Quote the first argument to `AC_DEFINE_UNQUOTED'.
[bpt/guile.git] / libguile / numbers.c
CommitLineData
5e647d08 1/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
ba74ef4e
MV
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
f81e080b 6 *
73be1d9e 7 * This library is free software; you can redistribute it and/or
53befeb7
NJ
8 * modify it under the terms of the GNU Lesser General Public License
9 * as published by the Free Software Foundation; either version 3 of
10 * the License, or (at your option) any later version.
0f2d19dd 11 *
53befeb7
NJ
12 * This library is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
73be1d9e
MV
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
0f2d19dd 16 *
73be1d9e
MV
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
53befeb7
NJ
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301 USA
73be1d9e 21 */
1bbd0b84 22
0f2d19dd 23\f
ca46fb90
RB
24/* General assumptions:
25 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
26 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
27 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
28 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
f92e85f7 29 * All objects satisfying SCM_FRACTIONP are never an integer.
ca46fb90
RB
30 */
31
32/* TODO:
33
34 - see if special casing bignums and reals in integer-exponent when
35 possible (to use mpz_pow and mpf_pow_ui) is faster.
36
37 - look in to better short-circuiting of common cases in
38 integer-expt and elsewhere.
39
40 - see if direct mpz operations can help in ash and elsewhere.
41
42 */
0f2d19dd 43
dbb605f5 44#ifdef HAVE_CONFIG_H
ee33d62a
RB
45# include <config.h>
46#endif
47
0f2d19dd 48#include <math.h>
fc194577 49#include <string.h>
3f47e526
MG
50#include <unicase.h>
51#include <unictype.h>
f92e85f7 52
8ab3d8a0
KR
53#if HAVE_COMPLEX_H
54#include <complex.h>
55#endif
56
a0599745 57#include "libguile/_scm.h"
a0599745
MD
58#include "libguile/feature.h"
59#include "libguile/ports.h"
60#include "libguile/root.h"
61#include "libguile/smob.h"
62#include "libguile/strings.h"
a0599745
MD
63
64#include "libguile/validate.h"
65#include "libguile/numbers.h"
1be6b49c 66#include "libguile/deprecation.h"
f4c627b3 67
f92e85f7
MV
68#include "libguile/eq.h"
69
55f26379
MV
70#include "libguile/discouraged.h"
71
8ab3d8a0
KR
72/* values per glibc, if not already defined */
73#ifndef M_LOG10E
74#define M_LOG10E 0.43429448190325182765
75#endif
76#ifndef M_PI
77#define M_PI 3.14159265358979323846
78#endif
79
0f2d19dd 80\f
f4c627b3 81
ca46fb90
RB
82/*
83 Wonder if this might be faster for some of our code? A switch on
84 the numtag would jump directly to the right case, and the
85 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
86
87 #define SCM_I_NUMTAG_NOTNUM 0
88 #define SCM_I_NUMTAG_INUM 1
89 #define SCM_I_NUMTAG_BIG scm_tc16_big
90 #define SCM_I_NUMTAG_REAL scm_tc16_real
91 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
92 #define SCM_I_NUMTAG(x) \
e11e83f3 93 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
ca46fb90 94 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
534c55a9 95 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
ca46fb90
RB
96 : SCM_I_NUMTAG_NOTNUM)))
97*/
f92e85f7 98/* the macro above will not work as is with fractions */
f4c627b3
DH
99
100
e7efe8e7
AW
101static SCM flo0;
102
34d19ef6 103#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
09fb7599 104
56e55ac7 105/* FLOBUFLEN is the maximum number of characters neccessary for the
3a9809df
DH
106 * printed or scm_string representation of an inexact number.
107 */
0b799eea 108#define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
3a9809df 109
7351e207
MV
110#if defined (SCO)
111#if ! defined (HAVE_ISNAN)
112#define HAVE_ISNAN
113static int
114isnan (double x)
115{
116 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
117}
0f2d19dd 118#endif
7351e207
MV
119#if ! defined (HAVE_ISINF)
120#define HAVE_ISINF
121static int
122isinf (double x)
123{
124 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
125}
0f2d19dd 126
7351e207 127#endif
e6f3ef58
MD
128#endif
129
b127c712 130
ad79736c
AW
131#if !defined (HAVE_ASINH)
132static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
133#endif
134#if !defined (HAVE_ACOSH)
135static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
136#endif
137#if !defined (HAVE_ATANH)
138static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
139#endif
140
f8a8200b
KR
141/* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
142 an explicit check. In some future gmp (don't know what version number),
143 mpz_cmp_d is supposed to do this itself. */
144#if 1
b127c712
KR
145#define xmpz_cmp_d(z, d) \
146 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
147#else
148#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
149#endif
150
a98ce907
KR
151/* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
152 isinf. It does have finite and isnan though, hence the use of those.
153 fpclass would be a possibility on that system too. */
f92e85f7
MV
154static int
155xisinf (double x)
156{
157#if defined (HAVE_ISINF)
158 return isinf (x);
159#elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
160 return (! (finite (x) || isnan (x)));
161#else
162 return 0;
163#endif
164}
165
166static int
167xisnan (double x)
168{
169#if defined (HAVE_ISNAN)
170 return isnan (x);
171#else
172 return 0;
173#endif
174}
175
4b26c03e 176#if defined (GUILE_I)
bca69a9f 177#if HAVE_COMPLEX_DOUBLE
8ab3d8a0
KR
178
179/* For an SCM object Z which is a complex number (ie. satisfies
180 SCM_COMPLEXP), return its value as a C level "complex double". */
181#define SCM_COMPLEX_VALUE(z) \
4b26c03e 182 (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
8ab3d8a0 183
7a35784c 184static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
8ab3d8a0
KR
185
186/* Convert a C "complex double" to an SCM value. */
7a35784c 187static inline SCM
8ab3d8a0
KR
188scm_from_complex_double (complex double z)
189{
190 return scm_c_make_rectangular (creal (z), cimag (z));
191}
bca69a9f 192
8ab3d8a0 193#endif /* HAVE_COMPLEX_DOUBLE */
bca69a9f 194#endif /* GUILE_I */
8ab3d8a0 195
0f2d19dd
JB
196\f
197
713a4259 198static mpz_t z_negative_one;
ac0c002c
DH
199
200\f
201
189171c5 202SCM
ca46fb90
RB
203scm_i_mkbig ()
204{
205 /* Return a newly created bignum. */
206 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
207 mpz_init (SCM_I_BIG_MPZ (z));
208 return z;
209}
210
189171c5 211SCM
c71b0706
MV
212scm_i_long2big (long x)
213{
214 /* Return a newly created bignum initialized to X. */
215 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
216 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
217 return z;
218}
219
189171c5 220SCM
c71b0706
MV
221scm_i_ulong2big (unsigned long x)
222{
223 /* Return a newly created bignum initialized to X. */
224 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
225 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
226 return z;
227}
228
189171c5 229SCM
ca46fb90
RB
230scm_i_clonebig (SCM src_big, int same_sign_p)
231{
232 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
233 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
234 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
0aacf84e
MD
235 if (!same_sign_p)
236 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
ca46fb90
RB
237 return z;
238}
239
189171c5 240int
ca46fb90
RB
241scm_i_bigcmp (SCM x, SCM y)
242{
243 /* Return neg if x < y, pos if x > y, and 0 if x == y */
244 /* presume we already know x and y are bignums */
245 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
246 scm_remember_upto_here_2 (x, y);
247 return result;
248}
249
189171c5 250SCM
ca46fb90
RB
251scm_i_dbl2big (double d)
252{
253 /* results are only defined if d is an integer */
254 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
255 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
256 return z;
257}
258
f92e85f7
MV
259/* Convert a integer in double representation to a SCM number. */
260
189171c5 261SCM
f92e85f7
MV
262scm_i_dbl2num (double u)
263{
264 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
265 powers of 2, so there's no rounding when making "double" values
266 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
267 get rounded on a 64-bit machine, hence the "+1".
268
269 The use of floor() to force to an integer value ensures we get a
270 "numerically closest" value without depending on how a
271 double->long cast or how mpz_set_d will round. For reference,
272 double->long probably follows the hardware rounding mode,
273 mpz_set_d truncates towards zero. */
274
275 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
276 representable as a double? */
277
278 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
279 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
d956fa6f 280 return SCM_I_MAKINUM ((long) u);
f92e85f7
MV
281 else
282 return scm_i_dbl2big (u);
283}
284
089c9a59
KR
285/* scm_i_big2dbl() rounds to the closest representable double, in accordance
286 with R5RS exact->inexact.
287
288 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
f8a8200b
KR
289 (ie. truncate towards zero), then adjust to get the closest double by
290 examining the next lower bit and adding 1 (to the absolute value) if
291 necessary.
292
293 Bignums exactly half way between representable doubles are rounded to the
294 next higher absolute value (ie. away from zero). This seems like an
295 adequate interpretation of R5RS "numerically closest", and it's easier
296 and faster than a full "nearest-even" style.
297
298 The bit test must be done on the absolute value of the mpz_t, which means
299 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
300 negatives as twos complement.
301
302 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
303 following the hardware rounding mode, but applied to the absolute value
304 of the mpz_t operand. This is not what we want so we put the high
305 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
306 mpz_get_d is supposed to always truncate towards zero.
307
308 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
309 is a slowdown. It'd be faster to pick out the relevant high bits with
310 mpz_getlimbn if we could be bothered coding that, and if the new
311 truncating gmp doesn't come out. */
089c9a59
KR
312
313double
ca46fb90
RB
314scm_i_big2dbl (SCM b)
315{
089c9a59
KR
316 double result;
317 size_t bits;
318
319 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
320
f8a8200b 321#if 1
089c9a59 322 {
f8a8200b 323 /* Current GMP, eg. 4.1.3, force truncation towards zero */
089c9a59
KR
324 mpz_t tmp;
325 if (bits > DBL_MANT_DIG)
326 {
327 size_t shift = bits - DBL_MANT_DIG;
328 mpz_init2 (tmp, DBL_MANT_DIG);
329 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
330 result = ldexp (mpz_get_d (tmp), shift);
331 mpz_clear (tmp);
332 }
333 else
334 {
335 result = mpz_get_d (SCM_I_BIG_MPZ (b));
336 }
337 }
338#else
f8a8200b 339 /* Future GMP */
089c9a59
KR
340 result = mpz_get_d (SCM_I_BIG_MPZ (b));
341#endif
342
343 if (bits > DBL_MANT_DIG)
344 {
345 unsigned long pos = bits - DBL_MANT_DIG - 1;
346 /* test bit number "pos" in absolute value */
347 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
348 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
349 {
350 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
351 }
352 }
353
ca46fb90
RB
354 scm_remember_upto_here_1 (b);
355 return result;
356}
357
189171c5 358SCM
ca46fb90
RB
359scm_i_normbig (SCM b)
360{
361 /* convert a big back to a fixnum if it'll fit */
362 /* presume b is a bignum */
363 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
364 {
365 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
366 if (SCM_FIXABLE (val))
d956fa6f 367 b = SCM_I_MAKINUM (val);
ca46fb90
RB
368 }
369 return b;
370}
f872b822 371
f92e85f7
MV
372static SCM_C_INLINE_KEYWORD SCM
373scm_i_mpz2num (mpz_t b)
374{
375 /* convert a mpz number to a SCM number. */
376 if (mpz_fits_slong_p (b))
377 {
378 long val = mpz_get_si (b);
379 if (SCM_FIXABLE (val))
d956fa6f 380 return SCM_I_MAKINUM (val);
f92e85f7
MV
381 }
382
383 {
384 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
385 mpz_init_set (SCM_I_BIG_MPZ (z), b);
386 return z;
387 }
388}
389
390/* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
391static SCM scm_divide2real (SCM x, SCM y);
392
cba42c93
MV
393static SCM
394scm_i_make_ratio (SCM numerator, SCM denominator)
c60e130c 395#define FUNC_NAME "make-ratio"
f92e85f7 396{
c60e130c
MV
397 /* First make sure the arguments are proper.
398 */
e11e83f3 399 if (SCM_I_INUMP (denominator))
f92e85f7 400 {
bc36d050 401 if (scm_is_eq (denominator, SCM_INUM0))
f92e85f7 402 scm_num_overflow ("make-ratio");
bc36d050 403 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
f92e85f7
MV
404 return numerator;
405 }
406 else
407 {
408 if (!(SCM_BIGP(denominator)))
409 SCM_WRONG_TYPE_ARG (2, denominator);
410 }
e11e83f3 411 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
c60e130c
MV
412 SCM_WRONG_TYPE_ARG (1, numerator);
413
414 /* Then flip signs so that the denominator is positive.
415 */
73e4de09 416 if (scm_is_true (scm_negative_p (denominator)))
c60e130c
MV
417 {
418 numerator = scm_difference (numerator, SCM_UNDEFINED);
419 denominator = scm_difference (denominator, SCM_UNDEFINED);
420 }
421
422 /* Now consider for each of the four fixnum/bignum combinations
423 whether the rational number is really an integer.
424 */
e11e83f3 425 if (SCM_I_INUMP (numerator))
f92e85f7 426 {
e11e83f3 427 long x = SCM_I_INUM (numerator);
bc36d050 428 if (scm_is_eq (numerator, SCM_INUM0))
f92e85f7 429 return SCM_INUM0;
e11e83f3 430 if (SCM_I_INUMP (denominator))
f92e85f7 431 {
dd5130ca 432 long y;
e11e83f3 433 y = SCM_I_INUM (denominator);
f92e85f7 434 if (x == y)
d956fa6f 435 return SCM_I_MAKINUM(1);
f92e85f7 436 if ((x % y) == 0)
d956fa6f 437 return SCM_I_MAKINUM (x / y);
f92e85f7 438 }
dd5130ca
KR
439 else
440 {
441 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
3271a325
KR
442 of that value for the denominator, as a bignum. Apart from
443 that case, abs(bignum) > abs(inum) so inum/bignum is not an
444 integer. */
445 if (x == SCM_MOST_NEGATIVE_FIXNUM
446 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
447 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
d956fa6f 448 return SCM_I_MAKINUM(-1);
dd5130ca 449 }
f92e85f7 450 }
c60e130c 451 else if (SCM_BIGP (numerator))
f92e85f7 452 {
e11e83f3 453 if (SCM_I_INUMP (denominator))
c60e130c 454 {
e11e83f3 455 long yy = SCM_I_INUM (denominator);
c60e130c
MV
456 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
457 return scm_divide (numerator, denominator);
458 }
459 else
f92e85f7 460 {
bc36d050 461 if (scm_is_eq (numerator, denominator))
d956fa6f 462 return SCM_I_MAKINUM(1);
c60e130c
MV
463 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
464 SCM_I_BIG_MPZ (denominator)))
465 return scm_divide(numerator, denominator);
f92e85f7 466 }
f92e85f7 467 }
c60e130c
MV
468
469 /* No, it's a proper fraction.
470 */
e2bf3b19
HWN
471 {
472 SCM divisor = scm_gcd (numerator, denominator);
473 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
474 {
475 numerator = scm_divide (numerator, divisor);
476 denominator = scm_divide (denominator, divisor);
477 }
478
479 return scm_double_cell (scm_tc16_fraction,
480 SCM_UNPACK (numerator),
481 SCM_UNPACK (denominator), 0);
482 }
f92e85f7 483}
c60e130c 484#undef FUNC_NAME
f92e85f7 485
f92e85f7
MV
486double
487scm_i_fraction2double (SCM z)
488{
55f26379
MV
489 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
490 SCM_FRACTION_DENOMINATOR (z)));
f92e85f7
MV
491}
492
a1ec6916 493SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
1bbd0b84 494 (SCM x),
942e5b91
MG
495 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
496 "otherwise.")
1bbd0b84 497#define FUNC_NAME s_scm_exact_p
0f2d19dd 498{
e11e83f3 499 if (SCM_I_INUMP (x))
0aacf84e
MD
500 return SCM_BOOL_T;
501 if (SCM_BIGP (x))
502 return SCM_BOOL_T;
f92e85f7
MV
503 if (SCM_FRACTIONP (x))
504 return SCM_BOOL_T;
eb927cb9
MV
505 if (SCM_NUMBERP (x))
506 return SCM_BOOL_F;
507 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 508}
1bbd0b84 509#undef FUNC_NAME
0f2d19dd 510
4219f20d 511
a1ec6916 512SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
1bbd0b84 513 (SCM n),
942e5b91
MG
514 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
515 "otherwise.")
1bbd0b84 516#define FUNC_NAME s_scm_odd_p
0f2d19dd 517{
e11e83f3 518 if (SCM_I_INUMP (n))
0aacf84e 519 {
e11e83f3 520 long val = SCM_I_INUM (n);
73e4de09 521 return scm_from_bool ((val & 1L) != 0);
0aacf84e
MD
522 }
523 else if (SCM_BIGP (n))
524 {
525 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
526 scm_remember_upto_here_1 (n);
73e4de09 527 return scm_from_bool (odd_p);
0aacf84e 528 }
73e4de09 529 else if (scm_is_true (scm_inf_p (n)))
7351e207 530 return SCM_BOOL_T;
f92e85f7
MV
531 else if (SCM_REALP (n))
532 {
533 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
534 if (rem == 1.0)
535 return SCM_BOOL_T;
536 else if (rem == 0.0)
537 return SCM_BOOL_F;
538 else
539 SCM_WRONG_TYPE_ARG (1, n);
540 }
0aacf84e 541 else
a1a33b0f 542 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 543}
1bbd0b84 544#undef FUNC_NAME
0f2d19dd 545
4219f20d 546
a1ec6916 547SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
1bbd0b84 548 (SCM n),
942e5b91
MG
549 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
550 "otherwise.")
1bbd0b84 551#define FUNC_NAME s_scm_even_p
0f2d19dd 552{
e11e83f3 553 if (SCM_I_INUMP (n))
0aacf84e 554 {
e11e83f3 555 long val = SCM_I_INUM (n);
73e4de09 556 return scm_from_bool ((val & 1L) == 0);
0aacf84e
MD
557 }
558 else if (SCM_BIGP (n))
559 {
560 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
561 scm_remember_upto_here_1 (n);
73e4de09 562 return scm_from_bool (even_p);
0aacf84e 563 }
73e4de09 564 else if (scm_is_true (scm_inf_p (n)))
7351e207 565 return SCM_BOOL_T;
f92e85f7
MV
566 else if (SCM_REALP (n))
567 {
568 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
569 if (rem == 1.0)
570 return SCM_BOOL_F;
571 else if (rem == 0.0)
572 return SCM_BOOL_T;
573 else
574 SCM_WRONG_TYPE_ARG (1, n);
575 }
0aacf84e 576 else
a1a33b0f 577 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 578}
1bbd0b84 579#undef FUNC_NAME
0f2d19dd 580
7351e207 581SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
b1092b3a
MV
582 (SCM x),
583 "Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
584 "or @samp{-inf.0}, @code{#f} otherwise.")
7351e207
MV
585#define FUNC_NAME s_scm_inf_p
586{
b1092b3a
MV
587 if (SCM_REALP (x))
588 return scm_from_bool (xisinf (SCM_REAL_VALUE (x)));
589 else if (SCM_COMPLEXP (x))
590 return scm_from_bool (xisinf (SCM_COMPLEX_REAL (x))
591 || xisinf (SCM_COMPLEX_IMAG (x)));
0aacf84e 592 else
7351e207 593 return SCM_BOOL_F;
7351e207
MV
594}
595#undef FUNC_NAME
596
597SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
598 (SCM n),
599 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
600 "otherwise.")
601#define FUNC_NAME s_scm_nan_p
602{
0aacf84e 603 if (SCM_REALP (n))
73e4de09 604 return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
0aacf84e 605 else if (SCM_COMPLEXP (n))
73e4de09 606 return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
7351e207 607 || xisnan (SCM_COMPLEX_IMAG (n)));
0aacf84e 608 else
7351e207 609 return SCM_BOOL_F;
7351e207
MV
610}
611#undef FUNC_NAME
612
613/* Guile's idea of infinity. */
614static double guile_Inf;
615
616/* Guile's idea of not a number. */
617static double guile_NaN;
618
619static void
620guile_ieee_init (void)
621{
622#if defined (HAVE_ISINF) || defined (HAVE_FINITE)
623
624/* Some version of gcc on some old version of Linux used to crash when
625 trying to make Inf and NaN. */
626
240a27d2
KR
627#ifdef INFINITY
628 /* C99 INFINITY, when available.
629 FIXME: The standard allows for INFINITY to be something that overflows
630 at compile time. We ought to have a configure test to check for that
631 before trying to use it. (But in practice we believe this is not a
632 problem on any system guile is likely to target.) */
633 guile_Inf = INFINITY;
56a3dcd4 634#elif defined HAVE_DINFINITY
240a27d2 635 /* OSF */
7351e207 636 extern unsigned int DINFINITY[2];
eaa94eaa 637 guile_Inf = (*((double *) (DINFINITY)));
7351e207
MV
638#else
639 double tmp = 1e+10;
640 guile_Inf = tmp;
641 for (;;)
642 {
643 guile_Inf *= 1e+10;
644 if (guile_Inf == tmp)
645 break;
646 tmp = guile_Inf;
647 }
648#endif
649
650#endif
651
652#if defined (HAVE_ISNAN)
653
240a27d2
KR
654#ifdef NAN
655 /* C99 NAN, when available */
656 guile_NaN = NAN;
56a3dcd4 657#elif defined HAVE_DQNAN
eaa94eaa
LC
658 {
659 /* OSF */
660 extern unsigned int DQNAN[2];
661 guile_NaN = (*((double *)(DQNAN)));
662 }
7351e207
MV
663#else
664 guile_NaN = guile_Inf / guile_Inf;
665#endif
666
667#endif
668}
669
670SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
671 (void),
672 "Return Inf.")
673#define FUNC_NAME s_scm_inf
674{
675 static int initialized = 0;
676 if (! initialized)
677 {
678 guile_ieee_init ();
679 initialized = 1;
680 }
55f26379 681 return scm_from_double (guile_Inf);
7351e207
MV
682}
683#undef FUNC_NAME
684
685SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
686 (void),
687 "Return NaN.")
688#define FUNC_NAME s_scm_nan
689{
690 static int initialized = 0;
0aacf84e 691 if (!initialized)
7351e207
MV
692 {
693 guile_ieee_init ();
694 initialized = 1;
695 }
55f26379 696 return scm_from_double (guile_NaN);
7351e207
MV
697}
698#undef FUNC_NAME
699
4219f20d 700
a48d60b1
MD
701SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
702 (SCM x),
703 "Return the absolute value of @var{x}.")
704#define FUNC_NAME
0f2d19dd 705{
e11e83f3 706 if (SCM_I_INUMP (x))
0aacf84e 707 {
e11e83f3 708 long int xx = SCM_I_INUM (x);
0aacf84e
MD
709 if (xx >= 0)
710 return x;
711 else if (SCM_POSFIXABLE (-xx))
d956fa6f 712 return SCM_I_MAKINUM (-xx);
0aacf84e
MD
713 else
714 return scm_i_long2big (-xx);
4219f20d 715 }
0aacf84e
MD
716 else if (SCM_BIGP (x))
717 {
718 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
719 if (sgn < 0)
720 return scm_i_clonebig (x, 0);
721 else
722 return x;
4219f20d 723 }
0aacf84e 724 else if (SCM_REALP (x))
ae38324d
KR
725 {
726 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
727 double xx = SCM_REAL_VALUE (x);
728 if (xx < 0.0)
55f26379 729 return scm_from_double (-xx);
ae38324d
KR
730 else
731 return x;
732 }
f92e85f7
MV
733 else if (SCM_FRACTIONP (x))
734 {
73e4de09 735 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
f92e85f7 736 return x;
cba42c93 737 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7
MV
738 SCM_FRACTION_DENOMINATOR (x));
739 }
0aacf84e 740 else
a48d60b1 741 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
0f2d19dd 742}
a48d60b1 743#undef FUNC_NAME
0f2d19dd 744
4219f20d 745
9de33deb 746SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
942e5b91
MG
747/* "Return the quotient of the numbers @var{x} and @var{y}."
748 */
0f2d19dd 749SCM
6e8d25a6 750scm_quotient (SCM x, SCM y)
0f2d19dd 751{
e11e83f3 752 if (SCM_I_INUMP (x))
0aacf84e 753 {
e11e83f3
MV
754 long xx = SCM_I_INUM (x);
755 if (SCM_I_INUMP (y))
0aacf84e 756 {
e11e83f3 757 long yy = SCM_I_INUM (y);
0aacf84e
MD
758 if (yy == 0)
759 scm_num_overflow (s_quotient);
760 else
761 {
762 long z = xx / yy;
763 if (SCM_FIXABLE (z))
d956fa6f 764 return SCM_I_MAKINUM (z);
0aacf84e
MD
765 else
766 return scm_i_long2big (z);
767 }
828865c3 768 }
0aacf84e 769 else if (SCM_BIGP (y))
ac0c002c 770 {
e11e83f3 771 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
772 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
773 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
774 {
775 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
776 scm_remember_upto_here_1 (y);
d956fa6f 777 return SCM_I_MAKINUM (-1);
4dc09ee4 778 }
0aacf84e 779 else
d956fa6f 780 return SCM_I_MAKINUM (0);
ac0c002c
DH
781 }
782 else
0aacf84e 783 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
828865c3 784 }
0aacf84e
MD
785 else if (SCM_BIGP (x))
786 {
e11e83f3 787 if (SCM_I_INUMP (y))
0aacf84e 788 {
e11e83f3 789 long yy = SCM_I_INUM (y);
0aacf84e
MD
790 if (yy == 0)
791 scm_num_overflow (s_quotient);
792 else if (yy == 1)
793 return x;
794 else
795 {
796 SCM result = scm_i_mkbig ();
797 if (yy < 0)
798 {
799 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
800 SCM_I_BIG_MPZ (x),
801 - yy);
802 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
803 }
804 else
805 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
806 scm_remember_upto_here_1 (x);
807 return scm_i_normbig (result);
808 }
809 }
810 else if (SCM_BIGP (y))
811 {
812 SCM result = scm_i_mkbig ();
813 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
814 SCM_I_BIG_MPZ (x),
815 SCM_I_BIG_MPZ (y));
816 scm_remember_upto_here_2 (x, y);
817 return scm_i_normbig (result);
818 }
819 else
820 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
f872b822 821 }
0aacf84e 822 else
89a7e495 823 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
0f2d19dd
JB
824}
825
9de33deb 826SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
942e5b91
MG
827/* "Return the remainder of the numbers @var{x} and @var{y}.\n"
828 * "@lisp\n"
829 * "(remainder 13 4) @result{} 1\n"
830 * "(remainder -13 4) @result{} -1\n"
831 * "@end lisp"
832 */
0f2d19dd 833SCM
6e8d25a6 834scm_remainder (SCM x, SCM y)
0f2d19dd 835{
e11e83f3 836 if (SCM_I_INUMP (x))
0aacf84e 837 {
e11e83f3 838 if (SCM_I_INUMP (y))
0aacf84e 839 {
e11e83f3 840 long yy = SCM_I_INUM (y);
0aacf84e
MD
841 if (yy == 0)
842 scm_num_overflow (s_remainder);
843 else
844 {
e11e83f3 845 long z = SCM_I_INUM (x) % yy;
d956fa6f 846 return SCM_I_MAKINUM (z);
0aacf84e
MD
847 }
848 }
849 else if (SCM_BIGP (y))
ac0c002c 850 {
e11e83f3 851 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
852 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
853 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
854 {
855 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
856 scm_remember_upto_here_1 (y);
d956fa6f 857 return SCM_I_MAKINUM (0);
4dc09ee4 858 }
0aacf84e
MD
859 else
860 return x;
ac0c002c
DH
861 }
862 else
0aacf84e 863 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
89a7e495 864 }
0aacf84e
MD
865 else if (SCM_BIGP (x))
866 {
e11e83f3 867 if (SCM_I_INUMP (y))
0aacf84e 868 {
e11e83f3 869 long yy = SCM_I_INUM (y);
0aacf84e
MD
870 if (yy == 0)
871 scm_num_overflow (s_remainder);
872 else
873 {
874 SCM result = scm_i_mkbig ();
875 if (yy < 0)
876 yy = - yy;
877 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
878 scm_remember_upto_here_1 (x);
879 return scm_i_normbig (result);
880 }
881 }
882 else if (SCM_BIGP (y))
883 {
884 SCM result = scm_i_mkbig ();
885 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
886 SCM_I_BIG_MPZ (x),
887 SCM_I_BIG_MPZ (y));
888 scm_remember_upto_here_2 (x, y);
889 return scm_i_normbig (result);
890 }
891 else
892 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
f872b822 893 }
0aacf84e 894 else
89a7e495 895 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
0f2d19dd
JB
896}
897
89a7e495 898
9de33deb 899SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
942e5b91
MG
900/* "Return the modulo of the numbers @var{x} and @var{y}.\n"
901 * "@lisp\n"
902 * "(modulo 13 4) @result{} 1\n"
903 * "(modulo -13 4) @result{} 3\n"
904 * "@end lisp"
905 */
0f2d19dd 906SCM
6e8d25a6 907scm_modulo (SCM x, SCM y)
0f2d19dd 908{
e11e83f3 909 if (SCM_I_INUMP (x))
0aacf84e 910 {
e11e83f3
MV
911 long xx = SCM_I_INUM (x);
912 if (SCM_I_INUMP (y))
0aacf84e 913 {
e11e83f3 914 long yy = SCM_I_INUM (y);
0aacf84e
MD
915 if (yy == 0)
916 scm_num_overflow (s_modulo);
917 else
918 {
66b1c775
KR
919 /* C99 specifies that "%" is the remainder corresponding to a
920 quotient rounded towards zero, and that's also traditional
921 for machine division, so z here should be well defined. */
0aacf84e
MD
922 long z = xx % yy;
923 long result;
924
925 if (yy < 0)
926 {
927 if (z > 0)
928 result = z + yy;
929 else
930 result = z;
931 }
932 else
933 {
934 if (z < 0)
935 result = z + yy;
936 else
937 result = z;
938 }
d956fa6f 939 return SCM_I_MAKINUM (result);
0aacf84e
MD
940 }
941 }
942 else if (SCM_BIGP (y))
943 {
944 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
0aacf84e
MD
945 {
946 mpz_t z_x;
947 SCM result;
948
949 if (sgn_y < 0)
950 {
951 SCM pos_y = scm_i_clonebig (y, 0);
952 /* do this after the last scm_op */
953 mpz_init_set_si (z_x, xx);
954 result = pos_y; /* re-use this bignum */
955 mpz_mod (SCM_I_BIG_MPZ (result),
956 z_x,
957 SCM_I_BIG_MPZ (pos_y));
958 scm_remember_upto_here_1 (pos_y);
959 }
960 else
961 {
962 result = scm_i_mkbig ();
963 /* do this after the last scm_op */
964 mpz_init_set_si (z_x, xx);
965 mpz_mod (SCM_I_BIG_MPZ (result),
966 z_x,
967 SCM_I_BIG_MPZ (y));
968 scm_remember_upto_here_1 (y);
969 }
ca46fb90 970
0aacf84e
MD
971 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
972 mpz_add (SCM_I_BIG_MPZ (result),
973 SCM_I_BIG_MPZ (y),
974 SCM_I_BIG_MPZ (result));
975 scm_remember_upto_here_1 (y);
976 /* and do this before the next one */
977 mpz_clear (z_x);
978 return scm_i_normbig (result);
979 }
980 }
981 else
982 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
f872b822 983 }
0aacf84e
MD
984 else if (SCM_BIGP (x))
985 {
e11e83f3 986 if (SCM_I_INUMP (y))
0aacf84e 987 {
e11e83f3 988 long yy = SCM_I_INUM (y);
0aacf84e
MD
989 if (yy == 0)
990 scm_num_overflow (s_modulo);
991 else
992 {
993 SCM result = scm_i_mkbig ();
994 mpz_mod_ui (SCM_I_BIG_MPZ (result),
995 SCM_I_BIG_MPZ (x),
996 (yy < 0) ? - yy : yy);
997 scm_remember_upto_here_1 (x);
998 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
999 mpz_sub_ui (SCM_I_BIG_MPZ (result),
1000 SCM_I_BIG_MPZ (result),
1001 - yy);
1002 return scm_i_normbig (result);
1003 }
1004 }
1005 else if (SCM_BIGP (y))
1006 {
0aacf84e
MD
1007 {
1008 SCM result = scm_i_mkbig ();
1009 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
1010 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
1011 mpz_mod (SCM_I_BIG_MPZ (result),
1012 SCM_I_BIG_MPZ (x),
1013 SCM_I_BIG_MPZ (pos_y));
ca46fb90 1014
0aacf84e
MD
1015 scm_remember_upto_here_1 (x);
1016 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
1017 mpz_add (SCM_I_BIG_MPZ (result),
1018 SCM_I_BIG_MPZ (y),
1019 SCM_I_BIG_MPZ (result));
1020 scm_remember_upto_here_2 (y, pos_y);
1021 return scm_i_normbig (result);
1022 }
1023 }
1024 else
1025 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
828865c3 1026 }
0aacf84e 1027 else
09fb7599 1028 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
0f2d19dd
JB
1029}
1030
78d3deb1
AW
1031SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
1032 (SCM x, SCM y, SCM rest),
1033 "Return the greatest common divisor of all parameter values.\n"
1034 "If called without arguments, 0 is returned.")
1035#define FUNC_NAME s_scm_i_gcd
1036{
1037 while (!scm_is_null (rest))
1038 { x = scm_gcd (x, y);
1039 y = scm_car (rest);
1040 rest = scm_cdr (rest);
1041 }
1042 return scm_gcd (x, y);
1043}
1044#undef FUNC_NAME
1045
1046#define s_gcd s_scm_i_gcd
1047#define g_gcd g_scm_i_gcd
1048
0f2d19dd 1049SCM
6e8d25a6 1050scm_gcd (SCM x, SCM y)
0f2d19dd 1051{
ca46fb90 1052 if (SCM_UNBNDP (y))
1dd79792 1053 return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
ca46fb90 1054
e11e83f3 1055 if (SCM_I_INUMP (x))
ca46fb90 1056 {
e11e83f3 1057 if (SCM_I_INUMP (y))
ca46fb90 1058 {
e11e83f3
MV
1059 long xx = SCM_I_INUM (x);
1060 long yy = SCM_I_INUM (y);
ca46fb90
RB
1061 long u = xx < 0 ? -xx : xx;
1062 long v = yy < 0 ? -yy : yy;
1063 long result;
0aacf84e
MD
1064 if (xx == 0)
1065 result = v;
1066 else if (yy == 0)
1067 result = u;
1068 else
1069 {
1070 long k = 1;
1071 long t;
1072 /* Determine a common factor 2^k */
1073 while (!(1 & (u | v)))
1074 {
1075 k <<= 1;
1076 u >>= 1;
1077 v >>= 1;
1078 }
1079 /* Now, any factor 2^n can be eliminated */
1080 if (u & 1)
1081 t = -v;
1082 else
1083 {
1084 t = u;
1085 b3:
1086 t = SCM_SRS (t, 1);
1087 }
1088 if (!(1 & t))
1089 goto b3;
1090 if (t > 0)
1091 u = t;
1092 else
1093 v = -t;
1094 t = u - v;
1095 if (t != 0)
1096 goto b3;
1097 result = u * k;
1098 }
1099 return (SCM_POSFIXABLE (result)
d956fa6f 1100 ? SCM_I_MAKINUM (result)
0aacf84e 1101 : scm_i_long2big (result));
ca46fb90
RB
1102 }
1103 else if (SCM_BIGP (y))
1104 {
0bff4dce
KR
1105 SCM_SWAP (x, y);
1106 goto big_inum;
ca46fb90
RB
1107 }
1108 else
1109 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
f872b822 1110 }
ca46fb90
RB
1111 else if (SCM_BIGP (x))
1112 {
e11e83f3 1113 if (SCM_I_INUMP (y))
ca46fb90
RB
1114 {
1115 unsigned long result;
0bff4dce
KR
1116 long yy;
1117 big_inum:
e11e83f3 1118 yy = SCM_I_INUM (y);
8c5b0afc
KR
1119 if (yy == 0)
1120 return scm_abs (x);
0aacf84e
MD
1121 if (yy < 0)
1122 yy = -yy;
ca46fb90
RB
1123 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1124 scm_remember_upto_here_1 (x);
0aacf84e 1125 return (SCM_POSFIXABLE (result)
d956fa6f 1126 ? SCM_I_MAKINUM (result)
c71b0706 1127 : scm_from_ulong (result));
ca46fb90
RB
1128 }
1129 else if (SCM_BIGP (y))
1130 {
1131 SCM result = scm_i_mkbig ();
0aacf84e
MD
1132 mpz_gcd (SCM_I_BIG_MPZ (result),
1133 SCM_I_BIG_MPZ (x),
1134 SCM_I_BIG_MPZ (y));
1135 scm_remember_upto_here_2 (x, y);
ca46fb90
RB
1136 return scm_i_normbig (result);
1137 }
1138 else
1139 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
09fb7599 1140 }
ca46fb90 1141 else
09fb7599 1142 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
0f2d19dd
JB
1143}
1144
78d3deb1
AW
1145SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
1146 (SCM x, SCM y, SCM rest),
1147 "Return the least common multiple of the arguments.\n"
1148 "If called without arguments, 1 is returned.")
1149#define FUNC_NAME s_scm_i_lcm
1150{
1151 while (!scm_is_null (rest))
1152 { x = scm_lcm (x, y);
1153 y = scm_car (rest);
1154 rest = scm_cdr (rest);
1155 }
1156 return scm_lcm (x, y);
1157}
1158#undef FUNC_NAME
1159
1160#define s_lcm s_scm_i_lcm
1161#define g_lcm g_scm_i_lcm
1162
0f2d19dd 1163SCM
6e8d25a6 1164scm_lcm (SCM n1, SCM n2)
0f2d19dd 1165{
ca46fb90
RB
1166 if (SCM_UNBNDP (n2))
1167 {
1168 if (SCM_UNBNDP (n1))
d956fa6f
MV
1169 return SCM_I_MAKINUM (1L);
1170 n2 = SCM_I_MAKINUM (1L);
09fb7599 1171 }
09fb7599 1172
e11e83f3 1173 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
ca46fb90 1174 g_lcm, n1, n2, SCM_ARG1, s_lcm);
e11e83f3 1175 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
ca46fb90 1176 g_lcm, n1, n2, SCM_ARGn, s_lcm);
09fb7599 1177
e11e83f3 1178 if (SCM_I_INUMP (n1))
ca46fb90 1179 {
e11e83f3 1180 if (SCM_I_INUMP (n2))
ca46fb90
RB
1181 {
1182 SCM d = scm_gcd (n1, n2);
bc36d050 1183 if (scm_is_eq (d, SCM_INUM0))
ca46fb90
RB
1184 return d;
1185 else
1186 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1187 }
1188 else
1189 {
1190 /* inum n1, big n2 */
1191 inumbig:
1192 {
1193 SCM result = scm_i_mkbig ();
e11e83f3 1194 long nn1 = SCM_I_INUM (n1);
ca46fb90
RB
1195 if (nn1 == 0) return SCM_INUM0;
1196 if (nn1 < 0) nn1 = - nn1;
1197 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1198 scm_remember_upto_here_1 (n2);
1199 return result;
1200 }
1201 }
1202 }
1203 else
1204 {
1205 /* big n1 */
e11e83f3 1206 if (SCM_I_INUMP (n2))
ca46fb90
RB
1207 {
1208 SCM_SWAP (n1, n2);
1209 goto inumbig;
1210 }
1211 else
1212 {
1213 SCM result = scm_i_mkbig ();
1214 mpz_lcm(SCM_I_BIG_MPZ (result),
1215 SCM_I_BIG_MPZ (n1),
1216 SCM_I_BIG_MPZ (n2));
1217 scm_remember_upto_here_2(n1, n2);
1218 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1219 return result;
1220 }
f872b822 1221 }
0f2d19dd
JB
1222}
1223
8a525303
GB
1224/* Emulating 2's complement bignums with sign magnitude arithmetic:
1225
1226 Logand:
1227 X Y Result Method:
1228 (len)
1229 + + + x (map digit:logand X Y)
1230 + - + x (map digit:logand X (lognot (+ -1 Y)))
1231 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1232 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1233
1234 Logior:
1235 X Y Result Method:
1236
1237 + + + (map digit:logior X Y)
1238 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1239 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1240 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1241
1242 Logxor:
1243 X Y Result Method:
1244
1245 + + + (map digit:logxor X Y)
1246 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1247 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1248 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1249
1250 Logtest:
1251 X Y Result
1252
1253 + + (any digit:logand X Y)
1254 + - (any digit:logand X (lognot (+ -1 Y)))
1255 - + (any digit:logand (lognot (+ -1 X)) Y)
1256 - - #t
1257
1258*/
1259
78d3deb1
AW
1260SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
1261 (SCM x, SCM y, SCM rest),
1262 "Return the bitwise AND of the integer arguments.\n\n"
1263 "@lisp\n"
1264 "(logand) @result{} -1\n"
1265 "(logand 7) @result{} 7\n"
1266 "(logand #b111 #b011 #b001) @result{} 1\n"
1267 "@end lisp")
1268#define FUNC_NAME s_scm_i_logand
1269{
1270 while (!scm_is_null (rest))
1271 { x = scm_logand (x, y);
1272 y = scm_car (rest);
1273 rest = scm_cdr (rest);
1274 }
1275 return scm_logand (x, y);
1276}
1277#undef FUNC_NAME
1278
1279#define s_scm_logand s_scm_i_logand
1280
1281SCM scm_logand (SCM n1, SCM n2)
1bbd0b84 1282#define FUNC_NAME s_scm_logand
0f2d19dd 1283{
9a00c9fc
DH
1284 long int nn1;
1285
0aacf84e
MD
1286 if (SCM_UNBNDP (n2))
1287 {
1288 if (SCM_UNBNDP (n1))
d956fa6f 1289 return SCM_I_MAKINUM (-1);
0aacf84e
MD
1290 else if (!SCM_NUMBERP (n1))
1291 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1292 else if (SCM_NUMBERP (n1))
1293 return n1;
1294 else
1295 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1296 }
09fb7599 1297
e11e83f3 1298 if (SCM_I_INUMP (n1))
0aacf84e 1299 {
e11e83f3
MV
1300 nn1 = SCM_I_INUM (n1);
1301 if (SCM_I_INUMP (n2))
0aacf84e 1302 {
e11e83f3 1303 long nn2 = SCM_I_INUM (n2);
d956fa6f 1304 return SCM_I_MAKINUM (nn1 & nn2);
0aacf84e
MD
1305 }
1306 else if SCM_BIGP (n2)
1307 {
1308 intbig:
1309 if (n1 == 0)
1310 return SCM_INUM0;
1311 {
1312 SCM result_z = scm_i_mkbig ();
1313 mpz_t nn1_z;
1314 mpz_init_set_si (nn1_z, nn1);
1315 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1316 scm_remember_upto_here_1 (n2);
1317 mpz_clear (nn1_z);
1318 return scm_i_normbig (result_z);
1319 }
1320 }
1321 else
1322 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1323 }
1324 else if (SCM_BIGP (n1))
1325 {
e11e83f3 1326 if (SCM_I_INUMP (n2))
0aacf84e
MD
1327 {
1328 SCM_SWAP (n1, n2);
e11e83f3 1329 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1330 goto intbig;
1331 }
1332 else if (SCM_BIGP (n2))
1333 {
1334 SCM result_z = scm_i_mkbig ();
1335 mpz_and (SCM_I_BIG_MPZ (result_z),
1336 SCM_I_BIG_MPZ (n1),
1337 SCM_I_BIG_MPZ (n2));
1338 scm_remember_upto_here_2 (n1, n2);
1339 return scm_i_normbig (result_z);
1340 }
1341 else
1342 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1343 }
0aacf84e 1344 else
09fb7599 1345 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1346}
1bbd0b84 1347#undef FUNC_NAME
0f2d19dd 1348
09fb7599 1349
78d3deb1
AW
1350SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
1351 (SCM x, SCM y, SCM rest),
1352 "Return the bitwise OR of the integer arguments.\n\n"
1353 "@lisp\n"
1354 "(logior) @result{} 0\n"
1355 "(logior 7) @result{} 7\n"
1356 "(logior #b000 #b001 #b011) @result{} 3\n"
1357 "@end lisp")
1358#define FUNC_NAME s_scm_i_logior
1359{
1360 while (!scm_is_null (rest))
1361 { x = scm_logior (x, y);
1362 y = scm_car (rest);
1363 rest = scm_cdr (rest);
1364 }
1365 return scm_logior (x, y);
1366}
1367#undef FUNC_NAME
1368
1369#define s_scm_logior s_scm_i_logior
1370
1371SCM scm_logior (SCM n1, SCM n2)
1bbd0b84 1372#define FUNC_NAME s_scm_logior
0f2d19dd 1373{
9a00c9fc
DH
1374 long int nn1;
1375
0aacf84e
MD
1376 if (SCM_UNBNDP (n2))
1377 {
1378 if (SCM_UNBNDP (n1))
1379 return SCM_INUM0;
1380 else if (SCM_NUMBERP (n1))
1381 return n1;
1382 else
1383 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1384 }
09fb7599 1385
e11e83f3 1386 if (SCM_I_INUMP (n1))
0aacf84e 1387 {
e11e83f3
MV
1388 nn1 = SCM_I_INUM (n1);
1389 if (SCM_I_INUMP (n2))
0aacf84e 1390 {
e11e83f3 1391 long nn2 = SCM_I_INUM (n2);
d956fa6f 1392 return SCM_I_MAKINUM (nn1 | nn2);
0aacf84e
MD
1393 }
1394 else if (SCM_BIGP (n2))
1395 {
1396 intbig:
1397 if (nn1 == 0)
1398 return n2;
1399 {
1400 SCM result_z = scm_i_mkbig ();
1401 mpz_t nn1_z;
1402 mpz_init_set_si (nn1_z, nn1);
1403 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1404 scm_remember_upto_here_1 (n2);
1405 mpz_clear (nn1_z);
9806de0d 1406 return scm_i_normbig (result_z);
0aacf84e
MD
1407 }
1408 }
1409 else
1410 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1411 }
1412 else if (SCM_BIGP (n1))
1413 {
e11e83f3 1414 if (SCM_I_INUMP (n2))
0aacf84e
MD
1415 {
1416 SCM_SWAP (n1, n2);
e11e83f3 1417 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1418 goto intbig;
1419 }
1420 else if (SCM_BIGP (n2))
1421 {
1422 SCM result_z = scm_i_mkbig ();
1423 mpz_ior (SCM_I_BIG_MPZ (result_z),
1424 SCM_I_BIG_MPZ (n1),
1425 SCM_I_BIG_MPZ (n2));
1426 scm_remember_upto_here_2 (n1, n2);
9806de0d 1427 return scm_i_normbig (result_z);
0aacf84e
MD
1428 }
1429 else
1430 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1431 }
0aacf84e 1432 else
09fb7599 1433 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1434}
1bbd0b84 1435#undef FUNC_NAME
0f2d19dd 1436
09fb7599 1437
78d3deb1
AW
1438SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
1439 (SCM x, SCM y, SCM rest),
3c3db128
GH
1440 "Return the bitwise XOR of the integer arguments. A bit is\n"
1441 "set in the result if it is set in an odd number of arguments.\n"
1442 "@lisp\n"
1443 "(logxor) @result{} 0\n"
1444 "(logxor 7) @result{} 7\n"
1445 "(logxor #b000 #b001 #b011) @result{} 2\n"
1446 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1e6808ea 1447 "@end lisp")
78d3deb1
AW
1448#define FUNC_NAME s_scm_i_logxor
1449{
1450 while (!scm_is_null (rest))
1451 { x = scm_logxor (x, y);
1452 y = scm_car (rest);
1453 rest = scm_cdr (rest);
1454 }
1455 return scm_logxor (x, y);
1456}
1457#undef FUNC_NAME
1458
1459#define s_scm_logxor s_scm_i_logxor
1460
1461SCM scm_logxor (SCM n1, SCM n2)
1bbd0b84 1462#define FUNC_NAME s_scm_logxor
0f2d19dd 1463{
9a00c9fc
DH
1464 long int nn1;
1465
0aacf84e
MD
1466 if (SCM_UNBNDP (n2))
1467 {
1468 if (SCM_UNBNDP (n1))
1469 return SCM_INUM0;
1470 else if (SCM_NUMBERP (n1))
1471 return n1;
1472 else
1473 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1474 }
09fb7599 1475
e11e83f3 1476 if (SCM_I_INUMP (n1))
0aacf84e 1477 {
e11e83f3
MV
1478 nn1 = SCM_I_INUM (n1);
1479 if (SCM_I_INUMP (n2))
0aacf84e 1480 {
e11e83f3 1481 long nn2 = SCM_I_INUM (n2);
d956fa6f 1482 return SCM_I_MAKINUM (nn1 ^ nn2);
0aacf84e
MD
1483 }
1484 else if (SCM_BIGP (n2))
1485 {
1486 intbig:
1487 {
1488 SCM result_z = scm_i_mkbig ();
1489 mpz_t nn1_z;
1490 mpz_init_set_si (nn1_z, nn1);
1491 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1492 scm_remember_upto_here_1 (n2);
1493 mpz_clear (nn1_z);
1494 return scm_i_normbig (result_z);
1495 }
1496 }
1497 else
1498 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1499 }
1500 else if (SCM_BIGP (n1))
1501 {
e11e83f3 1502 if (SCM_I_INUMP (n2))
0aacf84e
MD
1503 {
1504 SCM_SWAP (n1, n2);
e11e83f3 1505 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1506 goto intbig;
1507 }
1508 else if (SCM_BIGP (n2))
1509 {
1510 SCM result_z = scm_i_mkbig ();
1511 mpz_xor (SCM_I_BIG_MPZ (result_z),
1512 SCM_I_BIG_MPZ (n1),
1513 SCM_I_BIG_MPZ (n2));
1514 scm_remember_upto_here_2 (n1, n2);
1515 return scm_i_normbig (result_z);
1516 }
1517 else
1518 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1519 }
0aacf84e 1520 else
09fb7599 1521 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1522}
1bbd0b84 1523#undef FUNC_NAME
0f2d19dd 1524
09fb7599 1525
a1ec6916 1526SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1e6808ea 1527 (SCM j, SCM k),
ba6e7231
KR
1528 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
1529 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
1530 "without actually calculating the @code{logand}, just testing\n"
1531 "for non-zero.\n"
1532 "\n"
1e6808ea 1533 "@lisp\n"
b380b885
MD
1534 "(logtest #b0100 #b1011) @result{} #f\n"
1535 "(logtest #b0100 #b0111) @result{} #t\n"
1e6808ea 1536 "@end lisp")
1bbd0b84 1537#define FUNC_NAME s_scm_logtest
0f2d19dd 1538{
1e6808ea 1539 long int nj;
9a00c9fc 1540
e11e83f3 1541 if (SCM_I_INUMP (j))
0aacf84e 1542 {
e11e83f3
MV
1543 nj = SCM_I_INUM (j);
1544 if (SCM_I_INUMP (k))
0aacf84e 1545 {
e11e83f3 1546 long nk = SCM_I_INUM (k);
73e4de09 1547 return scm_from_bool (nj & nk);
0aacf84e
MD
1548 }
1549 else if (SCM_BIGP (k))
1550 {
1551 intbig:
1552 if (nj == 0)
1553 return SCM_BOOL_F;
1554 {
1555 SCM result;
1556 mpz_t nj_z;
1557 mpz_init_set_si (nj_z, nj);
1558 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1559 scm_remember_upto_here_1 (k);
73e4de09 1560 result = scm_from_bool (mpz_sgn (nj_z) != 0);
0aacf84e
MD
1561 mpz_clear (nj_z);
1562 return result;
1563 }
1564 }
1565 else
1566 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1567 }
1568 else if (SCM_BIGP (j))
1569 {
e11e83f3 1570 if (SCM_I_INUMP (k))
0aacf84e
MD
1571 {
1572 SCM_SWAP (j, k);
e11e83f3 1573 nj = SCM_I_INUM (j);
0aacf84e
MD
1574 goto intbig;
1575 }
1576 else if (SCM_BIGP (k))
1577 {
1578 SCM result;
1579 mpz_t result_z;
1580 mpz_init (result_z);
1581 mpz_and (result_z,
1582 SCM_I_BIG_MPZ (j),
1583 SCM_I_BIG_MPZ (k));
1584 scm_remember_upto_here_2 (j, k);
73e4de09 1585 result = scm_from_bool (mpz_sgn (result_z) != 0);
0aacf84e
MD
1586 mpz_clear (result_z);
1587 return result;
1588 }
1589 else
1590 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1591 }
1592 else
1593 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
0f2d19dd 1594}
1bbd0b84 1595#undef FUNC_NAME
0f2d19dd 1596
c1bfcf60 1597
a1ec6916 1598SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
2cd04b42 1599 (SCM index, SCM j),
ba6e7231
KR
1600 "Test whether bit number @var{index} in @var{j} is set.\n"
1601 "@var{index} starts from 0 for the least significant bit.\n"
1602 "\n"
1e6808ea 1603 "@lisp\n"
b380b885
MD
1604 "(logbit? 0 #b1101) @result{} #t\n"
1605 "(logbit? 1 #b1101) @result{} #f\n"
1606 "(logbit? 2 #b1101) @result{} #t\n"
1607 "(logbit? 3 #b1101) @result{} #t\n"
1608 "(logbit? 4 #b1101) @result{} #f\n"
1e6808ea 1609 "@end lisp")
1bbd0b84 1610#define FUNC_NAME s_scm_logbit_p
0f2d19dd 1611{
78166ad5 1612 unsigned long int iindex;
5efd3c7d 1613 iindex = scm_to_ulong (index);
78166ad5 1614
e11e83f3 1615 if (SCM_I_INUMP (j))
0d75f6d8
KR
1616 {
1617 /* bits above what's in an inum follow the sign bit */
20fcc8ed 1618 iindex = min (iindex, SCM_LONG_BIT - 1);
e11e83f3 1619 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
0d75f6d8 1620 }
0aacf84e
MD
1621 else if (SCM_BIGP (j))
1622 {
1623 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1624 scm_remember_upto_here_1 (j);
73e4de09 1625 return scm_from_bool (val);
0aacf84e
MD
1626 }
1627 else
78166ad5 1628 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
0f2d19dd 1629}
1bbd0b84 1630#undef FUNC_NAME
0f2d19dd 1631
78166ad5 1632
a1ec6916 1633SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1bbd0b84 1634 (SCM n),
4d814788 1635 "Return the integer which is the ones-complement of the integer\n"
1e6808ea
MG
1636 "argument.\n"
1637 "\n"
b380b885
MD
1638 "@lisp\n"
1639 "(number->string (lognot #b10000000) 2)\n"
1640 " @result{} \"-10000001\"\n"
1641 "(number->string (lognot #b0) 2)\n"
1642 " @result{} \"-1\"\n"
1e6808ea 1643 "@end lisp")
1bbd0b84 1644#define FUNC_NAME s_scm_lognot
0f2d19dd 1645{
e11e83f3 1646 if (SCM_I_INUMP (n)) {
f9811f9f
KR
1647 /* No overflow here, just need to toggle all the bits making up the inum.
1648 Enhancement: No need to strip the tag and add it back, could just xor
1649 a block of 1 bits, if that worked with the various debug versions of
1650 the SCM typedef. */
e11e83f3 1651 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
f9811f9f
KR
1652
1653 } else if (SCM_BIGP (n)) {
1654 SCM result = scm_i_mkbig ();
1655 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1656 scm_remember_upto_here_1 (n);
1657 return result;
1658
1659 } else {
1660 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1661 }
0f2d19dd 1662}
1bbd0b84 1663#undef FUNC_NAME
0f2d19dd 1664
518b7508
KR
1665/* returns 0 if IN is not an integer. OUT must already be
1666 initialized. */
1667static int
1668coerce_to_big (SCM in, mpz_t out)
1669{
1670 if (SCM_BIGP (in))
1671 mpz_set (out, SCM_I_BIG_MPZ (in));
e11e83f3
MV
1672 else if (SCM_I_INUMP (in))
1673 mpz_set_si (out, SCM_I_INUM (in));
518b7508
KR
1674 else
1675 return 0;
1676
1677 return 1;
1678}
1679
d885e204 1680SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
518b7508
KR
1681 (SCM n, SCM k, SCM m),
1682 "Return @var{n} raised to the integer exponent\n"
1683 "@var{k}, modulo @var{m}.\n"
1684 "\n"
1685 "@lisp\n"
1686 "(modulo-expt 2 3 5)\n"
1687 " @result{} 3\n"
1688 "@end lisp")
d885e204 1689#define FUNC_NAME s_scm_modulo_expt
518b7508
KR
1690{
1691 mpz_t n_tmp;
1692 mpz_t k_tmp;
1693 mpz_t m_tmp;
1694
1695 /* There are two classes of error we might encounter --
1696 1) Math errors, which we'll report by calling scm_num_overflow,
1697 and
1698 2) wrong-type errors, which of course we'll report by calling
1699 SCM_WRONG_TYPE_ARG.
1700 We don't report those errors immediately, however; instead we do
1701 some cleanup first. These variables tell us which error (if
1702 any) we should report after cleaning up.
1703 */
1704 int report_overflow = 0;
1705
1706 int position_of_wrong_type = 0;
1707 SCM value_of_wrong_type = SCM_INUM0;
1708
1709 SCM result = SCM_UNDEFINED;
1710
1711 mpz_init (n_tmp);
1712 mpz_init (k_tmp);
1713 mpz_init (m_tmp);
1714
bc36d050 1715 if (scm_is_eq (m, SCM_INUM0))
518b7508
KR
1716 {
1717 report_overflow = 1;
1718 goto cleanup;
1719 }
1720
1721 if (!coerce_to_big (n, n_tmp))
1722 {
1723 value_of_wrong_type = n;
1724 position_of_wrong_type = 1;
1725 goto cleanup;
1726 }
1727
1728 if (!coerce_to_big (k, k_tmp))
1729 {
1730 value_of_wrong_type = k;
1731 position_of_wrong_type = 2;
1732 goto cleanup;
1733 }
1734
1735 if (!coerce_to_big (m, m_tmp))
1736 {
1737 value_of_wrong_type = m;
1738 position_of_wrong_type = 3;
1739 goto cleanup;
1740 }
1741
1742 /* if the exponent K is negative, and we simply call mpz_powm, we
1743 will get a divide-by-zero exception when an inverse 1/n mod m
1744 doesn't exist (or is not unique). Since exceptions are hard to
1745 handle, we'll attempt the inversion "by hand" -- that way, we get
1746 a simple failure code, which is easy to handle. */
1747
1748 if (-1 == mpz_sgn (k_tmp))
1749 {
1750 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1751 {
1752 report_overflow = 1;
1753 goto cleanup;
1754 }
1755 mpz_neg (k_tmp, k_tmp);
1756 }
1757
1758 result = scm_i_mkbig ();
1759 mpz_powm (SCM_I_BIG_MPZ (result),
1760 n_tmp,
1761 k_tmp,
1762 m_tmp);
b7b8c575
KR
1763
1764 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1765 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1766
518b7508
KR
1767 cleanup:
1768 mpz_clear (m_tmp);
1769 mpz_clear (k_tmp);
1770 mpz_clear (n_tmp);
1771
1772 if (report_overflow)
1773 scm_num_overflow (FUNC_NAME);
1774
1775 if (position_of_wrong_type)
1776 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1777 value_of_wrong_type);
1778
1779 return scm_i_normbig (result);
1780}
1781#undef FUNC_NAME
1782
a1ec6916 1783SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
2cd04b42 1784 (SCM n, SCM k),
ba6e7231
KR
1785 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
1786 "exact integer, @var{n} can be any number.\n"
1787 "\n"
1788 "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
1789 "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
1790 "includes @math{0^0} is 1.\n"
1e6808ea 1791 "\n"
b380b885 1792 "@lisp\n"
ba6e7231
KR
1793 "(integer-expt 2 5) @result{} 32\n"
1794 "(integer-expt -3 3) @result{} -27\n"
1795 "(integer-expt 5 -3) @result{} 1/125\n"
1796 "(integer-expt 0 0) @result{} 1\n"
b380b885 1797 "@end lisp")
1bbd0b84 1798#define FUNC_NAME s_scm_integer_expt
0f2d19dd 1799{
1c35cb19
RB
1800 long i2 = 0;
1801 SCM z_i2 = SCM_BOOL_F;
1802 int i2_is_big = 0;
d956fa6f 1803 SCM acc = SCM_I_MAKINUM (1L);
ca46fb90 1804
d57ed702 1805 /* 0^0 == 1 according to R5RS */
bc36d050 1806 if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
73e4de09 1807 return scm_is_false (scm_zero_p(k)) ? n : acc;
bc36d050 1808 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
73e4de09 1809 return scm_is_false (scm_even_p (k)) ? n : acc;
ca46fb90 1810
e11e83f3
MV
1811 if (SCM_I_INUMP (k))
1812 i2 = SCM_I_INUM (k);
ca46fb90
RB
1813 else if (SCM_BIGP (k))
1814 {
1815 z_i2 = scm_i_clonebig (k, 1);
ca46fb90
RB
1816 scm_remember_upto_here_1 (k);
1817 i2_is_big = 1;
1818 }
2830fd91 1819 else
ca46fb90
RB
1820 SCM_WRONG_TYPE_ARG (2, k);
1821
1822 if (i2_is_big)
f872b822 1823 {
ca46fb90
RB
1824 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1825 {
1826 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1827 n = scm_divide (n, SCM_UNDEFINED);
1828 }
1829 while (1)
1830 {
1831 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1832 {
ca46fb90
RB
1833 return acc;
1834 }
1835 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1836 {
ca46fb90
RB
1837 return scm_product (acc, n);
1838 }
1839 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1840 acc = scm_product (acc, n);
1841 n = scm_product (n, n);
1842 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1843 }
f872b822 1844 }
ca46fb90 1845 else
f872b822 1846 {
ca46fb90
RB
1847 if (i2 < 0)
1848 {
1849 i2 = -i2;
1850 n = scm_divide (n, SCM_UNDEFINED);
1851 }
1852 while (1)
1853 {
1854 if (0 == i2)
1855 return acc;
1856 if (1 == i2)
1857 return scm_product (acc, n);
1858 if (i2 & 1)
1859 acc = scm_product (acc, n);
1860 n = scm_product (n, n);
1861 i2 >>= 1;
1862 }
f872b822 1863 }
0f2d19dd 1864}
1bbd0b84 1865#undef FUNC_NAME
0f2d19dd 1866
a1ec6916 1867SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1bbd0b84 1868 (SCM n, SCM cnt),
32f19569
KR
1869 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1870 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1e6808ea 1871 "\n"
e7644cb2 1872 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
32f19569
KR
1873 "@var{cnt} is negative it's a division, rounded towards negative\n"
1874 "infinity. (Note that this is not the same rounding as\n"
1875 "@code{quotient} does.)\n"
1876 "\n"
1877 "With @var{n} viewed as an infinite precision twos complement,\n"
1878 "@code{ash} means a left shift introducing zero bits, or a right\n"
1879 "shift dropping bits.\n"
1e6808ea 1880 "\n"
b380b885 1881 "@lisp\n"
1e6808ea
MG
1882 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1883 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
32f19569
KR
1884 "\n"
1885 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1886 "(ash -23 -2) @result{} -6\n"
a3c8b9fc 1887 "@end lisp")
1bbd0b84 1888#define FUNC_NAME s_scm_ash
0f2d19dd 1889{
3ab9f56e 1890 long bits_to_shift;
5efd3c7d 1891 bits_to_shift = scm_to_long (cnt);
ca46fb90 1892
788aca27
KR
1893 if (SCM_I_INUMP (n))
1894 {
1895 long nn = SCM_I_INUM (n);
1896
1897 if (bits_to_shift > 0)
1898 {
1899 /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
1900 overflow a non-zero fixnum. For smaller shifts we check the
1901 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
1902 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
1903 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
1904 bits_to_shift)". */
1905
1906 if (nn == 0)
1907 return n;
1908
1909 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
1910 && ((unsigned long)
1911 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
1912 <= 1))
1913 {
1914 return SCM_I_MAKINUM (nn << bits_to_shift);
1915 }
1916 else
1917 {
1918 SCM result = scm_i_long2big (nn);
1919 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1920 bits_to_shift);
1921 return result;
1922 }
1923 }
1924 else
1925 {
1926 bits_to_shift = -bits_to_shift;
1927 if (bits_to_shift >= SCM_LONG_BIT)
1928 return (nn >= 0 ? SCM_I_MAKINUM (0) : SCM_I_MAKINUM(-1));
1929 else
1930 return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
1931 }
1932
1933 }
1934 else if (SCM_BIGP (n))
ca46fb90 1935 {
788aca27
KR
1936 SCM result;
1937
1938 if (bits_to_shift == 0)
1939 return n;
1940
1941 result = scm_i_mkbig ();
1942 if (bits_to_shift >= 0)
1943 {
1944 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1945 bits_to_shift);
1946 return result;
1947 }
ca46fb90 1948 else
788aca27
KR
1949 {
1950 /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
1951 we have to allocate a bignum even if the result is going to be a
1952 fixnum. */
1953 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1954 -bits_to_shift);
1955 return scm_i_normbig (result);
1956 }
1957
ca46fb90
RB
1958 }
1959 else
788aca27
KR
1960 {
1961 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1962 }
0f2d19dd 1963}
1bbd0b84 1964#undef FUNC_NAME
0f2d19dd 1965
3c9f20f8 1966
a1ec6916 1967SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1bbd0b84 1968 (SCM n, SCM start, SCM end),
1e6808ea
MG
1969 "Return the integer composed of the @var{start} (inclusive)\n"
1970 "through @var{end} (exclusive) bits of @var{n}. The\n"
1971 "@var{start}th bit becomes the 0-th bit in the result.\n"
1972 "\n"
b380b885
MD
1973 "@lisp\n"
1974 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1975 " @result{} \"1010\"\n"
1976 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1977 " @result{} \"10110\"\n"
1978 "@end lisp")
1bbd0b84 1979#define FUNC_NAME s_scm_bit_extract
0f2d19dd 1980{
7f848242 1981 unsigned long int istart, iend, bits;
5efd3c7d
MV
1982 istart = scm_to_ulong (start);
1983 iend = scm_to_ulong (end);
c1bfcf60 1984 SCM_ASSERT_RANGE (3, end, (iend >= istart));
78166ad5 1985
7f848242
KR
1986 /* how many bits to keep */
1987 bits = iend - istart;
1988
e11e83f3 1989 if (SCM_I_INUMP (n))
0aacf84e 1990 {
e11e83f3 1991 long int in = SCM_I_INUM (n);
7f848242
KR
1992
1993 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
d77ad560 1994 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
857ae6af 1995 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
ac0c002c 1996
0aacf84e
MD
1997 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
1998 {
1999 /* Since we emulate two's complement encoded numbers, this
2000 * special case requires us to produce a result that has
7f848242 2001 * more bits than can be stored in a fixnum.
0aacf84e 2002 */
7f848242
KR
2003 SCM result = scm_i_long2big (in);
2004 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
2005 bits);
2006 return result;
0aacf84e 2007 }
ac0c002c 2008
7f848242 2009 /* mask down to requisite bits */
857ae6af 2010 bits = min (bits, SCM_I_FIXNUM_BIT);
d956fa6f 2011 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
0aacf84e
MD
2012 }
2013 else if (SCM_BIGP (n))
ac0c002c 2014 {
7f848242
KR
2015 SCM result;
2016 if (bits == 1)
2017 {
d956fa6f 2018 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
7f848242
KR
2019 }
2020 else
2021 {
2022 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
2023 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
2024 such bits into a ulong. */
2025 result = scm_i_mkbig ();
2026 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
2027 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
2028 result = scm_i_normbig (result);
2029 }
2030 scm_remember_upto_here_1 (n);
2031 return result;
ac0c002c 2032 }
0aacf84e 2033 else
78166ad5 2034 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 2035}
1bbd0b84 2036#undef FUNC_NAME
0f2d19dd 2037
7f848242 2038
e4755e5c
JB
2039static const char scm_logtab[] = {
2040 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
2041};
1cc91f1b 2042
a1ec6916 2043SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1bbd0b84 2044 (SCM n),
1e6808ea
MG
2045 "Return the number of bits in integer @var{n}. If integer is\n"
2046 "positive, the 1-bits in its binary representation are counted.\n"
2047 "If negative, the 0-bits in its two's-complement binary\n"
2048 "representation are counted. If 0, 0 is returned.\n"
2049 "\n"
b380b885
MD
2050 "@lisp\n"
2051 "(logcount #b10101010)\n"
ca46fb90
RB
2052 " @result{} 4\n"
2053 "(logcount 0)\n"
2054 " @result{} 0\n"
2055 "(logcount -2)\n"
2056 " @result{} 1\n"
2057 "@end lisp")
2058#define FUNC_NAME s_scm_logcount
2059{
e11e83f3 2060 if (SCM_I_INUMP (n))
f872b822 2061 {
ca46fb90 2062 unsigned long int c = 0;
e11e83f3 2063 long int nn = SCM_I_INUM (n);
ca46fb90
RB
2064 if (nn < 0)
2065 nn = -1 - nn;
2066 while (nn)
2067 {
2068 c += scm_logtab[15 & nn];
2069 nn >>= 4;
2070 }
d956fa6f 2071 return SCM_I_MAKINUM (c);
f872b822 2072 }
ca46fb90 2073 else if (SCM_BIGP (n))
f872b822 2074 {
ca46fb90 2075 unsigned long count;
713a4259
KR
2076 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
2077 count = mpz_popcount (SCM_I_BIG_MPZ (n));
ca46fb90 2078 else
713a4259
KR
2079 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
2080 scm_remember_upto_here_1 (n);
d956fa6f 2081 return SCM_I_MAKINUM (count);
f872b822 2082 }
ca46fb90
RB
2083 else
2084 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 2085}
ca46fb90 2086#undef FUNC_NAME
0f2d19dd
JB
2087
2088
ca46fb90
RB
2089static const char scm_ilentab[] = {
2090 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
2091};
2092
0f2d19dd 2093
ca46fb90
RB
2094SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
2095 (SCM n),
2096 "Return the number of bits necessary to represent @var{n}.\n"
2097 "\n"
2098 "@lisp\n"
2099 "(integer-length #b10101010)\n"
2100 " @result{} 8\n"
2101 "(integer-length 0)\n"
2102 " @result{} 0\n"
2103 "(integer-length #b1111)\n"
2104 " @result{} 4\n"
2105 "@end lisp")
2106#define FUNC_NAME s_scm_integer_length
2107{
e11e83f3 2108 if (SCM_I_INUMP (n))
0aacf84e
MD
2109 {
2110 unsigned long int c = 0;
2111 unsigned int l = 4;
e11e83f3 2112 long int nn = SCM_I_INUM (n);
0aacf84e
MD
2113 if (nn < 0)
2114 nn = -1 - nn;
2115 while (nn)
2116 {
2117 c += 4;
2118 l = scm_ilentab [15 & nn];
2119 nn >>= 4;
2120 }
d956fa6f 2121 return SCM_I_MAKINUM (c - 4 + l);
0aacf84e
MD
2122 }
2123 else if (SCM_BIGP (n))
2124 {
2125 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
2126 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
2127 1 too big, so check for that and adjust. */
2128 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
2129 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
2130 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
2131 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
2132 size--;
2133 scm_remember_upto_here_1 (n);
d956fa6f 2134 return SCM_I_MAKINUM (size);
0aacf84e
MD
2135 }
2136 else
ca46fb90 2137 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
ca46fb90
RB
2138}
2139#undef FUNC_NAME
0f2d19dd
JB
2140
2141/*** NUMBERS -> STRINGS ***/
0b799eea
MV
2142#define SCM_MAX_DBL_PREC 60
2143#define SCM_MAX_DBL_RADIX 36
2144
2145/* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
2146static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
2147static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
2148
2149static
2150void init_dblprec(int *prec, int radix) {
2151 /* determine floating point precision by adding successively
2152 smaller increments to 1.0 until it is considered == 1.0 */
2153 double f = ((double)1.0)/radix;
2154 double fsum = 1.0 + f;
2155
2156 *prec = 0;
2157 while (fsum != 1.0)
2158 {
2159 if (++(*prec) > SCM_MAX_DBL_PREC)
2160 fsum = 1.0;
2161 else
2162 {
2163 f /= radix;
2164 fsum = f + 1.0;
2165 }
2166 }
2167 (*prec) -= 1;
2168}
2169
2170static
2171void init_fx_radix(double *fx_list, int radix)
2172{
2173 /* initialize a per-radix list of tolerances. When added
2174 to a number < 1.0, we can determine if we should raund
2175 up and quit converting a number to a string. */
2176 int i;
2177 fx_list[0] = 0.0;
2178 fx_list[1] = 0.5;
2179 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2180 fx_list[i] = (fx_list[i-1] / radix);
2181}
2182
2183/* use this array as a way to generate a single digit */
2184static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
0f2d19dd 2185
1be6b49c 2186static size_t
0b799eea 2187idbl2str (double f, char *a, int radix)
0f2d19dd 2188{
0b799eea
MV
2189 int efmt, dpt, d, i, wp;
2190 double *fx;
2191#ifdef DBL_MIN_10_EXP
2192 double f_cpy;
2193 int exp_cpy;
2194#endif /* DBL_MIN_10_EXP */
2195 size_t ch = 0;
2196 int exp = 0;
2197
2198 if(radix < 2 ||
2199 radix > SCM_MAX_DBL_RADIX)
2200 {
2201 /* revert to existing behavior */
2202 radix = 10;
2203 }
2204
2205 wp = scm_dblprec[radix-2];
2206 fx = fx_per_radix[radix-2];
0f2d19dd 2207
f872b822 2208 if (f == 0.0)
abb7e44d
MV
2209 {
2210#ifdef HAVE_COPYSIGN
2211 double sgn = copysign (1.0, f);
2212
2213 if (sgn < 0.0)
2214 a[ch++] = '-';
2215#endif
abb7e44d
MV
2216 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2217 }
7351e207
MV
2218
2219 if (xisinf (f))
2220 {
2221 if (f < 0)
2222 strcpy (a, "-inf.0");
2223 else
2224 strcpy (a, "+inf.0");
2225 return ch+6;
2226 }
2227 else if (xisnan (f))
2228 {
2229 strcpy (a, "+nan.0");
2230 return ch+6;
2231 }
2232
f872b822
MD
2233 if (f < 0.0)
2234 {
2235 f = -f;
2236 a[ch++] = '-';
2237 }
7351e207 2238
f872b822
MD
2239#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2240 make-uniform-vector, from causing infinite loops. */
0b799eea
MV
2241 /* just do the checking...if it passes, we do the conversion for our
2242 radix again below */
2243 f_cpy = f;
2244 exp_cpy = exp;
2245
2246 while (f_cpy < 1.0)
f872b822 2247 {
0b799eea
MV
2248 f_cpy *= 10.0;
2249 if (exp_cpy-- < DBL_MIN_10_EXP)
7351e207
MV
2250 {
2251 a[ch++] = '#';
2252 a[ch++] = '.';
2253 a[ch++] = '#';
2254 return ch;
2255 }
f872b822 2256 }
0b799eea 2257 while (f_cpy > 10.0)
f872b822 2258 {
0b799eea
MV
2259 f_cpy *= 0.10;
2260 if (exp_cpy++ > DBL_MAX_10_EXP)
7351e207
MV
2261 {
2262 a[ch++] = '#';
2263 a[ch++] = '.';
2264 a[ch++] = '#';
2265 return ch;
2266 }
f872b822 2267 }
0b799eea
MV
2268#endif
2269
f872b822
MD
2270 while (f < 1.0)
2271 {
0b799eea 2272 f *= radix;
f872b822
MD
2273 exp--;
2274 }
0b799eea 2275 while (f > radix)
f872b822 2276 {
0b799eea 2277 f /= radix;
f872b822
MD
2278 exp++;
2279 }
0b799eea
MV
2280
2281 if (f + fx[wp] >= radix)
f872b822
MD
2282 {
2283 f = 1.0;
2284 exp++;
2285 }
0f2d19dd 2286 zero:
0b799eea
MV
2287#ifdef ENGNOT
2288 /* adding 9999 makes this equivalent to abs(x) % 3 */
f872b822 2289 dpt = (exp + 9999) % 3;
0f2d19dd
JB
2290 exp -= dpt++;
2291 efmt = 1;
f872b822
MD
2292#else
2293 efmt = (exp < -3) || (exp > wp + 2);
0f2d19dd 2294 if (!efmt)
cda139a7
MD
2295 {
2296 if (exp < 0)
2297 {
2298 a[ch++] = '0';
2299 a[ch++] = '.';
2300 dpt = exp;
f872b822
MD
2301 while (++dpt)
2302 a[ch++] = '0';
cda139a7
MD
2303 }
2304 else
f872b822 2305 dpt = exp + 1;
cda139a7 2306 }
0f2d19dd
JB
2307 else
2308 dpt = 1;
f872b822
MD
2309#endif
2310
2311 do
2312 {
2313 d = f;
2314 f -= d;
0b799eea 2315 a[ch++] = number_chars[d];
f872b822
MD
2316 if (f < fx[wp])
2317 break;
2318 if (f + fx[wp] >= 1.0)
2319 {
0b799eea 2320 a[ch - 1] = number_chars[d+1];
f872b822
MD
2321 break;
2322 }
0b799eea 2323 f *= radix;
f872b822
MD
2324 if (!(--dpt))
2325 a[ch++] = '.';
0f2d19dd 2326 }
f872b822 2327 while (wp--);
0f2d19dd
JB
2328
2329 if (dpt > 0)
cda139a7 2330 {
f872b822 2331#ifndef ENGNOT
cda139a7
MD
2332 if ((dpt > 4) && (exp > 6))
2333 {
f872b822 2334 d = (a[0] == '-' ? 2 : 1);
cda139a7 2335 for (i = ch++; i > d; i--)
f872b822 2336 a[i] = a[i - 1];
cda139a7
MD
2337 a[d] = '.';
2338 efmt = 1;
2339 }
2340 else
f872b822 2341#endif
cda139a7 2342 {
f872b822
MD
2343 while (--dpt)
2344 a[ch++] = '0';
cda139a7
MD
2345 a[ch++] = '.';
2346 }
2347 }
f872b822
MD
2348 if (a[ch - 1] == '.')
2349 a[ch++] = '0'; /* trailing zero */
2350 if (efmt && exp)
2351 {
2352 a[ch++] = 'e';
2353 if (exp < 0)
2354 {
2355 exp = -exp;
2356 a[ch++] = '-';
2357 }
0b799eea
MV
2358 for (i = radix; i <= exp; i *= radix);
2359 for (i /= radix; i; i /= radix)
f872b822 2360 {
0b799eea 2361 a[ch++] = number_chars[exp / i];
f872b822
MD
2362 exp %= i;
2363 }
0f2d19dd 2364 }
0f2d19dd
JB
2365 return ch;
2366}
2367
7a1aba42
MV
2368
2369static size_t
2370icmplx2str (double real, double imag, char *str, int radix)
2371{
2372 size_t i;
2373
2374 i = idbl2str (real, str, radix);
2375 if (imag != 0.0)
2376 {
2377 /* Don't output a '+' for negative numbers or for Inf and
2378 NaN. They will provide their own sign. */
2379 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
2380 str[i++] = '+';
2381 i += idbl2str (imag, &str[i], radix);
2382 str[i++] = 'i';
2383 }
2384 return i;
2385}
2386
1be6b49c 2387static size_t
0b799eea 2388iflo2str (SCM flt, char *str, int radix)
0f2d19dd 2389{
1be6b49c 2390 size_t i;
3c9a524f 2391 if (SCM_REALP (flt))
0b799eea 2392 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
0f2d19dd 2393 else
7a1aba42
MV
2394 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
2395 str, radix);
0f2d19dd
JB
2396 return i;
2397}
0f2d19dd 2398
2881e77b 2399/* convert a scm_t_intmax to a string (unterminated). returns the number of
1bbd0b84
GB
2400 characters in the result.
2401 rad is output base
2402 p is destination: worst case (base 2) is SCM_INTBUFLEN */
1be6b49c 2403size_t
2881e77b
MV
2404scm_iint2str (scm_t_intmax num, int rad, char *p)
2405{
2406 if (num < 0)
2407 {
2408 *p++ = '-';
2409 return scm_iuint2str (-num, rad, p) + 1;
2410 }
2411 else
2412 return scm_iuint2str (num, rad, p);
2413}
2414
2415/* convert a scm_t_intmax to a string (unterminated). returns the number of
2416 characters in the result.
2417 rad is output base
2418 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2419size_t
2420scm_iuint2str (scm_t_uintmax num, int rad, char *p)
0f2d19dd 2421{
1be6b49c
ML
2422 size_t j = 1;
2423 size_t i;
2881e77b 2424 scm_t_uintmax n = num;
5c11cc9d 2425
f872b822 2426 for (n /= rad; n > 0; n /= rad)
5c11cc9d
GH
2427 j++;
2428
2429 i = j;
2881e77b 2430 n = num;
f872b822
MD
2431 while (i--)
2432 {
5c11cc9d
GH
2433 int d = n % rad;
2434
f872b822
MD
2435 n /= rad;
2436 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2437 }
0f2d19dd
JB
2438 return j;
2439}
2440
a1ec6916 2441SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
bb628794
DH
2442 (SCM n, SCM radix),
2443 "Return a string holding the external representation of the\n"
942e5b91
MG
2444 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2445 "inexact, a radix of 10 will be used.")
1bbd0b84 2446#define FUNC_NAME s_scm_number_to_string
0f2d19dd 2447{
1bbd0b84 2448 int base;
98cb6e75 2449
0aacf84e 2450 if (SCM_UNBNDP (radix))
98cb6e75 2451 base = 10;
0aacf84e 2452 else
5efd3c7d 2453 base = scm_to_signed_integer (radix, 2, 36);
98cb6e75 2454
e11e83f3 2455 if (SCM_I_INUMP (n))
0aacf84e
MD
2456 {
2457 char num_buf [SCM_INTBUFLEN];
e11e83f3 2458 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
cc95e00a 2459 return scm_from_locale_stringn (num_buf, length);
0aacf84e
MD
2460 }
2461 else if (SCM_BIGP (n))
2462 {
2463 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2464 scm_remember_upto_here_1 (n);
cc95e00a 2465 return scm_take_locale_string (str);
0aacf84e 2466 }
f92e85f7
MV
2467 else if (SCM_FRACTIONP (n))
2468 {
f92e85f7 2469 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
cc95e00a 2470 scm_from_locale_string ("/"),
f92e85f7
MV
2471 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2472 }
0aacf84e
MD
2473 else if (SCM_INEXACTP (n))
2474 {
2475 char num_buf [FLOBUFLEN];
cc95e00a 2476 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
0aacf84e
MD
2477 }
2478 else
bb628794 2479 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 2480}
1bbd0b84 2481#undef FUNC_NAME
0f2d19dd
JB
2482
2483
ca46fb90
RB
2484/* These print routines used to be stubbed here so that scm_repl.c
2485 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
1cc91f1b 2486
0f2d19dd 2487int
e81d98ec 2488scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2489{
56e55ac7 2490 char num_buf[FLOBUFLEN];
0b799eea 2491 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
0f2d19dd
JB
2492 return !0;
2493}
2494
b479fe9a
MV
2495void
2496scm_i_print_double (double val, SCM port)
2497{
2498 char num_buf[FLOBUFLEN];
2499 scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
2500}
2501
f3ae5d60 2502int
e81d98ec 2503scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
f92e85f7 2504
f3ae5d60 2505{
56e55ac7 2506 char num_buf[FLOBUFLEN];
0b799eea 2507 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
f3ae5d60
MD
2508 return !0;
2509}
1cc91f1b 2510
7a1aba42
MV
2511void
2512scm_i_print_complex (double real, double imag, SCM port)
2513{
2514 char num_buf[FLOBUFLEN];
2515 scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
2516}
2517
f92e85f7
MV
2518int
2519scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2520{
2521 SCM str;
f92e85f7 2522 str = scm_number_to_string (sexp, SCM_UNDEFINED);
3f47e526 2523 scm_lfwrite_str (str, port);
f92e85f7
MV
2524 scm_remember_upto_here_1 (str);
2525 return !0;
2526}
2527
0f2d19dd 2528int
e81d98ec 2529scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2530{
ca46fb90
RB
2531 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2532 scm_remember_upto_here_1 (exp);
2533 scm_lfwrite (str, (size_t) strlen (str), port);
2534 free (str);
0f2d19dd
JB
2535 return !0;
2536}
2537/*** END nums->strs ***/
2538
3c9a524f 2539
0f2d19dd 2540/*** STRINGS -> NUMBERS ***/
2a8fecee 2541
3c9a524f
DH
2542/* The following functions implement the conversion from strings to numbers.
2543 * The implementation somehow follows the grammar for numbers as it is given
2544 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2545 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2546 * points should be noted about the implementation:
2547 * * Each function keeps a local index variable 'idx' that points at the
2548 * current position within the parsed string. The global index is only
2549 * updated if the function could parse the corresponding syntactic unit
2550 * successfully.
2551 * * Similarly, the functions keep track of indicators of inexactness ('#',
2552 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2553 * global exactness information is only updated after each part has been
2554 * successfully parsed.
2555 * * Sequences of digits are parsed into temporary variables holding fixnums.
2556 * Only if these fixnums would overflow, the result variables are updated
2557 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2558 * the temporary variables holding the fixnums are cleared, and the process
2559 * starts over again. If for example fixnums were able to store five decimal
2560 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2561 * and the result was computed as 12345 * 100000 + 67890. In other words,
2562 * only every five digits two bignum operations were performed.
2563 */
2564
2565enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2566
2567/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2568
2569/* In non ASCII-style encodings the following macro might not work. */
3f47e526
MG
2570#define XDIGIT2UINT(d) \
2571 (uc_is_property_decimal_digit ((int) (unsigned char) d) \
2572 ? (d) - '0' \
cdf8f9e6 2573 : uc_tolower ((int) (unsigned char) d) - 'a' + 10)
3c9a524f 2574
2a8fecee 2575static SCM
3f47e526 2576mem2uinteger (SCM mem, unsigned int *p_idx,
3c9a524f 2577 unsigned int radix, enum t_exactness *p_exactness)
2a8fecee 2578{
3c9a524f
DH
2579 unsigned int idx = *p_idx;
2580 unsigned int hash_seen = 0;
2581 scm_t_bits shift = 1;
2582 scm_t_bits add = 0;
2583 unsigned int digit_value;
2584 SCM result;
2585 char c;
3f47e526 2586 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2587
2588 if (idx == len)
2589 return SCM_BOOL_F;
2a8fecee 2590
3f47e526
MG
2591 c = scm_i_string_ref (mem, idx);
2592 if (!uc_is_property_ascii_hex_digit ((scm_t_uint32) c))
3c9a524f
DH
2593 return SCM_BOOL_F;
2594 digit_value = XDIGIT2UINT (c);
2595 if (digit_value >= radix)
2596 return SCM_BOOL_F;
2597
2598 idx++;
d956fa6f 2599 result = SCM_I_MAKINUM (digit_value);
3c9a524f 2600 while (idx != len)
f872b822 2601 {
3f47e526
MG
2602 scm_t_wchar c = scm_i_string_ref (mem, idx);
2603 if (uc_is_property_ascii_hex_digit ((scm_t_uint32) c))
f872b822 2604 {
3c9a524f 2605 if (hash_seen)
1fe5e088 2606 break;
3c9a524f
DH
2607 digit_value = XDIGIT2UINT (c);
2608 if (digit_value >= radix)
1fe5e088 2609 break;
f872b822 2610 }
3c9a524f
DH
2611 else if (c == '#')
2612 {
2613 hash_seen = 1;
2614 digit_value = 0;
2615 }
2616 else
2617 break;
2618
2619 idx++;
2620 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2621 {
d956fa6f 2622 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2623 if (add > 0)
d956fa6f 2624 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2625
2626 shift = radix;
2627 add = digit_value;
2628 }
2629 else
2630 {
2631 shift = shift * radix;
2632 add = add * radix + digit_value;
2633 }
2634 };
2635
2636 if (shift > 1)
d956fa6f 2637 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2638 if (add > 0)
d956fa6f 2639 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2640
2641 *p_idx = idx;
2642 if (hash_seen)
2643 *p_exactness = INEXACT;
2644
2645 return result;
2a8fecee
JB
2646}
2647
2648
3c9a524f
DH
2649/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2650 * covers the parts of the rules that start at a potential point. The value
2651 * of the digits up to the point have been parsed by the caller and are given
79d34f68
DH
2652 * in variable result. The content of *p_exactness indicates, whether a hash
2653 * has already been seen in the digits before the point.
3c9a524f 2654 */
1cc91f1b 2655
3f47e526 2656#define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
3c9a524f
DH
2657
2658static SCM
3f47e526 2659mem2decimal_from_point (SCM result, SCM mem,
3c9a524f 2660 unsigned int *p_idx, enum t_exactness *p_exactness)
0f2d19dd 2661{
3c9a524f
DH
2662 unsigned int idx = *p_idx;
2663 enum t_exactness x = *p_exactness;
3f47e526 2664 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2665
2666 if (idx == len)
79d34f68 2667 return result;
3c9a524f 2668
3f47e526 2669 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
2670 {
2671 scm_t_bits shift = 1;
2672 scm_t_bits add = 0;
2673 unsigned int digit_value;
d956fa6f 2674 SCM big_shift = SCM_I_MAKINUM (1);
3c9a524f
DH
2675
2676 idx++;
2677 while (idx != len)
2678 {
3f47e526
MG
2679 scm_t_wchar c = scm_i_string_ref (mem, idx);
2680 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2681 {
2682 if (x == INEXACT)
2683 return SCM_BOOL_F;
2684 else
2685 digit_value = DIGIT2UINT (c);
2686 }
2687 else if (c == '#')
2688 {
2689 x = INEXACT;
2690 digit_value = 0;
2691 }
2692 else
2693 break;
2694
2695 idx++;
2696 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2697 {
d956fa6f
MV
2698 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2699 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2700 if (add > 0)
d956fa6f 2701 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2702
2703 shift = 10;
2704 add = digit_value;
2705 }
2706 else
2707 {
2708 shift = shift * 10;
2709 add = add * 10 + digit_value;
2710 }
2711 };
2712
2713 if (add > 0)
2714 {
d956fa6f
MV
2715 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2716 result = scm_product (result, SCM_I_MAKINUM (shift));
2717 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2718 }
2719
d8592269 2720 result = scm_divide (result, big_shift);
79d34f68 2721
3c9a524f
DH
2722 /* We've seen a decimal point, thus the value is implicitly inexact. */
2723 x = INEXACT;
f872b822 2724 }
3c9a524f 2725
3c9a524f 2726 if (idx != len)
f872b822 2727 {
3c9a524f
DH
2728 int sign = 1;
2729 unsigned int start;
3f47e526 2730 scm_t_wchar c;
3c9a524f
DH
2731 int exponent;
2732 SCM e;
2733
2734 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2735
3f47e526 2736 switch (scm_i_string_ref (mem, idx))
f872b822 2737 {
3c9a524f
DH
2738 case 'd': case 'D':
2739 case 'e': case 'E':
2740 case 'f': case 'F':
2741 case 'l': case 'L':
2742 case 's': case 'S':
2743 idx++;
ee0ddd21
AW
2744 if (idx == len)
2745 return SCM_BOOL_F;
2746
3c9a524f 2747 start = idx;
3f47e526 2748 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2749 if (c == '-')
2750 {
2751 idx++;
ee0ddd21
AW
2752 if (idx == len)
2753 return SCM_BOOL_F;
2754
3c9a524f 2755 sign = -1;
3f47e526 2756 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2757 }
2758 else if (c == '+')
2759 {
2760 idx++;
ee0ddd21
AW
2761 if (idx == len)
2762 return SCM_BOOL_F;
2763
3c9a524f 2764 sign = 1;
3f47e526 2765 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2766 }
2767 else
2768 sign = 1;
2769
3f47e526 2770 if (!uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2771 return SCM_BOOL_F;
2772
2773 idx++;
2774 exponent = DIGIT2UINT (c);
2775 while (idx != len)
f872b822 2776 {
3f47e526
MG
2777 scm_t_wchar c = scm_i_string_ref (mem, idx);
2778 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2779 {
2780 idx++;
2781 if (exponent <= SCM_MAXEXP)
2782 exponent = exponent * 10 + DIGIT2UINT (c);
2783 }
2784 else
2785 break;
f872b822 2786 }
3c9a524f
DH
2787
2788 if (exponent > SCM_MAXEXP)
f872b822 2789 {
3c9a524f 2790 size_t exp_len = idx - start;
3f47e526 2791 SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
3c9a524f
DH
2792 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2793 scm_out_of_range ("string->number", exp_num);
f872b822 2794 }
3c9a524f 2795
d956fa6f 2796 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
3c9a524f
DH
2797 if (sign == 1)
2798 result = scm_product (result, e);
2799 else
f92e85f7 2800 result = scm_divide2real (result, e);
3c9a524f
DH
2801
2802 /* We've seen an exponent, thus the value is implicitly inexact. */
2803 x = INEXACT;
2804
f872b822 2805 break;
3c9a524f 2806
f872b822 2807 default:
3c9a524f 2808 break;
f872b822 2809 }
0f2d19dd 2810 }
3c9a524f
DH
2811
2812 *p_idx = idx;
2813 if (x == INEXACT)
2814 *p_exactness = x;
2815
2816 return result;
0f2d19dd 2817}
0f2d19dd 2818
3c9a524f
DH
2819
2820/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2821
2822static SCM
3f47e526 2823mem2ureal (SCM mem, unsigned int *p_idx,
3c9a524f 2824 unsigned int radix, enum t_exactness *p_exactness)
0f2d19dd 2825{
3c9a524f 2826 unsigned int idx = *p_idx;
164d2481 2827 SCM result;
3f47e526 2828 size_t len = scm_i_string_length (mem);
3c9a524f 2829
40f89215
NJ
2830 /* Start off believing that the number will be exact. This changes
2831 to INEXACT if we see a decimal point or a hash. */
2832 enum t_exactness x = EXACT;
2833
3c9a524f
DH
2834 if (idx == len)
2835 return SCM_BOOL_F;
2836
3f47e526 2837 if (idx+5 <= len && !scm_i_string_strcmp (mem, idx, "inf.0"))
7351e207
MV
2838 {
2839 *p_idx = idx+5;
2840 return scm_inf ();
2841 }
2842
3f47e526 2843 if (idx+4 < len && !scm_i_string_strcmp (mem, idx, "nan."))
7351e207 2844 {
d8592269
MV
2845 /* Cobble up the fractional part. We might want to set the
2846 NaN's mantissa from it. */
7351e207 2847 idx += 4;
3f47e526 2848 mem2uinteger (mem, &idx, 10, &x);
7351e207
MV
2849 *p_idx = idx;
2850 return scm_nan ();
2851 }
2852
3f47e526 2853 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
2854 {
2855 if (radix != 10)
2856 return SCM_BOOL_F;
2857 else if (idx + 1 == len)
2858 return SCM_BOOL_F;
3f47e526 2859 else if (!uc_is_property_decimal_digit ((scm_t_uint32) scm_i_string_ref (mem, idx+1)))
3c9a524f
DH
2860 return SCM_BOOL_F;
2861 else
3f47e526 2862 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem,
40f89215 2863 p_idx, &x);
f872b822 2864 }
3c9a524f
DH
2865 else
2866 {
3c9a524f 2867 SCM uinteger;
3c9a524f 2868
3f47e526 2869 uinteger = mem2uinteger (mem, &idx, radix, &x);
73e4de09 2870 if (scm_is_false (uinteger))
3c9a524f
DH
2871 return SCM_BOOL_F;
2872
2873 if (idx == len)
2874 result = uinteger;
3f47e526 2875 else if (scm_i_string_ref (mem, idx) == '/')
f872b822 2876 {
3c9a524f
DH
2877 SCM divisor;
2878
2879 idx++;
ee0ddd21
AW
2880 if (idx == len)
2881 return SCM_BOOL_F;
3c9a524f 2882
3f47e526 2883 divisor = mem2uinteger (mem, &idx, radix, &x);
73e4de09 2884 if (scm_is_false (divisor))
3c9a524f
DH
2885 return SCM_BOOL_F;
2886
f92e85f7 2887 /* both are int/big here, I assume */
cba42c93 2888 result = scm_i_make_ratio (uinteger, divisor);
f872b822 2889 }
3c9a524f
DH
2890 else if (radix == 10)
2891 {
3f47e526 2892 result = mem2decimal_from_point (uinteger, mem, &idx, &x);
73e4de09 2893 if (scm_is_false (result))
3c9a524f
DH
2894 return SCM_BOOL_F;
2895 }
2896 else
2897 result = uinteger;
2898
2899 *p_idx = idx;
f872b822 2900 }
164d2481 2901
40f89215
NJ
2902 /* Update *p_exactness if the number just read was inexact. This is
2903 important for complex numbers, so that a complex number is
2904 treated as inexact overall if either its real or imaginary part
2905 is inexact.
2906 */
2907 if (x == INEXACT)
2908 *p_exactness = x;
2909
164d2481
MV
2910 /* When returning an inexact zero, make sure it is represented as a
2911 floating point value so that we can change its sign.
2912 */
bc36d050 2913 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
55f26379 2914 result = scm_from_double (0.0);
164d2481
MV
2915
2916 return result;
3c9a524f 2917}
0f2d19dd 2918
0f2d19dd 2919
3c9a524f 2920/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
0f2d19dd 2921
3c9a524f 2922static SCM
3f47e526 2923mem2complex (SCM mem, unsigned int idx,
3c9a524f
DH
2924 unsigned int radix, enum t_exactness *p_exactness)
2925{
3f47e526 2926 scm_t_wchar c;
3c9a524f
DH
2927 int sign = 0;
2928 SCM ureal;
3f47e526 2929 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2930
2931 if (idx == len)
2932 return SCM_BOOL_F;
2933
3f47e526 2934 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2935 if (c == '+')
2936 {
2937 idx++;
2938 sign = 1;
2939 }
2940 else if (c == '-')
2941 {
2942 idx++;
2943 sign = -1;
0f2d19dd 2944 }
0f2d19dd 2945
3c9a524f
DH
2946 if (idx == len)
2947 return SCM_BOOL_F;
2948
3f47e526 2949 ureal = mem2ureal (mem, &idx, radix, p_exactness);
73e4de09 2950 if (scm_is_false (ureal))
f872b822 2951 {
3c9a524f
DH
2952 /* input must be either +i or -i */
2953
2954 if (sign == 0)
2955 return SCM_BOOL_F;
2956
3f47e526
MG
2957 if (scm_i_string_ref (mem, idx) == 'i'
2958 || scm_i_string_ref (mem, idx) == 'I')
f872b822 2959 {
3c9a524f
DH
2960 idx++;
2961 if (idx != len)
2962 return SCM_BOOL_F;
2963
d956fa6f 2964 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
f872b822 2965 }
3c9a524f
DH
2966 else
2967 return SCM_BOOL_F;
0f2d19dd 2968 }
3c9a524f
DH
2969 else
2970 {
73e4de09 2971 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f 2972 ureal = scm_difference (ureal, SCM_UNDEFINED);
f872b822 2973
3c9a524f
DH
2974 if (idx == len)
2975 return ureal;
2976
3f47e526 2977 c = scm_i_string_ref (mem, idx);
3c9a524f 2978 switch (c)
f872b822 2979 {
3c9a524f
DH
2980 case 'i': case 'I':
2981 /* either +<ureal>i or -<ureal>i */
2982
2983 idx++;
2984 if (sign == 0)
2985 return SCM_BOOL_F;
2986 if (idx != len)
2987 return SCM_BOOL_F;
d956fa6f 2988 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
3c9a524f
DH
2989
2990 case '@':
2991 /* polar input: <real>@<real>. */
2992
2993 idx++;
2994 if (idx == len)
2995 return SCM_BOOL_F;
2996 else
f872b822 2997 {
3c9a524f
DH
2998 int sign;
2999 SCM angle;
3000 SCM result;
3001
3f47e526 3002 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
3003 if (c == '+')
3004 {
3005 idx++;
ee0ddd21
AW
3006 if (idx == len)
3007 return SCM_BOOL_F;
3c9a524f
DH
3008 sign = 1;
3009 }
3010 else if (c == '-')
3011 {
3012 idx++;
ee0ddd21
AW
3013 if (idx == len)
3014 return SCM_BOOL_F;
3c9a524f
DH
3015 sign = -1;
3016 }
3017 else
3018 sign = 1;
3019
3f47e526 3020 angle = mem2ureal (mem, &idx, radix, p_exactness);
73e4de09 3021 if (scm_is_false (angle))
3c9a524f
DH
3022 return SCM_BOOL_F;
3023 if (idx != len)
3024 return SCM_BOOL_F;
3025
73e4de09 3026 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f
DH
3027 angle = scm_difference (angle, SCM_UNDEFINED);
3028
3029 result = scm_make_polar (ureal, angle);
3030 return result;
f872b822 3031 }
3c9a524f
DH
3032 case '+':
3033 case '-':
3034 /* expecting input matching <real>[+-]<ureal>?i */
0f2d19dd 3035
3c9a524f
DH
3036 idx++;
3037 if (idx == len)
3038 return SCM_BOOL_F;
3039 else
3040 {
3041 int sign = (c == '+') ? 1 : -1;
3f47e526 3042 SCM imag = mem2ureal (mem, &idx, radix, p_exactness);
0f2d19dd 3043
73e4de09 3044 if (scm_is_false (imag))
d956fa6f 3045 imag = SCM_I_MAKINUM (sign);
73e4de09 3046 else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
1fe5e088 3047 imag = scm_difference (imag, SCM_UNDEFINED);
0f2d19dd 3048
3c9a524f
DH
3049 if (idx == len)
3050 return SCM_BOOL_F;
3f47e526
MG
3051 if (scm_i_string_ref (mem, idx) != 'i'
3052 && scm_i_string_ref (mem, idx) != 'I')
3c9a524f 3053 return SCM_BOOL_F;
0f2d19dd 3054
3c9a524f
DH
3055 idx++;
3056 if (idx != len)
3057 return SCM_BOOL_F;
0f2d19dd 3058
1fe5e088 3059 return scm_make_rectangular (ureal, imag);
3c9a524f
DH
3060 }
3061 default:
3062 return SCM_BOOL_F;
3063 }
3064 }
0f2d19dd 3065}
0f2d19dd
JB
3066
3067
3c9a524f
DH
3068/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
3069
3070enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
1cc91f1b 3071
0f2d19dd 3072SCM
3f47e526 3073scm_i_string_to_number (SCM mem, unsigned int default_radix)
0f2d19dd 3074{
3c9a524f
DH
3075 unsigned int idx = 0;
3076 unsigned int radix = NO_RADIX;
3077 enum t_exactness forced_x = NO_EXACTNESS;
3078 enum t_exactness implicit_x = EXACT;
3079 SCM result;
3f47e526 3080 size_t len = scm_i_string_length (mem);
3c9a524f
DH
3081
3082 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
3f47e526 3083 while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
3c9a524f 3084 {
3f47e526 3085 switch (scm_i_string_ref (mem, idx + 1))
3c9a524f
DH
3086 {
3087 case 'b': case 'B':
3088 if (radix != NO_RADIX)
3089 return SCM_BOOL_F;
3090 radix = DUAL;
3091 break;
3092 case 'd': case 'D':
3093 if (radix != NO_RADIX)
3094 return SCM_BOOL_F;
3095 radix = DEC;
3096 break;
3097 case 'i': case 'I':
3098 if (forced_x != NO_EXACTNESS)
3099 return SCM_BOOL_F;
3100 forced_x = INEXACT;
3101 break;
3102 case 'e': case 'E':
3103 if (forced_x != NO_EXACTNESS)
3104 return SCM_BOOL_F;
3105 forced_x = EXACT;
3106 break;
3107 case 'o': case 'O':
3108 if (radix != NO_RADIX)
3109 return SCM_BOOL_F;
3110 radix = OCT;
3111 break;
3112 case 'x': case 'X':
3113 if (radix != NO_RADIX)
3114 return SCM_BOOL_F;
3115 radix = HEX;
3116 break;
3117 default:
f872b822 3118 return SCM_BOOL_F;
3c9a524f
DH
3119 }
3120 idx += 2;
3121 }
3122
3123 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
3124 if (radix == NO_RADIX)
3f47e526 3125 result = mem2complex (mem, idx, default_radix, &implicit_x);
3c9a524f 3126 else
3f47e526 3127 result = mem2complex (mem, idx, (unsigned int) radix, &implicit_x);
3c9a524f 3128
73e4de09 3129 if (scm_is_false (result))
3c9a524f 3130 return SCM_BOOL_F;
f872b822 3131
3c9a524f 3132 switch (forced_x)
f872b822 3133 {
3c9a524f
DH
3134 case EXACT:
3135 if (SCM_INEXACTP (result))
3c9a524f
DH
3136 return scm_inexact_to_exact (result);
3137 else
3138 return result;
3139 case INEXACT:
3140 if (SCM_INEXACTP (result))
3141 return result;
3142 else
3143 return scm_exact_to_inexact (result);
3144 case NO_EXACTNESS:
3145 default:
3146 if (implicit_x == INEXACT)
3147 {
3148 if (SCM_INEXACTP (result))
3149 return result;
3150 else
3151 return scm_exact_to_inexact (result);
3152 }
3153 else
3154 return result;
f872b822 3155 }
0f2d19dd
JB
3156}
3157
3f47e526
MG
3158SCM
3159scm_c_locale_stringn_to_number (const char* mem, size_t len,
3160 unsigned int default_radix)
3161{
3162 SCM str = scm_from_locale_stringn (mem, len);
3163
3164 return scm_i_string_to_number (str, default_radix);
3165}
3166
0f2d19dd 3167
a1ec6916 3168SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
bb628794 3169 (SCM string, SCM radix),
1e6808ea 3170 "Return a number of the maximally precise representation\n"
942e5b91 3171 "expressed by the given @var{string}. @var{radix} must be an\n"
5352393c
MG
3172 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
3173 "is a default radix that may be overridden by an explicit radix\n"
3174 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
3175 "supplied, then the default radix is 10. If string is not a\n"
3176 "syntactically valid notation for a number, then\n"
3177 "@code{string->number} returns @code{#f}.")
1bbd0b84 3178#define FUNC_NAME s_scm_string_to_number
0f2d19dd
JB
3179{
3180 SCM answer;
5efd3c7d 3181 unsigned int base;
a6d9e5ab 3182 SCM_VALIDATE_STRING (1, string);
5efd3c7d
MV
3183
3184 if (SCM_UNBNDP (radix))
3185 base = 10;
3186 else
3187 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
3188
3f47e526 3189 answer = scm_i_string_to_number (string, base);
8824ac88
MV
3190 scm_remember_upto_here_1 (string);
3191 return answer;
0f2d19dd 3192}
1bbd0b84 3193#undef FUNC_NAME
3c9a524f
DH
3194
3195
0f2d19dd
JB
3196/*** END strs->nums ***/
3197
5986c47d 3198
0f2d19dd 3199SCM
1bbd0b84 3200scm_bigequal (SCM x, SCM y)
0f2d19dd 3201{
47ae1f0e 3202 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
ca46fb90 3203 scm_remember_upto_here_2 (x, y);
73e4de09 3204 return scm_from_bool (0 == result);
0f2d19dd
JB
3205}
3206
0f2d19dd 3207SCM
f3ae5d60 3208scm_real_equalp (SCM x, SCM y)
0f2d19dd 3209{
73e4de09 3210 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0f2d19dd
JB
3211}
3212
f3ae5d60
MD
3213SCM
3214scm_complex_equalp (SCM x, SCM y)
3215{
73e4de09 3216 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
f3ae5d60
MD
3217 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3218}
0f2d19dd 3219
f92e85f7
MV
3220SCM
3221scm_i_fraction_equalp (SCM x, SCM y)
3222{
73e4de09 3223 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
02164269 3224 SCM_FRACTION_NUMERATOR (y)))
73e4de09 3225 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
02164269
MV
3226 SCM_FRACTION_DENOMINATOR (y))))
3227 return SCM_BOOL_F;
3228 else
3229 return SCM_BOOL_T;
f92e85f7 3230}
0f2d19dd
JB
3231
3232
8507ec80
MV
3233SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3234 (SCM x),
3235 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3236 "otherwise.")
3237#define FUNC_NAME s_scm_number_p
3238{
3239 return scm_from_bool (SCM_NUMBERP (x));
3240}
3241#undef FUNC_NAME
3242
3243SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
1bbd0b84 3244 (SCM x),
942e5b91 3245 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
bb2c02f2 3246 "otherwise. Note that the sets of real, rational and integer\n"
942e5b91
MG
3247 "values form subsets of the set of complex numbers, i. e. the\n"
3248 "predicate will also be fulfilled if @var{x} is a real,\n"
3249 "rational or integer number.")
8507ec80 3250#define FUNC_NAME s_scm_complex_p
0f2d19dd 3251{
8507ec80
MV
3252 /* all numbers are complex. */
3253 return scm_number_p (x);
0f2d19dd 3254}
1bbd0b84 3255#undef FUNC_NAME
0f2d19dd 3256
f92e85f7
MV
3257SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3258 (SCM x),
3259 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3260 "otherwise. Note that the set of integer values forms a subset of\n"
3261 "the set of real numbers, i. e. the predicate will also be\n"
3262 "fulfilled if @var{x} is an integer number.")
3263#define FUNC_NAME s_scm_real_p
3264{
3265 /* we can't represent irrational numbers. */
3266 return scm_rational_p (x);
3267}
3268#undef FUNC_NAME
3269
3270SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
1bbd0b84 3271 (SCM x),
942e5b91 3272 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
bb2c02f2 3273 "otherwise. Note that the set of integer values forms a subset of\n"
942e5b91 3274 "the set of rational numbers, i. e. the predicate will also be\n"
f92e85f7
MV
3275 "fulfilled if @var{x} is an integer number.")
3276#define FUNC_NAME s_scm_rational_p
0f2d19dd 3277{
e11e83f3 3278 if (SCM_I_INUMP (x))
0f2d19dd 3279 return SCM_BOOL_T;
0aacf84e 3280 else if (SCM_IMP (x))
0f2d19dd 3281 return SCM_BOOL_F;
0aacf84e 3282 else if (SCM_BIGP (x))
0f2d19dd 3283 return SCM_BOOL_T;
f92e85f7
MV
3284 else if (SCM_FRACTIONP (x))
3285 return SCM_BOOL_T;
3286 else if (SCM_REALP (x))
3287 /* due to their limited precision, all floating point numbers are
3288 rational as well. */
3289 return SCM_BOOL_T;
0aacf84e 3290 else
bb628794 3291 return SCM_BOOL_F;
0f2d19dd 3292}
1bbd0b84 3293#undef FUNC_NAME
0f2d19dd 3294
a1ec6916 3295SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
1bbd0b84 3296 (SCM x),
942e5b91
MG
3297 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3298 "else.")
1bbd0b84 3299#define FUNC_NAME s_scm_integer_p
0f2d19dd
JB
3300{
3301 double r;
e11e83f3 3302 if (SCM_I_INUMP (x))
f872b822
MD
3303 return SCM_BOOL_T;
3304 if (SCM_IMP (x))
3305 return SCM_BOOL_F;
f872b822
MD
3306 if (SCM_BIGP (x))
3307 return SCM_BOOL_T;
3c9a524f 3308 if (!SCM_INEXACTP (x))
f872b822 3309 return SCM_BOOL_F;
3c9a524f 3310 if (SCM_COMPLEXP (x))
f872b822 3311 return SCM_BOOL_F;
5986c47d 3312 r = SCM_REAL_VALUE (x);
1e35a229 3313 /* +/-inf passes r==floor(r), making those #t */
f872b822
MD
3314 if (r == floor (r))
3315 return SCM_BOOL_T;
0f2d19dd
JB
3316 return SCM_BOOL_F;
3317}
1bbd0b84 3318#undef FUNC_NAME
0f2d19dd
JB
3319
3320
a1ec6916 3321SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
1bbd0b84 3322 (SCM x),
942e5b91
MG
3323 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3324 "else.")
1bbd0b84 3325#define FUNC_NAME s_scm_inexact_p
0f2d19dd 3326{
eb927cb9
MV
3327 if (SCM_INEXACTP (x))
3328 return SCM_BOOL_T;
3329 if (SCM_NUMBERP (x))
3330 return SCM_BOOL_F;
3331 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 3332}
1bbd0b84 3333#undef FUNC_NAME
0f2d19dd
JB
3334
3335
8a1f4f98
AW
3336SCM scm_i_num_eq_p (SCM, SCM, SCM);
3337SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1,
3338 (SCM x, SCM y, SCM rest),
3339 "Return @code{#t} if all parameters are numerically equal.")
3340#define FUNC_NAME s_scm_i_num_eq_p
3341{
3342 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3343 return SCM_BOOL_T;
3344 while (!scm_is_null (rest))
3345 {
3346 if (scm_is_false (scm_num_eq_p (x, y)))
3347 return SCM_BOOL_F;
3348 x = y;
3349 y = scm_car (rest);
3350 rest = scm_cdr (rest);
3351 }
3352 return scm_num_eq_p (x, y);
3353}
3354#undef FUNC_NAME
0f2d19dd 3355SCM
6e8d25a6 3356scm_num_eq_p (SCM x, SCM y)
0f2d19dd 3357{
d8b95e27 3358 again:
e11e83f3 3359 if (SCM_I_INUMP (x))
0aacf84e 3360 {
e11e83f3
MV
3361 long xx = SCM_I_INUM (x);
3362 if (SCM_I_INUMP (y))
0aacf84e 3363 {
e11e83f3 3364 long yy = SCM_I_INUM (y);
73e4de09 3365 return scm_from_bool (xx == yy);
0aacf84e
MD
3366 }
3367 else if (SCM_BIGP (y))
3368 return SCM_BOOL_F;
3369 else if (SCM_REALP (y))
e8c5b1f2
KR
3370 {
3371 /* On a 32-bit system an inum fits a double, we can cast the inum
3372 to a double and compare.
3373
3374 But on a 64-bit system an inum is bigger than a double and
3375 casting it to a double (call that dxx) will round. dxx is at
3376 worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
3377 an integer and fits a long. So we cast yy to a long and
3378 compare with plain xx.
3379
3380 An alternative (for any size system actually) would be to check
3381 yy is an integer (with floor) and is in range of an inum
3382 (compare against appropriate powers of 2) then test
3383 xx==(long)yy. It's just a matter of which casts/comparisons
3384 might be fastest or easiest for the cpu. */
3385
3386 double yy = SCM_REAL_VALUE (y);
3a1b45fd
MV
3387 return scm_from_bool ((double) xx == yy
3388 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3389 || xx == (long) yy));
e8c5b1f2 3390 }
0aacf84e 3391 else if (SCM_COMPLEXP (y))
73e4de09 3392 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
0aacf84e 3393 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7
MV
3394 else if (SCM_FRACTIONP (y))
3395 return SCM_BOOL_F;
0aacf84e 3396 else
8a1f4f98 3397 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f872b822 3398 }
0aacf84e
MD
3399 else if (SCM_BIGP (x))
3400 {
e11e83f3 3401 if (SCM_I_INUMP (y))
0aacf84e
MD
3402 return SCM_BOOL_F;
3403 else if (SCM_BIGP (y))
3404 {
3405 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3406 scm_remember_upto_here_2 (x, y);
73e4de09 3407 return scm_from_bool (0 == cmp);
0aacf84e
MD
3408 }
3409 else if (SCM_REALP (y))
3410 {
3411 int cmp;
3412 if (xisnan (SCM_REAL_VALUE (y)))
3413 return SCM_BOOL_F;
3414 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3415 scm_remember_upto_here_1 (x);
73e4de09 3416 return scm_from_bool (0 == cmp);
0aacf84e
MD
3417 }
3418 else if (SCM_COMPLEXP (y))
3419 {
3420 int cmp;
3421 if (0.0 != SCM_COMPLEX_IMAG (y))
3422 return SCM_BOOL_F;
3423 if (xisnan (SCM_COMPLEX_REAL (y)))
3424 return SCM_BOOL_F;
3425 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3426 scm_remember_upto_here_1 (x);
73e4de09 3427 return scm_from_bool (0 == cmp);
0aacf84e 3428 }
f92e85f7
MV
3429 else if (SCM_FRACTIONP (y))
3430 return SCM_BOOL_F;
0aacf84e 3431 else
8a1f4f98 3432 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f4c627b3 3433 }
0aacf84e
MD
3434 else if (SCM_REALP (x))
3435 {
e8c5b1f2 3436 double xx = SCM_REAL_VALUE (x);
e11e83f3 3437 if (SCM_I_INUMP (y))
e8c5b1f2
KR
3438 {
3439 /* see comments with inum/real above */
3440 long yy = SCM_I_INUM (y);
3a1b45fd
MV
3441 return scm_from_bool (xx == (double) yy
3442 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3443 || (long) xx == yy));
e8c5b1f2 3444 }
0aacf84e
MD
3445 else if (SCM_BIGP (y))
3446 {
3447 int cmp;
3448 if (xisnan (SCM_REAL_VALUE (x)))
3449 return SCM_BOOL_F;
3450 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3451 scm_remember_upto_here_1 (y);
73e4de09 3452 return scm_from_bool (0 == cmp);
0aacf84e
MD
3453 }
3454 else if (SCM_REALP (y))
73e4de09 3455 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0aacf84e 3456 else if (SCM_COMPLEXP (y))
73e4de09 3457 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3458 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7 3459 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3460 {
3461 double xx = SCM_REAL_VALUE (x);
3462 if (xisnan (xx))
3463 return SCM_BOOL_F;
3464 if (xisinf (xx))
73e4de09 3465 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3466 x = scm_inexact_to_exact (x); /* with x as frac or int */
3467 goto again;
3468 }
0aacf84e 3469 else
8a1f4f98 3470 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f872b822 3471 }
0aacf84e
MD
3472 else if (SCM_COMPLEXP (x))
3473 {
e11e83f3
MV
3474 if (SCM_I_INUMP (y))
3475 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
0aacf84e
MD
3476 && (SCM_COMPLEX_IMAG (x) == 0.0));
3477 else if (SCM_BIGP (y))
3478 {
3479 int cmp;
3480 if (0.0 != SCM_COMPLEX_IMAG (x))
3481 return SCM_BOOL_F;
3482 if (xisnan (SCM_COMPLEX_REAL (x)))
3483 return SCM_BOOL_F;
3484 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3485 scm_remember_upto_here_1 (y);
73e4de09 3486 return scm_from_bool (0 == cmp);
0aacf84e
MD
3487 }
3488 else if (SCM_REALP (y))
73e4de09 3489 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
0aacf84e
MD
3490 && (SCM_COMPLEX_IMAG (x) == 0.0));
3491 else if (SCM_COMPLEXP (y))
73e4de09 3492 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3493 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
f92e85f7 3494 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3495 {
3496 double xx;
3497 if (SCM_COMPLEX_IMAG (x) != 0.0)
3498 return SCM_BOOL_F;
3499 xx = SCM_COMPLEX_REAL (x);
3500 if (xisnan (xx))
3501 return SCM_BOOL_F;
3502 if (xisinf (xx))
73e4de09 3503 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3504 x = scm_inexact_to_exact (x); /* with x as frac or int */
3505 goto again;
3506 }
f92e85f7 3507 else
8a1f4f98 3508 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f92e85f7
MV
3509 }
3510 else if (SCM_FRACTIONP (x))
3511 {
e11e83f3 3512 if (SCM_I_INUMP (y))
f92e85f7
MV
3513 return SCM_BOOL_F;
3514 else if (SCM_BIGP (y))
3515 return SCM_BOOL_F;
3516 else if (SCM_REALP (y))
d8b95e27
KR
3517 {
3518 double yy = SCM_REAL_VALUE (y);
3519 if (xisnan (yy))
3520 return SCM_BOOL_F;
3521 if (xisinf (yy))
73e4de09 3522 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3523 y = scm_inexact_to_exact (y); /* with y as frac or int */
3524 goto again;
3525 }
f92e85f7 3526 else if (SCM_COMPLEXP (y))
d8b95e27
KR
3527 {
3528 double yy;
3529 if (SCM_COMPLEX_IMAG (y) != 0.0)
3530 return SCM_BOOL_F;
3531 yy = SCM_COMPLEX_REAL (y);
3532 if (xisnan (yy))
3533 return SCM_BOOL_F;
3534 if (xisinf (yy))
73e4de09 3535 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3536 y = scm_inexact_to_exact (y); /* with y as frac or int */
3537 goto again;
3538 }
f92e85f7
MV
3539 else if (SCM_FRACTIONP (y))
3540 return scm_i_fraction_equalp (x, y);
0aacf84e 3541 else
8a1f4f98 3542 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f4c627b3 3543 }
0aacf84e 3544 else
8a1f4f98 3545 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1, s_scm_i_num_eq_p);
0f2d19dd
JB
3546}
3547
3548
a5f0b599
KR
3549/* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3550 done are good for inums, but for bignums an answer can almost always be
3551 had by just examining a few high bits of the operands, as done by GMP in
3552 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3553 of the float exponent to take into account. */
3554
8a1f4f98
AW
3555SCM scm_i_num_less_p (SCM, SCM, SCM);
3556SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1,
3557 (SCM x, SCM y, SCM rest),
3558 "Return @code{#t} if the list of parameters is monotonically\n"
3559 "increasing.")
3560#define FUNC_NAME s_scm_i_num_less_p
3561{
3562 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3563 return SCM_BOOL_T;
3564 while (!scm_is_null (rest))
3565 {
3566 if (scm_is_false (scm_less_p (x, y)))
3567 return SCM_BOOL_F;
3568 x = y;
3569 y = scm_car (rest);
3570 rest = scm_cdr (rest);
3571 }
3572 return scm_less_p (x, y);
3573}
3574#undef FUNC_NAME
0f2d19dd 3575SCM
6e8d25a6 3576scm_less_p (SCM x, SCM y)
0f2d19dd 3577{
a5f0b599 3578 again:
e11e83f3 3579 if (SCM_I_INUMP (x))
0aacf84e 3580 {
e11e83f3
MV
3581 long xx = SCM_I_INUM (x);
3582 if (SCM_I_INUMP (y))
0aacf84e 3583 {
e11e83f3 3584 long yy = SCM_I_INUM (y);
73e4de09 3585 return scm_from_bool (xx < yy);
0aacf84e
MD
3586 }
3587 else if (SCM_BIGP (y))
3588 {
3589 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3590 scm_remember_upto_here_1 (y);
73e4de09 3591 return scm_from_bool (sgn > 0);
0aacf84e
MD
3592 }
3593 else if (SCM_REALP (y))
73e4de09 3594 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
f92e85f7 3595 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3596 {
3597 /* "x < a/b" becomes "x*b < a" */
3598 int_frac:
3599 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3600 y = SCM_FRACTION_NUMERATOR (y);
3601 goto again;
3602 }
0aacf84e 3603 else
8a1f4f98 3604 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f872b822 3605 }
0aacf84e
MD
3606 else if (SCM_BIGP (x))
3607 {
e11e83f3 3608 if (SCM_I_INUMP (y))
0aacf84e
MD
3609 {
3610 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3611 scm_remember_upto_here_1 (x);
73e4de09 3612 return scm_from_bool (sgn < 0);
0aacf84e
MD
3613 }
3614 else if (SCM_BIGP (y))
3615 {
3616 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3617 scm_remember_upto_here_2 (x, y);
73e4de09 3618 return scm_from_bool (cmp < 0);
0aacf84e
MD
3619 }
3620 else if (SCM_REALP (y))
3621 {
3622 int cmp;
3623 if (xisnan (SCM_REAL_VALUE (y)))
3624 return SCM_BOOL_F;
3625 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3626 scm_remember_upto_here_1 (x);
73e4de09 3627 return scm_from_bool (cmp < 0);
0aacf84e 3628 }
f92e85f7 3629 else if (SCM_FRACTIONP (y))
a5f0b599 3630 goto int_frac;
0aacf84e 3631 else
8a1f4f98 3632 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f4c627b3 3633 }
0aacf84e
MD
3634 else if (SCM_REALP (x))
3635 {
e11e83f3
MV
3636 if (SCM_I_INUMP (y))
3637 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
0aacf84e
MD
3638 else if (SCM_BIGP (y))
3639 {
3640 int cmp;
3641 if (xisnan (SCM_REAL_VALUE (x)))
3642 return SCM_BOOL_F;
3643 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3644 scm_remember_upto_here_1 (y);
73e4de09 3645 return scm_from_bool (cmp > 0);
0aacf84e
MD
3646 }
3647 else if (SCM_REALP (y))
73e4de09 3648 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
f92e85f7 3649 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3650 {
3651 double xx = SCM_REAL_VALUE (x);
3652 if (xisnan (xx))
3653 return SCM_BOOL_F;
3654 if (xisinf (xx))
73e4de09 3655 return scm_from_bool (xx < 0.0);
a5f0b599
KR
3656 x = scm_inexact_to_exact (x); /* with x as frac or int */
3657 goto again;
3658 }
f92e85f7 3659 else
8a1f4f98 3660 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f92e85f7
MV
3661 }
3662 else if (SCM_FRACTIONP (x))
3663 {
e11e83f3 3664 if (SCM_I_INUMP (y) || SCM_BIGP (y))
a5f0b599
KR
3665 {
3666 /* "a/b < y" becomes "a < y*b" */
3667 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3668 x = SCM_FRACTION_NUMERATOR (x);
3669 goto again;
3670 }
f92e85f7 3671 else if (SCM_REALP (y))
a5f0b599
KR
3672 {
3673 double yy = SCM_REAL_VALUE (y);
3674 if (xisnan (yy))
3675 return SCM_BOOL_F;
3676 if (xisinf (yy))
73e4de09 3677 return scm_from_bool (0.0 < yy);
a5f0b599
KR
3678 y = scm_inexact_to_exact (y); /* with y as frac or int */
3679 goto again;
3680 }
f92e85f7 3681 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3682 {
3683 /* "a/b < c/d" becomes "a*d < c*b" */
3684 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3685 SCM_FRACTION_DENOMINATOR (y));
3686 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3687 SCM_FRACTION_DENOMINATOR (x));
3688 x = new_x;
3689 y = new_y;
3690 goto again;
3691 }
0aacf84e 3692 else
8a1f4f98 3693 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f872b822 3694 }
0aacf84e 3695 else
8a1f4f98 3696 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARG1, s_scm_i_num_less_p);
0f2d19dd
JB
3697}
3698
3699
8a1f4f98
AW
3700SCM scm_i_num_gr_p (SCM, SCM, SCM);
3701SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1,
3702 (SCM x, SCM y, SCM rest),
3703 "Return @code{#t} if the list of parameters is monotonically\n"
3704 "decreasing.")
3705#define FUNC_NAME s_scm_i_num_gr_p
3706{
3707 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3708 return SCM_BOOL_T;
3709 while (!scm_is_null (rest))
3710 {
3711 if (scm_is_false (scm_gr_p (x, y)))
3712 return SCM_BOOL_F;
3713 x = y;
3714 y = scm_car (rest);
3715 rest = scm_cdr (rest);
3716 }
3717 return scm_gr_p (x, y);
3718}
3719#undef FUNC_NAME
3720#define FUNC_NAME s_scm_i_num_gr_p
c76b1eaf
MD
3721SCM
3722scm_gr_p (SCM x, SCM y)
0f2d19dd 3723{
c76b1eaf 3724 if (!SCM_NUMBERP (x))
8a1f4f98 3725 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3726 else if (!SCM_NUMBERP (y))
8a1f4f98 3727 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME);
c76b1eaf
MD
3728 else
3729 return scm_less_p (y, x);
0f2d19dd 3730}
1bbd0b84 3731#undef FUNC_NAME
0f2d19dd
JB
3732
3733
8a1f4f98
AW
3734SCM scm_i_num_leq_p (SCM, SCM, SCM);
3735SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1,
3736 (SCM x, SCM y, SCM rest),
3737 "Return @code{#t} if the list of parameters is monotonically\n"
3738 "non-decreasing.")
3739#define FUNC_NAME s_scm_i_num_leq_p
3740{
3741 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3742 return SCM_BOOL_T;
3743 while (!scm_is_null (rest))
3744 {
3745 if (scm_is_false (scm_leq_p (x, y)))
3746 return SCM_BOOL_F;
3747 x = y;
3748 y = scm_car (rest);
3749 rest = scm_cdr (rest);
3750 }
3751 return scm_leq_p (x, y);
3752}
3753#undef FUNC_NAME
3754#define FUNC_NAME s_scm_i_num_leq_p
c76b1eaf
MD
3755SCM
3756scm_leq_p (SCM x, SCM y)
0f2d19dd 3757{
c76b1eaf 3758 if (!SCM_NUMBERP (x))
8a1f4f98 3759 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3760 else if (!SCM_NUMBERP (y))
8a1f4f98 3761 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3762 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3763 return SCM_BOOL_F;
c76b1eaf 3764 else
73e4de09 3765 return scm_not (scm_less_p (y, x));
0f2d19dd 3766}
1bbd0b84 3767#undef FUNC_NAME
0f2d19dd
JB
3768
3769
8a1f4f98
AW
3770SCM scm_i_num_geq_p (SCM, SCM, SCM);
3771SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1,
3772 (SCM x, SCM y, SCM rest),
3773 "Return @code{#t} if the list of parameters is monotonically\n"
3774 "non-increasing.")
3775#define FUNC_NAME s_scm_i_num_geq_p
3776{
3777 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3778 return SCM_BOOL_T;
3779 while (!scm_is_null (rest))
3780 {
3781 if (scm_is_false (scm_geq_p (x, y)))
3782 return SCM_BOOL_F;
3783 x = y;
3784 y = scm_car (rest);
3785 rest = scm_cdr (rest);
3786 }
3787 return scm_geq_p (x, y);
3788}
3789#undef FUNC_NAME
3790#define FUNC_NAME s_scm_i_num_geq_p
c76b1eaf
MD
3791SCM
3792scm_geq_p (SCM x, SCM y)
0f2d19dd 3793{
c76b1eaf 3794 if (!SCM_NUMBERP (x))
8a1f4f98 3795 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3796 else if (!SCM_NUMBERP (y))
8a1f4f98 3797 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3798 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3799 return SCM_BOOL_F;
c76b1eaf 3800 else
73e4de09 3801 return scm_not (scm_less_p (x, y));
0f2d19dd 3802}
1bbd0b84 3803#undef FUNC_NAME
0f2d19dd
JB
3804
3805
152f82bf 3806SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
942e5b91
MG
3807/* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3808 * "zero."
3809 */
0f2d19dd 3810SCM
6e8d25a6 3811scm_zero_p (SCM z)
0f2d19dd 3812{
e11e83f3 3813 if (SCM_I_INUMP (z))
bc36d050 3814 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
0aacf84e 3815 else if (SCM_BIGP (z))
c2ff8ab0 3816 return SCM_BOOL_F;
0aacf84e 3817 else if (SCM_REALP (z))
73e4de09 3818 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
0aacf84e 3819 else if (SCM_COMPLEXP (z))
73e4de09 3820 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
c2ff8ab0 3821 && SCM_COMPLEX_IMAG (z) == 0.0);
f92e85f7
MV
3822 else if (SCM_FRACTIONP (z))
3823 return SCM_BOOL_F;
0aacf84e 3824 else
c2ff8ab0 3825 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
0f2d19dd
JB
3826}
3827
3828
152f82bf 3829SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
942e5b91
MG
3830/* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3831 * "zero."
3832 */
0f2d19dd 3833SCM
6e8d25a6 3834scm_positive_p (SCM x)
0f2d19dd 3835{
e11e83f3
MV
3836 if (SCM_I_INUMP (x))
3837 return scm_from_bool (SCM_I_INUM (x) > 0);
0aacf84e
MD
3838 else if (SCM_BIGP (x))
3839 {
3840 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3841 scm_remember_upto_here_1 (x);
73e4de09 3842 return scm_from_bool (sgn > 0);
0aacf84e
MD
3843 }
3844 else if (SCM_REALP (x))
73e4de09 3845 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
f92e85f7
MV
3846 else if (SCM_FRACTIONP (x))
3847 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3848 else
c2ff8ab0 3849 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
0f2d19dd
JB
3850}
3851
3852
152f82bf 3853SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
942e5b91
MG
3854/* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3855 * "zero."
3856 */
0f2d19dd 3857SCM
6e8d25a6 3858scm_negative_p (SCM x)
0f2d19dd 3859{
e11e83f3
MV
3860 if (SCM_I_INUMP (x))
3861 return scm_from_bool (SCM_I_INUM (x) < 0);
0aacf84e
MD
3862 else if (SCM_BIGP (x))
3863 {
3864 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3865 scm_remember_upto_here_1 (x);
73e4de09 3866 return scm_from_bool (sgn < 0);
0aacf84e
MD
3867 }
3868 else if (SCM_REALP (x))
73e4de09 3869 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
f92e85f7
MV
3870 else if (SCM_FRACTIONP (x))
3871 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3872 else
c2ff8ab0 3873 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
0f2d19dd
JB
3874}
3875
3876
2a06f791
KR
3877/* scm_min and scm_max return an inexact when either argument is inexact, as
3878 required by r5rs. On that basis, for exact/inexact combinations the
3879 exact is converted to inexact to compare and possibly return. This is
3880 unlike scm_less_p above which takes some trouble to preserve all bits in
3881 its test, such trouble is not required for min and max. */
3882
78d3deb1
AW
3883SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
3884 (SCM x, SCM y, SCM rest),
3885 "Return the maximum of all parameter values.")
3886#define FUNC_NAME s_scm_i_max
3887{
3888 while (!scm_is_null (rest))
3889 { x = scm_max (x, y);
3890 y = scm_car (rest);
3891 rest = scm_cdr (rest);
3892 }
3893 return scm_max (x, y);
3894}
3895#undef FUNC_NAME
3896
3897#define s_max s_scm_i_max
3898#define g_max g_scm_i_max
3899
0f2d19dd 3900SCM
6e8d25a6 3901scm_max (SCM x, SCM y)
0f2d19dd 3902{
0aacf84e
MD
3903 if (SCM_UNBNDP (y))
3904 {
3905 if (SCM_UNBNDP (x))
3906 SCM_WTA_DISPATCH_0 (g_max, s_max);
e11e83f3 3907 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
3908 return x;
3909 else
3910 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
f872b822 3911 }
f4c627b3 3912
e11e83f3 3913 if (SCM_I_INUMP (x))
0aacf84e 3914 {
e11e83f3
MV
3915 long xx = SCM_I_INUM (x);
3916 if (SCM_I_INUMP (y))
0aacf84e 3917 {
e11e83f3 3918 long yy = SCM_I_INUM (y);
0aacf84e
MD
3919 return (xx < yy) ? y : x;
3920 }
3921 else if (SCM_BIGP (y))
3922 {
3923 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3924 scm_remember_upto_here_1 (y);
3925 return (sgn < 0) ? x : y;
3926 }
3927 else if (SCM_REALP (y))
3928 {
3929 double z = xx;
3930 /* if y==NaN then ">" is false and we return NaN */
55f26379 3931 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 3932 }
f92e85f7
MV
3933 else if (SCM_FRACTIONP (y))
3934 {
e4bc5d6c 3935 use_less:
73e4de09 3936 return (scm_is_false (scm_less_p (x, y)) ? x : y);
f92e85f7 3937 }
0aacf84e
MD
3938 else
3939 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 3940 }
0aacf84e
MD
3941 else if (SCM_BIGP (x))
3942 {
e11e83f3 3943 if (SCM_I_INUMP (y))
0aacf84e
MD
3944 {
3945 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3946 scm_remember_upto_here_1 (x);
3947 return (sgn < 0) ? y : x;
3948 }
3949 else if (SCM_BIGP (y))
3950 {
3951 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3952 scm_remember_upto_here_2 (x, y);
3953 return (cmp > 0) ? x : y;
3954 }
3955 else if (SCM_REALP (y))
3956 {
2a06f791
KR
3957 /* if y==NaN then xx>yy is false, so we return the NaN y */
3958 double xx, yy;
3959 big_real:
3960 xx = scm_i_big2dbl (x);
3961 yy = SCM_REAL_VALUE (y);
55f26379 3962 return (xx > yy ? scm_from_double (xx) : y);
0aacf84e 3963 }
f92e85f7
MV
3964 else if (SCM_FRACTIONP (y))
3965 {
e4bc5d6c 3966 goto use_less;
f92e85f7 3967 }
0aacf84e
MD
3968 else
3969 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f4c627b3 3970 }
0aacf84e
MD
3971 else if (SCM_REALP (x))
3972 {
e11e83f3 3973 if (SCM_I_INUMP (y))
0aacf84e 3974 {
e11e83f3 3975 double z = SCM_I_INUM (y);
0aacf84e 3976 /* if x==NaN then "<" is false and we return NaN */
55f26379 3977 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
0aacf84e
MD
3978 }
3979 else if (SCM_BIGP (y))
3980 {
b6f8f763 3981 SCM_SWAP (x, y);
2a06f791 3982 goto big_real;
0aacf84e
MD
3983 }
3984 else if (SCM_REALP (y))
3985 {
3986 /* if x==NaN then our explicit check means we return NaN
3987 if y==NaN then ">" is false and we return NaN
3988 calling isnan is unavoidable, since it's the only way to know
3989 which of x or y causes any compares to be false */
3990 double xx = SCM_REAL_VALUE (x);
3991 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3992 }
f92e85f7
MV
3993 else if (SCM_FRACTIONP (y))
3994 {
3995 double yy = scm_i_fraction2double (y);
3996 double xx = SCM_REAL_VALUE (x);
55f26379 3997 return (xx < yy) ? scm_from_double (yy) : x;
f92e85f7
MV
3998 }
3999 else
4000 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
4001 }
4002 else if (SCM_FRACTIONP (x))
4003 {
e11e83f3 4004 if (SCM_I_INUMP (y))
f92e85f7 4005 {
e4bc5d6c 4006 goto use_less;
f92e85f7
MV
4007 }
4008 else if (SCM_BIGP (y))
4009 {
e4bc5d6c 4010 goto use_less;
f92e85f7
MV
4011 }
4012 else if (SCM_REALP (y))
4013 {
4014 double xx = scm_i_fraction2double (x);
55f26379 4015 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
f92e85f7
MV
4016 }
4017 else if (SCM_FRACTIONP (y))
4018 {
e4bc5d6c 4019 goto use_less;
f92e85f7 4020 }
0aacf84e
MD
4021 else
4022 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 4023 }
0aacf84e 4024 else
f4c627b3 4025 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
0f2d19dd
JB
4026}
4027
4028
78d3deb1
AW
4029SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
4030 (SCM x, SCM y, SCM rest),
4031 "Return the minimum of all parameter values.")
4032#define FUNC_NAME s_scm_i_min
4033{
4034 while (!scm_is_null (rest))
4035 { x = scm_min (x, y);
4036 y = scm_car (rest);
4037 rest = scm_cdr (rest);
4038 }
4039 return scm_min (x, y);
4040}
4041#undef FUNC_NAME
4042
4043#define s_min s_scm_i_min
4044#define g_min g_scm_i_min
4045
0f2d19dd 4046SCM
6e8d25a6 4047scm_min (SCM x, SCM y)
0f2d19dd 4048{
0aacf84e
MD
4049 if (SCM_UNBNDP (y))
4050 {
4051 if (SCM_UNBNDP (x))
4052 SCM_WTA_DISPATCH_0 (g_min, s_min);
e11e83f3 4053 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
4054 return x;
4055 else
4056 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
f872b822 4057 }
f4c627b3 4058
e11e83f3 4059 if (SCM_I_INUMP (x))
0aacf84e 4060 {
e11e83f3
MV
4061 long xx = SCM_I_INUM (x);
4062 if (SCM_I_INUMP (y))
0aacf84e 4063 {
e11e83f3 4064 long yy = SCM_I_INUM (y);
0aacf84e
MD
4065 return (xx < yy) ? x : y;
4066 }
4067 else if (SCM_BIGP (y))
4068 {
4069 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
4070 scm_remember_upto_here_1 (y);
4071 return (sgn < 0) ? y : x;
4072 }
4073 else if (SCM_REALP (y))
4074 {
4075 double z = xx;
4076 /* if y==NaN then "<" is false and we return NaN */
55f26379 4077 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 4078 }
f92e85f7
MV
4079 else if (SCM_FRACTIONP (y))
4080 {
e4bc5d6c 4081 use_less:
73e4de09 4082 return (scm_is_false (scm_less_p (x, y)) ? y : x);
f92e85f7 4083 }
0aacf84e
MD
4084 else
4085 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 4086 }
0aacf84e
MD
4087 else if (SCM_BIGP (x))
4088 {
e11e83f3 4089 if (SCM_I_INUMP (y))
0aacf84e
MD
4090 {
4091 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4092 scm_remember_upto_here_1 (x);
4093 return (sgn < 0) ? x : y;
4094 }
4095 else if (SCM_BIGP (y))
4096 {
4097 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
4098 scm_remember_upto_here_2 (x, y);
4099 return (cmp > 0) ? y : x;
4100 }
4101 else if (SCM_REALP (y))
4102 {
2a06f791
KR
4103 /* if y==NaN then xx<yy is false, so we return the NaN y */
4104 double xx, yy;
4105 big_real:
4106 xx = scm_i_big2dbl (x);
4107 yy = SCM_REAL_VALUE (y);
55f26379 4108 return (xx < yy ? scm_from_double (xx) : y);
0aacf84e 4109 }
f92e85f7
MV
4110 else if (SCM_FRACTIONP (y))
4111 {
e4bc5d6c 4112 goto use_less;
f92e85f7 4113 }
0aacf84e
MD
4114 else
4115 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f4c627b3 4116 }
0aacf84e
MD
4117 else if (SCM_REALP (x))
4118 {
e11e83f3 4119 if (SCM_I_INUMP (y))
0aacf84e 4120 {
e11e83f3 4121 double z = SCM_I_INUM (y);
0aacf84e 4122 /* if x==NaN then "<" is false and we return NaN */
55f26379 4123 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
0aacf84e
MD
4124 }
4125 else if (SCM_BIGP (y))
4126 {
b6f8f763 4127 SCM_SWAP (x, y);
2a06f791 4128 goto big_real;
0aacf84e
MD
4129 }
4130 else if (SCM_REALP (y))
4131 {
4132 /* if x==NaN then our explicit check means we return NaN
4133 if y==NaN then "<" is false and we return NaN
4134 calling isnan is unavoidable, since it's the only way to know
4135 which of x or y causes any compares to be false */
4136 double xx = SCM_REAL_VALUE (x);
4137 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
4138 }
f92e85f7
MV
4139 else if (SCM_FRACTIONP (y))
4140 {
4141 double yy = scm_i_fraction2double (y);
4142 double xx = SCM_REAL_VALUE (x);
55f26379 4143 return (yy < xx) ? scm_from_double (yy) : x;
f92e85f7 4144 }
0aacf84e
MD
4145 else
4146 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 4147 }
f92e85f7
MV
4148 else if (SCM_FRACTIONP (x))
4149 {
e11e83f3 4150 if (SCM_I_INUMP (y))
f92e85f7 4151 {
e4bc5d6c 4152 goto use_less;
f92e85f7
MV
4153 }
4154 else if (SCM_BIGP (y))
4155 {
e4bc5d6c 4156 goto use_less;
f92e85f7
MV
4157 }
4158 else if (SCM_REALP (y))
4159 {
4160 double xx = scm_i_fraction2double (x);
55f26379 4161 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
f92e85f7
MV
4162 }
4163 else if (SCM_FRACTIONP (y))
4164 {
e4bc5d6c 4165 goto use_less;
f92e85f7
MV
4166 }
4167 else
78d3deb1 4168 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f92e85f7 4169 }
0aacf84e 4170 else
f4c627b3 4171 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
0f2d19dd
JB
4172}
4173
4174
8ccd24f7
AW
4175SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
4176 (SCM x, SCM y, SCM rest),
4177 "Return the sum of all parameter values. Return 0 if called without\n"
4178 "any parameters." )
4179#define FUNC_NAME s_scm_i_sum
4180{
4181 while (!scm_is_null (rest))
4182 { x = scm_sum (x, y);
4183 y = scm_car (rest);
4184 rest = scm_cdr (rest);
4185 }
4186 return scm_sum (x, y);
4187}
4188#undef FUNC_NAME
4189
4190#define s_sum s_scm_i_sum
4191#define g_sum g_scm_i_sum
4192
0f2d19dd 4193SCM
6e8d25a6 4194scm_sum (SCM x, SCM y)
0f2d19dd 4195{
9cc37597 4196 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
4197 {
4198 if (SCM_NUMBERP (x)) return x;
4199 if (SCM_UNBNDP (x)) return SCM_INUM0;
98cb6e75 4200 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
f872b822 4201 }
c209c88e 4202
9cc37597 4203 if (SCM_LIKELY (SCM_I_INUMP (x)))
ca46fb90 4204 {
9cc37597 4205 if (SCM_LIKELY (SCM_I_INUMP (y)))
ca46fb90 4206 {
e11e83f3
MV
4207 long xx = SCM_I_INUM (x);
4208 long yy = SCM_I_INUM (y);
ca46fb90 4209 long int z = xx + yy;
d956fa6f 4210 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
ca46fb90
RB
4211 }
4212 else if (SCM_BIGP (y))
4213 {
4214 SCM_SWAP (x, y);
4215 goto add_big_inum;
4216 }
4217 else if (SCM_REALP (y))
4218 {
e11e83f3 4219 long int xx = SCM_I_INUM (x);
55f26379 4220 return scm_from_double (xx + SCM_REAL_VALUE (y));
ca46fb90
RB
4221 }
4222 else if (SCM_COMPLEXP (y))
4223 {
e11e83f3 4224 long int xx = SCM_I_INUM (x);
8507ec80 4225 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
ca46fb90
RB
4226 SCM_COMPLEX_IMAG (y));
4227 }
f92e85f7 4228 else if (SCM_FRACTIONP (y))
cba42c93 4229 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
4230 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4231 SCM_FRACTION_DENOMINATOR (y));
ca46fb90
RB
4232 else
4233 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0aacf84e
MD
4234 } else if (SCM_BIGP (x))
4235 {
e11e83f3 4236 if (SCM_I_INUMP (y))
0aacf84e
MD
4237 {
4238 long int inum;
4239 int bigsgn;
4240 add_big_inum:
e11e83f3 4241 inum = SCM_I_INUM (y);
0aacf84e
MD
4242 if (inum == 0)
4243 return x;
4244 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4245 if (inum < 0)
4246 {
4247 SCM result = scm_i_mkbig ();
4248 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
4249 scm_remember_upto_here_1 (x);
4250 /* we know the result will have to be a bignum */
4251 if (bigsgn == -1)
4252 return result;
4253 return scm_i_normbig (result);
4254 }
4255 else
4256 {
4257 SCM result = scm_i_mkbig ();
4258 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
4259 scm_remember_upto_here_1 (x);
4260 /* we know the result will have to be a bignum */
4261 if (bigsgn == 1)
4262 return result;
4263 return scm_i_normbig (result);
4264 }
4265 }
4266 else if (SCM_BIGP (y))
4267 {
4268 SCM result = scm_i_mkbig ();
4269 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4270 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4271 mpz_add (SCM_I_BIG_MPZ (result),
4272 SCM_I_BIG_MPZ (x),
4273 SCM_I_BIG_MPZ (y));
4274 scm_remember_upto_here_2 (x, y);
4275 /* we know the result will have to be a bignum */
4276 if (sgn_x == sgn_y)
4277 return result;
4278 return scm_i_normbig (result);
4279 }
4280 else if (SCM_REALP (y))
4281 {
4282 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
4283 scm_remember_upto_here_1 (x);
55f26379 4284 return scm_from_double (result);
0aacf84e
MD
4285 }
4286 else if (SCM_COMPLEXP (y))
4287 {
4288 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4289 + SCM_COMPLEX_REAL (y));
4290 scm_remember_upto_here_1 (x);
8507ec80 4291 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e 4292 }
f92e85f7 4293 else if (SCM_FRACTIONP (y))
cba42c93 4294 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
4295 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4296 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4297 else
4298 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0f2d19dd 4299 }
0aacf84e
MD
4300 else if (SCM_REALP (x))
4301 {
e11e83f3 4302 if (SCM_I_INUMP (y))
55f26379 4303 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
0aacf84e
MD
4304 else if (SCM_BIGP (y))
4305 {
4306 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
4307 scm_remember_upto_here_1 (y);
55f26379 4308 return scm_from_double (result);
0aacf84e
MD
4309 }
4310 else if (SCM_REALP (y))
55f26379 4311 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
0aacf84e 4312 else if (SCM_COMPLEXP (y))
8507ec80 4313 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4314 SCM_COMPLEX_IMAG (y));
f92e85f7 4315 else if (SCM_FRACTIONP (y))
55f26379 4316 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
0aacf84e
MD
4317 else
4318 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
f872b822 4319 }
0aacf84e
MD
4320 else if (SCM_COMPLEXP (x))
4321 {
e11e83f3 4322 if (SCM_I_INUMP (y))
8507ec80 4323 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
0aacf84e
MD
4324 SCM_COMPLEX_IMAG (x));
4325 else if (SCM_BIGP (y))
4326 {
4327 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
4328 + SCM_COMPLEX_REAL (x));
4329 scm_remember_upto_here_1 (y);
8507ec80 4330 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4331 }
4332 else if (SCM_REALP (y))
8507ec80 4333 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
0aacf84e
MD
4334 SCM_COMPLEX_IMAG (x));
4335 else if (SCM_COMPLEXP (y))
8507ec80 4336 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4337 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
f92e85f7 4338 else if (SCM_FRACTIONP (y))
8507ec80 4339 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
f92e85f7
MV
4340 SCM_COMPLEX_IMAG (x));
4341 else
4342 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4343 }
4344 else if (SCM_FRACTIONP (x))
4345 {
e11e83f3 4346 if (SCM_I_INUMP (y))
cba42c93 4347 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4348 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4349 SCM_FRACTION_DENOMINATOR (x));
4350 else if (SCM_BIGP (y))
cba42c93 4351 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4352 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4353 SCM_FRACTION_DENOMINATOR (x));
4354 else if (SCM_REALP (y))
55f26379 4355 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
f92e85f7 4356 else if (SCM_COMPLEXP (y))
8507ec80 4357 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
f92e85f7
MV
4358 SCM_COMPLEX_IMAG (y));
4359 else if (SCM_FRACTIONP (y))
4360 /* a/b + c/d = (ad + bc) / bd */
cba42c93 4361 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4362 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4363 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4364 else
4365 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
98cb6e75 4366 }
0aacf84e 4367 else
98cb6e75 4368 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
0f2d19dd
JB
4369}
4370
4371
40882e3d
KR
4372SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
4373 (SCM x),
4374 "Return @math{@var{x}+1}.")
4375#define FUNC_NAME s_scm_oneplus
4376{
4377 return scm_sum (x, SCM_I_MAKINUM (1));
4378}
4379#undef FUNC_NAME
4380
4381
78d3deb1
AW
4382SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
4383 (SCM x, SCM y, SCM rest),
4384 "If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
4385 "the sum of all but the first argument are subtracted from the first\n"
4386 "argument.")
4387#define FUNC_NAME s_scm_i_difference
4388{
4389 while (!scm_is_null (rest))
4390 { x = scm_difference (x, y);
4391 y = scm_car (rest);
4392 rest = scm_cdr (rest);
4393 }
4394 return scm_difference (x, y);
4395}
4396#undef FUNC_NAME
4397
4398#define s_difference s_scm_i_difference
4399#define g_difference g_scm_i_difference
4400
0f2d19dd 4401SCM
6e8d25a6 4402scm_difference (SCM x, SCM y)
78d3deb1 4403#define FUNC_NAME s_difference
0f2d19dd 4404{
9cc37597 4405 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
4406 {
4407 if (SCM_UNBNDP (x))
4408 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4409 else
e11e83f3 4410 if (SCM_I_INUMP (x))
ca46fb90 4411 {
e11e83f3 4412 long xx = -SCM_I_INUM (x);
ca46fb90 4413 if (SCM_FIXABLE (xx))
d956fa6f 4414 return SCM_I_MAKINUM (xx);
ca46fb90
RB
4415 else
4416 return scm_i_long2big (xx);
4417 }
4418 else if (SCM_BIGP (x))
a9ad4847
KR
4419 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4420 bignum, but negating that gives a fixnum. */
ca46fb90
RB
4421 return scm_i_normbig (scm_i_clonebig (x, 0));
4422 else if (SCM_REALP (x))
55f26379 4423 return scm_from_double (-SCM_REAL_VALUE (x));
ca46fb90 4424 else if (SCM_COMPLEXP (x))
8507ec80 4425 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
ca46fb90 4426 -SCM_COMPLEX_IMAG (x));
f92e85f7 4427 else if (SCM_FRACTIONP (x))
cba42c93 4428 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7 4429 SCM_FRACTION_DENOMINATOR (x));
ca46fb90
RB
4430 else
4431 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
f872b822 4432 }
ca46fb90 4433
9cc37597 4434 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 4435 {
9cc37597 4436 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4437 {
e11e83f3
MV
4438 long int xx = SCM_I_INUM (x);
4439 long int yy = SCM_I_INUM (y);
0aacf84e
MD
4440 long int z = xx - yy;
4441 if (SCM_FIXABLE (z))
d956fa6f 4442 return SCM_I_MAKINUM (z);
0aacf84e
MD
4443 else
4444 return scm_i_long2big (z);
4445 }
4446 else if (SCM_BIGP (y))
4447 {
4448 /* inum-x - big-y */
e11e83f3 4449 long xx = SCM_I_INUM (x);
ca46fb90 4450
0aacf84e
MD
4451 if (xx == 0)
4452 return scm_i_clonebig (y, 0);
4453 else
4454 {
4455 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4456 SCM result = scm_i_mkbig ();
ca46fb90 4457
0aacf84e
MD
4458 if (xx >= 0)
4459 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4460 else
4461 {
4462 /* x - y == -(y + -x) */
4463 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4464 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4465 }
4466 scm_remember_upto_here_1 (y);
ca46fb90 4467
0aacf84e
MD
4468 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4469 /* we know the result will have to be a bignum */
4470 return result;
4471 else
4472 return scm_i_normbig (result);
4473 }
4474 }
4475 else if (SCM_REALP (y))
4476 {
e11e83f3 4477 long int xx = SCM_I_INUM (x);
55f26379 4478 return scm_from_double (xx - SCM_REAL_VALUE (y));
0aacf84e
MD
4479 }
4480 else if (SCM_COMPLEXP (y))
4481 {
e11e83f3 4482 long int xx = SCM_I_INUM (x);
8507ec80 4483 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
0aacf84e
MD
4484 - SCM_COMPLEX_IMAG (y));
4485 }
f92e85f7
MV
4486 else if (SCM_FRACTIONP (y))
4487 /* a - b/c = (ac - b) / c */
cba42c93 4488 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4489 SCM_FRACTION_NUMERATOR (y)),
4490 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4491 else
4492 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
f872b822 4493 }
0aacf84e
MD
4494 else if (SCM_BIGP (x))
4495 {
e11e83f3 4496 if (SCM_I_INUMP (y))
0aacf84e
MD
4497 {
4498 /* big-x - inum-y */
e11e83f3 4499 long yy = SCM_I_INUM (y);
0aacf84e 4500 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
ca46fb90 4501
0aacf84e
MD
4502 scm_remember_upto_here_1 (x);
4503 if (sgn_x == 0)
c71b0706
MV
4504 return (SCM_FIXABLE (-yy) ?
4505 SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
0aacf84e
MD
4506 else
4507 {
4508 SCM result = scm_i_mkbig ();
ca46fb90 4509
708f22c6
KR
4510 if (yy >= 0)
4511 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4512 else
4513 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
0aacf84e 4514 scm_remember_upto_here_1 (x);
ca46fb90 4515
0aacf84e
MD
4516 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4517 /* we know the result will have to be a bignum */
4518 return result;
4519 else
4520 return scm_i_normbig (result);
4521 }
4522 }
4523 else if (SCM_BIGP (y))
4524 {
4525 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4526 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4527 SCM result = scm_i_mkbig ();
4528 mpz_sub (SCM_I_BIG_MPZ (result),
4529 SCM_I_BIG_MPZ (x),
4530 SCM_I_BIG_MPZ (y));
4531 scm_remember_upto_here_2 (x, y);
4532 /* we know the result will have to be a bignum */
4533 if ((sgn_x == 1) && (sgn_y == -1))
4534 return result;
4535 if ((sgn_x == -1) && (sgn_y == 1))
4536 return result;
4537 return scm_i_normbig (result);
4538 }
4539 else if (SCM_REALP (y))
4540 {
4541 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4542 scm_remember_upto_here_1 (x);
55f26379 4543 return scm_from_double (result);
0aacf84e
MD
4544 }
4545 else if (SCM_COMPLEXP (y))
4546 {
4547 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4548 - SCM_COMPLEX_REAL (y));
4549 scm_remember_upto_here_1 (x);
8507ec80 4550 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
0aacf84e 4551 }
f92e85f7 4552 else if (SCM_FRACTIONP (y))
cba42c93 4553 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4554 SCM_FRACTION_NUMERATOR (y)),
4555 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 4556 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
ca46fb90 4557 }
0aacf84e
MD
4558 else if (SCM_REALP (x))
4559 {
e11e83f3 4560 if (SCM_I_INUMP (y))
55f26379 4561 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
0aacf84e
MD
4562 else if (SCM_BIGP (y))
4563 {
4564 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4565 scm_remember_upto_here_1 (x);
55f26379 4566 return scm_from_double (result);
0aacf84e
MD
4567 }
4568 else if (SCM_REALP (y))
55f26379 4569 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
0aacf84e 4570 else if (SCM_COMPLEXP (y))
8507ec80 4571 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4572 -SCM_COMPLEX_IMAG (y));
f92e85f7 4573 else if (SCM_FRACTIONP (y))
55f26379 4574 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
0aacf84e
MD
4575 else
4576 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4577 }
0aacf84e
MD
4578 else if (SCM_COMPLEXP (x))
4579 {
e11e83f3 4580 if (SCM_I_INUMP (y))
8507ec80 4581 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
0aacf84e
MD
4582 SCM_COMPLEX_IMAG (x));
4583 else if (SCM_BIGP (y))
4584 {
4585 double real_part = (SCM_COMPLEX_REAL (x)
4586 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4587 scm_remember_upto_here_1 (x);
8507ec80 4588 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e
MD
4589 }
4590 else if (SCM_REALP (y))
8507ec80 4591 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
0aacf84e
MD
4592 SCM_COMPLEX_IMAG (x));
4593 else if (SCM_COMPLEXP (y))
8507ec80 4594 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4595 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
f92e85f7 4596 else if (SCM_FRACTIONP (y))
8507ec80 4597 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
f92e85f7
MV
4598 SCM_COMPLEX_IMAG (x));
4599 else
4600 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4601 }
4602 else if (SCM_FRACTIONP (x))
4603 {
e11e83f3 4604 if (SCM_I_INUMP (y))
f92e85f7 4605 /* a/b - c = (a - cb) / b */
cba42c93 4606 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4607 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4608 SCM_FRACTION_DENOMINATOR (x));
4609 else if (SCM_BIGP (y))
cba42c93 4610 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4611 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4612 SCM_FRACTION_DENOMINATOR (x));
4613 else if (SCM_REALP (y))
55f26379 4614 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
f92e85f7 4615 else if (SCM_COMPLEXP (y))
8507ec80 4616 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
f92e85f7
MV
4617 -SCM_COMPLEX_IMAG (y));
4618 else if (SCM_FRACTIONP (y))
4619 /* a/b - c/d = (ad - bc) / bd */
cba42c93 4620 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4621 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4622 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4623 else
4624 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4625 }
0aacf84e 4626 else
98cb6e75 4627 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
0f2d19dd 4628}
c05e97b7 4629#undef FUNC_NAME
0f2d19dd 4630
ca46fb90 4631
40882e3d
KR
4632SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
4633 (SCM x),
4634 "Return @math{@var{x}-1}.")
4635#define FUNC_NAME s_scm_oneminus
4636{
4637 return scm_difference (x, SCM_I_MAKINUM (1));
4638}
4639#undef FUNC_NAME
4640
4641
78d3deb1
AW
4642SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
4643 (SCM x, SCM y, SCM rest),
4644 "Return the product of all arguments. If called without arguments,\n"
4645 "1 is returned.")
4646#define FUNC_NAME s_scm_i_product
4647{
4648 while (!scm_is_null (rest))
4649 { x = scm_product (x, y);
4650 y = scm_car (rest);
4651 rest = scm_cdr (rest);
4652 }
4653 return scm_product (x, y);
4654}
4655#undef FUNC_NAME
4656
4657#define s_product s_scm_i_product
4658#define g_product g_scm_i_product
4659
0f2d19dd 4660SCM
6e8d25a6 4661scm_product (SCM x, SCM y)
0f2d19dd 4662{
9cc37597 4663 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
4664 {
4665 if (SCM_UNBNDP (x))
d956fa6f 4666 return SCM_I_MAKINUM (1L);
0aacf84e
MD
4667 else if (SCM_NUMBERP (x))
4668 return x;
4669 else
4670 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
f872b822 4671 }
ca46fb90 4672
9cc37597 4673 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e
MD
4674 {
4675 long xx;
f4c627b3 4676
0aacf84e 4677 intbig:
e11e83f3 4678 xx = SCM_I_INUM (x);
f4c627b3 4679
0aacf84e
MD
4680 switch (xx)
4681 {
ca46fb90
RB
4682 case 0: return x; break;
4683 case 1: return y; break;
0aacf84e 4684 }
f4c627b3 4685
9cc37597 4686 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4687 {
e11e83f3 4688 long yy = SCM_I_INUM (y);
0aacf84e 4689 long kk = xx * yy;
d956fa6f 4690 SCM k = SCM_I_MAKINUM (kk);
e11e83f3 4691 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
0aacf84e
MD
4692 return k;
4693 else
4694 {
4695 SCM result = scm_i_long2big (xx);
4696 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4697 return scm_i_normbig (result);
4698 }
4699 }
4700 else if (SCM_BIGP (y))
4701 {
4702 SCM result = scm_i_mkbig ();
4703 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4704 scm_remember_upto_here_1 (y);
4705 return result;
4706 }
4707 else if (SCM_REALP (y))
55f26379 4708 return scm_from_double (xx * SCM_REAL_VALUE (y));
0aacf84e 4709 else if (SCM_COMPLEXP (y))
8507ec80 4710 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
0aacf84e 4711 xx * SCM_COMPLEX_IMAG (y));
f92e85f7 4712 else if (SCM_FRACTIONP (y))
cba42c93 4713 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4714 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4715 else
4716 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4717 }
0aacf84e
MD
4718 else if (SCM_BIGP (x))
4719 {
e11e83f3 4720 if (SCM_I_INUMP (y))
0aacf84e
MD
4721 {
4722 SCM_SWAP (x, y);
4723 goto intbig;
4724 }
4725 else if (SCM_BIGP (y))
4726 {
4727 SCM result = scm_i_mkbig ();
4728 mpz_mul (SCM_I_BIG_MPZ (result),
4729 SCM_I_BIG_MPZ (x),
4730 SCM_I_BIG_MPZ (y));
4731 scm_remember_upto_here_2 (x, y);
4732 return result;
4733 }
4734 else if (SCM_REALP (y))
4735 {
4736 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4737 scm_remember_upto_here_1 (x);
55f26379 4738 return scm_from_double (result);
0aacf84e
MD
4739 }
4740 else if (SCM_COMPLEXP (y))
4741 {
4742 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4743 scm_remember_upto_here_1 (x);
8507ec80 4744 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
0aacf84e
MD
4745 z * SCM_COMPLEX_IMAG (y));
4746 }
f92e85f7 4747 else if (SCM_FRACTIONP (y))
cba42c93 4748 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4749 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4750 else
4751 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4752 }
0aacf84e
MD
4753 else if (SCM_REALP (x))
4754 {
e11e83f3 4755 if (SCM_I_INUMP (y))
23d72566
KR
4756 {
4757 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4758 if (scm_is_eq (y, SCM_INUM0))
4759 return y;
4760 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
4761 }
0aacf84e
MD
4762 else if (SCM_BIGP (y))
4763 {
4764 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4765 scm_remember_upto_here_1 (y);
55f26379 4766 return scm_from_double (result);
0aacf84e
MD
4767 }
4768 else if (SCM_REALP (y))
55f26379 4769 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
0aacf84e 4770 else if (SCM_COMPLEXP (y))
8507ec80 4771 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
0aacf84e 4772 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
f92e85f7 4773 else if (SCM_FRACTIONP (y))
55f26379 4774 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
0aacf84e
MD
4775 else
4776 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4777 }
0aacf84e
MD
4778 else if (SCM_COMPLEXP (x))
4779 {
e11e83f3 4780 if (SCM_I_INUMP (y))
23d72566
KR
4781 {
4782 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4783 if (scm_is_eq (y, SCM_INUM0))
4784 return y;
4785 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
4786 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
4787 }
0aacf84e
MD
4788 else if (SCM_BIGP (y))
4789 {
4790 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4791 scm_remember_upto_here_1 (y);
8507ec80 4792 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
76506335 4793 z * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4794 }
4795 else if (SCM_REALP (y))
8507ec80 4796 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
0aacf84e
MD
4797 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4798 else if (SCM_COMPLEXP (y))
4799 {
8507ec80 4800 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
0aacf84e
MD
4801 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4802 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4803 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4804 }
f92e85f7
MV
4805 else if (SCM_FRACTIONP (y))
4806 {
4807 double yy = scm_i_fraction2double (y);
8507ec80 4808 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
f92e85f7
MV
4809 yy * SCM_COMPLEX_IMAG (x));
4810 }
4811 else
4812 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4813 }
4814 else if (SCM_FRACTIONP (x))
4815 {
e11e83f3 4816 if (SCM_I_INUMP (y))
cba42c93 4817 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4818 SCM_FRACTION_DENOMINATOR (x));
4819 else if (SCM_BIGP (y))
cba42c93 4820 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4821 SCM_FRACTION_DENOMINATOR (x));
4822 else if (SCM_REALP (y))
55f26379 4823 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
f92e85f7
MV
4824 else if (SCM_COMPLEXP (y))
4825 {
4826 double xx = scm_i_fraction2double (x);
8507ec80 4827 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
f92e85f7
MV
4828 xx * SCM_COMPLEX_IMAG (y));
4829 }
4830 else if (SCM_FRACTIONP (y))
4831 /* a/b * c/d = ac / bd */
cba42c93 4832 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4833 SCM_FRACTION_NUMERATOR (y)),
4834 scm_product (SCM_FRACTION_DENOMINATOR (x),
4835 SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4836 else
4837 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4838 }
0aacf84e 4839 else
f4c627b3 4840 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
0f2d19dd
JB
4841}
4842
7351e207
MV
4843#if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4844 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4845#define ALLOW_DIVIDE_BY_ZERO
4846/* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4847#endif
0f2d19dd 4848
ba74ef4e
MV
4849/* The code below for complex division is adapted from the GNU
4850 libstdc++, which adapted it from f2c's libF77, and is subject to
4851 this copyright: */
4852
4853/****************************************************************
4854Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4855
4856Permission to use, copy, modify, and distribute this software
4857and its documentation for any purpose and without fee is hereby
4858granted, provided that the above copyright notice appear in all
4859copies and that both that the copyright notice and this
4860permission notice and warranty disclaimer appear in supporting
4861documentation, and that the names of AT&T Bell Laboratories or
4862Bellcore or any of their entities not be used in advertising or
4863publicity pertaining to distribution of the software without
4864specific, written prior permission.
4865
4866AT&T and Bellcore disclaim all warranties with regard to this
4867software, including all implied warranties of merchantability
4868and fitness. In no event shall AT&T or Bellcore be liable for
4869any special, indirect or consequential damages or any damages
4870whatsoever resulting from loss of use, data or profits, whether
4871in an action of contract, negligence or other tortious action,
4872arising out of or in connection with the use or performance of
4873this software.
4874****************************************************************/
4875
78d3deb1
AW
4876SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
4877 (SCM x, SCM y, SCM rest),
4878 "Divide the first argument by the product of the remaining\n"
4879 "arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
4880 "returned.")
4881#define FUNC_NAME s_scm_i_divide
4882{
4883 while (!scm_is_null (rest))
4884 { x = scm_divide (x, y);
4885 y = scm_car (rest);
4886 rest = scm_cdr (rest);
4887 }
4888 return scm_divide (x, y);
4889}
4890#undef FUNC_NAME
4891
4892#define s_divide s_scm_i_divide
4893#define g_divide g_scm_i_divide
4894
f92e85f7 4895static SCM
78d3deb1
AW
4896do_divide (SCM x, SCM y, int inexact)
4897#define FUNC_NAME s_divide
0f2d19dd 4898{
f8de44c1
DH
4899 double a;
4900
9cc37597 4901 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
4902 {
4903 if (SCM_UNBNDP (x))
4904 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
e11e83f3 4905 else if (SCM_I_INUMP (x))
0aacf84e 4906 {
e11e83f3 4907 long xx = SCM_I_INUM (x);
0aacf84e
MD
4908 if (xx == 1 || xx == -1)
4909 return x;
7351e207 4910#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4911 else if (xx == 0)
4912 scm_num_overflow (s_divide);
7351e207 4913#endif
0aacf84e 4914 else
f92e85f7
MV
4915 {
4916 if (inexact)
55f26379 4917 return scm_from_double (1.0 / (double) xx);
cba42c93 4918 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4919 }
0aacf84e
MD
4920 }
4921 else if (SCM_BIGP (x))
f92e85f7
MV
4922 {
4923 if (inexact)
55f26379 4924 return scm_from_double (1.0 / scm_i_big2dbl (x));
cba42c93 4925 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4926 }
0aacf84e
MD
4927 else if (SCM_REALP (x))
4928 {
4929 double xx = SCM_REAL_VALUE (x);
7351e207 4930#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4931 if (xx == 0.0)
4932 scm_num_overflow (s_divide);
4933 else
7351e207 4934#endif
55f26379 4935 return scm_from_double (1.0 / xx);
0aacf84e
MD
4936 }
4937 else if (SCM_COMPLEXP (x))
4938 {
4939 double r = SCM_COMPLEX_REAL (x);
4940 double i = SCM_COMPLEX_IMAG (x);
4c6e36a6 4941 if (fabs(r) <= fabs(i))
0aacf84e
MD
4942 {
4943 double t = r / i;
4944 double d = i * (1.0 + t * t);
8507ec80 4945 return scm_c_make_rectangular (t / d, -1.0 / d);
0aacf84e
MD
4946 }
4947 else
4948 {
4949 double t = i / r;
4950 double d = r * (1.0 + t * t);
8507ec80 4951 return scm_c_make_rectangular (1.0 / d, -t / d);
0aacf84e
MD
4952 }
4953 }
f92e85f7 4954 else if (SCM_FRACTIONP (x))
cba42c93 4955 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
f92e85f7 4956 SCM_FRACTION_NUMERATOR (x));
0aacf84e
MD
4957 else
4958 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
f8de44c1 4959 }
f8de44c1 4960
9cc37597 4961 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 4962 {
e11e83f3 4963 long xx = SCM_I_INUM (x);
9cc37597 4964 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4965 {
e11e83f3 4966 long yy = SCM_I_INUM (y);
0aacf84e
MD
4967 if (yy == 0)
4968 {
7351e207 4969#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4970 scm_num_overflow (s_divide);
7351e207 4971#else
55f26379 4972 return scm_from_double ((double) xx / (double) yy);
7351e207 4973#endif
0aacf84e
MD
4974 }
4975 else if (xx % yy != 0)
f92e85f7
MV
4976 {
4977 if (inexact)
55f26379 4978 return scm_from_double ((double) xx / (double) yy);
cba42c93 4979 else return scm_i_make_ratio (x, y);
f92e85f7 4980 }
0aacf84e
MD
4981 else
4982 {
4983 long z = xx / yy;
4984 if (SCM_FIXABLE (z))
d956fa6f 4985 return SCM_I_MAKINUM (z);
0aacf84e
MD
4986 else
4987 return scm_i_long2big (z);
4988 }
f872b822 4989 }
0aacf84e 4990 else if (SCM_BIGP (y))
f92e85f7
MV
4991 {
4992 if (inexact)
55f26379 4993 return scm_from_double ((double) xx / scm_i_big2dbl (y));
cba42c93 4994 else return scm_i_make_ratio (x, y);
f92e85f7 4995 }
0aacf84e
MD
4996 else if (SCM_REALP (y))
4997 {
4998 double yy = SCM_REAL_VALUE (y);
7351e207 4999#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5000 if (yy == 0.0)
5001 scm_num_overflow (s_divide);
5002 else
7351e207 5003#endif
55f26379 5004 return scm_from_double ((double) xx / yy);
ba74ef4e 5005 }
0aacf84e
MD
5006 else if (SCM_COMPLEXP (y))
5007 {
5008 a = xx;
5009 complex_div: /* y _must_ be a complex number */
5010 {
5011 double r = SCM_COMPLEX_REAL (y);
5012 double i = SCM_COMPLEX_IMAG (y);
4c6e36a6 5013 if (fabs(r) <= fabs(i))
0aacf84e
MD
5014 {
5015 double t = r / i;
5016 double d = i * (1.0 + t * t);
8507ec80 5017 return scm_c_make_rectangular ((a * t) / d, -a / d);
0aacf84e
MD
5018 }
5019 else
5020 {
5021 double t = i / r;
5022 double d = r * (1.0 + t * t);
8507ec80 5023 return scm_c_make_rectangular (a / d, -(a * t) / d);
0aacf84e
MD
5024 }
5025 }
5026 }
f92e85f7
MV
5027 else if (SCM_FRACTIONP (y))
5028 /* a / b/c = ac / b */
cba42c93 5029 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 5030 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
5031 else
5032 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 5033 }
0aacf84e
MD
5034 else if (SCM_BIGP (x))
5035 {
e11e83f3 5036 if (SCM_I_INUMP (y))
0aacf84e 5037 {
e11e83f3 5038 long int yy = SCM_I_INUM (y);
0aacf84e
MD
5039 if (yy == 0)
5040 {
7351e207 5041#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 5042 scm_num_overflow (s_divide);
7351e207 5043#else
0aacf84e
MD
5044 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
5045 scm_remember_upto_here_1 (x);
5046 return (sgn == 0) ? scm_nan () : scm_inf ();
7351e207 5047#endif
0aacf84e
MD
5048 }
5049 else if (yy == 1)
5050 return x;
5051 else
5052 {
5053 /* FIXME: HMM, what are the relative performance issues here?
5054 We need to test. Is it faster on average to test
5055 divisible_p, then perform whichever operation, or is it
5056 faster to perform the integer div opportunistically and
5057 switch to real if there's a remainder? For now we take the
5058 middle ground: test, then if divisible, use the faster div
5059 func. */
5060
5061 long abs_yy = yy < 0 ? -yy : yy;
5062 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
5063
5064 if (divisible_p)
5065 {
5066 SCM result = scm_i_mkbig ();
5067 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
5068 scm_remember_upto_here_1 (x);
5069 if (yy < 0)
5070 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
5071 return scm_i_normbig (result);
5072 }
5073 else
f92e85f7
MV
5074 {
5075 if (inexact)
55f26379 5076 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
cba42c93 5077 else return scm_i_make_ratio (x, y);
f92e85f7 5078 }
0aacf84e
MD
5079 }
5080 }
5081 else if (SCM_BIGP (y))
5082 {
5083 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
5084 if (y_is_zero)
5085 {
ca46fb90 5086#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 5087 scm_num_overflow (s_divide);
f872b822 5088#else
0aacf84e
MD
5089 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
5090 scm_remember_upto_here_1 (x);
5091 return (sgn == 0) ? scm_nan () : scm_inf ();
f872b822 5092#endif
0aacf84e
MD
5093 }
5094 else
5095 {
5096 /* big_x / big_y */
23f2b9a3
KR
5097 if (inexact)
5098 {
5099 /* It's easily possible for the ratio x/y to fit a double
5100 but one or both x and y be too big to fit a double,
5101 hence the use of mpq_get_d rather than converting and
5102 dividing. */
5103 mpq_t q;
5104 *mpq_numref(q) = *SCM_I_BIG_MPZ (x);
5105 *mpq_denref(q) = *SCM_I_BIG_MPZ (y);
5106 return scm_from_double (mpq_get_d (q));
5107 }
5108 else
5109 {
5110 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
5111 SCM_I_BIG_MPZ (y));
5112 if (divisible_p)
5113 {
5114 SCM result = scm_i_mkbig ();
5115 mpz_divexact (SCM_I_BIG_MPZ (result),
5116 SCM_I_BIG_MPZ (x),
5117 SCM_I_BIG_MPZ (y));
5118 scm_remember_upto_here_2 (x, y);
5119 return scm_i_normbig (result);
5120 }
5121 else
5122 return scm_i_make_ratio (x, y);
5123 }
0aacf84e
MD
5124 }
5125 }
5126 else if (SCM_REALP (y))
5127 {
5128 double yy = SCM_REAL_VALUE (y);
7351e207 5129#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5130 if (yy == 0.0)
5131 scm_num_overflow (s_divide);
5132 else
7351e207 5133#endif
55f26379 5134 return scm_from_double (scm_i_big2dbl (x) / yy);
0aacf84e
MD
5135 }
5136 else if (SCM_COMPLEXP (y))
5137 {
5138 a = scm_i_big2dbl (x);
5139 goto complex_div;
5140 }
f92e85f7 5141 else if (SCM_FRACTIONP (y))
cba42c93 5142 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 5143 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
5144 else
5145 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 5146 }
0aacf84e
MD
5147 else if (SCM_REALP (x))
5148 {
5149 double rx = SCM_REAL_VALUE (x);
e11e83f3 5150 if (SCM_I_INUMP (y))
0aacf84e 5151 {
e11e83f3 5152 long int yy = SCM_I_INUM (y);
7351e207 5153#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
5154 if (yy == 0)
5155 scm_num_overflow (s_divide);
5156 else
7351e207 5157#endif
55f26379 5158 return scm_from_double (rx / (double) yy);
0aacf84e
MD
5159 }
5160 else if (SCM_BIGP (y))
5161 {
5162 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5163 scm_remember_upto_here_1 (y);
55f26379 5164 return scm_from_double (rx / dby);
0aacf84e
MD
5165 }
5166 else if (SCM_REALP (y))
5167 {
5168 double yy = SCM_REAL_VALUE (y);
7351e207 5169#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5170 if (yy == 0.0)
5171 scm_num_overflow (s_divide);
5172 else
7351e207 5173#endif
55f26379 5174 return scm_from_double (rx / yy);
0aacf84e
MD
5175 }
5176 else if (SCM_COMPLEXP (y))
5177 {
5178 a = rx;
5179 goto complex_div;
5180 }
f92e85f7 5181 else if (SCM_FRACTIONP (y))
55f26379 5182 return scm_from_double (rx / scm_i_fraction2double (y));
0aacf84e
MD
5183 else
5184 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 5185 }
0aacf84e
MD
5186 else if (SCM_COMPLEXP (x))
5187 {
5188 double rx = SCM_COMPLEX_REAL (x);
5189 double ix = SCM_COMPLEX_IMAG (x);
e11e83f3 5190 if (SCM_I_INUMP (y))
0aacf84e 5191 {
e11e83f3 5192 long int yy = SCM_I_INUM (y);
7351e207 5193#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
5194 if (yy == 0)
5195 scm_num_overflow (s_divide);
5196 else
7351e207 5197#endif
0aacf84e
MD
5198 {
5199 double d = yy;
8507ec80 5200 return scm_c_make_rectangular (rx / d, ix / d);
0aacf84e
MD
5201 }
5202 }
5203 else if (SCM_BIGP (y))
5204 {
5205 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5206 scm_remember_upto_here_1 (y);
8507ec80 5207 return scm_c_make_rectangular (rx / dby, ix / dby);
0aacf84e
MD
5208 }
5209 else if (SCM_REALP (y))
5210 {
5211 double yy = SCM_REAL_VALUE (y);
7351e207 5212#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5213 if (yy == 0.0)
5214 scm_num_overflow (s_divide);
5215 else
7351e207 5216#endif
8507ec80 5217 return scm_c_make_rectangular (rx / yy, ix / yy);
0aacf84e
MD
5218 }
5219 else if (SCM_COMPLEXP (y))
5220 {
5221 double ry = SCM_COMPLEX_REAL (y);
5222 double iy = SCM_COMPLEX_IMAG (y);
4c6e36a6 5223 if (fabs(ry) <= fabs(iy))
0aacf84e
MD
5224 {
5225 double t = ry / iy;
5226 double d = iy * (1.0 + t * t);
8507ec80 5227 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
0aacf84e
MD
5228 }
5229 else
5230 {
5231 double t = iy / ry;
5232 double d = ry * (1.0 + t * t);
8507ec80 5233 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
0aacf84e
MD
5234 }
5235 }
f92e85f7
MV
5236 else if (SCM_FRACTIONP (y))
5237 {
5238 double yy = scm_i_fraction2double (y);
8507ec80 5239 return scm_c_make_rectangular (rx / yy, ix / yy);
f92e85f7 5240 }
0aacf84e
MD
5241 else
5242 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 5243 }
f92e85f7
MV
5244 else if (SCM_FRACTIONP (x))
5245 {
e11e83f3 5246 if (SCM_I_INUMP (y))
f92e85f7 5247 {
e11e83f3 5248 long int yy = SCM_I_INUM (y);
f92e85f7
MV
5249#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5250 if (yy == 0)
5251 scm_num_overflow (s_divide);
5252 else
5253#endif
cba42c93 5254 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
5255 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5256 }
5257 else if (SCM_BIGP (y))
5258 {
cba42c93 5259 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
5260 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5261 }
5262 else if (SCM_REALP (y))
5263 {
5264 double yy = SCM_REAL_VALUE (y);
5265#ifndef ALLOW_DIVIDE_BY_ZERO
5266 if (yy == 0.0)
5267 scm_num_overflow (s_divide);
5268 else
5269#endif
55f26379 5270 return scm_from_double (scm_i_fraction2double (x) / yy);
f92e85f7
MV
5271 }
5272 else if (SCM_COMPLEXP (y))
5273 {
5274 a = scm_i_fraction2double (x);
5275 goto complex_div;
5276 }
5277 else if (SCM_FRACTIONP (y))
cba42c93 5278 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
5279 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
5280 else
5281 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5282 }
0aacf84e 5283 else
f8de44c1 5284 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
0f2d19dd 5285}
f92e85f7
MV
5286
5287SCM
5288scm_divide (SCM x, SCM y)
5289{
78d3deb1 5290 return do_divide (x, y, 0);
f92e85f7
MV
5291}
5292
5293static SCM scm_divide2real (SCM x, SCM y)
5294{
78d3deb1 5295 return do_divide (x, y, 1);
f92e85f7 5296}
c05e97b7 5297#undef FUNC_NAME
0f2d19dd 5298
fa605590 5299
0f2d19dd 5300double
3101f40f 5301scm_c_truncate (double x)
0f2d19dd 5302{
fa605590
KR
5303#if HAVE_TRUNC
5304 return trunc (x);
5305#else
f872b822
MD
5306 if (x < 0.0)
5307 return -floor (-x);
5308 return floor (x);
fa605590 5309#endif
0f2d19dd 5310}
0f2d19dd 5311
3101f40f
MV
5312/* scm_c_round is done using floor(x+0.5) to round to nearest and with
5313 half-way case (ie. when x is an integer plus 0.5) going upwards.
5314 Then half-way cases are identified and adjusted down if the
5315 round-upwards didn't give the desired even integer.
6187f48b
KR
5316
5317 "plus_half == result" identifies a half-way case. If plus_half, which is
5318 x + 0.5, is an integer then x must be an integer plus 0.5.
5319
5320 An odd "result" value is identified with result/2 != floor(result/2).
5321 This is done with plus_half, since that value is ready for use sooner in
5322 a pipelined cpu, and we're already requiring plus_half == result.
5323
5324 Note however that we need to be careful when x is big and already an
5325 integer. In that case "x+0.5" may round to an adjacent integer, causing
5326 us to return such a value, incorrectly. For instance if the hardware is
5327 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
5328 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
5329 returned. Or if the hardware is in round-upwards mode, then other bigger
5330 values like say x == 2^128 will see x+0.5 rounding up to the next higher
5331 representable value, 2^128+2^76 (or whatever), again incorrect.
5332
5333 These bad roundings of x+0.5 are avoided by testing at the start whether
5334 x is already an integer. If it is then clearly that's the desired result
5335 already. And if it's not then the exponent must be small enough to allow
5336 an 0.5 to be represented, and hence added without a bad rounding. */
5337
0f2d19dd 5338double
3101f40f 5339scm_c_round (double x)
0f2d19dd 5340{
6187f48b
KR
5341 double plus_half, result;
5342
5343 if (x == floor (x))
5344 return x;
5345
5346 plus_half = x + 0.5;
5347 result = floor (plus_half);
3101f40f 5348 /* Adjust so that the rounding is towards even. */
0aacf84e
MD
5349 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
5350 ? result - 1
5351 : result);
0f2d19dd
JB
5352}
5353
f92e85f7
MV
5354SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
5355 (SCM x),
5356 "Round the number @var{x} towards zero.")
5357#define FUNC_NAME s_scm_truncate_number
5358{
73e4de09 5359 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5360 return scm_floor (x);
5361 else
5362 return scm_ceiling (x);
5363}
5364#undef FUNC_NAME
5365
5366static SCM exactly_one_half;
5367
5368SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5369 (SCM x),
5370 "Round the number @var{x} towards the nearest integer. "
5371 "When it is exactly halfway between two integers, "
5372 "round towards the even one.")
5373#define FUNC_NAME s_scm_round_number
5374{
e11e83f3 5375 if (SCM_I_INUMP (x) || SCM_BIGP (x))
bae30667
KR
5376 return x;
5377 else if (SCM_REALP (x))
3101f40f 5378 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
f92e85f7 5379 else
bae30667
KR
5380 {
5381 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5382 single quotient+remainder division then examining to see which way
5383 the rounding should go. */
5384 SCM plus_half = scm_sum (x, exactly_one_half);
5385 SCM result = scm_floor (plus_half);
3101f40f 5386 /* Adjust so that the rounding is towards even. */
73e4de09
MV
5387 if (scm_is_true (scm_num_eq_p (plus_half, result))
5388 && scm_is_true (scm_odd_p (result)))
d956fa6f 5389 return scm_difference (result, SCM_I_MAKINUM (1));
bae30667
KR
5390 else
5391 return result;
5392 }
f92e85f7
MV
5393}
5394#undef FUNC_NAME
5395
5396SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5397 (SCM x),
5398 "Round the number @var{x} towards minus infinity.")
5399#define FUNC_NAME s_scm_floor
5400{
e11e83f3 5401 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5402 return x;
5403 else if (SCM_REALP (x))
55f26379 5404 return scm_from_double (floor (SCM_REAL_VALUE (x)));
f92e85f7
MV
5405 else if (SCM_FRACTIONP (x))
5406 {
5407 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5408 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5409 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5410 {
5411 /* For positive x, rounding towards zero is correct. */
5412 return q;
5413 }
5414 else
5415 {
5416 /* For negative x, we need to return q-1 unless x is an
5417 integer. But fractions are never integer, per our
5418 assumptions. */
d956fa6f 5419 return scm_difference (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5420 }
5421 }
5422 else
5423 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5424}
5425#undef FUNC_NAME
5426
5427SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5428 (SCM x),
5429 "Round the number @var{x} towards infinity.")
5430#define FUNC_NAME s_scm_ceiling
5431{
e11e83f3 5432 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5433 return x;
5434 else if (SCM_REALP (x))
55f26379 5435 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
f92e85f7
MV
5436 else if (SCM_FRACTIONP (x))
5437 {
5438 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5439 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5440 if (scm_is_false (scm_positive_p (x)))
f92e85f7
MV
5441 {
5442 /* For negative x, rounding towards zero is correct. */
5443 return q;
5444 }
5445 else
5446 {
5447 /* For positive x, we need to return q+1 unless x is an
5448 integer. But fractions are never integer, per our
5449 assumptions. */
d956fa6f 5450 return scm_sum (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5451 }
5452 }
5453 else
5454 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5455}
5456#undef FUNC_NAME
0f2d19dd 5457
ad79736c
AW
5458/* sin/cos/tan/asin/acos/atan
5459 sinh/cosh/tanh/asinh/acosh/atanh
5460 Derived from "Transcen.scm", Complex trancendental functions for SCM.
5461 Written by Jerry D. Hedden, (C) FSF.
5462 See the file `COPYING' for terms applying to this program. */
0f2d19dd 5463
6fc4d012 5464SCM_DEFINE (scm_expt, "expt", 2, 0, 0,
27c37006 5465 (SCM x, SCM y),
6fc4d012
AW
5466 "Return @var{x} raised to the power of @var{y}.")
5467#define FUNC_NAME s_scm_expt
0f2d19dd 5468{
6fc4d012
AW
5469 if (!SCM_INEXACTP (y) && scm_is_integer (y))
5470 return scm_integer_expt (x, y);
5471 else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
5472 {
5473 return scm_from_double (pow (scm_to_double (x), scm_to_double (y)));
5474 }
5475 else
5476 return scm_exp (scm_product (scm_log (x), y));
0f2d19dd 5477}
1bbd0b84 5478#undef FUNC_NAME
0f2d19dd 5479
ad79736c
AW
5480SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
5481 (SCM z),
5482 "Compute the sine of @var{z}.")
5483#define FUNC_NAME s_scm_sin
5484{
5485 if (scm_is_real (z))
5486 return scm_from_double (sin (scm_to_double (z)));
5487 else if (SCM_COMPLEXP (z))
5488 { double x, y;
5489 x = SCM_COMPLEX_REAL (z);
5490 y = SCM_COMPLEX_IMAG (z);
5491 return scm_c_make_rectangular (sin (x) * cosh (y),
5492 cos (x) * sinh (y));
5493 }
5494 else
5495 SCM_WTA_DISPATCH_1 (g_scm_sin, z, 1, s_scm_sin);
5496}
5497#undef FUNC_NAME
0f2d19dd 5498
ad79736c
AW
5499SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
5500 (SCM z),
5501 "Compute the cosine of @var{z}.")
5502#define FUNC_NAME s_scm_cos
5503{
5504 if (scm_is_real (z))
5505 return scm_from_double (cos (scm_to_double (z)));
5506 else if (SCM_COMPLEXP (z))
5507 { double x, y;
5508 x = SCM_COMPLEX_REAL (z);
5509 y = SCM_COMPLEX_IMAG (z);
5510 return scm_c_make_rectangular (cos (x) * cosh (y),
5511 -sin (x) * sinh (y));
5512 }
5513 else
5514 SCM_WTA_DISPATCH_1 (g_scm_cos, z, 1, s_scm_cos);
5515}
5516#undef FUNC_NAME
5517
5518SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
5519 (SCM z),
5520 "Compute the tangent of @var{z}.")
5521#define FUNC_NAME s_scm_tan
0f2d19dd 5522{
ad79736c
AW
5523 if (scm_is_real (z))
5524 return scm_from_double (tan (scm_to_double (z)));
5525 else if (SCM_COMPLEXP (z))
5526 { double x, y, w;
5527 x = 2.0 * SCM_COMPLEX_REAL (z);
5528 y = 2.0 * SCM_COMPLEX_IMAG (z);
5529 w = cos (x) + cosh (y);
5530#ifndef ALLOW_DIVIDE_BY_ZERO
5531 if (w == 0.0)
5532 scm_num_overflow (s_scm_tan);
5533#endif
5534 return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
5535 }
5536 else
5537 SCM_WTA_DISPATCH_1 (g_scm_tan, z, 1, s_scm_tan);
5538}
5539#undef FUNC_NAME
5540
5541SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
5542 (SCM z),
5543 "Compute the hyperbolic sine of @var{z}.")
5544#define FUNC_NAME s_scm_sinh
5545{
5546 if (scm_is_real (z))
5547 return scm_from_double (sinh (scm_to_double (z)));
5548 else if (SCM_COMPLEXP (z))
5549 { double x, y;
5550 x = SCM_COMPLEX_REAL (z);
5551 y = SCM_COMPLEX_IMAG (z);
5552 return scm_c_make_rectangular (sinh (x) * cos (y),
5553 cosh (x) * sin (y));
5554 }
5555 else
5556 SCM_WTA_DISPATCH_1 (g_scm_sinh, z, 1, s_scm_sinh);
5557}
5558#undef FUNC_NAME
5559
5560SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
5561 (SCM z),
5562 "Compute the hyperbolic cosine of @var{z}.")
5563#define FUNC_NAME s_scm_cosh
5564{
5565 if (scm_is_real (z))
5566 return scm_from_double (cosh (scm_to_double (z)));
5567 else if (SCM_COMPLEXP (z))
5568 { double x, y;
5569 x = SCM_COMPLEX_REAL (z);
5570 y = SCM_COMPLEX_IMAG (z);
5571 return scm_c_make_rectangular (cosh (x) * cos (y),
5572 sinh (x) * sin (y));
5573 }
5574 else
5575 SCM_WTA_DISPATCH_1 (g_scm_cosh, z, 1, s_scm_cosh);
5576}
5577#undef FUNC_NAME
5578
5579SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
5580 (SCM z),
5581 "Compute the hyperbolic tangent of @var{z}.")
5582#define FUNC_NAME s_scm_tanh
5583{
5584 if (scm_is_real (z))
5585 return scm_from_double (tanh (scm_to_double (z)));
5586 else if (SCM_COMPLEXP (z))
5587 { double x, y, w;
5588 x = 2.0 * SCM_COMPLEX_REAL (z);
5589 y = 2.0 * SCM_COMPLEX_IMAG (z);
5590 w = cosh (x) + cos (y);
5591#ifndef ALLOW_DIVIDE_BY_ZERO
5592 if (w == 0.0)
5593 scm_num_overflow (s_scm_tanh);
5594#endif
5595 return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
5596 }
5597 else
5598 SCM_WTA_DISPATCH_1 (g_scm_tanh, z, 1, s_scm_tanh);
5599}
5600#undef FUNC_NAME
5601
5602SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
5603 (SCM z),
5604 "Compute the arc sine of @var{z}.")
5605#define FUNC_NAME s_scm_asin
5606{
5607 if (scm_is_real (z))
5608 {
5609 double w = scm_to_double (z);
5610 if (w >= -1.0 && w <= 1.0)
5611 return scm_from_double (asin (w));
5612 else
5613 return scm_product (scm_c_make_rectangular (0, -1),
5614 scm_sys_asinh (scm_c_make_rectangular (0, w)));
5615 }
5616 else if (SCM_COMPLEXP (z))
5617 { double x, y;
5618 x = SCM_COMPLEX_REAL (z);
5619 y = SCM_COMPLEX_IMAG (z);
5620 return scm_product (scm_c_make_rectangular (0, -1),
5621 scm_sys_asinh (scm_c_make_rectangular (-y, x)));
5622 }
5623 else
5624 SCM_WTA_DISPATCH_1 (g_scm_asin, z, 1, s_scm_asin);
5625}
5626#undef FUNC_NAME
5627
5628SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
5629 (SCM z),
5630 "Compute the arc cosine of @var{z}.")
5631#define FUNC_NAME s_scm_acos
5632{
5633 if (scm_is_real (z))
5634 {
5635 double w = scm_to_double (z);
5636 if (w >= -1.0 && w <= 1.0)
5637 return scm_from_double (acos (w));
5638 else
5639 return scm_sum (scm_from_double (acos (0.0)),
5640 scm_product (scm_c_make_rectangular (0, 1),
5641 scm_sys_asinh (scm_c_make_rectangular (0, w))));
5642 }
5643 else if (SCM_COMPLEXP (z))
5644 { double x, y;
5645 x = SCM_COMPLEX_REAL (z);
5646 y = SCM_COMPLEX_IMAG (z);
5647 return scm_sum (scm_from_double (acos (0.0)),
5648 scm_product (scm_c_make_rectangular (0, 1),
5649 scm_sys_asinh (scm_c_make_rectangular (-y, x))));
5650 }
5651 else
5652 SCM_WTA_DISPATCH_1 (g_scm_acos, z, 1, s_scm_acos);
5653}
5654#undef FUNC_NAME
5655
5656SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
5657 (SCM z, SCM y),
5658 "With one argument, compute the arc tangent of @var{z}.\n"
5659 "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
5660 "using the sign of @var{z} and @var{y} to determine the quadrant.")
5661#define FUNC_NAME s_scm_atan
5662{
5663 if (SCM_UNBNDP (y))
5664 {
5665 if (scm_is_real (z))
5666 return scm_from_double (atan (scm_to_double (z)));
5667 else if (SCM_COMPLEXP (z))
5668 {
5669 double v, w;
5670 v = SCM_COMPLEX_REAL (z);
5671 w = SCM_COMPLEX_IMAG (z);
5672 return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (v, w - 1.0),
5673 scm_c_make_rectangular (v, w + 1.0))),
5674 scm_c_make_rectangular (0, 2));
5675 }
5676 else
5677 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5678 }
5679 else if (scm_is_real (z))
5680 {
5681 if (scm_is_real (y))
5682 return scm_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
5683 else
5684 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
5685 }
5686 else
5687 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5688}
5689#undef FUNC_NAME
5690
5691SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
5692 (SCM z),
5693 "Compute the inverse hyperbolic sine of @var{z}.")
5694#define FUNC_NAME s_scm_sys_asinh
5695{
5696 if (scm_is_real (z))
5697 return scm_from_double (asinh (scm_to_double (z)));
5698 else if (scm_is_number (z))
5699 return scm_log (scm_sum (z,
5700 scm_sqrt (scm_sum (scm_product (z, z),
5701 SCM_I_MAKINUM (1)))));
5702 else
5703 SCM_WTA_DISPATCH_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
5704}
5705#undef FUNC_NAME
5706
5707SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
5708 (SCM z),
5709 "Compute the inverse hyperbolic cosine of @var{z}.")
5710#define FUNC_NAME s_scm_sys_acosh
5711{
5712 if (scm_is_real (z) && scm_to_double (z) >= 1.0)
5713 return scm_from_double (acosh (scm_to_double (z)));
5714 else if (scm_is_number (z))
5715 return scm_log (scm_sum (z,
5716 scm_sqrt (scm_difference (scm_product (z, z),
5717 SCM_I_MAKINUM (1)))));
5718 else
5719 SCM_WTA_DISPATCH_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
5720}
5721#undef FUNC_NAME
5722
5723SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
5724 (SCM z),
5725 "Compute the inverse hyperbolic tangent of @var{z}.")
5726#define FUNC_NAME s_scm_sys_atanh
5727{
5728 if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
5729 return scm_from_double (atanh (scm_to_double (z)));
5730 else if (scm_is_number (z))
5731 return scm_divide (scm_log (scm_divide (scm_sum (SCM_I_MAKINUM (1), z),
5732 scm_difference (SCM_I_MAKINUM (1), z))),
5733 SCM_I_MAKINUM (2));
5734 else
5735 SCM_WTA_DISPATCH_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
0f2d19dd 5736}
1bbd0b84 5737#undef FUNC_NAME
0f2d19dd 5738
8507ec80
MV
5739SCM
5740scm_c_make_rectangular (double re, double im)
5741{
5742 if (im == 0.0)
5743 return scm_from_double (re);
5744 else
5745 {
5746 SCM z;
92d8fd32
LC
5747 SCM_NEWSMOB (z, scm_tc16_complex,
5748 scm_gc_malloc_pointerless (sizeof (scm_t_complex),
5749 "complex"));
8507ec80
MV
5750 SCM_COMPLEX_REAL (z) = re;
5751 SCM_COMPLEX_IMAG (z) = im;
5752 return z;
5753 }
5754}
0f2d19dd 5755
a1ec6916 5756SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
a2c25234
LC
5757 (SCM real_part, SCM imaginary_part),
5758 "Return a complex number constructed of the given @var{real-part} "
5759 "and @var{imaginary-part} parts.")
1bbd0b84 5760#define FUNC_NAME s_scm_make_rectangular
0f2d19dd 5761{
ad79736c
AW
5762 SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
5763 SCM_ARG1, FUNC_NAME, "real");
5764 SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
5765 SCM_ARG2, FUNC_NAME, "real");
5766 return scm_c_make_rectangular (scm_to_double (real_part),
5767 scm_to_double (imaginary_part));
0f2d19dd 5768}
1bbd0b84 5769#undef FUNC_NAME
0f2d19dd 5770
8507ec80
MV
5771SCM
5772scm_c_make_polar (double mag, double ang)
5773{
5774 double s, c;
5e647d08
LC
5775
5776 /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
5777 use it on Glibc-based systems that have it (it's a GNU extension). See
5778 http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
5779 details. */
5780#if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
8507ec80
MV
5781 sincos (ang, &s, &c);
5782#else
5783 s = sin (ang);
5784 c = cos (ang);
5785#endif
5786 return scm_c_make_rectangular (mag * c, mag * s);
5787}
0f2d19dd 5788
a1ec6916 5789SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
27c37006 5790 (SCM x, SCM y),
942e5b91 5791 "Return the complex number @var{x} * e^(i * @var{y}).")
1bbd0b84 5792#define FUNC_NAME s_scm_make_polar
0f2d19dd 5793{
ad79736c
AW
5794 SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
5795 SCM_ASSERT_TYPE (scm_is_real (y), y, SCM_ARG2, FUNC_NAME, "real");
5796 return scm_c_make_polar (scm_to_double (x), scm_to_double (y));
0f2d19dd 5797}
1bbd0b84 5798#undef FUNC_NAME
0f2d19dd
JB
5799
5800
152f82bf 5801SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
942e5b91
MG
5802/* "Return the real part of the number @var{z}."
5803 */
0f2d19dd 5804SCM
6e8d25a6 5805scm_real_part (SCM z)
0f2d19dd 5806{
e11e83f3 5807 if (SCM_I_INUMP (z))
c2ff8ab0 5808 return z;
0aacf84e 5809 else if (SCM_BIGP (z))
c2ff8ab0 5810 return z;
0aacf84e 5811 else if (SCM_REALP (z))
c2ff8ab0 5812 return z;
0aacf84e 5813 else if (SCM_COMPLEXP (z))
55f26379 5814 return scm_from_double (SCM_COMPLEX_REAL (z));
f92e85f7 5815 else if (SCM_FRACTIONP (z))
2fa2d879 5816 return z;
0aacf84e 5817 else
c2ff8ab0 5818 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
0f2d19dd
JB
5819}
5820
5821
152f82bf 5822SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
942e5b91
MG
5823/* "Return the imaginary part of the number @var{z}."
5824 */
0f2d19dd 5825SCM
6e8d25a6 5826scm_imag_part (SCM z)
0f2d19dd 5827{
e11e83f3 5828 if (SCM_I_INUMP (z))
f872b822 5829 return SCM_INUM0;
0aacf84e 5830 else if (SCM_BIGP (z))
f872b822 5831 return SCM_INUM0;
0aacf84e 5832 else if (SCM_REALP (z))
e7efe8e7 5833 return flo0;
0aacf84e 5834 else if (SCM_COMPLEXP (z))
55f26379 5835 return scm_from_double (SCM_COMPLEX_IMAG (z));
f92e85f7
MV
5836 else if (SCM_FRACTIONP (z))
5837 return SCM_INUM0;
0aacf84e 5838 else
c2ff8ab0 5839 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
0f2d19dd
JB
5840}
5841
f92e85f7
MV
5842SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5843/* "Return the numerator of the number @var{z}."
5844 */
5845SCM
5846scm_numerator (SCM z)
5847{
e11e83f3 5848 if (SCM_I_INUMP (z))
f92e85f7
MV
5849 return z;
5850 else if (SCM_BIGP (z))
5851 return z;
5852 else if (SCM_FRACTIONP (z))
e2bf3b19 5853 return SCM_FRACTION_NUMERATOR (z);
f92e85f7
MV
5854 else if (SCM_REALP (z))
5855 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5856 else
5857 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5858}
5859
5860
5861SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5862/* "Return the denominator of the number @var{z}."
5863 */
5864SCM
5865scm_denominator (SCM z)
5866{
e11e83f3 5867 if (SCM_I_INUMP (z))
d956fa6f 5868 return SCM_I_MAKINUM (1);
f92e85f7 5869 else if (SCM_BIGP (z))
d956fa6f 5870 return SCM_I_MAKINUM (1);
f92e85f7 5871 else if (SCM_FRACTIONP (z))
e2bf3b19 5872 return SCM_FRACTION_DENOMINATOR (z);
f92e85f7
MV
5873 else if (SCM_REALP (z))
5874 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5875 else
5876 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5877}
0f2d19dd 5878
9de33deb 5879SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
942e5b91
MG
5880/* "Return the magnitude of the number @var{z}. This is the same as\n"
5881 * "@code{abs} for real arguments, but also allows complex numbers."
5882 */
0f2d19dd 5883SCM
6e8d25a6 5884scm_magnitude (SCM z)
0f2d19dd 5885{
e11e83f3 5886 if (SCM_I_INUMP (z))
0aacf84e 5887 {
e11e83f3 5888 long int zz = SCM_I_INUM (z);
0aacf84e
MD
5889 if (zz >= 0)
5890 return z;
5891 else if (SCM_POSFIXABLE (-zz))
d956fa6f 5892 return SCM_I_MAKINUM (-zz);
0aacf84e
MD
5893 else
5894 return scm_i_long2big (-zz);
5986c47d 5895 }
0aacf84e
MD
5896 else if (SCM_BIGP (z))
5897 {
5898 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5899 scm_remember_upto_here_1 (z);
5900 if (sgn < 0)
5901 return scm_i_clonebig (z, 0);
5902 else
5903 return z;
5986c47d 5904 }
0aacf84e 5905 else if (SCM_REALP (z))
55f26379 5906 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
0aacf84e 5907 else if (SCM_COMPLEXP (z))
55f26379 5908 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
f92e85f7
MV
5909 else if (SCM_FRACTIONP (z))
5910 {
73e4de09 5911 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 5912 return z;
cba42c93 5913 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
f92e85f7
MV
5914 SCM_FRACTION_DENOMINATOR (z));
5915 }
0aacf84e 5916 else
c2ff8ab0 5917 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
0f2d19dd
JB
5918}
5919
5920
9de33deb 5921SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
942e5b91
MG
5922/* "Return the angle of the complex number @var{z}."
5923 */
0f2d19dd 5924SCM
6e8d25a6 5925scm_angle (SCM z)
0f2d19dd 5926{
c8ae173e 5927 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
e7efe8e7 5928 flo0 to save allocating a new flonum with scm_from_double each time.
c8ae173e
KR
5929 But if atan2 follows the floating point rounding mode, then the value
5930 is not a constant. Maybe it'd be close enough though. */
e11e83f3 5931 if (SCM_I_INUMP (z))
0aacf84e 5932 {
e11e83f3 5933 if (SCM_I_INUM (z) >= 0)
e7efe8e7 5934 return flo0;
0aacf84e 5935 else
55f26379 5936 return scm_from_double (atan2 (0.0, -1.0));
f872b822 5937 }
0aacf84e
MD
5938 else if (SCM_BIGP (z))
5939 {
5940 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5941 scm_remember_upto_here_1 (z);
5942 if (sgn < 0)
55f26379 5943 return scm_from_double (atan2 (0.0, -1.0));
0aacf84e 5944 else
e7efe8e7 5945 return flo0;
0f2d19dd 5946 }
0aacf84e 5947 else if (SCM_REALP (z))
c8ae173e
KR
5948 {
5949 if (SCM_REAL_VALUE (z) >= 0)
e7efe8e7 5950 return flo0;
c8ae173e 5951 else
55f26379 5952 return scm_from_double (atan2 (0.0, -1.0));
c8ae173e 5953 }
0aacf84e 5954 else if (SCM_COMPLEXP (z))
55f26379 5955 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
f92e85f7
MV
5956 else if (SCM_FRACTIONP (z))
5957 {
73e4de09 5958 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
e7efe8e7 5959 return flo0;
55f26379 5960 else return scm_from_double (atan2 (0.0, -1.0));
f92e85f7 5961 }
0aacf84e 5962 else
f4c627b3 5963 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
0f2d19dd
JB
5964}
5965
5966
3c9a524f
DH
5967SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5968/* Convert the number @var{x} to its inexact representation.\n"
5969 */
5970SCM
5971scm_exact_to_inexact (SCM z)
5972{
e11e83f3 5973 if (SCM_I_INUMP (z))
55f26379 5974 return scm_from_double ((double) SCM_I_INUM (z));
3c9a524f 5975 else if (SCM_BIGP (z))
55f26379 5976 return scm_from_double (scm_i_big2dbl (z));
f92e85f7 5977 else if (SCM_FRACTIONP (z))
55f26379 5978 return scm_from_double (scm_i_fraction2double (z));
3c9a524f
DH
5979 else if (SCM_INEXACTP (z))
5980 return z;
5981 else
5982 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5983}
5984
5985
a1ec6916 5986SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
1bbd0b84 5987 (SCM z),
1e6808ea 5988 "Return an exact number that is numerically closest to @var{z}.")
1bbd0b84 5989#define FUNC_NAME s_scm_inexact_to_exact
0f2d19dd 5990{
e11e83f3 5991 if (SCM_I_INUMP (z))
f872b822 5992 return z;
0aacf84e 5993 else if (SCM_BIGP (z))
f872b822 5994 return z;
0aacf84e
MD
5995 else if (SCM_REALP (z))
5996 {
f92e85f7
MV
5997 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
5998 SCM_OUT_OF_RANGE (1, z);
2be24db4 5999 else
f92e85f7
MV
6000 {
6001 mpq_t frac;
6002 SCM q;
6003
6004 mpq_init (frac);
6005 mpq_set_d (frac, SCM_REAL_VALUE (z));
cba42c93 6006 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
f92e85f7
MV
6007 scm_i_mpz2num (mpq_denref (frac)));
6008
cba42c93 6009 /* When scm_i_make_ratio throws, we leak the memory allocated
f92e85f7
MV
6010 for frac...
6011 */
6012 mpq_clear (frac);
6013 return q;
6014 }
c2ff8ab0 6015 }
f92e85f7
MV
6016 else if (SCM_FRACTIONP (z))
6017 return z;
0aacf84e 6018 else
c2ff8ab0 6019 SCM_WRONG_TYPE_ARG (1, z);
0f2d19dd 6020}
1bbd0b84 6021#undef FUNC_NAME
0f2d19dd 6022
f92e85f7 6023SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
76dae881
NJ
6024 (SCM x, SCM eps),
6025 "Returns the @emph{simplest} rational number differing\n"
6026 "from @var{x} by no more than @var{eps}.\n"
6027 "\n"
6028 "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
6029 "exact result when both its arguments are exact. Thus, you might need\n"
6030 "to use @code{inexact->exact} on the arguments.\n"
6031 "\n"
6032 "@lisp\n"
6033 "(rationalize (inexact->exact 1.2) 1/100)\n"
6034 "@result{} 6/5\n"
6035 "@end lisp")
f92e85f7
MV
6036#define FUNC_NAME s_scm_rationalize
6037{
e11e83f3 6038 if (SCM_I_INUMP (x))
f92e85f7
MV
6039 return x;
6040 else if (SCM_BIGP (x))
6041 return x;
6042 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
6043 {
6044 /* Use continued fractions to find closest ratio. All
6045 arithmetic is done with exact numbers.
6046 */
6047
6048 SCM ex = scm_inexact_to_exact (x);
6049 SCM int_part = scm_floor (ex);
d956fa6f
MV
6050 SCM tt = SCM_I_MAKINUM (1);
6051 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
6052 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
f92e85f7
MV
6053 SCM rx;
6054 int i = 0;
6055
73e4de09 6056 if (scm_is_true (scm_num_eq_p (ex, int_part)))
f92e85f7
MV
6057 return ex;
6058
6059 ex = scm_difference (ex, int_part); /* x = x-int_part */
6060 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
6061
6062 /* We stop after a million iterations just to be absolutely sure
6063 that we don't go into an infinite loop. The process normally
6064 converges after less than a dozen iterations.
6065 */
6066
76dae881 6067 eps = scm_abs (eps);
f92e85f7
MV
6068 while (++i < 1000000)
6069 {
6070 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
6071 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
73e4de09
MV
6072 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
6073 scm_is_false
f92e85f7 6074 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
76dae881 6075 eps))) /* abs(x-a/b) <= eps */
02164269
MV
6076 {
6077 SCM res = scm_sum (int_part, scm_divide (a, b));
73e4de09 6078 if (scm_is_false (scm_exact_p (x))
76dae881 6079 || scm_is_false (scm_exact_p (eps)))
02164269
MV
6080 return scm_exact_to_inexact (res);
6081 else
6082 return res;
6083 }
f92e85f7
MV
6084 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
6085 SCM_UNDEFINED);
6086 tt = scm_floor (rx); /* tt = floor (rx) */
6087 a2 = a1;
6088 b2 = b1;
6089 a1 = a;
6090 b1 = b;
6091 }
6092 scm_num_overflow (s_scm_rationalize);
6093 }
6094 else
6095 SCM_WRONG_TYPE_ARG (1, x);
6096}
6097#undef FUNC_NAME
6098
73e4de09
MV
6099/* conversion functions */
6100
6101int
6102scm_is_integer (SCM val)
6103{
6104 return scm_is_true (scm_integer_p (val));
6105}
6106
6107int
6108scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
6109{
e11e83f3 6110 if (SCM_I_INUMP (val))
73e4de09 6111 {
e11e83f3 6112 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
6113 return n >= min && n <= max;
6114 }
6115 else if (SCM_BIGP (val))
6116 {
6117 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
6118 return 0;
6119 else if (min >= LONG_MIN && max <= LONG_MAX)
d956fa6f
MV
6120 {
6121 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
6122 {
6123 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
6124 return n >= min && n <= max;
6125 }
6126 else
6127 return 0;
6128 }
73e4de09
MV
6129 else
6130 {
d956fa6f
MV
6131 scm_t_intmax n;
6132 size_t count;
73e4de09 6133
d956fa6f
MV
6134 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6135 > CHAR_BIT*sizeof (scm_t_uintmax))
6136 return 0;
6137
6138 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6139 SCM_I_BIG_MPZ (val));
73e4de09 6140
d956fa6f 6141 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
73e4de09 6142 {
d956fa6f
MV
6143 if (n < 0)
6144 return 0;
73e4de09 6145 }
73e4de09
MV
6146 else
6147 {
d956fa6f
MV
6148 n = -n;
6149 if (n >= 0)
6150 return 0;
73e4de09 6151 }
d956fa6f
MV
6152
6153 return n >= min && n <= max;
73e4de09
MV
6154 }
6155 }
73e4de09
MV
6156 else
6157 return 0;
6158}
6159
6160int
6161scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
6162{
e11e83f3 6163 if (SCM_I_INUMP (val))
73e4de09 6164 {
e11e83f3 6165 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
6166 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
6167 }
6168 else if (SCM_BIGP (val))
6169 {
6170 if (max <= SCM_MOST_POSITIVE_FIXNUM)
6171 return 0;
6172 else if (max <= ULONG_MAX)
d956fa6f
MV
6173 {
6174 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
6175 {
6176 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
6177 return n >= min && n <= max;
6178 }
6179 else
6180 return 0;
6181 }
73e4de09
MV
6182 else
6183 {
d956fa6f
MV
6184 scm_t_uintmax n;
6185 size_t count;
73e4de09 6186
d956fa6f
MV
6187 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
6188 return 0;
73e4de09 6189
d956fa6f
MV
6190 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6191 > CHAR_BIT*sizeof (scm_t_uintmax))
73e4de09 6192 return 0;
d956fa6f
MV
6193
6194 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6195 SCM_I_BIG_MPZ (val));
73e4de09 6196
d956fa6f 6197 return n >= min && n <= max;
73e4de09
MV
6198 }
6199 }
73e4de09
MV
6200 else
6201 return 0;
6202}
6203
1713d319
MV
6204static void
6205scm_i_range_error (SCM bad_val, SCM min, SCM max)
6206{
6207 scm_error (scm_out_of_range_key,
6208 NULL,
6209 "Value out of range ~S to ~S: ~S",
6210 scm_list_3 (min, max, bad_val),
6211 scm_list_1 (bad_val));
6212}
6213
bfd7932e
MV
6214#define TYPE scm_t_intmax
6215#define TYPE_MIN min
6216#define TYPE_MAX max
6217#define SIZEOF_TYPE 0
6218#define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
6219#define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
6220#include "libguile/conv-integer.i.c"
6221
6222#define TYPE scm_t_uintmax
6223#define TYPE_MIN min
6224#define TYPE_MAX max
6225#define SIZEOF_TYPE 0
6226#define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
6227#define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
6228#include "libguile/conv-uinteger.i.c"
6229
6230#define TYPE scm_t_int8
6231#define TYPE_MIN SCM_T_INT8_MIN
6232#define TYPE_MAX SCM_T_INT8_MAX
6233#define SIZEOF_TYPE 1
6234#define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
6235#define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
6236#include "libguile/conv-integer.i.c"
6237
6238#define TYPE scm_t_uint8
6239#define TYPE_MIN 0
6240#define TYPE_MAX SCM_T_UINT8_MAX
6241#define SIZEOF_TYPE 1
6242#define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
6243#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
6244#include "libguile/conv-uinteger.i.c"
6245
6246#define TYPE scm_t_int16
6247#define TYPE_MIN SCM_T_INT16_MIN
6248#define TYPE_MAX SCM_T_INT16_MAX
6249#define SIZEOF_TYPE 2
6250#define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
6251#define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
6252#include "libguile/conv-integer.i.c"
6253
6254#define TYPE scm_t_uint16
6255#define TYPE_MIN 0
6256#define TYPE_MAX SCM_T_UINT16_MAX
6257#define SIZEOF_TYPE 2
6258#define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
6259#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
6260#include "libguile/conv-uinteger.i.c"
6261
6262#define TYPE scm_t_int32
6263#define TYPE_MIN SCM_T_INT32_MIN
6264#define TYPE_MAX SCM_T_INT32_MAX
6265#define SIZEOF_TYPE 4
6266#define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
6267#define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
6268#include "libguile/conv-integer.i.c"
6269
6270#define TYPE scm_t_uint32
6271#define TYPE_MIN 0
6272#define TYPE_MAX SCM_T_UINT32_MAX
6273#define SIZEOF_TYPE 4
6274#define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
6275#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
6276#include "libguile/conv-uinteger.i.c"
6277
904a78f1
MG
6278#define TYPE scm_t_wchar
6279#define TYPE_MIN (scm_t_int32)-1
6280#define TYPE_MAX (scm_t_int32)0x10ffff
6281#define SIZEOF_TYPE 4
6282#define SCM_TO_TYPE_PROTO(arg) scm_to_wchar (arg)
6283#define SCM_FROM_TYPE_PROTO(arg) scm_from_wchar (arg)
6284#include "libguile/conv-integer.i.c"
6285
bfd7932e
MV
6286#if SCM_HAVE_T_INT64
6287
6288#define TYPE scm_t_int64
6289#define TYPE_MIN SCM_T_INT64_MIN
6290#define TYPE_MAX SCM_T_INT64_MAX
6291#define SIZEOF_TYPE 8
6292#define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
6293#define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
6294#include "libguile/conv-integer.i.c"
6295
6296#define TYPE scm_t_uint64
6297#define TYPE_MIN 0
6298#define TYPE_MAX SCM_T_UINT64_MAX
6299#define SIZEOF_TYPE 8
6300#define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
6301#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
6302#include "libguile/conv-uinteger.i.c"
73e4de09 6303
bfd7932e 6304#endif
73e4de09 6305
cd036260
MV
6306void
6307scm_to_mpz (SCM val, mpz_t rop)
6308{
6309 if (SCM_I_INUMP (val))
6310 mpz_set_si (rop, SCM_I_INUM (val));
6311 else if (SCM_BIGP (val))
6312 mpz_set (rop, SCM_I_BIG_MPZ (val));
6313 else
6314 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
6315}
6316
6317SCM
6318scm_from_mpz (mpz_t val)
6319{
6320 return scm_i_mpz2num (val);
6321}
6322
73e4de09
MV
6323int
6324scm_is_real (SCM val)
6325{
6326 return scm_is_true (scm_real_p (val));
6327}
6328
55f26379
MV
6329int
6330scm_is_rational (SCM val)
6331{
6332 return scm_is_true (scm_rational_p (val));
6333}
6334
73e4de09
MV
6335double
6336scm_to_double (SCM val)
6337{
55f26379
MV
6338 if (SCM_I_INUMP (val))
6339 return SCM_I_INUM (val);
6340 else if (SCM_BIGP (val))
6341 return scm_i_big2dbl (val);
6342 else if (SCM_FRACTIONP (val))
6343 return scm_i_fraction2double (val);
6344 else if (SCM_REALP (val))
6345 return SCM_REAL_VALUE (val);
6346 else
7a1aba42 6347 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
73e4de09
MV
6348}
6349
6350SCM
6351scm_from_double (double val)
6352{
55f26379
MV
6353 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
6354 SCM_REAL_VALUE (z) = val;
6355 return z;
73e4de09
MV
6356}
6357
55f26379
MV
6358#if SCM_ENABLE_DISCOURAGED == 1
6359
6360float
6361scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
6362{
6363 if (SCM_BIGP (num))
6364 {
6365 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
6366 if (!xisinf (res))
6367 return res;
6368 else
6369 scm_out_of_range (NULL, num);
6370 }
6371 else
6372 return scm_to_double (num);
6373}
6374
6375double
6376scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
6377{
6378 if (SCM_BIGP (num))
6379 {
6380 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
6381 if (!xisinf (res))
6382 return res;
6383 else
6384 scm_out_of_range (NULL, num);
6385 }
6386 else
6387 return scm_to_double (num);
6388}
6389
6390#endif
6391
8507ec80
MV
6392int
6393scm_is_complex (SCM val)
6394{
6395 return scm_is_true (scm_complex_p (val));
6396}
6397
6398double
6399scm_c_real_part (SCM z)
6400{
6401 if (SCM_COMPLEXP (z))
6402 return SCM_COMPLEX_REAL (z);
6403 else
6404 {
6405 /* Use the scm_real_part to get proper error checking and
6406 dispatching.
6407 */
6408 return scm_to_double (scm_real_part (z));
6409 }
6410}
6411
6412double
6413scm_c_imag_part (SCM z)
6414{
6415 if (SCM_COMPLEXP (z))
6416 return SCM_COMPLEX_IMAG (z);
6417 else
6418 {
6419 /* Use the scm_imag_part to get proper error checking and
6420 dispatching. The result will almost always be 0.0, but not
6421 always.
6422 */
6423 return scm_to_double (scm_imag_part (z));
6424 }
6425}
6426
6427double
6428scm_c_magnitude (SCM z)
6429{
6430 return scm_to_double (scm_magnitude (z));
6431}
6432
6433double
6434scm_c_angle (SCM z)
6435{
6436 return scm_to_double (scm_angle (z));
6437}
6438
6439int
6440scm_is_number (SCM z)
6441{
6442 return scm_is_true (scm_number_p (z));
6443}
6444
8ab3d8a0
KR
6445
6446/* In the following functions we dispatch to the real-arg funcs like log()
6447 when we know the arg is real, instead of just handing everything to
6448 clog() for instance. This is in case clog() doesn't optimize for a
6449 real-only case, and because we have to test SCM_COMPLEXP anyway so may as
6450 well use it to go straight to the applicable C func. */
6451
6452SCM_DEFINE (scm_log, "log", 1, 0, 0,
6453 (SCM z),
6454 "Return the natural logarithm of @var{z}.")
6455#define FUNC_NAME s_scm_log
6456{
6457 if (SCM_COMPLEXP (z))
6458 {
4b26c03e 6459#if HAVE_COMPLEX_DOUBLE && HAVE_CLOG && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6460 return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
6461#else
6462 double re = SCM_COMPLEX_REAL (z);
6463 double im = SCM_COMPLEX_IMAG (z);
6464 return scm_c_make_rectangular (log (hypot (re, im)),
6465 atan2 (im, re));
6466#endif
6467 }
6468 else
6469 {
6470 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6471 although the value itself overflows. */
6472 double re = scm_to_double (z);
6473 double l = log (fabs (re));
6474 if (re >= 0.0)
6475 return scm_from_double (l);
6476 else
6477 return scm_c_make_rectangular (l, M_PI);
6478 }
6479}
6480#undef FUNC_NAME
6481
6482
6483SCM_DEFINE (scm_log10, "log10", 1, 0, 0,
6484 (SCM z),
6485 "Return the base 10 logarithm of @var{z}.")
6486#define FUNC_NAME s_scm_log10
6487{
6488 if (SCM_COMPLEXP (z))
6489 {
6490 /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
6491 clog() and a multiply by M_LOG10E, rather than the fallback
6492 log10+hypot+atan2.) */
4b26c03e 6493#if HAVE_COMPLEX_DOUBLE && HAVE_CLOG10 && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6494 return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
6495#else
6496 double re = SCM_COMPLEX_REAL (z);
6497 double im = SCM_COMPLEX_IMAG (z);
6498 return scm_c_make_rectangular (log10 (hypot (re, im)),
6499 M_LOG10E * atan2 (im, re));
6500#endif
6501 }
6502 else
6503 {
6504 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6505 although the value itself overflows. */
6506 double re = scm_to_double (z);
6507 double l = log10 (fabs (re));
6508 if (re >= 0.0)
6509 return scm_from_double (l);
6510 else
6511 return scm_c_make_rectangular (l, M_LOG10E * M_PI);
6512 }
6513}
6514#undef FUNC_NAME
6515
6516
6517SCM_DEFINE (scm_exp, "exp", 1, 0, 0,
6518 (SCM z),
6519 "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
6520 "base of natural logarithms (2.71828@dots{}).")
6521#define FUNC_NAME s_scm_exp
6522{
6523 if (SCM_COMPLEXP (z))
6524 {
4b26c03e 6525#if HAVE_COMPLEX_DOUBLE && HAVE_CEXP && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6526 return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
6527#else
6528 return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
6529 SCM_COMPLEX_IMAG (z));
6530#endif
6531 }
6532 else
6533 {
6534 /* When z is a negative bignum the conversion to double overflows,
6535 giving -infinity, but that's ok, the exp is still 0.0. */
6536 return scm_from_double (exp (scm_to_double (z)));
6537 }
6538}
6539#undef FUNC_NAME
6540
6541
6542SCM_DEFINE (scm_sqrt, "sqrt", 1, 0, 0,
6543 (SCM x),
6544 "Return the square root of @var{z}. Of the two possible roots\n"
6545 "(positive and negative), the one with the a positive real part\n"
6546 "is returned, or if that's zero then a positive imaginary part.\n"
6547 "Thus,\n"
6548 "\n"
6549 "@example\n"
6550 "(sqrt 9.0) @result{} 3.0\n"
6551 "(sqrt -9.0) @result{} 0.0+3.0i\n"
6552 "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
6553 "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
6554 "@end example")
6555#define FUNC_NAME s_scm_sqrt
6556{
6557 if (SCM_COMPLEXP (x))
6558 {
4b26c03e 6559#if HAVE_COMPLEX_DOUBLE && HAVE_USABLE_CSQRT && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6560 return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (x)));
6561#else
6562 double re = SCM_COMPLEX_REAL (x);
6563 double im = SCM_COMPLEX_IMAG (x);
6564 return scm_c_make_polar (sqrt (hypot (re, im)),
6565 0.5 * atan2 (im, re));
6566#endif
6567 }
6568 else
6569 {
6570 double xx = scm_to_double (x);
6571 if (xx < 0)
6572 return scm_c_make_rectangular (0.0, sqrt (-xx));
6573 else
6574 return scm_from_double (sqrt (xx));
6575 }
6576}
6577#undef FUNC_NAME
6578
6579
6580
0f2d19dd
JB
6581void
6582scm_init_numbers ()
0f2d19dd 6583{
0b799eea
MV
6584 int i;
6585
713a4259
KR
6586 mpz_init_set_si (z_negative_one, -1);
6587
a261c0e9
DH
6588 /* It may be possible to tune the performance of some algorithms by using
6589 * the following constants to avoid the creation of bignums. Please, before
6590 * using these values, remember the two rules of program optimization:
6591 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
86d31dfe 6592 scm_c_define ("most-positive-fixnum",
d956fa6f 6593 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
86d31dfe 6594 scm_c_define ("most-negative-fixnum",
d956fa6f 6595 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
a261c0e9 6596
f3ae5d60
MD
6597 scm_add_feature ("complex");
6598 scm_add_feature ("inexact");
e7efe8e7 6599 flo0 = scm_from_double (0.0);
0b799eea
MV
6600
6601 /* determine floating point precision */
55f26379 6602 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
0b799eea
MV
6603 {
6604 init_dblprec(&scm_dblprec[i-2],i);
6605 init_fx_radix(fx_per_radix[i-2],i);
6606 }
f872b822 6607#ifdef DBL_DIG
0b799eea 6608 /* hard code precision for base 10 if the preprocessor tells us to... */
f39448c5 6609 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
0b799eea 6610#endif
1be6b49c 6611
f39448c5 6612 exactly_one_half = scm_divide (SCM_I_MAKINUM (1), SCM_I_MAKINUM (2));
a0599745 6613#include "libguile/numbers.x"
0f2d19dd 6614}
89e00824
ML
6615
6616/*
6617 Local Variables:
6618 c-file-style: "gnu"
6619 End:
6620*/