Augment `THANKS'.
[bpt/guile.git] / libguile / numbers.c
CommitLineData
8e43ed5d 1/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
ba74ef4e
MV
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
f81e080b 6 *
73be1d9e 7 * This library is free software; you can redistribute it and/or
53befeb7
NJ
8 * modify it under the terms of the GNU Lesser General Public License
9 * as published by the Free Software Foundation; either version 3 of
10 * the License, or (at your option) any later version.
0f2d19dd 11 *
53befeb7
NJ
12 * This library is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
73be1d9e
MV
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
0f2d19dd 16 *
73be1d9e
MV
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
53befeb7
NJ
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301 USA
73be1d9e 21 */
1bbd0b84 22
0f2d19dd 23\f
ca46fb90
RB
24/* General assumptions:
25 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
26 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
27 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
28 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
f92e85f7 29 * All objects satisfying SCM_FRACTIONP are never an integer.
ca46fb90
RB
30 */
31
32/* TODO:
33
34 - see if special casing bignums and reals in integer-exponent when
35 possible (to use mpz_pow and mpf_pow_ui) is faster.
36
37 - look in to better short-circuiting of common cases in
38 integer-expt and elsewhere.
39
40 - see if direct mpz operations can help in ash and elsewhere.
41
42 */
0f2d19dd 43
dbb605f5 44#ifdef HAVE_CONFIG_H
ee33d62a
RB
45# include <config.h>
46#endif
47
0f2d19dd 48#include <math.h>
fc194577 49#include <string.h>
3f47e526
MG
50#include <unicase.h>
51#include <unictype.h>
f92e85f7 52
8ab3d8a0
KR
53#if HAVE_COMPLEX_H
54#include <complex.h>
55#endif
56
a0599745 57#include "libguile/_scm.h"
a0599745
MD
58#include "libguile/feature.h"
59#include "libguile/ports.h"
60#include "libguile/root.h"
61#include "libguile/smob.h"
62#include "libguile/strings.h"
864e7d42 63#include "libguile/bdw-gc.h"
a0599745
MD
64
65#include "libguile/validate.h"
66#include "libguile/numbers.h"
1be6b49c 67#include "libguile/deprecation.h"
f4c627b3 68
f92e85f7
MV
69#include "libguile/eq.h"
70
8ab3d8a0
KR
71/* values per glibc, if not already defined */
72#ifndef M_LOG10E
73#define M_LOG10E 0.43429448190325182765
74#endif
75#ifndef M_PI
76#define M_PI 3.14159265358979323846
77#endif
78
e25f3727
AW
79typedef scm_t_signed_bits scm_t_inum;
80#define scm_from_inum(x) (scm_from_signed_integer (x))
81
0f2d19dd 82\f
f4c627b3 83
ca46fb90
RB
84/*
85 Wonder if this might be faster for some of our code? A switch on
86 the numtag would jump directly to the right case, and the
87 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
88
89 #define SCM_I_NUMTAG_NOTNUM 0
90 #define SCM_I_NUMTAG_INUM 1
91 #define SCM_I_NUMTAG_BIG scm_tc16_big
92 #define SCM_I_NUMTAG_REAL scm_tc16_real
93 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
94 #define SCM_I_NUMTAG(x) \
e11e83f3 95 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
ca46fb90 96 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
534c55a9 97 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
ca46fb90
RB
98 : SCM_I_NUMTAG_NOTNUM)))
99*/
f92e85f7 100/* the macro above will not work as is with fractions */
f4c627b3
DH
101
102
e7efe8e7
AW
103static SCM flo0;
104
34d19ef6 105#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
09fb7599 106
56e55ac7 107/* FLOBUFLEN is the maximum number of characters neccessary for the
3a9809df
DH
108 * printed or scm_string representation of an inexact number.
109 */
0b799eea 110#define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
3a9809df 111
b127c712 112
ad79736c
AW
113#if !defined (HAVE_ASINH)
114static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
115#endif
116#if !defined (HAVE_ACOSH)
117static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
118#endif
119#if !defined (HAVE_ATANH)
120static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
121#endif
122
f8a8200b
KR
123/* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
124 an explicit check. In some future gmp (don't know what version number),
125 mpz_cmp_d is supposed to do this itself. */
126#if 1
b127c712 127#define xmpz_cmp_d(z, d) \
2e65b52f 128 (isinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
b127c712
KR
129#else
130#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
131#endif
132
f92e85f7 133
4b26c03e 134#if defined (GUILE_I)
bca69a9f 135#if HAVE_COMPLEX_DOUBLE
8ab3d8a0
KR
136
137/* For an SCM object Z which is a complex number (ie. satisfies
138 SCM_COMPLEXP), return its value as a C level "complex double". */
139#define SCM_COMPLEX_VALUE(z) \
4b26c03e 140 (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
8ab3d8a0 141
7a35784c 142static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
8ab3d8a0
KR
143
144/* Convert a C "complex double" to an SCM value. */
7a35784c 145static inline SCM
8ab3d8a0
KR
146scm_from_complex_double (complex double z)
147{
148 return scm_c_make_rectangular (creal (z), cimag (z));
149}
bca69a9f 150
8ab3d8a0 151#endif /* HAVE_COMPLEX_DOUBLE */
bca69a9f 152#endif /* GUILE_I */
8ab3d8a0 153
0f2d19dd
JB
154\f
155
713a4259 156static mpz_t z_negative_one;
ac0c002c
DH
157
158\f
864e7d42
LC
159/* Clear the `mpz_t' embedded in bignum PTR. */
160static void
161finalize_bignum (GC_PTR ptr, GC_PTR data)
162{
163 SCM bignum;
164
165 bignum = PTR2SCM (ptr);
166 mpz_clear (SCM_I_BIG_MPZ (bignum));
167}
168
d017fcdf
LC
169/* Return a new uninitialized bignum. */
170static inline SCM
171make_bignum (void)
172{
173 scm_t_bits *p;
864e7d42
LC
174 GC_finalization_proc prev_finalizer;
175 GC_PTR prev_finalizer_data;
d017fcdf
LC
176
177 /* Allocate one word for the type tag and enough room for an `mpz_t'. */
178 p = scm_gc_malloc_pointerless (sizeof (scm_t_bits) + sizeof (mpz_t),
179 "bignum");
180 p[0] = scm_tc16_big;
181
864e7d42
LC
182 GC_REGISTER_FINALIZER_NO_ORDER (p, finalize_bignum, NULL,
183 &prev_finalizer,
184 &prev_finalizer_data);
185
d017fcdf
LC
186 return SCM_PACK (p);
187}
ac0c002c 188
864e7d42 189
189171c5 190SCM
ca46fb90
RB
191scm_i_mkbig ()
192{
193 /* Return a newly created bignum. */
d017fcdf 194 SCM z = make_bignum ();
ca46fb90
RB
195 mpz_init (SCM_I_BIG_MPZ (z));
196 return z;
197}
198
e25f3727
AW
199static SCM
200scm_i_inum2big (scm_t_inum x)
201{
202 /* Return a newly created bignum initialized to X. */
203 SCM z = make_bignum ();
204#if SIZEOF_VOID_P == SIZEOF_LONG
205 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
206#else
207 /* Note that in this case, you'll also have to check all mpz_*_ui and
208 mpz_*_si invocations in Guile. */
209#error creation of mpz not implemented for this inum size
210#endif
211 return z;
212}
213
189171c5 214SCM
c71b0706
MV
215scm_i_long2big (long x)
216{
217 /* Return a newly created bignum initialized to X. */
d017fcdf 218 SCM z = make_bignum ();
c71b0706
MV
219 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
220 return z;
221}
222
189171c5 223SCM
c71b0706
MV
224scm_i_ulong2big (unsigned long x)
225{
226 /* Return a newly created bignum initialized to X. */
d017fcdf 227 SCM z = make_bignum ();
c71b0706
MV
228 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
229 return z;
230}
231
189171c5 232SCM
ca46fb90
RB
233scm_i_clonebig (SCM src_big, int same_sign_p)
234{
235 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
d017fcdf 236 SCM z = make_bignum ();
ca46fb90 237 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
0aacf84e
MD
238 if (!same_sign_p)
239 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
ca46fb90
RB
240 return z;
241}
242
189171c5 243int
ca46fb90
RB
244scm_i_bigcmp (SCM x, SCM y)
245{
246 /* Return neg if x < y, pos if x > y, and 0 if x == y */
247 /* presume we already know x and y are bignums */
248 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
249 scm_remember_upto_here_2 (x, y);
250 return result;
251}
252
189171c5 253SCM
ca46fb90
RB
254scm_i_dbl2big (double d)
255{
256 /* results are only defined if d is an integer */
d017fcdf 257 SCM z = make_bignum ();
ca46fb90
RB
258 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
259 return z;
260}
261
f92e85f7
MV
262/* Convert a integer in double representation to a SCM number. */
263
189171c5 264SCM
f92e85f7
MV
265scm_i_dbl2num (double u)
266{
267 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
268 powers of 2, so there's no rounding when making "double" values
269 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
270 get rounded on a 64-bit machine, hence the "+1".
271
272 The use of floor() to force to an integer value ensures we get a
273 "numerically closest" value without depending on how a
274 double->long cast or how mpz_set_d will round. For reference,
275 double->long probably follows the hardware rounding mode,
276 mpz_set_d truncates towards zero. */
277
278 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
279 representable as a double? */
280
281 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
282 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
e25f3727 283 return SCM_I_MAKINUM ((scm_t_inum) u);
f92e85f7
MV
284 else
285 return scm_i_dbl2big (u);
286}
287
089c9a59
KR
288/* scm_i_big2dbl() rounds to the closest representable double, in accordance
289 with R5RS exact->inexact.
290
291 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
f8a8200b
KR
292 (ie. truncate towards zero), then adjust to get the closest double by
293 examining the next lower bit and adding 1 (to the absolute value) if
294 necessary.
295
296 Bignums exactly half way between representable doubles are rounded to the
297 next higher absolute value (ie. away from zero). This seems like an
298 adequate interpretation of R5RS "numerically closest", and it's easier
299 and faster than a full "nearest-even" style.
300
301 The bit test must be done on the absolute value of the mpz_t, which means
302 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
303 negatives as twos complement.
304
305 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
306 following the hardware rounding mode, but applied to the absolute value
307 of the mpz_t operand. This is not what we want so we put the high
308 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
309 mpz_get_d is supposed to always truncate towards zero.
310
311 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
312 is a slowdown. It'd be faster to pick out the relevant high bits with
313 mpz_getlimbn if we could be bothered coding that, and if the new
314 truncating gmp doesn't come out. */
089c9a59
KR
315
316double
ca46fb90
RB
317scm_i_big2dbl (SCM b)
318{
089c9a59
KR
319 double result;
320 size_t bits;
321
322 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
323
f8a8200b 324#if 1
089c9a59 325 {
f8a8200b 326 /* Current GMP, eg. 4.1.3, force truncation towards zero */
089c9a59
KR
327 mpz_t tmp;
328 if (bits > DBL_MANT_DIG)
329 {
330 size_t shift = bits - DBL_MANT_DIG;
331 mpz_init2 (tmp, DBL_MANT_DIG);
332 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
333 result = ldexp (mpz_get_d (tmp), shift);
334 mpz_clear (tmp);
335 }
336 else
337 {
338 result = mpz_get_d (SCM_I_BIG_MPZ (b));
339 }
340 }
341#else
f8a8200b 342 /* Future GMP */
089c9a59
KR
343 result = mpz_get_d (SCM_I_BIG_MPZ (b));
344#endif
345
346 if (bits > DBL_MANT_DIG)
347 {
348 unsigned long pos = bits - DBL_MANT_DIG - 1;
349 /* test bit number "pos" in absolute value */
350 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
351 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
352 {
353 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
354 }
355 }
356
ca46fb90
RB
357 scm_remember_upto_here_1 (b);
358 return result;
359}
360
189171c5 361SCM
ca46fb90
RB
362scm_i_normbig (SCM b)
363{
364 /* convert a big back to a fixnum if it'll fit */
365 /* presume b is a bignum */
366 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
367 {
e25f3727 368 scm_t_inum val = mpz_get_si (SCM_I_BIG_MPZ (b));
ca46fb90 369 if (SCM_FIXABLE (val))
d956fa6f 370 b = SCM_I_MAKINUM (val);
ca46fb90
RB
371 }
372 return b;
373}
f872b822 374
f92e85f7
MV
375static SCM_C_INLINE_KEYWORD SCM
376scm_i_mpz2num (mpz_t b)
377{
378 /* convert a mpz number to a SCM number. */
379 if (mpz_fits_slong_p (b))
380 {
e25f3727 381 scm_t_inum val = mpz_get_si (b);
f92e85f7 382 if (SCM_FIXABLE (val))
d956fa6f 383 return SCM_I_MAKINUM (val);
f92e85f7
MV
384 }
385
386 {
d017fcdf 387 SCM z = make_bignum ();
f92e85f7
MV
388 mpz_init_set (SCM_I_BIG_MPZ (z), b);
389 return z;
390 }
391}
392
393/* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
394static SCM scm_divide2real (SCM x, SCM y);
395
cba42c93
MV
396static SCM
397scm_i_make_ratio (SCM numerator, SCM denominator)
c60e130c 398#define FUNC_NAME "make-ratio"
f92e85f7 399{
c60e130c
MV
400 /* First make sure the arguments are proper.
401 */
e11e83f3 402 if (SCM_I_INUMP (denominator))
f92e85f7 403 {
bc36d050 404 if (scm_is_eq (denominator, SCM_INUM0))
f92e85f7 405 scm_num_overflow ("make-ratio");
bc36d050 406 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
f92e85f7
MV
407 return numerator;
408 }
409 else
410 {
411 if (!(SCM_BIGP(denominator)))
412 SCM_WRONG_TYPE_ARG (2, denominator);
413 }
e11e83f3 414 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
c60e130c
MV
415 SCM_WRONG_TYPE_ARG (1, numerator);
416
417 /* Then flip signs so that the denominator is positive.
418 */
73e4de09 419 if (scm_is_true (scm_negative_p (denominator)))
c60e130c
MV
420 {
421 numerator = scm_difference (numerator, SCM_UNDEFINED);
422 denominator = scm_difference (denominator, SCM_UNDEFINED);
423 }
424
425 /* Now consider for each of the four fixnum/bignum combinations
426 whether the rational number is really an integer.
427 */
e11e83f3 428 if (SCM_I_INUMP (numerator))
f92e85f7 429 {
e25f3727 430 scm_t_inum x = SCM_I_INUM (numerator);
bc36d050 431 if (scm_is_eq (numerator, SCM_INUM0))
f92e85f7 432 return SCM_INUM0;
e11e83f3 433 if (SCM_I_INUMP (denominator))
f92e85f7 434 {
e25f3727 435 scm_t_inum y;
e11e83f3 436 y = SCM_I_INUM (denominator);
f92e85f7 437 if (x == y)
d956fa6f 438 return SCM_I_MAKINUM(1);
f92e85f7 439 if ((x % y) == 0)
d956fa6f 440 return SCM_I_MAKINUM (x / y);
f92e85f7 441 }
dd5130ca
KR
442 else
443 {
444 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
3271a325
KR
445 of that value for the denominator, as a bignum. Apart from
446 that case, abs(bignum) > abs(inum) so inum/bignum is not an
447 integer. */
448 if (x == SCM_MOST_NEGATIVE_FIXNUM
449 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
450 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
d956fa6f 451 return SCM_I_MAKINUM(-1);
dd5130ca 452 }
f92e85f7 453 }
c60e130c 454 else if (SCM_BIGP (numerator))
f92e85f7 455 {
e11e83f3 456 if (SCM_I_INUMP (denominator))
c60e130c 457 {
e25f3727 458 scm_t_inum yy = SCM_I_INUM (denominator);
c60e130c
MV
459 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
460 return scm_divide (numerator, denominator);
461 }
462 else
f92e85f7 463 {
bc36d050 464 if (scm_is_eq (numerator, denominator))
d956fa6f 465 return SCM_I_MAKINUM(1);
c60e130c
MV
466 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
467 SCM_I_BIG_MPZ (denominator)))
468 return scm_divide(numerator, denominator);
f92e85f7 469 }
f92e85f7 470 }
c60e130c
MV
471
472 /* No, it's a proper fraction.
473 */
e2bf3b19
HWN
474 {
475 SCM divisor = scm_gcd (numerator, denominator);
476 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
477 {
478 numerator = scm_divide (numerator, divisor);
479 denominator = scm_divide (denominator, divisor);
480 }
481
482 return scm_double_cell (scm_tc16_fraction,
483 SCM_UNPACK (numerator),
484 SCM_UNPACK (denominator), 0);
485 }
f92e85f7 486}
c60e130c 487#undef FUNC_NAME
f92e85f7 488
f92e85f7
MV
489double
490scm_i_fraction2double (SCM z)
491{
55f26379
MV
492 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
493 SCM_FRACTION_DENOMINATOR (z)));
f92e85f7
MV
494}
495
a1ec6916 496SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
1bbd0b84 497 (SCM x),
942e5b91
MG
498 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
499 "otherwise.")
1bbd0b84 500#define FUNC_NAME s_scm_exact_p
0f2d19dd 501{
e11e83f3 502 if (SCM_I_INUMP (x))
0aacf84e
MD
503 return SCM_BOOL_T;
504 if (SCM_BIGP (x))
505 return SCM_BOOL_T;
f92e85f7
MV
506 if (SCM_FRACTIONP (x))
507 return SCM_BOOL_T;
eb927cb9
MV
508 if (SCM_NUMBERP (x))
509 return SCM_BOOL_F;
510 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 511}
1bbd0b84 512#undef FUNC_NAME
0f2d19dd 513
4219f20d 514
a1ec6916 515SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
1bbd0b84 516 (SCM n),
942e5b91
MG
517 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
518 "otherwise.")
1bbd0b84 519#define FUNC_NAME s_scm_odd_p
0f2d19dd 520{
e11e83f3 521 if (SCM_I_INUMP (n))
0aacf84e 522 {
e25f3727 523 scm_t_inum val = SCM_I_INUM (n);
73e4de09 524 return scm_from_bool ((val & 1L) != 0);
0aacf84e
MD
525 }
526 else if (SCM_BIGP (n))
527 {
528 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
529 scm_remember_upto_here_1 (n);
73e4de09 530 return scm_from_bool (odd_p);
0aacf84e 531 }
73e4de09 532 else if (scm_is_true (scm_inf_p (n)))
8e43ed5d 533 SCM_WRONG_TYPE_ARG (1, n);
f92e85f7
MV
534 else if (SCM_REALP (n))
535 {
536 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
537 if (rem == 1.0)
538 return SCM_BOOL_T;
539 else if (rem == 0.0)
540 return SCM_BOOL_F;
541 else
542 SCM_WRONG_TYPE_ARG (1, n);
543 }
0aacf84e 544 else
a1a33b0f 545 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 546}
1bbd0b84 547#undef FUNC_NAME
0f2d19dd 548
4219f20d 549
a1ec6916 550SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
1bbd0b84 551 (SCM n),
942e5b91
MG
552 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
553 "otherwise.")
1bbd0b84 554#define FUNC_NAME s_scm_even_p
0f2d19dd 555{
e11e83f3 556 if (SCM_I_INUMP (n))
0aacf84e 557 {
e25f3727 558 scm_t_inum val = SCM_I_INUM (n);
73e4de09 559 return scm_from_bool ((val & 1L) == 0);
0aacf84e
MD
560 }
561 else if (SCM_BIGP (n))
562 {
563 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
564 scm_remember_upto_here_1 (n);
73e4de09 565 return scm_from_bool (even_p);
0aacf84e 566 }
73e4de09 567 else if (scm_is_true (scm_inf_p (n)))
8e43ed5d 568 SCM_WRONG_TYPE_ARG (1, n);
f92e85f7
MV
569 else if (SCM_REALP (n))
570 {
571 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
572 if (rem == 1.0)
573 return SCM_BOOL_F;
574 else if (rem == 0.0)
575 return SCM_BOOL_T;
576 else
577 SCM_WRONG_TYPE_ARG (1, n);
578 }
0aacf84e 579 else
a1a33b0f 580 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 581}
1bbd0b84 582#undef FUNC_NAME
0f2d19dd 583
7351e207 584SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
b1092b3a
MV
585 (SCM x),
586 "Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
587 "or @samp{-inf.0}, @code{#f} otherwise.")
7351e207
MV
588#define FUNC_NAME s_scm_inf_p
589{
b1092b3a 590 if (SCM_REALP (x))
2e65b52f 591 return scm_from_bool (isinf (SCM_REAL_VALUE (x)));
b1092b3a 592 else if (SCM_COMPLEXP (x))
2e65b52f
LC
593 return scm_from_bool (isinf (SCM_COMPLEX_REAL (x))
594 || isinf (SCM_COMPLEX_IMAG (x)));
0aacf84e 595 else
7351e207 596 return SCM_BOOL_F;
7351e207
MV
597}
598#undef FUNC_NAME
599
600SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
601 (SCM n),
602 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
603 "otherwise.")
604#define FUNC_NAME s_scm_nan_p
605{
0aacf84e 606 if (SCM_REALP (n))
2e65b52f 607 return scm_from_bool (isnan (SCM_REAL_VALUE (n)));
0aacf84e 608 else if (SCM_COMPLEXP (n))
2e65b52f
LC
609 return scm_from_bool (isnan (SCM_COMPLEX_REAL (n))
610 || isnan (SCM_COMPLEX_IMAG (n)));
0aacf84e 611 else
7351e207 612 return SCM_BOOL_F;
7351e207
MV
613}
614#undef FUNC_NAME
615
616/* Guile's idea of infinity. */
617static double guile_Inf;
618
619/* Guile's idea of not a number. */
620static double guile_NaN;
621
622static void
623guile_ieee_init (void)
624{
7351e207
MV
625/* Some version of gcc on some old version of Linux used to crash when
626 trying to make Inf and NaN. */
627
240a27d2
KR
628#ifdef INFINITY
629 /* C99 INFINITY, when available.
630 FIXME: The standard allows for INFINITY to be something that overflows
631 at compile time. We ought to have a configure test to check for that
632 before trying to use it. (But in practice we believe this is not a
633 problem on any system guile is likely to target.) */
634 guile_Inf = INFINITY;
56a3dcd4 635#elif defined HAVE_DINFINITY
240a27d2 636 /* OSF */
7351e207 637 extern unsigned int DINFINITY[2];
eaa94eaa 638 guile_Inf = (*((double *) (DINFINITY)));
7351e207
MV
639#else
640 double tmp = 1e+10;
641 guile_Inf = tmp;
642 for (;;)
643 {
644 guile_Inf *= 1e+10;
645 if (guile_Inf == tmp)
646 break;
647 tmp = guile_Inf;
648 }
649#endif
650
240a27d2
KR
651#ifdef NAN
652 /* C99 NAN, when available */
653 guile_NaN = NAN;
56a3dcd4 654#elif defined HAVE_DQNAN
eaa94eaa
LC
655 {
656 /* OSF */
657 extern unsigned int DQNAN[2];
658 guile_NaN = (*((double *)(DQNAN)));
659 }
7351e207
MV
660#else
661 guile_NaN = guile_Inf / guile_Inf;
662#endif
7351e207
MV
663}
664
665SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
666 (void),
667 "Return Inf.")
668#define FUNC_NAME s_scm_inf
669{
670 static int initialized = 0;
671 if (! initialized)
672 {
673 guile_ieee_init ();
674 initialized = 1;
675 }
55f26379 676 return scm_from_double (guile_Inf);
7351e207
MV
677}
678#undef FUNC_NAME
679
680SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
681 (void),
682 "Return NaN.")
683#define FUNC_NAME s_scm_nan
684{
685 static int initialized = 0;
0aacf84e 686 if (!initialized)
7351e207
MV
687 {
688 guile_ieee_init ();
689 initialized = 1;
690 }
55f26379 691 return scm_from_double (guile_NaN);
7351e207
MV
692}
693#undef FUNC_NAME
694
4219f20d 695
a48d60b1
MD
696SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
697 (SCM x),
698 "Return the absolute value of @var{x}.")
699#define FUNC_NAME
0f2d19dd 700{
e11e83f3 701 if (SCM_I_INUMP (x))
0aacf84e 702 {
e25f3727 703 scm_t_inum xx = SCM_I_INUM (x);
0aacf84e
MD
704 if (xx >= 0)
705 return x;
706 else if (SCM_POSFIXABLE (-xx))
d956fa6f 707 return SCM_I_MAKINUM (-xx);
0aacf84e 708 else
e25f3727 709 return scm_i_inum2big (-xx);
4219f20d 710 }
0aacf84e
MD
711 else if (SCM_BIGP (x))
712 {
713 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
714 if (sgn < 0)
715 return scm_i_clonebig (x, 0);
716 else
717 return x;
4219f20d 718 }
0aacf84e 719 else if (SCM_REALP (x))
ae38324d
KR
720 {
721 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
722 double xx = SCM_REAL_VALUE (x);
723 if (xx < 0.0)
55f26379 724 return scm_from_double (-xx);
ae38324d
KR
725 else
726 return x;
727 }
f92e85f7
MV
728 else if (SCM_FRACTIONP (x))
729 {
73e4de09 730 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
f92e85f7 731 return x;
cba42c93 732 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7
MV
733 SCM_FRACTION_DENOMINATOR (x));
734 }
0aacf84e 735 else
a48d60b1 736 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
0f2d19dd 737}
a48d60b1 738#undef FUNC_NAME
0f2d19dd 739
4219f20d 740
9de33deb 741SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
942e5b91
MG
742/* "Return the quotient of the numbers @var{x} and @var{y}."
743 */
0f2d19dd 744SCM
6e8d25a6 745scm_quotient (SCM x, SCM y)
0f2d19dd 746{
e11e83f3 747 if (SCM_I_INUMP (x))
0aacf84e 748 {
e25f3727 749 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 750 if (SCM_I_INUMP (y))
0aacf84e 751 {
e25f3727 752 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
753 if (yy == 0)
754 scm_num_overflow (s_quotient);
755 else
756 {
e25f3727 757 scm_t_inum z = xx / yy;
0aacf84e 758 if (SCM_FIXABLE (z))
d956fa6f 759 return SCM_I_MAKINUM (z);
0aacf84e 760 else
e25f3727 761 return scm_i_inum2big (z);
0aacf84e 762 }
828865c3 763 }
0aacf84e 764 else if (SCM_BIGP (y))
ac0c002c 765 {
e11e83f3 766 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
767 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
768 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
769 {
770 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
771 scm_remember_upto_here_1 (y);
d956fa6f 772 return SCM_I_MAKINUM (-1);
4dc09ee4 773 }
0aacf84e 774 else
d956fa6f 775 return SCM_I_MAKINUM (0);
ac0c002c
DH
776 }
777 else
0aacf84e 778 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
828865c3 779 }
0aacf84e
MD
780 else if (SCM_BIGP (x))
781 {
e11e83f3 782 if (SCM_I_INUMP (y))
0aacf84e 783 {
e25f3727 784 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
785 if (yy == 0)
786 scm_num_overflow (s_quotient);
787 else if (yy == 1)
788 return x;
789 else
790 {
791 SCM result = scm_i_mkbig ();
792 if (yy < 0)
793 {
794 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
795 SCM_I_BIG_MPZ (x),
796 - yy);
797 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
798 }
799 else
800 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
801 scm_remember_upto_here_1 (x);
802 return scm_i_normbig (result);
803 }
804 }
805 else if (SCM_BIGP (y))
806 {
807 SCM result = scm_i_mkbig ();
808 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
809 SCM_I_BIG_MPZ (x),
810 SCM_I_BIG_MPZ (y));
811 scm_remember_upto_here_2 (x, y);
812 return scm_i_normbig (result);
813 }
814 else
815 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
f872b822 816 }
0aacf84e 817 else
89a7e495 818 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
0f2d19dd
JB
819}
820
9de33deb 821SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
942e5b91
MG
822/* "Return the remainder of the numbers @var{x} and @var{y}.\n"
823 * "@lisp\n"
824 * "(remainder 13 4) @result{} 1\n"
825 * "(remainder -13 4) @result{} -1\n"
826 * "@end lisp"
827 */
0f2d19dd 828SCM
6e8d25a6 829scm_remainder (SCM x, SCM y)
0f2d19dd 830{
e11e83f3 831 if (SCM_I_INUMP (x))
0aacf84e 832 {
e11e83f3 833 if (SCM_I_INUMP (y))
0aacf84e 834 {
e25f3727 835 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
836 if (yy == 0)
837 scm_num_overflow (s_remainder);
838 else
839 {
e25f3727 840 scm_t_inum z = SCM_I_INUM (x) % yy;
d956fa6f 841 return SCM_I_MAKINUM (z);
0aacf84e
MD
842 }
843 }
844 else if (SCM_BIGP (y))
ac0c002c 845 {
e11e83f3 846 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
847 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
848 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
849 {
850 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
851 scm_remember_upto_here_1 (y);
d956fa6f 852 return SCM_I_MAKINUM (0);
4dc09ee4 853 }
0aacf84e
MD
854 else
855 return x;
ac0c002c
DH
856 }
857 else
0aacf84e 858 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
89a7e495 859 }
0aacf84e
MD
860 else if (SCM_BIGP (x))
861 {
e11e83f3 862 if (SCM_I_INUMP (y))
0aacf84e 863 {
e25f3727 864 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
865 if (yy == 0)
866 scm_num_overflow (s_remainder);
867 else
868 {
869 SCM result = scm_i_mkbig ();
870 if (yy < 0)
871 yy = - yy;
872 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
873 scm_remember_upto_here_1 (x);
874 return scm_i_normbig (result);
875 }
876 }
877 else if (SCM_BIGP (y))
878 {
879 SCM result = scm_i_mkbig ();
880 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
881 SCM_I_BIG_MPZ (x),
882 SCM_I_BIG_MPZ (y));
883 scm_remember_upto_here_2 (x, y);
884 return scm_i_normbig (result);
885 }
886 else
887 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
f872b822 888 }
0aacf84e 889 else
89a7e495 890 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
0f2d19dd
JB
891}
892
89a7e495 893
9de33deb 894SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
942e5b91
MG
895/* "Return the modulo of the numbers @var{x} and @var{y}.\n"
896 * "@lisp\n"
897 * "(modulo 13 4) @result{} 1\n"
898 * "(modulo -13 4) @result{} 3\n"
899 * "@end lisp"
900 */
0f2d19dd 901SCM
6e8d25a6 902scm_modulo (SCM x, SCM y)
0f2d19dd 903{
e11e83f3 904 if (SCM_I_INUMP (x))
0aacf84e 905 {
e25f3727 906 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 907 if (SCM_I_INUMP (y))
0aacf84e 908 {
e25f3727 909 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
910 if (yy == 0)
911 scm_num_overflow (s_modulo);
912 else
913 {
66b1c775
KR
914 /* C99 specifies that "%" is the remainder corresponding to a
915 quotient rounded towards zero, and that's also traditional
916 for machine division, so z here should be well defined. */
e25f3727
AW
917 scm_t_inum z = xx % yy;
918 scm_t_inum result;
0aacf84e
MD
919
920 if (yy < 0)
921 {
922 if (z > 0)
923 result = z + yy;
924 else
925 result = z;
926 }
927 else
928 {
929 if (z < 0)
930 result = z + yy;
931 else
932 result = z;
933 }
d956fa6f 934 return SCM_I_MAKINUM (result);
0aacf84e
MD
935 }
936 }
937 else if (SCM_BIGP (y))
938 {
939 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
0aacf84e
MD
940 {
941 mpz_t z_x;
942 SCM result;
943
944 if (sgn_y < 0)
945 {
946 SCM pos_y = scm_i_clonebig (y, 0);
947 /* do this after the last scm_op */
948 mpz_init_set_si (z_x, xx);
949 result = pos_y; /* re-use this bignum */
950 mpz_mod (SCM_I_BIG_MPZ (result),
951 z_x,
952 SCM_I_BIG_MPZ (pos_y));
953 scm_remember_upto_here_1 (pos_y);
954 }
955 else
956 {
957 result = scm_i_mkbig ();
958 /* do this after the last scm_op */
959 mpz_init_set_si (z_x, xx);
960 mpz_mod (SCM_I_BIG_MPZ (result),
961 z_x,
962 SCM_I_BIG_MPZ (y));
963 scm_remember_upto_here_1 (y);
964 }
ca46fb90 965
0aacf84e
MD
966 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
967 mpz_add (SCM_I_BIG_MPZ (result),
968 SCM_I_BIG_MPZ (y),
969 SCM_I_BIG_MPZ (result));
970 scm_remember_upto_here_1 (y);
971 /* and do this before the next one */
972 mpz_clear (z_x);
973 return scm_i_normbig (result);
974 }
975 }
976 else
977 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
f872b822 978 }
0aacf84e
MD
979 else if (SCM_BIGP (x))
980 {
e11e83f3 981 if (SCM_I_INUMP (y))
0aacf84e 982 {
e25f3727 983 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
984 if (yy == 0)
985 scm_num_overflow (s_modulo);
986 else
987 {
988 SCM result = scm_i_mkbig ();
989 mpz_mod_ui (SCM_I_BIG_MPZ (result),
990 SCM_I_BIG_MPZ (x),
991 (yy < 0) ? - yy : yy);
992 scm_remember_upto_here_1 (x);
993 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
994 mpz_sub_ui (SCM_I_BIG_MPZ (result),
995 SCM_I_BIG_MPZ (result),
996 - yy);
997 return scm_i_normbig (result);
998 }
999 }
1000 else if (SCM_BIGP (y))
1001 {
0aacf84e
MD
1002 {
1003 SCM result = scm_i_mkbig ();
1004 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
1005 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
1006 mpz_mod (SCM_I_BIG_MPZ (result),
1007 SCM_I_BIG_MPZ (x),
1008 SCM_I_BIG_MPZ (pos_y));
ca46fb90 1009
0aacf84e
MD
1010 scm_remember_upto_here_1 (x);
1011 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
1012 mpz_add (SCM_I_BIG_MPZ (result),
1013 SCM_I_BIG_MPZ (y),
1014 SCM_I_BIG_MPZ (result));
1015 scm_remember_upto_here_2 (y, pos_y);
1016 return scm_i_normbig (result);
1017 }
1018 }
1019 else
1020 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
828865c3 1021 }
0aacf84e 1022 else
09fb7599 1023 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
0f2d19dd
JB
1024}
1025
78d3deb1
AW
1026SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
1027 (SCM x, SCM y, SCM rest),
1028 "Return the greatest common divisor of all parameter values.\n"
1029 "If called without arguments, 0 is returned.")
1030#define FUNC_NAME s_scm_i_gcd
1031{
1032 while (!scm_is_null (rest))
1033 { x = scm_gcd (x, y);
1034 y = scm_car (rest);
1035 rest = scm_cdr (rest);
1036 }
1037 return scm_gcd (x, y);
1038}
1039#undef FUNC_NAME
1040
1041#define s_gcd s_scm_i_gcd
1042#define g_gcd g_scm_i_gcd
1043
0f2d19dd 1044SCM
6e8d25a6 1045scm_gcd (SCM x, SCM y)
0f2d19dd 1046{
ca46fb90 1047 if (SCM_UNBNDP (y))
1dd79792 1048 return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
ca46fb90 1049
e11e83f3 1050 if (SCM_I_INUMP (x))
ca46fb90 1051 {
e11e83f3 1052 if (SCM_I_INUMP (y))
ca46fb90 1053 {
e25f3727
AW
1054 scm_t_inum xx = SCM_I_INUM (x);
1055 scm_t_inum yy = SCM_I_INUM (y);
1056 scm_t_inum u = xx < 0 ? -xx : xx;
1057 scm_t_inum v = yy < 0 ? -yy : yy;
1058 scm_t_inum result;
0aacf84e
MD
1059 if (xx == 0)
1060 result = v;
1061 else if (yy == 0)
1062 result = u;
1063 else
1064 {
e25f3727
AW
1065 scm_t_inum k = 1;
1066 scm_t_inum t;
0aacf84e
MD
1067 /* Determine a common factor 2^k */
1068 while (!(1 & (u | v)))
1069 {
1070 k <<= 1;
1071 u >>= 1;
1072 v >>= 1;
1073 }
1074 /* Now, any factor 2^n can be eliminated */
1075 if (u & 1)
1076 t = -v;
1077 else
1078 {
1079 t = u;
1080 b3:
1081 t = SCM_SRS (t, 1);
1082 }
1083 if (!(1 & t))
1084 goto b3;
1085 if (t > 0)
1086 u = t;
1087 else
1088 v = -t;
1089 t = u - v;
1090 if (t != 0)
1091 goto b3;
1092 result = u * k;
1093 }
1094 return (SCM_POSFIXABLE (result)
d956fa6f 1095 ? SCM_I_MAKINUM (result)
e25f3727 1096 : scm_i_inum2big (result));
ca46fb90
RB
1097 }
1098 else if (SCM_BIGP (y))
1099 {
0bff4dce
KR
1100 SCM_SWAP (x, y);
1101 goto big_inum;
ca46fb90
RB
1102 }
1103 else
1104 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
f872b822 1105 }
ca46fb90
RB
1106 else if (SCM_BIGP (x))
1107 {
e11e83f3 1108 if (SCM_I_INUMP (y))
ca46fb90 1109 {
e25f3727
AW
1110 scm_t_bits result;
1111 scm_t_inum yy;
0bff4dce 1112 big_inum:
e11e83f3 1113 yy = SCM_I_INUM (y);
8c5b0afc
KR
1114 if (yy == 0)
1115 return scm_abs (x);
0aacf84e
MD
1116 if (yy < 0)
1117 yy = -yy;
ca46fb90
RB
1118 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1119 scm_remember_upto_here_1 (x);
0aacf84e 1120 return (SCM_POSFIXABLE (result)
d956fa6f 1121 ? SCM_I_MAKINUM (result)
e25f3727 1122 : scm_from_unsigned_integer (result));
ca46fb90
RB
1123 }
1124 else if (SCM_BIGP (y))
1125 {
1126 SCM result = scm_i_mkbig ();
0aacf84e
MD
1127 mpz_gcd (SCM_I_BIG_MPZ (result),
1128 SCM_I_BIG_MPZ (x),
1129 SCM_I_BIG_MPZ (y));
1130 scm_remember_upto_here_2 (x, y);
ca46fb90
RB
1131 return scm_i_normbig (result);
1132 }
1133 else
1134 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
09fb7599 1135 }
ca46fb90 1136 else
09fb7599 1137 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
0f2d19dd
JB
1138}
1139
78d3deb1
AW
1140SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
1141 (SCM x, SCM y, SCM rest),
1142 "Return the least common multiple of the arguments.\n"
1143 "If called without arguments, 1 is returned.")
1144#define FUNC_NAME s_scm_i_lcm
1145{
1146 while (!scm_is_null (rest))
1147 { x = scm_lcm (x, y);
1148 y = scm_car (rest);
1149 rest = scm_cdr (rest);
1150 }
1151 return scm_lcm (x, y);
1152}
1153#undef FUNC_NAME
1154
1155#define s_lcm s_scm_i_lcm
1156#define g_lcm g_scm_i_lcm
1157
0f2d19dd 1158SCM
6e8d25a6 1159scm_lcm (SCM n1, SCM n2)
0f2d19dd 1160{
ca46fb90
RB
1161 if (SCM_UNBNDP (n2))
1162 {
1163 if (SCM_UNBNDP (n1))
d956fa6f
MV
1164 return SCM_I_MAKINUM (1L);
1165 n2 = SCM_I_MAKINUM (1L);
09fb7599 1166 }
09fb7599 1167
e11e83f3 1168 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
ca46fb90 1169 g_lcm, n1, n2, SCM_ARG1, s_lcm);
e11e83f3 1170 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
ca46fb90 1171 g_lcm, n1, n2, SCM_ARGn, s_lcm);
09fb7599 1172
e11e83f3 1173 if (SCM_I_INUMP (n1))
ca46fb90 1174 {
e11e83f3 1175 if (SCM_I_INUMP (n2))
ca46fb90
RB
1176 {
1177 SCM d = scm_gcd (n1, n2);
bc36d050 1178 if (scm_is_eq (d, SCM_INUM0))
ca46fb90
RB
1179 return d;
1180 else
1181 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1182 }
1183 else
1184 {
1185 /* inum n1, big n2 */
1186 inumbig:
1187 {
1188 SCM result = scm_i_mkbig ();
e25f3727 1189 scm_t_inum nn1 = SCM_I_INUM (n1);
ca46fb90
RB
1190 if (nn1 == 0) return SCM_INUM0;
1191 if (nn1 < 0) nn1 = - nn1;
1192 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1193 scm_remember_upto_here_1 (n2);
1194 return result;
1195 }
1196 }
1197 }
1198 else
1199 {
1200 /* big n1 */
e11e83f3 1201 if (SCM_I_INUMP (n2))
ca46fb90
RB
1202 {
1203 SCM_SWAP (n1, n2);
1204 goto inumbig;
1205 }
1206 else
1207 {
1208 SCM result = scm_i_mkbig ();
1209 mpz_lcm(SCM_I_BIG_MPZ (result),
1210 SCM_I_BIG_MPZ (n1),
1211 SCM_I_BIG_MPZ (n2));
1212 scm_remember_upto_here_2(n1, n2);
1213 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1214 return result;
1215 }
f872b822 1216 }
0f2d19dd
JB
1217}
1218
8a525303
GB
1219/* Emulating 2's complement bignums with sign magnitude arithmetic:
1220
1221 Logand:
1222 X Y Result Method:
1223 (len)
1224 + + + x (map digit:logand X Y)
1225 + - + x (map digit:logand X (lognot (+ -1 Y)))
1226 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1227 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1228
1229 Logior:
1230 X Y Result Method:
1231
1232 + + + (map digit:logior X Y)
1233 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1234 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1235 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1236
1237 Logxor:
1238 X Y Result Method:
1239
1240 + + + (map digit:logxor X Y)
1241 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1242 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1243 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1244
1245 Logtest:
1246 X Y Result
1247
1248 + + (any digit:logand X Y)
1249 + - (any digit:logand X (lognot (+ -1 Y)))
1250 - + (any digit:logand (lognot (+ -1 X)) Y)
1251 - - #t
1252
1253*/
1254
78d3deb1
AW
1255SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
1256 (SCM x, SCM y, SCM rest),
1257 "Return the bitwise AND of the integer arguments.\n\n"
1258 "@lisp\n"
1259 "(logand) @result{} -1\n"
1260 "(logand 7) @result{} 7\n"
1261 "(logand #b111 #b011 #b001) @result{} 1\n"
1262 "@end lisp")
1263#define FUNC_NAME s_scm_i_logand
1264{
1265 while (!scm_is_null (rest))
1266 { x = scm_logand (x, y);
1267 y = scm_car (rest);
1268 rest = scm_cdr (rest);
1269 }
1270 return scm_logand (x, y);
1271}
1272#undef FUNC_NAME
1273
1274#define s_scm_logand s_scm_i_logand
1275
1276SCM scm_logand (SCM n1, SCM n2)
1bbd0b84 1277#define FUNC_NAME s_scm_logand
0f2d19dd 1278{
e25f3727 1279 scm_t_inum nn1;
9a00c9fc 1280
0aacf84e
MD
1281 if (SCM_UNBNDP (n2))
1282 {
1283 if (SCM_UNBNDP (n1))
d956fa6f 1284 return SCM_I_MAKINUM (-1);
0aacf84e
MD
1285 else if (!SCM_NUMBERP (n1))
1286 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1287 else if (SCM_NUMBERP (n1))
1288 return n1;
1289 else
1290 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1291 }
09fb7599 1292
e11e83f3 1293 if (SCM_I_INUMP (n1))
0aacf84e 1294 {
e11e83f3
MV
1295 nn1 = SCM_I_INUM (n1);
1296 if (SCM_I_INUMP (n2))
0aacf84e 1297 {
e25f3727 1298 scm_t_inum nn2 = SCM_I_INUM (n2);
d956fa6f 1299 return SCM_I_MAKINUM (nn1 & nn2);
0aacf84e
MD
1300 }
1301 else if SCM_BIGP (n2)
1302 {
1303 intbig:
1304 if (n1 == 0)
1305 return SCM_INUM0;
1306 {
1307 SCM result_z = scm_i_mkbig ();
1308 mpz_t nn1_z;
1309 mpz_init_set_si (nn1_z, nn1);
1310 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1311 scm_remember_upto_here_1 (n2);
1312 mpz_clear (nn1_z);
1313 return scm_i_normbig (result_z);
1314 }
1315 }
1316 else
1317 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1318 }
1319 else if (SCM_BIGP (n1))
1320 {
e11e83f3 1321 if (SCM_I_INUMP (n2))
0aacf84e
MD
1322 {
1323 SCM_SWAP (n1, n2);
e11e83f3 1324 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1325 goto intbig;
1326 }
1327 else if (SCM_BIGP (n2))
1328 {
1329 SCM result_z = scm_i_mkbig ();
1330 mpz_and (SCM_I_BIG_MPZ (result_z),
1331 SCM_I_BIG_MPZ (n1),
1332 SCM_I_BIG_MPZ (n2));
1333 scm_remember_upto_here_2 (n1, n2);
1334 return scm_i_normbig (result_z);
1335 }
1336 else
1337 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1338 }
0aacf84e 1339 else
09fb7599 1340 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1341}
1bbd0b84 1342#undef FUNC_NAME
0f2d19dd 1343
09fb7599 1344
78d3deb1
AW
1345SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
1346 (SCM x, SCM y, SCM rest),
1347 "Return the bitwise OR of the integer arguments.\n\n"
1348 "@lisp\n"
1349 "(logior) @result{} 0\n"
1350 "(logior 7) @result{} 7\n"
1351 "(logior #b000 #b001 #b011) @result{} 3\n"
1352 "@end lisp")
1353#define FUNC_NAME s_scm_i_logior
1354{
1355 while (!scm_is_null (rest))
1356 { x = scm_logior (x, y);
1357 y = scm_car (rest);
1358 rest = scm_cdr (rest);
1359 }
1360 return scm_logior (x, y);
1361}
1362#undef FUNC_NAME
1363
1364#define s_scm_logior s_scm_i_logior
1365
1366SCM scm_logior (SCM n1, SCM n2)
1bbd0b84 1367#define FUNC_NAME s_scm_logior
0f2d19dd 1368{
e25f3727 1369 scm_t_inum nn1;
9a00c9fc 1370
0aacf84e
MD
1371 if (SCM_UNBNDP (n2))
1372 {
1373 if (SCM_UNBNDP (n1))
1374 return SCM_INUM0;
1375 else if (SCM_NUMBERP (n1))
1376 return n1;
1377 else
1378 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1379 }
09fb7599 1380
e11e83f3 1381 if (SCM_I_INUMP (n1))
0aacf84e 1382 {
e11e83f3
MV
1383 nn1 = SCM_I_INUM (n1);
1384 if (SCM_I_INUMP (n2))
0aacf84e 1385 {
e11e83f3 1386 long nn2 = SCM_I_INUM (n2);
d956fa6f 1387 return SCM_I_MAKINUM (nn1 | nn2);
0aacf84e
MD
1388 }
1389 else if (SCM_BIGP (n2))
1390 {
1391 intbig:
1392 if (nn1 == 0)
1393 return n2;
1394 {
1395 SCM result_z = scm_i_mkbig ();
1396 mpz_t nn1_z;
1397 mpz_init_set_si (nn1_z, nn1);
1398 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1399 scm_remember_upto_here_1 (n2);
1400 mpz_clear (nn1_z);
9806de0d 1401 return scm_i_normbig (result_z);
0aacf84e
MD
1402 }
1403 }
1404 else
1405 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1406 }
1407 else if (SCM_BIGP (n1))
1408 {
e11e83f3 1409 if (SCM_I_INUMP (n2))
0aacf84e
MD
1410 {
1411 SCM_SWAP (n1, n2);
e11e83f3 1412 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1413 goto intbig;
1414 }
1415 else if (SCM_BIGP (n2))
1416 {
1417 SCM result_z = scm_i_mkbig ();
1418 mpz_ior (SCM_I_BIG_MPZ (result_z),
1419 SCM_I_BIG_MPZ (n1),
1420 SCM_I_BIG_MPZ (n2));
1421 scm_remember_upto_here_2 (n1, n2);
9806de0d 1422 return scm_i_normbig (result_z);
0aacf84e
MD
1423 }
1424 else
1425 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1426 }
0aacf84e 1427 else
09fb7599 1428 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1429}
1bbd0b84 1430#undef FUNC_NAME
0f2d19dd 1431
09fb7599 1432
78d3deb1
AW
1433SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
1434 (SCM x, SCM y, SCM rest),
3c3db128
GH
1435 "Return the bitwise XOR of the integer arguments. A bit is\n"
1436 "set in the result if it is set in an odd number of arguments.\n"
1437 "@lisp\n"
1438 "(logxor) @result{} 0\n"
1439 "(logxor 7) @result{} 7\n"
1440 "(logxor #b000 #b001 #b011) @result{} 2\n"
1441 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1e6808ea 1442 "@end lisp")
78d3deb1
AW
1443#define FUNC_NAME s_scm_i_logxor
1444{
1445 while (!scm_is_null (rest))
1446 { x = scm_logxor (x, y);
1447 y = scm_car (rest);
1448 rest = scm_cdr (rest);
1449 }
1450 return scm_logxor (x, y);
1451}
1452#undef FUNC_NAME
1453
1454#define s_scm_logxor s_scm_i_logxor
1455
1456SCM scm_logxor (SCM n1, SCM n2)
1bbd0b84 1457#define FUNC_NAME s_scm_logxor
0f2d19dd 1458{
e25f3727 1459 scm_t_inum nn1;
9a00c9fc 1460
0aacf84e
MD
1461 if (SCM_UNBNDP (n2))
1462 {
1463 if (SCM_UNBNDP (n1))
1464 return SCM_INUM0;
1465 else if (SCM_NUMBERP (n1))
1466 return n1;
1467 else
1468 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1469 }
09fb7599 1470
e11e83f3 1471 if (SCM_I_INUMP (n1))
0aacf84e 1472 {
e11e83f3
MV
1473 nn1 = SCM_I_INUM (n1);
1474 if (SCM_I_INUMP (n2))
0aacf84e 1475 {
e25f3727 1476 scm_t_inum nn2 = SCM_I_INUM (n2);
d956fa6f 1477 return SCM_I_MAKINUM (nn1 ^ nn2);
0aacf84e
MD
1478 }
1479 else if (SCM_BIGP (n2))
1480 {
1481 intbig:
1482 {
1483 SCM result_z = scm_i_mkbig ();
1484 mpz_t nn1_z;
1485 mpz_init_set_si (nn1_z, nn1);
1486 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1487 scm_remember_upto_here_1 (n2);
1488 mpz_clear (nn1_z);
1489 return scm_i_normbig (result_z);
1490 }
1491 }
1492 else
1493 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1494 }
1495 else if (SCM_BIGP (n1))
1496 {
e11e83f3 1497 if (SCM_I_INUMP (n2))
0aacf84e
MD
1498 {
1499 SCM_SWAP (n1, n2);
e11e83f3 1500 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1501 goto intbig;
1502 }
1503 else if (SCM_BIGP (n2))
1504 {
1505 SCM result_z = scm_i_mkbig ();
1506 mpz_xor (SCM_I_BIG_MPZ (result_z),
1507 SCM_I_BIG_MPZ (n1),
1508 SCM_I_BIG_MPZ (n2));
1509 scm_remember_upto_here_2 (n1, n2);
1510 return scm_i_normbig (result_z);
1511 }
1512 else
1513 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1514 }
0aacf84e 1515 else
09fb7599 1516 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1517}
1bbd0b84 1518#undef FUNC_NAME
0f2d19dd 1519
09fb7599 1520
a1ec6916 1521SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1e6808ea 1522 (SCM j, SCM k),
ba6e7231
KR
1523 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
1524 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
1525 "without actually calculating the @code{logand}, just testing\n"
1526 "for non-zero.\n"
1527 "\n"
1e6808ea 1528 "@lisp\n"
b380b885
MD
1529 "(logtest #b0100 #b1011) @result{} #f\n"
1530 "(logtest #b0100 #b0111) @result{} #t\n"
1e6808ea 1531 "@end lisp")
1bbd0b84 1532#define FUNC_NAME s_scm_logtest
0f2d19dd 1533{
e25f3727 1534 scm_t_inum nj;
9a00c9fc 1535
e11e83f3 1536 if (SCM_I_INUMP (j))
0aacf84e 1537 {
e11e83f3
MV
1538 nj = SCM_I_INUM (j);
1539 if (SCM_I_INUMP (k))
0aacf84e 1540 {
e25f3727 1541 scm_t_inum nk = SCM_I_INUM (k);
73e4de09 1542 return scm_from_bool (nj & nk);
0aacf84e
MD
1543 }
1544 else if (SCM_BIGP (k))
1545 {
1546 intbig:
1547 if (nj == 0)
1548 return SCM_BOOL_F;
1549 {
1550 SCM result;
1551 mpz_t nj_z;
1552 mpz_init_set_si (nj_z, nj);
1553 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1554 scm_remember_upto_here_1 (k);
73e4de09 1555 result = scm_from_bool (mpz_sgn (nj_z) != 0);
0aacf84e
MD
1556 mpz_clear (nj_z);
1557 return result;
1558 }
1559 }
1560 else
1561 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1562 }
1563 else if (SCM_BIGP (j))
1564 {
e11e83f3 1565 if (SCM_I_INUMP (k))
0aacf84e
MD
1566 {
1567 SCM_SWAP (j, k);
e11e83f3 1568 nj = SCM_I_INUM (j);
0aacf84e
MD
1569 goto intbig;
1570 }
1571 else if (SCM_BIGP (k))
1572 {
1573 SCM result;
1574 mpz_t result_z;
1575 mpz_init (result_z);
1576 mpz_and (result_z,
1577 SCM_I_BIG_MPZ (j),
1578 SCM_I_BIG_MPZ (k));
1579 scm_remember_upto_here_2 (j, k);
73e4de09 1580 result = scm_from_bool (mpz_sgn (result_z) != 0);
0aacf84e
MD
1581 mpz_clear (result_z);
1582 return result;
1583 }
1584 else
1585 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1586 }
1587 else
1588 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
0f2d19dd 1589}
1bbd0b84 1590#undef FUNC_NAME
0f2d19dd 1591
c1bfcf60 1592
a1ec6916 1593SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
2cd04b42 1594 (SCM index, SCM j),
ba6e7231
KR
1595 "Test whether bit number @var{index} in @var{j} is set.\n"
1596 "@var{index} starts from 0 for the least significant bit.\n"
1597 "\n"
1e6808ea 1598 "@lisp\n"
b380b885
MD
1599 "(logbit? 0 #b1101) @result{} #t\n"
1600 "(logbit? 1 #b1101) @result{} #f\n"
1601 "(logbit? 2 #b1101) @result{} #t\n"
1602 "(logbit? 3 #b1101) @result{} #t\n"
1603 "(logbit? 4 #b1101) @result{} #f\n"
1e6808ea 1604 "@end lisp")
1bbd0b84 1605#define FUNC_NAME s_scm_logbit_p
0f2d19dd 1606{
78166ad5 1607 unsigned long int iindex;
5efd3c7d 1608 iindex = scm_to_ulong (index);
78166ad5 1609
e11e83f3 1610 if (SCM_I_INUMP (j))
0d75f6d8
KR
1611 {
1612 /* bits above what's in an inum follow the sign bit */
20fcc8ed 1613 iindex = min (iindex, SCM_LONG_BIT - 1);
e11e83f3 1614 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
0d75f6d8 1615 }
0aacf84e
MD
1616 else if (SCM_BIGP (j))
1617 {
1618 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1619 scm_remember_upto_here_1 (j);
73e4de09 1620 return scm_from_bool (val);
0aacf84e
MD
1621 }
1622 else
78166ad5 1623 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
0f2d19dd 1624}
1bbd0b84 1625#undef FUNC_NAME
0f2d19dd 1626
78166ad5 1627
a1ec6916 1628SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1bbd0b84 1629 (SCM n),
4d814788 1630 "Return the integer which is the ones-complement of the integer\n"
1e6808ea
MG
1631 "argument.\n"
1632 "\n"
b380b885
MD
1633 "@lisp\n"
1634 "(number->string (lognot #b10000000) 2)\n"
1635 " @result{} \"-10000001\"\n"
1636 "(number->string (lognot #b0) 2)\n"
1637 " @result{} \"-1\"\n"
1e6808ea 1638 "@end lisp")
1bbd0b84 1639#define FUNC_NAME s_scm_lognot
0f2d19dd 1640{
e11e83f3 1641 if (SCM_I_INUMP (n)) {
f9811f9f
KR
1642 /* No overflow here, just need to toggle all the bits making up the inum.
1643 Enhancement: No need to strip the tag and add it back, could just xor
1644 a block of 1 bits, if that worked with the various debug versions of
1645 the SCM typedef. */
e11e83f3 1646 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
f9811f9f
KR
1647
1648 } else if (SCM_BIGP (n)) {
1649 SCM result = scm_i_mkbig ();
1650 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1651 scm_remember_upto_here_1 (n);
1652 return result;
1653
1654 } else {
1655 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1656 }
0f2d19dd 1657}
1bbd0b84 1658#undef FUNC_NAME
0f2d19dd 1659
518b7508
KR
1660/* returns 0 if IN is not an integer. OUT must already be
1661 initialized. */
1662static int
1663coerce_to_big (SCM in, mpz_t out)
1664{
1665 if (SCM_BIGP (in))
1666 mpz_set (out, SCM_I_BIG_MPZ (in));
e11e83f3
MV
1667 else if (SCM_I_INUMP (in))
1668 mpz_set_si (out, SCM_I_INUM (in));
518b7508
KR
1669 else
1670 return 0;
1671
1672 return 1;
1673}
1674
d885e204 1675SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
518b7508
KR
1676 (SCM n, SCM k, SCM m),
1677 "Return @var{n} raised to the integer exponent\n"
1678 "@var{k}, modulo @var{m}.\n"
1679 "\n"
1680 "@lisp\n"
1681 "(modulo-expt 2 3 5)\n"
1682 " @result{} 3\n"
1683 "@end lisp")
d885e204 1684#define FUNC_NAME s_scm_modulo_expt
518b7508
KR
1685{
1686 mpz_t n_tmp;
1687 mpz_t k_tmp;
1688 mpz_t m_tmp;
1689
1690 /* There are two classes of error we might encounter --
1691 1) Math errors, which we'll report by calling scm_num_overflow,
1692 and
1693 2) wrong-type errors, which of course we'll report by calling
1694 SCM_WRONG_TYPE_ARG.
1695 We don't report those errors immediately, however; instead we do
1696 some cleanup first. These variables tell us which error (if
1697 any) we should report after cleaning up.
1698 */
1699 int report_overflow = 0;
1700
1701 int position_of_wrong_type = 0;
1702 SCM value_of_wrong_type = SCM_INUM0;
1703
1704 SCM result = SCM_UNDEFINED;
1705
1706 mpz_init (n_tmp);
1707 mpz_init (k_tmp);
1708 mpz_init (m_tmp);
1709
bc36d050 1710 if (scm_is_eq (m, SCM_INUM0))
518b7508
KR
1711 {
1712 report_overflow = 1;
1713 goto cleanup;
1714 }
1715
1716 if (!coerce_to_big (n, n_tmp))
1717 {
1718 value_of_wrong_type = n;
1719 position_of_wrong_type = 1;
1720 goto cleanup;
1721 }
1722
1723 if (!coerce_to_big (k, k_tmp))
1724 {
1725 value_of_wrong_type = k;
1726 position_of_wrong_type = 2;
1727 goto cleanup;
1728 }
1729
1730 if (!coerce_to_big (m, m_tmp))
1731 {
1732 value_of_wrong_type = m;
1733 position_of_wrong_type = 3;
1734 goto cleanup;
1735 }
1736
1737 /* if the exponent K is negative, and we simply call mpz_powm, we
1738 will get a divide-by-zero exception when an inverse 1/n mod m
1739 doesn't exist (or is not unique). Since exceptions are hard to
1740 handle, we'll attempt the inversion "by hand" -- that way, we get
1741 a simple failure code, which is easy to handle. */
1742
1743 if (-1 == mpz_sgn (k_tmp))
1744 {
1745 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1746 {
1747 report_overflow = 1;
1748 goto cleanup;
1749 }
1750 mpz_neg (k_tmp, k_tmp);
1751 }
1752
1753 result = scm_i_mkbig ();
1754 mpz_powm (SCM_I_BIG_MPZ (result),
1755 n_tmp,
1756 k_tmp,
1757 m_tmp);
b7b8c575
KR
1758
1759 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1760 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1761
518b7508
KR
1762 cleanup:
1763 mpz_clear (m_tmp);
1764 mpz_clear (k_tmp);
1765 mpz_clear (n_tmp);
1766
1767 if (report_overflow)
1768 scm_num_overflow (FUNC_NAME);
1769
1770 if (position_of_wrong_type)
1771 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1772 value_of_wrong_type);
1773
1774 return scm_i_normbig (result);
1775}
1776#undef FUNC_NAME
1777
a1ec6916 1778SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
2cd04b42 1779 (SCM n, SCM k),
ba6e7231
KR
1780 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
1781 "exact integer, @var{n} can be any number.\n"
1782 "\n"
1783 "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
1784 "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
1785 "includes @math{0^0} is 1.\n"
1e6808ea 1786 "\n"
b380b885 1787 "@lisp\n"
ba6e7231
KR
1788 "(integer-expt 2 5) @result{} 32\n"
1789 "(integer-expt -3 3) @result{} -27\n"
1790 "(integer-expt 5 -3) @result{} 1/125\n"
1791 "(integer-expt 0 0) @result{} 1\n"
b380b885 1792 "@end lisp")
1bbd0b84 1793#define FUNC_NAME s_scm_integer_expt
0f2d19dd 1794{
e25f3727 1795 scm_t_inum i2 = 0;
1c35cb19
RB
1796 SCM z_i2 = SCM_BOOL_F;
1797 int i2_is_big = 0;
d956fa6f 1798 SCM acc = SCM_I_MAKINUM (1L);
ca46fb90 1799
5a8fc758 1800 SCM_VALIDATE_NUMBER (SCM_ARG1, n);
01c7284a
MW
1801 if (!SCM_I_INUMP (k) && !SCM_BIGP (k))
1802 SCM_WRONG_TYPE_ARG (2, k);
5a8fc758 1803
01c7284a
MW
1804 if (scm_is_true (scm_zero_p (n)))
1805 {
1806 if (scm_is_true (scm_zero_p (k))) /* 0^0 == 1 per R5RS */
1807 return acc; /* return exact 1, regardless of n */
1808 else if (scm_is_true (scm_positive_p (k)))
1809 return n;
1810 else /* return NaN for (0 ^ k) for negative k per R6RS */
1811 return scm_nan ();
1812 }
1813 else if (scm_is_eq (n, acc))
1814 return acc;
bc36d050 1815 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
73e4de09 1816 return scm_is_false (scm_even_p (k)) ? n : acc;
ca46fb90 1817
e11e83f3
MV
1818 if (SCM_I_INUMP (k))
1819 i2 = SCM_I_INUM (k);
ca46fb90
RB
1820 else if (SCM_BIGP (k))
1821 {
1822 z_i2 = scm_i_clonebig (k, 1);
ca46fb90
RB
1823 scm_remember_upto_here_1 (k);
1824 i2_is_big = 1;
1825 }
2830fd91 1826 else
ca46fb90
RB
1827 SCM_WRONG_TYPE_ARG (2, k);
1828
1829 if (i2_is_big)
f872b822 1830 {
ca46fb90
RB
1831 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1832 {
1833 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1834 n = scm_divide (n, SCM_UNDEFINED);
1835 }
1836 while (1)
1837 {
1838 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1839 {
ca46fb90
RB
1840 return acc;
1841 }
1842 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1843 {
ca46fb90
RB
1844 return scm_product (acc, n);
1845 }
1846 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1847 acc = scm_product (acc, n);
1848 n = scm_product (n, n);
1849 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1850 }
f872b822 1851 }
ca46fb90 1852 else
f872b822 1853 {
ca46fb90
RB
1854 if (i2 < 0)
1855 {
1856 i2 = -i2;
1857 n = scm_divide (n, SCM_UNDEFINED);
1858 }
1859 while (1)
1860 {
1861 if (0 == i2)
1862 return acc;
1863 if (1 == i2)
1864 return scm_product (acc, n);
1865 if (i2 & 1)
1866 acc = scm_product (acc, n);
1867 n = scm_product (n, n);
1868 i2 >>= 1;
1869 }
f872b822 1870 }
0f2d19dd 1871}
1bbd0b84 1872#undef FUNC_NAME
0f2d19dd 1873
a1ec6916 1874SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1bbd0b84 1875 (SCM n, SCM cnt),
32f19569
KR
1876 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1877 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1e6808ea 1878 "\n"
e7644cb2 1879 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
32f19569
KR
1880 "@var{cnt} is negative it's a division, rounded towards negative\n"
1881 "infinity. (Note that this is not the same rounding as\n"
1882 "@code{quotient} does.)\n"
1883 "\n"
1884 "With @var{n} viewed as an infinite precision twos complement,\n"
1885 "@code{ash} means a left shift introducing zero bits, or a right\n"
1886 "shift dropping bits.\n"
1e6808ea 1887 "\n"
b380b885 1888 "@lisp\n"
1e6808ea
MG
1889 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1890 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
32f19569
KR
1891 "\n"
1892 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1893 "(ash -23 -2) @result{} -6\n"
a3c8b9fc 1894 "@end lisp")
1bbd0b84 1895#define FUNC_NAME s_scm_ash
0f2d19dd 1896{
3ab9f56e 1897 long bits_to_shift;
5efd3c7d 1898 bits_to_shift = scm_to_long (cnt);
ca46fb90 1899
788aca27
KR
1900 if (SCM_I_INUMP (n))
1901 {
e25f3727 1902 scm_t_inum nn = SCM_I_INUM (n);
788aca27
KR
1903
1904 if (bits_to_shift > 0)
1905 {
1906 /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
1907 overflow a non-zero fixnum. For smaller shifts we check the
1908 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
1909 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
1910 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
1911 bits_to_shift)". */
1912
1913 if (nn == 0)
1914 return n;
1915
1916 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
e25f3727 1917 && ((scm_t_bits)
788aca27
KR
1918 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
1919 <= 1))
1920 {
1921 return SCM_I_MAKINUM (nn << bits_to_shift);
1922 }
1923 else
1924 {
e25f3727 1925 SCM result = scm_i_inum2big (nn);
788aca27
KR
1926 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1927 bits_to_shift);
1928 return result;
1929 }
1930 }
1931 else
1932 {
1933 bits_to_shift = -bits_to_shift;
1934 if (bits_to_shift >= SCM_LONG_BIT)
1935 return (nn >= 0 ? SCM_I_MAKINUM (0) : SCM_I_MAKINUM(-1));
1936 else
1937 return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
1938 }
1939
1940 }
1941 else if (SCM_BIGP (n))
ca46fb90 1942 {
788aca27
KR
1943 SCM result;
1944
1945 if (bits_to_shift == 0)
1946 return n;
1947
1948 result = scm_i_mkbig ();
1949 if (bits_to_shift >= 0)
1950 {
1951 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1952 bits_to_shift);
1953 return result;
1954 }
ca46fb90 1955 else
788aca27
KR
1956 {
1957 /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
1958 we have to allocate a bignum even if the result is going to be a
1959 fixnum. */
1960 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1961 -bits_to_shift);
1962 return scm_i_normbig (result);
1963 }
1964
ca46fb90
RB
1965 }
1966 else
788aca27
KR
1967 {
1968 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1969 }
0f2d19dd 1970}
1bbd0b84 1971#undef FUNC_NAME
0f2d19dd 1972
3c9f20f8 1973
a1ec6916 1974SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1bbd0b84 1975 (SCM n, SCM start, SCM end),
1e6808ea
MG
1976 "Return the integer composed of the @var{start} (inclusive)\n"
1977 "through @var{end} (exclusive) bits of @var{n}. The\n"
1978 "@var{start}th bit becomes the 0-th bit in the result.\n"
1979 "\n"
b380b885
MD
1980 "@lisp\n"
1981 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1982 " @result{} \"1010\"\n"
1983 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1984 " @result{} \"10110\"\n"
1985 "@end lisp")
1bbd0b84 1986#define FUNC_NAME s_scm_bit_extract
0f2d19dd 1987{
7f848242 1988 unsigned long int istart, iend, bits;
5efd3c7d
MV
1989 istart = scm_to_ulong (start);
1990 iend = scm_to_ulong (end);
c1bfcf60 1991 SCM_ASSERT_RANGE (3, end, (iend >= istart));
78166ad5 1992
7f848242
KR
1993 /* how many bits to keep */
1994 bits = iend - istart;
1995
e11e83f3 1996 if (SCM_I_INUMP (n))
0aacf84e 1997 {
e25f3727 1998 scm_t_inum in = SCM_I_INUM (n);
7f848242
KR
1999
2000 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
d77ad560 2001 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
857ae6af 2002 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
ac0c002c 2003
0aacf84e
MD
2004 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
2005 {
2006 /* Since we emulate two's complement encoded numbers, this
2007 * special case requires us to produce a result that has
7f848242 2008 * more bits than can be stored in a fixnum.
0aacf84e 2009 */
e25f3727 2010 SCM result = scm_i_inum2big (in);
7f848242
KR
2011 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
2012 bits);
2013 return result;
0aacf84e 2014 }
ac0c002c 2015
7f848242 2016 /* mask down to requisite bits */
857ae6af 2017 bits = min (bits, SCM_I_FIXNUM_BIT);
d956fa6f 2018 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
0aacf84e
MD
2019 }
2020 else if (SCM_BIGP (n))
ac0c002c 2021 {
7f848242
KR
2022 SCM result;
2023 if (bits == 1)
2024 {
d956fa6f 2025 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
7f848242
KR
2026 }
2027 else
2028 {
2029 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
2030 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
2031 such bits into a ulong. */
2032 result = scm_i_mkbig ();
2033 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
2034 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
2035 result = scm_i_normbig (result);
2036 }
2037 scm_remember_upto_here_1 (n);
2038 return result;
ac0c002c 2039 }
0aacf84e 2040 else
78166ad5 2041 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 2042}
1bbd0b84 2043#undef FUNC_NAME
0f2d19dd 2044
7f848242 2045
e4755e5c
JB
2046static const char scm_logtab[] = {
2047 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
2048};
1cc91f1b 2049
a1ec6916 2050SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1bbd0b84 2051 (SCM n),
1e6808ea
MG
2052 "Return the number of bits in integer @var{n}. If integer is\n"
2053 "positive, the 1-bits in its binary representation are counted.\n"
2054 "If negative, the 0-bits in its two's-complement binary\n"
2055 "representation are counted. If 0, 0 is returned.\n"
2056 "\n"
b380b885
MD
2057 "@lisp\n"
2058 "(logcount #b10101010)\n"
ca46fb90
RB
2059 " @result{} 4\n"
2060 "(logcount 0)\n"
2061 " @result{} 0\n"
2062 "(logcount -2)\n"
2063 " @result{} 1\n"
2064 "@end lisp")
2065#define FUNC_NAME s_scm_logcount
2066{
e11e83f3 2067 if (SCM_I_INUMP (n))
f872b822 2068 {
e25f3727
AW
2069 unsigned long c = 0;
2070 scm_t_inum nn = SCM_I_INUM (n);
ca46fb90
RB
2071 if (nn < 0)
2072 nn = -1 - nn;
2073 while (nn)
2074 {
2075 c += scm_logtab[15 & nn];
2076 nn >>= 4;
2077 }
d956fa6f 2078 return SCM_I_MAKINUM (c);
f872b822 2079 }
ca46fb90 2080 else if (SCM_BIGP (n))
f872b822 2081 {
ca46fb90 2082 unsigned long count;
713a4259
KR
2083 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
2084 count = mpz_popcount (SCM_I_BIG_MPZ (n));
ca46fb90 2085 else
713a4259
KR
2086 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
2087 scm_remember_upto_here_1 (n);
d956fa6f 2088 return SCM_I_MAKINUM (count);
f872b822 2089 }
ca46fb90
RB
2090 else
2091 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 2092}
ca46fb90 2093#undef FUNC_NAME
0f2d19dd
JB
2094
2095
ca46fb90
RB
2096static const char scm_ilentab[] = {
2097 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
2098};
2099
0f2d19dd 2100
ca46fb90
RB
2101SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
2102 (SCM n),
2103 "Return the number of bits necessary to represent @var{n}.\n"
2104 "\n"
2105 "@lisp\n"
2106 "(integer-length #b10101010)\n"
2107 " @result{} 8\n"
2108 "(integer-length 0)\n"
2109 " @result{} 0\n"
2110 "(integer-length #b1111)\n"
2111 " @result{} 4\n"
2112 "@end lisp")
2113#define FUNC_NAME s_scm_integer_length
2114{
e11e83f3 2115 if (SCM_I_INUMP (n))
0aacf84e 2116 {
e25f3727 2117 unsigned long c = 0;
0aacf84e 2118 unsigned int l = 4;
e25f3727 2119 scm_t_inum nn = SCM_I_INUM (n);
0aacf84e
MD
2120 if (nn < 0)
2121 nn = -1 - nn;
2122 while (nn)
2123 {
2124 c += 4;
2125 l = scm_ilentab [15 & nn];
2126 nn >>= 4;
2127 }
d956fa6f 2128 return SCM_I_MAKINUM (c - 4 + l);
0aacf84e
MD
2129 }
2130 else if (SCM_BIGP (n))
2131 {
2132 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
2133 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
2134 1 too big, so check for that and adjust. */
2135 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
2136 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
2137 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
2138 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
2139 size--;
2140 scm_remember_upto_here_1 (n);
d956fa6f 2141 return SCM_I_MAKINUM (size);
0aacf84e
MD
2142 }
2143 else
ca46fb90 2144 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
ca46fb90
RB
2145}
2146#undef FUNC_NAME
0f2d19dd
JB
2147
2148/*** NUMBERS -> STRINGS ***/
0b799eea
MV
2149#define SCM_MAX_DBL_PREC 60
2150#define SCM_MAX_DBL_RADIX 36
2151
2152/* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
2153static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
2154static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
2155
2156static
2157void init_dblprec(int *prec, int radix) {
2158 /* determine floating point precision by adding successively
2159 smaller increments to 1.0 until it is considered == 1.0 */
2160 double f = ((double)1.0)/radix;
2161 double fsum = 1.0 + f;
2162
2163 *prec = 0;
2164 while (fsum != 1.0)
2165 {
2166 if (++(*prec) > SCM_MAX_DBL_PREC)
2167 fsum = 1.0;
2168 else
2169 {
2170 f /= radix;
2171 fsum = f + 1.0;
2172 }
2173 }
2174 (*prec) -= 1;
2175}
2176
2177static
2178void init_fx_radix(double *fx_list, int radix)
2179{
2180 /* initialize a per-radix list of tolerances. When added
2181 to a number < 1.0, we can determine if we should raund
2182 up and quit converting a number to a string. */
2183 int i;
2184 fx_list[0] = 0.0;
2185 fx_list[1] = 0.5;
2186 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2187 fx_list[i] = (fx_list[i-1] / radix);
2188}
2189
2190/* use this array as a way to generate a single digit */
9b5fcde6 2191static const char number_chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
0f2d19dd 2192
1be6b49c 2193static size_t
0b799eea 2194idbl2str (double f, char *a, int radix)
0f2d19dd 2195{
0b799eea
MV
2196 int efmt, dpt, d, i, wp;
2197 double *fx;
2198#ifdef DBL_MIN_10_EXP
2199 double f_cpy;
2200 int exp_cpy;
2201#endif /* DBL_MIN_10_EXP */
2202 size_t ch = 0;
2203 int exp = 0;
2204
2205 if(radix < 2 ||
2206 radix > SCM_MAX_DBL_RADIX)
2207 {
2208 /* revert to existing behavior */
2209 radix = 10;
2210 }
2211
2212 wp = scm_dblprec[radix-2];
2213 fx = fx_per_radix[radix-2];
0f2d19dd 2214
f872b822 2215 if (f == 0.0)
abb7e44d
MV
2216 {
2217#ifdef HAVE_COPYSIGN
2218 double sgn = copysign (1.0, f);
2219
2220 if (sgn < 0.0)
2221 a[ch++] = '-';
2222#endif
abb7e44d
MV
2223 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2224 }
7351e207 2225
2e65b52f 2226 if (isinf (f))
7351e207
MV
2227 {
2228 if (f < 0)
2229 strcpy (a, "-inf.0");
2230 else
2231 strcpy (a, "+inf.0");
2232 return ch+6;
2233 }
2e65b52f 2234 else if (isnan (f))
7351e207
MV
2235 {
2236 strcpy (a, "+nan.0");
2237 return ch+6;
2238 }
2239
f872b822
MD
2240 if (f < 0.0)
2241 {
2242 f = -f;
2243 a[ch++] = '-';
2244 }
7351e207 2245
f872b822
MD
2246#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2247 make-uniform-vector, from causing infinite loops. */
0b799eea
MV
2248 /* just do the checking...if it passes, we do the conversion for our
2249 radix again below */
2250 f_cpy = f;
2251 exp_cpy = exp;
2252
2253 while (f_cpy < 1.0)
f872b822 2254 {
0b799eea
MV
2255 f_cpy *= 10.0;
2256 if (exp_cpy-- < DBL_MIN_10_EXP)
7351e207
MV
2257 {
2258 a[ch++] = '#';
2259 a[ch++] = '.';
2260 a[ch++] = '#';
2261 return ch;
2262 }
f872b822 2263 }
0b799eea 2264 while (f_cpy > 10.0)
f872b822 2265 {
0b799eea
MV
2266 f_cpy *= 0.10;
2267 if (exp_cpy++ > DBL_MAX_10_EXP)
7351e207
MV
2268 {
2269 a[ch++] = '#';
2270 a[ch++] = '.';
2271 a[ch++] = '#';
2272 return ch;
2273 }
f872b822 2274 }
0b799eea
MV
2275#endif
2276
f872b822
MD
2277 while (f < 1.0)
2278 {
0b799eea 2279 f *= radix;
f872b822
MD
2280 exp--;
2281 }
0b799eea 2282 while (f > radix)
f872b822 2283 {
0b799eea 2284 f /= radix;
f872b822
MD
2285 exp++;
2286 }
0b799eea
MV
2287
2288 if (f + fx[wp] >= radix)
f872b822
MD
2289 {
2290 f = 1.0;
2291 exp++;
2292 }
0f2d19dd 2293 zero:
0b799eea
MV
2294#ifdef ENGNOT
2295 /* adding 9999 makes this equivalent to abs(x) % 3 */
f872b822 2296 dpt = (exp + 9999) % 3;
0f2d19dd
JB
2297 exp -= dpt++;
2298 efmt = 1;
f872b822
MD
2299#else
2300 efmt = (exp < -3) || (exp > wp + 2);
0f2d19dd 2301 if (!efmt)
cda139a7
MD
2302 {
2303 if (exp < 0)
2304 {
2305 a[ch++] = '0';
2306 a[ch++] = '.';
2307 dpt = exp;
f872b822
MD
2308 while (++dpt)
2309 a[ch++] = '0';
cda139a7
MD
2310 }
2311 else
f872b822 2312 dpt = exp + 1;
cda139a7 2313 }
0f2d19dd
JB
2314 else
2315 dpt = 1;
f872b822
MD
2316#endif
2317
2318 do
2319 {
2320 d = f;
2321 f -= d;
0b799eea 2322 a[ch++] = number_chars[d];
f872b822
MD
2323 if (f < fx[wp])
2324 break;
2325 if (f + fx[wp] >= 1.0)
2326 {
0b799eea 2327 a[ch - 1] = number_chars[d+1];
f872b822
MD
2328 break;
2329 }
0b799eea 2330 f *= radix;
f872b822
MD
2331 if (!(--dpt))
2332 a[ch++] = '.';
0f2d19dd 2333 }
f872b822 2334 while (wp--);
0f2d19dd
JB
2335
2336 if (dpt > 0)
cda139a7 2337 {
f872b822 2338#ifndef ENGNOT
cda139a7
MD
2339 if ((dpt > 4) && (exp > 6))
2340 {
f872b822 2341 d = (a[0] == '-' ? 2 : 1);
cda139a7 2342 for (i = ch++; i > d; i--)
f872b822 2343 a[i] = a[i - 1];
cda139a7
MD
2344 a[d] = '.';
2345 efmt = 1;
2346 }
2347 else
f872b822 2348#endif
cda139a7 2349 {
f872b822
MD
2350 while (--dpt)
2351 a[ch++] = '0';
cda139a7
MD
2352 a[ch++] = '.';
2353 }
2354 }
f872b822
MD
2355 if (a[ch - 1] == '.')
2356 a[ch++] = '0'; /* trailing zero */
2357 if (efmt && exp)
2358 {
2359 a[ch++] = 'e';
2360 if (exp < 0)
2361 {
2362 exp = -exp;
2363 a[ch++] = '-';
2364 }
0b799eea
MV
2365 for (i = radix; i <= exp; i *= radix);
2366 for (i /= radix; i; i /= radix)
f872b822 2367 {
0b799eea 2368 a[ch++] = number_chars[exp / i];
f872b822
MD
2369 exp %= i;
2370 }
0f2d19dd 2371 }
0f2d19dd
JB
2372 return ch;
2373}
2374
7a1aba42
MV
2375
2376static size_t
2377icmplx2str (double real, double imag, char *str, int radix)
2378{
2379 size_t i;
2380
2381 i = idbl2str (real, str, radix);
2382 if (imag != 0.0)
2383 {
2384 /* Don't output a '+' for negative numbers or for Inf and
2385 NaN. They will provide their own sign. */
2e65b52f 2386 if (0 <= imag && !isinf (imag) && !isnan (imag))
7a1aba42
MV
2387 str[i++] = '+';
2388 i += idbl2str (imag, &str[i], radix);
2389 str[i++] = 'i';
2390 }
2391 return i;
2392}
2393
1be6b49c 2394static size_t
0b799eea 2395iflo2str (SCM flt, char *str, int radix)
0f2d19dd 2396{
1be6b49c 2397 size_t i;
3c9a524f 2398 if (SCM_REALP (flt))
0b799eea 2399 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
0f2d19dd 2400 else
7a1aba42
MV
2401 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
2402 str, radix);
0f2d19dd
JB
2403 return i;
2404}
0f2d19dd 2405
2881e77b 2406/* convert a scm_t_intmax to a string (unterminated). returns the number of
1bbd0b84
GB
2407 characters in the result.
2408 rad is output base
2409 p is destination: worst case (base 2) is SCM_INTBUFLEN */
1be6b49c 2410size_t
2881e77b
MV
2411scm_iint2str (scm_t_intmax num, int rad, char *p)
2412{
2413 if (num < 0)
2414 {
2415 *p++ = '-';
2416 return scm_iuint2str (-num, rad, p) + 1;
2417 }
2418 else
2419 return scm_iuint2str (num, rad, p);
2420}
2421
2422/* convert a scm_t_intmax to a string (unterminated). returns the number of
2423 characters in the result.
2424 rad is output base
2425 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2426size_t
2427scm_iuint2str (scm_t_uintmax num, int rad, char *p)
0f2d19dd 2428{
1be6b49c
ML
2429 size_t j = 1;
2430 size_t i;
2881e77b 2431 scm_t_uintmax n = num;
5c11cc9d 2432
a6f3af16
AW
2433 if (rad < 2 || rad > 36)
2434 scm_out_of_range ("scm_iuint2str", scm_from_int (rad));
2435
f872b822 2436 for (n /= rad; n > 0; n /= rad)
5c11cc9d
GH
2437 j++;
2438
2439 i = j;
2881e77b 2440 n = num;
f872b822
MD
2441 while (i--)
2442 {
5c11cc9d
GH
2443 int d = n % rad;
2444
f872b822 2445 n /= rad;
a6f3af16 2446 p[i] = number_chars[d];
f872b822 2447 }
0f2d19dd
JB
2448 return j;
2449}
2450
a1ec6916 2451SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
bb628794
DH
2452 (SCM n, SCM radix),
2453 "Return a string holding the external representation of the\n"
942e5b91
MG
2454 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2455 "inexact, a radix of 10 will be used.")
1bbd0b84 2456#define FUNC_NAME s_scm_number_to_string
0f2d19dd 2457{
1bbd0b84 2458 int base;
98cb6e75 2459
0aacf84e 2460 if (SCM_UNBNDP (radix))
98cb6e75 2461 base = 10;
0aacf84e 2462 else
5efd3c7d 2463 base = scm_to_signed_integer (radix, 2, 36);
98cb6e75 2464
e11e83f3 2465 if (SCM_I_INUMP (n))
0aacf84e
MD
2466 {
2467 char num_buf [SCM_INTBUFLEN];
e11e83f3 2468 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
cc95e00a 2469 return scm_from_locale_stringn (num_buf, length);
0aacf84e
MD
2470 }
2471 else if (SCM_BIGP (n))
2472 {
2473 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2474 scm_remember_upto_here_1 (n);
cc95e00a 2475 return scm_take_locale_string (str);
0aacf84e 2476 }
f92e85f7
MV
2477 else if (SCM_FRACTIONP (n))
2478 {
f92e85f7 2479 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
cc95e00a 2480 scm_from_locale_string ("/"),
f92e85f7
MV
2481 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2482 }
0aacf84e
MD
2483 else if (SCM_INEXACTP (n))
2484 {
2485 char num_buf [FLOBUFLEN];
cc95e00a 2486 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
0aacf84e
MD
2487 }
2488 else
bb628794 2489 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 2490}
1bbd0b84 2491#undef FUNC_NAME
0f2d19dd
JB
2492
2493
ca46fb90
RB
2494/* These print routines used to be stubbed here so that scm_repl.c
2495 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
1cc91f1b 2496
0f2d19dd 2497int
e81d98ec 2498scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2499{
56e55ac7 2500 char num_buf[FLOBUFLEN];
0b799eea 2501 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
0f2d19dd
JB
2502 return !0;
2503}
2504
b479fe9a
MV
2505void
2506scm_i_print_double (double val, SCM port)
2507{
2508 char num_buf[FLOBUFLEN];
2509 scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
2510}
2511
f3ae5d60 2512int
e81d98ec 2513scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
f92e85f7 2514
f3ae5d60 2515{
56e55ac7 2516 char num_buf[FLOBUFLEN];
0b799eea 2517 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
f3ae5d60
MD
2518 return !0;
2519}
1cc91f1b 2520
7a1aba42
MV
2521void
2522scm_i_print_complex (double real, double imag, SCM port)
2523{
2524 char num_buf[FLOBUFLEN];
2525 scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
2526}
2527
f92e85f7
MV
2528int
2529scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2530{
2531 SCM str;
f92e85f7 2532 str = scm_number_to_string (sexp, SCM_UNDEFINED);
3f47e526 2533 scm_lfwrite_str (str, port);
f92e85f7
MV
2534 scm_remember_upto_here_1 (str);
2535 return !0;
2536}
2537
0f2d19dd 2538int
e81d98ec 2539scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2540{
ca46fb90
RB
2541 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2542 scm_remember_upto_here_1 (exp);
2543 scm_lfwrite (str, (size_t) strlen (str), port);
2544 free (str);
0f2d19dd
JB
2545 return !0;
2546}
2547/*** END nums->strs ***/
2548
3c9a524f 2549
0f2d19dd 2550/*** STRINGS -> NUMBERS ***/
2a8fecee 2551
3c9a524f
DH
2552/* The following functions implement the conversion from strings to numbers.
2553 * The implementation somehow follows the grammar for numbers as it is given
2554 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2555 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2556 * points should be noted about the implementation:
2557 * * Each function keeps a local index variable 'idx' that points at the
2558 * current position within the parsed string. The global index is only
2559 * updated if the function could parse the corresponding syntactic unit
2560 * successfully.
2561 * * Similarly, the functions keep track of indicators of inexactness ('#',
2562 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2563 * global exactness information is only updated after each part has been
2564 * successfully parsed.
2565 * * Sequences of digits are parsed into temporary variables holding fixnums.
2566 * Only if these fixnums would overflow, the result variables are updated
2567 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2568 * the temporary variables holding the fixnums are cleared, and the process
2569 * starts over again. If for example fixnums were able to store five decimal
2570 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2571 * and the result was computed as 12345 * 100000 + 67890. In other words,
2572 * only every five digits two bignum operations were performed.
2573 */
2574
2575enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2576
2577/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2578
a6f3af16
AW
2579/* Caller is responsible for checking that the return value is in range
2580 for the given radix, which should be <= 36. */
2581static unsigned int
2582char_decimal_value (scm_t_uint32 c)
2583{
2584 /* uc_decimal_value returns -1 on error. When cast to an unsigned int,
2585 that's certainly above any valid decimal, so we take advantage of
2586 that to elide some tests. */
2587 unsigned int d = (unsigned int) uc_decimal_value (c);
2588
2589 /* If that failed, try extended hexadecimals, then. Only accept ascii
2590 hexadecimals. */
2591 if (d >= 10U)
2592 {
2593 c = uc_tolower (c);
2594 if (c >= (scm_t_uint32) 'a')
2595 d = c - (scm_t_uint32)'a' + 10U;
2596 }
2597 return d;
2598}
3c9a524f 2599
2a8fecee 2600static SCM
3f47e526 2601mem2uinteger (SCM mem, unsigned int *p_idx,
3c9a524f 2602 unsigned int radix, enum t_exactness *p_exactness)
2a8fecee 2603{
3c9a524f
DH
2604 unsigned int idx = *p_idx;
2605 unsigned int hash_seen = 0;
2606 scm_t_bits shift = 1;
2607 scm_t_bits add = 0;
2608 unsigned int digit_value;
2609 SCM result;
2610 char c;
3f47e526 2611 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2612
2613 if (idx == len)
2614 return SCM_BOOL_F;
2a8fecee 2615
3f47e526 2616 c = scm_i_string_ref (mem, idx);
a6f3af16 2617 digit_value = char_decimal_value (c);
3c9a524f
DH
2618 if (digit_value >= radix)
2619 return SCM_BOOL_F;
2620
2621 idx++;
d956fa6f 2622 result = SCM_I_MAKINUM (digit_value);
3c9a524f 2623 while (idx != len)
f872b822 2624 {
3f47e526 2625 scm_t_wchar c = scm_i_string_ref (mem, idx);
a6f3af16 2626 if (c == '#')
3c9a524f
DH
2627 {
2628 hash_seen = 1;
2629 digit_value = 0;
2630 }
a6f3af16
AW
2631 else if (hash_seen)
2632 break;
3c9a524f 2633 else
a6f3af16
AW
2634 {
2635 digit_value = char_decimal_value (c);
2636 /* This check catches non-decimals in addition to out-of-range
2637 decimals. */
2638 if (digit_value >= radix)
2639 break;
2640 }
3c9a524f
DH
2641
2642 idx++;
2643 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2644 {
d956fa6f 2645 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2646 if (add > 0)
d956fa6f 2647 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2648
2649 shift = radix;
2650 add = digit_value;
2651 }
2652 else
2653 {
2654 shift = shift * radix;
2655 add = add * radix + digit_value;
2656 }
2657 };
2658
2659 if (shift > 1)
d956fa6f 2660 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2661 if (add > 0)
d956fa6f 2662 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2663
2664 *p_idx = idx;
2665 if (hash_seen)
2666 *p_exactness = INEXACT;
2667
2668 return result;
2a8fecee
JB
2669}
2670
2671
3c9a524f
DH
2672/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2673 * covers the parts of the rules that start at a potential point. The value
2674 * of the digits up to the point have been parsed by the caller and are given
79d34f68
DH
2675 * in variable result. The content of *p_exactness indicates, whether a hash
2676 * has already been seen in the digits before the point.
3c9a524f 2677 */
1cc91f1b 2678
3f47e526 2679#define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
3c9a524f
DH
2680
2681static SCM
3f47e526 2682mem2decimal_from_point (SCM result, SCM mem,
3c9a524f 2683 unsigned int *p_idx, enum t_exactness *p_exactness)
0f2d19dd 2684{
3c9a524f
DH
2685 unsigned int idx = *p_idx;
2686 enum t_exactness x = *p_exactness;
3f47e526 2687 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2688
2689 if (idx == len)
79d34f68 2690 return result;
3c9a524f 2691
3f47e526 2692 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
2693 {
2694 scm_t_bits shift = 1;
2695 scm_t_bits add = 0;
2696 unsigned int digit_value;
d956fa6f 2697 SCM big_shift = SCM_I_MAKINUM (1);
3c9a524f
DH
2698
2699 idx++;
2700 while (idx != len)
2701 {
3f47e526
MG
2702 scm_t_wchar c = scm_i_string_ref (mem, idx);
2703 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2704 {
2705 if (x == INEXACT)
2706 return SCM_BOOL_F;
2707 else
2708 digit_value = DIGIT2UINT (c);
2709 }
2710 else if (c == '#')
2711 {
2712 x = INEXACT;
2713 digit_value = 0;
2714 }
2715 else
2716 break;
2717
2718 idx++;
2719 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2720 {
d956fa6f
MV
2721 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2722 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2723 if (add > 0)
d956fa6f 2724 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2725
2726 shift = 10;
2727 add = digit_value;
2728 }
2729 else
2730 {
2731 shift = shift * 10;
2732 add = add * 10 + digit_value;
2733 }
2734 };
2735
2736 if (add > 0)
2737 {
d956fa6f
MV
2738 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2739 result = scm_product (result, SCM_I_MAKINUM (shift));
2740 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2741 }
2742
d8592269 2743 result = scm_divide (result, big_shift);
79d34f68 2744
3c9a524f
DH
2745 /* We've seen a decimal point, thus the value is implicitly inexact. */
2746 x = INEXACT;
f872b822 2747 }
3c9a524f 2748
3c9a524f 2749 if (idx != len)
f872b822 2750 {
3c9a524f
DH
2751 int sign = 1;
2752 unsigned int start;
3f47e526 2753 scm_t_wchar c;
3c9a524f
DH
2754 int exponent;
2755 SCM e;
2756
2757 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2758
3f47e526 2759 switch (scm_i_string_ref (mem, idx))
f872b822 2760 {
3c9a524f
DH
2761 case 'd': case 'D':
2762 case 'e': case 'E':
2763 case 'f': case 'F':
2764 case 'l': case 'L':
2765 case 's': case 'S':
2766 idx++;
ee0ddd21
AW
2767 if (idx == len)
2768 return SCM_BOOL_F;
2769
3c9a524f 2770 start = idx;
3f47e526 2771 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2772 if (c == '-')
2773 {
2774 idx++;
ee0ddd21
AW
2775 if (idx == len)
2776 return SCM_BOOL_F;
2777
3c9a524f 2778 sign = -1;
3f47e526 2779 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2780 }
2781 else if (c == '+')
2782 {
2783 idx++;
ee0ddd21
AW
2784 if (idx == len)
2785 return SCM_BOOL_F;
2786
3c9a524f 2787 sign = 1;
3f47e526 2788 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2789 }
2790 else
2791 sign = 1;
2792
3f47e526 2793 if (!uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2794 return SCM_BOOL_F;
2795
2796 idx++;
2797 exponent = DIGIT2UINT (c);
2798 while (idx != len)
f872b822 2799 {
3f47e526
MG
2800 scm_t_wchar c = scm_i_string_ref (mem, idx);
2801 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2802 {
2803 idx++;
2804 if (exponent <= SCM_MAXEXP)
2805 exponent = exponent * 10 + DIGIT2UINT (c);
2806 }
2807 else
2808 break;
f872b822 2809 }
3c9a524f
DH
2810
2811 if (exponent > SCM_MAXEXP)
f872b822 2812 {
3c9a524f 2813 size_t exp_len = idx - start;
3f47e526 2814 SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
3c9a524f
DH
2815 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2816 scm_out_of_range ("string->number", exp_num);
f872b822 2817 }
3c9a524f 2818
d956fa6f 2819 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
3c9a524f
DH
2820 if (sign == 1)
2821 result = scm_product (result, e);
2822 else
f92e85f7 2823 result = scm_divide2real (result, e);
3c9a524f
DH
2824
2825 /* We've seen an exponent, thus the value is implicitly inexact. */
2826 x = INEXACT;
2827
f872b822 2828 break;
3c9a524f 2829
f872b822 2830 default:
3c9a524f 2831 break;
f872b822 2832 }
0f2d19dd 2833 }
3c9a524f
DH
2834
2835 *p_idx = idx;
2836 if (x == INEXACT)
2837 *p_exactness = x;
2838
2839 return result;
0f2d19dd 2840}
0f2d19dd 2841
3c9a524f
DH
2842
2843/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2844
2845static SCM
3f47e526 2846mem2ureal (SCM mem, unsigned int *p_idx,
3c9a524f 2847 unsigned int radix, enum t_exactness *p_exactness)
0f2d19dd 2848{
3c9a524f 2849 unsigned int idx = *p_idx;
164d2481 2850 SCM result;
3f47e526 2851 size_t len = scm_i_string_length (mem);
3c9a524f 2852
40f89215
NJ
2853 /* Start off believing that the number will be exact. This changes
2854 to INEXACT if we see a decimal point or a hash. */
2855 enum t_exactness x = EXACT;
2856
3c9a524f
DH
2857 if (idx == len)
2858 return SCM_BOOL_F;
2859
3f47e526 2860 if (idx+5 <= len && !scm_i_string_strcmp (mem, idx, "inf.0"))
7351e207
MV
2861 {
2862 *p_idx = idx+5;
2863 return scm_inf ();
2864 }
2865
3f47e526 2866 if (idx+4 < len && !scm_i_string_strcmp (mem, idx, "nan."))
7351e207 2867 {
d8592269
MV
2868 /* Cobble up the fractional part. We might want to set the
2869 NaN's mantissa from it. */
7351e207 2870 idx += 4;
3f47e526 2871 mem2uinteger (mem, &idx, 10, &x);
7351e207
MV
2872 *p_idx = idx;
2873 return scm_nan ();
2874 }
2875
3f47e526 2876 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
2877 {
2878 if (radix != 10)
2879 return SCM_BOOL_F;
2880 else if (idx + 1 == len)
2881 return SCM_BOOL_F;
3f47e526 2882 else if (!uc_is_property_decimal_digit ((scm_t_uint32) scm_i_string_ref (mem, idx+1)))
3c9a524f
DH
2883 return SCM_BOOL_F;
2884 else
3f47e526 2885 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem,
40f89215 2886 p_idx, &x);
f872b822 2887 }
3c9a524f
DH
2888 else
2889 {
3c9a524f 2890 SCM uinteger;
3c9a524f 2891
3f47e526 2892 uinteger = mem2uinteger (mem, &idx, radix, &x);
73e4de09 2893 if (scm_is_false (uinteger))
3c9a524f
DH
2894 return SCM_BOOL_F;
2895
2896 if (idx == len)
2897 result = uinteger;
3f47e526 2898 else if (scm_i_string_ref (mem, idx) == '/')
f872b822 2899 {
3c9a524f
DH
2900 SCM divisor;
2901
2902 idx++;
ee0ddd21
AW
2903 if (idx == len)
2904 return SCM_BOOL_F;
3c9a524f 2905
3f47e526 2906 divisor = mem2uinteger (mem, &idx, radix, &x);
73e4de09 2907 if (scm_is_false (divisor))
3c9a524f
DH
2908 return SCM_BOOL_F;
2909
f92e85f7 2910 /* both are int/big here, I assume */
cba42c93 2911 result = scm_i_make_ratio (uinteger, divisor);
f872b822 2912 }
3c9a524f
DH
2913 else if (radix == 10)
2914 {
3f47e526 2915 result = mem2decimal_from_point (uinteger, mem, &idx, &x);
73e4de09 2916 if (scm_is_false (result))
3c9a524f
DH
2917 return SCM_BOOL_F;
2918 }
2919 else
2920 result = uinteger;
2921
2922 *p_idx = idx;
f872b822 2923 }
164d2481 2924
40f89215
NJ
2925 /* Update *p_exactness if the number just read was inexact. This is
2926 important for complex numbers, so that a complex number is
2927 treated as inexact overall if either its real or imaginary part
2928 is inexact.
2929 */
2930 if (x == INEXACT)
2931 *p_exactness = x;
2932
164d2481
MV
2933 /* When returning an inexact zero, make sure it is represented as a
2934 floating point value so that we can change its sign.
2935 */
bc36d050 2936 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
55f26379 2937 result = scm_from_double (0.0);
164d2481
MV
2938
2939 return result;
3c9a524f 2940}
0f2d19dd 2941
0f2d19dd 2942
3c9a524f 2943/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
0f2d19dd 2944
3c9a524f 2945static SCM
3f47e526 2946mem2complex (SCM mem, unsigned int idx,
3c9a524f
DH
2947 unsigned int radix, enum t_exactness *p_exactness)
2948{
3f47e526 2949 scm_t_wchar c;
3c9a524f
DH
2950 int sign = 0;
2951 SCM ureal;
3f47e526 2952 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2953
2954 if (idx == len)
2955 return SCM_BOOL_F;
2956
3f47e526 2957 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2958 if (c == '+')
2959 {
2960 idx++;
2961 sign = 1;
2962 }
2963 else if (c == '-')
2964 {
2965 idx++;
2966 sign = -1;
0f2d19dd 2967 }
0f2d19dd 2968
3c9a524f
DH
2969 if (idx == len)
2970 return SCM_BOOL_F;
2971
3f47e526 2972 ureal = mem2ureal (mem, &idx, radix, p_exactness);
73e4de09 2973 if (scm_is_false (ureal))
f872b822 2974 {
3c9a524f
DH
2975 /* input must be either +i or -i */
2976
2977 if (sign == 0)
2978 return SCM_BOOL_F;
2979
3f47e526
MG
2980 if (scm_i_string_ref (mem, idx) == 'i'
2981 || scm_i_string_ref (mem, idx) == 'I')
f872b822 2982 {
3c9a524f
DH
2983 idx++;
2984 if (idx != len)
2985 return SCM_BOOL_F;
2986
d956fa6f 2987 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
f872b822 2988 }
3c9a524f
DH
2989 else
2990 return SCM_BOOL_F;
0f2d19dd 2991 }
3c9a524f
DH
2992 else
2993 {
73e4de09 2994 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f 2995 ureal = scm_difference (ureal, SCM_UNDEFINED);
f872b822 2996
3c9a524f
DH
2997 if (idx == len)
2998 return ureal;
2999
3f47e526 3000 c = scm_i_string_ref (mem, idx);
3c9a524f 3001 switch (c)
f872b822 3002 {
3c9a524f
DH
3003 case 'i': case 'I':
3004 /* either +<ureal>i or -<ureal>i */
3005
3006 idx++;
3007 if (sign == 0)
3008 return SCM_BOOL_F;
3009 if (idx != len)
3010 return SCM_BOOL_F;
d956fa6f 3011 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
3c9a524f
DH
3012
3013 case '@':
3014 /* polar input: <real>@<real>. */
3015
3016 idx++;
3017 if (idx == len)
3018 return SCM_BOOL_F;
3019 else
f872b822 3020 {
3c9a524f
DH
3021 int sign;
3022 SCM angle;
3023 SCM result;
3024
3f47e526 3025 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
3026 if (c == '+')
3027 {
3028 idx++;
ee0ddd21
AW
3029 if (idx == len)
3030 return SCM_BOOL_F;
3c9a524f
DH
3031 sign = 1;
3032 }
3033 else if (c == '-')
3034 {
3035 idx++;
ee0ddd21
AW
3036 if (idx == len)
3037 return SCM_BOOL_F;
3c9a524f
DH
3038 sign = -1;
3039 }
3040 else
3041 sign = 1;
3042
3f47e526 3043 angle = mem2ureal (mem, &idx, radix, p_exactness);
73e4de09 3044 if (scm_is_false (angle))
3c9a524f
DH
3045 return SCM_BOOL_F;
3046 if (idx != len)
3047 return SCM_BOOL_F;
3048
73e4de09 3049 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f
DH
3050 angle = scm_difference (angle, SCM_UNDEFINED);
3051
3052 result = scm_make_polar (ureal, angle);
3053 return result;
f872b822 3054 }
3c9a524f
DH
3055 case '+':
3056 case '-':
3057 /* expecting input matching <real>[+-]<ureal>?i */
0f2d19dd 3058
3c9a524f
DH
3059 idx++;
3060 if (idx == len)
3061 return SCM_BOOL_F;
3062 else
3063 {
3064 int sign = (c == '+') ? 1 : -1;
3f47e526 3065 SCM imag = mem2ureal (mem, &idx, radix, p_exactness);
0f2d19dd 3066
73e4de09 3067 if (scm_is_false (imag))
d956fa6f 3068 imag = SCM_I_MAKINUM (sign);
23295dc3 3069 else if (sign == -1 && scm_is_false (scm_nan_p (imag)))
1fe5e088 3070 imag = scm_difference (imag, SCM_UNDEFINED);
0f2d19dd 3071
3c9a524f
DH
3072 if (idx == len)
3073 return SCM_BOOL_F;
3f47e526
MG
3074 if (scm_i_string_ref (mem, idx) != 'i'
3075 && scm_i_string_ref (mem, idx) != 'I')
3c9a524f 3076 return SCM_BOOL_F;
0f2d19dd 3077
3c9a524f
DH
3078 idx++;
3079 if (idx != len)
3080 return SCM_BOOL_F;
0f2d19dd 3081
1fe5e088 3082 return scm_make_rectangular (ureal, imag);
3c9a524f
DH
3083 }
3084 default:
3085 return SCM_BOOL_F;
3086 }
3087 }
0f2d19dd 3088}
0f2d19dd
JB
3089
3090
3c9a524f
DH
3091/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
3092
3093enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
1cc91f1b 3094
0f2d19dd 3095SCM
3f47e526 3096scm_i_string_to_number (SCM mem, unsigned int default_radix)
0f2d19dd 3097{
3c9a524f
DH
3098 unsigned int idx = 0;
3099 unsigned int radix = NO_RADIX;
3100 enum t_exactness forced_x = NO_EXACTNESS;
3101 enum t_exactness implicit_x = EXACT;
3102 SCM result;
3f47e526 3103 size_t len = scm_i_string_length (mem);
3c9a524f
DH
3104
3105 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
3f47e526 3106 while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
3c9a524f 3107 {
3f47e526 3108 switch (scm_i_string_ref (mem, idx + 1))
3c9a524f
DH
3109 {
3110 case 'b': case 'B':
3111 if (radix != NO_RADIX)
3112 return SCM_BOOL_F;
3113 radix = DUAL;
3114 break;
3115 case 'd': case 'D':
3116 if (radix != NO_RADIX)
3117 return SCM_BOOL_F;
3118 radix = DEC;
3119 break;
3120 case 'i': case 'I':
3121 if (forced_x != NO_EXACTNESS)
3122 return SCM_BOOL_F;
3123 forced_x = INEXACT;
3124 break;
3125 case 'e': case 'E':
3126 if (forced_x != NO_EXACTNESS)
3127 return SCM_BOOL_F;
3128 forced_x = EXACT;
3129 break;
3130 case 'o': case 'O':
3131 if (radix != NO_RADIX)
3132 return SCM_BOOL_F;
3133 radix = OCT;
3134 break;
3135 case 'x': case 'X':
3136 if (radix != NO_RADIX)
3137 return SCM_BOOL_F;
3138 radix = HEX;
3139 break;
3140 default:
f872b822 3141 return SCM_BOOL_F;
3c9a524f
DH
3142 }
3143 idx += 2;
3144 }
3145
3146 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
3147 if (radix == NO_RADIX)
3f47e526 3148 result = mem2complex (mem, idx, default_radix, &implicit_x);
3c9a524f 3149 else
3f47e526 3150 result = mem2complex (mem, idx, (unsigned int) radix, &implicit_x);
3c9a524f 3151
73e4de09 3152 if (scm_is_false (result))
3c9a524f 3153 return SCM_BOOL_F;
f872b822 3154
3c9a524f 3155 switch (forced_x)
f872b822 3156 {
3c9a524f
DH
3157 case EXACT:
3158 if (SCM_INEXACTP (result))
3c9a524f
DH
3159 return scm_inexact_to_exact (result);
3160 else
3161 return result;
3162 case INEXACT:
3163 if (SCM_INEXACTP (result))
3164 return result;
3165 else
3166 return scm_exact_to_inexact (result);
3167 case NO_EXACTNESS:
3168 default:
3169 if (implicit_x == INEXACT)
3170 {
3171 if (SCM_INEXACTP (result))
3172 return result;
3173 else
3174 return scm_exact_to_inexact (result);
3175 }
3176 else
3177 return result;
f872b822 3178 }
0f2d19dd
JB
3179}
3180
3f47e526
MG
3181SCM
3182scm_c_locale_stringn_to_number (const char* mem, size_t len,
3183 unsigned int default_radix)
3184{
3185 SCM str = scm_from_locale_stringn (mem, len);
3186
3187 return scm_i_string_to_number (str, default_radix);
3188}
3189
0f2d19dd 3190
a1ec6916 3191SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
bb628794 3192 (SCM string, SCM radix),
1e6808ea 3193 "Return a number of the maximally precise representation\n"
942e5b91 3194 "expressed by the given @var{string}. @var{radix} must be an\n"
5352393c
MG
3195 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
3196 "is a default radix that may be overridden by an explicit radix\n"
3197 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
3198 "supplied, then the default radix is 10. If string is not a\n"
3199 "syntactically valid notation for a number, then\n"
3200 "@code{string->number} returns @code{#f}.")
1bbd0b84 3201#define FUNC_NAME s_scm_string_to_number
0f2d19dd
JB
3202{
3203 SCM answer;
5efd3c7d 3204 unsigned int base;
a6d9e5ab 3205 SCM_VALIDATE_STRING (1, string);
5efd3c7d
MV
3206
3207 if (SCM_UNBNDP (radix))
3208 base = 10;
3209 else
3210 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
3211
3f47e526 3212 answer = scm_i_string_to_number (string, base);
8824ac88
MV
3213 scm_remember_upto_here_1 (string);
3214 return answer;
0f2d19dd 3215}
1bbd0b84 3216#undef FUNC_NAME
3c9a524f
DH
3217
3218
0f2d19dd
JB
3219/*** END strs->nums ***/
3220
5986c47d 3221
0f2d19dd 3222SCM
1bbd0b84 3223scm_bigequal (SCM x, SCM y)
0f2d19dd 3224{
47ae1f0e 3225 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
ca46fb90 3226 scm_remember_upto_here_2 (x, y);
73e4de09 3227 return scm_from_bool (0 == result);
0f2d19dd
JB
3228}
3229
0f2d19dd 3230SCM
f3ae5d60 3231scm_real_equalp (SCM x, SCM y)
0f2d19dd 3232{
73e4de09 3233 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0f2d19dd
JB
3234}
3235
f3ae5d60
MD
3236SCM
3237scm_complex_equalp (SCM x, SCM y)
3238{
73e4de09 3239 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
f3ae5d60
MD
3240 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3241}
0f2d19dd 3242
f92e85f7
MV
3243SCM
3244scm_i_fraction_equalp (SCM x, SCM y)
3245{
73e4de09 3246 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
02164269 3247 SCM_FRACTION_NUMERATOR (y)))
73e4de09 3248 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
02164269
MV
3249 SCM_FRACTION_DENOMINATOR (y))))
3250 return SCM_BOOL_F;
3251 else
3252 return SCM_BOOL_T;
f92e85f7 3253}
0f2d19dd
JB
3254
3255
8507ec80
MV
3256SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3257 (SCM x),
3258 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3259 "otherwise.")
3260#define FUNC_NAME s_scm_number_p
3261{
3262 return scm_from_bool (SCM_NUMBERP (x));
3263}
3264#undef FUNC_NAME
3265
3266SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
1bbd0b84 3267 (SCM x),
942e5b91 3268 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
bb2c02f2 3269 "otherwise. Note that the sets of real, rational and integer\n"
942e5b91
MG
3270 "values form subsets of the set of complex numbers, i. e. the\n"
3271 "predicate will also be fulfilled if @var{x} is a real,\n"
3272 "rational or integer number.")
8507ec80 3273#define FUNC_NAME s_scm_complex_p
0f2d19dd 3274{
8507ec80
MV
3275 /* all numbers are complex. */
3276 return scm_number_p (x);
0f2d19dd 3277}
1bbd0b84 3278#undef FUNC_NAME
0f2d19dd 3279
f92e85f7
MV
3280SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3281 (SCM x),
3282 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3283 "otherwise. Note that the set of integer values forms a subset of\n"
3284 "the set of real numbers, i. e. the predicate will also be\n"
3285 "fulfilled if @var{x} is an integer number.")
3286#define FUNC_NAME s_scm_real_p
3287{
3288 /* we can't represent irrational numbers. */
3289 return scm_rational_p (x);
3290}
3291#undef FUNC_NAME
3292
3293SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
1bbd0b84 3294 (SCM x),
942e5b91 3295 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
bb2c02f2 3296 "otherwise. Note that the set of integer values forms a subset of\n"
942e5b91 3297 "the set of rational numbers, i. e. the predicate will also be\n"
f92e85f7
MV
3298 "fulfilled if @var{x} is an integer number.")
3299#define FUNC_NAME s_scm_rational_p
0f2d19dd 3300{
e11e83f3 3301 if (SCM_I_INUMP (x))
0f2d19dd 3302 return SCM_BOOL_T;
0aacf84e 3303 else if (SCM_IMP (x))
0f2d19dd 3304 return SCM_BOOL_F;
0aacf84e 3305 else if (SCM_BIGP (x))
0f2d19dd 3306 return SCM_BOOL_T;
f92e85f7
MV
3307 else if (SCM_FRACTIONP (x))
3308 return SCM_BOOL_T;
3309 else if (SCM_REALP (x))
3310 /* due to their limited precision, all floating point numbers are
3311 rational as well. */
3312 return SCM_BOOL_T;
0aacf84e 3313 else
bb628794 3314 return SCM_BOOL_F;
0f2d19dd 3315}
1bbd0b84 3316#undef FUNC_NAME
0f2d19dd 3317
a1ec6916 3318SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
1bbd0b84 3319 (SCM x),
942e5b91
MG
3320 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3321 "else.")
1bbd0b84 3322#define FUNC_NAME s_scm_integer_p
0f2d19dd
JB
3323{
3324 double r;
e11e83f3 3325 if (SCM_I_INUMP (x))
f872b822
MD
3326 return SCM_BOOL_T;
3327 if (SCM_IMP (x))
3328 return SCM_BOOL_F;
f872b822
MD
3329 if (SCM_BIGP (x))
3330 return SCM_BOOL_T;
3c9a524f 3331 if (!SCM_INEXACTP (x))
f872b822 3332 return SCM_BOOL_F;
3c9a524f 3333 if (SCM_COMPLEXP (x))
f872b822 3334 return SCM_BOOL_F;
5986c47d 3335 r = SCM_REAL_VALUE (x);
8e43ed5d
AW
3336 if (isinf (r))
3337 return SCM_BOOL_F;
f872b822
MD
3338 if (r == floor (r))
3339 return SCM_BOOL_T;
0f2d19dd
JB
3340 return SCM_BOOL_F;
3341}
1bbd0b84 3342#undef FUNC_NAME
0f2d19dd
JB
3343
3344
a1ec6916 3345SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
1bbd0b84 3346 (SCM x),
942e5b91
MG
3347 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3348 "else.")
1bbd0b84 3349#define FUNC_NAME s_scm_inexact_p
0f2d19dd 3350{
eb927cb9
MV
3351 if (SCM_INEXACTP (x))
3352 return SCM_BOOL_T;
3353 if (SCM_NUMBERP (x))
3354 return SCM_BOOL_F;
3355 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 3356}
1bbd0b84 3357#undef FUNC_NAME
0f2d19dd
JB
3358
3359
8a1f4f98
AW
3360SCM scm_i_num_eq_p (SCM, SCM, SCM);
3361SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1,
3362 (SCM x, SCM y, SCM rest),
3363 "Return @code{#t} if all parameters are numerically equal.")
3364#define FUNC_NAME s_scm_i_num_eq_p
3365{
3366 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3367 return SCM_BOOL_T;
3368 while (!scm_is_null (rest))
3369 {
3370 if (scm_is_false (scm_num_eq_p (x, y)))
3371 return SCM_BOOL_F;
3372 x = y;
3373 y = scm_car (rest);
3374 rest = scm_cdr (rest);
3375 }
3376 return scm_num_eq_p (x, y);
3377}
3378#undef FUNC_NAME
0f2d19dd 3379SCM
6e8d25a6 3380scm_num_eq_p (SCM x, SCM y)
0f2d19dd 3381{
d8b95e27 3382 again:
e11e83f3 3383 if (SCM_I_INUMP (x))
0aacf84e 3384 {
e25f3727 3385 scm_t_signed_bits xx = SCM_I_INUM (x);
e11e83f3 3386 if (SCM_I_INUMP (y))
0aacf84e 3387 {
e25f3727 3388 scm_t_signed_bits yy = SCM_I_INUM (y);
73e4de09 3389 return scm_from_bool (xx == yy);
0aacf84e
MD
3390 }
3391 else if (SCM_BIGP (y))
3392 return SCM_BOOL_F;
3393 else if (SCM_REALP (y))
e8c5b1f2
KR
3394 {
3395 /* On a 32-bit system an inum fits a double, we can cast the inum
3396 to a double and compare.
3397
3398 But on a 64-bit system an inum is bigger than a double and
3399 casting it to a double (call that dxx) will round. dxx is at
3400 worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
3401 an integer and fits a long. So we cast yy to a long and
3402 compare with plain xx.
3403
3404 An alternative (for any size system actually) would be to check
3405 yy is an integer (with floor) and is in range of an inum
3406 (compare against appropriate powers of 2) then test
e25f3727
AW
3407 xx==(scm_t_signed_bits)yy. It's just a matter of which
3408 casts/comparisons might be fastest or easiest for the cpu. */
e8c5b1f2
KR
3409
3410 double yy = SCM_REAL_VALUE (y);
3a1b45fd
MV
3411 return scm_from_bool ((double) xx == yy
3412 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
e25f3727 3413 || xx == (scm_t_signed_bits) yy));
e8c5b1f2 3414 }
0aacf84e 3415 else if (SCM_COMPLEXP (y))
73e4de09 3416 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
0aacf84e 3417 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7
MV
3418 else if (SCM_FRACTIONP (y))
3419 return SCM_BOOL_F;
0aacf84e 3420 else
8a1f4f98 3421 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f872b822 3422 }
0aacf84e
MD
3423 else if (SCM_BIGP (x))
3424 {
e11e83f3 3425 if (SCM_I_INUMP (y))
0aacf84e
MD
3426 return SCM_BOOL_F;
3427 else if (SCM_BIGP (y))
3428 {
3429 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3430 scm_remember_upto_here_2 (x, y);
73e4de09 3431 return scm_from_bool (0 == cmp);
0aacf84e
MD
3432 }
3433 else if (SCM_REALP (y))
3434 {
3435 int cmp;
2e65b52f 3436 if (isnan (SCM_REAL_VALUE (y)))
0aacf84e
MD
3437 return SCM_BOOL_F;
3438 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3439 scm_remember_upto_here_1 (x);
73e4de09 3440 return scm_from_bool (0 == cmp);
0aacf84e
MD
3441 }
3442 else if (SCM_COMPLEXP (y))
3443 {
3444 int cmp;
3445 if (0.0 != SCM_COMPLEX_IMAG (y))
3446 return SCM_BOOL_F;
2e65b52f 3447 if (isnan (SCM_COMPLEX_REAL (y)))
0aacf84e
MD
3448 return SCM_BOOL_F;
3449 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3450 scm_remember_upto_here_1 (x);
73e4de09 3451 return scm_from_bool (0 == cmp);
0aacf84e 3452 }
f92e85f7
MV
3453 else if (SCM_FRACTIONP (y))
3454 return SCM_BOOL_F;
0aacf84e 3455 else
8a1f4f98 3456 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f4c627b3 3457 }
0aacf84e
MD
3458 else if (SCM_REALP (x))
3459 {
e8c5b1f2 3460 double xx = SCM_REAL_VALUE (x);
e11e83f3 3461 if (SCM_I_INUMP (y))
e8c5b1f2
KR
3462 {
3463 /* see comments with inum/real above */
e25f3727 3464 scm_t_signed_bits yy = SCM_I_INUM (y);
3a1b45fd
MV
3465 return scm_from_bool (xx == (double) yy
3466 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
e25f3727 3467 || (scm_t_signed_bits) xx == yy));
e8c5b1f2 3468 }
0aacf84e
MD
3469 else if (SCM_BIGP (y))
3470 {
3471 int cmp;
2e65b52f 3472 if (isnan (SCM_REAL_VALUE (x)))
0aacf84e
MD
3473 return SCM_BOOL_F;
3474 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3475 scm_remember_upto_here_1 (y);
73e4de09 3476 return scm_from_bool (0 == cmp);
0aacf84e
MD
3477 }
3478 else if (SCM_REALP (y))
73e4de09 3479 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0aacf84e 3480 else if (SCM_COMPLEXP (y))
73e4de09 3481 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3482 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7 3483 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3484 {
3485 double xx = SCM_REAL_VALUE (x);
2e65b52f 3486 if (isnan (xx))
d8b95e27 3487 return SCM_BOOL_F;
2e65b52f 3488 if (isinf (xx))
73e4de09 3489 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3490 x = scm_inexact_to_exact (x); /* with x as frac or int */
3491 goto again;
3492 }
0aacf84e 3493 else
8a1f4f98 3494 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f872b822 3495 }
0aacf84e
MD
3496 else if (SCM_COMPLEXP (x))
3497 {
e11e83f3
MV
3498 if (SCM_I_INUMP (y))
3499 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
0aacf84e
MD
3500 && (SCM_COMPLEX_IMAG (x) == 0.0));
3501 else if (SCM_BIGP (y))
3502 {
3503 int cmp;
3504 if (0.0 != SCM_COMPLEX_IMAG (x))
3505 return SCM_BOOL_F;
2e65b52f 3506 if (isnan (SCM_COMPLEX_REAL (x)))
0aacf84e
MD
3507 return SCM_BOOL_F;
3508 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3509 scm_remember_upto_here_1 (y);
73e4de09 3510 return scm_from_bool (0 == cmp);
0aacf84e
MD
3511 }
3512 else if (SCM_REALP (y))
73e4de09 3513 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
0aacf84e
MD
3514 && (SCM_COMPLEX_IMAG (x) == 0.0));
3515 else if (SCM_COMPLEXP (y))
73e4de09 3516 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3517 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
f92e85f7 3518 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3519 {
3520 double xx;
3521 if (SCM_COMPLEX_IMAG (x) != 0.0)
3522 return SCM_BOOL_F;
3523 xx = SCM_COMPLEX_REAL (x);
2e65b52f 3524 if (isnan (xx))
d8b95e27 3525 return SCM_BOOL_F;
2e65b52f 3526 if (isinf (xx))
73e4de09 3527 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3528 x = scm_inexact_to_exact (x); /* with x as frac or int */
3529 goto again;
3530 }
f92e85f7 3531 else
8a1f4f98 3532 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f92e85f7
MV
3533 }
3534 else if (SCM_FRACTIONP (x))
3535 {
e11e83f3 3536 if (SCM_I_INUMP (y))
f92e85f7
MV
3537 return SCM_BOOL_F;
3538 else if (SCM_BIGP (y))
3539 return SCM_BOOL_F;
3540 else if (SCM_REALP (y))
d8b95e27
KR
3541 {
3542 double yy = SCM_REAL_VALUE (y);
2e65b52f 3543 if (isnan (yy))
d8b95e27 3544 return SCM_BOOL_F;
2e65b52f 3545 if (isinf (yy))
73e4de09 3546 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3547 y = scm_inexact_to_exact (y); /* with y as frac or int */
3548 goto again;
3549 }
f92e85f7 3550 else if (SCM_COMPLEXP (y))
d8b95e27
KR
3551 {
3552 double yy;
3553 if (SCM_COMPLEX_IMAG (y) != 0.0)
3554 return SCM_BOOL_F;
3555 yy = SCM_COMPLEX_REAL (y);
2e65b52f 3556 if (isnan (yy))
d8b95e27 3557 return SCM_BOOL_F;
2e65b52f 3558 if (isinf (yy))
73e4de09 3559 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3560 y = scm_inexact_to_exact (y); /* with y as frac or int */
3561 goto again;
3562 }
f92e85f7
MV
3563 else if (SCM_FRACTIONP (y))
3564 return scm_i_fraction_equalp (x, y);
0aacf84e 3565 else
8a1f4f98 3566 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f4c627b3 3567 }
0aacf84e 3568 else
8a1f4f98 3569 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1, s_scm_i_num_eq_p);
0f2d19dd
JB
3570}
3571
3572
a5f0b599
KR
3573/* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3574 done are good for inums, but for bignums an answer can almost always be
3575 had by just examining a few high bits of the operands, as done by GMP in
3576 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3577 of the float exponent to take into account. */
3578
8c93b597 3579SCM_INTERNAL SCM scm_i_num_less_p (SCM, SCM, SCM);
8a1f4f98
AW
3580SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1,
3581 (SCM x, SCM y, SCM rest),
3582 "Return @code{#t} if the list of parameters is monotonically\n"
3583 "increasing.")
3584#define FUNC_NAME s_scm_i_num_less_p
3585{
3586 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3587 return SCM_BOOL_T;
3588 while (!scm_is_null (rest))
3589 {
3590 if (scm_is_false (scm_less_p (x, y)))
3591 return SCM_BOOL_F;
3592 x = y;
3593 y = scm_car (rest);
3594 rest = scm_cdr (rest);
3595 }
3596 return scm_less_p (x, y);
3597}
3598#undef FUNC_NAME
0f2d19dd 3599SCM
6e8d25a6 3600scm_less_p (SCM x, SCM y)
0f2d19dd 3601{
a5f0b599 3602 again:
e11e83f3 3603 if (SCM_I_INUMP (x))
0aacf84e 3604 {
e25f3727 3605 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 3606 if (SCM_I_INUMP (y))
0aacf84e 3607 {
e25f3727 3608 scm_t_inum yy = SCM_I_INUM (y);
73e4de09 3609 return scm_from_bool (xx < yy);
0aacf84e
MD
3610 }
3611 else if (SCM_BIGP (y))
3612 {
3613 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3614 scm_remember_upto_here_1 (y);
73e4de09 3615 return scm_from_bool (sgn > 0);
0aacf84e
MD
3616 }
3617 else if (SCM_REALP (y))
73e4de09 3618 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
f92e85f7 3619 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3620 {
3621 /* "x < a/b" becomes "x*b < a" */
3622 int_frac:
3623 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3624 y = SCM_FRACTION_NUMERATOR (y);
3625 goto again;
3626 }
0aacf84e 3627 else
8a1f4f98 3628 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f872b822 3629 }
0aacf84e
MD
3630 else if (SCM_BIGP (x))
3631 {
e11e83f3 3632 if (SCM_I_INUMP (y))
0aacf84e
MD
3633 {
3634 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3635 scm_remember_upto_here_1 (x);
73e4de09 3636 return scm_from_bool (sgn < 0);
0aacf84e
MD
3637 }
3638 else if (SCM_BIGP (y))
3639 {
3640 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3641 scm_remember_upto_here_2 (x, y);
73e4de09 3642 return scm_from_bool (cmp < 0);
0aacf84e
MD
3643 }
3644 else if (SCM_REALP (y))
3645 {
3646 int cmp;
2e65b52f 3647 if (isnan (SCM_REAL_VALUE (y)))
0aacf84e
MD
3648 return SCM_BOOL_F;
3649 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3650 scm_remember_upto_here_1 (x);
73e4de09 3651 return scm_from_bool (cmp < 0);
0aacf84e 3652 }
f92e85f7 3653 else if (SCM_FRACTIONP (y))
a5f0b599 3654 goto int_frac;
0aacf84e 3655 else
8a1f4f98 3656 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f4c627b3 3657 }
0aacf84e
MD
3658 else if (SCM_REALP (x))
3659 {
e11e83f3
MV
3660 if (SCM_I_INUMP (y))
3661 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
0aacf84e
MD
3662 else if (SCM_BIGP (y))
3663 {
3664 int cmp;
2e65b52f 3665 if (isnan (SCM_REAL_VALUE (x)))
0aacf84e
MD
3666 return SCM_BOOL_F;
3667 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3668 scm_remember_upto_here_1 (y);
73e4de09 3669 return scm_from_bool (cmp > 0);
0aacf84e
MD
3670 }
3671 else if (SCM_REALP (y))
73e4de09 3672 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
f92e85f7 3673 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3674 {
3675 double xx = SCM_REAL_VALUE (x);
2e65b52f 3676 if (isnan (xx))
a5f0b599 3677 return SCM_BOOL_F;
2e65b52f 3678 if (isinf (xx))
73e4de09 3679 return scm_from_bool (xx < 0.0);
a5f0b599
KR
3680 x = scm_inexact_to_exact (x); /* with x as frac or int */
3681 goto again;
3682 }
f92e85f7 3683 else
8a1f4f98 3684 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f92e85f7
MV
3685 }
3686 else if (SCM_FRACTIONP (x))
3687 {
e11e83f3 3688 if (SCM_I_INUMP (y) || SCM_BIGP (y))
a5f0b599
KR
3689 {
3690 /* "a/b < y" becomes "a < y*b" */
3691 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3692 x = SCM_FRACTION_NUMERATOR (x);
3693 goto again;
3694 }
f92e85f7 3695 else if (SCM_REALP (y))
a5f0b599
KR
3696 {
3697 double yy = SCM_REAL_VALUE (y);
2e65b52f 3698 if (isnan (yy))
a5f0b599 3699 return SCM_BOOL_F;
2e65b52f 3700 if (isinf (yy))
73e4de09 3701 return scm_from_bool (0.0 < yy);
a5f0b599
KR
3702 y = scm_inexact_to_exact (y); /* with y as frac or int */
3703 goto again;
3704 }
f92e85f7 3705 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3706 {
3707 /* "a/b < c/d" becomes "a*d < c*b" */
3708 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3709 SCM_FRACTION_DENOMINATOR (y));
3710 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3711 SCM_FRACTION_DENOMINATOR (x));
3712 x = new_x;
3713 y = new_y;
3714 goto again;
3715 }
0aacf84e 3716 else
8a1f4f98 3717 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f872b822 3718 }
0aacf84e 3719 else
8a1f4f98 3720 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARG1, s_scm_i_num_less_p);
0f2d19dd
JB
3721}
3722
3723
8a1f4f98
AW
3724SCM scm_i_num_gr_p (SCM, SCM, SCM);
3725SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1,
3726 (SCM x, SCM y, SCM rest),
3727 "Return @code{#t} if the list of parameters is monotonically\n"
3728 "decreasing.")
3729#define FUNC_NAME s_scm_i_num_gr_p
3730{
3731 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3732 return SCM_BOOL_T;
3733 while (!scm_is_null (rest))
3734 {
3735 if (scm_is_false (scm_gr_p (x, y)))
3736 return SCM_BOOL_F;
3737 x = y;
3738 y = scm_car (rest);
3739 rest = scm_cdr (rest);
3740 }
3741 return scm_gr_p (x, y);
3742}
3743#undef FUNC_NAME
3744#define FUNC_NAME s_scm_i_num_gr_p
c76b1eaf
MD
3745SCM
3746scm_gr_p (SCM x, SCM y)
0f2d19dd 3747{
c76b1eaf 3748 if (!SCM_NUMBERP (x))
8a1f4f98 3749 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3750 else if (!SCM_NUMBERP (y))
8a1f4f98 3751 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME);
c76b1eaf
MD
3752 else
3753 return scm_less_p (y, x);
0f2d19dd 3754}
1bbd0b84 3755#undef FUNC_NAME
0f2d19dd
JB
3756
3757
8a1f4f98
AW
3758SCM scm_i_num_leq_p (SCM, SCM, SCM);
3759SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1,
3760 (SCM x, SCM y, SCM rest),
3761 "Return @code{#t} if the list of parameters is monotonically\n"
3762 "non-decreasing.")
3763#define FUNC_NAME s_scm_i_num_leq_p
3764{
3765 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3766 return SCM_BOOL_T;
3767 while (!scm_is_null (rest))
3768 {
3769 if (scm_is_false (scm_leq_p (x, y)))
3770 return SCM_BOOL_F;
3771 x = y;
3772 y = scm_car (rest);
3773 rest = scm_cdr (rest);
3774 }
3775 return scm_leq_p (x, y);
3776}
3777#undef FUNC_NAME
3778#define FUNC_NAME s_scm_i_num_leq_p
c76b1eaf
MD
3779SCM
3780scm_leq_p (SCM x, SCM y)
0f2d19dd 3781{
c76b1eaf 3782 if (!SCM_NUMBERP (x))
8a1f4f98 3783 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3784 else if (!SCM_NUMBERP (y))
8a1f4f98 3785 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3786 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3787 return SCM_BOOL_F;
c76b1eaf 3788 else
73e4de09 3789 return scm_not (scm_less_p (y, x));
0f2d19dd 3790}
1bbd0b84 3791#undef FUNC_NAME
0f2d19dd
JB
3792
3793
8a1f4f98
AW
3794SCM scm_i_num_geq_p (SCM, SCM, SCM);
3795SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1,
3796 (SCM x, SCM y, SCM rest),
3797 "Return @code{#t} if the list of parameters is monotonically\n"
3798 "non-increasing.")
3799#define FUNC_NAME s_scm_i_num_geq_p
3800{
3801 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3802 return SCM_BOOL_T;
3803 while (!scm_is_null (rest))
3804 {
3805 if (scm_is_false (scm_geq_p (x, y)))
3806 return SCM_BOOL_F;
3807 x = y;
3808 y = scm_car (rest);
3809 rest = scm_cdr (rest);
3810 }
3811 return scm_geq_p (x, y);
3812}
3813#undef FUNC_NAME
3814#define FUNC_NAME s_scm_i_num_geq_p
c76b1eaf
MD
3815SCM
3816scm_geq_p (SCM x, SCM y)
0f2d19dd 3817{
c76b1eaf 3818 if (!SCM_NUMBERP (x))
8a1f4f98 3819 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3820 else if (!SCM_NUMBERP (y))
8a1f4f98 3821 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3822 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3823 return SCM_BOOL_F;
c76b1eaf 3824 else
73e4de09 3825 return scm_not (scm_less_p (x, y));
0f2d19dd 3826}
1bbd0b84 3827#undef FUNC_NAME
0f2d19dd
JB
3828
3829
152f82bf 3830SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
942e5b91
MG
3831/* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3832 * "zero."
3833 */
0f2d19dd 3834SCM
6e8d25a6 3835scm_zero_p (SCM z)
0f2d19dd 3836{
e11e83f3 3837 if (SCM_I_INUMP (z))
bc36d050 3838 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
0aacf84e 3839 else if (SCM_BIGP (z))
c2ff8ab0 3840 return SCM_BOOL_F;
0aacf84e 3841 else if (SCM_REALP (z))
73e4de09 3842 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
0aacf84e 3843 else if (SCM_COMPLEXP (z))
73e4de09 3844 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
c2ff8ab0 3845 && SCM_COMPLEX_IMAG (z) == 0.0);
f92e85f7
MV
3846 else if (SCM_FRACTIONP (z))
3847 return SCM_BOOL_F;
0aacf84e 3848 else
c2ff8ab0 3849 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
0f2d19dd
JB
3850}
3851
3852
152f82bf 3853SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
942e5b91
MG
3854/* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3855 * "zero."
3856 */
0f2d19dd 3857SCM
6e8d25a6 3858scm_positive_p (SCM x)
0f2d19dd 3859{
e11e83f3
MV
3860 if (SCM_I_INUMP (x))
3861 return scm_from_bool (SCM_I_INUM (x) > 0);
0aacf84e
MD
3862 else if (SCM_BIGP (x))
3863 {
3864 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3865 scm_remember_upto_here_1 (x);
73e4de09 3866 return scm_from_bool (sgn > 0);
0aacf84e
MD
3867 }
3868 else if (SCM_REALP (x))
73e4de09 3869 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
f92e85f7
MV
3870 else if (SCM_FRACTIONP (x))
3871 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3872 else
c2ff8ab0 3873 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
0f2d19dd
JB
3874}
3875
3876
152f82bf 3877SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
942e5b91
MG
3878/* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3879 * "zero."
3880 */
0f2d19dd 3881SCM
6e8d25a6 3882scm_negative_p (SCM x)
0f2d19dd 3883{
e11e83f3
MV
3884 if (SCM_I_INUMP (x))
3885 return scm_from_bool (SCM_I_INUM (x) < 0);
0aacf84e
MD
3886 else if (SCM_BIGP (x))
3887 {
3888 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3889 scm_remember_upto_here_1 (x);
73e4de09 3890 return scm_from_bool (sgn < 0);
0aacf84e
MD
3891 }
3892 else if (SCM_REALP (x))
73e4de09 3893 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
f92e85f7
MV
3894 else if (SCM_FRACTIONP (x))
3895 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3896 else
c2ff8ab0 3897 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
0f2d19dd
JB
3898}
3899
3900
2a06f791
KR
3901/* scm_min and scm_max return an inexact when either argument is inexact, as
3902 required by r5rs. On that basis, for exact/inexact combinations the
3903 exact is converted to inexact to compare and possibly return. This is
3904 unlike scm_less_p above which takes some trouble to preserve all bits in
3905 its test, such trouble is not required for min and max. */
3906
78d3deb1
AW
3907SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
3908 (SCM x, SCM y, SCM rest),
3909 "Return the maximum of all parameter values.")
3910#define FUNC_NAME s_scm_i_max
3911{
3912 while (!scm_is_null (rest))
3913 { x = scm_max (x, y);
3914 y = scm_car (rest);
3915 rest = scm_cdr (rest);
3916 }
3917 return scm_max (x, y);
3918}
3919#undef FUNC_NAME
3920
3921#define s_max s_scm_i_max
3922#define g_max g_scm_i_max
3923
0f2d19dd 3924SCM
6e8d25a6 3925scm_max (SCM x, SCM y)
0f2d19dd 3926{
0aacf84e
MD
3927 if (SCM_UNBNDP (y))
3928 {
3929 if (SCM_UNBNDP (x))
3930 SCM_WTA_DISPATCH_0 (g_max, s_max);
e11e83f3 3931 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
3932 return x;
3933 else
3934 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
f872b822 3935 }
f4c627b3 3936
e11e83f3 3937 if (SCM_I_INUMP (x))
0aacf84e 3938 {
e25f3727 3939 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 3940 if (SCM_I_INUMP (y))
0aacf84e 3941 {
e25f3727 3942 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
3943 return (xx < yy) ? y : x;
3944 }
3945 else if (SCM_BIGP (y))
3946 {
3947 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3948 scm_remember_upto_here_1 (y);
3949 return (sgn < 0) ? x : y;
3950 }
3951 else if (SCM_REALP (y))
3952 {
3953 double z = xx;
3954 /* if y==NaN then ">" is false and we return NaN */
55f26379 3955 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 3956 }
f92e85f7
MV
3957 else if (SCM_FRACTIONP (y))
3958 {
e4bc5d6c 3959 use_less:
73e4de09 3960 return (scm_is_false (scm_less_p (x, y)) ? x : y);
f92e85f7 3961 }
0aacf84e
MD
3962 else
3963 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 3964 }
0aacf84e
MD
3965 else if (SCM_BIGP (x))
3966 {
e11e83f3 3967 if (SCM_I_INUMP (y))
0aacf84e
MD
3968 {
3969 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3970 scm_remember_upto_here_1 (x);
3971 return (sgn < 0) ? y : x;
3972 }
3973 else if (SCM_BIGP (y))
3974 {
3975 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3976 scm_remember_upto_here_2 (x, y);
3977 return (cmp > 0) ? x : y;
3978 }
3979 else if (SCM_REALP (y))
3980 {
2a06f791
KR
3981 /* if y==NaN then xx>yy is false, so we return the NaN y */
3982 double xx, yy;
3983 big_real:
3984 xx = scm_i_big2dbl (x);
3985 yy = SCM_REAL_VALUE (y);
55f26379 3986 return (xx > yy ? scm_from_double (xx) : y);
0aacf84e 3987 }
f92e85f7
MV
3988 else if (SCM_FRACTIONP (y))
3989 {
e4bc5d6c 3990 goto use_less;
f92e85f7 3991 }
0aacf84e
MD
3992 else
3993 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f4c627b3 3994 }
0aacf84e
MD
3995 else if (SCM_REALP (x))
3996 {
e11e83f3 3997 if (SCM_I_INUMP (y))
0aacf84e 3998 {
e11e83f3 3999 double z = SCM_I_INUM (y);
0aacf84e 4000 /* if x==NaN then "<" is false and we return NaN */
55f26379 4001 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
0aacf84e
MD
4002 }
4003 else if (SCM_BIGP (y))
4004 {
b6f8f763 4005 SCM_SWAP (x, y);
2a06f791 4006 goto big_real;
0aacf84e
MD
4007 }
4008 else if (SCM_REALP (y))
4009 {
4010 /* if x==NaN then our explicit check means we return NaN
4011 if y==NaN then ">" is false and we return NaN
4012 calling isnan is unavoidable, since it's the only way to know
4013 which of x or y causes any compares to be false */
4014 double xx = SCM_REAL_VALUE (x);
2e65b52f 4015 return (isnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
0aacf84e 4016 }
f92e85f7
MV
4017 else if (SCM_FRACTIONP (y))
4018 {
4019 double yy = scm_i_fraction2double (y);
4020 double xx = SCM_REAL_VALUE (x);
55f26379 4021 return (xx < yy) ? scm_from_double (yy) : x;
f92e85f7
MV
4022 }
4023 else
4024 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
4025 }
4026 else if (SCM_FRACTIONP (x))
4027 {
e11e83f3 4028 if (SCM_I_INUMP (y))
f92e85f7 4029 {
e4bc5d6c 4030 goto use_less;
f92e85f7
MV
4031 }
4032 else if (SCM_BIGP (y))
4033 {
e4bc5d6c 4034 goto use_less;
f92e85f7
MV
4035 }
4036 else if (SCM_REALP (y))
4037 {
4038 double xx = scm_i_fraction2double (x);
55f26379 4039 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
f92e85f7
MV
4040 }
4041 else if (SCM_FRACTIONP (y))
4042 {
e4bc5d6c 4043 goto use_less;
f92e85f7 4044 }
0aacf84e
MD
4045 else
4046 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 4047 }
0aacf84e 4048 else
f4c627b3 4049 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
0f2d19dd
JB
4050}
4051
4052
78d3deb1
AW
4053SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
4054 (SCM x, SCM y, SCM rest),
4055 "Return the minimum of all parameter values.")
4056#define FUNC_NAME s_scm_i_min
4057{
4058 while (!scm_is_null (rest))
4059 { x = scm_min (x, y);
4060 y = scm_car (rest);
4061 rest = scm_cdr (rest);
4062 }
4063 return scm_min (x, y);
4064}
4065#undef FUNC_NAME
4066
4067#define s_min s_scm_i_min
4068#define g_min g_scm_i_min
4069
0f2d19dd 4070SCM
6e8d25a6 4071scm_min (SCM x, SCM y)
0f2d19dd 4072{
0aacf84e
MD
4073 if (SCM_UNBNDP (y))
4074 {
4075 if (SCM_UNBNDP (x))
4076 SCM_WTA_DISPATCH_0 (g_min, s_min);
e11e83f3 4077 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
4078 return x;
4079 else
4080 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
f872b822 4081 }
f4c627b3 4082
e11e83f3 4083 if (SCM_I_INUMP (x))
0aacf84e 4084 {
e25f3727 4085 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 4086 if (SCM_I_INUMP (y))
0aacf84e 4087 {
e25f3727 4088 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
4089 return (xx < yy) ? x : y;
4090 }
4091 else if (SCM_BIGP (y))
4092 {
4093 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
4094 scm_remember_upto_here_1 (y);
4095 return (sgn < 0) ? y : x;
4096 }
4097 else if (SCM_REALP (y))
4098 {
4099 double z = xx;
4100 /* if y==NaN then "<" is false and we return NaN */
55f26379 4101 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 4102 }
f92e85f7
MV
4103 else if (SCM_FRACTIONP (y))
4104 {
e4bc5d6c 4105 use_less:
73e4de09 4106 return (scm_is_false (scm_less_p (x, y)) ? y : x);
f92e85f7 4107 }
0aacf84e
MD
4108 else
4109 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 4110 }
0aacf84e
MD
4111 else if (SCM_BIGP (x))
4112 {
e11e83f3 4113 if (SCM_I_INUMP (y))
0aacf84e
MD
4114 {
4115 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4116 scm_remember_upto_here_1 (x);
4117 return (sgn < 0) ? x : y;
4118 }
4119 else if (SCM_BIGP (y))
4120 {
4121 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
4122 scm_remember_upto_here_2 (x, y);
4123 return (cmp > 0) ? y : x;
4124 }
4125 else if (SCM_REALP (y))
4126 {
2a06f791
KR
4127 /* if y==NaN then xx<yy is false, so we return the NaN y */
4128 double xx, yy;
4129 big_real:
4130 xx = scm_i_big2dbl (x);
4131 yy = SCM_REAL_VALUE (y);
55f26379 4132 return (xx < yy ? scm_from_double (xx) : y);
0aacf84e 4133 }
f92e85f7
MV
4134 else if (SCM_FRACTIONP (y))
4135 {
e4bc5d6c 4136 goto use_less;
f92e85f7 4137 }
0aacf84e
MD
4138 else
4139 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f4c627b3 4140 }
0aacf84e
MD
4141 else if (SCM_REALP (x))
4142 {
e11e83f3 4143 if (SCM_I_INUMP (y))
0aacf84e 4144 {
e11e83f3 4145 double z = SCM_I_INUM (y);
0aacf84e 4146 /* if x==NaN then "<" is false and we return NaN */
55f26379 4147 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
0aacf84e
MD
4148 }
4149 else if (SCM_BIGP (y))
4150 {
b6f8f763 4151 SCM_SWAP (x, y);
2a06f791 4152 goto big_real;
0aacf84e
MD
4153 }
4154 else if (SCM_REALP (y))
4155 {
4156 /* if x==NaN then our explicit check means we return NaN
4157 if y==NaN then "<" is false and we return NaN
4158 calling isnan is unavoidable, since it's the only way to know
4159 which of x or y causes any compares to be false */
4160 double xx = SCM_REAL_VALUE (x);
2e65b52f 4161 return (isnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
0aacf84e 4162 }
f92e85f7
MV
4163 else if (SCM_FRACTIONP (y))
4164 {
4165 double yy = scm_i_fraction2double (y);
4166 double xx = SCM_REAL_VALUE (x);
55f26379 4167 return (yy < xx) ? scm_from_double (yy) : x;
f92e85f7 4168 }
0aacf84e
MD
4169 else
4170 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 4171 }
f92e85f7
MV
4172 else if (SCM_FRACTIONP (x))
4173 {
e11e83f3 4174 if (SCM_I_INUMP (y))
f92e85f7 4175 {
e4bc5d6c 4176 goto use_less;
f92e85f7
MV
4177 }
4178 else if (SCM_BIGP (y))
4179 {
e4bc5d6c 4180 goto use_less;
f92e85f7
MV
4181 }
4182 else if (SCM_REALP (y))
4183 {
4184 double xx = scm_i_fraction2double (x);
55f26379 4185 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
f92e85f7
MV
4186 }
4187 else if (SCM_FRACTIONP (y))
4188 {
e4bc5d6c 4189 goto use_less;
f92e85f7
MV
4190 }
4191 else
78d3deb1 4192 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f92e85f7 4193 }
0aacf84e 4194 else
f4c627b3 4195 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
0f2d19dd
JB
4196}
4197
4198
8ccd24f7
AW
4199SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
4200 (SCM x, SCM y, SCM rest),
4201 "Return the sum of all parameter values. Return 0 if called without\n"
4202 "any parameters." )
4203#define FUNC_NAME s_scm_i_sum
4204{
4205 while (!scm_is_null (rest))
4206 { x = scm_sum (x, y);
4207 y = scm_car (rest);
4208 rest = scm_cdr (rest);
4209 }
4210 return scm_sum (x, y);
4211}
4212#undef FUNC_NAME
4213
4214#define s_sum s_scm_i_sum
4215#define g_sum g_scm_i_sum
4216
0f2d19dd 4217SCM
6e8d25a6 4218scm_sum (SCM x, SCM y)
0f2d19dd 4219{
9cc37597 4220 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
4221 {
4222 if (SCM_NUMBERP (x)) return x;
4223 if (SCM_UNBNDP (x)) return SCM_INUM0;
98cb6e75 4224 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
f872b822 4225 }
c209c88e 4226
9cc37597 4227 if (SCM_LIKELY (SCM_I_INUMP (x)))
ca46fb90 4228 {
9cc37597 4229 if (SCM_LIKELY (SCM_I_INUMP (y)))
ca46fb90 4230 {
e25f3727
AW
4231 scm_t_inum xx = SCM_I_INUM (x);
4232 scm_t_inum yy = SCM_I_INUM (y);
4233 scm_t_inum z = xx + yy;
4234 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_inum2big (z);
ca46fb90
RB
4235 }
4236 else if (SCM_BIGP (y))
4237 {
4238 SCM_SWAP (x, y);
4239 goto add_big_inum;
4240 }
4241 else if (SCM_REALP (y))
4242 {
e25f3727 4243 scm_t_inum xx = SCM_I_INUM (x);
55f26379 4244 return scm_from_double (xx + SCM_REAL_VALUE (y));
ca46fb90
RB
4245 }
4246 else if (SCM_COMPLEXP (y))
4247 {
e25f3727 4248 scm_t_inum xx = SCM_I_INUM (x);
8507ec80 4249 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
ca46fb90
RB
4250 SCM_COMPLEX_IMAG (y));
4251 }
f92e85f7 4252 else if (SCM_FRACTIONP (y))
cba42c93 4253 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
4254 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4255 SCM_FRACTION_DENOMINATOR (y));
ca46fb90
RB
4256 else
4257 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0aacf84e
MD
4258 } else if (SCM_BIGP (x))
4259 {
e11e83f3 4260 if (SCM_I_INUMP (y))
0aacf84e 4261 {
e25f3727 4262 scm_t_inum inum;
0aacf84e
MD
4263 int bigsgn;
4264 add_big_inum:
e11e83f3 4265 inum = SCM_I_INUM (y);
0aacf84e
MD
4266 if (inum == 0)
4267 return x;
4268 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4269 if (inum < 0)
4270 {
4271 SCM result = scm_i_mkbig ();
4272 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
4273 scm_remember_upto_here_1 (x);
4274 /* we know the result will have to be a bignum */
4275 if (bigsgn == -1)
4276 return result;
4277 return scm_i_normbig (result);
4278 }
4279 else
4280 {
4281 SCM result = scm_i_mkbig ();
4282 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
4283 scm_remember_upto_here_1 (x);
4284 /* we know the result will have to be a bignum */
4285 if (bigsgn == 1)
4286 return result;
4287 return scm_i_normbig (result);
4288 }
4289 }
4290 else if (SCM_BIGP (y))
4291 {
4292 SCM result = scm_i_mkbig ();
4293 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4294 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4295 mpz_add (SCM_I_BIG_MPZ (result),
4296 SCM_I_BIG_MPZ (x),
4297 SCM_I_BIG_MPZ (y));
4298 scm_remember_upto_here_2 (x, y);
4299 /* we know the result will have to be a bignum */
4300 if (sgn_x == sgn_y)
4301 return result;
4302 return scm_i_normbig (result);
4303 }
4304 else if (SCM_REALP (y))
4305 {
4306 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
4307 scm_remember_upto_here_1 (x);
55f26379 4308 return scm_from_double (result);
0aacf84e
MD
4309 }
4310 else if (SCM_COMPLEXP (y))
4311 {
4312 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4313 + SCM_COMPLEX_REAL (y));
4314 scm_remember_upto_here_1 (x);
8507ec80 4315 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e 4316 }
f92e85f7 4317 else if (SCM_FRACTIONP (y))
cba42c93 4318 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
4319 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4320 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4321 else
4322 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0f2d19dd 4323 }
0aacf84e
MD
4324 else if (SCM_REALP (x))
4325 {
e11e83f3 4326 if (SCM_I_INUMP (y))
55f26379 4327 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
0aacf84e
MD
4328 else if (SCM_BIGP (y))
4329 {
4330 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
4331 scm_remember_upto_here_1 (y);
55f26379 4332 return scm_from_double (result);
0aacf84e
MD
4333 }
4334 else if (SCM_REALP (y))
55f26379 4335 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
0aacf84e 4336 else if (SCM_COMPLEXP (y))
8507ec80 4337 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4338 SCM_COMPLEX_IMAG (y));
f92e85f7 4339 else if (SCM_FRACTIONP (y))
55f26379 4340 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
0aacf84e
MD
4341 else
4342 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
f872b822 4343 }
0aacf84e
MD
4344 else if (SCM_COMPLEXP (x))
4345 {
e11e83f3 4346 if (SCM_I_INUMP (y))
8507ec80 4347 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
0aacf84e
MD
4348 SCM_COMPLEX_IMAG (x));
4349 else if (SCM_BIGP (y))
4350 {
4351 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
4352 + SCM_COMPLEX_REAL (x));
4353 scm_remember_upto_here_1 (y);
8507ec80 4354 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4355 }
4356 else if (SCM_REALP (y))
8507ec80 4357 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
0aacf84e
MD
4358 SCM_COMPLEX_IMAG (x));
4359 else if (SCM_COMPLEXP (y))
8507ec80 4360 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4361 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
f92e85f7 4362 else if (SCM_FRACTIONP (y))
8507ec80 4363 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
f92e85f7
MV
4364 SCM_COMPLEX_IMAG (x));
4365 else
4366 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4367 }
4368 else if (SCM_FRACTIONP (x))
4369 {
e11e83f3 4370 if (SCM_I_INUMP (y))
cba42c93 4371 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4372 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4373 SCM_FRACTION_DENOMINATOR (x));
4374 else if (SCM_BIGP (y))
cba42c93 4375 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4376 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4377 SCM_FRACTION_DENOMINATOR (x));
4378 else if (SCM_REALP (y))
55f26379 4379 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
f92e85f7 4380 else if (SCM_COMPLEXP (y))
8507ec80 4381 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
f92e85f7
MV
4382 SCM_COMPLEX_IMAG (y));
4383 else if (SCM_FRACTIONP (y))
4384 /* a/b + c/d = (ad + bc) / bd */
cba42c93 4385 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4386 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4387 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4388 else
4389 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
98cb6e75 4390 }
0aacf84e 4391 else
98cb6e75 4392 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
0f2d19dd
JB
4393}
4394
4395
40882e3d
KR
4396SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
4397 (SCM x),
4398 "Return @math{@var{x}+1}.")
4399#define FUNC_NAME s_scm_oneplus
4400{
4401 return scm_sum (x, SCM_I_MAKINUM (1));
4402}
4403#undef FUNC_NAME
4404
4405
78d3deb1
AW
4406SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
4407 (SCM x, SCM y, SCM rest),
4408 "If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
4409 "the sum of all but the first argument are subtracted from the first\n"
4410 "argument.")
4411#define FUNC_NAME s_scm_i_difference
4412{
4413 while (!scm_is_null (rest))
4414 { x = scm_difference (x, y);
4415 y = scm_car (rest);
4416 rest = scm_cdr (rest);
4417 }
4418 return scm_difference (x, y);
4419}
4420#undef FUNC_NAME
4421
4422#define s_difference s_scm_i_difference
4423#define g_difference g_scm_i_difference
4424
0f2d19dd 4425SCM
6e8d25a6 4426scm_difference (SCM x, SCM y)
78d3deb1 4427#define FUNC_NAME s_difference
0f2d19dd 4428{
9cc37597 4429 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
4430 {
4431 if (SCM_UNBNDP (x))
4432 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4433 else
e11e83f3 4434 if (SCM_I_INUMP (x))
ca46fb90 4435 {
e25f3727 4436 scm_t_inum xx = -SCM_I_INUM (x);
ca46fb90 4437 if (SCM_FIXABLE (xx))
d956fa6f 4438 return SCM_I_MAKINUM (xx);
ca46fb90 4439 else
e25f3727 4440 return scm_i_inum2big (xx);
ca46fb90
RB
4441 }
4442 else if (SCM_BIGP (x))
a9ad4847
KR
4443 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4444 bignum, but negating that gives a fixnum. */
ca46fb90
RB
4445 return scm_i_normbig (scm_i_clonebig (x, 0));
4446 else if (SCM_REALP (x))
55f26379 4447 return scm_from_double (-SCM_REAL_VALUE (x));
ca46fb90 4448 else if (SCM_COMPLEXP (x))
8507ec80 4449 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
ca46fb90 4450 -SCM_COMPLEX_IMAG (x));
f92e85f7 4451 else if (SCM_FRACTIONP (x))
cba42c93 4452 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7 4453 SCM_FRACTION_DENOMINATOR (x));
ca46fb90
RB
4454 else
4455 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
f872b822 4456 }
ca46fb90 4457
9cc37597 4458 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 4459 {
9cc37597 4460 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4461 {
e25f3727
AW
4462 scm_t_inum xx = SCM_I_INUM (x);
4463 scm_t_inum yy = SCM_I_INUM (y);
4464 scm_t_inum z = xx - yy;
0aacf84e 4465 if (SCM_FIXABLE (z))
d956fa6f 4466 return SCM_I_MAKINUM (z);
0aacf84e 4467 else
e25f3727 4468 return scm_i_inum2big (z);
0aacf84e
MD
4469 }
4470 else if (SCM_BIGP (y))
4471 {
4472 /* inum-x - big-y */
e25f3727 4473 scm_t_inum xx = SCM_I_INUM (x);
ca46fb90 4474
0aacf84e
MD
4475 if (xx == 0)
4476 return scm_i_clonebig (y, 0);
4477 else
4478 {
4479 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4480 SCM result = scm_i_mkbig ();
ca46fb90 4481
0aacf84e
MD
4482 if (xx >= 0)
4483 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4484 else
4485 {
4486 /* x - y == -(y + -x) */
4487 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4488 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4489 }
4490 scm_remember_upto_here_1 (y);
ca46fb90 4491
0aacf84e
MD
4492 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4493 /* we know the result will have to be a bignum */
4494 return result;
4495 else
4496 return scm_i_normbig (result);
4497 }
4498 }
4499 else if (SCM_REALP (y))
4500 {
e25f3727 4501 scm_t_inum xx = SCM_I_INUM (x);
55f26379 4502 return scm_from_double (xx - SCM_REAL_VALUE (y));
0aacf84e
MD
4503 }
4504 else if (SCM_COMPLEXP (y))
4505 {
e25f3727 4506 scm_t_inum xx = SCM_I_INUM (x);
8507ec80 4507 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
0aacf84e
MD
4508 - SCM_COMPLEX_IMAG (y));
4509 }
f92e85f7
MV
4510 else if (SCM_FRACTIONP (y))
4511 /* a - b/c = (ac - b) / c */
cba42c93 4512 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4513 SCM_FRACTION_NUMERATOR (y)),
4514 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4515 else
4516 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
f872b822 4517 }
0aacf84e
MD
4518 else if (SCM_BIGP (x))
4519 {
e11e83f3 4520 if (SCM_I_INUMP (y))
0aacf84e
MD
4521 {
4522 /* big-x - inum-y */
e25f3727 4523 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e 4524 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
ca46fb90 4525
0aacf84e
MD
4526 scm_remember_upto_here_1 (x);
4527 if (sgn_x == 0)
c71b0706 4528 return (SCM_FIXABLE (-yy) ?
e25f3727 4529 SCM_I_MAKINUM (-yy) : scm_from_inum (-yy));
0aacf84e
MD
4530 else
4531 {
4532 SCM result = scm_i_mkbig ();
ca46fb90 4533
708f22c6
KR
4534 if (yy >= 0)
4535 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4536 else
4537 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
0aacf84e 4538 scm_remember_upto_here_1 (x);
ca46fb90 4539
0aacf84e
MD
4540 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4541 /* we know the result will have to be a bignum */
4542 return result;
4543 else
4544 return scm_i_normbig (result);
4545 }
4546 }
4547 else if (SCM_BIGP (y))
4548 {
4549 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4550 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4551 SCM result = scm_i_mkbig ();
4552 mpz_sub (SCM_I_BIG_MPZ (result),
4553 SCM_I_BIG_MPZ (x),
4554 SCM_I_BIG_MPZ (y));
4555 scm_remember_upto_here_2 (x, y);
4556 /* we know the result will have to be a bignum */
4557 if ((sgn_x == 1) && (sgn_y == -1))
4558 return result;
4559 if ((sgn_x == -1) && (sgn_y == 1))
4560 return result;
4561 return scm_i_normbig (result);
4562 }
4563 else if (SCM_REALP (y))
4564 {
4565 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4566 scm_remember_upto_here_1 (x);
55f26379 4567 return scm_from_double (result);
0aacf84e
MD
4568 }
4569 else if (SCM_COMPLEXP (y))
4570 {
4571 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4572 - SCM_COMPLEX_REAL (y));
4573 scm_remember_upto_here_1 (x);
8507ec80 4574 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
0aacf84e 4575 }
f92e85f7 4576 else if (SCM_FRACTIONP (y))
cba42c93 4577 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4578 SCM_FRACTION_NUMERATOR (y)),
4579 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 4580 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
ca46fb90 4581 }
0aacf84e
MD
4582 else if (SCM_REALP (x))
4583 {
e11e83f3 4584 if (SCM_I_INUMP (y))
55f26379 4585 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
0aacf84e
MD
4586 else if (SCM_BIGP (y))
4587 {
4588 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4589 scm_remember_upto_here_1 (x);
55f26379 4590 return scm_from_double (result);
0aacf84e
MD
4591 }
4592 else if (SCM_REALP (y))
55f26379 4593 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
0aacf84e 4594 else if (SCM_COMPLEXP (y))
8507ec80 4595 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4596 -SCM_COMPLEX_IMAG (y));
f92e85f7 4597 else if (SCM_FRACTIONP (y))
55f26379 4598 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
0aacf84e
MD
4599 else
4600 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4601 }
0aacf84e
MD
4602 else if (SCM_COMPLEXP (x))
4603 {
e11e83f3 4604 if (SCM_I_INUMP (y))
8507ec80 4605 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
0aacf84e
MD
4606 SCM_COMPLEX_IMAG (x));
4607 else if (SCM_BIGP (y))
4608 {
4609 double real_part = (SCM_COMPLEX_REAL (x)
4610 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4611 scm_remember_upto_here_1 (x);
8507ec80 4612 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e
MD
4613 }
4614 else if (SCM_REALP (y))
8507ec80 4615 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
0aacf84e
MD
4616 SCM_COMPLEX_IMAG (x));
4617 else if (SCM_COMPLEXP (y))
8507ec80 4618 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4619 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
f92e85f7 4620 else if (SCM_FRACTIONP (y))
8507ec80 4621 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
f92e85f7
MV
4622 SCM_COMPLEX_IMAG (x));
4623 else
4624 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4625 }
4626 else if (SCM_FRACTIONP (x))
4627 {
e11e83f3 4628 if (SCM_I_INUMP (y))
f92e85f7 4629 /* a/b - c = (a - cb) / b */
cba42c93 4630 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4631 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4632 SCM_FRACTION_DENOMINATOR (x));
4633 else if (SCM_BIGP (y))
cba42c93 4634 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4635 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4636 SCM_FRACTION_DENOMINATOR (x));
4637 else if (SCM_REALP (y))
55f26379 4638 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
f92e85f7 4639 else if (SCM_COMPLEXP (y))
8507ec80 4640 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
f92e85f7
MV
4641 -SCM_COMPLEX_IMAG (y));
4642 else if (SCM_FRACTIONP (y))
4643 /* a/b - c/d = (ad - bc) / bd */
cba42c93 4644 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4645 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4646 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4647 else
4648 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4649 }
0aacf84e 4650 else
98cb6e75 4651 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
0f2d19dd 4652}
c05e97b7 4653#undef FUNC_NAME
0f2d19dd 4654
ca46fb90 4655
40882e3d
KR
4656SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
4657 (SCM x),
4658 "Return @math{@var{x}-1}.")
4659#define FUNC_NAME s_scm_oneminus
4660{
4661 return scm_difference (x, SCM_I_MAKINUM (1));
4662}
4663#undef FUNC_NAME
4664
4665
78d3deb1
AW
4666SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
4667 (SCM x, SCM y, SCM rest),
4668 "Return the product of all arguments. If called without arguments,\n"
4669 "1 is returned.")
4670#define FUNC_NAME s_scm_i_product
4671{
4672 while (!scm_is_null (rest))
4673 { x = scm_product (x, y);
4674 y = scm_car (rest);
4675 rest = scm_cdr (rest);
4676 }
4677 return scm_product (x, y);
4678}
4679#undef FUNC_NAME
4680
4681#define s_product s_scm_i_product
4682#define g_product g_scm_i_product
4683
0f2d19dd 4684SCM
6e8d25a6 4685scm_product (SCM x, SCM y)
0f2d19dd 4686{
9cc37597 4687 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
4688 {
4689 if (SCM_UNBNDP (x))
d956fa6f 4690 return SCM_I_MAKINUM (1L);
0aacf84e
MD
4691 else if (SCM_NUMBERP (x))
4692 return x;
4693 else
4694 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
f872b822 4695 }
ca46fb90 4696
9cc37597 4697 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 4698 {
e25f3727 4699 scm_t_inum xx;
f4c627b3 4700
0aacf84e 4701 intbig:
e11e83f3 4702 xx = SCM_I_INUM (x);
f4c627b3 4703
0aacf84e
MD
4704 switch (xx)
4705 {
ca46fb90
RB
4706 case 0: return x; break;
4707 case 1: return y; break;
0aacf84e 4708 }
f4c627b3 4709
9cc37597 4710 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4711 {
e25f3727
AW
4712 scm_t_inum yy = SCM_I_INUM (y);
4713 scm_t_inum kk = xx * yy;
d956fa6f 4714 SCM k = SCM_I_MAKINUM (kk);
e11e83f3 4715 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
0aacf84e
MD
4716 return k;
4717 else
4718 {
e25f3727 4719 SCM result = scm_i_inum2big (xx);
0aacf84e
MD
4720 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4721 return scm_i_normbig (result);
4722 }
4723 }
4724 else if (SCM_BIGP (y))
4725 {
4726 SCM result = scm_i_mkbig ();
4727 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4728 scm_remember_upto_here_1 (y);
4729 return result;
4730 }
4731 else if (SCM_REALP (y))
55f26379 4732 return scm_from_double (xx * SCM_REAL_VALUE (y));
0aacf84e 4733 else if (SCM_COMPLEXP (y))
8507ec80 4734 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
0aacf84e 4735 xx * SCM_COMPLEX_IMAG (y));
f92e85f7 4736 else if (SCM_FRACTIONP (y))
cba42c93 4737 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4738 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4739 else
4740 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4741 }
0aacf84e
MD
4742 else if (SCM_BIGP (x))
4743 {
e11e83f3 4744 if (SCM_I_INUMP (y))
0aacf84e
MD
4745 {
4746 SCM_SWAP (x, y);
4747 goto intbig;
4748 }
4749 else if (SCM_BIGP (y))
4750 {
4751 SCM result = scm_i_mkbig ();
4752 mpz_mul (SCM_I_BIG_MPZ (result),
4753 SCM_I_BIG_MPZ (x),
4754 SCM_I_BIG_MPZ (y));
4755 scm_remember_upto_here_2 (x, y);
4756 return result;
4757 }
4758 else if (SCM_REALP (y))
4759 {
4760 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4761 scm_remember_upto_here_1 (x);
55f26379 4762 return scm_from_double (result);
0aacf84e
MD
4763 }
4764 else if (SCM_COMPLEXP (y))
4765 {
4766 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4767 scm_remember_upto_here_1 (x);
8507ec80 4768 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
0aacf84e
MD
4769 z * SCM_COMPLEX_IMAG (y));
4770 }
f92e85f7 4771 else if (SCM_FRACTIONP (y))
cba42c93 4772 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4773 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4774 else
4775 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4776 }
0aacf84e
MD
4777 else if (SCM_REALP (x))
4778 {
e11e83f3 4779 if (SCM_I_INUMP (y))
23d72566
KR
4780 {
4781 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4782 if (scm_is_eq (y, SCM_INUM0))
4783 return y;
4784 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
4785 }
0aacf84e
MD
4786 else if (SCM_BIGP (y))
4787 {
4788 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4789 scm_remember_upto_here_1 (y);
55f26379 4790 return scm_from_double (result);
0aacf84e
MD
4791 }
4792 else if (SCM_REALP (y))
55f26379 4793 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
0aacf84e 4794 else if (SCM_COMPLEXP (y))
8507ec80 4795 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
0aacf84e 4796 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
f92e85f7 4797 else if (SCM_FRACTIONP (y))
55f26379 4798 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
0aacf84e
MD
4799 else
4800 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4801 }
0aacf84e
MD
4802 else if (SCM_COMPLEXP (x))
4803 {
e11e83f3 4804 if (SCM_I_INUMP (y))
23d72566
KR
4805 {
4806 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4807 if (scm_is_eq (y, SCM_INUM0))
4808 return y;
4809 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
4810 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
4811 }
0aacf84e
MD
4812 else if (SCM_BIGP (y))
4813 {
4814 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4815 scm_remember_upto_here_1 (y);
8507ec80 4816 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
76506335 4817 z * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4818 }
4819 else if (SCM_REALP (y))
8507ec80 4820 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
0aacf84e
MD
4821 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4822 else if (SCM_COMPLEXP (y))
4823 {
8507ec80 4824 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
0aacf84e
MD
4825 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4826 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4827 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4828 }
f92e85f7
MV
4829 else if (SCM_FRACTIONP (y))
4830 {
4831 double yy = scm_i_fraction2double (y);
8507ec80 4832 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
f92e85f7
MV
4833 yy * SCM_COMPLEX_IMAG (x));
4834 }
4835 else
4836 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4837 }
4838 else if (SCM_FRACTIONP (x))
4839 {
e11e83f3 4840 if (SCM_I_INUMP (y))
cba42c93 4841 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4842 SCM_FRACTION_DENOMINATOR (x));
4843 else if (SCM_BIGP (y))
cba42c93 4844 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4845 SCM_FRACTION_DENOMINATOR (x));
4846 else if (SCM_REALP (y))
55f26379 4847 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
f92e85f7
MV
4848 else if (SCM_COMPLEXP (y))
4849 {
4850 double xx = scm_i_fraction2double (x);
8507ec80 4851 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
f92e85f7
MV
4852 xx * SCM_COMPLEX_IMAG (y));
4853 }
4854 else if (SCM_FRACTIONP (y))
4855 /* a/b * c/d = ac / bd */
cba42c93 4856 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4857 SCM_FRACTION_NUMERATOR (y)),
4858 scm_product (SCM_FRACTION_DENOMINATOR (x),
4859 SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4860 else
4861 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4862 }
0aacf84e 4863 else
f4c627b3 4864 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
0f2d19dd
JB
4865}
4866
7351e207
MV
4867#if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4868 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4869#define ALLOW_DIVIDE_BY_ZERO
4870/* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4871#endif
0f2d19dd 4872
ba74ef4e
MV
4873/* The code below for complex division is adapted from the GNU
4874 libstdc++, which adapted it from f2c's libF77, and is subject to
4875 this copyright: */
4876
4877/****************************************************************
4878Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4879
4880Permission to use, copy, modify, and distribute this software
4881and its documentation for any purpose and without fee is hereby
4882granted, provided that the above copyright notice appear in all
4883copies and that both that the copyright notice and this
4884permission notice and warranty disclaimer appear in supporting
4885documentation, and that the names of AT&T Bell Laboratories or
4886Bellcore or any of their entities not be used in advertising or
4887publicity pertaining to distribution of the software without
4888specific, written prior permission.
4889
4890AT&T and Bellcore disclaim all warranties with regard to this
4891software, including all implied warranties of merchantability
4892and fitness. In no event shall AT&T or Bellcore be liable for
4893any special, indirect or consequential damages or any damages
4894whatsoever resulting from loss of use, data or profits, whether
4895in an action of contract, negligence or other tortious action,
4896arising out of or in connection with the use or performance of
4897this software.
4898****************************************************************/
4899
78d3deb1
AW
4900SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
4901 (SCM x, SCM y, SCM rest),
4902 "Divide the first argument by the product of the remaining\n"
4903 "arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
4904 "returned.")
4905#define FUNC_NAME s_scm_i_divide
4906{
4907 while (!scm_is_null (rest))
4908 { x = scm_divide (x, y);
4909 y = scm_car (rest);
4910 rest = scm_cdr (rest);
4911 }
4912 return scm_divide (x, y);
4913}
4914#undef FUNC_NAME
4915
4916#define s_divide s_scm_i_divide
4917#define g_divide g_scm_i_divide
4918
f92e85f7 4919static SCM
78d3deb1
AW
4920do_divide (SCM x, SCM y, int inexact)
4921#define FUNC_NAME s_divide
0f2d19dd 4922{
f8de44c1
DH
4923 double a;
4924
9cc37597 4925 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
4926 {
4927 if (SCM_UNBNDP (x))
4928 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
e11e83f3 4929 else if (SCM_I_INUMP (x))
0aacf84e 4930 {
e25f3727 4931 scm_t_inum xx = SCM_I_INUM (x);
0aacf84e
MD
4932 if (xx == 1 || xx == -1)
4933 return x;
7351e207 4934#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4935 else if (xx == 0)
4936 scm_num_overflow (s_divide);
7351e207 4937#endif
0aacf84e 4938 else
f92e85f7
MV
4939 {
4940 if (inexact)
55f26379 4941 return scm_from_double (1.0 / (double) xx);
cba42c93 4942 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4943 }
0aacf84e
MD
4944 }
4945 else if (SCM_BIGP (x))
f92e85f7
MV
4946 {
4947 if (inexact)
55f26379 4948 return scm_from_double (1.0 / scm_i_big2dbl (x));
cba42c93 4949 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4950 }
0aacf84e
MD
4951 else if (SCM_REALP (x))
4952 {
4953 double xx = SCM_REAL_VALUE (x);
7351e207 4954#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4955 if (xx == 0.0)
4956 scm_num_overflow (s_divide);
4957 else
7351e207 4958#endif
55f26379 4959 return scm_from_double (1.0 / xx);
0aacf84e
MD
4960 }
4961 else if (SCM_COMPLEXP (x))
4962 {
4963 double r = SCM_COMPLEX_REAL (x);
4964 double i = SCM_COMPLEX_IMAG (x);
4c6e36a6 4965 if (fabs(r) <= fabs(i))
0aacf84e
MD
4966 {
4967 double t = r / i;
4968 double d = i * (1.0 + t * t);
8507ec80 4969 return scm_c_make_rectangular (t / d, -1.0 / d);
0aacf84e
MD
4970 }
4971 else
4972 {
4973 double t = i / r;
4974 double d = r * (1.0 + t * t);
8507ec80 4975 return scm_c_make_rectangular (1.0 / d, -t / d);
0aacf84e
MD
4976 }
4977 }
f92e85f7 4978 else if (SCM_FRACTIONP (x))
cba42c93 4979 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
f92e85f7 4980 SCM_FRACTION_NUMERATOR (x));
0aacf84e
MD
4981 else
4982 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
f8de44c1 4983 }
f8de44c1 4984
9cc37597 4985 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 4986 {
e25f3727 4987 scm_t_inum xx = SCM_I_INUM (x);
9cc37597 4988 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4989 {
e25f3727 4990 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
4991 if (yy == 0)
4992 {
7351e207 4993#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4994 scm_num_overflow (s_divide);
7351e207 4995#else
55f26379 4996 return scm_from_double ((double) xx / (double) yy);
7351e207 4997#endif
0aacf84e
MD
4998 }
4999 else if (xx % yy != 0)
f92e85f7
MV
5000 {
5001 if (inexact)
55f26379 5002 return scm_from_double ((double) xx / (double) yy);
cba42c93 5003 else return scm_i_make_ratio (x, y);
f92e85f7 5004 }
0aacf84e
MD
5005 else
5006 {
e25f3727 5007 scm_t_inum z = xx / yy;
0aacf84e 5008 if (SCM_FIXABLE (z))
d956fa6f 5009 return SCM_I_MAKINUM (z);
0aacf84e 5010 else
e25f3727 5011 return scm_i_inum2big (z);
0aacf84e 5012 }
f872b822 5013 }
0aacf84e 5014 else if (SCM_BIGP (y))
f92e85f7
MV
5015 {
5016 if (inexact)
55f26379 5017 return scm_from_double ((double) xx / scm_i_big2dbl (y));
cba42c93 5018 else return scm_i_make_ratio (x, y);
f92e85f7 5019 }
0aacf84e
MD
5020 else if (SCM_REALP (y))
5021 {
5022 double yy = SCM_REAL_VALUE (y);
7351e207 5023#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5024 if (yy == 0.0)
5025 scm_num_overflow (s_divide);
5026 else
7351e207 5027#endif
55f26379 5028 return scm_from_double ((double) xx / yy);
ba74ef4e 5029 }
0aacf84e
MD
5030 else if (SCM_COMPLEXP (y))
5031 {
5032 a = xx;
5033 complex_div: /* y _must_ be a complex number */
5034 {
5035 double r = SCM_COMPLEX_REAL (y);
5036 double i = SCM_COMPLEX_IMAG (y);
4c6e36a6 5037 if (fabs(r) <= fabs(i))
0aacf84e
MD
5038 {
5039 double t = r / i;
5040 double d = i * (1.0 + t * t);
8507ec80 5041 return scm_c_make_rectangular ((a * t) / d, -a / d);
0aacf84e
MD
5042 }
5043 else
5044 {
5045 double t = i / r;
5046 double d = r * (1.0 + t * t);
8507ec80 5047 return scm_c_make_rectangular (a / d, -(a * t) / d);
0aacf84e
MD
5048 }
5049 }
5050 }
f92e85f7
MV
5051 else if (SCM_FRACTIONP (y))
5052 /* a / b/c = ac / b */
cba42c93 5053 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 5054 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
5055 else
5056 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 5057 }
0aacf84e
MD
5058 else if (SCM_BIGP (x))
5059 {
e11e83f3 5060 if (SCM_I_INUMP (y))
0aacf84e 5061 {
e25f3727 5062 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
5063 if (yy == 0)
5064 {
7351e207 5065#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 5066 scm_num_overflow (s_divide);
7351e207 5067#else
0aacf84e
MD
5068 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
5069 scm_remember_upto_here_1 (x);
5070 return (sgn == 0) ? scm_nan () : scm_inf ();
7351e207 5071#endif
0aacf84e
MD
5072 }
5073 else if (yy == 1)
5074 return x;
5075 else
5076 {
5077 /* FIXME: HMM, what are the relative performance issues here?
5078 We need to test. Is it faster on average to test
5079 divisible_p, then perform whichever operation, or is it
5080 faster to perform the integer div opportunistically and
5081 switch to real if there's a remainder? For now we take the
5082 middle ground: test, then if divisible, use the faster div
5083 func. */
5084
e25f3727 5085 scm_t_inum abs_yy = yy < 0 ? -yy : yy;
0aacf84e
MD
5086 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
5087
5088 if (divisible_p)
5089 {
5090 SCM result = scm_i_mkbig ();
5091 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
5092 scm_remember_upto_here_1 (x);
5093 if (yy < 0)
5094 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
5095 return scm_i_normbig (result);
5096 }
5097 else
f92e85f7
MV
5098 {
5099 if (inexact)
55f26379 5100 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
cba42c93 5101 else return scm_i_make_ratio (x, y);
f92e85f7 5102 }
0aacf84e
MD
5103 }
5104 }
5105 else if (SCM_BIGP (y))
5106 {
5107 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
5108 if (y_is_zero)
5109 {
ca46fb90 5110#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 5111 scm_num_overflow (s_divide);
f872b822 5112#else
0aacf84e
MD
5113 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
5114 scm_remember_upto_here_1 (x);
5115 return (sgn == 0) ? scm_nan () : scm_inf ();
f872b822 5116#endif
0aacf84e
MD
5117 }
5118 else
5119 {
5120 /* big_x / big_y */
23f2b9a3
KR
5121 if (inexact)
5122 {
5123 /* It's easily possible for the ratio x/y to fit a double
5124 but one or both x and y be too big to fit a double,
5125 hence the use of mpq_get_d rather than converting and
5126 dividing. */
5127 mpq_t q;
5128 *mpq_numref(q) = *SCM_I_BIG_MPZ (x);
5129 *mpq_denref(q) = *SCM_I_BIG_MPZ (y);
5130 return scm_from_double (mpq_get_d (q));
5131 }
5132 else
5133 {
5134 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
5135 SCM_I_BIG_MPZ (y));
5136 if (divisible_p)
5137 {
5138 SCM result = scm_i_mkbig ();
5139 mpz_divexact (SCM_I_BIG_MPZ (result),
5140 SCM_I_BIG_MPZ (x),
5141 SCM_I_BIG_MPZ (y));
5142 scm_remember_upto_here_2 (x, y);
5143 return scm_i_normbig (result);
5144 }
5145 else
5146 return scm_i_make_ratio (x, y);
5147 }
0aacf84e
MD
5148 }
5149 }
5150 else if (SCM_REALP (y))
5151 {
5152 double yy = SCM_REAL_VALUE (y);
7351e207 5153#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5154 if (yy == 0.0)
5155 scm_num_overflow (s_divide);
5156 else
7351e207 5157#endif
55f26379 5158 return scm_from_double (scm_i_big2dbl (x) / yy);
0aacf84e
MD
5159 }
5160 else if (SCM_COMPLEXP (y))
5161 {
5162 a = scm_i_big2dbl (x);
5163 goto complex_div;
5164 }
f92e85f7 5165 else if (SCM_FRACTIONP (y))
cba42c93 5166 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 5167 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
5168 else
5169 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 5170 }
0aacf84e
MD
5171 else if (SCM_REALP (x))
5172 {
5173 double rx = SCM_REAL_VALUE (x);
e11e83f3 5174 if (SCM_I_INUMP (y))
0aacf84e 5175 {
e25f3727 5176 scm_t_inum yy = SCM_I_INUM (y);
7351e207 5177#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
5178 if (yy == 0)
5179 scm_num_overflow (s_divide);
5180 else
7351e207 5181#endif
55f26379 5182 return scm_from_double (rx / (double) yy);
0aacf84e
MD
5183 }
5184 else if (SCM_BIGP (y))
5185 {
5186 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5187 scm_remember_upto_here_1 (y);
55f26379 5188 return scm_from_double (rx / dby);
0aacf84e
MD
5189 }
5190 else if (SCM_REALP (y))
5191 {
5192 double yy = SCM_REAL_VALUE (y);
7351e207 5193#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5194 if (yy == 0.0)
5195 scm_num_overflow (s_divide);
5196 else
7351e207 5197#endif
55f26379 5198 return scm_from_double (rx / yy);
0aacf84e
MD
5199 }
5200 else if (SCM_COMPLEXP (y))
5201 {
5202 a = rx;
5203 goto complex_div;
5204 }
f92e85f7 5205 else if (SCM_FRACTIONP (y))
55f26379 5206 return scm_from_double (rx / scm_i_fraction2double (y));
0aacf84e
MD
5207 else
5208 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 5209 }
0aacf84e
MD
5210 else if (SCM_COMPLEXP (x))
5211 {
5212 double rx = SCM_COMPLEX_REAL (x);
5213 double ix = SCM_COMPLEX_IMAG (x);
e11e83f3 5214 if (SCM_I_INUMP (y))
0aacf84e 5215 {
e25f3727 5216 scm_t_inum yy = SCM_I_INUM (y);
7351e207 5217#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
5218 if (yy == 0)
5219 scm_num_overflow (s_divide);
5220 else
7351e207 5221#endif
0aacf84e
MD
5222 {
5223 double d = yy;
8507ec80 5224 return scm_c_make_rectangular (rx / d, ix / d);
0aacf84e
MD
5225 }
5226 }
5227 else if (SCM_BIGP (y))
5228 {
5229 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5230 scm_remember_upto_here_1 (y);
8507ec80 5231 return scm_c_make_rectangular (rx / dby, ix / dby);
0aacf84e
MD
5232 }
5233 else if (SCM_REALP (y))
5234 {
5235 double yy = SCM_REAL_VALUE (y);
7351e207 5236#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5237 if (yy == 0.0)
5238 scm_num_overflow (s_divide);
5239 else
7351e207 5240#endif
8507ec80 5241 return scm_c_make_rectangular (rx / yy, ix / yy);
0aacf84e
MD
5242 }
5243 else if (SCM_COMPLEXP (y))
5244 {
5245 double ry = SCM_COMPLEX_REAL (y);
5246 double iy = SCM_COMPLEX_IMAG (y);
4c6e36a6 5247 if (fabs(ry) <= fabs(iy))
0aacf84e
MD
5248 {
5249 double t = ry / iy;
5250 double d = iy * (1.0 + t * t);
8507ec80 5251 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
0aacf84e
MD
5252 }
5253 else
5254 {
5255 double t = iy / ry;
5256 double d = ry * (1.0 + t * t);
8507ec80 5257 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
0aacf84e
MD
5258 }
5259 }
f92e85f7
MV
5260 else if (SCM_FRACTIONP (y))
5261 {
5262 double yy = scm_i_fraction2double (y);
8507ec80 5263 return scm_c_make_rectangular (rx / yy, ix / yy);
f92e85f7 5264 }
0aacf84e
MD
5265 else
5266 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 5267 }
f92e85f7
MV
5268 else if (SCM_FRACTIONP (x))
5269 {
e11e83f3 5270 if (SCM_I_INUMP (y))
f92e85f7 5271 {
e25f3727 5272 scm_t_inum yy = SCM_I_INUM (y);
f92e85f7
MV
5273#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5274 if (yy == 0)
5275 scm_num_overflow (s_divide);
5276 else
5277#endif
cba42c93 5278 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
5279 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5280 }
5281 else if (SCM_BIGP (y))
5282 {
cba42c93 5283 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
5284 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5285 }
5286 else if (SCM_REALP (y))
5287 {
5288 double yy = SCM_REAL_VALUE (y);
5289#ifndef ALLOW_DIVIDE_BY_ZERO
5290 if (yy == 0.0)
5291 scm_num_overflow (s_divide);
5292 else
5293#endif
55f26379 5294 return scm_from_double (scm_i_fraction2double (x) / yy);
f92e85f7
MV
5295 }
5296 else if (SCM_COMPLEXP (y))
5297 {
5298 a = scm_i_fraction2double (x);
5299 goto complex_div;
5300 }
5301 else if (SCM_FRACTIONP (y))
cba42c93 5302 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
5303 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
5304 else
5305 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5306 }
0aacf84e 5307 else
f8de44c1 5308 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
0f2d19dd 5309}
f92e85f7
MV
5310
5311SCM
5312scm_divide (SCM x, SCM y)
5313{
78d3deb1 5314 return do_divide (x, y, 0);
f92e85f7
MV
5315}
5316
5317static SCM scm_divide2real (SCM x, SCM y)
5318{
78d3deb1 5319 return do_divide (x, y, 1);
f92e85f7 5320}
c05e97b7 5321#undef FUNC_NAME
0f2d19dd 5322
fa605590 5323
0f2d19dd 5324double
3101f40f 5325scm_c_truncate (double x)
0f2d19dd 5326{
fa605590
KR
5327#if HAVE_TRUNC
5328 return trunc (x);
5329#else
f872b822
MD
5330 if (x < 0.0)
5331 return -floor (-x);
5332 return floor (x);
fa605590 5333#endif
0f2d19dd 5334}
0f2d19dd 5335
3101f40f
MV
5336/* scm_c_round is done using floor(x+0.5) to round to nearest and with
5337 half-way case (ie. when x is an integer plus 0.5) going upwards.
5338 Then half-way cases are identified and adjusted down if the
5339 round-upwards didn't give the desired even integer.
6187f48b
KR
5340
5341 "plus_half == result" identifies a half-way case. If plus_half, which is
5342 x + 0.5, is an integer then x must be an integer plus 0.5.
5343
5344 An odd "result" value is identified with result/2 != floor(result/2).
5345 This is done with plus_half, since that value is ready for use sooner in
5346 a pipelined cpu, and we're already requiring plus_half == result.
5347
5348 Note however that we need to be careful when x is big and already an
5349 integer. In that case "x+0.5" may round to an adjacent integer, causing
5350 us to return such a value, incorrectly. For instance if the hardware is
5351 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
5352 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
5353 returned. Or if the hardware is in round-upwards mode, then other bigger
5354 values like say x == 2^128 will see x+0.5 rounding up to the next higher
5355 representable value, 2^128+2^76 (or whatever), again incorrect.
5356
5357 These bad roundings of x+0.5 are avoided by testing at the start whether
5358 x is already an integer. If it is then clearly that's the desired result
5359 already. And if it's not then the exponent must be small enough to allow
5360 an 0.5 to be represented, and hence added without a bad rounding. */
5361
0f2d19dd 5362double
3101f40f 5363scm_c_round (double x)
0f2d19dd 5364{
6187f48b
KR
5365 double plus_half, result;
5366
5367 if (x == floor (x))
5368 return x;
5369
5370 plus_half = x + 0.5;
5371 result = floor (plus_half);
3101f40f 5372 /* Adjust so that the rounding is towards even. */
0aacf84e
MD
5373 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
5374 ? result - 1
5375 : result);
0f2d19dd
JB
5376}
5377
f92e85f7
MV
5378SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
5379 (SCM x),
5380 "Round the number @var{x} towards zero.")
5381#define FUNC_NAME s_scm_truncate_number
5382{
73e4de09 5383 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5384 return scm_floor (x);
5385 else
5386 return scm_ceiling (x);
5387}
5388#undef FUNC_NAME
5389
5390static SCM exactly_one_half;
5391
5392SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5393 (SCM x),
5394 "Round the number @var{x} towards the nearest integer. "
5395 "When it is exactly halfway between two integers, "
5396 "round towards the even one.")
5397#define FUNC_NAME s_scm_round_number
5398{
e11e83f3 5399 if (SCM_I_INUMP (x) || SCM_BIGP (x))
bae30667
KR
5400 return x;
5401 else if (SCM_REALP (x))
3101f40f 5402 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
f92e85f7 5403 else
bae30667
KR
5404 {
5405 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5406 single quotient+remainder division then examining to see which way
5407 the rounding should go. */
5408 SCM plus_half = scm_sum (x, exactly_one_half);
5409 SCM result = scm_floor (plus_half);
3101f40f 5410 /* Adjust so that the rounding is towards even. */
73e4de09
MV
5411 if (scm_is_true (scm_num_eq_p (plus_half, result))
5412 && scm_is_true (scm_odd_p (result)))
d956fa6f 5413 return scm_difference (result, SCM_I_MAKINUM (1));
bae30667
KR
5414 else
5415 return result;
5416 }
f92e85f7
MV
5417}
5418#undef FUNC_NAME
5419
5420SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5421 (SCM x),
5422 "Round the number @var{x} towards minus infinity.")
5423#define FUNC_NAME s_scm_floor
5424{
e11e83f3 5425 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5426 return x;
5427 else if (SCM_REALP (x))
55f26379 5428 return scm_from_double (floor (SCM_REAL_VALUE (x)));
f92e85f7
MV
5429 else if (SCM_FRACTIONP (x))
5430 {
5431 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5432 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5433 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5434 {
5435 /* For positive x, rounding towards zero is correct. */
5436 return q;
5437 }
5438 else
5439 {
5440 /* For negative x, we need to return q-1 unless x is an
5441 integer. But fractions are never integer, per our
5442 assumptions. */
d956fa6f 5443 return scm_difference (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5444 }
5445 }
5446 else
5447 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5448}
5449#undef FUNC_NAME
5450
5451SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5452 (SCM x),
5453 "Round the number @var{x} towards infinity.")
5454#define FUNC_NAME s_scm_ceiling
5455{
e11e83f3 5456 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5457 return x;
5458 else if (SCM_REALP (x))
55f26379 5459 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
f92e85f7
MV
5460 else if (SCM_FRACTIONP (x))
5461 {
5462 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5463 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5464 if (scm_is_false (scm_positive_p (x)))
f92e85f7
MV
5465 {
5466 /* For negative x, rounding towards zero is correct. */
5467 return q;
5468 }
5469 else
5470 {
5471 /* For positive x, we need to return q+1 unless x is an
5472 integer. But fractions are never integer, per our
5473 assumptions. */
d956fa6f 5474 return scm_sum (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5475 }
5476 }
5477 else
5478 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5479}
5480#undef FUNC_NAME
0f2d19dd 5481
ad79736c
AW
5482/* sin/cos/tan/asin/acos/atan
5483 sinh/cosh/tanh/asinh/acosh/atanh
5484 Derived from "Transcen.scm", Complex trancendental functions for SCM.
5485 Written by Jerry D. Hedden, (C) FSF.
5486 See the file `COPYING' for terms applying to this program. */
0f2d19dd 5487
6fc4d012 5488SCM_DEFINE (scm_expt, "expt", 2, 0, 0,
27c37006 5489 (SCM x, SCM y),
6fc4d012
AW
5490 "Return @var{x} raised to the power of @var{y}.")
5491#define FUNC_NAME s_scm_expt
0f2d19dd 5492{
01c7284a
MW
5493 if (scm_is_integer (y))
5494 {
5495 if (scm_is_true (scm_exact_p (y)))
5496 return scm_integer_expt (x, y);
5497 else
5498 {
5499 /* Here we handle the case where the exponent is an inexact
5500 integer. We make the exponent exact in order to use
5501 scm_integer_expt, and thus avoid the spurious imaginary
5502 parts that may result from round-off errors in the general
5503 e^(y log x) method below (for example when squaring a large
5504 negative number). In this case, we must return an inexact
5505 result for correctness. We also make the base inexact so
5506 that scm_integer_expt will use fast inexact arithmetic
5507 internally. Note that making the base inexact is not
5508 sufficient to guarantee an inexact result, because
5509 scm_integer_expt will return an exact 1 when the exponent
5510 is 0, even if the base is inexact. */
5511 return scm_exact_to_inexact
5512 (scm_integer_expt (scm_exact_to_inexact (x),
5513 scm_inexact_to_exact (y)));
5514 }
5515 }
6fc4d012
AW
5516 else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
5517 {
5518 return scm_from_double (pow (scm_to_double (x), scm_to_double (y)));
5519 }
5520 else
5521 return scm_exp (scm_product (scm_log (x), y));
0f2d19dd 5522}
1bbd0b84 5523#undef FUNC_NAME
0f2d19dd 5524
ad79736c
AW
5525SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
5526 (SCM z),
5527 "Compute the sine of @var{z}.")
5528#define FUNC_NAME s_scm_sin
5529{
5530 if (scm_is_real (z))
5531 return scm_from_double (sin (scm_to_double (z)));
5532 else if (SCM_COMPLEXP (z))
5533 { double x, y;
5534 x = SCM_COMPLEX_REAL (z);
5535 y = SCM_COMPLEX_IMAG (z);
5536 return scm_c_make_rectangular (sin (x) * cosh (y),
5537 cos (x) * sinh (y));
5538 }
5539 else
5540 SCM_WTA_DISPATCH_1 (g_scm_sin, z, 1, s_scm_sin);
5541}
5542#undef FUNC_NAME
0f2d19dd 5543
ad79736c
AW
5544SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
5545 (SCM z),
5546 "Compute the cosine of @var{z}.")
5547#define FUNC_NAME s_scm_cos
5548{
5549 if (scm_is_real (z))
5550 return scm_from_double (cos (scm_to_double (z)));
5551 else if (SCM_COMPLEXP (z))
5552 { double x, y;
5553 x = SCM_COMPLEX_REAL (z);
5554 y = SCM_COMPLEX_IMAG (z);
5555 return scm_c_make_rectangular (cos (x) * cosh (y),
5556 -sin (x) * sinh (y));
5557 }
5558 else
5559 SCM_WTA_DISPATCH_1 (g_scm_cos, z, 1, s_scm_cos);
5560}
5561#undef FUNC_NAME
5562
5563SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
5564 (SCM z),
5565 "Compute the tangent of @var{z}.")
5566#define FUNC_NAME s_scm_tan
0f2d19dd 5567{
ad79736c
AW
5568 if (scm_is_real (z))
5569 return scm_from_double (tan (scm_to_double (z)));
5570 else if (SCM_COMPLEXP (z))
5571 { double x, y, w;
5572 x = 2.0 * SCM_COMPLEX_REAL (z);
5573 y = 2.0 * SCM_COMPLEX_IMAG (z);
5574 w = cos (x) + cosh (y);
5575#ifndef ALLOW_DIVIDE_BY_ZERO
5576 if (w == 0.0)
5577 scm_num_overflow (s_scm_tan);
5578#endif
5579 return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
5580 }
5581 else
5582 SCM_WTA_DISPATCH_1 (g_scm_tan, z, 1, s_scm_tan);
5583}
5584#undef FUNC_NAME
5585
5586SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
5587 (SCM z),
5588 "Compute the hyperbolic sine of @var{z}.")
5589#define FUNC_NAME s_scm_sinh
5590{
5591 if (scm_is_real (z))
5592 return scm_from_double (sinh (scm_to_double (z)));
5593 else if (SCM_COMPLEXP (z))
5594 { double x, y;
5595 x = SCM_COMPLEX_REAL (z);
5596 y = SCM_COMPLEX_IMAG (z);
5597 return scm_c_make_rectangular (sinh (x) * cos (y),
5598 cosh (x) * sin (y));
5599 }
5600 else
5601 SCM_WTA_DISPATCH_1 (g_scm_sinh, z, 1, s_scm_sinh);
5602}
5603#undef FUNC_NAME
5604
5605SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
5606 (SCM z),
5607 "Compute the hyperbolic cosine of @var{z}.")
5608#define FUNC_NAME s_scm_cosh
5609{
5610 if (scm_is_real (z))
5611 return scm_from_double (cosh (scm_to_double (z)));
5612 else if (SCM_COMPLEXP (z))
5613 { double x, y;
5614 x = SCM_COMPLEX_REAL (z);
5615 y = SCM_COMPLEX_IMAG (z);
5616 return scm_c_make_rectangular (cosh (x) * cos (y),
5617 sinh (x) * sin (y));
5618 }
5619 else
5620 SCM_WTA_DISPATCH_1 (g_scm_cosh, z, 1, s_scm_cosh);
5621}
5622#undef FUNC_NAME
5623
5624SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
5625 (SCM z),
5626 "Compute the hyperbolic tangent of @var{z}.")
5627#define FUNC_NAME s_scm_tanh
5628{
5629 if (scm_is_real (z))
5630 return scm_from_double (tanh (scm_to_double (z)));
5631 else if (SCM_COMPLEXP (z))
5632 { double x, y, w;
5633 x = 2.0 * SCM_COMPLEX_REAL (z);
5634 y = 2.0 * SCM_COMPLEX_IMAG (z);
5635 w = cosh (x) + cos (y);
5636#ifndef ALLOW_DIVIDE_BY_ZERO
5637 if (w == 0.0)
5638 scm_num_overflow (s_scm_tanh);
5639#endif
5640 return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
5641 }
5642 else
5643 SCM_WTA_DISPATCH_1 (g_scm_tanh, z, 1, s_scm_tanh);
5644}
5645#undef FUNC_NAME
5646
5647SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
5648 (SCM z),
5649 "Compute the arc sine of @var{z}.")
5650#define FUNC_NAME s_scm_asin
5651{
5652 if (scm_is_real (z))
5653 {
5654 double w = scm_to_double (z);
5655 if (w >= -1.0 && w <= 1.0)
5656 return scm_from_double (asin (w));
5657 else
5658 return scm_product (scm_c_make_rectangular (0, -1),
5659 scm_sys_asinh (scm_c_make_rectangular (0, w)));
5660 }
5661 else if (SCM_COMPLEXP (z))
5662 { double x, y;
5663 x = SCM_COMPLEX_REAL (z);
5664 y = SCM_COMPLEX_IMAG (z);
5665 return scm_product (scm_c_make_rectangular (0, -1),
5666 scm_sys_asinh (scm_c_make_rectangular (-y, x)));
5667 }
5668 else
5669 SCM_WTA_DISPATCH_1 (g_scm_asin, z, 1, s_scm_asin);
5670}
5671#undef FUNC_NAME
5672
5673SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
5674 (SCM z),
5675 "Compute the arc cosine of @var{z}.")
5676#define FUNC_NAME s_scm_acos
5677{
5678 if (scm_is_real (z))
5679 {
5680 double w = scm_to_double (z);
5681 if (w >= -1.0 && w <= 1.0)
5682 return scm_from_double (acos (w));
5683 else
5684 return scm_sum (scm_from_double (acos (0.0)),
5685 scm_product (scm_c_make_rectangular (0, 1),
5686 scm_sys_asinh (scm_c_make_rectangular (0, w))));
5687 }
5688 else if (SCM_COMPLEXP (z))
5689 { double x, y;
5690 x = SCM_COMPLEX_REAL (z);
5691 y = SCM_COMPLEX_IMAG (z);
5692 return scm_sum (scm_from_double (acos (0.0)),
5693 scm_product (scm_c_make_rectangular (0, 1),
5694 scm_sys_asinh (scm_c_make_rectangular (-y, x))));
5695 }
5696 else
5697 SCM_WTA_DISPATCH_1 (g_scm_acos, z, 1, s_scm_acos);
5698}
5699#undef FUNC_NAME
5700
5701SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
5702 (SCM z, SCM y),
5703 "With one argument, compute the arc tangent of @var{z}.\n"
5704 "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
5705 "using the sign of @var{z} and @var{y} to determine the quadrant.")
5706#define FUNC_NAME s_scm_atan
5707{
5708 if (SCM_UNBNDP (y))
5709 {
5710 if (scm_is_real (z))
5711 return scm_from_double (atan (scm_to_double (z)));
5712 else if (SCM_COMPLEXP (z))
5713 {
5714 double v, w;
5715 v = SCM_COMPLEX_REAL (z);
5716 w = SCM_COMPLEX_IMAG (z);
5717 return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (v, w - 1.0),
5718 scm_c_make_rectangular (v, w + 1.0))),
5719 scm_c_make_rectangular (0, 2));
5720 }
5721 else
5722 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5723 }
5724 else if (scm_is_real (z))
5725 {
5726 if (scm_is_real (y))
5727 return scm_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
5728 else
5729 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
5730 }
5731 else
5732 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5733}
5734#undef FUNC_NAME
5735
5736SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
5737 (SCM z),
5738 "Compute the inverse hyperbolic sine of @var{z}.")
5739#define FUNC_NAME s_scm_sys_asinh
5740{
5741 if (scm_is_real (z))
5742 return scm_from_double (asinh (scm_to_double (z)));
5743 else if (scm_is_number (z))
5744 return scm_log (scm_sum (z,
5745 scm_sqrt (scm_sum (scm_product (z, z),
5746 SCM_I_MAKINUM (1)))));
5747 else
5748 SCM_WTA_DISPATCH_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
5749}
5750#undef FUNC_NAME
5751
5752SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
5753 (SCM z),
5754 "Compute the inverse hyperbolic cosine of @var{z}.")
5755#define FUNC_NAME s_scm_sys_acosh
5756{
5757 if (scm_is_real (z) && scm_to_double (z) >= 1.0)
5758 return scm_from_double (acosh (scm_to_double (z)));
5759 else if (scm_is_number (z))
5760 return scm_log (scm_sum (z,
5761 scm_sqrt (scm_difference (scm_product (z, z),
5762 SCM_I_MAKINUM (1)))));
5763 else
5764 SCM_WTA_DISPATCH_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
5765}
5766#undef FUNC_NAME
5767
5768SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
5769 (SCM z),
5770 "Compute the inverse hyperbolic tangent of @var{z}.")
5771#define FUNC_NAME s_scm_sys_atanh
5772{
5773 if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
5774 return scm_from_double (atanh (scm_to_double (z)));
5775 else if (scm_is_number (z))
5776 return scm_divide (scm_log (scm_divide (scm_sum (SCM_I_MAKINUM (1), z),
5777 scm_difference (SCM_I_MAKINUM (1), z))),
5778 SCM_I_MAKINUM (2));
5779 else
5780 SCM_WTA_DISPATCH_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
0f2d19dd 5781}
1bbd0b84 5782#undef FUNC_NAME
0f2d19dd 5783
8507ec80
MV
5784SCM
5785scm_c_make_rectangular (double re, double im)
5786{
5787 if (im == 0.0)
5788 return scm_from_double (re);
5789 else
5790 {
5791 SCM z;
03604fcf
LC
5792
5793 z = PTR2SCM (scm_gc_malloc_pointerless (sizeof (scm_t_complex),
92d8fd32 5794 "complex"));
03604fcf 5795 SCM_SET_CELL_TYPE (z, scm_tc16_complex);
8507ec80
MV
5796 SCM_COMPLEX_REAL (z) = re;
5797 SCM_COMPLEX_IMAG (z) = im;
5798 return z;
5799 }
5800}
0f2d19dd 5801
a1ec6916 5802SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
a2c25234
LC
5803 (SCM real_part, SCM imaginary_part),
5804 "Return a complex number constructed of the given @var{real-part} "
5805 "and @var{imaginary-part} parts.")
1bbd0b84 5806#define FUNC_NAME s_scm_make_rectangular
0f2d19dd 5807{
ad79736c
AW
5808 SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
5809 SCM_ARG1, FUNC_NAME, "real");
5810 SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
5811 SCM_ARG2, FUNC_NAME, "real");
5812 return scm_c_make_rectangular (scm_to_double (real_part),
5813 scm_to_double (imaginary_part));
0f2d19dd 5814}
1bbd0b84 5815#undef FUNC_NAME
0f2d19dd 5816
8507ec80
MV
5817SCM
5818scm_c_make_polar (double mag, double ang)
5819{
5820 double s, c;
5e647d08
LC
5821
5822 /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
5823 use it on Glibc-based systems that have it (it's a GNU extension). See
5824 http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
5825 details. */
5826#if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
8507ec80
MV
5827 sincos (ang, &s, &c);
5828#else
5829 s = sin (ang);
5830 c = cos (ang);
5831#endif
5832 return scm_c_make_rectangular (mag * c, mag * s);
5833}
0f2d19dd 5834
a1ec6916 5835SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
27c37006 5836 (SCM x, SCM y),
942e5b91 5837 "Return the complex number @var{x} * e^(i * @var{y}).")
1bbd0b84 5838#define FUNC_NAME s_scm_make_polar
0f2d19dd 5839{
ad79736c
AW
5840 SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
5841 SCM_ASSERT_TYPE (scm_is_real (y), y, SCM_ARG2, FUNC_NAME, "real");
5842 return scm_c_make_polar (scm_to_double (x), scm_to_double (y));
0f2d19dd 5843}
1bbd0b84 5844#undef FUNC_NAME
0f2d19dd
JB
5845
5846
152f82bf 5847SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
942e5b91
MG
5848/* "Return the real part of the number @var{z}."
5849 */
0f2d19dd 5850SCM
6e8d25a6 5851scm_real_part (SCM z)
0f2d19dd 5852{
e11e83f3 5853 if (SCM_I_INUMP (z))
c2ff8ab0 5854 return z;
0aacf84e 5855 else if (SCM_BIGP (z))
c2ff8ab0 5856 return z;
0aacf84e 5857 else if (SCM_REALP (z))
c2ff8ab0 5858 return z;
0aacf84e 5859 else if (SCM_COMPLEXP (z))
55f26379 5860 return scm_from_double (SCM_COMPLEX_REAL (z));
f92e85f7 5861 else if (SCM_FRACTIONP (z))
2fa2d879 5862 return z;
0aacf84e 5863 else
c2ff8ab0 5864 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
0f2d19dd
JB
5865}
5866
5867
152f82bf 5868SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
942e5b91
MG
5869/* "Return the imaginary part of the number @var{z}."
5870 */
0f2d19dd 5871SCM
6e8d25a6 5872scm_imag_part (SCM z)
0f2d19dd 5873{
e11e83f3 5874 if (SCM_I_INUMP (z))
f872b822 5875 return SCM_INUM0;
0aacf84e 5876 else if (SCM_BIGP (z))
f872b822 5877 return SCM_INUM0;
0aacf84e 5878 else if (SCM_REALP (z))
e7efe8e7 5879 return flo0;
0aacf84e 5880 else if (SCM_COMPLEXP (z))
55f26379 5881 return scm_from_double (SCM_COMPLEX_IMAG (z));
f92e85f7
MV
5882 else if (SCM_FRACTIONP (z))
5883 return SCM_INUM0;
0aacf84e 5884 else
c2ff8ab0 5885 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
0f2d19dd
JB
5886}
5887
f92e85f7
MV
5888SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5889/* "Return the numerator of the number @var{z}."
5890 */
5891SCM
5892scm_numerator (SCM z)
5893{
e11e83f3 5894 if (SCM_I_INUMP (z))
f92e85f7
MV
5895 return z;
5896 else if (SCM_BIGP (z))
5897 return z;
5898 else if (SCM_FRACTIONP (z))
e2bf3b19 5899 return SCM_FRACTION_NUMERATOR (z);
f92e85f7
MV
5900 else if (SCM_REALP (z))
5901 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5902 else
5903 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5904}
5905
5906
5907SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5908/* "Return the denominator of the number @var{z}."
5909 */
5910SCM
5911scm_denominator (SCM z)
5912{
e11e83f3 5913 if (SCM_I_INUMP (z))
d956fa6f 5914 return SCM_I_MAKINUM (1);
f92e85f7 5915 else if (SCM_BIGP (z))
d956fa6f 5916 return SCM_I_MAKINUM (1);
f92e85f7 5917 else if (SCM_FRACTIONP (z))
e2bf3b19 5918 return SCM_FRACTION_DENOMINATOR (z);
f92e85f7
MV
5919 else if (SCM_REALP (z))
5920 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5921 else
5922 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5923}
0f2d19dd 5924
9de33deb 5925SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
942e5b91
MG
5926/* "Return the magnitude of the number @var{z}. This is the same as\n"
5927 * "@code{abs} for real arguments, but also allows complex numbers."
5928 */
0f2d19dd 5929SCM
6e8d25a6 5930scm_magnitude (SCM z)
0f2d19dd 5931{
e11e83f3 5932 if (SCM_I_INUMP (z))
0aacf84e 5933 {
e25f3727 5934 scm_t_inum zz = SCM_I_INUM (z);
0aacf84e
MD
5935 if (zz >= 0)
5936 return z;
5937 else if (SCM_POSFIXABLE (-zz))
d956fa6f 5938 return SCM_I_MAKINUM (-zz);
0aacf84e 5939 else
e25f3727 5940 return scm_i_inum2big (-zz);
5986c47d 5941 }
0aacf84e
MD
5942 else if (SCM_BIGP (z))
5943 {
5944 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5945 scm_remember_upto_here_1 (z);
5946 if (sgn < 0)
5947 return scm_i_clonebig (z, 0);
5948 else
5949 return z;
5986c47d 5950 }
0aacf84e 5951 else if (SCM_REALP (z))
55f26379 5952 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
0aacf84e 5953 else if (SCM_COMPLEXP (z))
55f26379 5954 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
f92e85f7
MV
5955 else if (SCM_FRACTIONP (z))
5956 {
73e4de09 5957 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 5958 return z;
cba42c93 5959 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
f92e85f7
MV
5960 SCM_FRACTION_DENOMINATOR (z));
5961 }
0aacf84e 5962 else
c2ff8ab0 5963 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
0f2d19dd
JB
5964}
5965
5966
9de33deb 5967SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
942e5b91
MG
5968/* "Return the angle of the complex number @var{z}."
5969 */
0f2d19dd 5970SCM
6e8d25a6 5971scm_angle (SCM z)
0f2d19dd 5972{
c8ae173e 5973 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
e7efe8e7 5974 flo0 to save allocating a new flonum with scm_from_double each time.
c8ae173e
KR
5975 But if atan2 follows the floating point rounding mode, then the value
5976 is not a constant. Maybe it'd be close enough though. */
e11e83f3 5977 if (SCM_I_INUMP (z))
0aacf84e 5978 {
e11e83f3 5979 if (SCM_I_INUM (z) >= 0)
e7efe8e7 5980 return flo0;
0aacf84e 5981 else
55f26379 5982 return scm_from_double (atan2 (0.0, -1.0));
f872b822 5983 }
0aacf84e
MD
5984 else if (SCM_BIGP (z))
5985 {
5986 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5987 scm_remember_upto_here_1 (z);
5988 if (sgn < 0)
55f26379 5989 return scm_from_double (atan2 (0.0, -1.0));
0aacf84e 5990 else
e7efe8e7 5991 return flo0;
0f2d19dd 5992 }
0aacf84e 5993 else if (SCM_REALP (z))
c8ae173e
KR
5994 {
5995 if (SCM_REAL_VALUE (z) >= 0)
e7efe8e7 5996 return flo0;
c8ae173e 5997 else
55f26379 5998 return scm_from_double (atan2 (0.0, -1.0));
c8ae173e 5999 }
0aacf84e 6000 else if (SCM_COMPLEXP (z))
55f26379 6001 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
f92e85f7
MV
6002 else if (SCM_FRACTIONP (z))
6003 {
73e4de09 6004 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
e7efe8e7 6005 return flo0;
55f26379 6006 else return scm_from_double (atan2 (0.0, -1.0));
f92e85f7 6007 }
0aacf84e 6008 else
f4c627b3 6009 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
0f2d19dd
JB
6010}
6011
6012
3c9a524f
DH
6013SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
6014/* Convert the number @var{x} to its inexact representation.\n"
6015 */
6016SCM
6017scm_exact_to_inexact (SCM z)
6018{
e11e83f3 6019 if (SCM_I_INUMP (z))
55f26379 6020 return scm_from_double ((double) SCM_I_INUM (z));
3c9a524f 6021 else if (SCM_BIGP (z))
55f26379 6022 return scm_from_double (scm_i_big2dbl (z));
f92e85f7 6023 else if (SCM_FRACTIONP (z))
55f26379 6024 return scm_from_double (scm_i_fraction2double (z));
3c9a524f
DH
6025 else if (SCM_INEXACTP (z))
6026 return z;
6027 else
6028 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
6029}
6030
6031
a1ec6916 6032SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
1bbd0b84 6033 (SCM z),
1e6808ea 6034 "Return an exact number that is numerically closest to @var{z}.")
1bbd0b84 6035#define FUNC_NAME s_scm_inexact_to_exact
0f2d19dd 6036{
e11e83f3 6037 if (SCM_I_INUMP (z))
f872b822 6038 return z;
0aacf84e 6039 else if (SCM_BIGP (z))
f872b822 6040 return z;
0aacf84e
MD
6041 else if (SCM_REALP (z))
6042 {
2e65b52f 6043 if (isinf (SCM_REAL_VALUE (z)) || isnan (SCM_REAL_VALUE (z)))
f92e85f7 6044 SCM_OUT_OF_RANGE (1, z);
2be24db4 6045 else
f92e85f7
MV
6046 {
6047 mpq_t frac;
6048 SCM q;
6049
6050 mpq_init (frac);
6051 mpq_set_d (frac, SCM_REAL_VALUE (z));
cba42c93 6052 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
f92e85f7
MV
6053 scm_i_mpz2num (mpq_denref (frac)));
6054
cba42c93 6055 /* When scm_i_make_ratio throws, we leak the memory allocated
f92e85f7
MV
6056 for frac...
6057 */
6058 mpq_clear (frac);
6059 return q;
6060 }
c2ff8ab0 6061 }
f92e85f7
MV
6062 else if (SCM_FRACTIONP (z))
6063 return z;
0aacf84e 6064 else
c2ff8ab0 6065 SCM_WRONG_TYPE_ARG (1, z);
0f2d19dd 6066}
1bbd0b84 6067#undef FUNC_NAME
0f2d19dd 6068
f92e85f7 6069SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
76dae881
NJ
6070 (SCM x, SCM eps),
6071 "Returns the @emph{simplest} rational number differing\n"
6072 "from @var{x} by no more than @var{eps}.\n"
6073 "\n"
6074 "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
6075 "exact result when both its arguments are exact. Thus, you might need\n"
6076 "to use @code{inexact->exact} on the arguments.\n"
6077 "\n"
6078 "@lisp\n"
6079 "(rationalize (inexact->exact 1.2) 1/100)\n"
6080 "@result{} 6/5\n"
6081 "@end lisp")
f92e85f7
MV
6082#define FUNC_NAME s_scm_rationalize
6083{
e11e83f3 6084 if (SCM_I_INUMP (x))
f92e85f7
MV
6085 return x;
6086 else if (SCM_BIGP (x))
6087 return x;
6088 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
6089 {
6090 /* Use continued fractions to find closest ratio. All
6091 arithmetic is done with exact numbers.
6092 */
6093
6094 SCM ex = scm_inexact_to_exact (x);
6095 SCM int_part = scm_floor (ex);
d956fa6f
MV
6096 SCM tt = SCM_I_MAKINUM (1);
6097 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
6098 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
f92e85f7
MV
6099 SCM rx;
6100 int i = 0;
6101
73e4de09 6102 if (scm_is_true (scm_num_eq_p (ex, int_part)))
f92e85f7
MV
6103 return ex;
6104
6105 ex = scm_difference (ex, int_part); /* x = x-int_part */
6106 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
6107
6108 /* We stop after a million iterations just to be absolutely sure
6109 that we don't go into an infinite loop. The process normally
6110 converges after less than a dozen iterations.
6111 */
6112
76dae881 6113 eps = scm_abs (eps);
f92e85f7
MV
6114 while (++i < 1000000)
6115 {
6116 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
6117 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
73e4de09
MV
6118 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
6119 scm_is_false
f92e85f7 6120 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
76dae881 6121 eps))) /* abs(x-a/b) <= eps */
02164269
MV
6122 {
6123 SCM res = scm_sum (int_part, scm_divide (a, b));
73e4de09 6124 if (scm_is_false (scm_exact_p (x))
76dae881 6125 || scm_is_false (scm_exact_p (eps)))
02164269
MV
6126 return scm_exact_to_inexact (res);
6127 else
6128 return res;
6129 }
f92e85f7
MV
6130 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
6131 SCM_UNDEFINED);
6132 tt = scm_floor (rx); /* tt = floor (rx) */
6133 a2 = a1;
6134 b2 = b1;
6135 a1 = a;
6136 b1 = b;
6137 }
6138 scm_num_overflow (s_scm_rationalize);
6139 }
6140 else
6141 SCM_WRONG_TYPE_ARG (1, x);
6142}
6143#undef FUNC_NAME
6144
73e4de09
MV
6145/* conversion functions */
6146
6147int
6148scm_is_integer (SCM val)
6149{
6150 return scm_is_true (scm_integer_p (val));
6151}
6152
6153int
6154scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
6155{
e11e83f3 6156 if (SCM_I_INUMP (val))
73e4de09 6157 {
e11e83f3 6158 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
6159 return n >= min && n <= max;
6160 }
6161 else if (SCM_BIGP (val))
6162 {
6163 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
6164 return 0;
6165 else if (min >= LONG_MIN && max <= LONG_MAX)
d956fa6f
MV
6166 {
6167 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
6168 {
6169 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
6170 return n >= min && n <= max;
6171 }
6172 else
6173 return 0;
6174 }
73e4de09
MV
6175 else
6176 {
d956fa6f
MV
6177 scm_t_intmax n;
6178 size_t count;
73e4de09 6179
d956fa6f
MV
6180 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6181 > CHAR_BIT*sizeof (scm_t_uintmax))
6182 return 0;
6183
6184 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6185 SCM_I_BIG_MPZ (val));
73e4de09 6186
d956fa6f 6187 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
73e4de09 6188 {
d956fa6f
MV
6189 if (n < 0)
6190 return 0;
73e4de09 6191 }
73e4de09
MV
6192 else
6193 {
d956fa6f
MV
6194 n = -n;
6195 if (n >= 0)
6196 return 0;
73e4de09 6197 }
d956fa6f
MV
6198
6199 return n >= min && n <= max;
73e4de09
MV
6200 }
6201 }
73e4de09
MV
6202 else
6203 return 0;
6204}
6205
6206int
6207scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
6208{
e11e83f3 6209 if (SCM_I_INUMP (val))
73e4de09 6210 {
e11e83f3 6211 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
6212 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
6213 }
6214 else if (SCM_BIGP (val))
6215 {
6216 if (max <= SCM_MOST_POSITIVE_FIXNUM)
6217 return 0;
6218 else if (max <= ULONG_MAX)
d956fa6f
MV
6219 {
6220 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
6221 {
6222 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
6223 return n >= min && n <= max;
6224 }
6225 else
6226 return 0;
6227 }
73e4de09
MV
6228 else
6229 {
d956fa6f
MV
6230 scm_t_uintmax n;
6231 size_t count;
73e4de09 6232
d956fa6f
MV
6233 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
6234 return 0;
73e4de09 6235
d956fa6f
MV
6236 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6237 > CHAR_BIT*sizeof (scm_t_uintmax))
73e4de09 6238 return 0;
d956fa6f
MV
6239
6240 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6241 SCM_I_BIG_MPZ (val));
73e4de09 6242
d956fa6f 6243 return n >= min && n <= max;
73e4de09
MV
6244 }
6245 }
73e4de09
MV
6246 else
6247 return 0;
6248}
6249
1713d319
MV
6250static void
6251scm_i_range_error (SCM bad_val, SCM min, SCM max)
6252{
6253 scm_error (scm_out_of_range_key,
6254 NULL,
6255 "Value out of range ~S to ~S: ~S",
6256 scm_list_3 (min, max, bad_val),
6257 scm_list_1 (bad_val));
6258}
6259
bfd7932e
MV
6260#define TYPE scm_t_intmax
6261#define TYPE_MIN min
6262#define TYPE_MAX max
6263#define SIZEOF_TYPE 0
6264#define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
6265#define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
6266#include "libguile/conv-integer.i.c"
6267
6268#define TYPE scm_t_uintmax
6269#define TYPE_MIN min
6270#define TYPE_MAX max
6271#define SIZEOF_TYPE 0
6272#define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
6273#define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
6274#include "libguile/conv-uinteger.i.c"
6275
6276#define TYPE scm_t_int8
6277#define TYPE_MIN SCM_T_INT8_MIN
6278#define TYPE_MAX SCM_T_INT8_MAX
6279#define SIZEOF_TYPE 1
6280#define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
6281#define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
6282#include "libguile/conv-integer.i.c"
6283
6284#define TYPE scm_t_uint8
6285#define TYPE_MIN 0
6286#define TYPE_MAX SCM_T_UINT8_MAX
6287#define SIZEOF_TYPE 1
6288#define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
6289#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
6290#include "libguile/conv-uinteger.i.c"
6291
6292#define TYPE scm_t_int16
6293#define TYPE_MIN SCM_T_INT16_MIN
6294#define TYPE_MAX SCM_T_INT16_MAX
6295#define SIZEOF_TYPE 2
6296#define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
6297#define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
6298#include "libguile/conv-integer.i.c"
6299
6300#define TYPE scm_t_uint16
6301#define TYPE_MIN 0
6302#define TYPE_MAX SCM_T_UINT16_MAX
6303#define SIZEOF_TYPE 2
6304#define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
6305#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
6306#include "libguile/conv-uinteger.i.c"
6307
6308#define TYPE scm_t_int32
6309#define TYPE_MIN SCM_T_INT32_MIN
6310#define TYPE_MAX SCM_T_INT32_MAX
6311#define SIZEOF_TYPE 4
6312#define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
6313#define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
6314#include "libguile/conv-integer.i.c"
6315
6316#define TYPE scm_t_uint32
6317#define TYPE_MIN 0
6318#define TYPE_MAX SCM_T_UINT32_MAX
6319#define SIZEOF_TYPE 4
6320#define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
6321#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
6322#include "libguile/conv-uinteger.i.c"
6323
904a78f1
MG
6324#define TYPE scm_t_wchar
6325#define TYPE_MIN (scm_t_int32)-1
6326#define TYPE_MAX (scm_t_int32)0x10ffff
6327#define SIZEOF_TYPE 4
6328#define SCM_TO_TYPE_PROTO(arg) scm_to_wchar (arg)
6329#define SCM_FROM_TYPE_PROTO(arg) scm_from_wchar (arg)
6330#include "libguile/conv-integer.i.c"
6331
bfd7932e
MV
6332#define TYPE scm_t_int64
6333#define TYPE_MIN SCM_T_INT64_MIN
6334#define TYPE_MAX SCM_T_INT64_MAX
6335#define SIZEOF_TYPE 8
6336#define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
6337#define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
6338#include "libguile/conv-integer.i.c"
6339
6340#define TYPE scm_t_uint64
6341#define TYPE_MIN 0
6342#define TYPE_MAX SCM_T_UINT64_MAX
6343#define SIZEOF_TYPE 8
6344#define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
6345#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
6346#include "libguile/conv-uinteger.i.c"
73e4de09 6347
cd036260
MV
6348void
6349scm_to_mpz (SCM val, mpz_t rop)
6350{
6351 if (SCM_I_INUMP (val))
6352 mpz_set_si (rop, SCM_I_INUM (val));
6353 else if (SCM_BIGP (val))
6354 mpz_set (rop, SCM_I_BIG_MPZ (val));
6355 else
6356 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
6357}
6358
6359SCM
6360scm_from_mpz (mpz_t val)
6361{
6362 return scm_i_mpz2num (val);
6363}
6364
73e4de09
MV
6365int
6366scm_is_real (SCM val)
6367{
6368 return scm_is_true (scm_real_p (val));
6369}
6370
55f26379
MV
6371int
6372scm_is_rational (SCM val)
6373{
6374 return scm_is_true (scm_rational_p (val));
6375}
6376
73e4de09
MV
6377double
6378scm_to_double (SCM val)
6379{
55f26379
MV
6380 if (SCM_I_INUMP (val))
6381 return SCM_I_INUM (val);
6382 else if (SCM_BIGP (val))
6383 return scm_i_big2dbl (val);
6384 else if (SCM_FRACTIONP (val))
6385 return scm_i_fraction2double (val);
6386 else if (SCM_REALP (val))
6387 return SCM_REAL_VALUE (val);
6388 else
7a1aba42 6389 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
73e4de09
MV
6390}
6391
6392SCM
6393scm_from_double (double val)
6394{
978c52d1
LC
6395 SCM z;
6396
6397 z = PTR2SCM (scm_gc_malloc_pointerless (sizeof (scm_t_double), "real"));
6398
6399 SCM_SET_CELL_TYPE (z, scm_tc16_real);
55f26379 6400 SCM_REAL_VALUE (z) = val;
978c52d1 6401
55f26379 6402 return z;
73e4de09
MV
6403}
6404
220058a8 6405#if SCM_ENABLE_DEPRECATED == 1
55f26379
MV
6406
6407float
e25f3727 6408scm_num2float (SCM num, unsigned long pos, const char *s_caller)
55f26379 6409{
220058a8
AW
6410 scm_c_issue_deprecation_warning
6411 ("`scm_num2float' is deprecated. Use scm_to_double instead.");
6412
55f26379
MV
6413 if (SCM_BIGP (num))
6414 {
6415 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
2e65b52f 6416 if (!isinf (res))
55f26379
MV
6417 return res;
6418 else
6419 scm_out_of_range (NULL, num);
6420 }
6421 else
6422 return scm_to_double (num);
6423}
6424
6425double
e25f3727 6426scm_num2double (SCM num, unsigned long pos, const char *s_caller)
55f26379 6427{
220058a8
AW
6428 scm_c_issue_deprecation_warning
6429 ("`scm_num2double' is deprecated. Use scm_to_double instead.");
6430
55f26379
MV
6431 if (SCM_BIGP (num))
6432 {
6433 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
2e65b52f 6434 if (!isinf (res))
55f26379
MV
6435 return res;
6436 else
6437 scm_out_of_range (NULL, num);
6438 }
6439 else
6440 return scm_to_double (num);
6441}
6442
6443#endif
6444
8507ec80
MV
6445int
6446scm_is_complex (SCM val)
6447{
6448 return scm_is_true (scm_complex_p (val));
6449}
6450
6451double
6452scm_c_real_part (SCM z)
6453{
6454 if (SCM_COMPLEXP (z))
6455 return SCM_COMPLEX_REAL (z);
6456 else
6457 {
6458 /* Use the scm_real_part to get proper error checking and
6459 dispatching.
6460 */
6461 return scm_to_double (scm_real_part (z));
6462 }
6463}
6464
6465double
6466scm_c_imag_part (SCM z)
6467{
6468 if (SCM_COMPLEXP (z))
6469 return SCM_COMPLEX_IMAG (z);
6470 else
6471 {
6472 /* Use the scm_imag_part to get proper error checking and
6473 dispatching. The result will almost always be 0.0, but not
6474 always.
6475 */
6476 return scm_to_double (scm_imag_part (z));
6477 }
6478}
6479
6480double
6481scm_c_magnitude (SCM z)
6482{
6483 return scm_to_double (scm_magnitude (z));
6484}
6485
6486double
6487scm_c_angle (SCM z)
6488{
6489 return scm_to_double (scm_angle (z));
6490}
6491
6492int
6493scm_is_number (SCM z)
6494{
6495 return scm_is_true (scm_number_p (z));
6496}
6497
8ab3d8a0
KR
6498
6499/* In the following functions we dispatch to the real-arg funcs like log()
6500 when we know the arg is real, instead of just handing everything to
6501 clog() for instance. This is in case clog() doesn't optimize for a
6502 real-only case, and because we have to test SCM_COMPLEXP anyway so may as
6503 well use it to go straight to the applicable C func. */
6504
6505SCM_DEFINE (scm_log, "log", 1, 0, 0,
6506 (SCM z),
6507 "Return the natural logarithm of @var{z}.")
6508#define FUNC_NAME s_scm_log
6509{
6510 if (SCM_COMPLEXP (z))
6511 {
4b26c03e 6512#if HAVE_COMPLEX_DOUBLE && HAVE_CLOG && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6513 return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
6514#else
6515 double re = SCM_COMPLEX_REAL (z);
6516 double im = SCM_COMPLEX_IMAG (z);
6517 return scm_c_make_rectangular (log (hypot (re, im)),
6518 atan2 (im, re));
6519#endif
6520 }
6521 else
6522 {
6523 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6524 although the value itself overflows. */
6525 double re = scm_to_double (z);
6526 double l = log (fabs (re));
6527 if (re >= 0.0)
6528 return scm_from_double (l);
6529 else
6530 return scm_c_make_rectangular (l, M_PI);
6531 }
6532}
6533#undef FUNC_NAME
6534
6535
6536SCM_DEFINE (scm_log10, "log10", 1, 0, 0,
6537 (SCM z),
6538 "Return the base 10 logarithm of @var{z}.")
6539#define FUNC_NAME s_scm_log10
6540{
6541 if (SCM_COMPLEXP (z))
6542 {
6543 /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
6544 clog() and a multiply by M_LOG10E, rather than the fallback
6545 log10+hypot+atan2.) */
f328f862
LC
6546#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG10 \
6547 && defined SCM_COMPLEX_VALUE
8ab3d8a0
KR
6548 return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
6549#else
6550 double re = SCM_COMPLEX_REAL (z);
6551 double im = SCM_COMPLEX_IMAG (z);
6552 return scm_c_make_rectangular (log10 (hypot (re, im)),
6553 M_LOG10E * atan2 (im, re));
6554#endif
6555 }
6556 else
6557 {
6558 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6559 although the value itself overflows. */
6560 double re = scm_to_double (z);
6561 double l = log10 (fabs (re));
6562 if (re >= 0.0)
6563 return scm_from_double (l);
6564 else
6565 return scm_c_make_rectangular (l, M_LOG10E * M_PI);
6566 }
6567}
6568#undef FUNC_NAME
6569
6570
6571SCM_DEFINE (scm_exp, "exp", 1, 0, 0,
6572 (SCM z),
6573 "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
6574 "base of natural logarithms (2.71828@dots{}).")
6575#define FUNC_NAME s_scm_exp
6576{
6577 if (SCM_COMPLEXP (z))
6578 {
4b26c03e 6579#if HAVE_COMPLEX_DOUBLE && HAVE_CEXP && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6580 return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
6581#else
6582 return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
6583 SCM_COMPLEX_IMAG (z));
6584#endif
6585 }
6586 else
6587 {
6588 /* When z is a negative bignum the conversion to double overflows,
6589 giving -infinity, but that's ok, the exp is still 0.0. */
6590 return scm_from_double (exp (scm_to_double (z)));
6591 }
6592}
6593#undef FUNC_NAME
6594
6595
6596SCM_DEFINE (scm_sqrt, "sqrt", 1, 0, 0,
6597 (SCM x),
6598 "Return the square root of @var{z}. Of the two possible roots\n"
6599 "(positive and negative), the one with the a positive real part\n"
6600 "is returned, or if that's zero then a positive imaginary part.\n"
6601 "Thus,\n"
6602 "\n"
6603 "@example\n"
6604 "(sqrt 9.0) @result{} 3.0\n"
6605 "(sqrt -9.0) @result{} 0.0+3.0i\n"
6606 "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
6607 "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
6608 "@end example")
6609#define FUNC_NAME s_scm_sqrt
6610{
6611 if (SCM_COMPLEXP (x))
6612 {
f328f862
LC
6613#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_USABLE_CSQRT \
6614 && defined SCM_COMPLEX_VALUE
8ab3d8a0
KR
6615 return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (x)));
6616#else
6617 double re = SCM_COMPLEX_REAL (x);
6618 double im = SCM_COMPLEX_IMAG (x);
6619 return scm_c_make_polar (sqrt (hypot (re, im)),
6620 0.5 * atan2 (im, re));
6621#endif
6622 }
6623 else
6624 {
6625 double xx = scm_to_double (x);
6626 if (xx < 0)
6627 return scm_c_make_rectangular (0.0, sqrt (-xx));
6628 else
6629 return scm_from_double (sqrt (xx));
6630 }
6631}
6632#undef FUNC_NAME
6633
6634
6635
0f2d19dd
JB
6636void
6637scm_init_numbers ()
0f2d19dd 6638{
0b799eea
MV
6639 int i;
6640
713a4259
KR
6641 mpz_init_set_si (z_negative_one, -1);
6642
a261c0e9
DH
6643 /* It may be possible to tune the performance of some algorithms by using
6644 * the following constants to avoid the creation of bignums. Please, before
6645 * using these values, remember the two rules of program optimization:
6646 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
86d31dfe 6647 scm_c_define ("most-positive-fixnum",
d956fa6f 6648 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
86d31dfe 6649 scm_c_define ("most-negative-fixnum",
d956fa6f 6650 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
a261c0e9 6651
f3ae5d60
MD
6652 scm_add_feature ("complex");
6653 scm_add_feature ("inexact");
e7efe8e7 6654 flo0 = scm_from_double (0.0);
0b799eea
MV
6655
6656 /* determine floating point precision */
55f26379 6657 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
0b799eea
MV
6658 {
6659 init_dblprec(&scm_dblprec[i-2],i);
6660 init_fx_radix(fx_per_radix[i-2],i);
6661 }
f872b822 6662#ifdef DBL_DIG
0b799eea 6663 /* hard code precision for base 10 if the preprocessor tells us to... */
f39448c5 6664 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
0b799eea 6665#endif
1be6b49c 6666
f39448c5 6667 exactly_one_half = scm_divide (SCM_I_MAKINUM (1), SCM_I_MAKINUM (2));
a0599745 6668#include "libguile/numbers.x"
0f2d19dd 6669}
89e00824
ML
6670
6671/*
6672 Local Variables:
6673 c-file-style: "gnu"
6674 End:
6675*/