*** empty log message ***
[bpt/guile.git] / libguile / numbers.c
CommitLineData
7d92d3d0 1/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005 Free Software Foundation, Inc.
ba74ef4e
MV
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
f81e080b 6 *
73be1d9e
MV
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
0f2d19dd 11 *
73be1d9e
MV
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
0f2d19dd 16 *
73be1d9e
MV
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
1bbd0b84 21
0f2d19dd 22\f
ca46fb90
RB
23/* General assumptions:
24 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
25 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
26 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
27 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
f92e85f7 28 * All objects satisfying SCM_FRACTIONP are never an integer.
ca46fb90
RB
29 */
30
31/* TODO:
32
33 - see if special casing bignums and reals in integer-exponent when
34 possible (to use mpz_pow and mpf_pow_ui) is faster.
35
36 - look in to better short-circuiting of common cases in
37 integer-expt and elsewhere.
38
39 - see if direct mpz operations can help in ash and elsewhere.
40
41 */
0f2d19dd 42
fa605590
KR
43/* tell glibc (2.3) to give prototype for C99 trunc() */
44#define _GNU_SOURCE
45
ee33d62a
RB
46#if HAVE_CONFIG_H
47# include <config.h>
48#endif
49
0f2d19dd 50#include <math.h>
3c9a524f 51#include <ctype.h>
fc194577 52#include <string.h>
f92e85f7 53
a0599745 54#include "libguile/_scm.h"
a0599745
MD
55#include "libguile/feature.h"
56#include "libguile/ports.h"
57#include "libguile/root.h"
58#include "libguile/smob.h"
59#include "libguile/strings.h"
a0599745
MD
60
61#include "libguile/validate.h"
62#include "libguile/numbers.h"
1be6b49c 63#include "libguile/deprecation.h"
f4c627b3 64
f92e85f7
MV
65#include "libguile/eq.h"
66
55f26379
MV
67#include "libguile/discouraged.h"
68
0f2d19dd 69\f
f4c627b3 70
ca46fb90
RB
71/*
72 Wonder if this might be faster for some of our code? A switch on
73 the numtag would jump directly to the right case, and the
74 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
75
76 #define SCM_I_NUMTAG_NOTNUM 0
77 #define SCM_I_NUMTAG_INUM 1
78 #define SCM_I_NUMTAG_BIG scm_tc16_big
79 #define SCM_I_NUMTAG_REAL scm_tc16_real
80 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
81 #define SCM_I_NUMTAG(x) \
e11e83f3 82 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
ca46fb90 83 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
534c55a9 84 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
ca46fb90
RB
85 : SCM_I_NUMTAG_NOTNUM)))
86*/
f92e85f7 87/* the macro above will not work as is with fractions */
f4c627b3
DH
88
89
34d19ef6 90#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
09fb7599 91
56e55ac7 92/* FLOBUFLEN is the maximum number of characters neccessary for the
3a9809df
DH
93 * printed or scm_string representation of an inexact number.
94 */
0b799eea 95#define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
3a9809df 96
7351e207
MV
97#if defined (SCO)
98#if ! defined (HAVE_ISNAN)
99#define HAVE_ISNAN
100static int
101isnan (double x)
102{
103 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
104}
0f2d19dd 105#endif
7351e207
MV
106#if ! defined (HAVE_ISINF)
107#define HAVE_ISINF
108static int
109isinf (double x)
110{
111 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
112}
0f2d19dd 113
7351e207 114#endif
e6f3ef58
MD
115#endif
116
b127c712 117
f8a8200b
KR
118/* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
119 an explicit check. In some future gmp (don't know what version number),
120 mpz_cmp_d is supposed to do this itself. */
121#if 1
b127c712
KR
122#define xmpz_cmp_d(z, d) \
123 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
124#else
125#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
126#endif
127
a98ce907
KR
128/* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
129 isinf. It does have finite and isnan though, hence the use of those.
130 fpclass would be a possibility on that system too. */
f92e85f7
MV
131static int
132xisinf (double x)
133{
134#if defined (HAVE_ISINF)
135 return isinf (x);
136#elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
137 return (! (finite (x) || isnan (x)));
138#else
139 return 0;
140#endif
141}
142
143static int
144xisnan (double x)
145{
146#if defined (HAVE_ISNAN)
147 return isnan (x);
148#else
149 return 0;
150#endif
151}
152
0f2d19dd
JB
153\f
154
713a4259 155static mpz_t z_negative_one;
ac0c002c
DH
156
157\f
158
570b6821 159SCM_C_INLINE_KEYWORD SCM
ca46fb90
RB
160scm_i_mkbig ()
161{
162 /* Return a newly created bignum. */
163 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
164 mpz_init (SCM_I_BIG_MPZ (z));
165 return z;
166}
167
c71b0706
MV
168SCM_C_INLINE_KEYWORD SCM
169scm_i_long2big (long x)
170{
171 /* Return a newly created bignum initialized to X. */
172 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
173 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
174 return z;
175}
176
177SCM_C_INLINE_KEYWORD SCM
178scm_i_ulong2big (unsigned long x)
179{
180 /* Return a newly created bignum initialized to X. */
181 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
182 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
183 return z;
184}
185
570b6821 186SCM_C_INLINE_KEYWORD static SCM
ca46fb90
RB
187scm_i_clonebig (SCM src_big, int same_sign_p)
188{
189 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
190 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
191 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
0aacf84e
MD
192 if (!same_sign_p)
193 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
ca46fb90
RB
194 return z;
195}
196
570b6821 197SCM_C_INLINE_KEYWORD int
ca46fb90
RB
198scm_i_bigcmp (SCM x, SCM y)
199{
200 /* Return neg if x < y, pos if x > y, and 0 if x == y */
201 /* presume we already know x and y are bignums */
202 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
203 scm_remember_upto_here_2 (x, y);
204 return result;
205}
206
570b6821 207SCM_C_INLINE_KEYWORD SCM
ca46fb90
RB
208scm_i_dbl2big (double d)
209{
210 /* results are only defined if d is an integer */
211 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
212 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
213 return z;
214}
215
f92e85f7
MV
216/* Convert a integer in double representation to a SCM number. */
217
218SCM_C_INLINE_KEYWORD SCM
219scm_i_dbl2num (double u)
220{
221 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
222 powers of 2, so there's no rounding when making "double" values
223 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
224 get rounded on a 64-bit machine, hence the "+1".
225
226 The use of floor() to force to an integer value ensures we get a
227 "numerically closest" value without depending on how a
228 double->long cast or how mpz_set_d will round. For reference,
229 double->long probably follows the hardware rounding mode,
230 mpz_set_d truncates towards zero. */
231
232 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
233 representable as a double? */
234
235 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
236 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
d956fa6f 237 return SCM_I_MAKINUM ((long) u);
f92e85f7
MV
238 else
239 return scm_i_dbl2big (u);
240}
241
089c9a59
KR
242/* scm_i_big2dbl() rounds to the closest representable double, in accordance
243 with R5RS exact->inexact.
244
245 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
f8a8200b
KR
246 (ie. truncate towards zero), then adjust to get the closest double by
247 examining the next lower bit and adding 1 (to the absolute value) if
248 necessary.
249
250 Bignums exactly half way between representable doubles are rounded to the
251 next higher absolute value (ie. away from zero). This seems like an
252 adequate interpretation of R5RS "numerically closest", and it's easier
253 and faster than a full "nearest-even" style.
254
255 The bit test must be done on the absolute value of the mpz_t, which means
256 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
257 negatives as twos complement.
258
259 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
260 following the hardware rounding mode, but applied to the absolute value
261 of the mpz_t operand. This is not what we want so we put the high
262 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
263 mpz_get_d is supposed to always truncate towards zero.
264
265 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
266 is a slowdown. It'd be faster to pick out the relevant high bits with
267 mpz_getlimbn if we could be bothered coding that, and if the new
268 truncating gmp doesn't come out. */
089c9a59
KR
269
270double
ca46fb90
RB
271scm_i_big2dbl (SCM b)
272{
089c9a59
KR
273 double result;
274 size_t bits;
275
276 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
277
f8a8200b 278#if 1
089c9a59 279 {
f8a8200b 280 /* Current GMP, eg. 4.1.3, force truncation towards zero */
089c9a59
KR
281 mpz_t tmp;
282 if (bits > DBL_MANT_DIG)
283 {
284 size_t shift = bits - DBL_MANT_DIG;
285 mpz_init2 (tmp, DBL_MANT_DIG);
286 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
287 result = ldexp (mpz_get_d (tmp), shift);
288 mpz_clear (tmp);
289 }
290 else
291 {
292 result = mpz_get_d (SCM_I_BIG_MPZ (b));
293 }
294 }
295#else
f8a8200b 296 /* Future GMP */
089c9a59
KR
297 result = mpz_get_d (SCM_I_BIG_MPZ (b));
298#endif
299
300 if (bits > DBL_MANT_DIG)
301 {
302 unsigned long pos = bits - DBL_MANT_DIG - 1;
303 /* test bit number "pos" in absolute value */
304 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
305 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
306 {
307 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
308 }
309 }
310
ca46fb90
RB
311 scm_remember_upto_here_1 (b);
312 return result;
313}
314
570b6821 315SCM_C_INLINE_KEYWORD SCM
ca46fb90
RB
316scm_i_normbig (SCM b)
317{
318 /* convert a big back to a fixnum if it'll fit */
319 /* presume b is a bignum */
320 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
321 {
322 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
323 if (SCM_FIXABLE (val))
d956fa6f 324 b = SCM_I_MAKINUM (val);
ca46fb90
RB
325 }
326 return b;
327}
f872b822 328
f92e85f7
MV
329static SCM_C_INLINE_KEYWORD SCM
330scm_i_mpz2num (mpz_t b)
331{
332 /* convert a mpz number to a SCM number. */
333 if (mpz_fits_slong_p (b))
334 {
335 long val = mpz_get_si (b);
336 if (SCM_FIXABLE (val))
d956fa6f 337 return SCM_I_MAKINUM (val);
f92e85f7
MV
338 }
339
340 {
341 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
342 mpz_init_set (SCM_I_BIG_MPZ (z), b);
343 return z;
344 }
345}
346
347/* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
348static SCM scm_divide2real (SCM x, SCM y);
349
cba42c93
MV
350static SCM
351scm_i_make_ratio (SCM numerator, SCM denominator)
c60e130c 352#define FUNC_NAME "make-ratio"
f92e85f7 353{
c60e130c
MV
354 /* First make sure the arguments are proper.
355 */
e11e83f3 356 if (SCM_I_INUMP (denominator))
f92e85f7 357 {
bc36d050 358 if (scm_is_eq (denominator, SCM_INUM0))
f92e85f7 359 scm_num_overflow ("make-ratio");
bc36d050 360 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
f92e85f7
MV
361 return numerator;
362 }
363 else
364 {
365 if (!(SCM_BIGP(denominator)))
366 SCM_WRONG_TYPE_ARG (2, denominator);
367 }
e11e83f3 368 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
c60e130c
MV
369 SCM_WRONG_TYPE_ARG (1, numerator);
370
371 /* Then flip signs so that the denominator is positive.
372 */
73e4de09 373 if (scm_is_true (scm_negative_p (denominator)))
c60e130c
MV
374 {
375 numerator = scm_difference (numerator, SCM_UNDEFINED);
376 denominator = scm_difference (denominator, SCM_UNDEFINED);
377 }
378
379 /* Now consider for each of the four fixnum/bignum combinations
380 whether the rational number is really an integer.
381 */
e11e83f3 382 if (SCM_I_INUMP (numerator))
f92e85f7 383 {
e11e83f3 384 long x = SCM_I_INUM (numerator);
bc36d050 385 if (scm_is_eq (numerator, SCM_INUM0))
f92e85f7 386 return SCM_INUM0;
e11e83f3 387 if (SCM_I_INUMP (denominator))
f92e85f7 388 {
dd5130ca 389 long y;
e11e83f3 390 y = SCM_I_INUM (denominator);
f92e85f7 391 if (x == y)
d956fa6f 392 return SCM_I_MAKINUM(1);
f92e85f7 393 if ((x % y) == 0)
d956fa6f 394 return SCM_I_MAKINUM (x / y);
f92e85f7 395 }
dd5130ca
KR
396 else
397 {
398 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
3271a325
KR
399 of that value for the denominator, as a bignum. Apart from
400 that case, abs(bignum) > abs(inum) so inum/bignum is not an
401 integer. */
402 if (x == SCM_MOST_NEGATIVE_FIXNUM
403 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
404 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
d956fa6f 405 return SCM_I_MAKINUM(-1);
dd5130ca 406 }
f92e85f7 407 }
c60e130c 408 else if (SCM_BIGP (numerator))
f92e85f7 409 {
e11e83f3 410 if (SCM_I_INUMP (denominator))
c60e130c 411 {
e11e83f3 412 long yy = SCM_I_INUM (denominator);
c60e130c
MV
413 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
414 return scm_divide (numerator, denominator);
415 }
416 else
f92e85f7 417 {
bc36d050 418 if (scm_is_eq (numerator, denominator))
d956fa6f 419 return SCM_I_MAKINUM(1);
c60e130c
MV
420 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
421 SCM_I_BIG_MPZ (denominator)))
422 return scm_divide(numerator, denominator);
f92e85f7 423 }
f92e85f7 424 }
c60e130c
MV
425
426 /* No, it's a proper fraction.
427 */
428 return scm_double_cell (scm_tc16_fraction,
429 SCM_UNPACK (numerator),
430 SCM_UNPACK (denominator), 0);
f92e85f7 431}
c60e130c 432#undef FUNC_NAME
f92e85f7
MV
433
434static void scm_i_fraction_reduce (SCM z)
435{
436 if (!(SCM_FRACTION_REDUCED (z)))
437 {
438 SCM divisor;
439 divisor = scm_gcd (SCM_FRACTION_NUMERATOR (z), SCM_FRACTION_DENOMINATOR (z));
bc36d050 440 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
f92e85f7
MV
441 {
442 /* is this safe? */
443 SCM_FRACTION_SET_NUMERATOR (z, scm_divide (SCM_FRACTION_NUMERATOR (z), divisor));
444 SCM_FRACTION_SET_DENOMINATOR (z, scm_divide (SCM_FRACTION_DENOMINATOR (z), divisor));
445 }
446 SCM_FRACTION_REDUCED_SET (z);
447 }
448}
449
450double
451scm_i_fraction2double (SCM z)
452{
55f26379
MV
453 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
454 SCM_FRACTION_DENOMINATOR (z)));
f92e85f7
MV
455}
456
a1ec6916 457SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
1bbd0b84 458 (SCM x),
942e5b91
MG
459 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
460 "otherwise.")
1bbd0b84 461#define FUNC_NAME s_scm_exact_p
0f2d19dd 462{
e11e83f3 463 if (SCM_I_INUMP (x))
0aacf84e
MD
464 return SCM_BOOL_T;
465 if (SCM_BIGP (x))
466 return SCM_BOOL_T;
f92e85f7
MV
467 if (SCM_FRACTIONP (x))
468 return SCM_BOOL_T;
eb927cb9
MV
469 if (SCM_NUMBERP (x))
470 return SCM_BOOL_F;
471 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 472}
1bbd0b84 473#undef FUNC_NAME
0f2d19dd 474
4219f20d 475
a1ec6916 476SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
1bbd0b84 477 (SCM n),
942e5b91
MG
478 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
479 "otherwise.")
1bbd0b84 480#define FUNC_NAME s_scm_odd_p
0f2d19dd 481{
e11e83f3 482 if (SCM_I_INUMP (n))
0aacf84e 483 {
e11e83f3 484 long val = SCM_I_INUM (n);
73e4de09 485 return scm_from_bool ((val & 1L) != 0);
0aacf84e
MD
486 }
487 else if (SCM_BIGP (n))
488 {
489 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
490 scm_remember_upto_here_1 (n);
73e4de09 491 return scm_from_bool (odd_p);
0aacf84e 492 }
73e4de09 493 else if (scm_is_true (scm_inf_p (n)))
7351e207 494 return SCM_BOOL_T;
f92e85f7
MV
495 else if (SCM_REALP (n))
496 {
497 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
498 if (rem == 1.0)
499 return SCM_BOOL_T;
500 else if (rem == 0.0)
501 return SCM_BOOL_F;
502 else
503 SCM_WRONG_TYPE_ARG (1, n);
504 }
0aacf84e 505 else
a1a33b0f 506 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 507}
1bbd0b84 508#undef FUNC_NAME
0f2d19dd 509
4219f20d 510
a1ec6916 511SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
1bbd0b84 512 (SCM n),
942e5b91
MG
513 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
514 "otherwise.")
1bbd0b84 515#define FUNC_NAME s_scm_even_p
0f2d19dd 516{
e11e83f3 517 if (SCM_I_INUMP (n))
0aacf84e 518 {
e11e83f3 519 long val = SCM_I_INUM (n);
73e4de09 520 return scm_from_bool ((val & 1L) == 0);
0aacf84e
MD
521 }
522 else if (SCM_BIGP (n))
523 {
524 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
525 scm_remember_upto_here_1 (n);
73e4de09 526 return scm_from_bool (even_p);
0aacf84e 527 }
73e4de09 528 else if (scm_is_true (scm_inf_p (n)))
7351e207 529 return SCM_BOOL_T;
f92e85f7
MV
530 else if (SCM_REALP (n))
531 {
532 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
533 if (rem == 1.0)
534 return SCM_BOOL_F;
535 else if (rem == 0.0)
536 return SCM_BOOL_T;
537 else
538 SCM_WRONG_TYPE_ARG (1, n);
539 }
0aacf84e 540 else
a1a33b0f 541 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 542}
1bbd0b84 543#undef FUNC_NAME
0f2d19dd 544
7351e207 545SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
b1092b3a
MV
546 (SCM x),
547 "Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
548 "or @samp{-inf.0}, @code{#f} otherwise.")
7351e207
MV
549#define FUNC_NAME s_scm_inf_p
550{
b1092b3a
MV
551 if (SCM_REALP (x))
552 return scm_from_bool (xisinf (SCM_REAL_VALUE (x)));
553 else if (SCM_COMPLEXP (x))
554 return scm_from_bool (xisinf (SCM_COMPLEX_REAL (x))
555 || xisinf (SCM_COMPLEX_IMAG (x)));
0aacf84e 556 else
7351e207 557 return SCM_BOOL_F;
7351e207
MV
558}
559#undef FUNC_NAME
560
561SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
562 (SCM n),
563 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
564 "otherwise.")
565#define FUNC_NAME s_scm_nan_p
566{
0aacf84e 567 if (SCM_REALP (n))
73e4de09 568 return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
0aacf84e 569 else if (SCM_COMPLEXP (n))
73e4de09 570 return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
7351e207 571 || xisnan (SCM_COMPLEX_IMAG (n)));
0aacf84e 572 else
7351e207 573 return SCM_BOOL_F;
7351e207
MV
574}
575#undef FUNC_NAME
576
577/* Guile's idea of infinity. */
578static double guile_Inf;
579
580/* Guile's idea of not a number. */
581static double guile_NaN;
582
583static void
584guile_ieee_init (void)
585{
586#if defined (HAVE_ISINF) || defined (HAVE_FINITE)
587
588/* Some version of gcc on some old version of Linux used to crash when
589 trying to make Inf and NaN. */
590
240a27d2
KR
591#ifdef INFINITY
592 /* C99 INFINITY, when available.
593 FIXME: The standard allows for INFINITY to be something that overflows
594 at compile time. We ought to have a configure test to check for that
595 before trying to use it. (But in practice we believe this is not a
596 problem on any system guile is likely to target.) */
597 guile_Inf = INFINITY;
598#elif HAVE_DINFINITY
599 /* OSF */
7351e207
MV
600 extern unsigned int DINFINITY[2];
601 guile_Inf = (*(X_CAST(double *, DINFINITY)));
602#else
603 double tmp = 1e+10;
604 guile_Inf = tmp;
605 for (;;)
606 {
607 guile_Inf *= 1e+10;
608 if (guile_Inf == tmp)
609 break;
610 tmp = guile_Inf;
611 }
612#endif
613
614#endif
615
616#if defined (HAVE_ISNAN)
617
240a27d2
KR
618#ifdef NAN
619 /* C99 NAN, when available */
620 guile_NaN = NAN;
621#elif HAVE_DQNAN
622 /* OSF */
7351e207
MV
623 extern unsigned int DQNAN[2];
624 guile_NaN = (*(X_CAST(double *, DQNAN)));
625#else
626 guile_NaN = guile_Inf / guile_Inf;
627#endif
628
629#endif
630}
631
632SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
633 (void),
634 "Return Inf.")
635#define FUNC_NAME s_scm_inf
636{
637 static int initialized = 0;
638 if (! initialized)
639 {
640 guile_ieee_init ();
641 initialized = 1;
642 }
55f26379 643 return scm_from_double (guile_Inf);
7351e207
MV
644}
645#undef FUNC_NAME
646
647SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
648 (void),
649 "Return NaN.")
650#define FUNC_NAME s_scm_nan
651{
652 static int initialized = 0;
0aacf84e 653 if (!initialized)
7351e207
MV
654 {
655 guile_ieee_init ();
656 initialized = 1;
657 }
55f26379 658 return scm_from_double (guile_NaN);
7351e207
MV
659}
660#undef FUNC_NAME
661
4219f20d 662
a48d60b1
MD
663SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
664 (SCM x),
665 "Return the absolute value of @var{x}.")
666#define FUNC_NAME
0f2d19dd 667{
e11e83f3 668 if (SCM_I_INUMP (x))
0aacf84e 669 {
e11e83f3 670 long int xx = SCM_I_INUM (x);
0aacf84e
MD
671 if (xx >= 0)
672 return x;
673 else if (SCM_POSFIXABLE (-xx))
d956fa6f 674 return SCM_I_MAKINUM (-xx);
0aacf84e
MD
675 else
676 return scm_i_long2big (-xx);
4219f20d 677 }
0aacf84e
MD
678 else if (SCM_BIGP (x))
679 {
680 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
681 if (sgn < 0)
682 return scm_i_clonebig (x, 0);
683 else
684 return x;
4219f20d 685 }
0aacf84e 686 else if (SCM_REALP (x))
ae38324d
KR
687 {
688 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
689 double xx = SCM_REAL_VALUE (x);
690 if (xx < 0.0)
55f26379 691 return scm_from_double (-xx);
ae38324d
KR
692 else
693 return x;
694 }
f92e85f7
MV
695 else if (SCM_FRACTIONP (x))
696 {
73e4de09 697 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
f92e85f7 698 return x;
cba42c93 699 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7
MV
700 SCM_FRACTION_DENOMINATOR (x));
701 }
0aacf84e 702 else
a48d60b1 703 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
0f2d19dd 704}
a48d60b1 705#undef FUNC_NAME
0f2d19dd 706
4219f20d 707
9de33deb 708SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
942e5b91
MG
709/* "Return the quotient of the numbers @var{x} and @var{y}."
710 */
0f2d19dd 711SCM
6e8d25a6 712scm_quotient (SCM x, SCM y)
0f2d19dd 713{
e11e83f3 714 if (SCM_I_INUMP (x))
0aacf84e 715 {
e11e83f3
MV
716 long xx = SCM_I_INUM (x);
717 if (SCM_I_INUMP (y))
0aacf84e 718 {
e11e83f3 719 long yy = SCM_I_INUM (y);
0aacf84e
MD
720 if (yy == 0)
721 scm_num_overflow (s_quotient);
722 else
723 {
724 long z = xx / yy;
725 if (SCM_FIXABLE (z))
d956fa6f 726 return SCM_I_MAKINUM (z);
0aacf84e
MD
727 else
728 return scm_i_long2big (z);
729 }
828865c3 730 }
0aacf84e 731 else if (SCM_BIGP (y))
ac0c002c 732 {
e11e83f3 733 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
734 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
735 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
736 {
737 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
738 scm_remember_upto_here_1 (y);
d956fa6f 739 return SCM_I_MAKINUM (-1);
4dc09ee4 740 }
0aacf84e 741 else
d956fa6f 742 return SCM_I_MAKINUM (0);
ac0c002c
DH
743 }
744 else
0aacf84e 745 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
828865c3 746 }
0aacf84e
MD
747 else if (SCM_BIGP (x))
748 {
e11e83f3 749 if (SCM_I_INUMP (y))
0aacf84e 750 {
e11e83f3 751 long yy = SCM_I_INUM (y);
0aacf84e
MD
752 if (yy == 0)
753 scm_num_overflow (s_quotient);
754 else if (yy == 1)
755 return x;
756 else
757 {
758 SCM result = scm_i_mkbig ();
759 if (yy < 0)
760 {
761 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
762 SCM_I_BIG_MPZ (x),
763 - yy);
764 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
765 }
766 else
767 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
768 scm_remember_upto_here_1 (x);
769 return scm_i_normbig (result);
770 }
771 }
772 else if (SCM_BIGP (y))
773 {
774 SCM result = scm_i_mkbig ();
775 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
776 SCM_I_BIG_MPZ (x),
777 SCM_I_BIG_MPZ (y));
778 scm_remember_upto_here_2 (x, y);
779 return scm_i_normbig (result);
780 }
781 else
782 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
f872b822 783 }
0aacf84e 784 else
89a7e495 785 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
0f2d19dd
JB
786}
787
9de33deb 788SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
942e5b91
MG
789/* "Return the remainder of the numbers @var{x} and @var{y}.\n"
790 * "@lisp\n"
791 * "(remainder 13 4) @result{} 1\n"
792 * "(remainder -13 4) @result{} -1\n"
793 * "@end lisp"
794 */
0f2d19dd 795SCM
6e8d25a6 796scm_remainder (SCM x, SCM y)
0f2d19dd 797{
e11e83f3 798 if (SCM_I_INUMP (x))
0aacf84e 799 {
e11e83f3 800 if (SCM_I_INUMP (y))
0aacf84e 801 {
e11e83f3 802 long yy = SCM_I_INUM (y);
0aacf84e
MD
803 if (yy == 0)
804 scm_num_overflow (s_remainder);
805 else
806 {
e11e83f3 807 long z = SCM_I_INUM (x) % yy;
d956fa6f 808 return SCM_I_MAKINUM (z);
0aacf84e
MD
809 }
810 }
811 else if (SCM_BIGP (y))
ac0c002c 812 {
e11e83f3 813 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
814 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
815 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
816 {
817 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
818 scm_remember_upto_here_1 (y);
d956fa6f 819 return SCM_I_MAKINUM (0);
4dc09ee4 820 }
0aacf84e
MD
821 else
822 return x;
ac0c002c
DH
823 }
824 else
0aacf84e 825 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
89a7e495 826 }
0aacf84e
MD
827 else if (SCM_BIGP (x))
828 {
e11e83f3 829 if (SCM_I_INUMP (y))
0aacf84e 830 {
e11e83f3 831 long yy = SCM_I_INUM (y);
0aacf84e
MD
832 if (yy == 0)
833 scm_num_overflow (s_remainder);
834 else
835 {
836 SCM result = scm_i_mkbig ();
837 if (yy < 0)
838 yy = - yy;
839 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
840 scm_remember_upto_here_1 (x);
841 return scm_i_normbig (result);
842 }
843 }
844 else if (SCM_BIGP (y))
845 {
846 SCM result = scm_i_mkbig ();
847 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
848 SCM_I_BIG_MPZ (x),
849 SCM_I_BIG_MPZ (y));
850 scm_remember_upto_here_2 (x, y);
851 return scm_i_normbig (result);
852 }
853 else
854 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
f872b822 855 }
0aacf84e 856 else
89a7e495 857 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
0f2d19dd
JB
858}
859
89a7e495 860
9de33deb 861SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
942e5b91
MG
862/* "Return the modulo of the numbers @var{x} and @var{y}.\n"
863 * "@lisp\n"
864 * "(modulo 13 4) @result{} 1\n"
865 * "(modulo -13 4) @result{} 3\n"
866 * "@end lisp"
867 */
0f2d19dd 868SCM
6e8d25a6 869scm_modulo (SCM x, SCM y)
0f2d19dd 870{
e11e83f3 871 if (SCM_I_INUMP (x))
0aacf84e 872 {
e11e83f3
MV
873 long xx = SCM_I_INUM (x);
874 if (SCM_I_INUMP (y))
0aacf84e 875 {
e11e83f3 876 long yy = SCM_I_INUM (y);
0aacf84e
MD
877 if (yy == 0)
878 scm_num_overflow (s_modulo);
879 else
880 {
66b1c775
KR
881 /* C99 specifies that "%" is the remainder corresponding to a
882 quotient rounded towards zero, and that's also traditional
883 for machine division, so z here should be well defined. */
0aacf84e
MD
884 long z = xx % yy;
885 long result;
886
887 if (yy < 0)
888 {
889 if (z > 0)
890 result = z + yy;
891 else
892 result = z;
893 }
894 else
895 {
896 if (z < 0)
897 result = z + yy;
898 else
899 result = z;
900 }
d956fa6f 901 return SCM_I_MAKINUM (result);
0aacf84e
MD
902 }
903 }
904 else if (SCM_BIGP (y))
905 {
906 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
0aacf84e
MD
907 {
908 mpz_t z_x;
909 SCM result;
910
911 if (sgn_y < 0)
912 {
913 SCM pos_y = scm_i_clonebig (y, 0);
914 /* do this after the last scm_op */
915 mpz_init_set_si (z_x, xx);
916 result = pos_y; /* re-use this bignum */
917 mpz_mod (SCM_I_BIG_MPZ (result),
918 z_x,
919 SCM_I_BIG_MPZ (pos_y));
920 scm_remember_upto_here_1 (pos_y);
921 }
922 else
923 {
924 result = scm_i_mkbig ();
925 /* do this after the last scm_op */
926 mpz_init_set_si (z_x, xx);
927 mpz_mod (SCM_I_BIG_MPZ (result),
928 z_x,
929 SCM_I_BIG_MPZ (y));
930 scm_remember_upto_here_1 (y);
931 }
ca46fb90 932
0aacf84e
MD
933 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
934 mpz_add (SCM_I_BIG_MPZ (result),
935 SCM_I_BIG_MPZ (y),
936 SCM_I_BIG_MPZ (result));
937 scm_remember_upto_here_1 (y);
938 /* and do this before the next one */
939 mpz_clear (z_x);
940 return scm_i_normbig (result);
941 }
942 }
943 else
944 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
f872b822 945 }
0aacf84e
MD
946 else if (SCM_BIGP (x))
947 {
e11e83f3 948 if (SCM_I_INUMP (y))
0aacf84e 949 {
e11e83f3 950 long yy = SCM_I_INUM (y);
0aacf84e
MD
951 if (yy == 0)
952 scm_num_overflow (s_modulo);
953 else
954 {
955 SCM result = scm_i_mkbig ();
956 mpz_mod_ui (SCM_I_BIG_MPZ (result),
957 SCM_I_BIG_MPZ (x),
958 (yy < 0) ? - yy : yy);
959 scm_remember_upto_here_1 (x);
960 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
961 mpz_sub_ui (SCM_I_BIG_MPZ (result),
962 SCM_I_BIG_MPZ (result),
963 - yy);
964 return scm_i_normbig (result);
965 }
966 }
967 else if (SCM_BIGP (y))
968 {
0aacf84e
MD
969 {
970 SCM result = scm_i_mkbig ();
971 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
972 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
973 mpz_mod (SCM_I_BIG_MPZ (result),
974 SCM_I_BIG_MPZ (x),
975 SCM_I_BIG_MPZ (pos_y));
ca46fb90 976
0aacf84e
MD
977 scm_remember_upto_here_1 (x);
978 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
979 mpz_add (SCM_I_BIG_MPZ (result),
980 SCM_I_BIG_MPZ (y),
981 SCM_I_BIG_MPZ (result));
982 scm_remember_upto_here_2 (y, pos_y);
983 return scm_i_normbig (result);
984 }
985 }
986 else
987 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
828865c3 988 }
0aacf84e 989 else
09fb7599 990 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
0f2d19dd
JB
991}
992
9de33deb 993SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
942e5b91
MG
994/* "Return the greatest common divisor of all arguments.\n"
995 * "If called without arguments, 0 is returned."
996 */
0f2d19dd 997SCM
6e8d25a6 998scm_gcd (SCM x, SCM y)
0f2d19dd 999{
ca46fb90 1000 if (SCM_UNBNDP (y))
0aacf84e 1001 return SCM_UNBNDP (x) ? SCM_INUM0 : x;
ca46fb90 1002
e11e83f3 1003 if (SCM_I_INUMP (x))
ca46fb90 1004 {
e11e83f3 1005 if (SCM_I_INUMP (y))
ca46fb90 1006 {
e11e83f3
MV
1007 long xx = SCM_I_INUM (x);
1008 long yy = SCM_I_INUM (y);
ca46fb90
RB
1009 long u = xx < 0 ? -xx : xx;
1010 long v = yy < 0 ? -yy : yy;
1011 long result;
0aacf84e
MD
1012 if (xx == 0)
1013 result = v;
1014 else if (yy == 0)
1015 result = u;
1016 else
1017 {
1018 long k = 1;
1019 long t;
1020 /* Determine a common factor 2^k */
1021 while (!(1 & (u | v)))
1022 {
1023 k <<= 1;
1024 u >>= 1;
1025 v >>= 1;
1026 }
1027 /* Now, any factor 2^n can be eliminated */
1028 if (u & 1)
1029 t = -v;
1030 else
1031 {
1032 t = u;
1033 b3:
1034 t = SCM_SRS (t, 1);
1035 }
1036 if (!(1 & t))
1037 goto b3;
1038 if (t > 0)
1039 u = t;
1040 else
1041 v = -t;
1042 t = u - v;
1043 if (t != 0)
1044 goto b3;
1045 result = u * k;
1046 }
1047 return (SCM_POSFIXABLE (result)
d956fa6f 1048 ? SCM_I_MAKINUM (result)
0aacf84e 1049 : scm_i_long2big (result));
ca46fb90
RB
1050 }
1051 else if (SCM_BIGP (y))
1052 {
0bff4dce
KR
1053 SCM_SWAP (x, y);
1054 goto big_inum;
ca46fb90
RB
1055 }
1056 else
1057 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
f872b822 1058 }
ca46fb90
RB
1059 else if (SCM_BIGP (x))
1060 {
e11e83f3 1061 if (SCM_I_INUMP (y))
ca46fb90
RB
1062 {
1063 unsigned long result;
0bff4dce
KR
1064 long yy;
1065 big_inum:
e11e83f3 1066 yy = SCM_I_INUM (y);
8c5b0afc
KR
1067 if (yy == 0)
1068 return scm_abs (x);
0aacf84e
MD
1069 if (yy < 0)
1070 yy = -yy;
ca46fb90
RB
1071 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1072 scm_remember_upto_here_1 (x);
0aacf84e 1073 return (SCM_POSFIXABLE (result)
d956fa6f 1074 ? SCM_I_MAKINUM (result)
c71b0706 1075 : scm_from_ulong (result));
ca46fb90
RB
1076 }
1077 else if (SCM_BIGP (y))
1078 {
1079 SCM result = scm_i_mkbig ();
0aacf84e
MD
1080 mpz_gcd (SCM_I_BIG_MPZ (result),
1081 SCM_I_BIG_MPZ (x),
1082 SCM_I_BIG_MPZ (y));
1083 scm_remember_upto_here_2 (x, y);
ca46fb90
RB
1084 return scm_i_normbig (result);
1085 }
1086 else
1087 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
09fb7599 1088 }
ca46fb90 1089 else
09fb7599 1090 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
0f2d19dd
JB
1091}
1092
9de33deb 1093SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
942e5b91
MG
1094/* "Return the least common multiple of the arguments.\n"
1095 * "If called without arguments, 1 is returned."
1096 */
0f2d19dd 1097SCM
6e8d25a6 1098scm_lcm (SCM n1, SCM n2)
0f2d19dd 1099{
ca46fb90
RB
1100 if (SCM_UNBNDP (n2))
1101 {
1102 if (SCM_UNBNDP (n1))
d956fa6f
MV
1103 return SCM_I_MAKINUM (1L);
1104 n2 = SCM_I_MAKINUM (1L);
09fb7599 1105 }
09fb7599 1106
e11e83f3 1107 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
ca46fb90 1108 g_lcm, n1, n2, SCM_ARG1, s_lcm);
e11e83f3 1109 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
ca46fb90 1110 g_lcm, n1, n2, SCM_ARGn, s_lcm);
09fb7599 1111
e11e83f3 1112 if (SCM_I_INUMP (n1))
ca46fb90 1113 {
e11e83f3 1114 if (SCM_I_INUMP (n2))
ca46fb90
RB
1115 {
1116 SCM d = scm_gcd (n1, n2);
bc36d050 1117 if (scm_is_eq (d, SCM_INUM0))
ca46fb90
RB
1118 return d;
1119 else
1120 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1121 }
1122 else
1123 {
1124 /* inum n1, big n2 */
1125 inumbig:
1126 {
1127 SCM result = scm_i_mkbig ();
e11e83f3 1128 long nn1 = SCM_I_INUM (n1);
ca46fb90
RB
1129 if (nn1 == 0) return SCM_INUM0;
1130 if (nn1 < 0) nn1 = - nn1;
1131 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1132 scm_remember_upto_here_1 (n2);
1133 return result;
1134 }
1135 }
1136 }
1137 else
1138 {
1139 /* big n1 */
e11e83f3 1140 if (SCM_I_INUMP (n2))
ca46fb90
RB
1141 {
1142 SCM_SWAP (n1, n2);
1143 goto inumbig;
1144 }
1145 else
1146 {
1147 SCM result = scm_i_mkbig ();
1148 mpz_lcm(SCM_I_BIG_MPZ (result),
1149 SCM_I_BIG_MPZ (n1),
1150 SCM_I_BIG_MPZ (n2));
1151 scm_remember_upto_here_2(n1, n2);
1152 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1153 return result;
1154 }
f872b822 1155 }
0f2d19dd
JB
1156}
1157
8a525303
GB
1158/* Emulating 2's complement bignums with sign magnitude arithmetic:
1159
1160 Logand:
1161 X Y Result Method:
1162 (len)
1163 + + + x (map digit:logand X Y)
1164 + - + x (map digit:logand X (lognot (+ -1 Y)))
1165 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1166 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1167
1168 Logior:
1169 X Y Result Method:
1170
1171 + + + (map digit:logior X Y)
1172 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1173 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1174 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1175
1176 Logxor:
1177 X Y Result Method:
1178
1179 + + + (map digit:logxor X Y)
1180 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1181 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1182 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1183
1184 Logtest:
1185 X Y Result
1186
1187 + + (any digit:logand X Y)
1188 + - (any digit:logand X (lognot (+ -1 Y)))
1189 - + (any digit:logand (lognot (+ -1 X)) Y)
1190 - - #t
1191
1192*/
1193
c3ee7520 1194SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
1bbd0b84 1195 (SCM n1, SCM n2),
3c3db128
GH
1196 "Return the bitwise AND of the integer arguments.\n\n"
1197 "@lisp\n"
1198 "(logand) @result{} -1\n"
1199 "(logand 7) @result{} 7\n"
535f2a51 1200 "(logand #b111 #b011 #b001) @result{} 1\n"
3c3db128 1201 "@end lisp")
1bbd0b84 1202#define FUNC_NAME s_scm_logand
0f2d19dd 1203{
9a00c9fc
DH
1204 long int nn1;
1205
0aacf84e
MD
1206 if (SCM_UNBNDP (n2))
1207 {
1208 if (SCM_UNBNDP (n1))
d956fa6f 1209 return SCM_I_MAKINUM (-1);
0aacf84e
MD
1210 else if (!SCM_NUMBERP (n1))
1211 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1212 else if (SCM_NUMBERP (n1))
1213 return n1;
1214 else
1215 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1216 }
09fb7599 1217
e11e83f3 1218 if (SCM_I_INUMP (n1))
0aacf84e 1219 {
e11e83f3
MV
1220 nn1 = SCM_I_INUM (n1);
1221 if (SCM_I_INUMP (n2))
0aacf84e 1222 {
e11e83f3 1223 long nn2 = SCM_I_INUM (n2);
d956fa6f 1224 return SCM_I_MAKINUM (nn1 & nn2);
0aacf84e
MD
1225 }
1226 else if SCM_BIGP (n2)
1227 {
1228 intbig:
1229 if (n1 == 0)
1230 return SCM_INUM0;
1231 {
1232 SCM result_z = scm_i_mkbig ();
1233 mpz_t nn1_z;
1234 mpz_init_set_si (nn1_z, nn1);
1235 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1236 scm_remember_upto_here_1 (n2);
1237 mpz_clear (nn1_z);
1238 return scm_i_normbig (result_z);
1239 }
1240 }
1241 else
1242 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1243 }
1244 else if (SCM_BIGP (n1))
1245 {
e11e83f3 1246 if (SCM_I_INUMP (n2))
0aacf84e
MD
1247 {
1248 SCM_SWAP (n1, n2);
e11e83f3 1249 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1250 goto intbig;
1251 }
1252 else if (SCM_BIGP (n2))
1253 {
1254 SCM result_z = scm_i_mkbig ();
1255 mpz_and (SCM_I_BIG_MPZ (result_z),
1256 SCM_I_BIG_MPZ (n1),
1257 SCM_I_BIG_MPZ (n2));
1258 scm_remember_upto_here_2 (n1, n2);
1259 return scm_i_normbig (result_z);
1260 }
1261 else
1262 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1263 }
0aacf84e 1264 else
09fb7599 1265 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1266}
1bbd0b84 1267#undef FUNC_NAME
0f2d19dd 1268
09fb7599 1269
c3ee7520 1270SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
1bbd0b84 1271 (SCM n1, SCM n2),
3c3db128
GH
1272 "Return the bitwise OR of the integer arguments.\n\n"
1273 "@lisp\n"
1274 "(logior) @result{} 0\n"
1275 "(logior 7) @result{} 7\n"
1276 "(logior #b000 #b001 #b011) @result{} 3\n"
1e6808ea 1277 "@end lisp")
1bbd0b84 1278#define FUNC_NAME s_scm_logior
0f2d19dd 1279{
9a00c9fc
DH
1280 long int nn1;
1281
0aacf84e
MD
1282 if (SCM_UNBNDP (n2))
1283 {
1284 if (SCM_UNBNDP (n1))
1285 return SCM_INUM0;
1286 else if (SCM_NUMBERP (n1))
1287 return n1;
1288 else
1289 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1290 }
09fb7599 1291
e11e83f3 1292 if (SCM_I_INUMP (n1))
0aacf84e 1293 {
e11e83f3
MV
1294 nn1 = SCM_I_INUM (n1);
1295 if (SCM_I_INUMP (n2))
0aacf84e 1296 {
e11e83f3 1297 long nn2 = SCM_I_INUM (n2);
d956fa6f 1298 return SCM_I_MAKINUM (nn1 | nn2);
0aacf84e
MD
1299 }
1300 else if (SCM_BIGP (n2))
1301 {
1302 intbig:
1303 if (nn1 == 0)
1304 return n2;
1305 {
1306 SCM result_z = scm_i_mkbig ();
1307 mpz_t nn1_z;
1308 mpz_init_set_si (nn1_z, nn1);
1309 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1310 scm_remember_upto_here_1 (n2);
1311 mpz_clear (nn1_z);
1312 return result_z;
1313 }
1314 }
1315 else
1316 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1317 }
1318 else if (SCM_BIGP (n1))
1319 {
e11e83f3 1320 if (SCM_I_INUMP (n2))
0aacf84e
MD
1321 {
1322 SCM_SWAP (n1, n2);
e11e83f3 1323 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1324 goto intbig;
1325 }
1326 else if (SCM_BIGP (n2))
1327 {
1328 SCM result_z = scm_i_mkbig ();
1329 mpz_ior (SCM_I_BIG_MPZ (result_z),
1330 SCM_I_BIG_MPZ (n1),
1331 SCM_I_BIG_MPZ (n2));
1332 scm_remember_upto_here_2 (n1, n2);
1333 return result_z;
1334 }
1335 else
1336 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1337 }
0aacf84e 1338 else
09fb7599 1339 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1340}
1bbd0b84 1341#undef FUNC_NAME
0f2d19dd 1342
09fb7599 1343
c3ee7520 1344SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
1bbd0b84 1345 (SCM n1, SCM n2),
3c3db128
GH
1346 "Return the bitwise XOR of the integer arguments. A bit is\n"
1347 "set in the result if it is set in an odd number of arguments.\n"
1348 "@lisp\n"
1349 "(logxor) @result{} 0\n"
1350 "(logxor 7) @result{} 7\n"
1351 "(logxor #b000 #b001 #b011) @result{} 2\n"
1352 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1e6808ea 1353 "@end lisp")
1bbd0b84 1354#define FUNC_NAME s_scm_logxor
0f2d19dd 1355{
9a00c9fc
DH
1356 long int nn1;
1357
0aacf84e
MD
1358 if (SCM_UNBNDP (n2))
1359 {
1360 if (SCM_UNBNDP (n1))
1361 return SCM_INUM0;
1362 else if (SCM_NUMBERP (n1))
1363 return n1;
1364 else
1365 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1366 }
09fb7599 1367
e11e83f3 1368 if (SCM_I_INUMP (n1))
0aacf84e 1369 {
e11e83f3
MV
1370 nn1 = SCM_I_INUM (n1);
1371 if (SCM_I_INUMP (n2))
0aacf84e 1372 {
e11e83f3 1373 long nn2 = SCM_I_INUM (n2);
d956fa6f 1374 return SCM_I_MAKINUM (nn1 ^ nn2);
0aacf84e
MD
1375 }
1376 else if (SCM_BIGP (n2))
1377 {
1378 intbig:
1379 {
1380 SCM result_z = scm_i_mkbig ();
1381 mpz_t nn1_z;
1382 mpz_init_set_si (nn1_z, nn1);
1383 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1384 scm_remember_upto_here_1 (n2);
1385 mpz_clear (nn1_z);
1386 return scm_i_normbig (result_z);
1387 }
1388 }
1389 else
1390 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1391 }
1392 else if (SCM_BIGP (n1))
1393 {
e11e83f3 1394 if (SCM_I_INUMP (n2))
0aacf84e
MD
1395 {
1396 SCM_SWAP (n1, n2);
e11e83f3 1397 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1398 goto intbig;
1399 }
1400 else if (SCM_BIGP (n2))
1401 {
1402 SCM result_z = scm_i_mkbig ();
1403 mpz_xor (SCM_I_BIG_MPZ (result_z),
1404 SCM_I_BIG_MPZ (n1),
1405 SCM_I_BIG_MPZ (n2));
1406 scm_remember_upto_here_2 (n1, n2);
1407 return scm_i_normbig (result_z);
1408 }
1409 else
1410 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1411 }
0aacf84e 1412 else
09fb7599 1413 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1414}
1bbd0b84 1415#undef FUNC_NAME
0f2d19dd 1416
09fb7599 1417
a1ec6916 1418SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1e6808ea 1419 (SCM j, SCM k),
ba6e7231
KR
1420 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
1421 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
1422 "without actually calculating the @code{logand}, just testing\n"
1423 "for non-zero.\n"
1424 "\n"
1e6808ea 1425 "@lisp\n"
b380b885
MD
1426 "(logtest #b0100 #b1011) @result{} #f\n"
1427 "(logtest #b0100 #b0111) @result{} #t\n"
1e6808ea 1428 "@end lisp")
1bbd0b84 1429#define FUNC_NAME s_scm_logtest
0f2d19dd 1430{
1e6808ea 1431 long int nj;
9a00c9fc 1432
e11e83f3 1433 if (SCM_I_INUMP (j))
0aacf84e 1434 {
e11e83f3
MV
1435 nj = SCM_I_INUM (j);
1436 if (SCM_I_INUMP (k))
0aacf84e 1437 {
e11e83f3 1438 long nk = SCM_I_INUM (k);
73e4de09 1439 return scm_from_bool (nj & nk);
0aacf84e
MD
1440 }
1441 else if (SCM_BIGP (k))
1442 {
1443 intbig:
1444 if (nj == 0)
1445 return SCM_BOOL_F;
1446 {
1447 SCM result;
1448 mpz_t nj_z;
1449 mpz_init_set_si (nj_z, nj);
1450 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1451 scm_remember_upto_here_1 (k);
73e4de09 1452 result = scm_from_bool (mpz_sgn (nj_z) != 0);
0aacf84e
MD
1453 mpz_clear (nj_z);
1454 return result;
1455 }
1456 }
1457 else
1458 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1459 }
1460 else if (SCM_BIGP (j))
1461 {
e11e83f3 1462 if (SCM_I_INUMP (k))
0aacf84e
MD
1463 {
1464 SCM_SWAP (j, k);
e11e83f3 1465 nj = SCM_I_INUM (j);
0aacf84e
MD
1466 goto intbig;
1467 }
1468 else if (SCM_BIGP (k))
1469 {
1470 SCM result;
1471 mpz_t result_z;
1472 mpz_init (result_z);
1473 mpz_and (result_z,
1474 SCM_I_BIG_MPZ (j),
1475 SCM_I_BIG_MPZ (k));
1476 scm_remember_upto_here_2 (j, k);
73e4de09 1477 result = scm_from_bool (mpz_sgn (result_z) != 0);
0aacf84e
MD
1478 mpz_clear (result_z);
1479 return result;
1480 }
1481 else
1482 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1483 }
1484 else
1485 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
0f2d19dd 1486}
1bbd0b84 1487#undef FUNC_NAME
0f2d19dd 1488
c1bfcf60 1489
a1ec6916 1490SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
2cd04b42 1491 (SCM index, SCM j),
ba6e7231
KR
1492 "Test whether bit number @var{index} in @var{j} is set.\n"
1493 "@var{index} starts from 0 for the least significant bit.\n"
1494 "\n"
1e6808ea 1495 "@lisp\n"
b380b885
MD
1496 "(logbit? 0 #b1101) @result{} #t\n"
1497 "(logbit? 1 #b1101) @result{} #f\n"
1498 "(logbit? 2 #b1101) @result{} #t\n"
1499 "(logbit? 3 #b1101) @result{} #t\n"
1500 "(logbit? 4 #b1101) @result{} #f\n"
1e6808ea 1501 "@end lisp")
1bbd0b84 1502#define FUNC_NAME s_scm_logbit_p
0f2d19dd 1503{
78166ad5 1504 unsigned long int iindex;
5efd3c7d 1505 iindex = scm_to_ulong (index);
78166ad5 1506
e11e83f3 1507 if (SCM_I_INUMP (j))
0d75f6d8
KR
1508 {
1509 /* bits above what's in an inum follow the sign bit */
20fcc8ed 1510 iindex = min (iindex, SCM_LONG_BIT - 1);
e11e83f3 1511 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
0d75f6d8 1512 }
0aacf84e
MD
1513 else if (SCM_BIGP (j))
1514 {
1515 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1516 scm_remember_upto_here_1 (j);
73e4de09 1517 return scm_from_bool (val);
0aacf84e
MD
1518 }
1519 else
78166ad5 1520 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
0f2d19dd 1521}
1bbd0b84 1522#undef FUNC_NAME
0f2d19dd 1523
78166ad5 1524
a1ec6916 1525SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1bbd0b84 1526 (SCM n),
4d814788 1527 "Return the integer which is the ones-complement of the integer\n"
1e6808ea
MG
1528 "argument.\n"
1529 "\n"
b380b885
MD
1530 "@lisp\n"
1531 "(number->string (lognot #b10000000) 2)\n"
1532 " @result{} \"-10000001\"\n"
1533 "(number->string (lognot #b0) 2)\n"
1534 " @result{} \"-1\"\n"
1e6808ea 1535 "@end lisp")
1bbd0b84 1536#define FUNC_NAME s_scm_lognot
0f2d19dd 1537{
e11e83f3 1538 if (SCM_I_INUMP (n)) {
f9811f9f
KR
1539 /* No overflow here, just need to toggle all the bits making up the inum.
1540 Enhancement: No need to strip the tag and add it back, could just xor
1541 a block of 1 bits, if that worked with the various debug versions of
1542 the SCM typedef. */
e11e83f3 1543 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
f9811f9f
KR
1544
1545 } else if (SCM_BIGP (n)) {
1546 SCM result = scm_i_mkbig ();
1547 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1548 scm_remember_upto_here_1 (n);
1549 return result;
1550
1551 } else {
1552 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1553 }
0f2d19dd 1554}
1bbd0b84 1555#undef FUNC_NAME
0f2d19dd 1556
518b7508
KR
1557/* returns 0 if IN is not an integer. OUT must already be
1558 initialized. */
1559static int
1560coerce_to_big (SCM in, mpz_t out)
1561{
1562 if (SCM_BIGP (in))
1563 mpz_set (out, SCM_I_BIG_MPZ (in));
e11e83f3
MV
1564 else if (SCM_I_INUMP (in))
1565 mpz_set_si (out, SCM_I_INUM (in));
518b7508
KR
1566 else
1567 return 0;
1568
1569 return 1;
1570}
1571
d885e204 1572SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
518b7508
KR
1573 (SCM n, SCM k, SCM m),
1574 "Return @var{n} raised to the integer exponent\n"
1575 "@var{k}, modulo @var{m}.\n"
1576 "\n"
1577 "@lisp\n"
1578 "(modulo-expt 2 3 5)\n"
1579 " @result{} 3\n"
1580 "@end lisp")
d885e204 1581#define FUNC_NAME s_scm_modulo_expt
518b7508
KR
1582{
1583 mpz_t n_tmp;
1584 mpz_t k_tmp;
1585 mpz_t m_tmp;
1586
1587 /* There are two classes of error we might encounter --
1588 1) Math errors, which we'll report by calling scm_num_overflow,
1589 and
1590 2) wrong-type errors, which of course we'll report by calling
1591 SCM_WRONG_TYPE_ARG.
1592 We don't report those errors immediately, however; instead we do
1593 some cleanup first. These variables tell us which error (if
1594 any) we should report after cleaning up.
1595 */
1596 int report_overflow = 0;
1597
1598 int position_of_wrong_type = 0;
1599 SCM value_of_wrong_type = SCM_INUM0;
1600
1601 SCM result = SCM_UNDEFINED;
1602
1603 mpz_init (n_tmp);
1604 mpz_init (k_tmp);
1605 mpz_init (m_tmp);
1606
bc36d050 1607 if (scm_is_eq (m, SCM_INUM0))
518b7508
KR
1608 {
1609 report_overflow = 1;
1610 goto cleanup;
1611 }
1612
1613 if (!coerce_to_big (n, n_tmp))
1614 {
1615 value_of_wrong_type = n;
1616 position_of_wrong_type = 1;
1617 goto cleanup;
1618 }
1619
1620 if (!coerce_to_big (k, k_tmp))
1621 {
1622 value_of_wrong_type = k;
1623 position_of_wrong_type = 2;
1624 goto cleanup;
1625 }
1626
1627 if (!coerce_to_big (m, m_tmp))
1628 {
1629 value_of_wrong_type = m;
1630 position_of_wrong_type = 3;
1631 goto cleanup;
1632 }
1633
1634 /* if the exponent K is negative, and we simply call mpz_powm, we
1635 will get a divide-by-zero exception when an inverse 1/n mod m
1636 doesn't exist (or is not unique). Since exceptions are hard to
1637 handle, we'll attempt the inversion "by hand" -- that way, we get
1638 a simple failure code, which is easy to handle. */
1639
1640 if (-1 == mpz_sgn (k_tmp))
1641 {
1642 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1643 {
1644 report_overflow = 1;
1645 goto cleanup;
1646 }
1647 mpz_neg (k_tmp, k_tmp);
1648 }
1649
1650 result = scm_i_mkbig ();
1651 mpz_powm (SCM_I_BIG_MPZ (result),
1652 n_tmp,
1653 k_tmp,
1654 m_tmp);
b7b8c575
KR
1655
1656 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1657 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1658
518b7508
KR
1659 cleanup:
1660 mpz_clear (m_tmp);
1661 mpz_clear (k_tmp);
1662 mpz_clear (n_tmp);
1663
1664 if (report_overflow)
1665 scm_num_overflow (FUNC_NAME);
1666
1667 if (position_of_wrong_type)
1668 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1669 value_of_wrong_type);
1670
1671 return scm_i_normbig (result);
1672}
1673#undef FUNC_NAME
1674
a1ec6916 1675SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
2cd04b42 1676 (SCM n, SCM k),
ba6e7231
KR
1677 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
1678 "exact integer, @var{n} can be any number.\n"
1679 "\n"
1680 "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
1681 "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
1682 "includes @math{0^0} is 1.\n"
1e6808ea 1683 "\n"
b380b885 1684 "@lisp\n"
ba6e7231
KR
1685 "(integer-expt 2 5) @result{} 32\n"
1686 "(integer-expt -3 3) @result{} -27\n"
1687 "(integer-expt 5 -3) @result{} 1/125\n"
1688 "(integer-expt 0 0) @result{} 1\n"
b380b885 1689 "@end lisp")
1bbd0b84 1690#define FUNC_NAME s_scm_integer_expt
0f2d19dd 1691{
1c35cb19
RB
1692 long i2 = 0;
1693 SCM z_i2 = SCM_BOOL_F;
1694 int i2_is_big = 0;
d956fa6f 1695 SCM acc = SCM_I_MAKINUM (1L);
ca46fb90 1696
d57ed702 1697 /* 0^0 == 1 according to R5RS */
bc36d050 1698 if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
73e4de09 1699 return scm_is_false (scm_zero_p(k)) ? n : acc;
bc36d050 1700 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
73e4de09 1701 return scm_is_false (scm_even_p (k)) ? n : acc;
ca46fb90 1702
e11e83f3
MV
1703 if (SCM_I_INUMP (k))
1704 i2 = SCM_I_INUM (k);
ca46fb90
RB
1705 else if (SCM_BIGP (k))
1706 {
1707 z_i2 = scm_i_clonebig (k, 1);
ca46fb90
RB
1708 scm_remember_upto_here_1 (k);
1709 i2_is_big = 1;
1710 }
2830fd91 1711 else
ca46fb90
RB
1712 SCM_WRONG_TYPE_ARG (2, k);
1713
1714 if (i2_is_big)
f872b822 1715 {
ca46fb90
RB
1716 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1717 {
1718 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1719 n = scm_divide (n, SCM_UNDEFINED);
1720 }
1721 while (1)
1722 {
1723 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1724 {
ca46fb90
RB
1725 return acc;
1726 }
1727 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1728 {
ca46fb90
RB
1729 return scm_product (acc, n);
1730 }
1731 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1732 acc = scm_product (acc, n);
1733 n = scm_product (n, n);
1734 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1735 }
f872b822 1736 }
ca46fb90 1737 else
f872b822 1738 {
ca46fb90
RB
1739 if (i2 < 0)
1740 {
1741 i2 = -i2;
1742 n = scm_divide (n, SCM_UNDEFINED);
1743 }
1744 while (1)
1745 {
1746 if (0 == i2)
1747 return acc;
1748 if (1 == i2)
1749 return scm_product (acc, n);
1750 if (i2 & 1)
1751 acc = scm_product (acc, n);
1752 n = scm_product (n, n);
1753 i2 >>= 1;
1754 }
f872b822 1755 }
0f2d19dd 1756}
1bbd0b84 1757#undef FUNC_NAME
0f2d19dd 1758
a1ec6916 1759SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1bbd0b84 1760 (SCM n, SCM cnt),
32f19569
KR
1761 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1762 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1e6808ea 1763 "\n"
e7644cb2 1764 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
32f19569
KR
1765 "@var{cnt} is negative it's a division, rounded towards negative\n"
1766 "infinity. (Note that this is not the same rounding as\n"
1767 "@code{quotient} does.)\n"
1768 "\n"
1769 "With @var{n} viewed as an infinite precision twos complement,\n"
1770 "@code{ash} means a left shift introducing zero bits, or a right\n"
1771 "shift dropping bits.\n"
1e6808ea 1772 "\n"
b380b885 1773 "@lisp\n"
1e6808ea
MG
1774 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1775 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
32f19569
KR
1776 "\n"
1777 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1778 "(ash -23 -2) @result{} -6\n"
a3c8b9fc 1779 "@end lisp")
1bbd0b84 1780#define FUNC_NAME s_scm_ash
0f2d19dd 1781{
3ab9f56e 1782 long bits_to_shift;
5efd3c7d 1783 bits_to_shift = scm_to_long (cnt);
ca46fb90 1784
788aca27
KR
1785 if (SCM_I_INUMP (n))
1786 {
1787 long nn = SCM_I_INUM (n);
1788
1789 if (bits_to_shift > 0)
1790 {
1791 /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
1792 overflow a non-zero fixnum. For smaller shifts we check the
1793 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
1794 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
1795 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
1796 bits_to_shift)". */
1797
1798 if (nn == 0)
1799 return n;
1800
1801 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
1802 && ((unsigned long)
1803 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
1804 <= 1))
1805 {
1806 return SCM_I_MAKINUM (nn << bits_to_shift);
1807 }
1808 else
1809 {
1810 SCM result = scm_i_long2big (nn);
1811 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1812 bits_to_shift);
1813 return result;
1814 }
1815 }
1816 else
1817 {
1818 bits_to_shift = -bits_to_shift;
1819 if (bits_to_shift >= SCM_LONG_BIT)
1820 return (nn >= 0 ? SCM_I_MAKINUM (0) : SCM_I_MAKINUM(-1));
1821 else
1822 return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
1823 }
1824
1825 }
1826 else if (SCM_BIGP (n))
ca46fb90 1827 {
788aca27
KR
1828 SCM result;
1829
1830 if (bits_to_shift == 0)
1831 return n;
1832
1833 result = scm_i_mkbig ();
1834 if (bits_to_shift >= 0)
1835 {
1836 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1837 bits_to_shift);
1838 return result;
1839 }
ca46fb90 1840 else
788aca27
KR
1841 {
1842 /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
1843 we have to allocate a bignum even if the result is going to be a
1844 fixnum. */
1845 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1846 -bits_to_shift);
1847 return scm_i_normbig (result);
1848 }
1849
ca46fb90
RB
1850 }
1851 else
788aca27
KR
1852 {
1853 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1854 }
0f2d19dd 1855}
1bbd0b84 1856#undef FUNC_NAME
0f2d19dd 1857
3c9f20f8 1858
a1ec6916 1859SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1bbd0b84 1860 (SCM n, SCM start, SCM end),
1e6808ea
MG
1861 "Return the integer composed of the @var{start} (inclusive)\n"
1862 "through @var{end} (exclusive) bits of @var{n}. The\n"
1863 "@var{start}th bit becomes the 0-th bit in the result.\n"
1864 "\n"
b380b885
MD
1865 "@lisp\n"
1866 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1867 " @result{} \"1010\"\n"
1868 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1869 " @result{} \"10110\"\n"
1870 "@end lisp")
1bbd0b84 1871#define FUNC_NAME s_scm_bit_extract
0f2d19dd 1872{
7f848242 1873 unsigned long int istart, iend, bits;
5efd3c7d
MV
1874 istart = scm_to_ulong (start);
1875 iend = scm_to_ulong (end);
c1bfcf60 1876 SCM_ASSERT_RANGE (3, end, (iend >= istart));
78166ad5 1877
7f848242
KR
1878 /* how many bits to keep */
1879 bits = iend - istart;
1880
e11e83f3 1881 if (SCM_I_INUMP (n))
0aacf84e 1882 {
e11e83f3 1883 long int in = SCM_I_INUM (n);
7f848242
KR
1884
1885 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
d77ad560 1886 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
857ae6af 1887 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
ac0c002c 1888
0aacf84e
MD
1889 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
1890 {
1891 /* Since we emulate two's complement encoded numbers, this
1892 * special case requires us to produce a result that has
7f848242 1893 * more bits than can be stored in a fixnum.
0aacf84e 1894 */
7f848242
KR
1895 SCM result = scm_i_long2big (in);
1896 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1897 bits);
1898 return result;
0aacf84e 1899 }
ac0c002c 1900
7f848242 1901 /* mask down to requisite bits */
857ae6af 1902 bits = min (bits, SCM_I_FIXNUM_BIT);
d956fa6f 1903 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
0aacf84e
MD
1904 }
1905 else if (SCM_BIGP (n))
ac0c002c 1906 {
7f848242
KR
1907 SCM result;
1908 if (bits == 1)
1909 {
d956fa6f 1910 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
7f848242
KR
1911 }
1912 else
1913 {
1914 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
1915 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
1916 such bits into a ulong. */
1917 result = scm_i_mkbig ();
1918 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
1919 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
1920 result = scm_i_normbig (result);
1921 }
1922 scm_remember_upto_here_1 (n);
1923 return result;
ac0c002c 1924 }
0aacf84e 1925 else
78166ad5 1926 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 1927}
1bbd0b84 1928#undef FUNC_NAME
0f2d19dd 1929
7f848242 1930
e4755e5c
JB
1931static const char scm_logtab[] = {
1932 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
1933};
1cc91f1b 1934
a1ec6916 1935SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1bbd0b84 1936 (SCM n),
1e6808ea
MG
1937 "Return the number of bits in integer @var{n}. If integer is\n"
1938 "positive, the 1-bits in its binary representation are counted.\n"
1939 "If negative, the 0-bits in its two's-complement binary\n"
1940 "representation are counted. If 0, 0 is returned.\n"
1941 "\n"
b380b885
MD
1942 "@lisp\n"
1943 "(logcount #b10101010)\n"
ca46fb90
RB
1944 " @result{} 4\n"
1945 "(logcount 0)\n"
1946 " @result{} 0\n"
1947 "(logcount -2)\n"
1948 " @result{} 1\n"
1949 "@end lisp")
1950#define FUNC_NAME s_scm_logcount
1951{
e11e83f3 1952 if (SCM_I_INUMP (n))
f872b822 1953 {
ca46fb90 1954 unsigned long int c = 0;
e11e83f3 1955 long int nn = SCM_I_INUM (n);
ca46fb90
RB
1956 if (nn < 0)
1957 nn = -1 - nn;
1958 while (nn)
1959 {
1960 c += scm_logtab[15 & nn];
1961 nn >>= 4;
1962 }
d956fa6f 1963 return SCM_I_MAKINUM (c);
f872b822 1964 }
ca46fb90 1965 else if (SCM_BIGP (n))
f872b822 1966 {
ca46fb90 1967 unsigned long count;
713a4259
KR
1968 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
1969 count = mpz_popcount (SCM_I_BIG_MPZ (n));
ca46fb90 1970 else
713a4259
KR
1971 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
1972 scm_remember_upto_here_1 (n);
d956fa6f 1973 return SCM_I_MAKINUM (count);
f872b822 1974 }
ca46fb90
RB
1975 else
1976 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 1977}
ca46fb90 1978#undef FUNC_NAME
0f2d19dd
JB
1979
1980
ca46fb90
RB
1981static const char scm_ilentab[] = {
1982 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
1983};
1984
0f2d19dd 1985
ca46fb90
RB
1986SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
1987 (SCM n),
1988 "Return the number of bits necessary to represent @var{n}.\n"
1989 "\n"
1990 "@lisp\n"
1991 "(integer-length #b10101010)\n"
1992 " @result{} 8\n"
1993 "(integer-length 0)\n"
1994 " @result{} 0\n"
1995 "(integer-length #b1111)\n"
1996 " @result{} 4\n"
1997 "@end lisp")
1998#define FUNC_NAME s_scm_integer_length
1999{
e11e83f3 2000 if (SCM_I_INUMP (n))
0aacf84e
MD
2001 {
2002 unsigned long int c = 0;
2003 unsigned int l = 4;
e11e83f3 2004 long int nn = SCM_I_INUM (n);
0aacf84e
MD
2005 if (nn < 0)
2006 nn = -1 - nn;
2007 while (nn)
2008 {
2009 c += 4;
2010 l = scm_ilentab [15 & nn];
2011 nn >>= 4;
2012 }
d956fa6f 2013 return SCM_I_MAKINUM (c - 4 + l);
0aacf84e
MD
2014 }
2015 else if (SCM_BIGP (n))
2016 {
2017 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
2018 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
2019 1 too big, so check for that and adjust. */
2020 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
2021 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
2022 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
2023 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
2024 size--;
2025 scm_remember_upto_here_1 (n);
d956fa6f 2026 return SCM_I_MAKINUM (size);
0aacf84e
MD
2027 }
2028 else
ca46fb90 2029 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
ca46fb90
RB
2030}
2031#undef FUNC_NAME
0f2d19dd
JB
2032
2033/*** NUMBERS -> STRINGS ***/
0b799eea
MV
2034#define SCM_MAX_DBL_PREC 60
2035#define SCM_MAX_DBL_RADIX 36
2036
2037/* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
2038static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
2039static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
2040
2041static
2042void init_dblprec(int *prec, int radix) {
2043 /* determine floating point precision by adding successively
2044 smaller increments to 1.0 until it is considered == 1.0 */
2045 double f = ((double)1.0)/radix;
2046 double fsum = 1.0 + f;
2047
2048 *prec = 0;
2049 while (fsum != 1.0)
2050 {
2051 if (++(*prec) > SCM_MAX_DBL_PREC)
2052 fsum = 1.0;
2053 else
2054 {
2055 f /= radix;
2056 fsum = f + 1.0;
2057 }
2058 }
2059 (*prec) -= 1;
2060}
2061
2062static
2063void init_fx_radix(double *fx_list, int radix)
2064{
2065 /* initialize a per-radix list of tolerances. When added
2066 to a number < 1.0, we can determine if we should raund
2067 up and quit converting a number to a string. */
2068 int i;
2069 fx_list[0] = 0.0;
2070 fx_list[1] = 0.5;
2071 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2072 fx_list[i] = (fx_list[i-1] / radix);
2073}
2074
2075/* use this array as a way to generate a single digit */
2076static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
0f2d19dd 2077
1be6b49c 2078static size_t
0b799eea 2079idbl2str (double f, char *a, int radix)
0f2d19dd 2080{
0b799eea
MV
2081 int efmt, dpt, d, i, wp;
2082 double *fx;
2083#ifdef DBL_MIN_10_EXP
2084 double f_cpy;
2085 int exp_cpy;
2086#endif /* DBL_MIN_10_EXP */
2087 size_t ch = 0;
2088 int exp = 0;
2089
2090 if(radix < 2 ||
2091 radix > SCM_MAX_DBL_RADIX)
2092 {
2093 /* revert to existing behavior */
2094 radix = 10;
2095 }
2096
2097 wp = scm_dblprec[radix-2];
2098 fx = fx_per_radix[radix-2];
0f2d19dd 2099
f872b822 2100 if (f == 0.0)
abb7e44d
MV
2101 {
2102#ifdef HAVE_COPYSIGN
2103 double sgn = copysign (1.0, f);
2104
2105 if (sgn < 0.0)
2106 a[ch++] = '-';
2107#endif
abb7e44d
MV
2108 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2109 }
7351e207
MV
2110
2111 if (xisinf (f))
2112 {
2113 if (f < 0)
2114 strcpy (a, "-inf.0");
2115 else
2116 strcpy (a, "+inf.0");
2117 return ch+6;
2118 }
2119 else if (xisnan (f))
2120 {
2121 strcpy (a, "+nan.0");
2122 return ch+6;
2123 }
2124
f872b822
MD
2125 if (f < 0.0)
2126 {
2127 f = -f;
2128 a[ch++] = '-';
2129 }
7351e207 2130
f872b822
MD
2131#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2132 make-uniform-vector, from causing infinite loops. */
0b799eea
MV
2133 /* just do the checking...if it passes, we do the conversion for our
2134 radix again below */
2135 f_cpy = f;
2136 exp_cpy = exp;
2137
2138 while (f_cpy < 1.0)
f872b822 2139 {
0b799eea
MV
2140 f_cpy *= 10.0;
2141 if (exp_cpy-- < DBL_MIN_10_EXP)
7351e207
MV
2142 {
2143 a[ch++] = '#';
2144 a[ch++] = '.';
2145 a[ch++] = '#';
2146 return ch;
2147 }
f872b822 2148 }
0b799eea 2149 while (f_cpy > 10.0)
f872b822 2150 {
0b799eea
MV
2151 f_cpy *= 0.10;
2152 if (exp_cpy++ > DBL_MAX_10_EXP)
7351e207
MV
2153 {
2154 a[ch++] = '#';
2155 a[ch++] = '.';
2156 a[ch++] = '#';
2157 return ch;
2158 }
f872b822 2159 }
0b799eea
MV
2160#endif
2161
f872b822
MD
2162 while (f < 1.0)
2163 {
0b799eea 2164 f *= radix;
f872b822
MD
2165 exp--;
2166 }
0b799eea 2167 while (f > radix)
f872b822 2168 {
0b799eea 2169 f /= radix;
f872b822
MD
2170 exp++;
2171 }
0b799eea
MV
2172
2173 if (f + fx[wp] >= radix)
f872b822
MD
2174 {
2175 f = 1.0;
2176 exp++;
2177 }
0f2d19dd 2178 zero:
0b799eea
MV
2179#ifdef ENGNOT
2180 /* adding 9999 makes this equivalent to abs(x) % 3 */
f872b822 2181 dpt = (exp + 9999) % 3;
0f2d19dd
JB
2182 exp -= dpt++;
2183 efmt = 1;
f872b822
MD
2184#else
2185 efmt = (exp < -3) || (exp > wp + 2);
0f2d19dd 2186 if (!efmt)
cda139a7
MD
2187 {
2188 if (exp < 0)
2189 {
2190 a[ch++] = '0';
2191 a[ch++] = '.';
2192 dpt = exp;
f872b822
MD
2193 while (++dpt)
2194 a[ch++] = '0';
cda139a7
MD
2195 }
2196 else
f872b822 2197 dpt = exp + 1;
cda139a7 2198 }
0f2d19dd
JB
2199 else
2200 dpt = 1;
f872b822
MD
2201#endif
2202
2203 do
2204 {
2205 d = f;
2206 f -= d;
0b799eea 2207 a[ch++] = number_chars[d];
f872b822
MD
2208 if (f < fx[wp])
2209 break;
2210 if (f + fx[wp] >= 1.0)
2211 {
0b799eea 2212 a[ch - 1] = number_chars[d+1];
f872b822
MD
2213 break;
2214 }
0b799eea 2215 f *= radix;
f872b822
MD
2216 if (!(--dpt))
2217 a[ch++] = '.';
0f2d19dd 2218 }
f872b822 2219 while (wp--);
0f2d19dd
JB
2220
2221 if (dpt > 0)
cda139a7 2222 {
f872b822 2223#ifndef ENGNOT
cda139a7
MD
2224 if ((dpt > 4) && (exp > 6))
2225 {
f872b822 2226 d = (a[0] == '-' ? 2 : 1);
cda139a7 2227 for (i = ch++; i > d; i--)
f872b822 2228 a[i] = a[i - 1];
cda139a7
MD
2229 a[d] = '.';
2230 efmt = 1;
2231 }
2232 else
f872b822 2233#endif
cda139a7 2234 {
f872b822
MD
2235 while (--dpt)
2236 a[ch++] = '0';
cda139a7
MD
2237 a[ch++] = '.';
2238 }
2239 }
f872b822
MD
2240 if (a[ch - 1] == '.')
2241 a[ch++] = '0'; /* trailing zero */
2242 if (efmt && exp)
2243 {
2244 a[ch++] = 'e';
2245 if (exp < 0)
2246 {
2247 exp = -exp;
2248 a[ch++] = '-';
2249 }
0b799eea
MV
2250 for (i = radix; i <= exp; i *= radix);
2251 for (i /= radix; i; i /= radix)
f872b822 2252 {
0b799eea 2253 a[ch++] = number_chars[exp / i];
f872b822
MD
2254 exp %= i;
2255 }
0f2d19dd 2256 }
0f2d19dd
JB
2257 return ch;
2258}
2259
7a1aba42
MV
2260
2261static size_t
2262icmplx2str (double real, double imag, char *str, int radix)
2263{
2264 size_t i;
2265
2266 i = idbl2str (real, str, radix);
2267 if (imag != 0.0)
2268 {
2269 /* Don't output a '+' for negative numbers or for Inf and
2270 NaN. They will provide their own sign. */
2271 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
2272 str[i++] = '+';
2273 i += idbl2str (imag, &str[i], radix);
2274 str[i++] = 'i';
2275 }
2276 return i;
2277}
2278
1be6b49c 2279static size_t
0b799eea 2280iflo2str (SCM flt, char *str, int radix)
0f2d19dd 2281{
1be6b49c 2282 size_t i;
3c9a524f 2283 if (SCM_REALP (flt))
0b799eea 2284 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
0f2d19dd 2285 else
7a1aba42
MV
2286 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
2287 str, radix);
0f2d19dd
JB
2288 return i;
2289}
0f2d19dd 2290
2881e77b 2291/* convert a scm_t_intmax to a string (unterminated). returns the number of
1bbd0b84
GB
2292 characters in the result.
2293 rad is output base
2294 p is destination: worst case (base 2) is SCM_INTBUFLEN */
1be6b49c 2295size_t
2881e77b
MV
2296scm_iint2str (scm_t_intmax num, int rad, char *p)
2297{
2298 if (num < 0)
2299 {
2300 *p++ = '-';
2301 return scm_iuint2str (-num, rad, p) + 1;
2302 }
2303 else
2304 return scm_iuint2str (num, rad, p);
2305}
2306
2307/* convert a scm_t_intmax to a string (unterminated). returns the number of
2308 characters in the result.
2309 rad is output base
2310 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2311size_t
2312scm_iuint2str (scm_t_uintmax num, int rad, char *p)
0f2d19dd 2313{
1be6b49c
ML
2314 size_t j = 1;
2315 size_t i;
2881e77b 2316 scm_t_uintmax n = num;
5c11cc9d 2317
f872b822 2318 for (n /= rad; n > 0; n /= rad)
5c11cc9d
GH
2319 j++;
2320
2321 i = j;
2881e77b 2322 n = num;
f872b822
MD
2323 while (i--)
2324 {
5c11cc9d
GH
2325 int d = n % rad;
2326
f872b822
MD
2327 n /= rad;
2328 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2329 }
0f2d19dd
JB
2330 return j;
2331}
2332
a1ec6916 2333SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
bb628794
DH
2334 (SCM n, SCM radix),
2335 "Return a string holding the external representation of the\n"
942e5b91
MG
2336 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2337 "inexact, a radix of 10 will be used.")
1bbd0b84 2338#define FUNC_NAME s_scm_number_to_string
0f2d19dd 2339{
1bbd0b84 2340 int base;
98cb6e75 2341
0aacf84e 2342 if (SCM_UNBNDP (radix))
98cb6e75 2343 base = 10;
0aacf84e 2344 else
5efd3c7d 2345 base = scm_to_signed_integer (radix, 2, 36);
98cb6e75 2346
e11e83f3 2347 if (SCM_I_INUMP (n))
0aacf84e
MD
2348 {
2349 char num_buf [SCM_INTBUFLEN];
e11e83f3 2350 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
cc95e00a 2351 return scm_from_locale_stringn (num_buf, length);
0aacf84e
MD
2352 }
2353 else if (SCM_BIGP (n))
2354 {
2355 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2356 scm_remember_upto_here_1 (n);
cc95e00a 2357 return scm_take_locale_string (str);
0aacf84e 2358 }
f92e85f7
MV
2359 else if (SCM_FRACTIONP (n))
2360 {
2361 scm_i_fraction_reduce (n);
2362 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
cc95e00a 2363 scm_from_locale_string ("/"),
f92e85f7
MV
2364 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2365 }
0aacf84e
MD
2366 else if (SCM_INEXACTP (n))
2367 {
2368 char num_buf [FLOBUFLEN];
cc95e00a 2369 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
0aacf84e
MD
2370 }
2371 else
bb628794 2372 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 2373}
1bbd0b84 2374#undef FUNC_NAME
0f2d19dd
JB
2375
2376
ca46fb90
RB
2377/* These print routines used to be stubbed here so that scm_repl.c
2378 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
1cc91f1b 2379
0f2d19dd 2380int
e81d98ec 2381scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2382{
56e55ac7 2383 char num_buf[FLOBUFLEN];
0b799eea 2384 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
0f2d19dd
JB
2385 return !0;
2386}
2387
b479fe9a
MV
2388void
2389scm_i_print_double (double val, SCM port)
2390{
2391 char num_buf[FLOBUFLEN];
2392 scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
2393}
2394
f3ae5d60 2395int
e81d98ec 2396scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
f92e85f7 2397
f3ae5d60 2398{
56e55ac7 2399 char num_buf[FLOBUFLEN];
0b799eea 2400 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
f3ae5d60
MD
2401 return !0;
2402}
1cc91f1b 2403
7a1aba42
MV
2404void
2405scm_i_print_complex (double real, double imag, SCM port)
2406{
2407 char num_buf[FLOBUFLEN];
2408 scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
2409}
2410
f92e85f7
MV
2411int
2412scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2413{
2414 SCM str;
2415 scm_i_fraction_reduce (sexp);
2416 str = scm_number_to_string (sexp, SCM_UNDEFINED);
cc95e00a 2417 scm_lfwrite (scm_i_string_chars (str), scm_i_string_length (str), port);
f92e85f7
MV
2418 scm_remember_upto_here_1 (str);
2419 return !0;
2420}
2421
0f2d19dd 2422int
e81d98ec 2423scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2424{
ca46fb90
RB
2425 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2426 scm_remember_upto_here_1 (exp);
2427 scm_lfwrite (str, (size_t) strlen (str), port);
2428 free (str);
0f2d19dd
JB
2429 return !0;
2430}
2431/*** END nums->strs ***/
2432
3c9a524f 2433
0f2d19dd 2434/*** STRINGS -> NUMBERS ***/
2a8fecee 2435
3c9a524f
DH
2436/* The following functions implement the conversion from strings to numbers.
2437 * The implementation somehow follows the grammar for numbers as it is given
2438 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2439 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2440 * points should be noted about the implementation:
2441 * * Each function keeps a local index variable 'idx' that points at the
2442 * current position within the parsed string. The global index is only
2443 * updated if the function could parse the corresponding syntactic unit
2444 * successfully.
2445 * * Similarly, the functions keep track of indicators of inexactness ('#',
2446 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2447 * global exactness information is only updated after each part has been
2448 * successfully parsed.
2449 * * Sequences of digits are parsed into temporary variables holding fixnums.
2450 * Only if these fixnums would overflow, the result variables are updated
2451 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2452 * the temporary variables holding the fixnums are cleared, and the process
2453 * starts over again. If for example fixnums were able to store five decimal
2454 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2455 * and the result was computed as 12345 * 100000 + 67890. In other words,
2456 * only every five digits two bignum operations were performed.
2457 */
2458
2459enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2460
2461/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2462
2463/* In non ASCII-style encodings the following macro might not work. */
71df73ac
KR
2464#define XDIGIT2UINT(d) \
2465 (isdigit ((int) (unsigned char) d) \
2466 ? (d) - '0' \
2467 : tolower ((int) (unsigned char) d) - 'a' + 10)
3c9a524f 2468
2a8fecee 2469static SCM
3c9a524f
DH
2470mem2uinteger (const char* mem, size_t len, unsigned int *p_idx,
2471 unsigned int radix, enum t_exactness *p_exactness)
2a8fecee 2472{
3c9a524f
DH
2473 unsigned int idx = *p_idx;
2474 unsigned int hash_seen = 0;
2475 scm_t_bits shift = 1;
2476 scm_t_bits add = 0;
2477 unsigned int digit_value;
2478 SCM result;
2479 char c;
2480
2481 if (idx == len)
2482 return SCM_BOOL_F;
2a8fecee 2483
3c9a524f 2484 c = mem[idx];
71df73ac 2485 if (!isxdigit ((int) (unsigned char) c))
3c9a524f
DH
2486 return SCM_BOOL_F;
2487 digit_value = XDIGIT2UINT (c);
2488 if (digit_value >= radix)
2489 return SCM_BOOL_F;
2490
2491 idx++;
d956fa6f 2492 result = SCM_I_MAKINUM (digit_value);
3c9a524f 2493 while (idx != len)
f872b822 2494 {
3c9a524f 2495 char c = mem[idx];
71df73ac 2496 if (isxdigit ((int) (unsigned char) c))
f872b822 2497 {
3c9a524f 2498 if (hash_seen)
1fe5e088 2499 break;
3c9a524f
DH
2500 digit_value = XDIGIT2UINT (c);
2501 if (digit_value >= radix)
1fe5e088 2502 break;
f872b822 2503 }
3c9a524f
DH
2504 else if (c == '#')
2505 {
2506 hash_seen = 1;
2507 digit_value = 0;
2508 }
2509 else
2510 break;
2511
2512 idx++;
2513 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2514 {
d956fa6f 2515 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2516 if (add > 0)
d956fa6f 2517 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2518
2519 shift = radix;
2520 add = digit_value;
2521 }
2522 else
2523 {
2524 shift = shift * radix;
2525 add = add * radix + digit_value;
2526 }
2527 };
2528
2529 if (shift > 1)
d956fa6f 2530 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2531 if (add > 0)
d956fa6f 2532 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2533
2534 *p_idx = idx;
2535 if (hash_seen)
2536 *p_exactness = INEXACT;
2537
2538 return result;
2a8fecee
JB
2539}
2540
2541
3c9a524f
DH
2542/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2543 * covers the parts of the rules that start at a potential point. The value
2544 * of the digits up to the point have been parsed by the caller and are given
79d34f68
DH
2545 * in variable result. The content of *p_exactness indicates, whether a hash
2546 * has already been seen in the digits before the point.
3c9a524f 2547 */
1cc91f1b 2548
3c9a524f
DH
2549/* In non ASCII-style encodings the following macro might not work. */
2550#define DIGIT2UINT(d) ((d) - '0')
2551
2552static SCM
79d34f68 2553mem2decimal_from_point (SCM result, const char* mem, size_t len,
3c9a524f 2554 unsigned int *p_idx, enum t_exactness *p_exactness)
0f2d19dd 2555{
3c9a524f
DH
2556 unsigned int idx = *p_idx;
2557 enum t_exactness x = *p_exactness;
3c9a524f
DH
2558
2559 if (idx == len)
79d34f68 2560 return result;
3c9a524f
DH
2561
2562 if (mem[idx] == '.')
2563 {
2564 scm_t_bits shift = 1;
2565 scm_t_bits add = 0;
2566 unsigned int digit_value;
d956fa6f 2567 SCM big_shift = SCM_I_MAKINUM (1);
3c9a524f
DH
2568
2569 idx++;
2570 while (idx != len)
2571 {
2572 char c = mem[idx];
71df73ac 2573 if (isdigit ((int) (unsigned char) c))
3c9a524f
DH
2574 {
2575 if (x == INEXACT)
2576 return SCM_BOOL_F;
2577 else
2578 digit_value = DIGIT2UINT (c);
2579 }
2580 else if (c == '#')
2581 {
2582 x = INEXACT;
2583 digit_value = 0;
2584 }
2585 else
2586 break;
2587
2588 idx++;
2589 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2590 {
d956fa6f
MV
2591 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2592 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2593 if (add > 0)
d956fa6f 2594 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2595
2596 shift = 10;
2597 add = digit_value;
2598 }
2599 else
2600 {
2601 shift = shift * 10;
2602 add = add * 10 + digit_value;
2603 }
2604 };
2605
2606 if (add > 0)
2607 {
d956fa6f
MV
2608 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2609 result = scm_product (result, SCM_I_MAKINUM (shift));
2610 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2611 }
2612
d8592269 2613 result = scm_divide (result, big_shift);
79d34f68 2614
3c9a524f
DH
2615 /* We've seen a decimal point, thus the value is implicitly inexact. */
2616 x = INEXACT;
f872b822 2617 }
3c9a524f 2618
3c9a524f 2619 if (idx != len)
f872b822 2620 {
3c9a524f
DH
2621 int sign = 1;
2622 unsigned int start;
2623 char c;
2624 int exponent;
2625 SCM e;
2626
2627 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2628
2629 switch (mem[idx])
f872b822 2630 {
3c9a524f
DH
2631 case 'd': case 'D':
2632 case 'e': case 'E':
2633 case 'f': case 'F':
2634 case 'l': case 'L':
2635 case 's': case 'S':
2636 idx++;
2637 start = idx;
2638 c = mem[idx];
2639 if (c == '-')
2640 {
2641 idx++;
2642 sign = -1;
2643 c = mem[idx];
2644 }
2645 else if (c == '+')
2646 {
2647 idx++;
2648 sign = 1;
2649 c = mem[idx];
2650 }
2651 else
2652 sign = 1;
2653
71df73ac 2654 if (!isdigit ((int) (unsigned char) c))
3c9a524f
DH
2655 return SCM_BOOL_F;
2656
2657 idx++;
2658 exponent = DIGIT2UINT (c);
2659 while (idx != len)
f872b822 2660 {
3c9a524f 2661 char c = mem[idx];
71df73ac 2662 if (isdigit ((int) (unsigned char) c))
3c9a524f
DH
2663 {
2664 idx++;
2665 if (exponent <= SCM_MAXEXP)
2666 exponent = exponent * 10 + DIGIT2UINT (c);
2667 }
2668 else
2669 break;
f872b822 2670 }
3c9a524f
DH
2671
2672 if (exponent > SCM_MAXEXP)
f872b822 2673 {
3c9a524f 2674 size_t exp_len = idx - start;
cc95e00a 2675 SCM exp_string = scm_from_locale_stringn (&mem[start], exp_len);
3c9a524f
DH
2676 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2677 scm_out_of_range ("string->number", exp_num);
f872b822 2678 }
3c9a524f 2679
d956fa6f 2680 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
3c9a524f
DH
2681 if (sign == 1)
2682 result = scm_product (result, e);
2683 else
f92e85f7 2684 result = scm_divide2real (result, e);
3c9a524f
DH
2685
2686 /* We've seen an exponent, thus the value is implicitly inexact. */
2687 x = INEXACT;
2688
f872b822 2689 break;
3c9a524f 2690
f872b822 2691 default:
3c9a524f 2692 break;
f872b822 2693 }
0f2d19dd 2694 }
3c9a524f
DH
2695
2696 *p_idx = idx;
2697 if (x == INEXACT)
2698 *p_exactness = x;
2699
2700 return result;
0f2d19dd 2701}
0f2d19dd 2702
3c9a524f
DH
2703
2704/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2705
2706static SCM
2707mem2ureal (const char* mem, size_t len, unsigned int *p_idx,
2708 unsigned int radix, enum t_exactness *p_exactness)
0f2d19dd 2709{
3c9a524f 2710 unsigned int idx = *p_idx;
164d2481 2711 SCM result;
3c9a524f
DH
2712
2713 if (idx == len)
2714 return SCM_BOOL_F;
2715
7351e207
MV
2716 if (idx+5 <= len && !strncmp (mem+idx, "inf.0", 5))
2717 {
2718 *p_idx = idx+5;
2719 return scm_inf ();
2720 }
2721
2722 if (idx+4 < len && !strncmp (mem+idx, "nan.", 4))
2723 {
2724 enum t_exactness x = EXACT;
2725
d8592269
MV
2726 /* Cobble up the fractional part. We might want to set the
2727 NaN's mantissa from it. */
7351e207
MV
2728 idx += 4;
2729 mem2uinteger (mem, len, &idx, 10, &x);
2730 *p_idx = idx;
2731 return scm_nan ();
2732 }
2733
3c9a524f
DH
2734 if (mem[idx] == '.')
2735 {
2736 if (radix != 10)
2737 return SCM_BOOL_F;
2738 else if (idx + 1 == len)
2739 return SCM_BOOL_F;
71df73ac 2740 else if (!isdigit ((int) (unsigned char) mem[idx + 1]))
3c9a524f
DH
2741 return SCM_BOOL_F;
2742 else
d956fa6f 2743 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem, len,
164d2481 2744 p_idx, p_exactness);
f872b822 2745 }
3c9a524f
DH
2746 else
2747 {
2748 enum t_exactness x = EXACT;
2749 SCM uinteger;
3c9a524f
DH
2750
2751 uinteger = mem2uinteger (mem, len, &idx, radix, &x);
73e4de09 2752 if (scm_is_false (uinteger))
3c9a524f
DH
2753 return SCM_BOOL_F;
2754
2755 if (idx == len)
2756 result = uinteger;
2757 else if (mem[idx] == '/')
f872b822 2758 {
3c9a524f
DH
2759 SCM divisor;
2760
2761 idx++;
2762
2763 divisor = mem2uinteger (mem, len, &idx, radix, &x);
73e4de09 2764 if (scm_is_false (divisor))
3c9a524f
DH
2765 return SCM_BOOL_F;
2766
f92e85f7 2767 /* both are int/big here, I assume */
cba42c93 2768 result = scm_i_make_ratio (uinteger, divisor);
f872b822 2769 }
3c9a524f
DH
2770 else if (radix == 10)
2771 {
2772 result = mem2decimal_from_point (uinteger, mem, len, &idx, &x);
73e4de09 2773 if (scm_is_false (result))
3c9a524f
DH
2774 return SCM_BOOL_F;
2775 }
2776 else
2777 result = uinteger;
2778
2779 *p_idx = idx;
2780 if (x == INEXACT)
2781 *p_exactness = x;
f872b822 2782 }
164d2481
MV
2783
2784 /* When returning an inexact zero, make sure it is represented as a
2785 floating point value so that we can change its sign.
2786 */
bc36d050 2787 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
55f26379 2788 result = scm_from_double (0.0);
164d2481
MV
2789
2790 return result;
3c9a524f 2791}
0f2d19dd 2792
0f2d19dd 2793
3c9a524f 2794/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
0f2d19dd 2795
3c9a524f
DH
2796static SCM
2797mem2complex (const char* mem, size_t len, unsigned int idx,
2798 unsigned int radix, enum t_exactness *p_exactness)
2799{
2800 char c;
2801 int sign = 0;
2802 SCM ureal;
2803
2804 if (idx == len)
2805 return SCM_BOOL_F;
2806
2807 c = mem[idx];
2808 if (c == '+')
2809 {
2810 idx++;
2811 sign = 1;
2812 }
2813 else if (c == '-')
2814 {
2815 idx++;
2816 sign = -1;
0f2d19dd 2817 }
0f2d19dd 2818
3c9a524f
DH
2819 if (idx == len)
2820 return SCM_BOOL_F;
2821
2822 ureal = mem2ureal (mem, len, &idx, radix, p_exactness);
73e4de09 2823 if (scm_is_false (ureal))
f872b822 2824 {
3c9a524f
DH
2825 /* input must be either +i or -i */
2826
2827 if (sign == 0)
2828 return SCM_BOOL_F;
2829
2830 if (mem[idx] == 'i' || mem[idx] == 'I')
f872b822 2831 {
3c9a524f
DH
2832 idx++;
2833 if (idx != len)
2834 return SCM_BOOL_F;
2835
d956fa6f 2836 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
f872b822 2837 }
3c9a524f
DH
2838 else
2839 return SCM_BOOL_F;
0f2d19dd 2840 }
3c9a524f
DH
2841 else
2842 {
73e4de09 2843 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f 2844 ureal = scm_difference (ureal, SCM_UNDEFINED);
f872b822 2845
3c9a524f
DH
2846 if (idx == len)
2847 return ureal;
2848
2849 c = mem[idx];
2850 switch (c)
f872b822 2851 {
3c9a524f
DH
2852 case 'i': case 'I':
2853 /* either +<ureal>i or -<ureal>i */
2854
2855 idx++;
2856 if (sign == 0)
2857 return SCM_BOOL_F;
2858 if (idx != len)
2859 return SCM_BOOL_F;
d956fa6f 2860 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
3c9a524f
DH
2861
2862 case '@':
2863 /* polar input: <real>@<real>. */
2864
2865 idx++;
2866 if (idx == len)
2867 return SCM_BOOL_F;
2868 else
f872b822 2869 {
3c9a524f
DH
2870 int sign;
2871 SCM angle;
2872 SCM result;
2873
2874 c = mem[idx];
2875 if (c == '+')
2876 {
2877 idx++;
2878 sign = 1;
2879 }
2880 else if (c == '-')
2881 {
2882 idx++;
2883 sign = -1;
2884 }
2885 else
2886 sign = 1;
2887
2888 angle = mem2ureal (mem, len, &idx, radix, p_exactness);
73e4de09 2889 if (scm_is_false (angle))
3c9a524f
DH
2890 return SCM_BOOL_F;
2891 if (idx != len)
2892 return SCM_BOOL_F;
2893
73e4de09 2894 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f
DH
2895 angle = scm_difference (angle, SCM_UNDEFINED);
2896
2897 result = scm_make_polar (ureal, angle);
2898 return result;
f872b822 2899 }
3c9a524f
DH
2900 case '+':
2901 case '-':
2902 /* expecting input matching <real>[+-]<ureal>?i */
0f2d19dd 2903
3c9a524f
DH
2904 idx++;
2905 if (idx == len)
2906 return SCM_BOOL_F;
2907 else
2908 {
2909 int sign = (c == '+') ? 1 : -1;
2910 SCM imag = mem2ureal (mem, len, &idx, radix, p_exactness);
0f2d19dd 2911
73e4de09 2912 if (scm_is_false (imag))
d956fa6f 2913 imag = SCM_I_MAKINUM (sign);
73e4de09 2914 else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
1fe5e088 2915 imag = scm_difference (imag, SCM_UNDEFINED);
0f2d19dd 2916
3c9a524f
DH
2917 if (idx == len)
2918 return SCM_BOOL_F;
2919 if (mem[idx] != 'i' && mem[idx] != 'I')
2920 return SCM_BOOL_F;
0f2d19dd 2921
3c9a524f
DH
2922 idx++;
2923 if (idx != len)
2924 return SCM_BOOL_F;
0f2d19dd 2925
1fe5e088 2926 return scm_make_rectangular (ureal, imag);
3c9a524f
DH
2927 }
2928 default:
2929 return SCM_BOOL_F;
2930 }
2931 }
0f2d19dd 2932}
0f2d19dd
JB
2933
2934
3c9a524f
DH
2935/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
2936
2937enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
1cc91f1b 2938
0f2d19dd 2939SCM
3c9a524f 2940scm_i_mem2number (const char* mem, size_t len, unsigned int default_radix)
0f2d19dd 2941{
3c9a524f
DH
2942 unsigned int idx = 0;
2943 unsigned int radix = NO_RADIX;
2944 enum t_exactness forced_x = NO_EXACTNESS;
2945 enum t_exactness implicit_x = EXACT;
2946 SCM result;
2947
2948 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
2949 while (idx + 2 < len && mem[idx] == '#')
2950 {
2951 switch (mem[idx + 1])
2952 {
2953 case 'b': case 'B':
2954 if (radix != NO_RADIX)
2955 return SCM_BOOL_F;
2956 radix = DUAL;
2957 break;
2958 case 'd': case 'D':
2959 if (radix != NO_RADIX)
2960 return SCM_BOOL_F;
2961 radix = DEC;
2962 break;
2963 case 'i': case 'I':
2964 if (forced_x != NO_EXACTNESS)
2965 return SCM_BOOL_F;
2966 forced_x = INEXACT;
2967 break;
2968 case 'e': case 'E':
2969 if (forced_x != NO_EXACTNESS)
2970 return SCM_BOOL_F;
2971 forced_x = EXACT;
2972 break;
2973 case 'o': case 'O':
2974 if (radix != NO_RADIX)
2975 return SCM_BOOL_F;
2976 radix = OCT;
2977 break;
2978 case 'x': case 'X':
2979 if (radix != NO_RADIX)
2980 return SCM_BOOL_F;
2981 radix = HEX;
2982 break;
2983 default:
f872b822 2984 return SCM_BOOL_F;
3c9a524f
DH
2985 }
2986 idx += 2;
2987 }
2988
2989 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2990 if (radix == NO_RADIX)
2991 result = mem2complex (mem, len, idx, default_radix, &implicit_x);
2992 else
2993 result = mem2complex (mem, len, idx, (unsigned int) radix, &implicit_x);
2994
73e4de09 2995 if (scm_is_false (result))
3c9a524f 2996 return SCM_BOOL_F;
f872b822 2997
3c9a524f 2998 switch (forced_x)
f872b822 2999 {
3c9a524f
DH
3000 case EXACT:
3001 if (SCM_INEXACTP (result))
3c9a524f
DH
3002 return scm_inexact_to_exact (result);
3003 else
3004 return result;
3005 case INEXACT:
3006 if (SCM_INEXACTP (result))
3007 return result;
3008 else
3009 return scm_exact_to_inexact (result);
3010 case NO_EXACTNESS:
3011 default:
3012 if (implicit_x == INEXACT)
3013 {
3014 if (SCM_INEXACTP (result))
3015 return result;
3016 else
3017 return scm_exact_to_inexact (result);
3018 }
3019 else
3020 return result;
f872b822 3021 }
0f2d19dd
JB
3022}
3023
3024
a1ec6916 3025SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
bb628794 3026 (SCM string, SCM radix),
1e6808ea 3027 "Return a number of the maximally precise representation\n"
942e5b91 3028 "expressed by the given @var{string}. @var{radix} must be an\n"
5352393c
MG
3029 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
3030 "is a default radix that may be overridden by an explicit radix\n"
3031 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
3032 "supplied, then the default radix is 10. If string is not a\n"
3033 "syntactically valid notation for a number, then\n"
3034 "@code{string->number} returns @code{#f}.")
1bbd0b84 3035#define FUNC_NAME s_scm_string_to_number
0f2d19dd
JB
3036{
3037 SCM answer;
5efd3c7d 3038 unsigned int base;
a6d9e5ab 3039 SCM_VALIDATE_STRING (1, string);
5efd3c7d
MV
3040
3041 if (SCM_UNBNDP (radix))
3042 base = 10;
3043 else
3044 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
3045
cc95e00a
MV
3046 answer = scm_i_mem2number (scm_i_string_chars (string),
3047 scm_i_string_length (string),
d8592269 3048 base);
8824ac88
MV
3049 scm_remember_upto_here_1 (string);
3050 return answer;
0f2d19dd 3051}
1bbd0b84 3052#undef FUNC_NAME
3c9a524f
DH
3053
3054
0f2d19dd
JB
3055/*** END strs->nums ***/
3056
5986c47d 3057
0f2d19dd 3058SCM
1bbd0b84 3059scm_bigequal (SCM x, SCM y)
0f2d19dd 3060{
47ae1f0e 3061 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
ca46fb90 3062 scm_remember_upto_here_2 (x, y);
73e4de09 3063 return scm_from_bool (0 == result);
0f2d19dd
JB
3064}
3065
0f2d19dd 3066SCM
f3ae5d60 3067scm_real_equalp (SCM x, SCM y)
0f2d19dd 3068{
73e4de09 3069 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0f2d19dd
JB
3070}
3071
f3ae5d60
MD
3072SCM
3073scm_complex_equalp (SCM x, SCM y)
3074{
73e4de09 3075 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
f3ae5d60
MD
3076 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3077}
0f2d19dd 3078
f92e85f7
MV
3079SCM
3080scm_i_fraction_equalp (SCM x, SCM y)
3081{
3082 scm_i_fraction_reduce (x);
3083 scm_i_fraction_reduce (y);
73e4de09 3084 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
02164269 3085 SCM_FRACTION_NUMERATOR (y)))
73e4de09 3086 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
02164269
MV
3087 SCM_FRACTION_DENOMINATOR (y))))
3088 return SCM_BOOL_F;
3089 else
3090 return SCM_BOOL_T;
f92e85f7 3091}
0f2d19dd
JB
3092
3093
8507ec80
MV
3094SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3095 (SCM x),
3096 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3097 "otherwise.")
3098#define FUNC_NAME s_scm_number_p
3099{
3100 return scm_from_bool (SCM_NUMBERP (x));
3101}
3102#undef FUNC_NAME
3103
3104SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
1bbd0b84 3105 (SCM x),
942e5b91 3106 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
bb2c02f2 3107 "otherwise. Note that the sets of real, rational and integer\n"
942e5b91
MG
3108 "values form subsets of the set of complex numbers, i. e. the\n"
3109 "predicate will also be fulfilled if @var{x} is a real,\n"
3110 "rational or integer number.")
8507ec80 3111#define FUNC_NAME s_scm_complex_p
0f2d19dd 3112{
8507ec80
MV
3113 /* all numbers are complex. */
3114 return scm_number_p (x);
0f2d19dd 3115}
1bbd0b84 3116#undef FUNC_NAME
0f2d19dd 3117
f92e85f7
MV
3118SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3119 (SCM x),
3120 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3121 "otherwise. Note that the set of integer values forms a subset of\n"
3122 "the set of real numbers, i. e. the predicate will also be\n"
3123 "fulfilled if @var{x} is an integer number.")
3124#define FUNC_NAME s_scm_real_p
3125{
3126 /* we can't represent irrational numbers. */
3127 return scm_rational_p (x);
3128}
3129#undef FUNC_NAME
3130
3131SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
1bbd0b84 3132 (SCM x),
942e5b91 3133 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
bb2c02f2 3134 "otherwise. Note that the set of integer values forms a subset of\n"
942e5b91 3135 "the set of rational numbers, i. e. the predicate will also be\n"
f92e85f7
MV
3136 "fulfilled if @var{x} is an integer number.")
3137#define FUNC_NAME s_scm_rational_p
0f2d19dd 3138{
e11e83f3 3139 if (SCM_I_INUMP (x))
0f2d19dd 3140 return SCM_BOOL_T;
0aacf84e 3141 else if (SCM_IMP (x))
0f2d19dd 3142 return SCM_BOOL_F;
0aacf84e 3143 else if (SCM_BIGP (x))
0f2d19dd 3144 return SCM_BOOL_T;
f92e85f7
MV
3145 else if (SCM_FRACTIONP (x))
3146 return SCM_BOOL_T;
3147 else if (SCM_REALP (x))
3148 /* due to their limited precision, all floating point numbers are
3149 rational as well. */
3150 return SCM_BOOL_T;
0aacf84e 3151 else
bb628794 3152 return SCM_BOOL_F;
0f2d19dd 3153}
1bbd0b84 3154#undef FUNC_NAME
0f2d19dd 3155
a1ec6916 3156SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
1bbd0b84 3157 (SCM x),
942e5b91
MG
3158 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3159 "else.")
1bbd0b84 3160#define FUNC_NAME s_scm_integer_p
0f2d19dd
JB
3161{
3162 double r;
e11e83f3 3163 if (SCM_I_INUMP (x))
f872b822
MD
3164 return SCM_BOOL_T;
3165 if (SCM_IMP (x))
3166 return SCM_BOOL_F;
f872b822
MD
3167 if (SCM_BIGP (x))
3168 return SCM_BOOL_T;
3c9a524f 3169 if (!SCM_INEXACTP (x))
f872b822 3170 return SCM_BOOL_F;
3c9a524f 3171 if (SCM_COMPLEXP (x))
f872b822 3172 return SCM_BOOL_F;
5986c47d 3173 r = SCM_REAL_VALUE (x);
1e35a229 3174 /* +/-inf passes r==floor(r), making those #t */
f872b822
MD
3175 if (r == floor (r))
3176 return SCM_BOOL_T;
0f2d19dd
JB
3177 return SCM_BOOL_F;
3178}
1bbd0b84 3179#undef FUNC_NAME
0f2d19dd
JB
3180
3181
a1ec6916 3182SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
1bbd0b84 3183 (SCM x),
942e5b91
MG
3184 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3185 "else.")
1bbd0b84 3186#define FUNC_NAME s_scm_inexact_p
0f2d19dd 3187{
eb927cb9
MV
3188 if (SCM_INEXACTP (x))
3189 return SCM_BOOL_T;
3190 if (SCM_NUMBERP (x))
3191 return SCM_BOOL_F;
3192 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 3193}
1bbd0b84 3194#undef FUNC_NAME
0f2d19dd
JB
3195
3196
152f82bf 3197SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
942e5b91 3198/* "Return @code{#t} if all parameters are numerically equal." */
0f2d19dd 3199SCM
6e8d25a6 3200scm_num_eq_p (SCM x, SCM y)
0f2d19dd 3201{
d8b95e27 3202 again:
e11e83f3 3203 if (SCM_I_INUMP (x))
0aacf84e 3204 {
e11e83f3
MV
3205 long xx = SCM_I_INUM (x);
3206 if (SCM_I_INUMP (y))
0aacf84e 3207 {
e11e83f3 3208 long yy = SCM_I_INUM (y);
73e4de09 3209 return scm_from_bool (xx == yy);
0aacf84e
MD
3210 }
3211 else if (SCM_BIGP (y))
3212 return SCM_BOOL_F;
3213 else if (SCM_REALP (y))
73e4de09 3214 return scm_from_bool ((double) xx == SCM_REAL_VALUE (y));
0aacf84e 3215 else if (SCM_COMPLEXP (y))
73e4de09 3216 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
0aacf84e 3217 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7
MV
3218 else if (SCM_FRACTIONP (y))
3219 return SCM_BOOL_F;
0aacf84e
MD
3220 else
3221 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f872b822 3222 }
0aacf84e
MD
3223 else if (SCM_BIGP (x))
3224 {
e11e83f3 3225 if (SCM_I_INUMP (y))
0aacf84e
MD
3226 return SCM_BOOL_F;
3227 else if (SCM_BIGP (y))
3228 {
3229 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3230 scm_remember_upto_here_2 (x, y);
73e4de09 3231 return scm_from_bool (0 == cmp);
0aacf84e
MD
3232 }
3233 else if (SCM_REALP (y))
3234 {
3235 int cmp;
3236 if (xisnan (SCM_REAL_VALUE (y)))
3237 return SCM_BOOL_F;
3238 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3239 scm_remember_upto_here_1 (x);
73e4de09 3240 return scm_from_bool (0 == cmp);
0aacf84e
MD
3241 }
3242 else if (SCM_COMPLEXP (y))
3243 {
3244 int cmp;
3245 if (0.0 != SCM_COMPLEX_IMAG (y))
3246 return SCM_BOOL_F;
3247 if (xisnan (SCM_COMPLEX_REAL (y)))
3248 return SCM_BOOL_F;
3249 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3250 scm_remember_upto_here_1 (x);
73e4de09 3251 return scm_from_bool (0 == cmp);
0aacf84e 3252 }
f92e85f7
MV
3253 else if (SCM_FRACTIONP (y))
3254 return SCM_BOOL_F;
0aacf84e
MD
3255 else
3256 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f4c627b3 3257 }
0aacf84e
MD
3258 else if (SCM_REALP (x))
3259 {
e11e83f3
MV
3260 if (SCM_I_INUMP (y))
3261 return scm_from_bool (SCM_REAL_VALUE (x) == (double) SCM_I_INUM (y));
0aacf84e
MD
3262 else if (SCM_BIGP (y))
3263 {
3264 int cmp;
3265 if (xisnan (SCM_REAL_VALUE (x)))
3266 return SCM_BOOL_F;
3267 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3268 scm_remember_upto_here_1 (y);
73e4de09 3269 return scm_from_bool (0 == cmp);
0aacf84e
MD
3270 }
3271 else if (SCM_REALP (y))
73e4de09 3272 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0aacf84e 3273 else if (SCM_COMPLEXP (y))
73e4de09 3274 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3275 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7 3276 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3277 {
3278 double xx = SCM_REAL_VALUE (x);
3279 if (xisnan (xx))
3280 return SCM_BOOL_F;
3281 if (xisinf (xx))
73e4de09 3282 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3283 x = scm_inexact_to_exact (x); /* with x as frac or int */
3284 goto again;
3285 }
0aacf84e
MD
3286 else
3287 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f872b822 3288 }
0aacf84e
MD
3289 else if (SCM_COMPLEXP (x))
3290 {
e11e83f3
MV
3291 if (SCM_I_INUMP (y))
3292 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
0aacf84e
MD
3293 && (SCM_COMPLEX_IMAG (x) == 0.0));
3294 else if (SCM_BIGP (y))
3295 {
3296 int cmp;
3297 if (0.0 != SCM_COMPLEX_IMAG (x))
3298 return SCM_BOOL_F;
3299 if (xisnan (SCM_COMPLEX_REAL (x)))
3300 return SCM_BOOL_F;
3301 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3302 scm_remember_upto_here_1 (y);
73e4de09 3303 return scm_from_bool (0 == cmp);
0aacf84e
MD
3304 }
3305 else if (SCM_REALP (y))
73e4de09 3306 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
0aacf84e
MD
3307 && (SCM_COMPLEX_IMAG (x) == 0.0));
3308 else if (SCM_COMPLEXP (y))
73e4de09 3309 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3310 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
f92e85f7 3311 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3312 {
3313 double xx;
3314 if (SCM_COMPLEX_IMAG (x) != 0.0)
3315 return SCM_BOOL_F;
3316 xx = SCM_COMPLEX_REAL (x);
3317 if (xisnan (xx))
3318 return SCM_BOOL_F;
3319 if (xisinf (xx))
73e4de09 3320 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3321 x = scm_inexact_to_exact (x); /* with x as frac or int */
3322 goto again;
3323 }
f92e85f7
MV
3324 else
3325 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3326 }
3327 else if (SCM_FRACTIONP (x))
3328 {
e11e83f3 3329 if (SCM_I_INUMP (y))
f92e85f7
MV
3330 return SCM_BOOL_F;
3331 else if (SCM_BIGP (y))
3332 return SCM_BOOL_F;
3333 else if (SCM_REALP (y))
d8b95e27
KR
3334 {
3335 double yy = SCM_REAL_VALUE (y);
3336 if (xisnan (yy))
3337 return SCM_BOOL_F;
3338 if (xisinf (yy))
73e4de09 3339 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3340 y = scm_inexact_to_exact (y); /* with y as frac or int */
3341 goto again;
3342 }
f92e85f7 3343 else if (SCM_COMPLEXP (y))
d8b95e27
KR
3344 {
3345 double yy;
3346 if (SCM_COMPLEX_IMAG (y) != 0.0)
3347 return SCM_BOOL_F;
3348 yy = SCM_COMPLEX_REAL (y);
3349 if (xisnan (yy))
3350 return SCM_BOOL_F;
3351 if (xisinf (yy))
73e4de09 3352 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3353 y = scm_inexact_to_exact (y); /* with y as frac or int */
3354 goto again;
3355 }
f92e85f7
MV
3356 else if (SCM_FRACTIONP (y))
3357 return scm_i_fraction_equalp (x, y);
0aacf84e
MD
3358 else
3359 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f4c627b3 3360 }
0aacf84e 3361 else
f4c627b3 3362 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
0f2d19dd
JB
3363}
3364
3365
a5f0b599
KR
3366/* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3367 done are good for inums, but for bignums an answer can almost always be
3368 had by just examining a few high bits of the operands, as done by GMP in
3369 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3370 of the float exponent to take into account. */
3371
152f82bf 3372SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
942e5b91
MG
3373/* "Return @code{#t} if the list of parameters is monotonically\n"
3374 * "increasing."
3375 */
0f2d19dd 3376SCM
6e8d25a6 3377scm_less_p (SCM x, SCM y)
0f2d19dd 3378{
a5f0b599 3379 again:
e11e83f3 3380 if (SCM_I_INUMP (x))
0aacf84e 3381 {
e11e83f3
MV
3382 long xx = SCM_I_INUM (x);
3383 if (SCM_I_INUMP (y))
0aacf84e 3384 {
e11e83f3 3385 long yy = SCM_I_INUM (y);
73e4de09 3386 return scm_from_bool (xx < yy);
0aacf84e
MD
3387 }
3388 else if (SCM_BIGP (y))
3389 {
3390 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3391 scm_remember_upto_here_1 (y);
73e4de09 3392 return scm_from_bool (sgn > 0);
0aacf84e
MD
3393 }
3394 else if (SCM_REALP (y))
73e4de09 3395 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
f92e85f7 3396 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3397 {
3398 /* "x < a/b" becomes "x*b < a" */
3399 int_frac:
3400 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3401 y = SCM_FRACTION_NUMERATOR (y);
3402 goto again;
3403 }
0aacf84e
MD
3404 else
3405 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
f872b822 3406 }
0aacf84e
MD
3407 else if (SCM_BIGP (x))
3408 {
e11e83f3 3409 if (SCM_I_INUMP (y))
0aacf84e
MD
3410 {
3411 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3412 scm_remember_upto_here_1 (x);
73e4de09 3413 return scm_from_bool (sgn < 0);
0aacf84e
MD
3414 }
3415 else if (SCM_BIGP (y))
3416 {
3417 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3418 scm_remember_upto_here_2 (x, y);
73e4de09 3419 return scm_from_bool (cmp < 0);
0aacf84e
MD
3420 }
3421 else if (SCM_REALP (y))
3422 {
3423 int cmp;
3424 if (xisnan (SCM_REAL_VALUE (y)))
3425 return SCM_BOOL_F;
3426 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3427 scm_remember_upto_here_1 (x);
73e4de09 3428 return scm_from_bool (cmp < 0);
0aacf84e 3429 }
f92e85f7 3430 else if (SCM_FRACTIONP (y))
a5f0b599 3431 goto int_frac;
0aacf84e
MD
3432 else
3433 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
f4c627b3 3434 }
0aacf84e
MD
3435 else if (SCM_REALP (x))
3436 {
e11e83f3
MV
3437 if (SCM_I_INUMP (y))
3438 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
0aacf84e
MD
3439 else if (SCM_BIGP (y))
3440 {
3441 int cmp;
3442 if (xisnan (SCM_REAL_VALUE (x)))
3443 return SCM_BOOL_F;
3444 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3445 scm_remember_upto_here_1 (y);
73e4de09 3446 return scm_from_bool (cmp > 0);
0aacf84e
MD
3447 }
3448 else if (SCM_REALP (y))
73e4de09 3449 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
f92e85f7 3450 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3451 {
3452 double xx = SCM_REAL_VALUE (x);
3453 if (xisnan (xx))
3454 return SCM_BOOL_F;
3455 if (xisinf (xx))
73e4de09 3456 return scm_from_bool (xx < 0.0);
a5f0b599
KR
3457 x = scm_inexact_to_exact (x); /* with x as frac or int */
3458 goto again;
3459 }
f92e85f7
MV
3460 else
3461 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3462 }
3463 else if (SCM_FRACTIONP (x))
3464 {
e11e83f3 3465 if (SCM_I_INUMP (y) || SCM_BIGP (y))
a5f0b599
KR
3466 {
3467 /* "a/b < y" becomes "a < y*b" */
3468 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3469 x = SCM_FRACTION_NUMERATOR (x);
3470 goto again;
3471 }
f92e85f7 3472 else if (SCM_REALP (y))
a5f0b599
KR
3473 {
3474 double yy = SCM_REAL_VALUE (y);
3475 if (xisnan (yy))
3476 return SCM_BOOL_F;
3477 if (xisinf (yy))
73e4de09 3478 return scm_from_bool (0.0 < yy);
a5f0b599
KR
3479 y = scm_inexact_to_exact (y); /* with y as frac or int */
3480 goto again;
3481 }
f92e85f7 3482 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3483 {
3484 /* "a/b < c/d" becomes "a*d < c*b" */
3485 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3486 SCM_FRACTION_DENOMINATOR (y));
3487 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3488 SCM_FRACTION_DENOMINATOR (x));
3489 x = new_x;
3490 y = new_y;
3491 goto again;
3492 }
0aacf84e
MD
3493 else
3494 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
f872b822 3495 }
0aacf84e 3496 else
f4c627b3 3497 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
0f2d19dd
JB
3498}
3499
3500
c76b1eaf 3501SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
942e5b91
MG
3502/* "Return @code{#t} if the list of parameters is monotonically\n"
3503 * "decreasing."
c76b1eaf 3504 */
1bbd0b84 3505#define FUNC_NAME s_scm_gr_p
c76b1eaf
MD
3506SCM
3507scm_gr_p (SCM x, SCM y)
0f2d19dd 3508{
c76b1eaf
MD
3509 if (!SCM_NUMBERP (x))
3510 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
3511 else if (!SCM_NUMBERP (y))
3512 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
3513 else
3514 return scm_less_p (y, x);
0f2d19dd 3515}
1bbd0b84 3516#undef FUNC_NAME
0f2d19dd
JB
3517
3518
c76b1eaf 3519SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
942e5b91 3520/* "Return @code{#t} if the list of parameters is monotonically\n"
c76b1eaf
MD
3521 * "non-decreasing."
3522 */
1bbd0b84 3523#define FUNC_NAME s_scm_leq_p
c76b1eaf
MD
3524SCM
3525scm_leq_p (SCM x, SCM y)
0f2d19dd 3526{
c76b1eaf
MD
3527 if (!SCM_NUMBERP (x))
3528 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
3529 else if (!SCM_NUMBERP (y))
3530 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3531 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3532 return SCM_BOOL_F;
c76b1eaf 3533 else
73e4de09 3534 return scm_not (scm_less_p (y, x));
0f2d19dd 3535}
1bbd0b84 3536#undef FUNC_NAME
0f2d19dd
JB
3537
3538
c76b1eaf 3539SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
942e5b91 3540/* "Return @code{#t} if the list of parameters is monotonically\n"
c76b1eaf
MD
3541 * "non-increasing."
3542 */
1bbd0b84 3543#define FUNC_NAME s_scm_geq_p
c76b1eaf
MD
3544SCM
3545scm_geq_p (SCM x, SCM y)
0f2d19dd 3546{
c76b1eaf
MD
3547 if (!SCM_NUMBERP (x))
3548 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
3549 else if (!SCM_NUMBERP (y))
3550 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3551 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3552 return SCM_BOOL_F;
c76b1eaf 3553 else
73e4de09 3554 return scm_not (scm_less_p (x, y));
0f2d19dd 3555}
1bbd0b84 3556#undef FUNC_NAME
0f2d19dd
JB
3557
3558
152f82bf 3559SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
942e5b91
MG
3560/* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3561 * "zero."
3562 */
0f2d19dd 3563SCM
6e8d25a6 3564scm_zero_p (SCM z)
0f2d19dd 3565{
e11e83f3 3566 if (SCM_I_INUMP (z))
bc36d050 3567 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
0aacf84e 3568 else if (SCM_BIGP (z))
c2ff8ab0 3569 return SCM_BOOL_F;
0aacf84e 3570 else if (SCM_REALP (z))
73e4de09 3571 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
0aacf84e 3572 else if (SCM_COMPLEXP (z))
73e4de09 3573 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
c2ff8ab0 3574 && SCM_COMPLEX_IMAG (z) == 0.0);
f92e85f7
MV
3575 else if (SCM_FRACTIONP (z))
3576 return SCM_BOOL_F;
0aacf84e 3577 else
c2ff8ab0 3578 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
0f2d19dd
JB
3579}
3580
3581
152f82bf 3582SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
942e5b91
MG
3583/* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3584 * "zero."
3585 */
0f2d19dd 3586SCM
6e8d25a6 3587scm_positive_p (SCM x)
0f2d19dd 3588{
e11e83f3
MV
3589 if (SCM_I_INUMP (x))
3590 return scm_from_bool (SCM_I_INUM (x) > 0);
0aacf84e
MD
3591 else if (SCM_BIGP (x))
3592 {
3593 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3594 scm_remember_upto_here_1 (x);
73e4de09 3595 return scm_from_bool (sgn > 0);
0aacf84e
MD
3596 }
3597 else if (SCM_REALP (x))
73e4de09 3598 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
f92e85f7
MV
3599 else if (SCM_FRACTIONP (x))
3600 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3601 else
c2ff8ab0 3602 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
0f2d19dd
JB
3603}
3604
3605
152f82bf 3606SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
942e5b91
MG
3607/* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3608 * "zero."
3609 */
0f2d19dd 3610SCM
6e8d25a6 3611scm_negative_p (SCM x)
0f2d19dd 3612{
e11e83f3
MV
3613 if (SCM_I_INUMP (x))
3614 return scm_from_bool (SCM_I_INUM (x) < 0);
0aacf84e
MD
3615 else if (SCM_BIGP (x))
3616 {
3617 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3618 scm_remember_upto_here_1 (x);
73e4de09 3619 return scm_from_bool (sgn < 0);
0aacf84e
MD
3620 }
3621 else if (SCM_REALP (x))
73e4de09 3622 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
f92e85f7
MV
3623 else if (SCM_FRACTIONP (x))
3624 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3625 else
c2ff8ab0 3626 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
0f2d19dd
JB
3627}
3628
3629
2a06f791
KR
3630/* scm_min and scm_max return an inexact when either argument is inexact, as
3631 required by r5rs. On that basis, for exact/inexact combinations the
3632 exact is converted to inexact to compare and possibly return. This is
3633 unlike scm_less_p above which takes some trouble to preserve all bits in
3634 its test, such trouble is not required for min and max. */
3635
9de33deb 3636SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
942e5b91
MG
3637/* "Return the maximum of all parameter values."
3638 */
0f2d19dd 3639SCM
6e8d25a6 3640scm_max (SCM x, SCM y)
0f2d19dd 3641{
0aacf84e
MD
3642 if (SCM_UNBNDP (y))
3643 {
3644 if (SCM_UNBNDP (x))
3645 SCM_WTA_DISPATCH_0 (g_max, s_max);
e11e83f3 3646 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
3647 return x;
3648 else
3649 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
f872b822 3650 }
f4c627b3 3651
e11e83f3 3652 if (SCM_I_INUMP (x))
0aacf84e 3653 {
e11e83f3
MV
3654 long xx = SCM_I_INUM (x);
3655 if (SCM_I_INUMP (y))
0aacf84e 3656 {
e11e83f3 3657 long yy = SCM_I_INUM (y);
0aacf84e
MD
3658 return (xx < yy) ? y : x;
3659 }
3660 else if (SCM_BIGP (y))
3661 {
3662 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3663 scm_remember_upto_here_1 (y);
3664 return (sgn < 0) ? x : y;
3665 }
3666 else if (SCM_REALP (y))
3667 {
3668 double z = xx;
3669 /* if y==NaN then ">" is false and we return NaN */
55f26379 3670 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 3671 }
f92e85f7
MV
3672 else if (SCM_FRACTIONP (y))
3673 {
e4bc5d6c 3674 use_less:
73e4de09 3675 return (scm_is_false (scm_less_p (x, y)) ? x : y);
f92e85f7 3676 }
0aacf84e
MD
3677 else
3678 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 3679 }
0aacf84e
MD
3680 else if (SCM_BIGP (x))
3681 {
e11e83f3 3682 if (SCM_I_INUMP (y))
0aacf84e
MD
3683 {
3684 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3685 scm_remember_upto_here_1 (x);
3686 return (sgn < 0) ? y : x;
3687 }
3688 else if (SCM_BIGP (y))
3689 {
3690 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3691 scm_remember_upto_here_2 (x, y);
3692 return (cmp > 0) ? x : y;
3693 }
3694 else if (SCM_REALP (y))
3695 {
2a06f791
KR
3696 /* if y==NaN then xx>yy is false, so we return the NaN y */
3697 double xx, yy;
3698 big_real:
3699 xx = scm_i_big2dbl (x);
3700 yy = SCM_REAL_VALUE (y);
55f26379 3701 return (xx > yy ? scm_from_double (xx) : y);
0aacf84e 3702 }
f92e85f7
MV
3703 else if (SCM_FRACTIONP (y))
3704 {
e4bc5d6c 3705 goto use_less;
f92e85f7 3706 }
0aacf84e
MD
3707 else
3708 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f4c627b3 3709 }
0aacf84e
MD
3710 else if (SCM_REALP (x))
3711 {
e11e83f3 3712 if (SCM_I_INUMP (y))
0aacf84e 3713 {
e11e83f3 3714 double z = SCM_I_INUM (y);
0aacf84e 3715 /* if x==NaN then "<" is false and we return NaN */
55f26379 3716 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
0aacf84e
MD
3717 }
3718 else if (SCM_BIGP (y))
3719 {
b6f8f763 3720 SCM_SWAP (x, y);
2a06f791 3721 goto big_real;
0aacf84e
MD
3722 }
3723 else if (SCM_REALP (y))
3724 {
3725 /* if x==NaN then our explicit check means we return NaN
3726 if y==NaN then ">" is false and we return NaN
3727 calling isnan is unavoidable, since it's the only way to know
3728 which of x or y causes any compares to be false */
3729 double xx = SCM_REAL_VALUE (x);
3730 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3731 }
f92e85f7
MV
3732 else if (SCM_FRACTIONP (y))
3733 {
3734 double yy = scm_i_fraction2double (y);
3735 double xx = SCM_REAL_VALUE (x);
55f26379 3736 return (xx < yy) ? scm_from_double (yy) : x;
f92e85f7
MV
3737 }
3738 else
3739 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3740 }
3741 else if (SCM_FRACTIONP (x))
3742 {
e11e83f3 3743 if (SCM_I_INUMP (y))
f92e85f7 3744 {
e4bc5d6c 3745 goto use_less;
f92e85f7
MV
3746 }
3747 else if (SCM_BIGP (y))
3748 {
e4bc5d6c 3749 goto use_less;
f92e85f7
MV
3750 }
3751 else if (SCM_REALP (y))
3752 {
3753 double xx = scm_i_fraction2double (x);
55f26379 3754 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
f92e85f7
MV
3755 }
3756 else if (SCM_FRACTIONP (y))
3757 {
e4bc5d6c 3758 goto use_less;
f92e85f7 3759 }
0aacf84e
MD
3760 else
3761 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 3762 }
0aacf84e 3763 else
f4c627b3 3764 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
0f2d19dd
JB
3765}
3766
3767
9de33deb 3768SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
942e5b91
MG
3769/* "Return the minium of all parameter values."
3770 */
0f2d19dd 3771SCM
6e8d25a6 3772scm_min (SCM x, SCM y)
0f2d19dd 3773{
0aacf84e
MD
3774 if (SCM_UNBNDP (y))
3775 {
3776 if (SCM_UNBNDP (x))
3777 SCM_WTA_DISPATCH_0 (g_min, s_min);
e11e83f3 3778 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
3779 return x;
3780 else
3781 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
f872b822 3782 }
f4c627b3 3783
e11e83f3 3784 if (SCM_I_INUMP (x))
0aacf84e 3785 {
e11e83f3
MV
3786 long xx = SCM_I_INUM (x);
3787 if (SCM_I_INUMP (y))
0aacf84e 3788 {
e11e83f3 3789 long yy = SCM_I_INUM (y);
0aacf84e
MD
3790 return (xx < yy) ? x : y;
3791 }
3792 else if (SCM_BIGP (y))
3793 {
3794 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3795 scm_remember_upto_here_1 (y);
3796 return (sgn < 0) ? y : x;
3797 }
3798 else if (SCM_REALP (y))
3799 {
3800 double z = xx;
3801 /* if y==NaN then "<" is false and we return NaN */
55f26379 3802 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 3803 }
f92e85f7
MV
3804 else if (SCM_FRACTIONP (y))
3805 {
e4bc5d6c 3806 use_less:
73e4de09 3807 return (scm_is_false (scm_less_p (x, y)) ? y : x);
f92e85f7 3808 }
0aacf84e
MD
3809 else
3810 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 3811 }
0aacf84e
MD
3812 else if (SCM_BIGP (x))
3813 {
e11e83f3 3814 if (SCM_I_INUMP (y))
0aacf84e
MD
3815 {
3816 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3817 scm_remember_upto_here_1 (x);
3818 return (sgn < 0) ? x : y;
3819 }
3820 else if (SCM_BIGP (y))
3821 {
3822 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3823 scm_remember_upto_here_2 (x, y);
3824 return (cmp > 0) ? y : x;
3825 }
3826 else if (SCM_REALP (y))
3827 {
2a06f791
KR
3828 /* if y==NaN then xx<yy is false, so we return the NaN y */
3829 double xx, yy;
3830 big_real:
3831 xx = scm_i_big2dbl (x);
3832 yy = SCM_REAL_VALUE (y);
55f26379 3833 return (xx < yy ? scm_from_double (xx) : y);
0aacf84e 3834 }
f92e85f7
MV
3835 else if (SCM_FRACTIONP (y))
3836 {
e4bc5d6c 3837 goto use_less;
f92e85f7 3838 }
0aacf84e
MD
3839 else
3840 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f4c627b3 3841 }
0aacf84e
MD
3842 else if (SCM_REALP (x))
3843 {
e11e83f3 3844 if (SCM_I_INUMP (y))
0aacf84e 3845 {
e11e83f3 3846 double z = SCM_I_INUM (y);
0aacf84e 3847 /* if x==NaN then "<" is false and we return NaN */
55f26379 3848 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
0aacf84e
MD
3849 }
3850 else if (SCM_BIGP (y))
3851 {
b6f8f763 3852 SCM_SWAP (x, y);
2a06f791 3853 goto big_real;
0aacf84e
MD
3854 }
3855 else if (SCM_REALP (y))
3856 {
3857 /* if x==NaN then our explicit check means we return NaN
3858 if y==NaN then "<" is false and we return NaN
3859 calling isnan is unavoidable, since it's the only way to know
3860 which of x or y causes any compares to be false */
3861 double xx = SCM_REAL_VALUE (x);
3862 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
3863 }
f92e85f7
MV
3864 else if (SCM_FRACTIONP (y))
3865 {
3866 double yy = scm_i_fraction2double (y);
3867 double xx = SCM_REAL_VALUE (x);
55f26379 3868 return (yy < xx) ? scm_from_double (yy) : x;
f92e85f7 3869 }
0aacf84e
MD
3870 else
3871 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 3872 }
f92e85f7
MV
3873 else if (SCM_FRACTIONP (x))
3874 {
e11e83f3 3875 if (SCM_I_INUMP (y))
f92e85f7 3876 {
e4bc5d6c 3877 goto use_less;
f92e85f7
MV
3878 }
3879 else if (SCM_BIGP (y))
3880 {
e4bc5d6c 3881 goto use_less;
f92e85f7
MV
3882 }
3883 else if (SCM_REALP (y))
3884 {
3885 double xx = scm_i_fraction2double (x);
55f26379 3886 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
f92e85f7
MV
3887 }
3888 else if (SCM_FRACTIONP (y))
3889 {
e4bc5d6c 3890 goto use_less;
f92e85f7
MV
3891 }
3892 else
3893 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3894 }
0aacf84e 3895 else
f4c627b3 3896 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
0f2d19dd
JB
3897}
3898
3899
9de33deb 3900SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
942e5b91
MG
3901/* "Return the sum of all parameter values. Return 0 if called without\n"
3902 * "any parameters."
3903 */
0f2d19dd 3904SCM
6e8d25a6 3905scm_sum (SCM x, SCM y)
0f2d19dd 3906{
ca46fb90
RB
3907 if (SCM_UNBNDP (y))
3908 {
3909 if (SCM_NUMBERP (x)) return x;
3910 if (SCM_UNBNDP (x)) return SCM_INUM0;
98cb6e75 3911 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
f872b822 3912 }
c209c88e 3913
e11e83f3 3914 if (SCM_I_INUMP (x))
ca46fb90 3915 {
e11e83f3 3916 if (SCM_I_INUMP (y))
ca46fb90 3917 {
e11e83f3
MV
3918 long xx = SCM_I_INUM (x);
3919 long yy = SCM_I_INUM (y);
ca46fb90 3920 long int z = xx + yy;
d956fa6f 3921 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
ca46fb90
RB
3922 }
3923 else if (SCM_BIGP (y))
3924 {
3925 SCM_SWAP (x, y);
3926 goto add_big_inum;
3927 }
3928 else if (SCM_REALP (y))
3929 {
e11e83f3 3930 long int xx = SCM_I_INUM (x);
55f26379 3931 return scm_from_double (xx + SCM_REAL_VALUE (y));
ca46fb90
RB
3932 }
3933 else if (SCM_COMPLEXP (y))
3934 {
e11e83f3 3935 long int xx = SCM_I_INUM (x);
8507ec80 3936 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
ca46fb90
RB
3937 SCM_COMPLEX_IMAG (y));
3938 }
f92e85f7 3939 else if (SCM_FRACTIONP (y))
cba42c93 3940 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
3941 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3942 SCM_FRACTION_DENOMINATOR (y));
ca46fb90
RB
3943 else
3944 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0aacf84e
MD
3945 } else if (SCM_BIGP (x))
3946 {
e11e83f3 3947 if (SCM_I_INUMP (y))
0aacf84e
MD
3948 {
3949 long int inum;
3950 int bigsgn;
3951 add_big_inum:
e11e83f3 3952 inum = SCM_I_INUM (y);
0aacf84e
MD
3953 if (inum == 0)
3954 return x;
3955 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3956 if (inum < 0)
3957 {
3958 SCM result = scm_i_mkbig ();
3959 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
3960 scm_remember_upto_here_1 (x);
3961 /* we know the result will have to be a bignum */
3962 if (bigsgn == -1)
3963 return result;
3964 return scm_i_normbig (result);
3965 }
3966 else
3967 {
3968 SCM result = scm_i_mkbig ();
3969 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
3970 scm_remember_upto_here_1 (x);
3971 /* we know the result will have to be a bignum */
3972 if (bigsgn == 1)
3973 return result;
3974 return scm_i_normbig (result);
3975 }
3976 }
3977 else if (SCM_BIGP (y))
3978 {
3979 SCM result = scm_i_mkbig ();
3980 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
3981 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
3982 mpz_add (SCM_I_BIG_MPZ (result),
3983 SCM_I_BIG_MPZ (x),
3984 SCM_I_BIG_MPZ (y));
3985 scm_remember_upto_here_2 (x, y);
3986 /* we know the result will have to be a bignum */
3987 if (sgn_x == sgn_y)
3988 return result;
3989 return scm_i_normbig (result);
3990 }
3991 else if (SCM_REALP (y))
3992 {
3993 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
3994 scm_remember_upto_here_1 (x);
55f26379 3995 return scm_from_double (result);
0aacf84e
MD
3996 }
3997 else if (SCM_COMPLEXP (y))
3998 {
3999 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4000 + SCM_COMPLEX_REAL (y));
4001 scm_remember_upto_here_1 (x);
8507ec80 4002 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e 4003 }
f92e85f7 4004 else if (SCM_FRACTIONP (y))
cba42c93 4005 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
4006 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4007 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4008 else
4009 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0f2d19dd 4010 }
0aacf84e
MD
4011 else if (SCM_REALP (x))
4012 {
e11e83f3 4013 if (SCM_I_INUMP (y))
55f26379 4014 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
0aacf84e
MD
4015 else if (SCM_BIGP (y))
4016 {
4017 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
4018 scm_remember_upto_here_1 (y);
55f26379 4019 return scm_from_double (result);
0aacf84e
MD
4020 }
4021 else if (SCM_REALP (y))
55f26379 4022 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
0aacf84e 4023 else if (SCM_COMPLEXP (y))
8507ec80 4024 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4025 SCM_COMPLEX_IMAG (y));
f92e85f7 4026 else if (SCM_FRACTIONP (y))
55f26379 4027 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
0aacf84e
MD
4028 else
4029 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
f872b822 4030 }
0aacf84e
MD
4031 else if (SCM_COMPLEXP (x))
4032 {
e11e83f3 4033 if (SCM_I_INUMP (y))
8507ec80 4034 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
0aacf84e
MD
4035 SCM_COMPLEX_IMAG (x));
4036 else if (SCM_BIGP (y))
4037 {
4038 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
4039 + SCM_COMPLEX_REAL (x));
4040 scm_remember_upto_here_1 (y);
8507ec80 4041 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4042 }
4043 else if (SCM_REALP (y))
8507ec80 4044 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
0aacf84e
MD
4045 SCM_COMPLEX_IMAG (x));
4046 else if (SCM_COMPLEXP (y))
8507ec80 4047 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4048 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
f92e85f7 4049 else if (SCM_FRACTIONP (y))
8507ec80 4050 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
f92e85f7
MV
4051 SCM_COMPLEX_IMAG (x));
4052 else
4053 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4054 }
4055 else if (SCM_FRACTIONP (x))
4056 {
e11e83f3 4057 if (SCM_I_INUMP (y))
cba42c93 4058 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4059 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4060 SCM_FRACTION_DENOMINATOR (x));
4061 else if (SCM_BIGP (y))
cba42c93 4062 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4063 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4064 SCM_FRACTION_DENOMINATOR (x));
4065 else if (SCM_REALP (y))
55f26379 4066 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
f92e85f7 4067 else if (SCM_COMPLEXP (y))
8507ec80 4068 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
f92e85f7
MV
4069 SCM_COMPLEX_IMAG (y));
4070 else if (SCM_FRACTIONP (y))
4071 /* a/b + c/d = (ad + bc) / bd */
cba42c93 4072 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4073 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4074 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4075 else
4076 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
98cb6e75 4077 }
0aacf84e 4078 else
98cb6e75 4079 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
0f2d19dd
JB
4080}
4081
4082
9de33deb 4083SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
609c3d30
MG
4084/* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
4085 * the sum of all but the first argument are subtracted from the first
4086 * argument. */
c05e97b7 4087#define FUNC_NAME s_difference
0f2d19dd 4088SCM
6e8d25a6 4089scm_difference (SCM x, SCM y)
0f2d19dd 4090{
ca46fb90
RB
4091 if (SCM_UNBNDP (y))
4092 {
4093 if (SCM_UNBNDP (x))
4094 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4095 else
e11e83f3 4096 if (SCM_I_INUMP (x))
ca46fb90 4097 {
e11e83f3 4098 long xx = -SCM_I_INUM (x);
ca46fb90 4099 if (SCM_FIXABLE (xx))
d956fa6f 4100 return SCM_I_MAKINUM (xx);
ca46fb90
RB
4101 else
4102 return scm_i_long2big (xx);
4103 }
4104 else if (SCM_BIGP (x))
a9ad4847
KR
4105 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4106 bignum, but negating that gives a fixnum. */
ca46fb90
RB
4107 return scm_i_normbig (scm_i_clonebig (x, 0));
4108 else if (SCM_REALP (x))
55f26379 4109 return scm_from_double (-SCM_REAL_VALUE (x));
ca46fb90 4110 else if (SCM_COMPLEXP (x))
8507ec80 4111 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
ca46fb90 4112 -SCM_COMPLEX_IMAG (x));
f92e85f7 4113 else if (SCM_FRACTIONP (x))
cba42c93 4114 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7 4115 SCM_FRACTION_DENOMINATOR (x));
ca46fb90
RB
4116 else
4117 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
f872b822 4118 }
ca46fb90 4119
e11e83f3 4120 if (SCM_I_INUMP (x))
0aacf84e 4121 {
e11e83f3 4122 if (SCM_I_INUMP (y))
0aacf84e 4123 {
e11e83f3
MV
4124 long int xx = SCM_I_INUM (x);
4125 long int yy = SCM_I_INUM (y);
0aacf84e
MD
4126 long int z = xx - yy;
4127 if (SCM_FIXABLE (z))
d956fa6f 4128 return SCM_I_MAKINUM (z);
0aacf84e
MD
4129 else
4130 return scm_i_long2big (z);
4131 }
4132 else if (SCM_BIGP (y))
4133 {
4134 /* inum-x - big-y */
e11e83f3 4135 long xx = SCM_I_INUM (x);
ca46fb90 4136
0aacf84e
MD
4137 if (xx == 0)
4138 return scm_i_clonebig (y, 0);
4139 else
4140 {
4141 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4142 SCM result = scm_i_mkbig ();
ca46fb90 4143
0aacf84e
MD
4144 if (xx >= 0)
4145 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4146 else
4147 {
4148 /* x - y == -(y + -x) */
4149 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4150 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4151 }
4152 scm_remember_upto_here_1 (y);
ca46fb90 4153
0aacf84e
MD
4154 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4155 /* we know the result will have to be a bignum */
4156 return result;
4157 else
4158 return scm_i_normbig (result);
4159 }
4160 }
4161 else if (SCM_REALP (y))
4162 {
e11e83f3 4163 long int xx = SCM_I_INUM (x);
55f26379 4164 return scm_from_double (xx - SCM_REAL_VALUE (y));
0aacf84e
MD
4165 }
4166 else if (SCM_COMPLEXP (y))
4167 {
e11e83f3 4168 long int xx = SCM_I_INUM (x);
8507ec80 4169 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
0aacf84e
MD
4170 - SCM_COMPLEX_IMAG (y));
4171 }
f92e85f7
MV
4172 else if (SCM_FRACTIONP (y))
4173 /* a - b/c = (ac - b) / c */
cba42c93 4174 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4175 SCM_FRACTION_NUMERATOR (y)),
4176 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4177 else
4178 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
f872b822 4179 }
0aacf84e
MD
4180 else if (SCM_BIGP (x))
4181 {
e11e83f3 4182 if (SCM_I_INUMP (y))
0aacf84e
MD
4183 {
4184 /* big-x - inum-y */
e11e83f3 4185 long yy = SCM_I_INUM (y);
0aacf84e 4186 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
ca46fb90 4187
0aacf84e
MD
4188 scm_remember_upto_here_1 (x);
4189 if (sgn_x == 0)
c71b0706
MV
4190 return (SCM_FIXABLE (-yy) ?
4191 SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
0aacf84e
MD
4192 else
4193 {
4194 SCM result = scm_i_mkbig ();
ca46fb90 4195
708f22c6
KR
4196 if (yy >= 0)
4197 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4198 else
4199 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
0aacf84e 4200 scm_remember_upto_here_1 (x);
ca46fb90 4201
0aacf84e
MD
4202 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4203 /* we know the result will have to be a bignum */
4204 return result;
4205 else
4206 return scm_i_normbig (result);
4207 }
4208 }
4209 else if (SCM_BIGP (y))
4210 {
4211 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4212 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4213 SCM result = scm_i_mkbig ();
4214 mpz_sub (SCM_I_BIG_MPZ (result),
4215 SCM_I_BIG_MPZ (x),
4216 SCM_I_BIG_MPZ (y));
4217 scm_remember_upto_here_2 (x, y);
4218 /* we know the result will have to be a bignum */
4219 if ((sgn_x == 1) && (sgn_y == -1))
4220 return result;
4221 if ((sgn_x == -1) && (sgn_y == 1))
4222 return result;
4223 return scm_i_normbig (result);
4224 }
4225 else if (SCM_REALP (y))
4226 {
4227 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4228 scm_remember_upto_here_1 (x);
55f26379 4229 return scm_from_double (result);
0aacf84e
MD
4230 }
4231 else if (SCM_COMPLEXP (y))
4232 {
4233 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4234 - SCM_COMPLEX_REAL (y));
4235 scm_remember_upto_here_1 (x);
8507ec80 4236 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
0aacf84e 4237 }
f92e85f7 4238 else if (SCM_FRACTIONP (y))
cba42c93 4239 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4240 SCM_FRACTION_NUMERATOR (y)),
4241 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 4242 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
ca46fb90 4243 }
0aacf84e
MD
4244 else if (SCM_REALP (x))
4245 {
e11e83f3 4246 if (SCM_I_INUMP (y))
55f26379 4247 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
0aacf84e
MD
4248 else if (SCM_BIGP (y))
4249 {
4250 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4251 scm_remember_upto_here_1 (x);
55f26379 4252 return scm_from_double (result);
0aacf84e
MD
4253 }
4254 else if (SCM_REALP (y))
55f26379 4255 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
0aacf84e 4256 else if (SCM_COMPLEXP (y))
8507ec80 4257 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4258 -SCM_COMPLEX_IMAG (y));
f92e85f7 4259 else if (SCM_FRACTIONP (y))
55f26379 4260 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
0aacf84e
MD
4261 else
4262 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4263 }
0aacf84e
MD
4264 else if (SCM_COMPLEXP (x))
4265 {
e11e83f3 4266 if (SCM_I_INUMP (y))
8507ec80 4267 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
0aacf84e
MD
4268 SCM_COMPLEX_IMAG (x));
4269 else if (SCM_BIGP (y))
4270 {
4271 double real_part = (SCM_COMPLEX_REAL (x)
4272 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4273 scm_remember_upto_here_1 (x);
8507ec80 4274 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e
MD
4275 }
4276 else if (SCM_REALP (y))
8507ec80 4277 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
0aacf84e
MD
4278 SCM_COMPLEX_IMAG (x));
4279 else if (SCM_COMPLEXP (y))
8507ec80 4280 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4281 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
f92e85f7 4282 else if (SCM_FRACTIONP (y))
8507ec80 4283 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
f92e85f7
MV
4284 SCM_COMPLEX_IMAG (x));
4285 else
4286 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4287 }
4288 else if (SCM_FRACTIONP (x))
4289 {
e11e83f3 4290 if (SCM_I_INUMP (y))
f92e85f7 4291 /* a/b - c = (a - cb) / b */
cba42c93 4292 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4293 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4294 SCM_FRACTION_DENOMINATOR (x));
4295 else if (SCM_BIGP (y))
cba42c93 4296 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4297 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4298 SCM_FRACTION_DENOMINATOR (x));
4299 else if (SCM_REALP (y))
55f26379 4300 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
f92e85f7 4301 else if (SCM_COMPLEXP (y))
8507ec80 4302 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
f92e85f7
MV
4303 -SCM_COMPLEX_IMAG (y));
4304 else if (SCM_FRACTIONP (y))
4305 /* a/b - c/d = (ad - bc) / bd */
cba42c93 4306 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4307 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4308 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4309 else
4310 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4311 }
0aacf84e 4312 else
98cb6e75 4313 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
0f2d19dd 4314}
c05e97b7 4315#undef FUNC_NAME
0f2d19dd 4316
ca46fb90 4317
9de33deb 4318SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
942e5b91
MG
4319/* "Return the product of all arguments. If called without arguments,\n"
4320 * "1 is returned."
4321 */
0f2d19dd 4322SCM
6e8d25a6 4323scm_product (SCM x, SCM y)
0f2d19dd 4324{
0aacf84e
MD
4325 if (SCM_UNBNDP (y))
4326 {
4327 if (SCM_UNBNDP (x))
d956fa6f 4328 return SCM_I_MAKINUM (1L);
0aacf84e
MD
4329 else if (SCM_NUMBERP (x))
4330 return x;
4331 else
4332 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
f872b822 4333 }
ca46fb90 4334
e11e83f3 4335 if (SCM_I_INUMP (x))
0aacf84e
MD
4336 {
4337 long xx;
f4c627b3 4338
0aacf84e 4339 intbig:
e11e83f3 4340 xx = SCM_I_INUM (x);
f4c627b3 4341
0aacf84e
MD
4342 switch (xx)
4343 {
ca46fb90
RB
4344 case 0: return x; break;
4345 case 1: return y; break;
0aacf84e 4346 }
f4c627b3 4347
e11e83f3 4348 if (SCM_I_INUMP (y))
0aacf84e 4349 {
e11e83f3 4350 long yy = SCM_I_INUM (y);
0aacf84e 4351 long kk = xx * yy;
d956fa6f 4352 SCM k = SCM_I_MAKINUM (kk);
e11e83f3 4353 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
0aacf84e
MD
4354 return k;
4355 else
4356 {
4357 SCM result = scm_i_long2big (xx);
4358 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4359 return scm_i_normbig (result);
4360 }
4361 }
4362 else if (SCM_BIGP (y))
4363 {
4364 SCM result = scm_i_mkbig ();
4365 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4366 scm_remember_upto_here_1 (y);
4367 return result;
4368 }
4369 else if (SCM_REALP (y))
55f26379 4370 return scm_from_double (xx * SCM_REAL_VALUE (y));
0aacf84e 4371 else if (SCM_COMPLEXP (y))
8507ec80 4372 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
0aacf84e 4373 xx * SCM_COMPLEX_IMAG (y));
f92e85f7 4374 else if (SCM_FRACTIONP (y))
cba42c93 4375 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4376 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4377 else
4378 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4379 }
0aacf84e
MD
4380 else if (SCM_BIGP (x))
4381 {
e11e83f3 4382 if (SCM_I_INUMP (y))
0aacf84e
MD
4383 {
4384 SCM_SWAP (x, y);
4385 goto intbig;
4386 }
4387 else if (SCM_BIGP (y))
4388 {
4389 SCM result = scm_i_mkbig ();
4390 mpz_mul (SCM_I_BIG_MPZ (result),
4391 SCM_I_BIG_MPZ (x),
4392 SCM_I_BIG_MPZ (y));
4393 scm_remember_upto_here_2 (x, y);
4394 return result;
4395 }
4396 else if (SCM_REALP (y))
4397 {
4398 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4399 scm_remember_upto_here_1 (x);
55f26379 4400 return scm_from_double (result);
0aacf84e
MD
4401 }
4402 else if (SCM_COMPLEXP (y))
4403 {
4404 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4405 scm_remember_upto_here_1 (x);
8507ec80 4406 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
0aacf84e
MD
4407 z * SCM_COMPLEX_IMAG (y));
4408 }
f92e85f7 4409 else if (SCM_FRACTIONP (y))
cba42c93 4410 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4411 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4412 else
4413 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4414 }
0aacf84e
MD
4415 else if (SCM_REALP (x))
4416 {
e11e83f3 4417 if (SCM_I_INUMP (y))
55f26379 4418 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
0aacf84e
MD
4419 else if (SCM_BIGP (y))
4420 {
4421 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4422 scm_remember_upto_here_1 (y);
55f26379 4423 return scm_from_double (result);
0aacf84e
MD
4424 }
4425 else if (SCM_REALP (y))
55f26379 4426 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
0aacf84e 4427 else if (SCM_COMPLEXP (y))
8507ec80 4428 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
0aacf84e 4429 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
f92e85f7 4430 else if (SCM_FRACTIONP (y))
55f26379 4431 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
0aacf84e
MD
4432 else
4433 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4434 }
0aacf84e
MD
4435 else if (SCM_COMPLEXP (x))
4436 {
e11e83f3 4437 if (SCM_I_INUMP (y))
8507ec80 4438 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
e11e83f3 4439 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4440 else if (SCM_BIGP (y))
4441 {
4442 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4443 scm_remember_upto_here_1 (y);
8507ec80 4444 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
76506335 4445 z * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4446 }
4447 else if (SCM_REALP (y))
8507ec80 4448 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
0aacf84e
MD
4449 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4450 else if (SCM_COMPLEXP (y))
4451 {
8507ec80 4452 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
0aacf84e
MD
4453 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4454 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4455 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4456 }
f92e85f7
MV
4457 else if (SCM_FRACTIONP (y))
4458 {
4459 double yy = scm_i_fraction2double (y);
8507ec80 4460 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
f92e85f7
MV
4461 yy * SCM_COMPLEX_IMAG (x));
4462 }
4463 else
4464 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4465 }
4466 else if (SCM_FRACTIONP (x))
4467 {
e11e83f3 4468 if (SCM_I_INUMP (y))
cba42c93 4469 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4470 SCM_FRACTION_DENOMINATOR (x));
4471 else if (SCM_BIGP (y))
cba42c93 4472 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4473 SCM_FRACTION_DENOMINATOR (x));
4474 else if (SCM_REALP (y))
55f26379 4475 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
f92e85f7
MV
4476 else if (SCM_COMPLEXP (y))
4477 {
4478 double xx = scm_i_fraction2double (x);
8507ec80 4479 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
f92e85f7
MV
4480 xx * SCM_COMPLEX_IMAG (y));
4481 }
4482 else if (SCM_FRACTIONP (y))
4483 /* a/b * c/d = ac / bd */
cba42c93 4484 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4485 SCM_FRACTION_NUMERATOR (y)),
4486 scm_product (SCM_FRACTION_DENOMINATOR (x),
4487 SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4488 else
4489 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4490 }
0aacf84e 4491 else
f4c627b3 4492 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
0f2d19dd
JB
4493}
4494
7351e207
MV
4495#if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4496 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4497#define ALLOW_DIVIDE_BY_ZERO
4498/* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4499#endif
0f2d19dd 4500
ba74ef4e
MV
4501/* The code below for complex division is adapted from the GNU
4502 libstdc++, which adapted it from f2c's libF77, and is subject to
4503 this copyright: */
4504
4505/****************************************************************
4506Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4507
4508Permission to use, copy, modify, and distribute this software
4509and its documentation for any purpose and without fee is hereby
4510granted, provided that the above copyright notice appear in all
4511copies and that both that the copyright notice and this
4512permission notice and warranty disclaimer appear in supporting
4513documentation, and that the names of AT&T Bell Laboratories or
4514Bellcore or any of their entities not be used in advertising or
4515publicity pertaining to distribution of the software without
4516specific, written prior permission.
4517
4518AT&T and Bellcore disclaim all warranties with regard to this
4519software, including all implied warranties of merchantability
4520and fitness. In no event shall AT&T or Bellcore be liable for
4521any special, indirect or consequential damages or any damages
4522whatsoever resulting from loss of use, data or profits, whether
4523in an action of contract, negligence or other tortious action,
4524arising out of or in connection with the use or performance of
4525this software.
4526****************************************************************/
4527
9de33deb 4528SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
609c3d30
MG
4529/* Divide the first argument by the product of the remaining
4530 arguments. If called with one argument @var{z1}, 1/@var{z1} is
4531 returned. */
c05e97b7 4532#define FUNC_NAME s_divide
f92e85f7
MV
4533static SCM
4534scm_i_divide (SCM x, SCM y, int inexact)
0f2d19dd 4535{
f8de44c1
DH
4536 double a;
4537
0aacf84e
MD
4538 if (SCM_UNBNDP (y))
4539 {
4540 if (SCM_UNBNDP (x))
4541 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
e11e83f3 4542 else if (SCM_I_INUMP (x))
0aacf84e 4543 {
e11e83f3 4544 long xx = SCM_I_INUM (x);
0aacf84e
MD
4545 if (xx == 1 || xx == -1)
4546 return x;
7351e207 4547#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4548 else if (xx == 0)
4549 scm_num_overflow (s_divide);
7351e207 4550#endif
0aacf84e 4551 else
f92e85f7
MV
4552 {
4553 if (inexact)
55f26379 4554 return scm_from_double (1.0 / (double) xx);
cba42c93 4555 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4556 }
0aacf84e
MD
4557 }
4558 else if (SCM_BIGP (x))
f92e85f7
MV
4559 {
4560 if (inexact)
55f26379 4561 return scm_from_double (1.0 / scm_i_big2dbl (x));
cba42c93 4562 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4563 }
0aacf84e
MD
4564 else if (SCM_REALP (x))
4565 {
4566 double xx = SCM_REAL_VALUE (x);
7351e207 4567#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4568 if (xx == 0.0)
4569 scm_num_overflow (s_divide);
4570 else
7351e207 4571#endif
55f26379 4572 return scm_from_double (1.0 / xx);
0aacf84e
MD
4573 }
4574 else if (SCM_COMPLEXP (x))
4575 {
4576 double r = SCM_COMPLEX_REAL (x);
4577 double i = SCM_COMPLEX_IMAG (x);
4578 if (r <= i)
4579 {
4580 double t = r / i;
4581 double d = i * (1.0 + t * t);
8507ec80 4582 return scm_c_make_rectangular (t / d, -1.0 / d);
0aacf84e
MD
4583 }
4584 else
4585 {
4586 double t = i / r;
4587 double d = r * (1.0 + t * t);
8507ec80 4588 return scm_c_make_rectangular (1.0 / d, -t / d);
0aacf84e
MD
4589 }
4590 }
f92e85f7 4591 else if (SCM_FRACTIONP (x))
cba42c93 4592 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
f92e85f7 4593 SCM_FRACTION_NUMERATOR (x));
0aacf84e
MD
4594 else
4595 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
f8de44c1 4596 }
f8de44c1 4597
e11e83f3 4598 if (SCM_I_INUMP (x))
0aacf84e 4599 {
e11e83f3
MV
4600 long xx = SCM_I_INUM (x);
4601 if (SCM_I_INUMP (y))
0aacf84e 4602 {
e11e83f3 4603 long yy = SCM_I_INUM (y);
0aacf84e
MD
4604 if (yy == 0)
4605 {
7351e207 4606#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4607 scm_num_overflow (s_divide);
7351e207 4608#else
55f26379 4609 return scm_from_double ((double) xx / (double) yy);
7351e207 4610#endif
0aacf84e
MD
4611 }
4612 else if (xx % yy != 0)
f92e85f7
MV
4613 {
4614 if (inexact)
55f26379 4615 return scm_from_double ((double) xx / (double) yy);
cba42c93 4616 else return scm_i_make_ratio (x, y);
f92e85f7 4617 }
0aacf84e
MD
4618 else
4619 {
4620 long z = xx / yy;
4621 if (SCM_FIXABLE (z))
d956fa6f 4622 return SCM_I_MAKINUM (z);
0aacf84e
MD
4623 else
4624 return scm_i_long2big (z);
4625 }
f872b822 4626 }
0aacf84e 4627 else if (SCM_BIGP (y))
f92e85f7
MV
4628 {
4629 if (inexact)
55f26379 4630 return scm_from_double ((double) xx / scm_i_big2dbl (y));
cba42c93 4631 else return scm_i_make_ratio (x, y);
f92e85f7 4632 }
0aacf84e
MD
4633 else if (SCM_REALP (y))
4634 {
4635 double yy = SCM_REAL_VALUE (y);
7351e207 4636#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4637 if (yy == 0.0)
4638 scm_num_overflow (s_divide);
4639 else
7351e207 4640#endif
55f26379 4641 return scm_from_double ((double) xx / yy);
ba74ef4e 4642 }
0aacf84e
MD
4643 else if (SCM_COMPLEXP (y))
4644 {
4645 a = xx;
4646 complex_div: /* y _must_ be a complex number */
4647 {
4648 double r = SCM_COMPLEX_REAL (y);
4649 double i = SCM_COMPLEX_IMAG (y);
4650 if (r <= i)
4651 {
4652 double t = r / i;
4653 double d = i * (1.0 + t * t);
8507ec80 4654 return scm_c_make_rectangular ((a * t) / d, -a / d);
0aacf84e
MD
4655 }
4656 else
4657 {
4658 double t = i / r;
4659 double d = r * (1.0 + t * t);
8507ec80 4660 return scm_c_make_rectangular (a / d, -(a * t) / d);
0aacf84e
MD
4661 }
4662 }
4663 }
f92e85f7
MV
4664 else if (SCM_FRACTIONP (y))
4665 /* a / b/c = ac / b */
cba42c93 4666 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 4667 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
4668 else
4669 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 4670 }
0aacf84e
MD
4671 else if (SCM_BIGP (x))
4672 {
e11e83f3 4673 if (SCM_I_INUMP (y))
0aacf84e 4674 {
e11e83f3 4675 long int yy = SCM_I_INUM (y);
0aacf84e
MD
4676 if (yy == 0)
4677 {
7351e207 4678#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4679 scm_num_overflow (s_divide);
7351e207 4680#else
0aacf84e
MD
4681 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4682 scm_remember_upto_here_1 (x);
4683 return (sgn == 0) ? scm_nan () : scm_inf ();
7351e207 4684#endif
0aacf84e
MD
4685 }
4686 else if (yy == 1)
4687 return x;
4688 else
4689 {
4690 /* FIXME: HMM, what are the relative performance issues here?
4691 We need to test. Is it faster on average to test
4692 divisible_p, then perform whichever operation, or is it
4693 faster to perform the integer div opportunistically and
4694 switch to real if there's a remainder? For now we take the
4695 middle ground: test, then if divisible, use the faster div
4696 func. */
4697
4698 long abs_yy = yy < 0 ? -yy : yy;
4699 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
4700
4701 if (divisible_p)
4702 {
4703 SCM result = scm_i_mkbig ();
4704 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
4705 scm_remember_upto_here_1 (x);
4706 if (yy < 0)
4707 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4708 return scm_i_normbig (result);
4709 }
4710 else
f92e85f7
MV
4711 {
4712 if (inexact)
55f26379 4713 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
cba42c93 4714 else return scm_i_make_ratio (x, y);
f92e85f7 4715 }
0aacf84e
MD
4716 }
4717 }
4718 else if (SCM_BIGP (y))
4719 {
4720 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
4721 if (y_is_zero)
4722 {
ca46fb90 4723#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4724 scm_num_overflow (s_divide);
f872b822 4725#else
0aacf84e
MD
4726 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4727 scm_remember_upto_here_1 (x);
4728 return (sgn == 0) ? scm_nan () : scm_inf ();
f872b822 4729#endif
0aacf84e
MD
4730 }
4731 else
4732 {
4733 /* big_x / big_y */
4734 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
4735 SCM_I_BIG_MPZ (y));
4736 if (divisible_p)
4737 {
4738 SCM result = scm_i_mkbig ();
4739 mpz_divexact (SCM_I_BIG_MPZ (result),
4740 SCM_I_BIG_MPZ (x),
4741 SCM_I_BIG_MPZ (y));
4742 scm_remember_upto_here_2 (x, y);
4743 return scm_i_normbig (result);
4744 }
4745 else
4746 {
f92e85f7
MV
4747 if (inexact)
4748 {
4749 double dbx = mpz_get_d (SCM_I_BIG_MPZ (x));
4750 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4751 scm_remember_upto_here_2 (x, y);
55f26379 4752 return scm_from_double (dbx / dby);
f92e85f7 4753 }
cba42c93 4754 else return scm_i_make_ratio (x, y);
0aacf84e
MD
4755 }
4756 }
4757 }
4758 else if (SCM_REALP (y))
4759 {
4760 double yy = SCM_REAL_VALUE (y);
7351e207 4761#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4762 if (yy == 0.0)
4763 scm_num_overflow (s_divide);
4764 else
7351e207 4765#endif
55f26379 4766 return scm_from_double (scm_i_big2dbl (x) / yy);
0aacf84e
MD
4767 }
4768 else if (SCM_COMPLEXP (y))
4769 {
4770 a = scm_i_big2dbl (x);
4771 goto complex_div;
4772 }
f92e85f7 4773 else if (SCM_FRACTIONP (y))
cba42c93 4774 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 4775 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
4776 else
4777 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 4778 }
0aacf84e
MD
4779 else if (SCM_REALP (x))
4780 {
4781 double rx = SCM_REAL_VALUE (x);
e11e83f3 4782 if (SCM_I_INUMP (y))
0aacf84e 4783 {
e11e83f3 4784 long int yy = SCM_I_INUM (y);
7351e207 4785#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4786 if (yy == 0)
4787 scm_num_overflow (s_divide);
4788 else
7351e207 4789#endif
55f26379 4790 return scm_from_double (rx / (double) yy);
0aacf84e
MD
4791 }
4792 else if (SCM_BIGP (y))
4793 {
4794 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4795 scm_remember_upto_here_1 (y);
55f26379 4796 return scm_from_double (rx / dby);
0aacf84e
MD
4797 }
4798 else if (SCM_REALP (y))
4799 {
4800 double yy = SCM_REAL_VALUE (y);
7351e207 4801#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4802 if (yy == 0.0)
4803 scm_num_overflow (s_divide);
4804 else
7351e207 4805#endif
55f26379 4806 return scm_from_double (rx / yy);
0aacf84e
MD
4807 }
4808 else if (SCM_COMPLEXP (y))
4809 {
4810 a = rx;
4811 goto complex_div;
4812 }
f92e85f7 4813 else if (SCM_FRACTIONP (y))
55f26379 4814 return scm_from_double (rx / scm_i_fraction2double (y));
0aacf84e
MD
4815 else
4816 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 4817 }
0aacf84e
MD
4818 else if (SCM_COMPLEXP (x))
4819 {
4820 double rx = SCM_COMPLEX_REAL (x);
4821 double ix = SCM_COMPLEX_IMAG (x);
e11e83f3 4822 if (SCM_I_INUMP (y))
0aacf84e 4823 {
e11e83f3 4824 long int yy = SCM_I_INUM (y);
7351e207 4825#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4826 if (yy == 0)
4827 scm_num_overflow (s_divide);
4828 else
7351e207 4829#endif
0aacf84e
MD
4830 {
4831 double d = yy;
8507ec80 4832 return scm_c_make_rectangular (rx / d, ix / d);
0aacf84e
MD
4833 }
4834 }
4835 else if (SCM_BIGP (y))
4836 {
4837 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4838 scm_remember_upto_here_1 (y);
8507ec80 4839 return scm_c_make_rectangular (rx / dby, ix / dby);
0aacf84e
MD
4840 }
4841 else if (SCM_REALP (y))
4842 {
4843 double yy = SCM_REAL_VALUE (y);
7351e207 4844#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4845 if (yy == 0.0)
4846 scm_num_overflow (s_divide);
4847 else
7351e207 4848#endif
8507ec80 4849 return scm_c_make_rectangular (rx / yy, ix / yy);
0aacf84e
MD
4850 }
4851 else if (SCM_COMPLEXP (y))
4852 {
4853 double ry = SCM_COMPLEX_REAL (y);
4854 double iy = SCM_COMPLEX_IMAG (y);
4855 if (ry <= iy)
4856 {
4857 double t = ry / iy;
4858 double d = iy * (1.0 + t * t);
8507ec80 4859 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
0aacf84e
MD
4860 }
4861 else
4862 {
4863 double t = iy / ry;
4864 double d = ry * (1.0 + t * t);
8507ec80 4865 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
0aacf84e
MD
4866 }
4867 }
f92e85f7
MV
4868 else if (SCM_FRACTIONP (y))
4869 {
4870 double yy = scm_i_fraction2double (y);
8507ec80 4871 return scm_c_make_rectangular (rx / yy, ix / yy);
f92e85f7 4872 }
0aacf84e
MD
4873 else
4874 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 4875 }
f92e85f7
MV
4876 else if (SCM_FRACTIONP (x))
4877 {
e11e83f3 4878 if (SCM_I_INUMP (y))
f92e85f7 4879 {
e11e83f3 4880 long int yy = SCM_I_INUM (y);
f92e85f7
MV
4881#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4882 if (yy == 0)
4883 scm_num_overflow (s_divide);
4884 else
4885#endif
cba42c93 4886 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4887 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4888 }
4889 else if (SCM_BIGP (y))
4890 {
cba42c93 4891 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4892 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4893 }
4894 else if (SCM_REALP (y))
4895 {
4896 double yy = SCM_REAL_VALUE (y);
4897#ifndef ALLOW_DIVIDE_BY_ZERO
4898 if (yy == 0.0)
4899 scm_num_overflow (s_divide);
4900 else
4901#endif
55f26379 4902 return scm_from_double (scm_i_fraction2double (x) / yy);
f92e85f7
MV
4903 }
4904 else if (SCM_COMPLEXP (y))
4905 {
4906 a = scm_i_fraction2double (x);
4907 goto complex_div;
4908 }
4909 else if (SCM_FRACTIONP (y))
cba42c93 4910 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4911 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
4912 else
4913 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4914 }
0aacf84e 4915 else
f8de44c1 4916 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
0f2d19dd 4917}
f92e85f7
MV
4918
4919SCM
4920scm_divide (SCM x, SCM y)
4921{
4922 return scm_i_divide (x, y, 0);
4923}
4924
4925static SCM scm_divide2real (SCM x, SCM y)
4926{
4927 return scm_i_divide (x, y, 1);
4928}
c05e97b7 4929#undef FUNC_NAME
0f2d19dd 4930
fa605590 4931
0f2d19dd 4932double
6e8d25a6 4933scm_asinh (double x)
0f2d19dd 4934{
fa605590
KR
4935#if HAVE_ASINH
4936 return asinh (x);
4937#else
4938#define asinh scm_asinh
f872b822 4939 return log (x + sqrt (x * x + 1));
fa605590 4940#endif
0f2d19dd 4941}
fa605590
KR
4942SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_dsubr, (SCM (*)()) asinh, g_asinh);
4943/* "Return the inverse hyperbolic sine of @var{x}."
4944 */
0f2d19dd
JB
4945
4946
0f2d19dd 4947double
6e8d25a6 4948scm_acosh (double x)
0f2d19dd 4949{
fa605590
KR
4950#if HAVE_ACOSH
4951 return acosh (x);
4952#else
4953#define acosh scm_acosh
f872b822 4954 return log (x + sqrt (x * x - 1));
fa605590 4955#endif
0f2d19dd 4956}
fa605590
KR
4957SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_dsubr, (SCM (*)()) acosh, g_acosh);
4958/* "Return the inverse hyperbolic cosine of @var{x}."
4959 */
0f2d19dd
JB
4960
4961
0f2d19dd 4962double
6e8d25a6 4963scm_atanh (double x)
0f2d19dd 4964{
fa605590
KR
4965#if HAVE_ATANH
4966 return atanh (x);
4967#else
4968#define atanh scm_atanh
f872b822 4969 return 0.5 * log ((1 + x) / (1 - x));
fa605590 4970#endif
0f2d19dd 4971}
fa605590
KR
4972SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_dsubr, (SCM (*)()) atanh, g_atanh);
4973/* "Return the inverse hyperbolic tangent of @var{x}."
4974 */
0f2d19dd
JB
4975
4976
0f2d19dd 4977double
3101f40f 4978scm_c_truncate (double x)
0f2d19dd 4979{
fa605590
KR
4980#if HAVE_TRUNC
4981 return trunc (x);
4982#else
f872b822
MD
4983 if (x < 0.0)
4984 return -floor (-x);
4985 return floor (x);
fa605590 4986#endif
0f2d19dd 4987}
0f2d19dd 4988
3101f40f
MV
4989/* scm_c_round is done using floor(x+0.5) to round to nearest and with
4990 half-way case (ie. when x is an integer plus 0.5) going upwards.
4991 Then half-way cases are identified and adjusted down if the
4992 round-upwards didn't give the desired even integer.
6187f48b
KR
4993
4994 "plus_half == result" identifies a half-way case. If plus_half, which is
4995 x + 0.5, is an integer then x must be an integer plus 0.5.
4996
4997 An odd "result" value is identified with result/2 != floor(result/2).
4998 This is done with plus_half, since that value is ready for use sooner in
4999 a pipelined cpu, and we're already requiring plus_half == result.
5000
5001 Note however that we need to be careful when x is big and already an
5002 integer. In that case "x+0.5" may round to an adjacent integer, causing
5003 us to return such a value, incorrectly. For instance if the hardware is
5004 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
5005 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
5006 returned. Or if the hardware is in round-upwards mode, then other bigger
5007 values like say x == 2^128 will see x+0.5 rounding up to the next higher
5008 representable value, 2^128+2^76 (or whatever), again incorrect.
5009
5010 These bad roundings of x+0.5 are avoided by testing at the start whether
5011 x is already an integer. If it is then clearly that's the desired result
5012 already. And if it's not then the exponent must be small enough to allow
5013 an 0.5 to be represented, and hence added without a bad rounding. */
5014
0f2d19dd 5015double
3101f40f 5016scm_c_round (double x)
0f2d19dd 5017{
6187f48b
KR
5018 double plus_half, result;
5019
5020 if (x == floor (x))
5021 return x;
5022
5023 plus_half = x + 0.5;
5024 result = floor (plus_half);
3101f40f 5025 /* Adjust so that the rounding is towards even. */
0aacf84e
MD
5026 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
5027 ? result - 1
5028 : result);
0f2d19dd
JB
5029}
5030
f92e85f7
MV
5031SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
5032 (SCM x),
5033 "Round the number @var{x} towards zero.")
5034#define FUNC_NAME s_scm_truncate_number
5035{
73e4de09 5036 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5037 return scm_floor (x);
5038 else
5039 return scm_ceiling (x);
5040}
5041#undef FUNC_NAME
5042
5043static SCM exactly_one_half;
5044
5045SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5046 (SCM x),
5047 "Round the number @var{x} towards the nearest integer. "
5048 "When it is exactly halfway between two integers, "
5049 "round towards the even one.")
5050#define FUNC_NAME s_scm_round_number
5051{
e11e83f3 5052 if (SCM_I_INUMP (x) || SCM_BIGP (x))
bae30667
KR
5053 return x;
5054 else if (SCM_REALP (x))
3101f40f 5055 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
f92e85f7 5056 else
bae30667
KR
5057 {
5058 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5059 single quotient+remainder division then examining to see which way
5060 the rounding should go. */
5061 SCM plus_half = scm_sum (x, exactly_one_half);
5062 SCM result = scm_floor (plus_half);
3101f40f 5063 /* Adjust so that the rounding is towards even. */
73e4de09
MV
5064 if (scm_is_true (scm_num_eq_p (plus_half, result))
5065 && scm_is_true (scm_odd_p (result)))
d956fa6f 5066 return scm_difference (result, SCM_I_MAKINUM (1));
bae30667
KR
5067 else
5068 return result;
5069 }
f92e85f7
MV
5070}
5071#undef FUNC_NAME
5072
5073SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5074 (SCM x),
5075 "Round the number @var{x} towards minus infinity.")
5076#define FUNC_NAME s_scm_floor
5077{
e11e83f3 5078 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5079 return x;
5080 else if (SCM_REALP (x))
55f26379 5081 return scm_from_double (floor (SCM_REAL_VALUE (x)));
f92e85f7
MV
5082 else if (SCM_FRACTIONP (x))
5083 {
5084 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5085 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5086 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5087 {
5088 /* For positive x, rounding towards zero is correct. */
5089 return q;
5090 }
5091 else
5092 {
5093 /* For negative x, we need to return q-1 unless x is an
5094 integer. But fractions are never integer, per our
5095 assumptions. */
d956fa6f 5096 return scm_difference (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5097 }
5098 }
5099 else
5100 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5101}
5102#undef FUNC_NAME
5103
5104SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5105 (SCM x),
5106 "Round the number @var{x} towards infinity.")
5107#define FUNC_NAME s_scm_ceiling
5108{
e11e83f3 5109 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5110 return x;
5111 else if (SCM_REALP (x))
55f26379 5112 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
f92e85f7
MV
5113 else if (SCM_FRACTIONP (x))
5114 {
5115 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5116 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5117 if (scm_is_false (scm_positive_p (x)))
f92e85f7
MV
5118 {
5119 /* For negative x, rounding towards zero is correct. */
5120 return q;
5121 }
5122 else
5123 {
5124 /* For positive x, we need to return q+1 unless x is an
5125 integer. But fractions are never integer, per our
5126 assumptions. */
d956fa6f 5127 return scm_sum (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5128 }
5129 }
5130 else
5131 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5132}
5133#undef FUNC_NAME
0f2d19dd 5134
14b18ed6 5135SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_dsubr, (SCM (*)()) sqrt, g_i_sqrt);
942e5b91
MG
5136/* "Return the square root of the real number @var{x}."
5137 */
14b18ed6 5138SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_dsubr, (SCM (*)()) fabs, g_i_abs);
942e5b91
MG
5139/* "Return the absolute value of the real number @var{x}."
5140 */
14b18ed6 5141SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_dsubr, (SCM (*)()) exp, g_i_exp);
942e5b91
MG
5142/* "Return the @var{x}th power of e."
5143 */
14b18ed6 5144SCM_GPROC1 (s_i_log, "$log", scm_tc7_dsubr, (SCM (*)()) log, g_i_log);
b3fcac34 5145/* "Return the natural logarithm of the real number @var{x}."
942e5b91 5146 */
14b18ed6 5147SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_dsubr, (SCM (*)()) sin, g_i_sin);
942e5b91
MG
5148/* "Return the sine of the real number @var{x}."
5149 */
14b18ed6 5150SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_dsubr, (SCM (*)()) cos, g_i_cos);
942e5b91
MG
5151/* "Return the cosine of the real number @var{x}."
5152 */
14b18ed6 5153SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_dsubr, (SCM (*)()) tan, g_i_tan);
942e5b91
MG
5154/* "Return the tangent of the real number @var{x}."
5155 */
14b18ed6 5156SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_dsubr, (SCM (*)()) asin, g_i_asin);
942e5b91
MG
5157/* "Return the arc sine of the real number @var{x}."
5158 */
14b18ed6 5159SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_dsubr, (SCM (*)()) acos, g_i_acos);
942e5b91
MG
5160/* "Return the arc cosine of the real number @var{x}."
5161 */
14b18ed6 5162SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_dsubr, (SCM (*)()) atan, g_i_atan);
942e5b91
MG
5163/* "Return the arc tangent of the real number @var{x}."
5164 */
14b18ed6 5165SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_dsubr, (SCM (*)()) sinh, g_i_sinh);
942e5b91
MG
5166/* "Return the hyperbolic sine of the real number @var{x}."
5167 */
14b18ed6 5168SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_dsubr, (SCM (*)()) cosh, g_i_cosh);
942e5b91
MG
5169/* "Return the hyperbolic cosine of the real number @var{x}."
5170 */
14b18ed6 5171SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_dsubr, (SCM (*)()) tanh, g_i_tanh);
942e5b91
MG
5172/* "Return the hyperbolic tangent of the real number @var{x}."
5173 */
f872b822
MD
5174
5175struct dpair
5176{
5177 double x, y;
5178};
5179
27c37006
NJ
5180static void scm_two_doubles (SCM x,
5181 SCM y,
3eeba8d4
JB
5182 const char *sstring,
5183 struct dpair * xy);
f872b822
MD
5184
5185static void
27c37006
NJ
5186scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
5187{
e11e83f3
MV
5188 if (SCM_I_INUMP (x))
5189 xy->x = SCM_I_INUM (x);
0aacf84e 5190 else if (SCM_BIGP (x))
1be6b49c 5191 xy->x = scm_i_big2dbl (x);
0aacf84e 5192 else if (SCM_REALP (x))
27c37006 5193 xy->x = SCM_REAL_VALUE (x);
f92e85f7
MV
5194 else if (SCM_FRACTIONP (x))
5195 xy->x = scm_i_fraction2double (x);
0aacf84e 5196 else
27c37006 5197 scm_wrong_type_arg (sstring, SCM_ARG1, x);
98cb6e75 5198
e11e83f3
MV
5199 if (SCM_I_INUMP (y))
5200 xy->y = SCM_I_INUM (y);
0aacf84e 5201 else if (SCM_BIGP (y))
1be6b49c 5202 xy->y = scm_i_big2dbl (y);
0aacf84e 5203 else if (SCM_REALP (y))
27c37006 5204 xy->y = SCM_REAL_VALUE (y);
f92e85f7
MV
5205 else if (SCM_FRACTIONP (y))
5206 xy->y = scm_i_fraction2double (y);
0aacf84e 5207 else
27c37006 5208 scm_wrong_type_arg (sstring, SCM_ARG2, y);
0f2d19dd
JB
5209}
5210
5211
a1ec6916 5212SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
27c37006
NJ
5213 (SCM x, SCM y),
5214 "Return @var{x} raised to the power of @var{y}. This\n"
0137a31b 5215 "procedure does not accept complex arguments.")
1bbd0b84 5216#define FUNC_NAME s_scm_sys_expt
0f2d19dd
JB
5217{
5218 struct dpair xy;
27c37006 5219 scm_two_doubles (x, y, FUNC_NAME, &xy);
55f26379 5220 return scm_from_double (pow (xy.x, xy.y));
0f2d19dd 5221}
1bbd0b84 5222#undef FUNC_NAME
0f2d19dd
JB
5223
5224
a1ec6916 5225SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
27c37006
NJ
5226 (SCM x, SCM y),
5227 "Return the arc tangent of the two arguments @var{x} and\n"
5228 "@var{y}. This is similar to calculating the arc tangent of\n"
5229 "@var{x} / @var{y}, except that the signs of both arguments\n"
0137a31b
MG
5230 "are used to determine the quadrant of the result. This\n"
5231 "procedure does not accept complex arguments.")
1bbd0b84 5232#define FUNC_NAME s_scm_sys_atan2
0f2d19dd
JB
5233{
5234 struct dpair xy;
27c37006 5235 scm_two_doubles (x, y, FUNC_NAME, &xy);
55f26379 5236 return scm_from_double (atan2 (xy.x, xy.y));
0f2d19dd 5237}
1bbd0b84 5238#undef FUNC_NAME
0f2d19dd 5239
8507ec80
MV
5240SCM
5241scm_c_make_rectangular (double re, double im)
5242{
5243 if (im == 0.0)
5244 return scm_from_double (re);
5245 else
5246 {
5247 SCM z;
5248 SCM_NEWSMOB (z, scm_tc16_complex, scm_gc_malloc (sizeof (scm_t_complex),
5249 "complex"));
5250 SCM_COMPLEX_REAL (z) = re;
5251 SCM_COMPLEX_IMAG (z) = im;
5252 return z;
5253 }
5254}
0f2d19dd 5255
a1ec6916 5256SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
bb628794 5257 (SCM real, SCM imaginary),
942e5b91
MG
5258 "Return a complex number constructed of the given @var{real} and\n"
5259 "@var{imaginary} parts.")
1bbd0b84 5260#define FUNC_NAME s_scm_make_rectangular
0f2d19dd
JB
5261{
5262 struct dpair xy;
bb628794 5263 scm_two_doubles (real, imaginary, FUNC_NAME, &xy);
8507ec80 5264 return scm_c_make_rectangular (xy.x, xy.y);
0f2d19dd 5265}
1bbd0b84 5266#undef FUNC_NAME
0f2d19dd 5267
8507ec80
MV
5268SCM
5269scm_c_make_polar (double mag, double ang)
5270{
5271 double s, c;
5272#if HAVE_SINCOS
5273 sincos (ang, &s, &c);
5274#else
5275 s = sin (ang);
5276 c = cos (ang);
5277#endif
5278 return scm_c_make_rectangular (mag * c, mag * s);
5279}
0f2d19dd 5280
a1ec6916 5281SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
27c37006 5282 (SCM x, SCM y),
942e5b91 5283 "Return the complex number @var{x} * e^(i * @var{y}).")
1bbd0b84 5284#define FUNC_NAME s_scm_make_polar
0f2d19dd
JB
5285{
5286 struct dpair xy;
27c37006 5287 scm_two_doubles (x, y, FUNC_NAME, &xy);
8507ec80 5288 return scm_c_make_polar (xy.x, xy.y);
0f2d19dd 5289}
1bbd0b84 5290#undef FUNC_NAME
0f2d19dd
JB
5291
5292
152f82bf 5293SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
942e5b91
MG
5294/* "Return the real part of the number @var{z}."
5295 */
0f2d19dd 5296SCM
6e8d25a6 5297scm_real_part (SCM z)
0f2d19dd 5298{
e11e83f3 5299 if (SCM_I_INUMP (z))
c2ff8ab0 5300 return z;
0aacf84e 5301 else if (SCM_BIGP (z))
c2ff8ab0 5302 return z;
0aacf84e 5303 else if (SCM_REALP (z))
c2ff8ab0 5304 return z;
0aacf84e 5305 else if (SCM_COMPLEXP (z))
55f26379 5306 return scm_from_double (SCM_COMPLEX_REAL (z));
f92e85f7 5307 else if (SCM_FRACTIONP (z))
2fa2d879 5308 return z;
0aacf84e 5309 else
c2ff8ab0 5310 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
0f2d19dd
JB
5311}
5312
5313
152f82bf 5314SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
942e5b91
MG
5315/* "Return the imaginary part of the number @var{z}."
5316 */
0f2d19dd 5317SCM
6e8d25a6 5318scm_imag_part (SCM z)
0f2d19dd 5319{
e11e83f3 5320 if (SCM_I_INUMP (z))
f872b822 5321 return SCM_INUM0;
0aacf84e 5322 else if (SCM_BIGP (z))
f872b822 5323 return SCM_INUM0;
0aacf84e 5324 else if (SCM_REALP (z))
c2ff8ab0 5325 return scm_flo0;
0aacf84e 5326 else if (SCM_COMPLEXP (z))
55f26379 5327 return scm_from_double (SCM_COMPLEX_IMAG (z));
f92e85f7
MV
5328 else if (SCM_FRACTIONP (z))
5329 return SCM_INUM0;
0aacf84e 5330 else
c2ff8ab0 5331 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
0f2d19dd
JB
5332}
5333
f92e85f7
MV
5334SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5335/* "Return the numerator of the number @var{z}."
5336 */
5337SCM
5338scm_numerator (SCM z)
5339{
e11e83f3 5340 if (SCM_I_INUMP (z))
f92e85f7
MV
5341 return z;
5342 else if (SCM_BIGP (z))
5343 return z;
5344 else if (SCM_FRACTIONP (z))
5345 {
5346 scm_i_fraction_reduce (z);
5347 return SCM_FRACTION_NUMERATOR (z);
5348 }
5349 else if (SCM_REALP (z))
5350 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5351 else
5352 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5353}
5354
5355
5356SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5357/* "Return the denominator of the number @var{z}."
5358 */
5359SCM
5360scm_denominator (SCM z)
5361{
e11e83f3 5362 if (SCM_I_INUMP (z))
d956fa6f 5363 return SCM_I_MAKINUM (1);
f92e85f7 5364 else if (SCM_BIGP (z))
d956fa6f 5365 return SCM_I_MAKINUM (1);
f92e85f7
MV
5366 else if (SCM_FRACTIONP (z))
5367 {
5368 scm_i_fraction_reduce (z);
5369 return SCM_FRACTION_DENOMINATOR (z);
5370 }
5371 else if (SCM_REALP (z))
5372 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5373 else
5374 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5375}
0f2d19dd 5376
9de33deb 5377SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
942e5b91
MG
5378/* "Return the magnitude of the number @var{z}. This is the same as\n"
5379 * "@code{abs} for real arguments, but also allows complex numbers."
5380 */
0f2d19dd 5381SCM
6e8d25a6 5382scm_magnitude (SCM z)
0f2d19dd 5383{
e11e83f3 5384 if (SCM_I_INUMP (z))
0aacf84e 5385 {
e11e83f3 5386 long int zz = SCM_I_INUM (z);
0aacf84e
MD
5387 if (zz >= 0)
5388 return z;
5389 else if (SCM_POSFIXABLE (-zz))
d956fa6f 5390 return SCM_I_MAKINUM (-zz);
0aacf84e
MD
5391 else
5392 return scm_i_long2big (-zz);
5986c47d 5393 }
0aacf84e
MD
5394 else if (SCM_BIGP (z))
5395 {
5396 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5397 scm_remember_upto_here_1 (z);
5398 if (sgn < 0)
5399 return scm_i_clonebig (z, 0);
5400 else
5401 return z;
5986c47d 5402 }
0aacf84e 5403 else if (SCM_REALP (z))
55f26379 5404 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
0aacf84e 5405 else if (SCM_COMPLEXP (z))
55f26379 5406 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
f92e85f7
MV
5407 else if (SCM_FRACTIONP (z))
5408 {
73e4de09 5409 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 5410 return z;
cba42c93 5411 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
f92e85f7
MV
5412 SCM_FRACTION_DENOMINATOR (z));
5413 }
0aacf84e 5414 else
c2ff8ab0 5415 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
0f2d19dd
JB
5416}
5417
5418
9de33deb 5419SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
942e5b91
MG
5420/* "Return the angle of the complex number @var{z}."
5421 */
0f2d19dd 5422SCM
6e8d25a6 5423scm_angle (SCM z)
0f2d19dd 5424{
c8ae173e 5425 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
55f26379 5426 scm_flo0 to save allocating a new flonum with scm_from_double each time.
c8ae173e
KR
5427 But if atan2 follows the floating point rounding mode, then the value
5428 is not a constant. Maybe it'd be close enough though. */
e11e83f3 5429 if (SCM_I_INUMP (z))
0aacf84e 5430 {
e11e83f3 5431 if (SCM_I_INUM (z) >= 0)
c8ae173e 5432 return scm_flo0;
0aacf84e 5433 else
55f26379 5434 return scm_from_double (atan2 (0.0, -1.0));
f872b822 5435 }
0aacf84e
MD
5436 else if (SCM_BIGP (z))
5437 {
5438 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5439 scm_remember_upto_here_1 (z);
5440 if (sgn < 0)
55f26379 5441 return scm_from_double (atan2 (0.0, -1.0));
0aacf84e 5442 else
c8ae173e 5443 return scm_flo0;
0f2d19dd 5444 }
0aacf84e 5445 else if (SCM_REALP (z))
c8ae173e
KR
5446 {
5447 if (SCM_REAL_VALUE (z) >= 0)
5448 return scm_flo0;
5449 else
55f26379 5450 return scm_from_double (atan2 (0.0, -1.0));
c8ae173e 5451 }
0aacf84e 5452 else if (SCM_COMPLEXP (z))
55f26379 5453 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
f92e85f7
MV
5454 else if (SCM_FRACTIONP (z))
5455 {
73e4de09 5456 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 5457 return scm_flo0;
55f26379 5458 else return scm_from_double (atan2 (0.0, -1.0));
f92e85f7 5459 }
0aacf84e 5460 else
f4c627b3 5461 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
0f2d19dd
JB
5462}
5463
5464
3c9a524f
DH
5465SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5466/* Convert the number @var{x} to its inexact representation.\n"
5467 */
5468SCM
5469scm_exact_to_inexact (SCM z)
5470{
e11e83f3 5471 if (SCM_I_INUMP (z))
55f26379 5472 return scm_from_double ((double) SCM_I_INUM (z));
3c9a524f 5473 else if (SCM_BIGP (z))
55f26379 5474 return scm_from_double (scm_i_big2dbl (z));
f92e85f7 5475 else if (SCM_FRACTIONP (z))
55f26379 5476 return scm_from_double (scm_i_fraction2double (z));
3c9a524f
DH
5477 else if (SCM_INEXACTP (z))
5478 return z;
5479 else
5480 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5481}
5482
5483
a1ec6916 5484SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
1bbd0b84 5485 (SCM z),
1e6808ea 5486 "Return an exact number that is numerically closest to @var{z}.")
1bbd0b84 5487#define FUNC_NAME s_scm_inexact_to_exact
0f2d19dd 5488{
e11e83f3 5489 if (SCM_I_INUMP (z))
f872b822 5490 return z;
0aacf84e 5491 else if (SCM_BIGP (z))
f872b822 5492 return z;
0aacf84e
MD
5493 else if (SCM_REALP (z))
5494 {
f92e85f7
MV
5495 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
5496 SCM_OUT_OF_RANGE (1, z);
2be24db4 5497 else
f92e85f7
MV
5498 {
5499 mpq_t frac;
5500 SCM q;
5501
5502 mpq_init (frac);
5503 mpq_set_d (frac, SCM_REAL_VALUE (z));
cba42c93 5504 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
f92e85f7
MV
5505 scm_i_mpz2num (mpq_denref (frac)));
5506
cba42c93 5507 /* When scm_i_make_ratio throws, we leak the memory allocated
f92e85f7
MV
5508 for frac...
5509 */
5510 mpq_clear (frac);
5511 return q;
5512 }
c2ff8ab0 5513 }
f92e85f7
MV
5514 else if (SCM_FRACTIONP (z))
5515 return z;
0aacf84e 5516 else
c2ff8ab0 5517 SCM_WRONG_TYPE_ARG (1, z);
0f2d19dd 5518}
1bbd0b84 5519#undef FUNC_NAME
0f2d19dd 5520
f92e85f7
MV
5521SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
5522 (SCM x, SCM err),
5523 "Return an exact number that is within @var{err} of @var{x}.")
5524#define FUNC_NAME s_scm_rationalize
5525{
e11e83f3 5526 if (SCM_I_INUMP (x))
f92e85f7
MV
5527 return x;
5528 else if (SCM_BIGP (x))
5529 return x;
5530 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
5531 {
5532 /* Use continued fractions to find closest ratio. All
5533 arithmetic is done with exact numbers.
5534 */
5535
5536 SCM ex = scm_inexact_to_exact (x);
5537 SCM int_part = scm_floor (ex);
d956fa6f
MV
5538 SCM tt = SCM_I_MAKINUM (1);
5539 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
5540 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
f92e85f7
MV
5541 SCM rx;
5542 int i = 0;
5543
73e4de09 5544 if (scm_is_true (scm_num_eq_p (ex, int_part)))
f92e85f7
MV
5545 return ex;
5546
5547 ex = scm_difference (ex, int_part); /* x = x-int_part */
5548 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
5549
5550 /* We stop after a million iterations just to be absolutely sure
5551 that we don't go into an infinite loop. The process normally
5552 converges after less than a dozen iterations.
5553 */
5554
5555 err = scm_abs (err);
5556 while (++i < 1000000)
5557 {
5558 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
5559 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
73e4de09
MV
5560 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
5561 scm_is_false
f92e85f7
MV
5562 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
5563 err))) /* abs(x-a/b) <= err */
02164269
MV
5564 {
5565 SCM res = scm_sum (int_part, scm_divide (a, b));
73e4de09
MV
5566 if (scm_is_false (scm_exact_p (x))
5567 || scm_is_false (scm_exact_p (err)))
02164269
MV
5568 return scm_exact_to_inexact (res);
5569 else
5570 return res;
5571 }
f92e85f7
MV
5572 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
5573 SCM_UNDEFINED);
5574 tt = scm_floor (rx); /* tt = floor (rx) */
5575 a2 = a1;
5576 b2 = b1;
5577 a1 = a;
5578 b1 = b;
5579 }
5580 scm_num_overflow (s_scm_rationalize);
5581 }
5582 else
5583 SCM_WRONG_TYPE_ARG (1, x);
5584}
5585#undef FUNC_NAME
5586
73e4de09
MV
5587/* conversion functions */
5588
5589int
5590scm_is_integer (SCM val)
5591{
5592 return scm_is_true (scm_integer_p (val));
5593}
5594
5595int
5596scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
5597{
e11e83f3 5598 if (SCM_I_INUMP (val))
73e4de09 5599 {
e11e83f3 5600 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
5601 return n >= min && n <= max;
5602 }
5603 else if (SCM_BIGP (val))
5604 {
5605 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
5606 return 0;
5607 else if (min >= LONG_MIN && max <= LONG_MAX)
d956fa6f
MV
5608 {
5609 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
5610 {
5611 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
5612 return n >= min && n <= max;
5613 }
5614 else
5615 return 0;
5616 }
73e4de09
MV
5617 else
5618 {
d956fa6f
MV
5619 scm_t_intmax n;
5620 size_t count;
73e4de09 5621
d956fa6f
MV
5622 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5623 > CHAR_BIT*sizeof (scm_t_uintmax))
5624 return 0;
5625
5626 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5627 SCM_I_BIG_MPZ (val));
73e4de09 5628
d956fa6f 5629 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
73e4de09 5630 {
d956fa6f
MV
5631 if (n < 0)
5632 return 0;
73e4de09 5633 }
73e4de09
MV
5634 else
5635 {
d956fa6f
MV
5636 n = -n;
5637 if (n >= 0)
5638 return 0;
73e4de09 5639 }
d956fa6f
MV
5640
5641 return n >= min && n <= max;
73e4de09
MV
5642 }
5643 }
73e4de09
MV
5644 else
5645 return 0;
5646}
5647
5648int
5649scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
5650{
e11e83f3 5651 if (SCM_I_INUMP (val))
73e4de09 5652 {
e11e83f3 5653 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
5654 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
5655 }
5656 else if (SCM_BIGP (val))
5657 {
5658 if (max <= SCM_MOST_POSITIVE_FIXNUM)
5659 return 0;
5660 else if (max <= ULONG_MAX)
d956fa6f
MV
5661 {
5662 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
5663 {
5664 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
5665 return n >= min && n <= max;
5666 }
5667 else
5668 return 0;
5669 }
73e4de09
MV
5670 else
5671 {
d956fa6f
MV
5672 scm_t_uintmax n;
5673 size_t count;
73e4de09 5674
d956fa6f
MV
5675 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
5676 return 0;
73e4de09 5677
d956fa6f
MV
5678 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5679 > CHAR_BIT*sizeof (scm_t_uintmax))
73e4de09 5680 return 0;
d956fa6f
MV
5681
5682 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5683 SCM_I_BIG_MPZ (val));
73e4de09 5684
d956fa6f 5685 return n >= min && n <= max;
73e4de09
MV
5686 }
5687 }
73e4de09
MV
5688 else
5689 return 0;
5690}
5691
1713d319
MV
5692static void
5693scm_i_range_error (SCM bad_val, SCM min, SCM max)
5694{
5695 scm_error (scm_out_of_range_key,
5696 NULL,
5697 "Value out of range ~S to ~S: ~S",
5698 scm_list_3 (min, max, bad_val),
5699 scm_list_1 (bad_val));
5700}
5701
bfd7932e
MV
5702#define TYPE scm_t_intmax
5703#define TYPE_MIN min
5704#define TYPE_MAX max
5705#define SIZEOF_TYPE 0
5706#define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
5707#define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
5708#include "libguile/conv-integer.i.c"
5709
5710#define TYPE scm_t_uintmax
5711#define TYPE_MIN min
5712#define TYPE_MAX max
5713#define SIZEOF_TYPE 0
5714#define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
5715#define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
5716#include "libguile/conv-uinteger.i.c"
5717
5718#define TYPE scm_t_int8
5719#define TYPE_MIN SCM_T_INT8_MIN
5720#define TYPE_MAX SCM_T_INT8_MAX
5721#define SIZEOF_TYPE 1
5722#define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
5723#define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
5724#include "libguile/conv-integer.i.c"
5725
5726#define TYPE scm_t_uint8
5727#define TYPE_MIN 0
5728#define TYPE_MAX SCM_T_UINT8_MAX
5729#define SIZEOF_TYPE 1
5730#define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
5731#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
5732#include "libguile/conv-uinteger.i.c"
5733
5734#define TYPE scm_t_int16
5735#define TYPE_MIN SCM_T_INT16_MIN
5736#define TYPE_MAX SCM_T_INT16_MAX
5737#define SIZEOF_TYPE 2
5738#define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
5739#define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
5740#include "libguile/conv-integer.i.c"
5741
5742#define TYPE scm_t_uint16
5743#define TYPE_MIN 0
5744#define TYPE_MAX SCM_T_UINT16_MAX
5745#define SIZEOF_TYPE 2
5746#define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
5747#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
5748#include "libguile/conv-uinteger.i.c"
5749
5750#define TYPE scm_t_int32
5751#define TYPE_MIN SCM_T_INT32_MIN
5752#define TYPE_MAX SCM_T_INT32_MAX
5753#define SIZEOF_TYPE 4
5754#define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
5755#define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
5756#include "libguile/conv-integer.i.c"
5757
5758#define TYPE scm_t_uint32
5759#define TYPE_MIN 0
5760#define TYPE_MAX SCM_T_UINT32_MAX
5761#define SIZEOF_TYPE 4
5762#define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
5763#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
5764#include "libguile/conv-uinteger.i.c"
5765
5766#if SCM_HAVE_T_INT64
5767
5768#define TYPE scm_t_int64
5769#define TYPE_MIN SCM_T_INT64_MIN
5770#define TYPE_MAX SCM_T_INT64_MAX
5771#define SIZEOF_TYPE 8
5772#define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
5773#define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
5774#include "libguile/conv-integer.i.c"
5775
5776#define TYPE scm_t_uint64
5777#define TYPE_MIN 0
5778#define TYPE_MAX SCM_T_UINT64_MAX
5779#define SIZEOF_TYPE 8
5780#define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
5781#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
5782#include "libguile/conv-uinteger.i.c"
73e4de09 5783
bfd7932e 5784#endif
73e4de09 5785
cd036260
MV
5786void
5787scm_to_mpz (SCM val, mpz_t rop)
5788{
5789 if (SCM_I_INUMP (val))
5790 mpz_set_si (rop, SCM_I_INUM (val));
5791 else if (SCM_BIGP (val))
5792 mpz_set (rop, SCM_I_BIG_MPZ (val));
5793 else
5794 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
5795}
5796
5797SCM
5798scm_from_mpz (mpz_t val)
5799{
5800 return scm_i_mpz2num (val);
5801}
5802
73e4de09
MV
5803int
5804scm_is_real (SCM val)
5805{
5806 return scm_is_true (scm_real_p (val));
5807}
5808
55f26379
MV
5809int
5810scm_is_rational (SCM val)
5811{
5812 return scm_is_true (scm_rational_p (val));
5813}
5814
73e4de09
MV
5815double
5816scm_to_double (SCM val)
5817{
55f26379
MV
5818 if (SCM_I_INUMP (val))
5819 return SCM_I_INUM (val);
5820 else if (SCM_BIGP (val))
5821 return scm_i_big2dbl (val);
5822 else if (SCM_FRACTIONP (val))
5823 return scm_i_fraction2double (val);
5824 else if (SCM_REALP (val))
5825 return SCM_REAL_VALUE (val);
5826 else
7a1aba42 5827 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
73e4de09
MV
5828}
5829
5830SCM
5831scm_from_double (double val)
5832{
55f26379
MV
5833 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
5834 SCM_REAL_VALUE (z) = val;
5835 return z;
73e4de09
MV
5836}
5837
55f26379
MV
5838#if SCM_ENABLE_DISCOURAGED == 1
5839
5840float
5841scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
5842{
5843 if (SCM_BIGP (num))
5844 {
5845 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
5846 if (!xisinf (res))
5847 return res;
5848 else
5849 scm_out_of_range (NULL, num);
5850 }
5851 else
5852 return scm_to_double (num);
5853}
5854
5855double
5856scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
5857{
5858 if (SCM_BIGP (num))
5859 {
5860 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
5861 if (!xisinf (res))
5862 return res;
5863 else
5864 scm_out_of_range (NULL, num);
5865 }
5866 else
5867 return scm_to_double (num);
5868}
5869
5870#endif
5871
8507ec80
MV
5872int
5873scm_is_complex (SCM val)
5874{
5875 return scm_is_true (scm_complex_p (val));
5876}
5877
5878double
5879scm_c_real_part (SCM z)
5880{
5881 if (SCM_COMPLEXP (z))
5882 return SCM_COMPLEX_REAL (z);
5883 else
5884 {
5885 /* Use the scm_real_part to get proper error checking and
5886 dispatching.
5887 */
5888 return scm_to_double (scm_real_part (z));
5889 }
5890}
5891
5892double
5893scm_c_imag_part (SCM z)
5894{
5895 if (SCM_COMPLEXP (z))
5896 return SCM_COMPLEX_IMAG (z);
5897 else
5898 {
5899 /* Use the scm_imag_part to get proper error checking and
5900 dispatching. The result will almost always be 0.0, but not
5901 always.
5902 */
5903 return scm_to_double (scm_imag_part (z));
5904 }
5905}
5906
5907double
5908scm_c_magnitude (SCM z)
5909{
5910 return scm_to_double (scm_magnitude (z));
5911}
5912
5913double
5914scm_c_angle (SCM z)
5915{
5916 return scm_to_double (scm_angle (z));
5917}
5918
5919int
5920scm_is_number (SCM z)
5921{
5922 return scm_is_true (scm_number_p (z));
5923}
5924
0f2d19dd
JB
5925void
5926scm_init_numbers ()
0f2d19dd 5927{
0b799eea
MV
5928 int i;
5929
713a4259
KR
5930 mpz_init_set_si (z_negative_one, -1);
5931
a261c0e9
DH
5932 /* It may be possible to tune the performance of some algorithms by using
5933 * the following constants to avoid the creation of bignums. Please, before
5934 * using these values, remember the two rules of program optimization:
5935 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
86d31dfe 5936 scm_c_define ("most-positive-fixnum",
d956fa6f 5937 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
86d31dfe 5938 scm_c_define ("most-negative-fixnum",
d956fa6f 5939 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
a261c0e9 5940
f3ae5d60
MD
5941 scm_add_feature ("complex");
5942 scm_add_feature ("inexact");
55f26379 5943 scm_flo0 = scm_from_double (0.0);
0b799eea
MV
5944
5945 /* determine floating point precision */
55f26379 5946 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
0b799eea
MV
5947 {
5948 init_dblprec(&scm_dblprec[i-2],i);
5949 init_fx_radix(fx_per_radix[i-2],i);
5950 }
f872b822 5951#ifdef DBL_DIG
0b799eea
MV
5952 /* hard code precision for base 10 if the preprocessor tells us to... */
5953 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
5954#endif
1be6b49c 5955
d956fa6f
MV
5956 exactly_one_half = scm_permanent_object (scm_divide (SCM_I_MAKINUM (1),
5957 SCM_I_MAKINUM (2)));
a0599745 5958#include "libguile/numbers.x"
0f2d19dd 5959}
89e00824
ML
5960
5961/*
5962 Local Variables:
5963 c-file-style: "gnu"
5964 End:
5965*/