*** empty log message ***
[bpt/guile.git] / libguile / numbers.c
CommitLineData
238ebcef 1/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004 Free Software Foundation, Inc.
ba74ef4e
MV
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
f81e080b 6 *
73be1d9e
MV
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
0f2d19dd 11 *
73be1d9e
MV
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
0f2d19dd 16 *
73be1d9e
MV
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
1bbd0b84 21
0f2d19dd 22\f
ca46fb90
RB
23/* General assumptions:
24 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
25 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
26 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
27 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
f92e85f7 28 * All objects satisfying SCM_FRACTIONP are never an integer.
ca46fb90
RB
29 */
30
31/* TODO:
32
33 - see if special casing bignums and reals in integer-exponent when
34 possible (to use mpz_pow and mpf_pow_ui) is faster.
35
36 - look in to better short-circuiting of common cases in
37 integer-expt and elsewhere.
38
39 - see if direct mpz operations can help in ash and elsewhere.
40
41 */
0f2d19dd 42
fa605590
KR
43/* tell glibc (2.3) to give prototype for C99 trunc() */
44#define _GNU_SOURCE
45
ee33d62a
RB
46#if HAVE_CONFIG_H
47# include <config.h>
48#endif
49
0f2d19dd 50#include <math.h>
3c9a524f 51#include <ctype.h>
fc194577 52#include <string.h>
ca46fb90 53#include <gmp.h>
f92e85f7 54
a0599745 55#include "libguile/_scm.h"
a0599745
MD
56#include "libguile/feature.h"
57#include "libguile/ports.h"
58#include "libguile/root.h"
59#include "libguile/smob.h"
60#include "libguile/strings.h"
a0599745
MD
61
62#include "libguile/validate.h"
63#include "libguile/numbers.h"
1be6b49c 64#include "libguile/deprecation.h"
f4c627b3 65
f92e85f7
MV
66#include "libguile/eq.h"
67
55f26379
MV
68#include "libguile/discouraged.h"
69
0f2d19dd 70\f
f4c627b3 71
ca46fb90
RB
72/*
73 Wonder if this might be faster for some of our code? A switch on
74 the numtag would jump directly to the right case, and the
75 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
76
77 #define SCM_I_NUMTAG_NOTNUM 0
78 #define SCM_I_NUMTAG_INUM 1
79 #define SCM_I_NUMTAG_BIG scm_tc16_big
80 #define SCM_I_NUMTAG_REAL scm_tc16_real
81 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
82 #define SCM_I_NUMTAG(x) \
e11e83f3 83 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
ca46fb90 84 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
534c55a9 85 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
ca46fb90
RB
86 : SCM_I_NUMTAG_NOTNUM)))
87*/
f92e85f7 88/* the macro above will not work as is with fractions */
f4c627b3
DH
89
90
34d19ef6 91#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
09fb7599 92
56e55ac7 93/* FLOBUFLEN is the maximum number of characters neccessary for the
3a9809df
DH
94 * printed or scm_string representation of an inexact number.
95 */
0b799eea 96#define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
3a9809df 97
7351e207
MV
98#if defined (SCO)
99#if ! defined (HAVE_ISNAN)
100#define HAVE_ISNAN
101static int
102isnan (double x)
103{
104 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
105}
0f2d19dd 106#endif
7351e207
MV
107#if ! defined (HAVE_ISINF)
108#define HAVE_ISINF
109static int
110isinf (double x)
111{
112 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
113}
0f2d19dd 114
7351e207 115#endif
e6f3ef58
MD
116#endif
117
b127c712
KR
118
119/* mpz_cmp_d only recognises infinities in gmp 4.2 and up.
120 For prior versions use an explicit check here. */
121#if __GNU_MP_VERSION < 4 \
122 || (__GNU_MP_VERSION == 4 && __GNU_MP_VERSION_MINOR < 2)
123#define xmpz_cmp_d(z, d) \
124 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
125#else
126#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
127#endif
128
a98ce907
KR
129/* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
130 isinf. It does have finite and isnan though, hence the use of those.
131 fpclass would be a possibility on that system too. */
f92e85f7
MV
132static int
133xisinf (double x)
134{
135#if defined (HAVE_ISINF)
136 return isinf (x);
137#elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
138 return (! (finite (x) || isnan (x)));
139#else
140 return 0;
141#endif
142}
143
144static int
145xisnan (double x)
146{
147#if defined (HAVE_ISNAN)
148 return isnan (x);
149#else
150 return 0;
151#endif
152}
153
0f2d19dd
JB
154\f
155
713a4259 156static mpz_t z_negative_one;
ac0c002c
DH
157
158\f
159
570b6821 160SCM_C_INLINE_KEYWORD SCM
ca46fb90
RB
161scm_i_mkbig ()
162{
163 /* Return a newly created bignum. */
164 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
165 mpz_init (SCM_I_BIG_MPZ (z));
166 return z;
167}
168
c71b0706
MV
169SCM_C_INLINE_KEYWORD SCM
170scm_i_long2big (long x)
171{
172 /* Return a newly created bignum initialized to X. */
173 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
174 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
175 return z;
176}
177
178SCM_C_INLINE_KEYWORD SCM
179scm_i_ulong2big (unsigned long x)
180{
181 /* Return a newly created bignum initialized to X. */
182 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
183 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
184 return z;
185}
186
570b6821 187SCM_C_INLINE_KEYWORD static SCM
ca46fb90
RB
188scm_i_clonebig (SCM src_big, int same_sign_p)
189{
190 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
191 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
192 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
0aacf84e
MD
193 if (!same_sign_p)
194 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
ca46fb90
RB
195 return z;
196}
197
570b6821 198SCM_C_INLINE_KEYWORD int
ca46fb90
RB
199scm_i_bigcmp (SCM x, SCM y)
200{
201 /* Return neg if x < y, pos if x > y, and 0 if x == y */
202 /* presume we already know x and y are bignums */
203 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
204 scm_remember_upto_here_2 (x, y);
205 return result;
206}
207
570b6821 208SCM_C_INLINE_KEYWORD SCM
ca46fb90
RB
209scm_i_dbl2big (double d)
210{
211 /* results are only defined if d is an integer */
212 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
213 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
214 return z;
215}
216
f92e85f7
MV
217/* Convert a integer in double representation to a SCM number. */
218
219SCM_C_INLINE_KEYWORD SCM
220scm_i_dbl2num (double u)
221{
222 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
223 powers of 2, so there's no rounding when making "double" values
224 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
225 get rounded on a 64-bit machine, hence the "+1".
226
227 The use of floor() to force to an integer value ensures we get a
228 "numerically closest" value without depending on how a
229 double->long cast or how mpz_set_d will round. For reference,
230 double->long probably follows the hardware rounding mode,
231 mpz_set_d truncates towards zero. */
232
233 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
234 representable as a double? */
235
236 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
237 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
d956fa6f 238 return SCM_I_MAKINUM ((long) u);
f92e85f7
MV
239 else
240 return scm_i_dbl2big (u);
241}
242
089c9a59
KR
243/* scm_i_big2dbl() rounds to the closest representable double, in accordance
244 with R5RS exact->inexact.
245
246 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
247 (ie. it truncates towards zero), then adjust to get the closest double by
248 examining the next lower bit and adding 1 if necessary.
249
250 Note that bignums exactly half way between representable doubles are
251 rounded to the next higher absolute value (ie. away from zero). This
252 seems like an adequate interpretation of R5RS "numerically closest", and
253 it's easier and faster than a full "nearest-even" style.
254
255 The bit test is done on the absolute value of the mpz_t, which means we
256 must use mpz_getlimbn. mpz_tstbit is not right, it treats negatives as
257 twos complement.
258
259 Prior to GMP 4.2, the rounding done by mpz_get_d was unspecified. It
260 happened to follow the hardware rounding mode, but on the absolute value
261 of its operand. This is not what we want, so we put the high
262 DBL_MANT_DIG bits into a temporary. This extra init/clear is a slowdown,
263 but doesn't matter too much since it's only for older GMP. */
264
265double
ca46fb90
RB
266scm_i_big2dbl (SCM b)
267{
089c9a59
KR
268 double result;
269 size_t bits;
270
271 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
272
273#if __GNU_MP_VERSION < 4 \
274 || (__GNU_MP_VERSION == 4 && __GNU_MP_VERSION_MINOR < 2)
275 {
276 /* GMP prior to 4.2, force truncate towards zero */
277 mpz_t tmp;
278 if (bits > DBL_MANT_DIG)
279 {
280 size_t shift = bits - DBL_MANT_DIG;
281 mpz_init2 (tmp, DBL_MANT_DIG);
282 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
283 result = ldexp (mpz_get_d (tmp), shift);
284 mpz_clear (tmp);
285 }
286 else
287 {
288 result = mpz_get_d (SCM_I_BIG_MPZ (b));
289 }
290 }
291#else
292 /* GMP 4.2 and up */
293 result = mpz_get_d (SCM_I_BIG_MPZ (b));
294#endif
295
296 if (bits > DBL_MANT_DIG)
297 {
298 unsigned long pos = bits - DBL_MANT_DIG - 1;
299 /* test bit number "pos" in absolute value */
300 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
301 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
302 {
303 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
304 }
305 }
306
ca46fb90
RB
307 scm_remember_upto_here_1 (b);
308 return result;
309}
310
570b6821 311SCM_C_INLINE_KEYWORD SCM
ca46fb90
RB
312scm_i_normbig (SCM b)
313{
314 /* convert a big back to a fixnum if it'll fit */
315 /* presume b is a bignum */
316 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
317 {
318 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
319 if (SCM_FIXABLE (val))
d956fa6f 320 b = SCM_I_MAKINUM (val);
ca46fb90
RB
321 }
322 return b;
323}
f872b822 324
f92e85f7
MV
325static SCM_C_INLINE_KEYWORD SCM
326scm_i_mpz2num (mpz_t b)
327{
328 /* convert a mpz number to a SCM number. */
329 if (mpz_fits_slong_p (b))
330 {
331 long val = mpz_get_si (b);
332 if (SCM_FIXABLE (val))
d956fa6f 333 return SCM_I_MAKINUM (val);
f92e85f7
MV
334 }
335
336 {
337 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
338 mpz_init_set (SCM_I_BIG_MPZ (z), b);
339 return z;
340 }
341}
342
343/* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
344static SCM scm_divide2real (SCM x, SCM y);
345
cba42c93
MV
346static SCM
347scm_i_make_ratio (SCM numerator, SCM denominator)
c60e130c 348#define FUNC_NAME "make-ratio"
f92e85f7 349{
c60e130c
MV
350 /* First make sure the arguments are proper.
351 */
e11e83f3 352 if (SCM_I_INUMP (denominator))
f92e85f7 353 {
bc36d050 354 if (scm_is_eq (denominator, SCM_INUM0))
f92e85f7 355 scm_num_overflow ("make-ratio");
bc36d050 356 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
f92e85f7
MV
357 return numerator;
358 }
359 else
360 {
361 if (!(SCM_BIGP(denominator)))
362 SCM_WRONG_TYPE_ARG (2, denominator);
363 }
e11e83f3 364 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
c60e130c
MV
365 SCM_WRONG_TYPE_ARG (1, numerator);
366
367 /* Then flip signs so that the denominator is positive.
368 */
73e4de09 369 if (scm_is_true (scm_negative_p (denominator)))
c60e130c
MV
370 {
371 numerator = scm_difference (numerator, SCM_UNDEFINED);
372 denominator = scm_difference (denominator, SCM_UNDEFINED);
373 }
374
375 /* Now consider for each of the four fixnum/bignum combinations
376 whether the rational number is really an integer.
377 */
e11e83f3 378 if (SCM_I_INUMP (numerator))
f92e85f7 379 {
e11e83f3 380 long x = SCM_I_INUM (numerator);
bc36d050 381 if (scm_is_eq (numerator, SCM_INUM0))
f92e85f7 382 return SCM_INUM0;
e11e83f3 383 if (SCM_I_INUMP (denominator))
f92e85f7 384 {
dd5130ca 385 long y;
e11e83f3 386 y = SCM_I_INUM (denominator);
f92e85f7 387 if (x == y)
d956fa6f 388 return SCM_I_MAKINUM(1);
f92e85f7 389 if ((x % y) == 0)
d956fa6f 390 return SCM_I_MAKINUM (x / y);
f92e85f7 391 }
dd5130ca
KR
392 else
393 {
394 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
3271a325
KR
395 of that value for the denominator, as a bignum. Apart from
396 that case, abs(bignum) > abs(inum) so inum/bignum is not an
397 integer. */
398 if (x == SCM_MOST_NEGATIVE_FIXNUM
399 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
400 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
d956fa6f 401 return SCM_I_MAKINUM(-1);
dd5130ca 402 }
f92e85f7 403 }
c60e130c 404 else if (SCM_BIGP (numerator))
f92e85f7 405 {
e11e83f3 406 if (SCM_I_INUMP (denominator))
c60e130c 407 {
e11e83f3 408 long yy = SCM_I_INUM (denominator);
c60e130c
MV
409 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
410 return scm_divide (numerator, denominator);
411 }
412 else
f92e85f7 413 {
bc36d050 414 if (scm_is_eq (numerator, denominator))
d956fa6f 415 return SCM_I_MAKINUM(1);
c60e130c
MV
416 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
417 SCM_I_BIG_MPZ (denominator)))
418 return scm_divide(numerator, denominator);
f92e85f7 419 }
f92e85f7 420 }
c60e130c
MV
421
422 /* No, it's a proper fraction.
423 */
424 return scm_double_cell (scm_tc16_fraction,
425 SCM_UNPACK (numerator),
426 SCM_UNPACK (denominator), 0);
f92e85f7 427}
c60e130c 428#undef FUNC_NAME
f92e85f7
MV
429
430static void scm_i_fraction_reduce (SCM z)
431{
432 if (!(SCM_FRACTION_REDUCED (z)))
433 {
434 SCM divisor;
435 divisor = scm_gcd (SCM_FRACTION_NUMERATOR (z), SCM_FRACTION_DENOMINATOR (z));
bc36d050 436 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
f92e85f7
MV
437 {
438 /* is this safe? */
439 SCM_FRACTION_SET_NUMERATOR (z, scm_divide (SCM_FRACTION_NUMERATOR (z), divisor));
440 SCM_FRACTION_SET_DENOMINATOR (z, scm_divide (SCM_FRACTION_DENOMINATOR (z), divisor));
441 }
442 SCM_FRACTION_REDUCED_SET (z);
443 }
444}
445
446double
447scm_i_fraction2double (SCM z)
448{
55f26379
MV
449 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
450 SCM_FRACTION_DENOMINATOR (z)));
f92e85f7
MV
451}
452
a1ec6916 453SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
1bbd0b84 454 (SCM x),
942e5b91
MG
455 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
456 "otherwise.")
1bbd0b84 457#define FUNC_NAME s_scm_exact_p
0f2d19dd 458{
e11e83f3 459 if (SCM_I_INUMP (x))
0aacf84e
MD
460 return SCM_BOOL_T;
461 if (SCM_BIGP (x))
462 return SCM_BOOL_T;
f92e85f7
MV
463 if (SCM_FRACTIONP (x))
464 return SCM_BOOL_T;
eb927cb9
MV
465 if (SCM_NUMBERP (x))
466 return SCM_BOOL_F;
467 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 468}
1bbd0b84 469#undef FUNC_NAME
0f2d19dd 470
4219f20d 471
a1ec6916 472SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
1bbd0b84 473 (SCM n),
942e5b91
MG
474 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
475 "otherwise.")
1bbd0b84 476#define FUNC_NAME s_scm_odd_p
0f2d19dd 477{
e11e83f3 478 if (SCM_I_INUMP (n))
0aacf84e 479 {
e11e83f3 480 long val = SCM_I_INUM (n);
73e4de09 481 return scm_from_bool ((val & 1L) != 0);
0aacf84e
MD
482 }
483 else if (SCM_BIGP (n))
484 {
485 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
486 scm_remember_upto_here_1 (n);
73e4de09 487 return scm_from_bool (odd_p);
0aacf84e 488 }
73e4de09 489 else if (scm_is_true (scm_inf_p (n)))
7351e207 490 return SCM_BOOL_T;
f92e85f7
MV
491 else if (SCM_REALP (n))
492 {
493 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
494 if (rem == 1.0)
495 return SCM_BOOL_T;
496 else if (rem == 0.0)
497 return SCM_BOOL_F;
498 else
499 SCM_WRONG_TYPE_ARG (1, n);
500 }
0aacf84e 501 else
a1a33b0f 502 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 503}
1bbd0b84 504#undef FUNC_NAME
0f2d19dd 505
4219f20d 506
a1ec6916 507SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
1bbd0b84 508 (SCM n),
942e5b91
MG
509 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
510 "otherwise.")
1bbd0b84 511#define FUNC_NAME s_scm_even_p
0f2d19dd 512{
e11e83f3 513 if (SCM_I_INUMP (n))
0aacf84e 514 {
e11e83f3 515 long val = SCM_I_INUM (n);
73e4de09 516 return scm_from_bool ((val & 1L) == 0);
0aacf84e
MD
517 }
518 else if (SCM_BIGP (n))
519 {
520 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
521 scm_remember_upto_here_1 (n);
73e4de09 522 return scm_from_bool (even_p);
0aacf84e 523 }
73e4de09 524 else if (scm_is_true (scm_inf_p (n)))
7351e207 525 return SCM_BOOL_T;
f92e85f7
MV
526 else if (SCM_REALP (n))
527 {
528 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
529 if (rem == 1.0)
530 return SCM_BOOL_F;
531 else if (rem == 0.0)
532 return SCM_BOOL_T;
533 else
534 SCM_WRONG_TYPE_ARG (1, n);
535 }
0aacf84e 536 else
a1a33b0f 537 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 538}
1bbd0b84 539#undef FUNC_NAME
0f2d19dd 540
7351e207
MV
541SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
542 (SCM n),
543 "Return @code{#t} if @var{n} is infinite, @code{#f}\n"
544 "otherwise.")
545#define FUNC_NAME s_scm_inf_p
546{
0aacf84e 547 if (SCM_REALP (n))
73e4de09 548 return scm_from_bool (xisinf (SCM_REAL_VALUE (n)));
0aacf84e 549 else if (SCM_COMPLEXP (n))
73e4de09 550 return scm_from_bool (xisinf (SCM_COMPLEX_REAL (n))
7351e207 551 || xisinf (SCM_COMPLEX_IMAG (n)));
0aacf84e 552 else
7351e207 553 return SCM_BOOL_F;
7351e207
MV
554}
555#undef FUNC_NAME
556
557SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
558 (SCM n),
559 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
560 "otherwise.")
561#define FUNC_NAME s_scm_nan_p
562{
0aacf84e 563 if (SCM_REALP (n))
73e4de09 564 return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
0aacf84e 565 else if (SCM_COMPLEXP (n))
73e4de09 566 return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
7351e207 567 || xisnan (SCM_COMPLEX_IMAG (n)));
0aacf84e 568 else
7351e207 569 return SCM_BOOL_F;
7351e207
MV
570}
571#undef FUNC_NAME
572
573/* Guile's idea of infinity. */
574static double guile_Inf;
575
576/* Guile's idea of not a number. */
577static double guile_NaN;
578
579static void
580guile_ieee_init (void)
581{
582#if defined (HAVE_ISINF) || defined (HAVE_FINITE)
583
584/* Some version of gcc on some old version of Linux used to crash when
585 trying to make Inf and NaN. */
586
240a27d2
KR
587#ifdef INFINITY
588 /* C99 INFINITY, when available.
589 FIXME: The standard allows for INFINITY to be something that overflows
590 at compile time. We ought to have a configure test to check for that
591 before trying to use it. (But in practice we believe this is not a
592 problem on any system guile is likely to target.) */
593 guile_Inf = INFINITY;
594#elif HAVE_DINFINITY
595 /* OSF */
7351e207
MV
596 extern unsigned int DINFINITY[2];
597 guile_Inf = (*(X_CAST(double *, DINFINITY)));
598#else
599 double tmp = 1e+10;
600 guile_Inf = tmp;
601 for (;;)
602 {
603 guile_Inf *= 1e+10;
604 if (guile_Inf == tmp)
605 break;
606 tmp = guile_Inf;
607 }
608#endif
609
610#endif
611
612#if defined (HAVE_ISNAN)
613
240a27d2
KR
614#ifdef NAN
615 /* C99 NAN, when available */
616 guile_NaN = NAN;
617#elif HAVE_DQNAN
618 /* OSF */
7351e207
MV
619 extern unsigned int DQNAN[2];
620 guile_NaN = (*(X_CAST(double *, DQNAN)));
621#else
622 guile_NaN = guile_Inf / guile_Inf;
623#endif
624
625#endif
626}
627
628SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
629 (void),
630 "Return Inf.")
631#define FUNC_NAME s_scm_inf
632{
633 static int initialized = 0;
634 if (! initialized)
635 {
636 guile_ieee_init ();
637 initialized = 1;
638 }
55f26379 639 return scm_from_double (guile_Inf);
7351e207
MV
640}
641#undef FUNC_NAME
642
643SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
644 (void),
645 "Return NaN.")
646#define FUNC_NAME s_scm_nan
647{
648 static int initialized = 0;
0aacf84e 649 if (!initialized)
7351e207
MV
650 {
651 guile_ieee_init ();
652 initialized = 1;
653 }
55f26379 654 return scm_from_double (guile_NaN);
7351e207
MV
655}
656#undef FUNC_NAME
657
4219f20d 658
a48d60b1
MD
659SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
660 (SCM x),
661 "Return the absolute value of @var{x}.")
662#define FUNC_NAME
0f2d19dd 663{
e11e83f3 664 if (SCM_I_INUMP (x))
0aacf84e 665 {
e11e83f3 666 long int xx = SCM_I_INUM (x);
0aacf84e
MD
667 if (xx >= 0)
668 return x;
669 else if (SCM_POSFIXABLE (-xx))
d956fa6f 670 return SCM_I_MAKINUM (-xx);
0aacf84e
MD
671 else
672 return scm_i_long2big (-xx);
4219f20d 673 }
0aacf84e
MD
674 else if (SCM_BIGP (x))
675 {
676 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
677 if (sgn < 0)
678 return scm_i_clonebig (x, 0);
679 else
680 return x;
4219f20d 681 }
0aacf84e 682 else if (SCM_REALP (x))
ae38324d
KR
683 {
684 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
685 double xx = SCM_REAL_VALUE (x);
686 if (xx < 0.0)
55f26379 687 return scm_from_double (-xx);
ae38324d
KR
688 else
689 return x;
690 }
f92e85f7
MV
691 else if (SCM_FRACTIONP (x))
692 {
73e4de09 693 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
f92e85f7 694 return x;
cba42c93 695 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7
MV
696 SCM_FRACTION_DENOMINATOR (x));
697 }
0aacf84e 698 else
a48d60b1 699 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
0f2d19dd 700}
a48d60b1 701#undef FUNC_NAME
0f2d19dd 702
4219f20d 703
9de33deb 704SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
942e5b91
MG
705/* "Return the quotient of the numbers @var{x} and @var{y}."
706 */
0f2d19dd 707SCM
6e8d25a6 708scm_quotient (SCM x, SCM y)
0f2d19dd 709{
e11e83f3 710 if (SCM_I_INUMP (x))
0aacf84e 711 {
e11e83f3
MV
712 long xx = SCM_I_INUM (x);
713 if (SCM_I_INUMP (y))
0aacf84e 714 {
e11e83f3 715 long yy = SCM_I_INUM (y);
0aacf84e
MD
716 if (yy == 0)
717 scm_num_overflow (s_quotient);
718 else
719 {
720 long z = xx / yy;
721 if (SCM_FIXABLE (z))
d956fa6f 722 return SCM_I_MAKINUM (z);
0aacf84e
MD
723 else
724 return scm_i_long2big (z);
725 }
828865c3 726 }
0aacf84e 727 else if (SCM_BIGP (y))
ac0c002c 728 {
e11e83f3 729 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
730 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
731 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
732 {
733 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
734 scm_remember_upto_here_1 (y);
d956fa6f 735 return SCM_I_MAKINUM (-1);
4dc09ee4 736 }
0aacf84e 737 else
d956fa6f 738 return SCM_I_MAKINUM (0);
ac0c002c
DH
739 }
740 else
0aacf84e 741 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
828865c3 742 }
0aacf84e
MD
743 else if (SCM_BIGP (x))
744 {
e11e83f3 745 if (SCM_I_INUMP (y))
0aacf84e 746 {
e11e83f3 747 long yy = SCM_I_INUM (y);
0aacf84e
MD
748 if (yy == 0)
749 scm_num_overflow (s_quotient);
750 else if (yy == 1)
751 return x;
752 else
753 {
754 SCM result = scm_i_mkbig ();
755 if (yy < 0)
756 {
757 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
758 SCM_I_BIG_MPZ (x),
759 - yy);
760 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
761 }
762 else
763 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
764 scm_remember_upto_here_1 (x);
765 return scm_i_normbig (result);
766 }
767 }
768 else if (SCM_BIGP (y))
769 {
770 SCM result = scm_i_mkbig ();
771 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
772 SCM_I_BIG_MPZ (x),
773 SCM_I_BIG_MPZ (y));
774 scm_remember_upto_here_2 (x, y);
775 return scm_i_normbig (result);
776 }
777 else
778 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
f872b822 779 }
0aacf84e 780 else
89a7e495 781 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
0f2d19dd
JB
782}
783
9de33deb 784SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
942e5b91
MG
785/* "Return the remainder of the numbers @var{x} and @var{y}.\n"
786 * "@lisp\n"
787 * "(remainder 13 4) @result{} 1\n"
788 * "(remainder -13 4) @result{} -1\n"
789 * "@end lisp"
790 */
0f2d19dd 791SCM
6e8d25a6 792scm_remainder (SCM x, SCM y)
0f2d19dd 793{
e11e83f3 794 if (SCM_I_INUMP (x))
0aacf84e 795 {
e11e83f3 796 if (SCM_I_INUMP (y))
0aacf84e 797 {
e11e83f3 798 long yy = SCM_I_INUM (y);
0aacf84e
MD
799 if (yy == 0)
800 scm_num_overflow (s_remainder);
801 else
802 {
e11e83f3 803 long z = SCM_I_INUM (x) % yy;
d956fa6f 804 return SCM_I_MAKINUM (z);
0aacf84e
MD
805 }
806 }
807 else if (SCM_BIGP (y))
ac0c002c 808 {
e11e83f3 809 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
810 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
811 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
812 {
813 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
814 scm_remember_upto_here_1 (y);
d956fa6f 815 return SCM_I_MAKINUM (0);
4dc09ee4 816 }
0aacf84e
MD
817 else
818 return x;
ac0c002c
DH
819 }
820 else
0aacf84e 821 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
89a7e495 822 }
0aacf84e
MD
823 else if (SCM_BIGP (x))
824 {
e11e83f3 825 if (SCM_I_INUMP (y))
0aacf84e 826 {
e11e83f3 827 long yy = SCM_I_INUM (y);
0aacf84e
MD
828 if (yy == 0)
829 scm_num_overflow (s_remainder);
830 else
831 {
832 SCM result = scm_i_mkbig ();
833 if (yy < 0)
834 yy = - yy;
835 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
836 scm_remember_upto_here_1 (x);
837 return scm_i_normbig (result);
838 }
839 }
840 else if (SCM_BIGP (y))
841 {
842 SCM result = scm_i_mkbig ();
843 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
844 SCM_I_BIG_MPZ (x),
845 SCM_I_BIG_MPZ (y));
846 scm_remember_upto_here_2 (x, y);
847 return scm_i_normbig (result);
848 }
849 else
850 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
f872b822 851 }
0aacf84e 852 else
89a7e495 853 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
0f2d19dd
JB
854}
855
89a7e495 856
9de33deb 857SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
942e5b91
MG
858/* "Return the modulo of the numbers @var{x} and @var{y}.\n"
859 * "@lisp\n"
860 * "(modulo 13 4) @result{} 1\n"
861 * "(modulo -13 4) @result{} 3\n"
862 * "@end lisp"
863 */
0f2d19dd 864SCM
6e8d25a6 865scm_modulo (SCM x, SCM y)
0f2d19dd 866{
e11e83f3 867 if (SCM_I_INUMP (x))
0aacf84e 868 {
e11e83f3
MV
869 long xx = SCM_I_INUM (x);
870 if (SCM_I_INUMP (y))
0aacf84e 871 {
e11e83f3 872 long yy = SCM_I_INUM (y);
0aacf84e
MD
873 if (yy == 0)
874 scm_num_overflow (s_modulo);
875 else
876 {
877 /* FIXME: I think this may be a bug on some arches -- results
878 of % with negative second arg are undefined... */
879 long z = xx % yy;
880 long result;
881
882 if (yy < 0)
883 {
884 if (z > 0)
885 result = z + yy;
886 else
887 result = z;
888 }
889 else
890 {
891 if (z < 0)
892 result = z + yy;
893 else
894 result = z;
895 }
d956fa6f 896 return SCM_I_MAKINUM (result);
0aacf84e
MD
897 }
898 }
899 else if (SCM_BIGP (y))
900 {
901 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
0aacf84e
MD
902 {
903 mpz_t z_x;
904 SCM result;
905
906 if (sgn_y < 0)
907 {
908 SCM pos_y = scm_i_clonebig (y, 0);
909 /* do this after the last scm_op */
910 mpz_init_set_si (z_x, xx);
911 result = pos_y; /* re-use this bignum */
912 mpz_mod (SCM_I_BIG_MPZ (result),
913 z_x,
914 SCM_I_BIG_MPZ (pos_y));
915 scm_remember_upto_here_1 (pos_y);
916 }
917 else
918 {
919 result = scm_i_mkbig ();
920 /* do this after the last scm_op */
921 mpz_init_set_si (z_x, xx);
922 mpz_mod (SCM_I_BIG_MPZ (result),
923 z_x,
924 SCM_I_BIG_MPZ (y));
925 scm_remember_upto_here_1 (y);
926 }
ca46fb90 927
0aacf84e
MD
928 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
929 mpz_add (SCM_I_BIG_MPZ (result),
930 SCM_I_BIG_MPZ (y),
931 SCM_I_BIG_MPZ (result));
932 scm_remember_upto_here_1 (y);
933 /* and do this before the next one */
934 mpz_clear (z_x);
935 return scm_i_normbig (result);
936 }
937 }
938 else
939 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
f872b822 940 }
0aacf84e
MD
941 else if (SCM_BIGP (x))
942 {
e11e83f3 943 if (SCM_I_INUMP (y))
0aacf84e 944 {
e11e83f3 945 long yy = SCM_I_INUM (y);
0aacf84e
MD
946 if (yy == 0)
947 scm_num_overflow (s_modulo);
948 else
949 {
950 SCM result = scm_i_mkbig ();
951 mpz_mod_ui (SCM_I_BIG_MPZ (result),
952 SCM_I_BIG_MPZ (x),
953 (yy < 0) ? - yy : yy);
954 scm_remember_upto_here_1 (x);
955 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
956 mpz_sub_ui (SCM_I_BIG_MPZ (result),
957 SCM_I_BIG_MPZ (result),
958 - yy);
959 return scm_i_normbig (result);
960 }
961 }
962 else if (SCM_BIGP (y))
963 {
0aacf84e
MD
964 {
965 SCM result = scm_i_mkbig ();
966 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
967 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
968 mpz_mod (SCM_I_BIG_MPZ (result),
969 SCM_I_BIG_MPZ (x),
970 SCM_I_BIG_MPZ (pos_y));
ca46fb90 971
0aacf84e
MD
972 scm_remember_upto_here_1 (x);
973 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
974 mpz_add (SCM_I_BIG_MPZ (result),
975 SCM_I_BIG_MPZ (y),
976 SCM_I_BIG_MPZ (result));
977 scm_remember_upto_here_2 (y, pos_y);
978 return scm_i_normbig (result);
979 }
980 }
981 else
982 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
828865c3 983 }
0aacf84e 984 else
09fb7599 985 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
0f2d19dd
JB
986}
987
9de33deb 988SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
942e5b91
MG
989/* "Return the greatest common divisor of all arguments.\n"
990 * "If called without arguments, 0 is returned."
991 */
0f2d19dd 992SCM
6e8d25a6 993scm_gcd (SCM x, SCM y)
0f2d19dd 994{
ca46fb90 995 if (SCM_UNBNDP (y))
0aacf84e 996 return SCM_UNBNDP (x) ? SCM_INUM0 : x;
ca46fb90 997
e11e83f3 998 if (SCM_I_INUMP (x))
ca46fb90 999 {
e11e83f3 1000 if (SCM_I_INUMP (y))
ca46fb90 1001 {
e11e83f3
MV
1002 long xx = SCM_I_INUM (x);
1003 long yy = SCM_I_INUM (y);
ca46fb90
RB
1004 long u = xx < 0 ? -xx : xx;
1005 long v = yy < 0 ? -yy : yy;
1006 long result;
0aacf84e
MD
1007 if (xx == 0)
1008 result = v;
1009 else if (yy == 0)
1010 result = u;
1011 else
1012 {
1013 long k = 1;
1014 long t;
1015 /* Determine a common factor 2^k */
1016 while (!(1 & (u | v)))
1017 {
1018 k <<= 1;
1019 u >>= 1;
1020 v >>= 1;
1021 }
1022 /* Now, any factor 2^n can be eliminated */
1023 if (u & 1)
1024 t = -v;
1025 else
1026 {
1027 t = u;
1028 b3:
1029 t = SCM_SRS (t, 1);
1030 }
1031 if (!(1 & t))
1032 goto b3;
1033 if (t > 0)
1034 u = t;
1035 else
1036 v = -t;
1037 t = u - v;
1038 if (t != 0)
1039 goto b3;
1040 result = u * k;
1041 }
1042 return (SCM_POSFIXABLE (result)
d956fa6f 1043 ? SCM_I_MAKINUM (result)
0aacf84e 1044 : scm_i_long2big (result));
ca46fb90
RB
1045 }
1046 else if (SCM_BIGP (y))
1047 {
0bff4dce
KR
1048 SCM_SWAP (x, y);
1049 goto big_inum;
ca46fb90
RB
1050 }
1051 else
1052 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
f872b822 1053 }
ca46fb90
RB
1054 else if (SCM_BIGP (x))
1055 {
e11e83f3 1056 if (SCM_I_INUMP (y))
ca46fb90
RB
1057 {
1058 unsigned long result;
0bff4dce
KR
1059 long yy;
1060 big_inum:
e11e83f3 1061 yy = SCM_I_INUM (y);
8c5b0afc
KR
1062 if (yy == 0)
1063 return scm_abs (x);
0aacf84e
MD
1064 if (yy < 0)
1065 yy = -yy;
ca46fb90
RB
1066 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1067 scm_remember_upto_here_1 (x);
0aacf84e 1068 return (SCM_POSFIXABLE (result)
d956fa6f 1069 ? SCM_I_MAKINUM (result)
c71b0706 1070 : scm_from_ulong (result));
ca46fb90
RB
1071 }
1072 else if (SCM_BIGP (y))
1073 {
1074 SCM result = scm_i_mkbig ();
0aacf84e
MD
1075 mpz_gcd (SCM_I_BIG_MPZ (result),
1076 SCM_I_BIG_MPZ (x),
1077 SCM_I_BIG_MPZ (y));
1078 scm_remember_upto_here_2 (x, y);
ca46fb90
RB
1079 return scm_i_normbig (result);
1080 }
1081 else
1082 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
09fb7599 1083 }
ca46fb90 1084 else
09fb7599 1085 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
0f2d19dd
JB
1086}
1087
9de33deb 1088SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
942e5b91
MG
1089/* "Return the least common multiple of the arguments.\n"
1090 * "If called without arguments, 1 is returned."
1091 */
0f2d19dd 1092SCM
6e8d25a6 1093scm_lcm (SCM n1, SCM n2)
0f2d19dd 1094{
ca46fb90
RB
1095 if (SCM_UNBNDP (n2))
1096 {
1097 if (SCM_UNBNDP (n1))
d956fa6f
MV
1098 return SCM_I_MAKINUM (1L);
1099 n2 = SCM_I_MAKINUM (1L);
09fb7599 1100 }
09fb7599 1101
e11e83f3 1102 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
ca46fb90 1103 g_lcm, n1, n2, SCM_ARG1, s_lcm);
e11e83f3 1104 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
ca46fb90 1105 g_lcm, n1, n2, SCM_ARGn, s_lcm);
09fb7599 1106
e11e83f3 1107 if (SCM_I_INUMP (n1))
ca46fb90 1108 {
e11e83f3 1109 if (SCM_I_INUMP (n2))
ca46fb90
RB
1110 {
1111 SCM d = scm_gcd (n1, n2);
bc36d050 1112 if (scm_is_eq (d, SCM_INUM0))
ca46fb90
RB
1113 return d;
1114 else
1115 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1116 }
1117 else
1118 {
1119 /* inum n1, big n2 */
1120 inumbig:
1121 {
1122 SCM result = scm_i_mkbig ();
e11e83f3 1123 long nn1 = SCM_I_INUM (n1);
ca46fb90
RB
1124 if (nn1 == 0) return SCM_INUM0;
1125 if (nn1 < 0) nn1 = - nn1;
1126 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1127 scm_remember_upto_here_1 (n2);
1128 return result;
1129 }
1130 }
1131 }
1132 else
1133 {
1134 /* big n1 */
e11e83f3 1135 if (SCM_I_INUMP (n2))
ca46fb90
RB
1136 {
1137 SCM_SWAP (n1, n2);
1138 goto inumbig;
1139 }
1140 else
1141 {
1142 SCM result = scm_i_mkbig ();
1143 mpz_lcm(SCM_I_BIG_MPZ (result),
1144 SCM_I_BIG_MPZ (n1),
1145 SCM_I_BIG_MPZ (n2));
1146 scm_remember_upto_here_2(n1, n2);
1147 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1148 return result;
1149 }
f872b822 1150 }
0f2d19dd
JB
1151}
1152
8a525303
GB
1153/* Emulating 2's complement bignums with sign magnitude arithmetic:
1154
1155 Logand:
1156 X Y Result Method:
1157 (len)
1158 + + + x (map digit:logand X Y)
1159 + - + x (map digit:logand X (lognot (+ -1 Y)))
1160 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1161 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1162
1163 Logior:
1164 X Y Result Method:
1165
1166 + + + (map digit:logior X Y)
1167 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1168 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1169 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1170
1171 Logxor:
1172 X Y Result Method:
1173
1174 + + + (map digit:logxor X Y)
1175 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1176 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1177 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1178
1179 Logtest:
1180 X Y Result
1181
1182 + + (any digit:logand X Y)
1183 + - (any digit:logand X (lognot (+ -1 Y)))
1184 - + (any digit:logand (lognot (+ -1 X)) Y)
1185 - - #t
1186
1187*/
1188
c3ee7520 1189SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
1bbd0b84 1190 (SCM n1, SCM n2),
3c3db128
GH
1191 "Return the bitwise AND of the integer arguments.\n\n"
1192 "@lisp\n"
1193 "(logand) @result{} -1\n"
1194 "(logand 7) @result{} 7\n"
535f2a51 1195 "(logand #b111 #b011 #b001) @result{} 1\n"
3c3db128 1196 "@end lisp")
1bbd0b84 1197#define FUNC_NAME s_scm_logand
0f2d19dd 1198{
9a00c9fc
DH
1199 long int nn1;
1200
0aacf84e
MD
1201 if (SCM_UNBNDP (n2))
1202 {
1203 if (SCM_UNBNDP (n1))
d956fa6f 1204 return SCM_I_MAKINUM (-1);
0aacf84e
MD
1205 else if (!SCM_NUMBERP (n1))
1206 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1207 else if (SCM_NUMBERP (n1))
1208 return n1;
1209 else
1210 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1211 }
09fb7599 1212
e11e83f3 1213 if (SCM_I_INUMP (n1))
0aacf84e 1214 {
e11e83f3
MV
1215 nn1 = SCM_I_INUM (n1);
1216 if (SCM_I_INUMP (n2))
0aacf84e 1217 {
e11e83f3 1218 long nn2 = SCM_I_INUM (n2);
d956fa6f 1219 return SCM_I_MAKINUM (nn1 & nn2);
0aacf84e
MD
1220 }
1221 else if SCM_BIGP (n2)
1222 {
1223 intbig:
1224 if (n1 == 0)
1225 return SCM_INUM0;
1226 {
1227 SCM result_z = scm_i_mkbig ();
1228 mpz_t nn1_z;
1229 mpz_init_set_si (nn1_z, nn1);
1230 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1231 scm_remember_upto_here_1 (n2);
1232 mpz_clear (nn1_z);
1233 return scm_i_normbig (result_z);
1234 }
1235 }
1236 else
1237 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1238 }
1239 else if (SCM_BIGP (n1))
1240 {
e11e83f3 1241 if (SCM_I_INUMP (n2))
0aacf84e
MD
1242 {
1243 SCM_SWAP (n1, n2);
e11e83f3 1244 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1245 goto intbig;
1246 }
1247 else if (SCM_BIGP (n2))
1248 {
1249 SCM result_z = scm_i_mkbig ();
1250 mpz_and (SCM_I_BIG_MPZ (result_z),
1251 SCM_I_BIG_MPZ (n1),
1252 SCM_I_BIG_MPZ (n2));
1253 scm_remember_upto_here_2 (n1, n2);
1254 return scm_i_normbig (result_z);
1255 }
1256 else
1257 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1258 }
0aacf84e 1259 else
09fb7599 1260 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1261}
1bbd0b84 1262#undef FUNC_NAME
0f2d19dd 1263
09fb7599 1264
c3ee7520 1265SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
1bbd0b84 1266 (SCM n1, SCM n2),
3c3db128
GH
1267 "Return the bitwise OR of the integer arguments.\n\n"
1268 "@lisp\n"
1269 "(logior) @result{} 0\n"
1270 "(logior 7) @result{} 7\n"
1271 "(logior #b000 #b001 #b011) @result{} 3\n"
1e6808ea 1272 "@end lisp")
1bbd0b84 1273#define FUNC_NAME s_scm_logior
0f2d19dd 1274{
9a00c9fc
DH
1275 long int nn1;
1276
0aacf84e
MD
1277 if (SCM_UNBNDP (n2))
1278 {
1279 if (SCM_UNBNDP (n1))
1280 return SCM_INUM0;
1281 else if (SCM_NUMBERP (n1))
1282 return n1;
1283 else
1284 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1285 }
09fb7599 1286
e11e83f3 1287 if (SCM_I_INUMP (n1))
0aacf84e 1288 {
e11e83f3
MV
1289 nn1 = SCM_I_INUM (n1);
1290 if (SCM_I_INUMP (n2))
0aacf84e 1291 {
e11e83f3 1292 long nn2 = SCM_I_INUM (n2);
d956fa6f 1293 return SCM_I_MAKINUM (nn1 | nn2);
0aacf84e
MD
1294 }
1295 else if (SCM_BIGP (n2))
1296 {
1297 intbig:
1298 if (nn1 == 0)
1299 return n2;
1300 {
1301 SCM result_z = scm_i_mkbig ();
1302 mpz_t nn1_z;
1303 mpz_init_set_si (nn1_z, nn1);
1304 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1305 scm_remember_upto_here_1 (n2);
1306 mpz_clear (nn1_z);
1307 return result_z;
1308 }
1309 }
1310 else
1311 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1312 }
1313 else if (SCM_BIGP (n1))
1314 {
e11e83f3 1315 if (SCM_I_INUMP (n2))
0aacf84e
MD
1316 {
1317 SCM_SWAP (n1, n2);
e11e83f3 1318 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1319 goto intbig;
1320 }
1321 else if (SCM_BIGP (n2))
1322 {
1323 SCM result_z = scm_i_mkbig ();
1324 mpz_ior (SCM_I_BIG_MPZ (result_z),
1325 SCM_I_BIG_MPZ (n1),
1326 SCM_I_BIG_MPZ (n2));
1327 scm_remember_upto_here_2 (n1, n2);
1328 return result_z;
1329 }
1330 else
1331 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1332 }
0aacf84e 1333 else
09fb7599 1334 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1335}
1bbd0b84 1336#undef FUNC_NAME
0f2d19dd 1337
09fb7599 1338
c3ee7520 1339SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
1bbd0b84 1340 (SCM n1, SCM n2),
3c3db128
GH
1341 "Return the bitwise XOR of the integer arguments. A bit is\n"
1342 "set in the result if it is set in an odd number of arguments.\n"
1343 "@lisp\n"
1344 "(logxor) @result{} 0\n"
1345 "(logxor 7) @result{} 7\n"
1346 "(logxor #b000 #b001 #b011) @result{} 2\n"
1347 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1e6808ea 1348 "@end lisp")
1bbd0b84 1349#define FUNC_NAME s_scm_logxor
0f2d19dd 1350{
9a00c9fc
DH
1351 long int nn1;
1352
0aacf84e
MD
1353 if (SCM_UNBNDP (n2))
1354 {
1355 if (SCM_UNBNDP (n1))
1356 return SCM_INUM0;
1357 else if (SCM_NUMBERP (n1))
1358 return n1;
1359 else
1360 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1361 }
09fb7599 1362
e11e83f3 1363 if (SCM_I_INUMP (n1))
0aacf84e 1364 {
e11e83f3
MV
1365 nn1 = SCM_I_INUM (n1);
1366 if (SCM_I_INUMP (n2))
0aacf84e 1367 {
e11e83f3 1368 long nn2 = SCM_I_INUM (n2);
d956fa6f 1369 return SCM_I_MAKINUM (nn1 ^ nn2);
0aacf84e
MD
1370 }
1371 else if (SCM_BIGP (n2))
1372 {
1373 intbig:
1374 {
1375 SCM result_z = scm_i_mkbig ();
1376 mpz_t nn1_z;
1377 mpz_init_set_si (nn1_z, nn1);
1378 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1379 scm_remember_upto_here_1 (n2);
1380 mpz_clear (nn1_z);
1381 return scm_i_normbig (result_z);
1382 }
1383 }
1384 else
1385 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1386 }
1387 else if (SCM_BIGP (n1))
1388 {
e11e83f3 1389 if (SCM_I_INUMP (n2))
0aacf84e
MD
1390 {
1391 SCM_SWAP (n1, n2);
e11e83f3 1392 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1393 goto intbig;
1394 }
1395 else if (SCM_BIGP (n2))
1396 {
1397 SCM result_z = scm_i_mkbig ();
1398 mpz_xor (SCM_I_BIG_MPZ (result_z),
1399 SCM_I_BIG_MPZ (n1),
1400 SCM_I_BIG_MPZ (n2));
1401 scm_remember_upto_here_2 (n1, n2);
1402 return scm_i_normbig (result_z);
1403 }
1404 else
1405 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1406 }
0aacf84e 1407 else
09fb7599 1408 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1409}
1bbd0b84 1410#undef FUNC_NAME
0f2d19dd 1411
09fb7599 1412
a1ec6916 1413SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1e6808ea
MG
1414 (SCM j, SCM k),
1415 "@lisp\n"
b380b885
MD
1416 "(logtest j k) @equiv{} (not (zero? (logand j k)))\n\n"
1417 "(logtest #b0100 #b1011) @result{} #f\n"
1418 "(logtest #b0100 #b0111) @result{} #t\n"
1e6808ea 1419 "@end lisp")
1bbd0b84 1420#define FUNC_NAME s_scm_logtest
0f2d19dd 1421{
1e6808ea 1422 long int nj;
9a00c9fc 1423
e11e83f3 1424 if (SCM_I_INUMP (j))
0aacf84e 1425 {
e11e83f3
MV
1426 nj = SCM_I_INUM (j);
1427 if (SCM_I_INUMP (k))
0aacf84e 1428 {
e11e83f3 1429 long nk = SCM_I_INUM (k);
73e4de09 1430 return scm_from_bool (nj & nk);
0aacf84e
MD
1431 }
1432 else if (SCM_BIGP (k))
1433 {
1434 intbig:
1435 if (nj == 0)
1436 return SCM_BOOL_F;
1437 {
1438 SCM result;
1439 mpz_t nj_z;
1440 mpz_init_set_si (nj_z, nj);
1441 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1442 scm_remember_upto_here_1 (k);
73e4de09 1443 result = scm_from_bool (mpz_sgn (nj_z) != 0);
0aacf84e
MD
1444 mpz_clear (nj_z);
1445 return result;
1446 }
1447 }
1448 else
1449 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1450 }
1451 else if (SCM_BIGP (j))
1452 {
e11e83f3 1453 if (SCM_I_INUMP (k))
0aacf84e
MD
1454 {
1455 SCM_SWAP (j, k);
e11e83f3 1456 nj = SCM_I_INUM (j);
0aacf84e
MD
1457 goto intbig;
1458 }
1459 else if (SCM_BIGP (k))
1460 {
1461 SCM result;
1462 mpz_t result_z;
1463 mpz_init (result_z);
1464 mpz_and (result_z,
1465 SCM_I_BIG_MPZ (j),
1466 SCM_I_BIG_MPZ (k));
1467 scm_remember_upto_here_2 (j, k);
73e4de09 1468 result = scm_from_bool (mpz_sgn (result_z) != 0);
0aacf84e
MD
1469 mpz_clear (result_z);
1470 return result;
1471 }
1472 else
1473 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1474 }
1475 else
1476 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
0f2d19dd 1477}
1bbd0b84 1478#undef FUNC_NAME
0f2d19dd 1479
c1bfcf60 1480
a1ec6916 1481SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
2cd04b42 1482 (SCM index, SCM j),
1e6808ea 1483 "@lisp\n"
b380b885
MD
1484 "(logbit? index j) @equiv{} (logtest (integer-expt 2 index) j)\n\n"
1485 "(logbit? 0 #b1101) @result{} #t\n"
1486 "(logbit? 1 #b1101) @result{} #f\n"
1487 "(logbit? 2 #b1101) @result{} #t\n"
1488 "(logbit? 3 #b1101) @result{} #t\n"
1489 "(logbit? 4 #b1101) @result{} #f\n"
1e6808ea 1490 "@end lisp")
1bbd0b84 1491#define FUNC_NAME s_scm_logbit_p
0f2d19dd 1492{
78166ad5 1493 unsigned long int iindex;
5efd3c7d 1494 iindex = scm_to_ulong (index);
78166ad5 1495
e11e83f3 1496 if (SCM_I_INUMP (j))
0d75f6d8
KR
1497 {
1498 /* bits above what's in an inum follow the sign bit */
20fcc8ed 1499 iindex = min (iindex, SCM_LONG_BIT - 1);
e11e83f3 1500 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
0d75f6d8 1501 }
0aacf84e
MD
1502 else if (SCM_BIGP (j))
1503 {
1504 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1505 scm_remember_upto_here_1 (j);
73e4de09 1506 return scm_from_bool (val);
0aacf84e
MD
1507 }
1508 else
78166ad5 1509 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
0f2d19dd 1510}
1bbd0b84 1511#undef FUNC_NAME
0f2d19dd 1512
78166ad5 1513
a1ec6916 1514SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1bbd0b84 1515 (SCM n),
4d814788 1516 "Return the integer which is the ones-complement of the integer\n"
1e6808ea
MG
1517 "argument.\n"
1518 "\n"
b380b885
MD
1519 "@lisp\n"
1520 "(number->string (lognot #b10000000) 2)\n"
1521 " @result{} \"-10000001\"\n"
1522 "(number->string (lognot #b0) 2)\n"
1523 " @result{} \"-1\"\n"
1e6808ea 1524 "@end lisp")
1bbd0b84 1525#define FUNC_NAME s_scm_lognot
0f2d19dd 1526{
e11e83f3 1527 if (SCM_I_INUMP (n)) {
f9811f9f
KR
1528 /* No overflow here, just need to toggle all the bits making up the inum.
1529 Enhancement: No need to strip the tag and add it back, could just xor
1530 a block of 1 bits, if that worked with the various debug versions of
1531 the SCM typedef. */
e11e83f3 1532 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
f9811f9f
KR
1533
1534 } else if (SCM_BIGP (n)) {
1535 SCM result = scm_i_mkbig ();
1536 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1537 scm_remember_upto_here_1 (n);
1538 return result;
1539
1540 } else {
1541 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1542 }
0f2d19dd 1543}
1bbd0b84 1544#undef FUNC_NAME
0f2d19dd 1545
518b7508
KR
1546/* returns 0 if IN is not an integer. OUT must already be
1547 initialized. */
1548static int
1549coerce_to_big (SCM in, mpz_t out)
1550{
1551 if (SCM_BIGP (in))
1552 mpz_set (out, SCM_I_BIG_MPZ (in));
e11e83f3
MV
1553 else if (SCM_I_INUMP (in))
1554 mpz_set_si (out, SCM_I_INUM (in));
518b7508
KR
1555 else
1556 return 0;
1557
1558 return 1;
1559}
1560
d885e204 1561SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
518b7508
KR
1562 (SCM n, SCM k, SCM m),
1563 "Return @var{n} raised to the integer exponent\n"
1564 "@var{k}, modulo @var{m}.\n"
1565 "\n"
1566 "@lisp\n"
1567 "(modulo-expt 2 3 5)\n"
1568 " @result{} 3\n"
1569 "@end lisp")
d885e204 1570#define FUNC_NAME s_scm_modulo_expt
518b7508
KR
1571{
1572 mpz_t n_tmp;
1573 mpz_t k_tmp;
1574 mpz_t m_tmp;
1575
1576 /* There are two classes of error we might encounter --
1577 1) Math errors, which we'll report by calling scm_num_overflow,
1578 and
1579 2) wrong-type errors, which of course we'll report by calling
1580 SCM_WRONG_TYPE_ARG.
1581 We don't report those errors immediately, however; instead we do
1582 some cleanup first. These variables tell us which error (if
1583 any) we should report after cleaning up.
1584 */
1585 int report_overflow = 0;
1586
1587 int position_of_wrong_type = 0;
1588 SCM value_of_wrong_type = SCM_INUM0;
1589
1590 SCM result = SCM_UNDEFINED;
1591
1592 mpz_init (n_tmp);
1593 mpz_init (k_tmp);
1594 mpz_init (m_tmp);
1595
bc36d050 1596 if (scm_is_eq (m, SCM_INUM0))
518b7508
KR
1597 {
1598 report_overflow = 1;
1599 goto cleanup;
1600 }
1601
1602 if (!coerce_to_big (n, n_tmp))
1603 {
1604 value_of_wrong_type = n;
1605 position_of_wrong_type = 1;
1606 goto cleanup;
1607 }
1608
1609 if (!coerce_to_big (k, k_tmp))
1610 {
1611 value_of_wrong_type = k;
1612 position_of_wrong_type = 2;
1613 goto cleanup;
1614 }
1615
1616 if (!coerce_to_big (m, m_tmp))
1617 {
1618 value_of_wrong_type = m;
1619 position_of_wrong_type = 3;
1620 goto cleanup;
1621 }
1622
1623 /* if the exponent K is negative, and we simply call mpz_powm, we
1624 will get a divide-by-zero exception when an inverse 1/n mod m
1625 doesn't exist (or is not unique). Since exceptions are hard to
1626 handle, we'll attempt the inversion "by hand" -- that way, we get
1627 a simple failure code, which is easy to handle. */
1628
1629 if (-1 == mpz_sgn (k_tmp))
1630 {
1631 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1632 {
1633 report_overflow = 1;
1634 goto cleanup;
1635 }
1636 mpz_neg (k_tmp, k_tmp);
1637 }
1638
1639 result = scm_i_mkbig ();
1640 mpz_powm (SCM_I_BIG_MPZ (result),
1641 n_tmp,
1642 k_tmp,
1643 m_tmp);
b7b8c575
KR
1644
1645 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1646 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1647
518b7508
KR
1648 cleanup:
1649 mpz_clear (m_tmp);
1650 mpz_clear (k_tmp);
1651 mpz_clear (n_tmp);
1652
1653 if (report_overflow)
1654 scm_num_overflow (FUNC_NAME);
1655
1656 if (position_of_wrong_type)
1657 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1658 value_of_wrong_type);
1659
1660 return scm_i_normbig (result);
1661}
1662#undef FUNC_NAME
1663
a1ec6916 1664SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
2cd04b42 1665 (SCM n, SCM k),
1e6808ea
MG
1666 "Return @var{n} raised to the non-negative integer exponent\n"
1667 "@var{k}.\n"
1668 "\n"
b380b885
MD
1669 "@lisp\n"
1670 "(integer-expt 2 5)\n"
1671 " @result{} 32\n"
1672 "(integer-expt -3 3)\n"
1673 " @result{} -27\n"
1674 "@end lisp")
1bbd0b84 1675#define FUNC_NAME s_scm_integer_expt
0f2d19dd 1676{
1c35cb19
RB
1677 long i2 = 0;
1678 SCM z_i2 = SCM_BOOL_F;
1679 int i2_is_big = 0;
d956fa6f 1680 SCM acc = SCM_I_MAKINUM (1L);
ca46fb90 1681
d57ed702 1682 /* 0^0 == 1 according to R5RS */
bc36d050 1683 if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
73e4de09 1684 return scm_is_false (scm_zero_p(k)) ? n : acc;
bc36d050 1685 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
73e4de09 1686 return scm_is_false (scm_even_p (k)) ? n : acc;
ca46fb90 1687
e11e83f3
MV
1688 if (SCM_I_INUMP (k))
1689 i2 = SCM_I_INUM (k);
ca46fb90
RB
1690 else if (SCM_BIGP (k))
1691 {
1692 z_i2 = scm_i_clonebig (k, 1);
ca46fb90
RB
1693 scm_remember_upto_here_1 (k);
1694 i2_is_big = 1;
1695 }
1696 else if (SCM_REALP (k))
2830fd91
MD
1697 {
1698 double r = SCM_REAL_VALUE (k);
ca46fb90
RB
1699 if (floor (r) != r)
1700 SCM_WRONG_TYPE_ARG (2, k);
1701 if ((r > SCM_MOST_POSITIVE_FIXNUM) || (r < SCM_MOST_NEGATIVE_FIXNUM))
1702 {
1703 z_i2 = scm_i_mkbig ();
753ac1e7 1704 mpz_set_d (SCM_I_BIG_MPZ (z_i2), r);
ca46fb90
RB
1705 i2_is_big = 1;
1706 }
1707 else
1708 {
1709 i2 = r;
1710 }
2830fd91
MD
1711 }
1712 else
ca46fb90
RB
1713 SCM_WRONG_TYPE_ARG (2, k);
1714
1715 if (i2_is_big)
f872b822 1716 {
ca46fb90
RB
1717 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1718 {
1719 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1720 n = scm_divide (n, SCM_UNDEFINED);
1721 }
1722 while (1)
1723 {
1724 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1725 {
ca46fb90
RB
1726 return acc;
1727 }
1728 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1729 {
ca46fb90
RB
1730 return scm_product (acc, n);
1731 }
1732 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1733 acc = scm_product (acc, n);
1734 n = scm_product (n, n);
1735 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1736 }
f872b822 1737 }
ca46fb90 1738 else
f872b822 1739 {
ca46fb90
RB
1740 if (i2 < 0)
1741 {
1742 i2 = -i2;
1743 n = scm_divide (n, SCM_UNDEFINED);
1744 }
1745 while (1)
1746 {
1747 if (0 == i2)
1748 return acc;
1749 if (1 == i2)
1750 return scm_product (acc, n);
1751 if (i2 & 1)
1752 acc = scm_product (acc, n);
1753 n = scm_product (n, n);
1754 i2 >>= 1;
1755 }
f872b822 1756 }
0f2d19dd 1757}
1bbd0b84 1758#undef FUNC_NAME
0f2d19dd 1759
a1ec6916 1760SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1bbd0b84 1761 (SCM n, SCM cnt),
32f19569
KR
1762 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1763 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1e6808ea 1764 "\n"
e7644cb2 1765 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
32f19569
KR
1766 "@var{cnt} is negative it's a division, rounded towards negative\n"
1767 "infinity. (Note that this is not the same rounding as\n"
1768 "@code{quotient} does.)\n"
1769 "\n"
1770 "With @var{n} viewed as an infinite precision twos complement,\n"
1771 "@code{ash} means a left shift introducing zero bits, or a right\n"
1772 "shift dropping bits.\n"
1e6808ea 1773 "\n"
b380b885 1774 "@lisp\n"
1e6808ea
MG
1775 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1776 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
32f19569
KR
1777 "\n"
1778 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1779 "(ash -23 -2) @result{} -6\n"
a3c8b9fc 1780 "@end lisp")
1bbd0b84 1781#define FUNC_NAME s_scm_ash
0f2d19dd 1782{
3ab9f56e 1783 long bits_to_shift;
5efd3c7d 1784 bits_to_shift = scm_to_long (cnt);
ca46fb90
RB
1785
1786 if (bits_to_shift < 0)
1787 {
1788 /* Shift right by abs(cnt) bits. This is realized as a division
1789 by div:=2^abs(cnt). However, to guarantee the floor
1790 rounding, negative values require some special treatment.
1791 */
d956fa6f 1792 SCM div = scm_integer_expt (SCM_I_MAKINUM (2),
5efd3c7d 1793 scm_from_long (-bits_to_shift));
f92e85f7
MV
1794
1795 /* scm_quotient assumes its arguments are integers, but it's legal to (ash 1/2 -1) */
73e4de09 1796 if (scm_is_false (scm_negative_p (n)))
ca46fb90
RB
1797 return scm_quotient (n, div);
1798 else
d956fa6f
MV
1799 return scm_sum (SCM_I_MAKINUM (-1L),
1800 scm_quotient (scm_sum (SCM_I_MAKINUM (1L), n), div));
ca46fb90
RB
1801 }
1802 else
3ab9f56e 1803 /* Shift left is done by multiplication with 2^CNT */
d956fa6f 1804 return scm_product (n, scm_integer_expt (SCM_I_MAKINUM (2), cnt));
0f2d19dd 1805}
1bbd0b84 1806#undef FUNC_NAME
0f2d19dd 1807
3c9f20f8 1808
a1ec6916 1809SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1bbd0b84 1810 (SCM n, SCM start, SCM end),
1e6808ea
MG
1811 "Return the integer composed of the @var{start} (inclusive)\n"
1812 "through @var{end} (exclusive) bits of @var{n}. The\n"
1813 "@var{start}th bit becomes the 0-th bit in the result.\n"
1814 "\n"
b380b885
MD
1815 "@lisp\n"
1816 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1817 " @result{} \"1010\"\n"
1818 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1819 " @result{} \"10110\"\n"
1820 "@end lisp")
1bbd0b84 1821#define FUNC_NAME s_scm_bit_extract
0f2d19dd 1822{
7f848242 1823 unsigned long int istart, iend, bits;
5efd3c7d
MV
1824 istart = scm_to_ulong (start);
1825 iend = scm_to_ulong (end);
c1bfcf60 1826 SCM_ASSERT_RANGE (3, end, (iend >= istart));
78166ad5 1827
7f848242
KR
1828 /* how many bits to keep */
1829 bits = iend - istart;
1830
e11e83f3 1831 if (SCM_I_INUMP (n))
0aacf84e 1832 {
e11e83f3 1833 long int in = SCM_I_INUM (n);
7f848242
KR
1834
1835 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
d77ad560 1836 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
857ae6af 1837 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
ac0c002c 1838
0aacf84e
MD
1839 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
1840 {
1841 /* Since we emulate two's complement encoded numbers, this
1842 * special case requires us to produce a result that has
7f848242 1843 * more bits than can be stored in a fixnum.
0aacf84e 1844 */
7f848242
KR
1845 SCM result = scm_i_long2big (in);
1846 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1847 bits);
1848 return result;
0aacf84e 1849 }
ac0c002c 1850
7f848242 1851 /* mask down to requisite bits */
857ae6af 1852 bits = min (bits, SCM_I_FIXNUM_BIT);
d956fa6f 1853 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
0aacf84e
MD
1854 }
1855 else if (SCM_BIGP (n))
ac0c002c 1856 {
7f848242
KR
1857 SCM result;
1858 if (bits == 1)
1859 {
d956fa6f 1860 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
7f848242
KR
1861 }
1862 else
1863 {
1864 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
1865 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
1866 such bits into a ulong. */
1867 result = scm_i_mkbig ();
1868 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
1869 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
1870 result = scm_i_normbig (result);
1871 }
1872 scm_remember_upto_here_1 (n);
1873 return result;
ac0c002c 1874 }
0aacf84e 1875 else
78166ad5 1876 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 1877}
1bbd0b84 1878#undef FUNC_NAME
0f2d19dd 1879
7f848242 1880
e4755e5c
JB
1881static const char scm_logtab[] = {
1882 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
1883};
1cc91f1b 1884
a1ec6916 1885SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1bbd0b84 1886 (SCM n),
1e6808ea
MG
1887 "Return the number of bits in integer @var{n}. If integer is\n"
1888 "positive, the 1-bits in its binary representation are counted.\n"
1889 "If negative, the 0-bits in its two's-complement binary\n"
1890 "representation are counted. If 0, 0 is returned.\n"
1891 "\n"
b380b885
MD
1892 "@lisp\n"
1893 "(logcount #b10101010)\n"
ca46fb90
RB
1894 " @result{} 4\n"
1895 "(logcount 0)\n"
1896 " @result{} 0\n"
1897 "(logcount -2)\n"
1898 " @result{} 1\n"
1899 "@end lisp")
1900#define FUNC_NAME s_scm_logcount
1901{
e11e83f3 1902 if (SCM_I_INUMP (n))
f872b822 1903 {
ca46fb90 1904 unsigned long int c = 0;
e11e83f3 1905 long int nn = SCM_I_INUM (n);
ca46fb90
RB
1906 if (nn < 0)
1907 nn = -1 - nn;
1908 while (nn)
1909 {
1910 c += scm_logtab[15 & nn];
1911 nn >>= 4;
1912 }
d956fa6f 1913 return SCM_I_MAKINUM (c);
f872b822 1914 }
ca46fb90 1915 else if (SCM_BIGP (n))
f872b822 1916 {
ca46fb90 1917 unsigned long count;
713a4259
KR
1918 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
1919 count = mpz_popcount (SCM_I_BIG_MPZ (n));
ca46fb90 1920 else
713a4259
KR
1921 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
1922 scm_remember_upto_here_1 (n);
d956fa6f 1923 return SCM_I_MAKINUM (count);
f872b822 1924 }
ca46fb90
RB
1925 else
1926 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 1927}
ca46fb90 1928#undef FUNC_NAME
0f2d19dd
JB
1929
1930
ca46fb90
RB
1931static const char scm_ilentab[] = {
1932 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
1933};
1934
0f2d19dd 1935
ca46fb90
RB
1936SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
1937 (SCM n),
1938 "Return the number of bits necessary to represent @var{n}.\n"
1939 "\n"
1940 "@lisp\n"
1941 "(integer-length #b10101010)\n"
1942 " @result{} 8\n"
1943 "(integer-length 0)\n"
1944 " @result{} 0\n"
1945 "(integer-length #b1111)\n"
1946 " @result{} 4\n"
1947 "@end lisp")
1948#define FUNC_NAME s_scm_integer_length
1949{
e11e83f3 1950 if (SCM_I_INUMP (n))
0aacf84e
MD
1951 {
1952 unsigned long int c = 0;
1953 unsigned int l = 4;
e11e83f3 1954 long int nn = SCM_I_INUM (n);
0aacf84e
MD
1955 if (nn < 0)
1956 nn = -1 - nn;
1957 while (nn)
1958 {
1959 c += 4;
1960 l = scm_ilentab [15 & nn];
1961 nn >>= 4;
1962 }
d956fa6f 1963 return SCM_I_MAKINUM (c - 4 + l);
0aacf84e
MD
1964 }
1965 else if (SCM_BIGP (n))
1966 {
1967 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
1968 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
1969 1 too big, so check for that and adjust. */
1970 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
1971 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
1972 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
1973 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
1974 size--;
1975 scm_remember_upto_here_1 (n);
d956fa6f 1976 return SCM_I_MAKINUM (size);
0aacf84e
MD
1977 }
1978 else
ca46fb90 1979 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
ca46fb90
RB
1980}
1981#undef FUNC_NAME
0f2d19dd
JB
1982
1983/*** NUMBERS -> STRINGS ***/
0b799eea
MV
1984#define SCM_MAX_DBL_PREC 60
1985#define SCM_MAX_DBL_RADIX 36
1986
1987/* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
1988static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
1989static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
1990
1991static
1992void init_dblprec(int *prec, int radix) {
1993 /* determine floating point precision by adding successively
1994 smaller increments to 1.0 until it is considered == 1.0 */
1995 double f = ((double)1.0)/radix;
1996 double fsum = 1.0 + f;
1997
1998 *prec = 0;
1999 while (fsum != 1.0)
2000 {
2001 if (++(*prec) > SCM_MAX_DBL_PREC)
2002 fsum = 1.0;
2003 else
2004 {
2005 f /= radix;
2006 fsum = f + 1.0;
2007 }
2008 }
2009 (*prec) -= 1;
2010}
2011
2012static
2013void init_fx_radix(double *fx_list, int radix)
2014{
2015 /* initialize a per-radix list of tolerances. When added
2016 to a number < 1.0, we can determine if we should raund
2017 up and quit converting a number to a string. */
2018 int i;
2019 fx_list[0] = 0.0;
2020 fx_list[1] = 0.5;
2021 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2022 fx_list[i] = (fx_list[i-1] / radix);
2023}
2024
2025/* use this array as a way to generate a single digit */
2026static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
0f2d19dd 2027
1be6b49c 2028static size_t
0b799eea 2029idbl2str (double f, char *a, int radix)
0f2d19dd 2030{
0b799eea
MV
2031 int efmt, dpt, d, i, wp;
2032 double *fx;
2033#ifdef DBL_MIN_10_EXP
2034 double f_cpy;
2035 int exp_cpy;
2036#endif /* DBL_MIN_10_EXP */
2037 size_t ch = 0;
2038 int exp = 0;
2039
2040 if(radix < 2 ||
2041 radix > SCM_MAX_DBL_RADIX)
2042 {
2043 /* revert to existing behavior */
2044 radix = 10;
2045 }
2046
2047 wp = scm_dblprec[radix-2];
2048 fx = fx_per_radix[radix-2];
0f2d19dd 2049
f872b822 2050 if (f == 0.0)
abb7e44d
MV
2051 {
2052#ifdef HAVE_COPYSIGN
2053 double sgn = copysign (1.0, f);
2054
2055 if (sgn < 0.0)
2056 a[ch++] = '-';
2057#endif
abb7e44d
MV
2058 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2059 }
7351e207
MV
2060
2061 if (xisinf (f))
2062 {
2063 if (f < 0)
2064 strcpy (a, "-inf.0");
2065 else
2066 strcpy (a, "+inf.0");
2067 return ch+6;
2068 }
2069 else if (xisnan (f))
2070 {
2071 strcpy (a, "+nan.0");
2072 return ch+6;
2073 }
2074
f872b822
MD
2075 if (f < 0.0)
2076 {
2077 f = -f;
2078 a[ch++] = '-';
2079 }
7351e207 2080
f872b822
MD
2081#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2082 make-uniform-vector, from causing infinite loops. */
0b799eea
MV
2083 /* just do the checking...if it passes, we do the conversion for our
2084 radix again below */
2085 f_cpy = f;
2086 exp_cpy = exp;
2087
2088 while (f_cpy < 1.0)
f872b822 2089 {
0b799eea
MV
2090 f_cpy *= 10.0;
2091 if (exp_cpy-- < DBL_MIN_10_EXP)
7351e207
MV
2092 {
2093 a[ch++] = '#';
2094 a[ch++] = '.';
2095 a[ch++] = '#';
2096 return ch;
2097 }
f872b822 2098 }
0b799eea 2099 while (f_cpy > 10.0)
f872b822 2100 {
0b799eea
MV
2101 f_cpy *= 0.10;
2102 if (exp_cpy++ > DBL_MAX_10_EXP)
7351e207
MV
2103 {
2104 a[ch++] = '#';
2105 a[ch++] = '.';
2106 a[ch++] = '#';
2107 return ch;
2108 }
f872b822 2109 }
0b799eea
MV
2110#endif
2111
f872b822
MD
2112 while (f < 1.0)
2113 {
0b799eea 2114 f *= radix;
f872b822
MD
2115 exp--;
2116 }
0b799eea 2117 while (f > radix)
f872b822 2118 {
0b799eea 2119 f /= radix;
f872b822
MD
2120 exp++;
2121 }
0b799eea
MV
2122
2123 if (f + fx[wp] >= radix)
f872b822
MD
2124 {
2125 f = 1.0;
2126 exp++;
2127 }
0f2d19dd 2128 zero:
0b799eea
MV
2129#ifdef ENGNOT
2130 /* adding 9999 makes this equivalent to abs(x) % 3 */
f872b822 2131 dpt = (exp + 9999) % 3;
0f2d19dd
JB
2132 exp -= dpt++;
2133 efmt = 1;
f872b822
MD
2134#else
2135 efmt = (exp < -3) || (exp > wp + 2);
0f2d19dd 2136 if (!efmt)
cda139a7
MD
2137 {
2138 if (exp < 0)
2139 {
2140 a[ch++] = '0';
2141 a[ch++] = '.';
2142 dpt = exp;
f872b822
MD
2143 while (++dpt)
2144 a[ch++] = '0';
cda139a7
MD
2145 }
2146 else
f872b822 2147 dpt = exp + 1;
cda139a7 2148 }
0f2d19dd
JB
2149 else
2150 dpt = 1;
f872b822
MD
2151#endif
2152
2153 do
2154 {
2155 d = f;
2156 f -= d;
0b799eea 2157 a[ch++] = number_chars[d];
f872b822
MD
2158 if (f < fx[wp])
2159 break;
2160 if (f + fx[wp] >= 1.0)
2161 {
0b799eea 2162 a[ch - 1] = number_chars[d+1];
f872b822
MD
2163 break;
2164 }
0b799eea 2165 f *= radix;
f872b822
MD
2166 if (!(--dpt))
2167 a[ch++] = '.';
0f2d19dd 2168 }
f872b822 2169 while (wp--);
0f2d19dd
JB
2170
2171 if (dpt > 0)
cda139a7 2172 {
f872b822 2173#ifndef ENGNOT
cda139a7
MD
2174 if ((dpt > 4) && (exp > 6))
2175 {
f872b822 2176 d = (a[0] == '-' ? 2 : 1);
cda139a7 2177 for (i = ch++; i > d; i--)
f872b822 2178 a[i] = a[i - 1];
cda139a7
MD
2179 a[d] = '.';
2180 efmt = 1;
2181 }
2182 else
f872b822 2183#endif
cda139a7 2184 {
f872b822
MD
2185 while (--dpt)
2186 a[ch++] = '0';
cda139a7
MD
2187 a[ch++] = '.';
2188 }
2189 }
f872b822
MD
2190 if (a[ch - 1] == '.')
2191 a[ch++] = '0'; /* trailing zero */
2192 if (efmt && exp)
2193 {
2194 a[ch++] = 'e';
2195 if (exp < 0)
2196 {
2197 exp = -exp;
2198 a[ch++] = '-';
2199 }
0b799eea
MV
2200 for (i = radix; i <= exp; i *= radix);
2201 for (i /= radix; i; i /= radix)
f872b822 2202 {
0b799eea 2203 a[ch++] = number_chars[exp / i];
f872b822
MD
2204 exp %= i;
2205 }
0f2d19dd 2206 }
0f2d19dd
JB
2207 return ch;
2208}
2209
1be6b49c 2210static size_t
0b799eea 2211iflo2str (SCM flt, char *str, int radix)
0f2d19dd 2212{
1be6b49c 2213 size_t i;
3c9a524f 2214 if (SCM_REALP (flt))
0b799eea 2215 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
0f2d19dd 2216 else
f872b822 2217 {
0b799eea 2218 i = idbl2str (SCM_COMPLEX_REAL (flt), str, radix);
f3ae5d60
MD
2219 if (SCM_COMPLEX_IMAG (flt) != 0.0)
2220 {
7351e207
MV
2221 double imag = SCM_COMPLEX_IMAG (flt);
2222 /* Don't output a '+' for negative numbers or for Inf and
2223 NaN. They will provide their own sign. */
2224 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
f3ae5d60 2225 str[i++] = '+';
0b799eea 2226 i += idbl2str (imag, &str[i], radix);
f3ae5d60
MD
2227 str[i++] = 'i';
2228 }
f872b822 2229 }
0f2d19dd
JB
2230 return i;
2231}
0f2d19dd 2232
5c11cc9d 2233/* convert a long to a string (unterminated). returns the number of
1bbd0b84
GB
2234 characters in the result.
2235 rad is output base
2236 p is destination: worst case (base 2) is SCM_INTBUFLEN */
1be6b49c 2237size_t
1bbd0b84 2238scm_iint2str (long num, int rad, char *p)
0f2d19dd 2239{
1be6b49c
ML
2240 size_t j = 1;
2241 size_t i;
5c11cc9d
GH
2242 unsigned long n = (num < 0) ? -num : num;
2243
f872b822 2244 for (n /= rad; n > 0; n /= rad)
5c11cc9d
GH
2245 j++;
2246
2247 i = j;
2248 if (num < 0)
f872b822 2249 {
f872b822 2250 *p++ = '-';
5c11cc9d
GH
2251 j++;
2252 n = -num;
f872b822 2253 }
5c11cc9d
GH
2254 else
2255 n = num;
f872b822
MD
2256 while (i--)
2257 {
5c11cc9d
GH
2258 int d = n % rad;
2259
f872b822
MD
2260 n /= rad;
2261 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2262 }
0f2d19dd
JB
2263 return j;
2264}
2265
a1ec6916 2266SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
bb628794
DH
2267 (SCM n, SCM radix),
2268 "Return a string holding the external representation of the\n"
942e5b91
MG
2269 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2270 "inexact, a radix of 10 will be used.")
1bbd0b84 2271#define FUNC_NAME s_scm_number_to_string
0f2d19dd 2272{
1bbd0b84 2273 int base;
98cb6e75 2274
0aacf84e 2275 if (SCM_UNBNDP (radix))
98cb6e75 2276 base = 10;
0aacf84e 2277 else
5efd3c7d 2278 base = scm_to_signed_integer (radix, 2, 36);
98cb6e75 2279
e11e83f3 2280 if (SCM_I_INUMP (n))
0aacf84e
MD
2281 {
2282 char num_buf [SCM_INTBUFLEN];
e11e83f3 2283 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
0aacf84e
MD
2284 return scm_mem2string (num_buf, length);
2285 }
2286 else if (SCM_BIGP (n))
2287 {
2288 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2289 scm_remember_upto_here_1 (n);
2290 return scm_take0str (str);
2291 }
f92e85f7
MV
2292 else if (SCM_FRACTIONP (n))
2293 {
2294 scm_i_fraction_reduce (n);
2295 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
2296 scm_mem2string ("/", 1),
2297 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2298 }
0aacf84e
MD
2299 else if (SCM_INEXACTP (n))
2300 {
2301 char num_buf [FLOBUFLEN];
0b799eea 2302 return scm_mem2string (num_buf, iflo2str (n, num_buf, base));
0aacf84e
MD
2303 }
2304 else
bb628794 2305 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 2306}
1bbd0b84 2307#undef FUNC_NAME
0f2d19dd
JB
2308
2309
ca46fb90
RB
2310/* These print routines used to be stubbed here so that scm_repl.c
2311 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
1cc91f1b 2312
0f2d19dd 2313int
e81d98ec 2314scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2315{
56e55ac7 2316 char num_buf[FLOBUFLEN];
0b799eea 2317 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
0f2d19dd
JB
2318 return !0;
2319}
2320
f3ae5d60 2321int
e81d98ec 2322scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
f92e85f7 2323
f3ae5d60 2324{
56e55ac7 2325 char num_buf[FLOBUFLEN];
0b799eea 2326 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
f3ae5d60
MD
2327 return !0;
2328}
1cc91f1b 2329
f92e85f7
MV
2330int
2331scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2332{
2333 SCM str;
2334 scm_i_fraction_reduce (sexp);
2335 str = scm_number_to_string (sexp, SCM_UNDEFINED);
2336 scm_lfwrite (SCM_STRING_CHARS (str), SCM_STRING_LENGTH (str), port);
2337 scm_remember_upto_here_1 (str);
2338 return !0;
2339}
2340
0f2d19dd 2341int
e81d98ec 2342scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2343{
ca46fb90
RB
2344 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2345 scm_remember_upto_here_1 (exp);
2346 scm_lfwrite (str, (size_t) strlen (str), port);
2347 free (str);
0f2d19dd
JB
2348 return !0;
2349}
2350/*** END nums->strs ***/
2351
3c9a524f 2352
0f2d19dd 2353/*** STRINGS -> NUMBERS ***/
2a8fecee 2354
3c9a524f
DH
2355/* The following functions implement the conversion from strings to numbers.
2356 * The implementation somehow follows the grammar for numbers as it is given
2357 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2358 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2359 * points should be noted about the implementation:
2360 * * Each function keeps a local index variable 'idx' that points at the
2361 * current position within the parsed string. The global index is only
2362 * updated if the function could parse the corresponding syntactic unit
2363 * successfully.
2364 * * Similarly, the functions keep track of indicators of inexactness ('#',
2365 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2366 * global exactness information is only updated after each part has been
2367 * successfully parsed.
2368 * * Sequences of digits are parsed into temporary variables holding fixnums.
2369 * Only if these fixnums would overflow, the result variables are updated
2370 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2371 * the temporary variables holding the fixnums are cleared, and the process
2372 * starts over again. If for example fixnums were able to store five decimal
2373 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2374 * and the result was computed as 12345 * 100000 + 67890. In other words,
2375 * only every five digits two bignum operations were performed.
2376 */
2377
2378enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2379
2380/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2381
2382/* In non ASCII-style encodings the following macro might not work. */
71df73ac
KR
2383#define XDIGIT2UINT(d) \
2384 (isdigit ((int) (unsigned char) d) \
2385 ? (d) - '0' \
2386 : tolower ((int) (unsigned char) d) - 'a' + 10)
3c9a524f 2387
2a8fecee 2388static SCM
3c9a524f
DH
2389mem2uinteger (const char* mem, size_t len, unsigned int *p_idx,
2390 unsigned int radix, enum t_exactness *p_exactness)
2a8fecee 2391{
3c9a524f
DH
2392 unsigned int idx = *p_idx;
2393 unsigned int hash_seen = 0;
2394 scm_t_bits shift = 1;
2395 scm_t_bits add = 0;
2396 unsigned int digit_value;
2397 SCM result;
2398 char c;
2399
2400 if (idx == len)
2401 return SCM_BOOL_F;
2a8fecee 2402
3c9a524f 2403 c = mem[idx];
71df73ac 2404 if (!isxdigit ((int) (unsigned char) c))
3c9a524f
DH
2405 return SCM_BOOL_F;
2406 digit_value = XDIGIT2UINT (c);
2407 if (digit_value >= radix)
2408 return SCM_BOOL_F;
2409
2410 idx++;
d956fa6f 2411 result = SCM_I_MAKINUM (digit_value);
3c9a524f 2412 while (idx != len)
f872b822 2413 {
3c9a524f 2414 char c = mem[idx];
71df73ac 2415 if (isxdigit ((int) (unsigned char) c))
f872b822 2416 {
3c9a524f 2417 if (hash_seen)
1fe5e088 2418 break;
3c9a524f
DH
2419 digit_value = XDIGIT2UINT (c);
2420 if (digit_value >= radix)
1fe5e088 2421 break;
f872b822 2422 }
3c9a524f
DH
2423 else if (c == '#')
2424 {
2425 hash_seen = 1;
2426 digit_value = 0;
2427 }
2428 else
2429 break;
2430
2431 idx++;
2432 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2433 {
d956fa6f 2434 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2435 if (add > 0)
d956fa6f 2436 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2437
2438 shift = radix;
2439 add = digit_value;
2440 }
2441 else
2442 {
2443 shift = shift * radix;
2444 add = add * radix + digit_value;
2445 }
2446 };
2447
2448 if (shift > 1)
d956fa6f 2449 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2450 if (add > 0)
d956fa6f 2451 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2452
2453 *p_idx = idx;
2454 if (hash_seen)
2455 *p_exactness = INEXACT;
2456
2457 return result;
2a8fecee
JB
2458}
2459
2460
3c9a524f
DH
2461/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2462 * covers the parts of the rules that start at a potential point. The value
2463 * of the digits up to the point have been parsed by the caller and are given
79d34f68
DH
2464 * in variable result. The content of *p_exactness indicates, whether a hash
2465 * has already been seen in the digits before the point.
3c9a524f 2466 */
1cc91f1b 2467
3c9a524f
DH
2468/* In non ASCII-style encodings the following macro might not work. */
2469#define DIGIT2UINT(d) ((d) - '0')
2470
2471static SCM
79d34f68 2472mem2decimal_from_point (SCM result, const char* mem, size_t len,
3c9a524f 2473 unsigned int *p_idx, enum t_exactness *p_exactness)
0f2d19dd 2474{
3c9a524f
DH
2475 unsigned int idx = *p_idx;
2476 enum t_exactness x = *p_exactness;
3c9a524f
DH
2477
2478 if (idx == len)
79d34f68 2479 return result;
3c9a524f
DH
2480
2481 if (mem[idx] == '.')
2482 {
2483 scm_t_bits shift = 1;
2484 scm_t_bits add = 0;
2485 unsigned int digit_value;
d956fa6f 2486 SCM big_shift = SCM_I_MAKINUM (1);
3c9a524f
DH
2487
2488 idx++;
2489 while (idx != len)
2490 {
2491 char c = mem[idx];
71df73ac 2492 if (isdigit ((int) (unsigned char) c))
3c9a524f
DH
2493 {
2494 if (x == INEXACT)
2495 return SCM_BOOL_F;
2496 else
2497 digit_value = DIGIT2UINT (c);
2498 }
2499 else if (c == '#')
2500 {
2501 x = INEXACT;
2502 digit_value = 0;
2503 }
2504 else
2505 break;
2506
2507 idx++;
2508 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2509 {
d956fa6f
MV
2510 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2511 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2512 if (add > 0)
d956fa6f 2513 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2514
2515 shift = 10;
2516 add = digit_value;
2517 }
2518 else
2519 {
2520 shift = shift * 10;
2521 add = add * 10 + digit_value;
2522 }
2523 };
2524
2525 if (add > 0)
2526 {
d956fa6f
MV
2527 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2528 result = scm_product (result, SCM_I_MAKINUM (shift));
2529 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2530 }
2531
d8592269 2532 result = scm_divide (result, big_shift);
79d34f68 2533
3c9a524f
DH
2534 /* We've seen a decimal point, thus the value is implicitly inexact. */
2535 x = INEXACT;
f872b822 2536 }
3c9a524f 2537
3c9a524f 2538 if (idx != len)
f872b822 2539 {
3c9a524f
DH
2540 int sign = 1;
2541 unsigned int start;
2542 char c;
2543 int exponent;
2544 SCM e;
2545
2546 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2547
2548 switch (mem[idx])
f872b822 2549 {
3c9a524f
DH
2550 case 'd': case 'D':
2551 case 'e': case 'E':
2552 case 'f': case 'F':
2553 case 'l': case 'L':
2554 case 's': case 'S':
2555 idx++;
2556 start = idx;
2557 c = mem[idx];
2558 if (c == '-')
2559 {
2560 idx++;
2561 sign = -1;
2562 c = mem[idx];
2563 }
2564 else if (c == '+')
2565 {
2566 idx++;
2567 sign = 1;
2568 c = mem[idx];
2569 }
2570 else
2571 sign = 1;
2572
71df73ac 2573 if (!isdigit ((int) (unsigned char) c))
3c9a524f
DH
2574 return SCM_BOOL_F;
2575
2576 idx++;
2577 exponent = DIGIT2UINT (c);
2578 while (idx != len)
f872b822 2579 {
3c9a524f 2580 char c = mem[idx];
71df73ac 2581 if (isdigit ((int) (unsigned char) c))
3c9a524f
DH
2582 {
2583 idx++;
2584 if (exponent <= SCM_MAXEXP)
2585 exponent = exponent * 10 + DIGIT2UINT (c);
2586 }
2587 else
2588 break;
f872b822 2589 }
3c9a524f
DH
2590
2591 if (exponent > SCM_MAXEXP)
f872b822 2592 {
3c9a524f
DH
2593 size_t exp_len = idx - start;
2594 SCM exp_string = scm_mem2string (&mem[start], exp_len);
2595 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2596 scm_out_of_range ("string->number", exp_num);
f872b822 2597 }
3c9a524f 2598
d956fa6f 2599 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
3c9a524f
DH
2600 if (sign == 1)
2601 result = scm_product (result, e);
2602 else
f92e85f7 2603 result = scm_divide2real (result, e);
3c9a524f
DH
2604
2605 /* We've seen an exponent, thus the value is implicitly inexact. */
2606 x = INEXACT;
2607
f872b822 2608 break;
3c9a524f 2609
f872b822 2610 default:
3c9a524f 2611 break;
f872b822 2612 }
0f2d19dd 2613 }
3c9a524f
DH
2614
2615 *p_idx = idx;
2616 if (x == INEXACT)
2617 *p_exactness = x;
2618
2619 return result;
0f2d19dd 2620}
0f2d19dd 2621
3c9a524f
DH
2622
2623/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2624
2625static SCM
2626mem2ureal (const char* mem, size_t len, unsigned int *p_idx,
2627 unsigned int radix, enum t_exactness *p_exactness)
0f2d19dd 2628{
3c9a524f 2629 unsigned int idx = *p_idx;
164d2481 2630 SCM result;
3c9a524f
DH
2631
2632 if (idx == len)
2633 return SCM_BOOL_F;
2634
7351e207
MV
2635 if (idx+5 <= len && !strncmp (mem+idx, "inf.0", 5))
2636 {
2637 *p_idx = idx+5;
2638 return scm_inf ();
2639 }
2640
2641 if (idx+4 < len && !strncmp (mem+idx, "nan.", 4))
2642 {
2643 enum t_exactness x = EXACT;
2644
d8592269
MV
2645 /* Cobble up the fractional part. We might want to set the
2646 NaN's mantissa from it. */
7351e207
MV
2647 idx += 4;
2648 mem2uinteger (mem, len, &idx, 10, &x);
2649 *p_idx = idx;
2650 return scm_nan ();
2651 }
2652
3c9a524f
DH
2653 if (mem[idx] == '.')
2654 {
2655 if (radix != 10)
2656 return SCM_BOOL_F;
2657 else if (idx + 1 == len)
2658 return SCM_BOOL_F;
71df73ac 2659 else if (!isdigit ((int) (unsigned char) mem[idx + 1]))
3c9a524f
DH
2660 return SCM_BOOL_F;
2661 else
d956fa6f 2662 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem, len,
164d2481 2663 p_idx, p_exactness);
f872b822 2664 }
3c9a524f
DH
2665 else
2666 {
2667 enum t_exactness x = EXACT;
2668 SCM uinteger;
3c9a524f
DH
2669
2670 uinteger = mem2uinteger (mem, len, &idx, radix, &x);
73e4de09 2671 if (scm_is_false (uinteger))
3c9a524f
DH
2672 return SCM_BOOL_F;
2673
2674 if (idx == len)
2675 result = uinteger;
2676 else if (mem[idx] == '/')
f872b822 2677 {
3c9a524f
DH
2678 SCM divisor;
2679
2680 idx++;
2681
2682 divisor = mem2uinteger (mem, len, &idx, radix, &x);
73e4de09 2683 if (scm_is_false (divisor))
3c9a524f
DH
2684 return SCM_BOOL_F;
2685
f92e85f7 2686 /* both are int/big here, I assume */
cba42c93 2687 result = scm_i_make_ratio (uinteger, divisor);
f872b822 2688 }
3c9a524f
DH
2689 else if (radix == 10)
2690 {
2691 result = mem2decimal_from_point (uinteger, mem, len, &idx, &x);
73e4de09 2692 if (scm_is_false (result))
3c9a524f
DH
2693 return SCM_BOOL_F;
2694 }
2695 else
2696 result = uinteger;
2697
2698 *p_idx = idx;
2699 if (x == INEXACT)
2700 *p_exactness = x;
f872b822 2701 }
164d2481
MV
2702
2703 /* When returning an inexact zero, make sure it is represented as a
2704 floating point value so that we can change its sign.
2705 */
bc36d050 2706 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
55f26379 2707 result = scm_from_double (0.0);
164d2481
MV
2708
2709 return result;
3c9a524f 2710}
0f2d19dd 2711
0f2d19dd 2712
3c9a524f 2713/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
0f2d19dd 2714
3c9a524f
DH
2715static SCM
2716mem2complex (const char* mem, size_t len, unsigned int idx,
2717 unsigned int radix, enum t_exactness *p_exactness)
2718{
2719 char c;
2720 int sign = 0;
2721 SCM ureal;
2722
2723 if (idx == len)
2724 return SCM_BOOL_F;
2725
2726 c = mem[idx];
2727 if (c == '+')
2728 {
2729 idx++;
2730 sign = 1;
2731 }
2732 else if (c == '-')
2733 {
2734 idx++;
2735 sign = -1;
0f2d19dd 2736 }
0f2d19dd 2737
3c9a524f
DH
2738 if (idx == len)
2739 return SCM_BOOL_F;
2740
2741 ureal = mem2ureal (mem, len, &idx, radix, p_exactness);
73e4de09 2742 if (scm_is_false (ureal))
f872b822 2743 {
3c9a524f
DH
2744 /* input must be either +i or -i */
2745
2746 if (sign == 0)
2747 return SCM_BOOL_F;
2748
2749 if (mem[idx] == 'i' || mem[idx] == 'I')
f872b822 2750 {
3c9a524f
DH
2751 idx++;
2752 if (idx != len)
2753 return SCM_BOOL_F;
2754
d956fa6f 2755 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
f872b822 2756 }
3c9a524f
DH
2757 else
2758 return SCM_BOOL_F;
0f2d19dd 2759 }
3c9a524f
DH
2760 else
2761 {
73e4de09 2762 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f 2763 ureal = scm_difference (ureal, SCM_UNDEFINED);
f872b822 2764
3c9a524f
DH
2765 if (idx == len)
2766 return ureal;
2767
2768 c = mem[idx];
2769 switch (c)
f872b822 2770 {
3c9a524f
DH
2771 case 'i': case 'I':
2772 /* either +<ureal>i or -<ureal>i */
2773
2774 idx++;
2775 if (sign == 0)
2776 return SCM_BOOL_F;
2777 if (idx != len)
2778 return SCM_BOOL_F;
d956fa6f 2779 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
3c9a524f
DH
2780
2781 case '@':
2782 /* polar input: <real>@<real>. */
2783
2784 idx++;
2785 if (idx == len)
2786 return SCM_BOOL_F;
2787 else
f872b822 2788 {
3c9a524f
DH
2789 int sign;
2790 SCM angle;
2791 SCM result;
2792
2793 c = mem[idx];
2794 if (c == '+')
2795 {
2796 idx++;
2797 sign = 1;
2798 }
2799 else if (c == '-')
2800 {
2801 idx++;
2802 sign = -1;
2803 }
2804 else
2805 sign = 1;
2806
2807 angle = mem2ureal (mem, len, &idx, radix, p_exactness);
73e4de09 2808 if (scm_is_false (angle))
3c9a524f
DH
2809 return SCM_BOOL_F;
2810 if (idx != len)
2811 return SCM_BOOL_F;
2812
73e4de09 2813 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f
DH
2814 angle = scm_difference (angle, SCM_UNDEFINED);
2815
2816 result = scm_make_polar (ureal, angle);
2817 return result;
f872b822 2818 }
3c9a524f
DH
2819 case '+':
2820 case '-':
2821 /* expecting input matching <real>[+-]<ureal>?i */
0f2d19dd 2822
3c9a524f
DH
2823 idx++;
2824 if (idx == len)
2825 return SCM_BOOL_F;
2826 else
2827 {
2828 int sign = (c == '+') ? 1 : -1;
2829 SCM imag = mem2ureal (mem, len, &idx, radix, p_exactness);
0f2d19dd 2830
73e4de09 2831 if (scm_is_false (imag))
d956fa6f 2832 imag = SCM_I_MAKINUM (sign);
73e4de09 2833 else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
1fe5e088 2834 imag = scm_difference (imag, SCM_UNDEFINED);
0f2d19dd 2835
3c9a524f
DH
2836 if (idx == len)
2837 return SCM_BOOL_F;
2838 if (mem[idx] != 'i' && mem[idx] != 'I')
2839 return SCM_BOOL_F;
0f2d19dd 2840
3c9a524f
DH
2841 idx++;
2842 if (idx != len)
2843 return SCM_BOOL_F;
0f2d19dd 2844
1fe5e088 2845 return scm_make_rectangular (ureal, imag);
3c9a524f
DH
2846 }
2847 default:
2848 return SCM_BOOL_F;
2849 }
2850 }
0f2d19dd 2851}
0f2d19dd
JB
2852
2853
3c9a524f
DH
2854/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
2855
2856enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
1cc91f1b 2857
0f2d19dd 2858SCM
3c9a524f 2859scm_i_mem2number (const char* mem, size_t len, unsigned int default_radix)
0f2d19dd 2860{
3c9a524f
DH
2861 unsigned int idx = 0;
2862 unsigned int radix = NO_RADIX;
2863 enum t_exactness forced_x = NO_EXACTNESS;
2864 enum t_exactness implicit_x = EXACT;
2865 SCM result;
2866
2867 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
2868 while (idx + 2 < len && mem[idx] == '#')
2869 {
2870 switch (mem[idx + 1])
2871 {
2872 case 'b': case 'B':
2873 if (radix != NO_RADIX)
2874 return SCM_BOOL_F;
2875 radix = DUAL;
2876 break;
2877 case 'd': case 'D':
2878 if (radix != NO_RADIX)
2879 return SCM_BOOL_F;
2880 radix = DEC;
2881 break;
2882 case 'i': case 'I':
2883 if (forced_x != NO_EXACTNESS)
2884 return SCM_BOOL_F;
2885 forced_x = INEXACT;
2886 break;
2887 case 'e': case 'E':
2888 if (forced_x != NO_EXACTNESS)
2889 return SCM_BOOL_F;
2890 forced_x = EXACT;
2891 break;
2892 case 'o': case 'O':
2893 if (radix != NO_RADIX)
2894 return SCM_BOOL_F;
2895 radix = OCT;
2896 break;
2897 case 'x': case 'X':
2898 if (radix != NO_RADIX)
2899 return SCM_BOOL_F;
2900 radix = HEX;
2901 break;
2902 default:
f872b822 2903 return SCM_BOOL_F;
3c9a524f
DH
2904 }
2905 idx += 2;
2906 }
2907
2908 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2909 if (radix == NO_RADIX)
2910 result = mem2complex (mem, len, idx, default_radix, &implicit_x);
2911 else
2912 result = mem2complex (mem, len, idx, (unsigned int) radix, &implicit_x);
2913
73e4de09 2914 if (scm_is_false (result))
3c9a524f 2915 return SCM_BOOL_F;
f872b822 2916
3c9a524f 2917 switch (forced_x)
f872b822 2918 {
3c9a524f
DH
2919 case EXACT:
2920 if (SCM_INEXACTP (result))
3c9a524f
DH
2921 return scm_inexact_to_exact (result);
2922 else
2923 return result;
2924 case INEXACT:
2925 if (SCM_INEXACTP (result))
2926 return result;
2927 else
2928 return scm_exact_to_inexact (result);
2929 case NO_EXACTNESS:
2930 default:
2931 if (implicit_x == INEXACT)
2932 {
2933 if (SCM_INEXACTP (result))
2934 return result;
2935 else
2936 return scm_exact_to_inexact (result);
2937 }
2938 else
2939 return result;
f872b822 2940 }
0f2d19dd
JB
2941}
2942
2943
a1ec6916 2944SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
bb628794 2945 (SCM string, SCM radix),
1e6808ea 2946 "Return a number of the maximally precise representation\n"
942e5b91 2947 "expressed by the given @var{string}. @var{radix} must be an\n"
5352393c
MG
2948 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
2949 "is a default radix that may be overridden by an explicit radix\n"
2950 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
2951 "supplied, then the default radix is 10. If string is not a\n"
2952 "syntactically valid notation for a number, then\n"
2953 "@code{string->number} returns @code{#f}.")
1bbd0b84 2954#define FUNC_NAME s_scm_string_to_number
0f2d19dd
JB
2955{
2956 SCM answer;
5efd3c7d 2957 unsigned int base;
a6d9e5ab 2958 SCM_VALIDATE_STRING (1, string);
5efd3c7d
MV
2959
2960 if (SCM_UNBNDP (radix))
2961 base = 10;
2962 else
2963 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
2964
3c9a524f 2965 answer = scm_i_mem2number (SCM_STRING_CHARS (string),
d8592269
MV
2966 SCM_STRING_LENGTH (string),
2967 base);
bb628794 2968 return scm_return_first (answer, string);
0f2d19dd 2969}
1bbd0b84 2970#undef FUNC_NAME
3c9a524f
DH
2971
2972
0f2d19dd
JB
2973/*** END strs->nums ***/
2974
5986c47d 2975
0f2d19dd 2976SCM
1bbd0b84 2977scm_bigequal (SCM x, SCM y)
0f2d19dd 2978{
47ae1f0e 2979 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
ca46fb90 2980 scm_remember_upto_here_2 (x, y);
73e4de09 2981 return scm_from_bool (0 == result);
0f2d19dd
JB
2982}
2983
0f2d19dd 2984SCM
f3ae5d60 2985scm_real_equalp (SCM x, SCM y)
0f2d19dd 2986{
73e4de09 2987 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0f2d19dd
JB
2988}
2989
f3ae5d60
MD
2990SCM
2991scm_complex_equalp (SCM x, SCM y)
2992{
73e4de09 2993 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
f3ae5d60
MD
2994 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
2995}
0f2d19dd 2996
f92e85f7
MV
2997SCM
2998scm_i_fraction_equalp (SCM x, SCM y)
2999{
3000 scm_i_fraction_reduce (x);
3001 scm_i_fraction_reduce (y);
73e4de09 3002 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
02164269 3003 SCM_FRACTION_NUMERATOR (y)))
73e4de09 3004 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
02164269
MV
3005 SCM_FRACTION_DENOMINATOR (y))))
3006 return SCM_BOOL_F;
3007 else
3008 return SCM_BOOL_T;
f92e85f7 3009}
0f2d19dd
JB
3010
3011
8507ec80
MV
3012SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3013 (SCM x),
3014 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3015 "otherwise.")
3016#define FUNC_NAME s_scm_number_p
3017{
3018 return scm_from_bool (SCM_NUMBERP (x));
3019}
3020#undef FUNC_NAME
3021
3022SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
1bbd0b84 3023 (SCM x),
942e5b91 3024 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
bb2c02f2 3025 "otherwise. Note that the sets of real, rational and integer\n"
942e5b91
MG
3026 "values form subsets of the set of complex numbers, i. e. the\n"
3027 "predicate will also be fulfilled if @var{x} is a real,\n"
3028 "rational or integer number.")
8507ec80 3029#define FUNC_NAME s_scm_complex_p
0f2d19dd 3030{
8507ec80
MV
3031 /* all numbers are complex. */
3032 return scm_number_p (x);
0f2d19dd 3033}
1bbd0b84 3034#undef FUNC_NAME
0f2d19dd 3035
f92e85f7
MV
3036SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3037 (SCM x),
3038 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3039 "otherwise. Note that the set of integer values forms a subset of\n"
3040 "the set of real numbers, i. e. the predicate will also be\n"
3041 "fulfilled if @var{x} is an integer number.")
3042#define FUNC_NAME s_scm_real_p
3043{
3044 /* we can't represent irrational numbers. */
3045 return scm_rational_p (x);
3046}
3047#undef FUNC_NAME
3048
3049SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
1bbd0b84 3050 (SCM x),
942e5b91 3051 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
bb2c02f2 3052 "otherwise. Note that the set of integer values forms a subset of\n"
942e5b91 3053 "the set of rational numbers, i. e. the predicate will also be\n"
f92e85f7
MV
3054 "fulfilled if @var{x} is an integer number.")
3055#define FUNC_NAME s_scm_rational_p
0f2d19dd 3056{
e11e83f3 3057 if (SCM_I_INUMP (x))
0f2d19dd 3058 return SCM_BOOL_T;
0aacf84e 3059 else if (SCM_IMP (x))
0f2d19dd 3060 return SCM_BOOL_F;
0aacf84e 3061 else if (SCM_BIGP (x))
0f2d19dd 3062 return SCM_BOOL_T;
f92e85f7
MV
3063 else if (SCM_FRACTIONP (x))
3064 return SCM_BOOL_T;
3065 else if (SCM_REALP (x))
3066 /* due to their limited precision, all floating point numbers are
3067 rational as well. */
3068 return SCM_BOOL_T;
0aacf84e 3069 else
bb628794 3070 return SCM_BOOL_F;
0f2d19dd 3071}
1bbd0b84 3072#undef FUNC_NAME
0f2d19dd 3073
a1ec6916 3074SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
1bbd0b84 3075 (SCM x),
942e5b91
MG
3076 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3077 "else.")
1bbd0b84 3078#define FUNC_NAME s_scm_integer_p
0f2d19dd
JB
3079{
3080 double r;
e11e83f3 3081 if (SCM_I_INUMP (x))
f872b822
MD
3082 return SCM_BOOL_T;
3083 if (SCM_IMP (x))
3084 return SCM_BOOL_F;
f872b822
MD
3085 if (SCM_BIGP (x))
3086 return SCM_BOOL_T;
3c9a524f 3087 if (!SCM_INEXACTP (x))
f872b822 3088 return SCM_BOOL_F;
3c9a524f 3089 if (SCM_COMPLEXP (x))
f872b822 3090 return SCM_BOOL_F;
5986c47d 3091 r = SCM_REAL_VALUE (x);
f872b822
MD
3092 if (r == floor (r))
3093 return SCM_BOOL_T;
0f2d19dd
JB
3094 return SCM_BOOL_F;
3095}
1bbd0b84 3096#undef FUNC_NAME
0f2d19dd
JB
3097
3098
a1ec6916 3099SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
1bbd0b84 3100 (SCM x),
942e5b91
MG
3101 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3102 "else.")
1bbd0b84 3103#define FUNC_NAME s_scm_inexact_p
0f2d19dd 3104{
eb927cb9
MV
3105 if (SCM_INEXACTP (x))
3106 return SCM_BOOL_T;
3107 if (SCM_NUMBERP (x))
3108 return SCM_BOOL_F;
3109 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 3110}
1bbd0b84 3111#undef FUNC_NAME
0f2d19dd
JB
3112
3113
152f82bf 3114SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
942e5b91 3115/* "Return @code{#t} if all parameters are numerically equal." */
0f2d19dd 3116SCM
6e8d25a6 3117scm_num_eq_p (SCM x, SCM y)
0f2d19dd 3118{
d8b95e27 3119 again:
e11e83f3 3120 if (SCM_I_INUMP (x))
0aacf84e 3121 {
e11e83f3
MV
3122 long xx = SCM_I_INUM (x);
3123 if (SCM_I_INUMP (y))
0aacf84e 3124 {
e11e83f3 3125 long yy = SCM_I_INUM (y);
73e4de09 3126 return scm_from_bool (xx == yy);
0aacf84e
MD
3127 }
3128 else if (SCM_BIGP (y))
3129 return SCM_BOOL_F;
3130 else if (SCM_REALP (y))
73e4de09 3131 return scm_from_bool ((double) xx == SCM_REAL_VALUE (y));
0aacf84e 3132 else if (SCM_COMPLEXP (y))
73e4de09 3133 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
0aacf84e 3134 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7
MV
3135 else if (SCM_FRACTIONP (y))
3136 return SCM_BOOL_F;
0aacf84e
MD
3137 else
3138 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f872b822 3139 }
0aacf84e
MD
3140 else if (SCM_BIGP (x))
3141 {
e11e83f3 3142 if (SCM_I_INUMP (y))
0aacf84e
MD
3143 return SCM_BOOL_F;
3144 else if (SCM_BIGP (y))
3145 {
3146 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3147 scm_remember_upto_here_2 (x, y);
73e4de09 3148 return scm_from_bool (0 == cmp);
0aacf84e
MD
3149 }
3150 else if (SCM_REALP (y))
3151 {
3152 int cmp;
3153 if (xisnan (SCM_REAL_VALUE (y)))
3154 return SCM_BOOL_F;
3155 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3156 scm_remember_upto_here_1 (x);
73e4de09 3157 return scm_from_bool (0 == cmp);
0aacf84e
MD
3158 }
3159 else if (SCM_COMPLEXP (y))
3160 {
3161 int cmp;
3162 if (0.0 != SCM_COMPLEX_IMAG (y))
3163 return SCM_BOOL_F;
3164 if (xisnan (SCM_COMPLEX_REAL (y)))
3165 return SCM_BOOL_F;
3166 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3167 scm_remember_upto_here_1 (x);
73e4de09 3168 return scm_from_bool (0 == cmp);
0aacf84e 3169 }
f92e85f7
MV
3170 else if (SCM_FRACTIONP (y))
3171 return SCM_BOOL_F;
0aacf84e
MD
3172 else
3173 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f4c627b3 3174 }
0aacf84e
MD
3175 else if (SCM_REALP (x))
3176 {
e11e83f3
MV
3177 if (SCM_I_INUMP (y))
3178 return scm_from_bool (SCM_REAL_VALUE (x) == (double) SCM_I_INUM (y));
0aacf84e
MD
3179 else if (SCM_BIGP (y))
3180 {
3181 int cmp;
3182 if (xisnan (SCM_REAL_VALUE (x)))
3183 return SCM_BOOL_F;
3184 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3185 scm_remember_upto_here_1 (y);
73e4de09 3186 return scm_from_bool (0 == cmp);
0aacf84e
MD
3187 }
3188 else if (SCM_REALP (y))
73e4de09 3189 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0aacf84e 3190 else if (SCM_COMPLEXP (y))
73e4de09 3191 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3192 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7 3193 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3194 {
3195 double xx = SCM_REAL_VALUE (x);
3196 if (xisnan (xx))
3197 return SCM_BOOL_F;
3198 if (xisinf (xx))
73e4de09 3199 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3200 x = scm_inexact_to_exact (x); /* with x as frac or int */
3201 goto again;
3202 }
0aacf84e
MD
3203 else
3204 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f872b822 3205 }
0aacf84e
MD
3206 else if (SCM_COMPLEXP (x))
3207 {
e11e83f3
MV
3208 if (SCM_I_INUMP (y))
3209 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
0aacf84e
MD
3210 && (SCM_COMPLEX_IMAG (x) == 0.0));
3211 else if (SCM_BIGP (y))
3212 {
3213 int cmp;
3214 if (0.0 != SCM_COMPLEX_IMAG (x))
3215 return SCM_BOOL_F;
3216 if (xisnan (SCM_COMPLEX_REAL (x)))
3217 return SCM_BOOL_F;
3218 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3219 scm_remember_upto_here_1 (y);
73e4de09 3220 return scm_from_bool (0 == cmp);
0aacf84e
MD
3221 }
3222 else if (SCM_REALP (y))
73e4de09 3223 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
0aacf84e
MD
3224 && (SCM_COMPLEX_IMAG (x) == 0.0));
3225 else if (SCM_COMPLEXP (y))
73e4de09 3226 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3227 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
f92e85f7 3228 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3229 {
3230 double xx;
3231 if (SCM_COMPLEX_IMAG (x) != 0.0)
3232 return SCM_BOOL_F;
3233 xx = SCM_COMPLEX_REAL (x);
3234 if (xisnan (xx))
3235 return SCM_BOOL_F;
3236 if (xisinf (xx))
73e4de09 3237 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3238 x = scm_inexact_to_exact (x); /* with x as frac or int */
3239 goto again;
3240 }
f92e85f7
MV
3241 else
3242 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3243 }
3244 else if (SCM_FRACTIONP (x))
3245 {
e11e83f3 3246 if (SCM_I_INUMP (y))
f92e85f7
MV
3247 return SCM_BOOL_F;
3248 else if (SCM_BIGP (y))
3249 return SCM_BOOL_F;
3250 else if (SCM_REALP (y))
d8b95e27
KR
3251 {
3252 double yy = SCM_REAL_VALUE (y);
3253 if (xisnan (yy))
3254 return SCM_BOOL_F;
3255 if (xisinf (yy))
73e4de09 3256 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3257 y = scm_inexact_to_exact (y); /* with y as frac or int */
3258 goto again;
3259 }
f92e85f7 3260 else if (SCM_COMPLEXP (y))
d8b95e27
KR
3261 {
3262 double yy;
3263 if (SCM_COMPLEX_IMAG (y) != 0.0)
3264 return SCM_BOOL_F;
3265 yy = SCM_COMPLEX_REAL (y);
3266 if (xisnan (yy))
3267 return SCM_BOOL_F;
3268 if (xisinf (yy))
73e4de09 3269 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3270 y = scm_inexact_to_exact (y); /* with y as frac or int */
3271 goto again;
3272 }
f92e85f7
MV
3273 else if (SCM_FRACTIONP (y))
3274 return scm_i_fraction_equalp (x, y);
0aacf84e
MD
3275 else
3276 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f4c627b3 3277 }
0aacf84e 3278 else
f4c627b3 3279 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
0f2d19dd
JB
3280}
3281
3282
a5f0b599
KR
3283/* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3284 done are good for inums, but for bignums an answer can almost always be
3285 had by just examining a few high bits of the operands, as done by GMP in
3286 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3287 of the float exponent to take into account. */
3288
152f82bf 3289SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
942e5b91
MG
3290/* "Return @code{#t} if the list of parameters is monotonically\n"
3291 * "increasing."
3292 */
0f2d19dd 3293SCM
6e8d25a6 3294scm_less_p (SCM x, SCM y)
0f2d19dd 3295{
a5f0b599 3296 again:
e11e83f3 3297 if (SCM_I_INUMP (x))
0aacf84e 3298 {
e11e83f3
MV
3299 long xx = SCM_I_INUM (x);
3300 if (SCM_I_INUMP (y))
0aacf84e 3301 {
e11e83f3 3302 long yy = SCM_I_INUM (y);
73e4de09 3303 return scm_from_bool (xx < yy);
0aacf84e
MD
3304 }
3305 else if (SCM_BIGP (y))
3306 {
3307 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3308 scm_remember_upto_here_1 (y);
73e4de09 3309 return scm_from_bool (sgn > 0);
0aacf84e
MD
3310 }
3311 else if (SCM_REALP (y))
73e4de09 3312 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
f92e85f7 3313 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3314 {
3315 /* "x < a/b" becomes "x*b < a" */
3316 int_frac:
3317 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3318 y = SCM_FRACTION_NUMERATOR (y);
3319 goto again;
3320 }
0aacf84e
MD
3321 else
3322 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
f872b822 3323 }
0aacf84e
MD
3324 else if (SCM_BIGP (x))
3325 {
e11e83f3 3326 if (SCM_I_INUMP (y))
0aacf84e
MD
3327 {
3328 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3329 scm_remember_upto_here_1 (x);
73e4de09 3330 return scm_from_bool (sgn < 0);
0aacf84e
MD
3331 }
3332 else if (SCM_BIGP (y))
3333 {
3334 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3335 scm_remember_upto_here_2 (x, y);
73e4de09 3336 return scm_from_bool (cmp < 0);
0aacf84e
MD
3337 }
3338 else if (SCM_REALP (y))
3339 {
3340 int cmp;
3341 if (xisnan (SCM_REAL_VALUE (y)))
3342 return SCM_BOOL_F;
3343 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3344 scm_remember_upto_here_1 (x);
73e4de09 3345 return scm_from_bool (cmp < 0);
0aacf84e 3346 }
f92e85f7 3347 else if (SCM_FRACTIONP (y))
a5f0b599 3348 goto int_frac;
0aacf84e
MD
3349 else
3350 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
f4c627b3 3351 }
0aacf84e
MD
3352 else if (SCM_REALP (x))
3353 {
e11e83f3
MV
3354 if (SCM_I_INUMP (y))
3355 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
0aacf84e
MD
3356 else if (SCM_BIGP (y))
3357 {
3358 int cmp;
3359 if (xisnan (SCM_REAL_VALUE (x)))
3360 return SCM_BOOL_F;
3361 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3362 scm_remember_upto_here_1 (y);
73e4de09 3363 return scm_from_bool (cmp > 0);
0aacf84e
MD
3364 }
3365 else if (SCM_REALP (y))
73e4de09 3366 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
f92e85f7 3367 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3368 {
3369 double xx = SCM_REAL_VALUE (x);
3370 if (xisnan (xx))
3371 return SCM_BOOL_F;
3372 if (xisinf (xx))
73e4de09 3373 return scm_from_bool (xx < 0.0);
a5f0b599
KR
3374 x = scm_inexact_to_exact (x); /* with x as frac or int */
3375 goto again;
3376 }
f92e85f7
MV
3377 else
3378 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3379 }
3380 else if (SCM_FRACTIONP (x))
3381 {
e11e83f3 3382 if (SCM_I_INUMP (y) || SCM_BIGP (y))
a5f0b599
KR
3383 {
3384 /* "a/b < y" becomes "a < y*b" */
3385 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3386 x = SCM_FRACTION_NUMERATOR (x);
3387 goto again;
3388 }
f92e85f7 3389 else if (SCM_REALP (y))
a5f0b599
KR
3390 {
3391 double yy = SCM_REAL_VALUE (y);
3392 if (xisnan (yy))
3393 return SCM_BOOL_F;
3394 if (xisinf (yy))
73e4de09 3395 return scm_from_bool (0.0 < yy);
a5f0b599
KR
3396 y = scm_inexact_to_exact (y); /* with y as frac or int */
3397 goto again;
3398 }
f92e85f7 3399 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3400 {
3401 /* "a/b < c/d" becomes "a*d < c*b" */
3402 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3403 SCM_FRACTION_DENOMINATOR (y));
3404 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3405 SCM_FRACTION_DENOMINATOR (x));
3406 x = new_x;
3407 y = new_y;
3408 goto again;
3409 }
0aacf84e
MD
3410 else
3411 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
f872b822 3412 }
0aacf84e 3413 else
f4c627b3 3414 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
0f2d19dd
JB
3415}
3416
3417
c76b1eaf 3418SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
942e5b91
MG
3419/* "Return @code{#t} if the list of parameters is monotonically\n"
3420 * "decreasing."
c76b1eaf 3421 */
1bbd0b84 3422#define FUNC_NAME s_scm_gr_p
c76b1eaf
MD
3423SCM
3424scm_gr_p (SCM x, SCM y)
0f2d19dd 3425{
c76b1eaf
MD
3426 if (!SCM_NUMBERP (x))
3427 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
3428 else if (!SCM_NUMBERP (y))
3429 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
3430 else
3431 return scm_less_p (y, x);
0f2d19dd 3432}
1bbd0b84 3433#undef FUNC_NAME
0f2d19dd
JB
3434
3435
c76b1eaf 3436SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
942e5b91 3437/* "Return @code{#t} if the list of parameters is monotonically\n"
c76b1eaf
MD
3438 * "non-decreasing."
3439 */
1bbd0b84 3440#define FUNC_NAME s_scm_leq_p
c76b1eaf
MD
3441SCM
3442scm_leq_p (SCM x, SCM y)
0f2d19dd 3443{
c76b1eaf
MD
3444 if (!SCM_NUMBERP (x))
3445 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
3446 else if (!SCM_NUMBERP (y))
3447 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3448 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3449 return SCM_BOOL_F;
c76b1eaf 3450 else
73e4de09 3451 return scm_not (scm_less_p (y, x));
0f2d19dd 3452}
1bbd0b84 3453#undef FUNC_NAME
0f2d19dd
JB
3454
3455
c76b1eaf 3456SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
942e5b91 3457/* "Return @code{#t} if the list of parameters is monotonically\n"
c76b1eaf
MD
3458 * "non-increasing."
3459 */
1bbd0b84 3460#define FUNC_NAME s_scm_geq_p
c76b1eaf
MD
3461SCM
3462scm_geq_p (SCM x, SCM y)
0f2d19dd 3463{
c76b1eaf
MD
3464 if (!SCM_NUMBERP (x))
3465 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
3466 else if (!SCM_NUMBERP (y))
3467 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3468 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3469 return SCM_BOOL_F;
c76b1eaf 3470 else
73e4de09 3471 return scm_not (scm_less_p (x, y));
0f2d19dd 3472}
1bbd0b84 3473#undef FUNC_NAME
0f2d19dd
JB
3474
3475
152f82bf 3476SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
942e5b91
MG
3477/* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3478 * "zero."
3479 */
0f2d19dd 3480SCM
6e8d25a6 3481scm_zero_p (SCM z)
0f2d19dd 3482{
e11e83f3 3483 if (SCM_I_INUMP (z))
bc36d050 3484 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
0aacf84e 3485 else if (SCM_BIGP (z))
c2ff8ab0 3486 return SCM_BOOL_F;
0aacf84e 3487 else if (SCM_REALP (z))
73e4de09 3488 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
0aacf84e 3489 else if (SCM_COMPLEXP (z))
73e4de09 3490 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
c2ff8ab0 3491 && SCM_COMPLEX_IMAG (z) == 0.0);
f92e85f7
MV
3492 else if (SCM_FRACTIONP (z))
3493 return SCM_BOOL_F;
0aacf84e 3494 else
c2ff8ab0 3495 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
0f2d19dd
JB
3496}
3497
3498
152f82bf 3499SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
942e5b91
MG
3500/* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3501 * "zero."
3502 */
0f2d19dd 3503SCM
6e8d25a6 3504scm_positive_p (SCM x)
0f2d19dd 3505{
e11e83f3
MV
3506 if (SCM_I_INUMP (x))
3507 return scm_from_bool (SCM_I_INUM (x) > 0);
0aacf84e
MD
3508 else if (SCM_BIGP (x))
3509 {
3510 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3511 scm_remember_upto_here_1 (x);
73e4de09 3512 return scm_from_bool (sgn > 0);
0aacf84e
MD
3513 }
3514 else if (SCM_REALP (x))
73e4de09 3515 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
f92e85f7
MV
3516 else if (SCM_FRACTIONP (x))
3517 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3518 else
c2ff8ab0 3519 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
0f2d19dd
JB
3520}
3521
3522
152f82bf 3523SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
942e5b91
MG
3524/* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3525 * "zero."
3526 */
0f2d19dd 3527SCM
6e8d25a6 3528scm_negative_p (SCM x)
0f2d19dd 3529{
e11e83f3
MV
3530 if (SCM_I_INUMP (x))
3531 return scm_from_bool (SCM_I_INUM (x) < 0);
0aacf84e
MD
3532 else if (SCM_BIGP (x))
3533 {
3534 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3535 scm_remember_upto_here_1 (x);
73e4de09 3536 return scm_from_bool (sgn < 0);
0aacf84e
MD
3537 }
3538 else if (SCM_REALP (x))
73e4de09 3539 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
f92e85f7
MV
3540 else if (SCM_FRACTIONP (x))
3541 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3542 else
c2ff8ab0 3543 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
0f2d19dd
JB
3544}
3545
3546
2a06f791
KR
3547/* scm_min and scm_max return an inexact when either argument is inexact, as
3548 required by r5rs. On that basis, for exact/inexact combinations the
3549 exact is converted to inexact to compare and possibly return. This is
3550 unlike scm_less_p above which takes some trouble to preserve all bits in
3551 its test, such trouble is not required for min and max. */
3552
9de33deb 3553SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
942e5b91
MG
3554/* "Return the maximum of all parameter values."
3555 */
0f2d19dd 3556SCM
6e8d25a6 3557scm_max (SCM x, SCM y)
0f2d19dd 3558{
0aacf84e
MD
3559 if (SCM_UNBNDP (y))
3560 {
3561 if (SCM_UNBNDP (x))
3562 SCM_WTA_DISPATCH_0 (g_max, s_max);
e11e83f3 3563 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
3564 return x;
3565 else
3566 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
f872b822 3567 }
f4c627b3 3568
e11e83f3 3569 if (SCM_I_INUMP (x))
0aacf84e 3570 {
e11e83f3
MV
3571 long xx = SCM_I_INUM (x);
3572 if (SCM_I_INUMP (y))
0aacf84e 3573 {
e11e83f3 3574 long yy = SCM_I_INUM (y);
0aacf84e
MD
3575 return (xx < yy) ? y : x;
3576 }
3577 else if (SCM_BIGP (y))
3578 {
3579 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3580 scm_remember_upto_here_1 (y);
3581 return (sgn < 0) ? x : y;
3582 }
3583 else if (SCM_REALP (y))
3584 {
3585 double z = xx;
3586 /* if y==NaN then ">" is false and we return NaN */
55f26379 3587 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 3588 }
f92e85f7
MV
3589 else if (SCM_FRACTIONP (y))
3590 {
e4bc5d6c 3591 use_less:
73e4de09 3592 return (scm_is_false (scm_less_p (x, y)) ? x : y);
f92e85f7 3593 }
0aacf84e
MD
3594 else
3595 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 3596 }
0aacf84e
MD
3597 else if (SCM_BIGP (x))
3598 {
e11e83f3 3599 if (SCM_I_INUMP (y))
0aacf84e
MD
3600 {
3601 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3602 scm_remember_upto_here_1 (x);
3603 return (sgn < 0) ? y : x;
3604 }
3605 else if (SCM_BIGP (y))
3606 {
3607 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3608 scm_remember_upto_here_2 (x, y);
3609 return (cmp > 0) ? x : y;
3610 }
3611 else if (SCM_REALP (y))
3612 {
2a06f791
KR
3613 /* if y==NaN then xx>yy is false, so we return the NaN y */
3614 double xx, yy;
3615 big_real:
3616 xx = scm_i_big2dbl (x);
3617 yy = SCM_REAL_VALUE (y);
55f26379 3618 return (xx > yy ? scm_from_double (xx) : y);
0aacf84e 3619 }
f92e85f7
MV
3620 else if (SCM_FRACTIONP (y))
3621 {
e4bc5d6c 3622 goto use_less;
f92e85f7 3623 }
0aacf84e
MD
3624 else
3625 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f4c627b3 3626 }
0aacf84e
MD
3627 else if (SCM_REALP (x))
3628 {
e11e83f3 3629 if (SCM_I_INUMP (y))
0aacf84e 3630 {
e11e83f3 3631 double z = SCM_I_INUM (y);
0aacf84e 3632 /* if x==NaN then "<" is false and we return NaN */
55f26379 3633 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
0aacf84e
MD
3634 }
3635 else if (SCM_BIGP (y))
3636 {
b6f8f763 3637 SCM_SWAP (x, y);
2a06f791 3638 goto big_real;
0aacf84e
MD
3639 }
3640 else if (SCM_REALP (y))
3641 {
3642 /* if x==NaN then our explicit check means we return NaN
3643 if y==NaN then ">" is false and we return NaN
3644 calling isnan is unavoidable, since it's the only way to know
3645 which of x or y causes any compares to be false */
3646 double xx = SCM_REAL_VALUE (x);
3647 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3648 }
f92e85f7
MV
3649 else if (SCM_FRACTIONP (y))
3650 {
3651 double yy = scm_i_fraction2double (y);
3652 double xx = SCM_REAL_VALUE (x);
55f26379 3653 return (xx < yy) ? scm_from_double (yy) : x;
f92e85f7
MV
3654 }
3655 else
3656 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3657 }
3658 else if (SCM_FRACTIONP (x))
3659 {
e11e83f3 3660 if (SCM_I_INUMP (y))
f92e85f7 3661 {
e4bc5d6c 3662 goto use_less;
f92e85f7
MV
3663 }
3664 else if (SCM_BIGP (y))
3665 {
e4bc5d6c 3666 goto use_less;
f92e85f7
MV
3667 }
3668 else if (SCM_REALP (y))
3669 {
3670 double xx = scm_i_fraction2double (x);
55f26379 3671 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
f92e85f7
MV
3672 }
3673 else if (SCM_FRACTIONP (y))
3674 {
e4bc5d6c 3675 goto use_less;
f92e85f7 3676 }
0aacf84e
MD
3677 else
3678 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 3679 }
0aacf84e 3680 else
f4c627b3 3681 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
0f2d19dd
JB
3682}
3683
3684
9de33deb 3685SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
942e5b91
MG
3686/* "Return the minium of all parameter values."
3687 */
0f2d19dd 3688SCM
6e8d25a6 3689scm_min (SCM x, SCM y)
0f2d19dd 3690{
0aacf84e
MD
3691 if (SCM_UNBNDP (y))
3692 {
3693 if (SCM_UNBNDP (x))
3694 SCM_WTA_DISPATCH_0 (g_min, s_min);
e11e83f3 3695 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
3696 return x;
3697 else
3698 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
f872b822 3699 }
f4c627b3 3700
e11e83f3 3701 if (SCM_I_INUMP (x))
0aacf84e 3702 {
e11e83f3
MV
3703 long xx = SCM_I_INUM (x);
3704 if (SCM_I_INUMP (y))
0aacf84e 3705 {
e11e83f3 3706 long yy = SCM_I_INUM (y);
0aacf84e
MD
3707 return (xx < yy) ? x : y;
3708 }
3709 else if (SCM_BIGP (y))
3710 {
3711 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3712 scm_remember_upto_here_1 (y);
3713 return (sgn < 0) ? y : x;
3714 }
3715 else if (SCM_REALP (y))
3716 {
3717 double z = xx;
3718 /* if y==NaN then "<" is false and we return NaN */
55f26379 3719 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 3720 }
f92e85f7
MV
3721 else if (SCM_FRACTIONP (y))
3722 {
e4bc5d6c 3723 use_less:
73e4de09 3724 return (scm_is_false (scm_less_p (x, y)) ? y : x);
f92e85f7 3725 }
0aacf84e
MD
3726 else
3727 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 3728 }
0aacf84e
MD
3729 else if (SCM_BIGP (x))
3730 {
e11e83f3 3731 if (SCM_I_INUMP (y))
0aacf84e
MD
3732 {
3733 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3734 scm_remember_upto_here_1 (x);
3735 return (sgn < 0) ? x : y;
3736 }
3737 else if (SCM_BIGP (y))
3738 {
3739 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3740 scm_remember_upto_here_2 (x, y);
3741 return (cmp > 0) ? y : x;
3742 }
3743 else if (SCM_REALP (y))
3744 {
2a06f791
KR
3745 /* if y==NaN then xx<yy is false, so we return the NaN y */
3746 double xx, yy;
3747 big_real:
3748 xx = scm_i_big2dbl (x);
3749 yy = SCM_REAL_VALUE (y);
55f26379 3750 return (xx < yy ? scm_from_double (xx) : y);
0aacf84e 3751 }
f92e85f7
MV
3752 else if (SCM_FRACTIONP (y))
3753 {
e4bc5d6c 3754 goto use_less;
f92e85f7 3755 }
0aacf84e
MD
3756 else
3757 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f4c627b3 3758 }
0aacf84e
MD
3759 else if (SCM_REALP (x))
3760 {
e11e83f3 3761 if (SCM_I_INUMP (y))
0aacf84e 3762 {
e11e83f3 3763 double z = SCM_I_INUM (y);
0aacf84e 3764 /* if x==NaN then "<" is false and we return NaN */
55f26379 3765 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
0aacf84e
MD
3766 }
3767 else if (SCM_BIGP (y))
3768 {
b6f8f763 3769 SCM_SWAP (x, y);
2a06f791 3770 goto big_real;
0aacf84e
MD
3771 }
3772 else if (SCM_REALP (y))
3773 {
3774 /* if x==NaN then our explicit check means we return NaN
3775 if y==NaN then "<" is false and we return NaN
3776 calling isnan is unavoidable, since it's the only way to know
3777 which of x or y causes any compares to be false */
3778 double xx = SCM_REAL_VALUE (x);
3779 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
3780 }
f92e85f7
MV
3781 else if (SCM_FRACTIONP (y))
3782 {
3783 double yy = scm_i_fraction2double (y);
3784 double xx = SCM_REAL_VALUE (x);
55f26379 3785 return (yy < xx) ? scm_from_double (yy) : x;
f92e85f7 3786 }
0aacf84e
MD
3787 else
3788 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 3789 }
f92e85f7
MV
3790 else if (SCM_FRACTIONP (x))
3791 {
e11e83f3 3792 if (SCM_I_INUMP (y))
f92e85f7 3793 {
e4bc5d6c 3794 goto use_less;
f92e85f7
MV
3795 }
3796 else if (SCM_BIGP (y))
3797 {
e4bc5d6c 3798 goto use_less;
f92e85f7
MV
3799 }
3800 else if (SCM_REALP (y))
3801 {
3802 double xx = scm_i_fraction2double (x);
55f26379 3803 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
f92e85f7
MV
3804 }
3805 else if (SCM_FRACTIONP (y))
3806 {
e4bc5d6c 3807 goto use_less;
f92e85f7
MV
3808 }
3809 else
3810 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3811 }
0aacf84e 3812 else
f4c627b3 3813 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
0f2d19dd
JB
3814}
3815
3816
9de33deb 3817SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
942e5b91
MG
3818/* "Return the sum of all parameter values. Return 0 if called without\n"
3819 * "any parameters."
3820 */
0f2d19dd 3821SCM
6e8d25a6 3822scm_sum (SCM x, SCM y)
0f2d19dd 3823{
ca46fb90
RB
3824 if (SCM_UNBNDP (y))
3825 {
3826 if (SCM_NUMBERP (x)) return x;
3827 if (SCM_UNBNDP (x)) return SCM_INUM0;
98cb6e75 3828 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
f872b822 3829 }
c209c88e 3830
e11e83f3 3831 if (SCM_I_INUMP (x))
ca46fb90 3832 {
e11e83f3 3833 if (SCM_I_INUMP (y))
ca46fb90 3834 {
e11e83f3
MV
3835 long xx = SCM_I_INUM (x);
3836 long yy = SCM_I_INUM (y);
ca46fb90 3837 long int z = xx + yy;
d956fa6f 3838 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
ca46fb90
RB
3839 }
3840 else if (SCM_BIGP (y))
3841 {
3842 SCM_SWAP (x, y);
3843 goto add_big_inum;
3844 }
3845 else if (SCM_REALP (y))
3846 {
e11e83f3 3847 long int xx = SCM_I_INUM (x);
55f26379 3848 return scm_from_double (xx + SCM_REAL_VALUE (y));
ca46fb90
RB
3849 }
3850 else if (SCM_COMPLEXP (y))
3851 {
e11e83f3 3852 long int xx = SCM_I_INUM (x);
8507ec80 3853 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
ca46fb90
RB
3854 SCM_COMPLEX_IMAG (y));
3855 }
f92e85f7 3856 else if (SCM_FRACTIONP (y))
cba42c93 3857 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
3858 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3859 SCM_FRACTION_DENOMINATOR (y));
ca46fb90
RB
3860 else
3861 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0aacf84e
MD
3862 } else if (SCM_BIGP (x))
3863 {
e11e83f3 3864 if (SCM_I_INUMP (y))
0aacf84e
MD
3865 {
3866 long int inum;
3867 int bigsgn;
3868 add_big_inum:
e11e83f3 3869 inum = SCM_I_INUM (y);
0aacf84e
MD
3870 if (inum == 0)
3871 return x;
3872 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3873 if (inum < 0)
3874 {
3875 SCM result = scm_i_mkbig ();
3876 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
3877 scm_remember_upto_here_1 (x);
3878 /* we know the result will have to be a bignum */
3879 if (bigsgn == -1)
3880 return result;
3881 return scm_i_normbig (result);
3882 }
3883 else
3884 {
3885 SCM result = scm_i_mkbig ();
3886 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
3887 scm_remember_upto_here_1 (x);
3888 /* we know the result will have to be a bignum */
3889 if (bigsgn == 1)
3890 return result;
3891 return scm_i_normbig (result);
3892 }
3893 }
3894 else if (SCM_BIGP (y))
3895 {
3896 SCM result = scm_i_mkbig ();
3897 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
3898 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
3899 mpz_add (SCM_I_BIG_MPZ (result),
3900 SCM_I_BIG_MPZ (x),
3901 SCM_I_BIG_MPZ (y));
3902 scm_remember_upto_here_2 (x, y);
3903 /* we know the result will have to be a bignum */
3904 if (sgn_x == sgn_y)
3905 return result;
3906 return scm_i_normbig (result);
3907 }
3908 else if (SCM_REALP (y))
3909 {
3910 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
3911 scm_remember_upto_here_1 (x);
55f26379 3912 return scm_from_double (result);
0aacf84e
MD
3913 }
3914 else if (SCM_COMPLEXP (y))
3915 {
3916 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
3917 + SCM_COMPLEX_REAL (y));
3918 scm_remember_upto_here_1 (x);
8507ec80 3919 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e 3920 }
f92e85f7 3921 else if (SCM_FRACTIONP (y))
cba42c93 3922 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
3923 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3924 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
3925 else
3926 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0f2d19dd 3927 }
0aacf84e
MD
3928 else if (SCM_REALP (x))
3929 {
e11e83f3 3930 if (SCM_I_INUMP (y))
55f26379 3931 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
0aacf84e
MD
3932 else if (SCM_BIGP (y))
3933 {
3934 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
3935 scm_remember_upto_here_1 (y);
55f26379 3936 return scm_from_double (result);
0aacf84e
MD
3937 }
3938 else if (SCM_REALP (y))
55f26379 3939 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
0aacf84e 3940 else if (SCM_COMPLEXP (y))
8507ec80 3941 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
0aacf84e 3942 SCM_COMPLEX_IMAG (y));
f92e85f7 3943 else if (SCM_FRACTIONP (y))
55f26379 3944 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
0aacf84e
MD
3945 else
3946 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
f872b822 3947 }
0aacf84e
MD
3948 else if (SCM_COMPLEXP (x))
3949 {
e11e83f3 3950 if (SCM_I_INUMP (y))
8507ec80 3951 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
0aacf84e
MD
3952 SCM_COMPLEX_IMAG (x));
3953 else if (SCM_BIGP (y))
3954 {
3955 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
3956 + SCM_COMPLEX_REAL (x));
3957 scm_remember_upto_here_1 (y);
8507ec80 3958 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
0aacf84e
MD
3959 }
3960 else if (SCM_REALP (y))
8507ec80 3961 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
0aacf84e
MD
3962 SCM_COMPLEX_IMAG (x));
3963 else if (SCM_COMPLEXP (y))
8507ec80 3964 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
0aacf84e 3965 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
f92e85f7 3966 else if (SCM_FRACTIONP (y))
8507ec80 3967 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
f92e85f7
MV
3968 SCM_COMPLEX_IMAG (x));
3969 else
3970 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3971 }
3972 else if (SCM_FRACTIONP (x))
3973 {
e11e83f3 3974 if (SCM_I_INUMP (y))
cba42c93 3975 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
3976 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
3977 SCM_FRACTION_DENOMINATOR (x));
3978 else if (SCM_BIGP (y))
cba42c93 3979 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
3980 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
3981 SCM_FRACTION_DENOMINATOR (x));
3982 else if (SCM_REALP (y))
55f26379 3983 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
f92e85f7 3984 else if (SCM_COMPLEXP (y))
8507ec80 3985 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
f92e85f7
MV
3986 SCM_COMPLEX_IMAG (y));
3987 else if (SCM_FRACTIONP (y))
3988 /* a/b + c/d = (ad + bc) / bd */
cba42c93 3989 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
3990 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
3991 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
3992 else
3993 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
98cb6e75 3994 }
0aacf84e 3995 else
98cb6e75 3996 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
0f2d19dd
JB
3997}
3998
3999
9de33deb 4000SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
609c3d30
MG
4001/* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
4002 * the sum of all but the first argument are subtracted from the first
4003 * argument. */
c05e97b7 4004#define FUNC_NAME s_difference
0f2d19dd 4005SCM
6e8d25a6 4006scm_difference (SCM x, SCM y)
0f2d19dd 4007{
ca46fb90
RB
4008 if (SCM_UNBNDP (y))
4009 {
4010 if (SCM_UNBNDP (x))
4011 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4012 else
e11e83f3 4013 if (SCM_I_INUMP (x))
ca46fb90 4014 {
e11e83f3 4015 long xx = -SCM_I_INUM (x);
ca46fb90 4016 if (SCM_FIXABLE (xx))
d956fa6f 4017 return SCM_I_MAKINUM (xx);
ca46fb90
RB
4018 else
4019 return scm_i_long2big (xx);
4020 }
4021 else if (SCM_BIGP (x))
4022 /* FIXME: do we really need to normalize here? */
4023 return scm_i_normbig (scm_i_clonebig (x, 0));
4024 else if (SCM_REALP (x))
55f26379 4025 return scm_from_double (-SCM_REAL_VALUE (x));
ca46fb90 4026 else if (SCM_COMPLEXP (x))
8507ec80 4027 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
ca46fb90 4028 -SCM_COMPLEX_IMAG (x));
f92e85f7 4029 else if (SCM_FRACTIONP (x))
cba42c93 4030 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7 4031 SCM_FRACTION_DENOMINATOR (x));
ca46fb90
RB
4032 else
4033 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
f872b822 4034 }
ca46fb90 4035
e11e83f3 4036 if (SCM_I_INUMP (x))
0aacf84e 4037 {
e11e83f3 4038 if (SCM_I_INUMP (y))
0aacf84e 4039 {
e11e83f3
MV
4040 long int xx = SCM_I_INUM (x);
4041 long int yy = SCM_I_INUM (y);
0aacf84e
MD
4042 long int z = xx - yy;
4043 if (SCM_FIXABLE (z))
d956fa6f 4044 return SCM_I_MAKINUM (z);
0aacf84e
MD
4045 else
4046 return scm_i_long2big (z);
4047 }
4048 else if (SCM_BIGP (y))
4049 {
4050 /* inum-x - big-y */
e11e83f3 4051 long xx = SCM_I_INUM (x);
ca46fb90 4052
0aacf84e
MD
4053 if (xx == 0)
4054 return scm_i_clonebig (y, 0);
4055 else
4056 {
4057 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4058 SCM result = scm_i_mkbig ();
ca46fb90 4059
0aacf84e
MD
4060 if (xx >= 0)
4061 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4062 else
4063 {
4064 /* x - y == -(y + -x) */
4065 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4066 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4067 }
4068 scm_remember_upto_here_1 (y);
ca46fb90 4069
0aacf84e
MD
4070 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4071 /* we know the result will have to be a bignum */
4072 return result;
4073 else
4074 return scm_i_normbig (result);
4075 }
4076 }
4077 else if (SCM_REALP (y))
4078 {
e11e83f3 4079 long int xx = SCM_I_INUM (x);
55f26379 4080 return scm_from_double (xx - SCM_REAL_VALUE (y));
0aacf84e
MD
4081 }
4082 else if (SCM_COMPLEXP (y))
4083 {
e11e83f3 4084 long int xx = SCM_I_INUM (x);
8507ec80 4085 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
0aacf84e
MD
4086 - SCM_COMPLEX_IMAG (y));
4087 }
f92e85f7
MV
4088 else if (SCM_FRACTIONP (y))
4089 /* a - b/c = (ac - b) / c */
cba42c93 4090 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4091 SCM_FRACTION_NUMERATOR (y)),
4092 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4093 else
4094 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
f872b822 4095 }
0aacf84e
MD
4096 else if (SCM_BIGP (x))
4097 {
e11e83f3 4098 if (SCM_I_INUMP (y))
0aacf84e
MD
4099 {
4100 /* big-x - inum-y */
e11e83f3 4101 long yy = SCM_I_INUM (y);
0aacf84e 4102 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
ca46fb90 4103
0aacf84e
MD
4104 scm_remember_upto_here_1 (x);
4105 if (sgn_x == 0)
c71b0706
MV
4106 return (SCM_FIXABLE (-yy) ?
4107 SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
0aacf84e
MD
4108 else
4109 {
4110 SCM result = scm_i_mkbig ();
ca46fb90 4111
708f22c6
KR
4112 if (yy >= 0)
4113 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4114 else
4115 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
0aacf84e 4116 scm_remember_upto_here_1 (x);
ca46fb90 4117
0aacf84e
MD
4118 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4119 /* we know the result will have to be a bignum */
4120 return result;
4121 else
4122 return scm_i_normbig (result);
4123 }
4124 }
4125 else if (SCM_BIGP (y))
4126 {
4127 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4128 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4129 SCM result = scm_i_mkbig ();
4130 mpz_sub (SCM_I_BIG_MPZ (result),
4131 SCM_I_BIG_MPZ (x),
4132 SCM_I_BIG_MPZ (y));
4133 scm_remember_upto_here_2 (x, y);
4134 /* we know the result will have to be a bignum */
4135 if ((sgn_x == 1) && (sgn_y == -1))
4136 return result;
4137 if ((sgn_x == -1) && (sgn_y == 1))
4138 return result;
4139 return scm_i_normbig (result);
4140 }
4141 else if (SCM_REALP (y))
4142 {
4143 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4144 scm_remember_upto_here_1 (x);
55f26379 4145 return scm_from_double (result);
0aacf84e
MD
4146 }
4147 else if (SCM_COMPLEXP (y))
4148 {
4149 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4150 - SCM_COMPLEX_REAL (y));
4151 scm_remember_upto_here_1 (x);
8507ec80 4152 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
0aacf84e 4153 }
f92e85f7 4154 else if (SCM_FRACTIONP (y))
cba42c93 4155 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4156 SCM_FRACTION_NUMERATOR (y)),
4157 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 4158 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
ca46fb90 4159 }
0aacf84e
MD
4160 else if (SCM_REALP (x))
4161 {
e11e83f3 4162 if (SCM_I_INUMP (y))
55f26379 4163 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
0aacf84e
MD
4164 else if (SCM_BIGP (y))
4165 {
4166 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4167 scm_remember_upto_here_1 (x);
55f26379 4168 return scm_from_double (result);
0aacf84e
MD
4169 }
4170 else if (SCM_REALP (y))
55f26379 4171 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
0aacf84e 4172 else if (SCM_COMPLEXP (y))
8507ec80 4173 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4174 -SCM_COMPLEX_IMAG (y));
f92e85f7 4175 else if (SCM_FRACTIONP (y))
55f26379 4176 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
0aacf84e
MD
4177 else
4178 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4179 }
0aacf84e
MD
4180 else if (SCM_COMPLEXP (x))
4181 {
e11e83f3 4182 if (SCM_I_INUMP (y))
8507ec80 4183 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
0aacf84e
MD
4184 SCM_COMPLEX_IMAG (x));
4185 else if (SCM_BIGP (y))
4186 {
4187 double real_part = (SCM_COMPLEX_REAL (x)
4188 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4189 scm_remember_upto_here_1 (x);
8507ec80 4190 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e
MD
4191 }
4192 else if (SCM_REALP (y))
8507ec80 4193 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
0aacf84e
MD
4194 SCM_COMPLEX_IMAG (x));
4195 else if (SCM_COMPLEXP (y))
8507ec80 4196 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4197 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
f92e85f7 4198 else if (SCM_FRACTIONP (y))
8507ec80 4199 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
f92e85f7
MV
4200 SCM_COMPLEX_IMAG (x));
4201 else
4202 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4203 }
4204 else if (SCM_FRACTIONP (x))
4205 {
e11e83f3 4206 if (SCM_I_INUMP (y))
f92e85f7 4207 /* a/b - c = (a - cb) / b */
cba42c93 4208 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4209 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4210 SCM_FRACTION_DENOMINATOR (x));
4211 else if (SCM_BIGP (y))
cba42c93 4212 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4213 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4214 SCM_FRACTION_DENOMINATOR (x));
4215 else if (SCM_REALP (y))
55f26379 4216 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
f92e85f7 4217 else if (SCM_COMPLEXP (y))
8507ec80 4218 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
f92e85f7
MV
4219 -SCM_COMPLEX_IMAG (y));
4220 else if (SCM_FRACTIONP (y))
4221 /* a/b - c/d = (ad - bc) / bd */
cba42c93 4222 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4223 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4224 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4225 else
4226 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4227 }
0aacf84e 4228 else
98cb6e75 4229 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
0f2d19dd 4230}
c05e97b7 4231#undef FUNC_NAME
0f2d19dd 4232
ca46fb90 4233
9de33deb 4234SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
942e5b91
MG
4235/* "Return the product of all arguments. If called without arguments,\n"
4236 * "1 is returned."
4237 */
0f2d19dd 4238SCM
6e8d25a6 4239scm_product (SCM x, SCM y)
0f2d19dd 4240{
0aacf84e
MD
4241 if (SCM_UNBNDP (y))
4242 {
4243 if (SCM_UNBNDP (x))
d956fa6f 4244 return SCM_I_MAKINUM (1L);
0aacf84e
MD
4245 else if (SCM_NUMBERP (x))
4246 return x;
4247 else
4248 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
f872b822 4249 }
ca46fb90 4250
e11e83f3 4251 if (SCM_I_INUMP (x))
0aacf84e
MD
4252 {
4253 long xx;
f4c627b3 4254
0aacf84e 4255 intbig:
e11e83f3 4256 xx = SCM_I_INUM (x);
f4c627b3 4257
0aacf84e
MD
4258 switch (xx)
4259 {
ca46fb90
RB
4260 case 0: return x; break;
4261 case 1: return y; break;
0aacf84e 4262 }
f4c627b3 4263
e11e83f3 4264 if (SCM_I_INUMP (y))
0aacf84e 4265 {
e11e83f3 4266 long yy = SCM_I_INUM (y);
0aacf84e 4267 long kk = xx * yy;
d956fa6f 4268 SCM k = SCM_I_MAKINUM (kk);
e11e83f3 4269 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
0aacf84e
MD
4270 return k;
4271 else
4272 {
4273 SCM result = scm_i_long2big (xx);
4274 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4275 return scm_i_normbig (result);
4276 }
4277 }
4278 else if (SCM_BIGP (y))
4279 {
4280 SCM result = scm_i_mkbig ();
4281 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4282 scm_remember_upto_here_1 (y);
4283 return result;
4284 }
4285 else if (SCM_REALP (y))
55f26379 4286 return scm_from_double (xx * SCM_REAL_VALUE (y));
0aacf84e 4287 else if (SCM_COMPLEXP (y))
8507ec80 4288 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
0aacf84e 4289 xx * SCM_COMPLEX_IMAG (y));
f92e85f7 4290 else if (SCM_FRACTIONP (y))
cba42c93 4291 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4292 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4293 else
4294 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4295 }
0aacf84e
MD
4296 else if (SCM_BIGP (x))
4297 {
e11e83f3 4298 if (SCM_I_INUMP (y))
0aacf84e
MD
4299 {
4300 SCM_SWAP (x, y);
4301 goto intbig;
4302 }
4303 else if (SCM_BIGP (y))
4304 {
4305 SCM result = scm_i_mkbig ();
4306 mpz_mul (SCM_I_BIG_MPZ (result),
4307 SCM_I_BIG_MPZ (x),
4308 SCM_I_BIG_MPZ (y));
4309 scm_remember_upto_here_2 (x, y);
4310 return result;
4311 }
4312 else if (SCM_REALP (y))
4313 {
4314 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4315 scm_remember_upto_here_1 (x);
55f26379 4316 return scm_from_double (result);
0aacf84e
MD
4317 }
4318 else if (SCM_COMPLEXP (y))
4319 {
4320 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4321 scm_remember_upto_here_1 (x);
8507ec80 4322 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
0aacf84e
MD
4323 z * SCM_COMPLEX_IMAG (y));
4324 }
f92e85f7 4325 else if (SCM_FRACTIONP (y))
cba42c93 4326 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4327 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4328 else
4329 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4330 }
0aacf84e
MD
4331 else if (SCM_REALP (x))
4332 {
e11e83f3 4333 if (SCM_I_INUMP (y))
55f26379 4334 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
0aacf84e
MD
4335 else if (SCM_BIGP (y))
4336 {
4337 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4338 scm_remember_upto_here_1 (y);
55f26379 4339 return scm_from_double (result);
0aacf84e
MD
4340 }
4341 else if (SCM_REALP (y))
55f26379 4342 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
0aacf84e 4343 else if (SCM_COMPLEXP (y))
8507ec80 4344 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
0aacf84e 4345 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
f92e85f7 4346 else if (SCM_FRACTIONP (y))
55f26379 4347 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
0aacf84e
MD
4348 else
4349 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4350 }
0aacf84e
MD
4351 else if (SCM_COMPLEXP (x))
4352 {
e11e83f3 4353 if (SCM_I_INUMP (y))
8507ec80 4354 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
e11e83f3 4355 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4356 else if (SCM_BIGP (y))
4357 {
4358 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4359 scm_remember_upto_here_1 (y);
8507ec80 4360 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
76506335 4361 z * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4362 }
4363 else if (SCM_REALP (y))
8507ec80 4364 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
0aacf84e
MD
4365 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4366 else if (SCM_COMPLEXP (y))
4367 {
8507ec80 4368 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
0aacf84e
MD
4369 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4370 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4371 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4372 }
f92e85f7
MV
4373 else if (SCM_FRACTIONP (y))
4374 {
4375 double yy = scm_i_fraction2double (y);
8507ec80 4376 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
f92e85f7
MV
4377 yy * SCM_COMPLEX_IMAG (x));
4378 }
4379 else
4380 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4381 }
4382 else if (SCM_FRACTIONP (x))
4383 {
e11e83f3 4384 if (SCM_I_INUMP (y))
cba42c93 4385 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4386 SCM_FRACTION_DENOMINATOR (x));
4387 else if (SCM_BIGP (y))
cba42c93 4388 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4389 SCM_FRACTION_DENOMINATOR (x));
4390 else if (SCM_REALP (y))
55f26379 4391 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
f92e85f7
MV
4392 else if (SCM_COMPLEXP (y))
4393 {
4394 double xx = scm_i_fraction2double (x);
8507ec80 4395 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
f92e85f7
MV
4396 xx * SCM_COMPLEX_IMAG (y));
4397 }
4398 else if (SCM_FRACTIONP (y))
4399 /* a/b * c/d = ac / bd */
cba42c93 4400 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4401 SCM_FRACTION_NUMERATOR (y)),
4402 scm_product (SCM_FRACTION_DENOMINATOR (x),
4403 SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4404 else
4405 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4406 }
0aacf84e 4407 else
f4c627b3 4408 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
0f2d19dd
JB
4409}
4410
7351e207
MV
4411#if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4412 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4413#define ALLOW_DIVIDE_BY_ZERO
4414/* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4415#endif
0f2d19dd 4416
ba74ef4e
MV
4417/* The code below for complex division is adapted from the GNU
4418 libstdc++, which adapted it from f2c's libF77, and is subject to
4419 this copyright: */
4420
4421/****************************************************************
4422Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4423
4424Permission to use, copy, modify, and distribute this software
4425and its documentation for any purpose and without fee is hereby
4426granted, provided that the above copyright notice appear in all
4427copies and that both that the copyright notice and this
4428permission notice and warranty disclaimer appear in supporting
4429documentation, and that the names of AT&T Bell Laboratories or
4430Bellcore or any of their entities not be used in advertising or
4431publicity pertaining to distribution of the software without
4432specific, written prior permission.
4433
4434AT&T and Bellcore disclaim all warranties with regard to this
4435software, including all implied warranties of merchantability
4436and fitness. In no event shall AT&T or Bellcore be liable for
4437any special, indirect or consequential damages or any damages
4438whatsoever resulting from loss of use, data or profits, whether
4439in an action of contract, negligence or other tortious action,
4440arising out of or in connection with the use or performance of
4441this software.
4442****************************************************************/
4443
9de33deb 4444SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
609c3d30
MG
4445/* Divide the first argument by the product of the remaining
4446 arguments. If called with one argument @var{z1}, 1/@var{z1} is
4447 returned. */
c05e97b7 4448#define FUNC_NAME s_divide
f92e85f7
MV
4449static SCM
4450scm_i_divide (SCM x, SCM y, int inexact)
0f2d19dd 4451{
f8de44c1
DH
4452 double a;
4453
0aacf84e
MD
4454 if (SCM_UNBNDP (y))
4455 {
4456 if (SCM_UNBNDP (x))
4457 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
e11e83f3 4458 else if (SCM_I_INUMP (x))
0aacf84e 4459 {
e11e83f3 4460 long xx = SCM_I_INUM (x);
0aacf84e
MD
4461 if (xx == 1 || xx == -1)
4462 return x;
7351e207 4463#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4464 else if (xx == 0)
4465 scm_num_overflow (s_divide);
7351e207 4466#endif
0aacf84e 4467 else
f92e85f7
MV
4468 {
4469 if (inexact)
55f26379 4470 return scm_from_double (1.0 / (double) xx);
cba42c93 4471 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4472 }
0aacf84e
MD
4473 }
4474 else if (SCM_BIGP (x))
f92e85f7
MV
4475 {
4476 if (inexact)
55f26379 4477 return scm_from_double (1.0 / scm_i_big2dbl (x));
cba42c93 4478 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4479 }
0aacf84e
MD
4480 else if (SCM_REALP (x))
4481 {
4482 double xx = SCM_REAL_VALUE (x);
7351e207 4483#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4484 if (xx == 0.0)
4485 scm_num_overflow (s_divide);
4486 else
7351e207 4487#endif
55f26379 4488 return scm_from_double (1.0 / xx);
0aacf84e
MD
4489 }
4490 else if (SCM_COMPLEXP (x))
4491 {
4492 double r = SCM_COMPLEX_REAL (x);
4493 double i = SCM_COMPLEX_IMAG (x);
4494 if (r <= i)
4495 {
4496 double t = r / i;
4497 double d = i * (1.0 + t * t);
8507ec80 4498 return scm_c_make_rectangular (t / d, -1.0 / d);
0aacf84e
MD
4499 }
4500 else
4501 {
4502 double t = i / r;
4503 double d = r * (1.0 + t * t);
8507ec80 4504 return scm_c_make_rectangular (1.0 / d, -t / d);
0aacf84e
MD
4505 }
4506 }
f92e85f7 4507 else if (SCM_FRACTIONP (x))
cba42c93 4508 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
f92e85f7 4509 SCM_FRACTION_NUMERATOR (x));
0aacf84e
MD
4510 else
4511 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
f8de44c1 4512 }
f8de44c1 4513
e11e83f3 4514 if (SCM_I_INUMP (x))
0aacf84e 4515 {
e11e83f3
MV
4516 long xx = SCM_I_INUM (x);
4517 if (SCM_I_INUMP (y))
0aacf84e 4518 {
e11e83f3 4519 long yy = SCM_I_INUM (y);
0aacf84e
MD
4520 if (yy == 0)
4521 {
7351e207 4522#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4523 scm_num_overflow (s_divide);
7351e207 4524#else
55f26379 4525 return scm_from_double ((double) xx / (double) yy);
7351e207 4526#endif
0aacf84e
MD
4527 }
4528 else if (xx % yy != 0)
f92e85f7
MV
4529 {
4530 if (inexact)
55f26379 4531 return scm_from_double ((double) xx / (double) yy);
cba42c93 4532 else return scm_i_make_ratio (x, y);
f92e85f7 4533 }
0aacf84e
MD
4534 else
4535 {
4536 long z = xx / yy;
4537 if (SCM_FIXABLE (z))
d956fa6f 4538 return SCM_I_MAKINUM (z);
0aacf84e
MD
4539 else
4540 return scm_i_long2big (z);
4541 }
f872b822 4542 }
0aacf84e 4543 else if (SCM_BIGP (y))
f92e85f7
MV
4544 {
4545 if (inexact)
55f26379 4546 return scm_from_double ((double) xx / scm_i_big2dbl (y));
cba42c93 4547 else return scm_i_make_ratio (x, y);
f92e85f7 4548 }
0aacf84e
MD
4549 else if (SCM_REALP (y))
4550 {
4551 double yy = SCM_REAL_VALUE (y);
7351e207 4552#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4553 if (yy == 0.0)
4554 scm_num_overflow (s_divide);
4555 else
7351e207 4556#endif
55f26379 4557 return scm_from_double ((double) xx / yy);
ba74ef4e 4558 }
0aacf84e
MD
4559 else if (SCM_COMPLEXP (y))
4560 {
4561 a = xx;
4562 complex_div: /* y _must_ be a complex number */
4563 {
4564 double r = SCM_COMPLEX_REAL (y);
4565 double i = SCM_COMPLEX_IMAG (y);
4566 if (r <= i)
4567 {
4568 double t = r / i;
4569 double d = i * (1.0 + t * t);
8507ec80 4570 return scm_c_make_rectangular ((a * t) / d, -a / d);
0aacf84e
MD
4571 }
4572 else
4573 {
4574 double t = i / r;
4575 double d = r * (1.0 + t * t);
8507ec80 4576 return scm_c_make_rectangular (a / d, -(a * t) / d);
0aacf84e
MD
4577 }
4578 }
4579 }
f92e85f7
MV
4580 else if (SCM_FRACTIONP (y))
4581 /* a / b/c = ac / b */
cba42c93 4582 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 4583 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
4584 else
4585 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 4586 }
0aacf84e
MD
4587 else if (SCM_BIGP (x))
4588 {
e11e83f3 4589 if (SCM_I_INUMP (y))
0aacf84e 4590 {
e11e83f3 4591 long int yy = SCM_I_INUM (y);
0aacf84e
MD
4592 if (yy == 0)
4593 {
7351e207 4594#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4595 scm_num_overflow (s_divide);
7351e207 4596#else
0aacf84e
MD
4597 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4598 scm_remember_upto_here_1 (x);
4599 return (sgn == 0) ? scm_nan () : scm_inf ();
7351e207 4600#endif
0aacf84e
MD
4601 }
4602 else if (yy == 1)
4603 return x;
4604 else
4605 {
4606 /* FIXME: HMM, what are the relative performance issues here?
4607 We need to test. Is it faster on average to test
4608 divisible_p, then perform whichever operation, or is it
4609 faster to perform the integer div opportunistically and
4610 switch to real if there's a remainder? For now we take the
4611 middle ground: test, then if divisible, use the faster div
4612 func. */
4613
4614 long abs_yy = yy < 0 ? -yy : yy;
4615 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
4616
4617 if (divisible_p)
4618 {
4619 SCM result = scm_i_mkbig ();
4620 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
4621 scm_remember_upto_here_1 (x);
4622 if (yy < 0)
4623 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4624 return scm_i_normbig (result);
4625 }
4626 else
f92e85f7
MV
4627 {
4628 if (inexact)
55f26379 4629 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
cba42c93 4630 else return scm_i_make_ratio (x, y);
f92e85f7 4631 }
0aacf84e
MD
4632 }
4633 }
4634 else if (SCM_BIGP (y))
4635 {
4636 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
4637 if (y_is_zero)
4638 {
ca46fb90 4639#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4640 scm_num_overflow (s_divide);
f872b822 4641#else
0aacf84e
MD
4642 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4643 scm_remember_upto_here_1 (x);
4644 return (sgn == 0) ? scm_nan () : scm_inf ();
f872b822 4645#endif
0aacf84e
MD
4646 }
4647 else
4648 {
4649 /* big_x / big_y */
4650 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
4651 SCM_I_BIG_MPZ (y));
4652 if (divisible_p)
4653 {
4654 SCM result = scm_i_mkbig ();
4655 mpz_divexact (SCM_I_BIG_MPZ (result),
4656 SCM_I_BIG_MPZ (x),
4657 SCM_I_BIG_MPZ (y));
4658 scm_remember_upto_here_2 (x, y);
4659 return scm_i_normbig (result);
4660 }
4661 else
4662 {
f92e85f7
MV
4663 if (inexact)
4664 {
4665 double dbx = mpz_get_d (SCM_I_BIG_MPZ (x));
4666 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4667 scm_remember_upto_here_2 (x, y);
55f26379 4668 return scm_from_double (dbx / dby);
f92e85f7 4669 }
cba42c93 4670 else return scm_i_make_ratio (x, y);
0aacf84e
MD
4671 }
4672 }
4673 }
4674 else if (SCM_REALP (y))
4675 {
4676 double yy = SCM_REAL_VALUE (y);
7351e207 4677#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4678 if (yy == 0.0)
4679 scm_num_overflow (s_divide);
4680 else
7351e207 4681#endif
55f26379 4682 return scm_from_double (scm_i_big2dbl (x) / yy);
0aacf84e
MD
4683 }
4684 else if (SCM_COMPLEXP (y))
4685 {
4686 a = scm_i_big2dbl (x);
4687 goto complex_div;
4688 }
f92e85f7 4689 else if (SCM_FRACTIONP (y))
cba42c93 4690 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 4691 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
4692 else
4693 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 4694 }
0aacf84e
MD
4695 else if (SCM_REALP (x))
4696 {
4697 double rx = SCM_REAL_VALUE (x);
e11e83f3 4698 if (SCM_I_INUMP (y))
0aacf84e 4699 {
e11e83f3 4700 long int yy = SCM_I_INUM (y);
7351e207 4701#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4702 if (yy == 0)
4703 scm_num_overflow (s_divide);
4704 else
7351e207 4705#endif
55f26379 4706 return scm_from_double (rx / (double) yy);
0aacf84e
MD
4707 }
4708 else if (SCM_BIGP (y))
4709 {
4710 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4711 scm_remember_upto_here_1 (y);
55f26379 4712 return scm_from_double (rx / dby);
0aacf84e
MD
4713 }
4714 else if (SCM_REALP (y))
4715 {
4716 double yy = SCM_REAL_VALUE (y);
7351e207 4717#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4718 if (yy == 0.0)
4719 scm_num_overflow (s_divide);
4720 else
7351e207 4721#endif
55f26379 4722 return scm_from_double (rx / yy);
0aacf84e
MD
4723 }
4724 else if (SCM_COMPLEXP (y))
4725 {
4726 a = rx;
4727 goto complex_div;
4728 }
f92e85f7 4729 else if (SCM_FRACTIONP (y))
55f26379 4730 return scm_from_double (rx / scm_i_fraction2double (y));
0aacf84e
MD
4731 else
4732 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 4733 }
0aacf84e
MD
4734 else if (SCM_COMPLEXP (x))
4735 {
4736 double rx = SCM_COMPLEX_REAL (x);
4737 double ix = SCM_COMPLEX_IMAG (x);
e11e83f3 4738 if (SCM_I_INUMP (y))
0aacf84e 4739 {
e11e83f3 4740 long int yy = SCM_I_INUM (y);
7351e207 4741#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4742 if (yy == 0)
4743 scm_num_overflow (s_divide);
4744 else
7351e207 4745#endif
0aacf84e
MD
4746 {
4747 double d = yy;
8507ec80 4748 return scm_c_make_rectangular (rx / d, ix / d);
0aacf84e
MD
4749 }
4750 }
4751 else if (SCM_BIGP (y))
4752 {
4753 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4754 scm_remember_upto_here_1 (y);
8507ec80 4755 return scm_c_make_rectangular (rx / dby, ix / dby);
0aacf84e
MD
4756 }
4757 else if (SCM_REALP (y))
4758 {
4759 double yy = SCM_REAL_VALUE (y);
7351e207 4760#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4761 if (yy == 0.0)
4762 scm_num_overflow (s_divide);
4763 else
7351e207 4764#endif
8507ec80 4765 return scm_c_make_rectangular (rx / yy, ix / yy);
0aacf84e
MD
4766 }
4767 else if (SCM_COMPLEXP (y))
4768 {
4769 double ry = SCM_COMPLEX_REAL (y);
4770 double iy = SCM_COMPLEX_IMAG (y);
4771 if (ry <= iy)
4772 {
4773 double t = ry / iy;
4774 double d = iy * (1.0 + t * t);
8507ec80 4775 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
0aacf84e
MD
4776 }
4777 else
4778 {
4779 double t = iy / ry;
4780 double d = ry * (1.0 + t * t);
8507ec80 4781 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
0aacf84e
MD
4782 }
4783 }
f92e85f7
MV
4784 else if (SCM_FRACTIONP (y))
4785 {
4786 double yy = scm_i_fraction2double (y);
8507ec80 4787 return scm_c_make_rectangular (rx / yy, ix / yy);
f92e85f7 4788 }
0aacf84e
MD
4789 else
4790 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 4791 }
f92e85f7
MV
4792 else if (SCM_FRACTIONP (x))
4793 {
e11e83f3 4794 if (SCM_I_INUMP (y))
f92e85f7 4795 {
e11e83f3 4796 long int yy = SCM_I_INUM (y);
f92e85f7
MV
4797#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4798 if (yy == 0)
4799 scm_num_overflow (s_divide);
4800 else
4801#endif
cba42c93 4802 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4803 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4804 }
4805 else if (SCM_BIGP (y))
4806 {
cba42c93 4807 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4808 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4809 }
4810 else if (SCM_REALP (y))
4811 {
4812 double yy = SCM_REAL_VALUE (y);
4813#ifndef ALLOW_DIVIDE_BY_ZERO
4814 if (yy == 0.0)
4815 scm_num_overflow (s_divide);
4816 else
4817#endif
55f26379 4818 return scm_from_double (scm_i_fraction2double (x) / yy);
f92e85f7
MV
4819 }
4820 else if (SCM_COMPLEXP (y))
4821 {
4822 a = scm_i_fraction2double (x);
4823 goto complex_div;
4824 }
4825 else if (SCM_FRACTIONP (y))
cba42c93 4826 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4827 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
4828 else
4829 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4830 }
0aacf84e 4831 else
f8de44c1 4832 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
0f2d19dd 4833}
f92e85f7
MV
4834
4835SCM
4836scm_divide (SCM x, SCM y)
4837{
4838 return scm_i_divide (x, y, 0);
4839}
4840
4841static SCM scm_divide2real (SCM x, SCM y)
4842{
4843 return scm_i_divide (x, y, 1);
4844}
c05e97b7 4845#undef FUNC_NAME
0f2d19dd 4846
fa605590 4847
0f2d19dd 4848double
6e8d25a6 4849scm_asinh (double x)
0f2d19dd 4850{
fa605590
KR
4851#if HAVE_ASINH
4852 return asinh (x);
4853#else
4854#define asinh scm_asinh
f872b822 4855 return log (x + sqrt (x * x + 1));
fa605590 4856#endif
0f2d19dd 4857}
fa605590
KR
4858SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_dsubr, (SCM (*)()) asinh, g_asinh);
4859/* "Return the inverse hyperbolic sine of @var{x}."
4860 */
0f2d19dd
JB
4861
4862
0f2d19dd 4863double
6e8d25a6 4864scm_acosh (double x)
0f2d19dd 4865{
fa605590
KR
4866#if HAVE_ACOSH
4867 return acosh (x);
4868#else
4869#define acosh scm_acosh
f872b822 4870 return log (x + sqrt (x * x - 1));
fa605590 4871#endif
0f2d19dd 4872}
fa605590
KR
4873SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_dsubr, (SCM (*)()) acosh, g_acosh);
4874/* "Return the inverse hyperbolic cosine of @var{x}."
4875 */
0f2d19dd
JB
4876
4877
0f2d19dd 4878double
6e8d25a6 4879scm_atanh (double x)
0f2d19dd 4880{
fa605590
KR
4881#if HAVE_ATANH
4882 return atanh (x);
4883#else
4884#define atanh scm_atanh
f872b822 4885 return 0.5 * log ((1 + x) / (1 - x));
fa605590 4886#endif
0f2d19dd 4887}
fa605590
KR
4888SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_dsubr, (SCM (*)()) atanh, g_atanh);
4889/* "Return the inverse hyperbolic tangent of @var{x}."
4890 */
0f2d19dd
JB
4891
4892
f92e85f7
MV
4893/* XXX - eventually, we should remove this definition of scm_round and
4894 rename scm_round_number to scm_round. Likewise for scm_truncate
4895 and scm_truncate_number.
4896 */
4897
0f2d19dd 4898double
6e8d25a6 4899scm_truncate (double x)
0f2d19dd 4900{
fa605590
KR
4901#if HAVE_TRUNC
4902 return trunc (x);
4903#else
f872b822
MD
4904 if (x < 0.0)
4905 return -floor (-x);
4906 return floor (x);
fa605590 4907#endif
0f2d19dd 4908}
0f2d19dd 4909
6187f48b
KR
4910/* scm_round is done using floor(x+0.5) to round to nearest and with
4911 half-way case (ie. when x is an integer plus 0.5) going upwards. Then
4912 half-way cases are identified and adjusted down if the round-upwards
4913 didn't give the desired even integer.
4914
4915 "plus_half == result" identifies a half-way case. If plus_half, which is
4916 x + 0.5, is an integer then x must be an integer plus 0.5.
4917
4918 An odd "result" value is identified with result/2 != floor(result/2).
4919 This is done with plus_half, since that value is ready for use sooner in
4920 a pipelined cpu, and we're already requiring plus_half == result.
4921
4922 Note however that we need to be careful when x is big and already an
4923 integer. In that case "x+0.5" may round to an adjacent integer, causing
4924 us to return such a value, incorrectly. For instance if the hardware is
4925 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
4926 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
4927 returned. Or if the hardware is in round-upwards mode, then other bigger
4928 values like say x == 2^128 will see x+0.5 rounding up to the next higher
4929 representable value, 2^128+2^76 (or whatever), again incorrect.
4930
4931 These bad roundings of x+0.5 are avoided by testing at the start whether
4932 x is already an integer. If it is then clearly that's the desired result
4933 already. And if it's not then the exponent must be small enough to allow
4934 an 0.5 to be represented, and hence added without a bad rounding. */
4935
0f2d19dd 4936double
6e8d25a6 4937scm_round (double x)
0f2d19dd 4938{
6187f48b
KR
4939 double plus_half, result;
4940
4941 if (x == floor (x))
4942 return x;
4943
4944 plus_half = x + 0.5;
4945 result = floor (plus_half);
0f2d19dd 4946 /* Adjust so that the scm_round is towards even. */
0aacf84e
MD
4947 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
4948 ? result - 1
4949 : result);
0f2d19dd
JB
4950}
4951
f92e85f7
MV
4952SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
4953 (SCM x),
4954 "Round the number @var{x} towards zero.")
4955#define FUNC_NAME s_scm_truncate_number
4956{
73e4de09 4957 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
4958 return scm_floor (x);
4959 else
4960 return scm_ceiling (x);
4961}
4962#undef FUNC_NAME
4963
4964static SCM exactly_one_half;
4965
4966SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
4967 (SCM x),
4968 "Round the number @var{x} towards the nearest integer. "
4969 "When it is exactly halfway between two integers, "
4970 "round towards the even one.")
4971#define FUNC_NAME s_scm_round_number
4972{
e11e83f3 4973 if (SCM_I_INUMP (x) || SCM_BIGP (x))
bae30667
KR
4974 return x;
4975 else if (SCM_REALP (x))
55f26379 4976 return scm_from_double (scm_round (SCM_REAL_VALUE (x)));
f92e85f7 4977 else
bae30667
KR
4978 {
4979 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
4980 single quotient+remainder division then examining to see which way
4981 the rounding should go. */
4982 SCM plus_half = scm_sum (x, exactly_one_half);
4983 SCM result = scm_floor (plus_half);
4984 /* Adjust so that the scm_round is towards even. */
73e4de09
MV
4985 if (scm_is_true (scm_num_eq_p (plus_half, result))
4986 && scm_is_true (scm_odd_p (result)))
d956fa6f 4987 return scm_difference (result, SCM_I_MAKINUM (1));
bae30667
KR
4988 else
4989 return result;
4990 }
f92e85f7
MV
4991}
4992#undef FUNC_NAME
4993
4994SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
4995 (SCM x),
4996 "Round the number @var{x} towards minus infinity.")
4997#define FUNC_NAME s_scm_floor
4998{
e11e83f3 4999 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5000 return x;
5001 else if (SCM_REALP (x))
55f26379 5002 return scm_from_double (floor (SCM_REAL_VALUE (x)));
f92e85f7
MV
5003 else if (SCM_FRACTIONP (x))
5004 {
5005 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5006 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5007 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5008 {
5009 /* For positive x, rounding towards zero is correct. */
5010 return q;
5011 }
5012 else
5013 {
5014 /* For negative x, we need to return q-1 unless x is an
5015 integer. But fractions are never integer, per our
5016 assumptions. */
d956fa6f 5017 return scm_difference (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5018 }
5019 }
5020 else
5021 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5022}
5023#undef FUNC_NAME
5024
5025SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5026 (SCM x),
5027 "Round the number @var{x} towards infinity.")
5028#define FUNC_NAME s_scm_ceiling
5029{
e11e83f3 5030 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5031 return x;
5032 else if (SCM_REALP (x))
55f26379 5033 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
f92e85f7
MV
5034 else if (SCM_FRACTIONP (x))
5035 {
5036 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5037 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5038 if (scm_is_false (scm_positive_p (x)))
f92e85f7
MV
5039 {
5040 /* For negative x, rounding towards zero is correct. */
5041 return q;
5042 }
5043 else
5044 {
5045 /* For positive x, we need to return q+1 unless x is an
5046 integer. But fractions are never integer, per our
5047 assumptions. */
d956fa6f 5048 return scm_sum (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5049 }
5050 }
5051 else
5052 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5053}
5054#undef FUNC_NAME
0f2d19dd 5055
14b18ed6 5056SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_dsubr, (SCM (*)()) sqrt, g_i_sqrt);
942e5b91
MG
5057/* "Return the square root of the real number @var{x}."
5058 */
14b18ed6 5059SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_dsubr, (SCM (*)()) fabs, g_i_abs);
942e5b91
MG
5060/* "Return the absolute value of the real number @var{x}."
5061 */
14b18ed6 5062SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_dsubr, (SCM (*)()) exp, g_i_exp);
942e5b91
MG
5063/* "Return the @var{x}th power of e."
5064 */
14b18ed6 5065SCM_GPROC1 (s_i_log, "$log", scm_tc7_dsubr, (SCM (*)()) log, g_i_log);
b3fcac34 5066/* "Return the natural logarithm of the real number @var{x}."
942e5b91 5067 */
14b18ed6 5068SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_dsubr, (SCM (*)()) sin, g_i_sin);
942e5b91
MG
5069/* "Return the sine of the real number @var{x}."
5070 */
14b18ed6 5071SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_dsubr, (SCM (*)()) cos, g_i_cos);
942e5b91
MG
5072/* "Return the cosine of the real number @var{x}."
5073 */
14b18ed6 5074SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_dsubr, (SCM (*)()) tan, g_i_tan);
942e5b91
MG
5075/* "Return the tangent of the real number @var{x}."
5076 */
14b18ed6 5077SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_dsubr, (SCM (*)()) asin, g_i_asin);
942e5b91
MG
5078/* "Return the arc sine of the real number @var{x}."
5079 */
14b18ed6 5080SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_dsubr, (SCM (*)()) acos, g_i_acos);
942e5b91
MG
5081/* "Return the arc cosine of the real number @var{x}."
5082 */
14b18ed6 5083SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_dsubr, (SCM (*)()) atan, g_i_atan);
942e5b91
MG
5084/* "Return the arc tangent of the real number @var{x}."
5085 */
14b18ed6 5086SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_dsubr, (SCM (*)()) sinh, g_i_sinh);
942e5b91
MG
5087/* "Return the hyperbolic sine of the real number @var{x}."
5088 */
14b18ed6 5089SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_dsubr, (SCM (*)()) cosh, g_i_cosh);
942e5b91
MG
5090/* "Return the hyperbolic cosine of the real number @var{x}."
5091 */
14b18ed6 5092SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_dsubr, (SCM (*)()) tanh, g_i_tanh);
942e5b91
MG
5093/* "Return the hyperbolic tangent of the real number @var{x}."
5094 */
f872b822
MD
5095
5096struct dpair
5097{
5098 double x, y;
5099};
5100
27c37006
NJ
5101static void scm_two_doubles (SCM x,
5102 SCM y,
3eeba8d4
JB
5103 const char *sstring,
5104 struct dpair * xy);
f872b822
MD
5105
5106static void
27c37006
NJ
5107scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
5108{
e11e83f3
MV
5109 if (SCM_I_INUMP (x))
5110 xy->x = SCM_I_INUM (x);
0aacf84e 5111 else if (SCM_BIGP (x))
1be6b49c 5112 xy->x = scm_i_big2dbl (x);
0aacf84e 5113 else if (SCM_REALP (x))
27c37006 5114 xy->x = SCM_REAL_VALUE (x);
f92e85f7
MV
5115 else if (SCM_FRACTIONP (x))
5116 xy->x = scm_i_fraction2double (x);
0aacf84e 5117 else
27c37006 5118 scm_wrong_type_arg (sstring, SCM_ARG1, x);
98cb6e75 5119
e11e83f3
MV
5120 if (SCM_I_INUMP (y))
5121 xy->y = SCM_I_INUM (y);
0aacf84e 5122 else if (SCM_BIGP (y))
1be6b49c 5123 xy->y = scm_i_big2dbl (y);
0aacf84e 5124 else if (SCM_REALP (y))
27c37006 5125 xy->y = SCM_REAL_VALUE (y);
f92e85f7
MV
5126 else if (SCM_FRACTIONP (y))
5127 xy->y = scm_i_fraction2double (y);
0aacf84e 5128 else
27c37006 5129 scm_wrong_type_arg (sstring, SCM_ARG2, y);
0f2d19dd
JB
5130}
5131
5132
a1ec6916 5133SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
27c37006
NJ
5134 (SCM x, SCM y),
5135 "Return @var{x} raised to the power of @var{y}. This\n"
0137a31b 5136 "procedure does not accept complex arguments.")
1bbd0b84 5137#define FUNC_NAME s_scm_sys_expt
0f2d19dd
JB
5138{
5139 struct dpair xy;
27c37006 5140 scm_two_doubles (x, y, FUNC_NAME, &xy);
55f26379 5141 return scm_from_double (pow (xy.x, xy.y));
0f2d19dd 5142}
1bbd0b84 5143#undef FUNC_NAME
0f2d19dd
JB
5144
5145
a1ec6916 5146SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
27c37006
NJ
5147 (SCM x, SCM y),
5148 "Return the arc tangent of the two arguments @var{x} and\n"
5149 "@var{y}. This is similar to calculating the arc tangent of\n"
5150 "@var{x} / @var{y}, except that the signs of both arguments\n"
0137a31b
MG
5151 "are used to determine the quadrant of the result. This\n"
5152 "procedure does not accept complex arguments.")
1bbd0b84 5153#define FUNC_NAME s_scm_sys_atan2
0f2d19dd
JB
5154{
5155 struct dpair xy;
27c37006 5156 scm_two_doubles (x, y, FUNC_NAME, &xy);
55f26379 5157 return scm_from_double (atan2 (xy.x, xy.y));
0f2d19dd 5158}
1bbd0b84 5159#undef FUNC_NAME
0f2d19dd 5160
8507ec80
MV
5161SCM
5162scm_c_make_rectangular (double re, double im)
5163{
5164 if (im == 0.0)
5165 return scm_from_double (re);
5166 else
5167 {
5168 SCM z;
5169 SCM_NEWSMOB (z, scm_tc16_complex, scm_gc_malloc (sizeof (scm_t_complex),
5170 "complex"));
5171 SCM_COMPLEX_REAL (z) = re;
5172 SCM_COMPLEX_IMAG (z) = im;
5173 return z;
5174 }
5175}
0f2d19dd 5176
a1ec6916 5177SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
bb628794 5178 (SCM real, SCM imaginary),
942e5b91
MG
5179 "Return a complex number constructed of the given @var{real} and\n"
5180 "@var{imaginary} parts.")
1bbd0b84 5181#define FUNC_NAME s_scm_make_rectangular
0f2d19dd
JB
5182{
5183 struct dpair xy;
bb628794 5184 scm_two_doubles (real, imaginary, FUNC_NAME, &xy);
8507ec80 5185 return scm_c_make_rectangular (xy.x, xy.y);
0f2d19dd 5186}
1bbd0b84 5187#undef FUNC_NAME
0f2d19dd 5188
8507ec80
MV
5189SCM
5190scm_c_make_polar (double mag, double ang)
5191{
5192 double s, c;
5193#if HAVE_SINCOS
5194 sincos (ang, &s, &c);
5195#else
5196 s = sin (ang);
5197 c = cos (ang);
5198#endif
5199 return scm_c_make_rectangular (mag * c, mag * s);
5200}
0f2d19dd 5201
a1ec6916 5202SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
27c37006 5203 (SCM x, SCM y),
942e5b91 5204 "Return the complex number @var{x} * e^(i * @var{y}).")
1bbd0b84 5205#define FUNC_NAME s_scm_make_polar
0f2d19dd
JB
5206{
5207 struct dpair xy;
27c37006 5208 scm_two_doubles (x, y, FUNC_NAME, &xy);
8507ec80 5209 return scm_c_make_polar (xy.x, xy.y);
0f2d19dd 5210}
1bbd0b84 5211#undef FUNC_NAME
0f2d19dd
JB
5212
5213
152f82bf 5214SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
942e5b91
MG
5215/* "Return the real part of the number @var{z}."
5216 */
0f2d19dd 5217SCM
6e8d25a6 5218scm_real_part (SCM z)
0f2d19dd 5219{
e11e83f3 5220 if (SCM_I_INUMP (z))
c2ff8ab0 5221 return z;
0aacf84e 5222 else if (SCM_BIGP (z))
c2ff8ab0 5223 return z;
0aacf84e 5224 else if (SCM_REALP (z))
c2ff8ab0 5225 return z;
0aacf84e 5226 else if (SCM_COMPLEXP (z))
55f26379 5227 return scm_from_double (SCM_COMPLEX_REAL (z));
f92e85f7 5228 else if (SCM_FRACTIONP (z))
2fa2d879 5229 return z;
0aacf84e 5230 else
c2ff8ab0 5231 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
0f2d19dd
JB
5232}
5233
5234
152f82bf 5235SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
942e5b91
MG
5236/* "Return the imaginary part of the number @var{z}."
5237 */
0f2d19dd 5238SCM
6e8d25a6 5239scm_imag_part (SCM z)
0f2d19dd 5240{
e11e83f3 5241 if (SCM_I_INUMP (z))
f872b822 5242 return SCM_INUM0;
0aacf84e 5243 else if (SCM_BIGP (z))
f872b822 5244 return SCM_INUM0;
0aacf84e 5245 else if (SCM_REALP (z))
c2ff8ab0 5246 return scm_flo0;
0aacf84e 5247 else if (SCM_COMPLEXP (z))
55f26379 5248 return scm_from_double (SCM_COMPLEX_IMAG (z));
f92e85f7
MV
5249 else if (SCM_FRACTIONP (z))
5250 return SCM_INUM0;
0aacf84e 5251 else
c2ff8ab0 5252 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
0f2d19dd
JB
5253}
5254
f92e85f7
MV
5255SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5256/* "Return the numerator of the number @var{z}."
5257 */
5258SCM
5259scm_numerator (SCM z)
5260{
e11e83f3 5261 if (SCM_I_INUMP (z))
f92e85f7
MV
5262 return z;
5263 else if (SCM_BIGP (z))
5264 return z;
5265 else if (SCM_FRACTIONP (z))
5266 {
5267 scm_i_fraction_reduce (z);
5268 return SCM_FRACTION_NUMERATOR (z);
5269 }
5270 else if (SCM_REALP (z))
5271 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5272 else
5273 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5274}
5275
5276
5277SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5278/* "Return the denominator of the number @var{z}."
5279 */
5280SCM
5281scm_denominator (SCM z)
5282{
e11e83f3 5283 if (SCM_I_INUMP (z))
d956fa6f 5284 return SCM_I_MAKINUM (1);
f92e85f7 5285 else if (SCM_BIGP (z))
d956fa6f 5286 return SCM_I_MAKINUM (1);
f92e85f7
MV
5287 else if (SCM_FRACTIONP (z))
5288 {
5289 scm_i_fraction_reduce (z);
5290 return SCM_FRACTION_DENOMINATOR (z);
5291 }
5292 else if (SCM_REALP (z))
5293 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5294 else
5295 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5296}
0f2d19dd 5297
9de33deb 5298SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
942e5b91
MG
5299/* "Return the magnitude of the number @var{z}. This is the same as\n"
5300 * "@code{abs} for real arguments, but also allows complex numbers."
5301 */
0f2d19dd 5302SCM
6e8d25a6 5303scm_magnitude (SCM z)
0f2d19dd 5304{
e11e83f3 5305 if (SCM_I_INUMP (z))
0aacf84e 5306 {
e11e83f3 5307 long int zz = SCM_I_INUM (z);
0aacf84e
MD
5308 if (zz >= 0)
5309 return z;
5310 else if (SCM_POSFIXABLE (-zz))
d956fa6f 5311 return SCM_I_MAKINUM (-zz);
0aacf84e
MD
5312 else
5313 return scm_i_long2big (-zz);
5986c47d 5314 }
0aacf84e
MD
5315 else if (SCM_BIGP (z))
5316 {
5317 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5318 scm_remember_upto_here_1 (z);
5319 if (sgn < 0)
5320 return scm_i_clonebig (z, 0);
5321 else
5322 return z;
5986c47d 5323 }
0aacf84e 5324 else if (SCM_REALP (z))
55f26379 5325 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
0aacf84e 5326 else if (SCM_COMPLEXP (z))
55f26379 5327 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
f92e85f7
MV
5328 else if (SCM_FRACTIONP (z))
5329 {
73e4de09 5330 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 5331 return z;
cba42c93 5332 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
f92e85f7
MV
5333 SCM_FRACTION_DENOMINATOR (z));
5334 }
0aacf84e 5335 else
c2ff8ab0 5336 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
0f2d19dd
JB
5337}
5338
5339
9de33deb 5340SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
942e5b91
MG
5341/* "Return the angle of the complex number @var{z}."
5342 */
0f2d19dd 5343SCM
6e8d25a6 5344scm_angle (SCM z)
0f2d19dd 5345{
c8ae173e 5346 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
55f26379 5347 scm_flo0 to save allocating a new flonum with scm_from_double each time.
c8ae173e
KR
5348 But if atan2 follows the floating point rounding mode, then the value
5349 is not a constant. Maybe it'd be close enough though. */
e11e83f3 5350 if (SCM_I_INUMP (z))
0aacf84e 5351 {
e11e83f3 5352 if (SCM_I_INUM (z) >= 0)
c8ae173e 5353 return scm_flo0;
0aacf84e 5354 else
55f26379 5355 return scm_from_double (atan2 (0.0, -1.0));
f872b822 5356 }
0aacf84e
MD
5357 else if (SCM_BIGP (z))
5358 {
5359 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5360 scm_remember_upto_here_1 (z);
5361 if (sgn < 0)
55f26379 5362 return scm_from_double (atan2 (0.0, -1.0));
0aacf84e 5363 else
c8ae173e 5364 return scm_flo0;
0f2d19dd 5365 }
0aacf84e 5366 else if (SCM_REALP (z))
c8ae173e
KR
5367 {
5368 if (SCM_REAL_VALUE (z) >= 0)
5369 return scm_flo0;
5370 else
55f26379 5371 return scm_from_double (atan2 (0.0, -1.0));
c8ae173e 5372 }
0aacf84e 5373 else if (SCM_COMPLEXP (z))
55f26379 5374 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
f92e85f7
MV
5375 else if (SCM_FRACTIONP (z))
5376 {
73e4de09 5377 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 5378 return scm_flo0;
55f26379 5379 else return scm_from_double (atan2 (0.0, -1.0));
f92e85f7 5380 }
0aacf84e 5381 else
f4c627b3 5382 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
0f2d19dd
JB
5383}
5384
5385
3c9a524f
DH
5386SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5387/* Convert the number @var{x} to its inexact representation.\n"
5388 */
5389SCM
5390scm_exact_to_inexact (SCM z)
5391{
e11e83f3 5392 if (SCM_I_INUMP (z))
55f26379 5393 return scm_from_double ((double) SCM_I_INUM (z));
3c9a524f 5394 else if (SCM_BIGP (z))
55f26379 5395 return scm_from_double (scm_i_big2dbl (z));
f92e85f7 5396 else if (SCM_FRACTIONP (z))
55f26379 5397 return scm_from_double (scm_i_fraction2double (z));
3c9a524f
DH
5398 else if (SCM_INEXACTP (z))
5399 return z;
5400 else
5401 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5402}
5403
5404
a1ec6916 5405SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
1bbd0b84 5406 (SCM z),
1e6808ea 5407 "Return an exact number that is numerically closest to @var{z}.")
1bbd0b84 5408#define FUNC_NAME s_scm_inexact_to_exact
0f2d19dd 5409{
e11e83f3 5410 if (SCM_I_INUMP (z))
f872b822 5411 return z;
0aacf84e 5412 else if (SCM_BIGP (z))
f872b822 5413 return z;
0aacf84e
MD
5414 else if (SCM_REALP (z))
5415 {
f92e85f7
MV
5416 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
5417 SCM_OUT_OF_RANGE (1, z);
2be24db4 5418 else
f92e85f7
MV
5419 {
5420 mpq_t frac;
5421 SCM q;
5422
5423 mpq_init (frac);
5424 mpq_set_d (frac, SCM_REAL_VALUE (z));
cba42c93 5425 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
f92e85f7
MV
5426 scm_i_mpz2num (mpq_denref (frac)));
5427
cba42c93 5428 /* When scm_i_make_ratio throws, we leak the memory allocated
f92e85f7
MV
5429 for frac...
5430 */
5431 mpq_clear (frac);
5432 return q;
5433 }
c2ff8ab0 5434 }
f92e85f7
MV
5435 else if (SCM_FRACTIONP (z))
5436 return z;
0aacf84e 5437 else
c2ff8ab0 5438 SCM_WRONG_TYPE_ARG (1, z);
0f2d19dd 5439}
1bbd0b84 5440#undef FUNC_NAME
0f2d19dd 5441
f92e85f7
MV
5442SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
5443 (SCM x, SCM err),
5444 "Return an exact number that is within @var{err} of @var{x}.")
5445#define FUNC_NAME s_scm_rationalize
5446{
e11e83f3 5447 if (SCM_I_INUMP (x))
f92e85f7
MV
5448 return x;
5449 else if (SCM_BIGP (x))
5450 return x;
5451 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
5452 {
5453 /* Use continued fractions to find closest ratio. All
5454 arithmetic is done with exact numbers.
5455 */
5456
5457 SCM ex = scm_inexact_to_exact (x);
5458 SCM int_part = scm_floor (ex);
d956fa6f
MV
5459 SCM tt = SCM_I_MAKINUM (1);
5460 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
5461 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
f92e85f7
MV
5462 SCM rx;
5463 int i = 0;
5464
73e4de09 5465 if (scm_is_true (scm_num_eq_p (ex, int_part)))
f92e85f7
MV
5466 return ex;
5467
5468 ex = scm_difference (ex, int_part); /* x = x-int_part */
5469 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
5470
5471 /* We stop after a million iterations just to be absolutely sure
5472 that we don't go into an infinite loop. The process normally
5473 converges after less than a dozen iterations.
5474 */
5475
5476 err = scm_abs (err);
5477 while (++i < 1000000)
5478 {
5479 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
5480 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
73e4de09
MV
5481 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
5482 scm_is_false
f92e85f7
MV
5483 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
5484 err))) /* abs(x-a/b) <= err */
02164269
MV
5485 {
5486 SCM res = scm_sum (int_part, scm_divide (a, b));
73e4de09
MV
5487 if (scm_is_false (scm_exact_p (x))
5488 || scm_is_false (scm_exact_p (err)))
02164269
MV
5489 return scm_exact_to_inexact (res);
5490 else
5491 return res;
5492 }
f92e85f7
MV
5493 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
5494 SCM_UNDEFINED);
5495 tt = scm_floor (rx); /* tt = floor (rx) */
5496 a2 = a1;
5497 b2 = b1;
5498 a1 = a;
5499 b1 = b;
5500 }
5501 scm_num_overflow (s_scm_rationalize);
5502 }
5503 else
5504 SCM_WRONG_TYPE_ARG (1, x);
5505}
5506#undef FUNC_NAME
5507
73e4de09
MV
5508/* conversion functions */
5509
5510int
5511scm_is_integer (SCM val)
5512{
5513 return scm_is_true (scm_integer_p (val));
5514}
5515
5516int
5517scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
5518{
e11e83f3 5519 if (SCM_I_INUMP (val))
73e4de09 5520 {
e11e83f3 5521 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
5522 return n >= min && n <= max;
5523 }
5524 else if (SCM_BIGP (val))
5525 {
5526 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
5527 return 0;
5528 else if (min >= LONG_MIN && max <= LONG_MAX)
d956fa6f
MV
5529 {
5530 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
5531 {
5532 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
5533 return n >= min && n <= max;
5534 }
5535 else
5536 return 0;
5537 }
73e4de09
MV
5538 else
5539 {
d956fa6f
MV
5540 scm_t_intmax n;
5541 size_t count;
73e4de09 5542
d956fa6f
MV
5543 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5544 > CHAR_BIT*sizeof (scm_t_uintmax))
5545 return 0;
5546
5547 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5548 SCM_I_BIG_MPZ (val));
73e4de09 5549
d956fa6f 5550 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
73e4de09 5551 {
d956fa6f
MV
5552 if (n < 0)
5553 return 0;
73e4de09 5554 }
73e4de09
MV
5555 else
5556 {
d956fa6f
MV
5557 n = -n;
5558 if (n >= 0)
5559 return 0;
73e4de09 5560 }
d956fa6f
MV
5561
5562 return n >= min && n <= max;
73e4de09
MV
5563 }
5564 }
73e4de09
MV
5565 else
5566 return 0;
5567}
5568
5569int
5570scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
5571{
e11e83f3 5572 if (SCM_I_INUMP (val))
73e4de09 5573 {
e11e83f3 5574 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
5575 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
5576 }
5577 else if (SCM_BIGP (val))
5578 {
5579 if (max <= SCM_MOST_POSITIVE_FIXNUM)
5580 return 0;
5581 else if (max <= ULONG_MAX)
d956fa6f
MV
5582 {
5583 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
5584 {
5585 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
5586 return n >= min && n <= max;
5587 }
5588 else
5589 return 0;
5590 }
73e4de09
MV
5591 else
5592 {
d956fa6f
MV
5593 scm_t_uintmax n;
5594 size_t count;
73e4de09 5595
d956fa6f
MV
5596 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
5597 return 0;
73e4de09 5598
d956fa6f
MV
5599 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5600 > CHAR_BIT*sizeof (scm_t_uintmax))
73e4de09 5601 return 0;
d956fa6f
MV
5602
5603 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5604 SCM_I_BIG_MPZ (val));
73e4de09 5605
d956fa6f 5606 return n >= min && n <= max;
73e4de09
MV
5607 }
5608 }
73e4de09
MV
5609 else
5610 return 0;
5611}
5612
bfd7932e
MV
5613#define TYPE scm_t_intmax
5614#define TYPE_MIN min
5615#define TYPE_MAX max
5616#define SIZEOF_TYPE 0
5617#define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
5618#define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
5619#include "libguile/conv-integer.i.c"
5620
5621#define TYPE scm_t_uintmax
5622#define TYPE_MIN min
5623#define TYPE_MAX max
5624#define SIZEOF_TYPE 0
5625#define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
5626#define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
5627#include "libguile/conv-uinteger.i.c"
5628
5629#define TYPE scm_t_int8
5630#define TYPE_MIN SCM_T_INT8_MIN
5631#define TYPE_MAX SCM_T_INT8_MAX
5632#define SIZEOF_TYPE 1
5633#define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
5634#define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
5635#include "libguile/conv-integer.i.c"
5636
5637#define TYPE scm_t_uint8
5638#define TYPE_MIN 0
5639#define TYPE_MAX SCM_T_UINT8_MAX
5640#define SIZEOF_TYPE 1
5641#define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
5642#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
5643#include "libguile/conv-uinteger.i.c"
5644
5645#define TYPE scm_t_int16
5646#define TYPE_MIN SCM_T_INT16_MIN
5647#define TYPE_MAX SCM_T_INT16_MAX
5648#define SIZEOF_TYPE 2
5649#define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
5650#define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
5651#include "libguile/conv-integer.i.c"
5652
5653#define TYPE scm_t_uint16
5654#define TYPE_MIN 0
5655#define TYPE_MAX SCM_T_UINT16_MAX
5656#define SIZEOF_TYPE 2
5657#define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
5658#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
5659#include "libguile/conv-uinteger.i.c"
5660
5661#define TYPE scm_t_int32
5662#define TYPE_MIN SCM_T_INT32_MIN
5663#define TYPE_MAX SCM_T_INT32_MAX
5664#define SIZEOF_TYPE 4
5665#define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
5666#define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
5667#include "libguile/conv-integer.i.c"
5668
5669#define TYPE scm_t_uint32
5670#define TYPE_MIN 0
5671#define TYPE_MAX SCM_T_UINT32_MAX
5672#define SIZEOF_TYPE 4
5673#define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
5674#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
5675#include "libguile/conv-uinteger.i.c"
5676
5677#if SCM_HAVE_T_INT64
5678
5679#define TYPE scm_t_int64
5680#define TYPE_MIN SCM_T_INT64_MIN
5681#define TYPE_MAX SCM_T_INT64_MAX
5682#define SIZEOF_TYPE 8
5683#define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
5684#define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
5685#include "libguile/conv-integer.i.c"
5686
5687#define TYPE scm_t_uint64
5688#define TYPE_MIN 0
5689#define TYPE_MAX SCM_T_UINT64_MAX
5690#define SIZEOF_TYPE 8
5691#define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
5692#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
5693#include "libguile/conv-uinteger.i.c"
73e4de09 5694
bfd7932e 5695#endif
73e4de09
MV
5696
5697int
5698scm_is_real (SCM val)
5699{
5700 return scm_is_true (scm_real_p (val));
5701}
5702
55f26379
MV
5703int
5704scm_is_rational (SCM val)
5705{
5706 return scm_is_true (scm_rational_p (val));
5707}
5708
73e4de09
MV
5709double
5710scm_to_double (SCM val)
5711{
55f26379
MV
5712 if (SCM_I_INUMP (val))
5713 return SCM_I_INUM (val);
5714 else if (SCM_BIGP (val))
5715 return scm_i_big2dbl (val);
5716 else if (SCM_FRACTIONP (val))
5717 return scm_i_fraction2double (val);
5718 else if (SCM_REALP (val))
5719 return SCM_REAL_VALUE (val);
5720 else
5721 scm_wrong_type_arg (NULL, 0, val);
73e4de09
MV
5722}
5723
5724SCM
5725scm_from_double (double val)
5726{
55f26379
MV
5727 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
5728 SCM_REAL_VALUE (z) = val;
5729 return z;
73e4de09
MV
5730}
5731
55f26379
MV
5732#if SCM_ENABLE_DISCOURAGED == 1
5733
5734float
5735scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
5736{
5737 if (SCM_BIGP (num))
5738 {
5739 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
5740 if (!xisinf (res))
5741 return res;
5742 else
5743 scm_out_of_range (NULL, num);
5744 }
5745 else
5746 return scm_to_double (num);
5747}
5748
5749double
5750scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
5751{
5752 if (SCM_BIGP (num))
5753 {
5754 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
5755 if (!xisinf (res))
5756 return res;
5757 else
5758 scm_out_of_range (NULL, num);
5759 }
5760 else
5761 return scm_to_double (num);
5762}
5763
5764#endif
5765
8507ec80
MV
5766int
5767scm_is_complex (SCM val)
5768{
5769 return scm_is_true (scm_complex_p (val));
5770}
5771
5772double
5773scm_c_real_part (SCM z)
5774{
5775 if (SCM_COMPLEXP (z))
5776 return SCM_COMPLEX_REAL (z);
5777 else
5778 {
5779 /* Use the scm_real_part to get proper error checking and
5780 dispatching.
5781 */
5782 return scm_to_double (scm_real_part (z));
5783 }
5784}
5785
5786double
5787scm_c_imag_part (SCM z)
5788{
5789 if (SCM_COMPLEXP (z))
5790 return SCM_COMPLEX_IMAG (z);
5791 else
5792 {
5793 /* Use the scm_imag_part to get proper error checking and
5794 dispatching. The result will almost always be 0.0, but not
5795 always.
5796 */
5797 return scm_to_double (scm_imag_part (z));
5798 }
5799}
5800
5801double
5802scm_c_magnitude (SCM z)
5803{
5804 return scm_to_double (scm_magnitude (z));
5805}
5806
5807double
5808scm_c_angle (SCM z)
5809{
5810 return scm_to_double (scm_angle (z));
5811}
5812
5813int
5814scm_is_number (SCM z)
5815{
5816 return scm_is_true (scm_number_p (z));
5817}
5818
0f2d19dd
JB
5819void
5820scm_init_numbers ()
0f2d19dd 5821{
0b799eea
MV
5822 int i;
5823
713a4259
KR
5824 mpz_init_set_si (z_negative_one, -1);
5825
a261c0e9
DH
5826 /* It may be possible to tune the performance of some algorithms by using
5827 * the following constants to avoid the creation of bignums. Please, before
5828 * using these values, remember the two rules of program optimization:
5829 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
86d31dfe 5830 scm_c_define ("most-positive-fixnum",
d956fa6f 5831 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
86d31dfe 5832 scm_c_define ("most-negative-fixnum",
d956fa6f 5833 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
a261c0e9 5834
f3ae5d60
MD
5835 scm_add_feature ("complex");
5836 scm_add_feature ("inexact");
55f26379 5837 scm_flo0 = scm_from_double (0.0);
0b799eea
MV
5838
5839 /* determine floating point precision */
55f26379 5840 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
0b799eea
MV
5841 {
5842 init_dblprec(&scm_dblprec[i-2],i);
5843 init_fx_radix(fx_per_radix[i-2],i);
5844 }
f872b822 5845#ifdef DBL_DIG
0b799eea
MV
5846 /* hard code precision for base 10 if the preprocessor tells us to... */
5847 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
5848#endif
1be6b49c
ML
5849
5850#ifdef GUILE_DEBUG
5851 check_sanity ();
5852#endif
f92e85f7 5853
d956fa6f
MV
5854 exactly_one_half = scm_permanent_object (scm_divide (SCM_I_MAKINUM (1),
5855 SCM_I_MAKINUM (2)));
a0599745 5856#include "libguile/numbers.x"
0f2d19dd 5857}
89e00824
ML
5858
5859/*
5860 Local Variables:
5861 c-file-style: "gnu"
5862 End:
5863*/