`equal?' and `eqv?' are now equivalent for numbers
[bpt/guile.git] / libguile / numbers.c
CommitLineData
8e43ed5d 1/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
ba74ef4e
MV
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
f81e080b 6 *
73be1d9e 7 * This library is free software; you can redistribute it and/or
53befeb7
NJ
8 * modify it under the terms of the GNU Lesser General Public License
9 * as published by the Free Software Foundation; either version 3 of
10 * the License, or (at your option) any later version.
0f2d19dd 11 *
53befeb7
NJ
12 * This library is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
73be1d9e
MV
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
0f2d19dd 16 *
73be1d9e
MV
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
53befeb7
NJ
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301 USA
73be1d9e 21 */
1bbd0b84 22
0f2d19dd 23\f
ca46fb90
RB
24/* General assumptions:
25 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
26 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
27 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
28 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
f92e85f7 29 * All objects satisfying SCM_FRACTIONP are never an integer.
ca46fb90
RB
30 */
31
32/* TODO:
33
34 - see if special casing bignums and reals in integer-exponent when
35 possible (to use mpz_pow and mpf_pow_ui) is faster.
36
37 - look in to better short-circuiting of common cases in
38 integer-expt and elsewhere.
39
40 - see if direct mpz operations can help in ash and elsewhere.
41
42 */
0f2d19dd 43
dbb605f5 44#ifdef HAVE_CONFIG_H
ee33d62a
RB
45# include <config.h>
46#endif
47
0f2d19dd 48#include <math.h>
fc194577 49#include <string.h>
3f47e526
MG
50#include <unicase.h>
51#include <unictype.h>
f92e85f7 52
8ab3d8a0
KR
53#if HAVE_COMPLEX_H
54#include <complex.h>
55#endif
56
a0599745 57#include "libguile/_scm.h"
a0599745
MD
58#include "libguile/feature.h"
59#include "libguile/ports.h"
60#include "libguile/root.h"
61#include "libguile/smob.h"
62#include "libguile/strings.h"
864e7d42 63#include "libguile/bdw-gc.h"
a0599745
MD
64
65#include "libguile/validate.h"
66#include "libguile/numbers.h"
1be6b49c 67#include "libguile/deprecation.h"
f4c627b3 68
f92e85f7
MV
69#include "libguile/eq.h"
70
8ab3d8a0
KR
71/* values per glibc, if not already defined */
72#ifndef M_LOG10E
73#define M_LOG10E 0.43429448190325182765
74#endif
75#ifndef M_PI
76#define M_PI 3.14159265358979323846
77#endif
78
e25f3727
AW
79typedef scm_t_signed_bits scm_t_inum;
80#define scm_from_inum(x) (scm_from_signed_integer (x))
81
7112615f
MW
82/* Tests to see if a C double is neither infinite nor a NaN.
83 TODO: if it's available, use C99's isfinite(x) instead */
84#define DOUBLE_IS_FINITE(x) (!isinf(x) && !isnan(x))
85
0f2d19dd 86\f
f4c627b3 87
ca46fb90
RB
88/*
89 Wonder if this might be faster for some of our code? A switch on
90 the numtag would jump directly to the right case, and the
91 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
92
93 #define SCM_I_NUMTAG_NOTNUM 0
94 #define SCM_I_NUMTAG_INUM 1
95 #define SCM_I_NUMTAG_BIG scm_tc16_big
96 #define SCM_I_NUMTAG_REAL scm_tc16_real
97 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
98 #define SCM_I_NUMTAG(x) \
e11e83f3 99 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
ca46fb90 100 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
534c55a9 101 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
ca46fb90
RB
102 : SCM_I_NUMTAG_NOTNUM)))
103*/
f92e85f7 104/* the macro above will not work as is with fractions */
f4c627b3
DH
105
106
e7efe8e7
AW
107static SCM flo0;
108
34d19ef6 109#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
09fb7599 110
56e55ac7 111/* FLOBUFLEN is the maximum number of characters neccessary for the
3a9809df
DH
112 * printed or scm_string representation of an inexact number.
113 */
0b799eea 114#define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
3a9809df 115
b127c712 116
ad79736c
AW
117#if !defined (HAVE_ASINH)
118static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
119#endif
120#if !defined (HAVE_ACOSH)
121static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
122#endif
123#if !defined (HAVE_ATANH)
124static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
125#endif
126
f8a8200b
KR
127/* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
128 an explicit check. In some future gmp (don't know what version number),
129 mpz_cmp_d is supposed to do this itself. */
130#if 1
b127c712 131#define xmpz_cmp_d(z, d) \
2e65b52f 132 (isinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
b127c712
KR
133#else
134#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
135#endif
136
f92e85f7 137
4b26c03e 138#if defined (GUILE_I)
bca69a9f 139#if HAVE_COMPLEX_DOUBLE
8ab3d8a0
KR
140
141/* For an SCM object Z which is a complex number (ie. satisfies
142 SCM_COMPLEXP), return its value as a C level "complex double". */
143#define SCM_COMPLEX_VALUE(z) \
4b26c03e 144 (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
8ab3d8a0 145
7a35784c 146static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
8ab3d8a0
KR
147
148/* Convert a C "complex double" to an SCM value. */
7a35784c 149static inline SCM
8ab3d8a0
KR
150scm_from_complex_double (complex double z)
151{
152 return scm_c_make_rectangular (creal (z), cimag (z));
153}
bca69a9f 154
8ab3d8a0 155#endif /* HAVE_COMPLEX_DOUBLE */
bca69a9f 156#endif /* GUILE_I */
8ab3d8a0 157
0f2d19dd
JB
158\f
159
713a4259 160static mpz_t z_negative_one;
ac0c002c
DH
161
162\f
864e7d42
LC
163/* Clear the `mpz_t' embedded in bignum PTR. */
164static void
165finalize_bignum (GC_PTR ptr, GC_PTR data)
166{
167 SCM bignum;
168
169 bignum = PTR2SCM (ptr);
170 mpz_clear (SCM_I_BIG_MPZ (bignum));
171}
172
d017fcdf
LC
173/* Return a new uninitialized bignum. */
174static inline SCM
175make_bignum (void)
176{
177 scm_t_bits *p;
864e7d42
LC
178 GC_finalization_proc prev_finalizer;
179 GC_PTR prev_finalizer_data;
d017fcdf
LC
180
181 /* Allocate one word for the type tag and enough room for an `mpz_t'. */
182 p = scm_gc_malloc_pointerless (sizeof (scm_t_bits) + sizeof (mpz_t),
183 "bignum");
184 p[0] = scm_tc16_big;
185
864e7d42
LC
186 GC_REGISTER_FINALIZER_NO_ORDER (p, finalize_bignum, NULL,
187 &prev_finalizer,
188 &prev_finalizer_data);
189
d017fcdf
LC
190 return SCM_PACK (p);
191}
ac0c002c 192
864e7d42 193
189171c5 194SCM
ca46fb90
RB
195scm_i_mkbig ()
196{
197 /* Return a newly created bignum. */
d017fcdf 198 SCM z = make_bignum ();
ca46fb90
RB
199 mpz_init (SCM_I_BIG_MPZ (z));
200 return z;
201}
202
e25f3727
AW
203static SCM
204scm_i_inum2big (scm_t_inum x)
205{
206 /* Return a newly created bignum initialized to X. */
207 SCM z = make_bignum ();
208#if SIZEOF_VOID_P == SIZEOF_LONG
209 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
210#else
211 /* Note that in this case, you'll also have to check all mpz_*_ui and
212 mpz_*_si invocations in Guile. */
213#error creation of mpz not implemented for this inum size
214#endif
215 return z;
216}
217
189171c5 218SCM
c71b0706
MV
219scm_i_long2big (long x)
220{
221 /* Return a newly created bignum initialized to X. */
d017fcdf 222 SCM z = make_bignum ();
c71b0706
MV
223 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
224 return z;
225}
226
189171c5 227SCM
c71b0706
MV
228scm_i_ulong2big (unsigned long x)
229{
230 /* Return a newly created bignum initialized to X. */
d017fcdf 231 SCM z = make_bignum ();
c71b0706
MV
232 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
233 return z;
234}
235
189171c5 236SCM
ca46fb90
RB
237scm_i_clonebig (SCM src_big, int same_sign_p)
238{
239 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
d017fcdf 240 SCM z = make_bignum ();
ca46fb90 241 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
0aacf84e
MD
242 if (!same_sign_p)
243 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
ca46fb90
RB
244 return z;
245}
246
189171c5 247int
ca46fb90
RB
248scm_i_bigcmp (SCM x, SCM y)
249{
250 /* Return neg if x < y, pos if x > y, and 0 if x == y */
251 /* presume we already know x and y are bignums */
252 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
253 scm_remember_upto_here_2 (x, y);
254 return result;
255}
256
189171c5 257SCM
ca46fb90
RB
258scm_i_dbl2big (double d)
259{
260 /* results are only defined if d is an integer */
d017fcdf 261 SCM z = make_bignum ();
ca46fb90
RB
262 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
263 return z;
264}
265
f92e85f7
MV
266/* Convert a integer in double representation to a SCM number. */
267
189171c5 268SCM
f92e85f7
MV
269scm_i_dbl2num (double u)
270{
271 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
272 powers of 2, so there's no rounding when making "double" values
273 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
274 get rounded on a 64-bit machine, hence the "+1".
275
276 The use of floor() to force to an integer value ensures we get a
277 "numerically closest" value without depending on how a
278 double->long cast or how mpz_set_d will round. For reference,
279 double->long probably follows the hardware rounding mode,
280 mpz_set_d truncates towards zero. */
281
282 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
283 representable as a double? */
284
285 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
286 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
e25f3727 287 return SCM_I_MAKINUM ((scm_t_inum) u);
f92e85f7
MV
288 else
289 return scm_i_dbl2big (u);
290}
291
089c9a59
KR
292/* scm_i_big2dbl() rounds to the closest representable double, in accordance
293 with R5RS exact->inexact.
294
295 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
f8a8200b
KR
296 (ie. truncate towards zero), then adjust to get the closest double by
297 examining the next lower bit and adding 1 (to the absolute value) if
298 necessary.
299
300 Bignums exactly half way between representable doubles are rounded to the
301 next higher absolute value (ie. away from zero). This seems like an
302 adequate interpretation of R5RS "numerically closest", and it's easier
303 and faster than a full "nearest-even" style.
304
305 The bit test must be done on the absolute value of the mpz_t, which means
306 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
307 negatives as twos complement.
308
309 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
310 following the hardware rounding mode, but applied to the absolute value
311 of the mpz_t operand. This is not what we want so we put the high
312 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
313 mpz_get_d is supposed to always truncate towards zero.
314
315 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
316 is a slowdown. It'd be faster to pick out the relevant high bits with
317 mpz_getlimbn if we could be bothered coding that, and if the new
318 truncating gmp doesn't come out. */
089c9a59
KR
319
320double
ca46fb90
RB
321scm_i_big2dbl (SCM b)
322{
089c9a59
KR
323 double result;
324 size_t bits;
325
326 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
327
f8a8200b 328#if 1
089c9a59 329 {
f8a8200b 330 /* Current GMP, eg. 4.1.3, force truncation towards zero */
089c9a59
KR
331 mpz_t tmp;
332 if (bits > DBL_MANT_DIG)
333 {
334 size_t shift = bits - DBL_MANT_DIG;
335 mpz_init2 (tmp, DBL_MANT_DIG);
336 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
337 result = ldexp (mpz_get_d (tmp), shift);
338 mpz_clear (tmp);
339 }
340 else
341 {
342 result = mpz_get_d (SCM_I_BIG_MPZ (b));
343 }
344 }
345#else
f8a8200b 346 /* Future GMP */
089c9a59
KR
347 result = mpz_get_d (SCM_I_BIG_MPZ (b));
348#endif
349
350 if (bits > DBL_MANT_DIG)
351 {
352 unsigned long pos = bits - DBL_MANT_DIG - 1;
353 /* test bit number "pos" in absolute value */
354 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
355 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
356 {
357 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
358 }
359 }
360
ca46fb90
RB
361 scm_remember_upto_here_1 (b);
362 return result;
363}
364
189171c5 365SCM
ca46fb90
RB
366scm_i_normbig (SCM b)
367{
368 /* convert a big back to a fixnum if it'll fit */
369 /* presume b is a bignum */
370 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
371 {
e25f3727 372 scm_t_inum val = mpz_get_si (SCM_I_BIG_MPZ (b));
ca46fb90 373 if (SCM_FIXABLE (val))
d956fa6f 374 b = SCM_I_MAKINUM (val);
ca46fb90
RB
375 }
376 return b;
377}
f872b822 378
f92e85f7
MV
379static SCM_C_INLINE_KEYWORD SCM
380scm_i_mpz2num (mpz_t b)
381{
382 /* convert a mpz number to a SCM number. */
383 if (mpz_fits_slong_p (b))
384 {
e25f3727 385 scm_t_inum val = mpz_get_si (b);
f92e85f7 386 if (SCM_FIXABLE (val))
d956fa6f 387 return SCM_I_MAKINUM (val);
f92e85f7
MV
388 }
389
390 {
d017fcdf 391 SCM z = make_bignum ();
f92e85f7
MV
392 mpz_init_set (SCM_I_BIG_MPZ (z), b);
393 return z;
394 }
395}
396
397/* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
398static SCM scm_divide2real (SCM x, SCM y);
399
cba42c93
MV
400static SCM
401scm_i_make_ratio (SCM numerator, SCM denominator)
c60e130c 402#define FUNC_NAME "make-ratio"
f92e85f7 403{
c60e130c
MV
404 /* First make sure the arguments are proper.
405 */
e11e83f3 406 if (SCM_I_INUMP (denominator))
f92e85f7 407 {
bc36d050 408 if (scm_is_eq (denominator, SCM_INUM0))
f92e85f7 409 scm_num_overflow ("make-ratio");
cff5fa33 410 if (scm_is_eq (denominator, SCM_INUM1))
f92e85f7
MV
411 return numerator;
412 }
413 else
414 {
415 if (!(SCM_BIGP(denominator)))
416 SCM_WRONG_TYPE_ARG (2, denominator);
417 }
e11e83f3 418 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
c60e130c
MV
419 SCM_WRONG_TYPE_ARG (1, numerator);
420
421 /* Then flip signs so that the denominator is positive.
422 */
73e4de09 423 if (scm_is_true (scm_negative_p (denominator)))
c60e130c
MV
424 {
425 numerator = scm_difference (numerator, SCM_UNDEFINED);
426 denominator = scm_difference (denominator, SCM_UNDEFINED);
427 }
428
429 /* Now consider for each of the four fixnum/bignum combinations
430 whether the rational number is really an integer.
431 */
e11e83f3 432 if (SCM_I_INUMP (numerator))
f92e85f7 433 {
e25f3727 434 scm_t_inum x = SCM_I_INUM (numerator);
bc36d050 435 if (scm_is_eq (numerator, SCM_INUM0))
f92e85f7 436 return SCM_INUM0;
e11e83f3 437 if (SCM_I_INUMP (denominator))
f92e85f7 438 {
e25f3727 439 scm_t_inum y;
e11e83f3 440 y = SCM_I_INUM (denominator);
f92e85f7 441 if (x == y)
cff5fa33 442 return SCM_INUM1;
f92e85f7 443 if ((x % y) == 0)
d956fa6f 444 return SCM_I_MAKINUM (x / y);
f92e85f7 445 }
dd5130ca
KR
446 else
447 {
448 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
3271a325
KR
449 of that value for the denominator, as a bignum. Apart from
450 that case, abs(bignum) > abs(inum) so inum/bignum is not an
451 integer. */
452 if (x == SCM_MOST_NEGATIVE_FIXNUM
453 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
454 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
d956fa6f 455 return SCM_I_MAKINUM(-1);
dd5130ca 456 }
f92e85f7 457 }
c60e130c 458 else if (SCM_BIGP (numerator))
f92e85f7 459 {
e11e83f3 460 if (SCM_I_INUMP (denominator))
c60e130c 461 {
e25f3727 462 scm_t_inum yy = SCM_I_INUM (denominator);
c60e130c
MV
463 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
464 return scm_divide (numerator, denominator);
465 }
466 else
f92e85f7 467 {
bc36d050 468 if (scm_is_eq (numerator, denominator))
cff5fa33 469 return SCM_INUM1;
c60e130c
MV
470 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
471 SCM_I_BIG_MPZ (denominator)))
472 return scm_divide(numerator, denominator);
f92e85f7 473 }
f92e85f7 474 }
c60e130c
MV
475
476 /* No, it's a proper fraction.
477 */
e2bf3b19
HWN
478 {
479 SCM divisor = scm_gcd (numerator, denominator);
cff5fa33 480 if (!(scm_is_eq (divisor, SCM_INUM1)))
e2bf3b19
HWN
481 {
482 numerator = scm_divide (numerator, divisor);
483 denominator = scm_divide (denominator, divisor);
484 }
485
486 return scm_double_cell (scm_tc16_fraction,
487 SCM_UNPACK (numerator),
488 SCM_UNPACK (denominator), 0);
489 }
f92e85f7 490}
c60e130c 491#undef FUNC_NAME
f92e85f7 492
f92e85f7
MV
493double
494scm_i_fraction2double (SCM z)
495{
55f26379
MV
496 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
497 SCM_FRACTION_DENOMINATOR (z)));
f92e85f7
MV
498}
499
a1ec6916 500SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
1bbd0b84 501 (SCM x),
942e5b91
MG
502 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
503 "otherwise.")
1bbd0b84 504#define FUNC_NAME s_scm_exact_p
0f2d19dd 505{
41df63cf
MW
506 if (SCM_INEXACTP (x))
507 return SCM_BOOL_F;
508 else if (SCM_NUMBERP (x))
0aacf84e 509 return SCM_BOOL_T;
41df63cf
MW
510 else
511 SCM_WRONG_TYPE_ARG (1, x);
512}
513#undef FUNC_NAME
514
515
516SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
517 (SCM x),
518 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
519 "else.")
520#define FUNC_NAME s_scm_inexact_p
521{
522 if (SCM_INEXACTP (x))
f92e85f7 523 return SCM_BOOL_T;
41df63cf 524 else if (SCM_NUMBERP (x))
eb927cb9 525 return SCM_BOOL_F;
41df63cf
MW
526 else
527 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 528}
1bbd0b84 529#undef FUNC_NAME
0f2d19dd 530
4219f20d 531
a1ec6916 532SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
1bbd0b84 533 (SCM n),
942e5b91
MG
534 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
535 "otherwise.")
1bbd0b84 536#define FUNC_NAME s_scm_odd_p
0f2d19dd 537{
e11e83f3 538 if (SCM_I_INUMP (n))
0aacf84e 539 {
e25f3727 540 scm_t_inum val = SCM_I_INUM (n);
73e4de09 541 return scm_from_bool ((val & 1L) != 0);
0aacf84e
MD
542 }
543 else if (SCM_BIGP (n))
544 {
545 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
546 scm_remember_upto_here_1 (n);
73e4de09 547 return scm_from_bool (odd_p);
0aacf84e 548 }
73e4de09 549 else if (scm_is_true (scm_inf_p (n)))
8e43ed5d 550 SCM_WRONG_TYPE_ARG (1, n);
f92e85f7
MV
551 else if (SCM_REALP (n))
552 {
553 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
554 if (rem == 1.0)
555 return SCM_BOOL_T;
556 else if (rem == 0.0)
557 return SCM_BOOL_F;
558 else
559 SCM_WRONG_TYPE_ARG (1, n);
560 }
0aacf84e 561 else
a1a33b0f 562 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 563}
1bbd0b84 564#undef FUNC_NAME
0f2d19dd 565
4219f20d 566
a1ec6916 567SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
1bbd0b84 568 (SCM n),
942e5b91
MG
569 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
570 "otherwise.")
1bbd0b84 571#define FUNC_NAME s_scm_even_p
0f2d19dd 572{
e11e83f3 573 if (SCM_I_INUMP (n))
0aacf84e 574 {
e25f3727 575 scm_t_inum val = SCM_I_INUM (n);
73e4de09 576 return scm_from_bool ((val & 1L) == 0);
0aacf84e
MD
577 }
578 else if (SCM_BIGP (n))
579 {
580 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
581 scm_remember_upto_here_1 (n);
73e4de09 582 return scm_from_bool (even_p);
0aacf84e 583 }
73e4de09 584 else if (scm_is_true (scm_inf_p (n)))
8e43ed5d 585 SCM_WRONG_TYPE_ARG (1, n);
f92e85f7
MV
586 else if (SCM_REALP (n))
587 {
588 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
589 if (rem == 1.0)
590 return SCM_BOOL_F;
591 else if (rem == 0.0)
592 return SCM_BOOL_T;
593 else
594 SCM_WRONG_TYPE_ARG (1, n);
595 }
0aacf84e 596 else
a1a33b0f 597 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 598}
1bbd0b84 599#undef FUNC_NAME
0f2d19dd 600
7112615f
MW
601SCM_DEFINE (scm_finite_p, "finite?", 1, 0, 0,
602 (SCM x),
10391e06
AW
603 "Return @code{#t} if the real number @var{x} is neither\n"
604 "infinite nor a NaN, @code{#f} otherwise.")
7112615f
MW
605#define FUNC_NAME s_scm_finite_p
606{
607 if (SCM_REALP (x))
608 return scm_from_bool (DOUBLE_IS_FINITE (SCM_REAL_VALUE (x)));
10391e06 609 else if (scm_is_real (x))
7112615f
MW
610 return SCM_BOOL_T;
611 else
612 SCM_WRONG_TYPE_ARG (1, x);
613}
614#undef FUNC_NAME
615
7351e207 616SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
b1092b3a 617 (SCM x),
10391e06
AW
618 "Return @code{#t} if the real number @var{x} is @samp{+inf.0} or\n"
619 "@samp{-inf.0}. Otherwise return @code{#f}.")
7351e207
MV
620#define FUNC_NAME s_scm_inf_p
621{
b1092b3a 622 if (SCM_REALP (x))
2e65b52f 623 return scm_from_bool (isinf (SCM_REAL_VALUE (x)));
10391e06 624 else if (scm_is_real (x))
7351e207 625 return SCM_BOOL_F;
10391e06
AW
626 else
627 SCM_WRONG_TYPE_ARG (1, x);
7351e207
MV
628}
629#undef FUNC_NAME
630
631SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
10391e06
AW
632 (SCM x),
633 "Return @code{#t} if the real number @var{x} is a NaN,\n"
634 "or @code{#f} otherwise.")
7351e207
MV
635#define FUNC_NAME s_scm_nan_p
636{
10391e06
AW
637 if (SCM_REALP (x))
638 return scm_from_bool (isnan (SCM_REAL_VALUE (x)));
639 else if (scm_is_real (x))
7351e207 640 return SCM_BOOL_F;
10391e06
AW
641 else
642 SCM_WRONG_TYPE_ARG (1, x);
7351e207
MV
643}
644#undef FUNC_NAME
645
646/* Guile's idea of infinity. */
647static double guile_Inf;
648
649/* Guile's idea of not a number. */
650static double guile_NaN;
651
652static void
653guile_ieee_init (void)
654{
7351e207
MV
655/* Some version of gcc on some old version of Linux used to crash when
656 trying to make Inf and NaN. */
657
240a27d2
KR
658#ifdef INFINITY
659 /* C99 INFINITY, when available.
660 FIXME: The standard allows for INFINITY to be something that overflows
661 at compile time. We ought to have a configure test to check for that
662 before trying to use it. (But in practice we believe this is not a
663 problem on any system guile is likely to target.) */
664 guile_Inf = INFINITY;
56a3dcd4 665#elif defined HAVE_DINFINITY
240a27d2 666 /* OSF */
7351e207 667 extern unsigned int DINFINITY[2];
eaa94eaa 668 guile_Inf = (*((double *) (DINFINITY)));
7351e207
MV
669#else
670 double tmp = 1e+10;
671 guile_Inf = tmp;
672 for (;;)
673 {
674 guile_Inf *= 1e+10;
675 if (guile_Inf == tmp)
676 break;
677 tmp = guile_Inf;
678 }
679#endif
680
240a27d2
KR
681#ifdef NAN
682 /* C99 NAN, when available */
683 guile_NaN = NAN;
56a3dcd4 684#elif defined HAVE_DQNAN
eaa94eaa
LC
685 {
686 /* OSF */
687 extern unsigned int DQNAN[2];
688 guile_NaN = (*((double *)(DQNAN)));
689 }
7351e207
MV
690#else
691 guile_NaN = guile_Inf / guile_Inf;
692#endif
7351e207
MV
693}
694
695SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
696 (void),
697 "Return Inf.")
698#define FUNC_NAME s_scm_inf
699{
700 static int initialized = 0;
701 if (! initialized)
702 {
703 guile_ieee_init ();
704 initialized = 1;
705 }
55f26379 706 return scm_from_double (guile_Inf);
7351e207
MV
707}
708#undef FUNC_NAME
709
710SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
711 (void),
712 "Return NaN.")
713#define FUNC_NAME s_scm_nan
714{
715 static int initialized = 0;
0aacf84e 716 if (!initialized)
7351e207
MV
717 {
718 guile_ieee_init ();
719 initialized = 1;
720 }
55f26379 721 return scm_from_double (guile_NaN);
7351e207
MV
722}
723#undef FUNC_NAME
724
4219f20d 725
a48d60b1
MD
726SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
727 (SCM x),
728 "Return the absolute value of @var{x}.")
729#define FUNC_NAME
0f2d19dd 730{
e11e83f3 731 if (SCM_I_INUMP (x))
0aacf84e 732 {
e25f3727 733 scm_t_inum xx = SCM_I_INUM (x);
0aacf84e
MD
734 if (xx >= 0)
735 return x;
736 else if (SCM_POSFIXABLE (-xx))
d956fa6f 737 return SCM_I_MAKINUM (-xx);
0aacf84e 738 else
e25f3727 739 return scm_i_inum2big (-xx);
4219f20d 740 }
0aacf84e
MD
741 else if (SCM_BIGP (x))
742 {
743 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
744 if (sgn < 0)
745 return scm_i_clonebig (x, 0);
746 else
747 return x;
4219f20d 748 }
0aacf84e 749 else if (SCM_REALP (x))
ae38324d
KR
750 {
751 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
752 double xx = SCM_REAL_VALUE (x);
753 if (xx < 0.0)
55f26379 754 return scm_from_double (-xx);
ae38324d
KR
755 else
756 return x;
757 }
f92e85f7
MV
758 else if (SCM_FRACTIONP (x))
759 {
73e4de09 760 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
f92e85f7 761 return x;
cba42c93 762 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7
MV
763 SCM_FRACTION_DENOMINATOR (x));
764 }
0aacf84e 765 else
a48d60b1 766 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
0f2d19dd 767}
a48d60b1 768#undef FUNC_NAME
0f2d19dd 769
4219f20d 770
9de33deb 771SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
942e5b91
MG
772/* "Return the quotient of the numbers @var{x} and @var{y}."
773 */
0f2d19dd 774SCM
6e8d25a6 775scm_quotient (SCM x, SCM y)
0f2d19dd 776{
e11e83f3 777 if (SCM_I_INUMP (x))
0aacf84e 778 {
e25f3727 779 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 780 if (SCM_I_INUMP (y))
0aacf84e 781 {
e25f3727 782 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
783 if (yy == 0)
784 scm_num_overflow (s_quotient);
785 else
786 {
e25f3727 787 scm_t_inum z = xx / yy;
0aacf84e 788 if (SCM_FIXABLE (z))
d956fa6f 789 return SCM_I_MAKINUM (z);
0aacf84e 790 else
e25f3727 791 return scm_i_inum2big (z);
0aacf84e 792 }
828865c3 793 }
0aacf84e 794 else if (SCM_BIGP (y))
ac0c002c 795 {
e11e83f3 796 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
797 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
798 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
799 {
800 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
801 scm_remember_upto_here_1 (y);
d956fa6f 802 return SCM_I_MAKINUM (-1);
4dc09ee4 803 }
0aacf84e 804 else
cff5fa33 805 return SCM_INUM0;
ac0c002c
DH
806 }
807 else
0aacf84e 808 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
828865c3 809 }
0aacf84e
MD
810 else if (SCM_BIGP (x))
811 {
e11e83f3 812 if (SCM_I_INUMP (y))
0aacf84e 813 {
e25f3727 814 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
815 if (yy == 0)
816 scm_num_overflow (s_quotient);
817 else if (yy == 1)
818 return x;
819 else
820 {
821 SCM result = scm_i_mkbig ();
822 if (yy < 0)
823 {
824 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
825 SCM_I_BIG_MPZ (x),
826 - yy);
827 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
828 }
829 else
830 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
831 scm_remember_upto_here_1 (x);
832 return scm_i_normbig (result);
833 }
834 }
835 else if (SCM_BIGP (y))
836 {
837 SCM result = scm_i_mkbig ();
838 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
839 SCM_I_BIG_MPZ (x),
840 SCM_I_BIG_MPZ (y));
841 scm_remember_upto_here_2 (x, y);
842 return scm_i_normbig (result);
843 }
844 else
845 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
f872b822 846 }
0aacf84e 847 else
89a7e495 848 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
0f2d19dd
JB
849}
850
9de33deb 851SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
942e5b91
MG
852/* "Return the remainder of the numbers @var{x} and @var{y}.\n"
853 * "@lisp\n"
854 * "(remainder 13 4) @result{} 1\n"
855 * "(remainder -13 4) @result{} -1\n"
856 * "@end lisp"
857 */
0f2d19dd 858SCM
6e8d25a6 859scm_remainder (SCM x, SCM y)
0f2d19dd 860{
e11e83f3 861 if (SCM_I_INUMP (x))
0aacf84e 862 {
e11e83f3 863 if (SCM_I_INUMP (y))
0aacf84e 864 {
e25f3727 865 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
866 if (yy == 0)
867 scm_num_overflow (s_remainder);
868 else
869 {
e25f3727 870 scm_t_inum z = SCM_I_INUM (x) % yy;
d956fa6f 871 return SCM_I_MAKINUM (z);
0aacf84e
MD
872 }
873 }
874 else if (SCM_BIGP (y))
ac0c002c 875 {
e11e83f3 876 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
877 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
878 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
879 {
880 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
881 scm_remember_upto_here_1 (y);
cff5fa33 882 return SCM_INUM0;
4dc09ee4 883 }
0aacf84e
MD
884 else
885 return x;
ac0c002c
DH
886 }
887 else
0aacf84e 888 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
89a7e495 889 }
0aacf84e
MD
890 else if (SCM_BIGP (x))
891 {
e11e83f3 892 if (SCM_I_INUMP (y))
0aacf84e 893 {
e25f3727 894 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
895 if (yy == 0)
896 scm_num_overflow (s_remainder);
897 else
898 {
899 SCM result = scm_i_mkbig ();
900 if (yy < 0)
901 yy = - yy;
902 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
903 scm_remember_upto_here_1 (x);
904 return scm_i_normbig (result);
905 }
906 }
907 else if (SCM_BIGP (y))
908 {
909 SCM result = scm_i_mkbig ();
910 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
911 SCM_I_BIG_MPZ (x),
912 SCM_I_BIG_MPZ (y));
913 scm_remember_upto_here_2 (x, y);
914 return scm_i_normbig (result);
915 }
916 else
917 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
f872b822 918 }
0aacf84e 919 else
89a7e495 920 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
0f2d19dd
JB
921}
922
89a7e495 923
9de33deb 924SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
942e5b91
MG
925/* "Return the modulo of the numbers @var{x} and @var{y}.\n"
926 * "@lisp\n"
927 * "(modulo 13 4) @result{} 1\n"
928 * "(modulo -13 4) @result{} 3\n"
929 * "@end lisp"
930 */
0f2d19dd 931SCM
6e8d25a6 932scm_modulo (SCM x, SCM y)
0f2d19dd 933{
e11e83f3 934 if (SCM_I_INUMP (x))
0aacf84e 935 {
e25f3727 936 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 937 if (SCM_I_INUMP (y))
0aacf84e 938 {
e25f3727 939 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
940 if (yy == 0)
941 scm_num_overflow (s_modulo);
942 else
943 {
66b1c775
KR
944 /* C99 specifies that "%" is the remainder corresponding to a
945 quotient rounded towards zero, and that's also traditional
946 for machine division, so z here should be well defined. */
e25f3727
AW
947 scm_t_inum z = xx % yy;
948 scm_t_inum result;
0aacf84e
MD
949
950 if (yy < 0)
951 {
952 if (z > 0)
953 result = z + yy;
954 else
955 result = z;
956 }
957 else
958 {
959 if (z < 0)
960 result = z + yy;
961 else
962 result = z;
963 }
d956fa6f 964 return SCM_I_MAKINUM (result);
0aacf84e
MD
965 }
966 }
967 else if (SCM_BIGP (y))
968 {
969 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
0aacf84e
MD
970 {
971 mpz_t z_x;
972 SCM result;
973
974 if (sgn_y < 0)
975 {
976 SCM pos_y = scm_i_clonebig (y, 0);
977 /* do this after the last scm_op */
978 mpz_init_set_si (z_x, xx);
979 result = pos_y; /* re-use this bignum */
980 mpz_mod (SCM_I_BIG_MPZ (result),
981 z_x,
982 SCM_I_BIG_MPZ (pos_y));
983 scm_remember_upto_here_1 (pos_y);
984 }
985 else
986 {
987 result = scm_i_mkbig ();
988 /* do this after the last scm_op */
989 mpz_init_set_si (z_x, xx);
990 mpz_mod (SCM_I_BIG_MPZ (result),
991 z_x,
992 SCM_I_BIG_MPZ (y));
993 scm_remember_upto_here_1 (y);
994 }
ca46fb90 995
0aacf84e
MD
996 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
997 mpz_add (SCM_I_BIG_MPZ (result),
998 SCM_I_BIG_MPZ (y),
999 SCM_I_BIG_MPZ (result));
1000 scm_remember_upto_here_1 (y);
1001 /* and do this before the next one */
1002 mpz_clear (z_x);
1003 return scm_i_normbig (result);
1004 }
1005 }
1006 else
1007 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
f872b822 1008 }
0aacf84e
MD
1009 else if (SCM_BIGP (x))
1010 {
e11e83f3 1011 if (SCM_I_INUMP (y))
0aacf84e 1012 {
e25f3727 1013 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
1014 if (yy == 0)
1015 scm_num_overflow (s_modulo);
1016 else
1017 {
1018 SCM result = scm_i_mkbig ();
1019 mpz_mod_ui (SCM_I_BIG_MPZ (result),
1020 SCM_I_BIG_MPZ (x),
1021 (yy < 0) ? - yy : yy);
1022 scm_remember_upto_here_1 (x);
1023 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
1024 mpz_sub_ui (SCM_I_BIG_MPZ (result),
1025 SCM_I_BIG_MPZ (result),
1026 - yy);
1027 return scm_i_normbig (result);
1028 }
1029 }
1030 else if (SCM_BIGP (y))
1031 {
0aacf84e
MD
1032 {
1033 SCM result = scm_i_mkbig ();
1034 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
1035 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
1036 mpz_mod (SCM_I_BIG_MPZ (result),
1037 SCM_I_BIG_MPZ (x),
1038 SCM_I_BIG_MPZ (pos_y));
ca46fb90 1039
0aacf84e
MD
1040 scm_remember_upto_here_1 (x);
1041 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
1042 mpz_add (SCM_I_BIG_MPZ (result),
1043 SCM_I_BIG_MPZ (y),
1044 SCM_I_BIG_MPZ (result));
1045 scm_remember_upto_here_2 (y, pos_y);
1046 return scm_i_normbig (result);
1047 }
1048 }
1049 else
1050 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
828865c3 1051 }
0aacf84e 1052 else
09fb7599 1053 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
0f2d19dd
JB
1054}
1055
78d3deb1
AW
1056SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
1057 (SCM x, SCM y, SCM rest),
1058 "Return the greatest common divisor of all parameter values.\n"
1059 "If called without arguments, 0 is returned.")
1060#define FUNC_NAME s_scm_i_gcd
1061{
1062 while (!scm_is_null (rest))
1063 { x = scm_gcd (x, y);
1064 y = scm_car (rest);
1065 rest = scm_cdr (rest);
1066 }
1067 return scm_gcd (x, y);
1068}
1069#undef FUNC_NAME
1070
1071#define s_gcd s_scm_i_gcd
1072#define g_gcd g_scm_i_gcd
1073
0f2d19dd 1074SCM
6e8d25a6 1075scm_gcd (SCM x, SCM y)
0f2d19dd 1076{
ca46fb90 1077 if (SCM_UNBNDP (y))
1dd79792 1078 return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
ca46fb90 1079
e11e83f3 1080 if (SCM_I_INUMP (x))
ca46fb90 1081 {
e11e83f3 1082 if (SCM_I_INUMP (y))
ca46fb90 1083 {
e25f3727
AW
1084 scm_t_inum xx = SCM_I_INUM (x);
1085 scm_t_inum yy = SCM_I_INUM (y);
1086 scm_t_inum u = xx < 0 ? -xx : xx;
1087 scm_t_inum v = yy < 0 ? -yy : yy;
1088 scm_t_inum result;
0aacf84e
MD
1089 if (xx == 0)
1090 result = v;
1091 else if (yy == 0)
1092 result = u;
1093 else
1094 {
e25f3727
AW
1095 scm_t_inum k = 1;
1096 scm_t_inum t;
0aacf84e
MD
1097 /* Determine a common factor 2^k */
1098 while (!(1 & (u | v)))
1099 {
1100 k <<= 1;
1101 u >>= 1;
1102 v >>= 1;
1103 }
1104 /* Now, any factor 2^n can be eliminated */
1105 if (u & 1)
1106 t = -v;
1107 else
1108 {
1109 t = u;
1110 b3:
1111 t = SCM_SRS (t, 1);
1112 }
1113 if (!(1 & t))
1114 goto b3;
1115 if (t > 0)
1116 u = t;
1117 else
1118 v = -t;
1119 t = u - v;
1120 if (t != 0)
1121 goto b3;
1122 result = u * k;
1123 }
1124 return (SCM_POSFIXABLE (result)
d956fa6f 1125 ? SCM_I_MAKINUM (result)
e25f3727 1126 : scm_i_inum2big (result));
ca46fb90
RB
1127 }
1128 else if (SCM_BIGP (y))
1129 {
0bff4dce
KR
1130 SCM_SWAP (x, y);
1131 goto big_inum;
ca46fb90
RB
1132 }
1133 else
1134 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
f872b822 1135 }
ca46fb90
RB
1136 else if (SCM_BIGP (x))
1137 {
e11e83f3 1138 if (SCM_I_INUMP (y))
ca46fb90 1139 {
e25f3727
AW
1140 scm_t_bits result;
1141 scm_t_inum yy;
0bff4dce 1142 big_inum:
e11e83f3 1143 yy = SCM_I_INUM (y);
8c5b0afc
KR
1144 if (yy == 0)
1145 return scm_abs (x);
0aacf84e
MD
1146 if (yy < 0)
1147 yy = -yy;
ca46fb90
RB
1148 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1149 scm_remember_upto_here_1 (x);
0aacf84e 1150 return (SCM_POSFIXABLE (result)
d956fa6f 1151 ? SCM_I_MAKINUM (result)
e25f3727 1152 : scm_from_unsigned_integer (result));
ca46fb90
RB
1153 }
1154 else if (SCM_BIGP (y))
1155 {
1156 SCM result = scm_i_mkbig ();
0aacf84e
MD
1157 mpz_gcd (SCM_I_BIG_MPZ (result),
1158 SCM_I_BIG_MPZ (x),
1159 SCM_I_BIG_MPZ (y));
1160 scm_remember_upto_here_2 (x, y);
ca46fb90
RB
1161 return scm_i_normbig (result);
1162 }
1163 else
1164 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
09fb7599 1165 }
ca46fb90 1166 else
09fb7599 1167 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
0f2d19dd
JB
1168}
1169
78d3deb1
AW
1170SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
1171 (SCM x, SCM y, SCM rest),
1172 "Return the least common multiple of the arguments.\n"
1173 "If called without arguments, 1 is returned.")
1174#define FUNC_NAME s_scm_i_lcm
1175{
1176 while (!scm_is_null (rest))
1177 { x = scm_lcm (x, y);
1178 y = scm_car (rest);
1179 rest = scm_cdr (rest);
1180 }
1181 return scm_lcm (x, y);
1182}
1183#undef FUNC_NAME
1184
1185#define s_lcm s_scm_i_lcm
1186#define g_lcm g_scm_i_lcm
1187
0f2d19dd 1188SCM
6e8d25a6 1189scm_lcm (SCM n1, SCM n2)
0f2d19dd 1190{
ca46fb90
RB
1191 if (SCM_UNBNDP (n2))
1192 {
1193 if (SCM_UNBNDP (n1))
d956fa6f
MV
1194 return SCM_I_MAKINUM (1L);
1195 n2 = SCM_I_MAKINUM (1L);
09fb7599 1196 }
09fb7599 1197
e11e83f3 1198 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
ca46fb90 1199 g_lcm, n1, n2, SCM_ARG1, s_lcm);
e11e83f3 1200 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
ca46fb90 1201 g_lcm, n1, n2, SCM_ARGn, s_lcm);
09fb7599 1202
e11e83f3 1203 if (SCM_I_INUMP (n1))
ca46fb90 1204 {
e11e83f3 1205 if (SCM_I_INUMP (n2))
ca46fb90
RB
1206 {
1207 SCM d = scm_gcd (n1, n2);
bc36d050 1208 if (scm_is_eq (d, SCM_INUM0))
ca46fb90
RB
1209 return d;
1210 else
1211 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1212 }
1213 else
1214 {
1215 /* inum n1, big n2 */
1216 inumbig:
1217 {
1218 SCM result = scm_i_mkbig ();
e25f3727 1219 scm_t_inum nn1 = SCM_I_INUM (n1);
ca46fb90
RB
1220 if (nn1 == 0) return SCM_INUM0;
1221 if (nn1 < 0) nn1 = - nn1;
1222 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1223 scm_remember_upto_here_1 (n2);
1224 return result;
1225 }
1226 }
1227 }
1228 else
1229 {
1230 /* big n1 */
e11e83f3 1231 if (SCM_I_INUMP (n2))
ca46fb90
RB
1232 {
1233 SCM_SWAP (n1, n2);
1234 goto inumbig;
1235 }
1236 else
1237 {
1238 SCM result = scm_i_mkbig ();
1239 mpz_lcm(SCM_I_BIG_MPZ (result),
1240 SCM_I_BIG_MPZ (n1),
1241 SCM_I_BIG_MPZ (n2));
1242 scm_remember_upto_here_2(n1, n2);
1243 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1244 return result;
1245 }
f872b822 1246 }
0f2d19dd
JB
1247}
1248
8a525303
GB
1249/* Emulating 2's complement bignums with sign magnitude arithmetic:
1250
1251 Logand:
1252 X Y Result Method:
1253 (len)
1254 + + + x (map digit:logand X Y)
1255 + - + x (map digit:logand X (lognot (+ -1 Y)))
1256 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1257 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1258
1259 Logior:
1260 X Y Result Method:
1261
1262 + + + (map digit:logior X Y)
1263 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1264 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1265 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1266
1267 Logxor:
1268 X Y Result Method:
1269
1270 + + + (map digit:logxor X Y)
1271 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1272 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1273 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1274
1275 Logtest:
1276 X Y Result
1277
1278 + + (any digit:logand X Y)
1279 + - (any digit:logand X (lognot (+ -1 Y)))
1280 - + (any digit:logand (lognot (+ -1 X)) Y)
1281 - - #t
1282
1283*/
1284
78d3deb1
AW
1285SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
1286 (SCM x, SCM y, SCM rest),
1287 "Return the bitwise AND of the integer arguments.\n\n"
1288 "@lisp\n"
1289 "(logand) @result{} -1\n"
1290 "(logand 7) @result{} 7\n"
1291 "(logand #b111 #b011 #b001) @result{} 1\n"
1292 "@end lisp")
1293#define FUNC_NAME s_scm_i_logand
1294{
1295 while (!scm_is_null (rest))
1296 { x = scm_logand (x, y);
1297 y = scm_car (rest);
1298 rest = scm_cdr (rest);
1299 }
1300 return scm_logand (x, y);
1301}
1302#undef FUNC_NAME
1303
1304#define s_scm_logand s_scm_i_logand
1305
1306SCM scm_logand (SCM n1, SCM n2)
1bbd0b84 1307#define FUNC_NAME s_scm_logand
0f2d19dd 1308{
e25f3727 1309 scm_t_inum nn1;
9a00c9fc 1310
0aacf84e
MD
1311 if (SCM_UNBNDP (n2))
1312 {
1313 if (SCM_UNBNDP (n1))
d956fa6f 1314 return SCM_I_MAKINUM (-1);
0aacf84e
MD
1315 else if (!SCM_NUMBERP (n1))
1316 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1317 else if (SCM_NUMBERP (n1))
1318 return n1;
1319 else
1320 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1321 }
09fb7599 1322
e11e83f3 1323 if (SCM_I_INUMP (n1))
0aacf84e 1324 {
e11e83f3
MV
1325 nn1 = SCM_I_INUM (n1);
1326 if (SCM_I_INUMP (n2))
0aacf84e 1327 {
e25f3727 1328 scm_t_inum nn2 = SCM_I_INUM (n2);
d956fa6f 1329 return SCM_I_MAKINUM (nn1 & nn2);
0aacf84e
MD
1330 }
1331 else if SCM_BIGP (n2)
1332 {
1333 intbig:
1334 if (n1 == 0)
1335 return SCM_INUM0;
1336 {
1337 SCM result_z = scm_i_mkbig ();
1338 mpz_t nn1_z;
1339 mpz_init_set_si (nn1_z, nn1);
1340 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1341 scm_remember_upto_here_1 (n2);
1342 mpz_clear (nn1_z);
1343 return scm_i_normbig (result_z);
1344 }
1345 }
1346 else
1347 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1348 }
1349 else if (SCM_BIGP (n1))
1350 {
e11e83f3 1351 if (SCM_I_INUMP (n2))
0aacf84e
MD
1352 {
1353 SCM_SWAP (n1, n2);
e11e83f3 1354 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1355 goto intbig;
1356 }
1357 else if (SCM_BIGP (n2))
1358 {
1359 SCM result_z = scm_i_mkbig ();
1360 mpz_and (SCM_I_BIG_MPZ (result_z),
1361 SCM_I_BIG_MPZ (n1),
1362 SCM_I_BIG_MPZ (n2));
1363 scm_remember_upto_here_2 (n1, n2);
1364 return scm_i_normbig (result_z);
1365 }
1366 else
1367 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1368 }
0aacf84e 1369 else
09fb7599 1370 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1371}
1bbd0b84 1372#undef FUNC_NAME
0f2d19dd 1373
09fb7599 1374
78d3deb1
AW
1375SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
1376 (SCM x, SCM y, SCM rest),
1377 "Return the bitwise OR of the integer arguments.\n\n"
1378 "@lisp\n"
1379 "(logior) @result{} 0\n"
1380 "(logior 7) @result{} 7\n"
1381 "(logior #b000 #b001 #b011) @result{} 3\n"
1382 "@end lisp")
1383#define FUNC_NAME s_scm_i_logior
1384{
1385 while (!scm_is_null (rest))
1386 { x = scm_logior (x, y);
1387 y = scm_car (rest);
1388 rest = scm_cdr (rest);
1389 }
1390 return scm_logior (x, y);
1391}
1392#undef FUNC_NAME
1393
1394#define s_scm_logior s_scm_i_logior
1395
1396SCM scm_logior (SCM n1, SCM n2)
1bbd0b84 1397#define FUNC_NAME s_scm_logior
0f2d19dd 1398{
e25f3727 1399 scm_t_inum nn1;
9a00c9fc 1400
0aacf84e
MD
1401 if (SCM_UNBNDP (n2))
1402 {
1403 if (SCM_UNBNDP (n1))
1404 return SCM_INUM0;
1405 else if (SCM_NUMBERP (n1))
1406 return n1;
1407 else
1408 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1409 }
09fb7599 1410
e11e83f3 1411 if (SCM_I_INUMP (n1))
0aacf84e 1412 {
e11e83f3
MV
1413 nn1 = SCM_I_INUM (n1);
1414 if (SCM_I_INUMP (n2))
0aacf84e 1415 {
e11e83f3 1416 long nn2 = SCM_I_INUM (n2);
d956fa6f 1417 return SCM_I_MAKINUM (nn1 | nn2);
0aacf84e
MD
1418 }
1419 else if (SCM_BIGP (n2))
1420 {
1421 intbig:
1422 if (nn1 == 0)
1423 return n2;
1424 {
1425 SCM result_z = scm_i_mkbig ();
1426 mpz_t nn1_z;
1427 mpz_init_set_si (nn1_z, nn1);
1428 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1429 scm_remember_upto_here_1 (n2);
1430 mpz_clear (nn1_z);
9806de0d 1431 return scm_i_normbig (result_z);
0aacf84e
MD
1432 }
1433 }
1434 else
1435 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1436 }
1437 else if (SCM_BIGP (n1))
1438 {
e11e83f3 1439 if (SCM_I_INUMP (n2))
0aacf84e
MD
1440 {
1441 SCM_SWAP (n1, n2);
e11e83f3 1442 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1443 goto intbig;
1444 }
1445 else if (SCM_BIGP (n2))
1446 {
1447 SCM result_z = scm_i_mkbig ();
1448 mpz_ior (SCM_I_BIG_MPZ (result_z),
1449 SCM_I_BIG_MPZ (n1),
1450 SCM_I_BIG_MPZ (n2));
1451 scm_remember_upto_here_2 (n1, n2);
9806de0d 1452 return scm_i_normbig (result_z);
0aacf84e
MD
1453 }
1454 else
1455 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1456 }
0aacf84e 1457 else
09fb7599 1458 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1459}
1bbd0b84 1460#undef FUNC_NAME
0f2d19dd 1461
09fb7599 1462
78d3deb1
AW
1463SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
1464 (SCM x, SCM y, SCM rest),
3c3db128
GH
1465 "Return the bitwise XOR of the integer arguments. A bit is\n"
1466 "set in the result if it is set in an odd number of arguments.\n"
1467 "@lisp\n"
1468 "(logxor) @result{} 0\n"
1469 "(logxor 7) @result{} 7\n"
1470 "(logxor #b000 #b001 #b011) @result{} 2\n"
1471 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1e6808ea 1472 "@end lisp")
78d3deb1
AW
1473#define FUNC_NAME s_scm_i_logxor
1474{
1475 while (!scm_is_null (rest))
1476 { x = scm_logxor (x, y);
1477 y = scm_car (rest);
1478 rest = scm_cdr (rest);
1479 }
1480 return scm_logxor (x, y);
1481}
1482#undef FUNC_NAME
1483
1484#define s_scm_logxor s_scm_i_logxor
1485
1486SCM scm_logxor (SCM n1, SCM n2)
1bbd0b84 1487#define FUNC_NAME s_scm_logxor
0f2d19dd 1488{
e25f3727 1489 scm_t_inum nn1;
9a00c9fc 1490
0aacf84e
MD
1491 if (SCM_UNBNDP (n2))
1492 {
1493 if (SCM_UNBNDP (n1))
1494 return SCM_INUM0;
1495 else if (SCM_NUMBERP (n1))
1496 return n1;
1497 else
1498 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1499 }
09fb7599 1500
e11e83f3 1501 if (SCM_I_INUMP (n1))
0aacf84e 1502 {
e11e83f3
MV
1503 nn1 = SCM_I_INUM (n1);
1504 if (SCM_I_INUMP (n2))
0aacf84e 1505 {
e25f3727 1506 scm_t_inum nn2 = SCM_I_INUM (n2);
d956fa6f 1507 return SCM_I_MAKINUM (nn1 ^ nn2);
0aacf84e
MD
1508 }
1509 else if (SCM_BIGP (n2))
1510 {
1511 intbig:
1512 {
1513 SCM result_z = scm_i_mkbig ();
1514 mpz_t nn1_z;
1515 mpz_init_set_si (nn1_z, nn1);
1516 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1517 scm_remember_upto_here_1 (n2);
1518 mpz_clear (nn1_z);
1519 return scm_i_normbig (result_z);
1520 }
1521 }
1522 else
1523 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1524 }
1525 else if (SCM_BIGP (n1))
1526 {
e11e83f3 1527 if (SCM_I_INUMP (n2))
0aacf84e
MD
1528 {
1529 SCM_SWAP (n1, n2);
e11e83f3 1530 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1531 goto intbig;
1532 }
1533 else if (SCM_BIGP (n2))
1534 {
1535 SCM result_z = scm_i_mkbig ();
1536 mpz_xor (SCM_I_BIG_MPZ (result_z),
1537 SCM_I_BIG_MPZ (n1),
1538 SCM_I_BIG_MPZ (n2));
1539 scm_remember_upto_here_2 (n1, n2);
1540 return scm_i_normbig (result_z);
1541 }
1542 else
1543 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1544 }
0aacf84e 1545 else
09fb7599 1546 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1547}
1bbd0b84 1548#undef FUNC_NAME
0f2d19dd 1549
09fb7599 1550
a1ec6916 1551SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1e6808ea 1552 (SCM j, SCM k),
ba6e7231
KR
1553 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
1554 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
1555 "without actually calculating the @code{logand}, just testing\n"
1556 "for non-zero.\n"
1557 "\n"
1e6808ea 1558 "@lisp\n"
b380b885
MD
1559 "(logtest #b0100 #b1011) @result{} #f\n"
1560 "(logtest #b0100 #b0111) @result{} #t\n"
1e6808ea 1561 "@end lisp")
1bbd0b84 1562#define FUNC_NAME s_scm_logtest
0f2d19dd 1563{
e25f3727 1564 scm_t_inum nj;
9a00c9fc 1565
e11e83f3 1566 if (SCM_I_INUMP (j))
0aacf84e 1567 {
e11e83f3
MV
1568 nj = SCM_I_INUM (j);
1569 if (SCM_I_INUMP (k))
0aacf84e 1570 {
e25f3727 1571 scm_t_inum nk = SCM_I_INUM (k);
73e4de09 1572 return scm_from_bool (nj & nk);
0aacf84e
MD
1573 }
1574 else if (SCM_BIGP (k))
1575 {
1576 intbig:
1577 if (nj == 0)
1578 return SCM_BOOL_F;
1579 {
1580 SCM result;
1581 mpz_t nj_z;
1582 mpz_init_set_si (nj_z, nj);
1583 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1584 scm_remember_upto_here_1 (k);
73e4de09 1585 result = scm_from_bool (mpz_sgn (nj_z) != 0);
0aacf84e
MD
1586 mpz_clear (nj_z);
1587 return result;
1588 }
1589 }
1590 else
1591 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1592 }
1593 else if (SCM_BIGP (j))
1594 {
e11e83f3 1595 if (SCM_I_INUMP (k))
0aacf84e
MD
1596 {
1597 SCM_SWAP (j, k);
e11e83f3 1598 nj = SCM_I_INUM (j);
0aacf84e
MD
1599 goto intbig;
1600 }
1601 else if (SCM_BIGP (k))
1602 {
1603 SCM result;
1604 mpz_t result_z;
1605 mpz_init (result_z);
1606 mpz_and (result_z,
1607 SCM_I_BIG_MPZ (j),
1608 SCM_I_BIG_MPZ (k));
1609 scm_remember_upto_here_2 (j, k);
73e4de09 1610 result = scm_from_bool (mpz_sgn (result_z) != 0);
0aacf84e
MD
1611 mpz_clear (result_z);
1612 return result;
1613 }
1614 else
1615 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1616 }
1617 else
1618 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
0f2d19dd 1619}
1bbd0b84 1620#undef FUNC_NAME
0f2d19dd 1621
c1bfcf60 1622
a1ec6916 1623SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
2cd04b42 1624 (SCM index, SCM j),
ba6e7231
KR
1625 "Test whether bit number @var{index} in @var{j} is set.\n"
1626 "@var{index} starts from 0 for the least significant bit.\n"
1627 "\n"
1e6808ea 1628 "@lisp\n"
b380b885
MD
1629 "(logbit? 0 #b1101) @result{} #t\n"
1630 "(logbit? 1 #b1101) @result{} #f\n"
1631 "(logbit? 2 #b1101) @result{} #t\n"
1632 "(logbit? 3 #b1101) @result{} #t\n"
1633 "(logbit? 4 #b1101) @result{} #f\n"
1e6808ea 1634 "@end lisp")
1bbd0b84 1635#define FUNC_NAME s_scm_logbit_p
0f2d19dd 1636{
78166ad5 1637 unsigned long int iindex;
5efd3c7d 1638 iindex = scm_to_ulong (index);
78166ad5 1639
e11e83f3 1640 if (SCM_I_INUMP (j))
0d75f6d8
KR
1641 {
1642 /* bits above what's in an inum follow the sign bit */
20fcc8ed 1643 iindex = min (iindex, SCM_LONG_BIT - 1);
e11e83f3 1644 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
0d75f6d8 1645 }
0aacf84e
MD
1646 else if (SCM_BIGP (j))
1647 {
1648 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1649 scm_remember_upto_here_1 (j);
73e4de09 1650 return scm_from_bool (val);
0aacf84e
MD
1651 }
1652 else
78166ad5 1653 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
0f2d19dd 1654}
1bbd0b84 1655#undef FUNC_NAME
0f2d19dd 1656
78166ad5 1657
a1ec6916 1658SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1bbd0b84 1659 (SCM n),
4d814788 1660 "Return the integer which is the ones-complement of the integer\n"
1e6808ea
MG
1661 "argument.\n"
1662 "\n"
b380b885
MD
1663 "@lisp\n"
1664 "(number->string (lognot #b10000000) 2)\n"
1665 " @result{} \"-10000001\"\n"
1666 "(number->string (lognot #b0) 2)\n"
1667 " @result{} \"-1\"\n"
1e6808ea 1668 "@end lisp")
1bbd0b84 1669#define FUNC_NAME s_scm_lognot
0f2d19dd 1670{
e11e83f3 1671 if (SCM_I_INUMP (n)) {
f9811f9f
KR
1672 /* No overflow here, just need to toggle all the bits making up the inum.
1673 Enhancement: No need to strip the tag and add it back, could just xor
1674 a block of 1 bits, if that worked with the various debug versions of
1675 the SCM typedef. */
e11e83f3 1676 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
f9811f9f
KR
1677
1678 } else if (SCM_BIGP (n)) {
1679 SCM result = scm_i_mkbig ();
1680 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1681 scm_remember_upto_here_1 (n);
1682 return result;
1683
1684 } else {
1685 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1686 }
0f2d19dd 1687}
1bbd0b84 1688#undef FUNC_NAME
0f2d19dd 1689
518b7508
KR
1690/* returns 0 if IN is not an integer. OUT must already be
1691 initialized. */
1692static int
1693coerce_to_big (SCM in, mpz_t out)
1694{
1695 if (SCM_BIGP (in))
1696 mpz_set (out, SCM_I_BIG_MPZ (in));
e11e83f3
MV
1697 else if (SCM_I_INUMP (in))
1698 mpz_set_si (out, SCM_I_INUM (in));
518b7508
KR
1699 else
1700 return 0;
1701
1702 return 1;
1703}
1704
d885e204 1705SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
518b7508
KR
1706 (SCM n, SCM k, SCM m),
1707 "Return @var{n} raised to the integer exponent\n"
1708 "@var{k}, modulo @var{m}.\n"
1709 "\n"
1710 "@lisp\n"
1711 "(modulo-expt 2 3 5)\n"
1712 " @result{} 3\n"
1713 "@end lisp")
d885e204 1714#define FUNC_NAME s_scm_modulo_expt
518b7508
KR
1715{
1716 mpz_t n_tmp;
1717 mpz_t k_tmp;
1718 mpz_t m_tmp;
1719
1720 /* There are two classes of error we might encounter --
1721 1) Math errors, which we'll report by calling scm_num_overflow,
1722 and
1723 2) wrong-type errors, which of course we'll report by calling
1724 SCM_WRONG_TYPE_ARG.
1725 We don't report those errors immediately, however; instead we do
1726 some cleanup first. These variables tell us which error (if
1727 any) we should report after cleaning up.
1728 */
1729 int report_overflow = 0;
1730
1731 int position_of_wrong_type = 0;
1732 SCM value_of_wrong_type = SCM_INUM0;
1733
1734 SCM result = SCM_UNDEFINED;
1735
1736 mpz_init (n_tmp);
1737 mpz_init (k_tmp);
1738 mpz_init (m_tmp);
1739
bc36d050 1740 if (scm_is_eq (m, SCM_INUM0))
518b7508
KR
1741 {
1742 report_overflow = 1;
1743 goto cleanup;
1744 }
1745
1746 if (!coerce_to_big (n, n_tmp))
1747 {
1748 value_of_wrong_type = n;
1749 position_of_wrong_type = 1;
1750 goto cleanup;
1751 }
1752
1753 if (!coerce_to_big (k, k_tmp))
1754 {
1755 value_of_wrong_type = k;
1756 position_of_wrong_type = 2;
1757 goto cleanup;
1758 }
1759
1760 if (!coerce_to_big (m, m_tmp))
1761 {
1762 value_of_wrong_type = m;
1763 position_of_wrong_type = 3;
1764 goto cleanup;
1765 }
1766
1767 /* if the exponent K is negative, and we simply call mpz_powm, we
1768 will get a divide-by-zero exception when an inverse 1/n mod m
1769 doesn't exist (or is not unique). Since exceptions are hard to
1770 handle, we'll attempt the inversion "by hand" -- that way, we get
1771 a simple failure code, which is easy to handle. */
1772
1773 if (-1 == mpz_sgn (k_tmp))
1774 {
1775 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1776 {
1777 report_overflow = 1;
1778 goto cleanup;
1779 }
1780 mpz_neg (k_tmp, k_tmp);
1781 }
1782
1783 result = scm_i_mkbig ();
1784 mpz_powm (SCM_I_BIG_MPZ (result),
1785 n_tmp,
1786 k_tmp,
1787 m_tmp);
b7b8c575
KR
1788
1789 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1790 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1791
518b7508
KR
1792 cleanup:
1793 mpz_clear (m_tmp);
1794 mpz_clear (k_tmp);
1795 mpz_clear (n_tmp);
1796
1797 if (report_overflow)
1798 scm_num_overflow (FUNC_NAME);
1799
1800 if (position_of_wrong_type)
1801 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1802 value_of_wrong_type);
1803
1804 return scm_i_normbig (result);
1805}
1806#undef FUNC_NAME
1807
a1ec6916 1808SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
2cd04b42 1809 (SCM n, SCM k),
ba6e7231
KR
1810 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
1811 "exact integer, @var{n} can be any number.\n"
1812 "\n"
1813 "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
1814 "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
1815 "includes @math{0^0} is 1.\n"
1e6808ea 1816 "\n"
b380b885 1817 "@lisp\n"
ba6e7231
KR
1818 "(integer-expt 2 5) @result{} 32\n"
1819 "(integer-expt -3 3) @result{} -27\n"
1820 "(integer-expt 5 -3) @result{} 1/125\n"
1821 "(integer-expt 0 0) @result{} 1\n"
b380b885 1822 "@end lisp")
1bbd0b84 1823#define FUNC_NAME s_scm_integer_expt
0f2d19dd 1824{
e25f3727 1825 scm_t_inum i2 = 0;
1c35cb19
RB
1826 SCM z_i2 = SCM_BOOL_F;
1827 int i2_is_big = 0;
d956fa6f 1828 SCM acc = SCM_I_MAKINUM (1L);
ca46fb90 1829
5a8fc758 1830 SCM_VALIDATE_NUMBER (SCM_ARG1, n);
01c7284a
MW
1831 if (!SCM_I_INUMP (k) && !SCM_BIGP (k))
1832 SCM_WRONG_TYPE_ARG (2, k);
5a8fc758 1833
01c7284a
MW
1834 if (scm_is_true (scm_zero_p (n)))
1835 {
1836 if (scm_is_true (scm_zero_p (k))) /* 0^0 == 1 per R5RS */
1837 return acc; /* return exact 1, regardless of n */
1838 else if (scm_is_true (scm_positive_p (k)))
1839 return n;
1840 else /* return NaN for (0 ^ k) for negative k per R6RS */
1841 return scm_nan ();
1842 }
1843 else if (scm_is_eq (n, acc))
1844 return acc;
bc36d050 1845 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
73e4de09 1846 return scm_is_false (scm_even_p (k)) ? n : acc;
ca46fb90 1847
e11e83f3
MV
1848 if (SCM_I_INUMP (k))
1849 i2 = SCM_I_INUM (k);
ca46fb90
RB
1850 else if (SCM_BIGP (k))
1851 {
1852 z_i2 = scm_i_clonebig (k, 1);
ca46fb90
RB
1853 scm_remember_upto_here_1 (k);
1854 i2_is_big = 1;
1855 }
2830fd91 1856 else
ca46fb90
RB
1857 SCM_WRONG_TYPE_ARG (2, k);
1858
1859 if (i2_is_big)
f872b822 1860 {
ca46fb90
RB
1861 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1862 {
1863 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1864 n = scm_divide (n, SCM_UNDEFINED);
1865 }
1866 while (1)
1867 {
1868 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1869 {
ca46fb90
RB
1870 return acc;
1871 }
1872 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1873 {
ca46fb90
RB
1874 return scm_product (acc, n);
1875 }
1876 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1877 acc = scm_product (acc, n);
1878 n = scm_product (n, n);
1879 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1880 }
f872b822 1881 }
ca46fb90 1882 else
f872b822 1883 {
ca46fb90
RB
1884 if (i2 < 0)
1885 {
1886 i2 = -i2;
1887 n = scm_divide (n, SCM_UNDEFINED);
1888 }
1889 while (1)
1890 {
1891 if (0 == i2)
1892 return acc;
1893 if (1 == i2)
1894 return scm_product (acc, n);
1895 if (i2 & 1)
1896 acc = scm_product (acc, n);
1897 n = scm_product (n, n);
1898 i2 >>= 1;
1899 }
f872b822 1900 }
0f2d19dd 1901}
1bbd0b84 1902#undef FUNC_NAME
0f2d19dd 1903
a1ec6916 1904SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1bbd0b84 1905 (SCM n, SCM cnt),
32f19569
KR
1906 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1907 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1e6808ea 1908 "\n"
e7644cb2 1909 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
32f19569
KR
1910 "@var{cnt} is negative it's a division, rounded towards negative\n"
1911 "infinity. (Note that this is not the same rounding as\n"
1912 "@code{quotient} does.)\n"
1913 "\n"
1914 "With @var{n} viewed as an infinite precision twos complement,\n"
1915 "@code{ash} means a left shift introducing zero bits, or a right\n"
1916 "shift dropping bits.\n"
1e6808ea 1917 "\n"
b380b885 1918 "@lisp\n"
1e6808ea
MG
1919 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1920 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
32f19569
KR
1921 "\n"
1922 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1923 "(ash -23 -2) @result{} -6\n"
a3c8b9fc 1924 "@end lisp")
1bbd0b84 1925#define FUNC_NAME s_scm_ash
0f2d19dd 1926{
3ab9f56e 1927 long bits_to_shift;
5efd3c7d 1928 bits_to_shift = scm_to_long (cnt);
ca46fb90 1929
788aca27
KR
1930 if (SCM_I_INUMP (n))
1931 {
e25f3727 1932 scm_t_inum nn = SCM_I_INUM (n);
788aca27
KR
1933
1934 if (bits_to_shift > 0)
1935 {
1936 /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
1937 overflow a non-zero fixnum. For smaller shifts we check the
1938 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
1939 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
1940 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
1941 bits_to_shift)". */
1942
1943 if (nn == 0)
1944 return n;
1945
1946 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
e25f3727 1947 && ((scm_t_bits)
788aca27
KR
1948 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
1949 <= 1))
1950 {
1951 return SCM_I_MAKINUM (nn << bits_to_shift);
1952 }
1953 else
1954 {
e25f3727 1955 SCM result = scm_i_inum2big (nn);
788aca27
KR
1956 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1957 bits_to_shift);
1958 return result;
1959 }
1960 }
1961 else
1962 {
1963 bits_to_shift = -bits_to_shift;
1964 if (bits_to_shift >= SCM_LONG_BIT)
cff5fa33 1965 return (nn >= 0 ? SCM_INUM0 : SCM_I_MAKINUM(-1));
788aca27
KR
1966 else
1967 return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
1968 }
1969
1970 }
1971 else if (SCM_BIGP (n))
ca46fb90 1972 {
788aca27
KR
1973 SCM result;
1974
1975 if (bits_to_shift == 0)
1976 return n;
1977
1978 result = scm_i_mkbig ();
1979 if (bits_to_shift >= 0)
1980 {
1981 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1982 bits_to_shift);
1983 return result;
1984 }
ca46fb90 1985 else
788aca27
KR
1986 {
1987 /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
1988 we have to allocate a bignum even if the result is going to be a
1989 fixnum. */
1990 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1991 -bits_to_shift);
1992 return scm_i_normbig (result);
1993 }
1994
ca46fb90
RB
1995 }
1996 else
788aca27
KR
1997 {
1998 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1999 }
0f2d19dd 2000}
1bbd0b84 2001#undef FUNC_NAME
0f2d19dd 2002
3c9f20f8 2003
a1ec6916 2004SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1bbd0b84 2005 (SCM n, SCM start, SCM end),
1e6808ea
MG
2006 "Return the integer composed of the @var{start} (inclusive)\n"
2007 "through @var{end} (exclusive) bits of @var{n}. The\n"
2008 "@var{start}th bit becomes the 0-th bit in the result.\n"
2009 "\n"
b380b885
MD
2010 "@lisp\n"
2011 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
2012 " @result{} \"1010\"\n"
2013 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
2014 " @result{} \"10110\"\n"
2015 "@end lisp")
1bbd0b84 2016#define FUNC_NAME s_scm_bit_extract
0f2d19dd 2017{
7f848242 2018 unsigned long int istart, iend, bits;
5efd3c7d
MV
2019 istart = scm_to_ulong (start);
2020 iend = scm_to_ulong (end);
c1bfcf60 2021 SCM_ASSERT_RANGE (3, end, (iend >= istart));
78166ad5 2022
7f848242
KR
2023 /* how many bits to keep */
2024 bits = iend - istart;
2025
e11e83f3 2026 if (SCM_I_INUMP (n))
0aacf84e 2027 {
e25f3727 2028 scm_t_inum in = SCM_I_INUM (n);
7f848242
KR
2029
2030 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
d77ad560 2031 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
857ae6af 2032 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
ac0c002c 2033
0aacf84e
MD
2034 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
2035 {
2036 /* Since we emulate two's complement encoded numbers, this
2037 * special case requires us to produce a result that has
7f848242 2038 * more bits than can be stored in a fixnum.
0aacf84e 2039 */
e25f3727 2040 SCM result = scm_i_inum2big (in);
7f848242
KR
2041 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
2042 bits);
2043 return result;
0aacf84e 2044 }
ac0c002c 2045
7f848242 2046 /* mask down to requisite bits */
857ae6af 2047 bits = min (bits, SCM_I_FIXNUM_BIT);
d956fa6f 2048 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
0aacf84e
MD
2049 }
2050 else if (SCM_BIGP (n))
ac0c002c 2051 {
7f848242
KR
2052 SCM result;
2053 if (bits == 1)
2054 {
d956fa6f 2055 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
7f848242
KR
2056 }
2057 else
2058 {
2059 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
2060 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
2061 such bits into a ulong. */
2062 result = scm_i_mkbig ();
2063 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
2064 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
2065 result = scm_i_normbig (result);
2066 }
2067 scm_remember_upto_here_1 (n);
2068 return result;
ac0c002c 2069 }
0aacf84e 2070 else
78166ad5 2071 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 2072}
1bbd0b84 2073#undef FUNC_NAME
0f2d19dd 2074
7f848242 2075
e4755e5c
JB
2076static const char scm_logtab[] = {
2077 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
2078};
1cc91f1b 2079
a1ec6916 2080SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1bbd0b84 2081 (SCM n),
1e6808ea
MG
2082 "Return the number of bits in integer @var{n}. If integer is\n"
2083 "positive, the 1-bits in its binary representation are counted.\n"
2084 "If negative, the 0-bits in its two's-complement binary\n"
2085 "representation are counted. If 0, 0 is returned.\n"
2086 "\n"
b380b885
MD
2087 "@lisp\n"
2088 "(logcount #b10101010)\n"
ca46fb90
RB
2089 " @result{} 4\n"
2090 "(logcount 0)\n"
2091 " @result{} 0\n"
2092 "(logcount -2)\n"
2093 " @result{} 1\n"
2094 "@end lisp")
2095#define FUNC_NAME s_scm_logcount
2096{
e11e83f3 2097 if (SCM_I_INUMP (n))
f872b822 2098 {
e25f3727
AW
2099 unsigned long c = 0;
2100 scm_t_inum nn = SCM_I_INUM (n);
ca46fb90
RB
2101 if (nn < 0)
2102 nn = -1 - nn;
2103 while (nn)
2104 {
2105 c += scm_logtab[15 & nn];
2106 nn >>= 4;
2107 }
d956fa6f 2108 return SCM_I_MAKINUM (c);
f872b822 2109 }
ca46fb90 2110 else if (SCM_BIGP (n))
f872b822 2111 {
ca46fb90 2112 unsigned long count;
713a4259
KR
2113 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
2114 count = mpz_popcount (SCM_I_BIG_MPZ (n));
ca46fb90 2115 else
713a4259
KR
2116 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
2117 scm_remember_upto_here_1 (n);
d956fa6f 2118 return SCM_I_MAKINUM (count);
f872b822 2119 }
ca46fb90
RB
2120 else
2121 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 2122}
ca46fb90 2123#undef FUNC_NAME
0f2d19dd
JB
2124
2125
ca46fb90
RB
2126static const char scm_ilentab[] = {
2127 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
2128};
2129
0f2d19dd 2130
ca46fb90
RB
2131SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
2132 (SCM n),
2133 "Return the number of bits necessary to represent @var{n}.\n"
2134 "\n"
2135 "@lisp\n"
2136 "(integer-length #b10101010)\n"
2137 " @result{} 8\n"
2138 "(integer-length 0)\n"
2139 " @result{} 0\n"
2140 "(integer-length #b1111)\n"
2141 " @result{} 4\n"
2142 "@end lisp")
2143#define FUNC_NAME s_scm_integer_length
2144{
e11e83f3 2145 if (SCM_I_INUMP (n))
0aacf84e 2146 {
e25f3727 2147 unsigned long c = 0;
0aacf84e 2148 unsigned int l = 4;
e25f3727 2149 scm_t_inum nn = SCM_I_INUM (n);
0aacf84e
MD
2150 if (nn < 0)
2151 nn = -1 - nn;
2152 while (nn)
2153 {
2154 c += 4;
2155 l = scm_ilentab [15 & nn];
2156 nn >>= 4;
2157 }
d956fa6f 2158 return SCM_I_MAKINUM (c - 4 + l);
0aacf84e
MD
2159 }
2160 else if (SCM_BIGP (n))
2161 {
2162 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
2163 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
2164 1 too big, so check for that and adjust. */
2165 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
2166 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
2167 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
2168 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
2169 size--;
2170 scm_remember_upto_here_1 (n);
d956fa6f 2171 return SCM_I_MAKINUM (size);
0aacf84e
MD
2172 }
2173 else
ca46fb90 2174 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
ca46fb90
RB
2175}
2176#undef FUNC_NAME
0f2d19dd
JB
2177
2178/*** NUMBERS -> STRINGS ***/
0b799eea
MV
2179#define SCM_MAX_DBL_PREC 60
2180#define SCM_MAX_DBL_RADIX 36
2181
2182/* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
2183static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
2184static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
2185
2186static
2187void init_dblprec(int *prec, int radix) {
2188 /* determine floating point precision by adding successively
2189 smaller increments to 1.0 until it is considered == 1.0 */
2190 double f = ((double)1.0)/radix;
2191 double fsum = 1.0 + f;
2192
2193 *prec = 0;
2194 while (fsum != 1.0)
2195 {
2196 if (++(*prec) > SCM_MAX_DBL_PREC)
2197 fsum = 1.0;
2198 else
2199 {
2200 f /= radix;
2201 fsum = f + 1.0;
2202 }
2203 }
2204 (*prec) -= 1;
2205}
2206
2207static
2208void init_fx_radix(double *fx_list, int radix)
2209{
2210 /* initialize a per-radix list of tolerances. When added
2211 to a number < 1.0, we can determine if we should raund
2212 up and quit converting a number to a string. */
2213 int i;
2214 fx_list[0] = 0.0;
2215 fx_list[1] = 0.5;
2216 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2217 fx_list[i] = (fx_list[i-1] / radix);
2218}
2219
2220/* use this array as a way to generate a single digit */
9b5fcde6 2221static const char number_chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
0f2d19dd 2222
1be6b49c 2223static size_t
0b799eea 2224idbl2str (double f, char *a, int radix)
0f2d19dd 2225{
0b799eea
MV
2226 int efmt, dpt, d, i, wp;
2227 double *fx;
2228#ifdef DBL_MIN_10_EXP
2229 double f_cpy;
2230 int exp_cpy;
2231#endif /* DBL_MIN_10_EXP */
2232 size_t ch = 0;
2233 int exp = 0;
2234
2235 if(radix < 2 ||
2236 radix > SCM_MAX_DBL_RADIX)
2237 {
2238 /* revert to existing behavior */
2239 radix = 10;
2240 }
2241
2242 wp = scm_dblprec[radix-2];
2243 fx = fx_per_radix[radix-2];
0f2d19dd 2244
f872b822 2245 if (f == 0.0)
abb7e44d
MV
2246 {
2247#ifdef HAVE_COPYSIGN
2248 double sgn = copysign (1.0, f);
2249
2250 if (sgn < 0.0)
2251 a[ch++] = '-';
2252#endif
abb7e44d
MV
2253 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2254 }
7351e207 2255
2e65b52f 2256 if (isinf (f))
7351e207
MV
2257 {
2258 if (f < 0)
2259 strcpy (a, "-inf.0");
2260 else
2261 strcpy (a, "+inf.0");
2262 return ch+6;
2263 }
2e65b52f 2264 else if (isnan (f))
7351e207
MV
2265 {
2266 strcpy (a, "+nan.0");
2267 return ch+6;
2268 }
2269
f872b822
MD
2270 if (f < 0.0)
2271 {
2272 f = -f;
2273 a[ch++] = '-';
2274 }
7351e207 2275
f872b822
MD
2276#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2277 make-uniform-vector, from causing infinite loops. */
0b799eea
MV
2278 /* just do the checking...if it passes, we do the conversion for our
2279 radix again below */
2280 f_cpy = f;
2281 exp_cpy = exp;
2282
2283 while (f_cpy < 1.0)
f872b822 2284 {
0b799eea
MV
2285 f_cpy *= 10.0;
2286 if (exp_cpy-- < DBL_MIN_10_EXP)
7351e207
MV
2287 {
2288 a[ch++] = '#';
2289 a[ch++] = '.';
2290 a[ch++] = '#';
2291 return ch;
2292 }
f872b822 2293 }
0b799eea 2294 while (f_cpy > 10.0)
f872b822 2295 {
0b799eea
MV
2296 f_cpy *= 0.10;
2297 if (exp_cpy++ > DBL_MAX_10_EXP)
7351e207
MV
2298 {
2299 a[ch++] = '#';
2300 a[ch++] = '.';
2301 a[ch++] = '#';
2302 return ch;
2303 }
f872b822 2304 }
0b799eea
MV
2305#endif
2306
f872b822
MD
2307 while (f < 1.0)
2308 {
0b799eea 2309 f *= radix;
f872b822
MD
2310 exp--;
2311 }
0b799eea 2312 while (f > radix)
f872b822 2313 {
0b799eea 2314 f /= radix;
f872b822
MD
2315 exp++;
2316 }
0b799eea
MV
2317
2318 if (f + fx[wp] >= radix)
f872b822
MD
2319 {
2320 f = 1.0;
2321 exp++;
2322 }
0f2d19dd 2323 zero:
0b799eea
MV
2324#ifdef ENGNOT
2325 /* adding 9999 makes this equivalent to abs(x) % 3 */
f872b822 2326 dpt = (exp + 9999) % 3;
0f2d19dd
JB
2327 exp -= dpt++;
2328 efmt = 1;
f872b822
MD
2329#else
2330 efmt = (exp < -3) || (exp > wp + 2);
0f2d19dd 2331 if (!efmt)
cda139a7
MD
2332 {
2333 if (exp < 0)
2334 {
2335 a[ch++] = '0';
2336 a[ch++] = '.';
2337 dpt = exp;
f872b822
MD
2338 while (++dpt)
2339 a[ch++] = '0';
cda139a7
MD
2340 }
2341 else
f872b822 2342 dpt = exp + 1;
cda139a7 2343 }
0f2d19dd
JB
2344 else
2345 dpt = 1;
f872b822
MD
2346#endif
2347
2348 do
2349 {
2350 d = f;
2351 f -= d;
0b799eea 2352 a[ch++] = number_chars[d];
f872b822
MD
2353 if (f < fx[wp])
2354 break;
2355 if (f + fx[wp] >= 1.0)
2356 {
0b799eea 2357 a[ch - 1] = number_chars[d+1];
f872b822
MD
2358 break;
2359 }
0b799eea 2360 f *= radix;
f872b822
MD
2361 if (!(--dpt))
2362 a[ch++] = '.';
0f2d19dd 2363 }
f872b822 2364 while (wp--);
0f2d19dd
JB
2365
2366 if (dpt > 0)
cda139a7 2367 {
f872b822 2368#ifndef ENGNOT
cda139a7
MD
2369 if ((dpt > 4) && (exp > 6))
2370 {
f872b822 2371 d = (a[0] == '-' ? 2 : 1);
cda139a7 2372 for (i = ch++; i > d; i--)
f872b822 2373 a[i] = a[i - 1];
cda139a7
MD
2374 a[d] = '.';
2375 efmt = 1;
2376 }
2377 else
f872b822 2378#endif
cda139a7 2379 {
f872b822
MD
2380 while (--dpt)
2381 a[ch++] = '0';
cda139a7
MD
2382 a[ch++] = '.';
2383 }
2384 }
f872b822
MD
2385 if (a[ch - 1] == '.')
2386 a[ch++] = '0'; /* trailing zero */
2387 if (efmt && exp)
2388 {
2389 a[ch++] = 'e';
2390 if (exp < 0)
2391 {
2392 exp = -exp;
2393 a[ch++] = '-';
2394 }
0b799eea
MV
2395 for (i = radix; i <= exp; i *= radix);
2396 for (i /= radix; i; i /= radix)
f872b822 2397 {
0b799eea 2398 a[ch++] = number_chars[exp / i];
f872b822
MD
2399 exp %= i;
2400 }
0f2d19dd 2401 }
0f2d19dd
JB
2402 return ch;
2403}
2404
7a1aba42
MV
2405
2406static size_t
2407icmplx2str (double real, double imag, char *str, int radix)
2408{
2409 size_t i;
2410
2411 i = idbl2str (real, str, radix);
2412 if (imag != 0.0)
2413 {
2414 /* Don't output a '+' for negative numbers or for Inf and
2415 NaN. They will provide their own sign. */
2e65b52f 2416 if (0 <= imag && !isinf (imag) && !isnan (imag))
7a1aba42
MV
2417 str[i++] = '+';
2418 i += idbl2str (imag, &str[i], radix);
2419 str[i++] = 'i';
2420 }
2421 return i;
2422}
2423
1be6b49c 2424static size_t
0b799eea 2425iflo2str (SCM flt, char *str, int radix)
0f2d19dd 2426{
1be6b49c 2427 size_t i;
3c9a524f 2428 if (SCM_REALP (flt))
0b799eea 2429 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
0f2d19dd 2430 else
7a1aba42
MV
2431 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
2432 str, radix);
0f2d19dd
JB
2433 return i;
2434}
0f2d19dd 2435
2881e77b 2436/* convert a scm_t_intmax to a string (unterminated). returns the number of
1bbd0b84
GB
2437 characters in the result.
2438 rad is output base
2439 p is destination: worst case (base 2) is SCM_INTBUFLEN */
1be6b49c 2440size_t
2881e77b
MV
2441scm_iint2str (scm_t_intmax num, int rad, char *p)
2442{
2443 if (num < 0)
2444 {
2445 *p++ = '-';
2446 return scm_iuint2str (-num, rad, p) + 1;
2447 }
2448 else
2449 return scm_iuint2str (num, rad, p);
2450}
2451
2452/* convert a scm_t_intmax to a string (unterminated). returns the number of
2453 characters in the result.
2454 rad is output base
2455 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2456size_t
2457scm_iuint2str (scm_t_uintmax num, int rad, char *p)
0f2d19dd 2458{
1be6b49c
ML
2459 size_t j = 1;
2460 size_t i;
2881e77b 2461 scm_t_uintmax n = num;
5c11cc9d 2462
a6f3af16
AW
2463 if (rad < 2 || rad > 36)
2464 scm_out_of_range ("scm_iuint2str", scm_from_int (rad));
2465
f872b822 2466 for (n /= rad; n > 0; n /= rad)
5c11cc9d
GH
2467 j++;
2468
2469 i = j;
2881e77b 2470 n = num;
f872b822
MD
2471 while (i--)
2472 {
5c11cc9d
GH
2473 int d = n % rad;
2474
f872b822 2475 n /= rad;
a6f3af16 2476 p[i] = number_chars[d];
f872b822 2477 }
0f2d19dd
JB
2478 return j;
2479}
2480
a1ec6916 2481SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
bb628794
DH
2482 (SCM n, SCM radix),
2483 "Return a string holding the external representation of the\n"
942e5b91
MG
2484 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2485 "inexact, a radix of 10 will be used.")
1bbd0b84 2486#define FUNC_NAME s_scm_number_to_string
0f2d19dd 2487{
1bbd0b84 2488 int base;
98cb6e75 2489
0aacf84e 2490 if (SCM_UNBNDP (radix))
98cb6e75 2491 base = 10;
0aacf84e 2492 else
5efd3c7d 2493 base = scm_to_signed_integer (radix, 2, 36);
98cb6e75 2494
e11e83f3 2495 if (SCM_I_INUMP (n))
0aacf84e
MD
2496 {
2497 char num_buf [SCM_INTBUFLEN];
e11e83f3 2498 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
cc95e00a 2499 return scm_from_locale_stringn (num_buf, length);
0aacf84e
MD
2500 }
2501 else if (SCM_BIGP (n))
2502 {
2503 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2504 scm_remember_upto_here_1 (n);
cc95e00a 2505 return scm_take_locale_string (str);
0aacf84e 2506 }
f92e85f7
MV
2507 else if (SCM_FRACTIONP (n))
2508 {
f92e85f7 2509 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
cc95e00a 2510 scm_from_locale_string ("/"),
f92e85f7
MV
2511 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2512 }
0aacf84e
MD
2513 else if (SCM_INEXACTP (n))
2514 {
2515 char num_buf [FLOBUFLEN];
cc95e00a 2516 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
0aacf84e
MD
2517 }
2518 else
bb628794 2519 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 2520}
1bbd0b84 2521#undef FUNC_NAME
0f2d19dd
JB
2522
2523
ca46fb90
RB
2524/* These print routines used to be stubbed here so that scm_repl.c
2525 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
1cc91f1b 2526
0f2d19dd 2527int
e81d98ec 2528scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2529{
56e55ac7 2530 char num_buf[FLOBUFLEN];
0b799eea 2531 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
0f2d19dd
JB
2532 return !0;
2533}
2534
b479fe9a
MV
2535void
2536scm_i_print_double (double val, SCM port)
2537{
2538 char num_buf[FLOBUFLEN];
2539 scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
2540}
2541
f3ae5d60 2542int
e81d98ec 2543scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
f92e85f7 2544
f3ae5d60 2545{
56e55ac7 2546 char num_buf[FLOBUFLEN];
0b799eea 2547 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
f3ae5d60
MD
2548 return !0;
2549}
1cc91f1b 2550
7a1aba42
MV
2551void
2552scm_i_print_complex (double real, double imag, SCM port)
2553{
2554 char num_buf[FLOBUFLEN];
2555 scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
2556}
2557
f92e85f7
MV
2558int
2559scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2560{
2561 SCM str;
f92e85f7 2562 str = scm_number_to_string (sexp, SCM_UNDEFINED);
a9178715 2563 scm_display (str, port);
f92e85f7
MV
2564 scm_remember_upto_here_1 (str);
2565 return !0;
2566}
2567
0f2d19dd 2568int
e81d98ec 2569scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2570{
ca46fb90
RB
2571 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2572 scm_remember_upto_here_1 (exp);
2573 scm_lfwrite (str, (size_t) strlen (str), port);
2574 free (str);
0f2d19dd
JB
2575 return !0;
2576}
2577/*** END nums->strs ***/
2578
3c9a524f 2579
0f2d19dd 2580/*** STRINGS -> NUMBERS ***/
2a8fecee 2581
3c9a524f
DH
2582/* The following functions implement the conversion from strings to numbers.
2583 * The implementation somehow follows the grammar for numbers as it is given
2584 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2585 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2586 * points should be noted about the implementation:
2587 * * Each function keeps a local index variable 'idx' that points at the
2588 * current position within the parsed string. The global index is only
2589 * updated if the function could parse the corresponding syntactic unit
2590 * successfully.
2591 * * Similarly, the functions keep track of indicators of inexactness ('#',
2592 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2593 * global exactness information is only updated after each part has been
2594 * successfully parsed.
2595 * * Sequences of digits are parsed into temporary variables holding fixnums.
2596 * Only if these fixnums would overflow, the result variables are updated
2597 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2598 * the temporary variables holding the fixnums are cleared, and the process
2599 * starts over again. If for example fixnums were able to store five decimal
2600 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2601 * and the result was computed as 12345 * 100000 + 67890. In other words,
2602 * only every five digits two bignum operations were performed.
2603 */
2604
2605enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2606
2607/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2608
a6f3af16
AW
2609/* Caller is responsible for checking that the return value is in range
2610 for the given radix, which should be <= 36. */
2611static unsigned int
2612char_decimal_value (scm_t_uint32 c)
2613{
2614 /* uc_decimal_value returns -1 on error. When cast to an unsigned int,
2615 that's certainly above any valid decimal, so we take advantage of
2616 that to elide some tests. */
2617 unsigned int d = (unsigned int) uc_decimal_value (c);
2618
2619 /* If that failed, try extended hexadecimals, then. Only accept ascii
2620 hexadecimals. */
2621 if (d >= 10U)
2622 {
2623 c = uc_tolower (c);
2624 if (c >= (scm_t_uint32) 'a')
2625 d = c - (scm_t_uint32)'a' + 10U;
2626 }
2627 return d;
2628}
3c9a524f 2629
2a8fecee 2630static SCM
3f47e526 2631mem2uinteger (SCM mem, unsigned int *p_idx,
3c9a524f 2632 unsigned int radix, enum t_exactness *p_exactness)
2a8fecee 2633{
3c9a524f
DH
2634 unsigned int idx = *p_idx;
2635 unsigned int hash_seen = 0;
2636 scm_t_bits shift = 1;
2637 scm_t_bits add = 0;
2638 unsigned int digit_value;
2639 SCM result;
2640 char c;
3f47e526 2641 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2642
2643 if (idx == len)
2644 return SCM_BOOL_F;
2a8fecee 2645
3f47e526 2646 c = scm_i_string_ref (mem, idx);
a6f3af16 2647 digit_value = char_decimal_value (c);
3c9a524f
DH
2648 if (digit_value >= radix)
2649 return SCM_BOOL_F;
2650
2651 idx++;
d956fa6f 2652 result = SCM_I_MAKINUM (digit_value);
3c9a524f 2653 while (idx != len)
f872b822 2654 {
3f47e526 2655 scm_t_wchar c = scm_i_string_ref (mem, idx);
a6f3af16 2656 if (c == '#')
3c9a524f
DH
2657 {
2658 hash_seen = 1;
2659 digit_value = 0;
2660 }
a6f3af16
AW
2661 else if (hash_seen)
2662 break;
3c9a524f 2663 else
a6f3af16
AW
2664 {
2665 digit_value = char_decimal_value (c);
2666 /* This check catches non-decimals in addition to out-of-range
2667 decimals. */
2668 if (digit_value >= radix)
2669 break;
2670 }
3c9a524f
DH
2671
2672 idx++;
2673 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2674 {
d956fa6f 2675 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2676 if (add > 0)
d956fa6f 2677 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2678
2679 shift = radix;
2680 add = digit_value;
2681 }
2682 else
2683 {
2684 shift = shift * radix;
2685 add = add * radix + digit_value;
2686 }
2687 };
2688
2689 if (shift > 1)
d956fa6f 2690 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2691 if (add > 0)
d956fa6f 2692 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2693
2694 *p_idx = idx;
2695 if (hash_seen)
2696 *p_exactness = INEXACT;
2697
2698 return result;
2a8fecee
JB
2699}
2700
2701
3c9a524f
DH
2702/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2703 * covers the parts of the rules that start at a potential point. The value
2704 * of the digits up to the point have been parsed by the caller and are given
79d34f68
DH
2705 * in variable result. The content of *p_exactness indicates, whether a hash
2706 * has already been seen in the digits before the point.
3c9a524f 2707 */
1cc91f1b 2708
3f47e526 2709#define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
3c9a524f
DH
2710
2711static SCM
3f47e526 2712mem2decimal_from_point (SCM result, SCM mem,
3c9a524f 2713 unsigned int *p_idx, enum t_exactness *p_exactness)
0f2d19dd 2714{
3c9a524f
DH
2715 unsigned int idx = *p_idx;
2716 enum t_exactness x = *p_exactness;
3f47e526 2717 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2718
2719 if (idx == len)
79d34f68 2720 return result;
3c9a524f 2721
3f47e526 2722 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
2723 {
2724 scm_t_bits shift = 1;
2725 scm_t_bits add = 0;
2726 unsigned int digit_value;
cff5fa33 2727 SCM big_shift = SCM_INUM1;
3c9a524f
DH
2728
2729 idx++;
2730 while (idx != len)
2731 {
3f47e526
MG
2732 scm_t_wchar c = scm_i_string_ref (mem, idx);
2733 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2734 {
2735 if (x == INEXACT)
2736 return SCM_BOOL_F;
2737 else
2738 digit_value = DIGIT2UINT (c);
2739 }
2740 else if (c == '#')
2741 {
2742 x = INEXACT;
2743 digit_value = 0;
2744 }
2745 else
2746 break;
2747
2748 idx++;
2749 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2750 {
d956fa6f
MV
2751 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2752 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2753 if (add > 0)
d956fa6f 2754 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2755
2756 shift = 10;
2757 add = digit_value;
2758 }
2759 else
2760 {
2761 shift = shift * 10;
2762 add = add * 10 + digit_value;
2763 }
2764 };
2765
2766 if (add > 0)
2767 {
d956fa6f
MV
2768 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2769 result = scm_product (result, SCM_I_MAKINUM (shift));
2770 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2771 }
2772
d8592269 2773 result = scm_divide (result, big_shift);
79d34f68 2774
3c9a524f
DH
2775 /* We've seen a decimal point, thus the value is implicitly inexact. */
2776 x = INEXACT;
f872b822 2777 }
3c9a524f 2778
3c9a524f 2779 if (idx != len)
f872b822 2780 {
3c9a524f
DH
2781 int sign = 1;
2782 unsigned int start;
3f47e526 2783 scm_t_wchar c;
3c9a524f
DH
2784 int exponent;
2785 SCM e;
2786
2787 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2788
3f47e526 2789 switch (scm_i_string_ref (mem, idx))
f872b822 2790 {
3c9a524f
DH
2791 case 'd': case 'D':
2792 case 'e': case 'E':
2793 case 'f': case 'F':
2794 case 'l': case 'L':
2795 case 's': case 'S':
2796 idx++;
ee0ddd21
AW
2797 if (idx == len)
2798 return SCM_BOOL_F;
2799
3c9a524f 2800 start = idx;
3f47e526 2801 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2802 if (c == '-')
2803 {
2804 idx++;
ee0ddd21
AW
2805 if (idx == len)
2806 return SCM_BOOL_F;
2807
3c9a524f 2808 sign = -1;
3f47e526 2809 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2810 }
2811 else if (c == '+')
2812 {
2813 idx++;
ee0ddd21
AW
2814 if (idx == len)
2815 return SCM_BOOL_F;
2816
3c9a524f 2817 sign = 1;
3f47e526 2818 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2819 }
2820 else
2821 sign = 1;
2822
3f47e526 2823 if (!uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2824 return SCM_BOOL_F;
2825
2826 idx++;
2827 exponent = DIGIT2UINT (c);
2828 while (idx != len)
f872b822 2829 {
3f47e526
MG
2830 scm_t_wchar c = scm_i_string_ref (mem, idx);
2831 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2832 {
2833 idx++;
2834 if (exponent <= SCM_MAXEXP)
2835 exponent = exponent * 10 + DIGIT2UINT (c);
2836 }
2837 else
2838 break;
f872b822 2839 }
3c9a524f
DH
2840
2841 if (exponent > SCM_MAXEXP)
f872b822 2842 {
3c9a524f 2843 size_t exp_len = idx - start;
3f47e526 2844 SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
3c9a524f
DH
2845 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2846 scm_out_of_range ("string->number", exp_num);
f872b822 2847 }
3c9a524f 2848
d956fa6f 2849 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
3c9a524f
DH
2850 if (sign == 1)
2851 result = scm_product (result, e);
2852 else
f92e85f7 2853 result = scm_divide2real (result, e);
3c9a524f
DH
2854
2855 /* We've seen an exponent, thus the value is implicitly inexact. */
2856 x = INEXACT;
2857
f872b822 2858 break;
3c9a524f 2859
f872b822 2860 default:
3c9a524f 2861 break;
f872b822 2862 }
0f2d19dd 2863 }
3c9a524f
DH
2864
2865 *p_idx = idx;
2866 if (x == INEXACT)
2867 *p_exactness = x;
2868
2869 return result;
0f2d19dd 2870}
0f2d19dd 2871
3c9a524f
DH
2872
2873/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2874
2875static SCM
3f47e526 2876mem2ureal (SCM mem, unsigned int *p_idx,
3c9a524f 2877 unsigned int radix, enum t_exactness *p_exactness)
0f2d19dd 2878{
3c9a524f 2879 unsigned int idx = *p_idx;
164d2481 2880 SCM result;
3f47e526 2881 size_t len = scm_i_string_length (mem);
3c9a524f 2882
40f89215
NJ
2883 /* Start off believing that the number will be exact. This changes
2884 to INEXACT if we see a decimal point or a hash. */
2885 enum t_exactness x = EXACT;
2886
3c9a524f
DH
2887 if (idx == len)
2888 return SCM_BOOL_F;
2889
3f47e526 2890 if (idx+5 <= len && !scm_i_string_strcmp (mem, idx, "inf.0"))
7351e207
MV
2891 {
2892 *p_idx = idx+5;
2893 return scm_inf ();
2894 }
2895
3f47e526 2896 if (idx+4 < len && !scm_i_string_strcmp (mem, idx, "nan."))
7351e207 2897 {
d8592269
MV
2898 /* Cobble up the fractional part. We might want to set the
2899 NaN's mantissa from it. */
7351e207 2900 idx += 4;
3f47e526 2901 mem2uinteger (mem, &idx, 10, &x);
7351e207
MV
2902 *p_idx = idx;
2903 return scm_nan ();
2904 }
2905
3f47e526 2906 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
2907 {
2908 if (radix != 10)
2909 return SCM_BOOL_F;
2910 else if (idx + 1 == len)
2911 return SCM_BOOL_F;
3f47e526 2912 else if (!uc_is_property_decimal_digit ((scm_t_uint32) scm_i_string_ref (mem, idx+1)))
3c9a524f
DH
2913 return SCM_BOOL_F;
2914 else
cff5fa33 2915 result = mem2decimal_from_point (SCM_INUM0, mem,
40f89215 2916 p_idx, &x);
f872b822 2917 }
3c9a524f
DH
2918 else
2919 {
3c9a524f 2920 SCM uinteger;
3c9a524f 2921
3f47e526 2922 uinteger = mem2uinteger (mem, &idx, radix, &x);
73e4de09 2923 if (scm_is_false (uinteger))
3c9a524f
DH
2924 return SCM_BOOL_F;
2925
2926 if (idx == len)
2927 result = uinteger;
3f47e526 2928 else if (scm_i_string_ref (mem, idx) == '/')
f872b822 2929 {
3c9a524f
DH
2930 SCM divisor;
2931
2932 idx++;
ee0ddd21
AW
2933 if (idx == len)
2934 return SCM_BOOL_F;
3c9a524f 2935
3f47e526 2936 divisor = mem2uinteger (mem, &idx, radix, &x);
73e4de09 2937 if (scm_is_false (divisor))
3c9a524f
DH
2938 return SCM_BOOL_F;
2939
f92e85f7 2940 /* both are int/big here, I assume */
cba42c93 2941 result = scm_i_make_ratio (uinteger, divisor);
f872b822 2942 }
3c9a524f
DH
2943 else if (radix == 10)
2944 {
3f47e526 2945 result = mem2decimal_from_point (uinteger, mem, &idx, &x);
73e4de09 2946 if (scm_is_false (result))
3c9a524f
DH
2947 return SCM_BOOL_F;
2948 }
2949 else
2950 result = uinteger;
2951
2952 *p_idx = idx;
f872b822 2953 }
164d2481 2954
40f89215
NJ
2955 /* Update *p_exactness if the number just read was inexact. This is
2956 important for complex numbers, so that a complex number is
2957 treated as inexact overall if either its real or imaginary part
2958 is inexact.
2959 */
2960 if (x == INEXACT)
2961 *p_exactness = x;
2962
164d2481
MV
2963 /* When returning an inexact zero, make sure it is represented as a
2964 floating point value so that we can change its sign.
2965 */
cff5fa33 2966 if (scm_is_eq (result, SCM_INUM0) && *p_exactness == INEXACT)
55f26379 2967 result = scm_from_double (0.0);
164d2481
MV
2968
2969 return result;
3c9a524f 2970}
0f2d19dd 2971
0f2d19dd 2972
3c9a524f 2973/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
0f2d19dd 2974
3c9a524f 2975static SCM
3f47e526 2976mem2complex (SCM mem, unsigned int idx,
3c9a524f
DH
2977 unsigned int radix, enum t_exactness *p_exactness)
2978{
3f47e526 2979 scm_t_wchar c;
3c9a524f
DH
2980 int sign = 0;
2981 SCM ureal;
3f47e526 2982 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2983
2984 if (idx == len)
2985 return SCM_BOOL_F;
2986
3f47e526 2987 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2988 if (c == '+')
2989 {
2990 idx++;
2991 sign = 1;
2992 }
2993 else if (c == '-')
2994 {
2995 idx++;
2996 sign = -1;
0f2d19dd 2997 }
0f2d19dd 2998
3c9a524f
DH
2999 if (idx == len)
3000 return SCM_BOOL_F;
3001
3f47e526 3002 ureal = mem2ureal (mem, &idx, radix, p_exactness);
73e4de09 3003 if (scm_is_false (ureal))
f872b822 3004 {
3c9a524f
DH
3005 /* input must be either +i or -i */
3006
3007 if (sign == 0)
3008 return SCM_BOOL_F;
3009
3f47e526
MG
3010 if (scm_i_string_ref (mem, idx) == 'i'
3011 || scm_i_string_ref (mem, idx) == 'I')
f872b822 3012 {
3c9a524f
DH
3013 idx++;
3014 if (idx != len)
3015 return SCM_BOOL_F;
3016
cff5fa33 3017 return scm_make_rectangular (SCM_INUM0, SCM_I_MAKINUM (sign));
f872b822 3018 }
3c9a524f
DH
3019 else
3020 return SCM_BOOL_F;
0f2d19dd 3021 }
3c9a524f
DH
3022 else
3023 {
73e4de09 3024 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f 3025 ureal = scm_difference (ureal, SCM_UNDEFINED);
f872b822 3026
3c9a524f
DH
3027 if (idx == len)
3028 return ureal;
3029
3f47e526 3030 c = scm_i_string_ref (mem, idx);
3c9a524f 3031 switch (c)
f872b822 3032 {
3c9a524f
DH
3033 case 'i': case 'I':
3034 /* either +<ureal>i or -<ureal>i */
3035
3036 idx++;
3037 if (sign == 0)
3038 return SCM_BOOL_F;
3039 if (idx != len)
3040 return SCM_BOOL_F;
cff5fa33 3041 return scm_make_rectangular (SCM_INUM0, ureal);
3c9a524f
DH
3042
3043 case '@':
3044 /* polar input: <real>@<real>. */
3045
3046 idx++;
3047 if (idx == len)
3048 return SCM_BOOL_F;
3049 else
f872b822 3050 {
3c9a524f
DH
3051 int sign;
3052 SCM angle;
3053 SCM result;
3054
3f47e526 3055 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
3056 if (c == '+')
3057 {
3058 idx++;
ee0ddd21
AW
3059 if (idx == len)
3060 return SCM_BOOL_F;
3c9a524f
DH
3061 sign = 1;
3062 }
3063 else if (c == '-')
3064 {
3065 idx++;
ee0ddd21
AW
3066 if (idx == len)
3067 return SCM_BOOL_F;
3c9a524f
DH
3068 sign = -1;
3069 }
3070 else
3071 sign = 1;
3072
3f47e526 3073 angle = mem2ureal (mem, &idx, radix, p_exactness);
73e4de09 3074 if (scm_is_false (angle))
3c9a524f
DH
3075 return SCM_BOOL_F;
3076 if (idx != len)
3077 return SCM_BOOL_F;
3078
73e4de09 3079 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f
DH
3080 angle = scm_difference (angle, SCM_UNDEFINED);
3081
3082 result = scm_make_polar (ureal, angle);
3083 return result;
f872b822 3084 }
3c9a524f
DH
3085 case '+':
3086 case '-':
3087 /* expecting input matching <real>[+-]<ureal>?i */
0f2d19dd 3088
3c9a524f
DH
3089 idx++;
3090 if (idx == len)
3091 return SCM_BOOL_F;
3092 else
3093 {
3094 int sign = (c == '+') ? 1 : -1;
3f47e526 3095 SCM imag = mem2ureal (mem, &idx, radix, p_exactness);
0f2d19dd 3096
73e4de09 3097 if (scm_is_false (imag))
d956fa6f 3098 imag = SCM_I_MAKINUM (sign);
23295dc3 3099 else if (sign == -1 && scm_is_false (scm_nan_p (imag)))
1fe5e088 3100 imag = scm_difference (imag, SCM_UNDEFINED);
0f2d19dd 3101
3c9a524f
DH
3102 if (idx == len)
3103 return SCM_BOOL_F;
3f47e526
MG
3104 if (scm_i_string_ref (mem, idx) != 'i'
3105 && scm_i_string_ref (mem, idx) != 'I')
3c9a524f 3106 return SCM_BOOL_F;
0f2d19dd 3107
3c9a524f
DH
3108 idx++;
3109 if (idx != len)
3110 return SCM_BOOL_F;
0f2d19dd 3111
1fe5e088 3112 return scm_make_rectangular (ureal, imag);
3c9a524f
DH
3113 }
3114 default:
3115 return SCM_BOOL_F;
3116 }
3117 }
0f2d19dd 3118}
0f2d19dd
JB
3119
3120
3c9a524f
DH
3121/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
3122
3123enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
1cc91f1b 3124
0f2d19dd 3125SCM
3f47e526 3126scm_i_string_to_number (SCM mem, unsigned int default_radix)
0f2d19dd 3127{
3c9a524f
DH
3128 unsigned int idx = 0;
3129 unsigned int radix = NO_RADIX;
3130 enum t_exactness forced_x = NO_EXACTNESS;
3131 enum t_exactness implicit_x = EXACT;
3132 SCM result;
3f47e526 3133 size_t len = scm_i_string_length (mem);
3c9a524f
DH
3134
3135 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
3f47e526 3136 while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
3c9a524f 3137 {
3f47e526 3138 switch (scm_i_string_ref (mem, idx + 1))
3c9a524f
DH
3139 {
3140 case 'b': case 'B':
3141 if (radix != NO_RADIX)
3142 return SCM_BOOL_F;
3143 radix = DUAL;
3144 break;
3145 case 'd': case 'D':
3146 if (radix != NO_RADIX)
3147 return SCM_BOOL_F;
3148 radix = DEC;
3149 break;
3150 case 'i': case 'I':
3151 if (forced_x != NO_EXACTNESS)
3152 return SCM_BOOL_F;
3153 forced_x = INEXACT;
3154 break;
3155 case 'e': case 'E':
3156 if (forced_x != NO_EXACTNESS)
3157 return SCM_BOOL_F;
3158 forced_x = EXACT;
3159 break;
3160 case 'o': case 'O':
3161 if (radix != NO_RADIX)
3162 return SCM_BOOL_F;
3163 radix = OCT;
3164 break;
3165 case 'x': case 'X':
3166 if (radix != NO_RADIX)
3167 return SCM_BOOL_F;
3168 radix = HEX;
3169 break;
3170 default:
f872b822 3171 return SCM_BOOL_F;
3c9a524f
DH
3172 }
3173 idx += 2;
3174 }
3175
3176 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
3177 if (radix == NO_RADIX)
3f47e526 3178 result = mem2complex (mem, idx, default_radix, &implicit_x);
3c9a524f 3179 else
3f47e526 3180 result = mem2complex (mem, idx, (unsigned int) radix, &implicit_x);
3c9a524f 3181
73e4de09 3182 if (scm_is_false (result))
3c9a524f 3183 return SCM_BOOL_F;
f872b822 3184
3c9a524f 3185 switch (forced_x)
f872b822 3186 {
3c9a524f
DH
3187 case EXACT:
3188 if (SCM_INEXACTP (result))
3c9a524f
DH
3189 return scm_inexact_to_exact (result);
3190 else
3191 return result;
3192 case INEXACT:
3193 if (SCM_INEXACTP (result))
3194 return result;
3195 else
3196 return scm_exact_to_inexact (result);
3197 case NO_EXACTNESS:
3198 default:
3199 if (implicit_x == INEXACT)
3200 {
3201 if (SCM_INEXACTP (result))
3202 return result;
3203 else
3204 return scm_exact_to_inexact (result);
3205 }
3206 else
3207 return result;
f872b822 3208 }
0f2d19dd
JB
3209}
3210
3f47e526
MG
3211SCM
3212scm_c_locale_stringn_to_number (const char* mem, size_t len,
3213 unsigned int default_radix)
3214{
3215 SCM str = scm_from_locale_stringn (mem, len);
3216
3217 return scm_i_string_to_number (str, default_radix);
3218}
3219
0f2d19dd 3220
a1ec6916 3221SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
bb628794 3222 (SCM string, SCM radix),
1e6808ea 3223 "Return a number of the maximally precise representation\n"
942e5b91 3224 "expressed by the given @var{string}. @var{radix} must be an\n"
5352393c
MG
3225 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
3226 "is a default radix that may be overridden by an explicit radix\n"
3227 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
3228 "supplied, then the default radix is 10. If string is not a\n"
3229 "syntactically valid notation for a number, then\n"
3230 "@code{string->number} returns @code{#f}.")
1bbd0b84 3231#define FUNC_NAME s_scm_string_to_number
0f2d19dd
JB
3232{
3233 SCM answer;
5efd3c7d 3234 unsigned int base;
a6d9e5ab 3235 SCM_VALIDATE_STRING (1, string);
5efd3c7d
MV
3236
3237 if (SCM_UNBNDP (radix))
3238 base = 10;
3239 else
3240 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
3241
3f47e526 3242 answer = scm_i_string_to_number (string, base);
8824ac88
MV
3243 scm_remember_upto_here_1 (string);
3244 return answer;
0f2d19dd 3245}
1bbd0b84 3246#undef FUNC_NAME
3c9a524f
DH
3247
3248
0f2d19dd
JB
3249/*** END strs->nums ***/
3250
5986c47d 3251
8507ec80
MV
3252SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3253 (SCM x),
3254 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3255 "otherwise.")
3256#define FUNC_NAME s_scm_number_p
3257{
3258 return scm_from_bool (SCM_NUMBERP (x));
3259}
3260#undef FUNC_NAME
3261
3262SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
1bbd0b84 3263 (SCM x),
942e5b91 3264 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
bb2c02f2 3265 "otherwise. Note that the sets of real, rational and integer\n"
942e5b91
MG
3266 "values form subsets of the set of complex numbers, i. e. the\n"
3267 "predicate will also be fulfilled if @var{x} is a real,\n"
3268 "rational or integer number.")
8507ec80 3269#define FUNC_NAME s_scm_complex_p
0f2d19dd 3270{
8507ec80
MV
3271 /* all numbers are complex. */
3272 return scm_number_p (x);
0f2d19dd 3273}
1bbd0b84 3274#undef FUNC_NAME
0f2d19dd 3275
f92e85f7
MV
3276SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3277 (SCM x),
3278 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3279 "otherwise. Note that the set of integer values forms a subset of\n"
3280 "the set of real numbers, i. e. the predicate will also be\n"
3281 "fulfilled if @var{x} is an integer number.")
3282#define FUNC_NAME s_scm_real_p
3283{
3284 /* we can't represent irrational numbers. */
3285 return scm_rational_p (x);
3286}
3287#undef FUNC_NAME
3288
3289SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
1bbd0b84 3290 (SCM x),
942e5b91 3291 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
bb2c02f2 3292 "otherwise. Note that the set of integer values forms a subset of\n"
942e5b91 3293 "the set of rational numbers, i. e. the predicate will also be\n"
f92e85f7
MV
3294 "fulfilled if @var{x} is an integer number.")
3295#define FUNC_NAME s_scm_rational_p
0f2d19dd 3296{
e11e83f3 3297 if (SCM_I_INUMP (x))
0f2d19dd 3298 return SCM_BOOL_T;
0aacf84e 3299 else if (SCM_IMP (x))
0f2d19dd 3300 return SCM_BOOL_F;
0aacf84e 3301 else if (SCM_BIGP (x))
0f2d19dd 3302 return SCM_BOOL_T;
f92e85f7
MV
3303 else if (SCM_FRACTIONP (x))
3304 return SCM_BOOL_T;
3305 else if (SCM_REALP (x))
3306 /* due to their limited precision, all floating point numbers are
3307 rational as well. */
3308 return SCM_BOOL_T;
0aacf84e 3309 else
bb628794 3310 return SCM_BOOL_F;
0f2d19dd 3311}
1bbd0b84 3312#undef FUNC_NAME
0f2d19dd 3313
a1ec6916 3314SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
1bbd0b84 3315 (SCM x),
942e5b91
MG
3316 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3317 "else.")
1bbd0b84 3318#define FUNC_NAME s_scm_integer_p
0f2d19dd
JB
3319{
3320 double r;
e11e83f3 3321 if (SCM_I_INUMP (x))
f872b822
MD
3322 return SCM_BOOL_T;
3323 if (SCM_IMP (x))
3324 return SCM_BOOL_F;
f872b822
MD
3325 if (SCM_BIGP (x))
3326 return SCM_BOOL_T;
3c9a524f 3327 if (!SCM_INEXACTP (x))
f872b822 3328 return SCM_BOOL_F;
3c9a524f 3329 if (SCM_COMPLEXP (x))
f872b822 3330 return SCM_BOOL_F;
5986c47d 3331 r = SCM_REAL_VALUE (x);
8e43ed5d
AW
3332 if (isinf (r))
3333 return SCM_BOOL_F;
f872b822
MD
3334 if (r == floor (r))
3335 return SCM_BOOL_T;
0f2d19dd
JB
3336 return SCM_BOOL_F;
3337}
1bbd0b84 3338#undef FUNC_NAME
0f2d19dd
JB
3339
3340
8a1f4f98
AW
3341SCM scm_i_num_eq_p (SCM, SCM, SCM);
3342SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1,
3343 (SCM x, SCM y, SCM rest),
3344 "Return @code{#t} if all parameters are numerically equal.")
3345#define FUNC_NAME s_scm_i_num_eq_p
3346{
3347 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3348 return SCM_BOOL_T;
3349 while (!scm_is_null (rest))
3350 {
3351 if (scm_is_false (scm_num_eq_p (x, y)))
3352 return SCM_BOOL_F;
3353 x = y;
3354 y = scm_car (rest);
3355 rest = scm_cdr (rest);
3356 }
3357 return scm_num_eq_p (x, y);
3358}
3359#undef FUNC_NAME
0f2d19dd 3360SCM
6e8d25a6 3361scm_num_eq_p (SCM x, SCM y)
0f2d19dd 3362{
d8b95e27 3363 again:
e11e83f3 3364 if (SCM_I_INUMP (x))
0aacf84e 3365 {
e25f3727 3366 scm_t_signed_bits xx = SCM_I_INUM (x);
e11e83f3 3367 if (SCM_I_INUMP (y))
0aacf84e 3368 {
e25f3727 3369 scm_t_signed_bits yy = SCM_I_INUM (y);
73e4de09 3370 return scm_from_bool (xx == yy);
0aacf84e
MD
3371 }
3372 else if (SCM_BIGP (y))
3373 return SCM_BOOL_F;
3374 else if (SCM_REALP (y))
e8c5b1f2
KR
3375 {
3376 /* On a 32-bit system an inum fits a double, we can cast the inum
3377 to a double and compare.
3378
3379 But on a 64-bit system an inum is bigger than a double and
3380 casting it to a double (call that dxx) will round. dxx is at
3381 worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
3382 an integer and fits a long. So we cast yy to a long and
3383 compare with plain xx.
3384
3385 An alternative (for any size system actually) would be to check
3386 yy is an integer (with floor) and is in range of an inum
3387 (compare against appropriate powers of 2) then test
e25f3727
AW
3388 xx==(scm_t_signed_bits)yy. It's just a matter of which
3389 casts/comparisons might be fastest or easiest for the cpu. */
e8c5b1f2
KR
3390
3391 double yy = SCM_REAL_VALUE (y);
3a1b45fd
MV
3392 return scm_from_bool ((double) xx == yy
3393 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
e25f3727 3394 || xx == (scm_t_signed_bits) yy));
e8c5b1f2 3395 }
0aacf84e 3396 else if (SCM_COMPLEXP (y))
73e4de09 3397 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
0aacf84e 3398 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7
MV
3399 else if (SCM_FRACTIONP (y))
3400 return SCM_BOOL_F;
0aacf84e 3401 else
8a1f4f98 3402 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f872b822 3403 }
0aacf84e
MD
3404 else if (SCM_BIGP (x))
3405 {
e11e83f3 3406 if (SCM_I_INUMP (y))
0aacf84e
MD
3407 return SCM_BOOL_F;
3408 else if (SCM_BIGP (y))
3409 {
3410 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3411 scm_remember_upto_here_2 (x, y);
73e4de09 3412 return scm_from_bool (0 == cmp);
0aacf84e
MD
3413 }
3414 else if (SCM_REALP (y))
3415 {
3416 int cmp;
2e65b52f 3417 if (isnan (SCM_REAL_VALUE (y)))
0aacf84e
MD
3418 return SCM_BOOL_F;
3419 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3420 scm_remember_upto_here_1 (x);
73e4de09 3421 return scm_from_bool (0 == cmp);
0aacf84e
MD
3422 }
3423 else if (SCM_COMPLEXP (y))
3424 {
3425 int cmp;
3426 if (0.0 != SCM_COMPLEX_IMAG (y))
3427 return SCM_BOOL_F;
2e65b52f 3428 if (isnan (SCM_COMPLEX_REAL (y)))
0aacf84e
MD
3429 return SCM_BOOL_F;
3430 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3431 scm_remember_upto_here_1 (x);
73e4de09 3432 return scm_from_bool (0 == cmp);
0aacf84e 3433 }
f92e85f7
MV
3434 else if (SCM_FRACTIONP (y))
3435 return SCM_BOOL_F;
0aacf84e 3436 else
8a1f4f98 3437 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f4c627b3 3438 }
0aacf84e
MD
3439 else if (SCM_REALP (x))
3440 {
e8c5b1f2 3441 double xx = SCM_REAL_VALUE (x);
e11e83f3 3442 if (SCM_I_INUMP (y))
e8c5b1f2
KR
3443 {
3444 /* see comments with inum/real above */
e25f3727 3445 scm_t_signed_bits yy = SCM_I_INUM (y);
3a1b45fd
MV
3446 return scm_from_bool (xx == (double) yy
3447 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
e25f3727 3448 || (scm_t_signed_bits) xx == yy));
e8c5b1f2 3449 }
0aacf84e
MD
3450 else if (SCM_BIGP (y))
3451 {
3452 int cmp;
2e65b52f 3453 if (isnan (SCM_REAL_VALUE (x)))
0aacf84e
MD
3454 return SCM_BOOL_F;
3455 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3456 scm_remember_upto_here_1 (y);
73e4de09 3457 return scm_from_bool (0 == cmp);
0aacf84e
MD
3458 }
3459 else if (SCM_REALP (y))
73e4de09 3460 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0aacf84e 3461 else if (SCM_COMPLEXP (y))
73e4de09 3462 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3463 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7 3464 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3465 {
3466 double xx = SCM_REAL_VALUE (x);
2e65b52f 3467 if (isnan (xx))
d8b95e27 3468 return SCM_BOOL_F;
2e65b52f 3469 if (isinf (xx))
73e4de09 3470 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3471 x = scm_inexact_to_exact (x); /* with x as frac or int */
3472 goto again;
3473 }
0aacf84e 3474 else
8a1f4f98 3475 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f872b822 3476 }
0aacf84e
MD
3477 else if (SCM_COMPLEXP (x))
3478 {
e11e83f3
MV
3479 if (SCM_I_INUMP (y))
3480 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
0aacf84e
MD
3481 && (SCM_COMPLEX_IMAG (x) == 0.0));
3482 else if (SCM_BIGP (y))
3483 {
3484 int cmp;
3485 if (0.0 != SCM_COMPLEX_IMAG (x))
3486 return SCM_BOOL_F;
2e65b52f 3487 if (isnan (SCM_COMPLEX_REAL (x)))
0aacf84e
MD
3488 return SCM_BOOL_F;
3489 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3490 scm_remember_upto_here_1 (y);
73e4de09 3491 return scm_from_bool (0 == cmp);
0aacf84e
MD
3492 }
3493 else if (SCM_REALP (y))
73e4de09 3494 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
0aacf84e
MD
3495 && (SCM_COMPLEX_IMAG (x) == 0.0));
3496 else if (SCM_COMPLEXP (y))
73e4de09 3497 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3498 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
f92e85f7 3499 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3500 {
3501 double xx;
3502 if (SCM_COMPLEX_IMAG (x) != 0.0)
3503 return SCM_BOOL_F;
3504 xx = SCM_COMPLEX_REAL (x);
2e65b52f 3505 if (isnan (xx))
d8b95e27 3506 return SCM_BOOL_F;
2e65b52f 3507 if (isinf (xx))
73e4de09 3508 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3509 x = scm_inexact_to_exact (x); /* with x as frac or int */
3510 goto again;
3511 }
f92e85f7 3512 else
8a1f4f98 3513 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f92e85f7
MV
3514 }
3515 else if (SCM_FRACTIONP (x))
3516 {
e11e83f3 3517 if (SCM_I_INUMP (y))
f92e85f7
MV
3518 return SCM_BOOL_F;
3519 else if (SCM_BIGP (y))
3520 return SCM_BOOL_F;
3521 else if (SCM_REALP (y))
d8b95e27
KR
3522 {
3523 double yy = SCM_REAL_VALUE (y);
2e65b52f 3524 if (isnan (yy))
d8b95e27 3525 return SCM_BOOL_F;
2e65b52f 3526 if (isinf (yy))
73e4de09 3527 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3528 y = scm_inexact_to_exact (y); /* with y as frac or int */
3529 goto again;
3530 }
f92e85f7 3531 else if (SCM_COMPLEXP (y))
d8b95e27
KR
3532 {
3533 double yy;
3534 if (SCM_COMPLEX_IMAG (y) != 0.0)
3535 return SCM_BOOL_F;
3536 yy = SCM_COMPLEX_REAL (y);
2e65b52f 3537 if (isnan (yy))
d8b95e27 3538 return SCM_BOOL_F;
2e65b52f 3539 if (isinf (yy))
73e4de09 3540 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3541 y = scm_inexact_to_exact (y); /* with y as frac or int */
3542 goto again;
3543 }
f92e85f7
MV
3544 else if (SCM_FRACTIONP (y))
3545 return scm_i_fraction_equalp (x, y);
0aacf84e 3546 else
8a1f4f98 3547 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f4c627b3 3548 }
0aacf84e 3549 else
8a1f4f98 3550 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1, s_scm_i_num_eq_p);
0f2d19dd
JB
3551}
3552
3553
a5f0b599
KR
3554/* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3555 done are good for inums, but for bignums an answer can almost always be
3556 had by just examining a few high bits of the operands, as done by GMP in
3557 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3558 of the float exponent to take into account. */
3559
8c93b597 3560SCM_INTERNAL SCM scm_i_num_less_p (SCM, SCM, SCM);
8a1f4f98
AW
3561SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1,
3562 (SCM x, SCM y, SCM rest),
3563 "Return @code{#t} if the list of parameters is monotonically\n"
3564 "increasing.")
3565#define FUNC_NAME s_scm_i_num_less_p
3566{
3567 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3568 return SCM_BOOL_T;
3569 while (!scm_is_null (rest))
3570 {
3571 if (scm_is_false (scm_less_p (x, y)))
3572 return SCM_BOOL_F;
3573 x = y;
3574 y = scm_car (rest);
3575 rest = scm_cdr (rest);
3576 }
3577 return scm_less_p (x, y);
3578}
3579#undef FUNC_NAME
0f2d19dd 3580SCM
6e8d25a6 3581scm_less_p (SCM x, SCM y)
0f2d19dd 3582{
a5f0b599 3583 again:
e11e83f3 3584 if (SCM_I_INUMP (x))
0aacf84e 3585 {
e25f3727 3586 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 3587 if (SCM_I_INUMP (y))
0aacf84e 3588 {
e25f3727 3589 scm_t_inum yy = SCM_I_INUM (y);
73e4de09 3590 return scm_from_bool (xx < yy);
0aacf84e
MD
3591 }
3592 else if (SCM_BIGP (y))
3593 {
3594 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3595 scm_remember_upto_here_1 (y);
73e4de09 3596 return scm_from_bool (sgn > 0);
0aacf84e
MD
3597 }
3598 else if (SCM_REALP (y))
73e4de09 3599 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
f92e85f7 3600 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3601 {
3602 /* "x < a/b" becomes "x*b < a" */
3603 int_frac:
3604 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3605 y = SCM_FRACTION_NUMERATOR (y);
3606 goto again;
3607 }
0aacf84e 3608 else
8a1f4f98 3609 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f872b822 3610 }
0aacf84e
MD
3611 else if (SCM_BIGP (x))
3612 {
e11e83f3 3613 if (SCM_I_INUMP (y))
0aacf84e
MD
3614 {
3615 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3616 scm_remember_upto_here_1 (x);
73e4de09 3617 return scm_from_bool (sgn < 0);
0aacf84e
MD
3618 }
3619 else if (SCM_BIGP (y))
3620 {
3621 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3622 scm_remember_upto_here_2 (x, y);
73e4de09 3623 return scm_from_bool (cmp < 0);
0aacf84e
MD
3624 }
3625 else if (SCM_REALP (y))
3626 {
3627 int cmp;
2e65b52f 3628 if (isnan (SCM_REAL_VALUE (y)))
0aacf84e
MD
3629 return SCM_BOOL_F;
3630 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3631 scm_remember_upto_here_1 (x);
73e4de09 3632 return scm_from_bool (cmp < 0);
0aacf84e 3633 }
f92e85f7 3634 else if (SCM_FRACTIONP (y))
a5f0b599 3635 goto int_frac;
0aacf84e 3636 else
8a1f4f98 3637 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f4c627b3 3638 }
0aacf84e
MD
3639 else if (SCM_REALP (x))
3640 {
e11e83f3
MV
3641 if (SCM_I_INUMP (y))
3642 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
0aacf84e
MD
3643 else if (SCM_BIGP (y))
3644 {
3645 int cmp;
2e65b52f 3646 if (isnan (SCM_REAL_VALUE (x)))
0aacf84e
MD
3647 return SCM_BOOL_F;
3648 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3649 scm_remember_upto_here_1 (y);
73e4de09 3650 return scm_from_bool (cmp > 0);
0aacf84e
MD
3651 }
3652 else if (SCM_REALP (y))
73e4de09 3653 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
f92e85f7 3654 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3655 {
3656 double xx = SCM_REAL_VALUE (x);
2e65b52f 3657 if (isnan (xx))
a5f0b599 3658 return SCM_BOOL_F;
2e65b52f 3659 if (isinf (xx))
73e4de09 3660 return scm_from_bool (xx < 0.0);
a5f0b599
KR
3661 x = scm_inexact_to_exact (x); /* with x as frac or int */
3662 goto again;
3663 }
f92e85f7 3664 else
8a1f4f98 3665 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f92e85f7
MV
3666 }
3667 else if (SCM_FRACTIONP (x))
3668 {
e11e83f3 3669 if (SCM_I_INUMP (y) || SCM_BIGP (y))
a5f0b599
KR
3670 {
3671 /* "a/b < y" becomes "a < y*b" */
3672 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3673 x = SCM_FRACTION_NUMERATOR (x);
3674 goto again;
3675 }
f92e85f7 3676 else if (SCM_REALP (y))
a5f0b599
KR
3677 {
3678 double yy = SCM_REAL_VALUE (y);
2e65b52f 3679 if (isnan (yy))
a5f0b599 3680 return SCM_BOOL_F;
2e65b52f 3681 if (isinf (yy))
73e4de09 3682 return scm_from_bool (0.0 < yy);
a5f0b599
KR
3683 y = scm_inexact_to_exact (y); /* with y as frac or int */
3684 goto again;
3685 }
f92e85f7 3686 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3687 {
3688 /* "a/b < c/d" becomes "a*d < c*b" */
3689 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3690 SCM_FRACTION_DENOMINATOR (y));
3691 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3692 SCM_FRACTION_DENOMINATOR (x));
3693 x = new_x;
3694 y = new_y;
3695 goto again;
3696 }
0aacf84e 3697 else
8a1f4f98 3698 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f872b822 3699 }
0aacf84e 3700 else
8a1f4f98 3701 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARG1, s_scm_i_num_less_p);
0f2d19dd
JB
3702}
3703
3704
8a1f4f98
AW
3705SCM scm_i_num_gr_p (SCM, SCM, SCM);
3706SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1,
3707 (SCM x, SCM y, SCM rest),
3708 "Return @code{#t} if the list of parameters is monotonically\n"
3709 "decreasing.")
3710#define FUNC_NAME s_scm_i_num_gr_p
3711{
3712 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3713 return SCM_BOOL_T;
3714 while (!scm_is_null (rest))
3715 {
3716 if (scm_is_false (scm_gr_p (x, y)))
3717 return SCM_BOOL_F;
3718 x = y;
3719 y = scm_car (rest);
3720 rest = scm_cdr (rest);
3721 }
3722 return scm_gr_p (x, y);
3723}
3724#undef FUNC_NAME
3725#define FUNC_NAME s_scm_i_num_gr_p
c76b1eaf
MD
3726SCM
3727scm_gr_p (SCM x, SCM y)
0f2d19dd 3728{
c76b1eaf 3729 if (!SCM_NUMBERP (x))
8a1f4f98 3730 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3731 else if (!SCM_NUMBERP (y))
8a1f4f98 3732 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME);
c76b1eaf
MD
3733 else
3734 return scm_less_p (y, x);
0f2d19dd 3735}
1bbd0b84 3736#undef FUNC_NAME
0f2d19dd
JB
3737
3738
8a1f4f98
AW
3739SCM scm_i_num_leq_p (SCM, SCM, SCM);
3740SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1,
3741 (SCM x, SCM y, SCM rest),
3742 "Return @code{#t} if the list of parameters is monotonically\n"
3743 "non-decreasing.")
3744#define FUNC_NAME s_scm_i_num_leq_p
3745{
3746 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3747 return SCM_BOOL_T;
3748 while (!scm_is_null (rest))
3749 {
3750 if (scm_is_false (scm_leq_p (x, y)))
3751 return SCM_BOOL_F;
3752 x = y;
3753 y = scm_car (rest);
3754 rest = scm_cdr (rest);
3755 }
3756 return scm_leq_p (x, y);
3757}
3758#undef FUNC_NAME
3759#define FUNC_NAME s_scm_i_num_leq_p
c76b1eaf
MD
3760SCM
3761scm_leq_p (SCM x, SCM y)
0f2d19dd 3762{
c76b1eaf 3763 if (!SCM_NUMBERP (x))
8a1f4f98 3764 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3765 else if (!SCM_NUMBERP (y))
8a1f4f98 3766 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3767 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3768 return SCM_BOOL_F;
c76b1eaf 3769 else
73e4de09 3770 return scm_not (scm_less_p (y, x));
0f2d19dd 3771}
1bbd0b84 3772#undef FUNC_NAME
0f2d19dd
JB
3773
3774
8a1f4f98
AW
3775SCM scm_i_num_geq_p (SCM, SCM, SCM);
3776SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1,
3777 (SCM x, SCM y, SCM rest),
3778 "Return @code{#t} if the list of parameters is monotonically\n"
3779 "non-increasing.")
3780#define FUNC_NAME s_scm_i_num_geq_p
3781{
3782 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3783 return SCM_BOOL_T;
3784 while (!scm_is_null (rest))
3785 {
3786 if (scm_is_false (scm_geq_p (x, y)))
3787 return SCM_BOOL_F;
3788 x = y;
3789 y = scm_car (rest);
3790 rest = scm_cdr (rest);
3791 }
3792 return scm_geq_p (x, y);
3793}
3794#undef FUNC_NAME
3795#define FUNC_NAME s_scm_i_num_geq_p
c76b1eaf
MD
3796SCM
3797scm_geq_p (SCM x, SCM y)
0f2d19dd 3798{
c76b1eaf 3799 if (!SCM_NUMBERP (x))
8a1f4f98 3800 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3801 else if (!SCM_NUMBERP (y))
8a1f4f98 3802 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3803 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3804 return SCM_BOOL_F;
c76b1eaf 3805 else
73e4de09 3806 return scm_not (scm_less_p (x, y));
0f2d19dd 3807}
1bbd0b84 3808#undef FUNC_NAME
0f2d19dd
JB
3809
3810
152f82bf 3811SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
942e5b91
MG
3812/* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3813 * "zero."
3814 */
0f2d19dd 3815SCM
6e8d25a6 3816scm_zero_p (SCM z)
0f2d19dd 3817{
e11e83f3 3818 if (SCM_I_INUMP (z))
bc36d050 3819 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
0aacf84e 3820 else if (SCM_BIGP (z))
c2ff8ab0 3821 return SCM_BOOL_F;
0aacf84e 3822 else if (SCM_REALP (z))
73e4de09 3823 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
0aacf84e 3824 else if (SCM_COMPLEXP (z))
73e4de09 3825 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
c2ff8ab0 3826 && SCM_COMPLEX_IMAG (z) == 0.0);
f92e85f7
MV
3827 else if (SCM_FRACTIONP (z))
3828 return SCM_BOOL_F;
0aacf84e 3829 else
c2ff8ab0 3830 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
0f2d19dd
JB
3831}
3832
3833
152f82bf 3834SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
942e5b91
MG
3835/* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3836 * "zero."
3837 */
0f2d19dd 3838SCM
6e8d25a6 3839scm_positive_p (SCM x)
0f2d19dd 3840{
e11e83f3
MV
3841 if (SCM_I_INUMP (x))
3842 return scm_from_bool (SCM_I_INUM (x) > 0);
0aacf84e
MD
3843 else if (SCM_BIGP (x))
3844 {
3845 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3846 scm_remember_upto_here_1 (x);
73e4de09 3847 return scm_from_bool (sgn > 0);
0aacf84e
MD
3848 }
3849 else if (SCM_REALP (x))
73e4de09 3850 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
f92e85f7
MV
3851 else if (SCM_FRACTIONP (x))
3852 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3853 else
c2ff8ab0 3854 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
0f2d19dd
JB
3855}
3856
3857
152f82bf 3858SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
942e5b91
MG
3859/* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3860 * "zero."
3861 */
0f2d19dd 3862SCM
6e8d25a6 3863scm_negative_p (SCM x)
0f2d19dd 3864{
e11e83f3
MV
3865 if (SCM_I_INUMP (x))
3866 return scm_from_bool (SCM_I_INUM (x) < 0);
0aacf84e
MD
3867 else if (SCM_BIGP (x))
3868 {
3869 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3870 scm_remember_upto_here_1 (x);
73e4de09 3871 return scm_from_bool (sgn < 0);
0aacf84e
MD
3872 }
3873 else if (SCM_REALP (x))
73e4de09 3874 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
f92e85f7
MV
3875 else if (SCM_FRACTIONP (x))
3876 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3877 else
c2ff8ab0 3878 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
0f2d19dd
JB
3879}
3880
3881
2a06f791
KR
3882/* scm_min and scm_max return an inexact when either argument is inexact, as
3883 required by r5rs. On that basis, for exact/inexact combinations the
3884 exact is converted to inexact to compare and possibly return. This is
3885 unlike scm_less_p above which takes some trouble to preserve all bits in
3886 its test, such trouble is not required for min and max. */
3887
78d3deb1
AW
3888SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
3889 (SCM x, SCM y, SCM rest),
3890 "Return the maximum of all parameter values.")
3891#define FUNC_NAME s_scm_i_max
3892{
3893 while (!scm_is_null (rest))
3894 { x = scm_max (x, y);
3895 y = scm_car (rest);
3896 rest = scm_cdr (rest);
3897 }
3898 return scm_max (x, y);
3899}
3900#undef FUNC_NAME
3901
3902#define s_max s_scm_i_max
3903#define g_max g_scm_i_max
3904
0f2d19dd 3905SCM
6e8d25a6 3906scm_max (SCM x, SCM y)
0f2d19dd 3907{
0aacf84e
MD
3908 if (SCM_UNBNDP (y))
3909 {
3910 if (SCM_UNBNDP (x))
3911 SCM_WTA_DISPATCH_0 (g_max, s_max);
e11e83f3 3912 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
3913 return x;
3914 else
3915 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
f872b822 3916 }
f4c627b3 3917
e11e83f3 3918 if (SCM_I_INUMP (x))
0aacf84e 3919 {
e25f3727 3920 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 3921 if (SCM_I_INUMP (y))
0aacf84e 3922 {
e25f3727 3923 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
3924 return (xx < yy) ? y : x;
3925 }
3926 else if (SCM_BIGP (y))
3927 {
3928 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3929 scm_remember_upto_here_1 (y);
3930 return (sgn < 0) ? x : y;
3931 }
3932 else if (SCM_REALP (y))
3933 {
3934 double z = xx;
3935 /* if y==NaN then ">" is false and we return NaN */
55f26379 3936 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 3937 }
f92e85f7
MV
3938 else if (SCM_FRACTIONP (y))
3939 {
e4bc5d6c 3940 use_less:
73e4de09 3941 return (scm_is_false (scm_less_p (x, y)) ? x : y);
f92e85f7 3942 }
0aacf84e
MD
3943 else
3944 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 3945 }
0aacf84e
MD
3946 else if (SCM_BIGP (x))
3947 {
e11e83f3 3948 if (SCM_I_INUMP (y))
0aacf84e
MD
3949 {
3950 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3951 scm_remember_upto_here_1 (x);
3952 return (sgn < 0) ? y : x;
3953 }
3954 else if (SCM_BIGP (y))
3955 {
3956 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3957 scm_remember_upto_here_2 (x, y);
3958 return (cmp > 0) ? x : y;
3959 }
3960 else if (SCM_REALP (y))
3961 {
2a06f791
KR
3962 /* if y==NaN then xx>yy is false, so we return the NaN y */
3963 double xx, yy;
3964 big_real:
3965 xx = scm_i_big2dbl (x);
3966 yy = SCM_REAL_VALUE (y);
55f26379 3967 return (xx > yy ? scm_from_double (xx) : y);
0aacf84e 3968 }
f92e85f7
MV
3969 else if (SCM_FRACTIONP (y))
3970 {
e4bc5d6c 3971 goto use_less;
f92e85f7 3972 }
0aacf84e
MD
3973 else
3974 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f4c627b3 3975 }
0aacf84e
MD
3976 else if (SCM_REALP (x))
3977 {
e11e83f3 3978 if (SCM_I_INUMP (y))
0aacf84e 3979 {
e11e83f3 3980 double z = SCM_I_INUM (y);
0aacf84e 3981 /* if x==NaN then "<" is false and we return NaN */
55f26379 3982 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
0aacf84e
MD
3983 }
3984 else if (SCM_BIGP (y))
3985 {
b6f8f763 3986 SCM_SWAP (x, y);
2a06f791 3987 goto big_real;
0aacf84e
MD
3988 }
3989 else if (SCM_REALP (y))
3990 {
3991 /* if x==NaN then our explicit check means we return NaN
3992 if y==NaN then ">" is false and we return NaN
3993 calling isnan is unavoidable, since it's the only way to know
3994 which of x or y causes any compares to be false */
3995 double xx = SCM_REAL_VALUE (x);
2e65b52f 3996 return (isnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
0aacf84e 3997 }
f92e85f7
MV
3998 else if (SCM_FRACTIONP (y))
3999 {
4000 double yy = scm_i_fraction2double (y);
4001 double xx = SCM_REAL_VALUE (x);
55f26379 4002 return (xx < yy) ? scm_from_double (yy) : x;
f92e85f7
MV
4003 }
4004 else
4005 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
4006 }
4007 else if (SCM_FRACTIONP (x))
4008 {
e11e83f3 4009 if (SCM_I_INUMP (y))
f92e85f7 4010 {
e4bc5d6c 4011 goto use_less;
f92e85f7
MV
4012 }
4013 else if (SCM_BIGP (y))
4014 {
e4bc5d6c 4015 goto use_less;
f92e85f7
MV
4016 }
4017 else if (SCM_REALP (y))
4018 {
4019 double xx = scm_i_fraction2double (x);
55f26379 4020 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
f92e85f7
MV
4021 }
4022 else if (SCM_FRACTIONP (y))
4023 {
e4bc5d6c 4024 goto use_less;
f92e85f7 4025 }
0aacf84e
MD
4026 else
4027 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 4028 }
0aacf84e 4029 else
f4c627b3 4030 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
0f2d19dd
JB
4031}
4032
4033
78d3deb1
AW
4034SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
4035 (SCM x, SCM y, SCM rest),
4036 "Return the minimum of all parameter values.")
4037#define FUNC_NAME s_scm_i_min
4038{
4039 while (!scm_is_null (rest))
4040 { x = scm_min (x, y);
4041 y = scm_car (rest);
4042 rest = scm_cdr (rest);
4043 }
4044 return scm_min (x, y);
4045}
4046#undef FUNC_NAME
4047
4048#define s_min s_scm_i_min
4049#define g_min g_scm_i_min
4050
0f2d19dd 4051SCM
6e8d25a6 4052scm_min (SCM x, SCM y)
0f2d19dd 4053{
0aacf84e
MD
4054 if (SCM_UNBNDP (y))
4055 {
4056 if (SCM_UNBNDP (x))
4057 SCM_WTA_DISPATCH_0 (g_min, s_min);
e11e83f3 4058 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
4059 return x;
4060 else
4061 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
f872b822 4062 }
f4c627b3 4063
e11e83f3 4064 if (SCM_I_INUMP (x))
0aacf84e 4065 {
e25f3727 4066 scm_t_inum xx = SCM_I_INUM (x);
e11e83f3 4067 if (SCM_I_INUMP (y))
0aacf84e 4068 {
e25f3727 4069 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
4070 return (xx < yy) ? x : y;
4071 }
4072 else if (SCM_BIGP (y))
4073 {
4074 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
4075 scm_remember_upto_here_1 (y);
4076 return (sgn < 0) ? y : x;
4077 }
4078 else if (SCM_REALP (y))
4079 {
4080 double z = xx;
4081 /* if y==NaN then "<" is false and we return NaN */
55f26379 4082 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 4083 }
f92e85f7
MV
4084 else if (SCM_FRACTIONP (y))
4085 {
e4bc5d6c 4086 use_less:
73e4de09 4087 return (scm_is_false (scm_less_p (x, y)) ? y : x);
f92e85f7 4088 }
0aacf84e
MD
4089 else
4090 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 4091 }
0aacf84e
MD
4092 else if (SCM_BIGP (x))
4093 {
e11e83f3 4094 if (SCM_I_INUMP (y))
0aacf84e
MD
4095 {
4096 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4097 scm_remember_upto_here_1 (x);
4098 return (sgn < 0) ? x : y;
4099 }
4100 else if (SCM_BIGP (y))
4101 {
4102 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
4103 scm_remember_upto_here_2 (x, y);
4104 return (cmp > 0) ? y : x;
4105 }
4106 else if (SCM_REALP (y))
4107 {
2a06f791
KR
4108 /* if y==NaN then xx<yy is false, so we return the NaN y */
4109 double xx, yy;
4110 big_real:
4111 xx = scm_i_big2dbl (x);
4112 yy = SCM_REAL_VALUE (y);
55f26379 4113 return (xx < yy ? scm_from_double (xx) : y);
0aacf84e 4114 }
f92e85f7
MV
4115 else if (SCM_FRACTIONP (y))
4116 {
e4bc5d6c 4117 goto use_less;
f92e85f7 4118 }
0aacf84e
MD
4119 else
4120 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f4c627b3 4121 }
0aacf84e
MD
4122 else if (SCM_REALP (x))
4123 {
e11e83f3 4124 if (SCM_I_INUMP (y))
0aacf84e 4125 {
e11e83f3 4126 double z = SCM_I_INUM (y);
0aacf84e 4127 /* if x==NaN then "<" is false and we return NaN */
55f26379 4128 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
0aacf84e
MD
4129 }
4130 else if (SCM_BIGP (y))
4131 {
b6f8f763 4132 SCM_SWAP (x, y);
2a06f791 4133 goto big_real;
0aacf84e
MD
4134 }
4135 else if (SCM_REALP (y))
4136 {
4137 /* if x==NaN then our explicit check means we return NaN
4138 if y==NaN then "<" is false and we return NaN
4139 calling isnan is unavoidable, since it's the only way to know
4140 which of x or y causes any compares to be false */
4141 double xx = SCM_REAL_VALUE (x);
2e65b52f 4142 return (isnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
0aacf84e 4143 }
f92e85f7
MV
4144 else if (SCM_FRACTIONP (y))
4145 {
4146 double yy = scm_i_fraction2double (y);
4147 double xx = SCM_REAL_VALUE (x);
55f26379 4148 return (yy < xx) ? scm_from_double (yy) : x;
f92e85f7 4149 }
0aacf84e
MD
4150 else
4151 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 4152 }
f92e85f7
MV
4153 else if (SCM_FRACTIONP (x))
4154 {
e11e83f3 4155 if (SCM_I_INUMP (y))
f92e85f7 4156 {
e4bc5d6c 4157 goto use_less;
f92e85f7
MV
4158 }
4159 else if (SCM_BIGP (y))
4160 {
e4bc5d6c 4161 goto use_less;
f92e85f7
MV
4162 }
4163 else if (SCM_REALP (y))
4164 {
4165 double xx = scm_i_fraction2double (x);
55f26379 4166 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
f92e85f7
MV
4167 }
4168 else if (SCM_FRACTIONP (y))
4169 {
e4bc5d6c 4170 goto use_less;
f92e85f7
MV
4171 }
4172 else
78d3deb1 4173 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f92e85f7 4174 }
0aacf84e 4175 else
f4c627b3 4176 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
0f2d19dd
JB
4177}
4178
4179
8ccd24f7
AW
4180SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
4181 (SCM x, SCM y, SCM rest),
4182 "Return the sum of all parameter values. Return 0 if called without\n"
4183 "any parameters." )
4184#define FUNC_NAME s_scm_i_sum
4185{
4186 while (!scm_is_null (rest))
4187 { x = scm_sum (x, y);
4188 y = scm_car (rest);
4189 rest = scm_cdr (rest);
4190 }
4191 return scm_sum (x, y);
4192}
4193#undef FUNC_NAME
4194
4195#define s_sum s_scm_i_sum
4196#define g_sum g_scm_i_sum
4197
0f2d19dd 4198SCM
6e8d25a6 4199scm_sum (SCM x, SCM y)
0f2d19dd 4200{
9cc37597 4201 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
4202 {
4203 if (SCM_NUMBERP (x)) return x;
4204 if (SCM_UNBNDP (x)) return SCM_INUM0;
98cb6e75 4205 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
f872b822 4206 }
c209c88e 4207
9cc37597 4208 if (SCM_LIKELY (SCM_I_INUMP (x)))
ca46fb90 4209 {
9cc37597 4210 if (SCM_LIKELY (SCM_I_INUMP (y)))
ca46fb90 4211 {
e25f3727
AW
4212 scm_t_inum xx = SCM_I_INUM (x);
4213 scm_t_inum yy = SCM_I_INUM (y);
4214 scm_t_inum z = xx + yy;
4215 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_inum2big (z);
ca46fb90
RB
4216 }
4217 else if (SCM_BIGP (y))
4218 {
4219 SCM_SWAP (x, y);
4220 goto add_big_inum;
4221 }
4222 else if (SCM_REALP (y))
4223 {
e25f3727 4224 scm_t_inum xx = SCM_I_INUM (x);
55f26379 4225 return scm_from_double (xx + SCM_REAL_VALUE (y));
ca46fb90
RB
4226 }
4227 else if (SCM_COMPLEXP (y))
4228 {
e25f3727 4229 scm_t_inum xx = SCM_I_INUM (x);
8507ec80 4230 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
ca46fb90
RB
4231 SCM_COMPLEX_IMAG (y));
4232 }
f92e85f7 4233 else if (SCM_FRACTIONP (y))
cba42c93 4234 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
4235 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4236 SCM_FRACTION_DENOMINATOR (y));
ca46fb90
RB
4237 else
4238 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0aacf84e
MD
4239 } else if (SCM_BIGP (x))
4240 {
e11e83f3 4241 if (SCM_I_INUMP (y))
0aacf84e 4242 {
e25f3727 4243 scm_t_inum inum;
0aacf84e
MD
4244 int bigsgn;
4245 add_big_inum:
e11e83f3 4246 inum = SCM_I_INUM (y);
0aacf84e
MD
4247 if (inum == 0)
4248 return x;
4249 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4250 if (inum < 0)
4251 {
4252 SCM result = scm_i_mkbig ();
4253 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
4254 scm_remember_upto_here_1 (x);
4255 /* we know the result will have to be a bignum */
4256 if (bigsgn == -1)
4257 return result;
4258 return scm_i_normbig (result);
4259 }
4260 else
4261 {
4262 SCM result = scm_i_mkbig ();
4263 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
4264 scm_remember_upto_here_1 (x);
4265 /* we know the result will have to be a bignum */
4266 if (bigsgn == 1)
4267 return result;
4268 return scm_i_normbig (result);
4269 }
4270 }
4271 else if (SCM_BIGP (y))
4272 {
4273 SCM result = scm_i_mkbig ();
4274 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4275 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4276 mpz_add (SCM_I_BIG_MPZ (result),
4277 SCM_I_BIG_MPZ (x),
4278 SCM_I_BIG_MPZ (y));
4279 scm_remember_upto_here_2 (x, y);
4280 /* we know the result will have to be a bignum */
4281 if (sgn_x == sgn_y)
4282 return result;
4283 return scm_i_normbig (result);
4284 }
4285 else if (SCM_REALP (y))
4286 {
4287 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
4288 scm_remember_upto_here_1 (x);
55f26379 4289 return scm_from_double (result);
0aacf84e
MD
4290 }
4291 else if (SCM_COMPLEXP (y))
4292 {
4293 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4294 + SCM_COMPLEX_REAL (y));
4295 scm_remember_upto_here_1 (x);
8507ec80 4296 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e 4297 }
f92e85f7 4298 else if (SCM_FRACTIONP (y))
cba42c93 4299 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
4300 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4301 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4302 else
4303 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0f2d19dd 4304 }
0aacf84e
MD
4305 else if (SCM_REALP (x))
4306 {
e11e83f3 4307 if (SCM_I_INUMP (y))
55f26379 4308 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
0aacf84e
MD
4309 else if (SCM_BIGP (y))
4310 {
4311 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
4312 scm_remember_upto_here_1 (y);
55f26379 4313 return scm_from_double (result);
0aacf84e
MD
4314 }
4315 else if (SCM_REALP (y))
55f26379 4316 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
0aacf84e 4317 else if (SCM_COMPLEXP (y))
8507ec80 4318 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4319 SCM_COMPLEX_IMAG (y));
f92e85f7 4320 else if (SCM_FRACTIONP (y))
55f26379 4321 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
0aacf84e
MD
4322 else
4323 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
f872b822 4324 }
0aacf84e
MD
4325 else if (SCM_COMPLEXP (x))
4326 {
e11e83f3 4327 if (SCM_I_INUMP (y))
8507ec80 4328 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
0aacf84e
MD
4329 SCM_COMPLEX_IMAG (x));
4330 else if (SCM_BIGP (y))
4331 {
4332 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
4333 + SCM_COMPLEX_REAL (x));
4334 scm_remember_upto_here_1 (y);
8507ec80 4335 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4336 }
4337 else if (SCM_REALP (y))
8507ec80 4338 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
0aacf84e
MD
4339 SCM_COMPLEX_IMAG (x));
4340 else if (SCM_COMPLEXP (y))
8507ec80 4341 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4342 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
f92e85f7 4343 else if (SCM_FRACTIONP (y))
8507ec80 4344 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
f92e85f7
MV
4345 SCM_COMPLEX_IMAG (x));
4346 else
4347 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4348 }
4349 else if (SCM_FRACTIONP (x))
4350 {
e11e83f3 4351 if (SCM_I_INUMP (y))
cba42c93 4352 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4353 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4354 SCM_FRACTION_DENOMINATOR (x));
4355 else if (SCM_BIGP (y))
cba42c93 4356 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4357 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4358 SCM_FRACTION_DENOMINATOR (x));
4359 else if (SCM_REALP (y))
55f26379 4360 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
f92e85f7 4361 else if (SCM_COMPLEXP (y))
8507ec80 4362 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
f92e85f7
MV
4363 SCM_COMPLEX_IMAG (y));
4364 else if (SCM_FRACTIONP (y))
4365 /* a/b + c/d = (ad + bc) / bd */
cba42c93 4366 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4367 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4368 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4369 else
4370 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
98cb6e75 4371 }
0aacf84e 4372 else
98cb6e75 4373 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
0f2d19dd
JB
4374}
4375
4376
40882e3d
KR
4377SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
4378 (SCM x),
4379 "Return @math{@var{x}+1}.")
4380#define FUNC_NAME s_scm_oneplus
4381{
cff5fa33 4382 return scm_sum (x, SCM_INUM1);
40882e3d
KR
4383}
4384#undef FUNC_NAME
4385
4386
78d3deb1
AW
4387SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
4388 (SCM x, SCM y, SCM rest),
4389 "If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
4390 "the sum of all but the first argument are subtracted from the first\n"
4391 "argument.")
4392#define FUNC_NAME s_scm_i_difference
4393{
4394 while (!scm_is_null (rest))
4395 { x = scm_difference (x, y);
4396 y = scm_car (rest);
4397 rest = scm_cdr (rest);
4398 }
4399 return scm_difference (x, y);
4400}
4401#undef FUNC_NAME
4402
4403#define s_difference s_scm_i_difference
4404#define g_difference g_scm_i_difference
4405
0f2d19dd 4406SCM
6e8d25a6 4407scm_difference (SCM x, SCM y)
78d3deb1 4408#define FUNC_NAME s_difference
0f2d19dd 4409{
9cc37597 4410 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
4411 {
4412 if (SCM_UNBNDP (x))
4413 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4414 else
e11e83f3 4415 if (SCM_I_INUMP (x))
ca46fb90 4416 {
e25f3727 4417 scm_t_inum xx = -SCM_I_INUM (x);
ca46fb90 4418 if (SCM_FIXABLE (xx))
d956fa6f 4419 return SCM_I_MAKINUM (xx);
ca46fb90 4420 else
e25f3727 4421 return scm_i_inum2big (xx);
ca46fb90
RB
4422 }
4423 else if (SCM_BIGP (x))
a9ad4847
KR
4424 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4425 bignum, but negating that gives a fixnum. */
ca46fb90
RB
4426 return scm_i_normbig (scm_i_clonebig (x, 0));
4427 else if (SCM_REALP (x))
55f26379 4428 return scm_from_double (-SCM_REAL_VALUE (x));
ca46fb90 4429 else if (SCM_COMPLEXP (x))
8507ec80 4430 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
ca46fb90 4431 -SCM_COMPLEX_IMAG (x));
f92e85f7 4432 else if (SCM_FRACTIONP (x))
cba42c93 4433 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7 4434 SCM_FRACTION_DENOMINATOR (x));
ca46fb90
RB
4435 else
4436 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
f872b822 4437 }
ca46fb90 4438
9cc37597 4439 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 4440 {
9cc37597 4441 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4442 {
e25f3727
AW
4443 scm_t_inum xx = SCM_I_INUM (x);
4444 scm_t_inum yy = SCM_I_INUM (y);
4445 scm_t_inum z = xx - yy;
0aacf84e 4446 if (SCM_FIXABLE (z))
d956fa6f 4447 return SCM_I_MAKINUM (z);
0aacf84e 4448 else
e25f3727 4449 return scm_i_inum2big (z);
0aacf84e
MD
4450 }
4451 else if (SCM_BIGP (y))
4452 {
4453 /* inum-x - big-y */
e25f3727 4454 scm_t_inum xx = SCM_I_INUM (x);
ca46fb90 4455
0aacf84e 4456 if (xx == 0)
b5c40589
MW
4457 {
4458 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4459 bignum, but negating that gives a fixnum. */
4460 return scm_i_normbig (scm_i_clonebig (y, 0));
4461 }
0aacf84e
MD
4462 else
4463 {
4464 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4465 SCM result = scm_i_mkbig ();
ca46fb90 4466
0aacf84e
MD
4467 if (xx >= 0)
4468 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4469 else
4470 {
4471 /* x - y == -(y + -x) */
4472 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4473 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4474 }
4475 scm_remember_upto_here_1 (y);
ca46fb90 4476
0aacf84e
MD
4477 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4478 /* we know the result will have to be a bignum */
4479 return result;
4480 else
4481 return scm_i_normbig (result);
4482 }
4483 }
4484 else if (SCM_REALP (y))
4485 {
e25f3727 4486 scm_t_inum xx = SCM_I_INUM (x);
55f26379 4487 return scm_from_double (xx - SCM_REAL_VALUE (y));
0aacf84e
MD
4488 }
4489 else if (SCM_COMPLEXP (y))
4490 {
e25f3727 4491 scm_t_inum xx = SCM_I_INUM (x);
8507ec80 4492 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
0aacf84e
MD
4493 - SCM_COMPLEX_IMAG (y));
4494 }
f92e85f7
MV
4495 else if (SCM_FRACTIONP (y))
4496 /* a - b/c = (ac - b) / c */
cba42c93 4497 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4498 SCM_FRACTION_NUMERATOR (y)),
4499 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4500 else
4501 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
f872b822 4502 }
0aacf84e
MD
4503 else if (SCM_BIGP (x))
4504 {
e11e83f3 4505 if (SCM_I_INUMP (y))
0aacf84e
MD
4506 {
4507 /* big-x - inum-y */
e25f3727 4508 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e 4509 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
ca46fb90 4510
0aacf84e
MD
4511 scm_remember_upto_here_1 (x);
4512 if (sgn_x == 0)
c71b0706 4513 return (SCM_FIXABLE (-yy) ?
e25f3727 4514 SCM_I_MAKINUM (-yy) : scm_from_inum (-yy));
0aacf84e
MD
4515 else
4516 {
4517 SCM result = scm_i_mkbig ();
ca46fb90 4518
708f22c6
KR
4519 if (yy >= 0)
4520 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4521 else
4522 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
0aacf84e 4523 scm_remember_upto_here_1 (x);
ca46fb90 4524
0aacf84e
MD
4525 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4526 /* we know the result will have to be a bignum */
4527 return result;
4528 else
4529 return scm_i_normbig (result);
4530 }
4531 }
4532 else if (SCM_BIGP (y))
4533 {
4534 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4535 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4536 SCM result = scm_i_mkbig ();
4537 mpz_sub (SCM_I_BIG_MPZ (result),
4538 SCM_I_BIG_MPZ (x),
4539 SCM_I_BIG_MPZ (y));
4540 scm_remember_upto_here_2 (x, y);
4541 /* we know the result will have to be a bignum */
4542 if ((sgn_x == 1) && (sgn_y == -1))
4543 return result;
4544 if ((sgn_x == -1) && (sgn_y == 1))
4545 return result;
4546 return scm_i_normbig (result);
4547 }
4548 else if (SCM_REALP (y))
4549 {
4550 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4551 scm_remember_upto_here_1 (x);
55f26379 4552 return scm_from_double (result);
0aacf84e
MD
4553 }
4554 else if (SCM_COMPLEXP (y))
4555 {
4556 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4557 - SCM_COMPLEX_REAL (y));
4558 scm_remember_upto_here_1 (x);
8507ec80 4559 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
0aacf84e 4560 }
f92e85f7 4561 else if (SCM_FRACTIONP (y))
cba42c93 4562 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4563 SCM_FRACTION_NUMERATOR (y)),
4564 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 4565 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
ca46fb90 4566 }
0aacf84e
MD
4567 else if (SCM_REALP (x))
4568 {
e11e83f3 4569 if (SCM_I_INUMP (y))
55f26379 4570 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
0aacf84e
MD
4571 else if (SCM_BIGP (y))
4572 {
4573 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4574 scm_remember_upto_here_1 (x);
55f26379 4575 return scm_from_double (result);
0aacf84e
MD
4576 }
4577 else if (SCM_REALP (y))
55f26379 4578 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
0aacf84e 4579 else if (SCM_COMPLEXP (y))
8507ec80 4580 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4581 -SCM_COMPLEX_IMAG (y));
f92e85f7 4582 else if (SCM_FRACTIONP (y))
55f26379 4583 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
0aacf84e
MD
4584 else
4585 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4586 }
0aacf84e
MD
4587 else if (SCM_COMPLEXP (x))
4588 {
e11e83f3 4589 if (SCM_I_INUMP (y))
8507ec80 4590 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
0aacf84e
MD
4591 SCM_COMPLEX_IMAG (x));
4592 else if (SCM_BIGP (y))
4593 {
4594 double real_part = (SCM_COMPLEX_REAL (x)
4595 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4596 scm_remember_upto_here_1 (x);
8507ec80 4597 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e
MD
4598 }
4599 else if (SCM_REALP (y))
8507ec80 4600 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
0aacf84e
MD
4601 SCM_COMPLEX_IMAG (x));
4602 else if (SCM_COMPLEXP (y))
8507ec80 4603 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4604 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
f92e85f7 4605 else if (SCM_FRACTIONP (y))
8507ec80 4606 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
f92e85f7
MV
4607 SCM_COMPLEX_IMAG (x));
4608 else
4609 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4610 }
4611 else if (SCM_FRACTIONP (x))
4612 {
e11e83f3 4613 if (SCM_I_INUMP (y))
f92e85f7 4614 /* a/b - c = (a - cb) / b */
cba42c93 4615 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4616 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4617 SCM_FRACTION_DENOMINATOR (x));
4618 else if (SCM_BIGP (y))
cba42c93 4619 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4620 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4621 SCM_FRACTION_DENOMINATOR (x));
4622 else if (SCM_REALP (y))
55f26379 4623 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
f92e85f7 4624 else if (SCM_COMPLEXP (y))
8507ec80 4625 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
f92e85f7
MV
4626 -SCM_COMPLEX_IMAG (y));
4627 else if (SCM_FRACTIONP (y))
4628 /* a/b - c/d = (ad - bc) / bd */
cba42c93 4629 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4630 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4631 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4632 else
4633 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4634 }
0aacf84e 4635 else
98cb6e75 4636 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
0f2d19dd 4637}
c05e97b7 4638#undef FUNC_NAME
0f2d19dd 4639
ca46fb90 4640
40882e3d
KR
4641SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
4642 (SCM x),
4643 "Return @math{@var{x}-1}.")
4644#define FUNC_NAME s_scm_oneminus
4645{
cff5fa33 4646 return scm_difference (x, SCM_INUM1);
40882e3d
KR
4647}
4648#undef FUNC_NAME
4649
4650
78d3deb1
AW
4651SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
4652 (SCM x, SCM y, SCM rest),
4653 "Return the product of all arguments. If called without arguments,\n"
4654 "1 is returned.")
4655#define FUNC_NAME s_scm_i_product
4656{
4657 while (!scm_is_null (rest))
4658 { x = scm_product (x, y);
4659 y = scm_car (rest);
4660 rest = scm_cdr (rest);
4661 }
4662 return scm_product (x, y);
4663}
4664#undef FUNC_NAME
4665
4666#define s_product s_scm_i_product
4667#define g_product g_scm_i_product
4668
0f2d19dd 4669SCM
6e8d25a6 4670scm_product (SCM x, SCM y)
0f2d19dd 4671{
9cc37597 4672 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
4673 {
4674 if (SCM_UNBNDP (x))
d956fa6f 4675 return SCM_I_MAKINUM (1L);
0aacf84e
MD
4676 else if (SCM_NUMBERP (x))
4677 return x;
4678 else
4679 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
f872b822 4680 }
ca46fb90 4681
9cc37597 4682 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 4683 {
e25f3727 4684 scm_t_inum xx;
f4c627b3 4685
0aacf84e 4686 intbig:
e11e83f3 4687 xx = SCM_I_INUM (x);
f4c627b3 4688
0aacf84e
MD
4689 switch (xx)
4690 {
ca46fb90
RB
4691 case 0: return x; break;
4692 case 1: return y; break;
b5c40589
MW
4693 /*
4694 * The following case (x = -1) is important for more than
4695 * just optimization. It handles the case of negating
4696 * (+ 1 most-positive-fixnum) aka (- most-negative-fixnum),
4697 * which is a bignum that must be changed back into a fixnum.
4698 * Failure to do so will cause the following to return #f:
4699 * (= most-negative-fixnum (* -1 (- most-negative-fixnum)))
4700 */
4701 case -1:
4702 return scm_difference(y, SCM_UNDEFINED);
4703 break;
0aacf84e 4704 }
f4c627b3 4705
9cc37597 4706 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4707 {
e25f3727
AW
4708 scm_t_inum yy = SCM_I_INUM (y);
4709 scm_t_inum kk = xx * yy;
d956fa6f 4710 SCM k = SCM_I_MAKINUM (kk);
e11e83f3 4711 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
0aacf84e
MD
4712 return k;
4713 else
4714 {
e25f3727 4715 SCM result = scm_i_inum2big (xx);
0aacf84e
MD
4716 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4717 return scm_i_normbig (result);
4718 }
4719 }
4720 else if (SCM_BIGP (y))
4721 {
4722 SCM result = scm_i_mkbig ();
4723 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4724 scm_remember_upto_here_1 (y);
4725 return result;
4726 }
4727 else if (SCM_REALP (y))
55f26379 4728 return scm_from_double (xx * SCM_REAL_VALUE (y));
0aacf84e 4729 else if (SCM_COMPLEXP (y))
8507ec80 4730 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
0aacf84e 4731 xx * SCM_COMPLEX_IMAG (y));
f92e85f7 4732 else if (SCM_FRACTIONP (y))
cba42c93 4733 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4734 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4735 else
4736 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4737 }
0aacf84e
MD
4738 else if (SCM_BIGP (x))
4739 {
e11e83f3 4740 if (SCM_I_INUMP (y))
0aacf84e
MD
4741 {
4742 SCM_SWAP (x, y);
4743 goto intbig;
4744 }
4745 else if (SCM_BIGP (y))
4746 {
4747 SCM result = scm_i_mkbig ();
4748 mpz_mul (SCM_I_BIG_MPZ (result),
4749 SCM_I_BIG_MPZ (x),
4750 SCM_I_BIG_MPZ (y));
4751 scm_remember_upto_here_2 (x, y);
4752 return result;
4753 }
4754 else if (SCM_REALP (y))
4755 {
4756 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4757 scm_remember_upto_here_1 (x);
55f26379 4758 return scm_from_double (result);
0aacf84e
MD
4759 }
4760 else if (SCM_COMPLEXP (y))
4761 {
4762 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4763 scm_remember_upto_here_1 (x);
8507ec80 4764 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
0aacf84e
MD
4765 z * SCM_COMPLEX_IMAG (y));
4766 }
f92e85f7 4767 else if (SCM_FRACTIONP (y))
cba42c93 4768 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4769 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4770 else
4771 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4772 }
0aacf84e
MD
4773 else if (SCM_REALP (x))
4774 {
e11e83f3 4775 if (SCM_I_INUMP (y))
23d72566
KR
4776 {
4777 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4778 if (scm_is_eq (y, SCM_INUM0))
4779 return y;
4780 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
4781 }
0aacf84e
MD
4782 else if (SCM_BIGP (y))
4783 {
4784 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4785 scm_remember_upto_here_1 (y);
55f26379 4786 return scm_from_double (result);
0aacf84e
MD
4787 }
4788 else if (SCM_REALP (y))
55f26379 4789 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
0aacf84e 4790 else if (SCM_COMPLEXP (y))
8507ec80 4791 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
0aacf84e 4792 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
f92e85f7 4793 else if (SCM_FRACTIONP (y))
55f26379 4794 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
0aacf84e
MD
4795 else
4796 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4797 }
0aacf84e
MD
4798 else if (SCM_COMPLEXP (x))
4799 {
e11e83f3 4800 if (SCM_I_INUMP (y))
23d72566
KR
4801 {
4802 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4803 if (scm_is_eq (y, SCM_INUM0))
4804 return y;
4805 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
4806 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
4807 }
0aacf84e
MD
4808 else if (SCM_BIGP (y))
4809 {
4810 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4811 scm_remember_upto_here_1 (y);
8507ec80 4812 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
76506335 4813 z * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4814 }
4815 else if (SCM_REALP (y))
8507ec80 4816 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
0aacf84e
MD
4817 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4818 else if (SCM_COMPLEXP (y))
4819 {
8507ec80 4820 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
0aacf84e
MD
4821 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4822 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4823 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4824 }
f92e85f7
MV
4825 else if (SCM_FRACTIONP (y))
4826 {
4827 double yy = scm_i_fraction2double (y);
8507ec80 4828 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
f92e85f7
MV
4829 yy * SCM_COMPLEX_IMAG (x));
4830 }
4831 else
4832 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4833 }
4834 else if (SCM_FRACTIONP (x))
4835 {
e11e83f3 4836 if (SCM_I_INUMP (y))
cba42c93 4837 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4838 SCM_FRACTION_DENOMINATOR (x));
4839 else if (SCM_BIGP (y))
cba42c93 4840 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4841 SCM_FRACTION_DENOMINATOR (x));
4842 else if (SCM_REALP (y))
55f26379 4843 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
f92e85f7
MV
4844 else if (SCM_COMPLEXP (y))
4845 {
4846 double xx = scm_i_fraction2double (x);
8507ec80 4847 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
f92e85f7
MV
4848 xx * SCM_COMPLEX_IMAG (y));
4849 }
4850 else if (SCM_FRACTIONP (y))
4851 /* a/b * c/d = ac / bd */
cba42c93 4852 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4853 SCM_FRACTION_NUMERATOR (y)),
4854 scm_product (SCM_FRACTION_DENOMINATOR (x),
4855 SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4856 else
4857 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4858 }
0aacf84e 4859 else
f4c627b3 4860 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
0f2d19dd
JB
4861}
4862
7351e207
MV
4863#if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4864 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4865#define ALLOW_DIVIDE_BY_ZERO
4866/* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4867#endif
0f2d19dd 4868
ba74ef4e
MV
4869/* The code below for complex division is adapted from the GNU
4870 libstdc++, which adapted it from f2c's libF77, and is subject to
4871 this copyright: */
4872
4873/****************************************************************
4874Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4875
4876Permission to use, copy, modify, and distribute this software
4877and its documentation for any purpose and without fee is hereby
4878granted, provided that the above copyright notice appear in all
4879copies and that both that the copyright notice and this
4880permission notice and warranty disclaimer appear in supporting
4881documentation, and that the names of AT&T Bell Laboratories or
4882Bellcore or any of their entities not be used in advertising or
4883publicity pertaining to distribution of the software without
4884specific, written prior permission.
4885
4886AT&T and Bellcore disclaim all warranties with regard to this
4887software, including all implied warranties of merchantability
4888and fitness. In no event shall AT&T or Bellcore be liable for
4889any special, indirect or consequential damages or any damages
4890whatsoever resulting from loss of use, data or profits, whether
4891in an action of contract, negligence or other tortious action,
4892arising out of or in connection with the use or performance of
4893this software.
4894****************************************************************/
4895
78d3deb1
AW
4896SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
4897 (SCM x, SCM y, SCM rest),
4898 "Divide the first argument by the product of the remaining\n"
4899 "arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
4900 "returned.")
4901#define FUNC_NAME s_scm_i_divide
4902{
4903 while (!scm_is_null (rest))
4904 { x = scm_divide (x, y);
4905 y = scm_car (rest);
4906 rest = scm_cdr (rest);
4907 }
4908 return scm_divide (x, y);
4909}
4910#undef FUNC_NAME
4911
4912#define s_divide s_scm_i_divide
4913#define g_divide g_scm_i_divide
4914
f92e85f7 4915static SCM
78d3deb1
AW
4916do_divide (SCM x, SCM y, int inexact)
4917#define FUNC_NAME s_divide
0f2d19dd 4918{
f8de44c1
DH
4919 double a;
4920
9cc37597 4921 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
4922 {
4923 if (SCM_UNBNDP (x))
4924 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
e11e83f3 4925 else if (SCM_I_INUMP (x))
0aacf84e 4926 {
e25f3727 4927 scm_t_inum xx = SCM_I_INUM (x);
0aacf84e
MD
4928 if (xx == 1 || xx == -1)
4929 return x;
7351e207 4930#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4931 else if (xx == 0)
4932 scm_num_overflow (s_divide);
7351e207 4933#endif
0aacf84e 4934 else
f92e85f7
MV
4935 {
4936 if (inexact)
55f26379 4937 return scm_from_double (1.0 / (double) xx);
cff5fa33 4938 else return scm_i_make_ratio (SCM_INUM1, x);
f92e85f7 4939 }
0aacf84e
MD
4940 }
4941 else if (SCM_BIGP (x))
f92e85f7
MV
4942 {
4943 if (inexact)
55f26379 4944 return scm_from_double (1.0 / scm_i_big2dbl (x));
cff5fa33 4945 else return scm_i_make_ratio (SCM_INUM1, x);
f92e85f7 4946 }
0aacf84e
MD
4947 else if (SCM_REALP (x))
4948 {
4949 double xx = SCM_REAL_VALUE (x);
7351e207 4950#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4951 if (xx == 0.0)
4952 scm_num_overflow (s_divide);
4953 else
7351e207 4954#endif
55f26379 4955 return scm_from_double (1.0 / xx);
0aacf84e
MD
4956 }
4957 else if (SCM_COMPLEXP (x))
4958 {
4959 double r = SCM_COMPLEX_REAL (x);
4960 double i = SCM_COMPLEX_IMAG (x);
4c6e36a6 4961 if (fabs(r) <= fabs(i))
0aacf84e
MD
4962 {
4963 double t = r / i;
4964 double d = i * (1.0 + t * t);
8507ec80 4965 return scm_c_make_rectangular (t / d, -1.0 / d);
0aacf84e
MD
4966 }
4967 else
4968 {
4969 double t = i / r;
4970 double d = r * (1.0 + t * t);
8507ec80 4971 return scm_c_make_rectangular (1.0 / d, -t / d);
0aacf84e
MD
4972 }
4973 }
f92e85f7 4974 else if (SCM_FRACTIONP (x))
cba42c93 4975 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
f92e85f7 4976 SCM_FRACTION_NUMERATOR (x));
0aacf84e
MD
4977 else
4978 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
f8de44c1 4979 }
f8de44c1 4980
9cc37597 4981 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 4982 {
e25f3727 4983 scm_t_inum xx = SCM_I_INUM (x);
9cc37597 4984 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4985 {
e25f3727 4986 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
4987 if (yy == 0)
4988 {
7351e207 4989#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4990 scm_num_overflow (s_divide);
7351e207 4991#else
55f26379 4992 return scm_from_double ((double) xx / (double) yy);
7351e207 4993#endif
0aacf84e
MD
4994 }
4995 else if (xx % yy != 0)
f92e85f7
MV
4996 {
4997 if (inexact)
55f26379 4998 return scm_from_double ((double) xx / (double) yy);
cba42c93 4999 else return scm_i_make_ratio (x, y);
f92e85f7 5000 }
0aacf84e
MD
5001 else
5002 {
e25f3727 5003 scm_t_inum z = xx / yy;
0aacf84e 5004 if (SCM_FIXABLE (z))
d956fa6f 5005 return SCM_I_MAKINUM (z);
0aacf84e 5006 else
e25f3727 5007 return scm_i_inum2big (z);
0aacf84e 5008 }
f872b822 5009 }
0aacf84e 5010 else if (SCM_BIGP (y))
f92e85f7
MV
5011 {
5012 if (inexact)
55f26379 5013 return scm_from_double ((double) xx / scm_i_big2dbl (y));
cba42c93 5014 else return scm_i_make_ratio (x, y);
f92e85f7 5015 }
0aacf84e
MD
5016 else if (SCM_REALP (y))
5017 {
5018 double yy = SCM_REAL_VALUE (y);
7351e207 5019#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5020 if (yy == 0.0)
5021 scm_num_overflow (s_divide);
5022 else
7351e207 5023#endif
55f26379 5024 return scm_from_double ((double) xx / yy);
ba74ef4e 5025 }
0aacf84e
MD
5026 else if (SCM_COMPLEXP (y))
5027 {
5028 a = xx;
5029 complex_div: /* y _must_ be a complex number */
5030 {
5031 double r = SCM_COMPLEX_REAL (y);
5032 double i = SCM_COMPLEX_IMAG (y);
4c6e36a6 5033 if (fabs(r) <= fabs(i))
0aacf84e
MD
5034 {
5035 double t = r / i;
5036 double d = i * (1.0 + t * t);
8507ec80 5037 return scm_c_make_rectangular ((a * t) / d, -a / d);
0aacf84e
MD
5038 }
5039 else
5040 {
5041 double t = i / r;
5042 double d = r * (1.0 + t * t);
8507ec80 5043 return scm_c_make_rectangular (a / d, -(a * t) / d);
0aacf84e
MD
5044 }
5045 }
5046 }
f92e85f7
MV
5047 else if (SCM_FRACTIONP (y))
5048 /* a / b/c = ac / b */
cba42c93 5049 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 5050 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
5051 else
5052 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 5053 }
0aacf84e
MD
5054 else if (SCM_BIGP (x))
5055 {
e11e83f3 5056 if (SCM_I_INUMP (y))
0aacf84e 5057 {
e25f3727 5058 scm_t_inum yy = SCM_I_INUM (y);
0aacf84e
MD
5059 if (yy == 0)
5060 {
7351e207 5061#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 5062 scm_num_overflow (s_divide);
7351e207 5063#else
0aacf84e
MD
5064 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
5065 scm_remember_upto_here_1 (x);
5066 return (sgn == 0) ? scm_nan () : scm_inf ();
7351e207 5067#endif
0aacf84e
MD
5068 }
5069 else if (yy == 1)
5070 return x;
5071 else
5072 {
5073 /* FIXME: HMM, what are the relative performance issues here?
5074 We need to test. Is it faster on average to test
5075 divisible_p, then perform whichever operation, or is it
5076 faster to perform the integer div opportunistically and
5077 switch to real if there's a remainder? For now we take the
5078 middle ground: test, then if divisible, use the faster div
5079 func. */
5080
e25f3727 5081 scm_t_inum abs_yy = yy < 0 ? -yy : yy;
0aacf84e
MD
5082 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
5083
5084 if (divisible_p)
5085 {
5086 SCM result = scm_i_mkbig ();
5087 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
5088 scm_remember_upto_here_1 (x);
5089 if (yy < 0)
5090 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
5091 return scm_i_normbig (result);
5092 }
5093 else
f92e85f7
MV
5094 {
5095 if (inexact)
55f26379 5096 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
cba42c93 5097 else return scm_i_make_ratio (x, y);
f92e85f7 5098 }
0aacf84e
MD
5099 }
5100 }
5101 else if (SCM_BIGP (y))
5102 {
a4955a04
MW
5103 /* big_x / big_y */
5104 if (inexact)
0aacf84e 5105 {
a4955a04
MW
5106 /* It's easily possible for the ratio x/y to fit a double
5107 but one or both x and y be too big to fit a double,
5108 hence the use of mpq_get_d rather than converting and
5109 dividing. */
5110 mpq_t q;
5111 *mpq_numref(q) = *SCM_I_BIG_MPZ (x);
5112 *mpq_denref(q) = *SCM_I_BIG_MPZ (y);
5113 return scm_from_double (mpq_get_d (q));
0aacf84e
MD
5114 }
5115 else
5116 {
a4955a04
MW
5117 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
5118 SCM_I_BIG_MPZ (y));
5119 if (divisible_p)
5120 {
5121 SCM result = scm_i_mkbig ();
5122 mpz_divexact (SCM_I_BIG_MPZ (result),
5123 SCM_I_BIG_MPZ (x),
5124 SCM_I_BIG_MPZ (y));
5125 scm_remember_upto_here_2 (x, y);
5126 return scm_i_normbig (result);
5127 }
5128 else
5129 return scm_i_make_ratio (x, y);
0aacf84e
MD
5130 }
5131 }
5132 else if (SCM_REALP (y))
5133 {
5134 double yy = SCM_REAL_VALUE (y);
7351e207 5135#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5136 if (yy == 0.0)
5137 scm_num_overflow (s_divide);
5138 else
7351e207 5139#endif
55f26379 5140 return scm_from_double (scm_i_big2dbl (x) / yy);
0aacf84e
MD
5141 }
5142 else if (SCM_COMPLEXP (y))
5143 {
5144 a = scm_i_big2dbl (x);
5145 goto complex_div;
5146 }
f92e85f7 5147 else if (SCM_FRACTIONP (y))
cba42c93 5148 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 5149 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
5150 else
5151 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 5152 }
0aacf84e
MD
5153 else if (SCM_REALP (x))
5154 {
5155 double rx = SCM_REAL_VALUE (x);
e11e83f3 5156 if (SCM_I_INUMP (y))
0aacf84e 5157 {
e25f3727 5158 scm_t_inum yy = SCM_I_INUM (y);
7351e207 5159#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
5160 if (yy == 0)
5161 scm_num_overflow (s_divide);
5162 else
7351e207 5163#endif
55f26379 5164 return scm_from_double (rx / (double) yy);
0aacf84e
MD
5165 }
5166 else if (SCM_BIGP (y))
5167 {
5168 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5169 scm_remember_upto_here_1 (y);
55f26379 5170 return scm_from_double (rx / dby);
0aacf84e
MD
5171 }
5172 else if (SCM_REALP (y))
5173 {
5174 double yy = SCM_REAL_VALUE (y);
7351e207 5175#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5176 if (yy == 0.0)
5177 scm_num_overflow (s_divide);
5178 else
7351e207 5179#endif
55f26379 5180 return scm_from_double (rx / yy);
0aacf84e
MD
5181 }
5182 else if (SCM_COMPLEXP (y))
5183 {
5184 a = rx;
5185 goto complex_div;
5186 }
f92e85f7 5187 else if (SCM_FRACTIONP (y))
55f26379 5188 return scm_from_double (rx / scm_i_fraction2double (y));
0aacf84e
MD
5189 else
5190 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 5191 }
0aacf84e
MD
5192 else if (SCM_COMPLEXP (x))
5193 {
5194 double rx = SCM_COMPLEX_REAL (x);
5195 double ix = SCM_COMPLEX_IMAG (x);
e11e83f3 5196 if (SCM_I_INUMP (y))
0aacf84e 5197 {
e25f3727 5198 scm_t_inum yy = SCM_I_INUM (y);
7351e207 5199#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
5200 if (yy == 0)
5201 scm_num_overflow (s_divide);
5202 else
7351e207 5203#endif
0aacf84e
MD
5204 {
5205 double d = yy;
8507ec80 5206 return scm_c_make_rectangular (rx / d, ix / d);
0aacf84e
MD
5207 }
5208 }
5209 else if (SCM_BIGP (y))
5210 {
5211 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5212 scm_remember_upto_here_1 (y);
8507ec80 5213 return scm_c_make_rectangular (rx / dby, ix / dby);
0aacf84e
MD
5214 }
5215 else if (SCM_REALP (y))
5216 {
5217 double yy = SCM_REAL_VALUE (y);
7351e207 5218#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5219 if (yy == 0.0)
5220 scm_num_overflow (s_divide);
5221 else
7351e207 5222#endif
8507ec80 5223 return scm_c_make_rectangular (rx / yy, ix / yy);
0aacf84e
MD
5224 }
5225 else if (SCM_COMPLEXP (y))
5226 {
5227 double ry = SCM_COMPLEX_REAL (y);
5228 double iy = SCM_COMPLEX_IMAG (y);
4c6e36a6 5229 if (fabs(ry) <= fabs(iy))
0aacf84e
MD
5230 {
5231 double t = ry / iy;
5232 double d = iy * (1.0 + t * t);
8507ec80 5233 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
0aacf84e
MD
5234 }
5235 else
5236 {
5237 double t = iy / ry;
5238 double d = ry * (1.0 + t * t);
8507ec80 5239 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
0aacf84e
MD
5240 }
5241 }
f92e85f7
MV
5242 else if (SCM_FRACTIONP (y))
5243 {
5244 double yy = scm_i_fraction2double (y);
8507ec80 5245 return scm_c_make_rectangular (rx / yy, ix / yy);
f92e85f7 5246 }
0aacf84e
MD
5247 else
5248 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 5249 }
f92e85f7
MV
5250 else if (SCM_FRACTIONP (x))
5251 {
e11e83f3 5252 if (SCM_I_INUMP (y))
f92e85f7 5253 {
e25f3727 5254 scm_t_inum yy = SCM_I_INUM (y);
f92e85f7
MV
5255#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5256 if (yy == 0)
5257 scm_num_overflow (s_divide);
5258 else
5259#endif
cba42c93 5260 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
5261 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5262 }
5263 else if (SCM_BIGP (y))
5264 {
cba42c93 5265 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
5266 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5267 }
5268 else if (SCM_REALP (y))
5269 {
5270 double yy = SCM_REAL_VALUE (y);
5271#ifndef ALLOW_DIVIDE_BY_ZERO
5272 if (yy == 0.0)
5273 scm_num_overflow (s_divide);
5274 else
5275#endif
55f26379 5276 return scm_from_double (scm_i_fraction2double (x) / yy);
f92e85f7
MV
5277 }
5278 else if (SCM_COMPLEXP (y))
5279 {
5280 a = scm_i_fraction2double (x);
5281 goto complex_div;
5282 }
5283 else if (SCM_FRACTIONP (y))
cba42c93 5284 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
5285 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
5286 else
5287 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5288 }
0aacf84e 5289 else
f8de44c1 5290 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
0f2d19dd 5291}
f92e85f7
MV
5292
5293SCM
5294scm_divide (SCM x, SCM y)
5295{
78d3deb1 5296 return do_divide (x, y, 0);
f92e85f7
MV
5297}
5298
5299static SCM scm_divide2real (SCM x, SCM y)
5300{
78d3deb1 5301 return do_divide (x, y, 1);
f92e85f7 5302}
c05e97b7 5303#undef FUNC_NAME
0f2d19dd 5304
fa605590 5305
0f2d19dd 5306double
3101f40f 5307scm_c_truncate (double x)
0f2d19dd 5308{
fa605590
KR
5309#if HAVE_TRUNC
5310 return trunc (x);
5311#else
f872b822
MD
5312 if (x < 0.0)
5313 return -floor (-x);
5314 return floor (x);
fa605590 5315#endif
0f2d19dd 5316}
0f2d19dd 5317
3101f40f
MV
5318/* scm_c_round is done using floor(x+0.5) to round to nearest and with
5319 half-way case (ie. when x is an integer plus 0.5) going upwards.
5320 Then half-way cases are identified and adjusted down if the
5321 round-upwards didn't give the desired even integer.
6187f48b
KR
5322
5323 "plus_half == result" identifies a half-way case. If plus_half, which is
5324 x + 0.5, is an integer then x must be an integer plus 0.5.
5325
5326 An odd "result" value is identified with result/2 != floor(result/2).
5327 This is done with plus_half, since that value is ready for use sooner in
5328 a pipelined cpu, and we're already requiring plus_half == result.
5329
5330 Note however that we need to be careful when x is big and already an
5331 integer. In that case "x+0.5" may round to an adjacent integer, causing
5332 us to return such a value, incorrectly. For instance if the hardware is
5333 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
5334 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
5335 returned. Or if the hardware is in round-upwards mode, then other bigger
5336 values like say x == 2^128 will see x+0.5 rounding up to the next higher
5337 representable value, 2^128+2^76 (or whatever), again incorrect.
5338
5339 These bad roundings of x+0.5 are avoided by testing at the start whether
5340 x is already an integer. If it is then clearly that's the desired result
5341 already. And if it's not then the exponent must be small enough to allow
5342 an 0.5 to be represented, and hence added without a bad rounding. */
5343
0f2d19dd 5344double
3101f40f 5345scm_c_round (double x)
0f2d19dd 5346{
6187f48b
KR
5347 double plus_half, result;
5348
5349 if (x == floor (x))
5350 return x;
5351
5352 plus_half = x + 0.5;
5353 result = floor (plus_half);
3101f40f 5354 /* Adjust so that the rounding is towards even. */
0aacf84e
MD
5355 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
5356 ? result - 1
5357 : result);
0f2d19dd
JB
5358}
5359
f92e85f7
MV
5360SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
5361 (SCM x),
5362 "Round the number @var{x} towards zero.")
5363#define FUNC_NAME s_scm_truncate_number
5364{
73e4de09 5365 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5366 return scm_floor (x);
5367 else
5368 return scm_ceiling (x);
5369}
5370#undef FUNC_NAME
5371
5372static SCM exactly_one_half;
5373
5374SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5375 (SCM x),
5376 "Round the number @var{x} towards the nearest integer. "
5377 "When it is exactly halfway between two integers, "
5378 "round towards the even one.")
5379#define FUNC_NAME s_scm_round_number
5380{
e11e83f3 5381 if (SCM_I_INUMP (x) || SCM_BIGP (x))
bae30667
KR
5382 return x;
5383 else if (SCM_REALP (x))
3101f40f 5384 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
f92e85f7 5385 else
bae30667
KR
5386 {
5387 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5388 single quotient+remainder division then examining to see which way
5389 the rounding should go. */
5390 SCM plus_half = scm_sum (x, exactly_one_half);
5391 SCM result = scm_floor (plus_half);
3101f40f 5392 /* Adjust so that the rounding is towards even. */
73e4de09
MV
5393 if (scm_is_true (scm_num_eq_p (plus_half, result))
5394 && scm_is_true (scm_odd_p (result)))
cff5fa33 5395 return scm_difference (result, SCM_INUM1);
bae30667
KR
5396 else
5397 return result;
5398 }
f92e85f7
MV
5399}
5400#undef FUNC_NAME
5401
5402SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5403 (SCM x),
5404 "Round the number @var{x} towards minus infinity.")
5405#define FUNC_NAME s_scm_floor
5406{
e11e83f3 5407 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5408 return x;
5409 else if (SCM_REALP (x))
55f26379 5410 return scm_from_double (floor (SCM_REAL_VALUE (x)));
f92e85f7
MV
5411 else if (SCM_FRACTIONP (x))
5412 {
5413 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5414 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5415 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5416 {
5417 /* For positive x, rounding towards zero is correct. */
5418 return q;
5419 }
5420 else
5421 {
5422 /* For negative x, we need to return q-1 unless x is an
5423 integer. But fractions are never integer, per our
5424 assumptions. */
cff5fa33 5425 return scm_difference (q, SCM_INUM1);
f92e85f7
MV
5426 }
5427 }
5428 else
5429 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5430}
5431#undef FUNC_NAME
5432
5433SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5434 (SCM x),
5435 "Round the number @var{x} towards infinity.")
5436#define FUNC_NAME s_scm_ceiling
5437{
e11e83f3 5438 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5439 return x;
5440 else if (SCM_REALP (x))
55f26379 5441 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
f92e85f7
MV
5442 else if (SCM_FRACTIONP (x))
5443 {
5444 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5445 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5446 if (scm_is_false (scm_positive_p (x)))
f92e85f7
MV
5447 {
5448 /* For negative x, rounding towards zero is correct. */
5449 return q;
5450 }
5451 else
5452 {
5453 /* For positive x, we need to return q+1 unless x is an
5454 integer. But fractions are never integer, per our
5455 assumptions. */
cff5fa33 5456 return scm_sum (q, SCM_INUM1);
f92e85f7
MV
5457 }
5458 }
5459 else
5460 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5461}
5462#undef FUNC_NAME
0f2d19dd 5463
ad79736c
AW
5464/* sin/cos/tan/asin/acos/atan
5465 sinh/cosh/tanh/asinh/acosh/atanh
5466 Derived from "Transcen.scm", Complex trancendental functions for SCM.
5467 Written by Jerry D. Hedden, (C) FSF.
5468 See the file `COPYING' for terms applying to this program. */
0f2d19dd 5469
6fc4d012 5470SCM_DEFINE (scm_expt, "expt", 2, 0, 0,
27c37006 5471 (SCM x, SCM y),
6fc4d012
AW
5472 "Return @var{x} raised to the power of @var{y}.")
5473#define FUNC_NAME s_scm_expt
0f2d19dd 5474{
01c7284a
MW
5475 if (scm_is_integer (y))
5476 {
5477 if (scm_is_true (scm_exact_p (y)))
5478 return scm_integer_expt (x, y);
5479 else
5480 {
5481 /* Here we handle the case where the exponent is an inexact
5482 integer. We make the exponent exact in order to use
5483 scm_integer_expt, and thus avoid the spurious imaginary
5484 parts that may result from round-off errors in the general
5485 e^(y log x) method below (for example when squaring a large
5486 negative number). In this case, we must return an inexact
5487 result for correctness. We also make the base inexact so
5488 that scm_integer_expt will use fast inexact arithmetic
5489 internally. Note that making the base inexact is not
5490 sufficient to guarantee an inexact result, because
5491 scm_integer_expt will return an exact 1 when the exponent
5492 is 0, even if the base is inexact. */
5493 return scm_exact_to_inexact
5494 (scm_integer_expt (scm_exact_to_inexact (x),
5495 scm_inexact_to_exact (y)));
5496 }
5497 }
6fc4d012
AW
5498 else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
5499 {
5500 return scm_from_double (pow (scm_to_double (x), scm_to_double (y)));
5501 }
5502 else
5503 return scm_exp (scm_product (scm_log (x), y));
0f2d19dd 5504}
1bbd0b84 5505#undef FUNC_NAME
0f2d19dd 5506
ad79736c
AW
5507SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
5508 (SCM z),
5509 "Compute the sine of @var{z}.")
5510#define FUNC_NAME s_scm_sin
5511{
5512 if (scm_is_real (z))
5513 return scm_from_double (sin (scm_to_double (z)));
5514 else if (SCM_COMPLEXP (z))
5515 { double x, y;
5516 x = SCM_COMPLEX_REAL (z);
5517 y = SCM_COMPLEX_IMAG (z);
5518 return scm_c_make_rectangular (sin (x) * cosh (y),
5519 cos (x) * sinh (y));
5520 }
5521 else
5522 SCM_WTA_DISPATCH_1 (g_scm_sin, z, 1, s_scm_sin);
5523}
5524#undef FUNC_NAME
0f2d19dd 5525
ad79736c
AW
5526SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
5527 (SCM z),
5528 "Compute the cosine of @var{z}.")
5529#define FUNC_NAME s_scm_cos
5530{
5531 if (scm_is_real (z))
5532 return scm_from_double (cos (scm_to_double (z)));
5533 else if (SCM_COMPLEXP (z))
5534 { double x, y;
5535 x = SCM_COMPLEX_REAL (z);
5536 y = SCM_COMPLEX_IMAG (z);
5537 return scm_c_make_rectangular (cos (x) * cosh (y),
5538 -sin (x) * sinh (y));
5539 }
5540 else
5541 SCM_WTA_DISPATCH_1 (g_scm_cos, z, 1, s_scm_cos);
5542}
5543#undef FUNC_NAME
5544
5545SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
5546 (SCM z),
5547 "Compute the tangent of @var{z}.")
5548#define FUNC_NAME s_scm_tan
0f2d19dd 5549{
ad79736c
AW
5550 if (scm_is_real (z))
5551 return scm_from_double (tan (scm_to_double (z)));
5552 else if (SCM_COMPLEXP (z))
5553 { double x, y, w;
5554 x = 2.0 * SCM_COMPLEX_REAL (z);
5555 y = 2.0 * SCM_COMPLEX_IMAG (z);
5556 w = cos (x) + cosh (y);
5557#ifndef ALLOW_DIVIDE_BY_ZERO
5558 if (w == 0.0)
5559 scm_num_overflow (s_scm_tan);
5560#endif
5561 return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
5562 }
5563 else
5564 SCM_WTA_DISPATCH_1 (g_scm_tan, z, 1, s_scm_tan);
5565}
5566#undef FUNC_NAME
5567
5568SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
5569 (SCM z),
5570 "Compute the hyperbolic sine of @var{z}.")
5571#define FUNC_NAME s_scm_sinh
5572{
5573 if (scm_is_real (z))
5574 return scm_from_double (sinh (scm_to_double (z)));
5575 else if (SCM_COMPLEXP (z))
5576 { double x, y;
5577 x = SCM_COMPLEX_REAL (z);
5578 y = SCM_COMPLEX_IMAG (z);
5579 return scm_c_make_rectangular (sinh (x) * cos (y),
5580 cosh (x) * sin (y));
5581 }
5582 else
5583 SCM_WTA_DISPATCH_1 (g_scm_sinh, z, 1, s_scm_sinh);
5584}
5585#undef FUNC_NAME
5586
5587SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
5588 (SCM z),
5589 "Compute the hyperbolic cosine of @var{z}.")
5590#define FUNC_NAME s_scm_cosh
5591{
5592 if (scm_is_real (z))
5593 return scm_from_double (cosh (scm_to_double (z)));
5594 else if (SCM_COMPLEXP (z))
5595 { double x, y;
5596 x = SCM_COMPLEX_REAL (z);
5597 y = SCM_COMPLEX_IMAG (z);
5598 return scm_c_make_rectangular (cosh (x) * cos (y),
5599 sinh (x) * sin (y));
5600 }
5601 else
5602 SCM_WTA_DISPATCH_1 (g_scm_cosh, z, 1, s_scm_cosh);
5603}
5604#undef FUNC_NAME
5605
5606SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
5607 (SCM z),
5608 "Compute the hyperbolic tangent of @var{z}.")
5609#define FUNC_NAME s_scm_tanh
5610{
5611 if (scm_is_real (z))
5612 return scm_from_double (tanh (scm_to_double (z)));
5613 else if (SCM_COMPLEXP (z))
5614 { double x, y, w;
5615 x = 2.0 * SCM_COMPLEX_REAL (z);
5616 y = 2.0 * SCM_COMPLEX_IMAG (z);
5617 w = cosh (x) + cos (y);
5618#ifndef ALLOW_DIVIDE_BY_ZERO
5619 if (w == 0.0)
5620 scm_num_overflow (s_scm_tanh);
5621#endif
5622 return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
5623 }
5624 else
5625 SCM_WTA_DISPATCH_1 (g_scm_tanh, z, 1, s_scm_tanh);
5626}
5627#undef FUNC_NAME
5628
5629SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
5630 (SCM z),
5631 "Compute the arc sine of @var{z}.")
5632#define FUNC_NAME s_scm_asin
5633{
5634 if (scm_is_real (z))
5635 {
5636 double w = scm_to_double (z);
5637 if (w >= -1.0 && w <= 1.0)
5638 return scm_from_double (asin (w));
5639 else
5640 return scm_product (scm_c_make_rectangular (0, -1),
5641 scm_sys_asinh (scm_c_make_rectangular (0, w)));
5642 }
5643 else if (SCM_COMPLEXP (z))
5644 { double x, y;
5645 x = SCM_COMPLEX_REAL (z);
5646 y = SCM_COMPLEX_IMAG (z);
5647 return scm_product (scm_c_make_rectangular (0, -1),
5648 scm_sys_asinh (scm_c_make_rectangular (-y, x)));
5649 }
5650 else
5651 SCM_WTA_DISPATCH_1 (g_scm_asin, z, 1, s_scm_asin);
5652}
5653#undef FUNC_NAME
5654
5655SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
5656 (SCM z),
5657 "Compute the arc cosine of @var{z}.")
5658#define FUNC_NAME s_scm_acos
5659{
5660 if (scm_is_real (z))
5661 {
5662 double w = scm_to_double (z);
5663 if (w >= -1.0 && w <= 1.0)
5664 return scm_from_double (acos (w));
5665 else
5666 return scm_sum (scm_from_double (acos (0.0)),
5667 scm_product (scm_c_make_rectangular (0, 1),
5668 scm_sys_asinh (scm_c_make_rectangular (0, w))));
5669 }
5670 else if (SCM_COMPLEXP (z))
5671 { double x, y;
5672 x = SCM_COMPLEX_REAL (z);
5673 y = SCM_COMPLEX_IMAG (z);
5674 return scm_sum (scm_from_double (acos (0.0)),
5675 scm_product (scm_c_make_rectangular (0, 1),
5676 scm_sys_asinh (scm_c_make_rectangular (-y, x))));
5677 }
5678 else
5679 SCM_WTA_DISPATCH_1 (g_scm_acos, z, 1, s_scm_acos);
5680}
5681#undef FUNC_NAME
5682
5683SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
5684 (SCM z, SCM y),
5685 "With one argument, compute the arc tangent of @var{z}.\n"
5686 "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
5687 "using the sign of @var{z} and @var{y} to determine the quadrant.")
5688#define FUNC_NAME s_scm_atan
5689{
5690 if (SCM_UNBNDP (y))
5691 {
5692 if (scm_is_real (z))
5693 return scm_from_double (atan (scm_to_double (z)));
5694 else if (SCM_COMPLEXP (z))
5695 {
5696 double v, w;
5697 v = SCM_COMPLEX_REAL (z);
5698 w = SCM_COMPLEX_IMAG (z);
5699 return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (v, w - 1.0),
5700 scm_c_make_rectangular (v, w + 1.0))),
5701 scm_c_make_rectangular (0, 2));
5702 }
5703 else
5704 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5705 }
5706 else if (scm_is_real (z))
5707 {
5708 if (scm_is_real (y))
5709 return scm_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
5710 else
5711 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
5712 }
5713 else
5714 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5715}
5716#undef FUNC_NAME
5717
5718SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
5719 (SCM z),
5720 "Compute the inverse hyperbolic sine of @var{z}.")
5721#define FUNC_NAME s_scm_sys_asinh
5722{
5723 if (scm_is_real (z))
5724 return scm_from_double (asinh (scm_to_double (z)));
5725 else if (scm_is_number (z))
5726 return scm_log (scm_sum (z,
5727 scm_sqrt (scm_sum (scm_product (z, z),
cff5fa33 5728 SCM_INUM1))));
ad79736c
AW
5729 else
5730 SCM_WTA_DISPATCH_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
5731}
5732#undef FUNC_NAME
5733
5734SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
5735 (SCM z),
5736 "Compute the inverse hyperbolic cosine of @var{z}.")
5737#define FUNC_NAME s_scm_sys_acosh
5738{
5739 if (scm_is_real (z) && scm_to_double (z) >= 1.0)
5740 return scm_from_double (acosh (scm_to_double (z)));
5741 else if (scm_is_number (z))
5742 return scm_log (scm_sum (z,
5743 scm_sqrt (scm_difference (scm_product (z, z),
cff5fa33 5744 SCM_INUM1))));
ad79736c
AW
5745 else
5746 SCM_WTA_DISPATCH_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
5747}
5748#undef FUNC_NAME
5749
5750SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
5751 (SCM z),
5752 "Compute the inverse hyperbolic tangent of @var{z}.")
5753#define FUNC_NAME s_scm_sys_atanh
5754{
5755 if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
5756 return scm_from_double (atanh (scm_to_double (z)));
5757 else if (scm_is_number (z))
cff5fa33
MW
5758 return scm_divide (scm_log (scm_divide (scm_sum (SCM_INUM1, z),
5759 scm_difference (SCM_INUM1, z))),
ad79736c
AW
5760 SCM_I_MAKINUM (2));
5761 else
5762 SCM_WTA_DISPATCH_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
0f2d19dd 5763}
1bbd0b84 5764#undef FUNC_NAME
0f2d19dd 5765
8507ec80
MV
5766SCM
5767scm_c_make_rectangular (double re, double im)
5768{
5769 if (im == 0.0)
5770 return scm_from_double (re);
5771 else
5772 {
5773 SCM z;
03604fcf
LC
5774
5775 z = PTR2SCM (scm_gc_malloc_pointerless (sizeof (scm_t_complex),
92d8fd32 5776 "complex"));
03604fcf 5777 SCM_SET_CELL_TYPE (z, scm_tc16_complex);
8507ec80
MV
5778 SCM_COMPLEX_REAL (z) = re;
5779 SCM_COMPLEX_IMAG (z) = im;
5780 return z;
5781 }
5782}
0f2d19dd 5783
a1ec6916 5784SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
a2c25234
LC
5785 (SCM real_part, SCM imaginary_part),
5786 "Return a complex number constructed of the given @var{real-part} "
5787 "and @var{imaginary-part} parts.")
1bbd0b84 5788#define FUNC_NAME s_scm_make_rectangular
0f2d19dd 5789{
ad79736c
AW
5790 SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
5791 SCM_ARG1, FUNC_NAME, "real");
5792 SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
5793 SCM_ARG2, FUNC_NAME, "real");
5794 return scm_c_make_rectangular (scm_to_double (real_part),
5795 scm_to_double (imaginary_part));
0f2d19dd 5796}
1bbd0b84 5797#undef FUNC_NAME
0f2d19dd 5798
8507ec80
MV
5799SCM
5800scm_c_make_polar (double mag, double ang)
5801{
5802 double s, c;
5e647d08
LC
5803
5804 /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
5805 use it on Glibc-based systems that have it (it's a GNU extension). See
5806 http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
5807 details. */
5808#if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
8507ec80
MV
5809 sincos (ang, &s, &c);
5810#else
5811 s = sin (ang);
5812 c = cos (ang);
5813#endif
5814 return scm_c_make_rectangular (mag * c, mag * s);
5815}
0f2d19dd 5816
a1ec6916 5817SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
27c37006 5818 (SCM x, SCM y),
942e5b91 5819 "Return the complex number @var{x} * e^(i * @var{y}).")
1bbd0b84 5820#define FUNC_NAME s_scm_make_polar
0f2d19dd 5821{
ad79736c
AW
5822 SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
5823 SCM_ASSERT_TYPE (scm_is_real (y), y, SCM_ARG2, FUNC_NAME, "real");
5824 return scm_c_make_polar (scm_to_double (x), scm_to_double (y));
0f2d19dd 5825}
1bbd0b84 5826#undef FUNC_NAME
0f2d19dd
JB
5827
5828
152f82bf 5829SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
942e5b91
MG
5830/* "Return the real part of the number @var{z}."
5831 */
0f2d19dd 5832SCM
6e8d25a6 5833scm_real_part (SCM z)
0f2d19dd 5834{
e11e83f3 5835 if (SCM_I_INUMP (z))
c2ff8ab0 5836 return z;
0aacf84e 5837 else if (SCM_BIGP (z))
c2ff8ab0 5838 return z;
0aacf84e 5839 else if (SCM_REALP (z))
c2ff8ab0 5840 return z;
0aacf84e 5841 else if (SCM_COMPLEXP (z))
55f26379 5842 return scm_from_double (SCM_COMPLEX_REAL (z));
f92e85f7 5843 else if (SCM_FRACTIONP (z))
2fa2d879 5844 return z;
0aacf84e 5845 else
c2ff8ab0 5846 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
0f2d19dd
JB
5847}
5848
5849
152f82bf 5850SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
942e5b91
MG
5851/* "Return the imaginary part of the number @var{z}."
5852 */
0f2d19dd 5853SCM
6e8d25a6 5854scm_imag_part (SCM z)
0f2d19dd 5855{
e11e83f3 5856 if (SCM_I_INUMP (z))
f872b822 5857 return SCM_INUM0;
0aacf84e 5858 else if (SCM_BIGP (z))
f872b822 5859 return SCM_INUM0;
0aacf84e 5860 else if (SCM_REALP (z))
e7efe8e7 5861 return flo0;
0aacf84e 5862 else if (SCM_COMPLEXP (z))
55f26379 5863 return scm_from_double (SCM_COMPLEX_IMAG (z));
f92e85f7
MV
5864 else if (SCM_FRACTIONP (z))
5865 return SCM_INUM0;
0aacf84e 5866 else
c2ff8ab0 5867 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
0f2d19dd
JB
5868}
5869
f92e85f7
MV
5870SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5871/* "Return the numerator of the number @var{z}."
5872 */
5873SCM
5874scm_numerator (SCM z)
5875{
e11e83f3 5876 if (SCM_I_INUMP (z))
f92e85f7
MV
5877 return z;
5878 else if (SCM_BIGP (z))
5879 return z;
5880 else if (SCM_FRACTIONP (z))
e2bf3b19 5881 return SCM_FRACTION_NUMERATOR (z);
f92e85f7
MV
5882 else if (SCM_REALP (z))
5883 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5884 else
5885 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5886}
5887
5888
5889SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5890/* "Return the denominator of the number @var{z}."
5891 */
5892SCM
5893scm_denominator (SCM z)
5894{
e11e83f3 5895 if (SCM_I_INUMP (z))
cff5fa33 5896 return SCM_INUM1;
f92e85f7 5897 else if (SCM_BIGP (z))
cff5fa33 5898 return SCM_INUM1;
f92e85f7 5899 else if (SCM_FRACTIONP (z))
e2bf3b19 5900 return SCM_FRACTION_DENOMINATOR (z);
f92e85f7
MV
5901 else if (SCM_REALP (z))
5902 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5903 else
5904 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5905}
0f2d19dd 5906
9de33deb 5907SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
942e5b91
MG
5908/* "Return the magnitude of the number @var{z}. This is the same as\n"
5909 * "@code{abs} for real arguments, but also allows complex numbers."
5910 */
0f2d19dd 5911SCM
6e8d25a6 5912scm_magnitude (SCM z)
0f2d19dd 5913{
e11e83f3 5914 if (SCM_I_INUMP (z))
0aacf84e 5915 {
e25f3727 5916 scm_t_inum zz = SCM_I_INUM (z);
0aacf84e
MD
5917 if (zz >= 0)
5918 return z;
5919 else if (SCM_POSFIXABLE (-zz))
d956fa6f 5920 return SCM_I_MAKINUM (-zz);
0aacf84e 5921 else
e25f3727 5922 return scm_i_inum2big (-zz);
5986c47d 5923 }
0aacf84e
MD
5924 else if (SCM_BIGP (z))
5925 {
5926 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5927 scm_remember_upto_here_1 (z);
5928 if (sgn < 0)
5929 return scm_i_clonebig (z, 0);
5930 else
5931 return z;
5986c47d 5932 }
0aacf84e 5933 else if (SCM_REALP (z))
55f26379 5934 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
0aacf84e 5935 else if (SCM_COMPLEXP (z))
55f26379 5936 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
f92e85f7
MV
5937 else if (SCM_FRACTIONP (z))
5938 {
73e4de09 5939 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 5940 return z;
cba42c93 5941 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
f92e85f7
MV
5942 SCM_FRACTION_DENOMINATOR (z));
5943 }
0aacf84e 5944 else
c2ff8ab0 5945 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
0f2d19dd
JB
5946}
5947
5948
9de33deb 5949SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
942e5b91
MG
5950/* "Return the angle of the complex number @var{z}."
5951 */
0f2d19dd 5952SCM
6e8d25a6 5953scm_angle (SCM z)
0f2d19dd 5954{
c8ae173e 5955 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
e7efe8e7 5956 flo0 to save allocating a new flonum with scm_from_double each time.
c8ae173e
KR
5957 But if atan2 follows the floating point rounding mode, then the value
5958 is not a constant. Maybe it'd be close enough though. */
e11e83f3 5959 if (SCM_I_INUMP (z))
0aacf84e 5960 {
e11e83f3 5961 if (SCM_I_INUM (z) >= 0)
e7efe8e7 5962 return flo0;
0aacf84e 5963 else
55f26379 5964 return scm_from_double (atan2 (0.0, -1.0));
f872b822 5965 }
0aacf84e
MD
5966 else if (SCM_BIGP (z))
5967 {
5968 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5969 scm_remember_upto_here_1 (z);
5970 if (sgn < 0)
55f26379 5971 return scm_from_double (atan2 (0.0, -1.0));
0aacf84e 5972 else
e7efe8e7 5973 return flo0;
0f2d19dd 5974 }
0aacf84e 5975 else if (SCM_REALP (z))
c8ae173e
KR
5976 {
5977 if (SCM_REAL_VALUE (z) >= 0)
e7efe8e7 5978 return flo0;
c8ae173e 5979 else
55f26379 5980 return scm_from_double (atan2 (0.0, -1.0));
c8ae173e 5981 }
0aacf84e 5982 else if (SCM_COMPLEXP (z))
55f26379 5983 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
f92e85f7
MV
5984 else if (SCM_FRACTIONP (z))
5985 {
73e4de09 5986 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
e7efe8e7 5987 return flo0;
55f26379 5988 else return scm_from_double (atan2 (0.0, -1.0));
f92e85f7 5989 }
0aacf84e 5990 else
f4c627b3 5991 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
0f2d19dd
JB
5992}
5993
5994
3c9a524f
DH
5995SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5996/* Convert the number @var{x} to its inexact representation.\n"
5997 */
5998SCM
5999scm_exact_to_inexact (SCM z)
6000{
e11e83f3 6001 if (SCM_I_INUMP (z))
55f26379 6002 return scm_from_double ((double) SCM_I_INUM (z));
3c9a524f 6003 else if (SCM_BIGP (z))
55f26379 6004 return scm_from_double (scm_i_big2dbl (z));
f92e85f7 6005 else if (SCM_FRACTIONP (z))
55f26379 6006 return scm_from_double (scm_i_fraction2double (z));
3c9a524f
DH
6007 else if (SCM_INEXACTP (z))
6008 return z;
6009 else
6010 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
6011}
6012
6013
a1ec6916 6014SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
1bbd0b84 6015 (SCM z),
1e6808ea 6016 "Return an exact number that is numerically closest to @var{z}.")
1bbd0b84 6017#define FUNC_NAME s_scm_inexact_to_exact
0f2d19dd 6018{
e11e83f3 6019 if (SCM_I_INUMP (z))
f872b822 6020 return z;
0aacf84e 6021 else if (SCM_BIGP (z))
f872b822 6022 return z;
0aacf84e
MD
6023 else if (SCM_REALP (z))
6024 {
2e65b52f 6025 if (isinf (SCM_REAL_VALUE (z)) || isnan (SCM_REAL_VALUE (z)))
f92e85f7 6026 SCM_OUT_OF_RANGE (1, z);
2be24db4 6027 else
f92e85f7
MV
6028 {
6029 mpq_t frac;
6030 SCM q;
6031
6032 mpq_init (frac);
6033 mpq_set_d (frac, SCM_REAL_VALUE (z));
cba42c93 6034 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
f92e85f7
MV
6035 scm_i_mpz2num (mpq_denref (frac)));
6036
cba42c93 6037 /* When scm_i_make_ratio throws, we leak the memory allocated
f92e85f7
MV
6038 for frac...
6039 */
6040 mpq_clear (frac);
6041 return q;
6042 }
c2ff8ab0 6043 }
f92e85f7
MV
6044 else if (SCM_FRACTIONP (z))
6045 return z;
0aacf84e 6046 else
c2ff8ab0 6047 SCM_WRONG_TYPE_ARG (1, z);
0f2d19dd 6048}
1bbd0b84 6049#undef FUNC_NAME
0f2d19dd 6050
f92e85f7 6051SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
76dae881
NJ
6052 (SCM x, SCM eps),
6053 "Returns the @emph{simplest} rational number differing\n"
6054 "from @var{x} by no more than @var{eps}.\n"
6055 "\n"
6056 "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
6057 "exact result when both its arguments are exact. Thus, you might need\n"
6058 "to use @code{inexact->exact} on the arguments.\n"
6059 "\n"
6060 "@lisp\n"
6061 "(rationalize (inexact->exact 1.2) 1/100)\n"
6062 "@result{} 6/5\n"
6063 "@end lisp")
f92e85f7
MV
6064#define FUNC_NAME s_scm_rationalize
6065{
e11e83f3 6066 if (SCM_I_INUMP (x))
f92e85f7
MV
6067 return x;
6068 else if (SCM_BIGP (x))
6069 return x;
6070 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
6071 {
6072 /* Use continued fractions to find closest ratio. All
6073 arithmetic is done with exact numbers.
6074 */
6075
6076 SCM ex = scm_inexact_to_exact (x);
6077 SCM int_part = scm_floor (ex);
cff5fa33
MW
6078 SCM tt = SCM_INUM1;
6079 SCM a1 = SCM_INUM0, a2 = SCM_INUM1, a = SCM_INUM0;
6080 SCM b1 = SCM_INUM1, b2 = SCM_INUM0, b = SCM_INUM0;
f92e85f7
MV
6081 SCM rx;
6082 int i = 0;
6083
73e4de09 6084 if (scm_is_true (scm_num_eq_p (ex, int_part)))
f92e85f7
MV
6085 return ex;
6086
6087 ex = scm_difference (ex, int_part); /* x = x-int_part */
6088 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
6089
6090 /* We stop after a million iterations just to be absolutely sure
6091 that we don't go into an infinite loop. The process normally
6092 converges after less than a dozen iterations.
6093 */
6094
76dae881 6095 eps = scm_abs (eps);
f92e85f7
MV
6096 while (++i < 1000000)
6097 {
6098 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
6099 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
73e4de09
MV
6100 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
6101 scm_is_false
f92e85f7 6102 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
76dae881 6103 eps))) /* abs(x-a/b) <= eps */
02164269
MV
6104 {
6105 SCM res = scm_sum (int_part, scm_divide (a, b));
73e4de09 6106 if (scm_is_false (scm_exact_p (x))
76dae881 6107 || scm_is_false (scm_exact_p (eps)))
02164269
MV
6108 return scm_exact_to_inexact (res);
6109 else
6110 return res;
6111 }
f92e85f7
MV
6112 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
6113 SCM_UNDEFINED);
6114 tt = scm_floor (rx); /* tt = floor (rx) */
6115 a2 = a1;
6116 b2 = b1;
6117 a1 = a;
6118 b1 = b;
6119 }
6120 scm_num_overflow (s_scm_rationalize);
6121 }
6122 else
6123 SCM_WRONG_TYPE_ARG (1, x);
6124}
6125#undef FUNC_NAME
6126
73e4de09
MV
6127/* conversion functions */
6128
6129int
6130scm_is_integer (SCM val)
6131{
6132 return scm_is_true (scm_integer_p (val));
6133}
6134
6135int
6136scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
6137{
e11e83f3 6138 if (SCM_I_INUMP (val))
73e4de09 6139 {
e11e83f3 6140 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
6141 return n >= min && n <= max;
6142 }
6143 else if (SCM_BIGP (val))
6144 {
6145 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
6146 return 0;
6147 else if (min >= LONG_MIN && max <= LONG_MAX)
d956fa6f
MV
6148 {
6149 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
6150 {
6151 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
6152 return n >= min && n <= max;
6153 }
6154 else
6155 return 0;
6156 }
73e4de09
MV
6157 else
6158 {
d956fa6f
MV
6159 scm_t_intmax n;
6160 size_t count;
73e4de09 6161
d956fa6f
MV
6162 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6163 > CHAR_BIT*sizeof (scm_t_uintmax))
6164 return 0;
6165
6166 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6167 SCM_I_BIG_MPZ (val));
73e4de09 6168
d956fa6f 6169 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
73e4de09 6170 {
d956fa6f
MV
6171 if (n < 0)
6172 return 0;
73e4de09 6173 }
73e4de09
MV
6174 else
6175 {
d956fa6f
MV
6176 n = -n;
6177 if (n >= 0)
6178 return 0;
73e4de09 6179 }
d956fa6f
MV
6180
6181 return n >= min && n <= max;
73e4de09
MV
6182 }
6183 }
73e4de09
MV
6184 else
6185 return 0;
6186}
6187
6188int
6189scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
6190{
e11e83f3 6191 if (SCM_I_INUMP (val))
73e4de09 6192 {
e11e83f3 6193 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
6194 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
6195 }
6196 else if (SCM_BIGP (val))
6197 {
6198 if (max <= SCM_MOST_POSITIVE_FIXNUM)
6199 return 0;
6200 else if (max <= ULONG_MAX)
d956fa6f
MV
6201 {
6202 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
6203 {
6204 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
6205 return n >= min && n <= max;
6206 }
6207 else
6208 return 0;
6209 }
73e4de09
MV
6210 else
6211 {
d956fa6f
MV
6212 scm_t_uintmax n;
6213 size_t count;
73e4de09 6214
d956fa6f
MV
6215 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
6216 return 0;
73e4de09 6217
d956fa6f
MV
6218 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6219 > CHAR_BIT*sizeof (scm_t_uintmax))
73e4de09 6220 return 0;
d956fa6f
MV
6221
6222 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6223 SCM_I_BIG_MPZ (val));
73e4de09 6224
d956fa6f 6225 return n >= min && n <= max;
73e4de09
MV
6226 }
6227 }
73e4de09
MV
6228 else
6229 return 0;
6230}
6231
1713d319
MV
6232static void
6233scm_i_range_error (SCM bad_val, SCM min, SCM max)
6234{
6235 scm_error (scm_out_of_range_key,
6236 NULL,
6237 "Value out of range ~S to ~S: ~S",
6238 scm_list_3 (min, max, bad_val),
6239 scm_list_1 (bad_val));
6240}
6241
bfd7932e
MV
6242#define TYPE scm_t_intmax
6243#define TYPE_MIN min
6244#define TYPE_MAX max
6245#define SIZEOF_TYPE 0
6246#define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
6247#define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
6248#include "libguile/conv-integer.i.c"
6249
6250#define TYPE scm_t_uintmax
6251#define TYPE_MIN min
6252#define TYPE_MAX max
6253#define SIZEOF_TYPE 0
6254#define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
6255#define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
6256#include "libguile/conv-uinteger.i.c"
6257
6258#define TYPE scm_t_int8
6259#define TYPE_MIN SCM_T_INT8_MIN
6260#define TYPE_MAX SCM_T_INT8_MAX
6261#define SIZEOF_TYPE 1
6262#define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
6263#define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
6264#include "libguile/conv-integer.i.c"
6265
6266#define TYPE scm_t_uint8
6267#define TYPE_MIN 0
6268#define TYPE_MAX SCM_T_UINT8_MAX
6269#define SIZEOF_TYPE 1
6270#define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
6271#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
6272#include "libguile/conv-uinteger.i.c"
6273
6274#define TYPE scm_t_int16
6275#define TYPE_MIN SCM_T_INT16_MIN
6276#define TYPE_MAX SCM_T_INT16_MAX
6277#define SIZEOF_TYPE 2
6278#define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
6279#define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
6280#include "libguile/conv-integer.i.c"
6281
6282#define TYPE scm_t_uint16
6283#define TYPE_MIN 0
6284#define TYPE_MAX SCM_T_UINT16_MAX
6285#define SIZEOF_TYPE 2
6286#define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
6287#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
6288#include "libguile/conv-uinteger.i.c"
6289
6290#define TYPE scm_t_int32
6291#define TYPE_MIN SCM_T_INT32_MIN
6292#define TYPE_MAX SCM_T_INT32_MAX
6293#define SIZEOF_TYPE 4
6294#define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
6295#define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
6296#include "libguile/conv-integer.i.c"
6297
6298#define TYPE scm_t_uint32
6299#define TYPE_MIN 0
6300#define TYPE_MAX SCM_T_UINT32_MAX
6301#define SIZEOF_TYPE 4
6302#define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
6303#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
6304#include "libguile/conv-uinteger.i.c"
6305
904a78f1
MG
6306#define TYPE scm_t_wchar
6307#define TYPE_MIN (scm_t_int32)-1
6308#define TYPE_MAX (scm_t_int32)0x10ffff
6309#define SIZEOF_TYPE 4
6310#define SCM_TO_TYPE_PROTO(arg) scm_to_wchar (arg)
6311#define SCM_FROM_TYPE_PROTO(arg) scm_from_wchar (arg)
6312#include "libguile/conv-integer.i.c"
6313
bfd7932e
MV
6314#define TYPE scm_t_int64
6315#define TYPE_MIN SCM_T_INT64_MIN
6316#define TYPE_MAX SCM_T_INT64_MAX
6317#define SIZEOF_TYPE 8
6318#define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
6319#define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
6320#include "libguile/conv-integer.i.c"
6321
6322#define TYPE scm_t_uint64
6323#define TYPE_MIN 0
6324#define TYPE_MAX SCM_T_UINT64_MAX
6325#define SIZEOF_TYPE 8
6326#define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
6327#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
6328#include "libguile/conv-uinteger.i.c"
73e4de09 6329
cd036260
MV
6330void
6331scm_to_mpz (SCM val, mpz_t rop)
6332{
6333 if (SCM_I_INUMP (val))
6334 mpz_set_si (rop, SCM_I_INUM (val));
6335 else if (SCM_BIGP (val))
6336 mpz_set (rop, SCM_I_BIG_MPZ (val));
6337 else
6338 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
6339}
6340
6341SCM
6342scm_from_mpz (mpz_t val)
6343{
6344 return scm_i_mpz2num (val);
6345}
6346
73e4de09
MV
6347int
6348scm_is_real (SCM val)
6349{
6350 return scm_is_true (scm_real_p (val));
6351}
6352
55f26379
MV
6353int
6354scm_is_rational (SCM val)
6355{
6356 return scm_is_true (scm_rational_p (val));
6357}
6358
73e4de09
MV
6359double
6360scm_to_double (SCM val)
6361{
55f26379
MV
6362 if (SCM_I_INUMP (val))
6363 return SCM_I_INUM (val);
6364 else if (SCM_BIGP (val))
6365 return scm_i_big2dbl (val);
6366 else if (SCM_FRACTIONP (val))
6367 return scm_i_fraction2double (val);
6368 else if (SCM_REALP (val))
6369 return SCM_REAL_VALUE (val);
6370 else
7a1aba42 6371 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
73e4de09
MV
6372}
6373
6374SCM
6375scm_from_double (double val)
6376{
978c52d1
LC
6377 SCM z;
6378
6379 z = PTR2SCM (scm_gc_malloc_pointerless (sizeof (scm_t_double), "real"));
6380
6381 SCM_SET_CELL_TYPE (z, scm_tc16_real);
55f26379 6382 SCM_REAL_VALUE (z) = val;
978c52d1 6383
55f26379 6384 return z;
73e4de09
MV
6385}
6386
220058a8 6387#if SCM_ENABLE_DEPRECATED == 1
55f26379
MV
6388
6389float
e25f3727 6390scm_num2float (SCM num, unsigned long pos, const char *s_caller)
55f26379 6391{
220058a8
AW
6392 scm_c_issue_deprecation_warning
6393 ("`scm_num2float' is deprecated. Use scm_to_double instead.");
6394
55f26379
MV
6395 if (SCM_BIGP (num))
6396 {
6397 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
2e65b52f 6398 if (!isinf (res))
55f26379
MV
6399 return res;
6400 else
6401 scm_out_of_range (NULL, num);
6402 }
6403 else
6404 return scm_to_double (num);
6405}
6406
6407double
e25f3727 6408scm_num2double (SCM num, unsigned long pos, const char *s_caller)
55f26379 6409{
220058a8
AW
6410 scm_c_issue_deprecation_warning
6411 ("`scm_num2double' is deprecated. Use scm_to_double instead.");
6412
55f26379
MV
6413 if (SCM_BIGP (num))
6414 {
6415 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
2e65b52f 6416 if (!isinf (res))
55f26379
MV
6417 return res;
6418 else
6419 scm_out_of_range (NULL, num);
6420 }
6421 else
6422 return scm_to_double (num);
6423}
6424
6425#endif
6426
8507ec80
MV
6427int
6428scm_is_complex (SCM val)
6429{
6430 return scm_is_true (scm_complex_p (val));
6431}
6432
6433double
6434scm_c_real_part (SCM z)
6435{
6436 if (SCM_COMPLEXP (z))
6437 return SCM_COMPLEX_REAL (z);
6438 else
6439 {
6440 /* Use the scm_real_part to get proper error checking and
6441 dispatching.
6442 */
6443 return scm_to_double (scm_real_part (z));
6444 }
6445}
6446
6447double
6448scm_c_imag_part (SCM z)
6449{
6450 if (SCM_COMPLEXP (z))
6451 return SCM_COMPLEX_IMAG (z);
6452 else
6453 {
6454 /* Use the scm_imag_part to get proper error checking and
6455 dispatching. The result will almost always be 0.0, but not
6456 always.
6457 */
6458 return scm_to_double (scm_imag_part (z));
6459 }
6460}
6461
6462double
6463scm_c_magnitude (SCM z)
6464{
6465 return scm_to_double (scm_magnitude (z));
6466}
6467
6468double
6469scm_c_angle (SCM z)
6470{
6471 return scm_to_double (scm_angle (z));
6472}
6473
6474int
6475scm_is_number (SCM z)
6476{
6477 return scm_is_true (scm_number_p (z));
6478}
6479
8ab3d8a0
KR
6480
6481/* In the following functions we dispatch to the real-arg funcs like log()
6482 when we know the arg is real, instead of just handing everything to
6483 clog() for instance. This is in case clog() doesn't optimize for a
6484 real-only case, and because we have to test SCM_COMPLEXP anyway so may as
6485 well use it to go straight to the applicable C func. */
6486
6487SCM_DEFINE (scm_log, "log", 1, 0, 0,
6488 (SCM z),
6489 "Return the natural logarithm of @var{z}.")
6490#define FUNC_NAME s_scm_log
6491{
6492 if (SCM_COMPLEXP (z))
6493 {
4b26c03e 6494#if HAVE_COMPLEX_DOUBLE && HAVE_CLOG && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6495 return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
6496#else
6497 double re = SCM_COMPLEX_REAL (z);
6498 double im = SCM_COMPLEX_IMAG (z);
6499 return scm_c_make_rectangular (log (hypot (re, im)),
6500 atan2 (im, re));
6501#endif
6502 }
6503 else
6504 {
6505 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6506 although the value itself overflows. */
6507 double re = scm_to_double (z);
6508 double l = log (fabs (re));
6509 if (re >= 0.0)
6510 return scm_from_double (l);
6511 else
6512 return scm_c_make_rectangular (l, M_PI);
6513 }
6514}
6515#undef FUNC_NAME
6516
6517
6518SCM_DEFINE (scm_log10, "log10", 1, 0, 0,
6519 (SCM z),
6520 "Return the base 10 logarithm of @var{z}.")
6521#define FUNC_NAME s_scm_log10
6522{
6523 if (SCM_COMPLEXP (z))
6524 {
6525 /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
6526 clog() and a multiply by M_LOG10E, rather than the fallback
6527 log10+hypot+atan2.) */
f328f862
LC
6528#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG10 \
6529 && defined SCM_COMPLEX_VALUE
8ab3d8a0
KR
6530 return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
6531#else
6532 double re = SCM_COMPLEX_REAL (z);
6533 double im = SCM_COMPLEX_IMAG (z);
6534 return scm_c_make_rectangular (log10 (hypot (re, im)),
6535 M_LOG10E * atan2 (im, re));
6536#endif
6537 }
6538 else
6539 {
6540 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6541 although the value itself overflows. */
6542 double re = scm_to_double (z);
6543 double l = log10 (fabs (re));
6544 if (re >= 0.0)
6545 return scm_from_double (l);
6546 else
6547 return scm_c_make_rectangular (l, M_LOG10E * M_PI);
6548 }
6549}
6550#undef FUNC_NAME
6551
6552
6553SCM_DEFINE (scm_exp, "exp", 1, 0, 0,
6554 (SCM z),
6555 "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
6556 "base of natural logarithms (2.71828@dots{}).")
6557#define FUNC_NAME s_scm_exp
6558{
6559 if (SCM_COMPLEXP (z))
6560 {
4b26c03e 6561#if HAVE_COMPLEX_DOUBLE && HAVE_CEXP && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6562 return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
6563#else
6564 return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
6565 SCM_COMPLEX_IMAG (z));
6566#endif
6567 }
6568 else
6569 {
6570 /* When z is a negative bignum the conversion to double overflows,
6571 giving -infinity, but that's ok, the exp is still 0.0. */
6572 return scm_from_double (exp (scm_to_double (z)));
6573 }
6574}
6575#undef FUNC_NAME
6576
6577
6578SCM_DEFINE (scm_sqrt, "sqrt", 1, 0, 0,
6579 (SCM x),
6580 "Return the square root of @var{z}. Of the two possible roots\n"
6581 "(positive and negative), the one with the a positive real part\n"
6582 "is returned, or if that's zero then a positive imaginary part.\n"
6583 "Thus,\n"
6584 "\n"
6585 "@example\n"
6586 "(sqrt 9.0) @result{} 3.0\n"
6587 "(sqrt -9.0) @result{} 0.0+3.0i\n"
6588 "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
6589 "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
6590 "@end example")
6591#define FUNC_NAME s_scm_sqrt
6592{
6593 if (SCM_COMPLEXP (x))
6594 {
f328f862
LC
6595#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_USABLE_CSQRT \
6596 && defined SCM_COMPLEX_VALUE
8ab3d8a0
KR
6597 return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (x)));
6598#else
6599 double re = SCM_COMPLEX_REAL (x);
6600 double im = SCM_COMPLEX_IMAG (x);
6601 return scm_c_make_polar (sqrt (hypot (re, im)),
6602 0.5 * atan2 (im, re));
6603#endif
6604 }
6605 else
6606 {
6607 double xx = scm_to_double (x);
6608 if (xx < 0)
6609 return scm_c_make_rectangular (0.0, sqrt (-xx));
6610 else
6611 return scm_from_double (sqrt (xx));
6612 }
6613}
6614#undef FUNC_NAME
6615
6616
6617
0f2d19dd
JB
6618void
6619scm_init_numbers ()
0f2d19dd 6620{
0b799eea
MV
6621 int i;
6622
713a4259
KR
6623 mpz_init_set_si (z_negative_one, -1);
6624
a261c0e9
DH
6625 /* It may be possible to tune the performance of some algorithms by using
6626 * the following constants to avoid the creation of bignums. Please, before
6627 * using these values, remember the two rules of program optimization:
6628 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
86d31dfe 6629 scm_c_define ("most-positive-fixnum",
d956fa6f 6630 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
86d31dfe 6631 scm_c_define ("most-negative-fixnum",
d956fa6f 6632 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
a261c0e9 6633
f3ae5d60
MD
6634 scm_add_feature ("complex");
6635 scm_add_feature ("inexact");
e7efe8e7 6636 flo0 = scm_from_double (0.0);
0b799eea
MV
6637
6638 /* determine floating point precision */
55f26379 6639 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
0b799eea
MV
6640 {
6641 init_dblprec(&scm_dblprec[i-2],i);
6642 init_fx_radix(fx_per_radix[i-2],i);
6643 }
f872b822 6644#ifdef DBL_DIG
0b799eea 6645 /* hard code precision for base 10 if the preprocessor tells us to... */
f39448c5 6646 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
0b799eea 6647#endif
1be6b49c 6648
cff5fa33 6649 exactly_one_half = scm_divide (SCM_INUM1, SCM_I_MAKINUM (2));
a0599745 6650#include "libguile/numbers.x"
0f2d19dd 6651}
89e00824
ML
6652
6653/*
6654 Local Variables:
6655 c-file-style: "gnu"
6656 End:
6657*/