Removed caveat that pretty-print uses its own 'write' implementation.
[bpt/guile.git] / libguile / numbers.c
CommitLineData
238ebcef 1/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004 Free Software Foundation, Inc.
ba74ef4e
MV
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
f81e080b 6 *
73be1d9e
MV
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
0f2d19dd 11 *
73be1d9e
MV
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
0f2d19dd 16 *
73be1d9e
MV
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
1bbd0b84 21
0f2d19dd 22\f
ca46fb90
RB
23/* General assumptions:
24 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
25 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
26 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
27 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
f92e85f7 28 * All objects satisfying SCM_FRACTIONP are never an integer.
ca46fb90
RB
29 */
30
31/* TODO:
32
33 - see if special casing bignums and reals in integer-exponent when
34 possible (to use mpz_pow and mpf_pow_ui) is faster.
35
36 - look in to better short-circuiting of common cases in
37 integer-expt and elsewhere.
38
39 - see if direct mpz operations can help in ash and elsewhere.
40
41 */
0f2d19dd 42
fa605590
KR
43/* tell glibc (2.3) to give prototype for C99 trunc() */
44#define _GNU_SOURCE
45
ee33d62a
RB
46#if HAVE_CONFIG_H
47# include <config.h>
48#endif
49
0f2d19dd 50#include <math.h>
3c9a524f 51#include <ctype.h>
fc194577 52#include <string.h>
ca46fb90 53#include <gmp.h>
f92e85f7 54
a0599745 55#include "libguile/_scm.h"
a0599745
MD
56#include "libguile/feature.h"
57#include "libguile/ports.h"
58#include "libguile/root.h"
59#include "libguile/smob.h"
60#include "libguile/strings.h"
a0599745
MD
61
62#include "libguile/validate.h"
63#include "libguile/numbers.h"
1be6b49c 64#include "libguile/deprecation.h"
f4c627b3 65
f92e85f7
MV
66#include "libguile/eq.h"
67
55f26379
MV
68#include "libguile/discouraged.h"
69
0f2d19dd 70\f
f4c627b3 71
ca46fb90
RB
72/*
73 Wonder if this might be faster for some of our code? A switch on
74 the numtag would jump directly to the right case, and the
75 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
76
77 #define SCM_I_NUMTAG_NOTNUM 0
78 #define SCM_I_NUMTAG_INUM 1
79 #define SCM_I_NUMTAG_BIG scm_tc16_big
80 #define SCM_I_NUMTAG_REAL scm_tc16_real
81 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
82 #define SCM_I_NUMTAG(x) \
e11e83f3 83 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
ca46fb90 84 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
534c55a9 85 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
ca46fb90
RB
86 : SCM_I_NUMTAG_NOTNUM)))
87*/
f92e85f7 88/* the macro above will not work as is with fractions */
f4c627b3
DH
89
90
34d19ef6 91#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
09fb7599 92
56e55ac7 93/* FLOBUFLEN is the maximum number of characters neccessary for the
3a9809df
DH
94 * printed or scm_string representation of an inexact number.
95 */
0b799eea 96#define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
3a9809df 97
7351e207
MV
98#if defined (SCO)
99#if ! defined (HAVE_ISNAN)
100#define HAVE_ISNAN
101static int
102isnan (double x)
103{
104 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
105}
0f2d19dd 106#endif
7351e207
MV
107#if ! defined (HAVE_ISINF)
108#define HAVE_ISINF
109static int
110isinf (double x)
111{
112 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
113}
0f2d19dd 114
7351e207 115#endif
e6f3ef58
MD
116#endif
117
b127c712 118
f8a8200b
KR
119/* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
120 an explicit check. In some future gmp (don't know what version number),
121 mpz_cmp_d is supposed to do this itself. */
122#if 1
b127c712
KR
123#define xmpz_cmp_d(z, d) \
124 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
125#else
126#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
127#endif
128
a98ce907
KR
129/* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
130 isinf. It does have finite and isnan though, hence the use of those.
131 fpclass would be a possibility on that system too. */
f92e85f7
MV
132static int
133xisinf (double x)
134{
135#if defined (HAVE_ISINF)
136 return isinf (x);
137#elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
138 return (! (finite (x) || isnan (x)));
139#else
140 return 0;
141#endif
142}
143
144static int
145xisnan (double x)
146{
147#if defined (HAVE_ISNAN)
148 return isnan (x);
149#else
150 return 0;
151#endif
152}
153
0f2d19dd
JB
154\f
155
713a4259 156static mpz_t z_negative_one;
ac0c002c
DH
157
158\f
159
570b6821 160SCM_C_INLINE_KEYWORD SCM
ca46fb90
RB
161scm_i_mkbig ()
162{
163 /* Return a newly created bignum. */
164 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
165 mpz_init (SCM_I_BIG_MPZ (z));
166 return z;
167}
168
c71b0706
MV
169SCM_C_INLINE_KEYWORD SCM
170scm_i_long2big (long x)
171{
172 /* Return a newly created bignum initialized to X. */
173 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
174 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
175 return z;
176}
177
178SCM_C_INLINE_KEYWORD SCM
179scm_i_ulong2big (unsigned long x)
180{
181 /* Return a newly created bignum initialized to X. */
182 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
183 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
184 return z;
185}
186
570b6821 187SCM_C_INLINE_KEYWORD static SCM
ca46fb90
RB
188scm_i_clonebig (SCM src_big, int same_sign_p)
189{
190 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
191 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
192 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
0aacf84e
MD
193 if (!same_sign_p)
194 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
ca46fb90
RB
195 return z;
196}
197
570b6821 198SCM_C_INLINE_KEYWORD int
ca46fb90
RB
199scm_i_bigcmp (SCM x, SCM y)
200{
201 /* Return neg if x < y, pos if x > y, and 0 if x == y */
202 /* presume we already know x and y are bignums */
203 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
204 scm_remember_upto_here_2 (x, y);
205 return result;
206}
207
570b6821 208SCM_C_INLINE_KEYWORD SCM
ca46fb90
RB
209scm_i_dbl2big (double d)
210{
211 /* results are only defined if d is an integer */
212 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
213 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
214 return z;
215}
216
f92e85f7
MV
217/* Convert a integer in double representation to a SCM number. */
218
219SCM_C_INLINE_KEYWORD SCM
220scm_i_dbl2num (double u)
221{
222 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
223 powers of 2, so there's no rounding when making "double" values
224 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
225 get rounded on a 64-bit machine, hence the "+1".
226
227 The use of floor() to force to an integer value ensures we get a
228 "numerically closest" value without depending on how a
229 double->long cast or how mpz_set_d will round. For reference,
230 double->long probably follows the hardware rounding mode,
231 mpz_set_d truncates towards zero. */
232
233 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
234 representable as a double? */
235
236 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
237 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
d956fa6f 238 return SCM_I_MAKINUM ((long) u);
f92e85f7
MV
239 else
240 return scm_i_dbl2big (u);
241}
242
089c9a59
KR
243/* scm_i_big2dbl() rounds to the closest representable double, in accordance
244 with R5RS exact->inexact.
245
246 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
f8a8200b
KR
247 (ie. truncate towards zero), then adjust to get the closest double by
248 examining the next lower bit and adding 1 (to the absolute value) if
249 necessary.
250
251 Bignums exactly half way between representable doubles are rounded to the
252 next higher absolute value (ie. away from zero). This seems like an
253 adequate interpretation of R5RS "numerically closest", and it's easier
254 and faster than a full "nearest-even" style.
255
256 The bit test must be done on the absolute value of the mpz_t, which means
257 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
258 negatives as twos complement.
259
260 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
261 following the hardware rounding mode, but applied to the absolute value
262 of the mpz_t operand. This is not what we want so we put the high
263 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
264 mpz_get_d is supposed to always truncate towards zero.
265
266 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
267 is a slowdown. It'd be faster to pick out the relevant high bits with
268 mpz_getlimbn if we could be bothered coding that, and if the new
269 truncating gmp doesn't come out. */
089c9a59
KR
270
271double
ca46fb90
RB
272scm_i_big2dbl (SCM b)
273{
089c9a59
KR
274 double result;
275 size_t bits;
276
277 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
278
f8a8200b 279#if 1
089c9a59 280 {
f8a8200b 281 /* Current GMP, eg. 4.1.3, force truncation towards zero */
089c9a59
KR
282 mpz_t tmp;
283 if (bits > DBL_MANT_DIG)
284 {
285 size_t shift = bits - DBL_MANT_DIG;
286 mpz_init2 (tmp, DBL_MANT_DIG);
287 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
288 result = ldexp (mpz_get_d (tmp), shift);
289 mpz_clear (tmp);
290 }
291 else
292 {
293 result = mpz_get_d (SCM_I_BIG_MPZ (b));
294 }
295 }
296#else
f8a8200b 297 /* Future GMP */
089c9a59
KR
298 result = mpz_get_d (SCM_I_BIG_MPZ (b));
299#endif
300
301 if (bits > DBL_MANT_DIG)
302 {
303 unsigned long pos = bits - DBL_MANT_DIG - 1;
304 /* test bit number "pos" in absolute value */
305 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
306 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
307 {
308 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
309 }
310 }
311
ca46fb90
RB
312 scm_remember_upto_here_1 (b);
313 return result;
314}
315
570b6821 316SCM_C_INLINE_KEYWORD SCM
ca46fb90
RB
317scm_i_normbig (SCM b)
318{
319 /* convert a big back to a fixnum if it'll fit */
320 /* presume b is a bignum */
321 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
322 {
323 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
324 if (SCM_FIXABLE (val))
d956fa6f 325 b = SCM_I_MAKINUM (val);
ca46fb90
RB
326 }
327 return b;
328}
f872b822 329
f92e85f7
MV
330static SCM_C_INLINE_KEYWORD SCM
331scm_i_mpz2num (mpz_t b)
332{
333 /* convert a mpz number to a SCM number. */
334 if (mpz_fits_slong_p (b))
335 {
336 long val = mpz_get_si (b);
337 if (SCM_FIXABLE (val))
d956fa6f 338 return SCM_I_MAKINUM (val);
f92e85f7
MV
339 }
340
341 {
342 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
343 mpz_init_set (SCM_I_BIG_MPZ (z), b);
344 return z;
345 }
346}
347
348/* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
349static SCM scm_divide2real (SCM x, SCM y);
350
cba42c93
MV
351static SCM
352scm_i_make_ratio (SCM numerator, SCM denominator)
c60e130c 353#define FUNC_NAME "make-ratio"
f92e85f7 354{
c60e130c
MV
355 /* First make sure the arguments are proper.
356 */
e11e83f3 357 if (SCM_I_INUMP (denominator))
f92e85f7 358 {
bc36d050 359 if (scm_is_eq (denominator, SCM_INUM0))
f92e85f7 360 scm_num_overflow ("make-ratio");
bc36d050 361 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
f92e85f7
MV
362 return numerator;
363 }
364 else
365 {
366 if (!(SCM_BIGP(denominator)))
367 SCM_WRONG_TYPE_ARG (2, denominator);
368 }
e11e83f3 369 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
c60e130c
MV
370 SCM_WRONG_TYPE_ARG (1, numerator);
371
372 /* Then flip signs so that the denominator is positive.
373 */
73e4de09 374 if (scm_is_true (scm_negative_p (denominator)))
c60e130c
MV
375 {
376 numerator = scm_difference (numerator, SCM_UNDEFINED);
377 denominator = scm_difference (denominator, SCM_UNDEFINED);
378 }
379
380 /* Now consider for each of the four fixnum/bignum combinations
381 whether the rational number is really an integer.
382 */
e11e83f3 383 if (SCM_I_INUMP (numerator))
f92e85f7 384 {
e11e83f3 385 long x = SCM_I_INUM (numerator);
bc36d050 386 if (scm_is_eq (numerator, SCM_INUM0))
f92e85f7 387 return SCM_INUM0;
e11e83f3 388 if (SCM_I_INUMP (denominator))
f92e85f7 389 {
dd5130ca 390 long y;
e11e83f3 391 y = SCM_I_INUM (denominator);
f92e85f7 392 if (x == y)
d956fa6f 393 return SCM_I_MAKINUM(1);
f92e85f7 394 if ((x % y) == 0)
d956fa6f 395 return SCM_I_MAKINUM (x / y);
f92e85f7 396 }
dd5130ca
KR
397 else
398 {
399 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
3271a325
KR
400 of that value for the denominator, as a bignum. Apart from
401 that case, abs(bignum) > abs(inum) so inum/bignum is not an
402 integer. */
403 if (x == SCM_MOST_NEGATIVE_FIXNUM
404 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
405 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
d956fa6f 406 return SCM_I_MAKINUM(-1);
dd5130ca 407 }
f92e85f7 408 }
c60e130c 409 else if (SCM_BIGP (numerator))
f92e85f7 410 {
e11e83f3 411 if (SCM_I_INUMP (denominator))
c60e130c 412 {
e11e83f3 413 long yy = SCM_I_INUM (denominator);
c60e130c
MV
414 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
415 return scm_divide (numerator, denominator);
416 }
417 else
f92e85f7 418 {
bc36d050 419 if (scm_is_eq (numerator, denominator))
d956fa6f 420 return SCM_I_MAKINUM(1);
c60e130c
MV
421 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
422 SCM_I_BIG_MPZ (denominator)))
423 return scm_divide(numerator, denominator);
f92e85f7 424 }
f92e85f7 425 }
c60e130c
MV
426
427 /* No, it's a proper fraction.
428 */
429 return scm_double_cell (scm_tc16_fraction,
430 SCM_UNPACK (numerator),
431 SCM_UNPACK (denominator), 0);
f92e85f7 432}
c60e130c 433#undef FUNC_NAME
f92e85f7
MV
434
435static void scm_i_fraction_reduce (SCM z)
436{
437 if (!(SCM_FRACTION_REDUCED (z)))
438 {
439 SCM divisor;
440 divisor = scm_gcd (SCM_FRACTION_NUMERATOR (z), SCM_FRACTION_DENOMINATOR (z));
bc36d050 441 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
f92e85f7
MV
442 {
443 /* is this safe? */
444 SCM_FRACTION_SET_NUMERATOR (z, scm_divide (SCM_FRACTION_NUMERATOR (z), divisor));
445 SCM_FRACTION_SET_DENOMINATOR (z, scm_divide (SCM_FRACTION_DENOMINATOR (z), divisor));
446 }
447 SCM_FRACTION_REDUCED_SET (z);
448 }
449}
450
451double
452scm_i_fraction2double (SCM z)
453{
55f26379
MV
454 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
455 SCM_FRACTION_DENOMINATOR (z)));
f92e85f7
MV
456}
457
a1ec6916 458SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
1bbd0b84 459 (SCM x),
942e5b91
MG
460 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
461 "otherwise.")
1bbd0b84 462#define FUNC_NAME s_scm_exact_p
0f2d19dd 463{
e11e83f3 464 if (SCM_I_INUMP (x))
0aacf84e
MD
465 return SCM_BOOL_T;
466 if (SCM_BIGP (x))
467 return SCM_BOOL_T;
f92e85f7
MV
468 if (SCM_FRACTIONP (x))
469 return SCM_BOOL_T;
eb927cb9
MV
470 if (SCM_NUMBERP (x))
471 return SCM_BOOL_F;
472 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 473}
1bbd0b84 474#undef FUNC_NAME
0f2d19dd 475
4219f20d 476
a1ec6916 477SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
1bbd0b84 478 (SCM n),
942e5b91
MG
479 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
480 "otherwise.")
1bbd0b84 481#define FUNC_NAME s_scm_odd_p
0f2d19dd 482{
e11e83f3 483 if (SCM_I_INUMP (n))
0aacf84e 484 {
e11e83f3 485 long val = SCM_I_INUM (n);
73e4de09 486 return scm_from_bool ((val & 1L) != 0);
0aacf84e
MD
487 }
488 else if (SCM_BIGP (n))
489 {
490 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
491 scm_remember_upto_here_1 (n);
73e4de09 492 return scm_from_bool (odd_p);
0aacf84e 493 }
73e4de09 494 else if (scm_is_true (scm_inf_p (n)))
7351e207 495 return SCM_BOOL_T;
f92e85f7
MV
496 else if (SCM_REALP (n))
497 {
498 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
499 if (rem == 1.0)
500 return SCM_BOOL_T;
501 else if (rem == 0.0)
502 return SCM_BOOL_F;
503 else
504 SCM_WRONG_TYPE_ARG (1, n);
505 }
0aacf84e 506 else
a1a33b0f 507 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 508}
1bbd0b84 509#undef FUNC_NAME
0f2d19dd 510
4219f20d 511
a1ec6916 512SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
1bbd0b84 513 (SCM n),
942e5b91
MG
514 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
515 "otherwise.")
1bbd0b84 516#define FUNC_NAME s_scm_even_p
0f2d19dd 517{
e11e83f3 518 if (SCM_I_INUMP (n))
0aacf84e 519 {
e11e83f3 520 long val = SCM_I_INUM (n);
73e4de09 521 return scm_from_bool ((val & 1L) == 0);
0aacf84e
MD
522 }
523 else if (SCM_BIGP (n))
524 {
525 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
526 scm_remember_upto_here_1 (n);
73e4de09 527 return scm_from_bool (even_p);
0aacf84e 528 }
73e4de09 529 else if (scm_is_true (scm_inf_p (n)))
7351e207 530 return SCM_BOOL_T;
f92e85f7
MV
531 else if (SCM_REALP (n))
532 {
533 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
534 if (rem == 1.0)
535 return SCM_BOOL_F;
536 else if (rem == 0.0)
537 return SCM_BOOL_T;
538 else
539 SCM_WRONG_TYPE_ARG (1, n);
540 }
0aacf84e 541 else
a1a33b0f 542 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 543}
1bbd0b84 544#undef FUNC_NAME
0f2d19dd 545
7351e207
MV
546SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
547 (SCM n),
548 "Return @code{#t} if @var{n} is infinite, @code{#f}\n"
549 "otherwise.")
550#define FUNC_NAME s_scm_inf_p
551{
0aacf84e 552 if (SCM_REALP (n))
73e4de09 553 return scm_from_bool (xisinf (SCM_REAL_VALUE (n)));
0aacf84e 554 else if (SCM_COMPLEXP (n))
73e4de09 555 return scm_from_bool (xisinf (SCM_COMPLEX_REAL (n))
7351e207 556 || xisinf (SCM_COMPLEX_IMAG (n)));
0aacf84e 557 else
7351e207 558 return SCM_BOOL_F;
7351e207
MV
559}
560#undef FUNC_NAME
561
562SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
563 (SCM n),
564 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
565 "otherwise.")
566#define FUNC_NAME s_scm_nan_p
567{
0aacf84e 568 if (SCM_REALP (n))
73e4de09 569 return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
0aacf84e 570 else if (SCM_COMPLEXP (n))
73e4de09 571 return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
7351e207 572 || xisnan (SCM_COMPLEX_IMAG (n)));
0aacf84e 573 else
7351e207 574 return SCM_BOOL_F;
7351e207
MV
575}
576#undef FUNC_NAME
577
578/* Guile's idea of infinity. */
579static double guile_Inf;
580
581/* Guile's idea of not a number. */
582static double guile_NaN;
583
584static void
585guile_ieee_init (void)
586{
587#if defined (HAVE_ISINF) || defined (HAVE_FINITE)
588
589/* Some version of gcc on some old version of Linux used to crash when
590 trying to make Inf and NaN. */
591
240a27d2
KR
592#ifdef INFINITY
593 /* C99 INFINITY, when available.
594 FIXME: The standard allows for INFINITY to be something that overflows
595 at compile time. We ought to have a configure test to check for that
596 before trying to use it. (But in practice we believe this is not a
597 problem on any system guile is likely to target.) */
598 guile_Inf = INFINITY;
599#elif HAVE_DINFINITY
600 /* OSF */
7351e207
MV
601 extern unsigned int DINFINITY[2];
602 guile_Inf = (*(X_CAST(double *, DINFINITY)));
603#else
604 double tmp = 1e+10;
605 guile_Inf = tmp;
606 for (;;)
607 {
608 guile_Inf *= 1e+10;
609 if (guile_Inf == tmp)
610 break;
611 tmp = guile_Inf;
612 }
613#endif
614
615#endif
616
617#if defined (HAVE_ISNAN)
618
240a27d2
KR
619#ifdef NAN
620 /* C99 NAN, when available */
621 guile_NaN = NAN;
622#elif HAVE_DQNAN
623 /* OSF */
7351e207
MV
624 extern unsigned int DQNAN[2];
625 guile_NaN = (*(X_CAST(double *, DQNAN)));
626#else
627 guile_NaN = guile_Inf / guile_Inf;
628#endif
629
630#endif
631}
632
633SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
634 (void),
635 "Return Inf.")
636#define FUNC_NAME s_scm_inf
637{
638 static int initialized = 0;
639 if (! initialized)
640 {
641 guile_ieee_init ();
642 initialized = 1;
643 }
55f26379 644 return scm_from_double (guile_Inf);
7351e207
MV
645}
646#undef FUNC_NAME
647
648SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
649 (void),
650 "Return NaN.")
651#define FUNC_NAME s_scm_nan
652{
653 static int initialized = 0;
0aacf84e 654 if (!initialized)
7351e207
MV
655 {
656 guile_ieee_init ();
657 initialized = 1;
658 }
55f26379 659 return scm_from_double (guile_NaN);
7351e207
MV
660}
661#undef FUNC_NAME
662
4219f20d 663
a48d60b1
MD
664SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
665 (SCM x),
666 "Return the absolute value of @var{x}.")
667#define FUNC_NAME
0f2d19dd 668{
e11e83f3 669 if (SCM_I_INUMP (x))
0aacf84e 670 {
e11e83f3 671 long int xx = SCM_I_INUM (x);
0aacf84e
MD
672 if (xx >= 0)
673 return x;
674 else if (SCM_POSFIXABLE (-xx))
d956fa6f 675 return SCM_I_MAKINUM (-xx);
0aacf84e
MD
676 else
677 return scm_i_long2big (-xx);
4219f20d 678 }
0aacf84e
MD
679 else if (SCM_BIGP (x))
680 {
681 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
682 if (sgn < 0)
683 return scm_i_clonebig (x, 0);
684 else
685 return x;
4219f20d 686 }
0aacf84e 687 else if (SCM_REALP (x))
ae38324d
KR
688 {
689 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
690 double xx = SCM_REAL_VALUE (x);
691 if (xx < 0.0)
55f26379 692 return scm_from_double (-xx);
ae38324d
KR
693 else
694 return x;
695 }
f92e85f7
MV
696 else if (SCM_FRACTIONP (x))
697 {
73e4de09 698 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
f92e85f7 699 return x;
cba42c93 700 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7
MV
701 SCM_FRACTION_DENOMINATOR (x));
702 }
0aacf84e 703 else
a48d60b1 704 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
0f2d19dd 705}
a48d60b1 706#undef FUNC_NAME
0f2d19dd 707
4219f20d 708
9de33deb 709SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
942e5b91
MG
710/* "Return the quotient of the numbers @var{x} and @var{y}."
711 */
0f2d19dd 712SCM
6e8d25a6 713scm_quotient (SCM x, SCM y)
0f2d19dd 714{
e11e83f3 715 if (SCM_I_INUMP (x))
0aacf84e 716 {
e11e83f3
MV
717 long xx = SCM_I_INUM (x);
718 if (SCM_I_INUMP (y))
0aacf84e 719 {
e11e83f3 720 long yy = SCM_I_INUM (y);
0aacf84e
MD
721 if (yy == 0)
722 scm_num_overflow (s_quotient);
723 else
724 {
725 long z = xx / yy;
726 if (SCM_FIXABLE (z))
d956fa6f 727 return SCM_I_MAKINUM (z);
0aacf84e
MD
728 else
729 return scm_i_long2big (z);
730 }
828865c3 731 }
0aacf84e 732 else if (SCM_BIGP (y))
ac0c002c 733 {
e11e83f3 734 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
735 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
736 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
737 {
738 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
739 scm_remember_upto_here_1 (y);
d956fa6f 740 return SCM_I_MAKINUM (-1);
4dc09ee4 741 }
0aacf84e 742 else
d956fa6f 743 return SCM_I_MAKINUM (0);
ac0c002c
DH
744 }
745 else
0aacf84e 746 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
828865c3 747 }
0aacf84e
MD
748 else if (SCM_BIGP (x))
749 {
e11e83f3 750 if (SCM_I_INUMP (y))
0aacf84e 751 {
e11e83f3 752 long yy = SCM_I_INUM (y);
0aacf84e
MD
753 if (yy == 0)
754 scm_num_overflow (s_quotient);
755 else if (yy == 1)
756 return x;
757 else
758 {
759 SCM result = scm_i_mkbig ();
760 if (yy < 0)
761 {
762 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
763 SCM_I_BIG_MPZ (x),
764 - yy);
765 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
766 }
767 else
768 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
769 scm_remember_upto_here_1 (x);
770 return scm_i_normbig (result);
771 }
772 }
773 else if (SCM_BIGP (y))
774 {
775 SCM result = scm_i_mkbig ();
776 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
777 SCM_I_BIG_MPZ (x),
778 SCM_I_BIG_MPZ (y));
779 scm_remember_upto_here_2 (x, y);
780 return scm_i_normbig (result);
781 }
782 else
783 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
f872b822 784 }
0aacf84e 785 else
89a7e495 786 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
0f2d19dd
JB
787}
788
9de33deb 789SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
942e5b91
MG
790/* "Return the remainder of the numbers @var{x} and @var{y}.\n"
791 * "@lisp\n"
792 * "(remainder 13 4) @result{} 1\n"
793 * "(remainder -13 4) @result{} -1\n"
794 * "@end lisp"
795 */
0f2d19dd 796SCM
6e8d25a6 797scm_remainder (SCM x, SCM y)
0f2d19dd 798{
e11e83f3 799 if (SCM_I_INUMP (x))
0aacf84e 800 {
e11e83f3 801 if (SCM_I_INUMP (y))
0aacf84e 802 {
e11e83f3 803 long yy = SCM_I_INUM (y);
0aacf84e
MD
804 if (yy == 0)
805 scm_num_overflow (s_remainder);
806 else
807 {
e11e83f3 808 long z = SCM_I_INUM (x) % yy;
d956fa6f 809 return SCM_I_MAKINUM (z);
0aacf84e
MD
810 }
811 }
812 else if (SCM_BIGP (y))
ac0c002c 813 {
e11e83f3 814 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
815 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
816 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
817 {
818 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
819 scm_remember_upto_here_1 (y);
d956fa6f 820 return SCM_I_MAKINUM (0);
4dc09ee4 821 }
0aacf84e
MD
822 else
823 return x;
ac0c002c
DH
824 }
825 else
0aacf84e 826 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
89a7e495 827 }
0aacf84e
MD
828 else if (SCM_BIGP (x))
829 {
e11e83f3 830 if (SCM_I_INUMP (y))
0aacf84e 831 {
e11e83f3 832 long yy = SCM_I_INUM (y);
0aacf84e
MD
833 if (yy == 0)
834 scm_num_overflow (s_remainder);
835 else
836 {
837 SCM result = scm_i_mkbig ();
838 if (yy < 0)
839 yy = - yy;
840 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
841 scm_remember_upto_here_1 (x);
842 return scm_i_normbig (result);
843 }
844 }
845 else if (SCM_BIGP (y))
846 {
847 SCM result = scm_i_mkbig ();
848 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
849 SCM_I_BIG_MPZ (x),
850 SCM_I_BIG_MPZ (y));
851 scm_remember_upto_here_2 (x, y);
852 return scm_i_normbig (result);
853 }
854 else
855 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
f872b822 856 }
0aacf84e 857 else
89a7e495 858 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
0f2d19dd
JB
859}
860
89a7e495 861
9de33deb 862SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
942e5b91
MG
863/* "Return the modulo of the numbers @var{x} and @var{y}.\n"
864 * "@lisp\n"
865 * "(modulo 13 4) @result{} 1\n"
866 * "(modulo -13 4) @result{} 3\n"
867 * "@end lisp"
868 */
0f2d19dd 869SCM
6e8d25a6 870scm_modulo (SCM x, SCM y)
0f2d19dd 871{
e11e83f3 872 if (SCM_I_INUMP (x))
0aacf84e 873 {
e11e83f3
MV
874 long xx = SCM_I_INUM (x);
875 if (SCM_I_INUMP (y))
0aacf84e 876 {
e11e83f3 877 long yy = SCM_I_INUM (y);
0aacf84e
MD
878 if (yy == 0)
879 scm_num_overflow (s_modulo);
880 else
881 {
882 /* FIXME: I think this may be a bug on some arches -- results
883 of % with negative second arg are undefined... */
884 long z = xx % yy;
885 long result;
886
887 if (yy < 0)
888 {
889 if (z > 0)
890 result = z + yy;
891 else
892 result = z;
893 }
894 else
895 {
896 if (z < 0)
897 result = z + yy;
898 else
899 result = z;
900 }
d956fa6f 901 return SCM_I_MAKINUM (result);
0aacf84e
MD
902 }
903 }
904 else if (SCM_BIGP (y))
905 {
906 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
0aacf84e
MD
907 {
908 mpz_t z_x;
909 SCM result;
910
911 if (sgn_y < 0)
912 {
913 SCM pos_y = scm_i_clonebig (y, 0);
914 /* do this after the last scm_op */
915 mpz_init_set_si (z_x, xx);
916 result = pos_y; /* re-use this bignum */
917 mpz_mod (SCM_I_BIG_MPZ (result),
918 z_x,
919 SCM_I_BIG_MPZ (pos_y));
920 scm_remember_upto_here_1 (pos_y);
921 }
922 else
923 {
924 result = scm_i_mkbig ();
925 /* do this after the last scm_op */
926 mpz_init_set_si (z_x, xx);
927 mpz_mod (SCM_I_BIG_MPZ (result),
928 z_x,
929 SCM_I_BIG_MPZ (y));
930 scm_remember_upto_here_1 (y);
931 }
ca46fb90 932
0aacf84e
MD
933 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
934 mpz_add (SCM_I_BIG_MPZ (result),
935 SCM_I_BIG_MPZ (y),
936 SCM_I_BIG_MPZ (result));
937 scm_remember_upto_here_1 (y);
938 /* and do this before the next one */
939 mpz_clear (z_x);
940 return scm_i_normbig (result);
941 }
942 }
943 else
944 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
f872b822 945 }
0aacf84e
MD
946 else if (SCM_BIGP (x))
947 {
e11e83f3 948 if (SCM_I_INUMP (y))
0aacf84e 949 {
e11e83f3 950 long yy = SCM_I_INUM (y);
0aacf84e
MD
951 if (yy == 0)
952 scm_num_overflow (s_modulo);
953 else
954 {
955 SCM result = scm_i_mkbig ();
956 mpz_mod_ui (SCM_I_BIG_MPZ (result),
957 SCM_I_BIG_MPZ (x),
958 (yy < 0) ? - yy : yy);
959 scm_remember_upto_here_1 (x);
960 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
961 mpz_sub_ui (SCM_I_BIG_MPZ (result),
962 SCM_I_BIG_MPZ (result),
963 - yy);
964 return scm_i_normbig (result);
965 }
966 }
967 else if (SCM_BIGP (y))
968 {
0aacf84e
MD
969 {
970 SCM result = scm_i_mkbig ();
971 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
972 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
973 mpz_mod (SCM_I_BIG_MPZ (result),
974 SCM_I_BIG_MPZ (x),
975 SCM_I_BIG_MPZ (pos_y));
ca46fb90 976
0aacf84e
MD
977 scm_remember_upto_here_1 (x);
978 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
979 mpz_add (SCM_I_BIG_MPZ (result),
980 SCM_I_BIG_MPZ (y),
981 SCM_I_BIG_MPZ (result));
982 scm_remember_upto_here_2 (y, pos_y);
983 return scm_i_normbig (result);
984 }
985 }
986 else
987 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
828865c3 988 }
0aacf84e 989 else
09fb7599 990 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
0f2d19dd
JB
991}
992
9de33deb 993SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
942e5b91
MG
994/* "Return the greatest common divisor of all arguments.\n"
995 * "If called without arguments, 0 is returned."
996 */
0f2d19dd 997SCM
6e8d25a6 998scm_gcd (SCM x, SCM y)
0f2d19dd 999{
ca46fb90 1000 if (SCM_UNBNDP (y))
0aacf84e 1001 return SCM_UNBNDP (x) ? SCM_INUM0 : x;
ca46fb90 1002
e11e83f3 1003 if (SCM_I_INUMP (x))
ca46fb90 1004 {
e11e83f3 1005 if (SCM_I_INUMP (y))
ca46fb90 1006 {
e11e83f3
MV
1007 long xx = SCM_I_INUM (x);
1008 long yy = SCM_I_INUM (y);
ca46fb90
RB
1009 long u = xx < 0 ? -xx : xx;
1010 long v = yy < 0 ? -yy : yy;
1011 long result;
0aacf84e
MD
1012 if (xx == 0)
1013 result = v;
1014 else if (yy == 0)
1015 result = u;
1016 else
1017 {
1018 long k = 1;
1019 long t;
1020 /* Determine a common factor 2^k */
1021 while (!(1 & (u | v)))
1022 {
1023 k <<= 1;
1024 u >>= 1;
1025 v >>= 1;
1026 }
1027 /* Now, any factor 2^n can be eliminated */
1028 if (u & 1)
1029 t = -v;
1030 else
1031 {
1032 t = u;
1033 b3:
1034 t = SCM_SRS (t, 1);
1035 }
1036 if (!(1 & t))
1037 goto b3;
1038 if (t > 0)
1039 u = t;
1040 else
1041 v = -t;
1042 t = u - v;
1043 if (t != 0)
1044 goto b3;
1045 result = u * k;
1046 }
1047 return (SCM_POSFIXABLE (result)
d956fa6f 1048 ? SCM_I_MAKINUM (result)
0aacf84e 1049 : scm_i_long2big (result));
ca46fb90
RB
1050 }
1051 else if (SCM_BIGP (y))
1052 {
0bff4dce
KR
1053 SCM_SWAP (x, y);
1054 goto big_inum;
ca46fb90
RB
1055 }
1056 else
1057 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
f872b822 1058 }
ca46fb90
RB
1059 else if (SCM_BIGP (x))
1060 {
e11e83f3 1061 if (SCM_I_INUMP (y))
ca46fb90
RB
1062 {
1063 unsigned long result;
0bff4dce
KR
1064 long yy;
1065 big_inum:
e11e83f3 1066 yy = SCM_I_INUM (y);
8c5b0afc
KR
1067 if (yy == 0)
1068 return scm_abs (x);
0aacf84e
MD
1069 if (yy < 0)
1070 yy = -yy;
ca46fb90
RB
1071 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1072 scm_remember_upto_here_1 (x);
0aacf84e 1073 return (SCM_POSFIXABLE (result)
d956fa6f 1074 ? SCM_I_MAKINUM (result)
c71b0706 1075 : scm_from_ulong (result));
ca46fb90
RB
1076 }
1077 else if (SCM_BIGP (y))
1078 {
1079 SCM result = scm_i_mkbig ();
0aacf84e
MD
1080 mpz_gcd (SCM_I_BIG_MPZ (result),
1081 SCM_I_BIG_MPZ (x),
1082 SCM_I_BIG_MPZ (y));
1083 scm_remember_upto_here_2 (x, y);
ca46fb90
RB
1084 return scm_i_normbig (result);
1085 }
1086 else
1087 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
09fb7599 1088 }
ca46fb90 1089 else
09fb7599 1090 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
0f2d19dd
JB
1091}
1092
9de33deb 1093SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
942e5b91
MG
1094/* "Return the least common multiple of the arguments.\n"
1095 * "If called without arguments, 1 is returned."
1096 */
0f2d19dd 1097SCM
6e8d25a6 1098scm_lcm (SCM n1, SCM n2)
0f2d19dd 1099{
ca46fb90
RB
1100 if (SCM_UNBNDP (n2))
1101 {
1102 if (SCM_UNBNDP (n1))
d956fa6f
MV
1103 return SCM_I_MAKINUM (1L);
1104 n2 = SCM_I_MAKINUM (1L);
09fb7599 1105 }
09fb7599 1106
e11e83f3 1107 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
ca46fb90 1108 g_lcm, n1, n2, SCM_ARG1, s_lcm);
e11e83f3 1109 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
ca46fb90 1110 g_lcm, n1, n2, SCM_ARGn, s_lcm);
09fb7599 1111
e11e83f3 1112 if (SCM_I_INUMP (n1))
ca46fb90 1113 {
e11e83f3 1114 if (SCM_I_INUMP (n2))
ca46fb90
RB
1115 {
1116 SCM d = scm_gcd (n1, n2);
bc36d050 1117 if (scm_is_eq (d, SCM_INUM0))
ca46fb90
RB
1118 return d;
1119 else
1120 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1121 }
1122 else
1123 {
1124 /* inum n1, big n2 */
1125 inumbig:
1126 {
1127 SCM result = scm_i_mkbig ();
e11e83f3 1128 long nn1 = SCM_I_INUM (n1);
ca46fb90
RB
1129 if (nn1 == 0) return SCM_INUM0;
1130 if (nn1 < 0) nn1 = - nn1;
1131 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1132 scm_remember_upto_here_1 (n2);
1133 return result;
1134 }
1135 }
1136 }
1137 else
1138 {
1139 /* big n1 */
e11e83f3 1140 if (SCM_I_INUMP (n2))
ca46fb90
RB
1141 {
1142 SCM_SWAP (n1, n2);
1143 goto inumbig;
1144 }
1145 else
1146 {
1147 SCM result = scm_i_mkbig ();
1148 mpz_lcm(SCM_I_BIG_MPZ (result),
1149 SCM_I_BIG_MPZ (n1),
1150 SCM_I_BIG_MPZ (n2));
1151 scm_remember_upto_here_2(n1, n2);
1152 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1153 return result;
1154 }
f872b822 1155 }
0f2d19dd
JB
1156}
1157
8a525303
GB
1158/* Emulating 2's complement bignums with sign magnitude arithmetic:
1159
1160 Logand:
1161 X Y Result Method:
1162 (len)
1163 + + + x (map digit:logand X Y)
1164 + - + x (map digit:logand X (lognot (+ -1 Y)))
1165 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1166 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1167
1168 Logior:
1169 X Y Result Method:
1170
1171 + + + (map digit:logior X Y)
1172 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1173 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1174 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1175
1176 Logxor:
1177 X Y Result Method:
1178
1179 + + + (map digit:logxor X Y)
1180 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1181 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1182 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1183
1184 Logtest:
1185 X Y Result
1186
1187 + + (any digit:logand X Y)
1188 + - (any digit:logand X (lognot (+ -1 Y)))
1189 - + (any digit:logand (lognot (+ -1 X)) Y)
1190 - - #t
1191
1192*/
1193
c3ee7520 1194SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
1bbd0b84 1195 (SCM n1, SCM n2),
3c3db128
GH
1196 "Return the bitwise AND of the integer arguments.\n\n"
1197 "@lisp\n"
1198 "(logand) @result{} -1\n"
1199 "(logand 7) @result{} 7\n"
535f2a51 1200 "(logand #b111 #b011 #b001) @result{} 1\n"
3c3db128 1201 "@end lisp")
1bbd0b84 1202#define FUNC_NAME s_scm_logand
0f2d19dd 1203{
9a00c9fc
DH
1204 long int nn1;
1205
0aacf84e
MD
1206 if (SCM_UNBNDP (n2))
1207 {
1208 if (SCM_UNBNDP (n1))
d956fa6f 1209 return SCM_I_MAKINUM (-1);
0aacf84e
MD
1210 else if (!SCM_NUMBERP (n1))
1211 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1212 else if (SCM_NUMBERP (n1))
1213 return n1;
1214 else
1215 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1216 }
09fb7599 1217
e11e83f3 1218 if (SCM_I_INUMP (n1))
0aacf84e 1219 {
e11e83f3
MV
1220 nn1 = SCM_I_INUM (n1);
1221 if (SCM_I_INUMP (n2))
0aacf84e 1222 {
e11e83f3 1223 long nn2 = SCM_I_INUM (n2);
d956fa6f 1224 return SCM_I_MAKINUM (nn1 & nn2);
0aacf84e
MD
1225 }
1226 else if SCM_BIGP (n2)
1227 {
1228 intbig:
1229 if (n1 == 0)
1230 return SCM_INUM0;
1231 {
1232 SCM result_z = scm_i_mkbig ();
1233 mpz_t nn1_z;
1234 mpz_init_set_si (nn1_z, nn1);
1235 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1236 scm_remember_upto_here_1 (n2);
1237 mpz_clear (nn1_z);
1238 return scm_i_normbig (result_z);
1239 }
1240 }
1241 else
1242 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1243 }
1244 else if (SCM_BIGP (n1))
1245 {
e11e83f3 1246 if (SCM_I_INUMP (n2))
0aacf84e
MD
1247 {
1248 SCM_SWAP (n1, n2);
e11e83f3 1249 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1250 goto intbig;
1251 }
1252 else if (SCM_BIGP (n2))
1253 {
1254 SCM result_z = scm_i_mkbig ();
1255 mpz_and (SCM_I_BIG_MPZ (result_z),
1256 SCM_I_BIG_MPZ (n1),
1257 SCM_I_BIG_MPZ (n2));
1258 scm_remember_upto_here_2 (n1, n2);
1259 return scm_i_normbig (result_z);
1260 }
1261 else
1262 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1263 }
0aacf84e 1264 else
09fb7599 1265 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1266}
1bbd0b84 1267#undef FUNC_NAME
0f2d19dd 1268
09fb7599 1269
c3ee7520 1270SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
1bbd0b84 1271 (SCM n1, SCM n2),
3c3db128
GH
1272 "Return the bitwise OR of the integer arguments.\n\n"
1273 "@lisp\n"
1274 "(logior) @result{} 0\n"
1275 "(logior 7) @result{} 7\n"
1276 "(logior #b000 #b001 #b011) @result{} 3\n"
1e6808ea 1277 "@end lisp")
1bbd0b84 1278#define FUNC_NAME s_scm_logior
0f2d19dd 1279{
9a00c9fc
DH
1280 long int nn1;
1281
0aacf84e
MD
1282 if (SCM_UNBNDP (n2))
1283 {
1284 if (SCM_UNBNDP (n1))
1285 return SCM_INUM0;
1286 else if (SCM_NUMBERP (n1))
1287 return n1;
1288 else
1289 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1290 }
09fb7599 1291
e11e83f3 1292 if (SCM_I_INUMP (n1))
0aacf84e 1293 {
e11e83f3
MV
1294 nn1 = SCM_I_INUM (n1);
1295 if (SCM_I_INUMP (n2))
0aacf84e 1296 {
e11e83f3 1297 long nn2 = SCM_I_INUM (n2);
d956fa6f 1298 return SCM_I_MAKINUM (nn1 | nn2);
0aacf84e
MD
1299 }
1300 else if (SCM_BIGP (n2))
1301 {
1302 intbig:
1303 if (nn1 == 0)
1304 return n2;
1305 {
1306 SCM result_z = scm_i_mkbig ();
1307 mpz_t nn1_z;
1308 mpz_init_set_si (nn1_z, nn1);
1309 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1310 scm_remember_upto_here_1 (n2);
1311 mpz_clear (nn1_z);
1312 return result_z;
1313 }
1314 }
1315 else
1316 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1317 }
1318 else if (SCM_BIGP (n1))
1319 {
e11e83f3 1320 if (SCM_I_INUMP (n2))
0aacf84e
MD
1321 {
1322 SCM_SWAP (n1, n2);
e11e83f3 1323 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1324 goto intbig;
1325 }
1326 else if (SCM_BIGP (n2))
1327 {
1328 SCM result_z = scm_i_mkbig ();
1329 mpz_ior (SCM_I_BIG_MPZ (result_z),
1330 SCM_I_BIG_MPZ (n1),
1331 SCM_I_BIG_MPZ (n2));
1332 scm_remember_upto_here_2 (n1, n2);
1333 return result_z;
1334 }
1335 else
1336 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1337 }
0aacf84e 1338 else
09fb7599 1339 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1340}
1bbd0b84 1341#undef FUNC_NAME
0f2d19dd 1342
09fb7599 1343
c3ee7520 1344SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
1bbd0b84 1345 (SCM n1, SCM n2),
3c3db128
GH
1346 "Return the bitwise XOR of the integer arguments. A bit is\n"
1347 "set in the result if it is set in an odd number of arguments.\n"
1348 "@lisp\n"
1349 "(logxor) @result{} 0\n"
1350 "(logxor 7) @result{} 7\n"
1351 "(logxor #b000 #b001 #b011) @result{} 2\n"
1352 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1e6808ea 1353 "@end lisp")
1bbd0b84 1354#define FUNC_NAME s_scm_logxor
0f2d19dd 1355{
9a00c9fc
DH
1356 long int nn1;
1357
0aacf84e
MD
1358 if (SCM_UNBNDP (n2))
1359 {
1360 if (SCM_UNBNDP (n1))
1361 return SCM_INUM0;
1362 else if (SCM_NUMBERP (n1))
1363 return n1;
1364 else
1365 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1366 }
09fb7599 1367
e11e83f3 1368 if (SCM_I_INUMP (n1))
0aacf84e 1369 {
e11e83f3
MV
1370 nn1 = SCM_I_INUM (n1);
1371 if (SCM_I_INUMP (n2))
0aacf84e 1372 {
e11e83f3 1373 long nn2 = SCM_I_INUM (n2);
d956fa6f 1374 return SCM_I_MAKINUM (nn1 ^ nn2);
0aacf84e
MD
1375 }
1376 else if (SCM_BIGP (n2))
1377 {
1378 intbig:
1379 {
1380 SCM result_z = scm_i_mkbig ();
1381 mpz_t nn1_z;
1382 mpz_init_set_si (nn1_z, nn1);
1383 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1384 scm_remember_upto_here_1 (n2);
1385 mpz_clear (nn1_z);
1386 return scm_i_normbig (result_z);
1387 }
1388 }
1389 else
1390 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1391 }
1392 else if (SCM_BIGP (n1))
1393 {
e11e83f3 1394 if (SCM_I_INUMP (n2))
0aacf84e
MD
1395 {
1396 SCM_SWAP (n1, n2);
e11e83f3 1397 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1398 goto intbig;
1399 }
1400 else if (SCM_BIGP (n2))
1401 {
1402 SCM result_z = scm_i_mkbig ();
1403 mpz_xor (SCM_I_BIG_MPZ (result_z),
1404 SCM_I_BIG_MPZ (n1),
1405 SCM_I_BIG_MPZ (n2));
1406 scm_remember_upto_here_2 (n1, n2);
1407 return scm_i_normbig (result_z);
1408 }
1409 else
1410 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1411 }
0aacf84e 1412 else
09fb7599 1413 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1414}
1bbd0b84 1415#undef FUNC_NAME
0f2d19dd 1416
09fb7599 1417
a1ec6916 1418SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1e6808ea
MG
1419 (SCM j, SCM k),
1420 "@lisp\n"
b380b885
MD
1421 "(logtest j k) @equiv{} (not (zero? (logand j k)))\n\n"
1422 "(logtest #b0100 #b1011) @result{} #f\n"
1423 "(logtest #b0100 #b0111) @result{} #t\n"
1e6808ea 1424 "@end lisp")
1bbd0b84 1425#define FUNC_NAME s_scm_logtest
0f2d19dd 1426{
1e6808ea 1427 long int nj;
9a00c9fc 1428
e11e83f3 1429 if (SCM_I_INUMP (j))
0aacf84e 1430 {
e11e83f3
MV
1431 nj = SCM_I_INUM (j);
1432 if (SCM_I_INUMP (k))
0aacf84e 1433 {
e11e83f3 1434 long nk = SCM_I_INUM (k);
73e4de09 1435 return scm_from_bool (nj & nk);
0aacf84e
MD
1436 }
1437 else if (SCM_BIGP (k))
1438 {
1439 intbig:
1440 if (nj == 0)
1441 return SCM_BOOL_F;
1442 {
1443 SCM result;
1444 mpz_t nj_z;
1445 mpz_init_set_si (nj_z, nj);
1446 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1447 scm_remember_upto_here_1 (k);
73e4de09 1448 result = scm_from_bool (mpz_sgn (nj_z) != 0);
0aacf84e
MD
1449 mpz_clear (nj_z);
1450 return result;
1451 }
1452 }
1453 else
1454 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1455 }
1456 else if (SCM_BIGP (j))
1457 {
e11e83f3 1458 if (SCM_I_INUMP (k))
0aacf84e
MD
1459 {
1460 SCM_SWAP (j, k);
e11e83f3 1461 nj = SCM_I_INUM (j);
0aacf84e
MD
1462 goto intbig;
1463 }
1464 else if (SCM_BIGP (k))
1465 {
1466 SCM result;
1467 mpz_t result_z;
1468 mpz_init (result_z);
1469 mpz_and (result_z,
1470 SCM_I_BIG_MPZ (j),
1471 SCM_I_BIG_MPZ (k));
1472 scm_remember_upto_here_2 (j, k);
73e4de09 1473 result = scm_from_bool (mpz_sgn (result_z) != 0);
0aacf84e
MD
1474 mpz_clear (result_z);
1475 return result;
1476 }
1477 else
1478 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1479 }
1480 else
1481 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
0f2d19dd 1482}
1bbd0b84 1483#undef FUNC_NAME
0f2d19dd 1484
c1bfcf60 1485
a1ec6916 1486SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
2cd04b42 1487 (SCM index, SCM j),
1e6808ea 1488 "@lisp\n"
b380b885
MD
1489 "(logbit? index j) @equiv{} (logtest (integer-expt 2 index) j)\n\n"
1490 "(logbit? 0 #b1101) @result{} #t\n"
1491 "(logbit? 1 #b1101) @result{} #f\n"
1492 "(logbit? 2 #b1101) @result{} #t\n"
1493 "(logbit? 3 #b1101) @result{} #t\n"
1494 "(logbit? 4 #b1101) @result{} #f\n"
1e6808ea 1495 "@end lisp")
1bbd0b84 1496#define FUNC_NAME s_scm_logbit_p
0f2d19dd 1497{
78166ad5 1498 unsigned long int iindex;
5efd3c7d 1499 iindex = scm_to_ulong (index);
78166ad5 1500
e11e83f3 1501 if (SCM_I_INUMP (j))
0d75f6d8
KR
1502 {
1503 /* bits above what's in an inum follow the sign bit */
20fcc8ed 1504 iindex = min (iindex, SCM_LONG_BIT - 1);
e11e83f3 1505 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
0d75f6d8 1506 }
0aacf84e
MD
1507 else if (SCM_BIGP (j))
1508 {
1509 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1510 scm_remember_upto_here_1 (j);
73e4de09 1511 return scm_from_bool (val);
0aacf84e
MD
1512 }
1513 else
78166ad5 1514 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
0f2d19dd 1515}
1bbd0b84 1516#undef FUNC_NAME
0f2d19dd 1517
78166ad5 1518
a1ec6916 1519SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1bbd0b84 1520 (SCM n),
4d814788 1521 "Return the integer which is the ones-complement of the integer\n"
1e6808ea
MG
1522 "argument.\n"
1523 "\n"
b380b885
MD
1524 "@lisp\n"
1525 "(number->string (lognot #b10000000) 2)\n"
1526 " @result{} \"-10000001\"\n"
1527 "(number->string (lognot #b0) 2)\n"
1528 " @result{} \"-1\"\n"
1e6808ea 1529 "@end lisp")
1bbd0b84 1530#define FUNC_NAME s_scm_lognot
0f2d19dd 1531{
e11e83f3 1532 if (SCM_I_INUMP (n)) {
f9811f9f
KR
1533 /* No overflow here, just need to toggle all the bits making up the inum.
1534 Enhancement: No need to strip the tag and add it back, could just xor
1535 a block of 1 bits, if that worked with the various debug versions of
1536 the SCM typedef. */
e11e83f3 1537 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
f9811f9f
KR
1538
1539 } else if (SCM_BIGP (n)) {
1540 SCM result = scm_i_mkbig ();
1541 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1542 scm_remember_upto_here_1 (n);
1543 return result;
1544
1545 } else {
1546 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1547 }
0f2d19dd 1548}
1bbd0b84 1549#undef FUNC_NAME
0f2d19dd 1550
518b7508
KR
1551/* returns 0 if IN is not an integer. OUT must already be
1552 initialized. */
1553static int
1554coerce_to_big (SCM in, mpz_t out)
1555{
1556 if (SCM_BIGP (in))
1557 mpz_set (out, SCM_I_BIG_MPZ (in));
e11e83f3
MV
1558 else if (SCM_I_INUMP (in))
1559 mpz_set_si (out, SCM_I_INUM (in));
518b7508
KR
1560 else
1561 return 0;
1562
1563 return 1;
1564}
1565
d885e204 1566SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
518b7508
KR
1567 (SCM n, SCM k, SCM m),
1568 "Return @var{n} raised to the integer exponent\n"
1569 "@var{k}, modulo @var{m}.\n"
1570 "\n"
1571 "@lisp\n"
1572 "(modulo-expt 2 3 5)\n"
1573 " @result{} 3\n"
1574 "@end lisp")
d885e204 1575#define FUNC_NAME s_scm_modulo_expt
518b7508
KR
1576{
1577 mpz_t n_tmp;
1578 mpz_t k_tmp;
1579 mpz_t m_tmp;
1580
1581 /* There are two classes of error we might encounter --
1582 1) Math errors, which we'll report by calling scm_num_overflow,
1583 and
1584 2) wrong-type errors, which of course we'll report by calling
1585 SCM_WRONG_TYPE_ARG.
1586 We don't report those errors immediately, however; instead we do
1587 some cleanup first. These variables tell us which error (if
1588 any) we should report after cleaning up.
1589 */
1590 int report_overflow = 0;
1591
1592 int position_of_wrong_type = 0;
1593 SCM value_of_wrong_type = SCM_INUM0;
1594
1595 SCM result = SCM_UNDEFINED;
1596
1597 mpz_init (n_tmp);
1598 mpz_init (k_tmp);
1599 mpz_init (m_tmp);
1600
bc36d050 1601 if (scm_is_eq (m, SCM_INUM0))
518b7508
KR
1602 {
1603 report_overflow = 1;
1604 goto cleanup;
1605 }
1606
1607 if (!coerce_to_big (n, n_tmp))
1608 {
1609 value_of_wrong_type = n;
1610 position_of_wrong_type = 1;
1611 goto cleanup;
1612 }
1613
1614 if (!coerce_to_big (k, k_tmp))
1615 {
1616 value_of_wrong_type = k;
1617 position_of_wrong_type = 2;
1618 goto cleanup;
1619 }
1620
1621 if (!coerce_to_big (m, m_tmp))
1622 {
1623 value_of_wrong_type = m;
1624 position_of_wrong_type = 3;
1625 goto cleanup;
1626 }
1627
1628 /* if the exponent K is negative, and we simply call mpz_powm, we
1629 will get a divide-by-zero exception when an inverse 1/n mod m
1630 doesn't exist (or is not unique). Since exceptions are hard to
1631 handle, we'll attempt the inversion "by hand" -- that way, we get
1632 a simple failure code, which is easy to handle. */
1633
1634 if (-1 == mpz_sgn (k_tmp))
1635 {
1636 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1637 {
1638 report_overflow = 1;
1639 goto cleanup;
1640 }
1641 mpz_neg (k_tmp, k_tmp);
1642 }
1643
1644 result = scm_i_mkbig ();
1645 mpz_powm (SCM_I_BIG_MPZ (result),
1646 n_tmp,
1647 k_tmp,
1648 m_tmp);
b7b8c575
KR
1649
1650 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1651 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1652
518b7508
KR
1653 cleanup:
1654 mpz_clear (m_tmp);
1655 mpz_clear (k_tmp);
1656 mpz_clear (n_tmp);
1657
1658 if (report_overflow)
1659 scm_num_overflow (FUNC_NAME);
1660
1661 if (position_of_wrong_type)
1662 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1663 value_of_wrong_type);
1664
1665 return scm_i_normbig (result);
1666}
1667#undef FUNC_NAME
1668
a1ec6916 1669SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
2cd04b42 1670 (SCM n, SCM k),
1e6808ea
MG
1671 "Return @var{n} raised to the non-negative integer exponent\n"
1672 "@var{k}.\n"
1673 "\n"
b380b885
MD
1674 "@lisp\n"
1675 "(integer-expt 2 5)\n"
1676 " @result{} 32\n"
1677 "(integer-expt -3 3)\n"
1678 " @result{} -27\n"
1679 "@end lisp")
1bbd0b84 1680#define FUNC_NAME s_scm_integer_expt
0f2d19dd 1681{
1c35cb19
RB
1682 long i2 = 0;
1683 SCM z_i2 = SCM_BOOL_F;
1684 int i2_is_big = 0;
d956fa6f 1685 SCM acc = SCM_I_MAKINUM (1L);
ca46fb90 1686
d57ed702 1687 /* 0^0 == 1 according to R5RS */
bc36d050 1688 if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
73e4de09 1689 return scm_is_false (scm_zero_p(k)) ? n : acc;
bc36d050 1690 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
73e4de09 1691 return scm_is_false (scm_even_p (k)) ? n : acc;
ca46fb90 1692
e11e83f3
MV
1693 if (SCM_I_INUMP (k))
1694 i2 = SCM_I_INUM (k);
ca46fb90
RB
1695 else if (SCM_BIGP (k))
1696 {
1697 z_i2 = scm_i_clonebig (k, 1);
ca46fb90
RB
1698 scm_remember_upto_here_1 (k);
1699 i2_is_big = 1;
1700 }
1701 else if (SCM_REALP (k))
2830fd91
MD
1702 {
1703 double r = SCM_REAL_VALUE (k);
ca46fb90
RB
1704 if (floor (r) != r)
1705 SCM_WRONG_TYPE_ARG (2, k);
1706 if ((r > SCM_MOST_POSITIVE_FIXNUM) || (r < SCM_MOST_NEGATIVE_FIXNUM))
1707 {
1708 z_i2 = scm_i_mkbig ();
753ac1e7 1709 mpz_set_d (SCM_I_BIG_MPZ (z_i2), r);
ca46fb90
RB
1710 i2_is_big = 1;
1711 }
1712 else
1713 {
1714 i2 = r;
1715 }
2830fd91
MD
1716 }
1717 else
ca46fb90
RB
1718 SCM_WRONG_TYPE_ARG (2, k);
1719
1720 if (i2_is_big)
f872b822 1721 {
ca46fb90
RB
1722 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1723 {
1724 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1725 n = scm_divide (n, SCM_UNDEFINED);
1726 }
1727 while (1)
1728 {
1729 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1730 {
ca46fb90
RB
1731 return acc;
1732 }
1733 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1734 {
ca46fb90
RB
1735 return scm_product (acc, n);
1736 }
1737 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1738 acc = scm_product (acc, n);
1739 n = scm_product (n, n);
1740 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1741 }
f872b822 1742 }
ca46fb90 1743 else
f872b822 1744 {
ca46fb90
RB
1745 if (i2 < 0)
1746 {
1747 i2 = -i2;
1748 n = scm_divide (n, SCM_UNDEFINED);
1749 }
1750 while (1)
1751 {
1752 if (0 == i2)
1753 return acc;
1754 if (1 == i2)
1755 return scm_product (acc, n);
1756 if (i2 & 1)
1757 acc = scm_product (acc, n);
1758 n = scm_product (n, n);
1759 i2 >>= 1;
1760 }
f872b822 1761 }
0f2d19dd 1762}
1bbd0b84 1763#undef FUNC_NAME
0f2d19dd 1764
a1ec6916 1765SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1bbd0b84 1766 (SCM n, SCM cnt),
32f19569
KR
1767 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1768 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1e6808ea 1769 "\n"
e7644cb2 1770 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
32f19569
KR
1771 "@var{cnt} is negative it's a division, rounded towards negative\n"
1772 "infinity. (Note that this is not the same rounding as\n"
1773 "@code{quotient} does.)\n"
1774 "\n"
1775 "With @var{n} viewed as an infinite precision twos complement,\n"
1776 "@code{ash} means a left shift introducing zero bits, or a right\n"
1777 "shift dropping bits.\n"
1e6808ea 1778 "\n"
b380b885 1779 "@lisp\n"
1e6808ea
MG
1780 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1781 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
32f19569
KR
1782 "\n"
1783 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1784 "(ash -23 -2) @result{} -6\n"
a3c8b9fc 1785 "@end lisp")
1bbd0b84 1786#define FUNC_NAME s_scm_ash
0f2d19dd 1787{
3ab9f56e 1788 long bits_to_shift;
5efd3c7d 1789 bits_to_shift = scm_to_long (cnt);
ca46fb90
RB
1790
1791 if (bits_to_shift < 0)
1792 {
1793 /* Shift right by abs(cnt) bits. This is realized as a division
1794 by div:=2^abs(cnt). However, to guarantee the floor
1795 rounding, negative values require some special treatment.
1796 */
d956fa6f 1797 SCM div = scm_integer_expt (SCM_I_MAKINUM (2),
5efd3c7d 1798 scm_from_long (-bits_to_shift));
f92e85f7
MV
1799
1800 /* scm_quotient assumes its arguments are integers, but it's legal to (ash 1/2 -1) */
73e4de09 1801 if (scm_is_false (scm_negative_p (n)))
ca46fb90
RB
1802 return scm_quotient (n, div);
1803 else
d956fa6f
MV
1804 return scm_sum (SCM_I_MAKINUM (-1L),
1805 scm_quotient (scm_sum (SCM_I_MAKINUM (1L), n), div));
ca46fb90
RB
1806 }
1807 else
3ab9f56e 1808 /* Shift left is done by multiplication with 2^CNT */
d956fa6f 1809 return scm_product (n, scm_integer_expt (SCM_I_MAKINUM (2), cnt));
0f2d19dd 1810}
1bbd0b84 1811#undef FUNC_NAME
0f2d19dd 1812
3c9f20f8 1813
a1ec6916 1814SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1bbd0b84 1815 (SCM n, SCM start, SCM end),
1e6808ea
MG
1816 "Return the integer composed of the @var{start} (inclusive)\n"
1817 "through @var{end} (exclusive) bits of @var{n}. The\n"
1818 "@var{start}th bit becomes the 0-th bit in the result.\n"
1819 "\n"
b380b885
MD
1820 "@lisp\n"
1821 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1822 " @result{} \"1010\"\n"
1823 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1824 " @result{} \"10110\"\n"
1825 "@end lisp")
1bbd0b84 1826#define FUNC_NAME s_scm_bit_extract
0f2d19dd 1827{
7f848242 1828 unsigned long int istart, iend, bits;
5efd3c7d
MV
1829 istart = scm_to_ulong (start);
1830 iend = scm_to_ulong (end);
c1bfcf60 1831 SCM_ASSERT_RANGE (3, end, (iend >= istart));
78166ad5 1832
7f848242
KR
1833 /* how many bits to keep */
1834 bits = iend - istart;
1835
e11e83f3 1836 if (SCM_I_INUMP (n))
0aacf84e 1837 {
e11e83f3 1838 long int in = SCM_I_INUM (n);
7f848242
KR
1839
1840 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
d77ad560 1841 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
857ae6af 1842 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
ac0c002c 1843
0aacf84e
MD
1844 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
1845 {
1846 /* Since we emulate two's complement encoded numbers, this
1847 * special case requires us to produce a result that has
7f848242 1848 * more bits than can be stored in a fixnum.
0aacf84e 1849 */
7f848242
KR
1850 SCM result = scm_i_long2big (in);
1851 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1852 bits);
1853 return result;
0aacf84e 1854 }
ac0c002c 1855
7f848242 1856 /* mask down to requisite bits */
857ae6af 1857 bits = min (bits, SCM_I_FIXNUM_BIT);
d956fa6f 1858 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
0aacf84e
MD
1859 }
1860 else if (SCM_BIGP (n))
ac0c002c 1861 {
7f848242
KR
1862 SCM result;
1863 if (bits == 1)
1864 {
d956fa6f 1865 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
7f848242
KR
1866 }
1867 else
1868 {
1869 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
1870 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
1871 such bits into a ulong. */
1872 result = scm_i_mkbig ();
1873 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
1874 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
1875 result = scm_i_normbig (result);
1876 }
1877 scm_remember_upto_here_1 (n);
1878 return result;
ac0c002c 1879 }
0aacf84e 1880 else
78166ad5 1881 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 1882}
1bbd0b84 1883#undef FUNC_NAME
0f2d19dd 1884
7f848242 1885
e4755e5c
JB
1886static const char scm_logtab[] = {
1887 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
1888};
1cc91f1b 1889
a1ec6916 1890SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1bbd0b84 1891 (SCM n),
1e6808ea
MG
1892 "Return the number of bits in integer @var{n}. If integer is\n"
1893 "positive, the 1-bits in its binary representation are counted.\n"
1894 "If negative, the 0-bits in its two's-complement binary\n"
1895 "representation are counted. If 0, 0 is returned.\n"
1896 "\n"
b380b885
MD
1897 "@lisp\n"
1898 "(logcount #b10101010)\n"
ca46fb90
RB
1899 " @result{} 4\n"
1900 "(logcount 0)\n"
1901 " @result{} 0\n"
1902 "(logcount -2)\n"
1903 " @result{} 1\n"
1904 "@end lisp")
1905#define FUNC_NAME s_scm_logcount
1906{
e11e83f3 1907 if (SCM_I_INUMP (n))
f872b822 1908 {
ca46fb90 1909 unsigned long int c = 0;
e11e83f3 1910 long int nn = SCM_I_INUM (n);
ca46fb90
RB
1911 if (nn < 0)
1912 nn = -1 - nn;
1913 while (nn)
1914 {
1915 c += scm_logtab[15 & nn];
1916 nn >>= 4;
1917 }
d956fa6f 1918 return SCM_I_MAKINUM (c);
f872b822 1919 }
ca46fb90 1920 else if (SCM_BIGP (n))
f872b822 1921 {
ca46fb90 1922 unsigned long count;
713a4259
KR
1923 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
1924 count = mpz_popcount (SCM_I_BIG_MPZ (n));
ca46fb90 1925 else
713a4259
KR
1926 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
1927 scm_remember_upto_here_1 (n);
d956fa6f 1928 return SCM_I_MAKINUM (count);
f872b822 1929 }
ca46fb90
RB
1930 else
1931 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 1932}
ca46fb90 1933#undef FUNC_NAME
0f2d19dd
JB
1934
1935
ca46fb90
RB
1936static const char scm_ilentab[] = {
1937 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
1938};
1939
0f2d19dd 1940
ca46fb90
RB
1941SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
1942 (SCM n),
1943 "Return the number of bits necessary to represent @var{n}.\n"
1944 "\n"
1945 "@lisp\n"
1946 "(integer-length #b10101010)\n"
1947 " @result{} 8\n"
1948 "(integer-length 0)\n"
1949 " @result{} 0\n"
1950 "(integer-length #b1111)\n"
1951 " @result{} 4\n"
1952 "@end lisp")
1953#define FUNC_NAME s_scm_integer_length
1954{
e11e83f3 1955 if (SCM_I_INUMP (n))
0aacf84e
MD
1956 {
1957 unsigned long int c = 0;
1958 unsigned int l = 4;
e11e83f3 1959 long int nn = SCM_I_INUM (n);
0aacf84e
MD
1960 if (nn < 0)
1961 nn = -1 - nn;
1962 while (nn)
1963 {
1964 c += 4;
1965 l = scm_ilentab [15 & nn];
1966 nn >>= 4;
1967 }
d956fa6f 1968 return SCM_I_MAKINUM (c - 4 + l);
0aacf84e
MD
1969 }
1970 else if (SCM_BIGP (n))
1971 {
1972 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
1973 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
1974 1 too big, so check for that and adjust. */
1975 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
1976 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
1977 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
1978 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
1979 size--;
1980 scm_remember_upto_here_1 (n);
d956fa6f 1981 return SCM_I_MAKINUM (size);
0aacf84e
MD
1982 }
1983 else
ca46fb90 1984 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
ca46fb90
RB
1985}
1986#undef FUNC_NAME
0f2d19dd
JB
1987
1988/*** NUMBERS -> STRINGS ***/
0b799eea
MV
1989#define SCM_MAX_DBL_PREC 60
1990#define SCM_MAX_DBL_RADIX 36
1991
1992/* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
1993static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
1994static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
1995
1996static
1997void init_dblprec(int *prec, int radix) {
1998 /* determine floating point precision by adding successively
1999 smaller increments to 1.0 until it is considered == 1.0 */
2000 double f = ((double)1.0)/radix;
2001 double fsum = 1.0 + f;
2002
2003 *prec = 0;
2004 while (fsum != 1.0)
2005 {
2006 if (++(*prec) > SCM_MAX_DBL_PREC)
2007 fsum = 1.0;
2008 else
2009 {
2010 f /= radix;
2011 fsum = f + 1.0;
2012 }
2013 }
2014 (*prec) -= 1;
2015}
2016
2017static
2018void init_fx_radix(double *fx_list, int radix)
2019{
2020 /* initialize a per-radix list of tolerances. When added
2021 to a number < 1.0, we can determine if we should raund
2022 up and quit converting a number to a string. */
2023 int i;
2024 fx_list[0] = 0.0;
2025 fx_list[1] = 0.5;
2026 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2027 fx_list[i] = (fx_list[i-1] / radix);
2028}
2029
2030/* use this array as a way to generate a single digit */
2031static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
0f2d19dd 2032
1be6b49c 2033static size_t
0b799eea 2034idbl2str (double f, char *a, int radix)
0f2d19dd 2035{
0b799eea
MV
2036 int efmt, dpt, d, i, wp;
2037 double *fx;
2038#ifdef DBL_MIN_10_EXP
2039 double f_cpy;
2040 int exp_cpy;
2041#endif /* DBL_MIN_10_EXP */
2042 size_t ch = 0;
2043 int exp = 0;
2044
2045 if(radix < 2 ||
2046 radix > SCM_MAX_DBL_RADIX)
2047 {
2048 /* revert to existing behavior */
2049 radix = 10;
2050 }
2051
2052 wp = scm_dblprec[radix-2];
2053 fx = fx_per_radix[radix-2];
0f2d19dd 2054
f872b822 2055 if (f == 0.0)
abb7e44d
MV
2056 {
2057#ifdef HAVE_COPYSIGN
2058 double sgn = copysign (1.0, f);
2059
2060 if (sgn < 0.0)
2061 a[ch++] = '-';
2062#endif
abb7e44d
MV
2063 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2064 }
7351e207
MV
2065
2066 if (xisinf (f))
2067 {
2068 if (f < 0)
2069 strcpy (a, "-inf.0");
2070 else
2071 strcpy (a, "+inf.0");
2072 return ch+6;
2073 }
2074 else if (xisnan (f))
2075 {
2076 strcpy (a, "+nan.0");
2077 return ch+6;
2078 }
2079
f872b822
MD
2080 if (f < 0.0)
2081 {
2082 f = -f;
2083 a[ch++] = '-';
2084 }
7351e207 2085
f872b822
MD
2086#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2087 make-uniform-vector, from causing infinite loops. */
0b799eea
MV
2088 /* just do the checking...if it passes, we do the conversion for our
2089 radix again below */
2090 f_cpy = f;
2091 exp_cpy = exp;
2092
2093 while (f_cpy < 1.0)
f872b822 2094 {
0b799eea
MV
2095 f_cpy *= 10.0;
2096 if (exp_cpy-- < DBL_MIN_10_EXP)
7351e207
MV
2097 {
2098 a[ch++] = '#';
2099 a[ch++] = '.';
2100 a[ch++] = '#';
2101 return ch;
2102 }
f872b822 2103 }
0b799eea 2104 while (f_cpy > 10.0)
f872b822 2105 {
0b799eea
MV
2106 f_cpy *= 0.10;
2107 if (exp_cpy++ > DBL_MAX_10_EXP)
7351e207
MV
2108 {
2109 a[ch++] = '#';
2110 a[ch++] = '.';
2111 a[ch++] = '#';
2112 return ch;
2113 }
f872b822 2114 }
0b799eea
MV
2115#endif
2116
f872b822
MD
2117 while (f < 1.0)
2118 {
0b799eea 2119 f *= radix;
f872b822
MD
2120 exp--;
2121 }
0b799eea 2122 while (f > radix)
f872b822 2123 {
0b799eea 2124 f /= radix;
f872b822
MD
2125 exp++;
2126 }
0b799eea
MV
2127
2128 if (f + fx[wp] >= radix)
f872b822
MD
2129 {
2130 f = 1.0;
2131 exp++;
2132 }
0f2d19dd 2133 zero:
0b799eea
MV
2134#ifdef ENGNOT
2135 /* adding 9999 makes this equivalent to abs(x) % 3 */
f872b822 2136 dpt = (exp + 9999) % 3;
0f2d19dd
JB
2137 exp -= dpt++;
2138 efmt = 1;
f872b822
MD
2139#else
2140 efmt = (exp < -3) || (exp > wp + 2);
0f2d19dd 2141 if (!efmt)
cda139a7
MD
2142 {
2143 if (exp < 0)
2144 {
2145 a[ch++] = '0';
2146 a[ch++] = '.';
2147 dpt = exp;
f872b822
MD
2148 while (++dpt)
2149 a[ch++] = '0';
cda139a7
MD
2150 }
2151 else
f872b822 2152 dpt = exp + 1;
cda139a7 2153 }
0f2d19dd
JB
2154 else
2155 dpt = 1;
f872b822
MD
2156#endif
2157
2158 do
2159 {
2160 d = f;
2161 f -= d;
0b799eea 2162 a[ch++] = number_chars[d];
f872b822
MD
2163 if (f < fx[wp])
2164 break;
2165 if (f + fx[wp] >= 1.0)
2166 {
0b799eea 2167 a[ch - 1] = number_chars[d+1];
f872b822
MD
2168 break;
2169 }
0b799eea 2170 f *= radix;
f872b822
MD
2171 if (!(--dpt))
2172 a[ch++] = '.';
0f2d19dd 2173 }
f872b822 2174 while (wp--);
0f2d19dd
JB
2175
2176 if (dpt > 0)
cda139a7 2177 {
f872b822 2178#ifndef ENGNOT
cda139a7
MD
2179 if ((dpt > 4) && (exp > 6))
2180 {
f872b822 2181 d = (a[0] == '-' ? 2 : 1);
cda139a7 2182 for (i = ch++; i > d; i--)
f872b822 2183 a[i] = a[i - 1];
cda139a7
MD
2184 a[d] = '.';
2185 efmt = 1;
2186 }
2187 else
f872b822 2188#endif
cda139a7 2189 {
f872b822
MD
2190 while (--dpt)
2191 a[ch++] = '0';
cda139a7
MD
2192 a[ch++] = '.';
2193 }
2194 }
f872b822
MD
2195 if (a[ch - 1] == '.')
2196 a[ch++] = '0'; /* trailing zero */
2197 if (efmt && exp)
2198 {
2199 a[ch++] = 'e';
2200 if (exp < 0)
2201 {
2202 exp = -exp;
2203 a[ch++] = '-';
2204 }
0b799eea
MV
2205 for (i = radix; i <= exp; i *= radix);
2206 for (i /= radix; i; i /= radix)
f872b822 2207 {
0b799eea 2208 a[ch++] = number_chars[exp / i];
f872b822
MD
2209 exp %= i;
2210 }
0f2d19dd 2211 }
0f2d19dd
JB
2212 return ch;
2213}
2214
1be6b49c 2215static size_t
0b799eea 2216iflo2str (SCM flt, char *str, int radix)
0f2d19dd 2217{
1be6b49c 2218 size_t i;
3c9a524f 2219 if (SCM_REALP (flt))
0b799eea 2220 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
0f2d19dd 2221 else
f872b822 2222 {
0b799eea 2223 i = idbl2str (SCM_COMPLEX_REAL (flt), str, radix);
f3ae5d60
MD
2224 if (SCM_COMPLEX_IMAG (flt) != 0.0)
2225 {
7351e207
MV
2226 double imag = SCM_COMPLEX_IMAG (flt);
2227 /* Don't output a '+' for negative numbers or for Inf and
2228 NaN. They will provide their own sign. */
2229 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
f3ae5d60 2230 str[i++] = '+';
0b799eea 2231 i += idbl2str (imag, &str[i], radix);
f3ae5d60
MD
2232 str[i++] = 'i';
2233 }
f872b822 2234 }
0f2d19dd
JB
2235 return i;
2236}
0f2d19dd 2237
5c11cc9d 2238/* convert a long to a string (unterminated). returns the number of
1bbd0b84
GB
2239 characters in the result.
2240 rad is output base
2241 p is destination: worst case (base 2) is SCM_INTBUFLEN */
1be6b49c 2242size_t
1bbd0b84 2243scm_iint2str (long num, int rad, char *p)
0f2d19dd 2244{
1be6b49c
ML
2245 size_t j = 1;
2246 size_t i;
5c11cc9d
GH
2247 unsigned long n = (num < 0) ? -num : num;
2248
f872b822 2249 for (n /= rad; n > 0; n /= rad)
5c11cc9d
GH
2250 j++;
2251
2252 i = j;
2253 if (num < 0)
f872b822 2254 {
f872b822 2255 *p++ = '-';
5c11cc9d
GH
2256 j++;
2257 n = -num;
f872b822 2258 }
5c11cc9d
GH
2259 else
2260 n = num;
f872b822
MD
2261 while (i--)
2262 {
5c11cc9d
GH
2263 int d = n % rad;
2264
f872b822
MD
2265 n /= rad;
2266 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2267 }
0f2d19dd
JB
2268 return j;
2269}
2270
a1ec6916 2271SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
bb628794
DH
2272 (SCM n, SCM radix),
2273 "Return a string holding the external representation of the\n"
942e5b91
MG
2274 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2275 "inexact, a radix of 10 will be used.")
1bbd0b84 2276#define FUNC_NAME s_scm_number_to_string
0f2d19dd 2277{
1bbd0b84 2278 int base;
98cb6e75 2279
0aacf84e 2280 if (SCM_UNBNDP (radix))
98cb6e75 2281 base = 10;
0aacf84e 2282 else
5efd3c7d 2283 base = scm_to_signed_integer (radix, 2, 36);
98cb6e75 2284
e11e83f3 2285 if (SCM_I_INUMP (n))
0aacf84e
MD
2286 {
2287 char num_buf [SCM_INTBUFLEN];
e11e83f3 2288 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
0aacf84e
MD
2289 return scm_mem2string (num_buf, length);
2290 }
2291 else if (SCM_BIGP (n))
2292 {
2293 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2294 scm_remember_upto_here_1 (n);
2295 return scm_take0str (str);
2296 }
f92e85f7
MV
2297 else if (SCM_FRACTIONP (n))
2298 {
2299 scm_i_fraction_reduce (n);
2300 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
2301 scm_mem2string ("/", 1),
2302 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2303 }
0aacf84e
MD
2304 else if (SCM_INEXACTP (n))
2305 {
2306 char num_buf [FLOBUFLEN];
0b799eea 2307 return scm_mem2string (num_buf, iflo2str (n, num_buf, base));
0aacf84e
MD
2308 }
2309 else
bb628794 2310 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 2311}
1bbd0b84 2312#undef FUNC_NAME
0f2d19dd
JB
2313
2314
ca46fb90
RB
2315/* These print routines used to be stubbed here so that scm_repl.c
2316 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
1cc91f1b 2317
0f2d19dd 2318int
e81d98ec 2319scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2320{
56e55ac7 2321 char num_buf[FLOBUFLEN];
0b799eea 2322 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
0f2d19dd
JB
2323 return !0;
2324}
2325
f3ae5d60 2326int
e81d98ec 2327scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
f92e85f7 2328
f3ae5d60 2329{
56e55ac7 2330 char num_buf[FLOBUFLEN];
0b799eea 2331 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
f3ae5d60
MD
2332 return !0;
2333}
1cc91f1b 2334
f92e85f7
MV
2335int
2336scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2337{
2338 SCM str;
2339 scm_i_fraction_reduce (sexp);
2340 str = scm_number_to_string (sexp, SCM_UNDEFINED);
2341 scm_lfwrite (SCM_STRING_CHARS (str), SCM_STRING_LENGTH (str), port);
2342 scm_remember_upto_here_1 (str);
2343 return !0;
2344}
2345
0f2d19dd 2346int
e81d98ec 2347scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2348{
ca46fb90
RB
2349 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2350 scm_remember_upto_here_1 (exp);
2351 scm_lfwrite (str, (size_t) strlen (str), port);
2352 free (str);
0f2d19dd
JB
2353 return !0;
2354}
2355/*** END nums->strs ***/
2356
3c9a524f 2357
0f2d19dd 2358/*** STRINGS -> NUMBERS ***/
2a8fecee 2359
3c9a524f
DH
2360/* The following functions implement the conversion from strings to numbers.
2361 * The implementation somehow follows the grammar for numbers as it is given
2362 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2363 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2364 * points should be noted about the implementation:
2365 * * Each function keeps a local index variable 'idx' that points at the
2366 * current position within the parsed string. The global index is only
2367 * updated if the function could parse the corresponding syntactic unit
2368 * successfully.
2369 * * Similarly, the functions keep track of indicators of inexactness ('#',
2370 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2371 * global exactness information is only updated after each part has been
2372 * successfully parsed.
2373 * * Sequences of digits are parsed into temporary variables holding fixnums.
2374 * Only if these fixnums would overflow, the result variables are updated
2375 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2376 * the temporary variables holding the fixnums are cleared, and the process
2377 * starts over again. If for example fixnums were able to store five decimal
2378 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2379 * and the result was computed as 12345 * 100000 + 67890. In other words,
2380 * only every five digits two bignum operations were performed.
2381 */
2382
2383enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2384
2385/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2386
2387/* In non ASCII-style encodings the following macro might not work. */
71df73ac
KR
2388#define XDIGIT2UINT(d) \
2389 (isdigit ((int) (unsigned char) d) \
2390 ? (d) - '0' \
2391 : tolower ((int) (unsigned char) d) - 'a' + 10)
3c9a524f 2392
2a8fecee 2393static SCM
3c9a524f
DH
2394mem2uinteger (const char* mem, size_t len, unsigned int *p_idx,
2395 unsigned int radix, enum t_exactness *p_exactness)
2a8fecee 2396{
3c9a524f
DH
2397 unsigned int idx = *p_idx;
2398 unsigned int hash_seen = 0;
2399 scm_t_bits shift = 1;
2400 scm_t_bits add = 0;
2401 unsigned int digit_value;
2402 SCM result;
2403 char c;
2404
2405 if (idx == len)
2406 return SCM_BOOL_F;
2a8fecee 2407
3c9a524f 2408 c = mem[idx];
71df73ac 2409 if (!isxdigit ((int) (unsigned char) c))
3c9a524f
DH
2410 return SCM_BOOL_F;
2411 digit_value = XDIGIT2UINT (c);
2412 if (digit_value >= radix)
2413 return SCM_BOOL_F;
2414
2415 idx++;
d956fa6f 2416 result = SCM_I_MAKINUM (digit_value);
3c9a524f 2417 while (idx != len)
f872b822 2418 {
3c9a524f 2419 char c = mem[idx];
71df73ac 2420 if (isxdigit ((int) (unsigned char) c))
f872b822 2421 {
3c9a524f 2422 if (hash_seen)
1fe5e088 2423 break;
3c9a524f
DH
2424 digit_value = XDIGIT2UINT (c);
2425 if (digit_value >= radix)
1fe5e088 2426 break;
f872b822 2427 }
3c9a524f
DH
2428 else if (c == '#')
2429 {
2430 hash_seen = 1;
2431 digit_value = 0;
2432 }
2433 else
2434 break;
2435
2436 idx++;
2437 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2438 {
d956fa6f 2439 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2440 if (add > 0)
d956fa6f 2441 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2442
2443 shift = radix;
2444 add = digit_value;
2445 }
2446 else
2447 {
2448 shift = shift * radix;
2449 add = add * radix + digit_value;
2450 }
2451 };
2452
2453 if (shift > 1)
d956fa6f 2454 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2455 if (add > 0)
d956fa6f 2456 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2457
2458 *p_idx = idx;
2459 if (hash_seen)
2460 *p_exactness = INEXACT;
2461
2462 return result;
2a8fecee
JB
2463}
2464
2465
3c9a524f
DH
2466/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2467 * covers the parts of the rules that start at a potential point. The value
2468 * of the digits up to the point have been parsed by the caller and are given
79d34f68
DH
2469 * in variable result. The content of *p_exactness indicates, whether a hash
2470 * has already been seen in the digits before the point.
3c9a524f 2471 */
1cc91f1b 2472
3c9a524f
DH
2473/* In non ASCII-style encodings the following macro might not work. */
2474#define DIGIT2UINT(d) ((d) - '0')
2475
2476static SCM
79d34f68 2477mem2decimal_from_point (SCM result, const char* mem, size_t len,
3c9a524f 2478 unsigned int *p_idx, enum t_exactness *p_exactness)
0f2d19dd 2479{
3c9a524f
DH
2480 unsigned int idx = *p_idx;
2481 enum t_exactness x = *p_exactness;
3c9a524f
DH
2482
2483 if (idx == len)
79d34f68 2484 return result;
3c9a524f
DH
2485
2486 if (mem[idx] == '.')
2487 {
2488 scm_t_bits shift = 1;
2489 scm_t_bits add = 0;
2490 unsigned int digit_value;
d956fa6f 2491 SCM big_shift = SCM_I_MAKINUM (1);
3c9a524f
DH
2492
2493 idx++;
2494 while (idx != len)
2495 {
2496 char c = mem[idx];
71df73ac 2497 if (isdigit ((int) (unsigned char) c))
3c9a524f
DH
2498 {
2499 if (x == INEXACT)
2500 return SCM_BOOL_F;
2501 else
2502 digit_value = DIGIT2UINT (c);
2503 }
2504 else if (c == '#')
2505 {
2506 x = INEXACT;
2507 digit_value = 0;
2508 }
2509 else
2510 break;
2511
2512 idx++;
2513 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2514 {
d956fa6f
MV
2515 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2516 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2517 if (add > 0)
d956fa6f 2518 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2519
2520 shift = 10;
2521 add = digit_value;
2522 }
2523 else
2524 {
2525 shift = shift * 10;
2526 add = add * 10 + digit_value;
2527 }
2528 };
2529
2530 if (add > 0)
2531 {
d956fa6f
MV
2532 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2533 result = scm_product (result, SCM_I_MAKINUM (shift));
2534 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2535 }
2536
d8592269 2537 result = scm_divide (result, big_shift);
79d34f68 2538
3c9a524f
DH
2539 /* We've seen a decimal point, thus the value is implicitly inexact. */
2540 x = INEXACT;
f872b822 2541 }
3c9a524f 2542
3c9a524f 2543 if (idx != len)
f872b822 2544 {
3c9a524f
DH
2545 int sign = 1;
2546 unsigned int start;
2547 char c;
2548 int exponent;
2549 SCM e;
2550
2551 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2552
2553 switch (mem[idx])
f872b822 2554 {
3c9a524f
DH
2555 case 'd': case 'D':
2556 case 'e': case 'E':
2557 case 'f': case 'F':
2558 case 'l': case 'L':
2559 case 's': case 'S':
2560 idx++;
2561 start = idx;
2562 c = mem[idx];
2563 if (c == '-')
2564 {
2565 idx++;
2566 sign = -1;
2567 c = mem[idx];
2568 }
2569 else if (c == '+')
2570 {
2571 idx++;
2572 sign = 1;
2573 c = mem[idx];
2574 }
2575 else
2576 sign = 1;
2577
71df73ac 2578 if (!isdigit ((int) (unsigned char) c))
3c9a524f
DH
2579 return SCM_BOOL_F;
2580
2581 idx++;
2582 exponent = DIGIT2UINT (c);
2583 while (idx != len)
f872b822 2584 {
3c9a524f 2585 char c = mem[idx];
71df73ac 2586 if (isdigit ((int) (unsigned char) c))
3c9a524f
DH
2587 {
2588 idx++;
2589 if (exponent <= SCM_MAXEXP)
2590 exponent = exponent * 10 + DIGIT2UINT (c);
2591 }
2592 else
2593 break;
f872b822 2594 }
3c9a524f
DH
2595
2596 if (exponent > SCM_MAXEXP)
f872b822 2597 {
3c9a524f
DH
2598 size_t exp_len = idx - start;
2599 SCM exp_string = scm_mem2string (&mem[start], exp_len);
2600 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2601 scm_out_of_range ("string->number", exp_num);
f872b822 2602 }
3c9a524f 2603
d956fa6f 2604 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
3c9a524f
DH
2605 if (sign == 1)
2606 result = scm_product (result, e);
2607 else
f92e85f7 2608 result = scm_divide2real (result, e);
3c9a524f
DH
2609
2610 /* We've seen an exponent, thus the value is implicitly inexact. */
2611 x = INEXACT;
2612
f872b822 2613 break;
3c9a524f 2614
f872b822 2615 default:
3c9a524f 2616 break;
f872b822 2617 }
0f2d19dd 2618 }
3c9a524f
DH
2619
2620 *p_idx = idx;
2621 if (x == INEXACT)
2622 *p_exactness = x;
2623
2624 return result;
0f2d19dd 2625}
0f2d19dd 2626
3c9a524f
DH
2627
2628/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2629
2630static SCM
2631mem2ureal (const char* mem, size_t len, unsigned int *p_idx,
2632 unsigned int radix, enum t_exactness *p_exactness)
0f2d19dd 2633{
3c9a524f 2634 unsigned int idx = *p_idx;
164d2481 2635 SCM result;
3c9a524f
DH
2636
2637 if (idx == len)
2638 return SCM_BOOL_F;
2639
7351e207
MV
2640 if (idx+5 <= len && !strncmp (mem+idx, "inf.0", 5))
2641 {
2642 *p_idx = idx+5;
2643 return scm_inf ();
2644 }
2645
2646 if (idx+4 < len && !strncmp (mem+idx, "nan.", 4))
2647 {
2648 enum t_exactness x = EXACT;
2649
d8592269
MV
2650 /* Cobble up the fractional part. We might want to set the
2651 NaN's mantissa from it. */
7351e207
MV
2652 idx += 4;
2653 mem2uinteger (mem, len, &idx, 10, &x);
2654 *p_idx = idx;
2655 return scm_nan ();
2656 }
2657
3c9a524f
DH
2658 if (mem[idx] == '.')
2659 {
2660 if (radix != 10)
2661 return SCM_BOOL_F;
2662 else if (idx + 1 == len)
2663 return SCM_BOOL_F;
71df73ac 2664 else if (!isdigit ((int) (unsigned char) mem[idx + 1]))
3c9a524f
DH
2665 return SCM_BOOL_F;
2666 else
d956fa6f 2667 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem, len,
164d2481 2668 p_idx, p_exactness);
f872b822 2669 }
3c9a524f
DH
2670 else
2671 {
2672 enum t_exactness x = EXACT;
2673 SCM uinteger;
3c9a524f
DH
2674
2675 uinteger = mem2uinteger (mem, len, &idx, radix, &x);
73e4de09 2676 if (scm_is_false (uinteger))
3c9a524f
DH
2677 return SCM_BOOL_F;
2678
2679 if (idx == len)
2680 result = uinteger;
2681 else if (mem[idx] == '/')
f872b822 2682 {
3c9a524f
DH
2683 SCM divisor;
2684
2685 idx++;
2686
2687 divisor = mem2uinteger (mem, len, &idx, radix, &x);
73e4de09 2688 if (scm_is_false (divisor))
3c9a524f
DH
2689 return SCM_BOOL_F;
2690
f92e85f7 2691 /* both are int/big here, I assume */
cba42c93 2692 result = scm_i_make_ratio (uinteger, divisor);
f872b822 2693 }
3c9a524f
DH
2694 else if (radix == 10)
2695 {
2696 result = mem2decimal_from_point (uinteger, mem, len, &idx, &x);
73e4de09 2697 if (scm_is_false (result))
3c9a524f
DH
2698 return SCM_BOOL_F;
2699 }
2700 else
2701 result = uinteger;
2702
2703 *p_idx = idx;
2704 if (x == INEXACT)
2705 *p_exactness = x;
f872b822 2706 }
164d2481
MV
2707
2708 /* When returning an inexact zero, make sure it is represented as a
2709 floating point value so that we can change its sign.
2710 */
bc36d050 2711 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
55f26379 2712 result = scm_from_double (0.0);
164d2481
MV
2713
2714 return result;
3c9a524f 2715}
0f2d19dd 2716
0f2d19dd 2717
3c9a524f 2718/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
0f2d19dd 2719
3c9a524f
DH
2720static SCM
2721mem2complex (const char* mem, size_t len, unsigned int idx,
2722 unsigned int radix, enum t_exactness *p_exactness)
2723{
2724 char c;
2725 int sign = 0;
2726 SCM ureal;
2727
2728 if (idx == len)
2729 return SCM_BOOL_F;
2730
2731 c = mem[idx];
2732 if (c == '+')
2733 {
2734 idx++;
2735 sign = 1;
2736 }
2737 else if (c == '-')
2738 {
2739 idx++;
2740 sign = -1;
0f2d19dd 2741 }
0f2d19dd 2742
3c9a524f
DH
2743 if (idx == len)
2744 return SCM_BOOL_F;
2745
2746 ureal = mem2ureal (mem, len, &idx, radix, p_exactness);
73e4de09 2747 if (scm_is_false (ureal))
f872b822 2748 {
3c9a524f
DH
2749 /* input must be either +i or -i */
2750
2751 if (sign == 0)
2752 return SCM_BOOL_F;
2753
2754 if (mem[idx] == 'i' || mem[idx] == 'I')
f872b822 2755 {
3c9a524f
DH
2756 idx++;
2757 if (idx != len)
2758 return SCM_BOOL_F;
2759
d956fa6f 2760 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
f872b822 2761 }
3c9a524f
DH
2762 else
2763 return SCM_BOOL_F;
0f2d19dd 2764 }
3c9a524f
DH
2765 else
2766 {
73e4de09 2767 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f 2768 ureal = scm_difference (ureal, SCM_UNDEFINED);
f872b822 2769
3c9a524f
DH
2770 if (idx == len)
2771 return ureal;
2772
2773 c = mem[idx];
2774 switch (c)
f872b822 2775 {
3c9a524f
DH
2776 case 'i': case 'I':
2777 /* either +<ureal>i or -<ureal>i */
2778
2779 idx++;
2780 if (sign == 0)
2781 return SCM_BOOL_F;
2782 if (idx != len)
2783 return SCM_BOOL_F;
d956fa6f 2784 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
3c9a524f
DH
2785
2786 case '@':
2787 /* polar input: <real>@<real>. */
2788
2789 idx++;
2790 if (idx == len)
2791 return SCM_BOOL_F;
2792 else
f872b822 2793 {
3c9a524f
DH
2794 int sign;
2795 SCM angle;
2796 SCM result;
2797
2798 c = mem[idx];
2799 if (c == '+')
2800 {
2801 idx++;
2802 sign = 1;
2803 }
2804 else if (c == '-')
2805 {
2806 idx++;
2807 sign = -1;
2808 }
2809 else
2810 sign = 1;
2811
2812 angle = mem2ureal (mem, len, &idx, radix, p_exactness);
73e4de09 2813 if (scm_is_false (angle))
3c9a524f
DH
2814 return SCM_BOOL_F;
2815 if (idx != len)
2816 return SCM_BOOL_F;
2817
73e4de09 2818 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f
DH
2819 angle = scm_difference (angle, SCM_UNDEFINED);
2820
2821 result = scm_make_polar (ureal, angle);
2822 return result;
f872b822 2823 }
3c9a524f
DH
2824 case '+':
2825 case '-':
2826 /* expecting input matching <real>[+-]<ureal>?i */
0f2d19dd 2827
3c9a524f
DH
2828 idx++;
2829 if (idx == len)
2830 return SCM_BOOL_F;
2831 else
2832 {
2833 int sign = (c == '+') ? 1 : -1;
2834 SCM imag = mem2ureal (mem, len, &idx, radix, p_exactness);
0f2d19dd 2835
73e4de09 2836 if (scm_is_false (imag))
d956fa6f 2837 imag = SCM_I_MAKINUM (sign);
73e4de09 2838 else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
1fe5e088 2839 imag = scm_difference (imag, SCM_UNDEFINED);
0f2d19dd 2840
3c9a524f
DH
2841 if (idx == len)
2842 return SCM_BOOL_F;
2843 if (mem[idx] != 'i' && mem[idx] != 'I')
2844 return SCM_BOOL_F;
0f2d19dd 2845
3c9a524f
DH
2846 idx++;
2847 if (idx != len)
2848 return SCM_BOOL_F;
0f2d19dd 2849
1fe5e088 2850 return scm_make_rectangular (ureal, imag);
3c9a524f
DH
2851 }
2852 default:
2853 return SCM_BOOL_F;
2854 }
2855 }
0f2d19dd 2856}
0f2d19dd
JB
2857
2858
3c9a524f
DH
2859/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
2860
2861enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
1cc91f1b 2862
0f2d19dd 2863SCM
3c9a524f 2864scm_i_mem2number (const char* mem, size_t len, unsigned int default_radix)
0f2d19dd 2865{
3c9a524f
DH
2866 unsigned int idx = 0;
2867 unsigned int radix = NO_RADIX;
2868 enum t_exactness forced_x = NO_EXACTNESS;
2869 enum t_exactness implicit_x = EXACT;
2870 SCM result;
2871
2872 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
2873 while (idx + 2 < len && mem[idx] == '#')
2874 {
2875 switch (mem[idx + 1])
2876 {
2877 case 'b': case 'B':
2878 if (radix != NO_RADIX)
2879 return SCM_BOOL_F;
2880 radix = DUAL;
2881 break;
2882 case 'd': case 'D':
2883 if (radix != NO_RADIX)
2884 return SCM_BOOL_F;
2885 radix = DEC;
2886 break;
2887 case 'i': case 'I':
2888 if (forced_x != NO_EXACTNESS)
2889 return SCM_BOOL_F;
2890 forced_x = INEXACT;
2891 break;
2892 case 'e': case 'E':
2893 if (forced_x != NO_EXACTNESS)
2894 return SCM_BOOL_F;
2895 forced_x = EXACT;
2896 break;
2897 case 'o': case 'O':
2898 if (radix != NO_RADIX)
2899 return SCM_BOOL_F;
2900 radix = OCT;
2901 break;
2902 case 'x': case 'X':
2903 if (radix != NO_RADIX)
2904 return SCM_BOOL_F;
2905 radix = HEX;
2906 break;
2907 default:
f872b822 2908 return SCM_BOOL_F;
3c9a524f
DH
2909 }
2910 idx += 2;
2911 }
2912
2913 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2914 if (radix == NO_RADIX)
2915 result = mem2complex (mem, len, idx, default_radix, &implicit_x);
2916 else
2917 result = mem2complex (mem, len, idx, (unsigned int) radix, &implicit_x);
2918
73e4de09 2919 if (scm_is_false (result))
3c9a524f 2920 return SCM_BOOL_F;
f872b822 2921
3c9a524f 2922 switch (forced_x)
f872b822 2923 {
3c9a524f
DH
2924 case EXACT:
2925 if (SCM_INEXACTP (result))
3c9a524f
DH
2926 return scm_inexact_to_exact (result);
2927 else
2928 return result;
2929 case INEXACT:
2930 if (SCM_INEXACTP (result))
2931 return result;
2932 else
2933 return scm_exact_to_inexact (result);
2934 case NO_EXACTNESS:
2935 default:
2936 if (implicit_x == INEXACT)
2937 {
2938 if (SCM_INEXACTP (result))
2939 return result;
2940 else
2941 return scm_exact_to_inexact (result);
2942 }
2943 else
2944 return result;
f872b822 2945 }
0f2d19dd
JB
2946}
2947
2948
a1ec6916 2949SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
bb628794 2950 (SCM string, SCM radix),
1e6808ea 2951 "Return a number of the maximally precise representation\n"
942e5b91 2952 "expressed by the given @var{string}. @var{radix} must be an\n"
5352393c
MG
2953 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
2954 "is a default radix that may be overridden by an explicit radix\n"
2955 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
2956 "supplied, then the default radix is 10. If string is not a\n"
2957 "syntactically valid notation for a number, then\n"
2958 "@code{string->number} returns @code{#f}.")
1bbd0b84 2959#define FUNC_NAME s_scm_string_to_number
0f2d19dd
JB
2960{
2961 SCM answer;
5efd3c7d 2962 unsigned int base;
a6d9e5ab 2963 SCM_VALIDATE_STRING (1, string);
5efd3c7d
MV
2964
2965 if (SCM_UNBNDP (radix))
2966 base = 10;
2967 else
2968 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
2969
3c9a524f 2970 answer = scm_i_mem2number (SCM_STRING_CHARS (string),
d8592269
MV
2971 SCM_STRING_LENGTH (string),
2972 base);
bb628794 2973 return scm_return_first (answer, string);
0f2d19dd 2974}
1bbd0b84 2975#undef FUNC_NAME
3c9a524f
DH
2976
2977
0f2d19dd
JB
2978/*** END strs->nums ***/
2979
5986c47d 2980
0f2d19dd 2981SCM
1bbd0b84 2982scm_bigequal (SCM x, SCM y)
0f2d19dd 2983{
47ae1f0e 2984 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
ca46fb90 2985 scm_remember_upto_here_2 (x, y);
73e4de09 2986 return scm_from_bool (0 == result);
0f2d19dd
JB
2987}
2988
0f2d19dd 2989SCM
f3ae5d60 2990scm_real_equalp (SCM x, SCM y)
0f2d19dd 2991{
73e4de09 2992 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0f2d19dd
JB
2993}
2994
f3ae5d60
MD
2995SCM
2996scm_complex_equalp (SCM x, SCM y)
2997{
73e4de09 2998 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
f3ae5d60
MD
2999 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3000}
0f2d19dd 3001
f92e85f7
MV
3002SCM
3003scm_i_fraction_equalp (SCM x, SCM y)
3004{
3005 scm_i_fraction_reduce (x);
3006 scm_i_fraction_reduce (y);
73e4de09 3007 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
02164269 3008 SCM_FRACTION_NUMERATOR (y)))
73e4de09 3009 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
02164269
MV
3010 SCM_FRACTION_DENOMINATOR (y))))
3011 return SCM_BOOL_F;
3012 else
3013 return SCM_BOOL_T;
f92e85f7 3014}
0f2d19dd
JB
3015
3016
8507ec80
MV
3017SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3018 (SCM x),
3019 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3020 "otherwise.")
3021#define FUNC_NAME s_scm_number_p
3022{
3023 return scm_from_bool (SCM_NUMBERP (x));
3024}
3025#undef FUNC_NAME
3026
3027SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
1bbd0b84 3028 (SCM x),
942e5b91 3029 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
bb2c02f2 3030 "otherwise. Note that the sets of real, rational and integer\n"
942e5b91
MG
3031 "values form subsets of the set of complex numbers, i. e. the\n"
3032 "predicate will also be fulfilled if @var{x} is a real,\n"
3033 "rational or integer number.")
8507ec80 3034#define FUNC_NAME s_scm_complex_p
0f2d19dd 3035{
8507ec80
MV
3036 /* all numbers are complex. */
3037 return scm_number_p (x);
0f2d19dd 3038}
1bbd0b84 3039#undef FUNC_NAME
0f2d19dd 3040
f92e85f7
MV
3041SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3042 (SCM x),
3043 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3044 "otherwise. Note that the set of integer values forms a subset of\n"
3045 "the set of real numbers, i. e. the predicate will also be\n"
3046 "fulfilled if @var{x} is an integer number.")
3047#define FUNC_NAME s_scm_real_p
3048{
3049 /* we can't represent irrational numbers. */
3050 return scm_rational_p (x);
3051}
3052#undef FUNC_NAME
3053
3054SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
1bbd0b84 3055 (SCM x),
942e5b91 3056 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
bb2c02f2 3057 "otherwise. Note that the set of integer values forms a subset of\n"
942e5b91 3058 "the set of rational numbers, i. e. the predicate will also be\n"
f92e85f7
MV
3059 "fulfilled if @var{x} is an integer number.")
3060#define FUNC_NAME s_scm_rational_p
0f2d19dd 3061{
e11e83f3 3062 if (SCM_I_INUMP (x))
0f2d19dd 3063 return SCM_BOOL_T;
0aacf84e 3064 else if (SCM_IMP (x))
0f2d19dd 3065 return SCM_BOOL_F;
0aacf84e 3066 else if (SCM_BIGP (x))
0f2d19dd 3067 return SCM_BOOL_T;
f92e85f7
MV
3068 else if (SCM_FRACTIONP (x))
3069 return SCM_BOOL_T;
3070 else if (SCM_REALP (x))
3071 /* due to their limited precision, all floating point numbers are
3072 rational as well. */
3073 return SCM_BOOL_T;
0aacf84e 3074 else
bb628794 3075 return SCM_BOOL_F;
0f2d19dd 3076}
1bbd0b84 3077#undef FUNC_NAME
0f2d19dd 3078
a1ec6916 3079SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
1bbd0b84 3080 (SCM x),
942e5b91
MG
3081 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3082 "else.")
1bbd0b84 3083#define FUNC_NAME s_scm_integer_p
0f2d19dd
JB
3084{
3085 double r;
e11e83f3 3086 if (SCM_I_INUMP (x))
f872b822
MD
3087 return SCM_BOOL_T;
3088 if (SCM_IMP (x))
3089 return SCM_BOOL_F;
f872b822
MD
3090 if (SCM_BIGP (x))
3091 return SCM_BOOL_T;
3c9a524f 3092 if (!SCM_INEXACTP (x))
f872b822 3093 return SCM_BOOL_F;
3c9a524f 3094 if (SCM_COMPLEXP (x))
f872b822 3095 return SCM_BOOL_F;
5986c47d 3096 r = SCM_REAL_VALUE (x);
f872b822
MD
3097 if (r == floor (r))
3098 return SCM_BOOL_T;
0f2d19dd
JB
3099 return SCM_BOOL_F;
3100}
1bbd0b84 3101#undef FUNC_NAME
0f2d19dd
JB
3102
3103
a1ec6916 3104SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
1bbd0b84 3105 (SCM x),
942e5b91
MG
3106 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3107 "else.")
1bbd0b84 3108#define FUNC_NAME s_scm_inexact_p
0f2d19dd 3109{
eb927cb9
MV
3110 if (SCM_INEXACTP (x))
3111 return SCM_BOOL_T;
3112 if (SCM_NUMBERP (x))
3113 return SCM_BOOL_F;
3114 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 3115}
1bbd0b84 3116#undef FUNC_NAME
0f2d19dd
JB
3117
3118
152f82bf 3119SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
942e5b91 3120/* "Return @code{#t} if all parameters are numerically equal." */
0f2d19dd 3121SCM
6e8d25a6 3122scm_num_eq_p (SCM x, SCM y)
0f2d19dd 3123{
d8b95e27 3124 again:
e11e83f3 3125 if (SCM_I_INUMP (x))
0aacf84e 3126 {
e11e83f3
MV
3127 long xx = SCM_I_INUM (x);
3128 if (SCM_I_INUMP (y))
0aacf84e 3129 {
e11e83f3 3130 long yy = SCM_I_INUM (y);
73e4de09 3131 return scm_from_bool (xx == yy);
0aacf84e
MD
3132 }
3133 else if (SCM_BIGP (y))
3134 return SCM_BOOL_F;
3135 else if (SCM_REALP (y))
73e4de09 3136 return scm_from_bool ((double) xx == SCM_REAL_VALUE (y));
0aacf84e 3137 else if (SCM_COMPLEXP (y))
73e4de09 3138 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
0aacf84e 3139 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7
MV
3140 else if (SCM_FRACTIONP (y))
3141 return SCM_BOOL_F;
0aacf84e
MD
3142 else
3143 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f872b822 3144 }
0aacf84e
MD
3145 else if (SCM_BIGP (x))
3146 {
e11e83f3 3147 if (SCM_I_INUMP (y))
0aacf84e
MD
3148 return SCM_BOOL_F;
3149 else if (SCM_BIGP (y))
3150 {
3151 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3152 scm_remember_upto_here_2 (x, y);
73e4de09 3153 return scm_from_bool (0 == cmp);
0aacf84e
MD
3154 }
3155 else if (SCM_REALP (y))
3156 {
3157 int cmp;
3158 if (xisnan (SCM_REAL_VALUE (y)))
3159 return SCM_BOOL_F;
3160 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3161 scm_remember_upto_here_1 (x);
73e4de09 3162 return scm_from_bool (0 == cmp);
0aacf84e
MD
3163 }
3164 else if (SCM_COMPLEXP (y))
3165 {
3166 int cmp;
3167 if (0.0 != SCM_COMPLEX_IMAG (y))
3168 return SCM_BOOL_F;
3169 if (xisnan (SCM_COMPLEX_REAL (y)))
3170 return SCM_BOOL_F;
3171 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3172 scm_remember_upto_here_1 (x);
73e4de09 3173 return scm_from_bool (0 == cmp);
0aacf84e 3174 }
f92e85f7
MV
3175 else if (SCM_FRACTIONP (y))
3176 return SCM_BOOL_F;
0aacf84e
MD
3177 else
3178 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f4c627b3 3179 }
0aacf84e
MD
3180 else if (SCM_REALP (x))
3181 {
e11e83f3
MV
3182 if (SCM_I_INUMP (y))
3183 return scm_from_bool (SCM_REAL_VALUE (x) == (double) SCM_I_INUM (y));
0aacf84e
MD
3184 else if (SCM_BIGP (y))
3185 {
3186 int cmp;
3187 if (xisnan (SCM_REAL_VALUE (x)))
3188 return SCM_BOOL_F;
3189 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3190 scm_remember_upto_here_1 (y);
73e4de09 3191 return scm_from_bool (0 == cmp);
0aacf84e
MD
3192 }
3193 else if (SCM_REALP (y))
73e4de09 3194 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0aacf84e 3195 else if (SCM_COMPLEXP (y))
73e4de09 3196 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3197 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7 3198 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3199 {
3200 double xx = SCM_REAL_VALUE (x);
3201 if (xisnan (xx))
3202 return SCM_BOOL_F;
3203 if (xisinf (xx))
73e4de09 3204 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3205 x = scm_inexact_to_exact (x); /* with x as frac or int */
3206 goto again;
3207 }
0aacf84e
MD
3208 else
3209 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f872b822 3210 }
0aacf84e
MD
3211 else if (SCM_COMPLEXP (x))
3212 {
e11e83f3
MV
3213 if (SCM_I_INUMP (y))
3214 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
0aacf84e
MD
3215 && (SCM_COMPLEX_IMAG (x) == 0.0));
3216 else if (SCM_BIGP (y))
3217 {
3218 int cmp;
3219 if (0.0 != SCM_COMPLEX_IMAG (x))
3220 return SCM_BOOL_F;
3221 if (xisnan (SCM_COMPLEX_REAL (x)))
3222 return SCM_BOOL_F;
3223 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3224 scm_remember_upto_here_1 (y);
73e4de09 3225 return scm_from_bool (0 == cmp);
0aacf84e
MD
3226 }
3227 else if (SCM_REALP (y))
73e4de09 3228 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
0aacf84e
MD
3229 && (SCM_COMPLEX_IMAG (x) == 0.0));
3230 else if (SCM_COMPLEXP (y))
73e4de09 3231 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3232 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
f92e85f7 3233 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3234 {
3235 double xx;
3236 if (SCM_COMPLEX_IMAG (x) != 0.0)
3237 return SCM_BOOL_F;
3238 xx = SCM_COMPLEX_REAL (x);
3239 if (xisnan (xx))
3240 return SCM_BOOL_F;
3241 if (xisinf (xx))
73e4de09 3242 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3243 x = scm_inexact_to_exact (x); /* with x as frac or int */
3244 goto again;
3245 }
f92e85f7
MV
3246 else
3247 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3248 }
3249 else if (SCM_FRACTIONP (x))
3250 {
e11e83f3 3251 if (SCM_I_INUMP (y))
f92e85f7
MV
3252 return SCM_BOOL_F;
3253 else if (SCM_BIGP (y))
3254 return SCM_BOOL_F;
3255 else if (SCM_REALP (y))
d8b95e27
KR
3256 {
3257 double yy = SCM_REAL_VALUE (y);
3258 if (xisnan (yy))
3259 return SCM_BOOL_F;
3260 if (xisinf (yy))
73e4de09 3261 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3262 y = scm_inexact_to_exact (y); /* with y as frac or int */
3263 goto again;
3264 }
f92e85f7 3265 else if (SCM_COMPLEXP (y))
d8b95e27
KR
3266 {
3267 double yy;
3268 if (SCM_COMPLEX_IMAG (y) != 0.0)
3269 return SCM_BOOL_F;
3270 yy = SCM_COMPLEX_REAL (y);
3271 if (xisnan (yy))
3272 return SCM_BOOL_F;
3273 if (xisinf (yy))
73e4de09 3274 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3275 y = scm_inexact_to_exact (y); /* with y as frac or int */
3276 goto again;
3277 }
f92e85f7
MV
3278 else if (SCM_FRACTIONP (y))
3279 return scm_i_fraction_equalp (x, y);
0aacf84e
MD
3280 else
3281 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f4c627b3 3282 }
0aacf84e 3283 else
f4c627b3 3284 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
0f2d19dd
JB
3285}
3286
3287
a5f0b599
KR
3288/* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3289 done are good for inums, but for bignums an answer can almost always be
3290 had by just examining a few high bits of the operands, as done by GMP in
3291 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3292 of the float exponent to take into account. */
3293
152f82bf 3294SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
942e5b91
MG
3295/* "Return @code{#t} if the list of parameters is monotonically\n"
3296 * "increasing."
3297 */
0f2d19dd 3298SCM
6e8d25a6 3299scm_less_p (SCM x, SCM y)
0f2d19dd 3300{
a5f0b599 3301 again:
e11e83f3 3302 if (SCM_I_INUMP (x))
0aacf84e 3303 {
e11e83f3
MV
3304 long xx = SCM_I_INUM (x);
3305 if (SCM_I_INUMP (y))
0aacf84e 3306 {
e11e83f3 3307 long yy = SCM_I_INUM (y);
73e4de09 3308 return scm_from_bool (xx < yy);
0aacf84e
MD
3309 }
3310 else if (SCM_BIGP (y))
3311 {
3312 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3313 scm_remember_upto_here_1 (y);
73e4de09 3314 return scm_from_bool (sgn > 0);
0aacf84e
MD
3315 }
3316 else if (SCM_REALP (y))
73e4de09 3317 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
f92e85f7 3318 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3319 {
3320 /* "x < a/b" becomes "x*b < a" */
3321 int_frac:
3322 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3323 y = SCM_FRACTION_NUMERATOR (y);
3324 goto again;
3325 }
0aacf84e
MD
3326 else
3327 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
f872b822 3328 }
0aacf84e
MD
3329 else if (SCM_BIGP (x))
3330 {
e11e83f3 3331 if (SCM_I_INUMP (y))
0aacf84e
MD
3332 {
3333 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3334 scm_remember_upto_here_1 (x);
73e4de09 3335 return scm_from_bool (sgn < 0);
0aacf84e
MD
3336 }
3337 else if (SCM_BIGP (y))
3338 {
3339 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3340 scm_remember_upto_here_2 (x, y);
73e4de09 3341 return scm_from_bool (cmp < 0);
0aacf84e
MD
3342 }
3343 else if (SCM_REALP (y))
3344 {
3345 int cmp;
3346 if (xisnan (SCM_REAL_VALUE (y)))
3347 return SCM_BOOL_F;
3348 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3349 scm_remember_upto_here_1 (x);
73e4de09 3350 return scm_from_bool (cmp < 0);
0aacf84e 3351 }
f92e85f7 3352 else if (SCM_FRACTIONP (y))
a5f0b599 3353 goto int_frac;
0aacf84e
MD
3354 else
3355 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
f4c627b3 3356 }
0aacf84e
MD
3357 else if (SCM_REALP (x))
3358 {
e11e83f3
MV
3359 if (SCM_I_INUMP (y))
3360 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
0aacf84e
MD
3361 else if (SCM_BIGP (y))
3362 {
3363 int cmp;
3364 if (xisnan (SCM_REAL_VALUE (x)))
3365 return SCM_BOOL_F;
3366 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3367 scm_remember_upto_here_1 (y);
73e4de09 3368 return scm_from_bool (cmp > 0);
0aacf84e
MD
3369 }
3370 else if (SCM_REALP (y))
73e4de09 3371 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
f92e85f7 3372 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3373 {
3374 double xx = SCM_REAL_VALUE (x);
3375 if (xisnan (xx))
3376 return SCM_BOOL_F;
3377 if (xisinf (xx))
73e4de09 3378 return scm_from_bool (xx < 0.0);
a5f0b599
KR
3379 x = scm_inexact_to_exact (x); /* with x as frac or int */
3380 goto again;
3381 }
f92e85f7
MV
3382 else
3383 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3384 }
3385 else if (SCM_FRACTIONP (x))
3386 {
e11e83f3 3387 if (SCM_I_INUMP (y) || SCM_BIGP (y))
a5f0b599
KR
3388 {
3389 /* "a/b < y" becomes "a < y*b" */
3390 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3391 x = SCM_FRACTION_NUMERATOR (x);
3392 goto again;
3393 }
f92e85f7 3394 else if (SCM_REALP (y))
a5f0b599
KR
3395 {
3396 double yy = SCM_REAL_VALUE (y);
3397 if (xisnan (yy))
3398 return SCM_BOOL_F;
3399 if (xisinf (yy))
73e4de09 3400 return scm_from_bool (0.0 < yy);
a5f0b599
KR
3401 y = scm_inexact_to_exact (y); /* with y as frac or int */
3402 goto again;
3403 }
f92e85f7 3404 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3405 {
3406 /* "a/b < c/d" becomes "a*d < c*b" */
3407 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3408 SCM_FRACTION_DENOMINATOR (y));
3409 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3410 SCM_FRACTION_DENOMINATOR (x));
3411 x = new_x;
3412 y = new_y;
3413 goto again;
3414 }
0aacf84e
MD
3415 else
3416 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
f872b822 3417 }
0aacf84e 3418 else
f4c627b3 3419 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
0f2d19dd
JB
3420}
3421
3422
c76b1eaf 3423SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
942e5b91
MG
3424/* "Return @code{#t} if the list of parameters is monotonically\n"
3425 * "decreasing."
c76b1eaf 3426 */
1bbd0b84 3427#define FUNC_NAME s_scm_gr_p
c76b1eaf
MD
3428SCM
3429scm_gr_p (SCM x, SCM y)
0f2d19dd 3430{
c76b1eaf
MD
3431 if (!SCM_NUMBERP (x))
3432 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
3433 else if (!SCM_NUMBERP (y))
3434 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
3435 else
3436 return scm_less_p (y, x);
0f2d19dd 3437}
1bbd0b84 3438#undef FUNC_NAME
0f2d19dd
JB
3439
3440
c76b1eaf 3441SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
942e5b91 3442/* "Return @code{#t} if the list of parameters is monotonically\n"
c76b1eaf
MD
3443 * "non-decreasing."
3444 */
1bbd0b84 3445#define FUNC_NAME s_scm_leq_p
c76b1eaf
MD
3446SCM
3447scm_leq_p (SCM x, SCM y)
0f2d19dd 3448{
c76b1eaf
MD
3449 if (!SCM_NUMBERP (x))
3450 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
3451 else if (!SCM_NUMBERP (y))
3452 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3453 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3454 return SCM_BOOL_F;
c76b1eaf 3455 else
73e4de09 3456 return scm_not (scm_less_p (y, x));
0f2d19dd 3457}
1bbd0b84 3458#undef FUNC_NAME
0f2d19dd
JB
3459
3460
c76b1eaf 3461SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
942e5b91 3462/* "Return @code{#t} if the list of parameters is monotonically\n"
c76b1eaf
MD
3463 * "non-increasing."
3464 */
1bbd0b84 3465#define FUNC_NAME s_scm_geq_p
c76b1eaf
MD
3466SCM
3467scm_geq_p (SCM x, SCM y)
0f2d19dd 3468{
c76b1eaf
MD
3469 if (!SCM_NUMBERP (x))
3470 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
3471 else if (!SCM_NUMBERP (y))
3472 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3473 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3474 return SCM_BOOL_F;
c76b1eaf 3475 else
73e4de09 3476 return scm_not (scm_less_p (x, y));
0f2d19dd 3477}
1bbd0b84 3478#undef FUNC_NAME
0f2d19dd
JB
3479
3480
152f82bf 3481SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
942e5b91
MG
3482/* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3483 * "zero."
3484 */
0f2d19dd 3485SCM
6e8d25a6 3486scm_zero_p (SCM z)
0f2d19dd 3487{
e11e83f3 3488 if (SCM_I_INUMP (z))
bc36d050 3489 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
0aacf84e 3490 else if (SCM_BIGP (z))
c2ff8ab0 3491 return SCM_BOOL_F;
0aacf84e 3492 else if (SCM_REALP (z))
73e4de09 3493 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
0aacf84e 3494 else if (SCM_COMPLEXP (z))
73e4de09 3495 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
c2ff8ab0 3496 && SCM_COMPLEX_IMAG (z) == 0.0);
f92e85f7
MV
3497 else if (SCM_FRACTIONP (z))
3498 return SCM_BOOL_F;
0aacf84e 3499 else
c2ff8ab0 3500 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
0f2d19dd
JB
3501}
3502
3503
152f82bf 3504SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
942e5b91
MG
3505/* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3506 * "zero."
3507 */
0f2d19dd 3508SCM
6e8d25a6 3509scm_positive_p (SCM x)
0f2d19dd 3510{
e11e83f3
MV
3511 if (SCM_I_INUMP (x))
3512 return scm_from_bool (SCM_I_INUM (x) > 0);
0aacf84e
MD
3513 else if (SCM_BIGP (x))
3514 {
3515 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3516 scm_remember_upto_here_1 (x);
73e4de09 3517 return scm_from_bool (sgn > 0);
0aacf84e
MD
3518 }
3519 else if (SCM_REALP (x))
73e4de09 3520 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
f92e85f7
MV
3521 else if (SCM_FRACTIONP (x))
3522 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3523 else
c2ff8ab0 3524 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
0f2d19dd
JB
3525}
3526
3527
152f82bf 3528SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
942e5b91
MG
3529/* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3530 * "zero."
3531 */
0f2d19dd 3532SCM
6e8d25a6 3533scm_negative_p (SCM x)
0f2d19dd 3534{
e11e83f3
MV
3535 if (SCM_I_INUMP (x))
3536 return scm_from_bool (SCM_I_INUM (x) < 0);
0aacf84e
MD
3537 else if (SCM_BIGP (x))
3538 {
3539 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3540 scm_remember_upto_here_1 (x);
73e4de09 3541 return scm_from_bool (sgn < 0);
0aacf84e
MD
3542 }
3543 else if (SCM_REALP (x))
73e4de09 3544 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
f92e85f7
MV
3545 else if (SCM_FRACTIONP (x))
3546 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3547 else
c2ff8ab0 3548 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
0f2d19dd
JB
3549}
3550
3551
2a06f791
KR
3552/* scm_min and scm_max return an inexact when either argument is inexact, as
3553 required by r5rs. On that basis, for exact/inexact combinations the
3554 exact is converted to inexact to compare and possibly return. This is
3555 unlike scm_less_p above which takes some trouble to preserve all bits in
3556 its test, such trouble is not required for min and max. */
3557
9de33deb 3558SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
942e5b91
MG
3559/* "Return the maximum of all parameter values."
3560 */
0f2d19dd 3561SCM
6e8d25a6 3562scm_max (SCM x, SCM y)
0f2d19dd 3563{
0aacf84e
MD
3564 if (SCM_UNBNDP (y))
3565 {
3566 if (SCM_UNBNDP (x))
3567 SCM_WTA_DISPATCH_0 (g_max, s_max);
e11e83f3 3568 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
3569 return x;
3570 else
3571 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
f872b822 3572 }
f4c627b3 3573
e11e83f3 3574 if (SCM_I_INUMP (x))
0aacf84e 3575 {
e11e83f3
MV
3576 long xx = SCM_I_INUM (x);
3577 if (SCM_I_INUMP (y))
0aacf84e 3578 {
e11e83f3 3579 long yy = SCM_I_INUM (y);
0aacf84e
MD
3580 return (xx < yy) ? y : x;
3581 }
3582 else if (SCM_BIGP (y))
3583 {
3584 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3585 scm_remember_upto_here_1 (y);
3586 return (sgn < 0) ? x : y;
3587 }
3588 else if (SCM_REALP (y))
3589 {
3590 double z = xx;
3591 /* if y==NaN then ">" is false and we return NaN */
55f26379 3592 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 3593 }
f92e85f7
MV
3594 else if (SCM_FRACTIONP (y))
3595 {
e4bc5d6c 3596 use_less:
73e4de09 3597 return (scm_is_false (scm_less_p (x, y)) ? x : y);
f92e85f7 3598 }
0aacf84e
MD
3599 else
3600 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 3601 }
0aacf84e
MD
3602 else if (SCM_BIGP (x))
3603 {
e11e83f3 3604 if (SCM_I_INUMP (y))
0aacf84e
MD
3605 {
3606 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3607 scm_remember_upto_here_1 (x);
3608 return (sgn < 0) ? y : x;
3609 }
3610 else if (SCM_BIGP (y))
3611 {
3612 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3613 scm_remember_upto_here_2 (x, y);
3614 return (cmp > 0) ? x : y;
3615 }
3616 else if (SCM_REALP (y))
3617 {
2a06f791
KR
3618 /* if y==NaN then xx>yy is false, so we return the NaN y */
3619 double xx, yy;
3620 big_real:
3621 xx = scm_i_big2dbl (x);
3622 yy = SCM_REAL_VALUE (y);
55f26379 3623 return (xx > yy ? scm_from_double (xx) : y);
0aacf84e 3624 }
f92e85f7
MV
3625 else if (SCM_FRACTIONP (y))
3626 {
e4bc5d6c 3627 goto use_less;
f92e85f7 3628 }
0aacf84e
MD
3629 else
3630 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f4c627b3 3631 }
0aacf84e
MD
3632 else if (SCM_REALP (x))
3633 {
e11e83f3 3634 if (SCM_I_INUMP (y))
0aacf84e 3635 {
e11e83f3 3636 double z = SCM_I_INUM (y);
0aacf84e 3637 /* if x==NaN then "<" is false and we return NaN */
55f26379 3638 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
0aacf84e
MD
3639 }
3640 else if (SCM_BIGP (y))
3641 {
b6f8f763 3642 SCM_SWAP (x, y);
2a06f791 3643 goto big_real;
0aacf84e
MD
3644 }
3645 else if (SCM_REALP (y))
3646 {
3647 /* if x==NaN then our explicit check means we return NaN
3648 if y==NaN then ">" is false and we return NaN
3649 calling isnan is unavoidable, since it's the only way to know
3650 which of x or y causes any compares to be false */
3651 double xx = SCM_REAL_VALUE (x);
3652 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3653 }
f92e85f7
MV
3654 else if (SCM_FRACTIONP (y))
3655 {
3656 double yy = scm_i_fraction2double (y);
3657 double xx = SCM_REAL_VALUE (x);
55f26379 3658 return (xx < yy) ? scm_from_double (yy) : x;
f92e85f7
MV
3659 }
3660 else
3661 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3662 }
3663 else if (SCM_FRACTIONP (x))
3664 {
e11e83f3 3665 if (SCM_I_INUMP (y))
f92e85f7 3666 {
e4bc5d6c 3667 goto use_less;
f92e85f7
MV
3668 }
3669 else if (SCM_BIGP (y))
3670 {
e4bc5d6c 3671 goto use_less;
f92e85f7
MV
3672 }
3673 else if (SCM_REALP (y))
3674 {
3675 double xx = scm_i_fraction2double (x);
55f26379 3676 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
f92e85f7
MV
3677 }
3678 else if (SCM_FRACTIONP (y))
3679 {
e4bc5d6c 3680 goto use_less;
f92e85f7 3681 }
0aacf84e
MD
3682 else
3683 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 3684 }
0aacf84e 3685 else
f4c627b3 3686 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
0f2d19dd
JB
3687}
3688
3689
9de33deb 3690SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
942e5b91
MG
3691/* "Return the minium of all parameter values."
3692 */
0f2d19dd 3693SCM
6e8d25a6 3694scm_min (SCM x, SCM y)
0f2d19dd 3695{
0aacf84e
MD
3696 if (SCM_UNBNDP (y))
3697 {
3698 if (SCM_UNBNDP (x))
3699 SCM_WTA_DISPATCH_0 (g_min, s_min);
e11e83f3 3700 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
3701 return x;
3702 else
3703 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
f872b822 3704 }
f4c627b3 3705
e11e83f3 3706 if (SCM_I_INUMP (x))
0aacf84e 3707 {
e11e83f3
MV
3708 long xx = SCM_I_INUM (x);
3709 if (SCM_I_INUMP (y))
0aacf84e 3710 {
e11e83f3 3711 long yy = SCM_I_INUM (y);
0aacf84e
MD
3712 return (xx < yy) ? x : y;
3713 }
3714 else if (SCM_BIGP (y))
3715 {
3716 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3717 scm_remember_upto_here_1 (y);
3718 return (sgn < 0) ? y : x;
3719 }
3720 else if (SCM_REALP (y))
3721 {
3722 double z = xx;
3723 /* if y==NaN then "<" is false and we return NaN */
55f26379 3724 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 3725 }
f92e85f7
MV
3726 else if (SCM_FRACTIONP (y))
3727 {
e4bc5d6c 3728 use_less:
73e4de09 3729 return (scm_is_false (scm_less_p (x, y)) ? y : x);
f92e85f7 3730 }
0aacf84e
MD
3731 else
3732 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 3733 }
0aacf84e
MD
3734 else if (SCM_BIGP (x))
3735 {
e11e83f3 3736 if (SCM_I_INUMP (y))
0aacf84e
MD
3737 {
3738 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3739 scm_remember_upto_here_1 (x);
3740 return (sgn < 0) ? x : y;
3741 }
3742 else if (SCM_BIGP (y))
3743 {
3744 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3745 scm_remember_upto_here_2 (x, y);
3746 return (cmp > 0) ? y : x;
3747 }
3748 else if (SCM_REALP (y))
3749 {
2a06f791
KR
3750 /* if y==NaN then xx<yy is false, so we return the NaN y */
3751 double xx, yy;
3752 big_real:
3753 xx = scm_i_big2dbl (x);
3754 yy = SCM_REAL_VALUE (y);
55f26379 3755 return (xx < yy ? scm_from_double (xx) : y);
0aacf84e 3756 }
f92e85f7
MV
3757 else if (SCM_FRACTIONP (y))
3758 {
e4bc5d6c 3759 goto use_less;
f92e85f7 3760 }
0aacf84e
MD
3761 else
3762 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f4c627b3 3763 }
0aacf84e
MD
3764 else if (SCM_REALP (x))
3765 {
e11e83f3 3766 if (SCM_I_INUMP (y))
0aacf84e 3767 {
e11e83f3 3768 double z = SCM_I_INUM (y);
0aacf84e 3769 /* if x==NaN then "<" is false and we return NaN */
55f26379 3770 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
0aacf84e
MD
3771 }
3772 else if (SCM_BIGP (y))
3773 {
b6f8f763 3774 SCM_SWAP (x, y);
2a06f791 3775 goto big_real;
0aacf84e
MD
3776 }
3777 else if (SCM_REALP (y))
3778 {
3779 /* if x==NaN then our explicit check means we return NaN
3780 if y==NaN then "<" is false and we return NaN
3781 calling isnan is unavoidable, since it's the only way to know
3782 which of x or y causes any compares to be false */
3783 double xx = SCM_REAL_VALUE (x);
3784 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
3785 }
f92e85f7
MV
3786 else if (SCM_FRACTIONP (y))
3787 {
3788 double yy = scm_i_fraction2double (y);
3789 double xx = SCM_REAL_VALUE (x);
55f26379 3790 return (yy < xx) ? scm_from_double (yy) : x;
f92e85f7 3791 }
0aacf84e
MD
3792 else
3793 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 3794 }
f92e85f7
MV
3795 else if (SCM_FRACTIONP (x))
3796 {
e11e83f3 3797 if (SCM_I_INUMP (y))
f92e85f7 3798 {
e4bc5d6c 3799 goto use_less;
f92e85f7
MV
3800 }
3801 else if (SCM_BIGP (y))
3802 {
e4bc5d6c 3803 goto use_less;
f92e85f7
MV
3804 }
3805 else if (SCM_REALP (y))
3806 {
3807 double xx = scm_i_fraction2double (x);
55f26379 3808 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
f92e85f7
MV
3809 }
3810 else if (SCM_FRACTIONP (y))
3811 {
e4bc5d6c 3812 goto use_less;
f92e85f7
MV
3813 }
3814 else
3815 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3816 }
0aacf84e 3817 else
f4c627b3 3818 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
0f2d19dd
JB
3819}
3820
3821
9de33deb 3822SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
942e5b91
MG
3823/* "Return the sum of all parameter values. Return 0 if called without\n"
3824 * "any parameters."
3825 */
0f2d19dd 3826SCM
6e8d25a6 3827scm_sum (SCM x, SCM y)
0f2d19dd 3828{
ca46fb90
RB
3829 if (SCM_UNBNDP (y))
3830 {
3831 if (SCM_NUMBERP (x)) return x;
3832 if (SCM_UNBNDP (x)) return SCM_INUM0;
98cb6e75 3833 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
f872b822 3834 }
c209c88e 3835
e11e83f3 3836 if (SCM_I_INUMP (x))
ca46fb90 3837 {
e11e83f3 3838 if (SCM_I_INUMP (y))
ca46fb90 3839 {
e11e83f3
MV
3840 long xx = SCM_I_INUM (x);
3841 long yy = SCM_I_INUM (y);
ca46fb90 3842 long int z = xx + yy;
d956fa6f 3843 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
ca46fb90
RB
3844 }
3845 else if (SCM_BIGP (y))
3846 {
3847 SCM_SWAP (x, y);
3848 goto add_big_inum;
3849 }
3850 else if (SCM_REALP (y))
3851 {
e11e83f3 3852 long int xx = SCM_I_INUM (x);
55f26379 3853 return scm_from_double (xx + SCM_REAL_VALUE (y));
ca46fb90
RB
3854 }
3855 else if (SCM_COMPLEXP (y))
3856 {
e11e83f3 3857 long int xx = SCM_I_INUM (x);
8507ec80 3858 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
ca46fb90
RB
3859 SCM_COMPLEX_IMAG (y));
3860 }
f92e85f7 3861 else if (SCM_FRACTIONP (y))
cba42c93 3862 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
3863 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3864 SCM_FRACTION_DENOMINATOR (y));
ca46fb90
RB
3865 else
3866 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0aacf84e
MD
3867 } else if (SCM_BIGP (x))
3868 {
e11e83f3 3869 if (SCM_I_INUMP (y))
0aacf84e
MD
3870 {
3871 long int inum;
3872 int bigsgn;
3873 add_big_inum:
e11e83f3 3874 inum = SCM_I_INUM (y);
0aacf84e
MD
3875 if (inum == 0)
3876 return x;
3877 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3878 if (inum < 0)
3879 {
3880 SCM result = scm_i_mkbig ();
3881 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
3882 scm_remember_upto_here_1 (x);
3883 /* we know the result will have to be a bignum */
3884 if (bigsgn == -1)
3885 return result;
3886 return scm_i_normbig (result);
3887 }
3888 else
3889 {
3890 SCM result = scm_i_mkbig ();
3891 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
3892 scm_remember_upto_here_1 (x);
3893 /* we know the result will have to be a bignum */
3894 if (bigsgn == 1)
3895 return result;
3896 return scm_i_normbig (result);
3897 }
3898 }
3899 else if (SCM_BIGP (y))
3900 {
3901 SCM result = scm_i_mkbig ();
3902 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
3903 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
3904 mpz_add (SCM_I_BIG_MPZ (result),
3905 SCM_I_BIG_MPZ (x),
3906 SCM_I_BIG_MPZ (y));
3907 scm_remember_upto_here_2 (x, y);
3908 /* we know the result will have to be a bignum */
3909 if (sgn_x == sgn_y)
3910 return result;
3911 return scm_i_normbig (result);
3912 }
3913 else if (SCM_REALP (y))
3914 {
3915 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
3916 scm_remember_upto_here_1 (x);
55f26379 3917 return scm_from_double (result);
0aacf84e
MD
3918 }
3919 else if (SCM_COMPLEXP (y))
3920 {
3921 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
3922 + SCM_COMPLEX_REAL (y));
3923 scm_remember_upto_here_1 (x);
8507ec80 3924 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e 3925 }
f92e85f7 3926 else if (SCM_FRACTIONP (y))
cba42c93 3927 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
3928 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3929 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
3930 else
3931 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0f2d19dd 3932 }
0aacf84e
MD
3933 else if (SCM_REALP (x))
3934 {
e11e83f3 3935 if (SCM_I_INUMP (y))
55f26379 3936 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
0aacf84e
MD
3937 else if (SCM_BIGP (y))
3938 {
3939 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
3940 scm_remember_upto_here_1 (y);
55f26379 3941 return scm_from_double (result);
0aacf84e
MD
3942 }
3943 else if (SCM_REALP (y))
55f26379 3944 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
0aacf84e 3945 else if (SCM_COMPLEXP (y))
8507ec80 3946 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
0aacf84e 3947 SCM_COMPLEX_IMAG (y));
f92e85f7 3948 else if (SCM_FRACTIONP (y))
55f26379 3949 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
0aacf84e
MD
3950 else
3951 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
f872b822 3952 }
0aacf84e
MD
3953 else if (SCM_COMPLEXP (x))
3954 {
e11e83f3 3955 if (SCM_I_INUMP (y))
8507ec80 3956 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
0aacf84e
MD
3957 SCM_COMPLEX_IMAG (x));
3958 else if (SCM_BIGP (y))
3959 {
3960 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
3961 + SCM_COMPLEX_REAL (x));
3962 scm_remember_upto_here_1 (y);
8507ec80 3963 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
0aacf84e
MD
3964 }
3965 else if (SCM_REALP (y))
8507ec80 3966 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
0aacf84e
MD
3967 SCM_COMPLEX_IMAG (x));
3968 else if (SCM_COMPLEXP (y))
8507ec80 3969 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
0aacf84e 3970 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
f92e85f7 3971 else if (SCM_FRACTIONP (y))
8507ec80 3972 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
f92e85f7
MV
3973 SCM_COMPLEX_IMAG (x));
3974 else
3975 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3976 }
3977 else if (SCM_FRACTIONP (x))
3978 {
e11e83f3 3979 if (SCM_I_INUMP (y))
cba42c93 3980 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
3981 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
3982 SCM_FRACTION_DENOMINATOR (x));
3983 else if (SCM_BIGP (y))
cba42c93 3984 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
3985 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
3986 SCM_FRACTION_DENOMINATOR (x));
3987 else if (SCM_REALP (y))
55f26379 3988 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
f92e85f7 3989 else if (SCM_COMPLEXP (y))
8507ec80 3990 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
f92e85f7
MV
3991 SCM_COMPLEX_IMAG (y));
3992 else if (SCM_FRACTIONP (y))
3993 /* a/b + c/d = (ad + bc) / bd */
cba42c93 3994 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
3995 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
3996 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
3997 else
3998 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
98cb6e75 3999 }
0aacf84e 4000 else
98cb6e75 4001 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
0f2d19dd
JB
4002}
4003
4004
9de33deb 4005SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
609c3d30
MG
4006/* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
4007 * the sum of all but the first argument are subtracted from the first
4008 * argument. */
c05e97b7 4009#define FUNC_NAME s_difference
0f2d19dd 4010SCM
6e8d25a6 4011scm_difference (SCM x, SCM y)
0f2d19dd 4012{
ca46fb90
RB
4013 if (SCM_UNBNDP (y))
4014 {
4015 if (SCM_UNBNDP (x))
4016 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4017 else
e11e83f3 4018 if (SCM_I_INUMP (x))
ca46fb90 4019 {
e11e83f3 4020 long xx = -SCM_I_INUM (x);
ca46fb90 4021 if (SCM_FIXABLE (xx))
d956fa6f 4022 return SCM_I_MAKINUM (xx);
ca46fb90
RB
4023 else
4024 return scm_i_long2big (xx);
4025 }
4026 else if (SCM_BIGP (x))
4027 /* FIXME: do we really need to normalize here? */
4028 return scm_i_normbig (scm_i_clonebig (x, 0));
4029 else if (SCM_REALP (x))
55f26379 4030 return scm_from_double (-SCM_REAL_VALUE (x));
ca46fb90 4031 else if (SCM_COMPLEXP (x))
8507ec80 4032 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
ca46fb90 4033 -SCM_COMPLEX_IMAG (x));
f92e85f7 4034 else if (SCM_FRACTIONP (x))
cba42c93 4035 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7 4036 SCM_FRACTION_DENOMINATOR (x));
ca46fb90
RB
4037 else
4038 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
f872b822 4039 }
ca46fb90 4040
e11e83f3 4041 if (SCM_I_INUMP (x))
0aacf84e 4042 {
e11e83f3 4043 if (SCM_I_INUMP (y))
0aacf84e 4044 {
e11e83f3
MV
4045 long int xx = SCM_I_INUM (x);
4046 long int yy = SCM_I_INUM (y);
0aacf84e
MD
4047 long int z = xx - yy;
4048 if (SCM_FIXABLE (z))
d956fa6f 4049 return SCM_I_MAKINUM (z);
0aacf84e
MD
4050 else
4051 return scm_i_long2big (z);
4052 }
4053 else if (SCM_BIGP (y))
4054 {
4055 /* inum-x - big-y */
e11e83f3 4056 long xx = SCM_I_INUM (x);
ca46fb90 4057
0aacf84e
MD
4058 if (xx == 0)
4059 return scm_i_clonebig (y, 0);
4060 else
4061 {
4062 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4063 SCM result = scm_i_mkbig ();
ca46fb90 4064
0aacf84e
MD
4065 if (xx >= 0)
4066 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4067 else
4068 {
4069 /* x - y == -(y + -x) */
4070 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4071 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4072 }
4073 scm_remember_upto_here_1 (y);
ca46fb90 4074
0aacf84e
MD
4075 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4076 /* we know the result will have to be a bignum */
4077 return result;
4078 else
4079 return scm_i_normbig (result);
4080 }
4081 }
4082 else if (SCM_REALP (y))
4083 {
e11e83f3 4084 long int xx = SCM_I_INUM (x);
55f26379 4085 return scm_from_double (xx - SCM_REAL_VALUE (y));
0aacf84e
MD
4086 }
4087 else if (SCM_COMPLEXP (y))
4088 {
e11e83f3 4089 long int xx = SCM_I_INUM (x);
8507ec80 4090 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
0aacf84e
MD
4091 - SCM_COMPLEX_IMAG (y));
4092 }
f92e85f7
MV
4093 else if (SCM_FRACTIONP (y))
4094 /* a - b/c = (ac - b) / c */
cba42c93 4095 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4096 SCM_FRACTION_NUMERATOR (y)),
4097 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4098 else
4099 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
f872b822 4100 }
0aacf84e
MD
4101 else if (SCM_BIGP (x))
4102 {
e11e83f3 4103 if (SCM_I_INUMP (y))
0aacf84e
MD
4104 {
4105 /* big-x - inum-y */
e11e83f3 4106 long yy = SCM_I_INUM (y);
0aacf84e 4107 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
ca46fb90 4108
0aacf84e
MD
4109 scm_remember_upto_here_1 (x);
4110 if (sgn_x == 0)
c71b0706
MV
4111 return (SCM_FIXABLE (-yy) ?
4112 SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
0aacf84e
MD
4113 else
4114 {
4115 SCM result = scm_i_mkbig ();
ca46fb90 4116
708f22c6
KR
4117 if (yy >= 0)
4118 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4119 else
4120 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
0aacf84e 4121 scm_remember_upto_here_1 (x);
ca46fb90 4122
0aacf84e
MD
4123 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4124 /* we know the result will have to be a bignum */
4125 return result;
4126 else
4127 return scm_i_normbig (result);
4128 }
4129 }
4130 else if (SCM_BIGP (y))
4131 {
4132 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4133 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4134 SCM result = scm_i_mkbig ();
4135 mpz_sub (SCM_I_BIG_MPZ (result),
4136 SCM_I_BIG_MPZ (x),
4137 SCM_I_BIG_MPZ (y));
4138 scm_remember_upto_here_2 (x, y);
4139 /* we know the result will have to be a bignum */
4140 if ((sgn_x == 1) && (sgn_y == -1))
4141 return result;
4142 if ((sgn_x == -1) && (sgn_y == 1))
4143 return result;
4144 return scm_i_normbig (result);
4145 }
4146 else if (SCM_REALP (y))
4147 {
4148 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4149 scm_remember_upto_here_1 (x);
55f26379 4150 return scm_from_double (result);
0aacf84e
MD
4151 }
4152 else if (SCM_COMPLEXP (y))
4153 {
4154 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4155 - SCM_COMPLEX_REAL (y));
4156 scm_remember_upto_here_1 (x);
8507ec80 4157 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
0aacf84e 4158 }
f92e85f7 4159 else if (SCM_FRACTIONP (y))
cba42c93 4160 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4161 SCM_FRACTION_NUMERATOR (y)),
4162 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 4163 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
ca46fb90 4164 }
0aacf84e
MD
4165 else if (SCM_REALP (x))
4166 {
e11e83f3 4167 if (SCM_I_INUMP (y))
55f26379 4168 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
0aacf84e
MD
4169 else if (SCM_BIGP (y))
4170 {
4171 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4172 scm_remember_upto_here_1 (x);
55f26379 4173 return scm_from_double (result);
0aacf84e
MD
4174 }
4175 else if (SCM_REALP (y))
55f26379 4176 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
0aacf84e 4177 else if (SCM_COMPLEXP (y))
8507ec80 4178 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4179 -SCM_COMPLEX_IMAG (y));
f92e85f7 4180 else if (SCM_FRACTIONP (y))
55f26379 4181 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
0aacf84e
MD
4182 else
4183 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4184 }
0aacf84e
MD
4185 else if (SCM_COMPLEXP (x))
4186 {
e11e83f3 4187 if (SCM_I_INUMP (y))
8507ec80 4188 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
0aacf84e
MD
4189 SCM_COMPLEX_IMAG (x));
4190 else if (SCM_BIGP (y))
4191 {
4192 double real_part = (SCM_COMPLEX_REAL (x)
4193 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4194 scm_remember_upto_here_1 (x);
8507ec80 4195 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e
MD
4196 }
4197 else if (SCM_REALP (y))
8507ec80 4198 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
0aacf84e
MD
4199 SCM_COMPLEX_IMAG (x));
4200 else if (SCM_COMPLEXP (y))
8507ec80 4201 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4202 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
f92e85f7 4203 else if (SCM_FRACTIONP (y))
8507ec80 4204 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
f92e85f7
MV
4205 SCM_COMPLEX_IMAG (x));
4206 else
4207 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4208 }
4209 else if (SCM_FRACTIONP (x))
4210 {
e11e83f3 4211 if (SCM_I_INUMP (y))
f92e85f7 4212 /* a/b - c = (a - cb) / b */
cba42c93 4213 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4214 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4215 SCM_FRACTION_DENOMINATOR (x));
4216 else if (SCM_BIGP (y))
cba42c93 4217 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4218 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4219 SCM_FRACTION_DENOMINATOR (x));
4220 else if (SCM_REALP (y))
55f26379 4221 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
f92e85f7 4222 else if (SCM_COMPLEXP (y))
8507ec80 4223 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
f92e85f7
MV
4224 -SCM_COMPLEX_IMAG (y));
4225 else if (SCM_FRACTIONP (y))
4226 /* a/b - c/d = (ad - bc) / bd */
cba42c93 4227 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4228 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4229 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4230 else
4231 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4232 }
0aacf84e 4233 else
98cb6e75 4234 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
0f2d19dd 4235}
c05e97b7 4236#undef FUNC_NAME
0f2d19dd 4237
ca46fb90 4238
9de33deb 4239SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
942e5b91
MG
4240/* "Return the product of all arguments. If called without arguments,\n"
4241 * "1 is returned."
4242 */
0f2d19dd 4243SCM
6e8d25a6 4244scm_product (SCM x, SCM y)
0f2d19dd 4245{
0aacf84e
MD
4246 if (SCM_UNBNDP (y))
4247 {
4248 if (SCM_UNBNDP (x))
d956fa6f 4249 return SCM_I_MAKINUM (1L);
0aacf84e
MD
4250 else if (SCM_NUMBERP (x))
4251 return x;
4252 else
4253 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
f872b822 4254 }
ca46fb90 4255
e11e83f3 4256 if (SCM_I_INUMP (x))
0aacf84e
MD
4257 {
4258 long xx;
f4c627b3 4259
0aacf84e 4260 intbig:
e11e83f3 4261 xx = SCM_I_INUM (x);
f4c627b3 4262
0aacf84e
MD
4263 switch (xx)
4264 {
ca46fb90
RB
4265 case 0: return x; break;
4266 case 1: return y; break;
0aacf84e 4267 }
f4c627b3 4268
e11e83f3 4269 if (SCM_I_INUMP (y))
0aacf84e 4270 {
e11e83f3 4271 long yy = SCM_I_INUM (y);
0aacf84e 4272 long kk = xx * yy;
d956fa6f 4273 SCM k = SCM_I_MAKINUM (kk);
e11e83f3 4274 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
0aacf84e
MD
4275 return k;
4276 else
4277 {
4278 SCM result = scm_i_long2big (xx);
4279 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4280 return scm_i_normbig (result);
4281 }
4282 }
4283 else if (SCM_BIGP (y))
4284 {
4285 SCM result = scm_i_mkbig ();
4286 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4287 scm_remember_upto_here_1 (y);
4288 return result;
4289 }
4290 else if (SCM_REALP (y))
55f26379 4291 return scm_from_double (xx * SCM_REAL_VALUE (y));
0aacf84e 4292 else if (SCM_COMPLEXP (y))
8507ec80 4293 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
0aacf84e 4294 xx * SCM_COMPLEX_IMAG (y));
f92e85f7 4295 else if (SCM_FRACTIONP (y))
cba42c93 4296 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4297 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4298 else
4299 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4300 }
0aacf84e
MD
4301 else if (SCM_BIGP (x))
4302 {
e11e83f3 4303 if (SCM_I_INUMP (y))
0aacf84e
MD
4304 {
4305 SCM_SWAP (x, y);
4306 goto intbig;
4307 }
4308 else if (SCM_BIGP (y))
4309 {
4310 SCM result = scm_i_mkbig ();
4311 mpz_mul (SCM_I_BIG_MPZ (result),
4312 SCM_I_BIG_MPZ (x),
4313 SCM_I_BIG_MPZ (y));
4314 scm_remember_upto_here_2 (x, y);
4315 return result;
4316 }
4317 else if (SCM_REALP (y))
4318 {
4319 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4320 scm_remember_upto_here_1 (x);
55f26379 4321 return scm_from_double (result);
0aacf84e
MD
4322 }
4323 else if (SCM_COMPLEXP (y))
4324 {
4325 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4326 scm_remember_upto_here_1 (x);
8507ec80 4327 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
0aacf84e
MD
4328 z * SCM_COMPLEX_IMAG (y));
4329 }
f92e85f7 4330 else if (SCM_FRACTIONP (y))
cba42c93 4331 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4332 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4333 else
4334 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4335 }
0aacf84e
MD
4336 else if (SCM_REALP (x))
4337 {
e11e83f3 4338 if (SCM_I_INUMP (y))
55f26379 4339 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
0aacf84e
MD
4340 else if (SCM_BIGP (y))
4341 {
4342 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4343 scm_remember_upto_here_1 (y);
55f26379 4344 return scm_from_double (result);
0aacf84e
MD
4345 }
4346 else if (SCM_REALP (y))
55f26379 4347 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
0aacf84e 4348 else if (SCM_COMPLEXP (y))
8507ec80 4349 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
0aacf84e 4350 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
f92e85f7 4351 else if (SCM_FRACTIONP (y))
55f26379 4352 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
0aacf84e
MD
4353 else
4354 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4355 }
0aacf84e
MD
4356 else if (SCM_COMPLEXP (x))
4357 {
e11e83f3 4358 if (SCM_I_INUMP (y))
8507ec80 4359 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
e11e83f3 4360 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4361 else if (SCM_BIGP (y))
4362 {
4363 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4364 scm_remember_upto_here_1 (y);
8507ec80 4365 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
76506335 4366 z * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4367 }
4368 else if (SCM_REALP (y))
8507ec80 4369 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
0aacf84e
MD
4370 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4371 else if (SCM_COMPLEXP (y))
4372 {
8507ec80 4373 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
0aacf84e
MD
4374 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4375 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4376 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4377 }
f92e85f7
MV
4378 else if (SCM_FRACTIONP (y))
4379 {
4380 double yy = scm_i_fraction2double (y);
8507ec80 4381 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
f92e85f7
MV
4382 yy * SCM_COMPLEX_IMAG (x));
4383 }
4384 else
4385 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4386 }
4387 else if (SCM_FRACTIONP (x))
4388 {
e11e83f3 4389 if (SCM_I_INUMP (y))
cba42c93 4390 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4391 SCM_FRACTION_DENOMINATOR (x));
4392 else if (SCM_BIGP (y))
cba42c93 4393 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4394 SCM_FRACTION_DENOMINATOR (x));
4395 else if (SCM_REALP (y))
55f26379 4396 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
f92e85f7
MV
4397 else if (SCM_COMPLEXP (y))
4398 {
4399 double xx = scm_i_fraction2double (x);
8507ec80 4400 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
f92e85f7
MV
4401 xx * SCM_COMPLEX_IMAG (y));
4402 }
4403 else if (SCM_FRACTIONP (y))
4404 /* a/b * c/d = ac / bd */
cba42c93 4405 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4406 SCM_FRACTION_NUMERATOR (y)),
4407 scm_product (SCM_FRACTION_DENOMINATOR (x),
4408 SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4409 else
4410 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4411 }
0aacf84e 4412 else
f4c627b3 4413 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
0f2d19dd
JB
4414}
4415
7351e207
MV
4416#if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4417 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4418#define ALLOW_DIVIDE_BY_ZERO
4419/* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4420#endif
0f2d19dd 4421
ba74ef4e
MV
4422/* The code below for complex division is adapted from the GNU
4423 libstdc++, which adapted it from f2c's libF77, and is subject to
4424 this copyright: */
4425
4426/****************************************************************
4427Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4428
4429Permission to use, copy, modify, and distribute this software
4430and its documentation for any purpose and without fee is hereby
4431granted, provided that the above copyright notice appear in all
4432copies and that both that the copyright notice and this
4433permission notice and warranty disclaimer appear in supporting
4434documentation, and that the names of AT&T Bell Laboratories or
4435Bellcore or any of their entities not be used in advertising or
4436publicity pertaining to distribution of the software without
4437specific, written prior permission.
4438
4439AT&T and Bellcore disclaim all warranties with regard to this
4440software, including all implied warranties of merchantability
4441and fitness. In no event shall AT&T or Bellcore be liable for
4442any special, indirect or consequential damages or any damages
4443whatsoever resulting from loss of use, data or profits, whether
4444in an action of contract, negligence or other tortious action,
4445arising out of or in connection with the use or performance of
4446this software.
4447****************************************************************/
4448
9de33deb 4449SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
609c3d30
MG
4450/* Divide the first argument by the product of the remaining
4451 arguments. If called with one argument @var{z1}, 1/@var{z1} is
4452 returned. */
c05e97b7 4453#define FUNC_NAME s_divide
f92e85f7
MV
4454static SCM
4455scm_i_divide (SCM x, SCM y, int inexact)
0f2d19dd 4456{
f8de44c1
DH
4457 double a;
4458
0aacf84e
MD
4459 if (SCM_UNBNDP (y))
4460 {
4461 if (SCM_UNBNDP (x))
4462 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
e11e83f3 4463 else if (SCM_I_INUMP (x))
0aacf84e 4464 {
e11e83f3 4465 long xx = SCM_I_INUM (x);
0aacf84e
MD
4466 if (xx == 1 || xx == -1)
4467 return x;
7351e207 4468#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4469 else if (xx == 0)
4470 scm_num_overflow (s_divide);
7351e207 4471#endif
0aacf84e 4472 else
f92e85f7
MV
4473 {
4474 if (inexact)
55f26379 4475 return scm_from_double (1.0 / (double) xx);
cba42c93 4476 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4477 }
0aacf84e
MD
4478 }
4479 else if (SCM_BIGP (x))
f92e85f7
MV
4480 {
4481 if (inexact)
55f26379 4482 return scm_from_double (1.0 / scm_i_big2dbl (x));
cba42c93 4483 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4484 }
0aacf84e
MD
4485 else if (SCM_REALP (x))
4486 {
4487 double xx = SCM_REAL_VALUE (x);
7351e207 4488#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4489 if (xx == 0.0)
4490 scm_num_overflow (s_divide);
4491 else
7351e207 4492#endif
55f26379 4493 return scm_from_double (1.0 / xx);
0aacf84e
MD
4494 }
4495 else if (SCM_COMPLEXP (x))
4496 {
4497 double r = SCM_COMPLEX_REAL (x);
4498 double i = SCM_COMPLEX_IMAG (x);
4499 if (r <= i)
4500 {
4501 double t = r / i;
4502 double d = i * (1.0 + t * t);
8507ec80 4503 return scm_c_make_rectangular (t / d, -1.0 / d);
0aacf84e
MD
4504 }
4505 else
4506 {
4507 double t = i / r;
4508 double d = r * (1.0 + t * t);
8507ec80 4509 return scm_c_make_rectangular (1.0 / d, -t / d);
0aacf84e
MD
4510 }
4511 }
f92e85f7 4512 else if (SCM_FRACTIONP (x))
cba42c93 4513 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
f92e85f7 4514 SCM_FRACTION_NUMERATOR (x));
0aacf84e
MD
4515 else
4516 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
f8de44c1 4517 }
f8de44c1 4518
e11e83f3 4519 if (SCM_I_INUMP (x))
0aacf84e 4520 {
e11e83f3
MV
4521 long xx = SCM_I_INUM (x);
4522 if (SCM_I_INUMP (y))
0aacf84e 4523 {
e11e83f3 4524 long yy = SCM_I_INUM (y);
0aacf84e
MD
4525 if (yy == 0)
4526 {
7351e207 4527#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4528 scm_num_overflow (s_divide);
7351e207 4529#else
55f26379 4530 return scm_from_double ((double) xx / (double) yy);
7351e207 4531#endif
0aacf84e
MD
4532 }
4533 else if (xx % yy != 0)
f92e85f7
MV
4534 {
4535 if (inexact)
55f26379 4536 return scm_from_double ((double) xx / (double) yy);
cba42c93 4537 else return scm_i_make_ratio (x, y);
f92e85f7 4538 }
0aacf84e
MD
4539 else
4540 {
4541 long z = xx / yy;
4542 if (SCM_FIXABLE (z))
d956fa6f 4543 return SCM_I_MAKINUM (z);
0aacf84e
MD
4544 else
4545 return scm_i_long2big (z);
4546 }
f872b822 4547 }
0aacf84e 4548 else if (SCM_BIGP (y))
f92e85f7
MV
4549 {
4550 if (inexact)
55f26379 4551 return scm_from_double ((double) xx / scm_i_big2dbl (y));
cba42c93 4552 else return scm_i_make_ratio (x, y);
f92e85f7 4553 }
0aacf84e
MD
4554 else if (SCM_REALP (y))
4555 {
4556 double yy = SCM_REAL_VALUE (y);
7351e207 4557#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4558 if (yy == 0.0)
4559 scm_num_overflow (s_divide);
4560 else
7351e207 4561#endif
55f26379 4562 return scm_from_double ((double) xx / yy);
ba74ef4e 4563 }
0aacf84e
MD
4564 else if (SCM_COMPLEXP (y))
4565 {
4566 a = xx;
4567 complex_div: /* y _must_ be a complex number */
4568 {
4569 double r = SCM_COMPLEX_REAL (y);
4570 double i = SCM_COMPLEX_IMAG (y);
4571 if (r <= i)
4572 {
4573 double t = r / i;
4574 double d = i * (1.0 + t * t);
8507ec80 4575 return scm_c_make_rectangular ((a * t) / d, -a / d);
0aacf84e
MD
4576 }
4577 else
4578 {
4579 double t = i / r;
4580 double d = r * (1.0 + t * t);
8507ec80 4581 return scm_c_make_rectangular (a / d, -(a * t) / d);
0aacf84e
MD
4582 }
4583 }
4584 }
f92e85f7
MV
4585 else if (SCM_FRACTIONP (y))
4586 /* a / b/c = ac / b */
cba42c93 4587 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 4588 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
4589 else
4590 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 4591 }
0aacf84e
MD
4592 else if (SCM_BIGP (x))
4593 {
e11e83f3 4594 if (SCM_I_INUMP (y))
0aacf84e 4595 {
e11e83f3 4596 long int yy = SCM_I_INUM (y);
0aacf84e
MD
4597 if (yy == 0)
4598 {
7351e207 4599#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4600 scm_num_overflow (s_divide);
7351e207 4601#else
0aacf84e
MD
4602 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4603 scm_remember_upto_here_1 (x);
4604 return (sgn == 0) ? scm_nan () : scm_inf ();
7351e207 4605#endif
0aacf84e
MD
4606 }
4607 else if (yy == 1)
4608 return x;
4609 else
4610 {
4611 /* FIXME: HMM, what are the relative performance issues here?
4612 We need to test. Is it faster on average to test
4613 divisible_p, then perform whichever operation, or is it
4614 faster to perform the integer div opportunistically and
4615 switch to real if there's a remainder? For now we take the
4616 middle ground: test, then if divisible, use the faster div
4617 func. */
4618
4619 long abs_yy = yy < 0 ? -yy : yy;
4620 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
4621
4622 if (divisible_p)
4623 {
4624 SCM result = scm_i_mkbig ();
4625 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
4626 scm_remember_upto_here_1 (x);
4627 if (yy < 0)
4628 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4629 return scm_i_normbig (result);
4630 }
4631 else
f92e85f7
MV
4632 {
4633 if (inexact)
55f26379 4634 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
cba42c93 4635 else return scm_i_make_ratio (x, y);
f92e85f7 4636 }
0aacf84e
MD
4637 }
4638 }
4639 else if (SCM_BIGP (y))
4640 {
4641 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
4642 if (y_is_zero)
4643 {
ca46fb90 4644#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4645 scm_num_overflow (s_divide);
f872b822 4646#else
0aacf84e
MD
4647 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4648 scm_remember_upto_here_1 (x);
4649 return (sgn == 0) ? scm_nan () : scm_inf ();
f872b822 4650#endif
0aacf84e
MD
4651 }
4652 else
4653 {
4654 /* big_x / big_y */
4655 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
4656 SCM_I_BIG_MPZ (y));
4657 if (divisible_p)
4658 {
4659 SCM result = scm_i_mkbig ();
4660 mpz_divexact (SCM_I_BIG_MPZ (result),
4661 SCM_I_BIG_MPZ (x),
4662 SCM_I_BIG_MPZ (y));
4663 scm_remember_upto_here_2 (x, y);
4664 return scm_i_normbig (result);
4665 }
4666 else
4667 {
f92e85f7
MV
4668 if (inexact)
4669 {
4670 double dbx = mpz_get_d (SCM_I_BIG_MPZ (x));
4671 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4672 scm_remember_upto_here_2 (x, y);
55f26379 4673 return scm_from_double (dbx / dby);
f92e85f7 4674 }
cba42c93 4675 else return scm_i_make_ratio (x, y);
0aacf84e
MD
4676 }
4677 }
4678 }
4679 else if (SCM_REALP (y))
4680 {
4681 double yy = SCM_REAL_VALUE (y);
7351e207 4682#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4683 if (yy == 0.0)
4684 scm_num_overflow (s_divide);
4685 else
7351e207 4686#endif
55f26379 4687 return scm_from_double (scm_i_big2dbl (x) / yy);
0aacf84e
MD
4688 }
4689 else if (SCM_COMPLEXP (y))
4690 {
4691 a = scm_i_big2dbl (x);
4692 goto complex_div;
4693 }
f92e85f7 4694 else if (SCM_FRACTIONP (y))
cba42c93 4695 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 4696 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
4697 else
4698 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 4699 }
0aacf84e
MD
4700 else if (SCM_REALP (x))
4701 {
4702 double rx = SCM_REAL_VALUE (x);
e11e83f3 4703 if (SCM_I_INUMP (y))
0aacf84e 4704 {
e11e83f3 4705 long int yy = SCM_I_INUM (y);
7351e207 4706#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4707 if (yy == 0)
4708 scm_num_overflow (s_divide);
4709 else
7351e207 4710#endif
55f26379 4711 return scm_from_double (rx / (double) yy);
0aacf84e
MD
4712 }
4713 else if (SCM_BIGP (y))
4714 {
4715 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4716 scm_remember_upto_here_1 (y);
55f26379 4717 return scm_from_double (rx / dby);
0aacf84e
MD
4718 }
4719 else if (SCM_REALP (y))
4720 {
4721 double yy = SCM_REAL_VALUE (y);
7351e207 4722#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4723 if (yy == 0.0)
4724 scm_num_overflow (s_divide);
4725 else
7351e207 4726#endif
55f26379 4727 return scm_from_double (rx / yy);
0aacf84e
MD
4728 }
4729 else if (SCM_COMPLEXP (y))
4730 {
4731 a = rx;
4732 goto complex_div;
4733 }
f92e85f7 4734 else if (SCM_FRACTIONP (y))
55f26379 4735 return scm_from_double (rx / scm_i_fraction2double (y));
0aacf84e
MD
4736 else
4737 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 4738 }
0aacf84e
MD
4739 else if (SCM_COMPLEXP (x))
4740 {
4741 double rx = SCM_COMPLEX_REAL (x);
4742 double ix = SCM_COMPLEX_IMAG (x);
e11e83f3 4743 if (SCM_I_INUMP (y))
0aacf84e 4744 {
e11e83f3 4745 long int yy = SCM_I_INUM (y);
7351e207 4746#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4747 if (yy == 0)
4748 scm_num_overflow (s_divide);
4749 else
7351e207 4750#endif
0aacf84e
MD
4751 {
4752 double d = yy;
8507ec80 4753 return scm_c_make_rectangular (rx / d, ix / d);
0aacf84e
MD
4754 }
4755 }
4756 else if (SCM_BIGP (y))
4757 {
4758 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4759 scm_remember_upto_here_1 (y);
8507ec80 4760 return scm_c_make_rectangular (rx / dby, ix / dby);
0aacf84e
MD
4761 }
4762 else if (SCM_REALP (y))
4763 {
4764 double yy = SCM_REAL_VALUE (y);
7351e207 4765#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4766 if (yy == 0.0)
4767 scm_num_overflow (s_divide);
4768 else
7351e207 4769#endif
8507ec80 4770 return scm_c_make_rectangular (rx / yy, ix / yy);
0aacf84e
MD
4771 }
4772 else if (SCM_COMPLEXP (y))
4773 {
4774 double ry = SCM_COMPLEX_REAL (y);
4775 double iy = SCM_COMPLEX_IMAG (y);
4776 if (ry <= iy)
4777 {
4778 double t = ry / iy;
4779 double d = iy * (1.0 + t * t);
8507ec80 4780 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
0aacf84e
MD
4781 }
4782 else
4783 {
4784 double t = iy / ry;
4785 double d = ry * (1.0 + t * t);
8507ec80 4786 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
0aacf84e
MD
4787 }
4788 }
f92e85f7
MV
4789 else if (SCM_FRACTIONP (y))
4790 {
4791 double yy = scm_i_fraction2double (y);
8507ec80 4792 return scm_c_make_rectangular (rx / yy, ix / yy);
f92e85f7 4793 }
0aacf84e
MD
4794 else
4795 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 4796 }
f92e85f7
MV
4797 else if (SCM_FRACTIONP (x))
4798 {
e11e83f3 4799 if (SCM_I_INUMP (y))
f92e85f7 4800 {
e11e83f3 4801 long int yy = SCM_I_INUM (y);
f92e85f7
MV
4802#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4803 if (yy == 0)
4804 scm_num_overflow (s_divide);
4805 else
4806#endif
cba42c93 4807 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4808 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4809 }
4810 else if (SCM_BIGP (y))
4811 {
cba42c93 4812 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4813 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4814 }
4815 else if (SCM_REALP (y))
4816 {
4817 double yy = SCM_REAL_VALUE (y);
4818#ifndef ALLOW_DIVIDE_BY_ZERO
4819 if (yy == 0.0)
4820 scm_num_overflow (s_divide);
4821 else
4822#endif
55f26379 4823 return scm_from_double (scm_i_fraction2double (x) / yy);
f92e85f7
MV
4824 }
4825 else if (SCM_COMPLEXP (y))
4826 {
4827 a = scm_i_fraction2double (x);
4828 goto complex_div;
4829 }
4830 else if (SCM_FRACTIONP (y))
cba42c93 4831 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4832 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
4833 else
4834 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4835 }
0aacf84e 4836 else
f8de44c1 4837 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
0f2d19dd 4838}
f92e85f7
MV
4839
4840SCM
4841scm_divide (SCM x, SCM y)
4842{
4843 return scm_i_divide (x, y, 0);
4844}
4845
4846static SCM scm_divide2real (SCM x, SCM y)
4847{
4848 return scm_i_divide (x, y, 1);
4849}
c05e97b7 4850#undef FUNC_NAME
0f2d19dd 4851
fa605590 4852
0f2d19dd 4853double
6e8d25a6 4854scm_asinh (double x)
0f2d19dd 4855{
fa605590
KR
4856#if HAVE_ASINH
4857 return asinh (x);
4858#else
4859#define asinh scm_asinh
f872b822 4860 return log (x + sqrt (x * x + 1));
fa605590 4861#endif
0f2d19dd 4862}
fa605590
KR
4863SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_dsubr, (SCM (*)()) asinh, g_asinh);
4864/* "Return the inverse hyperbolic sine of @var{x}."
4865 */
0f2d19dd
JB
4866
4867
0f2d19dd 4868double
6e8d25a6 4869scm_acosh (double x)
0f2d19dd 4870{
fa605590
KR
4871#if HAVE_ACOSH
4872 return acosh (x);
4873#else
4874#define acosh scm_acosh
f872b822 4875 return log (x + sqrt (x * x - 1));
fa605590 4876#endif
0f2d19dd 4877}
fa605590
KR
4878SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_dsubr, (SCM (*)()) acosh, g_acosh);
4879/* "Return the inverse hyperbolic cosine of @var{x}."
4880 */
0f2d19dd
JB
4881
4882
0f2d19dd 4883double
6e8d25a6 4884scm_atanh (double x)
0f2d19dd 4885{
fa605590
KR
4886#if HAVE_ATANH
4887 return atanh (x);
4888#else
4889#define atanh scm_atanh
f872b822 4890 return 0.5 * log ((1 + x) / (1 - x));
fa605590 4891#endif
0f2d19dd 4892}
fa605590
KR
4893SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_dsubr, (SCM (*)()) atanh, g_atanh);
4894/* "Return the inverse hyperbolic tangent of @var{x}."
4895 */
0f2d19dd
JB
4896
4897
f92e85f7
MV
4898/* XXX - eventually, we should remove this definition of scm_round and
4899 rename scm_round_number to scm_round. Likewise for scm_truncate
4900 and scm_truncate_number.
4901 */
4902
0f2d19dd 4903double
6e8d25a6 4904scm_truncate (double x)
0f2d19dd 4905{
fa605590
KR
4906#if HAVE_TRUNC
4907 return trunc (x);
4908#else
f872b822
MD
4909 if (x < 0.0)
4910 return -floor (-x);
4911 return floor (x);
fa605590 4912#endif
0f2d19dd 4913}
0f2d19dd 4914
6187f48b
KR
4915/* scm_round is done using floor(x+0.5) to round to nearest and with
4916 half-way case (ie. when x is an integer plus 0.5) going upwards. Then
4917 half-way cases are identified and adjusted down if the round-upwards
4918 didn't give the desired even integer.
4919
4920 "plus_half == result" identifies a half-way case. If plus_half, which is
4921 x + 0.5, is an integer then x must be an integer plus 0.5.
4922
4923 An odd "result" value is identified with result/2 != floor(result/2).
4924 This is done with plus_half, since that value is ready for use sooner in
4925 a pipelined cpu, and we're already requiring plus_half == result.
4926
4927 Note however that we need to be careful when x is big and already an
4928 integer. In that case "x+0.5" may round to an adjacent integer, causing
4929 us to return such a value, incorrectly. For instance if the hardware is
4930 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
4931 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
4932 returned. Or if the hardware is in round-upwards mode, then other bigger
4933 values like say x == 2^128 will see x+0.5 rounding up to the next higher
4934 representable value, 2^128+2^76 (or whatever), again incorrect.
4935
4936 These bad roundings of x+0.5 are avoided by testing at the start whether
4937 x is already an integer. If it is then clearly that's the desired result
4938 already. And if it's not then the exponent must be small enough to allow
4939 an 0.5 to be represented, and hence added without a bad rounding. */
4940
0f2d19dd 4941double
6e8d25a6 4942scm_round (double x)
0f2d19dd 4943{
6187f48b
KR
4944 double plus_half, result;
4945
4946 if (x == floor (x))
4947 return x;
4948
4949 plus_half = x + 0.5;
4950 result = floor (plus_half);
0f2d19dd 4951 /* Adjust so that the scm_round is towards even. */
0aacf84e
MD
4952 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
4953 ? result - 1
4954 : result);
0f2d19dd
JB
4955}
4956
f92e85f7
MV
4957SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
4958 (SCM x),
4959 "Round the number @var{x} towards zero.")
4960#define FUNC_NAME s_scm_truncate_number
4961{
73e4de09 4962 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
4963 return scm_floor (x);
4964 else
4965 return scm_ceiling (x);
4966}
4967#undef FUNC_NAME
4968
4969static SCM exactly_one_half;
4970
4971SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
4972 (SCM x),
4973 "Round the number @var{x} towards the nearest integer. "
4974 "When it is exactly halfway between two integers, "
4975 "round towards the even one.")
4976#define FUNC_NAME s_scm_round_number
4977{
e11e83f3 4978 if (SCM_I_INUMP (x) || SCM_BIGP (x))
bae30667
KR
4979 return x;
4980 else if (SCM_REALP (x))
55f26379 4981 return scm_from_double (scm_round (SCM_REAL_VALUE (x)));
f92e85f7 4982 else
bae30667
KR
4983 {
4984 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
4985 single quotient+remainder division then examining to see which way
4986 the rounding should go. */
4987 SCM plus_half = scm_sum (x, exactly_one_half);
4988 SCM result = scm_floor (plus_half);
4989 /* Adjust so that the scm_round is towards even. */
73e4de09
MV
4990 if (scm_is_true (scm_num_eq_p (plus_half, result))
4991 && scm_is_true (scm_odd_p (result)))
d956fa6f 4992 return scm_difference (result, SCM_I_MAKINUM (1));
bae30667
KR
4993 else
4994 return result;
4995 }
f92e85f7
MV
4996}
4997#undef FUNC_NAME
4998
4999SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5000 (SCM x),
5001 "Round the number @var{x} towards minus infinity.")
5002#define FUNC_NAME s_scm_floor
5003{
e11e83f3 5004 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5005 return x;
5006 else if (SCM_REALP (x))
55f26379 5007 return scm_from_double (floor (SCM_REAL_VALUE (x)));
f92e85f7
MV
5008 else if (SCM_FRACTIONP (x))
5009 {
5010 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5011 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5012 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5013 {
5014 /* For positive x, rounding towards zero is correct. */
5015 return q;
5016 }
5017 else
5018 {
5019 /* For negative x, we need to return q-1 unless x is an
5020 integer. But fractions are never integer, per our
5021 assumptions. */
d956fa6f 5022 return scm_difference (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5023 }
5024 }
5025 else
5026 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5027}
5028#undef FUNC_NAME
5029
5030SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5031 (SCM x),
5032 "Round the number @var{x} towards infinity.")
5033#define FUNC_NAME s_scm_ceiling
5034{
e11e83f3 5035 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5036 return x;
5037 else if (SCM_REALP (x))
55f26379 5038 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
f92e85f7
MV
5039 else if (SCM_FRACTIONP (x))
5040 {
5041 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5042 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5043 if (scm_is_false (scm_positive_p (x)))
f92e85f7
MV
5044 {
5045 /* For negative x, rounding towards zero is correct. */
5046 return q;
5047 }
5048 else
5049 {
5050 /* For positive x, we need to return q+1 unless x is an
5051 integer. But fractions are never integer, per our
5052 assumptions. */
d956fa6f 5053 return scm_sum (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5054 }
5055 }
5056 else
5057 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5058}
5059#undef FUNC_NAME
0f2d19dd 5060
14b18ed6 5061SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_dsubr, (SCM (*)()) sqrt, g_i_sqrt);
942e5b91
MG
5062/* "Return the square root of the real number @var{x}."
5063 */
14b18ed6 5064SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_dsubr, (SCM (*)()) fabs, g_i_abs);
942e5b91
MG
5065/* "Return the absolute value of the real number @var{x}."
5066 */
14b18ed6 5067SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_dsubr, (SCM (*)()) exp, g_i_exp);
942e5b91
MG
5068/* "Return the @var{x}th power of e."
5069 */
14b18ed6 5070SCM_GPROC1 (s_i_log, "$log", scm_tc7_dsubr, (SCM (*)()) log, g_i_log);
b3fcac34 5071/* "Return the natural logarithm of the real number @var{x}."
942e5b91 5072 */
14b18ed6 5073SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_dsubr, (SCM (*)()) sin, g_i_sin);
942e5b91
MG
5074/* "Return the sine of the real number @var{x}."
5075 */
14b18ed6 5076SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_dsubr, (SCM (*)()) cos, g_i_cos);
942e5b91
MG
5077/* "Return the cosine of the real number @var{x}."
5078 */
14b18ed6 5079SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_dsubr, (SCM (*)()) tan, g_i_tan);
942e5b91
MG
5080/* "Return the tangent of the real number @var{x}."
5081 */
14b18ed6 5082SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_dsubr, (SCM (*)()) asin, g_i_asin);
942e5b91
MG
5083/* "Return the arc sine of the real number @var{x}."
5084 */
14b18ed6 5085SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_dsubr, (SCM (*)()) acos, g_i_acos);
942e5b91
MG
5086/* "Return the arc cosine of the real number @var{x}."
5087 */
14b18ed6 5088SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_dsubr, (SCM (*)()) atan, g_i_atan);
942e5b91
MG
5089/* "Return the arc tangent of the real number @var{x}."
5090 */
14b18ed6 5091SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_dsubr, (SCM (*)()) sinh, g_i_sinh);
942e5b91
MG
5092/* "Return the hyperbolic sine of the real number @var{x}."
5093 */
14b18ed6 5094SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_dsubr, (SCM (*)()) cosh, g_i_cosh);
942e5b91
MG
5095/* "Return the hyperbolic cosine of the real number @var{x}."
5096 */
14b18ed6 5097SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_dsubr, (SCM (*)()) tanh, g_i_tanh);
942e5b91
MG
5098/* "Return the hyperbolic tangent of the real number @var{x}."
5099 */
f872b822
MD
5100
5101struct dpair
5102{
5103 double x, y;
5104};
5105
27c37006
NJ
5106static void scm_two_doubles (SCM x,
5107 SCM y,
3eeba8d4
JB
5108 const char *sstring,
5109 struct dpair * xy);
f872b822
MD
5110
5111static void
27c37006
NJ
5112scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
5113{
e11e83f3
MV
5114 if (SCM_I_INUMP (x))
5115 xy->x = SCM_I_INUM (x);
0aacf84e 5116 else if (SCM_BIGP (x))
1be6b49c 5117 xy->x = scm_i_big2dbl (x);
0aacf84e 5118 else if (SCM_REALP (x))
27c37006 5119 xy->x = SCM_REAL_VALUE (x);
f92e85f7
MV
5120 else if (SCM_FRACTIONP (x))
5121 xy->x = scm_i_fraction2double (x);
0aacf84e 5122 else
27c37006 5123 scm_wrong_type_arg (sstring, SCM_ARG1, x);
98cb6e75 5124
e11e83f3
MV
5125 if (SCM_I_INUMP (y))
5126 xy->y = SCM_I_INUM (y);
0aacf84e 5127 else if (SCM_BIGP (y))
1be6b49c 5128 xy->y = scm_i_big2dbl (y);
0aacf84e 5129 else if (SCM_REALP (y))
27c37006 5130 xy->y = SCM_REAL_VALUE (y);
f92e85f7
MV
5131 else if (SCM_FRACTIONP (y))
5132 xy->y = scm_i_fraction2double (y);
0aacf84e 5133 else
27c37006 5134 scm_wrong_type_arg (sstring, SCM_ARG2, y);
0f2d19dd
JB
5135}
5136
5137
a1ec6916 5138SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
27c37006
NJ
5139 (SCM x, SCM y),
5140 "Return @var{x} raised to the power of @var{y}. This\n"
0137a31b 5141 "procedure does not accept complex arguments.")
1bbd0b84 5142#define FUNC_NAME s_scm_sys_expt
0f2d19dd
JB
5143{
5144 struct dpair xy;
27c37006 5145 scm_two_doubles (x, y, FUNC_NAME, &xy);
55f26379 5146 return scm_from_double (pow (xy.x, xy.y));
0f2d19dd 5147}
1bbd0b84 5148#undef FUNC_NAME
0f2d19dd
JB
5149
5150
a1ec6916 5151SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
27c37006
NJ
5152 (SCM x, SCM y),
5153 "Return the arc tangent of the two arguments @var{x} and\n"
5154 "@var{y}. This is similar to calculating the arc tangent of\n"
5155 "@var{x} / @var{y}, except that the signs of both arguments\n"
0137a31b
MG
5156 "are used to determine the quadrant of the result. This\n"
5157 "procedure does not accept complex arguments.")
1bbd0b84 5158#define FUNC_NAME s_scm_sys_atan2
0f2d19dd
JB
5159{
5160 struct dpair xy;
27c37006 5161 scm_two_doubles (x, y, FUNC_NAME, &xy);
55f26379 5162 return scm_from_double (atan2 (xy.x, xy.y));
0f2d19dd 5163}
1bbd0b84 5164#undef FUNC_NAME
0f2d19dd 5165
8507ec80
MV
5166SCM
5167scm_c_make_rectangular (double re, double im)
5168{
5169 if (im == 0.0)
5170 return scm_from_double (re);
5171 else
5172 {
5173 SCM z;
5174 SCM_NEWSMOB (z, scm_tc16_complex, scm_gc_malloc (sizeof (scm_t_complex),
5175 "complex"));
5176 SCM_COMPLEX_REAL (z) = re;
5177 SCM_COMPLEX_IMAG (z) = im;
5178 return z;
5179 }
5180}
0f2d19dd 5181
a1ec6916 5182SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
bb628794 5183 (SCM real, SCM imaginary),
942e5b91
MG
5184 "Return a complex number constructed of the given @var{real} and\n"
5185 "@var{imaginary} parts.")
1bbd0b84 5186#define FUNC_NAME s_scm_make_rectangular
0f2d19dd
JB
5187{
5188 struct dpair xy;
bb628794 5189 scm_two_doubles (real, imaginary, FUNC_NAME, &xy);
8507ec80 5190 return scm_c_make_rectangular (xy.x, xy.y);
0f2d19dd 5191}
1bbd0b84 5192#undef FUNC_NAME
0f2d19dd 5193
8507ec80
MV
5194SCM
5195scm_c_make_polar (double mag, double ang)
5196{
5197 double s, c;
5198#if HAVE_SINCOS
5199 sincos (ang, &s, &c);
5200#else
5201 s = sin (ang);
5202 c = cos (ang);
5203#endif
5204 return scm_c_make_rectangular (mag * c, mag * s);
5205}
0f2d19dd 5206
a1ec6916 5207SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
27c37006 5208 (SCM x, SCM y),
942e5b91 5209 "Return the complex number @var{x} * e^(i * @var{y}).")
1bbd0b84 5210#define FUNC_NAME s_scm_make_polar
0f2d19dd
JB
5211{
5212 struct dpair xy;
27c37006 5213 scm_two_doubles (x, y, FUNC_NAME, &xy);
8507ec80 5214 return scm_c_make_polar (xy.x, xy.y);
0f2d19dd 5215}
1bbd0b84 5216#undef FUNC_NAME
0f2d19dd
JB
5217
5218
152f82bf 5219SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
942e5b91
MG
5220/* "Return the real part of the number @var{z}."
5221 */
0f2d19dd 5222SCM
6e8d25a6 5223scm_real_part (SCM z)
0f2d19dd 5224{
e11e83f3 5225 if (SCM_I_INUMP (z))
c2ff8ab0 5226 return z;
0aacf84e 5227 else if (SCM_BIGP (z))
c2ff8ab0 5228 return z;
0aacf84e 5229 else if (SCM_REALP (z))
c2ff8ab0 5230 return z;
0aacf84e 5231 else if (SCM_COMPLEXP (z))
55f26379 5232 return scm_from_double (SCM_COMPLEX_REAL (z));
f92e85f7 5233 else if (SCM_FRACTIONP (z))
2fa2d879 5234 return z;
0aacf84e 5235 else
c2ff8ab0 5236 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
0f2d19dd
JB
5237}
5238
5239
152f82bf 5240SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
942e5b91
MG
5241/* "Return the imaginary part of the number @var{z}."
5242 */
0f2d19dd 5243SCM
6e8d25a6 5244scm_imag_part (SCM z)
0f2d19dd 5245{
e11e83f3 5246 if (SCM_I_INUMP (z))
f872b822 5247 return SCM_INUM0;
0aacf84e 5248 else if (SCM_BIGP (z))
f872b822 5249 return SCM_INUM0;
0aacf84e 5250 else if (SCM_REALP (z))
c2ff8ab0 5251 return scm_flo0;
0aacf84e 5252 else if (SCM_COMPLEXP (z))
55f26379 5253 return scm_from_double (SCM_COMPLEX_IMAG (z));
f92e85f7
MV
5254 else if (SCM_FRACTIONP (z))
5255 return SCM_INUM0;
0aacf84e 5256 else
c2ff8ab0 5257 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
0f2d19dd
JB
5258}
5259
f92e85f7
MV
5260SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5261/* "Return the numerator of the number @var{z}."
5262 */
5263SCM
5264scm_numerator (SCM z)
5265{
e11e83f3 5266 if (SCM_I_INUMP (z))
f92e85f7
MV
5267 return z;
5268 else if (SCM_BIGP (z))
5269 return z;
5270 else if (SCM_FRACTIONP (z))
5271 {
5272 scm_i_fraction_reduce (z);
5273 return SCM_FRACTION_NUMERATOR (z);
5274 }
5275 else if (SCM_REALP (z))
5276 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5277 else
5278 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5279}
5280
5281
5282SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5283/* "Return the denominator of the number @var{z}."
5284 */
5285SCM
5286scm_denominator (SCM z)
5287{
e11e83f3 5288 if (SCM_I_INUMP (z))
d956fa6f 5289 return SCM_I_MAKINUM (1);
f92e85f7 5290 else if (SCM_BIGP (z))
d956fa6f 5291 return SCM_I_MAKINUM (1);
f92e85f7
MV
5292 else if (SCM_FRACTIONP (z))
5293 {
5294 scm_i_fraction_reduce (z);
5295 return SCM_FRACTION_DENOMINATOR (z);
5296 }
5297 else if (SCM_REALP (z))
5298 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5299 else
5300 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5301}
0f2d19dd 5302
9de33deb 5303SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
942e5b91
MG
5304/* "Return the magnitude of the number @var{z}. This is the same as\n"
5305 * "@code{abs} for real arguments, but also allows complex numbers."
5306 */
0f2d19dd 5307SCM
6e8d25a6 5308scm_magnitude (SCM z)
0f2d19dd 5309{
e11e83f3 5310 if (SCM_I_INUMP (z))
0aacf84e 5311 {
e11e83f3 5312 long int zz = SCM_I_INUM (z);
0aacf84e
MD
5313 if (zz >= 0)
5314 return z;
5315 else if (SCM_POSFIXABLE (-zz))
d956fa6f 5316 return SCM_I_MAKINUM (-zz);
0aacf84e
MD
5317 else
5318 return scm_i_long2big (-zz);
5986c47d 5319 }
0aacf84e
MD
5320 else if (SCM_BIGP (z))
5321 {
5322 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5323 scm_remember_upto_here_1 (z);
5324 if (sgn < 0)
5325 return scm_i_clonebig (z, 0);
5326 else
5327 return z;
5986c47d 5328 }
0aacf84e 5329 else if (SCM_REALP (z))
55f26379 5330 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
0aacf84e 5331 else if (SCM_COMPLEXP (z))
55f26379 5332 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
f92e85f7
MV
5333 else if (SCM_FRACTIONP (z))
5334 {
73e4de09 5335 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 5336 return z;
cba42c93 5337 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
f92e85f7
MV
5338 SCM_FRACTION_DENOMINATOR (z));
5339 }
0aacf84e 5340 else
c2ff8ab0 5341 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
0f2d19dd
JB
5342}
5343
5344
9de33deb 5345SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
942e5b91
MG
5346/* "Return the angle of the complex number @var{z}."
5347 */
0f2d19dd 5348SCM
6e8d25a6 5349scm_angle (SCM z)
0f2d19dd 5350{
c8ae173e 5351 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
55f26379 5352 scm_flo0 to save allocating a new flonum with scm_from_double each time.
c8ae173e
KR
5353 But if atan2 follows the floating point rounding mode, then the value
5354 is not a constant. Maybe it'd be close enough though. */
e11e83f3 5355 if (SCM_I_INUMP (z))
0aacf84e 5356 {
e11e83f3 5357 if (SCM_I_INUM (z) >= 0)
c8ae173e 5358 return scm_flo0;
0aacf84e 5359 else
55f26379 5360 return scm_from_double (atan2 (0.0, -1.0));
f872b822 5361 }
0aacf84e
MD
5362 else if (SCM_BIGP (z))
5363 {
5364 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5365 scm_remember_upto_here_1 (z);
5366 if (sgn < 0)
55f26379 5367 return scm_from_double (atan2 (0.0, -1.0));
0aacf84e 5368 else
c8ae173e 5369 return scm_flo0;
0f2d19dd 5370 }
0aacf84e 5371 else if (SCM_REALP (z))
c8ae173e
KR
5372 {
5373 if (SCM_REAL_VALUE (z) >= 0)
5374 return scm_flo0;
5375 else
55f26379 5376 return scm_from_double (atan2 (0.0, -1.0));
c8ae173e 5377 }
0aacf84e 5378 else if (SCM_COMPLEXP (z))
55f26379 5379 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
f92e85f7
MV
5380 else if (SCM_FRACTIONP (z))
5381 {
73e4de09 5382 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 5383 return scm_flo0;
55f26379 5384 else return scm_from_double (atan2 (0.0, -1.0));
f92e85f7 5385 }
0aacf84e 5386 else
f4c627b3 5387 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
0f2d19dd
JB
5388}
5389
5390
3c9a524f
DH
5391SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5392/* Convert the number @var{x} to its inexact representation.\n"
5393 */
5394SCM
5395scm_exact_to_inexact (SCM z)
5396{
e11e83f3 5397 if (SCM_I_INUMP (z))
55f26379 5398 return scm_from_double ((double) SCM_I_INUM (z));
3c9a524f 5399 else if (SCM_BIGP (z))
55f26379 5400 return scm_from_double (scm_i_big2dbl (z));
f92e85f7 5401 else if (SCM_FRACTIONP (z))
55f26379 5402 return scm_from_double (scm_i_fraction2double (z));
3c9a524f
DH
5403 else if (SCM_INEXACTP (z))
5404 return z;
5405 else
5406 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5407}
5408
5409
a1ec6916 5410SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
1bbd0b84 5411 (SCM z),
1e6808ea 5412 "Return an exact number that is numerically closest to @var{z}.")
1bbd0b84 5413#define FUNC_NAME s_scm_inexact_to_exact
0f2d19dd 5414{
e11e83f3 5415 if (SCM_I_INUMP (z))
f872b822 5416 return z;
0aacf84e 5417 else if (SCM_BIGP (z))
f872b822 5418 return z;
0aacf84e
MD
5419 else if (SCM_REALP (z))
5420 {
f92e85f7
MV
5421 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
5422 SCM_OUT_OF_RANGE (1, z);
2be24db4 5423 else
f92e85f7
MV
5424 {
5425 mpq_t frac;
5426 SCM q;
5427
5428 mpq_init (frac);
5429 mpq_set_d (frac, SCM_REAL_VALUE (z));
cba42c93 5430 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
f92e85f7
MV
5431 scm_i_mpz2num (mpq_denref (frac)));
5432
cba42c93 5433 /* When scm_i_make_ratio throws, we leak the memory allocated
f92e85f7
MV
5434 for frac...
5435 */
5436 mpq_clear (frac);
5437 return q;
5438 }
c2ff8ab0 5439 }
f92e85f7
MV
5440 else if (SCM_FRACTIONP (z))
5441 return z;
0aacf84e 5442 else
c2ff8ab0 5443 SCM_WRONG_TYPE_ARG (1, z);
0f2d19dd 5444}
1bbd0b84 5445#undef FUNC_NAME
0f2d19dd 5446
f92e85f7
MV
5447SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
5448 (SCM x, SCM err),
5449 "Return an exact number that is within @var{err} of @var{x}.")
5450#define FUNC_NAME s_scm_rationalize
5451{
e11e83f3 5452 if (SCM_I_INUMP (x))
f92e85f7
MV
5453 return x;
5454 else if (SCM_BIGP (x))
5455 return x;
5456 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
5457 {
5458 /* Use continued fractions to find closest ratio. All
5459 arithmetic is done with exact numbers.
5460 */
5461
5462 SCM ex = scm_inexact_to_exact (x);
5463 SCM int_part = scm_floor (ex);
d956fa6f
MV
5464 SCM tt = SCM_I_MAKINUM (1);
5465 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
5466 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
f92e85f7
MV
5467 SCM rx;
5468 int i = 0;
5469
73e4de09 5470 if (scm_is_true (scm_num_eq_p (ex, int_part)))
f92e85f7
MV
5471 return ex;
5472
5473 ex = scm_difference (ex, int_part); /* x = x-int_part */
5474 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
5475
5476 /* We stop after a million iterations just to be absolutely sure
5477 that we don't go into an infinite loop. The process normally
5478 converges after less than a dozen iterations.
5479 */
5480
5481 err = scm_abs (err);
5482 while (++i < 1000000)
5483 {
5484 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
5485 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
73e4de09
MV
5486 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
5487 scm_is_false
f92e85f7
MV
5488 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
5489 err))) /* abs(x-a/b) <= err */
02164269
MV
5490 {
5491 SCM res = scm_sum (int_part, scm_divide (a, b));
73e4de09
MV
5492 if (scm_is_false (scm_exact_p (x))
5493 || scm_is_false (scm_exact_p (err)))
02164269
MV
5494 return scm_exact_to_inexact (res);
5495 else
5496 return res;
5497 }
f92e85f7
MV
5498 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
5499 SCM_UNDEFINED);
5500 tt = scm_floor (rx); /* tt = floor (rx) */
5501 a2 = a1;
5502 b2 = b1;
5503 a1 = a;
5504 b1 = b;
5505 }
5506 scm_num_overflow (s_scm_rationalize);
5507 }
5508 else
5509 SCM_WRONG_TYPE_ARG (1, x);
5510}
5511#undef FUNC_NAME
5512
73e4de09
MV
5513/* conversion functions */
5514
5515int
5516scm_is_integer (SCM val)
5517{
5518 return scm_is_true (scm_integer_p (val));
5519}
5520
5521int
5522scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
5523{
e11e83f3 5524 if (SCM_I_INUMP (val))
73e4de09 5525 {
e11e83f3 5526 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
5527 return n >= min && n <= max;
5528 }
5529 else if (SCM_BIGP (val))
5530 {
5531 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
5532 return 0;
5533 else if (min >= LONG_MIN && max <= LONG_MAX)
d956fa6f
MV
5534 {
5535 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
5536 {
5537 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
5538 return n >= min && n <= max;
5539 }
5540 else
5541 return 0;
5542 }
73e4de09
MV
5543 else
5544 {
d956fa6f
MV
5545 scm_t_intmax n;
5546 size_t count;
73e4de09 5547
d956fa6f
MV
5548 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5549 > CHAR_BIT*sizeof (scm_t_uintmax))
5550 return 0;
5551
5552 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5553 SCM_I_BIG_MPZ (val));
73e4de09 5554
d956fa6f 5555 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
73e4de09 5556 {
d956fa6f
MV
5557 if (n < 0)
5558 return 0;
73e4de09 5559 }
73e4de09
MV
5560 else
5561 {
d956fa6f
MV
5562 n = -n;
5563 if (n >= 0)
5564 return 0;
73e4de09 5565 }
d956fa6f
MV
5566
5567 return n >= min && n <= max;
73e4de09
MV
5568 }
5569 }
73e4de09
MV
5570 else
5571 return 0;
5572}
5573
5574int
5575scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
5576{
e11e83f3 5577 if (SCM_I_INUMP (val))
73e4de09 5578 {
e11e83f3 5579 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
5580 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
5581 }
5582 else if (SCM_BIGP (val))
5583 {
5584 if (max <= SCM_MOST_POSITIVE_FIXNUM)
5585 return 0;
5586 else if (max <= ULONG_MAX)
d956fa6f
MV
5587 {
5588 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
5589 {
5590 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
5591 return n >= min && n <= max;
5592 }
5593 else
5594 return 0;
5595 }
73e4de09
MV
5596 else
5597 {
d956fa6f
MV
5598 scm_t_uintmax n;
5599 size_t count;
73e4de09 5600
d956fa6f
MV
5601 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
5602 return 0;
73e4de09 5603
d956fa6f
MV
5604 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5605 > CHAR_BIT*sizeof (scm_t_uintmax))
73e4de09 5606 return 0;
d956fa6f
MV
5607
5608 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5609 SCM_I_BIG_MPZ (val));
73e4de09 5610
d956fa6f 5611 return n >= min && n <= max;
73e4de09
MV
5612 }
5613 }
73e4de09
MV
5614 else
5615 return 0;
5616}
5617
bfd7932e
MV
5618#define TYPE scm_t_intmax
5619#define TYPE_MIN min
5620#define TYPE_MAX max
5621#define SIZEOF_TYPE 0
5622#define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
5623#define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
5624#include "libguile/conv-integer.i.c"
5625
5626#define TYPE scm_t_uintmax
5627#define TYPE_MIN min
5628#define TYPE_MAX max
5629#define SIZEOF_TYPE 0
5630#define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
5631#define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
5632#include "libguile/conv-uinteger.i.c"
5633
5634#define TYPE scm_t_int8
5635#define TYPE_MIN SCM_T_INT8_MIN
5636#define TYPE_MAX SCM_T_INT8_MAX
5637#define SIZEOF_TYPE 1
5638#define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
5639#define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
5640#include "libguile/conv-integer.i.c"
5641
5642#define TYPE scm_t_uint8
5643#define TYPE_MIN 0
5644#define TYPE_MAX SCM_T_UINT8_MAX
5645#define SIZEOF_TYPE 1
5646#define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
5647#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
5648#include "libguile/conv-uinteger.i.c"
5649
5650#define TYPE scm_t_int16
5651#define TYPE_MIN SCM_T_INT16_MIN
5652#define TYPE_MAX SCM_T_INT16_MAX
5653#define SIZEOF_TYPE 2
5654#define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
5655#define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
5656#include "libguile/conv-integer.i.c"
5657
5658#define TYPE scm_t_uint16
5659#define TYPE_MIN 0
5660#define TYPE_MAX SCM_T_UINT16_MAX
5661#define SIZEOF_TYPE 2
5662#define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
5663#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
5664#include "libguile/conv-uinteger.i.c"
5665
5666#define TYPE scm_t_int32
5667#define TYPE_MIN SCM_T_INT32_MIN
5668#define TYPE_MAX SCM_T_INT32_MAX
5669#define SIZEOF_TYPE 4
5670#define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
5671#define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
5672#include "libguile/conv-integer.i.c"
5673
5674#define TYPE scm_t_uint32
5675#define TYPE_MIN 0
5676#define TYPE_MAX SCM_T_UINT32_MAX
5677#define SIZEOF_TYPE 4
5678#define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
5679#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
5680#include "libguile/conv-uinteger.i.c"
5681
5682#if SCM_HAVE_T_INT64
5683
5684#define TYPE scm_t_int64
5685#define TYPE_MIN SCM_T_INT64_MIN
5686#define TYPE_MAX SCM_T_INT64_MAX
5687#define SIZEOF_TYPE 8
5688#define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
5689#define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
5690#include "libguile/conv-integer.i.c"
5691
5692#define TYPE scm_t_uint64
5693#define TYPE_MIN 0
5694#define TYPE_MAX SCM_T_UINT64_MAX
5695#define SIZEOF_TYPE 8
5696#define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
5697#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
5698#include "libguile/conv-uinteger.i.c"
73e4de09 5699
bfd7932e 5700#endif
73e4de09
MV
5701
5702int
5703scm_is_real (SCM val)
5704{
5705 return scm_is_true (scm_real_p (val));
5706}
5707
55f26379
MV
5708int
5709scm_is_rational (SCM val)
5710{
5711 return scm_is_true (scm_rational_p (val));
5712}
5713
73e4de09
MV
5714double
5715scm_to_double (SCM val)
5716{
55f26379
MV
5717 if (SCM_I_INUMP (val))
5718 return SCM_I_INUM (val);
5719 else if (SCM_BIGP (val))
5720 return scm_i_big2dbl (val);
5721 else if (SCM_FRACTIONP (val))
5722 return scm_i_fraction2double (val);
5723 else if (SCM_REALP (val))
5724 return SCM_REAL_VALUE (val);
5725 else
5726 scm_wrong_type_arg (NULL, 0, val);
73e4de09
MV
5727}
5728
5729SCM
5730scm_from_double (double val)
5731{
55f26379
MV
5732 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
5733 SCM_REAL_VALUE (z) = val;
5734 return z;
73e4de09
MV
5735}
5736
55f26379
MV
5737#if SCM_ENABLE_DISCOURAGED == 1
5738
5739float
5740scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
5741{
5742 if (SCM_BIGP (num))
5743 {
5744 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
5745 if (!xisinf (res))
5746 return res;
5747 else
5748 scm_out_of_range (NULL, num);
5749 }
5750 else
5751 return scm_to_double (num);
5752}
5753
5754double
5755scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
5756{
5757 if (SCM_BIGP (num))
5758 {
5759 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
5760 if (!xisinf (res))
5761 return res;
5762 else
5763 scm_out_of_range (NULL, num);
5764 }
5765 else
5766 return scm_to_double (num);
5767}
5768
5769#endif
5770
8507ec80
MV
5771int
5772scm_is_complex (SCM val)
5773{
5774 return scm_is_true (scm_complex_p (val));
5775}
5776
5777double
5778scm_c_real_part (SCM z)
5779{
5780 if (SCM_COMPLEXP (z))
5781 return SCM_COMPLEX_REAL (z);
5782 else
5783 {
5784 /* Use the scm_real_part to get proper error checking and
5785 dispatching.
5786 */
5787 return scm_to_double (scm_real_part (z));
5788 }
5789}
5790
5791double
5792scm_c_imag_part (SCM z)
5793{
5794 if (SCM_COMPLEXP (z))
5795 return SCM_COMPLEX_IMAG (z);
5796 else
5797 {
5798 /* Use the scm_imag_part to get proper error checking and
5799 dispatching. The result will almost always be 0.0, but not
5800 always.
5801 */
5802 return scm_to_double (scm_imag_part (z));
5803 }
5804}
5805
5806double
5807scm_c_magnitude (SCM z)
5808{
5809 return scm_to_double (scm_magnitude (z));
5810}
5811
5812double
5813scm_c_angle (SCM z)
5814{
5815 return scm_to_double (scm_angle (z));
5816}
5817
5818int
5819scm_is_number (SCM z)
5820{
5821 return scm_is_true (scm_number_p (z));
5822}
5823
0f2d19dd
JB
5824void
5825scm_init_numbers ()
0f2d19dd 5826{
0b799eea
MV
5827 int i;
5828
713a4259
KR
5829 mpz_init_set_si (z_negative_one, -1);
5830
a261c0e9
DH
5831 /* It may be possible to tune the performance of some algorithms by using
5832 * the following constants to avoid the creation of bignums. Please, before
5833 * using these values, remember the two rules of program optimization:
5834 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
86d31dfe 5835 scm_c_define ("most-positive-fixnum",
d956fa6f 5836 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
86d31dfe 5837 scm_c_define ("most-negative-fixnum",
d956fa6f 5838 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
a261c0e9 5839
f3ae5d60
MD
5840 scm_add_feature ("complex");
5841 scm_add_feature ("inexact");
55f26379 5842 scm_flo0 = scm_from_double (0.0);
0b799eea
MV
5843
5844 /* determine floating point precision */
55f26379 5845 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
0b799eea
MV
5846 {
5847 init_dblprec(&scm_dblprec[i-2],i);
5848 init_fx_radix(fx_per_radix[i-2],i);
5849 }
f872b822 5850#ifdef DBL_DIG
0b799eea
MV
5851 /* hard code precision for base 10 if the preprocessor tells us to... */
5852 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
5853#endif
1be6b49c
ML
5854
5855#ifdef GUILE_DEBUG
5856 check_sanity ();
5857#endif
f92e85f7 5858
d956fa6f
MV
5859 exactly_one_half = scm_permanent_object (scm_divide (SCM_I_MAKINUM (1),
5860 SCM_I_MAKINUM (2)));
a0599745 5861#include "libguile/numbers.x"
0f2d19dd 5862}
89e00824
ML
5863
5864/*
5865 Local Variables:
5866 c-file-style: "gnu"
5867 End:
5868*/