markers[0] == 0
d05b383a 3554 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
3555 && (b != marker_block
3556 || offset / sizeof b->markers[0] < marker_block_index)
3557 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3558 }
3559 else
3560 return 0;
3561}
3562
3563
3564/* Value is non-zero if P is a pointer to a live vector-like object.
3565 M is a pointer to the mem_block for P. */
3566
3567static INLINE int
3568live_vector_p (m, p)
3569 struct mem_node *m;
3570 void *p;
3571{
ece93c02
GM
3572 return (p == m->start
3573 && m->type >= MEM_TYPE_VECTOR
3574 && m->type <= MEM_TYPE_WINDOW);
34400008
GM
3575}
3576
3577
2336fe58 3578/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
3579 pointer to the mem_block for P. */
3580
3581static INLINE int
3582live_buffer_p (m, p)
3583 struct mem_node *m;
3584 void *p;
3585{
3586 /* P must point to the start of the block, and the buffer
3587 must not have been killed. */
3588 return (m->type == MEM_TYPE_BUFFER
3589 && p == m->start
3590 && !NILP (((struct buffer *) p)->name));
3591}
3592
13c844fb
GM
3593#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3594
3595#if GC_MARK_STACK
3596
34400008
GM
3597#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3598
3599/* Array of objects that are kept alive because the C stack contains
3600 a pattern that looks like a reference to them . */
3601
3602#define MAX_ZOMBIES 10
3603static Lisp_Object zombies[MAX_ZOMBIES];
3604
3605/* Number of zombie objects. */
3606
3607static int nzombies;
3608
3609/* Number of garbage collections. */
3610
3611static int ngcs;
3612
3613/* Average percentage of zombies per collection. */
3614
3615static double avg_zombies;
3616
3617/* Max. number of live and zombie objects. */
3618
3619static int max_live, max_zombies;
3620
3621/* Average number of live objects per GC. */
3622
3623static double avg_live;
3624
3625DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033
MB
3626 doc: /* Show information about live and zombie objects. */)
3627 ()
34400008 3628{
83fc9c63
DL
3629 Lisp_Object args[8], zombie_list = Qnil;
3630 int i;
3631 for (i = 0; i < nzombies; i++)
3632 zombie_list = Fcons (zombies[i], zombie_list);
3633 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
3634 args[1] = make_number (ngcs);
3635 args[2] = make_float (avg_live);
3636 args[3] = make_float (avg_zombies);
3637 args[4] = make_float (avg_zombies / avg_live / 100);
3638 args[5] = make_number (max_live);
3639 args[6] = make_number (max_zombies);
83fc9c63
DL
3640 args[7] = zombie_list;
3641 return Fmessage (8, args);
34400008
GM
3642}
3643
3644#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3645
3646
182ff242
GM
3647/* Mark OBJ if we can prove it's a Lisp_Object. */
3648
3649static INLINE void
3650mark_maybe_object (obj)
3651 Lisp_Object obj;
3652{
3653 void *po = (void *) XPNTR (obj);
3654 struct mem_node *m = mem_find (po);
177c0ea7 3655
182ff242
GM
3656 if (m != MEM_NIL)
3657 {
3658 int mark_p = 0;
3659
3660 switch (XGCTYPE (obj))
3661 {
3662 case Lisp_String:
3663 mark_p = (live_string_p (m, po)
3664 && !STRING_MARKED_P ((struct Lisp_String *) po));
3665 break;
3666
3667 case Lisp_Cons:
08b7c2cb 3668 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
3669 break;
3670
3671 case Lisp_Symbol:
2336fe58 3672 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
3673 break;
3674
3675 case Lisp_Float:
ab6780cd 3676 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
3677 break;
3678
3679 case Lisp_Vectorlike:
3680 /* Note: can't check GC_BUFFERP before we know it's a
3681 buffer because checking that dereferences the pointer
3682 PO which might point anywhere. */
3683 if (live_vector_p (m, po))
3ef06d12 3684 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 3685 else if (live_buffer_p (m, po))
3ef06d12 3686 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
3687 break;
3688
3689 case Lisp_Misc:
2336fe58 3690 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
182ff242 3691 break;
6bbd7a29
GM
3692
3693 case Lisp_Int:
31d929e5 3694 case Lisp_Type_Limit:
6bbd7a29 3695 break;
182ff242
GM
3696 }
3697
3698 if (mark_p)
3699 {
3700#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3701 if (nzombies < MAX_ZOMBIES)
83fc9c63 3702 zombies[nzombies] = obj;
182ff242
GM
3703 ++nzombies;
3704#endif
49723c04 3705 mark_object (obj);
182ff242
GM
3706 }
3707 }
3708}
ece93c02
GM
3709
3710
3711/* If P points to Lisp data, mark that as live if it isn't already
3712 marked. */
3713
3714static INLINE void
3715mark_maybe_pointer (p)
3716 void *p;
3717{
3718 struct mem_node *m;
3719
3720 /* Quickly rule out some values which can't point to Lisp data. We
3721 assume that Lisp data is aligned on even addresses. */
3722 if ((EMACS_INT) p & 1)
3723 return;
177c0ea7 3724
ece93c02
GM
3725 m = mem_find (p);
3726 if (m != MEM_NIL)
3727 {
3728 Lisp_Object obj = Qnil;
177c0ea7 3729
ece93c02
GM
3730 switch (m->type)
3731 {
3732 case MEM_TYPE_NON_LISP:
2fe50224 3733 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 3734 break;
177c0ea7 3735
ece93c02 3736 case MEM_TYPE_BUFFER:
3ef06d12 3737 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
3738 XSETVECTOR (obj, p);
3739 break;
177c0ea7 3740
ece93c02 3741 case MEM_TYPE_CONS:
08b7c2cb 3742 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
3743 XSETCONS (obj, p);
3744 break;
177c0ea7 3745
ece93c02
GM
3746 case MEM_TYPE_STRING:
3747 if (live_string_p (m, p)
3748 && !STRING_MARKED_P ((struct Lisp_String *) p))
3749 XSETSTRING (obj, p);
3750 break;
3751
3752 case MEM_TYPE_MISC:
2336fe58
SM
3753 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3754 XSETMISC (obj, p);
ece93c02 3755 break;
177c0ea7 3756
ece93c02 3757 case MEM_TYPE_SYMBOL:
2336fe58 3758 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
3759 XSETSYMBOL (obj, p);
3760 break;
177c0ea7 3761
ece93c02 3762 case MEM_TYPE_FLOAT:
ab6780cd 3763 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
3764 XSETFLOAT (obj, p);
3765 break;
177c0ea7 3766
ece93c02
GM
3767 case MEM_TYPE_VECTOR:
3768 case MEM_TYPE_PROCESS:
3769 case MEM_TYPE_HASH_TABLE:
3770 case MEM_TYPE_FRAME:
3771 case MEM_TYPE_WINDOW:
3772 if (live_vector_p (m, p))
3773 {
3774 Lisp_Object tem;
3775 XSETVECTOR (tem, p);
3ef06d12 3776 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
3777 obj = tem;
3778 }
3779 break;
3780
3781 default:
3782 abort ();
3783 }
3784
3785 if (!GC_NILP (obj))
49723c04 3786 mark_object (obj);
ece93c02
GM
3787 }
3788}
3789
3790
3791/* Mark Lisp objects referenced from the address range START..END. */
34400008 3792
177c0ea7 3793static void
34400008
GM
3794mark_memory (start, end)
3795 void *start, *end;
3796{
3797 Lisp_Object *p;
ece93c02 3798 void **pp;
34400008
GM
3799
3800#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3801 nzombies = 0;
3802#endif
3803
3804 /* Make START the pointer to the start of the memory region,
3805 if it isn't already. */
3806 if (end < start)
3807 {
3808 void *tem = start;
3809 start = end;
3810 end = tem;
3811 }
ece93c02
GM
3812
3813 /* Mark Lisp_Objects. */
34400008 3814 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
182ff242 3815 mark_maybe_object (*p);
ece93c02
GM
3816
3817 /* Mark Lisp data pointed to. This is necessary because, in some
3818 situations, the C compiler optimizes Lisp objects away, so that
3819 only a pointer to them remains. Example:
3820
3821 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 3822 ()
ece93c02
GM
3823 {
3824 Lisp_Object obj = build_string ("test");
3825 struct Lisp_String *s = XSTRING (obj);
3826 Fgarbage_collect ();
3827 fprintf (stderr, "test `%s'\n", s->data);
3828 return Qnil;
3829 }
3830
3831 Here, `obj' isn't really used, and the compiler optimizes it
3832 away. The only reference to the life string is through the
3833 pointer `s'. */
177c0ea7 3834
ece93c02
GM
3835 for (pp = (void **) start; (void *) pp < end; ++pp)
3836 mark_maybe_pointer (*pp);
182ff242
GM
3837}
3838
30f637f8
DL
3839/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3840 the GCC system configuration. In gcc 3.2, the only systems for
3841 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3842 by others?) and ns32k-pc532-min. */
182ff242
GM
3843
3844#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3845
3846static int setjmp_tested_p, longjmps_done;
3847
3848#define SETJMP_WILL_LIKELY_WORK "\
3849\n\
3850Emacs garbage collector has been changed to use conservative stack\n\
3851marking. Emacs has determined that the method it uses to do the\n\
3852marking will likely work on your system, but this isn't sure.\n\
3853\n\
3854If you are a system-programmer, or can get the help of a local wizard\n\
3855who is, please take a look at the function mark_stack in alloc.c, and\n\
3856verify that the methods used are appropriate for your system.\n\
3857\n\
d191623b 3858Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
3859"
3860
3861#define SETJMP_WILL_NOT_WORK "\
3862\n\
3863Emacs garbage collector has been changed to use conservative stack\n\
3864marking. Emacs has determined that the default method it uses to do the\n\
3865marking will not work on your system. We will need a system-dependent\n\
3866solution for your system.\n\
3867\n\
3868Please take a look at the function mark_stack in alloc.c, and\n\
3869try to find a way to make it work on your system.\n\
30f637f8
DL
3870\n\
3871Note that you may get false negatives, depending on the compiler.\n\
3872In particular, you need to use -O with GCC for this test.\n\
3873\n\
d191623b 3874Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
3875"
3876
3877
3878/* Perform a quick check if it looks like setjmp saves registers in a
3879 jmp_buf. Print a message to stderr saying so. When this test
3880 succeeds, this is _not_ a proof that setjmp is sufficient for
3881 conservative stack marking. Only the sources or a disassembly
3882 can prove that. */
3883
3884static void
3885test_setjmp ()
3886{
3887 char buf[10];
3888 register int x;
3889 jmp_buf jbuf;
3890 int result = 0;
3891
3892 /* Arrange for X to be put in a register. */
3893 sprintf (buf, "1");
3894 x = strlen (buf);
3895 x = 2 * x - 1;
3896
3897 setjmp (jbuf);
3898 if (longjmps_done == 1)
34400008 3899 {
182ff242 3900 /* Came here after the longjmp at the end of the function.
34400008 3901
182ff242
GM
3902 If x == 1, the longjmp has restored the register to its
3903 value before the setjmp, and we can hope that setjmp
3904 saves all such registers in the jmp_buf, although that
3905 isn't sure.
34400008 3906
182ff242
GM
3907 For other values of X, either something really strange is
3908 taking place, or the setjmp just didn't save the register. */
3909
3910 if (x == 1)
3911 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3912 else
3913 {
3914 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3915 exit (1);
34400008
GM
3916 }
3917 }
182ff242
GM
3918
3919 ++longjmps_done;
3920 x = 2;
3921 if (longjmps_done == 1)
3922 longjmp (jbuf, 1);
34400008
GM
3923}
3924
182ff242
GM
3925#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3926
34400008
GM
3927
3928#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3929
3930/* Abort if anything GCPRO'd doesn't survive the GC. */
3931
3932static void
3933check_gcpros ()
3934{
3935 struct gcpro *p;
3936 int i;
3937
3938 for (p = gcprolist; p; p = p->next)
3939 for (i = 0; i < p->nvars; ++i)
3940 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
3941 /* FIXME: It's not necessarily a bug. It might just be that the
3942 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
3943 abort ();
3944}
3945
3946#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3947
3948static void
3949dump_zombies ()
3950{
3951 int i;
3952
3953 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3954 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3955 {
3956 fprintf (stderr, " %d = ", i);
3957 debug_print (zombies[i]);
3958 }
3959}
3960
3961#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3962
3963
182ff242
GM
3964/* Mark live Lisp objects on the C stack.
3965
3966 There are several system-dependent problems to consider when
3967 porting this to new architectures:
3968
3969 Processor Registers
3970
3971 We have to mark Lisp objects in CPU registers that can hold local
3972 variables or are used to pass parameters.
3973
3974 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3975 something that either saves relevant registers on the stack, or
3976 calls mark_maybe_object passing it each register's contents.
3977
3978 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3979 implementation assumes that calling setjmp saves registers we need
3980 to see in a jmp_buf which itself lies on the stack. This doesn't
3981 have to be true! It must be verified for each system, possibly
3982 by taking a look at the source code of setjmp.
3983
3984 Stack Layout
3985
3986 Architectures differ in the way their processor stack is organized.
3987 For example, the stack might look like this
3988
3989 +----------------+
3990 | Lisp_Object | size = 4
3991 +----------------+
3992 | something else | size = 2
3993 +----------------+
3994 | Lisp_Object | size = 4
3995 +----------------+
3996 | ... |
3997
3998 In such a case, not every Lisp_Object will be aligned equally. To
3999 find all Lisp_Object on the stack it won't be sufficient to walk
4000 the stack in steps of 4 bytes. Instead, two passes will be
4001 necessary, one starting at the start of the stack, and a second
4002 pass starting at the start of the stack + 2. Likewise, if the
4003 minimal alignment of Lisp_Objects on the stack is 1, four passes
4004 would be necessary, each one starting with one byte more offset
4005 from the stack start.
4006
4007 The current code assumes by default that Lisp_Objects are aligned
4008 equally on the stack. */
34400008
GM
4009
4010static void
4011mark_stack ()
4012{
630909a5 4013 int i;
34400008 4014 jmp_buf j;
6bbd7a29 4015 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
34400008
GM
4016 void *end;
4017
4018 /* This trick flushes the register windows so that all the state of
4019 the process is contained in the stack. */
ab6780cd 4020 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4021 needed on ia64 too. See mach_dep.c, where it also says inline
4022 assembler doesn't work with relevant proprietary compilers. */
34400008
GM
4023#ifdef sparc
4024 asm ("ta 3");
4025#endif
177c0ea7 4026
34400008
GM
4027 /* Save registers that we need to see on the stack. We need to see
4028 registers used to hold register variables and registers used to
4029 pass parameters. */
4030#ifdef GC_SAVE_REGISTERS_ON_STACK
4031 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4032#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4033
182ff242
GM
4034#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4035 setjmp will definitely work, test it
4036 and print a message with the result
4037 of the test. */
4038 if (!setjmp_tested_p)
4039 {
4040 setjmp_tested_p = 1;
4041 test_setjmp ();
4042 }
4043#endif /* GC_SETJMP_WORKS */
177c0ea7 4044
34400008
GM
4045 setjmp (j);
4046 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4047#endif /* not GC_SAVE_REGISTERS_ON_STACK */
34400008
GM
4048
4049 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4050 that's not the case, something has to be done here to iterate
4051 over the stack segments. */
630909a5 4052#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4053#ifdef __GNUC__
4054#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4055#else
630909a5 4056#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4057#endif
182ff242 4058#endif
24452cd5 4059 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
630909a5 4060 mark_memory ((char *) stack_base + i, end);
34400008
GM
4061
4062#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4063 check_gcpros ();
4064#endif
4065}
4066
4067
4068#endif /* GC_MARK_STACK != 0 */
4069
4070
4071\f
2e471eb5
GM
4072/***********************************************************************
4073 Pure Storage Management
4074 ***********************************************************************/
4075
1f0b3fd2
GM
4076/* Allocate room for SIZE bytes from pure Lisp storage and return a
4077 pointer to it. TYPE is the Lisp type for which the memory is
4078 allocated. TYPE < 0 means it's not used for a Lisp object.
4079
4080 If store_pure_type_info is set and TYPE is >= 0, the type of
4081 the allocated object is recorded in pure_types. */
4082
4083static POINTER_TYPE *
4084pure_alloc (size, type)
4085 size_t size;
4086 int type;
4087{
1f0b3fd2 4088 POINTER_TYPE *result;
831b476c
SM
4089#ifdef USE_LSB_TAG
4090 size_t alignment = (1 << GCTYPEBITS);
4091#else
44117420 4092 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4093
4094 /* Give Lisp_Floats an extra alignment. */
4095 if (type == Lisp_Float)
4096 {
1f0b3fd2
GM
4097#if defined __GNUC__ && __GNUC__ >= 2
4098 alignment = __alignof (struct Lisp_Float);
4099#else
4100 alignment = sizeof (struct Lisp_Float);
4101#endif
9e713715 4102 }
831b476c 4103#endif
1f0b3fd2 4104
44117420 4105 again:
ab6780cd 4106 result = ALIGN (purebeg + pure_bytes_used, alignment);
44117420
KS
4107 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4108
4109 if (pure_bytes_used <= pure_size)
4110 return result;
4111
4112 /* Don't allocate a large amount here,
4113 because it might get mmap'd and then its address
4114 might not be usable. */
4115 purebeg = (char *) xmalloc (10000);
4116 pure_size = 10000;
4117 pure_bytes_used_before_overflow += pure_bytes_used - size;
4118 pure_bytes_used = 0;
4119 goto again;
1f0b3fd2
GM
4120}
4121
4122
852f8cdc 4123/* Print a warning if PURESIZE is too small. */
9e713715
GM
4124
4125void
4126check_pure_size ()
4127{
4128 if (pure_bytes_used_before_overflow)
a4d35afd
SM
4129 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4130 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4131}
4132
4133
2e471eb5
GM
4134/* Return a string allocated in pure space. DATA is a buffer holding
4135 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4136 non-zero means make the result string multibyte.
1a4f1e2c 4137
2e471eb5
GM
4138 Must get an error if pure storage is full, since if it cannot hold
4139 a large string it may be able to hold conses that point to that
4140 string; then the string is not protected from gc. */
7146af97
JB
4141
4142Lisp_Object
2e471eb5 4143make_pure_string (data, nchars, nbytes, multibyte)
7146af97 4144 char *data;
2e471eb5 4145 int nchars, nbytes;
c0696668 4146 int multibyte;
7146af97 4147{
2e471eb5
GM
4148 Lisp_Object string;
4149 struct Lisp_String *s;
c0696668 4150
1f0b3fd2
GM
4151 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4152 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
2e471eb5
GM
4153 s->size = nchars;
4154 s->size_byte = multibyte ? nbytes : -1;
4155 bcopy (data, s->data, nbytes);
4156 s->data[nbytes] = '\0';
4157 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4158 XSETSTRING (string, s);
4159 return string;
7146af97
JB
4160}
4161
2e471eb5 4162
34400008
GM
4163/* Return a cons allocated from pure space. Give it pure copies
4164 of CAR as car and CDR as cdr. */
4165
7146af97
JB
4166Lisp_Object
4167pure_cons (car, cdr)
4168 Lisp_Object car, cdr;
4169{
4170 register Lisp_Object new;
1f0b3fd2 4171 struct Lisp_Cons *p;
7146af97 4172
1f0b3fd2
GM
4173 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4174 XSETCONS (new, p);
f3fbd155
KR
4175 XSETCAR (new, Fpurecopy (car));
4176 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4177 return new;
4178}
4179
7146af97 4180
34400008
GM
4181/* Value is a float object with value NUM allocated from pure space. */
4182
7146af97
JB
4183Lisp_Object
4184make_pure_float (num)
4185 double num;
4186{
4187 register Lisp_Object new;
1f0b3fd2 4188 struct Lisp_Float *p;
7146af97 4189
1f0b3fd2
GM
4190 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4191 XSETFLOAT (new, p);
70949dac 4192 XFLOAT_DATA (new) = num;
7146af97
JB
4193 return new;
4194}
4195
34400008
GM
4196
4197/* Return a vector with room for LEN Lisp_Objects allocated from
4198 pure space. */
4199
7146af97
JB
4200Lisp_Object
4201make_pure_vector (len)
42607681 4202 EMACS_INT len;
7146af97 4203{
1f0b3fd2
GM
4204 Lisp_Object new;
4205 struct Lisp_Vector *p;
4206 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4207
1f0b3fd2
GM
4208 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4209 XSETVECTOR (new, p);
7146af97
JB
4210 XVECTOR (new)->size = len;
4211 return new;
4212}
4213
34400008 4214
7146af97 4215DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
7ee72033 4216 doc: /* Make a copy of OBJECT in pure storage.
228299fa 4217Recursively copies contents of vectors and cons cells.
7ee72033
MB
4218Does not copy symbols. Copies strings without text properties. */)
4219 (obj)
7146af97
JB
4220 register Lisp_Object obj;
4221{
265a9e55 4222 if (NILP (Vpurify_flag))
7146af97
JB
4223 return obj;
4224
1f0b3fd2 4225 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4226 return obj;
4227
d6dd74bb 4228 if (CONSP (obj))
70949dac 4229 return pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4230 else if (FLOATP (obj))
70949dac 4231 return make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4232 else if (STRINGP (obj))
d5db4077
KR
4233 return make_pure_string (SDATA (obj), SCHARS (obj),
4234 SBYTES (obj),
c0696668 4235 STRING_MULTIBYTE (obj));
d6dd74bb
KH
4236 else if (COMPILEDP (obj) || VECTORP (obj))
4237 {
4238 register struct Lisp_Vector *vec;
41b867ea
AS
4239 register int i;
4240 EMACS_INT size;
d6dd74bb
KH
4241
4242 size = XVECTOR (obj)->size;
7d535c68
KH
4243 if (size & PSEUDOVECTOR_FLAG)
4244 size &= PSEUDOVECTOR_SIZE_MASK;
41b867ea 4245 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4246 for (i = 0; i < size; i++)
4247 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4248 if (COMPILEDP (obj))
4249 XSETCOMPILED (obj, vec);
4250 else
4251 XSETVECTOR (obj, vec);
7146af97
JB
4252 return obj;
4253 }
d6dd74bb
KH
4254 else if (MARKERP (obj))
4255 error ("Attempt to copy a marker to pure storage");
6bbd7a29
GM
4256
4257 return obj;
7146af97 4258}
2e471eb5 4259
34400008 4260
7146af97 4261\f
34400008
GM
4262/***********************************************************************
4263 Protection from GC
4264 ***********************************************************************/
4265
2e471eb5
GM
4266/* Put an entry in staticvec, pointing at the variable with address
4267 VARADDRESS. */
7146af97
JB
4268
4269void
4270staticpro (varaddress)
4271 Lisp_Object *varaddress;
4272{
4273 staticvec[staticidx++] = varaddress;
4274 if (staticidx >= NSTATICS)
4275 abort ();
4276}
4277
4278struct catchtag
2e471eb5 4279{
7146af97
JB
4280 Lisp_Object tag;
4281 Lisp_Object val;
4282 struct catchtag *next;
2e471eb5 4283};
7146af97
JB
4284
4285struct backtrace
2e471eb5
GM
4286{
4287 struct backtrace *next;
4288 Lisp_Object *function;
4289 Lisp_Object *args; /* Points to vector of args. */
4290 int nargs; /* Length of vector. */
4291 /* If nargs is UNEVALLED, args points to slot holding list of
4292 unevalled args. */
4293 char evalargs;
0dbaecd2
KS
4294 /* Nonzero means call value of debugger when done with this operation. */
4295 char debug_on_exit;
2e471eb5
GM
4296};
4297
34400008 4298
7146af97 4299\f
34400008
GM
4300/***********************************************************************
4301 Protection from GC
4302 ***********************************************************************/
1a4f1e2c 4303
e8197642
RS
4304/* Temporarily prevent garbage collection. */
4305
4306int
4307inhibit_garbage_collection ()
4308{
aed13378 4309 int count = SPECPDL_INDEX ();
54defd0d
AS
4310 int nbits = min (VALBITS, BITS_PER_INT);
4311
4312 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4313 return count;
4314}
4315
34400008 4316
7146af97 4317DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4318 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4319Garbage collection happens automatically if you cons more than
4320`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4321`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4322 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4323 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4324 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4325 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4326However, if there was overflow in pure space, `garbage-collect'
4327returns nil, because real GC can't be done. */)
7ee72033 4328 ()
7146af97 4329{
7146af97
JB
4330 register struct specbinding *bind;
4331 struct catchtag *catch;
4332 struct handler *handler;
4333 register struct backtrace *backlist;
7146af97
JB
4334 char stack_top_variable;
4335 register int i;
6efc7df7 4336 int message_p;
96117bc7 4337 Lisp_Object total[8];
331379bf 4338 int count = SPECPDL_INDEX ();
2c5bd608
DL
4339 EMACS_TIME t1, t2, t3;
4340
3de0effb
RS
4341 if (abort_on_gc)
4342 abort ();
4343
2c5bd608 4344 EMACS_GET_TIME (t1);
7146af97 4345
9e713715
GM
4346 /* Can't GC if pure storage overflowed because we can't determine
4347 if something is a pure object or not. */
4348 if (pure_bytes_used_before_overflow)
4349 return Qnil;
4350
58595309
KH
4351 /* In case user calls debug_print during GC,
4352 don't let that cause a recursive GC. */
4353 consing_since_gc = 0;
4354
6efc7df7
GM
4355 /* Save what's currently displayed in the echo area. */
4356 message_p = push_message ();
c55b0da6 4357 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 4358
7146af97
JB
4359 /* Save a copy of the contents of the stack, for debugging. */
4360#if MAX_SAVE_STACK > 0
265a9e55 4361 if (NILP (Vpurify_flag))
7146af97
JB
4362 {
4363 i = &stack_top_variable - stack_bottom;
4364 if (i < 0) i = -i;
4365 if (i < MAX_SAVE_STACK)
4366 {
4367 if (stack_copy == 0)
9ac0d9e0 4368 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 4369 else if (stack_copy_size < i)
9ac0d9e0 4370 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
4371 if (stack_copy)
4372 {
42607681 4373 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
7146af97
JB
4374 bcopy (stack_bottom, stack_copy, i);
4375 else
4376 bcopy (&stack_top_variable, stack_copy, i);
4377 }
4378 }
4379 }
4380#endif /* MAX_SAVE_STACK > 0 */
4381
299585ee 4382 if (garbage_collection_messages)
691c4285 4383 message1_nolog ("Garbage collecting...");
7146af97 4384
6e0fca1d
RS
4385 BLOCK_INPUT;
4386
eec7b73d
RS
4387 shrink_regexp_cache ();
4388
4929a878 4389 /* Don't keep undo information around forever. */
7146af97
JB
4390 {
4391 register struct buffer *nextb = all_buffers;
4392
4393 while (nextb)
4394 {
ffd56f97
JB
4395 /* If a buffer's undo list is Qt, that means that undo is
4396 turned off in that buffer. Calling truncate_undo_list on
4397 Qt tends to return NULL, which effectively turns undo back on.
4398 So don't call truncate_undo_list if undo_list is Qt. */
4399 if (! EQ (nextb->undo_list, Qt))
177c0ea7 4400 nextb->undo_list
502b9b64
JB
4401 = truncate_undo_list (nextb->undo_list, undo_limit,
4402 undo_strong_limit);
e0fead5d
AI
4403
4404 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4405 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4406 {
4407 /* If a buffer's gap size is more than 10% of the buffer
4408 size, or larger than 2000 bytes, then shrink it
4409 accordingly. Keep a minimum size of 20 bytes. */
4410 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4411
4412 if (nextb->text->gap_size > size)
4413 {
4414 struct buffer *save_current = current_buffer;
4415 current_buffer = nextb;
4416 make_gap (-(nextb->text->gap_size - size));
4417 current_buffer = save_current;
4418 }
4419 }
4420
7146af97
JB
4421 nextb = nextb->next;
4422 }
4423 }
4424
4425 gc_in_progress = 1;
4426
c23baf9f 4427 /* clear_marks (); */
7146af97 4428
0930c1a1 4429 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
4430
4431 for (i = 0; i < staticidx; i++)
49723c04 4432 mark_object (*staticvec[i]);
34400008
GM
4433
4434#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4435 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4436 mark_stack ();
4437#else
acf5f7d3
SM
4438 {
4439 register struct gcpro *tail;
4440 for (tail = gcprolist; tail; tail = tail->next)
4441 for (i = 0; i < tail->nvars; i++)
0930c1a1 4442 mark_object (tail->var[i]);
acf5f7d3 4443 }
34400008 4444#endif
177c0ea7 4445
630686c8 4446 mark_byte_stack ();
7146af97
JB
4447 for (bind = specpdl; bind != specpdl_ptr; bind++)
4448 {
49723c04
SM
4449 mark_object (bind->symbol);
4450 mark_object (bind->old_value);
7146af97
JB
4451 }
4452 for (catch = catchlist; catch; catch = catch->next)
4453 {
49723c04
SM
4454 mark_object (catch->tag);
4455 mark_object (catch->val);
177c0ea7 4456 }
7146af97
JB
4457 for (handler = handlerlist; handler; handler = handler->next)
4458 {
49723c04
SM
4459 mark_object (handler->handler);
4460 mark_object (handler->var);
177c0ea7 4461 }
7146af97
JB
4462 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4463 {
0930c1a1
SM
4464 mark_object (*backlist->function);
4465
7146af97
JB
4466 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4467 i = 0;
4468 else
4469 i = backlist->nargs - 1;
4470 for (; i >= 0; i--)
0930c1a1 4471 mark_object (backlist->args[i]);
177c0ea7 4472 }
b875d3f7 4473 mark_kboards ();
7146af97 4474
74c35a48
SM
4475#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4476 mark_stack ();
4477#endif
4478
4479#ifdef USE_GTK
4480 {
4481 extern void xg_mark_data ();
4482 xg_mark_data ();
4483 }
4484#endif
4485
0dbaecd2
KS
4486 gc_sweep ();
4487
4488 /* Look thru every buffer's undo list for elements that used to
4489 contain update markers that were changed to Lisp_Misc_Free
4490 objects and delete them. This may leave a few cons cells
4491 unchained, but we will get those on the next sweep. */
4c315bda
RS
4492 {
4493 register struct buffer *nextb = all_buffers;
4494
4495 while (nextb)
4496 {
4497 /* If a buffer's undo list is Qt, that means that undo is
0dbaecd2 4498 turned off in that buffer. */
4c315bda
RS
4499 if (! EQ (nextb->undo_list, Qt))
4500 {
0dbaecd2 4501 Lisp_Object tail, prev, elt, car;
4c315bda
RS
4502 tail = nextb->undo_list;
4503 prev = Qnil;
4504 while (CONSP (tail))
4505 {
0dbaecd2
KS
4506 if ((elt = XCAR (tail), GC_CONSP (elt))
4507 && (car = XCAR (elt), GC_MISCP (car))
4508 && XMISCTYPE (car) == Lisp_Misc_Free)
4c315bda 4509 {
0dbaecd2
KS
4510 Lisp_Object cdr = XCDR (tail);
4511 /* Do not use free_cons here, as we don't know if
4512 anybody else has a pointer to these conses. */
4513 XSETCAR (elt, Qnil);
4514 XSETCDR (elt, Qnil);
4515 XSETCAR (tail, Qnil);
4516 XSETCDR (tail, Qnil);
4c315bda 4517 if (NILP (prev))
0dbaecd2 4518 nextb->undo_list = tail = cdr;
4c315bda 4519 else
f3fbd155 4520 {
0dbaecd2 4521 tail = cdr;
f3fbd155
KR
4522 XSETCDR (prev, tail);
4523 }
4c315bda
RS
4524 }
4525 else
4526 {
4527 prev = tail;
70949dac 4528 tail = XCDR (tail);
4c315bda
RS
4529 }
4530 }
4531 }
4532
4533 nextb = nextb->next;
4534 }
4535 }
4536
6b67a518
KS
4537 /* Undo lists have been cleaned up, so we can free marker blocks now. */
4538
4539 {
4540 struct marker_block *mblk;
4541
4542 while ((mblk = marker_blocks_pending_free) != 0)
4543 {
4544 marker_blocks_pending_free = mblk->next;
4545 lisp_free (mblk);
4546 }
4547 }
4548
7146af97
JB
4549 /* Clear the mark bits that we set in certain root slots. */
4550
033a5fa3 4551 unmark_byte_stack ();
3ef06d12
SM
4552 VECTOR_UNMARK (&buffer_defaults);
4553 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 4554
34400008
GM
4555#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4556 dump_zombies ();
4557#endif
4558
6e0fca1d
RS
4559 UNBLOCK_INPUT;
4560
c23baf9f 4561 /* clear_marks (); */
7146af97
JB
4562 gc_in_progress = 0;
4563
4564 consing_since_gc = 0;
4565 if (gc_cons_threshold < 10000)
4566 gc_cons_threshold = 10000;
4567
299585ee
RS
4568 if (garbage_collection_messages)
4569 {
6efc7df7
GM
4570 if (message_p || minibuf_level > 0)
4571 restore_message ();
299585ee
RS
4572 else
4573 message1_nolog ("Garbage collecting...done");
4574 }
7146af97 4575
98edb5ff 4576 unbind_to (count, Qnil);
2e471eb5
GM
4577
4578 total[0] = Fcons (make_number (total_conses),
4579 make_number (total_free_conses));
4580 total[1] = Fcons (make_number (total_symbols),
4581 make_number (total_free_symbols));
4582 total[2] = Fcons (make_number (total_markers),
4583 make_number (total_free_markers));
96117bc7
GM
4584 total[3] = make_number (total_string_size);
4585 total[4] = make_number (total_vector_size);
4586 total[5] = Fcons (make_number (total_floats),
2e471eb5 4587 make_number (total_free_floats));
96117bc7 4588 total[6] = Fcons (make_number (total_intervals),
2e471eb5 4589 make_number (total_free_intervals));
96117bc7 4590 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
4591 make_number (total_free_strings));
4592
34400008 4593#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 4594 {
34400008
GM
4595 /* Compute average percentage of zombies. */
4596 double nlive = 0;
177c0ea7 4597
34400008 4598 for (i = 0; i < 7; ++i)
83fc9c63
DL
4599 if (CONSP (total[i]))
4600 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
4601
4602 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4603 max_live = max (nlive, max_live);
4604 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4605 max_zombies = max (nzombies, max_zombies);
4606 ++ngcs;
4607 }
4608#endif
7146af97 4609
9e713715
GM
4610 if (!NILP (Vpost_gc_hook))
4611 {
4612 int count = inhibit_garbage_collection ();
4613 safe_run_hooks (Qpost_gc_hook);
4614 unbind_to (count, Qnil);
4615 }
2c5bd608
DL
4616
4617 /* Accumulate statistics. */
4618 EMACS_GET_TIME (t2);
4619 EMACS_SUB_TIME (t3, t2, t1);
4620 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
4621 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4622 EMACS_SECS (t3) +
4623 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
4624 gcs_done++;
4625
96117bc7 4626 return Flist (sizeof total / sizeof *total, total);
7146af97 4627}
34400008 4628
41c28a37 4629
3770920e
GM
4630/* Mark Lisp objects in glyph matrix MATRIX. Currently the
4631 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
4632
4633static void
4634mark_glyph_matrix (matrix)
4635 struct glyph_matrix *matrix;
4636{
4637 struct glyph_row *row = matrix->rows;
4638 struct glyph_row *end = row + matrix->nrows;
4639
2e471eb5
GM
4640 for (; row < end; ++row)
4641 if (row->enabled_p)
4642 {
4643 int area;
4644 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4645 {
4646 struct glyph *glyph = row->glyphs[area];
4647 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 4648
2e471eb5
GM
4649 for (; glyph < end_glyph; ++glyph)
4650 if (GC_STRINGP (glyph->object)
4651 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 4652 mark_object (glyph->object);
2e471eb5
GM
4653 }
4654 }
41c28a37
GM
4655}
4656
34400008 4657
41c28a37
GM
4658/* Mark Lisp faces in the face cache C. */
4659
4660static void
4661mark_face_cache (c)
4662 struct face_cache *c;
4663{
4664 if (c)
4665 {
4666 int i, j;
4667 for (i = 0; i < c->used; ++i)
4668 {
4669 struct face *face = FACE_FROM_ID (c->f, i);
4670
4671 if (face)
4672 {
4673 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 4674 mark_object (face->lface[j]);
41c28a37
GM
4675 }
4676 }
4677 }
4678}
4679
4680
4681#ifdef HAVE_WINDOW_SYSTEM
4682
4683/* Mark Lisp objects in image IMG. */
4684
4685static void
4686mark_image (img)
4687 struct image *img;
4688{
49723c04 4689 mark_object (img->spec);
177c0ea7 4690
3e60b029 4691 if (!NILP (img->data.lisp_val))
49723c04 4692 mark_object (img->data.lisp_val);
41c28a37
GM
4693}
4694
4695
4696/* Mark Lisp objects in image cache of frame F. It's done this way so
4697 that we don't have to include xterm.h here. */
4698
4699static void
4700mark_image_cache (f)
4701 struct frame *f;
4702{
4703 forall_images_in_image_cache (f, mark_image);
4704}
4705
4706#endif /* HAVE_X_WINDOWS */
4707
4708
7146af97 4709\f
1a4f1e2c 4710/* Mark reference to a Lisp_Object.
2e471eb5
GM
4711 If the object referred to has not been seen yet, recursively mark
4712 all the references contained in it. */
7146af97 4713
785cd37f 4714#define LAST_MARKED_SIZE 500
49723c04 4715Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
4716int last_marked_index;
4717
1342fc6f
RS
4718/* For debugging--call abort when we cdr down this many
4719 links of a list, in mark_object. In debugging,
4720 the call to abort will hit a breakpoint.
4721 Normally this is zero and the check never goes off. */
4722int mark_object_loop_halt;
4723
41c28a37 4724void
49723c04
SM
4725mark_object (arg)
4726 Lisp_Object arg;
7146af97 4727{
49723c04 4728 register Lisp_Object obj = arg;
4f5c1376
GM
4729#ifdef GC_CHECK_MARKED_OBJECTS
4730 void *po;
4731 struct mem_node *m;
4732#endif
1342fc6f 4733 int cdr_count = 0;
7146af97 4734
9149e743 4735 loop:
7146af97 4736
1f0b3fd2 4737 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4738 return;
4739
49723c04 4740 last_marked[last_marked_index++] = obj;
785cd37f
RS
4741 if (last_marked_index == LAST_MARKED_SIZE)
4742 last_marked_index = 0;
4743
4f5c1376
GM
4744 /* Perform some sanity checks on the objects marked here. Abort if
4745 we encounter an object we know is bogus. This increases GC time
4746 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4747#ifdef GC_CHECK_MARKED_OBJECTS
4748
4749 po = (void *) XPNTR (obj);
4750
4751 /* Check that the object pointed to by PO is known to be a Lisp
4752 structure allocated from the heap. */
4753#define CHECK_ALLOCATED() \
4754 do { \
4755 m = mem_find (po); \
4756 if (m == MEM_NIL) \
4757 abort (); \
4758 } while (0)
4759
4760 /* Check that the object pointed to by PO is live, using predicate
4761 function LIVEP. */
4762#define CHECK_LIVE(LIVEP) \
4763 do { \
4764 if (!LIVEP (m, po)) \
4765 abort (); \
4766 } while (0)
4767
4768 /* Check both of the above conditions. */
4769#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4770 do { \
4771 CHECK_ALLOCATED (); \
4772 CHECK_LIVE (LIVEP); \
4773 } while (0) \
177c0ea7 4774
4f5c1376 4775#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 4776
4f5c1376
GM
4777#define CHECK_ALLOCATED() (void) 0
4778#define CHECK_LIVE(LIVEP) (void) 0
4779#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 4780
4f5c1376
GM
4781#endif /* not GC_CHECK_MARKED_OBJECTS */
4782
0220c518 4783 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
7146af97
JB
4784 {
4785 case Lisp_String:
4786 {
4787 register struct Lisp_String *ptr = XSTRING (obj);
4f5c1376 4788 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 4789 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 4790 MARK_STRING (ptr);
361b097f 4791#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
4792 /* Check that the string size recorded in the string is the
4793 same as the one recorded in the sdata structure. */
4794 CHECK_STRING_BYTES (ptr);
361b097f 4795#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
4796 }
4797 break;
4798
76437631 4799 case Lisp_Vectorlike:
4f5c1376
GM
4800#ifdef GC_CHECK_MARKED_OBJECTS
4801 m = mem_find (po);
4802 if (m == MEM_NIL && !GC_SUBRP (obj)
4803 && po != &buffer_defaults
4804 && po != &buffer_local_symbols)
4805 abort ();
4806#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 4807
30e3190a 4808 if (GC_BUFFERP (obj))
6b552283 4809 {
3ef06d12 4810 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4f5c1376
GM
4811 {
4812#ifdef GC_CHECK_MARKED_OBJECTS
4813 if (po != &buffer_defaults && po != &buffer_local_symbols)
4814 {
4815 struct buffer *b;
4816 for (b = all_buffers; b && b != po; b = b->next)
4817 ;
4818 if (b == NULL)
4819 abort ();
4820 }
4821#endif /* GC_CHECK_MARKED_OBJECTS */
4822 mark_buffer (obj);
4823 }
6b552283 4824 }
30e3190a 4825 else if (GC_SUBRP (obj))
169ee243
RS
4826 break;
4827 else if (GC_COMPILEDP (obj))
2e471eb5
GM
4828 /* We could treat this just like a vector, but it is better to
4829 save the COMPILED_CONSTANTS element for last and avoid
4830 recursion there. */
169ee243
RS
4831 {
4832 register struct Lisp_Vector *ptr = XVECTOR (obj);
4833 register EMACS_INT size = ptr->size;
169ee243
RS
4834 register int i;
4835
3ef06d12 4836 if (VECTOR_MARKED_P (ptr))
169ee243 4837 break; /* Already marked */
177c0ea7 4838
4f5c1376 4839 CHECK_LIVE (live_vector_p);
3ef06d12 4840 VECTOR_MARK (ptr); /* Else mark it */
76437631 4841 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
4842 for (i = 0; i < size; i++) /* and then mark its elements */
4843 {
4844 if (i != COMPILED_CONSTANTS)
49723c04 4845 mark_object (ptr->contents[i]);
169ee243 4846 }
49723c04 4847 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
4848 goto loop;
4849 }
169ee243
RS
4850 else if (GC_FRAMEP (obj))
4851 {
c70bbf06 4852 register struct frame *ptr = XFRAME (obj);
169ee243 4853
3ef06d12
SM
4854 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4855 VECTOR_MARK (ptr); /* Else mark it */
169ee243 4856
4f5c1376 4857 CHECK_LIVE (live_vector_p);
49723c04
SM
4858 mark_object (ptr->name);
4859 mark_object (ptr->icon_name);
4860 mark_object (ptr->title);
4861 mark_object (ptr->focus_frame);
4862 mark_object (ptr->selected_window);
4863 mark_object (ptr->minibuffer_window);
4864 mark_object (ptr->param_alist);
4865 mark_object (ptr->scroll_bars);
4866 mark_object (ptr->condemned_scroll_bars);
4867 mark_object (ptr->menu_bar_items);
4868 mark_object (ptr->face_alist);
4869 mark_object (ptr->menu_bar_vector);
4870 mark_object (ptr->buffer_predicate);
4871 mark_object (ptr->buffer_list);
4872 mark_object (ptr->menu_bar_window);
4873 mark_object (ptr->tool_bar_window);
41c28a37
GM
4874 mark_face_cache (ptr->face_cache);
4875#ifdef HAVE_WINDOW_SYSTEM
4876 mark_image_cache (ptr);
49723c04
SM
4877 mark_object (ptr->tool_bar_items);
4878 mark_object (ptr->desired_tool_bar_string);
4879 mark_object (ptr->current_tool_bar_string);
41c28a37 4880#endif /* HAVE_WINDOW_SYSTEM */
169ee243 4881 }
7b07587b 4882 else if (GC_BOOL_VECTOR_P (obj))
707788bd
RS
4883 {
4884 register struct Lisp_Vector *ptr = XVECTOR (obj);
4885
3ef06d12 4886 if (VECTOR_MARKED_P (ptr))
707788bd 4887 break; /* Already marked */
4f5c1376 4888 CHECK_LIVE (live_vector_p);
3ef06d12 4889 VECTOR_MARK (ptr); /* Else mark it */
707788bd 4890 }
41c28a37
GM
4891 else if (GC_WINDOWP (obj))
4892 {
4893 register struct Lisp_Vector *ptr = XVECTOR (obj);
4894 struct window *w = XWINDOW (obj);
41c28a37
GM
4895 register int i;
4896
4897 /* Stop if already marked. */
3ef06d12 4898 if (VECTOR_MARKED_P (ptr))
41c28a37
GM
4899 break;
4900
4901 /* Mark it. */
4f5c1376 4902 CHECK_LIVE (live_vector_p);
3ef06d12 4903 VECTOR_MARK (ptr);
41c28a37
GM
4904
4905 /* There is no Lisp data above The member CURRENT_MATRIX in
4906 struct WINDOW. Stop marking when that slot is reached. */
4907 for (i = 0;
c70bbf06 4908 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
41c28a37 4909 i++)
49723c04 4910 mark_object (ptr->contents[i]);
41c28a37
GM
4911
4912 /* Mark glyphs for leaf windows. Marking window matrices is
4913 sufficient because frame matrices use the same glyph
4914 memory. */
4915 if (NILP (w->hchild)
4916 && NILP (w->vchild)
4917 && w->current_matrix)
4918 {
4919 mark_glyph_matrix (w->current_matrix);
4920 mark_glyph_matrix (w->desired_matrix);
4921 }
4922 }
4923 else if (GC_HASH_TABLE_P (obj))
4924 {
4925 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
177c0ea7 4926
41c28a37 4927 /* Stop if already marked. */
3ef06d12 4928 if (VECTOR_MARKED_P (h))
41c28a37 4929 break;
177c0ea7 4930
41c28a37 4931 /* Mark it. */
4f5c1376 4932 CHECK_LIVE (live_vector_p);
3ef06d12 4933 VECTOR_MARK (h);
41c28a37
GM
4934
4935 /* Mark contents. */
94a877ef 4936 /* Do not mark next_free or next_weak.
177c0ea7 4937 Being in the next_weak chain
94a877ef
RS
4938 should not keep the hash table alive.
4939 No need to mark `count' since it is an integer. */
49723c04
SM
4940 mark_object (h->test);
4941 mark_object (h->weak);
4942 mark_object (h->rehash_size);
4943 mark_object (h->rehash_threshold);
4944 mark_object (h->hash);
4945 mark_object (h->next);
4946 mark_object (h->index);
4947 mark_object (h->user_hash_function);
4948 mark_object (h->user_cmp_function);
41c28a37
GM
4949
4950 /* If hash table is not weak, mark all keys and values.
4951 For weak tables, mark only the vector. */
4952 if (GC_NILP (h->weak))
49723c04 4953 mark_object (h->key_and_value);
41c28a37 4954 else
3ef06d12 4955 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 4956 }
04ff9756 4957 else
169ee243
RS
4958 {
4959 register struct Lisp_Vector *ptr = XVECTOR (obj);
4960 register EMACS_INT size = ptr->size;
169ee243
RS
4961 register int i;
4962
3ef06d12 4963 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4f5c1376 4964 CHECK_LIVE (live_vector_p);
3ef06d12 4965 VECTOR_MARK (ptr); /* Else mark it */
169ee243
RS
4966 if (size & PSEUDOVECTOR_FLAG)
4967 size &= PSEUDOVECTOR_SIZE_MASK;
41c28a37 4968
169ee243 4969 for (i = 0; i < size; i++) /* and then mark its elements */
49723c04 4970 mark_object (ptr->contents[i]);
169ee243
RS
4971 }
4972 break;
7146af97 4973
7146af97
JB
4974 case Lisp_Symbol:
4975 {
c70bbf06 4976 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
4977 struct Lisp_Symbol *ptrx;
4978
2336fe58 4979 if (ptr->gcmarkbit) break;
4f5c1376 4980 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 4981 ptr->gcmarkbit = 1;
49723c04
SM
4982 mark_object (ptr->value);
4983 mark_object (ptr->function);
4984 mark_object (ptr->plist);
34400008 4985
8fe5665d
KR
4986 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4987 MARK_STRING (XSTRING (ptr->xname));
d5db4077 4988 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 4989
1c6bb482
RS
4990 /* Note that we do not mark the obarray of the symbol.
4991 It is safe not to do so because nothing accesses that
4992 slot except to check whether it is nil. */
7146af97
JB
4993 ptr = ptr->next;
4994 if (ptr)
4995 {
b0846f52 4996 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 4997 XSETSYMBOL (obj, ptrx);
49723c04 4998 goto loop;
7146af97
JB
4999 }
5000 }
5001 break;
5002
a0a38eb7 5003 case Lisp_Misc:
4f5c1376 5004 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
2336fe58
SM
5005 if (XMARKER (obj)->gcmarkbit)
5006 break;
5007 XMARKER (obj)->gcmarkbit = 1;
a5da44fe 5008 switch (XMISCTYPE (obj))
a0a38eb7 5009 {
465edf35
KH
5010 case Lisp_Misc_Buffer_Local_Value:
5011 case Lisp_Misc_Some_Buffer_Local_Value:
5012 {
5013 register struct Lisp_Buffer_Local_Value *ptr
5014 = XBUFFER_LOCAL_VALUE (obj);
465edf35
KH
5015 /* If the cdr is nil, avoid recursion for the car. */
5016 if (EQ (ptr->cdr, Qnil))
5017 {
49723c04 5018 obj = ptr->realvalue;
465edf35
KH
5019 goto loop;
5020 }
49723c04
SM
5021 mark_object (ptr->realvalue);
5022 mark_object (ptr->buffer);
5023 mark_object (ptr->frame);
5024 obj = ptr->cdr;
465edf35
KH
5025 goto loop;
5026 }
5027
2336fe58
SM
5028 case Lisp_Misc_Marker:
5029 /* DO NOT mark thru the marker's chain.
5030 The buffer's markers chain does not preserve markers from gc;
5031 instead, markers are removed from the chain when freed by gc. */
c8616056
KH
5032 case Lisp_Misc_Intfwd:
5033 case Lisp_Misc_Boolfwd:
5034 case Lisp_Misc_Objfwd:
5035 case Lisp_Misc_Buffer_Objfwd:
b875d3f7 5036 case Lisp_Misc_Kboard_Objfwd:
c8616056
KH
5037 /* Don't bother with Lisp_Buffer_Objfwd,
5038 since all markable slots in current buffer marked anyway. */
5039 /* Don't need to do Lisp_Objfwd, since the places they point
5040 are protected with staticpro. */
f29181dc 5041 case Lisp_Misc_Save_Value:
c8616056
KH
5042 break;
5043
e202fa34
KH
5044 case Lisp_Misc_Overlay:
5045 {
5046 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5047 mark_object (ptr->start);
5048 mark_object (ptr->end);
f54253ec
SM
5049 mark_object (ptr->plist);
5050 if (ptr->next)
5051 {
5052 XSETMISC (obj, ptr->next);
5053 goto loop;
5054 }
e202fa34
KH
5055 }
5056 break;
5057
a0a38eb7
KH
5058 default:
5059 abort ();
5060 }
7146af97
JB
5061 break;
5062
5063 case Lisp_Cons:
7146af97
JB
5064 {
5065 register struct Lisp_Cons *ptr = XCONS (obj);
08b7c2cb 5066 if (CONS_MARKED_P (ptr)) break;
4f5c1376 5067 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5068 CONS_MARK (ptr);
c54ca951
RS
5069 /* If the cdr is nil, avoid recursion for the car. */
5070 if (EQ (ptr->cdr, Qnil))
5071 {
49723c04 5072 obj = ptr->car;
1342fc6f 5073 cdr_count = 0;
c54ca951
RS
5074 goto loop;
5075 }
49723c04
SM
5076 mark_object (ptr->car);
5077 obj = ptr->cdr;
1342fc6f
RS
5078 cdr_count++;
5079 if (cdr_count == mark_object_loop_halt)
5080 abort ();
7146af97
JB
5081 goto loop;
5082 }
5083
7146af97 5084 case Lisp_Float:
4f5c1376 5085 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5086 FLOAT_MARK (XFLOAT (obj));
7146af97 5087 break;
7146af97 5088
7146af97 5089 case Lisp_Int:
7146af97
JB
5090 break;
5091
5092 default:
5093 abort ();
5094 }
4f5c1376
GM
5095
5096#undef CHECK_LIVE
5097#undef CHECK_ALLOCATED
5098#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5099}
5100
5101/* Mark the pointers in a buffer structure. */
5102
5103static void
5104mark_buffer (buf)
5105 Lisp_Object buf;
5106{
7146af97 5107 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5108 register Lisp_Object *ptr, tmp;
30e3190a 5109 Lisp_Object base_buffer;
7146af97 5110
3ef06d12 5111 VECTOR_MARK (buffer);
7146af97 5112
30e3190a 5113 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5114
4c315bda
RS
5115 if (CONSP (buffer->undo_list))
5116 {
5117 Lisp_Object tail;
5118 tail = buffer->undo_list;
5119
2336fe58
SM
5120 /* We mark the undo list specially because
5121 its pointers to markers should be weak. */
5122
4c315bda
RS
5123 while (CONSP (tail))
5124 {
5125 register struct Lisp_Cons *ptr = XCONS (tail);
5126
08b7c2cb 5127 if (CONS_MARKED_P (ptr))
4c315bda 5128 break;
08b7c2cb 5129 CONS_MARK (ptr);
4c315bda 5130 if (GC_CONSP (ptr->car)
08b7c2cb 5131 && !CONS_MARKED_P (XCONS (ptr->car))
70949dac 5132 && GC_MARKERP (XCAR (ptr->car)))
4c315bda 5133 {
08b7c2cb 5134 CONS_MARK (XCONS (ptr->car));
49723c04 5135 mark_object (XCDR (ptr->car));
4c315bda
RS
5136 }
5137 else
49723c04 5138 mark_object (ptr->car);
4c315bda
RS
5139
5140 if (CONSP (ptr->cdr))
5141 tail = ptr->cdr;
5142 else
5143 break;
5144 }
5145
49723c04 5146 mark_object (XCDR (tail));
4c315bda
RS
5147 }
5148 else
49723c04 5149 mark_object (buffer->undo_list);
4c315bda 5150
f54253ec
SM
5151 if (buffer->overlays_before)
5152 {
5153 XSETMISC (tmp, buffer->overlays_before);
5154 mark_object (tmp);
5155 }
5156 if (buffer->overlays_after)
5157 {
5158 XSETMISC (tmp, buffer->overlays_after);
5159 mark_object (tmp);
5160 }
5161
3ef06d12 5162 for (ptr = &buffer->name;
7146af97
JB
5163 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5164 ptr++)
49723c04 5165 mark_object (*ptr);
30e3190a
RS
5166
5167 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5168 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5169 {
177c0ea7 5170 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5171 mark_buffer (base_buffer);
5172 }
7146af97 5173}
084b1a0c
KH
5174
5175
41c28a37
GM
5176/* Value is non-zero if OBJ will survive the current GC because it's
5177 either marked or does not need to be marked to survive. */
5178
5179int
5180survives_gc_p (obj)
5181 Lisp_Object obj;
5182{
5183 int survives_p;
177c0ea7 5184
41c28a37
GM
5185 switch (XGCTYPE (obj))
5186 {
5187 case Lisp_Int:
5188 survives_p = 1;
5189 break;
5190
5191 case Lisp_Symbol:
2336fe58 5192 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5193 break;
5194
5195 case Lisp_Misc:
ef89c2ce 5196 survives_p = XMARKER (obj)->gcmarkbit;
41c28a37
GM
5197 break;
5198
5199 case Lisp_String:
08b7c2cb 5200 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5201 break;
5202
5203 case Lisp_Vectorlike:
08b7c2cb 5204 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5205 break;
5206
5207 case Lisp_Cons:
08b7c2cb 5208 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5209 break;
5210
41c28a37 5211 case Lisp_Float:
ab6780cd 5212 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5213 break;
41c28a37
GM
5214
5215 default:
5216 abort ();
5217 }
5218
34400008 5219 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5220}
5221
5222
7146af97 5223\f
1a4f1e2c 5224/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5225
5226static void
5227gc_sweep ()
5228{
7146af97
JB
5229 /* Put all unmarked conses on free list */
5230 {
5231 register struct cons_block *cblk;
6ca94ac9 5232 struct cons_block **cprev = &cons_block;
7146af97
JB
5233 register int lim = cons_block_index;
5234 register int num_free = 0, num_used = 0;
5235
5236 cons_free_list = 0;
177c0ea7 5237
6ca94ac9 5238 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97
JB
5239 {
5240 register int i;
6ca94ac9 5241 int this_free = 0;
7146af97 5242 for (i = 0; i < lim; i++)
08b7c2cb 5243 if (!CONS_MARKED_P (&cblk->conses[i]))
7146af97 5244 {
6ca94ac9 5245 this_free++;
1cd5fe6a 5246 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
7146af97 5247 cons_free_list = &cblk->conses[i];
34400008
GM
5248#if GC_MARK_STACK
5249 cons_free_list->car = Vdead;
5250#endif
7146af97
JB
5251 }
5252 else
5253 {
5254 num_used++;
08b7c2cb 5255 CONS_UNMARK (&cblk->conses[i]);
7146af97
JB
5256 }
5257 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5258 /* If this block contains only free conses and we have already
5259 seen more than two blocks worth of free conses then deallocate
5260 this block. */
6feef451 5261 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5262 {
6ca94ac9
KH
5263 *cprev = cblk->next;
5264 /* Unhook from the free list. */
5265 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
08b7c2cb 5266 lisp_align_free (cblk);
c8099634 5267 n_cons_blocks--;
6ca94ac9
KH
5268 }
5269 else
6feef451
AS
5270 {
5271 num_free += this_free;
5272 cprev = &cblk->next;
5273 }
7146af97
JB
5274 }
5275 total_conses = num_used;
5276 total_free_conses = num_free;
5277 }
5278
0dbaecd2
KS
5279 /* Remove or mark entries in weak hash tables.
5280 This must be done before any object is unmarked. */
5281 sweep_weak_hash_tables ();
5282
5283 sweep_strings ();
5284#ifdef GC_CHECK_STRING_BYTES
5285 if (!noninteractive)
5286 check_string_bytes (1);
5287#endif
5288
7146af97
JB
5289 /* Put all unmarked floats on free list */
5290 {
5291 register struct float_block *fblk;
6ca94ac9 5292 struct float_block **fprev = &float_block;
7146af97
JB
5293 register int lim = float_block_index;
5294 register int num_free = 0, num_used = 0;
5295
5296 float_free_list = 0;
177c0ea7 5297
6ca94ac9 5298 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5299 {
5300 register int i;
6ca94ac9 5301 int this_free = 0;
7146af97 5302 for (i = 0; i < lim; i++)
ab6780cd 5303 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5304 {
6ca94ac9 5305 this_free++;
1cd5fe6a 5306 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
7146af97
JB
5307 float_free_list = &fblk->floats[i];
5308 }
5309 else
5310 {
5311 num_used++;
ab6780cd 5312 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5313 }
5314 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5315 /* If this block contains only free floats and we have already
5316 seen more than two blocks worth of free floats then deallocate
5317 this block. */
6feef451 5318 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5319 {
6ca94ac9
KH
5320 *fprev = fblk->next;
5321 /* Unhook from the free list. */
5322 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
ab6780cd 5323 lisp_align_free (fblk);
c8099634 5324 n_float_blocks--;
6ca94ac9
KH
5325 }
5326 else
6feef451
AS
5327 {
5328 num_free += this_free;
5329 fprev = &fblk->next;
5330 }
7146af97
JB
5331 }
5332 total_floats = num_used;
5333 total_free_floats = num_free;
5334 }
7146af97 5335
d5e35230
JA
5336 /* Put all unmarked intervals on free list */
5337 {
5338 register struct interval_block *iblk;
6ca94ac9 5339 struct interval_block **iprev = &interval_block;
d5e35230
JA
5340 register int lim = interval_block_index;
5341 register int num_free = 0, num_used = 0;
5342
5343 interval_free_list = 0;
5344
6ca94ac9 5345 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5346 {
5347 register int i;
6ca94ac9 5348 int this_free = 0;
d5e35230
JA
5349
5350 for (i = 0; i < lim; i++)
5351 {
2336fe58 5352 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5353 {
439d5cb4 5354 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5355 interval_free_list = &iblk->intervals[i];
6ca94ac9 5356 this_free++;
d5e35230
JA
5357 }
5358 else
5359 {
5360 num_used++;
2336fe58 5361 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5362 }
5363 }
5364 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5365 /* If this block contains only free intervals and we have already
5366 seen more than two blocks worth of free intervals then
5367 deallocate this block. */
6feef451 5368 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5369 {
6ca94ac9
KH
5370 *iprev = iblk->next;
5371 /* Unhook from the free list. */
439d5cb4 5372 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
5373 lisp_free (iblk);
5374 n_interval_blocks--;
6ca94ac9
KH
5375 }
5376 else
6feef451
AS
5377 {
5378 num_free += this_free;
5379 iprev = &iblk->next;
5380 }
d5e35230
JA
5381 }
5382 total_intervals = num_used;
5383 total_free_intervals = num_free;
5384 }
d5e35230 5385
7146af97
JB
5386 /* Put all unmarked symbols on free list */
5387 {
5388 register struct symbol_block *sblk;
6ca94ac9 5389 struct symbol_block **sprev = &symbol_block;
7146af97
JB
5390 register int lim = symbol_block_index;
5391 register int num_free = 0, num_used = 0;
5392
d285b373 5393 symbol_free_list = NULL;
177c0ea7 5394
6ca94ac9 5395 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5396 {
6ca94ac9 5397 int this_free = 0;
d285b373
GM
5398 struct Lisp_Symbol *sym = sblk->symbols;
5399 struct Lisp_Symbol *end = sym + lim;
5400
5401 for (; sym < end; ++sym)
5402 {
20035321
SM
5403 /* Check if the symbol was created during loadup. In such a case
5404 it might be pointed to by pure bytecode which we don't trace,
5405 so we conservatively assume that it is live. */
8fe5665d 5406 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 5407
2336fe58 5408 if (!sym->gcmarkbit && !pure_p)
d285b373
GM
5409 {
5410 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5411 symbol_free_list = sym;
34400008 5412#if GC_MARK_STACK
d285b373 5413 symbol_free_list->function = Vdead;
34400008 5414#endif
d285b373
GM
5415 ++this_free;
5416 }
5417 else
5418 {
5419 ++num_used;
5420 if (!pure_p)
8fe5665d 5421 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 5422 sym->gcmarkbit = 0;
d285b373
GM
5423 }
5424 }
177c0ea7 5425
7146af97 5426 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
5427 /* If this block contains only free symbols and we have already
5428 seen more than two blocks worth of free symbols then deallocate
5429 this block. */
6feef451 5430 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 5431 {
6ca94ac9
KH
5432 *sprev = sblk->next;
5433 /* Unhook from the free list. */
5434 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
c8099634
RS
5435 lisp_free (sblk);
5436 n_symbol_blocks--;
6ca94ac9
KH
5437 }
5438 else
6feef451
AS
5439 {
5440 num_free += this_free;
5441 sprev = &sblk->next;
5442 }
7146af97
JB
5443 }
5444 total_symbols = num_used;
5445 total_free_symbols = num_free;
5446 }
5447
a9faeabe
RS
5448 /* Put all unmarked misc's on free list.
5449 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
5450 {
5451 register struct marker_block *mblk;
6ca94ac9 5452 struct marker_block **mprev = &marker_block;
7146af97
JB
5453 register int lim = marker_block_index;
5454 register int num_free = 0, num_used = 0;
5455
5456 marker_free_list = 0;
6b67a518 5457 marker_blocks_pending_free = 0;
177c0ea7 5458
6ca94ac9 5459 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
5460 {
5461 register int i;
6ca94ac9 5462 int this_free = 0;
fa05e253 5463
7146af97 5464 for (i = 0; i < lim; i++)
465edf35 5465 {
2336fe58 5466 if (!mblk->markers[i].u_marker.gcmarkbit)
465edf35 5467 {
a5da44fe 5468 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
ef89c2ce 5469 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
5470 /* Set the type of the freed object to Lisp_Misc_Free.
5471 We could leave the type alone, since nobody checks it,
465edf35 5472 but this might catch bugs faster. */
a5da44fe 5473 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
5474 mblk->markers[i].u_free.chain = marker_free_list;
5475 marker_free_list = &mblk->markers[i];
6ca94ac9 5476 this_free++;
465edf35
KH
5477 }
5478 else
5479 {
5480 num_used++;
2336fe58 5481 mblk->markers[i].u_marker.gcmarkbit = 0;
465edf35
KH
5482 }
5483 }
7146af97 5484 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
5485 /* If this block contains only free markers and we have already
5486 seen more than two blocks worth of free markers then deallocate
5487 this block. */
6feef451 5488 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 5489 {
6ca94ac9
KH
5490 *mprev = mblk->next;
5491 /* Unhook from the free list. */
5492 marker_free_list = mblk->markers[0].u_free.chain;
c8099634 5493 n_marker_blocks--;
6b67a518
KS
5494
5495 /* It is not safe to free the marker block at this stage,
5496 since there may still be pointers to these markers from
5497 a buffer's undo list. KFS 2004-05-25. */
5498 mblk->next = marker_blocks_pending_free;
5499 marker_blocks_pending_free = mblk;
6ca94ac9
KH
5500 }
5501 else
6feef451
AS
5502 {
5503 num_free += this_free;
5504 mprev = &mblk->next;
5505 }
7146af97
JB
5506 }
5507
5508 total_markers = num_used;
5509 total_free_markers = num_free;
5510 }
5511
5512 /* Free all unmarked buffers */
5513 {
5514 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5515
5516 while (buffer)
3ef06d12 5517 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
5518 {
5519 if (prev)
5520 prev->next = buffer->next;
5521 else
5522 all_buffers = buffer->next;
5523 next = buffer->next;
34400008 5524 lisp_free (buffer);
7146af97
JB
5525 buffer = next;
5526 }
5527 else
5528 {
3ef06d12 5529 VECTOR_UNMARK (buffer);
30e3190a 5530 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
5531 prev = buffer, buffer = buffer->next;
5532 }
5533 }
5534
7146af97
JB
5535 /* Free all unmarked vectors */
5536 {
5537 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5538 total_vector_size = 0;
5539
5540 while (vector)
3ef06d12 5541 if (!VECTOR_MARKED_P (vector))
7146af97
JB
5542 {
5543 if (prev)
5544 prev->next = vector->next;
5545 else
5546 all_vectors = vector->next;
5547 next = vector->next;
c8099634
RS
5548 lisp_free (vector);
5549 n_vectors--;
7146af97 5550 vector = next;
41c28a37 5551
7146af97
JB
5552 }
5553 else
5554 {
3ef06d12 5555 VECTOR_UNMARK (vector);
fa05e253
RS
5556 if (vector->size & PSEUDOVECTOR_FLAG)
5557 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5558 else
5559 total_vector_size += vector->size;
7146af97
JB
5560 prev = vector, vector = vector->next;
5561 }
5562 }
177c0ea7 5563
676a7251
GM
5564#ifdef GC_CHECK_STRING_BYTES
5565 if (!noninteractive)
5566 check_string_bytes (1);
5567#endif
7146af97 5568}
7146af97 5569
7146af97 5570
7146af97 5571
7146af97 5572\f
20d24714
JB
5573/* Debugging aids. */
5574
31ce1c91 5575DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 5576 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 5577This may be helpful in debugging Emacs's memory usage.
7ee72033
MB
5578We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5579 ()
20d24714
JB
5580{
5581 Lisp_Object end;
5582
45d12a89 5583 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
20d24714
JB
5584
5585 return end;
5586}
5587
310ea200 5588DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 5589 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
5590Each of these counters increments for a certain kind of object.
5591The counters wrap around from the largest positive integer to zero.
5592Garbage collection does not decrease them.
5593The elements of the value are as follows:
5594 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5595All are in units of 1 = one object consed
5596except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5597objects consed.
5598MISCS include overlays, markers, and some internal types.
5599Frames, windows, buffers, and subprocesses count as vectors
7ee72033
MB
5600 (but the contents of a buffer's text do not count here). */)
5601 ()
310ea200 5602{
2e471eb5 5603 Lisp_Object consed[8];
310ea200 5604
78e985eb
GM
5605 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5606 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5607 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5608 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5609 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5610 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5611 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5612 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 5613
2e471eb5 5614 return Flist (8, consed);
310ea200 5615}
e0b8c689
KR
5616
5617int suppress_checking;
5618void
5619die (msg, file, line)
5620 const char *msg;
5621 const char *file;
5622 int line;
5623{
5624 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5625 file, line, msg);
5626 abort ();
5627}
20d24714 5628\f
7146af97
JB
5629/* Initialization */
5630
dfcf069d 5631void
7146af97
JB
5632init_alloc_once ()
5633{
5634 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
5635 purebeg = PUREBEG;
5636 pure_size = PURESIZE;
1f0b3fd2 5637 pure_bytes_used = 0;
9e713715
GM
5638 pure_bytes_used_before_overflow = 0;
5639
ab6780cd
SM
5640 /* Initialize the list of free aligned blocks. */
5641 free_ablock = NULL;
5642
877935b1 5643#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
5644 mem_init ();
5645 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5646#endif
9e713715 5647
7146af97
JB
5648 all_vectors = 0;
5649 ignore_warnings = 1;
d1658221
RS
5650#ifdef DOUG_LEA_MALLOC
5651 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5652 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 5653 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 5654#endif
7146af97
JB
5655 init_strings ();
5656 init_cons ();
5657 init_symbol ();
5658 init_marker ();
7146af97 5659 init_float ();
34400008 5660 init_intervals ();
d5e35230 5661
276cbe5a
RS
5662#ifdef REL_ALLOC
5663 malloc_hysteresis = 32;
5664#else
5665 malloc_hysteresis = 0;
5666#endif
5667
5668 spare_memory = (char *) malloc (SPARE_MEMORY);
5669
7146af97
JB
5670 ignore_warnings = 0;
5671 gcprolist = 0;
630686c8 5672 byte_stack_list = 0;
7146af97
JB
5673 staticidx = 0;
5674 consing_since_gc = 0;
7d179cea 5675 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
7146af97
JB
5676#ifdef VIRT_ADDR_VARIES
5677 malloc_sbrk_unused = 1<<22; /* A large number */
5678 malloc_sbrk_used = 100000; /* as reasonable as any number */
5679#endif /* VIRT_ADDR_VARIES */
5680}
5681
dfcf069d 5682void
7146af97
JB
5683init_alloc ()
5684{
5685 gcprolist = 0;
630686c8 5686 byte_stack_list = 0;
182ff242
GM
5687#if GC_MARK_STACK
5688#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5689 setjmp_tested_p = longjmps_done = 0;
5690#endif
5691#endif
2c5bd608
DL
5692 Vgc_elapsed = make_float (0.0);
5693 gcs_done = 0;
7146af97
JB
5694}
5695
5696void
5697syms_of_alloc ()
5698{
7ee72033 5699 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
a6266d23 5700 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
5701Garbage collection can happen automatically once this many bytes have been
5702allocated since the last garbage collection. All data types count.
7146af97 5703
228299fa 5704Garbage collection happens automatically only when `eval' is called.
7146af97 5705
228299fa
GM
5706By binding this temporarily to a large number, you can effectively
5707prevent garbage collection during a part of the program. */);
0819585c 5708
7ee72033 5709 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
a6266d23 5710 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 5711
7ee72033 5712 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
a6266d23 5713 doc: /* Number of cons cells that have been consed so far. */);
0819585c 5714
7ee72033 5715 DEFVAR_INT ("floats-consed", &floats_consed,
a6266d23 5716 doc: /* Number of floats that have been consed so far. */);
0819585c 5717
7ee72033 5718 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
a6266d23 5719 doc: /* Number of vector cells that have been consed so far. */);
0819585c 5720
7ee72033 5721 DEFVAR_INT ("symbols-consed", &symbols_consed,
a6266d23 5722 doc: /* Number of symbols that have been consed so far. */);
0819585c 5723
7ee72033 5724 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
a6266d23 5725 doc: /* Number of string characters that have been consed so far. */);
0819585c 5726
7ee72033 5727 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
a6266d23 5728 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 5729
7ee72033 5730 DEFVAR_INT ("intervals-consed", &intervals_consed,
a6266d23 5731 doc: /* Number of intervals that have been consed so far. */);
7146af97 5732
7ee72033 5733 DEFVAR_INT ("strings-consed", &strings_consed,
a6266d23 5734 doc: /* Number of strings that have been consed so far. */);
228299fa 5735
7ee72033 5736 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
a6266d23 5737 doc: /* Non-nil means loading Lisp code in order to dump an executable.
228299fa
GM
5738This means that certain objects should be allocated in shared (pure) space. */);
5739
7ee72033 5740 DEFVAR_INT ("undo-limit", &undo_limit,
a6266d23 5741 doc: /* Keep no more undo information once it exceeds this size.
228299fa
GM
5742This limit is applied when garbage collection happens.
5743The size is counted as the number of bytes occupied,
5744which includes both saved text and other data. */);
502b9b64 5745 undo_limit = 20000;
7146af97 5746
7ee72033 5747 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
a6266d23 5748 doc: /* Don't keep more than this much size of undo information.
228299fa
GM
5749A command which pushes past this size is itself forgotten.
5750This limit is applied when garbage collection happens.
5751The size is counted as the number of bytes occupied,
5752which includes both saved text and other data. */);
502b9b64 5753 undo_strong_limit = 30000;
7146af97 5754
7ee72033 5755 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
a6266d23 5756 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
5757 garbage_collection_messages = 0;
5758
7ee72033 5759 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
a6266d23 5760 doc: /* Hook run after garbage collection has finished. */);
9e713715
GM
5761 Vpost_gc_hook = Qnil;
5762 Qpost_gc_hook = intern ("post-gc-hook");
5763 staticpro (&Qpost_gc_hook);
5764
74a54b04
RS
5765 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5766 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
5767 /* We build this in advance because if we wait until we need it, we might
5768 not be able to allocate the memory to hold it. */
74a54b04
RS
5769 Vmemory_signal_data
5770 = list2 (Qerror,
5771 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5772
5773 DEFVAR_LISP ("memory-full", &Vmemory_full,
5774 doc: /* Non-nil means we are handling a memory-full error. */);
5775 Vmemory_full = Qnil;
bcb61d60 5776
e8197642
RS
5777 staticpro (&Qgc_cons_threshold);
5778 Qgc_cons_threshold = intern ("gc-cons-threshold");
5779
a59de17b
RS
5780 staticpro (&Qchar_table_extra_slots);
5781 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5782
2c5bd608
DL
5783 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5784 doc: /* Accumulated time elapsed in garbage collections.
e7415487 5785The time is in seconds as a floating point value. */);
2c5bd608 5786 DEFVAR_INT ("gcs-done", &gcs_done,
e7415487 5787 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 5788
7146af97
JB
5789 defsubr (&Scons);
5790 defsubr (&Slist);
5791 defsubr (&Svector);
5792 defsubr (&Smake_byte_code);
5793 defsubr (&Smake_list);
5794 defsubr (&Smake_vector);
7b07587b 5795 defsubr (&Smake_char_table);
7146af97 5796 defsubr (&Smake_string);
7b07587b 5797 defsubr (&Smake_bool_vector);
7146af97
JB
5798 defsubr (&Smake_symbol);
5799 defsubr (&Smake_marker);
5800 defsubr (&Spurecopy);
5801 defsubr (&Sgarbage_collect);
20d24714 5802 defsubr (&Smemory_limit);
310ea200 5803 defsubr (&Smemory_use_counts);
34400008
GM
5804
5805#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5806 defsubr (&Sgc_status);
5807#endif
7146af97 5808}
ab5796a9
MB
5809
5810/* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5811 (do not change this comment) */