Refine unwind-only exception message.
[bpt/guile.git] / libguile / numbers.c
CommitLineData
07b390d5
LC
1/* Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
2 * 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
3 * 2013 Free Software Foundation, Inc.
ba74ef4e
MV
4 *
5 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
6 * and Bellcore. See scm_divide.
7 *
f81e080b 8 *
73be1d9e 9 * This library is free software; you can redistribute it and/or
53befeb7
NJ
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 3 of
12 * the License, or (at your option) any later version.
0f2d19dd 13 *
53befeb7
NJ
14 * This library is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
73be1d9e
MV
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
0f2d19dd 18 *
73be1d9e
MV
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
53befeb7
NJ
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
22 * 02110-1301 USA
73be1d9e 23 */
1bbd0b84 24
0f2d19dd 25\f
ca46fb90 26/* General assumptions:
ca46fb90
RB
27 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
28 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
29 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
c7218482 30 * XXX What about infinities? They are equal to their own floor! -mhw
f92e85f7 31 * All objects satisfying SCM_FRACTIONP are never an integer.
ca46fb90
RB
32 */
33
34/* TODO:
35
36 - see if special casing bignums and reals in integer-exponent when
37 possible (to use mpz_pow and mpf_pow_ui) is faster.
38
39 - look in to better short-circuiting of common cases in
40 integer-expt and elsewhere.
41
42 - see if direct mpz operations can help in ash and elsewhere.
43
44 */
0f2d19dd 45
dbb605f5 46#ifdef HAVE_CONFIG_H
ee33d62a
RB
47# include <config.h>
48#endif
49
bbec4602 50#include <verify.h>
6f82b8f6 51#include <assert.h>
bbec4602 52
0f2d19dd 53#include <math.h>
fc194577 54#include <string.h>
3f47e526
MG
55#include <unicase.h>
56#include <unictype.h>
f92e85f7 57
8ab3d8a0
KR
58#if HAVE_COMPLEX_H
59#include <complex.h>
60#endif
61
07b390d5
LC
62#include <stdarg.h>
63
a0599745 64#include "libguile/_scm.h"
a0599745
MD
65#include "libguile/feature.h"
66#include "libguile/ports.h"
67#include "libguile/root.h"
68#include "libguile/smob.h"
69#include "libguile/strings.h"
864e7d42 70#include "libguile/bdw-gc.h"
a0599745
MD
71
72#include "libguile/validate.h"
73#include "libguile/numbers.h"
1be6b49c 74#include "libguile/deprecation.h"
f4c627b3 75
f92e85f7
MV
76#include "libguile/eq.h"
77
8ab3d8a0
KR
78/* values per glibc, if not already defined */
79#ifndef M_LOG10E
80#define M_LOG10E 0.43429448190325182765
81#endif
85bdb6ac
MW
82#ifndef M_LN2
83#define M_LN2 0.69314718055994530942
84#endif
8ab3d8a0
KR
85#ifndef M_PI
86#define M_PI 3.14159265358979323846
87#endif
88
cba521fe
MW
89/* FIXME: We assume that FLT_RADIX is 2 */
90verify (FLT_RADIX == 2);
91
e25f3727
AW
92typedef scm_t_signed_bits scm_t_inum;
93#define scm_from_inum(x) (scm_from_signed_integer (x))
94
4cc2e41c
MW
95/* Test an inum to see if it can be converted to a double without loss
96 of precision. Note that this will sometimes return 0 even when 1
97 could have been returned, e.g. for large powers of 2. It is designed
98 to be a fast check to optimize common cases. */
99#define INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE(n) \
100 (SCM_I_FIXNUM_BIT-1 <= DBL_MANT_DIG \
101 || ((n) ^ ((n) >> (SCM_I_FIXNUM_BIT-1))) < (1L << DBL_MANT_DIG))
07b390d5
LC
102
103#if ! HAVE_DECL_MPZ_INITS
104
105/* GMP < 5.0.0 lacks `mpz_inits' and `mpz_clears'. Provide them. */
106
107#define VARARG_MPZ_ITERATOR(func) \
108 static void \
109 func ## s (mpz_t x, ...) \
110 { \
111 va_list ap; \
112 \
113 va_start (ap, x); \
114 while (x != NULL) \
115 { \
116 func (x); \
117 x = va_arg (ap, mpz_ptr); \
118 } \
119 va_end (ap); \
120 }
121
122VARARG_MPZ_ITERATOR (mpz_init)
123VARARG_MPZ_ITERATOR (mpz_clear)
124
125#endif
126
0f2d19dd 127\f
f4c627b3 128
ca46fb90
RB
129/*
130 Wonder if this might be faster for some of our code? A switch on
131 the numtag would jump directly to the right case, and the
132 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
133
134 #define SCM_I_NUMTAG_NOTNUM 0
135 #define SCM_I_NUMTAG_INUM 1
136 #define SCM_I_NUMTAG_BIG scm_tc16_big
137 #define SCM_I_NUMTAG_REAL scm_tc16_real
138 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
139 #define SCM_I_NUMTAG(x) \
e11e83f3 140 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
ca46fb90 141 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
534c55a9 142 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
ca46fb90
RB
143 : SCM_I_NUMTAG_NOTNUM)))
144*/
f92e85f7 145/* the macro above will not work as is with fractions */
f4c627b3
DH
146
147
b57bf272
AW
148/* Default to 1, because as we used to hard-code `free' as the
149 deallocator, we know that overriding these functions with
150 instrumented `malloc' / `free' is OK. */
151int scm_install_gmp_memory_functions = 1;
e7efe8e7 152static SCM flo0;
ff62c168 153static SCM exactly_one_half;
a5f6b751 154static SCM flo_log10e;
e7efe8e7 155
34d19ef6 156#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
09fb7599 157
56e55ac7 158/* FLOBUFLEN is the maximum number of characters neccessary for the
3a9809df
DH
159 * printed or scm_string representation of an inexact number.
160 */
0b799eea 161#define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
3a9809df 162
b127c712 163
ad79736c
AW
164#if !defined (HAVE_ASINH)
165static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
166#endif
167#if !defined (HAVE_ACOSH)
168static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
169#endif
170#if !defined (HAVE_ATANH)
171static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
172#endif
173
18d78c5e
MW
174/* mpz_cmp_d in GMP before 4.2 didn't recognise infinities, so
175 xmpz_cmp_d uses an explicit check. Starting with GMP 4.2 (released
176 in March 2006), mpz_cmp_d now handles infinities properly. */
f8a8200b 177#if 1
b127c712 178#define xmpz_cmp_d(z, d) \
2e65b52f 179 (isinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
b127c712
KR
180#else
181#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
182#endif
183
f92e85f7 184
4b26c03e 185#if defined (GUILE_I)
03976fee 186#if defined HAVE_COMPLEX_DOUBLE
8ab3d8a0
KR
187
188/* For an SCM object Z which is a complex number (ie. satisfies
189 SCM_COMPLEXP), return its value as a C level "complex double". */
190#define SCM_COMPLEX_VALUE(z) \
4b26c03e 191 (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
8ab3d8a0 192
7a35784c 193static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
8ab3d8a0
KR
194
195/* Convert a C "complex double" to an SCM value. */
7a35784c 196static inline SCM
8ab3d8a0
KR
197scm_from_complex_double (complex double z)
198{
199 return scm_c_make_rectangular (creal (z), cimag (z));
200}
bca69a9f 201
8ab3d8a0 202#endif /* HAVE_COMPLEX_DOUBLE */
bca69a9f 203#endif /* GUILE_I */
8ab3d8a0 204
0f2d19dd
JB
205\f
206
713a4259 207static mpz_t z_negative_one;
ac0c002c
DH
208
209\f
b57bf272 210
864e7d42
LC
211/* Clear the `mpz_t' embedded in bignum PTR. */
212static void
6922d92f 213finalize_bignum (void *ptr, void *data)
864e7d42
LC
214{
215 SCM bignum;
216
21041372 217 bignum = SCM_PACK_POINTER (ptr);
864e7d42
LC
218 mpz_clear (SCM_I_BIG_MPZ (bignum));
219}
220
b57bf272
AW
221/* The next three functions (custom_libgmp_*) are passed to
222 mp_set_memory_functions (in GMP) so that memory used by the digits
223 themselves is known to the garbage collector. This is needed so
224 that GC will be run at appropriate times. Otherwise, a program which
225 creates many large bignums would malloc a huge amount of memory
226 before the GC runs. */
227static void *
228custom_gmp_malloc (size_t alloc_size)
229{
230 return scm_malloc (alloc_size);
231}
232
233static void *
234custom_gmp_realloc (void *old_ptr, size_t old_size, size_t new_size)
235{
236 return scm_realloc (old_ptr, new_size);
237}
238
239static void
240custom_gmp_free (void *ptr, size_t size)
241{
242 free (ptr);
243}
244
245
d017fcdf
LC
246/* Return a new uninitialized bignum. */
247static inline SCM
248make_bignum (void)
249{
250 scm_t_bits *p;
251
252 /* Allocate one word for the type tag and enough room for an `mpz_t'. */
253 p = scm_gc_malloc_pointerless (sizeof (scm_t_bits) + sizeof (mpz_t),
254 "bignum");
255 p[0] = scm_tc16_big;
256
6978c673 257 scm_i_set_finalizer (p, finalize_bignum, NULL);
864e7d42 258
d017fcdf
LC
259 return SCM_PACK (p);
260}
ac0c002c 261
864e7d42 262
189171c5 263SCM
ca46fb90
RB
264scm_i_mkbig ()
265{
266 /* Return a newly created bignum. */
d017fcdf 267 SCM z = make_bignum ();
ca46fb90
RB
268 mpz_init (SCM_I_BIG_MPZ (z));
269 return z;
270}
271
e25f3727
AW
272static SCM
273scm_i_inum2big (scm_t_inum x)
274{
275 /* Return a newly created bignum initialized to X. */
276 SCM z = make_bignum ();
277#if SIZEOF_VOID_P == SIZEOF_LONG
278 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
279#else
280 /* Note that in this case, you'll also have to check all mpz_*_ui and
281 mpz_*_si invocations in Guile. */
282#error creation of mpz not implemented for this inum size
283#endif
284 return z;
285}
286
189171c5 287SCM
c71b0706
MV
288scm_i_long2big (long x)
289{
290 /* Return a newly created bignum initialized to X. */
d017fcdf 291 SCM z = make_bignum ();
c71b0706
MV
292 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
293 return z;
294}
295
189171c5 296SCM
c71b0706
MV
297scm_i_ulong2big (unsigned long x)
298{
299 /* Return a newly created bignum initialized to X. */
d017fcdf 300 SCM z = make_bignum ();
c71b0706
MV
301 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
302 return z;
303}
304
189171c5 305SCM
ca46fb90
RB
306scm_i_clonebig (SCM src_big, int same_sign_p)
307{
308 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
d017fcdf 309 SCM z = make_bignum ();
ca46fb90 310 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
0aacf84e
MD
311 if (!same_sign_p)
312 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
ca46fb90
RB
313 return z;
314}
315
189171c5 316int
ca46fb90
RB
317scm_i_bigcmp (SCM x, SCM y)
318{
319 /* Return neg if x < y, pos if x > y, and 0 if x == y */
320 /* presume we already know x and y are bignums */
321 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
322 scm_remember_upto_here_2 (x, y);
323 return result;
324}
325
189171c5 326SCM
ca46fb90
RB
327scm_i_dbl2big (double d)
328{
329 /* results are only defined if d is an integer */
d017fcdf 330 SCM z = make_bignum ();
ca46fb90
RB
331 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
332 return z;
333}
334
f92e85f7
MV
335/* Convert a integer in double representation to a SCM number. */
336
189171c5 337SCM
f92e85f7
MV
338scm_i_dbl2num (double u)
339{
340 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
341 powers of 2, so there's no rounding when making "double" values
342 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
343 get rounded on a 64-bit machine, hence the "+1".
344
345 The use of floor() to force to an integer value ensures we get a
346 "numerically closest" value without depending on how a
347 double->long cast or how mpz_set_d will round. For reference,
348 double->long probably follows the hardware rounding mode,
349 mpz_set_d truncates towards zero. */
350
351 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
352 representable as a double? */
353
354 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
355 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
e25f3727 356 return SCM_I_MAKINUM ((scm_t_inum) u);
f92e85f7
MV
357 else
358 return scm_i_dbl2big (u);
359}
360
1eb6a33a 361static SCM round_right_shift_exact_integer (SCM n, long count);
f8a8200b 362
1eb6a33a
MW
363/* scm_i_big2dbl_2exp() is like frexp for bignums: it converts the
364 bignum b into a normalized significand and exponent such that
365 b = significand * 2^exponent and 1/2 <= abs(significand) < 1.
366 The return value is the significand rounded to the closest
367 representable double, and the exponent is placed into *expon_p.
368 If b is zero, then the returned exponent and significand are both
369 zero. */
f8a8200b 370
1eb6a33a
MW
371static double
372scm_i_big2dbl_2exp (SCM b, long *expon_p)
ca46fb90 373{
1eb6a33a
MW
374 size_t bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
375 size_t shift = 0;
089c9a59
KR
376
377 if (bits > DBL_MANT_DIG)
378 {
1eb6a33a
MW
379 shift = bits - DBL_MANT_DIG;
380 b = round_right_shift_exact_integer (b, shift);
381 if (SCM_I_INUMP (b))
089c9a59 382 {
1eb6a33a
MW
383 int expon;
384 double signif = frexp (SCM_I_INUM (b), &expon);
385 *expon_p = expon + shift;
386 return signif;
089c9a59
KR
387 }
388 }
389
1eb6a33a
MW
390 {
391 long expon;
392 double signif = mpz_get_d_2exp (&expon, SCM_I_BIG_MPZ (b));
393 scm_remember_upto_here_1 (b);
394 *expon_p = expon + shift;
395 return signif;
396 }
397}
398
399/* scm_i_big2dbl() rounds to the closest representable double,
400 in accordance with R5RS exact->inexact. */
401double
402scm_i_big2dbl (SCM b)
403{
404 long expon;
405 double signif = scm_i_big2dbl_2exp (b, &expon);
406 return ldexp (signif, expon);
ca46fb90
RB
407}
408
189171c5 409SCM
ca46fb90
RB
410scm_i_normbig (SCM b)
411{
412 /* convert a big back to a fixnum if it'll fit */
413 /* presume b is a bignum */
414 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
415 {
e25f3727 416 scm_t_inum val = mpz_get_si (SCM_I_BIG_MPZ (b));
ca46fb90 417 if (SCM_FIXABLE (val))
d956fa6f 418 b = SCM_I_MAKINUM (val);
ca46fb90
RB
419 }
420 return b;
421}
f872b822 422
f92e85f7
MV
423static SCM_C_INLINE_KEYWORD SCM
424scm_i_mpz2num (mpz_t b)
425{
426 /* convert a mpz number to a SCM number. */
427 if (mpz_fits_slong_p (b))
428 {
e25f3727 429 scm_t_inum val = mpz_get_si (b);
f92e85f7 430 if (SCM_FIXABLE (val))
d956fa6f 431 return SCM_I_MAKINUM (val);
f92e85f7
MV
432 }
433
434 {
d017fcdf 435 SCM z = make_bignum ();
f92e85f7
MV
436 mpz_init_set (SCM_I_BIG_MPZ (z), b);
437 return z;
438 }
439}
440
a285b18c
MW
441/* Make the ratio NUMERATOR/DENOMINATOR, where:
442 1. NUMERATOR and DENOMINATOR are exact integers
443 2. NUMERATOR and DENOMINATOR are reduced to lowest terms: gcd(n,d) == 1 */
cba42c93 444static SCM
a285b18c 445scm_i_make_ratio_already_reduced (SCM numerator, SCM denominator)
f92e85f7 446{
a285b18c
MW
447 /* Flip signs so that the denominator is positive. */
448 if (scm_is_false (scm_positive_p (denominator)))
f92e85f7 449 {
a285b18c 450 if (SCM_UNLIKELY (scm_is_eq (denominator, SCM_INUM0)))
f92e85f7 451 scm_num_overflow ("make-ratio");
a285b18c 452 else
f92e85f7 453 {
a285b18c
MW
454 numerator = scm_difference (numerator, SCM_UNDEFINED);
455 denominator = scm_difference (denominator, SCM_UNDEFINED);
f92e85f7 456 }
f92e85f7 457 }
c60e130c 458
a285b18c
MW
459 /* Check for the integer case */
460 if (scm_is_eq (denominator, SCM_INUM1))
461 return numerator;
c60e130c 462
a285b18c
MW
463 return scm_double_cell (scm_tc16_fraction,
464 SCM_UNPACK (numerator),
465 SCM_UNPACK (denominator), 0);
466}
467
468static SCM scm_exact_integer_quotient (SCM x, SCM y);
469
470/* Make the ratio NUMERATOR/DENOMINATOR */
471static SCM
472scm_i_make_ratio (SCM numerator, SCM denominator)
473#define FUNC_NAME "make-ratio"
474{
475 /* Make sure the arguments are proper */
476 if (!SCM_LIKELY (SCM_I_INUMP (numerator) || SCM_BIGP (numerator)))
477 SCM_WRONG_TYPE_ARG (1, numerator);
478 else if (!SCM_LIKELY (SCM_I_INUMP (denominator) || SCM_BIGP (denominator)))
479 SCM_WRONG_TYPE_ARG (2, denominator);
480 else
f92e85f7 481 {
a285b18c
MW
482 SCM the_gcd = scm_gcd (numerator, denominator);
483 if (!(scm_is_eq (the_gcd, SCM_INUM1)))
f92e85f7 484 {
a285b18c
MW
485 /* Reduce to lowest terms */
486 numerator = scm_exact_integer_quotient (numerator, the_gcd);
487 denominator = scm_exact_integer_quotient (denominator, the_gcd);
f92e85f7 488 }
a285b18c 489 return scm_i_make_ratio_already_reduced (numerator, denominator);
f92e85f7 490 }
f92e85f7 491}
c60e130c 492#undef FUNC_NAME
f92e85f7 493
98237784
MW
494static mpz_t scm_i_divide2double_lo2b;
495
496/* Return the double that is closest to the exact rational N/D, with
497 ties rounded toward even mantissas. N and D must be exact
498 integers. */
499static double
500scm_i_divide2double (SCM n, SCM d)
501{
502 int neg;
503 mpz_t nn, dd, lo, hi, x;
504 ssize_t e;
505
c8248c8e 506 if (SCM_LIKELY (SCM_I_INUMP (d)))
f92e85f7 507 {
4cc2e41c
MW
508 if (SCM_LIKELY
509 (SCM_I_INUMP (n)
510 && INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (n))
511 && INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (d))))
c8248c8e
MW
512 /* If both N and D can be losslessly converted to doubles, then
513 we can rely on IEEE floating point to do proper rounding much
514 faster than we can. */
515 return ((double) SCM_I_INUM (n)) / ((double) SCM_I_INUM (d));
516
98237784
MW
517 if (SCM_UNLIKELY (scm_is_eq (d, SCM_INUM0)))
518 {
519 if (scm_is_true (scm_positive_p (n)))
520 return 1.0 / 0.0;
521 else if (scm_is_true (scm_negative_p (n)))
522 return -1.0 / 0.0;
523 else
524 return 0.0 / 0.0;
525 }
c8248c8e 526
98237784 527 mpz_init_set_si (dd, SCM_I_INUM (d));
f92e85f7 528 }
98237784
MW
529 else
530 mpz_init_set (dd, SCM_I_BIG_MPZ (d));
c60e130c 531
98237784
MW
532 if (SCM_I_INUMP (n))
533 mpz_init_set_si (nn, SCM_I_INUM (n));
534 else
535 mpz_init_set (nn, SCM_I_BIG_MPZ (n));
536
537 neg = (mpz_sgn (nn) < 0) ^ (mpz_sgn (dd) < 0);
538 mpz_abs (nn, nn);
539 mpz_abs (dd, dd);
540
541 /* Now we need to find the value of e such that:
542
543 For e <= 0:
544 b^{p-1} - 1/2b <= b^-e n / d < b^p - 1/2 [1A]
545 (2 b^p - 1) <= 2 b b^-e n / d < (2 b^p - 1) b [2A]
546 (2 b^p - 1) d <= 2 b b^-e n < (2 b^p - 1) d b [3A]
547
548 For e >= 0:
549 b^{p-1} - 1/2b <= n / b^e d < b^p - 1/2 [1B]
550 (2 b^p - 1) <= 2 b n / b^e d < (2 b^p - 1) b [2B]
551 (2 b^p - 1) d b^e <= 2 b n < (2 b^p - 1) d b b^e [3B]
552
553 where: p = DBL_MANT_DIG
554 b = FLT_RADIX (here assumed to be 2)
555
556 After rounding, the mantissa must be an integer between b^{p-1} and
557 (b^p - 1), except for subnormal numbers. In the inequations [1A]
558 and [1B], the middle expression represents the mantissa *before*
559 rounding, and therefore is bounded by the range of values that will
560 round to a floating-point number with the exponent e. The upper
561 bound is (b^p - 1 + 1/2) = (b^p - 1/2), and is exclusive because
562 ties will round up to the next power of b. The lower bound is
563 (b^{p-1} - 1/2b), and is inclusive because ties will round toward
564 this power of b. Here we subtract 1/2b instead of 1/2 because it
565 is in the range of the next smaller exponent, where the
566 representable numbers are closer together by a factor of b.
567
568 Inequations [2A] and [2B] are derived from [1A] and [1B] by
569 multiplying by 2b, and in [3A] and [3B] we multiply by the
570 denominator of the middle value to obtain integer expressions.
571
572 In the code below, we refer to the three expressions in [3A] or
573 [3B] as lo, x, and hi. If the number is normalizable, we will
574 achieve the goal: lo <= x < hi */
575
576 /* Make an initial guess for e */
577 e = mpz_sizeinbase (nn, 2) - mpz_sizeinbase (dd, 2) - (DBL_MANT_DIG-1);
578 if (e < DBL_MIN_EXP - DBL_MANT_DIG)
579 e = DBL_MIN_EXP - DBL_MANT_DIG;
580
581 /* Compute the initial values of lo, x, and hi
582 based on the initial guess of e */
583 mpz_inits (lo, hi, x, NULL);
584 mpz_mul_2exp (x, nn, 2 + ((e < 0) ? -e : 0));
585 mpz_mul (lo, dd, scm_i_divide2double_lo2b);
586 if (e > 0)
587 mpz_mul_2exp (lo, lo, e);
588 mpz_mul_2exp (hi, lo, 1);
589
590 /* Adjust e as needed to satisfy the inequality lo <= x < hi,
591 (but without making e less then the minimum exponent) */
592 while (mpz_cmp (x, lo) < 0 && e > DBL_MIN_EXP - DBL_MANT_DIG)
593 {
594 mpz_mul_2exp (x, x, 1);
595 e--;
596 }
597 while (mpz_cmp (x, hi) >= 0)
598 {
599 /* If we ever used lo's value again,
600 we would need to double lo here. */
601 mpz_mul_2exp (hi, hi, 1);
602 e++;
603 }
604
605 /* Now compute the rounded mantissa:
606 n / b^e d (if e >= 0)
607 n b^-e / d (if e <= 0) */
e2bf3b19 608 {
98237784
MW
609 int cmp;
610 double result;
611
612 if (e < 0)
613 mpz_mul_2exp (nn, nn, -e);
614 else
615 mpz_mul_2exp (dd, dd, e);
616
617 /* mpz does not directly support rounded right
618 shifts, so we have to do it the hard way.
619 For efficiency, we reuse lo and hi.
620 hi == quotient, lo == remainder */
621 mpz_fdiv_qr (hi, lo, nn, dd);
622
623 /* The fractional part of the unrounded mantissa would be
624 remainder/dividend, i.e. lo/dd. So we have a tie if
625 lo/dd = 1/2. Multiplying both sides by 2*dd yields the
626 integer expression 2*lo = dd. Here we do that comparison
627 to decide whether to round up or down. */
628 mpz_mul_2exp (lo, lo, 1);
629 cmp = mpz_cmp (lo, dd);
630 if (cmp > 0 || (cmp == 0 && mpz_odd_p (hi)))
631 mpz_add_ui (hi, hi, 1);
632
633 result = ldexp (mpz_get_d (hi), e);
634 if (neg)
635 result = -result;
636
637 mpz_clears (nn, dd, lo, hi, x, NULL);
638 return result;
e2bf3b19 639 }
f92e85f7
MV
640}
641
f92e85f7
MV
642double
643scm_i_fraction2double (SCM z)
644{
98237784
MW
645 return scm_i_divide2double (SCM_FRACTION_NUMERATOR (z),
646 SCM_FRACTION_DENOMINATOR (z));
f92e85f7
MV
647}
648
00472a22
MW
649static SCM
650scm_i_from_double (double val)
2e274311 651{
00472a22
MW
652 SCM z;
653
d8d7c7bf 654 z = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_double), "real"));
00472a22
MW
655
656 SCM_SET_CELL_TYPE (z, scm_tc16_real);
657 SCM_REAL_VALUE (z) = val;
2e274311 658
00472a22 659 return z;
2e274311
MW
660}
661
2519490c
MW
662SCM_PRIMITIVE_GENERIC (scm_exact_p, "exact?", 1, 0, 0,
663 (SCM x),
942e5b91
MG
664 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
665 "otherwise.")
1bbd0b84 666#define FUNC_NAME s_scm_exact_p
0f2d19dd 667{
41df63cf
MW
668 if (SCM_INEXACTP (x))
669 return SCM_BOOL_F;
670 else if (SCM_NUMBERP (x))
0aacf84e 671 return SCM_BOOL_T;
41df63cf 672 else
fa075d40 673 return scm_wta_dispatch_1 (g_scm_exact_p, x, 1, s_scm_exact_p);
41df63cf
MW
674}
675#undef FUNC_NAME
676
022dda69
MG
677int
678scm_is_exact (SCM val)
679{
680 return scm_is_true (scm_exact_p (val));
681}
41df63cf 682
2519490c 683SCM_PRIMITIVE_GENERIC (scm_inexact_p, "inexact?", 1, 0, 0,
41df63cf
MW
684 (SCM x),
685 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
686 "else.")
687#define FUNC_NAME s_scm_inexact_p
688{
689 if (SCM_INEXACTP (x))
f92e85f7 690 return SCM_BOOL_T;
41df63cf 691 else if (SCM_NUMBERP (x))
eb927cb9 692 return SCM_BOOL_F;
41df63cf 693 else
fa075d40 694 return scm_wta_dispatch_1 (g_scm_inexact_p, x, 1, s_scm_inexact_p);
0f2d19dd 695}
1bbd0b84 696#undef FUNC_NAME
0f2d19dd 697
022dda69
MG
698int
699scm_is_inexact (SCM val)
700{
701 return scm_is_true (scm_inexact_p (val));
702}
4219f20d 703
2519490c 704SCM_PRIMITIVE_GENERIC (scm_odd_p, "odd?", 1, 0, 0,
1bbd0b84 705 (SCM n),
942e5b91
MG
706 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
707 "otherwise.")
1bbd0b84 708#define FUNC_NAME s_scm_odd_p
0f2d19dd 709{
e11e83f3 710 if (SCM_I_INUMP (n))
0aacf84e 711 {
e25f3727 712 scm_t_inum val = SCM_I_INUM (n);
73e4de09 713 return scm_from_bool ((val & 1L) != 0);
0aacf84e
MD
714 }
715 else if (SCM_BIGP (n))
716 {
717 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
718 scm_remember_upto_here_1 (n);
73e4de09 719 return scm_from_bool (odd_p);
0aacf84e 720 }
f92e85f7
MV
721 else if (SCM_REALP (n))
722 {
2519490c 723 double val = SCM_REAL_VALUE (n);
19374ad2 724 if (isfinite (val))
2519490c
MW
725 {
726 double rem = fabs (fmod (val, 2.0));
727 if (rem == 1.0)
728 return SCM_BOOL_T;
729 else if (rem == 0.0)
730 return SCM_BOOL_F;
731 }
f92e85f7 732 }
fa075d40 733 return scm_wta_dispatch_1 (g_scm_odd_p, n, 1, s_scm_odd_p);
0f2d19dd 734}
1bbd0b84 735#undef FUNC_NAME
0f2d19dd 736
4219f20d 737
2519490c 738SCM_PRIMITIVE_GENERIC (scm_even_p, "even?", 1, 0, 0,
1bbd0b84 739 (SCM n),
942e5b91
MG
740 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
741 "otherwise.")
1bbd0b84 742#define FUNC_NAME s_scm_even_p
0f2d19dd 743{
e11e83f3 744 if (SCM_I_INUMP (n))
0aacf84e 745 {
e25f3727 746 scm_t_inum val = SCM_I_INUM (n);
73e4de09 747 return scm_from_bool ((val & 1L) == 0);
0aacf84e
MD
748 }
749 else if (SCM_BIGP (n))
750 {
751 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
752 scm_remember_upto_here_1 (n);
73e4de09 753 return scm_from_bool (even_p);
0aacf84e 754 }
f92e85f7
MV
755 else if (SCM_REALP (n))
756 {
2519490c 757 double val = SCM_REAL_VALUE (n);
19374ad2 758 if (isfinite (val))
2519490c
MW
759 {
760 double rem = fabs (fmod (val, 2.0));
761 if (rem == 1.0)
762 return SCM_BOOL_F;
763 else if (rem == 0.0)
764 return SCM_BOOL_T;
765 }
f92e85f7 766 }
fa075d40 767 return scm_wta_dispatch_1 (g_scm_even_p, n, 1, s_scm_even_p);
0f2d19dd 768}
1bbd0b84 769#undef FUNC_NAME
0f2d19dd 770
2519490c
MW
771SCM_PRIMITIVE_GENERIC (scm_finite_p, "finite?", 1, 0, 0,
772 (SCM x),
10391e06
AW
773 "Return @code{#t} if the real number @var{x} is neither\n"
774 "infinite nor a NaN, @code{#f} otherwise.")
7112615f
MW
775#define FUNC_NAME s_scm_finite_p
776{
777 if (SCM_REALP (x))
19374ad2 778 return scm_from_bool (isfinite (SCM_REAL_VALUE (x)));
10391e06 779 else if (scm_is_real (x))
7112615f
MW
780 return SCM_BOOL_T;
781 else
fa075d40 782 return scm_wta_dispatch_1 (g_scm_finite_p, x, 1, s_scm_finite_p);
7112615f
MW
783}
784#undef FUNC_NAME
785
2519490c
MW
786SCM_PRIMITIVE_GENERIC (scm_inf_p, "inf?", 1, 0, 0,
787 (SCM x),
788 "Return @code{#t} if the real number @var{x} is @samp{+inf.0} or\n"
789 "@samp{-inf.0}. Otherwise return @code{#f}.")
7351e207
MV
790#define FUNC_NAME s_scm_inf_p
791{
b1092b3a 792 if (SCM_REALP (x))
2e65b52f 793 return scm_from_bool (isinf (SCM_REAL_VALUE (x)));
10391e06 794 else if (scm_is_real (x))
7351e207 795 return SCM_BOOL_F;
10391e06 796 else
fa075d40 797 return scm_wta_dispatch_1 (g_scm_inf_p, x, 1, s_scm_inf_p);
7351e207
MV
798}
799#undef FUNC_NAME
800
2519490c
MW
801SCM_PRIMITIVE_GENERIC (scm_nan_p, "nan?", 1, 0, 0,
802 (SCM x),
10391e06
AW
803 "Return @code{#t} if the real number @var{x} is a NaN,\n"
804 "or @code{#f} otherwise.")
7351e207
MV
805#define FUNC_NAME s_scm_nan_p
806{
10391e06
AW
807 if (SCM_REALP (x))
808 return scm_from_bool (isnan (SCM_REAL_VALUE (x)));
809 else if (scm_is_real (x))
7351e207 810 return SCM_BOOL_F;
10391e06 811 else
fa075d40 812 return scm_wta_dispatch_1 (g_scm_nan_p, x, 1, s_scm_nan_p);
7351e207
MV
813}
814#undef FUNC_NAME
815
816/* Guile's idea of infinity. */
817static double guile_Inf;
818
819/* Guile's idea of not a number. */
820static double guile_NaN;
821
822static void
823guile_ieee_init (void)
824{
7351e207
MV
825/* Some version of gcc on some old version of Linux used to crash when
826 trying to make Inf and NaN. */
827
240a27d2
KR
828#ifdef INFINITY
829 /* C99 INFINITY, when available.
830 FIXME: The standard allows for INFINITY to be something that overflows
831 at compile time. We ought to have a configure test to check for that
832 before trying to use it. (But in practice we believe this is not a
833 problem on any system guile is likely to target.) */
834 guile_Inf = INFINITY;
56a3dcd4 835#elif defined HAVE_DINFINITY
240a27d2 836 /* OSF */
7351e207 837 extern unsigned int DINFINITY[2];
eaa94eaa 838 guile_Inf = (*((double *) (DINFINITY)));
7351e207
MV
839#else
840 double tmp = 1e+10;
841 guile_Inf = tmp;
842 for (;;)
843 {
844 guile_Inf *= 1e+10;
845 if (guile_Inf == tmp)
846 break;
847 tmp = guile_Inf;
848 }
849#endif
850
240a27d2
KR
851#ifdef NAN
852 /* C99 NAN, when available */
853 guile_NaN = NAN;
56a3dcd4 854#elif defined HAVE_DQNAN
eaa94eaa
LC
855 {
856 /* OSF */
857 extern unsigned int DQNAN[2];
858 guile_NaN = (*((double *)(DQNAN)));
859 }
7351e207
MV
860#else
861 guile_NaN = guile_Inf / guile_Inf;
862#endif
7351e207
MV
863}
864
865SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
866 (void),
867 "Return Inf.")
868#define FUNC_NAME s_scm_inf
869{
870 static int initialized = 0;
871 if (! initialized)
872 {
873 guile_ieee_init ();
874 initialized = 1;
875 }
00472a22 876 return scm_i_from_double (guile_Inf);
7351e207
MV
877}
878#undef FUNC_NAME
879
880SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
881 (void),
882 "Return NaN.")
883#define FUNC_NAME s_scm_nan
884{
885 static int initialized = 0;
0aacf84e 886 if (!initialized)
7351e207
MV
887 {
888 guile_ieee_init ();
889 initialized = 1;
890 }
00472a22 891 return scm_i_from_double (guile_NaN);
7351e207
MV
892}
893#undef FUNC_NAME
894
4219f20d 895
a48d60b1
MD
896SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
897 (SCM x),
898 "Return the absolute value of @var{x}.")
2519490c 899#define FUNC_NAME s_scm_abs
0f2d19dd 900{
e11e83f3 901 if (SCM_I_INUMP (x))
0aacf84e 902 {
e25f3727 903 scm_t_inum xx = SCM_I_INUM (x);
0aacf84e
MD
904 if (xx >= 0)
905 return x;
906 else if (SCM_POSFIXABLE (-xx))
d956fa6f 907 return SCM_I_MAKINUM (-xx);
0aacf84e 908 else
e25f3727 909 return scm_i_inum2big (-xx);
4219f20d 910 }
9b9ef10c
MW
911 else if (SCM_LIKELY (SCM_REALP (x)))
912 {
913 double xx = SCM_REAL_VALUE (x);
914 /* If x is a NaN then xx<0 is false so we return x unchanged */
915 if (xx < 0.0)
00472a22 916 return scm_i_from_double (-xx);
9b9ef10c
MW
917 /* Handle signed zeroes properly */
918 else if (SCM_UNLIKELY (xx == 0.0))
919 return flo0;
920 else
921 return x;
922 }
0aacf84e
MD
923 else if (SCM_BIGP (x))
924 {
925 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
926 if (sgn < 0)
927 return scm_i_clonebig (x, 0);
928 else
929 return x;
4219f20d 930 }
f92e85f7
MV
931 else if (SCM_FRACTIONP (x))
932 {
73e4de09 933 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
f92e85f7 934 return x;
a285b18c
MW
935 return scm_i_make_ratio_already_reduced
936 (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
937 SCM_FRACTION_DENOMINATOR (x));
f92e85f7 938 }
0aacf84e 939 else
fa075d40 940 return scm_wta_dispatch_1 (g_scm_abs, x, 1, s_scm_abs);
0f2d19dd 941}
a48d60b1 942#undef FUNC_NAME
0f2d19dd 943
4219f20d 944
2519490c
MW
945SCM_PRIMITIVE_GENERIC (scm_quotient, "quotient", 2, 0, 0,
946 (SCM x, SCM y),
947 "Return the quotient of the numbers @var{x} and @var{y}.")
948#define FUNC_NAME s_scm_quotient
0f2d19dd 949{
495a39c4 950 if (SCM_LIKELY (scm_is_integer (x)))
0aacf84e 951 {
495a39c4 952 if (SCM_LIKELY (scm_is_integer (y)))
a8da6d93 953 return scm_truncate_quotient (x, y);
0aacf84e 954 else
fa075d40 955 return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG2, s_scm_quotient);
f872b822 956 }
0aacf84e 957 else
fa075d40 958 return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG1, s_scm_quotient);
0f2d19dd 959}
2519490c 960#undef FUNC_NAME
0f2d19dd 961
2519490c
MW
962SCM_PRIMITIVE_GENERIC (scm_remainder, "remainder", 2, 0, 0,
963 (SCM x, SCM y),
964 "Return the remainder of the numbers @var{x} and @var{y}.\n"
965 "@lisp\n"
966 "(remainder 13 4) @result{} 1\n"
967 "(remainder -13 4) @result{} -1\n"
968 "@end lisp")
969#define FUNC_NAME s_scm_remainder
0f2d19dd 970{
495a39c4 971 if (SCM_LIKELY (scm_is_integer (x)))
0aacf84e 972 {
495a39c4 973 if (SCM_LIKELY (scm_is_integer (y)))
a8da6d93 974 return scm_truncate_remainder (x, y);
0aacf84e 975 else
fa075d40 976 return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG2, s_scm_remainder);
f872b822 977 }
0aacf84e 978 else
fa075d40 979 return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG1, s_scm_remainder);
0f2d19dd 980}
2519490c 981#undef FUNC_NAME
0f2d19dd 982
89a7e495 983
2519490c
MW
984SCM_PRIMITIVE_GENERIC (scm_modulo, "modulo", 2, 0, 0,
985 (SCM x, SCM y),
986 "Return the modulo of the numbers @var{x} and @var{y}.\n"
987 "@lisp\n"
988 "(modulo 13 4) @result{} 1\n"
989 "(modulo -13 4) @result{} 3\n"
990 "@end lisp")
991#define FUNC_NAME s_scm_modulo
0f2d19dd 992{
495a39c4 993 if (SCM_LIKELY (scm_is_integer (x)))
0aacf84e 994 {
495a39c4 995 if (SCM_LIKELY (scm_is_integer (y)))
a8da6d93 996 return scm_floor_remainder (x, y);
0aacf84e 997 else
fa075d40 998 return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG2, s_scm_modulo);
828865c3 999 }
0aacf84e 1000 else
fa075d40 1001 return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG1, s_scm_modulo);
0f2d19dd 1002}
2519490c 1003#undef FUNC_NAME
0f2d19dd 1004
a285b18c
MW
1005/* Return the exact integer q such that n = q*d, for exact integers n
1006 and d, where d is known in advance to divide n evenly (with zero
1007 remainder). For large integers, this can be computed more
1008 efficiently than when the remainder is unknown. */
1009static SCM
1010scm_exact_integer_quotient (SCM n, SCM d)
1011#define FUNC_NAME "exact-integer-quotient"
1012{
1013 if (SCM_LIKELY (SCM_I_INUMP (n)))
1014 {
1015 scm_t_inum nn = SCM_I_INUM (n);
1016 if (SCM_LIKELY (SCM_I_INUMP (d)))
1017 {
1018 scm_t_inum dd = SCM_I_INUM (d);
1019 if (SCM_UNLIKELY (dd == 0))
1020 scm_num_overflow ("exact-integer-quotient");
1021 else
1022 {
1023 scm_t_inum qq = nn / dd;
1024 if (SCM_LIKELY (SCM_FIXABLE (qq)))
1025 return SCM_I_MAKINUM (qq);
1026 else
1027 return scm_i_inum2big (qq);
1028 }
1029 }
1030 else if (SCM_LIKELY (SCM_BIGP (d)))
1031 {
1032 /* n is an inum and d is a bignum. Given that d is known to
1033 divide n evenly, there are only two possibilities: n is 0,
1034 or else n is fixnum-min and d is abs(fixnum-min). */
1035 if (nn == 0)
1036 return SCM_INUM0;
1037 else
1038 return SCM_I_MAKINUM (-1);
1039 }
1040 else
1041 SCM_WRONG_TYPE_ARG (2, d);
1042 }
1043 else if (SCM_LIKELY (SCM_BIGP (n)))
1044 {
1045 if (SCM_LIKELY (SCM_I_INUMP (d)))
1046 {
1047 scm_t_inum dd = SCM_I_INUM (d);
1048 if (SCM_UNLIKELY (dd == 0))
1049 scm_num_overflow ("exact-integer-quotient");
1050 else if (SCM_UNLIKELY (dd == 1))
1051 return n;
1052 else
1053 {
1054 SCM q = scm_i_mkbig ();
1055 if (dd > 0)
1056 mpz_divexact_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (n), dd);
1057 else
1058 {
1059 mpz_divexact_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (n), -dd);
1060 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
1061 }
1062 scm_remember_upto_here_1 (n);
1063 return scm_i_normbig (q);
1064 }
1065 }
1066 else if (SCM_LIKELY (SCM_BIGP (d)))
1067 {
1068 SCM q = scm_i_mkbig ();
1069 mpz_divexact (SCM_I_BIG_MPZ (q),
1070 SCM_I_BIG_MPZ (n),
1071 SCM_I_BIG_MPZ (d));
1072 scm_remember_upto_here_2 (n, d);
1073 return scm_i_normbig (q);
1074 }
1075 else
1076 SCM_WRONG_TYPE_ARG (2, d);
1077 }
1078 else
1079 SCM_WRONG_TYPE_ARG (1, n);
1080}
1081#undef FUNC_NAME
1082
5fbf680b
MW
1083/* two_valued_wta_dispatch_2 is a version of SCM_WTA_DISPATCH_2 for
1084 two-valued functions. It is called from primitive generics that take
1085 two arguments and return two values, when the core procedure is
1086 unable to handle the given argument types. If there are GOOPS
1087 methods for this primitive generic, it dispatches to GOOPS and, if
1088 successful, expects two values to be returned, which are placed in
1089 *rp1 and *rp2. If there are no GOOPS methods, it throws a
1090 wrong-type-arg exception.
1091
1092 FIXME: This obviously belongs somewhere else, but until we decide on
1093 the right API, it is here as a static function, because it is needed
1094 by the *_divide functions below.
1095*/
1096static void
1097two_valued_wta_dispatch_2 (SCM gf, SCM a1, SCM a2, int pos,
1098 const char *subr, SCM *rp1, SCM *rp2)
1099{
fa075d40
AW
1100 SCM vals = scm_wta_dispatch_2 (gf, a1, a2, pos, subr);
1101
1102 scm_i_extract_values_2 (vals, rp1, rp2);
5fbf680b
MW
1103}
1104
a8da6d93
MW
1105SCM_DEFINE (scm_euclidean_quotient, "euclidean-quotient", 2, 0, 0,
1106 (SCM x, SCM y),
1107 "Return the integer @var{q} such that\n"
1108 "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
1109 "where @math{0 <= @var{r} < abs(@var{y})}.\n"
1110 "@lisp\n"
1111 "(euclidean-quotient 123 10) @result{} 12\n"
1112 "(euclidean-quotient 123 -10) @result{} -12\n"
1113 "(euclidean-quotient -123 10) @result{} -13\n"
1114 "(euclidean-quotient -123 -10) @result{} 13\n"
1115 "(euclidean-quotient -123.2 -63.5) @result{} 2.0\n"
1116 "(euclidean-quotient 16/3 -10/7) @result{} -3\n"
1117 "@end lisp")
ff62c168
MW
1118#define FUNC_NAME s_scm_euclidean_quotient
1119{
a8da6d93
MW
1120 if (scm_is_false (scm_negative_p (y)))
1121 return scm_floor_quotient (x, y);
ff62c168 1122 else
a8da6d93 1123 return scm_ceiling_quotient (x, y);
ff62c168
MW
1124}
1125#undef FUNC_NAME
1126
a8da6d93
MW
1127SCM_DEFINE (scm_euclidean_remainder, "euclidean-remainder", 2, 0, 0,
1128 (SCM x, SCM y),
1129 "Return the real number @var{r} such that\n"
1130 "@math{0 <= @var{r} < abs(@var{y})} and\n"
1131 "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
1132 "for some integer @var{q}.\n"
1133 "@lisp\n"
1134 "(euclidean-remainder 123 10) @result{} 3\n"
1135 "(euclidean-remainder 123 -10) @result{} 3\n"
1136 "(euclidean-remainder -123 10) @result{} 7\n"
1137 "(euclidean-remainder -123 -10) @result{} 7\n"
1138 "(euclidean-remainder -123.2 -63.5) @result{} 3.8\n"
1139 "(euclidean-remainder 16/3 -10/7) @result{} 22/21\n"
1140 "@end lisp")
ff62c168
MW
1141#define FUNC_NAME s_scm_euclidean_remainder
1142{
a8da6d93
MW
1143 if (scm_is_false (scm_negative_p (y)))
1144 return scm_floor_remainder (x, y);
ff62c168 1145 else
a8da6d93 1146 return scm_ceiling_remainder (x, y);
ff62c168
MW
1147}
1148#undef FUNC_NAME
1149
a8da6d93
MW
1150SCM_DEFINE (scm_i_euclidean_divide, "euclidean/", 2, 0, 0,
1151 (SCM x, SCM y),
1152 "Return the integer @var{q} and the real number @var{r}\n"
1153 "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
1154 "and @math{0 <= @var{r} < abs(@var{y})}.\n"
1155 "@lisp\n"
1156 "(euclidean/ 123 10) @result{} 12 and 3\n"
1157 "(euclidean/ 123 -10) @result{} -12 and 3\n"
1158 "(euclidean/ -123 10) @result{} -13 and 7\n"
1159 "(euclidean/ -123 -10) @result{} 13 and 7\n"
1160 "(euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
1161 "(euclidean/ 16/3 -10/7) @result{} -3 and 22/21\n"
1162 "@end lisp")
5fbf680b
MW
1163#define FUNC_NAME s_scm_i_euclidean_divide
1164{
a8da6d93
MW
1165 if (scm_is_false (scm_negative_p (y)))
1166 return scm_i_floor_divide (x, y);
1167 else
1168 return scm_i_ceiling_divide (x, y);
5fbf680b
MW
1169}
1170#undef FUNC_NAME
1171
5fbf680b
MW
1172void
1173scm_euclidean_divide (SCM x, SCM y, SCM *qp, SCM *rp)
ff62c168 1174{
a8da6d93
MW
1175 if (scm_is_false (scm_negative_p (y)))
1176 return scm_floor_divide (x, y, qp, rp);
ff62c168 1177 else
a8da6d93 1178 return scm_ceiling_divide (x, y, qp, rp);
ff62c168
MW
1179}
1180
8f9da340
MW
1181static SCM scm_i_inexact_floor_quotient (double x, double y);
1182static SCM scm_i_exact_rational_floor_quotient (SCM x, SCM y);
1183
1184SCM_PRIMITIVE_GENERIC (scm_floor_quotient, "floor-quotient", 2, 0, 0,
1185 (SCM x, SCM y),
1186 "Return the floor of @math{@var{x} / @var{y}}.\n"
1187 "@lisp\n"
1188 "(floor-quotient 123 10) @result{} 12\n"
1189 "(floor-quotient 123 -10) @result{} -13\n"
1190 "(floor-quotient -123 10) @result{} -13\n"
1191 "(floor-quotient -123 -10) @result{} 12\n"
1192 "(floor-quotient -123.2 -63.5) @result{} 1.0\n"
1193 "(floor-quotient 16/3 -10/7) @result{} -4\n"
1194 "@end lisp")
1195#define FUNC_NAME s_scm_floor_quotient
1196{
1197 if (SCM_LIKELY (SCM_I_INUMP (x)))
1198 {
1199 scm_t_inum xx = SCM_I_INUM (x);
1200 if (SCM_LIKELY (SCM_I_INUMP (y)))
1201 {
1202 scm_t_inum yy = SCM_I_INUM (y);
1203 scm_t_inum xx1 = xx;
1204 scm_t_inum qq;
1205 if (SCM_LIKELY (yy > 0))
1206 {
1207 if (SCM_UNLIKELY (xx < 0))
1208 xx1 = xx - yy + 1;
1209 }
1210 else if (SCM_UNLIKELY (yy == 0))
1211 scm_num_overflow (s_scm_floor_quotient);
1212 else if (xx > 0)
1213 xx1 = xx - yy - 1;
1214 qq = xx1 / yy;
1215 if (SCM_LIKELY (SCM_FIXABLE (qq)))
1216 return SCM_I_MAKINUM (qq);
1217 else
1218 return scm_i_inum2big (qq);
1219 }
1220 else if (SCM_BIGP (y))
1221 {
1222 int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
1223 scm_remember_upto_here_1 (y);
1224 if (sign > 0)
1225 return SCM_I_MAKINUM ((xx < 0) ? -1 : 0);
1226 else
1227 return SCM_I_MAKINUM ((xx > 0) ? -1 : 0);
1228 }
1229 else if (SCM_REALP (y))
1230 return scm_i_inexact_floor_quotient (xx, SCM_REAL_VALUE (y));
1231 else if (SCM_FRACTIONP (y))
1232 return scm_i_exact_rational_floor_quotient (x, y);
1233 else
fa075d40
AW
1234 return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
1235 s_scm_floor_quotient);
8f9da340
MW
1236 }
1237 else if (SCM_BIGP (x))
1238 {
1239 if (SCM_LIKELY (SCM_I_INUMP (y)))
1240 {
1241 scm_t_inum yy = SCM_I_INUM (y);
1242 if (SCM_UNLIKELY (yy == 0))
1243 scm_num_overflow (s_scm_floor_quotient);
1244 else if (SCM_UNLIKELY (yy == 1))
1245 return x;
1246 else
1247 {
1248 SCM q = scm_i_mkbig ();
1249 if (yy > 0)
1250 mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), yy);
1251 else
1252 {
1253 mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), -yy);
1254 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
1255 }
1256 scm_remember_upto_here_1 (x);
1257 return scm_i_normbig (q);
1258 }
1259 }
1260 else if (SCM_BIGP (y))
1261 {
1262 SCM q = scm_i_mkbig ();
1263 mpz_fdiv_q (SCM_I_BIG_MPZ (q),
1264 SCM_I_BIG_MPZ (x),
1265 SCM_I_BIG_MPZ (y));
1266 scm_remember_upto_here_2 (x, y);
1267 return scm_i_normbig (q);
1268 }
1269 else if (SCM_REALP (y))
1270 return scm_i_inexact_floor_quotient
1271 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
1272 else if (SCM_FRACTIONP (y))
1273 return scm_i_exact_rational_floor_quotient (x, y);
1274 else
fa075d40
AW
1275 return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
1276 s_scm_floor_quotient);
8f9da340
MW
1277 }
1278 else if (SCM_REALP (x))
1279 {
1280 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
1281 SCM_BIGP (y) || SCM_FRACTIONP (y))
1282 return scm_i_inexact_floor_quotient
1283 (SCM_REAL_VALUE (x), scm_to_double (y));
1284 else
fa075d40
AW
1285 return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
1286 s_scm_floor_quotient);
8f9da340
MW
1287 }
1288 else if (SCM_FRACTIONP (x))
1289 {
1290 if (SCM_REALP (y))
1291 return scm_i_inexact_floor_quotient
1292 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
1293 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
1294 return scm_i_exact_rational_floor_quotient (x, y);
1295 else
fa075d40
AW
1296 return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
1297 s_scm_floor_quotient);
8f9da340
MW
1298 }
1299 else
fa075d40
AW
1300 return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG1,
1301 s_scm_floor_quotient);
8f9da340
MW
1302}
1303#undef FUNC_NAME
1304
1305static SCM
1306scm_i_inexact_floor_quotient (double x, double y)
1307{
1308 if (SCM_UNLIKELY (y == 0))
1309 scm_num_overflow (s_scm_floor_quotient); /* or return a NaN? */
1310 else
00472a22 1311 return scm_i_from_double (floor (x / y));
8f9da340
MW
1312}
1313
1314static SCM
1315scm_i_exact_rational_floor_quotient (SCM x, SCM y)
1316{
1317 return scm_floor_quotient
1318 (scm_product (scm_numerator (x), scm_denominator (y)),
1319 scm_product (scm_numerator (y), scm_denominator (x)));
1320}
1321
1322static SCM scm_i_inexact_floor_remainder (double x, double y);
1323static SCM scm_i_exact_rational_floor_remainder (SCM x, SCM y);
1324
1325SCM_PRIMITIVE_GENERIC (scm_floor_remainder, "floor-remainder", 2, 0, 0,
1326 (SCM x, SCM y),
1327 "Return the real number @var{r} such that\n"
1328 "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
1329 "where @math{@var{q} = floor(@var{x} / @var{y})}.\n"
1330 "@lisp\n"
1331 "(floor-remainder 123 10) @result{} 3\n"
1332 "(floor-remainder 123 -10) @result{} -7\n"
1333 "(floor-remainder -123 10) @result{} 7\n"
1334 "(floor-remainder -123 -10) @result{} -3\n"
1335 "(floor-remainder -123.2 -63.5) @result{} -59.7\n"
1336 "(floor-remainder 16/3 -10/7) @result{} -8/21\n"
1337 "@end lisp")
1338#define FUNC_NAME s_scm_floor_remainder
1339{
1340 if (SCM_LIKELY (SCM_I_INUMP (x)))
1341 {
1342 scm_t_inum xx = SCM_I_INUM (x);
1343 if (SCM_LIKELY (SCM_I_INUMP (y)))
1344 {
1345 scm_t_inum yy = SCM_I_INUM (y);
1346 if (SCM_UNLIKELY (yy == 0))
1347 scm_num_overflow (s_scm_floor_remainder);
1348 else
1349 {
1350 scm_t_inum rr = xx % yy;
1351 int needs_adjustment;
1352
1353 if (SCM_LIKELY (yy > 0))
1354 needs_adjustment = (rr < 0);
1355 else
1356 needs_adjustment = (rr > 0);
1357
1358 if (needs_adjustment)
1359 rr += yy;
1360 return SCM_I_MAKINUM (rr);
1361 }
1362 }
1363 else if (SCM_BIGP (y))
1364 {
1365 int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
1366 scm_remember_upto_here_1 (y);
1367 if (sign > 0)
1368 {
1369 if (xx < 0)
1370 {
1371 SCM r = scm_i_mkbig ();
1372 mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
1373 scm_remember_upto_here_1 (y);
1374 return scm_i_normbig (r);
1375 }
1376 else
1377 return x;
1378 }
1379 else if (xx <= 0)
1380 return x;
1381 else
1382 {
1383 SCM r = scm_i_mkbig ();
1384 mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
1385 scm_remember_upto_here_1 (y);
1386 return scm_i_normbig (r);
1387 }
1388 }
1389 else if (SCM_REALP (y))
1390 return scm_i_inexact_floor_remainder (xx, SCM_REAL_VALUE (y));
1391 else if (SCM_FRACTIONP (y))
1392 return scm_i_exact_rational_floor_remainder (x, y);
1393 else
fa075d40
AW
1394 return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
1395 s_scm_floor_remainder);
8f9da340
MW
1396 }
1397 else if (SCM_BIGP (x))
1398 {
1399 if (SCM_LIKELY (SCM_I_INUMP (y)))
1400 {
1401 scm_t_inum yy = SCM_I_INUM (y);
1402 if (SCM_UNLIKELY (yy == 0))
1403 scm_num_overflow (s_scm_floor_remainder);
1404 else
1405 {
1406 scm_t_inum rr;
1407 if (yy > 0)
1408 rr = mpz_fdiv_ui (SCM_I_BIG_MPZ (x), yy);
1409 else
1410 rr = -mpz_cdiv_ui (SCM_I_BIG_MPZ (x), -yy);
1411 scm_remember_upto_here_1 (x);
1412 return SCM_I_MAKINUM (rr);
1413 }
1414 }
1415 else if (SCM_BIGP (y))
1416 {
1417 SCM r = scm_i_mkbig ();
1418 mpz_fdiv_r (SCM_I_BIG_MPZ (r),
1419 SCM_I_BIG_MPZ (x),
1420 SCM_I_BIG_MPZ (y));
1421 scm_remember_upto_here_2 (x, y);
1422 return scm_i_normbig (r);
1423 }
1424 else if (SCM_REALP (y))
1425 return scm_i_inexact_floor_remainder
1426 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
1427 else if (SCM_FRACTIONP (y))
1428 return scm_i_exact_rational_floor_remainder (x, y);
1429 else
fa075d40
AW
1430 return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
1431 s_scm_floor_remainder);
8f9da340
MW
1432 }
1433 else if (SCM_REALP (x))
1434 {
1435 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
1436 SCM_BIGP (y) || SCM_FRACTIONP (y))
1437 return scm_i_inexact_floor_remainder
1438 (SCM_REAL_VALUE (x), scm_to_double (y));
1439 else
fa075d40
AW
1440 return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
1441 s_scm_floor_remainder);
8f9da340
MW
1442 }
1443 else if (SCM_FRACTIONP (x))
1444 {
1445 if (SCM_REALP (y))
1446 return scm_i_inexact_floor_remainder
1447 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
1448 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
1449 return scm_i_exact_rational_floor_remainder (x, y);
1450 else
fa075d40
AW
1451 return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
1452 s_scm_floor_remainder);
8f9da340
MW
1453 }
1454 else
fa075d40
AW
1455 return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG1,
1456 s_scm_floor_remainder);
8f9da340
MW
1457}
1458#undef FUNC_NAME
1459
1460static SCM
1461scm_i_inexact_floor_remainder (double x, double y)
1462{
1463 /* Although it would be more efficient to use fmod here, we can't
1464 because it would in some cases produce results inconsistent with
1465 scm_i_inexact_floor_quotient, such that x != q * y + r (not even
1466 close). In particular, when x is very close to a multiple of y,
1467 then r might be either 0.0 or y, but those two cases must
1468 correspond to different choices of q. If r = 0.0 then q must be
1469 x/y, and if r = y then q must be x/y-1. If quotient chooses one
1470 and remainder chooses the other, it would be bad. */
1471 if (SCM_UNLIKELY (y == 0))
1472 scm_num_overflow (s_scm_floor_remainder); /* or return a NaN? */
1473 else
00472a22 1474 return scm_i_from_double (x - y * floor (x / y));
8f9da340
MW
1475}
1476
1477static SCM
1478scm_i_exact_rational_floor_remainder (SCM x, SCM y)
1479{
1480 SCM xd = scm_denominator (x);
1481 SCM yd = scm_denominator (y);
1482 SCM r1 = scm_floor_remainder (scm_product (scm_numerator (x), yd),
1483 scm_product (scm_numerator (y), xd));
1484 return scm_divide (r1, scm_product (xd, yd));
1485}
1486
1487
1488static void scm_i_inexact_floor_divide (double x, double y,
1489 SCM *qp, SCM *rp);
1490static void scm_i_exact_rational_floor_divide (SCM x, SCM y,
1491 SCM *qp, SCM *rp);
1492
1493SCM_PRIMITIVE_GENERIC (scm_i_floor_divide, "floor/", 2, 0, 0,
1494 (SCM x, SCM y),
1495 "Return the integer @var{q} and the real number @var{r}\n"
1496 "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
1497 "and @math{@var{q} = floor(@var{x} / @var{y})}.\n"
1498 "@lisp\n"
1499 "(floor/ 123 10) @result{} 12 and 3\n"
1500 "(floor/ 123 -10) @result{} -13 and -7\n"
1501 "(floor/ -123 10) @result{} -13 and 7\n"
1502 "(floor/ -123 -10) @result{} 12 and -3\n"
1503 "(floor/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
1504 "(floor/ 16/3 -10/7) @result{} -4 and -8/21\n"
1505 "@end lisp")
1506#define FUNC_NAME s_scm_i_floor_divide
1507{
1508 SCM q, r;
1509
1510 scm_floor_divide(x, y, &q, &r);
1511 return scm_values (scm_list_2 (q, r));
1512}
1513#undef FUNC_NAME
1514
1515#define s_scm_floor_divide s_scm_i_floor_divide
1516#define g_scm_floor_divide g_scm_i_floor_divide
1517
1518void
1519scm_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
1520{
1521 if (SCM_LIKELY (SCM_I_INUMP (x)))
1522 {
1523 scm_t_inum xx = SCM_I_INUM (x);
1524 if (SCM_LIKELY (SCM_I_INUMP (y)))
1525 {
1526 scm_t_inum yy = SCM_I_INUM (y);
1527 if (SCM_UNLIKELY (yy == 0))
1528 scm_num_overflow (s_scm_floor_divide);
1529 else
1530 {
1531 scm_t_inum qq = xx / yy;
1532 scm_t_inum rr = xx % yy;
1533 int needs_adjustment;
1534
1535 if (SCM_LIKELY (yy > 0))
1536 needs_adjustment = (rr < 0);
1537 else
1538 needs_adjustment = (rr > 0);
1539
1540 if (needs_adjustment)
1541 {
1542 rr += yy;
1543 qq--;
1544 }
1545
1546 if (SCM_LIKELY (SCM_FIXABLE (qq)))
1547 *qp = SCM_I_MAKINUM (qq);
1548 else
1549 *qp = scm_i_inum2big (qq);
1550 *rp = SCM_I_MAKINUM (rr);
1551 }
1552 return;
1553 }
1554 else if (SCM_BIGP (y))
1555 {
1556 int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
1557 scm_remember_upto_here_1 (y);
1558 if (sign > 0)
1559 {
1560 if (xx < 0)
1561 {
1562 SCM r = scm_i_mkbig ();
1563 mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
1564 scm_remember_upto_here_1 (y);
1565 *qp = SCM_I_MAKINUM (-1);
1566 *rp = scm_i_normbig (r);
1567 }
1568 else
1569 {
1570 *qp = SCM_INUM0;
1571 *rp = x;
1572 }
1573 }
1574 else if (xx <= 0)
1575 {
1576 *qp = SCM_INUM0;
1577 *rp = x;
1578 }
1579 else
1580 {
1581 SCM r = scm_i_mkbig ();
1582 mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
1583 scm_remember_upto_here_1 (y);
1584 *qp = SCM_I_MAKINUM (-1);
1585 *rp = scm_i_normbig (r);
1586 }
1587 return;
1588 }
1589 else if (SCM_REALP (y))
1590 return scm_i_inexact_floor_divide (xx, SCM_REAL_VALUE (y), qp, rp);
1591 else if (SCM_FRACTIONP (y))
1592 return scm_i_exact_rational_floor_divide (x, y, qp, rp);
1593 else
1594 return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
1595 s_scm_floor_divide, qp, rp);
1596 }
1597 else if (SCM_BIGP (x))
1598 {
1599 if (SCM_LIKELY (SCM_I_INUMP (y)))
1600 {
1601 scm_t_inum yy = SCM_I_INUM (y);
1602 if (SCM_UNLIKELY (yy == 0))
1603 scm_num_overflow (s_scm_floor_divide);
1604 else
1605 {
1606 SCM q = scm_i_mkbig ();
1607 SCM r = scm_i_mkbig ();
1608 if (yy > 0)
1609 mpz_fdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
1610 SCM_I_BIG_MPZ (x), yy);
1611 else
1612 {
1613 mpz_cdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
1614 SCM_I_BIG_MPZ (x), -yy);
1615 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
1616 }
1617 scm_remember_upto_here_1 (x);
1618 *qp = scm_i_normbig (q);
1619 *rp = scm_i_normbig (r);
1620 }
1621 return;
1622 }
1623 else if (SCM_BIGP (y))
1624 {
1625 SCM q = scm_i_mkbig ();
1626 SCM r = scm_i_mkbig ();
1627 mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
1628 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
1629 scm_remember_upto_here_2 (x, y);
1630 *qp = scm_i_normbig (q);
1631 *rp = scm_i_normbig (r);
1632 return;
1633 }
1634 else if (SCM_REALP (y))
1635 return scm_i_inexact_floor_divide
1636 (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
1637 else if (SCM_FRACTIONP (y))
1638 return scm_i_exact_rational_floor_divide (x, y, qp, rp);
1639 else
1640 return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
1641 s_scm_floor_divide, qp, rp);
1642 }
1643 else if (SCM_REALP (x))
1644 {
1645 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
1646 SCM_BIGP (y) || SCM_FRACTIONP (y))
1647 return scm_i_inexact_floor_divide
1648 (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
1649 else
1650 return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
1651 s_scm_floor_divide, qp, rp);
1652 }
1653 else if (SCM_FRACTIONP (x))
1654 {
1655 if (SCM_REALP (y))
1656 return scm_i_inexact_floor_divide
1657 (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
1658 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
1659 return scm_i_exact_rational_floor_divide (x, y, qp, rp);
1660 else
1661 return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
1662 s_scm_floor_divide, qp, rp);
1663 }
1664 else
1665 return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG1,
1666 s_scm_floor_divide, qp, rp);
1667}
1668
1669static void
1670scm_i_inexact_floor_divide (double x, double y, SCM *qp, SCM *rp)
1671{
1672 if (SCM_UNLIKELY (y == 0))
1673 scm_num_overflow (s_scm_floor_divide); /* or return a NaN? */
1674 else
1675 {
1676 double q = floor (x / y);
1677 double r = x - q * y;
00472a22
MW
1678 *qp = scm_i_from_double (q);
1679 *rp = scm_i_from_double (r);
8f9da340
MW
1680 }
1681}
1682
1683static void
1684scm_i_exact_rational_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
1685{
1686 SCM r1;
1687 SCM xd = scm_denominator (x);
1688 SCM yd = scm_denominator (y);
1689
1690 scm_floor_divide (scm_product (scm_numerator (x), yd),
1691 scm_product (scm_numerator (y), xd),
1692 qp, &r1);
1693 *rp = scm_divide (r1, scm_product (xd, yd));
1694}
1695
1696static SCM scm_i_inexact_ceiling_quotient (double x, double y);
1697static SCM scm_i_exact_rational_ceiling_quotient (SCM x, SCM y);
1698
1699SCM_PRIMITIVE_GENERIC (scm_ceiling_quotient, "ceiling-quotient", 2, 0, 0,
1700 (SCM x, SCM y),
1701 "Return the ceiling of @math{@var{x} / @var{y}}.\n"
1702 "@lisp\n"
1703 "(ceiling-quotient 123 10) @result{} 13\n"
1704 "(ceiling-quotient 123 -10) @result{} -12\n"
1705 "(ceiling-quotient -123 10) @result{} -12\n"
1706 "(ceiling-quotient -123 -10) @result{} 13\n"
1707 "(ceiling-quotient -123.2 -63.5) @result{} 2.0\n"
1708 "(ceiling-quotient 16/3 -10/7) @result{} -3\n"
1709 "@end lisp")
1710#define FUNC_NAME s_scm_ceiling_quotient
1711{
1712 if (SCM_LIKELY (SCM_I_INUMP (x)))
1713 {
1714 scm_t_inum xx = SCM_I_INUM (x);
1715 if (SCM_LIKELY (SCM_I_INUMP (y)))
1716 {
1717 scm_t_inum yy = SCM_I_INUM (y);
1718 if (SCM_UNLIKELY (yy == 0))
1719 scm_num_overflow (s_scm_ceiling_quotient);
1720 else
1721 {
1722 scm_t_inum xx1 = xx;
1723 scm_t_inum qq;
1724 if (SCM_LIKELY (yy > 0))
1725 {
1726 if (SCM_LIKELY (xx >= 0))
1727 xx1 = xx + yy - 1;
1728 }
8f9da340
MW
1729 else if (xx < 0)
1730 xx1 = xx + yy + 1;
1731 qq = xx1 / yy;
1732 if (SCM_LIKELY (SCM_FIXABLE (qq)))
1733 return SCM_I_MAKINUM (qq);
1734 else
1735 return scm_i_inum2big (qq);
1736 }
1737 }
1738 else if (SCM_BIGP (y))
1739 {
1740 int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
1741 scm_remember_upto_here_1 (y);
1742 if (SCM_LIKELY (sign > 0))
1743 {
1744 if (SCM_LIKELY (xx > 0))
1745 return SCM_INUM1;
1746 else if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
1747 && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
1748 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
1749 {
1750 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
1751 scm_remember_upto_here_1 (y);
1752 return SCM_I_MAKINUM (-1);
1753 }
1754 else
1755 return SCM_INUM0;
1756 }
1757 else if (xx >= 0)
1758 return SCM_INUM0;
1759 else
1760 return SCM_INUM1;
1761 }
1762 else if (SCM_REALP (y))
1763 return scm_i_inexact_ceiling_quotient (xx, SCM_REAL_VALUE (y));
1764 else if (SCM_FRACTIONP (y))
1765 return scm_i_exact_rational_ceiling_quotient (x, y);
1766 else
fa075d40
AW
1767 return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
1768 s_scm_ceiling_quotient);
8f9da340
MW
1769 }
1770 else if (SCM_BIGP (x))
1771 {
1772 if (SCM_LIKELY (SCM_I_INUMP (y)))
1773 {
1774 scm_t_inum yy = SCM_I_INUM (y);
1775 if (SCM_UNLIKELY (yy == 0))
1776 scm_num_overflow (s_scm_ceiling_quotient);
1777 else if (SCM_UNLIKELY (yy == 1))
1778 return x;
1779 else
1780 {
1781 SCM q = scm_i_mkbig ();
1782 if (yy > 0)
1783 mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), yy);
1784 else
1785 {
1786 mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), -yy);
1787 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
1788 }
1789 scm_remember_upto_here_1 (x);
1790 return scm_i_normbig (q);
1791 }
1792 }
1793 else if (SCM_BIGP (y))
1794 {
1795 SCM q = scm_i_mkbig ();
1796 mpz_cdiv_q (SCM_I_BIG_MPZ (q),
1797 SCM_I_BIG_MPZ (x),
1798 SCM_I_BIG_MPZ (y));
1799 scm_remember_upto_here_2 (x, y);
1800 return scm_i_normbig (q);
1801 }
1802 else if (SCM_REALP (y))
1803 return scm_i_inexact_ceiling_quotient
1804 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
1805 else if (SCM_FRACTIONP (y))
1806 return scm_i_exact_rational_ceiling_quotient (x, y);
1807 else
fa075d40
AW
1808 return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
1809 s_scm_ceiling_quotient);
8f9da340
MW
1810 }
1811 else if (SCM_REALP (x))
1812 {
1813 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
1814 SCM_BIGP (y) || SCM_FRACTIONP (y))
1815 return scm_i_inexact_ceiling_quotient
1816 (SCM_REAL_VALUE (x), scm_to_double (y));
1817 else
fa075d40
AW
1818 return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
1819 s_scm_ceiling_quotient);
8f9da340
MW
1820 }
1821 else if (SCM_FRACTIONP (x))
1822 {
1823 if (SCM_REALP (y))
1824 return scm_i_inexact_ceiling_quotient
1825 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
1826 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
1827 return scm_i_exact_rational_ceiling_quotient (x, y);
1828 else
fa075d40
AW
1829 return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
1830 s_scm_ceiling_quotient);
8f9da340
MW
1831 }
1832 else
fa075d40
AW
1833 return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG1,
1834 s_scm_ceiling_quotient);
8f9da340
MW
1835}
1836#undef FUNC_NAME
1837
1838static SCM
1839scm_i_inexact_ceiling_quotient (double x, double y)
1840{
1841 if (SCM_UNLIKELY (y == 0))
1842 scm_num_overflow (s_scm_ceiling_quotient); /* or return a NaN? */
1843 else
00472a22 1844 return scm_i_from_double (ceil (x / y));
8f9da340
MW
1845}
1846
1847static SCM
1848scm_i_exact_rational_ceiling_quotient (SCM x, SCM y)
1849{
1850 return scm_ceiling_quotient
1851 (scm_product (scm_numerator (x), scm_denominator (y)),
1852 scm_product (scm_numerator (y), scm_denominator (x)));
1853}
1854
1855static SCM scm_i_inexact_ceiling_remainder (double x, double y);
1856static SCM scm_i_exact_rational_ceiling_remainder (SCM x, SCM y);
1857
1858SCM_PRIMITIVE_GENERIC (scm_ceiling_remainder, "ceiling-remainder", 2, 0, 0,
1859 (SCM x, SCM y),
1860 "Return the real number @var{r} such that\n"
1861 "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
1862 "where @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
1863 "@lisp\n"
1864 "(ceiling-remainder 123 10) @result{} -7\n"
1865 "(ceiling-remainder 123 -10) @result{} 3\n"
1866 "(ceiling-remainder -123 10) @result{} -3\n"
1867 "(ceiling-remainder -123 -10) @result{} 7\n"
1868 "(ceiling-remainder -123.2 -63.5) @result{} 3.8\n"
1869 "(ceiling-remainder 16/3 -10/7) @result{} 22/21\n"
1870 "@end lisp")
1871#define FUNC_NAME s_scm_ceiling_remainder
1872{
1873 if (SCM_LIKELY (SCM_I_INUMP (x)))
1874 {
1875 scm_t_inum xx = SCM_I_INUM (x);
1876 if (SCM_LIKELY (SCM_I_INUMP (y)))
1877 {
1878 scm_t_inum yy = SCM_I_INUM (y);
1879 if (SCM_UNLIKELY (yy == 0))
1880 scm_num_overflow (s_scm_ceiling_remainder);
1881 else
1882 {
1883 scm_t_inum rr = xx % yy;
1884 int needs_adjustment;
1885
1886 if (SCM_LIKELY (yy > 0))
1887 needs_adjustment = (rr > 0);
1888 else
1889 needs_adjustment = (rr < 0);
1890
1891 if (needs_adjustment)
1892 rr -= yy;
1893 return SCM_I_MAKINUM (rr);
1894 }
1895 }
1896 else if (SCM_BIGP (y))
1897 {
1898 int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
1899 scm_remember_upto_here_1 (y);
1900 if (SCM_LIKELY (sign > 0))
1901 {
1902 if (SCM_LIKELY (xx > 0))
1903 {
1904 SCM r = scm_i_mkbig ();
1905 mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
1906 scm_remember_upto_here_1 (y);
1907 mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
1908 return scm_i_normbig (r);
1909 }
1910 else if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
1911 && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
1912 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
1913 {
1914 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
1915 scm_remember_upto_here_1 (y);
1916 return SCM_INUM0;
1917 }
1918 else
1919 return x;
1920 }
1921 else if (xx >= 0)
1922 return x;
1923 else
1924 {
1925 SCM r = scm_i_mkbig ();
1926 mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
1927 scm_remember_upto_here_1 (y);
1928 mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
1929 return scm_i_normbig (r);
1930 }
1931 }
1932 else if (SCM_REALP (y))
1933 return scm_i_inexact_ceiling_remainder (xx, SCM_REAL_VALUE (y));
1934 else if (SCM_FRACTIONP (y))
1935 return scm_i_exact_rational_ceiling_remainder (x, y);
1936 else
fa075d40
AW
1937 return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
1938 s_scm_ceiling_remainder);
8f9da340
MW
1939 }
1940 else if (SCM_BIGP (x))
1941 {
1942 if (SCM_LIKELY (SCM_I_INUMP (y)))
1943 {
1944 scm_t_inum yy = SCM_I_INUM (y);
1945 if (SCM_UNLIKELY (yy == 0))
1946 scm_num_overflow (s_scm_ceiling_remainder);
1947 else
1948 {
1949 scm_t_inum rr;
1950 if (yy > 0)
1951 rr = -mpz_cdiv_ui (SCM_I_BIG_MPZ (x), yy);
1952 else
1953 rr = mpz_fdiv_ui (SCM_I_BIG_MPZ (x), -yy);
1954 scm_remember_upto_here_1 (x);
1955 return SCM_I_MAKINUM (rr);
1956 }
1957 }
1958 else if (SCM_BIGP (y))
1959 {
1960 SCM r = scm_i_mkbig ();
1961 mpz_cdiv_r (SCM_I_BIG_MPZ (r),
1962 SCM_I_BIG_MPZ (x),
1963 SCM_I_BIG_MPZ (y));
1964 scm_remember_upto_here_2 (x, y);
1965 return scm_i_normbig (r);
1966 }
1967 else if (SCM_REALP (y))
1968 return scm_i_inexact_ceiling_remainder
1969 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
1970 else if (SCM_FRACTIONP (y))
1971 return scm_i_exact_rational_ceiling_remainder (x, y);
1972 else
fa075d40
AW
1973 return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
1974 s_scm_ceiling_remainder);
8f9da340
MW
1975 }
1976 else if (SCM_REALP (x))
1977 {
1978 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
1979 SCM_BIGP (y) || SCM_FRACTIONP (y))
1980 return scm_i_inexact_ceiling_remainder
1981 (SCM_REAL_VALUE (x), scm_to_double (y));
1982 else
fa075d40
AW
1983 return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
1984 s_scm_ceiling_remainder);
8f9da340
MW
1985 }
1986 else if (SCM_FRACTIONP (x))
1987 {
1988 if (SCM_REALP (y))
1989 return scm_i_inexact_ceiling_remainder
1990 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
1991 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
1992 return scm_i_exact_rational_ceiling_remainder (x, y);
1993 else
fa075d40
AW
1994 return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
1995 s_scm_ceiling_remainder);
8f9da340
MW
1996 }
1997 else
fa075d40
AW
1998 return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG1,
1999 s_scm_ceiling_remainder);
8f9da340
MW
2000}
2001#undef FUNC_NAME
2002
2003static SCM
2004scm_i_inexact_ceiling_remainder (double x, double y)
2005{
2006 /* Although it would be more efficient to use fmod here, we can't
2007 because it would in some cases produce results inconsistent with
2008 scm_i_inexact_ceiling_quotient, such that x != q * y + r (not even
2009 close). In particular, when x is very close to a multiple of y,
2010 then r might be either 0.0 or -y, but those two cases must
2011 correspond to different choices of q. If r = 0.0 then q must be
2012 x/y, and if r = -y then q must be x/y+1. If quotient chooses one
2013 and remainder chooses the other, it would be bad. */
2014 if (SCM_UNLIKELY (y == 0))
2015 scm_num_overflow (s_scm_ceiling_remainder); /* or return a NaN? */
2016 else
00472a22 2017 return scm_i_from_double (x - y * ceil (x / y));
8f9da340
MW
2018}
2019
2020static SCM
2021scm_i_exact_rational_ceiling_remainder (SCM x, SCM y)
2022{
2023 SCM xd = scm_denominator (x);
2024 SCM yd = scm_denominator (y);
2025 SCM r1 = scm_ceiling_remainder (scm_product (scm_numerator (x), yd),
2026 scm_product (scm_numerator (y), xd));
2027 return scm_divide (r1, scm_product (xd, yd));
2028}
2029
2030static void scm_i_inexact_ceiling_divide (double x, double y,
2031 SCM *qp, SCM *rp);
2032static void scm_i_exact_rational_ceiling_divide (SCM x, SCM y,
2033 SCM *qp, SCM *rp);
2034
2035SCM_PRIMITIVE_GENERIC (scm_i_ceiling_divide, "ceiling/", 2, 0, 0,
2036 (SCM x, SCM y),
2037 "Return the integer @var{q} and the real number @var{r}\n"
2038 "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
2039 "and @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
2040 "@lisp\n"
2041 "(ceiling/ 123 10) @result{} 13 and -7\n"
2042 "(ceiling/ 123 -10) @result{} -12 and 3\n"
2043 "(ceiling/ -123 10) @result{} -12 and -3\n"
2044 "(ceiling/ -123 -10) @result{} 13 and 7\n"
2045 "(ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
2046 "(ceiling/ 16/3 -10/7) @result{} -3 and 22/21\n"
2047 "@end lisp")
2048#define FUNC_NAME s_scm_i_ceiling_divide
2049{
2050 SCM q, r;
2051
2052 scm_ceiling_divide(x, y, &q, &r);
2053 return scm_values (scm_list_2 (q, r));
2054}
2055#undef FUNC_NAME
2056
2057#define s_scm_ceiling_divide s_scm_i_ceiling_divide
2058#define g_scm_ceiling_divide g_scm_i_ceiling_divide
2059
2060void
2061scm_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
2062{
2063 if (SCM_LIKELY (SCM_I_INUMP (x)))
2064 {
2065 scm_t_inum xx = SCM_I_INUM (x);
2066 if (SCM_LIKELY (SCM_I_INUMP (y)))
2067 {
2068 scm_t_inum yy = SCM_I_INUM (y);
2069 if (SCM_UNLIKELY (yy == 0))
2070 scm_num_overflow (s_scm_ceiling_divide);
2071 else
2072 {
2073 scm_t_inum qq = xx / yy;
2074 scm_t_inum rr = xx % yy;
2075 int needs_adjustment;
2076
2077 if (SCM_LIKELY (yy > 0))
2078 needs_adjustment = (rr > 0);
2079 else
2080 needs_adjustment = (rr < 0);
2081
2082 if (needs_adjustment)
2083 {
2084 rr -= yy;
2085 qq++;
2086 }
2087 if (SCM_LIKELY (SCM_FIXABLE (qq)))
2088 *qp = SCM_I_MAKINUM (qq);
2089 else
2090 *qp = scm_i_inum2big (qq);
2091 *rp = SCM_I_MAKINUM (rr);
2092 }
2093 return;
2094 }
2095 else if (SCM_BIGP (y))
2096 {
2097 int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
2098 scm_remember_upto_here_1 (y);
2099 if (SCM_LIKELY (sign > 0))
2100 {
2101 if (SCM_LIKELY (xx > 0))
2102 {
2103 SCM r = scm_i_mkbig ();
2104 mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
2105 scm_remember_upto_here_1 (y);
2106 mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
2107 *qp = SCM_INUM1;
2108 *rp = scm_i_normbig (r);
2109 }
2110 else if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
2111 && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
2112 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
2113 {
2114 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
2115 scm_remember_upto_here_1 (y);
2116 *qp = SCM_I_MAKINUM (-1);
2117 *rp = SCM_INUM0;
2118 }
2119 else
2120 {
2121 *qp = SCM_INUM0;
2122 *rp = x;
2123 }
2124 }
2125 else if (xx >= 0)
2126 {
2127 *qp = SCM_INUM0;
2128 *rp = x;
2129 }
2130 else
2131 {
2132 SCM r = scm_i_mkbig ();
2133 mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
2134 scm_remember_upto_here_1 (y);
2135 mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
2136 *qp = SCM_INUM1;
2137 *rp = scm_i_normbig (r);
2138 }
2139 return;
2140 }
2141 else if (SCM_REALP (y))
2142 return scm_i_inexact_ceiling_divide (xx, SCM_REAL_VALUE (y), qp, rp);
2143 else if (SCM_FRACTIONP (y))
2144 return scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
2145 else
2146 return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
2147 s_scm_ceiling_divide, qp, rp);
2148 }
2149 else if (SCM_BIGP (x))
2150 {
2151 if (SCM_LIKELY (SCM_I_INUMP (y)))
2152 {
2153 scm_t_inum yy = SCM_I_INUM (y);
2154 if (SCM_UNLIKELY (yy == 0))
2155 scm_num_overflow (s_scm_ceiling_divide);
2156 else
2157 {
2158 SCM q = scm_i_mkbig ();
2159 SCM r = scm_i_mkbig ();
2160 if (yy > 0)
2161 mpz_cdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
2162 SCM_I_BIG_MPZ (x), yy);
2163 else
2164 {
2165 mpz_fdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
2166 SCM_I_BIG_MPZ (x), -yy);
2167 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
2168 }
2169 scm_remember_upto_here_1 (x);
2170 *qp = scm_i_normbig (q);
2171 *rp = scm_i_normbig (r);
2172 }
2173 return;
2174 }
2175 else if (SCM_BIGP (y))
2176 {
2177 SCM q = scm_i_mkbig ();
2178 SCM r = scm_i_mkbig ();
2179 mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
2180 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
2181 scm_remember_upto_here_2 (x, y);
2182 *qp = scm_i_normbig (q);
2183 *rp = scm_i_normbig (r);
2184 return;
2185 }
2186 else if (SCM_REALP (y))
2187 return scm_i_inexact_ceiling_divide
2188 (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
2189 else if (SCM_FRACTIONP (y))
2190 return scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
2191 else
2192 return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
2193 s_scm_ceiling_divide, qp, rp);
2194 }
2195 else if (SCM_REALP (x))
2196 {
2197 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
2198 SCM_BIGP (y) || SCM_FRACTIONP (y))
2199 return scm_i_inexact_ceiling_divide
2200 (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
2201 else
2202 return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
2203 s_scm_ceiling_divide, qp, rp);
2204 }
2205 else if (SCM_FRACTIONP (x))
2206 {
2207 if (SCM_REALP (y))
2208 return scm_i_inexact_ceiling_divide
2209 (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
2210 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
2211 return scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
2212 else
2213 return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
2214 s_scm_ceiling_divide, qp, rp);
2215 }
2216 else
2217 return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG1,
2218 s_scm_ceiling_divide, qp, rp);
2219}
2220
2221static void
2222scm_i_inexact_ceiling_divide (double x, double y, SCM *qp, SCM *rp)
2223{
2224 if (SCM_UNLIKELY (y == 0))
2225 scm_num_overflow (s_scm_ceiling_divide); /* or return a NaN? */
2226 else
2227 {
2228 double q = ceil (x / y);
2229 double r = x - q * y;
00472a22
MW
2230 *qp = scm_i_from_double (q);
2231 *rp = scm_i_from_double (r);
8f9da340
MW
2232 }
2233}
2234
2235static void
2236scm_i_exact_rational_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
2237{
2238 SCM r1;
2239 SCM xd = scm_denominator (x);
2240 SCM yd = scm_denominator (y);
2241
2242 scm_ceiling_divide (scm_product (scm_numerator (x), yd),
2243 scm_product (scm_numerator (y), xd),
2244 qp, &r1);
2245 *rp = scm_divide (r1, scm_product (xd, yd));
2246}
2247
2248static SCM scm_i_inexact_truncate_quotient (double x, double y);
2249static SCM scm_i_exact_rational_truncate_quotient (SCM x, SCM y);
2250
2251SCM_PRIMITIVE_GENERIC (scm_truncate_quotient, "truncate-quotient", 2, 0, 0,
2252 (SCM x, SCM y),
2253 "Return @math{@var{x} / @var{y}} rounded toward zero.\n"
2254 "@lisp\n"
2255 "(truncate-quotient 123 10) @result{} 12\n"
2256 "(truncate-quotient 123 -10) @result{} -12\n"
2257 "(truncate-quotient -123 10) @result{} -12\n"
2258 "(truncate-quotient -123 -10) @result{} 12\n"
2259 "(truncate-quotient -123.2 -63.5) @result{} 1.0\n"
2260 "(truncate-quotient 16/3 -10/7) @result{} -3\n"
2261 "@end lisp")
2262#define FUNC_NAME s_scm_truncate_quotient
2263{
2264 if (SCM_LIKELY (SCM_I_INUMP (x)))
2265 {
2266 scm_t_inum xx = SCM_I_INUM (x);
2267 if (SCM_LIKELY (SCM_I_INUMP (y)))
2268 {
2269 scm_t_inum yy = SCM_I_INUM (y);
2270 if (SCM_UNLIKELY (yy == 0))
2271 scm_num_overflow (s_scm_truncate_quotient);
2272 else
2273 {
2274 scm_t_inum qq = xx / yy;
2275 if (SCM_LIKELY (SCM_FIXABLE (qq)))
2276 return SCM_I_MAKINUM (qq);
2277 else
2278 return scm_i_inum2big (qq);
2279 }
2280 }
2281 else if (SCM_BIGP (y))
2282 {
2283 if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
2284 && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
2285 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
2286 {
2287 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
2288 scm_remember_upto_here_1 (y);
2289 return SCM_I_MAKINUM (-1);
2290 }
2291 else
2292 return SCM_INUM0;
2293 }
2294 else if (SCM_REALP (y))
2295 return scm_i_inexact_truncate_quotient (xx, SCM_REAL_VALUE (y));
2296 else if (SCM_FRACTIONP (y))
2297 return scm_i_exact_rational_truncate_quotient (x, y);
2298 else
fa075d40
AW
2299 return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
2300 s_scm_truncate_quotient);
8f9da340
MW
2301 }
2302 else if (SCM_BIGP (x))
2303 {
2304 if (SCM_LIKELY (SCM_I_INUMP (y)))
2305 {
2306 scm_t_inum yy = SCM_I_INUM (y);
2307 if (SCM_UNLIKELY (yy == 0))
2308 scm_num_overflow (s_scm_truncate_quotient);
2309 else if (SCM_UNLIKELY (yy == 1))
2310 return x;
2311 else
2312 {
2313 SCM q = scm_i_mkbig ();
2314 if (yy > 0)
2315 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), yy);
2316 else
2317 {
2318 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), -yy);
2319 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
2320 }
2321 scm_remember_upto_here_1 (x);
2322 return scm_i_normbig (q);
2323 }
2324 }
2325 else if (SCM_BIGP (y))
2326 {
2327 SCM q = scm_i_mkbig ();
2328 mpz_tdiv_q (SCM_I_BIG_MPZ (q),
2329 SCM_I_BIG_MPZ (x),
2330 SCM_I_BIG_MPZ (y));
2331 scm_remember_upto_here_2 (x, y);
2332 return scm_i_normbig (q);
2333 }
2334 else if (SCM_REALP (y))
2335 return scm_i_inexact_truncate_quotient
2336 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
2337 else if (SCM_FRACTIONP (y))
2338 return scm_i_exact_rational_truncate_quotient (x, y);
2339 else
fa075d40
AW
2340 return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
2341 s_scm_truncate_quotient);
8f9da340
MW
2342 }
2343 else if (SCM_REALP (x))
2344 {
2345 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
2346 SCM_BIGP (y) || SCM_FRACTIONP (y))
2347 return scm_i_inexact_truncate_quotient
2348 (SCM_REAL_VALUE (x), scm_to_double (y));
2349 else
fa075d40
AW
2350 return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
2351 s_scm_truncate_quotient);
8f9da340
MW
2352 }
2353 else if (SCM_FRACTIONP (x))
2354 {
2355 if (SCM_REALP (y))
2356 return scm_i_inexact_truncate_quotient
2357 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
2358 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
2359 return scm_i_exact_rational_truncate_quotient (x, y);
2360 else
fa075d40
AW
2361 return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
2362 s_scm_truncate_quotient);
8f9da340
MW
2363 }
2364 else
fa075d40
AW
2365 return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG1,
2366 s_scm_truncate_quotient);
8f9da340
MW
2367}
2368#undef FUNC_NAME
2369
2370static SCM
2371scm_i_inexact_truncate_quotient (double x, double y)
2372{
2373 if (SCM_UNLIKELY (y == 0))
2374 scm_num_overflow (s_scm_truncate_quotient); /* or return a NaN? */
2375 else
00472a22 2376 return scm_i_from_double (trunc (x / y));
8f9da340
MW
2377}
2378
2379static SCM
2380scm_i_exact_rational_truncate_quotient (SCM x, SCM y)
2381{
2382 return scm_truncate_quotient
2383 (scm_product (scm_numerator (x), scm_denominator (y)),
2384 scm_product (scm_numerator (y), scm_denominator (x)));
2385}
2386
2387static SCM scm_i_inexact_truncate_remainder (double x, double y);
2388static SCM scm_i_exact_rational_truncate_remainder (SCM x, SCM y);
2389
2390SCM_PRIMITIVE_GENERIC (scm_truncate_remainder, "truncate-remainder", 2, 0, 0,
2391 (SCM x, SCM y),
2392 "Return the real number @var{r} such that\n"
2393 "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
2394 "where @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
2395 "@lisp\n"
2396 "(truncate-remainder 123 10) @result{} 3\n"
2397 "(truncate-remainder 123 -10) @result{} 3\n"
2398 "(truncate-remainder -123 10) @result{} -3\n"
2399 "(truncate-remainder -123 -10) @result{} -3\n"
2400 "(truncate-remainder -123.2 -63.5) @result{} -59.7\n"
2401 "(truncate-remainder 16/3 -10/7) @result{} 22/21\n"
2402 "@end lisp")
2403#define FUNC_NAME s_scm_truncate_remainder
2404{
2405 if (SCM_LIKELY (SCM_I_INUMP (x)))
2406 {
2407 scm_t_inum xx = SCM_I_INUM (x);
2408 if (SCM_LIKELY (SCM_I_INUMP (y)))
2409 {
2410 scm_t_inum yy = SCM_I_INUM (y);
2411 if (SCM_UNLIKELY (yy == 0))
2412 scm_num_overflow (s_scm_truncate_remainder);
2413 else
2414 return SCM_I_MAKINUM (xx % yy);
2415 }
2416 else if (SCM_BIGP (y))
2417 {
2418 if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
2419 && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
2420 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
2421 {
2422 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
2423 scm_remember_upto_here_1 (y);
2424 return SCM_INUM0;
2425 }
2426 else
2427 return x;
2428 }
2429 else if (SCM_REALP (y))
2430 return scm_i_inexact_truncate_remainder (xx, SCM_REAL_VALUE (y));
2431 else if (SCM_FRACTIONP (y))
2432 return scm_i_exact_rational_truncate_remainder (x, y);
2433 else
fa075d40
AW
2434 return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
2435 s_scm_truncate_remainder);
8f9da340
MW
2436 }
2437 else if (SCM_BIGP (x))
2438 {
2439 if (SCM_LIKELY (SCM_I_INUMP (y)))
2440 {
2441 scm_t_inum yy = SCM_I_INUM (y);
2442 if (SCM_UNLIKELY (yy == 0))
2443 scm_num_overflow (s_scm_truncate_remainder);
2444 else
2445 {
2446 scm_t_inum rr = (mpz_tdiv_ui (SCM_I_BIG_MPZ (x),
2447 (yy > 0) ? yy : -yy)
2448 * mpz_sgn (SCM_I_BIG_MPZ (x)));
2449 scm_remember_upto_here_1 (x);
2450 return SCM_I_MAKINUM (rr);
2451 }
2452 }
2453 else if (SCM_BIGP (y))
2454 {
2455 SCM r = scm_i_mkbig ();
2456 mpz_tdiv_r (SCM_I_BIG_MPZ (r),
2457 SCM_I_BIG_MPZ (x),
2458 SCM_I_BIG_MPZ (y));
2459 scm_remember_upto_here_2 (x, y);
2460 return scm_i_normbig (r);
2461 }
2462 else if (SCM_REALP (y))
2463 return scm_i_inexact_truncate_remainder
2464 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
2465 else if (SCM_FRACTIONP (y))
2466 return scm_i_exact_rational_truncate_remainder (x, y);
2467 else
fa075d40
AW
2468 return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
2469 s_scm_truncate_remainder);
8f9da340
MW
2470 }
2471 else if (SCM_REALP (x))
2472 {
2473 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
2474 SCM_BIGP (y) || SCM_FRACTIONP (y))
2475 return scm_i_inexact_truncate_remainder
2476 (SCM_REAL_VALUE (x), scm_to_double (y));
2477 else
fa075d40
AW
2478 return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
2479 s_scm_truncate_remainder);
8f9da340
MW
2480 }
2481 else if (SCM_FRACTIONP (x))
2482 {
2483 if (SCM_REALP (y))
2484 return scm_i_inexact_truncate_remainder
2485 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
2486 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
2487 return scm_i_exact_rational_truncate_remainder (x, y);
2488 else
fa075d40
AW
2489 return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
2490 s_scm_truncate_remainder);
8f9da340
MW
2491 }
2492 else
fa075d40
AW
2493 return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG1,
2494 s_scm_truncate_remainder);
8f9da340
MW
2495}
2496#undef FUNC_NAME
2497
2498static SCM
2499scm_i_inexact_truncate_remainder (double x, double y)
2500{
2501 /* Although it would be more efficient to use fmod here, we can't
2502 because it would in some cases produce results inconsistent with
2503 scm_i_inexact_truncate_quotient, such that x != q * y + r (not even
2504 close). In particular, when x is very close to a multiple of y,
2505 then r might be either 0.0 or sgn(x)*|y|, but those two cases must
2506 correspond to different choices of q. If quotient chooses one and
2507 remainder chooses the other, it would be bad. */
2508 if (SCM_UNLIKELY (y == 0))
2509 scm_num_overflow (s_scm_truncate_remainder); /* or return a NaN? */
2510 else
00472a22 2511 return scm_i_from_double (x - y * trunc (x / y));
8f9da340
MW
2512}
2513
2514static SCM
2515scm_i_exact_rational_truncate_remainder (SCM x, SCM y)
2516{
2517 SCM xd = scm_denominator (x);
2518 SCM yd = scm_denominator (y);
2519 SCM r1 = scm_truncate_remainder (scm_product (scm_numerator (x), yd),
2520 scm_product (scm_numerator (y), xd));
2521 return scm_divide (r1, scm_product (xd, yd));
2522}
2523
2524
2525static void scm_i_inexact_truncate_divide (double x, double y,
2526 SCM *qp, SCM *rp);
2527static void scm_i_exact_rational_truncate_divide (SCM x, SCM y,
2528 SCM *qp, SCM *rp);
2529
2530SCM_PRIMITIVE_GENERIC (scm_i_truncate_divide, "truncate/", 2, 0, 0,
2531 (SCM x, SCM y),
2532 "Return the integer @var{q} and the real number @var{r}\n"
2533 "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
2534 "and @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
2535 "@lisp\n"
2536 "(truncate/ 123 10) @result{} 12 and 3\n"
2537 "(truncate/ 123 -10) @result{} -12 and 3\n"
2538 "(truncate/ -123 10) @result{} -12 and -3\n"
2539 "(truncate/ -123 -10) @result{} 12 and -3\n"
2540 "(truncate/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
2541 "(truncate/ 16/3 -10/7) @result{} -3 and 22/21\n"
2542 "@end lisp")
2543#define FUNC_NAME s_scm_i_truncate_divide
2544{
2545 SCM q, r;
2546
2547 scm_truncate_divide(x, y, &q, &r);
2548 return scm_values (scm_list_2 (q, r));
2549}
2550#undef FUNC_NAME
2551
2552#define s_scm_truncate_divide s_scm_i_truncate_divide
2553#define g_scm_truncate_divide g_scm_i_truncate_divide
2554
2555void
2556scm_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
2557{
2558 if (SCM_LIKELY (SCM_I_INUMP (x)))
2559 {
2560 scm_t_inum xx = SCM_I_INUM (x);
2561 if (SCM_LIKELY (SCM_I_INUMP (y)))
2562 {
2563 scm_t_inum yy = SCM_I_INUM (y);
2564 if (SCM_UNLIKELY (yy == 0))
2565 scm_num_overflow (s_scm_truncate_divide);
2566 else
2567 {
2568 scm_t_inum qq = xx / yy;
2569 scm_t_inum rr = xx % yy;
2570 if (SCM_LIKELY (SCM_FIXABLE (qq)))
2571 *qp = SCM_I_MAKINUM (qq);
2572 else
2573 *qp = scm_i_inum2big (qq);
2574 *rp = SCM_I_MAKINUM (rr);
2575 }
2576 return;
2577 }
2578 else if (SCM_BIGP (y))
2579 {
2580 if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
2581 && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
2582 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
2583 {
2584 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
2585 scm_remember_upto_here_1 (y);
2586 *qp = SCM_I_MAKINUM (-1);
2587 *rp = SCM_INUM0;
2588 }
2589 else
2590 {
2591 *qp = SCM_INUM0;
2592 *rp = x;
2593 }
2594 return;
2595 }
2596 else if (SCM_REALP (y))
2597 return scm_i_inexact_truncate_divide (xx, SCM_REAL_VALUE (y), qp, rp);
2598 else if (SCM_FRACTIONP (y))
2599 return scm_i_exact_rational_truncate_divide (x, y, qp, rp);
2600 else
2601 return two_valued_wta_dispatch_2
2602 (g_scm_truncate_divide, x, y, SCM_ARG2,
2603 s_scm_truncate_divide, qp, rp);
2604 }
2605 else if (SCM_BIGP (x))
2606 {
2607 if (SCM_LIKELY (SCM_I_INUMP (y)))
2608 {
2609 scm_t_inum yy = SCM_I_INUM (y);
2610 if (SCM_UNLIKELY (yy == 0))
2611 scm_num_overflow (s_scm_truncate_divide);
2612 else
2613 {
2614 SCM q = scm_i_mkbig ();
2615 scm_t_inum rr;
2616 if (yy > 0)
2617 rr = mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q),
2618 SCM_I_BIG_MPZ (x), yy);
2619 else
2620 {
2621 rr = mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q),
2622 SCM_I_BIG_MPZ (x), -yy);
2623 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
2624 }
2625 rr *= mpz_sgn (SCM_I_BIG_MPZ (x));
2626 scm_remember_upto_here_1 (x);
2627 *qp = scm_i_normbig (q);
2628 *rp = SCM_I_MAKINUM (rr);
2629 }
2630 return;
2631 }
2632 else if (SCM_BIGP (y))
2633 {
2634 SCM q = scm_i_mkbig ();
2635 SCM r = scm_i_mkbig ();
2636 mpz_tdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
2637 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
2638 scm_remember_upto_here_2 (x, y);
2639 *qp = scm_i_normbig (q);
2640 *rp = scm_i_normbig (r);
2641 }
2642 else if (SCM_REALP (y))
2643 return scm_i_inexact_truncate_divide
2644 (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
2645 else if (SCM_FRACTIONP (y))
2646 return scm_i_exact_rational_truncate_divide (x, y, qp, rp);
2647 else
2648 return two_valued_wta_dispatch_2
2649 (g_scm_truncate_divide, x, y, SCM_ARG2,
2650 s_scm_truncate_divide, qp, rp);
2651 }
2652 else if (SCM_REALP (x))
2653 {
2654 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
2655 SCM_BIGP (y) || SCM_FRACTIONP (y))
2656 return scm_i_inexact_truncate_divide
2657 (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
2658 else
2659 return two_valued_wta_dispatch_2
2660 (g_scm_truncate_divide, x, y, SCM_ARG2,
2661 s_scm_truncate_divide, qp, rp);
2662 }
2663 else if (SCM_FRACTIONP (x))
2664 {
2665 if (SCM_REALP (y))
2666 return scm_i_inexact_truncate_divide
2667 (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
2668 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
2669 return scm_i_exact_rational_truncate_divide (x, y, qp, rp);
2670 else
2671 return two_valued_wta_dispatch_2
2672 (g_scm_truncate_divide, x, y, SCM_ARG2,
2673 s_scm_truncate_divide, qp, rp);
2674 }
2675 else
2676 return two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG1,
2677 s_scm_truncate_divide, qp, rp);
2678}
2679
2680static void
2681scm_i_inexact_truncate_divide (double x, double y, SCM *qp, SCM *rp)
2682{
2683 if (SCM_UNLIKELY (y == 0))
2684 scm_num_overflow (s_scm_truncate_divide); /* or return a NaN? */
2685 else
2686 {
c15fe499
MW
2687 double q = trunc (x / y);
2688 double r = x - q * y;
00472a22
MW
2689 *qp = scm_i_from_double (q);
2690 *rp = scm_i_from_double (r);
8f9da340
MW
2691 }
2692}
2693
2694static void
2695scm_i_exact_rational_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
2696{
2697 SCM r1;
2698 SCM xd = scm_denominator (x);
2699 SCM yd = scm_denominator (y);
2700
2701 scm_truncate_divide (scm_product (scm_numerator (x), yd),
2702 scm_product (scm_numerator (y), xd),
2703 qp, &r1);
2704 *rp = scm_divide (r1, scm_product (xd, yd));
2705}
2706
ff62c168
MW
2707static SCM scm_i_inexact_centered_quotient (double x, double y);
2708static SCM scm_i_bigint_centered_quotient (SCM x, SCM y);
03ddd15b 2709static SCM scm_i_exact_rational_centered_quotient (SCM x, SCM y);
ff62c168 2710
8f9da340
MW
2711SCM_PRIMITIVE_GENERIC (scm_centered_quotient, "centered-quotient", 2, 0, 0,
2712 (SCM x, SCM y),
2713 "Return the integer @var{q} such that\n"
2714 "@math{@var{x} = @var{q}*@var{y} + @var{r}} where\n"
2715 "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
2716 "@lisp\n"
2717 "(centered-quotient 123 10) @result{} 12\n"
2718 "(centered-quotient 123 -10) @result{} -12\n"
2719 "(centered-quotient -123 10) @result{} -12\n"
2720 "(centered-quotient -123 -10) @result{} 12\n"
2721 "(centered-quotient -123.2 -63.5) @result{} 2.0\n"
2722 "(centered-quotient 16/3 -10/7) @result{} -4\n"
2723 "@end lisp")
2724#define FUNC_NAME s_scm_centered_quotient
2725{
2726 if (SCM_LIKELY (SCM_I_INUMP (x)))
2727 {
2728 scm_t_inum xx = SCM_I_INUM (x);
2729 if (SCM_LIKELY (SCM_I_INUMP (y)))
2730 {
2731 scm_t_inum yy = SCM_I_INUM (y);
2732 if (SCM_UNLIKELY (yy == 0))
2733 scm_num_overflow (s_scm_centered_quotient);
2734 else
2735 {
2736 scm_t_inum qq = xx / yy;
2737 scm_t_inum rr = xx % yy;
2738 if (SCM_LIKELY (xx > 0))
2739 {
2740 if (SCM_LIKELY (yy > 0))
2741 {
2742 if (rr >= (yy + 1) / 2)
2743 qq++;
2744 }
2745 else
2746 {
2747 if (rr >= (1 - yy) / 2)
2748 qq--;
2749 }
2750 }
2751 else
2752 {
2753 if (SCM_LIKELY (yy > 0))
2754 {
2755 if (rr < -yy / 2)
2756 qq--;
2757 }
2758 else
2759 {
2760 if (rr < yy / 2)
2761 qq++;
2762 }
2763 }
2764 if (SCM_LIKELY (SCM_FIXABLE (qq)))
2765 return SCM_I_MAKINUM (qq);
2766 else
2767 return scm_i_inum2big (qq);
2768 }
2769 }
2770 else if (SCM_BIGP (y))
2771 {
2772 /* Pass a denormalized bignum version of x (even though it
2773 can fit in a fixnum) to scm_i_bigint_centered_quotient */
2774 return scm_i_bigint_centered_quotient (scm_i_long2big (xx), y);
2775 }
2776 else if (SCM_REALP (y))
2777 return scm_i_inexact_centered_quotient (xx, SCM_REAL_VALUE (y));
2778 else if (SCM_FRACTIONP (y))
2779 return scm_i_exact_rational_centered_quotient (x, y);
2780 else
fa075d40
AW
2781 return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
2782 s_scm_centered_quotient);
8f9da340
MW
2783 }
2784 else if (SCM_BIGP (x))
2785 {
2786 if (SCM_LIKELY (SCM_I_INUMP (y)))
2787 {
2788 scm_t_inum yy = SCM_I_INUM (y);
2789 if (SCM_UNLIKELY (yy == 0))
2790 scm_num_overflow (s_scm_centered_quotient);
2791 else if (SCM_UNLIKELY (yy == 1))
2792 return x;
2793 else
2794 {
2795 SCM q = scm_i_mkbig ();
2796 scm_t_inum rr;
2797 /* Arrange for rr to initially be non-positive,
2798 because that simplifies the test to see
2799 if it is within the needed bounds. */
2800 if (yy > 0)
2801 {
2802 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
2803 SCM_I_BIG_MPZ (x), yy);
2804 scm_remember_upto_here_1 (x);
2805 if (rr < -yy / 2)
2806 mpz_sub_ui (SCM_I_BIG_MPZ (q),
2807 SCM_I_BIG_MPZ (q), 1);
2808 }
2809 else
2810 {
2811 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
2812 SCM_I_BIG_MPZ (x), -yy);
2813 scm_remember_upto_here_1 (x);
2814 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
2815 if (rr < yy / 2)
2816 mpz_add_ui (SCM_I_BIG_MPZ (q),
2817 SCM_I_BIG_MPZ (q), 1);
2818 }
2819 return scm_i_normbig (q);
2820 }
2821 }
2822 else if (SCM_BIGP (y))
2823 return scm_i_bigint_centered_quotient (x, y);
2824 else if (SCM_REALP (y))
2825 return scm_i_inexact_centered_quotient
2826 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
2827 else if (SCM_FRACTIONP (y))
2828 return scm_i_exact_rational_centered_quotient (x, y);
2829 else
fa075d40
AW
2830 return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
2831 s_scm_centered_quotient);
8f9da340
MW
2832 }
2833 else if (SCM_REALP (x))
2834 {
2835 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
2836 SCM_BIGP (y) || SCM_FRACTIONP (y))
2837 return scm_i_inexact_centered_quotient
2838 (SCM_REAL_VALUE (x), scm_to_double (y));
2839 else
fa075d40
AW
2840 return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
2841 s_scm_centered_quotient);
8f9da340
MW
2842 }
2843 else if (SCM_FRACTIONP (x))
2844 {
2845 if (SCM_REALP (y))
2846 return scm_i_inexact_centered_quotient
2847 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
2848 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
2849 return scm_i_exact_rational_centered_quotient (x, y);
2850 else
fa075d40
AW
2851 return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
2852 s_scm_centered_quotient);
8f9da340
MW
2853 }
2854 else
fa075d40
AW
2855 return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG1,
2856 s_scm_centered_quotient);
8f9da340
MW
2857}
2858#undef FUNC_NAME
2859
2860static SCM
2861scm_i_inexact_centered_quotient (double x, double y)
2862{
2863 if (SCM_LIKELY (y > 0))
00472a22 2864 return scm_i_from_double (floor (x/y + 0.5));
8f9da340 2865 else if (SCM_LIKELY (y < 0))
00472a22 2866 return scm_i_from_double (ceil (x/y - 0.5));
8f9da340
MW
2867 else if (y == 0)
2868 scm_num_overflow (s_scm_centered_quotient); /* or return a NaN? */
2869 else
2870 return scm_nan ();
2871}
2872
2873/* Assumes that both x and y are bigints, though
2874 x might be able to fit into a fixnum. */
2875static SCM
2876scm_i_bigint_centered_quotient (SCM x, SCM y)
2877{
2878 SCM q, r, min_r;
2879
2880 /* Note that x might be small enough to fit into a
2881 fixnum, so we must not let it escape into the wild */
2882 q = scm_i_mkbig ();
2883 r = scm_i_mkbig ();
2884
2885 /* min_r will eventually become -abs(y)/2 */
2886 min_r = scm_i_mkbig ();
2887 mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
2888 SCM_I_BIG_MPZ (y), 1);
2889
2890 /* Arrange for rr to initially be non-positive,
2891 because that simplifies the test to see
2892 if it is within the needed bounds. */
2893 if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
2894 {
2895 mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
2896 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
2897 scm_remember_upto_here_2 (x, y);
2898 mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
2899 if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
2900 mpz_sub_ui (SCM_I_BIG_MPZ (q),
2901 SCM_I_BIG_MPZ (q), 1);
2902 }
2903 else
2904 {
2905 mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
2906 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
2907 scm_remember_upto_here_2 (x, y);
2908 if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
2909 mpz_add_ui (SCM_I_BIG_MPZ (q),
2910 SCM_I_BIG_MPZ (q), 1);
2911 }
2912 scm_remember_upto_here_2 (r, min_r);
2913 return scm_i_normbig (q);
2914}
2915
2916static SCM
2917scm_i_exact_rational_centered_quotient (SCM x, SCM y)
2918{
2919 return scm_centered_quotient
2920 (scm_product (scm_numerator (x), scm_denominator (y)),
2921 scm_product (scm_numerator (y), scm_denominator (x)));
2922}
2923
2924static SCM scm_i_inexact_centered_remainder (double x, double y);
2925static SCM scm_i_bigint_centered_remainder (SCM x, SCM y);
2926static SCM scm_i_exact_rational_centered_remainder (SCM x, SCM y);
2927
2928SCM_PRIMITIVE_GENERIC (scm_centered_remainder, "centered-remainder", 2, 0, 0,
2929 (SCM x, SCM y),
2930 "Return the real number @var{r} such that\n"
2931 "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}\n"
2932 "and @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
2933 "for some integer @var{q}.\n"
2934 "@lisp\n"
2935 "(centered-remainder 123 10) @result{} 3\n"
2936 "(centered-remainder 123 -10) @result{} 3\n"
2937 "(centered-remainder -123 10) @result{} -3\n"
2938 "(centered-remainder -123 -10) @result{} -3\n"
2939 "(centered-remainder -123.2 -63.5) @result{} 3.8\n"
2940 "(centered-remainder 16/3 -10/7) @result{} -8/21\n"
2941 "@end lisp")
2942#define FUNC_NAME s_scm_centered_remainder
2943{
2944 if (SCM_LIKELY (SCM_I_INUMP (x)))
2945 {
2946 scm_t_inum xx = SCM_I_INUM (x);
2947 if (SCM_LIKELY (SCM_I_INUMP (y)))
2948 {
2949 scm_t_inum yy = SCM_I_INUM (y);
2950 if (SCM_UNLIKELY (yy == 0))
2951 scm_num_overflow (s_scm_centered_remainder);
2952 else
2953 {
2954 scm_t_inum rr = xx % yy;
2955 if (SCM_LIKELY (xx > 0))
2956 {
2957 if (SCM_LIKELY (yy > 0))
2958 {
2959 if (rr >= (yy + 1) / 2)
2960 rr -= yy;
2961 }
2962 else
2963 {
2964 if (rr >= (1 - yy) / 2)
2965 rr += yy;
2966 }
2967 }
2968 else
2969 {
2970 if (SCM_LIKELY (yy > 0))
2971 {
2972 if (rr < -yy / 2)
2973 rr += yy;
2974 }
2975 else
2976 {
2977 if (rr < yy / 2)
2978 rr -= yy;
2979 }
2980 }
2981 return SCM_I_MAKINUM (rr);
2982 }
2983 }
2984 else if (SCM_BIGP (y))
2985 {
2986 /* Pass a denormalized bignum version of x (even though it
2987 can fit in a fixnum) to scm_i_bigint_centered_remainder */
2988 return scm_i_bigint_centered_remainder (scm_i_long2big (xx), y);
2989 }
2990 else if (SCM_REALP (y))
2991 return scm_i_inexact_centered_remainder (xx, SCM_REAL_VALUE (y));
2992 else if (SCM_FRACTIONP (y))
2993 return scm_i_exact_rational_centered_remainder (x, y);
2994 else
fa075d40
AW
2995 return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
2996 s_scm_centered_remainder);
8f9da340
MW
2997 }
2998 else if (SCM_BIGP (x))
2999 {
3000 if (SCM_LIKELY (SCM_I_INUMP (y)))
3001 {
3002 scm_t_inum yy = SCM_I_INUM (y);
3003 if (SCM_UNLIKELY (yy == 0))
3004 scm_num_overflow (s_scm_centered_remainder);
3005 else
3006 {
3007 scm_t_inum rr;
3008 /* Arrange for rr to initially be non-positive,
3009 because that simplifies the test to see
3010 if it is within the needed bounds. */
3011 if (yy > 0)
3012 {
3013 rr = - mpz_cdiv_ui (SCM_I_BIG_MPZ (x), yy);
3014 scm_remember_upto_here_1 (x);
3015 if (rr < -yy / 2)
3016 rr += yy;
3017 }
3018 else
3019 {
3020 rr = - mpz_cdiv_ui (SCM_I_BIG_MPZ (x), -yy);
3021 scm_remember_upto_here_1 (x);
3022 if (rr < yy / 2)
3023 rr -= yy;
3024 }
3025 return SCM_I_MAKINUM (rr);
3026 }
3027 }
3028 else if (SCM_BIGP (y))
3029 return scm_i_bigint_centered_remainder (x, y);
3030 else if (SCM_REALP (y))
3031 return scm_i_inexact_centered_remainder
3032 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
3033 else if (SCM_FRACTIONP (y))
3034 return scm_i_exact_rational_centered_remainder (x, y);
3035 else
fa075d40
AW
3036 return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
3037 s_scm_centered_remainder);
8f9da340
MW
3038 }
3039 else if (SCM_REALP (x))
3040 {
3041 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
3042 SCM_BIGP (y) || SCM_FRACTIONP (y))
3043 return scm_i_inexact_centered_remainder
3044 (SCM_REAL_VALUE (x), scm_to_double (y));
3045 else
fa075d40
AW
3046 return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
3047 s_scm_centered_remainder);
8f9da340
MW
3048 }
3049 else if (SCM_FRACTIONP (x))
3050 {
3051 if (SCM_REALP (y))
3052 return scm_i_inexact_centered_remainder
3053 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
3054 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
3055 return scm_i_exact_rational_centered_remainder (x, y);
3056 else
fa075d40
AW
3057 return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
3058 s_scm_centered_remainder);
8f9da340
MW
3059 }
3060 else
fa075d40
AW
3061 return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG1,
3062 s_scm_centered_remainder);
8f9da340
MW
3063}
3064#undef FUNC_NAME
3065
3066static SCM
3067scm_i_inexact_centered_remainder (double x, double y)
3068{
3069 double q;
3070
3071 /* Although it would be more efficient to use fmod here, we can't
3072 because it would in some cases produce results inconsistent with
3073 scm_i_inexact_centered_quotient, such that x != r + q * y (not even
3074 close). In particular, when x-y/2 is very close to a multiple of
3075 y, then r might be either -abs(y/2) or abs(y/2)-epsilon, but those
3076 two cases must correspond to different choices of q. If quotient
3077 chooses one and remainder chooses the other, it would be bad. */
3078 if (SCM_LIKELY (y > 0))
3079 q = floor (x/y + 0.5);
3080 else if (SCM_LIKELY (y < 0))
3081 q = ceil (x/y - 0.5);
3082 else if (y == 0)
3083 scm_num_overflow (s_scm_centered_remainder); /* or return a NaN? */
3084 else
3085 return scm_nan ();
00472a22 3086 return scm_i_from_double (x - q * y);
8f9da340
MW
3087}
3088
3089/* Assumes that both x and y are bigints, though
3090 x might be able to fit into a fixnum. */
3091static SCM
3092scm_i_bigint_centered_remainder (SCM x, SCM y)
3093{
3094 SCM r, min_r;
3095
3096 /* Note that x might be small enough to fit into a
3097 fixnum, so we must not let it escape into the wild */
3098 r = scm_i_mkbig ();
3099
3100 /* min_r will eventually become -abs(y)/2 */
3101 min_r = scm_i_mkbig ();
3102 mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
3103 SCM_I_BIG_MPZ (y), 1);
3104
3105 /* Arrange for rr to initially be non-positive,
3106 because that simplifies the test to see
3107 if it is within the needed bounds. */
3108 if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
3109 {
3110 mpz_cdiv_r (SCM_I_BIG_MPZ (r),
3111 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3112 mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
3113 if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
3114 mpz_add (SCM_I_BIG_MPZ (r),
3115 SCM_I_BIG_MPZ (r),
3116 SCM_I_BIG_MPZ (y));
3117 }
3118 else
3119 {
3120 mpz_fdiv_r (SCM_I_BIG_MPZ (r),
3121 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3122 if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
3123 mpz_sub (SCM_I_BIG_MPZ (r),
3124 SCM_I_BIG_MPZ (r),
3125 SCM_I_BIG_MPZ (y));
3126 }
3127 scm_remember_upto_here_2 (x, y);
3128 return scm_i_normbig (r);
3129}
3130
3131static SCM
3132scm_i_exact_rational_centered_remainder (SCM x, SCM y)
3133{
3134 SCM xd = scm_denominator (x);
3135 SCM yd = scm_denominator (y);
3136 SCM r1 = scm_centered_remainder (scm_product (scm_numerator (x), yd),
3137 scm_product (scm_numerator (y), xd));
3138 return scm_divide (r1, scm_product (xd, yd));
3139}
3140
3141
3142static void scm_i_inexact_centered_divide (double x, double y,
3143 SCM *qp, SCM *rp);
3144static void scm_i_bigint_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp);
3145static void scm_i_exact_rational_centered_divide (SCM x, SCM y,
3146 SCM *qp, SCM *rp);
3147
3148SCM_PRIMITIVE_GENERIC (scm_i_centered_divide, "centered/", 2, 0, 0,
3149 (SCM x, SCM y),
3150 "Return the integer @var{q} and the real number @var{r}\n"
3151 "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
3152 "and @math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
3153 "@lisp\n"
3154 "(centered/ 123 10) @result{} 12 and 3\n"
3155 "(centered/ 123 -10) @result{} -12 and 3\n"
3156 "(centered/ -123 10) @result{} -12 and -3\n"
3157 "(centered/ -123 -10) @result{} 12 and -3\n"
3158 "(centered/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
3159 "(centered/ 16/3 -10/7) @result{} -4 and -8/21\n"
3160 "@end lisp")
3161#define FUNC_NAME s_scm_i_centered_divide
3162{
3163 SCM q, r;
3164
3165 scm_centered_divide(x, y, &q, &r);
3166 return scm_values (scm_list_2 (q, r));
3167}
3168#undef FUNC_NAME
3169
3170#define s_scm_centered_divide s_scm_i_centered_divide
3171#define g_scm_centered_divide g_scm_i_centered_divide
3172
3173void
3174scm_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
3175{
3176 if (SCM_LIKELY (SCM_I_INUMP (x)))
3177 {
3178 scm_t_inum xx = SCM_I_INUM (x);
3179 if (SCM_LIKELY (SCM_I_INUMP (y)))
3180 {
3181 scm_t_inum yy = SCM_I_INUM (y);
3182 if (SCM_UNLIKELY (yy == 0))
3183 scm_num_overflow (s_scm_centered_divide);
3184 else
3185 {
3186 scm_t_inum qq = xx / yy;
3187 scm_t_inum rr = xx % yy;
3188 if (SCM_LIKELY (xx > 0))
3189 {
3190 if (SCM_LIKELY (yy > 0))
3191 {
3192 if (rr >= (yy + 1) / 2)
3193 { qq++; rr -= yy; }
3194 }
3195 else
3196 {
3197 if (rr >= (1 - yy) / 2)
3198 { qq--; rr += yy; }
3199 }
3200 }
3201 else
3202 {
3203 if (SCM_LIKELY (yy > 0))
3204 {
3205 if (rr < -yy / 2)
3206 { qq--; rr += yy; }
3207 }
3208 else
3209 {
3210 if (rr < yy / 2)
3211 { qq++; rr -= yy; }
3212 }
3213 }
3214 if (SCM_LIKELY (SCM_FIXABLE (qq)))
3215 *qp = SCM_I_MAKINUM (qq);
3216 else
3217 *qp = scm_i_inum2big (qq);
3218 *rp = SCM_I_MAKINUM (rr);
3219 }
3220 return;
3221 }
3222 else if (SCM_BIGP (y))
3223 {
3224 /* Pass a denormalized bignum version of x (even though it
3225 can fit in a fixnum) to scm_i_bigint_centered_divide */
3226 return scm_i_bigint_centered_divide (scm_i_long2big (xx), y, qp, rp);
3227 }
3228 else if (SCM_REALP (y))
3229 return scm_i_inexact_centered_divide (xx, SCM_REAL_VALUE (y), qp, rp);
3230 else if (SCM_FRACTIONP (y))
3231 return scm_i_exact_rational_centered_divide (x, y, qp, rp);
3232 else
3233 return two_valued_wta_dispatch_2
3234 (g_scm_centered_divide, x, y, SCM_ARG2,
3235 s_scm_centered_divide, qp, rp);
3236 }
3237 else if (SCM_BIGP (x))
3238 {
3239 if (SCM_LIKELY (SCM_I_INUMP (y)))
3240 {
3241 scm_t_inum yy = SCM_I_INUM (y);
3242 if (SCM_UNLIKELY (yy == 0))
3243 scm_num_overflow (s_scm_centered_divide);
3244 else
3245 {
3246 SCM q = scm_i_mkbig ();
3247 scm_t_inum rr;
3248 /* Arrange for rr to initially be non-positive,
3249 because that simplifies the test to see
3250 if it is within the needed bounds. */
3251 if (yy > 0)
3252 {
3253 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
3254 SCM_I_BIG_MPZ (x), yy);
3255 scm_remember_upto_here_1 (x);
3256 if (rr < -yy / 2)
3257 {
3258 mpz_sub_ui (SCM_I_BIG_MPZ (q),
3259 SCM_I_BIG_MPZ (q), 1);
3260 rr += yy;
3261 }
3262 }
3263 else
3264 {
3265 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
3266 SCM_I_BIG_MPZ (x), -yy);
3267 scm_remember_upto_here_1 (x);
3268 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
3269 if (rr < yy / 2)
3270 {
3271 mpz_add_ui (SCM_I_BIG_MPZ (q),
3272 SCM_I_BIG_MPZ (q), 1);
3273 rr -= yy;
3274 }
3275 }
3276 *qp = scm_i_normbig (q);
3277 *rp = SCM_I_MAKINUM (rr);
3278 }
3279 return;
3280 }
3281 else if (SCM_BIGP (y))
3282 return scm_i_bigint_centered_divide (x, y, qp, rp);
3283 else if (SCM_REALP (y))
3284 return scm_i_inexact_centered_divide
3285 (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
3286 else if (SCM_FRACTIONP (y))
3287 return scm_i_exact_rational_centered_divide (x, y, qp, rp);
3288 else
3289 return two_valued_wta_dispatch_2
3290 (g_scm_centered_divide, x, y, SCM_ARG2,
3291 s_scm_centered_divide, qp, rp);
3292 }
3293 else if (SCM_REALP (x))
3294 {
3295 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
3296 SCM_BIGP (y) || SCM_FRACTIONP (y))
3297 return scm_i_inexact_centered_divide
3298 (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
3299 else
3300 return two_valued_wta_dispatch_2
3301 (g_scm_centered_divide, x, y, SCM_ARG2,
3302 s_scm_centered_divide, qp, rp);
3303 }
3304 else if (SCM_FRACTIONP (x))
3305 {
3306 if (SCM_REALP (y))
3307 return scm_i_inexact_centered_divide
3308 (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
3309 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
3310 return scm_i_exact_rational_centered_divide (x, y, qp, rp);
3311 else
3312 return two_valued_wta_dispatch_2
3313 (g_scm_centered_divide, x, y, SCM_ARG2,
3314 s_scm_centered_divide, qp, rp);
3315 }
3316 else
3317 return two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG1,
3318 s_scm_centered_divide, qp, rp);
3319}
3320
3321static void
3322scm_i_inexact_centered_divide (double x, double y, SCM *qp, SCM *rp)
3323{
3324 double q, r;
3325
3326 if (SCM_LIKELY (y > 0))
3327 q = floor (x/y + 0.5);
3328 else if (SCM_LIKELY (y < 0))
3329 q = ceil (x/y - 0.5);
3330 else if (y == 0)
3331 scm_num_overflow (s_scm_centered_divide); /* or return a NaN? */
3332 else
3333 q = guile_NaN;
3334 r = x - q * y;
00472a22
MW
3335 *qp = scm_i_from_double (q);
3336 *rp = scm_i_from_double (r);
8f9da340
MW
3337}
3338
3339/* Assumes that both x and y are bigints, though
3340 x might be able to fit into a fixnum. */
3341static void
3342scm_i_bigint_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
3343{
3344 SCM q, r, min_r;
3345
3346 /* Note that x might be small enough to fit into a
3347 fixnum, so we must not let it escape into the wild */
3348 q = scm_i_mkbig ();
3349 r = scm_i_mkbig ();
3350
3351 /* min_r will eventually become -abs(y/2) */
3352 min_r = scm_i_mkbig ();
3353 mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
3354 SCM_I_BIG_MPZ (y), 1);
3355
3356 /* Arrange for rr to initially be non-positive,
3357 because that simplifies the test to see
3358 if it is within the needed bounds. */
3359 if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
3360 {
3361 mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
3362 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3363 mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
3364 if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
3365 {
3366 mpz_sub_ui (SCM_I_BIG_MPZ (q),
3367 SCM_I_BIG_MPZ (q), 1);
3368 mpz_add (SCM_I_BIG_MPZ (r),
3369 SCM_I_BIG_MPZ (r),
3370 SCM_I_BIG_MPZ (y));
3371 }
3372 }
3373 else
3374 {
3375 mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
3376 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3377 if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
3378 {
3379 mpz_add_ui (SCM_I_BIG_MPZ (q),
3380 SCM_I_BIG_MPZ (q), 1);
3381 mpz_sub (SCM_I_BIG_MPZ (r),
3382 SCM_I_BIG_MPZ (r),
3383 SCM_I_BIG_MPZ (y));
3384 }
3385 }
3386 scm_remember_upto_here_2 (x, y);
3387 *qp = scm_i_normbig (q);
3388 *rp = scm_i_normbig (r);
3389}
3390
3391static void
3392scm_i_exact_rational_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
3393{
3394 SCM r1;
3395 SCM xd = scm_denominator (x);
3396 SCM yd = scm_denominator (y);
3397
3398 scm_centered_divide (scm_product (scm_numerator (x), yd),
3399 scm_product (scm_numerator (y), xd),
3400 qp, &r1);
3401 *rp = scm_divide (r1, scm_product (xd, yd));
3402}
3403
3404static SCM scm_i_inexact_round_quotient (double x, double y);
3405static SCM scm_i_bigint_round_quotient (SCM x, SCM y);
3406static SCM scm_i_exact_rational_round_quotient (SCM x, SCM y);
3407
3408SCM_PRIMITIVE_GENERIC (scm_round_quotient, "round-quotient", 2, 0, 0,
ff62c168 3409 (SCM x, SCM y),
8f9da340
MW
3410 "Return @math{@var{x} / @var{y}} to the nearest integer,\n"
3411 "with ties going to the nearest even integer.\n"
ff62c168 3412 "@lisp\n"
8f9da340
MW
3413 "(round-quotient 123 10) @result{} 12\n"
3414 "(round-quotient 123 -10) @result{} -12\n"
3415 "(round-quotient -123 10) @result{} -12\n"
3416 "(round-quotient -123 -10) @result{} 12\n"
3417 "(round-quotient 125 10) @result{} 12\n"
3418 "(round-quotient 127 10) @result{} 13\n"
3419 "(round-quotient 135 10) @result{} 14\n"
3420 "(round-quotient -123.2 -63.5) @result{} 2.0\n"
3421 "(round-quotient 16/3 -10/7) @result{} -4\n"
ff62c168 3422 "@end lisp")
8f9da340 3423#define FUNC_NAME s_scm_round_quotient
ff62c168
MW
3424{
3425 if (SCM_LIKELY (SCM_I_INUMP (x)))
3426 {
4a46bc2a 3427 scm_t_inum xx = SCM_I_INUM (x);
ff62c168
MW
3428 if (SCM_LIKELY (SCM_I_INUMP (y)))
3429 {
3430 scm_t_inum yy = SCM_I_INUM (y);
3431 if (SCM_UNLIKELY (yy == 0))
8f9da340 3432 scm_num_overflow (s_scm_round_quotient);
ff62c168
MW
3433 else
3434 {
ff62c168 3435 scm_t_inum qq = xx / yy;
4a46bc2a 3436 scm_t_inum rr = xx % yy;
8f9da340
MW
3437 scm_t_inum ay = yy;
3438 scm_t_inum r2 = 2 * rr;
3439
3440 if (SCM_LIKELY (yy < 0))
ff62c168 3441 {
8f9da340
MW
3442 ay = -ay;
3443 r2 = -r2;
3444 }
3445
3446 if (qq & 1L)
3447 {
3448 if (r2 >= ay)
3449 qq++;
3450 else if (r2 <= -ay)
3451 qq--;
ff62c168
MW
3452 }
3453 else
3454 {
8f9da340
MW
3455 if (r2 > ay)
3456 qq++;
3457 else if (r2 < -ay)
3458 qq--;
ff62c168 3459 }
4a46bc2a
MW
3460 if (SCM_LIKELY (SCM_FIXABLE (qq)))
3461 return SCM_I_MAKINUM (qq);
3462 else
3463 return scm_i_inum2big (qq);
ff62c168
MW
3464 }
3465 }
3466 else if (SCM_BIGP (y))
3467 {
3468 /* Pass a denormalized bignum version of x (even though it
8f9da340
MW
3469 can fit in a fixnum) to scm_i_bigint_round_quotient */
3470 return scm_i_bigint_round_quotient (scm_i_long2big (xx), y);
ff62c168
MW
3471 }
3472 else if (SCM_REALP (y))
8f9da340 3473 return scm_i_inexact_round_quotient (xx, SCM_REAL_VALUE (y));
ff62c168 3474 else if (SCM_FRACTIONP (y))
8f9da340 3475 return scm_i_exact_rational_round_quotient (x, y);
ff62c168 3476 else
fa075d40
AW
3477 return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
3478 s_scm_round_quotient);
ff62c168
MW
3479 }
3480 else if (SCM_BIGP (x))
3481 {
3482 if (SCM_LIKELY (SCM_I_INUMP (y)))
3483 {
3484 scm_t_inum yy = SCM_I_INUM (y);
3485 if (SCM_UNLIKELY (yy == 0))
8f9da340 3486 scm_num_overflow (s_scm_round_quotient);
4a46bc2a
MW
3487 else if (SCM_UNLIKELY (yy == 1))
3488 return x;
ff62c168
MW
3489 else
3490 {
3491 SCM q = scm_i_mkbig ();
3492 scm_t_inum rr;
8f9da340
MW
3493 int needs_adjustment;
3494
ff62c168
MW
3495 if (yy > 0)
3496 {
8f9da340
MW
3497 rr = mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q),
3498 SCM_I_BIG_MPZ (x), yy);
3499 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3500 needs_adjustment = (2*rr >= yy);
3501 else
3502 needs_adjustment = (2*rr > yy);
ff62c168
MW
3503 }
3504 else
3505 {
3506 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
3507 SCM_I_BIG_MPZ (x), -yy);
ff62c168 3508 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
8f9da340
MW
3509 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3510 needs_adjustment = (2*rr <= yy);
3511 else
3512 needs_adjustment = (2*rr < yy);
ff62c168 3513 }
8f9da340
MW
3514 scm_remember_upto_here_1 (x);
3515 if (needs_adjustment)
3516 mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
ff62c168
MW
3517 return scm_i_normbig (q);
3518 }
3519 }
3520 else if (SCM_BIGP (y))
8f9da340 3521 return scm_i_bigint_round_quotient (x, y);
ff62c168 3522 else if (SCM_REALP (y))
8f9da340 3523 return scm_i_inexact_round_quotient
ff62c168
MW
3524 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
3525 else if (SCM_FRACTIONP (y))
8f9da340 3526 return scm_i_exact_rational_round_quotient (x, y);
ff62c168 3527 else
fa075d40
AW
3528 return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
3529 s_scm_round_quotient);
ff62c168
MW
3530 }
3531 else if (SCM_REALP (x))
3532 {
3533 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
3534 SCM_BIGP (y) || SCM_FRACTIONP (y))
8f9da340 3535 return scm_i_inexact_round_quotient
ff62c168
MW
3536 (SCM_REAL_VALUE (x), scm_to_double (y));
3537 else
fa075d40
AW
3538 return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
3539 s_scm_round_quotient);
ff62c168
MW
3540 }
3541 else if (SCM_FRACTIONP (x))
3542 {
3543 if (SCM_REALP (y))
8f9da340 3544 return scm_i_inexact_round_quotient
ff62c168 3545 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
03ddd15b 3546 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
8f9da340 3547 return scm_i_exact_rational_round_quotient (x, y);
ff62c168 3548 else
fa075d40
AW
3549 return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2,
3550 s_scm_round_quotient);
ff62c168
MW
3551 }
3552 else
fa075d40
AW
3553 return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG1,
3554 s_scm_round_quotient);
ff62c168
MW
3555}
3556#undef FUNC_NAME
3557
3558static SCM
8f9da340 3559scm_i_inexact_round_quotient (double x, double y)
ff62c168 3560{
8f9da340
MW
3561 if (SCM_UNLIKELY (y == 0))
3562 scm_num_overflow (s_scm_round_quotient); /* or return a NaN? */
ff62c168 3563 else
00472a22 3564 return scm_i_from_double (scm_c_round (x / y));
ff62c168
MW
3565}
3566
3567/* Assumes that both x and y are bigints, though
3568 x might be able to fit into a fixnum. */
3569static SCM
8f9da340 3570scm_i_bigint_round_quotient (SCM x, SCM y)
ff62c168 3571{
8f9da340
MW
3572 SCM q, r, r2;
3573 int cmp, needs_adjustment;
ff62c168
MW
3574
3575 /* Note that x might be small enough to fit into a
3576 fixnum, so we must not let it escape into the wild */
3577 q = scm_i_mkbig ();
3578 r = scm_i_mkbig ();
8f9da340 3579 r2 = scm_i_mkbig ();
ff62c168 3580
8f9da340
MW
3581 mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
3582 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3583 mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1); /* r2 = 2*r */
3584 scm_remember_upto_here_2 (x, r);
ff62c168 3585
8f9da340
MW
3586 cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
3587 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3588 needs_adjustment = (cmp >= 0);
ff62c168 3589 else
8f9da340
MW
3590 needs_adjustment = (cmp > 0);
3591 scm_remember_upto_here_2 (r2, y);
3592
3593 if (needs_adjustment)
3594 mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
3595
ff62c168
MW
3596 return scm_i_normbig (q);
3597}
3598
ff62c168 3599static SCM
8f9da340 3600scm_i_exact_rational_round_quotient (SCM x, SCM y)
ff62c168 3601{
8f9da340 3602 return scm_round_quotient
03ddd15b
MW
3603 (scm_product (scm_numerator (x), scm_denominator (y)),
3604 scm_product (scm_numerator (y), scm_denominator (x)));
ff62c168
MW
3605}
3606
8f9da340
MW
3607static SCM scm_i_inexact_round_remainder (double x, double y);
3608static SCM scm_i_bigint_round_remainder (SCM x, SCM y);
3609static SCM scm_i_exact_rational_round_remainder (SCM x, SCM y);
ff62c168 3610
8f9da340 3611SCM_PRIMITIVE_GENERIC (scm_round_remainder, "round-remainder", 2, 0, 0,
ff62c168
MW
3612 (SCM x, SCM y),
3613 "Return the real number @var{r} such that\n"
8f9da340
MW
3614 "@math{@var{x} = @var{q}*@var{y} + @var{r}}, where\n"
3615 "@var{q} is @math{@var{x} / @var{y}} rounded to the\n"
3616 "nearest integer, with ties going to the nearest\n"
3617 "even integer.\n"
ff62c168 3618 "@lisp\n"
8f9da340
MW
3619 "(round-remainder 123 10) @result{} 3\n"
3620 "(round-remainder 123 -10) @result{} 3\n"
3621 "(round-remainder -123 10) @result{} -3\n"
3622 "(round-remainder -123 -10) @result{} -3\n"
3623 "(round-remainder 125 10) @result{} 5\n"
3624 "(round-remainder 127 10) @result{} -3\n"
3625 "(round-remainder 135 10) @result{} -5\n"
3626 "(round-remainder -123.2 -63.5) @result{} 3.8\n"
3627 "(round-remainder 16/3 -10/7) @result{} -8/21\n"
ff62c168 3628 "@end lisp")
8f9da340 3629#define FUNC_NAME s_scm_round_remainder
ff62c168
MW
3630{
3631 if (SCM_LIKELY (SCM_I_INUMP (x)))
3632 {
4a46bc2a 3633 scm_t_inum xx = SCM_I_INUM (x);
ff62c168
MW
3634 if (SCM_LIKELY (SCM_I_INUMP (y)))
3635 {
3636 scm_t_inum yy = SCM_I_INUM (y);
3637 if (SCM_UNLIKELY (yy == 0))
8f9da340 3638 scm_num_overflow (s_scm_round_remainder);
ff62c168
MW
3639 else
3640 {
8f9da340 3641 scm_t_inum qq = xx / yy;
ff62c168 3642 scm_t_inum rr = xx % yy;
8f9da340
MW
3643 scm_t_inum ay = yy;
3644 scm_t_inum r2 = 2 * rr;
3645
3646 if (SCM_LIKELY (yy < 0))
ff62c168 3647 {
8f9da340
MW
3648 ay = -ay;
3649 r2 = -r2;
3650 }
3651
3652 if (qq & 1L)
3653 {
3654 if (r2 >= ay)
3655 rr -= yy;
3656 else if (r2 <= -ay)
3657 rr += yy;
ff62c168
MW
3658 }
3659 else
3660 {
8f9da340
MW
3661 if (r2 > ay)
3662 rr -= yy;
3663 else if (r2 < -ay)
3664 rr += yy;
ff62c168
MW
3665 }
3666 return SCM_I_MAKINUM (rr);
3667 }
3668 }
3669 else if (SCM_BIGP (y))
3670 {
3671 /* Pass a denormalized bignum version of x (even though it
8f9da340
MW
3672 can fit in a fixnum) to scm_i_bigint_round_remainder */
3673 return scm_i_bigint_round_remainder
3674 (scm_i_long2big (xx), y);
ff62c168
MW
3675 }
3676 else if (SCM_REALP (y))
8f9da340 3677 return scm_i_inexact_round_remainder (xx, SCM_REAL_VALUE (y));
ff62c168 3678 else if (SCM_FRACTIONP (y))
8f9da340 3679 return scm_i_exact_rational_round_remainder (x, y);
ff62c168 3680 else
fa075d40
AW
3681 return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
3682 s_scm_round_remainder);
ff62c168
MW
3683 }
3684 else if (SCM_BIGP (x))
3685 {
3686 if (SCM_LIKELY (SCM_I_INUMP (y)))
3687 {
3688 scm_t_inum yy = SCM_I_INUM (y);
3689 if (SCM_UNLIKELY (yy == 0))
8f9da340 3690 scm_num_overflow (s_scm_round_remainder);
ff62c168
MW
3691 else
3692 {
8f9da340 3693 SCM q = scm_i_mkbig ();
ff62c168 3694 scm_t_inum rr;
8f9da340
MW
3695 int needs_adjustment;
3696
ff62c168
MW
3697 if (yy > 0)
3698 {
8f9da340
MW
3699 rr = mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q),
3700 SCM_I_BIG_MPZ (x), yy);
3701 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3702 needs_adjustment = (2*rr >= yy);
3703 else
3704 needs_adjustment = (2*rr > yy);
ff62c168
MW
3705 }
3706 else
3707 {
8f9da340
MW
3708 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
3709 SCM_I_BIG_MPZ (x), -yy);
3710 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3711 needs_adjustment = (2*rr <= yy);
3712 else
3713 needs_adjustment = (2*rr < yy);
ff62c168 3714 }
8f9da340
MW
3715 scm_remember_upto_here_2 (x, q);
3716 if (needs_adjustment)
3717 rr -= yy;
ff62c168
MW
3718 return SCM_I_MAKINUM (rr);
3719 }
3720 }
3721 else if (SCM_BIGP (y))
8f9da340 3722 return scm_i_bigint_round_remainder (x, y);
ff62c168 3723 else if (SCM_REALP (y))
8f9da340 3724 return scm_i_inexact_round_remainder
ff62c168
MW
3725 (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
3726 else if (SCM_FRACTIONP (y))
8f9da340 3727 return scm_i_exact_rational_round_remainder (x, y);
ff62c168 3728 else
fa075d40
AW
3729 return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
3730 s_scm_round_remainder);
ff62c168
MW
3731 }
3732 else if (SCM_REALP (x))
3733 {
3734 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
3735 SCM_BIGP (y) || SCM_FRACTIONP (y))
8f9da340 3736 return scm_i_inexact_round_remainder
ff62c168
MW
3737 (SCM_REAL_VALUE (x), scm_to_double (y));
3738 else
fa075d40
AW
3739 return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
3740 s_scm_round_remainder);
ff62c168
MW
3741 }
3742 else if (SCM_FRACTIONP (x))
3743 {
3744 if (SCM_REALP (y))
8f9da340 3745 return scm_i_inexact_round_remainder
ff62c168 3746 (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
03ddd15b 3747 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
8f9da340 3748 return scm_i_exact_rational_round_remainder (x, y);
ff62c168 3749 else
fa075d40
AW
3750 return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2,
3751 s_scm_round_remainder);
ff62c168
MW
3752 }
3753 else
fa075d40
AW
3754 return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG1,
3755 s_scm_round_remainder);
ff62c168
MW
3756}
3757#undef FUNC_NAME
3758
3759static SCM
8f9da340 3760scm_i_inexact_round_remainder (double x, double y)
ff62c168 3761{
ff62c168
MW
3762 /* Although it would be more efficient to use fmod here, we can't
3763 because it would in some cases produce results inconsistent with
8f9da340 3764 scm_i_inexact_round_quotient, such that x != r + q * y (not even
ff62c168 3765 close). In particular, when x-y/2 is very close to a multiple of
8f9da340
MW
3766 y, then r might be either -abs(y/2) or abs(y/2), but those two
3767 cases must correspond to different choices of q. If quotient
ff62c168 3768 chooses one and remainder chooses the other, it would be bad. */
8f9da340
MW
3769
3770 if (SCM_UNLIKELY (y == 0))
3771 scm_num_overflow (s_scm_round_remainder); /* or return a NaN? */
ff62c168 3772 else
8f9da340
MW
3773 {
3774 double q = scm_c_round (x / y);
00472a22 3775 return scm_i_from_double (x - q * y);
8f9da340 3776 }
ff62c168
MW
3777}
3778
3779/* Assumes that both x and y are bigints, though
3780 x might be able to fit into a fixnum. */
3781static SCM
8f9da340 3782scm_i_bigint_round_remainder (SCM x, SCM y)
ff62c168 3783{
8f9da340
MW
3784 SCM q, r, r2;
3785 int cmp, needs_adjustment;
ff62c168
MW
3786
3787 /* Note that x might be small enough to fit into a
3788 fixnum, so we must not let it escape into the wild */
8f9da340 3789 q = scm_i_mkbig ();
ff62c168 3790 r = scm_i_mkbig ();
8f9da340 3791 r2 = scm_i_mkbig ();
ff62c168 3792
8f9da340
MW
3793 mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
3794 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3795 scm_remember_upto_here_1 (x);
3796 mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1); /* r2 = 2*r */
ff62c168 3797
8f9da340
MW
3798 cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
3799 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3800 needs_adjustment = (cmp >= 0);
ff62c168 3801 else
8f9da340
MW
3802 needs_adjustment = (cmp > 0);
3803 scm_remember_upto_here_2 (q, r2);
3804
3805 if (needs_adjustment)
3806 mpz_sub (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y));
3807
3808 scm_remember_upto_here_1 (y);
ff62c168
MW
3809 return scm_i_normbig (r);
3810}
3811
ff62c168 3812static SCM
8f9da340 3813scm_i_exact_rational_round_remainder (SCM x, SCM y)
ff62c168 3814{
03ddd15b
MW
3815 SCM xd = scm_denominator (x);
3816 SCM yd = scm_denominator (y);
8f9da340
MW
3817 SCM r1 = scm_round_remainder (scm_product (scm_numerator (x), yd),
3818 scm_product (scm_numerator (y), xd));
03ddd15b 3819 return scm_divide (r1, scm_product (xd, yd));
ff62c168
MW
3820}
3821
3822
8f9da340
MW
3823static void scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp);
3824static void scm_i_bigint_round_divide (SCM x, SCM y, SCM *qp, SCM *rp);
3825static void scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp);
ff62c168 3826
8f9da340 3827SCM_PRIMITIVE_GENERIC (scm_i_round_divide, "round/", 2, 0, 0,
ff62c168
MW
3828 (SCM x, SCM y),
3829 "Return the integer @var{q} and the real number @var{r}\n"
3830 "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
8f9da340
MW
3831 "and @var{q} is @math{@var{x} / @var{y}} rounded to the\n"
3832 "nearest integer, with ties going to the nearest even integer.\n"
ff62c168 3833 "@lisp\n"
8f9da340
MW
3834 "(round/ 123 10) @result{} 12 and 3\n"
3835 "(round/ 123 -10) @result{} -12 and 3\n"
3836 "(round/ -123 10) @result{} -12 and -3\n"
3837 "(round/ -123 -10) @result{} 12 and -3\n"
3838 "(round/ 125 10) @result{} 12 and 5\n"
3839 "(round/ 127 10) @result{} 13 and -3\n"
3840 "(round/ 135 10) @result{} 14 and -5\n"
3841 "(round/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
3842 "(round/ 16/3 -10/7) @result{} -4 and -8/21\n"
ff62c168 3843 "@end lisp")
8f9da340 3844#define FUNC_NAME s_scm_i_round_divide
5fbf680b
MW
3845{
3846 SCM q, r;
3847
8f9da340 3848 scm_round_divide(x, y, &q, &r);
5fbf680b
MW
3849 return scm_values (scm_list_2 (q, r));
3850}
3851#undef FUNC_NAME
3852
8f9da340
MW
3853#define s_scm_round_divide s_scm_i_round_divide
3854#define g_scm_round_divide g_scm_i_round_divide
5fbf680b
MW
3855
3856void
8f9da340 3857scm_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
ff62c168
MW
3858{
3859 if (SCM_LIKELY (SCM_I_INUMP (x)))
3860 {
4a46bc2a 3861 scm_t_inum xx = SCM_I_INUM (x);
ff62c168
MW
3862 if (SCM_LIKELY (SCM_I_INUMP (y)))
3863 {
3864 scm_t_inum yy = SCM_I_INUM (y);
3865 if (SCM_UNLIKELY (yy == 0))
8f9da340 3866 scm_num_overflow (s_scm_round_divide);
ff62c168
MW
3867 else
3868 {
ff62c168 3869 scm_t_inum qq = xx / yy;
4a46bc2a 3870 scm_t_inum rr = xx % yy;
8f9da340
MW
3871 scm_t_inum ay = yy;
3872 scm_t_inum r2 = 2 * rr;
3873
3874 if (SCM_LIKELY (yy < 0))
ff62c168 3875 {
8f9da340
MW
3876 ay = -ay;
3877 r2 = -r2;
3878 }
3879
3880 if (qq & 1L)
3881 {
3882 if (r2 >= ay)
3883 { qq++; rr -= yy; }
3884 else if (r2 <= -ay)
3885 { qq--; rr += yy; }
ff62c168
MW
3886 }
3887 else
3888 {
8f9da340
MW
3889 if (r2 > ay)
3890 { qq++; rr -= yy; }
3891 else if (r2 < -ay)
3892 { qq--; rr += yy; }
ff62c168 3893 }
4a46bc2a 3894 if (SCM_LIKELY (SCM_FIXABLE (qq)))
5fbf680b 3895 *qp = SCM_I_MAKINUM (qq);
4a46bc2a 3896 else
5fbf680b
MW
3897 *qp = scm_i_inum2big (qq);
3898 *rp = SCM_I_MAKINUM (rr);
ff62c168 3899 }
5fbf680b 3900 return;
ff62c168
MW
3901 }
3902 else if (SCM_BIGP (y))
3903 {
3904 /* Pass a denormalized bignum version of x (even though it
8f9da340
MW
3905 can fit in a fixnum) to scm_i_bigint_round_divide */
3906 return scm_i_bigint_round_divide
3907 (scm_i_long2big (SCM_I_INUM (x)), y, qp, rp);
ff62c168
MW
3908 }
3909 else if (SCM_REALP (y))
8f9da340 3910 return scm_i_inexact_round_divide (xx, SCM_REAL_VALUE (y), qp, rp);
ff62c168 3911 else if (SCM_FRACTIONP (y))
8f9da340 3912 return scm_i_exact_rational_round_divide (x, y, qp, rp);
ff62c168 3913 else
8f9da340
MW
3914 return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
3915 s_scm_round_divide, qp, rp);
ff62c168
MW
3916 }
3917 else if (SCM_BIGP (x))
3918 {
3919 if (SCM_LIKELY (SCM_I_INUMP (y)))
3920 {
3921 scm_t_inum yy = SCM_I_INUM (y);
3922 if (SCM_UNLIKELY (yy == 0))
8f9da340 3923 scm_num_overflow (s_scm_round_divide);
ff62c168
MW
3924 else
3925 {
3926 SCM q = scm_i_mkbig ();
3927 scm_t_inum rr;
8f9da340
MW
3928 int needs_adjustment;
3929
ff62c168
MW
3930 if (yy > 0)
3931 {
8f9da340
MW
3932 rr = mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q),
3933 SCM_I_BIG_MPZ (x), yy);
3934 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3935 needs_adjustment = (2*rr >= yy);
3936 else
3937 needs_adjustment = (2*rr > yy);
ff62c168
MW
3938 }
3939 else
3940 {
3941 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
3942 SCM_I_BIG_MPZ (x), -yy);
ff62c168 3943 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
8f9da340
MW
3944 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
3945 needs_adjustment = (2*rr <= yy);
3946 else
3947 needs_adjustment = (2*rr < yy);
3948 }
3949 scm_remember_upto_here_1 (x);
3950 if (needs_adjustment)
3951 {
3952 mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
3953 rr -= yy;
ff62c168 3954 }
5fbf680b
MW
3955 *qp = scm_i_normbig (q);
3956 *rp = SCM_I_MAKINUM (rr);
ff62c168 3957 }
5fbf680b 3958 return;
ff62c168
MW
3959 }
3960 else if (SCM_BIGP (y))
8f9da340 3961 return scm_i_bigint_round_divide (x, y, qp, rp);
ff62c168 3962 else if (SCM_REALP (y))
8f9da340 3963 return scm_i_inexact_round_divide
5fbf680b 3964 (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
ff62c168 3965 else if (SCM_FRACTIONP (y))
8f9da340 3966 return scm_i_exact_rational_round_divide (x, y, qp, rp);
ff62c168 3967 else
8f9da340
MW
3968 return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
3969 s_scm_round_divide, qp, rp);
ff62c168
MW
3970 }
3971 else if (SCM_REALP (x))
3972 {
3973 if (SCM_REALP (y) || SCM_I_INUMP (y) ||
3974 SCM_BIGP (y) || SCM_FRACTIONP (y))
8f9da340 3975 return scm_i_inexact_round_divide
5fbf680b 3976 (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
03ddd15b 3977 else
8f9da340
MW
3978 return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
3979 s_scm_round_divide, qp, rp);
ff62c168
MW
3980 }
3981 else if (SCM_FRACTIONP (x))
3982 {
3983 if (SCM_REALP (y))
8f9da340 3984 return scm_i_inexact_round_divide
5fbf680b 3985 (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
03ddd15b 3986 else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
8f9da340 3987 return scm_i_exact_rational_round_divide (x, y, qp, rp);
ff62c168 3988 else
8f9da340
MW
3989 return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
3990 s_scm_round_divide, qp, rp);
ff62c168
MW
3991 }
3992 else
8f9da340
MW
3993 return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG1,
3994 s_scm_round_divide, qp, rp);
ff62c168 3995}
ff62c168 3996
5fbf680b 3997static void
8f9da340 3998scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp)
ff62c168 3999{
8f9da340
MW
4000 if (SCM_UNLIKELY (y == 0))
4001 scm_num_overflow (s_scm_round_divide); /* or return a NaN? */
ff62c168 4002 else
8f9da340
MW
4003 {
4004 double q = scm_c_round (x / y);
4005 double r = x - q * y;
00472a22
MW
4006 *qp = scm_i_from_double (q);
4007 *rp = scm_i_from_double (r);
8f9da340 4008 }
ff62c168
MW
4009}
4010
4011/* Assumes that both x and y are bigints, though
4012 x might be able to fit into a fixnum. */
5fbf680b 4013static void
8f9da340 4014scm_i_bigint_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
ff62c168 4015{
8f9da340
MW
4016 SCM q, r, r2;
4017 int cmp, needs_adjustment;
ff62c168
MW
4018
4019 /* Note that x might be small enough to fit into a
4020 fixnum, so we must not let it escape into the wild */
4021 q = scm_i_mkbig ();
4022 r = scm_i_mkbig ();
8f9da340 4023 r2 = scm_i_mkbig ();
ff62c168 4024
8f9da340
MW
4025 mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
4026 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
4027 scm_remember_upto_here_1 (x);
4028 mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1); /* r2 = 2*r */
ff62c168 4029
8f9da340
MW
4030 cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
4031 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
4032 needs_adjustment = (cmp >= 0);
ff62c168 4033 else
8f9da340
MW
4034 needs_adjustment = (cmp > 0);
4035
4036 if (needs_adjustment)
ff62c168 4037 {
8f9da340
MW
4038 mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
4039 mpz_sub (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y));
ff62c168 4040 }
8f9da340
MW
4041
4042 scm_remember_upto_here_2 (r2, y);
5fbf680b
MW
4043 *qp = scm_i_normbig (q);
4044 *rp = scm_i_normbig (r);
ff62c168
MW
4045}
4046
5fbf680b 4047static void
8f9da340 4048scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
ff62c168 4049{
03ddd15b
MW
4050 SCM r1;
4051 SCM xd = scm_denominator (x);
4052 SCM yd = scm_denominator (y);
4053
8f9da340
MW
4054 scm_round_divide (scm_product (scm_numerator (x), yd),
4055 scm_product (scm_numerator (y), xd),
4056 qp, &r1);
03ddd15b 4057 *rp = scm_divide (r1, scm_product (xd, yd));
ff62c168
MW
4058}
4059
4060
78d3deb1
AW
4061SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
4062 (SCM x, SCM y, SCM rest),
4063 "Return the greatest common divisor of all parameter values.\n"
4064 "If called without arguments, 0 is returned.")
4065#define FUNC_NAME s_scm_i_gcd
4066{
4067 while (!scm_is_null (rest))
4068 { x = scm_gcd (x, y);
4069 y = scm_car (rest);
4070 rest = scm_cdr (rest);
4071 }
4072 return scm_gcd (x, y);
4073}
4074#undef FUNC_NAME
4075
4076#define s_gcd s_scm_i_gcd
4077#define g_gcd g_scm_i_gcd
4078
0f2d19dd 4079SCM
6e8d25a6 4080scm_gcd (SCM x, SCM y)
0f2d19dd 4081{
a2dead1b 4082 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
1dd79792 4083 return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
ca46fb90 4084
a2dead1b 4085 if (SCM_LIKELY (SCM_I_INUMP (x)))
ca46fb90 4086 {
a2dead1b 4087 if (SCM_LIKELY (SCM_I_INUMP (y)))
ca46fb90 4088 {
e25f3727
AW
4089 scm_t_inum xx = SCM_I_INUM (x);
4090 scm_t_inum yy = SCM_I_INUM (y);
4091 scm_t_inum u = xx < 0 ? -xx : xx;
4092 scm_t_inum v = yy < 0 ? -yy : yy;
4093 scm_t_inum result;
a2dead1b 4094 if (SCM_UNLIKELY (xx == 0))
0aacf84e 4095 result = v;
a2dead1b 4096 else if (SCM_UNLIKELY (yy == 0))
0aacf84e
MD
4097 result = u;
4098 else
4099 {
a2dead1b 4100 int k = 0;
0aacf84e 4101 /* Determine a common factor 2^k */
a2dead1b 4102 while (((u | v) & 1) == 0)
0aacf84e 4103 {
a2dead1b 4104 k++;
0aacf84e
MD
4105 u >>= 1;
4106 v >>= 1;
4107 }
4108 /* Now, any factor 2^n can be eliminated */
a2dead1b
MW
4109 if ((u & 1) == 0)
4110 while ((u & 1) == 0)
4111 u >>= 1;
0aacf84e 4112 else
a2dead1b
MW
4113 while ((v & 1) == 0)
4114 v >>= 1;
4115 /* Both u and v are now odd. Subtract the smaller one
4116 from the larger one to produce an even number, remove
4117 more factors of two, and repeat. */
4118 while (u != v)
0aacf84e 4119 {
a2dead1b
MW
4120 if (u > v)
4121 {
4122 u -= v;
4123 while ((u & 1) == 0)
4124 u >>= 1;
4125 }
4126 else
4127 {
4128 v -= u;
4129 while ((v & 1) == 0)
4130 v >>= 1;
4131 }
0aacf84e 4132 }
a2dead1b 4133 result = u << k;
0aacf84e
MD
4134 }
4135 return (SCM_POSFIXABLE (result)
d956fa6f 4136 ? SCM_I_MAKINUM (result)
e25f3727 4137 : scm_i_inum2big (result));
ca46fb90
RB
4138 }
4139 else if (SCM_BIGP (y))
4140 {
0bff4dce
KR
4141 SCM_SWAP (x, y);
4142 goto big_inum;
ca46fb90 4143 }
3bbca1f7
MW
4144 else if (SCM_REALP (y) && scm_is_integer (y))
4145 goto handle_inexacts;
ca46fb90 4146 else
fa075d40 4147 return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
f872b822 4148 }
ca46fb90
RB
4149 else if (SCM_BIGP (x))
4150 {
e11e83f3 4151 if (SCM_I_INUMP (y))
ca46fb90 4152 {
e25f3727
AW
4153 scm_t_bits result;
4154 scm_t_inum yy;
0bff4dce 4155 big_inum:
e11e83f3 4156 yy = SCM_I_INUM (y);
8c5b0afc
KR
4157 if (yy == 0)
4158 return scm_abs (x);
0aacf84e
MD
4159 if (yy < 0)
4160 yy = -yy;
ca46fb90
RB
4161 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
4162 scm_remember_upto_here_1 (x);
0aacf84e 4163 return (SCM_POSFIXABLE (result)
d956fa6f 4164 ? SCM_I_MAKINUM (result)
e25f3727 4165 : scm_from_unsigned_integer (result));
ca46fb90
RB
4166 }
4167 else if (SCM_BIGP (y))
4168 {
4169 SCM result = scm_i_mkbig ();
0aacf84e
MD
4170 mpz_gcd (SCM_I_BIG_MPZ (result),
4171 SCM_I_BIG_MPZ (x),
4172 SCM_I_BIG_MPZ (y));
4173 scm_remember_upto_here_2 (x, y);
ca46fb90
RB
4174 return scm_i_normbig (result);
4175 }
3bbca1f7
MW
4176 else if (SCM_REALP (y) && scm_is_integer (y))
4177 goto handle_inexacts;
4178 else
056e3470 4179 return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
3bbca1f7
MW
4180 }
4181 else if (SCM_REALP (x) && scm_is_integer (x))
4182 {
4183 if (SCM_I_INUMP (y) || SCM_BIGP (y)
4184 || (SCM_REALP (y) && scm_is_integer (y)))
4185 {
4186 handle_inexacts:
4187 return scm_exact_to_inexact (scm_gcd (scm_inexact_to_exact (x),
4188 scm_inexact_to_exact (y)));
4189 }
ca46fb90 4190 else
fa075d40 4191 return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
09fb7599 4192 }
ca46fb90 4193 else
fa075d40 4194 return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
0f2d19dd
JB
4195}
4196
78d3deb1
AW
4197SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
4198 (SCM x, SCM y, SCM rest),
4199 "Return the least common multiple of the arguments.\n"
4200 "If called without arguments, 1 is returned.")
4201#define FUNC_NAME s_scm_i_lcm
4202{
4203 while (!scm_is_null (rest))
4204 { x = scm_lcm (x, y);
4205 y = scm_car (rest);
4206 rest = scm_cdr (rest);
4207 }
4208 return scm_lcm (x, y);
4209}
4210#undef FUNC_NAME
4211
4212#define s_lcm s_scm_i_lcm
4213#define g_lcm g_scm_i_lcm
4214
0f2d19dd 4215SCM
6e8d25a6 4216scm_lcm (SCM n1, SCM n2)
0f2d19dd 4217{
3bbca1f7
MW
4218 if (SCM_UNLIKELY (SCM_UNBNDP (n2)))
4219 return SCM_UNBNDP (n1) ? SCM_INUM1 : scm_abs (n1);
09fb7599 4220
3bbca1f7 4221 if (SCM_LIKELY (SCM_I_INUMP (n1)))
ca46fb90 4222 {
3bbca1f7 4223 if (SCM_LIKELY (SCM_I_INUMP (n2)))
ca46fb90
RB
4224 {
4225 SCM d = scm_gcd (n1, n2);
bc36d050 4226 if (scm_is_eq (d, SCM_INUM0))
ca46fb90
RB
4227 return d;
4228 else
4229 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
4230 }
3bbca1f7 4231 else if (SCM_LIKELY (SCM_BIGP (n2)))
ca46fb90
RB
4232 {
4233 /* inum n1, big n2 */
4234 inumbig:
4235 {
4236 SCM result = scm_i_mkbig ();
e25f3727 4237 scm_t_inum nn1 = SCM_I_INUM (n1);
ca46fb90
RB
4238 if (nn1 == 0) return SCM_INUM0;
4239 if (nn1 < 0) nn1 = - nn1;
4240 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
4241 scm_remember_upto_here_1 (n2);
4242 return result;
4243 }
4244 }
3bbca1f7
MW
4245 else if (SCM_REALP (n2) && scm_is_integer (n2))
4246 goto handle_inexacts;
4247 else
902a4e77 4248 return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
ca46fb90 4249 }
3bbca1f7 4250 else if (SCM_LIKELY (SCM_BIGP (n1)))
ca46fb90
RB
4251 {
4252 /* big n1 */
e11e83f3 4253 if (SCM_I_INUMP (n2))
ca46fb90
RB
4254 {
4255 SCM_SWAP (n1, n2);
4256 goto inumbig;
4257 }
3bbca1f7 4258 else if (SCM_LIKELY (SCM_BIGP (n2)))
ca46fb90
RB
4259 {
4260 SCM result = scm_i_mkbig ();
4261 mpz_lcm(SCM_I_BIG_MPZ (result),
4262 SCM_I_BIG_MPZ (n1),
4263 SCM_I_BIG_MPZ (n2));
4264 scm_remember_upto_here_2(n1, n2);
4265 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
4266 return result;
4267 }
3bbca1f7
MW
4268 else if (SCM_REALP (n2) && scm_is_integer (n2))
4269 goto handle_inexacts;
4270 else
902a4e77 4271 return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
f872b822 4272 }
3bbca1f7
MW
4273 else if (SCM_REALP (n1) && scm_is_integer (n1))
4274 {
4275 if (SCM_I_INUMP (n2) || SCM_BIGP (n2)
4276 || (SCM_REALP (n2) && scm_is_integer (n2)))
4277 {
4278 handle_inexacts:
4279 return scm_exact_to_inexact (scm_lcm (scm_inexact_to_exact (n1),
4280 scm_inexact_to_exact (n2)));
4281 }
4282 else
902a4e77 4283 return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm);
f872b822 4284 }
3bbca1f7 4285 else
902a4e77 4286 return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG1, s_lcm);
0f2d19dd
JB
4287}
4288
8a525303
GB
4289/* Emulating 2's complement bignums with sign magnitude arithmetic:
4290
4291 Logand:
4292 X Y Result Method:
4293 (len)
4294 + + + x (map digit:logand X Y)
4295 + - + x (map digit:logand X (lognot (+ -1 Y)))
4296 - + + y (map digit:logand (lognot (+ -1 X)) Y)
4297 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
4298
4299 Logior:
4300 X Y Result Method:
4301
4302 + + + (map digit:logior X Y)
4303 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
4304 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
4305 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
4306
4307 Logxor:
4308 X Y Result Method:
4309
4310 + + + (map digit:logxor X Y)
4311 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
4312 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
4313 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
4314
4315 Logtest:
4316 X Y Result
4317
4318 + + (any digit:logand X Y)
4319 + - (any digit:logand X (lognot (+ -1 Y)))
4320 - + (any digit:logand (lognot (+ -1 X)) Y)
4321 - - #t
4322
4323*/
4324
78d3deb1
AW
4325SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
4326 (SCM x, SCM y, SCM rest),
4327 "Return the bitwise AND of the integer arguments.\n\n"
4328 "@lisp\n"
4329 "(logand) @result{} -1\n"
4330 "(logand 7) @result{} 7\n"
4331 "(logand #b111 #b011 #b001) @result{} 1\n"
4332 "@end lisp")
4333#define FUNC_NAME s_scm_i_logand
4334{
4335 while (!scm_is_null (rest))
4336 { x = scm_logand (x, y);
4337 y = scm_car (rest);
4338 rest = scm_cdr (rest);
4339 }
4340 return scm_logand (x, y);
4341}
4342#undef FUNC_NAME
4343
4344#define s_scm_logand s_scm_i_logand
4345
4346SCM scm_logand (SCM n1, SCM n2)
1bbd0b84 4347#define FUNC_NAME s_scm_logand
0f2d19dd 4348{
e25f3727 4349 scm_t_inum nn1;
9a00c9fc 4350
0aacf84e
MD
4351 if (SCM_UNBNDP (n2))
4352 {
4353 if (SCM_UNBNDP (n1))
d956fa6f 4354 return SCM_I_MAKINUM (-1);
0aacf84e
MD
4355 else if (!SCM_NUMBERP (n1))
4356 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
4357 else if (SCM_NUMBERP (n1))
4358 return n1;
4359 else
4360 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 4361 }
09fb7599 4362
e11e83f3 4363 if (SCM_I_INUMP (n1))
0aacf84e 4364 {
e11e83f3
MV
4365 nn1 = SCM_I_INUM (n1);
4366 if (SCM_I_INUMP (n2))
0aacf84e 4367 {
e25f3727 4368 scm_t_inum nn2 = SCM_I_INUM (n2);
d956fa6f 4369 return SCM_I_MAKINUM (nn1 & nn2);
0aacf84e
MD
4370 }
4371 else if SCM_BIGP (n2)
4372 {
4373 intbig:
2e16a342 4374 if (nn1 == 0)
0aacf84e
MD
4375 return SCM_INUM0;
4376 {
4377 SCM result_z = scm_i_mkbig ();
4378 mpz_t nn1_z;
4379 mpz_init_set_si (nn1_z, nn1);
4380 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
4381 scm_remember_upto_here_1 (n2);
4382 mpz_clear (nn1_z);
4383 return scm_i_normbig (result_z);
4384 }
4385 }
4386 else
4387 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
4388 }
4389 else if (SCM_BIGP (n1))
4390 {
e11e83f3 4391 if (SCM_I_INUMP (n2))
0aacf84e
MD
4392 {
4393 SCM_SWAP (n1, n2);
e11e83f3 4394 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
4395 goto intbig;
4396 }
4397 else if (SCM_BIGP (n2))
4398 {
4399 SCM result_z = scm_i_mkbig ();
4400 mpz_and (SCM_I_BIG_MPZ (result_z),
4401 SCM_I_BIG_MPZ (n1),
4402 SCM_I_BIG_MPZ (n2));
4403 scm_remember_upto_here_2 (n1, n2);
4404 return scm_i_normbig (result_z);
4405 }
4406 else
4407 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 4408 }
0aacf84e 4409 else
09fb7599 4410 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 4411}
1bbd0b84 4412#undef FUNC_NAME
0f2d19dd 4413
09fb7599 4414
78d3deb1
AW
4415SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
4416 (SCM x, SCM y, SCM rest),
4417 "Return the bitwise OR of the integer arguments.\n\n"
4418 "@lisp\n"
4419 "(logior) @result{} 0\n"
4420 "(logior 7) @result{} 7\n"
4421 "(logior #b000 #b001 #b011) @result{} 3\n"
4422 "@end lisp")
4423#define FUNC_NAME s_scm_i_logior
4424{
4425 while (!scm_is_null (rest))
4426 { x = scm_logior (x, y);
4427 y = scm_car (rest);
4428 rest = scm_cdr (rest);
4429 }
4430 return scm_logior (x, y);
4431}
4432#undef FUNC_NAME
4433
4434#define s_scm_logior s_scm_i_logior
4435
4436SCM scm_logior (SCM n1, SCM n2)
1bbd0b84 4437#define FUNC_NAME s_scm_logior
0f2d19dd 4438{
e25f3727 4439 scm_t_inum nn1;
9a00c9fc 4440
0aacf84e
MD
4441 if (SCM_UNBNDP (n2))
4442 {
4443 if (SCM_UNBNDP (n1))
4444 return SCM_INUM0;
4445 else if (SCM_NUMBERP (n1))
4446 return n1;
4447 else
4448 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 4449 }
09fb7599 4450
e11e83f3 4451 if (SCM_I_INUMP (n1))
0aacf84e 4452 {
e11e83f3
MV
4453 nn1 = SCM_I_INUM (n1);
4454 if (SCM_I_INUMP (n2))
0aacf84e 4455 {
e11e83f3 4456 long nn2 = SCM_I_INUM (n2);
d956fa6f 4457 return SCM_I_MAKINUM (nn1 | nn2);
0aacf84e
MD
4458 }
4459 else if (SCM_BIGP (n2))
4460 {
4461 intbig:
4462 if (nn1 == 0)
4463 return n2;
4464 {
4465 SCM result_z = scm_i_mkbig ();
4466 mpz_t nn1_z;
4467 mpz_init_set_si (nn1_z, nn1);
4468 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
4469 scm_remember_upto_here_1 (n2);
4470 mpz_clear (nn1_z);
9806de0d 4471 return scm_i_normbig (result_z);
0aacf84e
MD
4472 }
4473 }
4474 else
4475 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
4476 }
4477 else if (SCM_BIGP (n1))
4478 {
e11e83f3 4479 if (SCM_I_INUMP (n2))
0aacf84e
MD
4480 {
4481 SCM_SWAP (n1, n2);
e11e83f3 4482 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
4483 goto intbig;
4484 }
4485 else if (SCM_BIGP (n2))
4486 {
4487 SCM result_z = scm_i_mkbig ();
4488 mpz_ior (SCM_I_BIG_MPZ (result_z),
4489 SCM_I_BIG_MPZ (n1),
4490 SCM_I_BIG_MPZ (n2));
4491 scm_remember_upto_here_2 (n1, n2);
9806de0d 4492 return scm_i_normbig (result_z);
0aacf84e
MD
4493 }
4494 else
4495 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 4496 }
0aacf84e 4497 else
09fb7599 4498 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 4499}
1bbd0b84 4500#undef FUNC_NAME
0f2d19dd 4501
09fb7599 4502
78d3deb1
AW
4503SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
4504 (SCM x, SCM y, SCM rest),
3c3db128
GH
4505 "Return the bitwise XOR of the integer arguments. A bit is\n"
4506 "set in the result if it is set in an odd number of arguments.\n"
4507 "@lisp\n"
4508 "(logxor) @result{} 0\n"
4509 "(logxor 7) @result{} 7\n"
4510 "(logxor #b000 #b001 #b011) @result{} 2\n"
4511 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1e6808ea 4512 "@end lisp")
78d3deb1
AW
4513#define FUNC_NAME s_scm_i_logxor
4514{
4515 while (!scm_is_null (rest))
4516 { x = scm_logxor (x, y);
4517 y = scm_car (rest);
4518 rest = scm_cdr (rest);
4519 }
4520 return scm_logxor (x, y);
4521}
4522#undef FUNC_NAME
4523
4524#define s_scm_logxor s_scm_i_logxor
4525
4526SCM scm_logxor (SCM n1, SCM n2)
1bbd0b84 4527#define FUNC_NAME s_scm_logxor
0f2d19dd 4528{
e25f3727 4529 scm_t_inum nn1;
9a00c9fc 4530
0aacf84e
MD
4531 if (SCM_UNBNDP (n2))
4532 {
4533 if (SCM_UNBNDP (n1))
4534 return SCM_INUM0;
4535 else if (SCM_NUMBERP (n1))
4536 return n1;
4537 else
4538 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 4539 }
09fb7599 4540
e11e83f3 4541 if (SCM_I_INUMP (n1))
0aacf84e 4542 {
e11e83f3
MV
4543 nn1 = SCM_I_INUM (n1);
4544 if (SCM_I_INUMP (n2))
0aacf84e 4545 {
e25f3727 4546 scm_t_inum nn2 = SCM_I_INUM (n2);
d956fa6f 4547 return SCM_I_MAKINUM (nn1 ^ nn2);
0aacf84e
MD
4548 }
4549 else if (SCM_BIGP (n2))
4550 {
4551 intbig:
4552 {
4553 SCM result_z = scm_i_mkbig ();
4554 mpz_t nn1_z;
4555 mpz_init_set_si (nn1_z, nn1);
4556 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
4557 scm_remember_upto_here_1 (n2);
4558 mpz_clear (nn1_z);
4559 return scm_i_normbig (result_z);
4560 }
4561 }
4562 else
4563 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
4564 }
4565 else if (SCM_BIGP (n1))
4566 {
e11e83f3 4567 if (SCM_I_INUMP (n2))
0aacf84e
MD
4568 {
4569 SCM_SWAP (n1, n2);
e11e83f3 4570 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
4571 goto intbig;
4572 }
4573 else if (SCM_BIGP (n2))
4574 {
4575 SCM result_z = scm_i_mkbig ();
4576 mpz_xor (SCM_I_BIG_MPZ (result_z),
4577 SCM_I_BIG_MPZ (n1),
4578 SCM_I_BIG_MPZ (n2));
4579 scm_remember_upto_here_2 (n1, n2);
4580 return scm_i_normbig (result_z);
4581 }
4582 else
4583 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 4584 }
0aacf84e 4585 else
09fb7599 4586 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 4587}
1bbd0b84 4588#undef FUNC_NAME
0f2d19dd 4589
09fb7599 4590
a1ec6916 4591SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1e6808ea 4592 (SCM j, SCM k),
ba6e7231
KR
4593 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
4594 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
4595 "without actually calculating the @code{logand}, just testing\n"
4596 "for non-zero.\n"
4597 "\n"
1e6808ea 4598 "@lisp\n"
b380b885
MD
4599 "(logtest #b0100 #b1011) @result{} #f\n"
4600 "(logtest #b0100 #b0111) @result{} #t\n"
1e6808ea 4601 "@end lisp")
1bbd0b84 4602#define FUNC_NAME s_scm_logtest
0f2d19dd 4603{
e25f3727 4604 scm_t_inum nj;
9a00c9fc 4605
e11e83f3 4606 if (SCM_I_INUMP (j))
0aacf84e 4607 {
e11e83f3
MV
4608 nj = SCM_I_INUM (j);
4609 if (SCM_I_INUMP (k))
0aacf84e 4610 {
e25f3727 4611 scm_t_inum nk = SCM_I_INUM (k);
73e4de09 4612 return scm_from_bool (nj & nk);
0aacf84e
MD
4613 }
4614 else if (SCM_BIGP (k))
4615 {
4616 intbig:
4617 if (nj == 0)
4618 return SCM_BOOL_F;
4619 {
4620 SCM result;
4621 mpz_t nj_z;
4622 mpz_init_set_si (nj_z, nj);
4623 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
4624 scm_remember_upto_here_1 (k);
73e4de09 4625 result = scm_from_bool (mpz_sgn (nj_z) != 0);
0aacf84e
MD
4626 mpz_clear (nj_z);
4627 return result;
4628 }
4629 }
4630 else
4631 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
4632 }
4633 else if (SCM_BIGP (j))
4634 {
e11e83f3 4635 if (SCM_I_INUMP (k))
0aacf84e
MD
4636 {
4637 SCM_SWAP (j, k);
e11e83f3 4638 nj = SCM_I_INUM (j);
0aacf84e
MD
4639 goto intbig;
4640 }
4641 else if (SCM_BIGP (k))
4642 {
4643 SCM result;
4644 mpz_t result_z;
4645 mpz_init (result_z);
4646 mpz_and (result_z,
4647 SCM_I_BIG_MPZ (j),
4648 SCM_I_BIG_MPZ (k));
4649 scm_remember_upto_here_2 (j, k);
73e4de09 4650 result = scm_from_bool (mpz_sgn (result_z) != 0);
0aacf84e
MD
4651 mpz_clear (result_z);
4652 return result;
4653 }
4654 else
4655 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
4656 }
4657 else
4658 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
0f2d19dd 4659}
1bbd0b84 4660#undef FUNC_NAME
0f2d19dd 4661
c1bfcf60 4662
a1ec6916 4663SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
2cd04b42 4664 (SCM index, SCM j),
ba6e7231
KR
4665 "Test whether bit number @var{index} in @var{j} is set.\n"
4666 "@var{index} starts from 0 for the least significant bit.\n"
4667 "\n"
1e6808ea 4668 "@lisp\n"
b380b885
MD
4669 "(logbit? 0 #b1101) @result{} #t\n"
4670 "(logbit? 1 #b1101) @result{} #f\n"
4671 "(logbit? 2 #b1101) @result{} #t\n"
4672 "(logbit? 3 #b1101) @result{} #t\n"
4673 "(logbit? 4 #b1101) @result{} #f\n"
1e6808ea 4674 "@end lisp")
1bbd0b84 4675#define FUNC_NAME s_scm_logbit_p
0f2d19dd 4676{
78166ad5 4677 unsigned long int iindex;
5efd3c7d 4678 iindex = scm_to_ulong (index);
78166ad5 4679
e11e83f3 4680 if (SCM_I_INUMP (j))
0d75f6d8
KR
4681 {
4682 /* bits above what's in an inum follow the sign bit */
20fcc8ed 4683 iindex = min (iindex, SCM_LONG_BIT - 1);
e11e83f3 4684 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
0d75f6d8 4685 }
0aacf84e
MD
4686 else if (SCM_BIGP (j))
4687 {
4688 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
4689 scm_remember_upto_here_1 (j);
73e4de09 4690 return scm_from_bool (val);
0aacf84e
MD
4691 }
4692 else
78166ad5 4693 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
0f2d19dd 4694}
1bbd0b84 4695#undef FUNC_NAME
0f2d19dd 4696
78166ad5 4697
a1ec6916 4698SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1bbd0b84 4699 (SCM n),
4d814788 4700 "Return the integer which is the ones-complement of the integer\n"
1e6808ea
MG
4701 "argument.\n"
4702 "\n"
b380b885
MD
4703 "@lisp\n"
4704 "(number->string (lognot #b10000000) 2)\n"
4705 " @result{} \"-10000001\"\n"
4706 "(number->string (lognot #b0) 2)\n"
4707 " @result{} \"-1\"\n"
1e6808ea 4708 "@end lisp")
1bbd0b84 4709#define FUNC_NAME s_scm_lognot
0f2d19dd 4710{
e11e83f3 4711 if (SCM_I_INUMP (n)) {
f9811f9f
KR
4712 /* No overflow here, just need to toggle all the bits making up the inum.
4713 Enhancement: No need to strip the tag and add it back, could just xor
4714 a block of 1 bits, if that worked with the various debug versions of
4715 the SCM typedef. */
e11e83f3 4716 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
f9811f9f
KR
4717
4718 } else if (SCM_BIGP (n)) {
4719 SCM result = scm_i_mkbig ();
4720 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
4721 scm_remember_upto_here_1 (n);
4722 return result;
4723
4724 } else {
4725 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
4726 }
0f2d19dd 4727}
1bbd0b84 4728#undef FUNC_NAME
0f2d19dd 4729
518b7508
KR
4730/* returns 0 if IN is not an integer. OUT must already be
4731 initialized. */
4732static int
4733coerce_to_big (SCM in, mpz_t out)
4734{
4735 if (SCM_BIGP (in))
4736 mpz_set (out, SCM_I_BIG_MPZ (in));
e11e83f3
MV
4737 else if (SCM_I_INUMP (in))
4738 mpz_set_si (out, SCM_I_INUM (in));
518b7508
KR
4739 else
4740 return 0;
4741
4742 return 1;
4743}
4744
d885e204 4745SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
518b7508
KR
4746 (SCM n, SCM k, SCM m),
4747 "Return @var{n} raised to the integer exponent\n"
4748 "@var{k}, modulo @var{m}.\n"
4749 "\n"
4750 "@lisp\n"
4751 "(modulo-expt 2 3 5)\n"
4752 " @result{} 3\n"
4753 "@end lisp")
d885e204 4754#define FUNC_NAME s_scm_modulo_expt
518b7508
KR
4755{
4756 mpz_t n_tmp;
4757 mpz_t k_tmp;
4758 mpz_t m_tmp;
4759
4760 /* There are two classes of error we might encounter --
4761 1) Math errors, which we'll report by calling scm_num_overflow,
4762 and
4763 2) wrong-type errors, which of course we'll report by calling
4764 SCM_WRONG_TYPE_ARG.
4765 We don't report those errors immediately, however; instead we do
4766 some cleanup first. These variables tell us which error (if
4767 any) we should report after cleaning up.
4768 */
4769 int report_overflow = 0;
4770
4771 int position_of_wrong_type = 0;
4772 SCM value_of_wrong_type = SCM_INUM0;
4773
4774 SCM result = SCM_UNDEFINED;
4775
4776 mpz_init (n_tmp);
4777 mpz_init (k_tmp);
4778 mpz_init (m_tmp);
4779
bc36d050 4780 if (scm_is_eq (m, SCM_INUM0))
518b7508
KR
4781 {
4782 report_overflow = 1;
4783 goto cleanup;
4784 }
4785
4786 if (!coerce_to_big (n, n_tmp))
4787 {
4788 value_of_wrong_type = n;
4789 position_of_wrong_type = 1;
4790 goto cleanup;
4791 }
4792
4793 if (!coerce_to_big (k, k_tmp))
4794 {
4795 value_of_wrong_type = k;
4796 position_of_wrong_type = 2;
4797 goto cleanup;
4798 }
4799
4800 if (!coerce_to_big (m, m_tmp))
4801 {
4802 value_of_wrong_type = m;
4803 position_of_wrong_type = 3;
4804 goto cleanup;
4805 }
4806
4807 /* if the exponent K is negative, and we simply call mpz_powm, we
4808 will get a divide-by-zero exception when an inverse 1/n mod m
4809 doesn't exist (or is not unique). Since exceptions are hard to
4810 handle, we'll attempt the inversion "by hand" -- that way, we get
4811 a simple failure code, which is easy to handle. */
4812
4813 if (-1 == mpz_sgn (k_tmp))
4814 {
4815 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
4816 {
4817 report_overflow = 1;
4818 goto cleanup;
4819 }
4820 mpz_neg (k_tmp, k_tmp);
4821 }
4822
4823 result = scm_i_mkbig ();
4824 mpz_powm (SCM_I_BIG_MPZ (result),
4825 n_tmp,
4826 k_tmp,
4827 m_tmp);
b7b8c575
KR
4828
4829 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
4830 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
4831
518b7508
KR
4832 cleanup:
4833 mpz_clear (m_tmp);
4834 mpz_clear (k_tmp);
4835 mpz_clear (n_tmp);
4836
4837 if (report_overflow)
4838 scm_num_overflow (FUNC_NAME);
4839
4840 if (position_of_wrong_type)
4841 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
4842 value_of_wrong_type);
4843
4844 return scm_i_normbig (result);
4845}
4846#undef FUNC_NAME
4847
a1ec6916 4848SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
2cd04b42 4849 (SCM n, SCM k),
ba6e7231
KR
4850 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
4851 "exact integer, @var{n} can be any number.\n"
4852 "\n"
2519490c
MW
4853 "Negative @var{k} is supported, and results in\n"
4854 "@math{1/@var{n}^abs(@var{k})} in the usual way.\n"
4855 "@math{@var{n}^0} is 1, as usual, and that\n"
ba6e7231 4856 "includes @math{0^0} is 1.\n"
1e6808ea 4857 "\n"
b380b885 4858 "@lisp\n"
ba6e7231
KR
4859 "(integer-expt 2 5) @result{} 32\n"
4860 "(integer-expt -3 3) @result{} -27\n"
4861 "(integer-expt 5 -3) @result{} 1/125\n"
4862 "(integer-expt 0 0) @result{} 1\n"
b380b885 4863 "@end lisp")
1bbd0b84 4864#define FUNC_NAME s_scm_integer_expt
0f2d19dd 4865{
e25f3727 4866 scm_t_inum i2 = 0;
1c35cb19
RB
4867 SCM z_i2 = SCM_BOOL_F;
4868 int i2_is_big = 0;
d956fa6f 4869 SCM acc = SCM_I_MAKINUM (1L);
ca46fb90 4870
bfe1f03a
MW
4871 /* Specifically refrain from checking the type of the first argument.
4872 This allows us to exponentiate any object that can be multiplied.
4873 If we must raise to a negative power, we must also be able to
4874 take its reciprocal. */
4875 if (!SCM_LIKELY (SCM_I_INUMP (k)) && !SCM_LIKELY (SCM_BIGP (k)))
01c7284a 4876 SCM_WRONG_TYPE_ARG (2, k);
5a8fc758 4877
bfe1f03a
MW
4878 if (SCM_UNLIKELY (scm_is_eq (k, SCM_INUM0)))
4879 return SCM_INUM1; /* n^(exact0) is exact 1, regardless of n */
4880 else if (SCM_UNLIKELY (scm_is_eq (n, SCM_I_MAKINUM (-1L))))
4881 return scm_is_false (scm_even_p (k)) ? n : SCM_INUM1;
4882 /* The next check is necessary only because R6RS specifies different
4883 behavior for 0^(-k) than for (/ 0). If n is not a scheme number,
4884 we simply skip this case and move on. */
4885 else if (SCM_NUMBERP (n) && scm_is_true (scm_zero_p (n)))
4886 {
4887 /* k cannot be 0 at this point, because we
4888 have already checked for that case above */
4889 if (scm_is_true (scm_positive_p (k)))
01c7284a
MW
4890 return n;
4891 else /* return NaN for (0 ^ k) for negative k per R6RS */
4892 return scm_nan ();
4893 }
a285b18c
MW
4894 else if (SCM_FRACTIONP (n))
4895 {
4896 /* Optimize the fraction case by (a/b)^k ==> (a^k)/(b^k), to avoid
4897 needless reduction of intermediate products to lowest terms.
4898 If a and b have no common factors, then a^k and b^k have no
4899 common factors. Use 'scm_i_make_ratio_already_reduced' to
4900 construct the final result, so that no gcd computations are
4901 needed to exponentiate a fraction. */
4902 if (scm_is_true (scm_positive_p (k)))
4903 return scm_i_make_ratio_already_reduced
4904 (scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k),
4905 scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k));
4906 else
4907 {
4908 k = scm_difference (k, SCM_UNDEFINED);
4909 return scm_i_make_ratio_already_reduced
4910 (scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k),
4911 scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k));
4912 }
4913 }
ca46fb90 4914
e11e83f3
MV
4915 if (SCM_I_INUMP (k))
4916 i2 = SCM_I_INUM (k);
ca46fb90
RB
4917 else if (SCM_BIGP (k))
4918 {
4919 z_i2 = scm_i_clonebig (k, 1);
ca46fb90
RB
4920 scm_remember_upto_here_1 (k);
4921 i2_is_big = 1;
4922 }
2830fd91 4923 else
ca46fb90
RB
4924 SCM_WRONG_TYPE_ARG (2, k);
4925
4926 if (i2_is_big)
f872b822 4927 {
ca46fb90
RB
4928 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
4929 {
4930 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
4931 n = scm_divide (n, SCM_UNDEFINED);
4932 }
4933 while (1)
4934 {
4935 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
4936 {
ca46fb90
RB
4937 return acc;
4938 }
4939 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
4940 {
ca46fb90
RB
4941 return scm_product (acc, n);
4942 }
4943 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
4944 acc = scm_product (acc, n);
4945 n = scm_product (n, n);
4946 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
4947 }
f872b822 4948 }
ca46fb90 4949 else
f872b822 4950 {
ca46fb90
RB
4951 if (i2 < 0)
4952 {
4953 i2 = -i2;
4954 n = scm_divide (n, SCM_UNDEFINED);
4955 }
4956 while (1)
4957 {
4958 if (0 == i2)
4959 return acc;
4960 if (1 == i2)
4961 return scm_product (acc, n);
4962 if (i2 & 1)
4963 acc = scm_product (acc, n);
4964 n = scm_product (n, n);
4965 i2 >>= 1;
4966 }
f872b822 4967 }
0f2d19dd 4968}
1bbd0b84 4969#undef FUNC_NAME
0f2d19dd 4970
e08a12b5
MW
4971/* Efficiently compute (N * 2^COUNT),
4972 where N is an exact integer, and COUNT > 0. */
4973static SCM
4974left_shift_exact_integer (SCM n, long count)
4975{
4976 if (SCM_I_INUMP (n))
4977 {
4978 scm_t_inum nn = SCM_I_INUM (n);
4979
8df68898 4980 /* Left shift of count >= SCM_I_FIXNUM_BIT-1 will almost[*] always
e08a12b5
MW
4981 overflow a non-zero fixnum. For smaller shifts we check the
4982 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
4983 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
8df68898
MW
4984 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 - count)".
4985
4986 [*] There's one exception:
4987 (-1) << SCM_I_FIXNUM_BIT-1 == SCM_MOST_NEGATIVE_FIXNUM */
e08a12b5
MW
4988
4989 if (nn == 0)
4990 return n;
4991 else if (count < SCM_I_FIXNUM_BIT-1 &&
4992 ((scm_t_bits) (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - count)) + 1)
4993 <= 1))
4994 return SCM_I_MAKINUM (nn << count);
4995 else
4996 {
4997 SCM result = scm_i_inum2big (nn);
4998 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
4999 count);
8df68898 5000 return scm_i_normbig (result);
1ea0803e 5001 }
e08a12b5
MW
5002 }
5003 else if (SCM_BIGP (n))
5004 {
5005 SCM result = scm_i_mkbig ();
5006 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n), count);
5007 scm_remember_upto_here_1 (n);
5008 return result;
5009 }
5010 else
6f82b8f6 5011 assert (0);
e08a12b5
MW
5012}
5013
5014/* Efficiently compute floor (N / 2^COUNT),
5015 where N is an exact integer and COUNT > 0. */
5016static SCM
5017floor_right_shift_exact_integer (SCM n, long count)
5018{
5019 if (SCM_I_INUMP (n))
5020 {
5021 scm_t_inum nn = SCM_I_INUM (n);
5022
5023 if (count >= SCM_I_FIXNUM_BIT)
5024 return (nn >= 0 ? SCM_INUM0 : SCM_I_MAKINUM (-1));
5025 else
5026 return SCM_I_MAKINUM (SCM_SRS (nn, count));
5027 }
5028 else if (SCM_BIGP (n))
5029 {
5030 SCM result = scm_i_mkbig ();
5031 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
5032 count);
5033 scm_remember_upto_here_1 (n);
5034 return scm_i_normbig (result);
5035 }
5036 else
6f82b8f6 5037 assert (0);
e08a12b5
MW
5038}
5039
5040/* Efficiently compute round (N / 2^COUNT),
5041 where N is an exact integer and COUNT > 0. */
5042static SCM
5043round_right_shift_exact_integer (SCM n, long count)
5044{
5045 if (SCM_I_INUMP (n))
5046 {
5047 if (count >= SCM_I_FIXNUM_BIT)
5048 return SCM_INUM0;
5049 else
5050 {
5051 scm_t_inum nn = SCM_I_INUM (n);
5052 scm_t_inum qq = SCM_SRS (nn, count);
5053
5054 if (0 == (nn & (1L << (count-1))))
5055 return SCM_I_MAKINUM (qq); /* round down */
5056 else if (nn & ((1L << (count-1)) - 1))
5057 return SCM_I_MAKINUM (qq + 1); /* round up */
5058 else
5059 return SCM_I_MAKINUM ((~1L) & (qq + 1)); /* round to even */
5060 }
5061 }
5062 else if (SCM_BIGP (n))
5063 {
5064 SCM q = scm_i_mkbig ();
5065
5066 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (n), count);
5067 if (mpz_tstbit (SCM_I_BIG_MPZ (n), count-1)
5068 && (mpz_odd_p (SCM_I_BIG_MPZ (q))
5069 || (mpz_scan1 (SCM_I_BIG_MPZ (n), 0) < count-1)))
5070 mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
5071 scm_remember_upto_here_1 (n);
5072 return scm_i_normbig (q);
5073 }
5074 else
6f82b8f6 5075 assert (0);
e08a12b5
MW
5076}
5077
a1ec6916 5078SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
e08a12b5
MW
5079 (SCM n, SCM count),
5080 "Return @math{floor(@var{n} * 2^@var{count})}.\n"
5081 "@var{n} and @var{count} must be exact integers.\n"
1e6808ea 5082 "\n"
e08a12b5
MW
5083 "With @var{n} viewed as an infinite-precision twos-complement\n"
5084 "integer, @code{ash} means a left shift introducing zero bits\n"
5085 "when @var{count} is positive, or a right shift dropping bits\n"
5086 "when @var{count} is negative. This is an ``arithmetic'' shift.\n"
1e6808ea 5087 "\n"
b380b885 5088 "@lisp\n"
1e6808ea
MG
5089 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
5090 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
32f19569
KR
5091 "\n"
5092 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
5093 "(ash -23 -2) @result{} -6\n"
a3c8b9fc 5094 "@end lisp")
1bbd0b84 5095#define FUNC_NAME s_scm_ash
0f2d19dd 5096{
e08a12b5 5097 if (SCM_I_INUMP (n) || SCM_BIGP (n))
788aca27 5098 {
e08a12b5 5099 long bits_to_shift = scm_to_long (count);
788aca27
KR
5100
5101 if (bits_to_shift > 0)
e08a12b5
MW
5102 return left_shift_exact_integer (n, bits_to_shift);
5103 else if (SCM_LIKELY (bits_to_shift < 0))
5104 return floor_right_shift_exact_integer (n, -bits_to_shift);
788aca27 5105 else
e08a12b5 5106 return n;
788aca27 5107 }
e08a12b5
MW
5108 else
5109 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
5110}
5111#undef FUNC_NAME
788aca27 5112
e08a12b5
MW
5113SCM_DEFINE (scm_round_ash, "round-ash", 2, 0, 0,
5114 (SCM n, SCM count),
5115 "Return @math{round(@var{n} * 2^@var{count})}.\n"
5116 "@var{n} and @var{count} must be exact integers.\n"
5117 "\n"
5118 "With @var{n} viewed as an infinite-precision twos-complement\n"
5119 "integer, @code{round-ash} means a left shift introducing zero\n"
5120 "bits when @var{count} is positive, or a right shift rounding\n"
5121 "to the nearest integer (with ties going to the nearest even\n"
5122 "integer) when @var{count} is negative. This is a rounded\n"
5123 "``arithmetic'' shift.\n"
5124 "\n"
5125 "@lisp\n"
5126 "(number->string (round-ash #b1 3) 2) @result{} \"1000\"\n"
5127 "(number->string (round-ash #b1010 -1) 2) @result{} \"101\"\n"
5128 "(number->string (round-ash #b1010 -2) 2) @result{} \"10\"\n"
5129 "(number->string (round-ash #b1011 -2) 2) @result{} \"11\"\n"
5130 "(number->string (round-ash #b1101 -2) 2) @result{} \"11\"\n"
5131 "(number->string (round-ash #b1110 -2) 2) @result{} \"100\"\n"
5132 "@end lisp")
5133#define FUNC_NAME s_scm_round_ash
5134{
5135 if (SCM_I_INUMP (n) || SCM_BIGP (n))
5136 {
5137 long bits_to_shift = scm_to_long (count);
788aca27 5138
e08a12b5
MW
5139 if (bits_to_shift > 0)
5140 return left_shift_exact_integer (n, bits_to_shift);
5141 else if (SCM_LIKELY (bits_to_shift < 0))
5142 return round_right_shift_exact_integer (n, -bits_to_shift);
ca46fb90 5143 else
e08a12b5 5144 return n;
ca46fb90
RB
5145 }
5146 else
e08a12b5 5147 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 5148}
1bbd0b84 5149#undef FUNC_NAME
0f2d19dd 5150
3c9f20f8 5151
a1ec6916 5152SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1bbd0b84 5153 (SCM n, SCM start, SCM end),
1e6808ea
MG
5154 "Return the integer composed of the @var{start} (inclusive)\n"
5155 "through @var{end} (exclusive) bits of @var{n}. The\n"
5156 "@var{start}th bit becomes the 0-th bit in the result.\n"
5157 "\n"
b380b885
MD
5158 "@lisp\n"
5159 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
5160 " @result{} \"1010\"\n"
5161 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
5162 " @result{} \"10110\"\n"
5163 "@end lisp")
1bbd0b84 5164#define FUNC_NAME s_scm_bit_extract
0f2d19dd 5165{
7f848242 5166 unsigned long int istart, iend, bits;
5efd3c7d
MV
5167 istart = scm_to_ulong (start);
5168 iend = scm_to_ulong (end);
c1bfcf60 5169 SCM_ASSERT_RANGE (3, end, (iend >= istart));
78166ad5 5170
7f848242
KR
5171 /* how many bits to keep */
5172 bits = iend - istart;
5173
e11e83f3 5174 if (SCM_I_INUMP (n))
0aacf84e 5175 {
e25f3727 5176 scm_t_inum in = SCM_I_INUM (n);
7f848242
KR
5177
5178 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
d77ad560 5179 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
857ae6af 5180 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
ac0c002c 5181
0aacf84e
MD
5182 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
5183 {
5184 /* Since we emulate two's complement encoded numbers, this
5185 * special case requires us to produce a result that has
7f848242 5186 * more bits than can be stored in a fixnum.
0aacf84e 5187 */
e25f3727 5188 SCM result = scm_i_inum2big (in);
7f848242
KR
5189 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
5190 bits);
5191 return result;
0aacf84e 5192 }
ac0c002c 5193
7f848242 5194 /* mask down to requisite bits */
857ae6af 5195 bits = min (bits, SCM_I_FIXNUM_BIT);
d956fa6f 5196 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
0aacf84e
MD
5197 }
5198 else if (SCM_BIGP (n))
ac0c002c 5199 {
7f848242
KR
5200 SCM result;
5201 if (bits == 1)
5202 {
d956fa6f 5203 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
7f848242
KR
5204 }
5205 else
5206 {
5207 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
5208 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
5209 such bits into a ulong. */
5210 result = scm_i_mkbig ();
5211 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
5212 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
5213 result = scm_i_normbig (result);
5214 }
5215 scm_remember_upto_here_1 (n);
5216 return result;
ac0c002c 5217 }
0aacf84e 5218 else
78166ad5 5219 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 5220}
1bbd0b84 5221#undef FUNC_NAME
0f2d19dd 5222
7f848242 5223
e4755e5c
JB
5224static const char scm_logtab[] = {
5225 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
5226};
1cc91f1b 5227
a1ec6916 5228SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1bbd0b84 5229 (SCM n),
1e6808ea
MG
5230 "Return the number of bits in integer @var{n}. If integer is\n"
5231 "positive, the 1-bits in its binary representation are counted.\n"
5232 "If negative, the 0-bits in its two's-complement binary\n"
5233 "representation are counted. If 0, 0 is returned.\n"
5234 "\n"
b380b885
MD
5235 "@lisp\n"
5236 "(logcount #b10101010)\n"
ca46fb90
RB
5237 " @result{} 4\n"
5238 "(logcount 0)\n"
5239 " @result{} 0\n"
5240 "(logcount -2)\n"
5241 " @result{} 1\n"
5242 "@end lisp")
5243#define FUNC_NAME s_scm_logcount
5244{
e11e83f3 5245 if (SCM_I_INUMP (n))
f872b822 5246 {
e25f3727
AW
5247 unsigned long c = 0;
5248 scm_t_inum nn = SCM_I_INUM (n);
ca46fb90
RB
5249 if (nn < 0)
5250 nn = -1 - nn;
5251 while (nn)
5252 {
5253 c += scm_logtab[15 & nn];
5254 nn >>= 4;
5255 }
d956fa6f 5256 return SCM_I_MAKINUM (c);
f872b822 5257 }
ca46fb90 5258 else if (SCM_BIGP (n))
f872b822 5259 {
ca46fb90 5260 unsigned long count;
713a4259
KR
5261 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
5262 count = mpz_popcount (SCM_I_BIG_MPZ (n));
ca46fb90 5263 else
713a4259
KR
5264 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
5265 scm_remember_upto_here_1 (n);
d956fa6f 5266 return SCM_I_MAKINUM (count);
f872b822 5267 }
ca46fb90
RB
5268 else
5269 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 5270}
ca46fb90 5271#undef FUNC_NAME
0f2d19dd
JB
5272
5273
ca46fb90
RB
5274static const char scm_ilentab[] = {
5275 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
5276};
5277
0f2d19dd 5278
ca46fb90
RB
5279SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
5280 (SCM n),
5281 "Return the number of bits necessary to represent @var{n}.\n"
5282 "\n"
5283 "@lisp\n"
5284 "(integer-length #b10101010)\n"
5285 " @result{} 8\n"
5286 "(integer-length 0)\n"
5287 " @result{} 0\n"
5288 "(integer-length #b1111)\n"
5289 " @result{} 4\n"
5290 "@end lisp")
5291#define FUNC_NAME s_scm_integer_length
5292{
e11e83f3 5293 if (SCM_I_INUMP (n))
0aacf84e 5294 {
e25f3727 5295 unsigned long c = 0;
0aacf84e 5296 unsigned int l = 4;
e25f3727 5297 scm_t_inum nn = SCM_I_INUM (n);
0aacf84e
MD
5298 if (nn < 0)
5299 nn = -1 - nn;
5300 while (nn)
5301 {
5302 c += 4;
5303 l = scm_ilentab [15 & nn];
5304 nn >>= 4;
5305 }
d956fa6f 5306 return SCM_I_MAKINUM (c - 4 + l);
0aacf84e
MD
5307 }
5308 else if (SCM_BIGP (n))
5309 {
5310 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
5311 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
5312 1 too big, so check for that and adjust. */
5313 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
5314 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
5315 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
5316 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
5317 size--;
5318 scm_remember_upto_here_1 (n);
d956fa6f 5319 return SCM_I_MAKINUM (size);
0aacf84e
MD
5320 }
5321 else
ca46fb90 5322 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
ca46fb90
RB
5323}
5324#undef FUNC_NAME
0f2d19dd
JB
5325
5326/*** NUMBERS -> STRINGS ***/
0b799eea
MV
5327#define SCM_MAX_DBL_RADIX 36
5328
0b799eea 5329/* use this array as a way to generate a single digit */
9b5fcde6 5330static const char number_chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
0f2d19dd 5331
1ea37620
MW
5332static mpz_t dbl_minimum_normal_mantissa;
5333
1be6b49c 5334static size_t
1ea37620 5335idbl2str (double dbl, char *a, int radix)
0f2d19dd 5336{
1ea37620 5337 int ch = 0;
0b799eea 5338
1ea37620
MW
5339 if (radix < 2 || radix > SCM_MAX_DBL_RADIX)
5340 /* revert to existing behavior */
5341 radix = 10;
0f2d19dd 5342
1ea37620 5343 if (isinf (dbl))
abb7e44d 5344 {
1ea37620
MW
5345 strcpy (a, (dbl > 0.0) ? "+inf.0" : "-inf.0");
5346 return 6;
abb7e44d 5347 }
1ea37620
MW
5348 else if (dbl > 0.0)
5349 ;
5350 else if (dbl < 0.0)
7351e207 5351 {
1ea37620
MW
5352 dbl = -dbl;
5353 a[ch++] = '-';
7351e207 5354 }
1ea37620 5355 else if (dbl == 0.0)
7351e207 5356 {
e1592f8a 5357 if (copysign (1.0, dbl) < 0.0)
1ea37620
MW
5358 a[ch++] = '-';
5359 strcpy (a + ch, "0.0");
5360 return ch + 3;
7351e207 5361 }
1ea37620 5362 else if (isnan (dbl))
f872b822 5363 {
1ea37620
MW
5364 strcpy (a, "+nan.0");
5365 return 6;
f872b822 5366 }
7351e207 5367
1ea37620
MW
5368 /* Algorithm taken from "Printing Floating-Point Numbers Quickly and
5369 Accurately" by Robert G. Burger and R. Kent Dybvig */
5370 {
5371 int e, k;
5372 mpz_t f, r, s, mplus, mminus, hi, digit;
5373 int f_is_even, f_is_odd;
8150dfa1 5374 int expon;
1ea37620
MW
5375 int show_exp = 0;
5376
5377 mpz_inits (f, r, s, mplus, mminus, hi, digit, NULL);
5378 mpz_set_d (f, ldexp (frexp (dbl, &e), DBL_MANT_DIG));
5379 if (e < DBL_MIN_EXP)
5380 {
5381 mpz_tdiv_q_2exp (f, f, DBL_MIN_EXP - e);
5382 e = DBL_MIN_EXP;
5383 }
5384 e -= DBL_MANT_DIG;
0b799eea 5385
1ea37620
MW
5386 f_is_even = !mpz_odd_p (f);
5387 f_is_odd = !f_is_even;
0b799eea 5388
1ea37620
MW
5389 /* Initialize r, s, mplus, and mminus according
5390 to Table 1 from the paper. */
5391 if (e < 0)
5392 {
5393 mpz_set_ui (mminus, 1);
5394 if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0
5395 || e == DBL_MIN_EXP - DBL_MANT_DIG)
5396 {
5397 mpz_set_ui (mplus, 1);
5398 mpz_mul_2exp (r, f, 1);
5399 mpz_mul_2exp (s, mminus, 1 - e);
5400 }
5401 else
5402 {
5403 mpz_set_ui (mplus, 2);
5404 mpz_mul_2exp (r, f, 2);
5405 mpz_mul_2exp (s, mminus, 2 - e);
5406 }
5407 }
5408 else
5409 {
5410 mpz_set_ui (mminus, 1);
5411 mpz_mul_2exp (mminus, mminus, e);
5412 if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0)
5413 {
5414 mpz_set (mplus, mminus);
5415 mpz_mul_2exp (r, f, 1 + e);
5416 mpz_set_ui (s, 2);
5417 }
5418 else
5419 {
5420 mpz_mul_2exp (mplus, mminus, 1);
5421 mpz_mul_2exp (r, f, 2 + e);
5422 mpz_set_ui (s, 4);
5423 }
5424 }
0b799eea 5425
1ea37620
MW
5426 /* Find the smallest k such that:
5427 (r + mplus) / s < radix^k (if f is even)
5428 (r + mplus) / s <= radix^k (if f is odd) */
f872b822 5429 {
1ea37620
MW
5430 /* IMPROVE-ME: Make an initial guess to speed this up */
5431 mpz_add (hi, r, mplus);
5432 k = 0;
5433 while (mpz_cmp (hi, s) >= f_is_odd)
5434 {
5435 mpz_mul_ui (s, s, radix);
5436 k++;
5437 }
5438 if (k == 0)
5439 {
5440 mpz_mul_ui (hi, hi, radix);
5441 while (mpz_cmp (hi, s) < f_is_odd)
5442 {
5443 mpz_mul_ui (r, r, radix);
5444 mpz_mul_ui (mplus, mplus, radix);
5445 mpz_mul_ui (mminus, mminus, radix);
5446 mpz_mul_ui (hi, hi, radix);
5447 k--;
5448 }
5449 }
cda139a7 5450 }
f872b822 5451
8150dfa1
MW
5452 expon = k - 1;
5453 if (k <= 0)
1ea37620 5454 {
8150dfa1
MW
5455 if (k <= -3)
5456 {
5457 /* Use scientific notation */
5458 show_exp = 1;
5459 k = 1;
5460 }
5461 else
5462 {
5463 int i;
0f2d19dd 5464
8150dfa1
MW
5465 /* Print leading zeroes */
5466 a[ch++] = '0';
5467 a[ch++] = '.';
5468 for (i = 0; i > k; i--)
5469 a[ch++] = '0';
5470 }
1ea37620
MW
5471 }
5472
5473 for (;;)
5474 {
5475 int end_1_p, end_2_p;
5476 int d;
5477
5478 mpz_mul_ui (mplus, mplus, radix);
5479 mpz_mul_ui (mminus, mminus, radix);
5480 mpz_mul_ui (r, r, radix);
5481 mpz_fdiv_qr (digit, r, r, s);
5482 d = mpz_get_ui (digit);
5483
5484 mpz_add (hi, r, mplus);
5485 end_1_p = (mpz_cmp (r, mminus) < f_is_even);
5486 end_2_p = (mpz_cmp (s, hi) < f_is_even);
5487 if (end_1_p || end_2_p)
5488 {
5489 mpz_mul_2exp (r, r, 1);
5490 if (!end_2_p)
5491 ;
5492 else if (!end_1_p)
5493 d++;
5494 else if (mpz_cmp (r, s) >= !(d & 1))
5495 d++;
5496 a[ch++] = number_chars[d];
5497 if (--k == 0)
5498 a[ch++] = '.';
5499 break;
5500 }
5501 else
5502 {
5503 a[ch++] = number_chars[d];
5504 if (--k == 0)
5505 a[ch++] = '.';
5506 }
5507 }
5508
5509 if (k > 0)
5510 {
8150dfa1
MW
5511 if (expon >= 7 && k >= 4 && expon >= k)
5512 {
5513 /* Here we would have to print more than three zeroes
5514 followed by a decimal point and another zero. It
5515 makes more sense to use scientific notation. */
5516
5517 /* Adjust k to what it would have been if we had chosen
5518 scientific notation from the beginning. */
5519 k -= expon;
5520
5521 /* k will now be <= 0, with magnitude equal to the number of
5522 digits that we printed which should now be put after the
5523 decimal point. */
5524
5525 /* Insert a decimal point */
5526 memmove (a + ch + k + 1, a + ch + k, -k);
5527 a[ch + k] = '.';
5528 ch++;
5529
5530 show_exp = 1;
5531 }
5532 else
5533 {
5534 for (; k > 0; k--)
5535 a[ch++] = '0';
5536 a[ch++] = '.';
5537 }
1ea37620
MW
5538 }
5539
5540 if (k == 0)
5541 a[ch++] = '0';
5542
5543 if (show_exp)
5544 {
5545 a[ch++] = 'e';
8150dfa1 5546 ch += scm_iint2str (expon, radix, a + ch);
1ea37620
MW
5547 }
5548
5549 mpz_clears (f, r, s, mplus, mminus, hi, digit, NULL);
5550 }
0f2d19dd
JB
5551 return ch;
5552}
5553
7a1aba42
MV
5554
5555static size_t
5556icmplx2str (double real, double imag, char *str, int radix)
5557{
5558 size_t i;
c7218482 5559 double sgn;
7a1aba42
MV
5560
5561 i = idbl2str (real, str, radix);
c7218482
MW
5562#ifdef HAVE_COPYSIGN
5563 sgn = copysign (1.0, imag);
5564#else
5565 sgn = imag;
5566#endif
5567 /* Don't output a '+' for negative numbers or for Inf and
5568 NaN. They will provide their own sign. */
19374ad2 5569 if (sgn >= 0 && isfinite (imag))
c7218482
MW
5570 str[i++] = '+';
5571 i += idbl2str (imag, &str[i], radix);
5572 str[i++] = 'i';
7a1aba42
MV
5573 return i;
5574}
5575
1be6b49c 5576static size_t
0b799eea 5577iflo2str (SCM flt, char *str, int radix)
0f2d19dd 5578{
1be6b49c 5579 size_t i;
3c9a524f 5580 if (SCM_REALP (flt))
0b799eea 5581 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
0f2d19dd 5582 else
7a1aba42
MV
5583 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
5584 str, radix);
0f2d19dd
JB
5585 return i;
5586}
0f2d19dd 5587
2881e77b 5588/* convert a scm_t_intmax to a string (unterminated). returns the number of
1bbd0b84
GB
5589 characters in the result.
5590 rad is output base
5591 p is destination: worst case (base 2) is SCM_INTBUFLEN */
1be6b49c 5592size_t
2881e77b
MV
5593scm_iint2str (scm_t_intmax num, int rad, char *p)
5594{
5595 if (num < 0)
5596 {
5597 *p++ = '-';
5598 return scm_iuint2str (-num, rad, p) + 1;
5599 }
5600 else
5601 return scm_iuint2str (num, rad, p);
5602}
5603
5604/* convert a scm_t_intmax to a string (unterminated). returns the number of
5605 characters in the result.
5606 rad is output base
5607 p is destination: worst case (base 2) is SCM_INTBUFLEN */
5608size_t
5609scm_iuint2str (scm_t_uintmax num, int rad, char *p)
0f2d19dd 5610{
1be6b49c
ML
5611 size_t j = 1;
5612 size_t i;
2881e77b 5613 scm_t_uintmax n = num;
5c11cc9d 5614
a6f3af16
AW
5615 if (rad < 2 || rad > 36)
5616 scm_out_of_range ("scm_iuint2str", scm_from_int (rad));
5617
f872b822 5618 for (n /= rad; n > 0; n /= rad)
5c11cc9d
GH
5619 j++;
5620
5621 i = j;
2881e77b 5622 n = num;
f872b822
MD
5623 while (i--)
5624 {
5c11cc9d
GH
5625 int d = n % rad;
5626
f872b822 5627 n /= rad;
a6f3af16 5628 p[i] = number_chars[d];
f872b822 5629 }
0f2d19dd
JB
5630 return j;
5631}
5632
a1ec6916 5633SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
bb628794
DH
5634 (SCM n, SCM radix),
5635 "Return a string holding the external representation of the\n"
942e5b91
MG
5636 "number @var{n} in the given @var{radix}. If @var{n} is\n"
5637 "inexact, a radix of 10 will be used.")
1bbd0b84 5638#define FUNC_NAME s_scm_number_to_string
0f2d19dd 5639{
1bbd0b84 5640 int base;
98cb6e75 5641
0aacf84e 5642 if (SCM_UNBNDP (radix))
98cb6e75 5643 base = 10;
0aacf84e 5644 else
5efd3c7d 5645 base = scm_to_signed_integer (radix, 2, 36);
98cb6e75 5646
e11e83f3 5647 if (SCM_I_INUMP (n))
0aacf84e
MD
5648 {
5649 char num_buf [SCM_INTBUFLEN];
e11e83f3 5650 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
cc95e00a 5651 return scm_from_locale_stringn (num_buf, length);
0aacf84e
MD
5652 }
5653 else if (SCM_BIGP (n))
5654 {
5655 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
d88f5323
AW
5656 size_t len = strlen (str);
5657 void (*freefunc) (void *, size_t);
5658 SCM ret;
5659 mp_get_memory_functions (NULL, NULL, &freefunc);
0aacf84e 5660 scm_remember_upto_here_1 (n);
d88f5323
AW
5661 ret = scm_from_latin1_stringn (str, len);
5662 freefunc (str, len + 1);
5663 return ret;
0aacf84e 5664 }
f92e85f7
MV
5665 else if (SCM_FRACTIONP (n))
5666 {
f92e85f7 5667 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
cc95e00a 5668 scm_from_locale_string ("/"),
f92e85f7
MV
5669 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
5670 }
0aacf84e
MD
5671 else if (SCM_INEXACTP (n))
5672 {
5673 char num_buf [FLOBUFLEN];
cc95e00a 5674 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
0aacf84e
MD
5675 }
5676 else
bb628794 5677 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 5678}
1bbd0b84 5679#undef FUNC_NAME
0f2d19dd
JB
5680
5681
ca46fb90
RB
5682/* These print routines used to be stubbed here so that scm_repl.c
5683 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
1cc91f1b 5684
0f2d19dd 5685int
e81d98ec 5686scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 5687{
56e55ac7 5688 char num_buf[FLOBUFLEN];
f209aeee 5689 scm_lfwrite_unlocked (num_buf, iflo2str (sexp, num_buf, 10), port);
0f2d19dd
JB
5690 return !0;
5691}
5692
b479fe9a
MV
5693void
5694scm_i_print_double (double val, SCM port)
5695{
5696 char num_buf[FLOBUFLEN];
f209aeee 5697 scm_lfwrite_unlocked (num_buf, idbl2str (val, num_buf, 10), port);
b479fe9a
MV
5698}
5699
f3ae5d60 5700int
e81d98ec 5701scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
f92e85f7 5702
f3ae5d60 5703{
56e55ac7 5704 char num_buf[FLOBUFLEN];
f209aeee 5705 scm_lfwrite_unlocked (num_buf, iflo2str (sexp, num_buf, 10), port);
f3ae5d60
MD
5706 return !0;
5707}
1cc91f1b 5708
7a1aba42
MV
5709void
5710scm_i_print_complex (double real, double imag, SCM port)
5711{
5712 char num_buf[FLOBUFLEN];
f209aeee 5713 scm_lfwrite_unlocked (num_buf, icmplx2str (real, imag, num_buf, 10), port);
7a1aba42
MV
5714}
5715
f92e85f7
MV
5716int
5717scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
5718{
5719 SCM str;
f92e85f7 5720 str = scm_number_to_string (sexp, SCM_UNDEFINED);
a9178715 5721 scm_display (str, port);
f92e85f7
MV
5722 scm_remember_upto_here_1 (str);
5723 return !0;
5724}
5725
0f2d19dd 5726int
e81d98ec 5727scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 5728{
ca46fb90 5729 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
b57bf272
AW
5730 size_t len = strlen (str);
5731 void (*freefunc) (void *, size_t);
5732 mp_get_memory_functions (NULL, NULL, &freefunc);
ca46fb90 5733 scm_remember_upto_here_1 (exp);
ea0582c2 5734 scm_lfwrite_unlocked (str, len, port);
b57bf272 5735 freefunc (str, len + 1);
0f2d19dd
JB
5736 return !0;
5737}
5738/*** END nums->strs ***/
5739
3c9a524f 5740
0f2d19dd 5741/*** STRINGS -> NUMBERS ***/
2a8fecee 5742
3c9a524f
DH
5743/* The following functions implement the conversion from strings to numbers.
5744 * The implementation somehow follows the grammar for numbers as it is given
5745 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
5746 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
5747 * points should be noted about the implementation:
bc3d34f5 5748 *
3c9a524f
DH
5749 * * Each function keeps a local index variable 'idx' that points at the
5750 * current position within the parsed string. The global index is only
5751 * updated if the function could parse the corresponding syntactic unit
5752 * successfully.
bc3d34f5 5753 *
3c9a524f 5754 * * Similarly, the functions keep track of indicators of inexactness ('#',
bc3d34f5
MW
5755 * '.' or exponents) using local variables ('hash_seen', 'x').
5756 *
3c9a524f
DH
5757 * * Sequences of digits are parsed into temporary variables holding fixnums.
5758 * Only if these fixnums would overflow, the result variables are updated
5759 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
5760 * the temporary variables holding the fixnums are cleared, and the process
5761 * starts over again. If for example fixnums were able to store five decimal
5762 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
5763 * and the result was computed as 12345 * 100000 + 67890. In other words,
5764 * only every five digits two bignum operations were performed.
bc3d34f5
MW
5765 *
5766 * Notes on the handling of exactness specifiers:
5767 *
5768 * When parsing non-real complex numbers, we apply exactness specifiers on
5769 * per-component basis, as is done in PLT Scheme. For complex numbers
5770 * written in rectangular form, exactness specifiers are applied to the
5771 * real and imaginary parts before calling scm_make_rectangular. For
5772 * complex numbers written in polar form, exactness specifiers are applied
5773 * to the magnitude and angle before calling scm_make_polar.
5774 *
5775 * There are two kinds of exactness specifiers: forced and implicit. A
5776 * forced exactness specifier is a "#e" or "#i" prefix at the beginning of
5777 * the entire number, and applies to both components of a complex number.
5778 * "#e" causes each component to be made exact, and "#i" causes each
5779 * component to be made inexact. If no forced exactness specifier is
5780 * present, then the exactness of each component is determined
5781 * independently by the presence or absence of a decimal point or hash mark
5782 * within that component. If a decimal point or hash mark is present, the
5783 * component is made inexact, otherwise it is made exact.
5784 *
5785 * After the exactness specifiers have been applied to each component, they
5786 * are passed to either scm_make_rectangular or scm_make_polar to produce
5787 * the final result. Note that this will result in a real number if the
5788 * imaginary part, magnitude, or angle is an exact 0.
5789 *
5790 * For example, (string->number "#i5.0+0i") does the equivalent of:
5791 *
5792 * (make-rectangular (exact->inexact 5) (exact->inexact 0))
3c9a524f
DH
5793 */
5794
5795enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
5796
5797/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
5798
a6f3af16
AW
5799/* Caller is responsible for checking that the return value is in range
5800 for the given radix, which should be <= 36. */
5801static unsigned int
5802char_decimal_value (scm_t_uint32 c)
5803{
68713277
AW
5804 if (c >= (scm_t_uint32) '0' && c <= (scm_t_uint32) '9')
5805 return c - (scm_t_uint32) '0';
5806 else
a6f3af16 5807 {
68713277
AW
5808 /* uc_decimal_value returns -1 on error. When cast to an unsigned int,
5809 that's certainly above any valid decimal, so we take advantage of
5810 that to elide some tests. */
5811 unsigned int d = (unsigned int) uc_decimal_value (c);
5812
5813 /* If that failed, try extended hexadecimals, then. Only accept ascii
5814 hexadecimals. */
5815 if (d >= 10U)
5816 {
5817 c = uc_tolower (c);
5818 if (c >= (scm_t_uint32) 'a')
5819 d = c - (scm_t_uint32)'a' + 10U;
5820 }
5821 return d;
a6f3af16 5822 }
a6f3af16 5823}
3c9a524f 5824
91db4a37
LC
5825/* Parse the substring of MEM starting at *P_IDX for an unsigned integer
5826 in base RADIX. Upon success, return the unsigned integer and update
5827 *P_IDX and *P_EXACTNESS accordingly. Return #f on failure. */
2a8fecee 5828static SCM
3f47e526 5829mem2uinteger (SCM mem, unsigned int *p_idx,
3c9a524f 5830 unsigned int radix, enum t_exactness *p_exactness)
2a8fecee 5831{
3c9a524f
DH
5832 unsigned int idx = *p_idx;
5833 unsigned int hash_seen = 0;
5834 scm_t_bits shift = 1;
5835 scm_t_bits add = 0;
5836 unsigned int digit_value;
5837 SCM result;
5838 char c;
3f47e526 5839 size_t len = scm_i_string_length (mem);
3c9a524f
DH
5840
5841 if (idx == len)
5842 return SCM_BOOL_F;
2a8fecee 5843
3f47e526 5844 c = scm_i_string_ref (mem, idx);
a6f3af16 5845 digit_value = char_decimal_value (c);
3c9a524f
DH
5846 if (digit_value >= radix)
5847 return SCM_BOOL_F;
5848
5849 idx++;
d956fa6f 5850 result = SCM_I_MAKINUM (digit_value);
3c9a524f 5851 while (idx != len)
f872b822 5852 {
3f47e526 5853 scm_t_wchar c = scm_i_string_ref (mem, idx);
a6f3af16 5854 if (c == '#')
3c9a524f
DH
5855 {
5856 hash_seen = 1;
5857 digit_value = 0;
5858 }
a6f3af16
AW
5859 else if (hash_seen)
5860 break;
3c9a524f 5861 else
a6f3af16
AW
5862 {
5863 digit_value = char_decimal_value (c);
5864 /* This check catches non-decimals in addition to out-of-range
5865 decimals. */
5866 if (digit_value >= radix)
5867 break;
5868 }
3c9a524f
DH
5869
5870 idx++;
5871 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
5872 {
d956fa6f 5873 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 5874 if (add > 0)
d956fa6f 5875 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
5876
5877 shift = radix;
5878 add = digit_value;
5879 }
5880 else
5881 {
5882 shift = shift * radix;
5883 add = add * radix + digit_value;
5884 }
5885 };
5886
5887 if (shift > 1)
d956fa6f 5888 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 5889 if (add > 0)
d956fa6f 5890 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
5891
5892 *p_idx = idx;
5893 if (hash_seen)
5894 *p_exactness = INEXACT;
5895
5896 return result;
2a8fecee
JB
5897}
5898
5899
3c9a524f
DH
5900/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
5901 * covers the parts of the rules that start at a potential point. The value
5902 * of the digits up to the point have been parsed by the caller and are given
79d34f68
DH
5903 * in variable result. The content of *p_exactness indicates, whether a hash
5904 * has already been seen in the digits before the point.
3c9a524f 5905 */
1cc91f1b 5906
3f47e526 5907#define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
3c9a524f
DH
5908
5909static SCM
3f47e526 5910mem2decimal_from_point (SCM result, SCM mem,
3c9a524f 5911 unsigned int *p_idx, enum t_exactness *p_exactness)
0f2d19dd 5912{
3c9a524f
DH
5913 unsigned int idx = *p_idx;
5914 enum t_exactness x = *p_exactness;
3f47e526 5915 size_t len = scm_i_string_length (mem);
3c9a524f
DH
5916
5917 if (idx == len)
79d34f68 5918 return result;
3c9a524f 5919
3f47e526 5920 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
5921 {
5922 scm_t_bits shift = 1;
5923 scm_t_bits add = 0;
5924 unsigned int digit_value;
cff5fa33 5925 SCM big_shift = SCM_INUM1;
3c9a524f
DH
5926
5927 idx++;
5928 while (idx != len)
5929 {
3f47e526
MG
5930 scm_t_wchar c = scm_i_string_ref (mem, idx);
5931 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
5932 {
5933 if (x == INEXACT)
5934 return SCM_BOOL_F;
5935 else
5936 digit_value = DIGIT2UINT (c);
5937 }
5938 else if (c == '#')
5939 {
5940 x = INEXACT;
5941 digit_value = 0;
5942 }
5943 else
5944 break;
5945
5946 idx++;
5947 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
5948 {
d956fa6f
MV
5949 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
5950 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 5951 if (add > 0)
d956fa6f 5952 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
5953
5954 shift = 10;
5955 add = digit_value;
5956 }
5957 else
5958 {
5959 shift = shift * 10;
5960 add = add * 10 + digit_value;
5961 }
5962 };
5963
5964 if (add > 0)
5965 {
d956fa6f
MV
5966 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
5967 result = scm_product (result, SCM_I_MAKINUM (shift));
5968 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
5969 }
5970
d8592269 5971 result = scm_divide (result, big_shift);
79d34f68 5972
3c9a524f
DH
5973 /* We've seen a decimal point, thus the value is implicitly inexact. */
5974 x = INEXACT;
f872b822 5975 }
3c9a524f 5976
3c9a524f 5977 if (idx != len)
f872b822 5978 {
3c9a524f
DH
5979 int sign = 1;
5980 unsigned int start;
3f47e526 5981 scm_t_wchar c;
3c9a524f
DH
5982 int exponent;
5983 SCM e;
5984
5985 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
5986
3f47e526 5987 switch (scm_i_string_ref (mem, idx))
f872b822 5988 {
3c9a524f
DH
5989 case 'd': case 'D':
5990 case 'e': case 'E':
5991 case 'f': case 'F':
5992 case 'l': case 'L':
5993 case 's': case 'S':
5994 idx++;
ee0ddd21
AW
5995 if (idx == len)
5996 return SCM_BOOL_F;
5997
3c9a524f 5998 start = idx;
3f47e526 5999 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
6000 if (c == '-')
6001 {
6002 idx++;
ee0ddd21
AW
6003 if (idx == len)
6004 return SCM_BOOL_F;
6005
3c9a524f 6006 sign = -1;
3f47e526 6007 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
6008 }
6009 else if (c == '+')
6010 {
6011 idx++;
ee0ddd21
AW
6012 if (idx == len)
6013 return SCM_BOOL_F;
6014
3c9a524f 6015 sign = 1;
3f47e526 6016 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
6017 }
6018 else
6019 sign = 1;
6020
3f47e526 6021 if (!uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
6022 return SCM_BOOL_F;
6023
6024 idx++;
6025 exponent = DIGIT2UINT (c);
6026 while (idx != len)
f872b822 6027 {
3f47e526
MG
6028 scm_t_wchar c = scm_i_string_ref (mem, idx);
6029 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
6030 {
6031 idx++;
6032 if (exponent <= SCM_MAXEXP)
6033 exponent = exponent * 10 + DIGIT2UINT (c);
6034 }
6035 else
6036 break;
f872b822 6037 }
3c9a524f 6038
1ea37620 6039 if (exponent > ((sign == 1) ? SCM_MAXEXP : SCM_MAXEXP + DBL_DIG + 1))
f872b822 6040 {
3c9a524f 6041 size_t exp_len = idx - start;
3f47e526 6042 SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
3c9a524f
DH
6043 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
6044 scm_out_of_range ("string->number", exp_num);
f872b822 6045 }
3c9a524f 6046
d956fa6f 6047 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
3c9a524f
DH
6048 if (sign == 1)
6049 result = scm_product (result, e);
6050 else
6ebecdeb 6051 result = scm_divide (result, e);
3c9a524f
DH
6052
6053 /* We've seen an exponent, thus the value is implicitly inexact. */
6054 x = INEXACT;
6055
f872b822 6056 break;
3c9a524f 6057
f872b822 6058 default:
3c9a524f 6059 break;
f872b822 6060 }
0f2d19dd 6061 }
3c9a524f
DH
6062
6063 *p_idx = idx;
6064 if (x == INEXACT)
6065 *p_exactness = x;
6066
6067 return result;
0f2d19dd 6068}
0f2d19dd 6069
3c9a524f
DH
6070
6071/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
6072
6073static SCM
3f47e526 6074mem2ureal (SCM mem, unsigned int *p_idx,
929d11b2
MW
6075 unsigned int radix, enum t_exactness forced_x,
6076 int allow_inf_or_nan)
0f2d19dd 6077{
3c9a524f 6078 unsigned int idx = *p_idx;
164d2481 6079 SCM result;
3f47e526 6080 size_t len = scm_i_string_length (mem);
3c9a524f 6081
40f89215
NJ
6082 /* Start off believing that the number will be exact. This changes
6083 to INEXACT if we see a decimal point or a hash. */
9d427b2c 6084 enum t_exactness implicit_x = EXACT;
40f89215 6085
3c9a524f
DH
6086 if (idx == len)
6087 return SCM_BOOL_F;
6088
929d11b2
MW
6089 if (allow_inf_or_nan && forced_x != EXACT && idx+5 <= len)
6090 switch (scm_i_string_ref (mem, idx))
6091 {
6092 case 'i': case 'I':
6093 switch (scm_i_string_ref (mem, idx + 1))
6094 {
6095 case 'n': case 'N':
6096 switch (scm_i_string_ref (mem, idx + 2))
6097 {
6098 case 'f': case 'F':
6099 if (scm_i_string_ref (mem, idx + 3) == '.'
6100 && scm_i_string_ref (mem, idx + 4) == '0')
6101 {
6102 *p_idx = idx+5;
6103 return scm_inf ();
6104 }
6105 }
6106 }
6107 case 'n': case 'N':
6108 switch (scm_i_string_ref (mem, idx + 1))
6109 {
6110 case 'a': case 'A':
6111 switch (scm_i_string_ref (mem, idx + 2))
6112 {
6113 case 'n': case 'N':
6114 if (scm_i_string_ref (mem, idx + 3) == '.')
6115 {
6116 /* Cobble up the fractional part. We might want to
6117 set the NaN's mantissa from it. */
6118 idx += 4;
6119 if (!scm_is_eq (mem2uinteger (mem, &idx, 10, &implicit_x),
6120 SCM_INUM0))
6121 {
5f237d6e 6122#if SCM_ENABLE_DEPRECATED == 1
929d11b2
MW
6123 scm_c_issue_deprecation_warning
6124 ("Non-zero suffixes to `+nan.' are deprecated. Use `+nan.0'.");
5f237d6e 6125#else
929d11b2 6126 return SCM_BOOL_F;
5f237d6e 6127#endif
929d11b2 6128 }
5f237d6e 6129
929d11b2
MW
6130 *p_idx = idx;
6131 return scm_nan ();
6132 }
6133 }
6134 }
6135 }
7351e207 6136
3f47e526 6137 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
6138 {
6139 if (radix != 10)
6140 return SCM_BOOL_F;
6141 else if (idx + 1 == len)
6142 return SCM_BOOL_F;
3f47e526 6143 else if (!uc_is_property_decimal_digit ((scm_t_uint32) scm_i_string_ref (mem, idx+1)))
3c9a524f
DH
6144 return SCM_BOOL_F;
6145 else
cff5fa33 6146 result = mem2decimal_from_point (SCM_INUM0, mem,
9d427b2c 6147 p_idx, &implicit_x);
f872b822 6148 }
3c9a524f
DH
6149 else
6150 {
3c9a524f 6151 SCM uinteger;
3c9a524f 6152
9d427b2c 6153 uinteger = mem2uinteger (mem, &idx, radix, &implicit_x);
73e4de09 6154 if (scm_is_false (uinteger))
3c9a524f
DH
6155 return SCM_BOOL_F;
6156
6157 if (idx == len)
6158 result = uinteger;
3f47e526 6159 else if (scm_i_string_ref (mem, idx) == '/')
f872b822 6160 {
3c9a524f
DH
6161 SCM divisor;
6162
6163 idx++;
ee0ddd21
AW
6164 if (idx == len)
6165 return SCM_BOOL_F;
3c9a524f 6166
9d427b2c 6167 divisor = mem2uinteger (mem, &idx, radix, &implicit_x);
929d11b2 6168 if (scm_is_false (divisor) || scm_is_eq (divisor, SCM_INUM0))
3c9a524f
DH
6169 return SCM_BOOL_F;
6170
f92e85f7 6171 /* both are int/big here, I assume */
cba42c93 6172 result = scm_i_make_ratio (uinteger, divisor);
f872b822 6173 }
3c9a524f
DH
6174 else if (radix == 10)
6175 {
9d427b2c 6176 result = mem2decimal_from_point (uinteger, mem, &idx, &implicit_x);
73e4de09 6177 if (scm_is_false (result))
3c9a524f
DH
6178 return SCM_BOOL_F;
6179 }
6180 else
6181 result = uinteger;
6182
6183 *p_idx = idx;
f872b822 6184 }
164d2481 6185
9d427b2c
MW
6186 switch (forced_x)
6187 {
6188 case EXACT:
6189 if (SCM_INEXACTP (result))
6190 return scm_inexact_to_exact (result);
6191 else
6192 return result;
6193 case INEXACT:
6194 if (SCM_INEXACTP (result))
6195 return result;
6196 else
6197 return scm_exact_to_inexact (result);
6198 case NO_EXACTNESS:
6199 if (implicit_x == INEXACT)
6200 {
6201 if (SCM_INEXACTP (result))
6202 return result;
6203 else
6204 return scm_exact_to_inexact (result);
6205 }
6206 else
6207 return result;
6208 }
164d2481 6209
9d427b2c 6210 /* We should never get here */
6f82b8f6 6211 assert (0);
3c9a524f 6212}
0f2d19dd 6213
0f2d19dd 6214
3c9a524f 6215/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
0f2d19dd 6216
3c9a524f 6217static SCM
3f47e526 6218mem2complex (SCM mem, unsigned int idx,
9d427b2c 6219 unsigned int radix, enum t_exactness forced_x)
3c9a524f 6220{
3f47e526 6221 scm_t_wchar c;
3c9a524f
DH
6222 int sign = 0;
6223 SCM ureal;
3f47e526 6224 size_t len = scm_i_string_length (mem);
3c9a524f
DH
6225
6226 if (idx == len)
6227 return SCM_BOOL_F;
6228
3f47e526 6229 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
6230 if (c == '+')
6231 {
6232 idx++;
6233 sign = 1;
6234 }
6235 else if (c == '-')
6236 {
6237 idx++;
6238 sign = -1;
0f2d19dd 6239 }
0f2d19dd 6240
3c9a524f
DH
6241 if (idx == len)
6242 return SCM_BOOL_F;
6243
929d11b2 6244 ureal = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
73e4de09 6245 if (scm_is_false (ureal))
f872b822 6246 {
3c9a524f
DH
6247 /* input must be either +i or -i */
6248
6249 if (sign == 0)
6250 return SCM_BOOL_F;
6251
3f47e526
MG
6252 if (scm_i_string_ref (mem, idx) == 'i'
6253 || scm_i_string_ref (mem, idx) == 'I')
f872b822 6254 {
3c9a524f
DH
6255 idx++;
6256 if (idx != len)
6257 return SCM_BOOL_F;
6258
cff5fa33 6259 return scm_make_rectangular (SCM_INUM0, SCM_I_MAKINUM (sign));
f872b822 6260 }
3c9a524f
DH
6261 else
6262 return SCM_BOOL_F;
0f2d19dd 6263 }
3c9a524f
DH
6264 else
6265 {
73e4de09 6266 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f 6267 ureal = scm_difference (ureal, SCM_UNDEFINED);
f872b822 6268
3c9a524f
DH
6269 if (idx == len)
6270 return ureal;
6271
3f47e526 6272 c = scm_i_string_ref (mem, idx);
3c9a524f 6273 switch (c)
f872b822 6274 {
3c9a524f
DH
6275 case 'i': case 'I':
6276 /* either +<ureal>i or -<ureal>i */
6277
6278 idx++;
6279 if (sign == 0)
6280 return SCM_BOOL_F;
6281 if (idx != len)
6282 return SCM_BOOL_F;
cff5fa33 6283 return scm_make_rectangular (SCM_INUM0, ureal);
3c9a524f
DH
6284
6285 case '@':
6286 /* polar input: <real>@<real>. */
6287
6288 idx++;
6289 if (idx == len)
6290 return SCM_BOOL_F;
6291 else
f872b822 6292 {
3c9a524f
DH
6293 int sign;
6294 SCM angle;
6295 SCM result;
6296
3f47e526 6297 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
6298 if (c == '+')
6299 {
6300 idx++;
ee0ddd21
AW
6301 if (idx == len)
6302 return SCM_BOOL_F;
3c9a524f
DH
6303 sign = 1;
6304 }
6305 else if (c == '-')
6306 {
6307 idx++;
ee0ddd21
AW
6308 if (idx == len)
6309 return SCM_BOOL_F;
3c9a524f
DH
6310 sign = -1;
6311 }
6312 else
929d11b2 6313 sign = 0;
3c9a524f 6314
929d11b2 6315 angle = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
73e4de09 6316 if (scm_is_false (angle))
3c9a524f
DH
6317 return SCM_BOOL_F;
6318 if (idx != len)
6319 return SCM_BOOL_F;
6320
73e4de09 6321 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f
DH
6322 angle = scm_difference (angle, SCM_UNDEFINED);
6323
6324 result = scm_make_polar (ureal, angle);
6325 return result;
f872b822 6326 }
3c9a524f
DH
6327 case '+':
6328 case '-':
6329 /* expecting input matching <real>[+-]<ureal>?i */
0f2d19dd 6330
3c9a524f
DH
6331 idx++;
6332 if (idx == len)
6333 return SCM_BOOL_F;
6334 else
6335 {
6336 int sign = (c == '+') ? 1 : -1;
929d11b2 6337 SCM imag = mem2ureal (mem, &idx, radix, forced_x, sign != 0);
0f2d19dd 6338
73e4de09 6339 if (scm_is_false (imag))
d956fa6f 6340 imag = SCM_I_MAKINUM (sign);
23295dc3 6341 else if (sign == -1 && scm_is_false (scm_nan_p (imag)))
1fe5e088 6342 imag = scm_difference (imag, SCM_UNDEFINED);
0f2d19dd 6343
3c9a524f
DH
6344 if (idx == len)
6345 return SCM_BOOL_F;
3f47e526
MG
6346 if (scm_i_string_ref (mem, idx) != 'i'
6347 && scm_i_string_ref (mem, idx) != 'I')
3c9a524f 6348 return SCM_BOOL_F;
0f2d19dd 6349
3c9a524f
DH
6350 idx++;
6351 if (idx != len)
6352 return SCM_BOOL_F;
0f2d19dd 6353
1fe5e088 6354 return scm_make_rectangular (ureal, imag);
3c9a524f
DH
6355 }
6356 default:
6357 return SCM_BOOL_F;
6358 }
6359 }
0f2d19dd 6360}
0f2d19dd
JB
6361
6362
3c9a524f
DH
6363/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
6364
6365enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
1cc91f1b 6366
0f2d19dd 6367SCM
3f47e526 6368scm_i_string_to_number (SCM mem, unsigned int default_radix)
0f2d19dd 6369{
3c9a524f
DH
6370 unsigned int idx = 0;
6371 unsigned int radix = NO_RADIX;
6372 enum t_exactness forced_x = NO_EXACTNESS;
3f47e526 6373 size_t len = scm_i_string_length (mem);
3c9a524f
DH
6374
6375 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
3f47e526 6376 while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
3c9a524f 6377 {
3f47e526 6378 switch (scm_i_string_ref (mem, idx + 1))
3c9a524f
DH
6379 {
6380 case 'b': case 'B':
6381 if (radix != NO_RADIX)
6382 return SCM_BOOL_F;
6383 radix = DUAL;
6384 break;
6385 case 'd': case 'D':
6386 if (radix != NO_RADIX)
6387 return SCM_BOOL_F;
6388 radix = DEC;
6389 break;
6390 case 'i': case 'I':
6391 if (forced_x != NO_EXACTNESS)
6392 return SCM_BOOL_F;
6393 forced_x = INEXACT;
6394 break;
6395 case 'e': case 'E':
6396 if (forced_x != NO_EXACTNESS)
6397 return SCM_BOOL_F;
6398 forced_x = EXACT;
6399 break;
6400 case 'o': case 'O':
6401 if (radix != NO_RADIX)
6402 return SCM_BOOL_F;
6403 radix = OCT;
6404 break;
6405 case 'x': case 'X':
6406 if (radix != NO_RADIX)
6407 return SCM_BOOL_F;
6408 radix = HEX;
6409 break;
6410 default:
f872b822 6411 return SCM_BOOL_F;
3c9a524f
DH
6412 }
6413 idx += 2;
6414 }
6415
6416 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
6417 if (radix == NO_RADIX)
9d427b2c 6418 radix = default_radix;
f872b822 6419
9d427b2c 6420 return mem2complex (mem, idx, radix, forced_x);
0f2d19dd
JB
6421}
6422
3f47e526
MG
6423SCM
6424scm_c_locale_stringn_to_number (const char* mem, size_t len,
6425 unsigned int default_radix)
6426{
6427 SCM str = scm_from_locale_stringn (mem, len);
6428
6429 return scm_i_string_to_number (str, default_radix);
6430}
6431
0f2d19dd 6432
a1ec6916 6433SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
bb628794 6434 (SCM string, SCM radix),
1e6808ea 6435 "Return a number of the maximally precise representation\n"
942e5b91 6436 "expressed by the given @var{string}. @var{radix} must be an\n"
5352393c
MG
6437 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
6438 "is a default radix that may be overridden by an explicit radix\n"
6439 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
6440 "supplied, then the default radix is 10. If string is not a\n"
6441 "syntactically valid notation for a number, then\n"
6442 "@code{string->number} returns @code{#f}.")
1bbd0b84 6443#define FUNC_NAME s_scm_string_to_number
0f2d19dd
JB
6444{
6445 SCM answer;
5efd3c7d 6446 unsigned int base;
a6d9e5ab 6447 SCM_VALIDATE_STRING (1, string);
5efd3c7d
MV
6448
6449 if (SCM_UNBNDP (radix))
6450 base = 10;
6451 else
6452 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
6453
3f47e526 6454 answer = scm_i_string_to_number (string, base);
8824ac88
MV
6455 scm_remember_upto_here_1 (string);
6456 return answer;
0f2d19dd 6457}
1bbd0b84 6458#undef FUNC_NAME
3c9a524f
DH
6459
6460
0f2d19dd
JB
6461/*** END strs->nums ***/
6462
5986c47d 6463
8507ec80
MV
6464SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
6465 (SCM x),
6466 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
6467 "otherwise.")
6468#define FUNC_NAME s_scm_number_p
6469{
6470 return scm_from_bool (SCM_NUMBERP (x));
6471}
6472#undef FUNC_NAME
6473
6474SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
1bbd0b84 6475 (SCM x),
942e5b91 6476 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
bb2c02f2 6477 "otherwise. Note that the sets of real, rational and integer\n"
942e5b91
MG
6478 "values form subsets of the set of complex numbers, i. e. the\n"
6479 "predicate will also be fulfilled if @var{x} is a real,\n"
6480 "rational or integer number.")
8507ec80 6481#define FUNC_NAME s_scm_complex_p
0f2d19dd 6482{
8507ec80
MV
6483 /* all numbers are complex. */
6484 return scm_number_p (x);
0f2d19dd 6485}
1bbd0b84 6486#undef FUNC_NAME
0f2d19dd 6487
f92e85f7
MV
6488SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
6489 (SCM x),
6490 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
6491 "otherwise. Note that the set of integer values forms a subset of\n"
6492 "the set of real numbers, i. e. the predicate will also be\n"
6493 "fulfilled if @var{x} is an integer number.")
6494#define FUNC_NAME s_scm_real_p
6495{
c960e556
MW
6496 return scm_from_bool
6497 (SCM_I_INUMP (x) || SCM_REALP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x));
f92e85f7
MV
6498}
6499#undef FUNC_NAME
6500
6501SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
1bbd0b84 6502 (SCM x),
942e5b91 6503 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
bb2c02f2 6504 "otherwise. Note that the set of integer values forms a subset of\n"
942e5b91 6505 "the set of rational numbers, i. e. the predicate will also be\n"
f92e85f7
MV
6506 "fulfilled if @var{x} is an integer number.")
6507#define FUNC_NAME s_scm_rational_p
0f2d19dd 6508{
c960e556 6509 if (SCM_I_INUMP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x))
f92e85f7
MV
6510 return SCM_BOOL_T;
6511 else if (SCM_REALP (x))
c960e556
MW
6512 /* due to their limited precision, finite floating point numbers are
6513 rational as well. (finite means neither infinity nor a NaN) */
19374ad2 6514 return scm_from_bool (isfinite (SCM_REAL_VALUE (x)));
0aacf84e 6515 else
bb628794 6516 return SCM_BOOL_F;
0f2d19dd 6517}
1bbd0b84 6518#undef FUNC_NAME
0f2d19dd 6519
a1ec6916 6520SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
1bbd0b84 6521 (SCM x),
900a897c
MW
6522 "Return @code{#t} if @var{x} is an integer number,\n"
6523 "else return @code{#f}.")
1bbd0b84 6524#define FUNC_NAME s_scm_integer_p
0f2d19dd 6525{
c960e556 6526 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f872b822 6527 return SCM_BOOL_T;
c960e556
MW
6528 else if (SCM_REALP (x))
6529 {
6530 double val = SCM_REAL_VALUE (x);
6531 return scm_from_bool (!isinf (val) && (val == floor (val)));
6532 }
6533 else
8e43ed5d 6534 return SCM_BOOL_F;
0f2d19dd 6535}
1bbd0b84 6536#undef FUNC_NAME
0f2d19dd 6537
900a897c
MW
6538SCM_DEFINE (scm_exact_integer_p, "exact-integer?", 1, 0, 0,
6539 (SCM x),
6540 "Return @code{#t} if @var{x} is an exact integer number,\n"
6541 "else return @code{#f}.")
6542#define FUNC_NAME s_scm_exact_integer_p
6543{
6544 if (SCM_I_INUMP (x) || SCM_BIGP (x))
6545 return SCM_BOOL_T;
6546 else
6547 return SCM_BOOL_F;
6548}
6549#undef FUNC_NAME
6550
0f2d19dd 6551
8a1f4f98
AW
6552SCM scm_i_num_eq_p (SCM, SCM, SCM);
6553SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1,
6554 (SCM x, SCM y, SCM rest),
6555 "Return @code{#t} if all parameters are numerically equal.")
6556#define FUNC_NAME s_scm_i_num_eq_p
6557{
6558 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
6559 return SCM_BOOL_T;
6560 while (!scm_is_null (rest))
6561 {
6562 if (scm_is_false (scm_num_eq_p (x, y)))
6563 return SCM_BOOL_F;
6564 x = y;
6565 y = scm_car (rest);
6566 rest = scm_cdr (rest);
6567 }
6568 return scm_num_eq_p (x, y);
6569}
6570#undef FUNC_NAME
0f2d19dd 6571SCM
6e8d25a6 6572scm_num_eq_p (SCM x, SCM y)
0f2d19dd 6573{
d8b95e27 6574 again:
e11e83f3 6575 if (SCM_I_INUMP (x))
0aacf84e 6576 {
e25f3727 6577 scm_t_signed_bits xx = SCM_I_INUM (x);
e11e83f3 6578 if (SCM_I_INUMP (y))
0aacf84e 6579 {
e25f3727 6580 scm_t_signed_bits yy = SCM_I_INUM (y);
73e4de09 6581 return scm_from_bool (xx == yy);
0aacf84e
MD
6582 }
6583 else if (SCM_BIGP (y))
6584 return SCM_BOOL_F;
6585 else if (SCM_REALP (y))
e8c5b1f2
KR
6586 {
6587 /* On a 32-bit system an inum fits a double, we can cast the inum
6588 to a double and compare.
6589
6590 But on a 64-bit system an inum is bigger than a double and
01329288
MW
6591 casting it to a double (call that dxx) will round.
6592 Although dxx will not in general be equal to xx, dxx will
6593 always be an integer and within a factor of 2 of xx, so if
6594 dxx==yy, we know that yy is an integer and fits in
6595 scm_t_signed_bits. So we cast yy to scm_t_signed_bits and
e8c5b1f2
KR
6596 compare with plain xx.
6597
6598 An alternative (for any size system actually) would be to check
6599 yy is an integer (with floor) and is in range of an inum
6600 (compare against appropriate powers of 2) then test
e25f3727
AW
6601 xx==(scm_t_signed_bits)yy. It's just a matter of which
6602 casts/comparisons might be fastest or easiest for the cpu. */
e8c5b1f2
KR
6603
6604 double yy = SCM_REAL_VALUE (y);
3a1b45fd
MV
6605 return scm_from_bool ((double) xx == yy
6606 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
e25f3727 6607 || xx == (scm_t_signed_bits) yy));
e8c5b1f2 6608 }
0aacf84e 6609 else if (SCM_COMPLEXP (y))
01329288
MW
6610 {
6611 /* see comments with inum/real above */
6612 double ry = SCM_COMPLEX_REAL (y);
6613 return scm_from_bool ((double) xx == ry
6614 && 0.0 == SCM_COMPLEX_IMAG (y)
6615 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
6616 || xx == (scm_t_signed_bits) ry));
6617 }
f92e85f7
MV
6618 else if (SCM_FRACTIONP (y))
6619 return SCM_BOOL_F;
0aacf84e 6620 else
fa075d40
AW
6621 return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
6622 s_scm_i_num_eq_p);
f872b822 6623 }
0aacf84e
MD
6624 else if (SCM_BIGP (x))
6625 {
e11e83f3 6626 if (SCM_I_INUMP (y))
0aacf84e
MD
6627 return SCM_BOOL_F;
6628 else if (SCM_BIGP (y))
6629 {
6630 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
6631 scm_remember_upto_here_2 (x, y);
73e4de09 6632 return scm_from_bool (0 == cmp);
0aacf84e
MD
6633 }
6634 else if (SCM_REALP (y))
6635 {
6636 int cmp;
2e65b52f 6637 if (isnan (SCM_REAL_VALUE (y)))
0aacf84e
MD
6638 return SCM_BOOL_F;
6639 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
6640 scm_remember_upto_here_1 (x);
73e4de09 6641 return scm_from_bool (0 == cmp);
0aacf84e
MD
6642 }
6643 else if (SCM_COMPLEXP (y))
6644 {
6645 int cmp;
6646 if (0.0 != SCM_COMPLEX_IMAG (y))
6647 return SCM_BOOL_F;
2e65b52f 6648 if (isnan (SCM_COMPLEX_REAL (y)))
0aacf84e
MD
6649 return SCM_BOOL_F;
6650 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
6651 scm_remember_upto_here_1 (x);
73e4de09 6652 return scm_from_bool (0 == cmp);
0aacf84e 6653 }
f92e85f7
MV
6654 else if (SCM_FRACTIONP (y))
6655 return SCM_BOOL_F;
0aacf84e 6656 else
fa075d40
AW
6657 return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
6658 s_scm_i_num_eq_p);
f4c627b3 6659 }
0aacf84e
MD
6660 else if (SCM_REALP (x))
6661 {
e8c5b1f2 6662 double xx = SCM_REAL_VALUE (x);
e11e83f3 6663 if (SCM_I_INUMP (y))
e8c5b1f2
KR
6664 {
6665 /* see comments with inum/real above */
e25f3727 6666 scm_t_signed_bits yy = SCM_I_INUM (y);
3a1b45fd
MV
6667 return scm_from_bool (xx == (double) yy
6668 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
e25f3727 6669 || (scm_t_signed_bits) xx == yy));
e8c5b1f2 6670 }
0aacf84e
MD
6671 else if (SCM_BIGP (y))
6672 {
6673 int cmp;
01329288 6674 if (isnan (xx))
0aacf84e 6675 return SCM_BOOL_F;
01329288 6676 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), xx);
0aacf84e 6677 scm_remember_upto_here_1 (y);
73e4de09 6678 return scm_from_bool (0 == cmp);
0aacf84e
MD
6679 }
6680 else if (SCM_REALP (y))
01329288 6681 return scm_from_bool (xx == SCM_REAL_VALUE (y));
0aacf84e 6682 else if (SCM_COMPLEXP (y))
01329288
MW
6683 return scm_from_bool ((xx == SCM_COMPLEX_REAL (y))
6684 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7 6685 else if (SCM_FRACTIONP (y))
d8b95e27 6686 {
01329288 6687 if (isnan (xx) || isinf (xx))
d8b95e27 6688 return SCM_BOOL_F;
d8b95e27
KR
6689 x = scm_inexact_to_exact (x); /* with x as frac or int */
6690 goto again;
6691 }
0aacf84e 6692 else
fa075d40
AW
6693 return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
6694 s_scm_i_num_eq_p);
f872b822 6695 }
0aacf84e
MD
6696 else if (SCM_COMPLEXP (x))
6697 {
e11e83f3 6698 if (SCM_I_INUMP (y))
01329288
MW
6699 {
6700 /* see comments with inum/real above */
6701 double rx = SCM_COMPLEX_REAL (x);
6702 scm_t_signed_bits yy = SCM_I_INUM (y);
6703 return scm_from_bool (rx == (double) yy
6704 && 0.0 == SCM_COMPLEX_IMAG (x)
6705 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
6706 || (scm_t_signed_bits) rx == yy));
6707 }
0aacf84e
MD
6708 else if (SCM_BIGP (y))
6709 {
6710 int cmp;
6711 if (0.0 != SCM_COMPLEX_IMAG (x))
6712 return SCM_BOOL_F;
2e65b52f 6713 if (isnan (SCM_COMPLEX_REAL (x)))
0aacf84e
MD
6714 return SCM_BOOL_F;
6715 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
6716 scm_remember_upto_here_1 (y);
73e4de09 6717 return scm_from_bool (0 == cmp);
0aacf84e
MD
6718 }
6719 else if (SCM_REALP (y))
73e4de09 6720 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
01329288 6721 && (SCM_COMPLEX_IMAG (x) == 0.0));
0aacf84e 6722 else if (SCM_COMPLEXP (y))
73e4de09 6723 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
01329288 6724 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
f92e85f7 6725 else if (SCM_FRACTIONP (y))
d8b95e27
KR
6726 {
6727 double xx;
6728 if (SCM_COMPLEX_IMAG (x) != 0.0)
6729 return SCM_BOOL_F;
6730 xx = SCM_COMPLEX_REAL (x);
01329288 6731 if (isnan (xx) || isinf (xx))
d8b95e27 6732 return SCM_BOOL_F;
d8b95e27
KR
6733 x = scm_inexact_to_exact (x); /* with x as frac or int */
6734 goto again;
6735 }
f92e85f7 6736 else
fa075d40
AW
6737 return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
6738 s_scm_i_num_eq_p);
f92e85f7
MV
6739 }
6740 else if (SCM_FRACTIONP (x))
6741 {
e11e83f3 6742 if (SCM_I_INUMP (y))
f92e85f7
MV
6743 return SCM_BOOL_F;
6744 else if (SCM_BIGP (y))
6745 return SCM_BOOL_F;
6746 else if (SCM_REALP (y))
d8b95e27
KR
6747 {
6748 double yy = SCM_REAL_VALUE (y);
01329288 6749 if (isnan (yy) || isinf (yy))
d8b95e27 6750 return SCM_BOOL_F;
d8b95e27
KR
6751 y = scm_inexact_to_exact (y); /* with y as frac or int */
6752 goto again;
6753 }
f92e85f7 6754 else if (SCM_COMPLEXP (y))
d8b95e27
KR
6755 {
6756 double yy;
6757 if (SCM_COMPLEX_IMAG (y) != 0.0)
6758 return SCM_BOOL_F;
6759 yy = SCM_COMPLEX_REAL (y);
01329288 6760 if (isnan (yy) || isinf(yy))
d8b95e27 6761 return SCM_BOOL_F;
d8b95e27
KR
6762 y = scm_inexact_to_exact (y); /* with y as frac or int */
6763 goto again;
6764 }
f92e85f7
MV
6765 else if (SCM_FRACTIONP (y))
6766 return scm_i_fraction_equalp (x, y);
0aacf84e 6767 else
fa075d40
AW
6768 return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn,
6769 s_scm_i_num_eq_p);
f4c627b3 6770 }
0aacf84e 6771 else
fa075d40
AW
6772 return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1,
6773 s_scm_i_num_eq_p);
0f2d19dd
JB
6774}
6775
6776
a5f0b599
KR
6777/* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
6778 done are good for inums, but for bignums an answer can almost always be
6779 had by just examining a few high bits of the operands, as done by GMP in
6780 mpq_cmp. flonum/frac compares likewise, but with the slight complication
6781 of the float exponent to take into account. */
6782
8c93b597 6783SCM_INTERNAL SCM scm_i_num_less_p (SCM, SCM, SCM);
8a1f4f98
AW
6784SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1,
6785 (SCM x, SCM y, SCM rest),
6786 "Return @code{#t} if the list of parameters is monotonically\n"
6787 "increasing.")
6788#define FUNC_NAME s_scm_i_num_less_p
6789{
6790 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
6791 return SCM_BOOL_T;
6792 while (!scm_is_null (rest))
6793 {
6794 if (scm_is_false (scm_less_p (x, y)))
6795 return SCM_BOOL_F;
6796 x = y;
6797 y = scm_car (rest);
6798 rest = scm_cdr (rest);
6799 }
6800 return scm_less_p (x, y);
6801}
6802#undef FUNC_NAME
0f2d19dd 6803SCM
6e8d25a6 6804scm_less_p (SCM x, SCM y)
0f2d19dd 6805{
a5f0b599 6806 again:
e11e83f3 6807 if (SCM_I_INUMP (x))
0aacf84e 6808 {
e25f3727 6809 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 6810 if (SCM_I_INUMP (y))
0aacf84e 6811 {
e25f3727 6812 scm_t_inum yy = SCM_I_INUM (y);
73e4de09 6813 return scm_from_bool (xx < yy);
0aacf84e
MD
6814 }
6815 else if (SCM_BIGP (y))
6816 {
6817 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
6818 scm_remember_upto_here_1 (y);
73e4de09 6819 return scm_from_bool (sgn > 0);
0aacf84e
MD
6820 }
6821 else if (SCM_REALP (y))
95ed2217
MW
6822 {
6823 /* We can safely take the ceiling of y without changing the
6824 result of x<y, given that x is an integer. */
6825 double yy = ceil (SCM_REAL_VALUE (y));
6826
6827 /* In the following comparisons, it's important that the right
6828 hand side always be a power of 2, so that it can be
6829 losslessly converted to a double even on 64-bit
6830 machines. */
6831 if (yy >= (double) (SCM_MOST_POSITIVE_FIXNUM+1))
6832 return SCM_BOOL_T;
6833 else if (!(yy > (double) SCM_MOST_NEGATIVE_FIXNUM))
6834 /* The condition above is carefully written to include the
6835 case where yy==NaN. */
6836 return SCM_BOOL_F;
6837 else
6838 /* yy is a finite integer that fits in an inum. */
6839 return scm_from_bool (xx < (scm_t_inum) yy);
6840 }
f92e85f7 6841 else if (SCM_FRACTIONP (y))
a5f0b599
KR
6842 {
6843 /* "x < a/b" becomes "x*b < a" */
6844 int_frac:
6845 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
6846 y = SCM_FRACTION_NUMERATOR (y);
6847 goto again;
6848 }
0aacf84e 6849 else
fa075d40
AW
6850 return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
6851 s_scm_i_num_less_p);
f872b822 6852 }
0aacf84e
MD
6853 else if (SCM_BIGP (x))
6854 {
e11e83f3 6855 if (SCM_I_INUMP (y))
0aacf84e
MD
6856 {
6857 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
6858 scm_remember_upto_here_1 (x);
73e4de09 6859 return scm_from_bool (sgn < 0);
0aacf84e
MD
6860 }
6861 else if (SCM_BIGP (y))
6862 {
6863 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
6864 scm_remember_upto_here_2 (x, y);
73e4de09 6865 return scm_from_bool (cmp < 0);
0aacf84e
MD
6866 }
6867 else if (SCM_REALP (y))
6868 {
6869 int cmp;
2e65b52f 6870 if (isnan (SCM_REAL_VALUE (y)))
0aacf84e
MD
6871 return SCM_BOOL_F;
6872 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
6873 scm_remember_upto_here_1 (x);
73e4de09 6874 return scm_from_bool (cmp < 0);
0aacf84e 6875 }
f92e85f7 6876 else if (SCM_FRACTIONP (y))
a5f0b599 6877 goto int_frac;
0aacf84e 6878 else
fa075d40
AW
6879 return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
6880 s_scm_i_num_less_p);
f4c627b3 6881 }
0aacf84e
MD
6882 else if (SCM_REALP (x))
6883 {
e11e83f3 6884 if (SCM_I_INUMP (y))
95ed2217
MW
6885 {
6886 /* We can safely take the floor of x without changing the
6887 result of x<y, given that y is an integer. */
6888 double xx = floor (SCM_REAL_VALUE (x));
6889
6890 /* In the following comparisons, it's important that the right
6891 hand side always be a power of 2, so that it can be
6892 losslessly converted to a double even on 64-bit
6893 machines. */
6894 if (xx < (double) SCM_MOST_NEGATIVE_FIXNUM)
6895 return SCM_BOOL_T;
6896 else if (!(xx < (double) (SCM_MOST_POSITIVE_FIXNUM+1)))
6897 /* The condition above is carefully written to include the
6898 case where xx==NaN. */
6899 return SCM_BOOL_F;
6900 else
6901 /* xx is a finite integer that fits in an inum. */
6902 return scm_from_bool ((scm_t_inum) xx < SCM_I_INUM (y));
6903 }
0aacf84e
MD
6904 else if (SCM_BIGP (y))
6905 {
6906 int cmp;
2e65b52f 6907 if (isnan (SCM_REAL_VALUE (x)))
0aacf84e
MD
6908 return SCM_BOOL_F;
6909 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
6910 scm_remember_upto_here_1 (y);
73e4de09 6911 return scm_from_bool (cmp > 0);
0aacf84e
MD
6912 }
6913 else if (SCM_REALP (y))
73e4de09 6914 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
f92e85f7 6915 else if (SCM_FRACTIONP (y))
a5f0b599
KR
6916 {
6917 double xx = SCM_REAL_VALUE (x);
2e65b52f 6918 if (isnan (xx))
a5f0b599 6919 return SCM_BOOL_F;
2e65b52f 6920 if (isinf (xx))
73e4de09 6921 return scm_from_bool (xx < 0.0);
a5f0b599
KR
6922 x = scm_inexact_to_exact (x); /* with x as frac or int */
6923 goto again;
6924 }
f92e85f7 6925 else
fa075d40
AW
6926 return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
6927 s_scm_i_num_less_p);
f92e85f7
MV
6928 }
6929 else if (SCM_FRACTIONP (x))
6930 {
e11e83f3 6931 if (SCM_I_INUMP (y) || SCM_BIGP (y))
a5f0b599
KR
6932 {
6933 /* "a/b < y" becomes "a < y*b" */
6934 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
6935 x = SCM_FRACTION_NUMERATOR (x);
6936 goto again;
6937 }
f92e85f7 6938 else if (SCM_REALP (y))
a5f0b599
KR
6939 {
6940 double yy = SCM_REAL_VALUE (y);
2e65b52f 6941 if (isnan (yy))
a5f0b599 6942 return SCM_BOOL_F;
2e65b52f 6943 if (isinf (yy))
73e4de09 6944 return scm_from_bool (0.0 < yy);
a5f0b599
KR
6945 y = scm_inexact_to_exact (y); /* with y as frac or int */
6946 goto again;
6947 }
f92e85f7 6948 else if (SCM_FRACTIONP (y))
a5f0b599
KR
6949 {
6950 /* "a/b < c/d" becomes "a*d < c*b" */
6951 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
6952 SCM_FRACTION_DENOMINATOR (y));
6953 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
6954 SCM_FRACTION_DENOMINATOR (x));
6955 x = new_x;
6956 y = new_y;
6957 goto again;
6958 }
0aacf84e 6959 else
fa075d40
AW
6960 return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARGn,
6961 s_scm_i_num_less_p);
f872b822 6962 }
0aacf84e 6963 else
fa075d40
AW
6964 return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARG1,
6965 s_scm_i_num_less_p);
0f2d19dd
JB
6966}
6967
6968
8a1f4f98
AW
6969SCM scm_i_num_gr_p (SCM, SCM, SCM);
6970SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1,
6971 (SCM x, SCM y, SCM rest),
6972 "Return @code{#t} if the list of parameters is monotonically\n"
6973 "decreasing.")
6974#define FUNC_NAME s_scm_i_num_gr_p
6975{
6976 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
6977 return SCM_BOOL_T;
6978 while (!scm_is_null (rest))
6979 {
6980 if (scm_is_false (scm_gr_p (x, y)))
6981 return SCM_BOOL_F;
6982 x = y;
6983 y = scm_car (rest);
6984 rest = scm_cdr (rest);
6985 }
6986 return scm_gr_p (x, y);
6987}
6988#undef FUNC_NAME
6989#define FUNC_NAME s_scm_i_num_gr_p
c76b1eaf
MD
6990SCM
6991scm_gr_p (SCM x, SCM y)
0f2d19dd 6992{
c76b1eaf 6993 if (!SCM_NUMBERP (x))
fa075d40 6994 return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 6995 else if (!SCM_NUMBERP (y))
fa075d40 6996 return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME);
c76b1eaf
MD
6997 else
6998 return scm_less_p (y, x);
0f2d19dd 6999}
1bbd0b84 7000#undef FUNC_NAME
0f2d19dd
JB
7001
7002
8a1f4f98
AW
7003SCM scm_i_num_leq_p (SCM, SCM, SCM);
7004SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1,
7005 (SCM x, SCM y, SCM rest),
7006 "Return @code{#t} if the list of parameters is monotonically\n"
7007 "non-decreasing.")
7008#define FUNC_NAME s_scm_i_num_leq_p
7009{
7010 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
7011 return SCM_BOOL_T;
7012 while (!scm_is_null (rest))
7013 {
7014 if (scm_is_false (scm_leq_p (x, y)))
7015 return SCM_BOOL_F;
7016 x = y;
7017 y = scm_car (rest);
7018 rest = scm_cdr (rest);
7019 }
7020 return scm_leq_p (x, y);
7021}
7022#undef FUNC_NAME
7023#define FUNC_NAME s_scm_i_num_leq_p
c76b1eaf
MD
7024SCM
7025scm_leq_p (SCM x, SCM y)
0f2d19dd 7026{
c76b1eaf 7027 if (!SCM_NUMBERP (x))
fa075d40 7028 return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 7029 else if (!SCM_NUMBERP (y))
fa075d40 7030 return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 7031 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 7032 return SCM_BOOL_F;
c76b1eaf 7033 else
73e4de09 7034 return scm_not (scm_less_p (y, x));
0f2d19dd 7035}
1bbd0b84 7036#undef FUNC_NAME
0f2d19dd
JB
7037
7038
8a1f4f98
AW
7039SCM scm_i_num_geq_p (SCM, SCM, SCM);
7040SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1,
7041 (SCM x, SCM y, SCM rest),
7042 "Return @code{#t} if the list of parameters is monotonically\n"
7043 "non-increasing.")
7044#define FUNC_NAME s_scm_i_num_geq_p
7045{
7046 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
7047 return SCM_BOOL_T;
7048 while (!scm_is_null (rest))
7049 {
7050 if (scm_is_false (scm_geq_p (x, y)))
7051 return SCM_BOOL_F;
7052 x = y;
7053 y = scm_car (rest);
7054 rest = scm_cdr (rest);
7055 }
7056 return scm_geq_p (x, y);
7057}
7058#undef FUNC_NAME
7059#define FUNC_NAME s_scm_i_num_geq_p
c76b1eaf
MD
7060SCM
7061scm_geq_p (SCM x, SCM y)
0f2d19dd 7062{
c76b1eaf 7063 if (!SCM_NUMBERP (x))
fa075d40 7064 return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 7065 else if (!SCM_NUMBERP (y))
fa075d40 7066 return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 7067 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 7068 return SCM_BOOL_F;
c76b1eaf 7069 else
73e4de09 7070 return scm_not (scm_less_p (x, y));
0f2d19dd 7071}
1bbd0b84 7072#undef FUNC_NAME
0f2d19dd
JB
7073
7074
2519490c
MW
7075SCM_PRIMITIVE_GENERIC (scm_zero_p, "zero?", 1, 0, 0,
7076 (SCM z),
7077 "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
7078 "zero.")
7079#define FUNC_NAME s_scm_zero_p
0f2d19dd 7080{
e11e83f3 7081 if (SCM_I_INUMP (z))
bc36d050 7082 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
0aacf84e 7083 else if (SCM_BIGP (z))
c2ff8ab0 7084 return SCM_BOOL_F;
0aacf84e 7085 else if (SCM_REALP (z))
73e4de09 7086 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
0aacf84e 7087 else if (SCM_COMPLEXP (z))
73e4de09 7088 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
c2ff8ab0 7089 && SCM_COMPLEX_IMAG (z) == 0.0);
f92e85f7
MV
7090 else if (SCM_FRACTIONP (z))
7091 return SCM_BOOL_F;
0aacf84e 7092 else
fa075d40 7093 return scm_wta_dispatch_1 (g_scm_zero_p, z, SCM_ARG1, s_scm_zero_p);
0f2d19dd 7094}
2519490c 7095#undef FUNC_NAME
0f2d19dd
JB
7096
7097
2519490c
MW
7098SCM_PRIMITIVE_GENERIC (scm_positive_p, "positive?", 1, 0, 0,
7099 (SCM x),
7100 "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
7101 "zero.")
7102#define FUNC_NAME s_scm_positive_p
0f2d19dd 7103{
e11e83f3
MV
7104 if (SCM_I_INUMP (x))
7105 return scm_from_bool (SCM_I_INUM (x) > 0);
0aacf84e
MD
7106 else if (SCM_BIGP (x))
7107 {
7108 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
7109 scm_remember_upto_here_1 (x);
73e4de09 7110 return scm_from_bool (sgn > 0);
0aacf84e
MD
7111 }
7112 else if (SCM_REALP (x))
73e4de09 7113 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
f92e85f7
MV
7114 else if (SCM_FRACTIONP (x))
7115 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 7116 else
fa075d40 7117 return scm_wta_dispatch_1 (g_scm_positive_p, x, SCM_ARG1, s_scm_positive_p);
0f2d19dd 7118}
2519490c 7119#undef FUNC_NAME
0f2d19dd
JB
7120
7121
2519490c
MW
7122SCM_PRIMITIVE_GENERIC (scm_negative_p, "negative?", 1, 0, 0,
7123 (SCM x),
7124 "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
7125 "zero.")
7126#define FUNC_NAME s_scm_negative_p
0f2d19dd 7127{
e11e83f3
MV
7128 if (SCM_I_INUMP (x))
7129 return scm_from_bool (SCM_I_INUM (x) < 0);
0aacf84e
MD
7130 else if (SCM_BIGP (x))
7131 {
7132 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
7133 scm_remember_upto_here_1 (x);
73e4de09 7134 return scm_from_bool (sgn < 0);
0aacf84e
MD
7135 }
7136 else if (SCM_REALP (x))
73e4de09 7137 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
f92e85f7
MV
7138 else if (SCM_FRACTIONP (x))
7139 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 7140 else
fa075d40 7141 return scm_wta_dispatch_1 (g_scm_negative_p, x, SCM_ARG1, s_scm_negative_p);
0f2d19dd 7142}
2519490c 7143#undef FUNC_NAME
0f2d19dd
JB
7144
7145
2a06f791
KR
7146/* scm_min and scm_max return an inexact when either argument is inexact, as
7147 required by r5rs. On that basis, for exact/inexact combinations the
7148 exact is converted to inexact to compare and possibly return. This is
7149 unlike scm_less_p above which takes some trouble to preserve all bits in
7150 its test, such trouble is not required for min and max. */
7151
78d3deb1
AW
7152SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
7153 (SCM x, SCM y, SCM rest),
7154 "Return the maximum of all parameter values.")
7155#define FUNC_NAME s_scm_i_max
7156{
7157 while (!scm_is_null (rest))
7158 { x = scm_max (x, y);
7159 y = scm_car (rest);
7160 rest = scm_cdr (rest);
7161 }
7162 return scm_max (x, y);
7163}
7164#undef FUNC_NAME
7165
7166#define s_max s_scm_i_max
7167#define g_max g_scm_i_max
7168
0f2d19dd 7169SCM
6e8d25a6 7170scm_max (SCM x, SCM y)
0f2d19dd 7171{
0aacf84e
MD
7172 if (SCM_UNBNDP (y))
7173 {
7174 if (SCM_UNBNDP (x))
fa075d40 7175 return scm_wta_dispatch_0 (g_max, s_max);
e11e83f3 7176 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
7177 return x;
7178 else
fa075d40 7179 return scm_wta_dispatch_1 (g_max, x, SCM_ARG1, s_max);
f872b822 7180 }
f4c627b3 7181
e11e83f3 7182 if (SCM_I_INUMP (x))
0aacf84e 7183 {
e25f3727 7184 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 7185 if (SCM_I_INUMP (y))
0aacf84e 7186 {
e25f3727 7187 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
7188 return (xx < yy) ? y : x;
7189 }
7190 else if (SCM_BIGP (y))
7191 {
7192 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
7193 scm_remember_upto_here_1 (y);
7194 return (sgn < 0) ? x : y;
7195 }
7196 else if (SCM_REALP (y))
7197 {
2e274311
MW
7198 double xxd = xx;
7199 double yyd = SCM_REAL_VALUE (y);
7200
7201 if (xxd > yyd)
00472a22 7202 return scm_i_from_double (xxd);
2e274311
MW
7203 /* If y is a NaN, then "==" is false and we return the NaN */
7204 else if (SCM_LIKELY (!(xxd == yyd)))
7205 return y;
7206 /* Handle signed zeroes properly */
7207 else if (xx == 0)
7208 return flo0;
7209 else
7210 return y;
0aacf84e 7211 }
f92e85f7
MV
7212 else if (SCM_FRACTIONP (y))
7213 {
e4bc5d6c 7214 use_less:
73e4de09 7215 return (scm_is_false (scm_less_p (x, y)) ? x : y);
f92e85f7 7216 }
0aacf84e 7217 else
fa075d40 7218 return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 7219 }
0aacf84e
MD
7220 else if (SCM_BIGP (x))
7221 {
e11e83f3 7222 if (SCM_I_INUMP (y))
0aacf84e
MD
7223 {
7224 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
7225 scm_remember_upto_here_1 (x);
7226 return (sgn < 0) ? y : x;
7227 }
7228 else if (SCM_BIGP (y))
7229 {
7230 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
7231 scm_remember_upto_here_2 (x, y);
7232 return (cmp > 0) ? x : y;
7233 }
7234 else if (SCM_REALP (y))
7235 {
2a06f791
KR
7236 /* if y==NaN then xx>yy is false, so we return the NaN y */
7237 double xx, yy;
7238 big_real:
7239 xx = scm_i_big2dbl (x);
7240 yy = SCM_REAL_VALUE (y);
00472a22 7241 return (xx > yy ? scm_i_from_double (xx) : y);
0aacf84e 7242 }
f92e85f7
MV
7243 else if (SCM_FRACTIONP (y))
7244 {
e4bc5d6c 7245 goto use_less;
f92e85f7 7246 }
0aacf84e 7247 else
fa075d40 7248 return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
f4c627b3 7249 }
0aacf84e
MD
7250 else if (SCM_REALP (x))
7251 {
e11e83f3 7252 if (SCM_I_INUMP (y))
0aacf84e 7253 {
2e274311
MW
7254 scm_t_inum yy = SCM_I_INUM (y);
7255 double xxd = SCM_REAL_VALUE (x);
7256 double yyd = yy;
7257
7258 if (yyd > xxd)
00472a22 7259 return scm_i_from_double (yyd);
2e274311
MW
7260 /* If x is a NaN, then "==" is false and we return the NaN */
7261 else if (SCM_LIKELY (!(xxd == yyd)))
7262 return x;
7263 /* Handle signed zeroes properly */
7264 else if (yy == 0)
7265 return flo0;
7266 else
7267 return x;
0aacf84e
MD
7268 }
7269 else if (SCM_BIGP (y))
7270 {
b6f8f763 7271 SCM_SWAP (x, y);
2a06f791 7272 goto big_real;
0aacf84e
MD
7273 }
7274 else if (SCM_REALP (y))
7275 {
0aacf84e 7276 double xx = SCM_REAL_VALUE (x);
2e274311
MW
7277 double yy = SCM_REAL_VALUE (y);
7278
b4c55c9c
MW
7279 /* For purposes of max: nan > +inf.0 > everything else,
7280 per the R6RS errata */
2e274311
MW
7281 if (xx > yy)
7282 return x;
7283 else if (SCM_LIKELY (xx < yy))
7284 return y;
7285 /* If neither (xx > yy) nor (xx < yy), then
7286 either they're equal or one is a NaN */
b4c55c9c
MW
7287 else if (SCM_UNLIKELY (xx != yy))
7288 return (xx != xx) ? x : y; /* Return the NaN */
2e274311 7289 /* xx == yy, but handle signed zeroes properly */
e1592f8a 7290 else if (copysign (1.0, yy) < 0.0)
2e274311 7291 return x;
e1592f8a
MW
7292 else
7293 return y;
0aacf84e 7294 }
f92e85f7
MV
7295 else if (SCM_FRACTIONP (y))
7296 {
7297 double yy = scm_i_fraction2double (y);
7298 double xx = SCM_REAL_VALUE (x);
00472a22 7299 return (xx < yy) ? scm_i_from_double (yy) : x;
f92e85f7
MV
7300 }
7301 else
fa075d40 7302 return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
f92e85f7
MV
7303 }
7304 else if (SCM_FRACTIONP (x))
7305 {
e11e83f3 7306 if (SCM_I_INUMP (y))
f92e85f7 7307 {
e4bc5d6c 7308 goto use_less;
f92e85f7
MV
7309 }
7310 else if (SCM_BIGP (y))
7311 {
e4bc5d6c 7312 goto use_less;
f92e85f7
MV
7313 }
7314 else if (SCM_REALP (y))
7315 {
7316 double xx = scm_i_fraction2double (x);
2e274311 7317 /* if y==NaN then ">" is false, so we return the NaN y */
00472a22 7318 return (xx > SCM_REAL_VALUE (y)) ? scm_i_from_double (xx) : y;
f92e85f7
MV
7319 }
7320 else if (SCM_FRACTIONP (y))
7321 {
e4bc5d6c 7322 goto use_less;
f92e85f7 7323 }
0aacf84e 7324 else
fa075d40 7325 return scm_wta_dispatch_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 7326 }
0aacf84e 7327 else
fa075d40 7328 return scm_wta_dispatch_2 (g_max, x, y, SCM_ARG1, s_max);
0f2d19dd
JB
7329}
7330
7331
78d3deb1
AW
7332SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
7333 (SCM x, SCM y, SCM rest),
7334 "Return the minimum of all parameter values.")
7335#define FUNC_NAME s_scm_i_min
7336{
7337 while (!scm_is_null (rest))
7338 { x = scm_min (x, y);
7339 y = scm_car (rest);
7340 rest = scm_cdr (rest);
7341 }
7342 return scm_min (x, y);
7343}
7344#undef FUNC_NAME
7345
7346#define s_min s_scm_i_min
7347#define g_min g_scm_i_min
7348
0f2d19dd 7349SCM
6e8d25a6 7350scm_min (SCM x, SCM y)
0f2d19dd 7351{
0aacf84e
MD
7352 if (SCM_UNBNDP (y))
7353 {
7354 if (SCM_UNBNDP (x))
fa075d40 7355 return scm_wta_dispatch_0 (g_min, s_min);
e11e83f3 7356 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
7357 return x;
7358 else
fa075d40 7359 return scm_wta_dispatch_1 (g_min, x, SCM_ARG1, s_min);
f872b822 7360 }
f4c627b3 7361
e11e83f3 7362 if (SCM_I_INUMP (x))
0aacf84e 7363 {
e25f3727 7364 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 7365 if (SCM_I_INUMP (y))
0aacf84e 7366 {
e25f3727 7367 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
7368 return (xx < yy) ? x : y;
7369 }
7370 else if (SCM_BIGP (y))
7371 {
7372 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
7373 scm_remember_upto_here_1 (y);
7374 return (sgn < 0) ? y : x;
7375 }
7376 else if (SCM_REALP (y))
7377 {
7378 double z = xx;
7379 /* if y==NaN then "<" is false and we return NaN */
00472a22 7380 return (z < SCM_REAL_VALUE (y)) ? scm_i_from_double (z) : y;
0aacf84e 7381 }
f92e85f7
MV
7382 else if (SCM_FRACTIONP (y))
7383 {
e4bc5d6c 7384 use_less:
73e4de09 7385 return (scm_is_false (scm_less_p (x, y)) ? y : x);
f92e85f7 7386 }
0aacf84e 7387 else
fa075d40 7388 return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 7389 }
0aacf84e
MD
7390 else if (SCM_BIGP (x))
7391 {
e11e83f3 7392 if (SCM_I_INUMP (y))
0aacf84e
MD
7393 {
7394 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
7395 scm_remember_upto_here_1 (x);
7396 return (sgn < 0) ? x : y;
7397 }
7398 else if (SCM_BIGP (y))
7399 {
7400 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
7401 scm_remember_upto_here_2 (x, y);
7402 return (cmp > 0) ? y : x;
7403 }
7404 else if (SCM_REALP (y))
7405 {
2a06f791
KR
7406 /* if y==NaN then xx<yy is false, so we return the NaN y */
7407 double xx, yy;
7408 big_real:
7409 xx = scm_i_big2dbl (x);
7410 yy = SCM_REAL_VALUE (y);
00472a22 7411 return (xx < yy ? scm_i_from_double (xx) : y);
0aacf84e 7412 }
f92e85f7
MV
7413 else if (SCM_FRACTIONP (y))
7414 {
e4bc5d6c 7415 goto use_less;
f92e85f7 7416 }
0aacf84e 7417 else
fa075d40 7418 return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
f4c627b3 7419 }
0aacf84e
MD
7420 else if (SCM_REALP (x))
7421 {
e11e83f3 7422 if (SCM_I_INUMP (y))
0aacf84e 7423 {
e11e83f3 7424 double z = SCM_I_INUM (y);
0aacf84e 7425 /* if x==NaN then "<" is false and we return NaN */
00472a22 7426 return (z < SCM_REAL_VALUE (x)) ? scm_i_from_double (z) : x;
0aacf84e
MD
7427 }
7428 else if (SCM_BIGP (y))
7429 {
b6f8f763 7430 SCM_SWAP (x, y);
2a06f791 7431 goto big_real;
0aacf84e
MD
7432 }
7433 else if (SCM_REALP (y))
7434 {
0aacf84e 7435 double xx = SCM_REAL_VALUE (x);
2e274311
MW
7436 double yy = SCM_REAL_VALUE (y);
7437
b4c55c9c
MW
7438 /* For purposes of min: nan < -inf.0 < everything else,
7439 per the R6RS errata */
2e274311
MW
7440 if (xx < yy)
7441 return x;
7442 else if (SCM_LIKELY (xx > yy))
7443 return y;
7444 /* If neither (xx < yy) nor (xx > yy), then
7445 either they're equal or one is a NaN */
b4c55c9c
MW
7446 else if (SCM_UNLIKELY (xx != yy))
7447 return (xx != xx) ? x : y; /* Return the NaN */
2e274311 7448 /* xx == yy, but handle signed zeroes properly */
e1592f8a 7449 else if (copysign (1.0, xx) < 0.0)
2e274311 7450 return x;
e1592f8a
MW
7451 else
7452 return y;
0aacf84e 7453 }
f92e85f7
MV
7454 else if (SCM_FRACTIONP (y))
7455 {
7456 double yy = scm_i_fraction2double (y);
7457 double xx = SCM_REAL_VALUE (x);
00472a22 7458 return (yy < xx) ? scm_i_from_double (yy) : x;
f92e85f7 7459 }
0aacf84e 7460 else
fa075d40 7461 return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 7462 }
f92e85f7
MV
7463 else if (SCM_FRACTIONP (x))
7464 {
e11e83f3 7465 if (SCM_I_INUMP (y))
f92e85f7 7466 {
e4bc5d6c 7467 goto use_less;
f92e85f7
MV
7468 }
7469 else if (SCM_BIGP (y))
7470 {
e4bc5d6c 7471 goto use_less;
f92e85f7
MV
7472 }
7473 else if (SCM_REALP (y))
7474 {
7475 double xx = scm_i_fraction2double (x);
2e274311 7476 /* if y==NaN then "<" is false, so we return the NaN y */
00472a22 7477 return (xx < SCM_REAL_VALUE (y)) ? scm_i_from_double (xx) : y;
f92e85f7
MV
7478 }
7479 else if (SCM_FRACTIONP (y))
7480 {
e4bc5d6c 7481 goto use_less;
f92e85f7
MV
7482 }
7483 else
fa075d40 7484 return scm_wta_dispatch_2 (g_min, x, y, SCM_ARGn, s_min);
f92e85f7 7485 }
0aacf84e 7486 else
fa075d40 7487 return scm_wta_dispatch_2 (g_min, x, y, SCM_ARG1, s_min);
0f2d19dd
JB
7488}
7489
7490
8ccd24f7
AW
7491SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
7492 (SCM x, SCM y, SCM rest),
7493 "Return the sum of all parameter values. Return 0 if called without\n"
7494 "any parameters." )
7495#define FUNC_NAME s_scm_i_sum
7496{
7497 while (!scm_is_null (rest))
7498 { x = scm_sum (x, y);
7499 y = scm_car (rest);
7500 rest = scm_cdr (rest);
7501 }
7502 return scm_sum (x, y);
7503}
7504#undef FUNC_NAME
7505
7506#define s_sum s_scm_i_sum
7507#define g_sum g_scm_i_sum
7508
0f2d19dd 7509SCM
6e8d25a6 7510scm_sum (SCM x, SCM y)
0f2d19dd 7511{
9cc37597 7512 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
7513 {
7514 if (SCM_NUMBERP (x)) return x;
7515 if (SCM_UNBNDP (x)) return SCM_INUM0;
fa075d40 7516 return scm_wta_dispatch_1 (g_sum, x, SCM_ARG1, s_sum);
f872b822 7517 }
c209c88e 7518
9cc37597 7519 if (SCM_LIKELY (SCM_I_INUMP (x)))
ca46fb90 7520 {
9cc37597 7521 if (SCM_LIKELY (SCM_I_INUMP (y)))
ca46fb90 7522 {
e25f3727
AW
7523 scm_t_inum xx = SCM_I_INUM (x);
7524 scm_t_inum yy = SCM_I_INUM (y);
7525 scm_t_inum z = xx + yy;
7526 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_inum2big (z);
ca46fb90
RB
7527 }
7528 else if (SCM_BIGP (y))
7529 {
7530 SCM_SWAP (x, y);
7531 goto add_big_inum;
7532 }
7533 else if (SCM_REALP (y))
7534 {
e25f3727 7535 scm_t_inum xx = SCM_I_INUM (x);
00472a22 7536 return scm_i_from_double (xx + SCM_REAL_VALUE (y));
ca46fb90
RB
7537 }
7538 else if (SCM_COMPLEXP (y))
7539 {
e25f3727 7540 scm_t_inum xx = SCM_I_INUM (x);
8507ec80 7541 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
ca46fb90
RB
7542 SCM_COMPLEX_IMAG (y));
7543 }
f92e85f7 7544 else if (SCM_FRACTIONP (y))
cba42c93 7545 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
7546 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
7547 SCM_FRACTION_DENOMINATOR (y));
ca46fb90 7548 else
fa075d40 7549 return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
0aacf84e
MD
7550 } else if (SCM_BIGP (x))
7551 {
e11e83f3 7552 if (SCM_I_INUMP (y))
0aacf84e 7553 {
e25f3727 7554 scm_t_inum inum;
0aacf84e
MD
7555 int bigsgn;
7556 add_big_inum:
e11e83f3 7557 inum = SCM_I_INUM (y);
0aacf84e
MD
7558 if (inum == 0)
7559 return x;
7560 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
7561 if (inum < 0)
7562 {
7563 SCM result = scm_i_mkbig ();
7564 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
7565 scm_remember_upto_here_1 (x);
7566 /* we know the result will have to be a bignum */
7567 if (bigsgn == -1)
7568 return result;
7569 return scm_i_normbig (result);
7570 }
7571 else
7572 {
7573 SCM result = scm_i_mkbig ();
7574 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
7575 scm_remember_upto_here_1 (x);
7576 /* we know the result will have to be a bignum */
7577 if (bigsgn == 1)
7578 return result;
7579 return scm_i_normbig (result);
7580 }
7581 }
7582 else if (SCM_BIGP (y))
7583 {
7584 SCM result = scm_i_mkbig ();
7585 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
7586 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
7587 mpz_add (SCM_I_BIG_MPZ (result),
7588 SCM_I_BIG_MPZ (x),
7589 SCM_I_BIG_MPZ (y));
7590 scm_remember_upto_here_2 (x, y);
7591 /* we know the result will have to be a bignum */
7592 if (sgn_x == sgn_y)
7593 return result;
7594 return scm_i_normbig (result);
7595 }
7596 else if (SCM_REALP (y))
7597 {
7598 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
7599 scm_remember_upto_here_1 (x);
00472a22 7600 return scm_i_from_double (result);
0aacf84e
MD
7601 }
7602 else if (SCM_COMPLEXP (y))
7603 {
7604 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
7605 + SCM_COMPLEX_REAL (y));
7606 scm_remember_upto_here_1 (x);
8507ec80 7607 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e 7608 }
f92e85f7 7609 else if (SCM_FRACTIONP (y))
cba42c93 7610 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
7611 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
7612 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 7613 else
fa075d40 7614 return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
0f2d19dd 7615 }
0aacf84e
MD
7616 else if (SCM_REALP (x))
7617 {
e11e83f3 7618 if (SCM_I_INUMP (y))
00472a22 7619 return scm_i_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
0aacf84e
MD
7620 else if (SCM_BIGP (y))
7621 {
7622 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
7623 scm_remember_upto_here_1 (y);
00472a22 7624 return scm_i_from_double (result);
0aacf84e
MD
7625 }
7626 else if (SCM_REALP (y))
00472a22 7627 return scm_i_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
0aacf84e 7628 else if (SCM_COMPLEXP (y))
8507ec80 7629 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
0aacf84e 7630 SCM_COMPLEX_IMAG (y));
f92e85f7 7631 else if (SCM_FRACTIONP (y))
00472a22 7632 return scm_i_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
0aacf84e 7633 else
fa075d40 7634 return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
f872b822 7635 }
0aacf84e
MD
7636 else if (SCM_COMPLEXP (x))
7637 {
e11e83f3 7638 if (SCM_I_INUMP (y))
8507ec80 7639 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
0aacf84e
MD
7640 SCM_COMPLEX_IMAG (x));
7641 else if (SCM_BIGP (y))
7642 {
7643 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
7644 + SCM_COMPLEX_REAL (x));
7645 scm_remember_upto_here_1 (y);
8507ec80 7646 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
0aacf84e
MD
7647 }
7648 else if (SCM_REALP (y))
8507ec80 7649 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
0aacf84e
MD
7650 SCM_COMPLEX_IMAG (x));
7651 else if (SCM_COMPLEXP (y))
8507ec80 7652 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
0aacf84e 7653 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
f92e85f7 7654 else if (SCM_FRACTIONP (y))
8507ec80 7655 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
f92e85f7
MV
7656 SCM_COMPLEX_IMAG (x));
7657 else
fa075d40 7658 return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
f92e85f7
MV
7659 }
7660 else if (SCM_FRACTIONP (x))
7661 {
e11e83f3 7662 if (SCM_I_INUMP (y))
cba42c93 7663 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
7664 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
7665 SCM_FRACTION_DENOMINATOR (x));
7666 else if (SCM_BIGP (y))
cba42c93 7667 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
7668 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
7669 SCM_FRACTION_DENOMINATOR (x));
7670 else if (SCM_REALP (y))
00472a22 7671 return scm_i_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
f92e85f7 7672 else if (SCM_COMPLEXP (y))
8507ec80 7673 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
f92e85f7
MV
7674 SCM_COMPLEX_IMAG (y));
7675 else if (SCM_FRACTIONP (y))
7676 /* a/b + c/d = (ad + bc) / bd */
cba42c93 7677 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
7678 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
7679 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e 7680 else
fa075d40 7681 return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARGn, s_sum);
98cb6e75 7682 }
0aacf84e 7683 else
fa075d40 7684 return scm_wta_dispatch_2 (g_sum, x, y, SCM_ARG1, s_sum);
0f2d19dd
JB
7685}
7686
7687
40882e3d
KR
7688SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
7689 (SCM x),
7690 "Return @math{@var{x}+1}.")
7691#define FUNC_NAME s_scm_oneplus
7692{
cff5fa33 7693 return scm_sum (x, SCM_INUM1);
40882e3d
KR
7694}
7695#undef FUNC_NAME
7696
7697
78d3deb1
AW
7698SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
7699 (SCM x, SCM y, SCM rest),
7700 "If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
7701 "the sum of all but the first argument are subtracted from the first\n"
7702 "argument.")
7703#define FUNC_NAME s_scm_i_difference
7704{
7705 while (!scm_is_null (rest))
7706 { x = scm_difference (x, y);
7707 y = scm_car (rest);
7708 rest = scm_cdr (rest);
7709 }
7710 return scm_difference (x, y);
7711}
7712#undef FUNC_NAME
7713
7714#define s_difference s_scm_i_difference
7715#define g_difference g_scm_i_difference
7716
0f2d19dd 7717SCM
6e8d25a6 7718scm_difference (SCM x, SCM y)
78d3deb1 7719#define FUNC_NAME s_difference
0f2d19dd 7720{
9cc37597 7721 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
7722 {
7723 if (SCM_UNBNDP (x))
fa075d40 7724 return scm_wta_dispatch_0 (g_difference, s_difference);
ca46fb90 7725 else
e11e83f3 7726 if (SCM_I_INUMP (x))
ca46fb90 7727 {
e25f3727 7728 scm_t_inum xx = -SCM_I_INUM (x);
ca46fb90 7729 if (SCM_FIXABLE (xx))
d956fa6f 7730 return SCM_I_MAKINUM (xx);
ca46fb90 7731 else
e25f3727 7732 return scm_i_inum2big (xx);
ca46fb90
RB
7733 }
7734 else if (SCM_BIGP (x))
a9ad4847
KR
7735 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
7736 bignum, but negating that gives a fixnum. */
ca46fb90
RB
7737 return scm_i_normbig (scm_i_clonebig (x, 0));
7738 else if (SCM_REALP (x))
00472a22 7739 return scm_i_from_double (-SCM_REAL_VALUE (x));
ca46fb90 7740 else if (SCM_COMPLEXP (x))
8507ec80 7741 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
ca46fb90 7742 -SCM_COMPLEX_IMAG (x));
f92e85f7 7743 else if (SCM_FRACTIONP (x))
a285b18c
MW
7744 return scm_i_make_ratio_already_reduced
7745 (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
7746 SCM_FRACTION_DENOMINATOR (x));
ca46fb90 7747 else
fa075d40 7748 return scm_wta_dispatch_1 (g_difference, x, SCM_ARG1, s_difference);
f872b822 7749 }
ca46fb90 7750
9cc37597 7751 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 7752 {
9cc37597 7753 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 7754 {
e25f3727
AW
7755 scm_t_inum xx = SCM_I_INUM (x);
7756 scm_t_inum yy = SCM_I_INUM (y);
7757 scm_t_inum z = xx - yy;
0aacf84e 7758 if (SCM_FIXABLE (z))
d956fa6f 7759 return SCM_I_MAKINUM (z);
0aacf84e 7760 else
e25f3727 7761 return scm_i_inum2big (z);
0aacf84e
MD
7762 }
7763 else if (SCM_BIGP (y))
7764 {
7765 /* inum-x - big-y */
e25f3727 7766 scm_t_inum xx = SCM_I_INUM (x);
ca46fb90 7767
0aacf84e 7768 if (xx == 0)
b5c40589
MW
7769 {
7770 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
7771 bignum, but negating that gives a fixnum. */
7772 return scm_i_normbig (scm_i_clonebig (y, 0));
7773 }
0aacf84e
MD
7774 else
7775 {
7776 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
7777 SCM result = scm_i_mkbig ();
ca46fb90 7778
0aacf84e
MD
7779 if (xx >= 0)
7780 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
7781 else
7782 {
7783 /* x - y == -(y + -x) */
7784 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
7785 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
7786 }
7787 scm_remember_upto_here_1 (y);
ca46fb90 7788
0aacf84e
MD
7789 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
7790 /* we know the result will have to be a bignum */
7791 return result;
7792 else
7793 return scm_i_normbig (result);
7794 }
7795 }
7796 else if (SCM_REALP (y))
7797 {
e25f3727 7798 scm_t_inum xx = SCM_I_INUM (x);
9b9ef10c
MW
7799
7800 /*
7801 * We need to handle x == exact 0
7802 * specially because R6RS states that:
7803 * (- 0.0) ==> -0.0 and
7804 * (- 0.0 0.0) ==> 0.0
7805 * and the scheme compiler changes
7806 * (- 0.0) into (- 0 0.0)
7807 * So we need to treat (- 0 0.0) like (- 0.0).
7808 * At the C level, (-x) is different than (0.0 - x).
7809 * (0.0 - 0.0) ==> 0.0, but (- 0.0) ==> -0.0.
7810 */
7811 if (xx == 0)
00472a22 7812 return scm_i_from_double (- SCM_REAL_VALUE (y));
9b9ef10c 7813 else
00472a22 7814 return scm_i_from_double (xx - SCM_REAL_VALUE (y));
0aacf84e
MD
7815 }
7816 else if (SCM_COMPLEXP (y))
7817 {
e25f3727 7818 scm_t_inum xx = SCM_I_INUM (x);
9b9ef10c
MW
7819
7820 /* We need to handle x == exact 0 specially.
7821 See the comment above (for SCM_REALP (y)) */
7822 if (xx == 0)
7823 return scm_c_make_rectangular (- SCM_COMPLEX_REAL (y),
7824 - SCM_COMPLEX_IMAG (y));
7825 else
7826 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
7827 - SCM_COMPLEX_IMAG (y));
0aacf84e 7828 }
f92e85f7
MV
7829 else if (SCM_FRACTIONP (y))
7830 /* a - b/c = (ac - b) / c */
cba42c93 7831 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
7832 SCM_FRACTION_NUMERATOR (y)),
7833 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 7834 else
fa075d40 7835 return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
f872b822 7836 }
0aacf84e
MD
7837 else if (SCM_BIGP (x))
7838 {
e11e83f3 7839 if (SCM_I_INUMP (y))
0aacf84e
MD
7840 {
7841 /* big-x - inum-y */
e25f3727 7842 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e 7843 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
ca46fb90 7844
0aacf84e
MD
7845 scm_remember_upto_here_1 (x);
7846 if (sgn_x == 0)
c71b0706 7847 return (SCM_FIXABLE (-yy) ?
e25f3727 7848 SCM_I_MAKINUM (-yy) : scm_from_inum (-yy));
0aacf84e
MD
7849 else
7850 {
7851 SCM result = scm_i_mkbig ();
ca46fb90 7852
708f22c6
KR
7853 if (yy >= 0)
7854 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
7855 else
7856 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
0aacf84e 7857 scm_remember_upto_here_1 (x);
ca46fb90 7858
0aacf84e
MD
7859 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
7860 /* we know the result will have to be a bignum */
7861 return result;
7862 else
7863 return scm_i_normbig (result);
7864 }
7865 }
7866 else if (SCM_BIGP (y))
7867 {
7868 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
7869 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
7870 SCM result = scm_i_mkbig ();
7871 mpz_sub (SCM_I_BIG_MPZ (result),
7872 SCM_I_BIG_MPZ (x),
7873 SCM_I_BIG_MPZ (y));
7874 scm_remember_upto_here_2 (x, y);
7875 /* we know the result will have to be a bignum */
7876 if ((sgn_x == 1) && (sgn_y == -1))
7877 return result;
7878 if ((sgn_x == -1) && (sgn_y == 1))
7879 return result;
7880 return scm_i_normbig (result);
7881 }
7882 else if (SCM_REALP (y))
7883 {
7884 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
7885 scm_remember_upto_here_1 (x);
00472a22 7886 return scm_i_from_double (result);
0aacf84e
MD
7887 }
7888 else if (SCM_COMPLEXP (y))
7889 {
7890 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
7891 - SCM_COMPLEX_REAL (y));
7892 scm_remember_upto_here_1 (x);
8507ec80 7893 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
0aacf84e 7894 }
f92e85f7 7895 else if (SCM_FRACTIONP (y))
cba42c93 7896 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
7897 SCM_FRACTION_NUMERATOR (y)),
7898 SCM_FRACTION_DENOMINATOR (y));
fa075d40
AW
7899 else
7900 return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
ca46fb90 7901 }
0aacf84e
MD
7902 else if (SCM_REALP (x))
7903 {
e11e83f3 7904 if (SCM_I_INUMP (y))
00472a22 7905 return scm_i_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
0aacf84e
MD
7906 else if (SCM_BIGP (y))
7907 {
7908 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
7909 scm_remember_upto_here_1 (x);
00472a22 7910 return scm_i_from_double (result);
0aacf84e
MD
7911 }
7912 else if (SCM_REALP (y))
00472a22 7913 return scm_i_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
0aacf84e 7914 else if (SCM_COMPLEXP (y))
8507ec80 7915 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
0aacf84e 7916 -SCM_COMPLEX_IMAG (y));
f92e85f7 7917 else if (SCM_FRACTIONP (y))
00472a22 7918 return scm_i_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
0aacf84e 7919 else
fa075d40 7920 return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 7921 }
0aacf84e
MD
7922 else if (SCM_COMPLEXP (x))
7923 {
e11e83f3 7924 if (SCM_I_INUMP (y))
8507ec80 7925 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
0aacf84e
MD
7926 SCM_COMPLEX_IMAG (x));
7927 else if (SCM_BIGP (y))
7928 {
7929 double real_part = (SCM_COMPLEX_REAL (x)
7930 - mpz_get_d (SCM_I_BIG_MPZ (y)));
7931 scm_remember_upto_here_1 (x);
8507ec80 7932 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e
MD
7933 }
7934 else if (SCM_REALP (y))
8507ec80 7935 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
0aacf84e
MD
7936 SCM_COMPLEX_IMAG (x));
7937 else if (SCM_COMPLEXP (y))
8507ec80 7938 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
0aacf84e 7939 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
f92e85f7 7940 else if (SCM_FRACTIONP (y))
8507ec80 7941 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
f92e85f7
MV
7942 SCM_COMPLEX_IMAG (x));
7943 else
fa075d40 7944 return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
f92e85f7
MV
7945 }
7946 else if (SCM_FRACTIONP (x))
7947 {
e11e83f3 7948 if (SCM_I_INUMP (y))
f92e85f7 7949 /* a/b - c = (a - cb) / b */
cba42c93 7950 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
7951 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
7952 SCM_FRACTION_DENOMINATOR (x));
7953 else if (SCM_BIGP (y))
cba42c93 7954 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
7955 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
7956 SCM_FRACTION_DENOMINATOR (x));
7957 else if (SCM_REALP (y))
00472a22 7958 return scm_i_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
f92e85f7 7959 else if (SCM_COMPLEXP (y))
8507ec80 7960 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
f92e85f7
MV
7961 -SCM_COMPLEX_IMAG (y));
7962 else if (SCM_FRACTIONP (y))
7963 /* a/b - c/d = (ad - bc) / bd */
cba42c93 7964 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
7965 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
7966 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e 7967 else
fa075d40 7968 return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 7969 }
0aacf84e 7970 else
fa075d40 7971 return scm_wta_dispatch_2 (g_difference, x, y, SCM_ARG1, s_difference);
0f2d19dd 7972}
c05e97b7 7973#undef FUNC_NAME
0f2d19dd 7974
ca46fb90 7975
40882e3d
KR
7976SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
7977 (SCM x),
7978 "Return @math{@var{x}-1}.")
7979#define FUNC_NAME s_scm_oneminus
7980{
cff5fa33 7981 return scm_difference (x, SCM_INUM1);
40882e3d
KR
7982}
7983#undef FUNC_NAME
7984
7985
78d3deb1
AW
7986SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
7987 (SCM x, SCM y, SCM rest),
7988 "Return the product of all arguments. If called without arguments,\n"
7989 "1 is returned.")
7990#define FUNC_NAME s_scm_i_product
7991{
7992 while (!scm_is_null (rest))
7993 { x = scm_product (x, y);
7994 y = scm_car (rest);
7995 rest = scm_cdr (rest);
7996 }
7997 return scm_product (x, y);
7998}
7999#undef FUNC_NAME
8000
8001#define s_product s_scm_i_product
8002#define g_product g_scm_i_product
8003
0f2d19dd 8004SCM
6e8d25a6 8005scm_product (SCM x, SCM y)
0f2d19dd 8006{
9cc37597 8007 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
8008 {
8009 if (SCM_UNBNDP (x))
d956fa6f 8010 return SCM_I_MAKINUM (1L);
0aacf84e
MD
8011 else if (SCM_NUMBERP (x))
8012 return x;
8013 else
fa075d40 8014 return scm_wta_dispatch_1 (g_product, x, SCM_ARG1, s_product);
f872b822 8015 }
ca46fb90 8016
9cc37597 8017 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 8018 {
e25f3727 8019 scm_t_inum xx;
f4c627b3 8020
5e791807 8021 xinum:
e11e83f3 8022 xx = SCM_I_INUM (x);
f4c627b3 8023
0aacf84e
MD
8024 switch (xx)
8025 {
5e791807
MW
8026 case 1:
8027 /* exact1 is the universal multiplicative identity */
8028 return y;
8029 break;
8030 case 0:
8031 /* exact0 times a fixnum is exact0: optimize this case */
8032 if (SCM_LIKELY (SCM_I_INUMP (y)))
8033 return SCM_INUM0;
8034 /* if the other argument is inexact, the result is inexact,
8035 and we must do the multiplication in order to handle
8036 infinities and NaNs properly. */
8037 else if (SCM_REALP (y))
00472a22 8038 return scm_i_from_double (0.0 * SCM_REAL_VALUE (y));
5e791807
MW
8039 else if (SCM_COMPLEXP (y))
8040 return scm_c_make_rectangular (0.0 * SCM_COMPLEX_REAL (y),
8041 0.0 * SCM_COMPLEX_IMAG (y));
8042 /* we've already handled inexact numbers,
8043 so y must be exact, and we return exact0 */
8044 else if (SCM_NUMP (y))
8045 return SCM_INUM0;
8046 else
fa075d40 8047 return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
5e791807
MW
8048 break;
8049 case -1:
b5c40589 8050 /*
5e791807
MW
8051 * This case is important for more than just optimization.
8052 * It handles the case of negating
b5c40589
MW
8053 * (+ 1 most-positive-fixnum) aka (- most-negative-fixnum),
8054 * which is a bignum that must be changed back into a fixnum.
8055 * Failure to do so will cause the following to return #f:
8056 * (= most-negative-fixnum (* -1 (- most-negative-fixnum)))
8057 */
b5c40589
MW
8058 return scm_difference(y, SCM_UNDEFINED);
8059 break;
0aacf84e 8060 }
f4c627b3 8061
9cc37597 8062 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 8063 {
e25f3727 8064 scm_t_inum yy = SCM_I_INUM (y);
2355f017
MW
8065#if SCM_I_FIXNUM_BIT < 32 && SCM_HAVE_T_INT64
8066 scm_t_int64 kk = xx * (scm_t_int64) yy;
8067 if (SCM_FIXABLE (kk))
8068 return SCM_I_MAKINUM (kk);
8069#else
8070 scm_t_inum axx = (xx > 0) ? xx : -xx;
8071 scm_t_inum ayy = (yy > 0) ? yy : -yy;
8072 if (SCM_MOST_POSITIVE_FIXNUM / axx >= ayy)
8073 return SCM_I_MAKINUM (xx * yy);
8074#endif
0aacf84e
MD
8075 else
8076 {
e25f3727 8077 SCM result = scm_i_inum2big (xx);
0aacf84e
MD
8078 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
8079 return scm_i_normbig (result);
8080 }
8081 }
8082 else if (SCM_BIGP (y))
8083 {
8084 SCM result = scm_i_mkbig ();
8085 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
8086 scm_remember_upto_here_1 (y);
8087 return result;
8088 }
8089 else if (SCM_REALP (y))
00472a22 8090 return scm_i_from_double (xx * SCM_REAL_VALUE (y));
0aacf84e 8091 else if (SCM_COMPLEXP (y))
8507ec80 8092 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
0aacf84e 8093 xx * SCM_COMPLEX_IMAG (y));
f92e85f7 8094 else if (SCM_FRACTIONP (y))
cba42c93 8095 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 8096 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 8097 else
fa075d40 8098 return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 8099 }
0aacf84e
MD
8100 else if (SCM_BIGP (x))
8101 {
e11e83f3 8102 if (SCM_I_INUMP (y))
0aacf84e
MD
8103 {
8104 SCM_SWAP (x, y);
5e791807 8105 goto xinum;
0aacf84e
MD
8106 }
8107 else if (SCM_BIGP (y))
8108 {
8109 SCM result = scm_i_mkbig ();
8110 mpz_mul (SCM_I_BIG_MPZ (result),
8111 SCM_I_BIG_MPZ (x),
8112 SCM_I_BIG_MPZ (y));
8113 scm_remember_upto_here_2 (x, y);
8114 return result;
8115 }
8116 else if (SCM_REALP (y))
8117 {
8118 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
8119 scm_remember_upto_here_1 (x);
00472a22 8120 return scm_i_from_double (result);
0aacf84e
MD
8121 }
8122 else if (SCM_COMPLEXP (y))
8123 {
8124 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
8125 scm_remember_upto_here_1 (x);
8507ec80 8126 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
0aacf84e
MD
8127 z * SCM_COMPLEX_IMAG (y));
8128 }
f92e85f7 8129 else if (SCM_FRACTIONP (y))
cba42c93 8130 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 8131 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 8132 else
fa075d40 8133 return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 8134 }
0aacf84e
MD
8135 else if (SCM_REALP (x))
8136 {
e11e83f3 8137 if (SCM_I_INUMP (y))
5e791807
MW
8138 {
8139 SCM_SWAP (x, y);
8140 goto xinum;
8141 }
0aacf84e
MD
8142 else if (SCM_BIGP (y))
8143 {
8144 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
8145 scm_remember_upto_here_1 (y);
00472a22 8146 return scm_i_from_double (result);
0aacf84e
MD
8147 }
8148 else if (SCM_REALP (y))
00472a22 8149 return scm_i_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
0aacf84e 8150 else if (SCM_COMPLEXP (y))
8507ec80 8151 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
0aacf84e 8152 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
f92e85f7 8153 else if (SCM_FRACTIONP (y))
00472a22 8154 return scm_i_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
0aacf84e 8155 else
fa075d40 8156 return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 8157 }
0aacf84e
MD
8158 else if (SCM_COMPLEXP (x))
8159 {
e11e83f3 8160 if (SCM_I_INUMP (y))
5e791807
MW
8161 {
8162 SCM_SWAP (x, y);
8163 goto xinum;
8164 }
0aacf84e
MD
8165 else if (SCM_BIGP (y))
8166 {
8167 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
8168 scm_remember_upto_here_1 (y);
8507ec80 8169 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
76506335 8170 z * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
8171 }
8172 else if (SCM_REALP (y))
8507ec80 8173 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
0aacf84e
MD
8174 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
8175 else if (SCM_COMPLEXP (y))
8176 {
8507ec80 8177 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
0aacf84e
MD
8178 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
8179 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
8180 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
8181 }
f92e85f7
MV
8182 else if (SCM_FRACTIONP (y))
8183 {
8184 double yy = scm_i_fraction2double (y);
8507ec80 8185 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
f92e85f7
MV
8186 yy * SCM_COMPLEX_IMAG (x));
8187 }
8188 else
fa075d40 8189 return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
f92e85f7
MV
8190 }
8191 else if (SCM_FRACTIONP (x))
8192 {
e11e83f3 8193 if (SCM_I_INUMP (y))
cba42c93 8194 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
8195 SCM_FRACTION_DENOMINATOR (x));
8196 else if (SCM_BIGP (y))
cba42c93 8197 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
8198 SCM_FRACTION_DENOMINATOR (x));
8199 else if (SCM_REALP (y))
00472a22 8200 return scm_i_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
f92e85f7
MV
8201 else if (SCM_COMPLEXP (y))
8202 {
8203 double xx = scm_i_fraction2double (x);
8507ec80 8204 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
f92e85f7
MV
8205 xx * SCM_COMPLEX_IMAG (y));
8206 }
8207 else if (SCM_FRACTIONP (y))
8208 /* a/b * c/d = ac / bd */
cba42c93 8209 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
8210 SCM_FRACTION_NUMERATOR (y)),
8211 scm_product (SCM_FRACTION_DENOMINATOR (x),
8212 SCM_FRACTION_DENOMINATOR (y)));
0aacf84e 8213 else
fa075d40 8214 return scm_wta_dispatch_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 8215 }
0aacf84e 8216 else
fa075d40 8217 return scm_wta_dispatch_2 (g_product, x, y, SCM_ARG1, s_product);
0f2d19dd
JB
8218}
8219
7351e207
MV
8220#if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
8221 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
8222#define ALLOW_DIVIDE_BY_ZERO
8223/* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
8224#endif
0f2d19dd 8225
ba74ef4e
MV
8226/* The code below for complex division is adapted from the GNU
8227 libstdc++, which adapted it from f2c's libF77, and is subject to
8228 this copyright: */
8229
8230/****************************************************************
8231Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
8232
8233Permission to use, copy, modify, and distribute this software
8234and its documentation for any purpose and without fee is hereby
8235granted, provided that the above copyright notice appear in all
8236copies and that both that the copyright notice and this
8237permission notice and warranty disclaimer appear in supporting
8238documentation, and that the names of AT&T Bell Laboratories or
8239Bellcore or any of their entities not be used in advertising or
8240publicity pertaining to distribution of the software without
8241specific, written prior permission.
8242
8243AT&T and Bellcore disclaim all warranties with regard to this
8244software, including all implied warranties of merchantability
8245and fitness. In no event shall AT&T or Bellcore be liable for
8246any special, indirect or consequential damages or any damages
8247whatsoever resulting from loss of use, data or profits, whether
8248in an action of contract, negligence or other tortious action,
8249arising out of or in connection with the use or performance of
8250this software.
8251****************************************************************/
8252
78d3deb1
AW
8253SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
8254 (SCM x, SCM y, SCM rest),
8255 "Divide the first argument by the product of the remaining\n"
8256 "arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
8257 "returned.")
8258#define FUNC_NAME s_scm_i_divide
8259{
8260 while (!scm_is_null (rest))
8261 { x = scm_divide (x, y);
8262 y = scm_car (rest);
8263 rest = scm_cdr (rest);
8264 }
8265 return scm_divide (x, y);
8266}
8267#undef FUNC_NAME
8268
8269#define s_divide s_scm_i_divide
8270#define g_divide g_scm_i_divide
8271
98237784
MW
8272SCM
8273scm_divide (SCM x, SCM y)
78d3deb1 8274#define FUNC_NAME s_divide
0f2d19dd 8275{
f8de44c1
DH
8276 double a;
8277
9cc37597 8278 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
8279 {
8280 if (SCM_UNBNDP (x))
fa075d40 8281 return scm_wta_dispatch_0 (g_divide, s_divide);
e11e83f3 8282 else if (SCM_I_INUMP (x))
0aacf84e 8283 {
e25f3727 8284 scm_t_inum xx = SCM_I_INUM (x);
0aacf84e
MD
8285 if (xx == 1 || xx == -1)
8286 return x;
7351e207 8287#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
8288 else if (xx == 0)
8289 scm_num_overflow (s_divide);
7351e207 8290#endif
0aacf84e 8291 else
98237784 8292 return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
0aacf84e
MD
8293 }
8294 else if (SCM_BIGP (x))
98237784 8295 return scm_i_make_ratio_already_reduced (SCM_INUM1, x);
0aacf84e
MD
8296 else if (SCM_REALP (x))
8297 {
8298 double xx = SCM_REAL_VALUE (x);
7351e207 8299#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
8300 if (xx == 0.0)
8301 scm_num_overflow (s_divide);
8302 else
7351e207 8303#endif
00472a22 8304 return scm_i_from_double (1.0 / xx);
0aacf84e
MD
8305 }
8306 else if (SCM_COMPLEXP (x))
8307 {
8308 double r = SCM_COMPLEX_REAL (x);
8309 double i = SCM_COMPLEX_IMAG (x);
4c6e36a6 8310 if (fabs(r) <= fabs(i))
0aacf84e
MD
8311 {
8312 double t = r / i;
8313 double d = i * (1.0 + t * t);
8507ec80 8314 return scm_c_make_rectangular (t / d, -1.0 / d);
0aacf84e
MD
8315 }
8316 else
8317 {
8318 double t = i / r;
8319 double d = r * (1.0 + t * t);
8507ec80 8320 return scm_c_make_rectangular (1.0 / d, -t / d);
0aacf84e
MD
8321 }
8322 }
f92e85f7 8323 else if (SCM_FRACTIONP (x))
a285b18c
MW
8324 return scm_i_make_ratio_already_reduced (SCM_FRACTION_DENOMINATOR (x),
8325 SCM_FRACTION_NUMERATOR (x));
0aacf84e 8326 else
fa075d40 8327 return scm_wta_dispatch_1 (g_divide, x, SCM_ARG1, s_divide);
f8de44c1 8328 }
f8de44c1 8329
9cc37597 8330 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 8331 {
e25f3727 8332 scm_t_inum xx = SCM_I_INUM (x);
9cc37597 8333 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 8334 {
e25f3727 8335 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
8336 if (yy == 0)
8337 {
7351e207 8338#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 8339 scm_num_overflow (s_divide);
7351e207 8340#else
00472a22 8341 return scm_i_from_double ((double) xx / (double) yy);
7351e207 8342#endif
0aacf84e
MD
8343 }
8344 else if (xx % yy != 0)
98237784 8345 return scm_i_make_ratio (x, y);
0aacf84e
MD
8346 else
8347 {
e25f3727 8348 scm_t_inum z = xx / yy;
0aacf84e 8349 if (SCM_FIXABLE (z))
d956fa6f 8350 return SCM_I_MAKINUM (z);
0aacf84e 8351 else
e25f3727 8352 return scm_i_inum2big (z);
0aacf84e 8353 }
f872b822 8354 }
0aacf84e 8355 else if (SCM_BIGP (y))
98237784 8356 return scm_i_make_ratio (x, y);
0aacf84e
MD
8357 else if (SCM_REALP (y))
8358 {
8359 double yy = SCM_REAL_VALUE (y);
7351e207 8360#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
8361 if (yy == 0.0)
8362 scm_num_overflow (s_divide);
8363 else
7351e207 8364#endif
98237784
MW
8365 /* FIXME: Precision may be lost here due to:
8366 (1) The cast from 'scm_t_inum' to 'double'
8367 (2) Double rounding */
00472a22 8368 return scm_i_from_double ((double) xx / yy);
ba74ef4e 8369 }
0aacf84e
MD
8370 else if (SCM_COMPLEXP (y))
8371 {
8372 a = xx;
8373 complex_div: /* y _must_ be a complex number */
8374 {
8375 double r = SCM_COMPLEX_REAL (y);
8376 double i = SCM_COMPLEX_IMAG (y);
4c6e36a6 8377 if (fabs(r) <= fabs(i))
0aacf84e
MD
8378 {
8379 double t = r / i;
8380 double d = i * (1.0 + t * t);
8507ec80 8381 return scm_c_make_rectangular ((a * t) / d, -a / d);
0aacf84e
MD
8382 }
8383 else
8384 {
8385 double t = i / r;
8386 double d = r * (1.0 + t * t);
8507ec80 8387 return scm_c_make_rectangular (a / d, -(a * t) / d);
0aacf84e
MD
8388 }
8389 }
8390 }
f92e85f7
MV
8391 else if (SCM_FRACTIONP (y))
8392 /* a / b/c = ac / b */
cba42c93 8393 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
98237784 8394 SCM_FRACTION_NUMERATOR (y));
0aacf84e 8395 else
fa075d40 8396 return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 8397 }
0aacf84e
MD
8398 else if (SCM_BIGP (x))
8399 {
e11e83f3 8400 if (SCM_I_INUMP (y))
0aacf84e 8401 {
e25f3727 8402 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
8403 if (yy == 0)
8404 {
7351e207 8405#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 8406 scm_num_overflow (s_divide);
7351e207 8407#else
0aacf84e
MD
8408 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
8409 scm_remember_upto_here_1 (x);
8410 return (sgn == 0) ? scm_nan () : scm_inf ();
7351e207 8411#endif
0aacf84e
MD
8412 }
8413 else if (yy == 1)
8414 return x;
8415 else
8416 {
8417 /* FIXME: HMM, what are the relative performance issues here?
8418 We need to test. Is it faster on average to test
8419 divisible_p, then perform whichever operation, or is it
8420 faster to perform the integer div opportunistically and
8421 switch to real if there's a remainder? For now we take the
8422 middle ground: test, then if divisible, use the faster div
8423 func. */
8424
e25f3727 8425 scm_t_inum abs_yy = yy < 0 ? -yy : yy;
0aacf84e
MD
8426 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
8427
8428 if (divisible_p)
8429 {
8430 SCM result = scm_i_mkbig ();
8431 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
8432 scm_remember_upto_here_1 (x);
8433 if (yy < 0)
8434 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
8435 return scm_i_normbig (result);
8436 }
8437 else
98237784 8438 return scm_i_make_ratio (x, y);
0aacf84e
MD
8439 }
8440 }
8441 else if (SCM_BIGP (y))
8442 {
98237784
MW
8443 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
8444 SCM_I_BIG_MPZ (y));
8445 if (divisible_p)
8446 {
8447 SCM result = scm_i_mkbig ();
8448 mpz_divexact (SCM_I_BIG_MPZ (result),
8449 SCM_I_BIG_MPZ (x),
8450 SCM_I_BIG_MPZ (y));
8451 scm_remember_upto_here_2 (x, y);
8452 return scm_i_normbig (result);
8453 }
8454 else
8455 return scm_i_make_ratio (x, y);
0aacf84e
MD
8456 }
8457 else if (SCM_REALP (y))
8458 {
8459 double yy = SCM_REAL_VALUE (y);
7351e207 8460#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
8461 if (yy == 0.0)
8462 scm_num_overflow (s_divide);
8463 else
7351e207 8464#endif
98237784
MW
8465 /* FIXME: Precision may be lost here due to:
8466 (1) scm_i_big2dbl (2) Double rounding */
00472a22 8467 return scm_i_from_double (scm_i_big2dbl (x) / yy);
0aacf84e
MD
8468 }
8469 else if (SCM_COMPLEXP (y))
8470 {
8471 a = scm_i_big2dbl (x);
8472 goto complex_div;
8473 }
f92e85f7 8474 else if (SCM_FRACTIONP (y))
cba42c93 8475 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
98237784 8476 SCM_FRACTION_NUMERATOR (y));
0aacf84e 8477 else
fa075d40 8478 return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 8479 }
0aacf84e
MD
8480 else if (SCM_REALP (x))
8481 {
8482 double rx = SCM_REAL_VALUE (x);
e11e83f3 8483 if (SCM_I_INUMP (y))
0aacf84e 8484 {
e25f3727 8485 scm_t_inum yy = SCM_I_INUM (y);
7351e207 8486#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
8487 if (yy == 0)
8488 scm_num_overflow (s_divide);
8489 else
7351e207 8490#endif
98237784
MW
8491 /* FIXME: Precision may be lost here due to:
8492 (1) The cast from 'scm_t_inum' to 'double'
8493 (2) Double rounding */
00472a22 8494 return scm_i_from_double (rx / (double) yy);
0aacf84e
MD
8495 }
8496 else if (SCM_BIGP (y))
8497 {
98237784
MW
8498 /* FIXME: Precision may be lost here due to:
8499 (1) The conversion from bignum to double
8500 (2) Double rounding */
0aacf84e
MD
8501 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
8502 scm_remember_upto_here_1 (y);
00472a22 8503 return scm_i_from_double (rx / dby);
0aacf84e
MD
8504 }
8505 else if (SCM_REALP (y))
8506 {
8507 double yy = SCM_REAL_VALUE (y);
7351e207 8508#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
8509 if (yy == 0.0)
8510 scm_num_overflow (s_divide);
8511 else
7351e207 8512#endif
00472a22 8513 return scm_i_from_double (rx / yy);
0aacf84e
MD
8514 }
8515 else if (SCM_COMPLEXP (y))
8516 {
8517 a = rx;
8518 goto complex_div;
8519 }
f92e85f7 8520 else if (SCM_FRACTIONP (y))
00472a22 8521 return scm_i_from_double (rx / scm_i_fraction2double (y));
0aacf84e 8522 else
fa075d40 8523 return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 8524 }
0aacf84e
MD
8525 else if (SCM_COMPLEXP (x))
8526 {
8527 double rx = SCM_COMPLEX_REAL (x);
8528 double ix = SCM_COMPLEX_IMAG (x);
e11e83f3 8529 if (SCM_I_INUMP (y))
0aacf84e 8530 {
e25f3727 8531 scm_t_inum yy = SCM_I_INUM (y);
7351e207 8532#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
8533 if (yy == 0)
8534 scm_num_overflow (s_divide);
8535 else
7351e207 8536#endif
0aacf84e 8537 {
98237784
MW
8538 /* FIXME: Precision may be lost here due to:
8539 (1) The conversion from 'scm_t_inum' to double
8540 (2) Double rounding */
0aacf84e 8541 double d = yy;
8507ec80 8542 return scm_c_make_rectangular (rx / d, ix / d);
0aacf84e
MD
8543 }
8544 }
8545 else if (SCM_BIGP (y))
8546 {
98237784
MW
8547 /* FIXME: Precision may be lost here due to:
8548 (1) The conversion from bignum to double
8549 (2) Double rounding */
0aacf84e
MD
8550 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
8551 scm_remember_upto_here_1 (y);
8507ec80 8552 return scm_c_make_rectangular (rx / dby, ix / dby);
0aacf84e
MD
8553 }
8554 else if (SCM_REALP (y))
8555 {
8556 double yy = SCM_REAL_VALUE (y);
7351e207 8557#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
8558 if (yy == 0.0)
8559 scm_num_overflow (s_divide);
8560 else
7351e207 8561#endif
8507ec80 8562 return scm_c_make_rectangular (rx / yy, ix / yy);
0aacf84e
MD
8563 }
8564 else if (SCM_COMPLEXP (y))
8565 {
8566 double ry = SCM_COMPLEX_REAL (y);
8567 double iy = SCM_COMPLEX_IMAG (y);
4c6e36a6 8568 if (fabs(ry) <= fabs(iy))
0aacf84e
MD
8569 {
8570 double t = ry / iy;
8571 double d = iy * (1.0 + t * t);
8507ec80 8572 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
0aacf84e
MD
8573 }
8574 else
8575 {
8576 double t = iy / ry;
8577 double d = ry * (1.0 + t * t);
8507ec80 8578 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
0aacf84e
MD
8579 }
8580 }
f92e85f7
MV
8581 else if (SCM_FRACTIONP (y))
8582 {
98237784
MW
8583 /* FIXME: Precision may be lost here due to:
8584 (1) The conversion from fraction to double
8585 (2) Double rounding */
f92e85f7 8586 double yy = scm_i_fraction2double (y);
8507ec80 8587 return scm_c_make_rectangular (rx / yy, ix / yy);
f92e85f7 8588 }
0aacf84e 8589 else
fa075d40 8590 return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 8591 }
f92e85f7
MV
8592 else if (SCM_FRACTIONP (x))
8593 {
e11e83f3 8594 if (SCM_I_INUMP (y))
f92e85f7 8595 {
e25f3727 8596 scm_t_inum yy = SCM_I_INUM (y);
f92e85f7
MV
8597#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
8598 if (yy == 0)
8599 scm_num_overflow (s_divide);
8600 else
8601#endif
cba42c93 8602 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
98237784 8603 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
f92e85f7
MV
8604 }
8605 else if (SCM_BIGP (y))
8606 {
cba42c93 8607 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
98237784 8608 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
f92e85f7
MV
8609 }
8610 else if (SCM_REALP (y))
8611 {
8612 double yy = SCM_REAL_VALUE (y);
8613#ifndef ALLOW_DIVIDE_BY_ZERO
8614 if (yy == 0.0)
8615 scm_num_overflow (s_divide);
8616 else
8617#endif
98237784
MW
8618 /* FIXME: Precision may be lost here due to:
8619 (1) The conversion from fraction to double
8620 (2) Double rounding */
00472a22 8621 return scm_i_from_double (scm_i_fraction2double (x) / yy);
f92e85f7
MV
8622 }
8623 else if (SCM_COMPLEXP (y))
8624 {
98237784
MW
8625 /* FIXME: Precision may be lost here due to:
8626 (1) The conversion from fraction to double
8627 (2) Double rounding */
f92e85f7
MV
8628 a = scm_i_fraction2double (x);
8629 goto complex_div;
8630 }
8631 else if (SCM_FRACTIONP (y))
cba42c93 8632 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
98237784 8633 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
f92e85f7 8634 else
fa075d40 8635 return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARGn, s_divide);
f92e85f7 8636 }
0aacf84e 8637 else
fa075d40 8638 return scm_wta_dispatch_2 (g_divide, x, y, SCM_ARG1, s_divide);
0f2d19dd 8639}
c05e97b7 8640#undef FUNC_NAME
0f2d19dd 8641
fa605590 8642
0f2d19dd 8643double
3101f40f 8644scm_c_truncate (double x)
0f2d19dd 8645{
fa605590 8646 return trunc (x);
0f2d19dd 8647}
0f2d19dd 8648
3101f40f
MV
8649/* scm_c_round is done using floor(x+0.5) to round to nearest and with
8650 half-way case (ie. when x is an integer plus 0.5) going upwards.
8651 Then half-way cases are identified and adjusted down if the
8652 round-upwards didn't give the desired even integer.
6187f48b
KR
8653
8654 "plus_half == result" identifies a half-way case. If plus_half, which is
8655 x + 0.5, is an integer then x must be an integer plus 0.5.
8656
8657 An odd "result" value is identified with result/2 != floor(result/2).
8658 This is done with plus_half, since that value is ready for use sooner in
8659 a pipelined cpu, and we're already requiring plus_half == result.
8660
8661 Note however that we need to be careful when x is big and already an
8662 integer. In that case "x+0.5" may round to an adjacent integer, causing
8663 us to return such a value, incorrectly. For instance if the hardware is
8664 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
8665 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
8666 returned. Or if the hardware is in round-upwards mode, then other bigger
8667 values like say x == 2^128 will see x+0.5 rounding up to the next higher
8668 representable value, 2^128+2^76 (or whatever), again incorrect.
8669
8670 These bad roundings of x+0.5 are avoided by testing at the start whether
8671 x is already an integer. If it is then clearly that's the desired result
8672 already. And if it's not then the exponent must be small enough to allow
8673 an 0.5 to be represented, and hence added without a bad rounding. */
8674
0f2d19dd 8675double
3101f40f 8676scm_c_round (double x)
0f2d19dd 8677{
6187f48b
KR
8678 double plus_half, result;
8679
8680 if (x == floor (x))
8681 return x;
8682
8683 plus_half = x + 0.5;
8684 result = floor (plus_half);
3101f40f 8685 /* Adjust so that the rounding is towards even. */
0aacf84e
MD
8686 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
8687 ? result - 1
8688 : result);
0f2d19dd
JB
8689}
8690
8b56bcec
MW
8691SCM_PRIMITIVE_GENERIC (scm_truncate_number, "truncate", 1, 0, 0,
8692 (SCM x),
8693 "Round the number @var{x} towards zero.")
f92e85f7
MV
8694#define FUNC_NAME s_scm_truncate_number
8695{
8b56bcec
MW
8696 if (SCM_I_INUMP (x) || SCM_BIGP (x))
8697 return x;
8698 else if (SCM_REALP (x))
00472a22 8699 return scm_i_from_double (trunc (SCM_REAL_VALUE (x)));
8b56bcec
MW
8700 else if (SCM_FRACTIONP (x))
8701 return scm_truncate_quotient (SCM_FRACTION_NUMERATOR (x),
8702 SCM_FRACTION_DENOMINATOR (x));
f92e85f7 8703 else
fa075d40 8704 return scm_wta_dispatch_1 (g_scm_truncate_number, x, SCM_ARG1,
8b56bcec 8705 s_scm_truncate_number);
f92e85f7
MV
8706}
8707#undef FUNC_NAME
8708
8b56bcec
MW
8709SCM_PRIMITIVE_GENERIC (scm_round_number, "round", 1, 0, 0,
8710 (SCM x),
8711 "Round the number @var{x} towards the nearest integer. "
8712 "When it is exactly halfway between two integers, "
8713 "round towards the even one.")
f92e85f7
MV
8714#define FUNC_NAME s_scm_round_number
8715{
e11e83f3 8716 if (SCM_I_INUMP (x) || SCM_BIGP (x))
bae30667
KR
8717 return x;
8718 else if (SCM_REALP (x))
00472a22 8719 return scm_i_from_double (scm_c_round (SCM_REAL_VALUE (x)));
8b56bcec
MW
8720 else if (SCM_FRACTIONP (x))
8721 return scm_round_quotient (SCM_FRACTION_NUMERATOR (x),
8722 SCM_FRACTION_DENOMINATOR (x));
f92e85f7 8723 else
fa075d40
AW
8724 return scm_wta_dispatch_1 (g_scm_round_number, x, SCM_ARG1,
8725 s_scm_round_number);
f92e85f7
MV
8726}
8727#undef FUNC_NAME
8728
8729SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
8730 (SCM x),
8731 "Round the number @var{x} towards minus infinity.")
8732#define FUNC_NAME s_scm_floor
8733{
e11e83f3 8734 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
8735 return x;
8736 else if (SCM_REALP (x))
00472a22 8737 return scm_i_from_double (floor (SCM_REAL_VALUE (x)));
f92e85f7 8738 else if (SCM_FRACTIONP (x))
8b56bcec
MW
8739 return scm_floor_quotient (SCM_FRACTION_NUMERATOR (x),
8740 SCM_FRACTION_DENOMINATOR (x));
f92e85f7 8741 else
fa075d40 8742 return scm_wta_dispatch_1 (g_scm_floor, x, 1, s_scm_floor);
f92e85f7
MV
8743}
8744#undef FUNC_NAME
8745
8746SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
8747 (SCM x),
8748 "Round the number @var{x} towards infinity.")
8749#define FUNC_NAME s_scm_ceiling
8750{
e11e83f3 8751 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
8752 return x;
8753 else if (SCM_REALP (x))
00472a22 8754 return scm_i_from_double (ceil (SCM_REAL_VALUE (x)));
f92e85f7 8755 else if (SCM_FRACTIONP (x))
8b56bcec
MW
8756 return scm_ceiling_quotient (SCM_FRACTION_NUMERATOR (x),
8757 SCM_FRACTION_DENOMINATOR (x));
f92e85f7 8758 else
fa075d40 8759 return scm_wta_dispatch_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
f92e85f7
MV
8760}
8761#undef FUNC_NAME
0f2d19dd 8762
2519490c
MW
8763SCM_PRIMITIVE_GENERIC (scm_expt, "expt", 2, 0, 0,
8764 (SCM x, SCM y),
8765 "Return @var{x} raised to the power of @var{y}.")
6fc4d012 8766#define FUNC_NAME s_scm_expt
0f2d19dd 8767{
01c7284a
MW
8768 if (scm_is_integer (y))
8769 {
8770 if (scm_is_true (scm_exact_p (y)))
8771 return scm_integer_expt (x, y);
8772 else
8773 {
8774 /* Here we handle the case where the exponent is an inexact
8775 integer. We make the exponent exact in order to use
8776 scm_integer_expt, and thus avoid the spurious imaginary
8777 parts that may result from round-off errors in the general
8778 e^(y log x) method below (for example when squaring a large
8779 negative number). In this case, we must return an inexact
8780 result for correctness. We also make the base inexact so
8781 that scm_integer_expt will use fast inexact arithmetic
8782 internally. Note that making the base inexact is not
8783 sufficient to guarantee an inexact result, because
8784 scm_integer_expt will return an exact 1 when the exponent
8785 is 0, even if the base is inexact. */
8786 return scm_exact_to_inexact
8787 (scm_integer_expt (scm_exact_to_inexact (x),
8788 scm_inexact_to_exact (y)));
8789 }
8790 }
6fc4d012
AW
8791 else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
8792 {
00472a22 8793 return scm_i_from_double (pow (scm_to_double (x), scm_to_double (y)));
6fc4d012 8794 }
2519490c 8795 else if (scm_is_complex (x) && scm_is_complex (y))
6fc4d012 8796 return scm_exp (scm_product (scm_log (x), y));
2519490c 8797 else if (scm_is_complex (x))
fa075d40 8798 return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG2, s_scm_expt);
2519490c 8799 else
fa075d40 8800 return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG1, s_scm_expt);
0f2d19dd 8801}
1bbd0b84 8802#undef FUNC_NAME
0f2d19dd 8803
7f41099e
MW
8804/* sin/cos/tan/asin/acos/atan
8805 sinh/cosh/tanh/asinh/acosh/atanh
8806 Derived from "Transcen.scm", Complex trancendental functions for SCM.
8807 Written by Jerry D. Hedden, (C) FSF.
8808 See the file `COPYING' for terms applying to this program. */
8809
ad79736c
AW
8810SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
8811 (SCM z),
8812 "Compute the sine of @var{z}.")
8813#define FUNC_NAME s_scm_sin
8814{
8deddc94
MW
8815 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
8816 return z; /* sin(exact0) = exact0 */
8817 else if (scm_is_real (z))
00472a22 8818 return scm_i_from_double (sin (scm_to_double (z)));
ad79736c
AW
8819 else if (SCM_COMPLEXP (z))
8820 { double x, y;
8821 x = SCM_COMPLEX_REAL (z);
8822 y = SCM_COMPLEX_IMAG (z);
8823 return scm_c_make_rectangular (sin (x) * cosh (y),
8824 cos (x) * sinh (y));
8825 }
8826 else
fa075d40 8827 return scm_wta_dispatch_1 (g_scm_sin, z, 1, s_scm_sin);
ad79736c
AW
8828}
8829#undef FUNC_NAME
0f2d19dd 8830
ad79736c
AW
8831SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
8832 (SCM z),
8833 "Compute the cosine of @var{z}.")
8834#define FUNC_NAME s_scm_cos
8835{
8deddc94
MW
8836 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
8837 return SCM_INUM1; /* cos(exact0) = exact1 */
8838 else if (scm_is_real (z))
00472a22 8839 return scm_i_from_double (cos (scm_to_double (z)));
ad79736c
AW
8840 else if (SCM_COMPLEXP (z))
8841 { double x, y;
8842 x = SCM_COMPLEX_REAL (z);
8843 y = SCM_COMPLEX_IMAG (z);
8844 return scm_c_make_rectangular (cos (x) * cosh (y),
8845 -sin (x) * sinh (y));
8846 }
8847 else
fa075d40 8848 return scm_wta_dispatch_1 (g_scm_cos, z, 1, s_scm_cos);
ad79736c
AW
8849}
8850#undef FUNC_NAME
8851
8852SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
8853 (SCM z),
8854 "Compute the tangent of @var{z}.")
8855#define FUNC_NAME s_scm_tan
0f2d19dd 8856{
8deddc94
MW
8857 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
8858 return z; /* tan(exact0) = exact0 */
8859 else if (scm_is_real (z))
00472a22 8860 return scm_i_from_double (tan (scm_to_double (z)));
ad79736c
AW
8861 else if (SCM_COMPLEXP (z))
8862 { double x, y, w;
8863 x = 2.0 * SCM_COMPLEX_REAL (z);
8864 y = 2.0 * SCM_COMPLEX_IMAG (z);
8865 w = cos (x) + cosh (y);
8866#ifndef ALLOW_DIVIDE_BY_ZERO
8867 if (w == 0.0)
8868 scm_num_overflow (s_scm_tan);
8869#endif
8870 return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
8871 }
8872 else
fa075d40 8873 return scm_wta_dispatch_1 (g_scm_tan, z, 1, s_scm_tan);
ad79736c
AW
8874}
8875#undef FUNC_NAME
8876
8877SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
8878 (SCM z),
8879 "Compute the hyperbolic sine of @var{z}.")
8880#define FUNC_NAME s_scm_sinh
8881{
8deddc94
MW
8882 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
8883 return z; /* sinh(exact0) = exact0 */
8884 else if (scm_is_real (z))
00472a22 8885 return scm_i_from_double (sinh (scm_to_double (z)));
ad79736c
AW
8886 else if (SCM_COMPLEXP (z))
8887 { double x, y;
8888 x = SCM_COMPLEX_REAL (z);
8889 y = SCM_COMPLEX_IMAG (z);
8890 return scm_c_make_rectangular (sinh (x) * cos (y),
8891 cosh (x) * sin (y));
8892 }
8893 else
fa075d40 8894 return scm_wta_dispatch_1 (g_scm_sinh, z, 1, s_scm_sinh);
ad79736c
AW
8895}
8896#undef FUNC_NAME
8897
8898SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
8899 (SCM z),
8900 "Compute the hyperbolic cosine of @var{z}.")
8901#define FUNC_NAME s_scm_cosh
8902{
8deddc94
MW
8903 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
8904 return SCM_INUM1; /* cosh(exact0) = exact1 */
8905 else if (scm_is_real (z))
00472a22 8906 return scm_i_from_double (cosh (scm_to_double (z)));
ad79736c
AW
8907 else if (SCM_COMPLEXP (z))
8908 { double x, y;
8909 x = SCM_COMPLEX_REAL (z);
8910 y = SCM_COMPLEX_IMAG (z);
8911 return scm_c_make_rectangular (cosh (x) * cos (y),
8912 sinh (x) * sin (y));
8913 }
8914 else
fa075d40 8915 return scm_wta_dispatch_1 (g_scm_cosh, z, 1, s_scm_cosh);
ad79736c
AW
8916}
8917#undef FUNC_NAME
8918
8919SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
8920 (SCM z),
8921 "Compute the hyperbolic tangent of @var{z}.")
8922#define FUNC_NAME s_scm_tanh
8923{
8deddc94
MW
8924 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
8925 return z; /* tanh(exact0) = exact0 */
8926 else if (scm_is_real (z))
00472a22 8927 return scm_i_from_double (tanh (scm_to_double (z)));
ad79736c
AW
8928 else if (SCM_COMPLEXP (z))
8929 { double x, y, w;
8930 x = 2.0 * SCM_COMPLEX_REAL (z);
8931 y = 2.0 * SCM_COMPLEX_IMAG (z);
8932 w = cosh (x) + cos (y);
8933#ifndef ALLOW_DIVIDE_BY_ZERO
8934 if (w == 0.0)
8935 scm_num_overflow (s_scm_tanh);
8936#endif
8937 return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
8938 }
8939 else
fa075d40 8940 return scm_wta_dispatch_1 (g_scm_tanh, z, 1, s_scm_tanh);
ad79736c
AW
8941}
8942#undef FUNC_NAME
8943
8944SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
8945 (SCM z),
8946 "Compute the arc sine of @var{z}.")
8947#define FUNC_NAME s_scm_asin
8948{
8deddc94
MW
8949 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
8950 return z; /* asin(exact0) = exact0 */
8951 else if (scm_is_real (z))
ad79736c
AW
8952 {
8953 double w = scm_to_double (z);
8954 if (w >= -1.0 && w <= 1.0)
00472a22 8955 return scm_i_from_double (asin (w));
ad79736c
AW
8956 else
8957 return scm_product (scm_c_make_rectangular (0, -1),
8958 scm_sys_asinh (scm_c_make_rectangular (0, w)));
8959 }
8960 else if (SCM_COMPLEXP (z))
8961 { double x, y;
8962 x = SCM_COMPLEX_REAL (z);
8963 y = SCM_COMPLEX_IMAG (z);
8964 return scm_product (scm_c_make_rectangular (0, -1),
8965 scm_sys_asinh (scm_c_make_rectangular (-y, x)));
8966 }
8967 else
fa075d40 8968 return scm_wta_dispatch_1 (g_scm_asin, z, 1, s_scm_asin);
ad79736c
AW
8969}
8970#undef FUNC_NAME
8971
8972SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
8973 (SCM z),
8974 "Compute the arc cosine of @var{z}.")
8975#define FUNC_NAME s_scm_acos
8976{
8deddc94
MW
8977 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1)))
8978 return SCM_INUM0; /* acos(exact1) = exact0 */
8979 else if (scm_is_real (z))
ad79736c
AW
8980 {
8981 double w = scm_to_double (z);
8982 if (w >= -1.0 && w <= 1.0)
00472a22 8983 return scm_i_from_double (acos (w));
ad79736c 8984 else
00472a22 8985 return scm_sum (scm_i_from_double (acos (0.0)),
ad79736c
AW
8986 scm_product (scm_c_make_rectangular (0, 1),
8987 scm_sys_asinh (scm_c_make_rectangular (0, w))));
8988 }
8989 else if (SCM_COMPLEXP (z))
8990 { double x, y;
8991 x = SCM_COMPLEX_REAL (z);
8992 y = SCM_COMPLEX_IMAG (z);
00472a22 8993 return scm_sum (scm_i_from_double (acos (0.0)),
ad79736c
AW
8994 scm_product (scm_c_make_rectangular (0, 1),
8995 scm_sys_asinh (scm_c_make_rectangular (-y, x))));
8996 }
8997 else
fa075d40 8998 return scm_wta_dispatch_1 (g_scm_acos, z, 1, s_scm_acos);
ad79736c
AW
8999}
9000#undef FUNC_NAME
9001
9002SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
9003 (SCM z, SCM y),
9004 "With one argument, compute the arc tangent of @var{z}.\n"
9005 "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
9006 "using the sign of @var{z} and @var{y} to determine the quadrant.")
9007#define FUNC_NAME s_scm_atan
9008{
9009 if (SCM_UNBNDP (y))
9010 {
8deddc94
MW
9011 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
9012 return z; /* atan(exact0) = exact0 */
9013 else if (scm_is_real (z))
00472a22 9014 return scm_i_from_double (atan (scm_to_double (z)));
ad79736c
AW
9015 else if (SCM_COMPLEXP (z))
9016 {
9017 double v, w;
9018 v = SCM_COMPLEX_REAL (z);
9019 w = SCM_COMPLEX_IMAG (z);
9020 return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (v, w - 1.0),
9021 scm_c_make_rectangular (v, w + 1.0))),
9022 scm_c_make_rectangular (0, 2));
9023 }
9024 else
fa075d40 9025 return scm_wta_dispatch_1 (g_scm_atan, z, SCM_ARG1, s_scm_atan);
ad79736c
AW
9026 }
9027 else if (scm_is_real (z))
9028 {
9029 if (scm_is_real (y))
00472a22 9030 return scm_i_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
ad79736c 9031 else
fa075d40 9032 return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
ad79736c
AW
9033 }
9034 else
fa075d40 9035 return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
ad79736c
AW
9036}
9037#undef FUNC_NAME
9038
9039SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
9040 (SCM z),
9041 "Compute the inverse hyperbolic sine of @var{z}.")
9042#define FUNC_NAME s_scm_sys_asinh
9043{
8deddc94
MW
9044 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
9045 return z; /* asinh(exact0) = exact0 */
9046 else if (scm_is_real (z))
00472a22 9047 return scm_i_from_double (asinh (scm_to_double (z)));
ad79736c
AW
9048 else if (scm_is_number (z))
9049 return scm_log (scm_sum (z,
9050 scm_sqrt (scm_sum (scm_product (z, z),
cff5fa33 9051 SCM_INUM1))));
ad79736c 9052 else
fa075d40 9053 return scm_wta_dispatch_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
ad79736c
AW
9054}
9055#undef FUNC_NAME
9056
9057SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
9058 (SCM z),
9059 "Compute the inverse hyperbolic cosine of @var{z}.")
9060#define FUNC_NAME s_scm_sys_acosh
9061{
8deddc94
MW
9062 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1)))
9063 return SCM_INUM0; /* acosh(exact1) = exact0 */
9064 else if (scm_is_real (z) && scm_to_double (z) >= 1.0)
00472a22 9065 return scm_i_from_double (acosh (scm_to_double (z)));
ad79736c
AW
9066 else if (scm_is_number (z))
9067 return scm_log (scm_sum (z,
9068 scm_sqrt (scm_difference (scm_product (z, z),
cff5fa33 9069 SCM_INUM1))));
ad79736c 9070 else
fa075d40 9071 return scm_wta_dispatch_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
ad79736c
AW
9072}
9073#undef FUNC_NAME
9074
9075SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
9076 (SCM z),
9077 "Compute the inverse hyperbolic tangent of @var{z}.")
9078#define FUNC_NAME s_scm_sys_atanh
9079{
8deddc94
MW
9080 if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0)))
9081 return z; /* atanh(exact0) = exact0 */
9082 else if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
00472a22 9083 return scm_i_from_double (atanh (scm_to_double (z)));
ad79736c 9084 else if (scm_is_number (z))
cff5fa33
MW
9085 return scm_divide (scm_log (scm_divide (scm_sum (SCM_INUM1, z),
9086 scm_difference (SCM_INUM1, z))),
ad79736c
AW
9087 SCM_I_MAKINUM (2));
9088 else
fa075d40 9089 return scm_wta_dispatch_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
0f2d19dd 9090}
1bbd0b84 9091#undef FUNC_NAME
0f2d19dd 9092
8507ec80
MV
9093SCM
9094scm_c_make_rectangular (double re, double im)
9095{
c7218482 9096 SCM z;
03604fcf 9097
21041372 9098 z = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_complex),
c7218482
MW
9099 "complex"));
9100 SCM_SET_CELL_TYPE (z, scm_tc16_complex);
9101 SCM_COMPLEX_REAL (z) = re;
9102 SCM_COMPLEX_IMAG (z) = im;
9103 return z;
8507ec80 9104}
0f2d19dd 9105
a1ec6916 9106SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
a2c25234 9107 (SCM real_part, SCM imaginary_part),
b7e64f8b
BT
9108 "Return a complex number constructed of the given @var{real_part} "
9109 "and @var{imaginary_part} parts.")
1bbd0b84 9110#define FUNC_NAME s_scm_make_rectangular
0f2d19dd 9111{
ad79736c
AW
9112 SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
9113 SCM_ARG1, FUNC_NAME, "real");
9114 SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
9115 SCM_ARG2, FUNC_NAME, "real");
c7218482
MW
9116
9117 /* Return a real if and only if the imaginary_part is an _exact_ 0 */
9118 if (scm_is_eq (imaginary_part, SCM_INUM0))
9119 return real_part;
9120 else
9121 return scm_c_make_rectangular (scm_to_double (real_part),
9122 scm_to_double (imaginary_part));
0f2d19dd 9123}
1bbd0b84 9124#undef FUNC_NAME
0f2d19dd 9125
8507ec80
MV
9126SCM
9127scm_c_make_polar (double mag, double ang)
9128{
9129 double s, c;
5e647d08
LC
9130
9131 /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
9132 use it on Glibc-based systems that have it (it's a GNU extension). See
9133 http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
9134 details. */
9135#if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
8507ec80
MV
9136 sincos (ang, &s, &c);
9137#else
9138 s = sin (ang);
9139 c = cos (ang);
9140#endif
9d427b2c
MW
9141
9142 /* If s and c are NaNs, this indicates that the angle is a NaN,
9143 infinite, or perhaps simply too large to determine its value
9144 mod 2*pi. However, we know something that the floating-point
9145 implementation doesn't know: We know that s and c are finite.
9146 Therefore, if the magnitude is zero, return a complex zero.
9147
9148 The reason we check for the NaNs instead of using this case
9149 whenever mag == 0.0 is because when the angle is known, we'd
9150 like to return the correct kind of non-real complex zero:
9151 +0.0+0.0i, -0.0+0.0i, -0.0-0.0i, or +0.0-0.0i, depending
9152 on which quadrant the angle is in.
9153 */
9154 if (SCM_UNLIKELY (isnan(s)) && isnan(c) && (mag == 0.0))
9155 return scm_c_make_rectangular (0.0, 0.0);
9156 else
9157 return scm_c_make_rectangular (mag * c, mag * s);
8507ec80 9158}
0f2d19dd 9159
a1ec6916 9160SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
c7218482
MW
9161 (SCM mag, SCM ang),
9162 "Return the complex number @var{mag} * e^(i * @var{ang}).")
1bbd0b84 9163#define FUNC_NAME s_scm_make_polar
0f2d19dd 9164{
c7218482
MW
9165 SCM_ASSERT_TYPE (scm_is_real (mag), mag, SCM_ARG1, FUNC_NAME, "real");
9166 SCM_ASSERT_TYPE (scm_is_real (ang), ang, SCM_ARG2, FUNC_NAME, "real");
9167
9168 /* If mag is exact0, return exact0 */
9169 if (scm_is_eq (mag, SCM_INUM0))
9170 return SCM_INUM0;
9171 /* Return a real if ang is exact0 */
9172 else if (scm_is_eq (ang, SCM_INUM0))
9173 return mag;
9174 else
9175 return scm_c_make_polar (scm_to_double (mag), scm_to_double (ang));
0f2d19dd 9176}
1bbd0b84 9177#undef FUNC_NAME
0f2d19dd
JB
9178
9179
2519490c
MW
9180SCM_PRIMITIVE_GENERIC (scm_real_part, "real-part", 1, 0, 0,
9181 (SCM z),
9182 "Return the real part of the number @var{z}.")
9183#define FUNC_NAME s_scm_real_part
0f2d19dd 9184{
2519490c 9185 if (SCM_COMPLEXP (z))
00472a22 9186 return scm_i_from_double (SCM_COMPLEX_REAL (z));
2519490c 9187 else if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_REALP (z) || SCM_FRACTIONP (z))
2fa2d879 9188 return z;
0aacf84e 9189 else
fa075d40 9190 return scm_wta_dispatch_1 (g_scm_real_part, z, SCM_ARG1, s_scm_real_part);
0f2d19dd 9191}
2519490c 9192#undef FUNC_NAME
0f2d19dd
JB
9193
9194
2519490c
MW
9195SCM_PRIMITIVE_GENERIC (scm_imag_part, "imag-part", 1, 0, 0,
9196 (SCM z),
9197 "Return the imaginary part of the number @var{z}.")
9198#define FUNC_NAME s_scm_imag_part
0f2d19dd 9199{
2519490c 9200 if (SCM_COMPLEXP (z))
00472a22 9201 return scm_i_from_double (SCM_COMPLEX_IMAG (z));
c7218482 9202 else if (SCM_I_INUMP (z) || SCM_REALP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z))
f92e85f7 9203 return SCM_INUM0;
0aacf84e 9204 else
fa075d40 9205 return scm_wta_dispatch_1 (g_scm_imag_part, z, SCM_ARG1, s_scm_imag_part);
0f2d19dd 9206}
2519490c 9207#undef FUNC_NAME
0f2d19dd 9208
2519490c
MW
9209SCM_PRIMITIVE_GENERIC (scm_numerator, "numerator", 1, 0, 0,
9210 (SCM z),
9211 "Return the numerator of the number @var{z}.")
9212#define FUNC_NAME s_scm_numerator
f92e85f7 9213{
2519490c 9214 if (SCM_I_INUMP (z) || SCM_BIGP (z))
f92e85f7
MV
9215 return z;
9216 else if (SCM_FRACTIONP (z))
e2bf3b19 9217 return SCM_FRACTION_NUMERATOR (z);
f92e85f7 9218 else if (SCM_REALP (z))
fa102e73
MW
9219 {
9220 double zz = SCM_REAL_VALUE (z);
9221 if (zz == floor (zz))
9222 /* Handle -0.0 and infinities in accordance with R6RS
9223 flnumerator, and optimize handling of integers. */
9224 return z;
9225 else
9226 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
9227 }
f92e85f7 9228 else
fa075d40 9229 return scm_wta_dispatch_1 (g_scm_numerator, z, SCM_ARG1, s_scm_numerator);
f92e85f7 9230}
2519490c 9231#undef FUNC_NAME
f92e85f7
MV
9232
9233
2519490c
MW
9234SCM_PRIMITIVE_GENERIC (scm_denominator, "denominator", 1, 0, 0,
9235 (SCM z),
9236 "Return the denominator of the number @var{z}.")
9237#define FUNC_NAME s_scm_denominator
f92e85f7 9238{
2519490c 9239 if (SCM_I_INUMP (z) || SCM_BIGP (z))
cff5fa33 9240 return SCM_INUM1;
f92e85f7 9241 else if (SCM_FRACTIONP (z))
e2bf3b19 9242 return SCM_FRACTION_DENOMINATOR (z);
f92e85f7 9243 else if (SCM_REALP (z))
fa102e73
MW
9244 {
9245 double zz = SCM_REAL_VALUE (z);
9246 if (zz == floor (zz))
9247 /* Handle infinities in accordance with R6RS fldenominator, and
9248 optimize handling of integers. */
9249 return scm_i_from_double (1.0);
9250 else
9251 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
9252 }
f92e85f7 9253 else
fa075d40
AW
9254 return scm_wta_dispatch_1 (g_scm_denominator, z, SCM_ARG1,
9255 s_scm_denominator);
f92e85f7 9256}
2519490c 9257#undef FUNC_NAME
0f2d19dd 9258
2519490c
MW
9259
9260SCM_PRIMITIVE_GENERIC (scm_magnitude, "magnitude", 1, 0, 0,
9261 (SCM z),
9262 "Return the magnitude of the number @var{z}. This is the same as\n"
9263 "@code{abs} for real arguments, but also allows complex numbers.")
9264#define FUNC_NAME s_scm_magnitude
0f2d19dd 9265{
e11e83f3 9266 if (SCM_I_INUMP (z))
0aacf84e 9267 {
e25f3727 9268 scm_t_inum zz = SCM_I_INUM (z);
0aacf84e
MD
9269 if (zz >= 0)
9270 return z;
9271 else if (SCM_POSFIXABLE (-zz))
d956fa6f 9272 return SCM_I_MAKINUM (-zz);
0aacf84e 9273 else
e25f3727 9274 return scm_i_inum2big (-zz);
5986c47d 9275 }
0aacf84e
MD
9276 else if (SCM_BIGP (z))
9277 {
9278 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
9279 scm_remember_upto_here_1 (z);
9280 if (sgn < 0)
9281 return scm_i_clonebig (z, 0);
9282 else
9283 return z;
5986c47d 9284 }
0aacf84e 9285 else if (SCM_REALP (z))
00472a22 9286 return scm_i_from_double (fabs (SCM_REAL_VALUE (z)));
0aacf84e 9287 else if (SCM_COMPLEXP (z))
00472a22 9288 return scm_i_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
f92e85f7
MV
9289 else if (SCM_FRACTIONP (z))
9290 {
73e4de09 9291 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 9292 return z;
a285b18c
MW
9293 return scm_i_make_ratio_already_reduced
9294 (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
9295 SCM_FRACTION_DENOMINATOR (z));
f92e85f7 9296 }
0aacf84e 9297 else
fa075d40
AW
9298 return scm_wta_dispatch_1 (g_scm_magnitude, z, SCM_ARG1,
9299 s_scm_magnitude);
0f2d19dd 9300}
2519490c 9301#undef FUNC_NAME
0f2d19dd
JB
9302
9303
2519490c
MW
9304SCM_PRIMITIVE_GENERIC (scm_angle, "angle", 1, 0, 0,
9305 (SCM z),
9306 "Return the angle of the complex number @var{z}.")
9307#define FUNC_NAME s_scm_angle
0f2d19dd 9308{
c8ae173e 9309 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
00472a22 9310 flo0 to save allocating a new flonum with scm_i_from_double each time.
c8ae173e
KR
9311 But if atan2 follows the floating point rounding mode, then the value
9312 is not a constant. Maybe it'd be close enough though. */
e11e83f3 9313 if (SCM_I_INUMP (z))
0aacf84e 9314 {
e11e83f3 9315 if (SCM_I_INUM (z) >= 0)
e7efe8e7 9316 return flo0;
0aacf84e 9317 else
00472a22 9318 return scm_i_from_double (atan2 (0.0, -1.0));
f872b822 9319 }
0aacf84e
MD
9320 else if (SCM_BIGP (z))
9321 {
9322 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
9323 scm_remember_upto_here_1 (z);
9324 if (sgn < 0)
00472a22 9325 return scm_i_from_double (atan2 (0.0, -1.0));
0aacf84e 9326 else
e7efe8e7 9327 return flo0;
0f2d19dd 9328 }
0aacf84e 9329 else if (SCM_REALP (z))
c8ae173e 9330 {
10a97755 9331 double x = SCM_REAL_VALUE (z);
e1592f8a 9332 if (copysign (1.0, x) > 0.0)
e7efe8e7 9333 return flo0;
c8ae173e 9334 else
00472a22 9335 return scm_i_from_double (atan2 (0.0, -1.0));
c8ae173e 9336 }
0aacf84e 9337 else if (SCM_COMPLEXP (z))
00472a22 9338 return scm_i_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
f92e85f7
MV
9339 else if (SCM_FRACTIONP (z))
9340 {
73e4de09 9341 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
e7efe8e7 9342 return flo0;
00472a22 9343 else return scm_i_from_double (atan2 (0.0, -1.0));
f92e85f7 9344 }
0aacf84e 9345 else
fa075d40 9346 return scm_wta_dispatch_1 (g_scm_angle, z, SCM_ARG1, s_scm_angle);
0f2d19dd 9347}
2519490c 9348#undef FUNC_NAME
0f2d19dd
JB
9349
9350
2519490c
MW
9351SCM_PRIMITIVE_GENERIC (scm_exact_to_inexact, "exact->inexact", 1, 0, 0,
9352 (SCM z),
9353 "Convert the number @var{z} to its inexact representation.\n")
9354#define FUNC_NAME s_scm_exact_to_inexact
3c9a524f 9355{
e11e83f3 9356 if (SCM_I_INUMP (z))
00472a22 9357 return scm_i_from_double ((double) SCM_I_INUM (z));
3c9a524f 9358 else if (SCM_BIGP (z))
00472a22 9359 return scm_i_from_double (scm_i_big2dbl (z));
f92e85f7 9360 else if (SCM_FRACTIONP (z))
00472a22 9361 return scm_i_from_double (scm_i_fraction2double (z));
3c9a524f
DH
9362 else if (SCM_INEXACTP (z))
9363 return z;
9364 else
fa075d40
AW
9365 return scm_wta_dispatch_1 (g_scm_exact_to_inexact, z, 1,
9366 s_scm_exact_to_inexact);
3c9a524f 9367}
2519490c 9368#undef FUNC_NAME
3c9a524f
DH
9369
9370
2519490c
MW
9371SCM_PRIMITIVE_GENERIC (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
9372 (SCM z),
9373 "Return an exact number that is numerically closest to @var{z}.")
1bbd0b84 9374#define FUNC_NAME s_scm_inexact_to_exact
0f2d19dd 9375{
c7218482 9376 if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z))
f872b822 9377 return z;
c7218482 9378 else
0aacf84e 9379 {
c7218482
MW
9380 double val;
9381
9382 if (SCM_REALP (z))
9383 val = SCM_REAL_VALUE (z);
9384 else if (SCM_COMPLEXP (z) && SCM_COMPLEX_IMAG (z) == 0.0)
9385 val = SCM_COMPLEX_REAL (z);
9386 else
fa075d40
AW
9387 return scm_wta_dispatch_1 (g_scm_inexact_to_exact, z, 1,
9388 s_scm_inexact_to_exact);
c7218482 9389
19374ad2 9390 if (!SCM_LIKELY (isfinite (val)))
f92e85f7 9391 SCM_OUT_OF_RANGE (1, z);
24475b86
MW
9392 else if (val == 0.0)
9393 return SCM_INUM0;
2be24db4 9394 else
f92e85f7 9395 {
24475b86
MW
9396 int expon;
9397 SCM numerator;
f92e85f7 9398
24475b86
MW
9399 numerator = scm_i_dbl2big (ldexp (frexp (val, &expon),
9400 DBL_MANT_DIG));
9401 expon -= DBL_MANT_DIG;
9402 if (expon < 0)
9403 {
9404 int shift = mpz_scan1 (SCM_I_BIG_MPZ (numerator), 0);
9405
9406 if (shift > -expon)
9407 shift = -expon;
9408 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (numerator),
9409 SCM_I_BIG_MPZ (numerator),
9410 shift);
9411 expon += shift;
9412 }
9413 numerator = scm_i_normbig (numerator);
9414 if (expon < 0)
9415 return scm_i_make_ratio_already_reduced
9416 (numerator, left_shift_exact_integer (SCM_INUM1, -expon));
9417 else if (expon > 0)
9418 return left_shift_exact_integer (numerator, expon);
9419 else
9420 return numerator;
f92e85f7 9421 }
c2ff8ab0 9422 }
0f2d19dd 9423}
1bbd0b84 9424#undef FUNC_NAME
0f2d19dd 9425
f92e85f7 9426SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
76dae881
NJ
9427 (SCM x, SCM eps),
9428 "Returns the @emph{simplest} rational number differing\n"
9429 "from @var{x} by no more than @var{eps}.\n"
9430 "\n"
9431 "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
9432 "exact result when both its arguments are exact. Thus, you might need\n"
9433 "to use @code{inexact->exact} on the arguments.\n"
9434 "\n"
9435 "@lisp\n"
9436 "(rationalize (inexact->exact 1.2) 1/100)\n"
9437 "@result{} 6/5\n"
9438 "@end lisp")
f92e85f7
MV
9439#define FUNC_NAME s_scm_rationalize
9440{
605f6980
MW
9441 SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
9442 SCM_ASSERT_TYPE (scm_is_real (eps), eps, SCM_ARG2, FUNC_NAME, "real");
620c13e8
MW
9443
9444 if (SCM_UNLIKELY (!scm_is_exact (eps) || !scm_is_exact (x)))
605f6980 9445 {
620c13e8
MW
9446 if (SCM_UNLIKELY (scm_is_false (scm_finite_p (eps))))
9447 {
9448 if (scm_is_false (scm_nan_p (eps)) && scm_is_true (scm_finite_p (x)))
9449 return flo0;
9450 else
9451 return scm_nan ();
9452 }
9453 else if (SCM_UNLIKELY (scm_is_false (scm_finite_p (x))))
9454 return x;
605f6980 9455 else
620c13e8
MW
9456 return scm_exact_to_inexact
9457 (scm_rationalize (scm_inexact_to_exact (x),
9458 scm_inexact_to_exact (eps)));
605f6980
MW
9459 }
9460 else
f92e85f7 9461 {
620c13e8
MW
9462 /* X and EPS are exact rationals.
9463
9464 The code that follows is equivalent to the following Scheme code:
9465
9466 (define (exact-rationalize x eps)
9467 (let ((n1 (if (negative? x) -1 1))
9468 (x (abs x))
9469 (eps (abs eps)))
9470 (let ((lo (- x eps))
9471 (hi (+ x eps)))
9472 (if (<= lo 0)
9473 0
9474 (let loop ((nlo (numerator lo)) (dlo (denominator lo))
9475 (nhi (numerator hi)) (dhi (denominator hi))
9476 (n1 n1) (d1 0) (n2 0) (d2 1))
9477 (let-values (((qlo rlo) (floor/ nlo dlo))
9478 ((qhi rhi) (floor/ nhi dhi)))
9479 (let ((n0 (+ n2 (* n1 qlo)))
9480 (d0 (+ d2 (* d1 qlo))))
9481 (cond ((zero? rlo) (/ n0 d0))
9482 ((< qlo qhi) (/ (+ n0 n1) (+ d0 d1)))
9483 (else (loop dhi rhi dlo rlo n0 d0 n1 d1))))))))))
f92e85f7
MV
9484 */
9485
620c13e8
MW
9486 int n1_init = 1;
9487 SCM lo, hi;
f92e85f7 9488
620c13e8
MW
9489 eps = scm_abs (eps);
9490 if (scm_is_true (scm_negative_p (x)))
9491 {
9492 n1_init = -1;
9493 x = scm_difference (x, SCM_UNDEFINED);
9494 }
f92e85f7 9495
620c13e8 9496 /* X and EPS are non-negative exact rationals. */
f92e85f7 9497
620c13e8
MW
9498 lo = scm_difference (x, eps);
9499 hi = scm_sum (x, eps);
f92e85f7 9500
620c13e8
MW
9501 if (scm_is_false (scm_positive_p (lo)))
9502 /* If zero is included in the interval, return it.
9503 It is the simplest rational of all. */
9504 return SCM_INUM0;
9505 else
9506 {
9507 SCM result;
9508 mpz_t n0, d0, n1, d1, n2, d2;
9509 mpz_t nlo, dlo, nhi, dhi;
9510 mpz_t qlo, rlo, qhi, rhi;
9511
9512 /* LO and HI are positive exact rationals. */
9513
9514 /* Our approach here follows the method described by Alan
9515 Bawden in a message entitled "(rationalize x y)" on the
9516 rrrs-authors mailing list, dated 16 Feb 1988 14:08:28 EST:
9517
9518 http://groups.csail.mit.edu/mac/ftpdir/scheme-mail/HTML/rrrs-1988/msg00063.html
9519
9520 In brief, we compute the continued fractions of the two
9521 endpoints of the interval (LO and HI). The continued
9522 fraction of the result consists of the common prefix of the
9523 continued fractions of LO and HI, plus one final term. The
9524 final term of the result is the smallest integer contained
9525 in the interval between the remainders of LO and HI after
9526 the common prefix has been removed.
9527
9528 The following code lazily computes the continued fraction
9529 representations of LO and HI, and simultaneously converts
9530 the continued fraction of the result into a rational
9531 number. We use MPZ functions directly to avoid type
9532 dispatch and GC allocation during the loop. */
9533
9534 mpz_inits (n0, d0, n1, d1, n2, d2,
9535 nlo, dlo, nhi, dhi,
9536 qlo, rlo, qhi, rhi,
9537 NULL);
9538
9539 /* The variables N1, D1, N2 and D2 are used to compute the
9540 resulting rational from its continued fraction. At each
9541 step, N2/D2 and N1/D1 are the last two convergents. They
9542 are normally initialized to 0/1 and 1/0, respectively.
9543 However, if we negated X then we must negate the result as
9544 well, and we do that by initializing N1/D1 to -1/0. */
9545 mpz_set_si (n1, n1_init);
9546 mpz_set_ui (d1, 0);
9547 mpz_set_ui (n2, 0);
9548 mpz_set_ui (d2, 1);
9549
9550 /* The variables NLO, DLO, NHI, and DHI are used to lazily
9551 compute the continued fraction representations of LO and HI
9552 using Euclid's algorithm. Initially, NLO/DLO == LO and
9553 NHI/DHI == HI. */
9554 scm_to_mpz (scm_numerator (lo), nlo);
9555 scm_to_mpz (scm_denominator (lo), dlo);
9556 scm_to_mpz (scm_numerator (hi), nhi);
9557 scm_to_mpz (scm_denominator (hi), dhi);
9558
9559 /* As long as we're using exact arithmetic, the following loop
9560 is guaranteed to terminate. */
9561 for (;;)
9562 {
9563 /* Compute the next terms (QLO and QHI) of the continued
9564 fractions of LO and HI. */
9565 mpz_fdiv_qr (qlo, rlo, nlo, dlo); /* QLO <-- floor (NLO/DLO), RLO <-- NLO - QLO * DLO */
9566 mpz_fdiv_qr (qhi, rhi, nhi, dhi); /* QHI <-- floor (NHI/DHI), RHI <-- NHI - QHI * DHI */
9567
9568 /* The next term of the result will be either QLO or
9569 QLO+1. Here we compute the next convergent of the
9570 result based on the assumption that QLO is the next
9571 term. If that turns out to be wrong, we'll adjust
9572 these later by adding N1 to N0 and D1 to D0. */
9573 mpz_set (n0, n2); mpz_addmul (n0, n1, qlo); /* N0 <-- N2 + (QLO * N1) */
9574 mpz_set (d0, d2); mpz_addmul (d0, d1, qlo); /* D0 <-- D2 + (QLO * D1) */
9575
9576 /* We stop iterating when an integer is contained in the
9577 interval between the remainders NLO/DLO and NHI/DHI.
9578 There are two cases to consider: either NLO/DLO == QLO
9579 is an integer (indicated by RLO == 0), or QLO < QHI. */
d9e7774f
MW
9580 if (mpz_sgn (rlo) == 0 || mpz_cmp (qlo, qhi) != 0)
9581 break;
620c13e8
MW
9582
9583 /* Efficiently shuffle variables around for the next
9584 iteration. First we shift the recent convergents. */
9585 mpz_swap (n2, n1); mpz_swap (n1, n0); /* N2 <-- N1 <-- N0 */
9586 mpz_swap (d2, d1); mpz_swap (d1, d0); /* D2 <-- D1 <-- D0 */
9587
9588 /* The following shuffling is a bit confusing, so some
9589 explanation is in order. Conceptually, we're doing a
9590 couple of things here. After substracting the floor of
9591 NLO/DLO, the remainder is RLO/DLO. The rest of the
9592 continued fraction will represent the remainder's
9593 reciprocal DLO/RLO. Similarly for the HI endpoint.
9594 So in the next iteration, the new endpoints will be
9595 DLO/RLO and DHI/RHI. However, when we take the
9596 reciprocals of these endpoints, their order is
9597 switched. So in summary, we want NLO/DLO <-- DHI/RHI
9598 and NHI/DHI <-- DLO/RLO. */
9599 mpz_swap (nlo, dhi); mpz_swap (dhi, rlo); /* NLO <-- DHI <-- RLO */
9600 mpz_swap (nhi, dlo); mpz_swap (dlo, rhi); /* NHI <-- DLO <-- RHI */
9601 }
9602
9603 /* There is now an integer in the interval [NLO/DLO NHI/DHI].
9604 The last term of the result will be the smallest integer in
9605 that interval, which is ceiling(NLO/DLO). We have already
9606 computed floor(NLO/DLO) in QLO, so now we adjust QLO to be
9607 equal to the ceiling. */
9608 if (mpz_sgn (rlo) != 0)
9609 {
9610 /* If RLO is non-zero, then NLO/DLO is not an integer and
9611 the next term will be QLO+1. QLO was used in the
9612 computation of N0 and D0 above. Here we adjust N0 and
9613 D0 to be based on QLO+1 instead of QLO. */
9614 mpz_add (n0, n0, n1); /* N0 <-- N0 + N1 */
9615 mpz_add (d0, d0, d1); /* D0 <-- D0 + D1 */
9616 }
9617
9618 /* The simplest rational in the interval is N0/D0 */
9619 result = scm_i_make_ratio_already_reduced (scm_from_mpz (n0),
9620 scm_from_mpz (d0));
9621 mpz_clears (n0, d0, n1, d1, n2, d2,
9622 nlo, dlo, nhi, dhi,
9623 qlo, rlo, qhi, rhi,
9624 NULL);
9625 return result;
9626 }
f92e85f7 9627 }
f92e85f7
MV
9628}
9629#undef FUNC_NAME
9630
73e4de09
MV
9631/* conversion functions */
9632
9633int
9634scm_is_integer (SCM val)
9635{
9636 return scm_is_true (scm_integer_p (val));
9637}
9638
900a897c
MW
9639int
9640scm_is_exact_integer (SCM val)
9641{
9642 return scm_is_true (scm_exact_integer_p (val));
9643}
9644
73e4de09
MV
9645int
9646scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
9647{
e11e83f3 9648 if (SCM_I_INUMP (val))
73e4de09 9649 {
e11e83f3 9650 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
9651 return n >= min && n <= max;
9652 }
9653 else if (SCM_BIGP (val))
9654 {
9655 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
9656 return 0;
9657 else if (min >= LONG_MIN && max <= LONG_MAX)
d956fa6f
MV
9658 {
9659 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
9660 {
9661 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
9662 return n >= min && n <= max;
9663 }
9664 else
9665 return 0;
9666 }
73e4de09
MV
9667 else
9668 {
d956fa6f
MV
9669 scm_t_intmax n;
9670 size_t count;
73e4de09 9671
d956fa6f
MV
9672 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
9673 > CHAR_BIT*sizeof (scm_t_uintmax))
9674 return 0;
9675
9676 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
9677 SCM_I_BIG_MPZ (val));
73e4de09 9678
d956fa6f 9679 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
73e4de09 9680 {
d956fa6f
MV
9681 if (n < 0)
9682 return 0;
73e4de09 9683 }
73e4de09
MV
9684 else
9685 {
d956fa6f
MV
9686 n = -n;
9687 if (n >= 0)
9688 return 0;
73e4de09 9689 }
d956fa6f
MV
9690
9691 return n >= min && n <= max;
73e4de09
MV
9692 }
9693 }
73e4de09
MV
9694 else
9695 return 0;
9696}
9697
9698int
9699scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
9700{
e11e83f3 9701 if (SCM_I_INUMP (val))
73e4de09 9702 {
e11e83f3 9703 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
9704 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
9705 }
9706 else if (SCM_BIGP (val))
9707 {
9708 if (max <= SCM_MOST_POSITIVE_FIXNUM)
9709 return 0;
9710 else if (max <= ULONG_MAX)
d956fa6f
MV
9711 {
9712 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
9713 {
9714 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
9715 return n >= min && n <= max;
9716 }
9717 else
9718 return 0;
9719 }
73e4de09
MV
9720 else
9721 {
d956fa6f
MV
9722 scm_t_uintmax n;
9723 size_t count;
73e4de09 9724
d956fa6f
MV
9725 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
9726 return 0;
73e4de09 9727
d956fa6f
MV
9728 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
9729 > CHAR_BIT*sizeof (scm_t_uintmax))
73e4de09 9730 return 0;
d956fa6f
MV
9731
9732 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
9733 SCM_I_BIG_MPZ (val));
73e4de09 9734
d956fa6f 9735 return n >= min && n <= max;
73e4de09
MV
9736 }
9737 }
73e4de09
MV
9738 else
9739 return 0;
9740}
9741
1713d319
MV
9742static void
9743scm_i_range_error (SCM bad_val, SCM min, SCM max)
9744{
9745 scm_error (scm_out_of_range_key,
9746 NULL,
9747 "Value out of range ~S to ~S: ~S",
9748 scm_list_3 (min, max, bad_val),
9749 scm_list_1 (bad_val));
9750}
9751
bfd7932e
MV
9752#define TYPE scm_t_intmax
9753#define TYPE_MIN min
9754#define TYPE_MAX max
9755#define SIZEOF_TYPE 0
9756#define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
9757#define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
9758#include "libguile/conv-integer.i.c"
9759
9760#define TYPE scm_t_uintmax
9761#define TYPE_MIN min
9762#define TYPE_MAX max
9763#define SIZEOF_TYPE 0
9764#define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
9765#define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
9766#include "libguile/conv-uinteger.i.c"
9767
9768#define TYPE scm_t_int8
9769#define TYPE_MIN SCM_T_INT8_MIN
9770#define TYPE_MAX SCM_T_INT8_MAX
9771#define SIZEOF_TYPE 1
9772#define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
9773#define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
9774#include "libguile/conv-integer.i.c"
9775
9776#define TYPE scm_t_uint8
9777#define TYPE_MIN 0
9778#define TYPE_MAX SCM_T_UINT8_MAX
9779#define SIZEOF_TYPE 1
9780#define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
9781#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
9782#include "libguile/conv-uinteger.i.c"
9783
9784#define TYPE scm_t_int16
9785#define TYPE_MIN SCM_T_INT16_MIN
9786#define TYPE_MAX SCM_T_INT16_MAX
9787#define SIZEOF_TYPE 2
9788#define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
9789#define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
9790#include "libguile/conv-integer.i.c"
9791
9792#define TYPE scm_t_uint16
9793#define TYPE_MIN 0
9794#define TYPE_MAX SCM_T_UINT16_MAX
9795#define SIZEOF_TYPE 2
9796#define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
9797#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
9798#include "libguile/conv-uinteger.i.c"
9799
9800#define TYPE scm_t_int32
9801#define TYPE_MIN SCM_T_INT32_MIN
9802#define TYPE_MAX SCM_T_INT32_MAX
9803#define SIZEOF_TYPE 4
9804#define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
9805#define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
9806#include "libguile/conv-integer.i.c"
9807
9808#define TYPE scm_t_uint32
9809#define TYPE_MIN 0
9810#define TYPE_MAX SCM_T_UINT32_MAX
9811#define SIZEOF_TYPE 4
9812#define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
9813#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
9814#include "libguile/conv-uinteger.i.c"
9815
904a78f1
MG
9816#define TYPE scm_t_wchar
9817#define TYPE_MIN (scm_t_int32)-1
9818#define TYPE_MAX (scm_t_int32)0x10ffff
9819#define SIZEOF_TYPE 4
9820#define SCM_TO_TYPE_PROTO(arg) scm_to_wchar (arg)
9821#define SCM_FROM_TYPE_PROTO(arg) scm_from_wchar (arg)
9822#include "libguile/conv-integer.i.c"
9823
bfd7932e
MV
9824#define TYPE scm_t_int64
9825#define TYPE_MIN SCM_T_INT64_MIN
9826#define TYPE_MAX SCM_T_INT64_MAX
9827#define SIZEOF_TYPE 8
9828#define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
9829#define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
9830#include "libguile/conv-integer.i.c"
9831
9832#define TYPE scm_t_uint64
9833#define TYPE_MIN 0
9834#define TYPE_MAX SCM_T_UINT64_MAX
9835#define SIZEOF_TYPE 8
9836#define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
9837#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
9838#include "libguile/conv-uinteger.i.c"
73e4de09 9839
cd036260
MV
9840void
9841scm_to_mpz (SCM val, mpz_t rop)
9842{
9843 if (SCM_I_INUMP (val))
9844 mpz_set_si (rop, SCM_I_INUM (val));
9845 else if (SCM_BIGP (val))
9846 mpz_set (rop, SCM_I_BIG_MPZ (val));
9847 else
9848 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
9849}
9850
9851SCM
9852scm_from_mpz (mpz_t val)
9853{
9854 return scm_i_mpz2num (val);
9855}
9856
73e4de09
MV
9857int
9858scm_is_real (SCM val)
9859{
9860 return scm_is_true (scm_real_p (val));
9861}
9862
55f26379
MV
9863int
9864scm_is_rational (SCM val)
9865{
9866 return scm_is_true (scm_rational_p (val));
9867}
9868
73e4de09
MV
9869double
9870scm_to_double (SCM val)
9871{
55f26379
MV
9872 if (SCM_I_INUMP (val))
9873 return SCM_I_INUM (val);
9874 else if (SCM_BIGP (val))
9875 return scm_i_big2dbl (val);
9876 else if (SCM_FRACTIONP (val))
9877 return scm_i_fraction2double (val);
9878 else if (SCM_REALP (val))
9879 return SCM_REAL_VALUE (val);
9880 else
7a1aba42 9881 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
73e4de09
MV
9882}
9883
9884SCM
9885scm_from_double (double val)
9886{
00472a22 9887 return scm_i_from_double (val);
73e4de09
MV
9888}
9889
8507ec80
MV
9890int
9891scm_is_complex (SCM val)
9892{
9893 return scm_is_true (scm_complex_p (val));
9894}
9895
9896double
9897scm_c_real_part (SCM z)
9898{
9899 if (SCM_COMPLEXP (z))
9900 return SCM_COMPLEX_REAL (z);
9901 else
9902 {
9903 /* Use the scm_real_part to get proper error checking and
9904 dispatching.
9905 */
9906 return scm_to_double (scm_real_part (z));
9907 }
9908}
9909
9910double
9911scm_c_imag_part (SCM z)
9912{
9913 if (SCM_COMPLEXP (z))
9914 return SCM_COMPLEX_IMAG (z);
9915 else
9916 {
9917 /* Use the scm_imag_part to get proper error checking and
9918 dispatching. The result will almost always be 0.0, but not
9919 always.
9920 */
9921 return scm_to_double (scm_imag_part (z));
9922 }
9923}
9924
9925double
9926scm_c_magnitude (SCM z)
9927{
9928 return scm_to_double (scm_magnitude (z));
9929}
9930
9931double
9932scm_c_angle (SCM z)
9933{
9934 return scm_to_double (scm_angle (z));
9935}
9936
9937int
9938scm_is_number (SCM z)
9939{
9940 return scm_is_true (scm_number_p (z));
9941}
9942
8ab3d8a0 9943
a5f6b751
MW
9944/* Returns log(x * 2^shift) */
9945static SCM
9946log_of_shifted_double (double x, long shift)
9947{
9948 double ans = log (fabs (x)) + shift * M_LN2;
9949
e1592f8a 9950 if (copysign (1.0, x) > 0.0)
00472a22 9951 return scm_i_from_double (ans);
a5f6b751
MW
9952 else
9953 return scm_c_make_rectangular (ans, M_PI);
9954}
9955
85bdb6ac 9956/* Returns log(n), for exact integer n */
a5f6b751
MW
9957static SCM
9958log_of_exact_integer (SCM n)
9959{
7f34acd8
MW
9960 if (SCM_I_INUMP (n))
9961 return log_of_shifted_double (SCM_I_INUM (n), 0);
9962 else if (SCM_BIGP (n))
9963 {
9964 long expon;
9965 double signif = scm_i_big2dbl_2exp (n, &expon);
9966 return log_of_shifted_double (signif, expon);
9967 }
9968 else
9969 scm_wrong_type_arg ("log_of_exact_integer", SCM_ARG1, n);
a5f6b751
MW
9970}
9971
9972/* Returns log(n/d), for exact non-zero integers n and d */
9973static SCM
9974log_of_fraction (SCM n, SCM d)
9975{
9976 long n_size = scm_to_long (scm_integer_length (n));
9977 long d_size = scm_to_long (scm_integer_length (d));
9978
9979 if (abs (n_size - d_size) > 1)
7f34acd8
MW
9980 return (scm_difference (log_of_exact_integer (n),
9981 log_of_exact_integer (d)));
a5f6b751 9982 else if (scm_is_false (scm_negative_p (n)))
00472a22 9983 return scm_i_from_double
98237784 9984 (log1p (scm_i_divide2double (scm_difference (n, d), d)));
a5f6b751
MW
9985 else
9986 return scm_c_make_rectangular
98237784
MW
9987 (log1p (scm_i_divide2double (scm_difference (scm_abs (n), d),
9988 d)),
a5f6b751
MW
9989 M_PI);
9990}
9991
9992
8ab3d8a0
KR
9993/* In the following functions we dispatch to the real-arg funcs like log()
9994 when we know the arg is real, instead of just handing everything to
9995 clog() for instance. This is in case clog() doesn't optimize for a
9996 real-only case, and because we have to test SCM_COMPLEXP anyway so may as
9997 well use it to go straight to the applicable C func. */
9998
2519490c
MW
9999SCM_PRIMITIVE_GENERIC (scm_log, "log", 1, 0, 0,
10000 (SCM z),
10001 "Return the natural logarithm of @var{z}.")
8ab3d8a0
KR
10002#define FUNC_NAME s_scm_log
10003{
10004 if (SCM_COMPLEXP (z))
10005 {
03976fee
AW
10006#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG \
10007 && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
10008 return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
10009#else
10010 double re = SCM_COMPLEX_REAL (z);
10011 double im = SCM_COMPLEX_IMAG (z);
10012 return scm_c_make_rectangular (log (hypot (re, im)),
10013 atan2 (im, re));
10014#endif
10015 }
a5f6b751
MW
10016 else if (SCM_REALP (z))
10017 return log_of_shifted_double (SCM_REAL_VALUE (z), 0);
10018 else if (SCM_I_INUMP (z))
8ab3d8a0 10019 {
a5f6b751
MW
10020#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
10021 if (scm_is_eq (z, SCM_INUM0))
10022 scm_num_overflow (s_scm_log);
10023#endif
10024 return log_of_shifted_double (SCM_I_INUM (z), 0);
8ab3d8a0 10025 }
a5f6b751
MW
10026 else if (SCM_BIGP (z))
10027 return log_of_exact_integer (z);
10028 else if (SCM_FRACTIONP (z))
10029 return log_of_fraction (SCM_FRACTION_NUMERATOR (z),
10030 SCM_FRACTION_DENOMINATOR (z));
2519490c 10031 else
fa075d40 10032 return scm_wta_dispatch_1 (g_scm_log, z, 1, s_scm_log);
8ab3d8a0
KR
10033}
10034#undef FUNC_NAME
10035
10036
2519490c
MW
10037SCM_PRIMITIVE_GENERIC (scm_log10, "log10", 1, 0, 0,
10038 (SCM z),
10039 "Return the base 10 logarithm of @var{z}.")
8ab3d8a0
KR
10040#define FUNC_NAME s_scm_log10
10041{
10042 if (SCM_COMPLEXP (z))
10043 {
10044 /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
10045 clog() and a multiply by M_LOG10E, rather than the fallback
10046 log10+hypot+atan2.) */
f328f862
LC
10047#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG10 \
10048 && defined SCM_COMPLEX_VALUE
8ab3d8a0
KR
10049 return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
10050#else
10051 double re = SCM_COMPLEX_REAL (z);
10052 double im = SCM_COMPLEX_IMAG (z);
10053 return scm_c_make_rectangular (log10 (hypot (re, im)),
10054 M_LOG10E * atan2 (im, re));
10055#endif
10056 }
a5f6b751 10057 else if (SCM_REALP (z) || SCM_I_INUMP (z))
8ab3d8a0 10058 {
a5f6b751
MW
10059#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
10060 if (scm_is_eq (z, SCM_INUM0))
10061 scm_num_overflow (s_scm_log10);
10062#endif
10063 {
10064 double re = scm_to_double (z);
10065 double l = log10 (fabs (re));
e1592f8a 10066 if (copysign (1.0, re) > 0.0)
00472a22 10067 return scm_i_from_double (l);
a5f6b751
MW
10068 else
10069 return scm_c_make_rectangular (l, M_LOG10E * M_PI);
10070 }
8ab3d8a0 10071 }
a5f6b751
MW
10072 else if (SCM_BIGP (z))
10073 return scm_product (flo_log10e, log_of_exact_integer (z));
10074 else if (SCM_FRACTIONP (z))
10075 return scm_product (flo_log10e,
10076 log_of_fraction (SCM_FRACTION_NUMERATOR (z),
10077 SCM_FRACTION_DENOMINATOR (z)));
2519490c 10078 else
fa075d40 10079 return scm_wta_dispatch_1 (g_scm_log10, z, 1, s_scm_log10);
8ab3d8a0
KR
10080}
10081#undef FUNC_NAME
10082
10083
2519490c
MW
10084SCM_PRIMITIVE_GENERIC (scm_exp, "exp", 1, 0, 0,
10085 (SCM z),
10086 "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
10087 "base of natural logarithms (2.71828@dots{}).")
8ab3d8a0
KR
10088#define FUNC_NAME s_scm_exp
10089{
10090 if (SCM_COMPLEXP (z))
10091 {
03976fee
AW
10092#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CEXP \
10093 && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
10094 return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
10095#else
10096 return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
10097 SCM_COMPLEX_IMAG (z));
10098#endif
10099 }
2519490c 10100 else if (SCM_NUMBERP (z))
8ab3d8a0
KR
10101 {
10102 /* When z is a negative bignum the conversion to double overflows,
10103 giving -infinity, but that's ok, the exp is still 0.0. */
00472a22 10104 return scm_i_from_double (exp (scm_to_double (z)));
8ab3d8a0 10105 }
2519490c 10106 else
fa075d40 10107 return scm_wta_dispatch_1 (g_scm_exp, z, 1, s_scm_exp);
8ab3d8a0
KR
10108}
10109#undef FUNC_NAME
10110
10111
882c8963
MW
10112SCM_DEFINE (scm_i_exact_integer_sqrt, "exact-integer-sqrt", 1, 0, 0,
10113 (SCM k),
10114 "Return two exact non-negative integers @var{s} and @var{r}\n"
10115 "such that @math{@var{k} = @var{s}^2 + @var{r}} and\n"
10116 "@math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.\n"
10117 "An error is raised if @var{k} is not an exact non-negative integer.\n"
10118 "\n"
10119 "@lisp\n"
10120 "(exact-integer-sqrt 10) @result{} 3 and 1\n"
10121 "@end lisp")
10122#define FUNC_NAME s_scm_i_exact_integer_sqrt
10123{
10124 SCM s, r;
10125
10126 scm_exact_integer_sqrt (k, &s, &r);
10127 return scm_values (scm_list_2 (s, r));
10128}
10129#undef FUNC_NAME
10130
10131void
10132scm_exact_integer_sqrt (SCM k, SCM *sp, SCM *rp)
10133{
10134 if (SCM_LIKELY (SCM_I_INUMP (k)))
10135 {
687a87bf 10136 mpz_t kk, ss, rr;
882c8963 10137
687a87bf 10138 if (SCM_I_INUM (k) < 0)
882c8963
MW
10139 scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k,
10140 "exact non-negative integer");
687a87bf
MW
10141 mpz_init_set_ui (kk, SCM_I_INUM (k));
10142 mpz_inits (ss, rr, NULL);
10143 mpz_sqrtrem (ss, rr, kk);
10144 *sp = SCM_I_MAKINUM (mpz_get_ui (ss));
10145 *rp = SCM_I_MAKINUM (mpz_get_ui (rr));
10146 mpz_clears (kk, ss, rr, NULL);
882c8963
MW
10147 }
10148 else if (SCM_LIKELY (SCM_BIGP (k)))
10149 {
10150 SCM s, r;
10151
10152 if (mpz_sgn (SCM_I_BIG_MPZ (k)) < 0)
10153 scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k,
10154 "exact non-negative integer");
10155 s = scm_i_mkbig ();
10156 r = scm_i_mkbig ();
10157 mpz_sqrtrem (SCM_I_BIG_MPZ (s), SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (k));
10158 scm_remember_upto_here_1 (k);
10159 *sp = scm_i_normbig (s);
10160 *rp = scm_i_normbig (r);
10161 }
10162 else
10163 scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k,
10164 "exact non-negative integer");
10165}
10166
ddb71742
MW
10167/* Return true iff K is a perfect square.
10168 K must be an exact integer. */
10169static int
10170exact_integer_is_perfect_square (SCM k)
10171{
10172 int result;
10173
10174 if (SCM_LIKELY (SCM_I_INUMP (k)))
10175 {
10176 mpz_t kk;
10177
10178 mpz_init_set_si (kk, SCM_I_INUM (k));
10179 result = mpz_perfect_square_p (kk);
10180 mpz_clear (kk);
10181 }
10182 else
10183 {
10184 result = mpz_perfect_square_p (SCM_I_BIG_MPZ (k));
10185 scm_remember_upto_here_1 (k);
10186 }
10187 return result;
10188}
10189
10190/* Return the floor of the square root of K.
10191 K must be an exact integer. */
10192static SCM
10193exact_integer_floor_square_root (SCM k)
10194{
10195 if (SCM_LIKELY (SCM_I_INUMP (k)))
10196 {
10197 mpz_t kk;
10198 scm_t_inum ss;
10199
10200 mpz_init_set_ui (kk, SCM_I_INUM (k));
10201 mpz_sqrt (kk, kk);
10202 ss = mpz_get_ui (kk);
10203 mpz_clear (kk);
10204 return SCM_I_MAKINUM (ss);
10205 }
10206 else
10207 {
10208 SCM s;
10209
10210 s = scm_i_mkbig ();
10211 mpz_sqrt (SCM_I_BIG_MPZ (s), SCM_I_BIG_MPZ (k));
10212 scm_remember_upto_here_1 (k);
10213 return scm_i_normbig (s);
10214 }
10215}
10216
882c8963 10217
2519490c
MW
10218SCM_PRIMITIVE_GENERIC (scm_sqrt, "sqrt", 1, 0, 0,
10219 (SCM z),
10220 "Return the square root of @var{z}. Of the two possible roots\n"
ffb62a43 10221 "(positive and negative), the one with positive real part\n"
2519490c
MW
10222 "is returned, or if that's zero then a positive imaginary part.\n"
10223 "Thus,\n"
10224 "\n"
10225 "@example\n"
10226 "(sqrt 9.0) @result{} 3.0\n"
10227 "(sqrt -9.0) @result{} 0.0+3.0i\n"
10228 "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
10229 "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
10230 "@end example")
8ab3d8a0
KR
10231#define FUNC_NAME s_scm_sqrt
10232{
2519490c 10233 if (SCM_COMPLEXP (z))
8ab3d8a0 10234 {
f328f862
LC
10235#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_USABLE_CSQRT \
10236 && defined SCM_COMPLEX_VALUE
2519490c 10237 return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (z)));
8ab3d8a0 10238#else
2519490c
MW
10239 double re = SCM_COMPLEX_REAL (z);
10240 double im = SCM_COMPLEX_IMAG (z);
8ab3d8a0
KR
10241 return scm_c_make_polar (sqrt (hypot (re, im)),
10242 0.5 * atan2 (im, re));
10243#endif
10244 }
2519490c 10245 else if (SCM_NUMBERP (z))
8ab3d8a0 10246 {
44002664
MW
10247 if (SCM_I_INUMP (z))
10248 {
ddb71742
MW
10249 scm_t_inum x = SCM_I_INUM (z);
10250
10251 if (SCM_LIKELY (x >= 0))
44002664 10252 {
ddb71742
MW
10253 if (SCM_LIKELY (SCM_I_FIXNUM_BIT < DBL_MANT_DIG
10254 || x < (1L << (DBL_MANT_DIG - 1))))
44002664 10255 {
ddb71742 10256 double root = sqrt (x);
44002664
MW
10257
10258 /* If 0 <= x < 2^(DBL_MANT_DIG-1) and sqrt(x) is an
10259 integer, then the result is exact. */
10260 if (root == floor (root))
10261 return SCM_I_MAKINUM ((scm_t_inum) root);
10262 else
00472a22 10263 return scm_i_from_double (root);
44002664
MW
10264 }
10265 else
10266 {
ddb71742 10267 mpz_t xx;
44002664
MW
10268 scm_t_inum root;
10269
ddb71742
MW
10270 mpz_init_set_ui (xx, x);
10271 if (mpz_perfect_square_p (xx))
44002664 10272 {
ddb71742
MW
10273 mpz_sqrt (xx, xx);
10274 root = mpz_get_ui (xx);
10275 mpz_clear (xx);
44002664
MW
10276 return SCM_I_MAKINUM (root);
10277 }
10278 else
ddb71742 10279 mpz_clear (xx);
44002664
MW
10280 }
10281 }
10282 }
10283 else if (SCM_BIGP (z))
10284 {
ddb71742 10285 if (mpz_perfect_square_p (SCM_I_BIG_MPZ (z)))
44002664
MW
10286 {
10287 SCM root = scm_i_mkbig ();
10288
10289 mpz_sqrt (SCM_I_BIG_MPZ (root), SCM_I_BIG_MPZ (z));
10290 scm_remember_upto_here_1 (z);
10291 return scm_i_normbig (root);
10292 }
ddb71742
MW
10293 else
10294 {
10295 long expon;
10296 double signif = scm_i_big2dbl_2exp (z, &expon);
10297
10298 if (expon & 1)
10299 {
10300 signif *= 2;
10301 expon--;
10302 }
10303 if (signif < 0)
10304 return scm_c_make_rectangular
10305 (0.0, ldexp (sqrt (-signif), expon / 2));
10306 else
00472a22 10307 return scm_i_from_double (ldexp (sqrt (signif), expon / 2));
ddb71742 10308 }
44002664
MW
10309 }
10310 else if (SCM_FRACTIONP (z))
ddb71742
MW
10311 {
10312 SCM n = SCM_FRACTION_NUMERATOR (z);
10313 SCM d = SCM_FRACTION_DENOMINATOR (z);
10314
10315 if (exact_integer_is_perfect_square (n)
10316 && exact_integer_is_perfect_square (d))
10317 return scm_i_make_ratio_already_reduced
10318 (exact_integer_floor_square_root (n),
10319 exact_integer_floor_square_root (d));
10320 else
10321 {
10322 double xx = scm_i_divide2double (n, d);
10323 double abs_xx = fabs (xx);
10324 long shift = 0;
10325
10326 if (SCM_UNLIKELY (abs_xx > DBL_MAX || abs_xx < DBL_MIN))
10327 {
10328 shift = (scm_to_long (scm_integer_length (n))
10329 - scm_to_long (scm_integer_length (d))) / 2;
10330 if (shift > 0)
10331 d = left_shift_exact_integer (d, 2 * shift);
10332 else
10333 n = left_shift_exact_integer (n, -2 * shift);
10334 xx = scm_i_divide2double (n, d);
10335 }
10336
10337 if (xx < 0)
10338 return scm_c_make_rectangular (0.0, ldexp (sqrt (-xx), shift));
10339 else
00472a22 10340 return scm_i_from_double (ldexp (sqrt (xx), shift));
ddb71742
MW
10341 }
10342 }
44002664
MW
10343
10344 /* Fallback method, when the cases above do not apply. */
10345 {
10346 double xx = scm_to_double (z);
10347 if (xx < 0)
10348 return scm_c_make_rectangular (0.0, sqrt (-xx));
10349 else
00472a22 10350 return scm_i_from_double (sqrt (xx));
44002664 10351 }
8ab3d8a0 10352 }
2519490c 10353 else
fa075d40 10354 return scm_wta_dispatch_1 (g_scm_sqrt, z, 1, s_scm_sqrt);
8ab3d8a0
KR
10355}
10356#undef FUNC_NAME
10357
10358
10359
0f2d19dd
JB
10360void
10361scm_init_numbers ()
0f2d19dd 10362{
b57bf272
AW
10363 if (scm_install_gmp_memory_functions)
10364 mp_set_memory_functions (custom_gmp_malloc,
10365 custom_gmp_realloc,
10366 custom_gmp_free);
10367
713a4259
KR
10368 mpz_init_set_si (z_negative_one, -1);
10369
a261c0e9
DH
10370 /* It may be possible to tune the performance of some algorithms by using
10371 * the following constants to avoid the creation of bignums. Please, before
10372 * using these values, remember the two rules of program optimization:
10373 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
86d31dfe 10374 scm_c_define ("most-positive-fixnum",
d956fa6f 10375 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
86d31dfe 10376 scm_c_define ("most-negative-fixnum",
d956fa6f 10377 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
a261c0e9 10378
f3ae5d60
MD
10379 scm_add_feature ("complex");
10380 scm_add_feature ("inexact");
00472a22
MW
10381 flo0 = scm_i_from_double (0.0);
10382 flo_log10e = scm_i_from_double (M_LOG10E);
0b799eea 10383
cff5fa33 10384 exactly_one_half = scm_divide (SCM_INUM1, SCM_I_MAKINUM (2));
98237784
MW
10385
10386 {
10387 /* Set scm_i_divide2double_lo2b to (2 b^p - 1) */
10388 mpz_init_set_ui (scm_i_divide2double_lo2b, 1);
10389 mpz_mul_2exp (scm_i_divide2double_lo2b,
10390 scm_i_divide2double_lo2b,
10391 DBL_MANT_DIG + 1); /* 2 b^p */
10392 mpz_sub_ui (scm_i_divide2double_lo2b, scm_i_divide2double_lo2b, 1);
10393 }
10394
1ea37620
MW
10395 {
10396 /* Set dbl_minimum_normal_mantissa to b^{p-1} */
10397 mpz_init_set_ui (dbl_minimum_normal_mantissa, 1);
10398 mpz_mul_2exp (dbl_minimum_normal_mantissa,
10399 dbl_minimum_normal_mantissa,
10400 DBL_MANT_DIG - 1);
10401 }
10402
a0599745 10403#include "libguile/numbers.x"
0f2d19dd 10404}
89e00824
ML
10405
10406/*
10407 Local Variables:
10408 c-file-style: "gnu"
10409 End:
10410*/