further boot cleanups
[bpt/guile.git] / libguile / numbers.c
CommitLineData
5e647d08 1/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
ba74ef4e
MV
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
f81e080b 6 *
73be1d9e 7 * This library is free software; you can redistribute it and/or
53befeb7
NJ
8 * modify it under the terms of the GNU Lesser General Public License
9 * as published by the Free Software Foundation; either version 3 of
10 * the License, or (at your option) any later version.
0f2d19dd 11 *
53befeb7
NJ
12 * This library is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
73be1d9e
MV
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
0f2d19dd 16 *
73be1d9e
MV
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
53befeb7
NJ
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301 USA
73be1d9e 21 */
1bbd0b84 22
0f2d19dd 23\f
ca46fb90
RB
24/* General assumptions:
25 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
26 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
27 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
28 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
f92e85f7 29 * All objects satisfying SCM_FRACTIONP are never an integer.
ca46fb90
RB
30 */
31
32/* TODO:
33
34 - see if special casing bignums and reals in integer-exponent when
35 possible (to use mpz_pow and mpf_pow_ui) is faster.
36
37 - look in to better short-circuiting of common cases in
38 integer-expt and elsewhere.
39
40 - see if direct mpz operations can help in ash and elsewhere.
41
42 */
0f2d19dd 43
dbb605f5 44#ifdef HAVE_CONFIG_H
ee33d62a
RB
45# include <config.h>
46#endif
47
0f2d19dd 48#include <math.h>
fc194577 49#include <string.h>
3f47e526
MG
50#include <unicase.h>
51#include <unictype.h>
f92e85f7 52
8ab3d8a0
KR
53#if HAVE_COMPLEX_H
54#include <complex.h>
55#endif
56
a0599745 57#include "libguile/_scm.h"
a0599745
MD
58#include "libguile/feature.h"
59#include "libguile/ports.h"
60#include "libguile/root.h"
61#include "libguile/smob.h"
62#include "libguile/strings.h"
a0599745
MD
63
64#include "libguile/validate.h"
65#include "libguile/numbers.h"
1be6b49c 66#include "libguile/deprecation.h"
f4c627b3 67
f92e85f7
MV
68#include "libguile/eq.h"
69
55f26379
MV
70#include "libguile/discouraged.h"
71
8ab3d8a0
KR
72/* values per glibc, if not already defined */
73#ifndef M_LOG10E
74#define M_LOG10E 0.43429448190325182765
75#endif
76#ifndef M_PI
77#define M_PI 3.14159265358979323846
78#endif
79
0f2d19dd 80\f
f4c627b3 81
ca46fb90
RB
82/*
83 Wonder if this might be faster for some of our code? A switch on
84 the numtag would jump directly to the right case, and the
85 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
86
87 #define SCM_I_NUMTAG_NOTNUM 0
88 #define SCM_I_NUMTAG_INUM 1
89 #define SCM_I_NUMTAG_BIG scm_tc16_big
90 #define SCM_I_NUMTAG_REAL scm_tc16_real
91 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
92 #define SCM_I_NUMTAG(x) \
e11e83f3 93 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
ca46fb90 94 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
534c55a9 95 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
ca46fb90
RB
96 : SCM_I_NUMTAG_NOTNUM)))
97*/
f92e85f7 98/* the macro above will not work as is with fractions */
f4c627b3
DH
99
100
34d19ef6 101#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
09fb7599 102
56e55ac7 103/* FLOBUFLEN is the maximum number of characters neccessary for the
3a9809df
DH
104 * printed or scm_string representation of an inexact number.
105 */
0b799eea 106#define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
3a9809df 107
7351e207
MV
108#if defined (SCO)
109#if ! defined (HAVE_ISNAN)
110#define HAVE_ISNAN
111static int
112isnan (double x)
113{
114 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
115}
0f2d19dd 116#endif
7351e207
MV
117#if ! defined (HAVE_ISINF)
118#define HAVE_ISINF
119static int
120isinf (double x)
121{
122 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
123}
0f2d19dd 124
7351e207 125#endif
e6f3ef58
MD
126#endif
127
b127c712 128
ad79736c
AW
129#if !defined (HAVE_ASINH)
130static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
131#endif
132#if !defined (HAVE_ACOSH)
133static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
134#endif
135#if !defined (HAVE_ATANH)
136static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
137#endif
138
f8a8200b
KR
139/* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
140 an explicit check. In some future gmp (don't know what version number),
141 mpz_cmp_d is supposed to do this itself. */
142#if 1
b127c712
KR
143#define xmpz_cmp_d(z, d) \
144 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
145#else
146#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
147#endif
148
a98ce907
KR
149/* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
150 isinf. It does have finite and isnan though, hence the use of those.
151 fpclass would be a possibility on that system too. */
f92e85f7
MV
152static int
153xisinf (double x)
154{
155#if defined (HAVE_ISINF)
156 return isinf (x);
157#elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
158 return (! (finite (x) || isnan (x)));
159#else
160 return 0;
161#endif
162}
163
164static int
165xisnan (double x)
166{
167#if defined (HAVE_ISNAN)
168 return isnan (x);
169#else
170 return 0;
171#endif
172}
173
4b26c03e 174#if defined (GUILE_I)
bca69a9f 175#if HAVE_COMPLEX_DOUBLE
8ab3d8a0
KR
176
177/* For an SCM object Z which is a complex number (ie. satisfies
178 SCM_COMPLEXP), return its value as a C level "complex double". */
179#define SCM_COMPLEX_VALUE(z) \
4b26c03e 180 (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
8ab3d8a0 181
7a35784c 182static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
8ab3d8a0
KR
183
184/* Convert a C "complex double" to an SCM value. */
7a35784c 185static inline SCM
8ab3d8a0
KR
186scm_from_complex_double (complex double z)
187{
188 return scm_c_make_rectangular (creal (z), cimag (z));
189}
bca69a9f 190
8ab3d8a0 191#endif /* HAVE_COMPLEX_DOUBLE */
bca69a9f 192#endif /* GUILE_I */
8ab3d8a0 193
0f2d19dd
JB
194\f
195
713a4259 196static mpz_t z_negative_one;
ac0c002c
DH
197
198\f
199
189171c5 200SCM
ca46fb90
RB
201scm_i_mkbig ()
202{
203 /* Return a newly created bignum. */
204 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
205 mpz_init (SCM_I_BIG_MPZ (z));
206 return z;
207}
208
189171c5 209SCM
c71b0706
MV
210scm_i_long2big (long x)
211{
212 /* Return a newly created bignum initialized to X. */
213 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
214 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
215 return z;
216}
217
189171c5 218SCM
c71b0706
MV
219scm_i_ulong2big (unsigned long x)
220{
221 /* Return a newly created bignum initialized to X. */
222 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
223 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
224 return z;
225}
226
189171c5 227SCM
ca46fb90
RB
228scm_i_clonebig (SCM src_big, int same_sign_p)
229{
230 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
231 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
232 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
0aacf84e
MD
233 if (!same_sign_p)
234 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
ca46fb90
RB
235 return z;
236}
237
189171c5 238int
ca46fb90
RB
239scm_i_bigcmp (SCM x, SCM y)
240{
241 /* Return neg if x < y, pos if x > y, and 0 if x == y */
242 /* presume we already know x and y are bignums */
243 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
244 scm_remember_upto_here_2 (x, y);
245 return result;
246}
247
189171c5 248SCM
ca46fb90
RB
249scm_i_dbl2big (double d)
250{
251 /* results are only defined if d is an integer */
252 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
253 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
254 return z;
255}
256
f92e85f7
MV
257/* Convert a integer in double representation to a SCM number. */
258
189171c5 259SCM
f92e85f7
MV
260scm_i_dbl2num (double u)
261{
262 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
263 powers of 2, so there's no rounding when making "double" values
264 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
265 get rounded on a 64-bit machine, hence the "+1".
266
267 The use of floor() to force to an integer value ensures we get a
268 "numerically closest" value without depending on how a
269 double->long cast or how mpz_set_d will round. For reference,
270 double->long probably follows the hardware rounding mode,
271 mpz_set_d truncates towards zero. */
272
273 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
274 representable as a double? */
275
276 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
277 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
d956fa6f 278 return SCM_I_MAKINUM ((long) u);
f92e85f7
MV
279 else
280 return scm_i_dbl2big (u);
281}
282
089c9a59
KR
283/* scm_i_big2dbl() rounds to the closest representable double, in accordance
284 with R5RS exact->inexact.
285
286 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
f8a8200b
KR
287 (ie. truncate towards zero), then adjust to get the closest double by
288 examining the next lower bit and adding 1 (to the absolute value) if
289 necessary.
290
291 Bignums exactly half way between representable doubles are rounded to the
292 next higher absolute value (ie. away from zero). This seems like an
293 adequate interpretation of R5RS "numerically closest", and it's easier
294 and faster than a full "nearest-even" style.
295
296 The bit test must be done on the absolute value of the mpz_t, which means
297 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
298 negatives as twos complement.
299
300 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
301 following the hardware rounding mode, but applied to the absolute value
302 of the mpz_t operand. This is not what we want so we put the high
303 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
304 mpz_get_d is supposed to always truncate towards zero.
305
306 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
307 is a slowdown. It'd be faster to pick out the relevant high bits with
308 mpz_getlimbn if we could be bothered coding that, and if the new
309 truncating gmp doesn't come out. */
089c9a59
KR
310
311double
ca46fb90
RB
312scm_i_big2dbl (SCM b)
313{
089c9a59
KR
314 double result;
315 size_t bits;
316
317 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
318
f8a8200b 319#if 1
089c9a59 320 {
f8a8200b 321 /* Current GMP, eg. 4.1.3, force truncation towards zero */
089c9a59
KR
322 mpz_t tmp;
323 if (bits > DBL_MANT_DIG)
324 {
325 size_t shift = bits - DBL_MANT_DIG;
326 mpz_init2 (tmp, DBL_MANT_DIG);
327 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
328 result = ldexp (mpz_get_d (tmp), shift);
329 mpz_clear (tmp);
330 }
331 else
332 {
333 result = mpz_get_d (SCM_I_BIG_MPZ (b));
334 }
335 }
336#else
f8a8200b 337 /* Future GMP */
089c9a59
KR
338 result = mpz_get_d (SCM_I_BIG_MPZ (b));
339#endif
340
341 if (bits > DBL_MANT_DIG)
342 {
343 unsigned long pos = bits - DBL_MANT_DIG - 1;
344 /* test bit number "pos" in absolute value */
345 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
346 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
347 {
348 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
349 }
350 }
351
ca46fb90
RB
352 scm_remember_upto_here_1 (b);
353 return result;
354}
355
189171c5 356SCM
ca46fb90
RB
357scm_i_normbig (SCM b)
358{
359 /* convert a big back to a fixnum if it'll fit */
360 /* presume b is a bignum */
361 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
362 {
363 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
364 if (SCM_FIXABLE (val))
d956fa6f 365 b = SCM_I_MAKINUM (val);
ca46fb90
RB
366 }
367 return b;
368}
f872b822 369
f92e85f7
MV
370static SCM_C_INLINE_KEYWORD SCM
371scm_i_mpz2num (mpz_t b)
372{
373 /* convert a mpz number to a SCM number. */
374 if (mpz_fits_slong_p (b))
375 {
376 long val = mpz_get_si (b);
377 if (SCM_FIXABLE (val))
d956fa6f 378 return SCM_I_MAKINUM (val);
f92e85f7
MV
379 }
380
381 {
382 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
383 mpz_init_set (SCM_I_BIG_MPZ (z), b);
384 return z;
385 }
386}
387
388/* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
389static SCM scm_divide2real (SCM x, SCM y);
390
cba42c93
MV
391static SCM
392scm_i_make_ratio (SCM numerator, SCM denominator)
c60e130c 393#define FUNC_NAME "make-ratio"
f92e85f7 394{
c60e130c
MV
395 /* First make sure the arguments are proper.
396 */
e11e83f3 397 if (SCM_I_INUMP (denominator))
f92e85f7 398 {
bc36d050 399 if (scm_is_eq (denominator, SCM_INUM0))
f92e85f7 400 scm_num_overflow ("make-ratio");
bc36d050 401 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
f92e85f7
MV
402 return numerator;
403 }
404 else
405 {
406 if (!(SCM_BIGP(denominator)))
407 SCM_WRONG_TYPE_ARG (2, denominator);
408 }
e11e83f3 409 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
c60e130c
MV
410 SCM_WRONG_TYPE_ARG (1, numerator);
411
412 /* Then flip signs so that the denominator is positive.
413 */
73e4de09 414 if (scm_is_true (scm_negative_p (denominator)))
c60e130c
MV
415 {
416 numerator = scm_difference (numerator, SCM_UNDEFINED);
417 denominator = scm_difference (denominator, SCM_UNDEFINED);
418 }
419
420 /* Now consider for each of the four fixnum/bignum combinations
421 whether the rational number is really an integer.
422 */
e11e83f3 423 if (SCM_I_INUMP (numerator))
f92e85f7 424 {
e11e83f3 425 long x = SCM_I_INUM (numerator);
bc36d050 426 if (scm_is_eq (numerator, SCM_INUM0))
f92e85f7 427 return SCM_INUM0;
e11e83f3 428 if (SCM_I_INUMP (denominator))
f92e85f7 429 {
dd5130ca 430 long y;
e11e83f3 431 y = SCM_I_INUM (denominator);
f92e85f7 432 if (x == y)
d956fa6f 433 return SCM_I_MAKINUM(1);
f92e85f7 434 if ((x % y) == 0)
d956fa6f 435 return SCM_I_MAKINUM (x / y);
f92e85f7 436 }
dd5130ca
KR
437 else
438 {
439 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
3271a325
KR
440 of that value for the denominator, as a bignum. Apart from
441 that case, abs(bignum) > abs(inum) so inum/bignum is not an
442 integer. */
443 if (x == SCM_MOST_NEGATIVE_FIXNUM
444 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
445 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
d956fa6f 446 return SCM_I_MAKINUM(-1);
dd5130ca 447 }
f92e85f7 448 }
c60e130c 449 else if (SCM_BIGP (numerator))
f92e85f7 450 {
e11e83f3 451 if (SCM_I_INUMP (denominator))
c60e130c 452 {
e11e83f3 453 long yy = SCM_I_INUM (denominator);
c60e130c
MV
454 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
455 return scm_divide (numerator, denominator);
456 }
457 else
f92e85f7 458 {
bc36d050 459 if (scm_is_eq (numerator, denominator))
d956fa6f 460 return SCM_I_MAKINUM(1);
c60e130c
MV
461 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
462 SCM_I_BIG_MPZ (denominator)))
463 return scm_divide(numerator, denominator);
f92e85f7 464 }
f92e85f7 465 }
c60e130c
MV
466
467 /* No, it's a proper fraction.
468 */
e2bf3b19
HWN
469 {
470 SCM divisor = scm_gcd (numerator, denominator);
471 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
472 {
473 numerator = scm_divide (numerator, divisor);
474 denominator = scm_divide (denominator, divisor);
475 }
476
477 return scm_double_cell (scm_tc16_fraction,
478 SCM_UNPACK (numerator),
479 SCM_UNPACK (denominator), 0);
480 }
f92e85f7 481}
c60e130c 482#undef FUNC_NAME
f92e85f7 483
f92e85f7
MV
484double
485scm_i_fraction2double (SCM z)
486{
55f26379
MV
487 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
488 SCM_FRACTION_DENOMINATOR (z)));
f92e85f7
MV
489}
490
a1ec6916 491SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
1bbd0b84 492 (SCM x),
942e5b91
MG
493 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
494 "otherwise.")
1bbd0b84 495#define FUNC_NAME s_scm_exact_p
0f2d19dd 496{
e11e83f3 497 if (SCM_I_INUMP (x))
0aacf84e
MD
498 return SCM_BOOL_T;
499 if (SCM_BIGP (x))
500 return SCM_BOOL_T;
f92e85f7
MV
501 if (SCM_FRACTIONP (x))
502 return SCM_BOOL_T;
eb927cb9
MV
503 if (SCM_NUMBERP (x))
504 return SCM_BOOL_F;
505 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 506}
1bbd0b84 507#undef FUNC_NAME
0f2d19dd 508
4219f20d 509
a1ec6916 510SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
1bbd0b84 511 (SCM n),
942e5b91
MG
512 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
513 "otherwise.")
1bbd0b84 514#define FUNC_NAME s_scm_odd_p
0f2d19dd 515{
e11e83f3 516 if (SCM_I_INUMP (n))
0aacf84e 517 {
e11e83f3 518 long val = SCM_I_INUM (n);
73e4de09 519 return scm_from_bool ((val & 1L) != 0);
0aacf84e
MD
520 }
521 else if (SCM_BIGP (n))
522 {
523 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
524 scm_remember_upto_here_1 (n);
73e4de09 525 return scm_from_bool (odd_p);
0aacf84e 526 }
73e4de09 527 else if (scm_is_true (scm_inf_p (n)))
7351e207 528 return SCM_BOOL_T;
f92e85f7
MV
529 else if (SCM_REALP (n))
530 {
531 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
532 if (rem == 1.0)
533 return SCM_BOOL_T;
534 else if (rem == 0.0)
535 return SCM_BOOL_F;
536 else
537 SCM_WRONG_TYPE_ARG (1, n);
538 }
0aacf84e 539 else
a1a33b0f 540 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 541}
1bbd0b84 542#undef FUNC_NAME
0f2d19dd 543
4219f20d 544
a1ec6916 545SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
1bbd0b84 546 (SCM n),
942e5b91
MG
547 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
548 "otherwise.")
1bbd0b84 549#define FUNC_NAME s_scm_even_p
0f2d19dd 550{
e11e83f3 551 if (SCM_I_INUMP (n))
0aacf84e 552 {
e11e83f3 553 long val = SCM_I_INUM (n);
73e4de09 554 return scm_from_bool ((val & 1L) == 0);
0aacf84e
MD
555 }
556 else if (SCM_BIGP (n))
557 {
558 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
559 scm_remember_upto_here_1 (n);
73e4de09 560 return scm_from_bool (even_p);
0aacf84e 561 }
73e4de09 562 else if (scm_is_true (scm_inf_p (n)))
7351e207 563 return SCM_BOOL_T;
f92e85f7
MV
564 else if (SCM_REALP (n))
565 {
566 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
567 if (rem == 1.0)
568 return SCM_BOOL_F;
569 else if (rem == 0.0)
570 return SCM_BOOL_T;
571 else
572 SCM_WRONG_TYPE_ARG (1, n);
573 }
0aacf84e 574 else
a1a33b0f 575 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 576}
1bbd0b84 577#undef FUNC_NAME
0f2d19dd 578
7351e207 579SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
b1092b3a
MV
580 (SCM x),
581 "Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
582 "or @samp{-inf.0}, @code{#f} otherwise.")
7351e207
MV
583#define FUNC_NAME s_scm_inf_p
584{
b1092b3a
MV
585 if (SCM_REALP (x))
586 return scm_from_bool (xisinf (SCM_REAL_VALUE (x)));
587 else if (SCM_COMPLEXP (x))
588 return scm_from_bool (xisinf (SCM_COMPLEX_REAL (x))
589 || xisinf (SCM_COMPLEX_IMAG (x)));
0aacf84e 590 else
7351e207 591 return SCM_BOOL_F;
7351e207
MV
592}
593#undef FUNC_NAME
594
595SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
596 (SCM n),
597 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
598 "otherwise.")
599#define FUNC_NAME s_scm_nan_p
600{
0aacf84e 601 if (SCM_REALP (n))
73e4de09 602 return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
0aacf84e 603 else if (SCM_COMPLEXP (n))
73e4de09 604 return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
7351e207 605 || xisnan (SCM_COMPLEX_IMAG (n)));
0aacf84e 606 else
7351e207 607 return SCM_BOOL_F;
7351e207
MV
608}
609#undef FUNC_NAME
610
611/* Guile's idea of infinity. */
612static double guile_Inf;
613
614/* Guile's idea of not a number. */
615static double guile_NaN;
616
617static void
618guile_ieee_init (void)
619{
620#if defined (HAVE_ISINF) || defined (HAVE_FINITE)
621
622/* Some version of gcc on some old version of Linux used to crash when
623 trying to make Inf and NaN. */
624
240a27d2
KR
625#ifdef INFINITY
626 /* C99 INFINITY, when available.
627 FIXME: The standard allows for INFINITY to be something that overflows
628 at compile time. We ought to have a configure test to check for that
629 before trying to use it. (But in practice we believe this is not a
630 problem on any system guile is likely to target.) */
631 guile_Inf = INFINITY;
56a3dcd4 632#elif defined HAVE_DINFINITY
240a27d2 633 /* OSF */
7351e207 634 extern unsigned int DINFINITY[2];
eaa94eaa 635 guile_Inf = (*((double *) (DINFINITY)));
7351e207
MV
636#else
637 double tmp = 1e+10;
638 guile_Inf = tmp;
639 for (;;)
640 {
641 guile_Inf *= 1e+10;
642 if (guile_Inf == tmp)
643 break;
644 tmp = guile_Inf;
645 }
646#endif
647
648#endif
649
650#if defined (HAVE_ISNAN)
651
240a27d2
KR
652#ifdef NAN
653 /* C99 NAN, when available */
654 guile_NaN = NAN;
56a3dcd4 655#elif defined HAVE_DQNAN
eaa94eaa
LC
656 {
657 /* OSF */
658 extern unsigned int DQNAN[2];
659 guile_NaN = (*((double *)(DQNAN)));
660 }
7351e207
MV
661#else
662 guile_NaN = guile_Inf / guile_Inf;
663#endif
664
665#endif
666}
667
668SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
669 (void),
670 "Return Inf.")
671#define FUNC_NAME s_scm_inf
672{
673 static int initialized = 0;
674 if (! initialized)
675 {
676 guile_ieee_init ();
677 initialized = 1;
678 }
55f26379 679 return scm_from_double (guile_Inf);
7351e207
MV
680}
681#undef FUNC_NAME
682
683SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
684 (void),
685 "Return NaN.")
686#define FUNC_NAME s_scm_nan
687{
688 static int initialized = 0;
0aacf84e 689 if (!initialized)
7351e207
MV
690 {
691 guile_ieee_init ();
692 initialized = 1;
693 }
55f26379 694 return scm_from_double (guile_NaN);
7351e207
MV
695}
696#undef FUNC_NAME
697
4219f20d 698
a48d60b1
MD
699SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
700 (SCM x),
701 "Return the absolute value of @var{x}.")
702#define FUNC_NAME
0f2d19dd 703{
e11e83f3 704 if (SCM_I_INUMP (x))
0aacf84e 705 {
e11e83f3 706 long int xx = SCM_I_INUM (x);
0aacf84e
MD
707 if (xx >= 0)
708 return x;
709 else if (SCM_POSFIXABLE (-xx))
d956fa6f 710 return SCM_I_MAKINUM (-xx);
0aacf84e
MD
711 else
712 return scm_i_long2big (-xx);
4219f20d 713 }
0aacf84e
MD
714 else if (SCM_BIGP (x))
715 {
716 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
717 if (sgn < 0)
718 return scm_i_clonebig (x, 0);
719 else
720 return x;
4219f20d 721 }
0aacf84e 722 else if (SCM_REALP (x))
ae38324d
KR
723 {
724 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
725 double xx = SCM_REAL_VALUE (x);
726 if (xx < 0.0)
55f26379 727 return scm_from_double (-xx);
ae38324d
KR
728 else
729 return x;
730 }
f92e85f7
MV
731 else if (SCM_FRACTIONP (x))
732 {
73e4de09 733 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
f92e85f7 734 return x;
cba42c93 735 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7
MV
736 SCM_FRACTION_DENOMINATOR (x));
737 }
0aacf84e 738 else
a48d60b1 739 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
0f2d19dd 740}
a48d60b1 741#undef FUNC_NAME
0f2d19dd 742
4219f20d 743
9de33deb 744SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
942e5b91
MG
745/* "Return the quotient of the numbers @var{x} and @var{y}."
746 */
0f2d19dd 747SCM
6e8d25a6 748scm_quotient (SCM x, SCM y)
0f2d19dd 749{
e11e83f3 750 if (SCM_I_INUMP (x))
0aacf84e 751 {
e11e83f3
MV
752 long xx = SCM_I_INUM (x);
753 if (SCM_I_INUMP (y))
0aacf84e 754 {
e11e83f3 755 long yy = SCM_I_INUM (y);
0aacf84e
MD
756 if (yy == 0)
757 scm_num_overflow (s_quotient);
758 else
759 {
760 long z = xx / yy;
761 if (SCM_FIXABLE (z))
d956fa6f 762 return SCM_I_MAKINUM (z);
0aacf84e
MD
763 else
764 return scm_i_long2big (z);
765 }
828865c3 766 }
0aacf84e 767 else if (SCM_BIGP (y))
ac0c002c 768 {
e11e83f3 769 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
770 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
771 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
772 {
773 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
774 scm_remember_upto_here_1 (y);
d956fa6f 775 return SCM_I_MAKINUM (-1);
4dc09ee4 776 }
0aacf84e 777 else
d956fa6f 778 return SCM_I_MAKINUM (0);
ac0c002c
DH
779 }
780 else
0aacf84e 781 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
828865c3 782 }
0aacf84e
MD
783 else if (SCM_BIGP (x))
784 {
e11e83f3 785 if (SCM_I_INUMP (y))
0aacf84e 786 {
e11e83f3 787 long yy = SCM_I_INUM (y);
0aacf84e
MD
788 if (yy == 0)
789 scm_num_overflow (s_quotient);
790 else if (yy == 1)
791 return x;
792 else
793 {
794 SCM result = scm_i_mkbig ();
795 if (yy < 0)
796 {
797 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
798 SCM_I_BIG_MPZ (x),
799 - yy);
800 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
801 }
802 else
803 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
804 scm_remember_upto_here_1 (x);
805 return scm_i_normbig (result);
806 }
807 }
808 else if (SCM_BIGP (y))
809 {
810 SCM result = scm_i_mkbig ();
811 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
812 SCM_I_BIG_MPZ (x),
813 SCM_I_BIG_MPZ (y));
814 scm_remember_upto_here_2 (x, y);
815 return scm_i_normbig (result);
816 }
817 else
818 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
f872b822 819 }
0aacf84e 820 else
89a7e495 821 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
0f2d19dd
JB
822}
823
9de33deb 824SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
942e5b91
MG
825/* "Return the remainder of the numbers @var{x} and @var{y}.\n"
826 * "@lisp\n"
827 * "(remainder 13 4) @result{} 1\n"
828 * "(remainder -13 4) @result{} -1\n"
829 * "@end lisp"
830 */
0f2d19dd 831SCM
6e8d25a6 832scm_remainder (SCM x, SCM y)
0f2d19dd 833{
e11e83f3 834 if (SCM_I_INUMP (x))
0aacf84e 835 {
e11e83f3 836 if (SCM_I_INUMP (y))
0aacf84e 837 {
e11e83f3 838 long yy = SCM_I_INUM (y);
0aacf84e
MD
839 if (yy == 0)
840 scm_num_overflow (s_remainder);
841 else
842 {
e11e83f3 843 long z = SCM_I_INUM (x) % yy;
d956fa6f 844 return SCM_I_MAKINUM (z);
0aacf84e
MD
845 }
846 }
847 else if (SCM_BIGP (y))
ac0c002c 848 {
e11e83f3 849 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
850 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
851 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
852 {
853 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
854 scm_remember_upto_here_1 (y);
d956fa6f 855 return SCM_I_MAKINUM (0);
4dc09ee4 856 }
0aacf84e
MD
857 else
858 return x;
ac0c002c
DH
859 }
860 else
0aacf84e 861 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
89a7e495 862 }
0aacf84e
MD
863 else if (SCM_BIGP (x))
864 {
e11e83f3 865 if (SCM_I_INUMP (y))
0aacf84e 866 {
e11e83f3 867 long yy = SCM_I_INUM (y);
0aacf84e
MD
868 if (yy == 0)
869 scm_num_overflow (s_remainder);
870 else
871 {
872 SCM result = scm_i_mkbig ();
873 if (yy < 0)
874 yy = - yy;
875 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
876 scm_remember_upto_here_1 (x);
877 return scm_i_normbig (result);
878 }
879 }
880 else if (SCM_BIGP (y))
881 {
882 SCM result = scm_i_mkbig ();
883 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
884 SCM_I_BIG_MPZ (x),
885 SCM_I_BIG_MPZ (y));
886 scm_remember_upto_here_2 (x, y);
887 return scm_i_normbig (result);
888 }
889 else
890 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
f872b822 891 }
0aacf84e 892 else
89a7e495 893 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
0f2d19dd
JB
894}
895
89a7e495 896
9de33deb 897SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
942e5b91
MG
898/* "Return the modulo of the numbers @var{x} and @var{y}.\n"
899 * "@lisp\n"
900 * "(modulo 13 4) @result{} 1\n"
901 * "(modulo -13 4) @result{} 3\n"
902 * "@end lisp"
903 */
0f2d19dd 904SCM
6e8d25a6 905scm_modulo (SCM x, SCM y)
0f2d19dd 906{
e11e83f3 907 if (SCM_I_INUMP (x))
0aacf84e 908 {
e11e83f3
MV
909 long xx = SCM_I_INUM (x);
910 if (SCM_I_INUMP (y))
0aacf84e 911 {
e11e83f3 912 long yy = SCM_I_INUM (y);
0aacf84e
MD
913 if (yy == 0)
914 scm_num_overflow (s_modulo);
915 else
916 {
66b1c775
KR
917 /* C99 specifies that "%" is the remainder corresponding to a
918 quotient rounded towards zero, and that's also traditional
919 for machine division, so z here should be well defined. */
0aacf84e
MD
920 long z = xx % yy;
921 long result;
922
923 if (yy < 0)
924 {
925 if (z > 0)
926 result = z + yy;
927 else
928 result = z;
929 }
930 else
931 {
932 if (z < 0)
933 result = z + yy;
934 else
935 result = z;
936 }
d956fa6f 937 return SCM_I_MAKINUM (result);
0aacf84e
MD
938 }
939 }
940 else if (SCM_BIGP (y))
941 {
942 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
0aacf84e
MD
943 {
944 mpz_t z_x;
945 SCM result;
946
947 if (sgn_y < 0)
948 {
949 SCM pos_y = scm_i_clonebig (y, 0);
950 /* do this after the last scm_op */
951 mpz_init_set_si (z_x, xx);
952 result = pos_y; /* re-use this bignum */
953 mpz_mod (SCM_I_BIG_MPZ (result),
954 z_x,
955 SCM_I_BIG_MPZ (pos_y));
956 scm_remember_upto_here_1 (pos_y);
957 }
958 else
959 {
960 result = scm_i_mkbig ();
961 /* do this after the last scm_op */
962 mpz_init_set_si (z_x, xx);
963 mpz_mod (SCM_I_BIG_MPZ (result),
964 z_x,
965 SCM_I_BIG_MPZ (y));
966 scm_remember_upto_here_1 (y);
967 }
ca46fb90 968
0aacf84e
MD
969 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
970 mpz_add (SCM_I_BIG_MPZ (result),
971 SCM_I_BIG_MPZ (y),
972 SCM_I_BIG_MPZ (result));
973 scm_remember_upto_here_1 (y);
974 /* and do this before the next one */
975 mpz_clear (z_x);
976 return scm_i_normbig (result);
977 }
978 }
979 else
980 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
f872b822 981 }
0aacf84e
MD
982 else if (SCM_BIGP (x))
983 {
e11e83f3 984 if (SCM_I_INUMP (y))
0aacf84e 985 {
e11e83f3 986 long yy = SCM_I_INUM (y);
0aacf84e
MD
987 if (yy == 0)
988 scm_num_overflow (s_modulo);
989 else
990 {
991 SCM result = scm_i_mkbig ();
992 mpz_mod_ui (SCM_I_BIG_MPZ (result),
993 SCM_I_BIG_MPZ (x),
994 (yy < 0) ? - yy : yy);
995 scm_remember_upto_here_1 (x);
996 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
997 mpz_sub_ui (SCM_I_BIG_MPZ (result),
998 SCM_I_BIG_MPZ (result),
999 - yy);
1000 return scm_i_normbig (result);
1001 }
1002 }
1003 else if (SCM_BIGP (y))
1004 {
0aacf84e
MD
1005 {
1006 SCM result = scm_i_mkbig ();
1007 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
1008 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
1009 mpz_mod (SCM_I_BIG_MPZ (result),
1010 SCM_I_BIG_MPZ (x),
1011 SCM_I_BIG_MPZ (pos_y));
ca46fb90 1012
0aacf84e
MD
1013 scm_remember_upto_here_1 (x);
1014 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
1015 mpz_add (SCM_I_BIG_MPZ (result),
1016 SCM_I_BIG_MPZ (y),
1017 SCM_I_BIG_MPZ (result));
1018 scm_remember_upto_here_2 (y, pos_y);
1019 return scm_i_normbig (result);
1020 }
1021 }
1022 else
1023 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
828865c3 1024 }
0aacf84e 1025 else
09fb7599 1026 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
0f2d19dd
JB
1027}
1028
78d3deb1
AW
1029SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
1030 (SCM x, SCM y, SCM rest),
1031 "Return the greatest common divisor of all parameter values.\n"
1032 "If called without arguments, 0 is returned.")
1033#define FUNC_NAME s_scm_i_gcd
1034{
1035 while (!scm_is_null (rest))
1036 { x = scm_gcd (x, y);
1037 y = scm_car (rest);
1038 rest = scm_cdr (rest);
1039 }
1040 return scm_gcd (x, y);
1041}
1042#undef FUNC_NAME
1043
1044#define s_gcd s_scm_i_gcd
1045#define g_gcd g_scm_i_gcd
1046
0f2d19dd 1047SCM
6e8d25a6 1048scm_gcd (SCM x, SCM y)
0f2d19dd 1049{
ca46fb90 1050 if (SCM_UNBNDP (y))
1dd79792 1051 return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
ca46fb90 1052
e11e83f3 1053 if (SCM_I_INUMP (x))
ca46fb90 1054 {
e11e83f3 1055 if (SCM_I_INUMP (y))
ca46fb90 1056 {
e11e83f3
MV
1057 long xx = SCM_I_INUM (x);
1058 long yy = SCM_I_INUM (y);
ca46fb90
RB
1059 long u = xx < 0 ? -xx : xx;
1060 long v = yy < 0 ? -yy : yy;
1061 long result;
0aacf84e
MD
1062 if (xx == 0)
1063 result = v;
1064 else if (yy == 0)
1065 result = u;
1066 else
1067 {
1068 long k = 1;
1069 long t;
1070 /* Determine a common factor 2^k */
1071 while (!(1 & (u | v)))
1072 {
1073 k <<= 1;
1074 u >>= 1;
1075 v >>= 1;
1076 }
1077 /* Now, any factor 2^n can be eliminated */
1078 if (u & 1)
1079 t = -v;
1080 else
1081 {
1082 t = u;
1083 b3:
1084 t = SCM_SRS (t, 1);
1085 }
1086 if (!(1 & t))
1087 goto b3;
1088 if (t > 0)
1089 u = t;
1090 else
1091 v = -t;
1092 t = u - v;
1093 if (t != 0)
1094 goto b3;
1095 result = u * k;
1096 }
1097 return (SCM_POSFIXABLE (result)
d956fa6f 1098 ? SCM_I_MAKINUM (result)
0aacf84e 1099 : scm_i_long2big (result));
ca46fb90
RB
1100 }
1101 else if (SCM_BIGP (y))
1102 {
0bff4dce
KR
1103 SCM_SWAP (x, y);
1104 goto big_inum;
ca46fb90
RB
1105 }
1106 else
1107 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
f872b822 1108 }
ca46fb90
RB
1109 else if (SCM_BIGP (x))
1110 {
e11e83f3 1111 if (SCM_I_INUMP (y))
ca46fb90
RB
1112 {
1113 unsigned long result;
0bff4dce
KR
1114 long yy;
1115 big_inum:
e11e83f3 1116 yy = SCM_I_INUM (y);
8c5b0afc
KR
1117 if (yy == 0)
1118 return scm_abs (x);
0aacf84e
MD
1119 if (yy < 0)
1120 yy = -yy;
ca46fb90
RB
1121 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1122 scm_remember_upto_here_1 (x);
0aacf84e 1123 return (SCM_POSFIXABLE (result)
d956fa6f 1124 ? SCM_I_MAKINUM (result)
c71b0706 1125 : scm_from_ulong (result));
ca46fb90
RB
1126 }
1127 else if (SCM_BIGP (y))
1128 {
1129 SCM result = scm_i_mkbig ();
0aacf84e
MD
1130 mpz_gcd (SCM_I_BIG_MPZ (result),
1131 SCM_I_BIG_MPZ (x),
1132 SCM_I_BIG_MPZ (y));
1133 scm_remember_upto_here_2 (x, y);
ca46fb90
RB
1134 return scm_i_normbig (result);
1135 }
1136 else
1137 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
09fb7599 1138 }
ca46fb90 1139 else
09fb7599 1140 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
0f2d19dd
JB
1141}
1142
78d3deb1
AW
1143SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
1144 (SCM x, SCM y, SCM rest),
1145 "Return the least common multiple of the arguments.\n"
1146 "If called without arguments, 1 is returned.")
1147#define FUNC_NAME s_scm_i_lcm
1148{
1149 while (!scm_is_null (rest))
1150 { x = scm_lcm (x, y);
1151 y = scm_car (rest);
1152 rest = scm_cdr (rest);
1153 }
1154 return scm_lcm (x, y);
1155}
1156#undef FUNC_NAME
1157
1158#define s_lcm s_scm_i_lcm
1159#define g_lcm g_scm_i_lcm
1160
0f2d19dd 1161SCM
6e8d25a6 1162scm_lcm (SCM n1, SCM n2)
0f2d19dd 1163{
ca46fb90
RB
1164 if (SCM_UNBNDP (n2))
1165 {
1166 if (SCM_UNBNDP (n1))
d956fa6f
MV
1167 return SCM_I_MAKINUM (1L);
1168 n2 = SCM_I_MAKINUM (1L);
09fb7599 1169 }
09fb7599 1170
e11e83f3 1171 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
ca46fb90 1172 g_lcm, n1, n2, SCM_ARG1, s_lcm);
e11e83f3 1173 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
ca46fb90 1174 g_lcm, n1, n2, SCM_ARGn, s_lcm);
09fb7599 1175
e11e83f3 1176 if (SCM_I_INUMP (n1))
ca46fb90 1177 {
e11e83f3 1178 if (SCM_I_INUMP (n2))
ca46fb90
RB
1179 {
1180 SCM d = scm_gcd (n1, n2);
bc36d050 1181 if (scm_is_eq (d, SCM_INUM0))
ca46fb90
RB
1182 return d;
1183 else
1184 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1185 }
1186 else
1187 {
1188 /* inum n1, big n2 */
1189 inumbig:
1190 {
1191 SCM result = scm_i_mkbig ();
e11e83f3 1192 long nn1 = SCM_I_INUM (n1);
ca46fb90
RB
1193 if (nn1 == 0) return SCM_INUM0;
1194 if (nn1 < 0) nn1 = - nn1;
1195 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1196 scm_remember_upto_here_1 (n2);
1197 return result;
1198 }
1199 }
1200 }
1201 else
1202 {
1203 /* big n1 */
e11e83f3 1204 if (SCM_I_INUMP (n2))
ca46fb90
RB
1205 {
1206 SCM_SWAP (n1, n2);
1207 goto inumbig;
1208 }
1209 else
1210 {
1211 SCM result = scm_i_mkbig ();
1212 mpz_lcm(SCM_I_BIG_MPZ (result),
1213 SCM_I_BIG_MPZ (n1),
1214 SCM_I_BIG_MPZ (n2));
1215 scm_remember_upto_here_2(n1, n2);
1216 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1217 return result;
1218 }
f872b822 1219 }
0f2d19dd
JB
1220}
1221
8a525303
GB
1222/* Emulating 2's complement bignums with sign magnitude arithmetic:
1223
1224 Logand:
1225 X Y Result Method:
1226 (len)
1227 + + + x (map digit:logand X Y)
1228 + - + x (map digit:logand X (lognot (+ -1 Y)))
1229 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1230 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1231
1232 Logior:
1233 X Y Result Method:
1234
1235 + + + (map digit:logior X Y)
1236 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1237 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1238 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1239
1240 Logxor:
1241 X Y Result Method:
1242
1243 + + + (map digit:logxor X Y)
1244 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1245 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1246 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1247
1248 Logtest:
1249 X Y Result
1250
1251 + + (any digit:logand X Y)
1252 + - (any digit:logand X (lognot (+ -1 Y)))
1253 - + (any digit:logand (lognot (+ -1 X)) Y)
1254 - - #t
1255
1256*/
1257
78d3deb1
AW
1258SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
1259 (SCM x, SCM y, SCM rest),
1260 "Return the bitwise AND of the integer arguments.\n\n"
1261 "@lisp\n"
1262 "(logand) @result{} -1\n"
1263 "(logand 7) @result{} 7\n"
1264 "(logand #b111 #b011 #b001) @result{} 1\n"
1265 "@end lisp")
1266#define FUNC_NAME s_scm_i_logand
1267{
1268 while (!scm_is_null (rest))
1269 { x = scm_logand (x, y);
1270 y = scm_car (rest);
1271 rest = scm_cdr (rest);
1272 }
1273 return scm_logand (x, y);
1274}
1275#undef FUNC_NAME
1276
1277#define s_scm_logand s_scm_i_logand
1278
1279SCM scm_logand (SCM n1, SCM n2)
1bbd0b84 1280#define FUNC_NAME s_scm_logand
0f2d19dd 1281{
9a00c9fc
DH
1282 long int nn1;
1283
0aacf84e
MD
1284 if (SCM_UNBNDP (n2))
1285 {
1286 if (SCM_UNBNDP (n1))
d956fa6f 1287 return SCM_I_MAKINUM (-1);
0aacf84e
MD
1288 else if (!SCM_NUMBERP (n1))
1289 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1290 else if (SCM_NUMBERP (n1))
1291 return n1;
1292 else
1293 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1294 }
09fb7599 1295
e11e83f3 1296 if (SCM_I_INUMP (n1))
0aacf84e 1297 {
e11e83f3
MV
1298 nn1 = SCM_I_INUM (n1);
1299 if (SCM_I_INUMP (n2))
0aacf84e 1300 {
e11e83f3 1301 long nn2 = SCM_I_INUM (n2);
d956fa6f 1302 return SCM_I_MAKINUM (nn1 & nn2);
0aacf84e
MD
1303 }
1304 else if SCM_BIGP (n2)
1305 {
1306 intbig:
1307 if (n1 == 0)
1308 return SCM_INUM0;
1309 {
1310 SCM result_z = scm_i_mkbig ();
1311 mpz_t nn1_z;
1312 mpz_init_set_si (nn1_z, nn1);
1313 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1314 scm_remember_upto_here_1 (n2);
1315 mpz_clear (nn1_z);
1316 return scm_i_normbig (result_z);
1317 }
1318 }
1319 else
1320 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1321 }
1322 else if (SCM_BIGP (n1))
1323 {
e11e83f3 1324 if (SCM_I_INUMP (n2))
0aacf84e
MD
1325 {
1326 SCM_SWAP (n1, n2);
e11e83f3 1327 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1328 goto intbig;
1329 }
1330 else if (SCM_BIGP (n2))
1331 {
1332 SCM result_z = scm_i_mkbig ();
1333 mpz_and (SCM_I_BIG_MPZ (result_z),
1334 SCM_I_BIG_MPZ (n1),
1335 SCM_I_BIG_MPZ (n2));
1336 scm_remember_upto_here_2 (n1, n2);
1337 return scm_i_normbig (result_z);
1338 }
1339 else
1340 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1341 }
0aacf84e 1342 else
09fb7599 1343 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1344}
1bbd0b84 1345#undef FUNC_NAME
0f2d19dd 1346
09fb7599 1347
78d3deb1
AW
1348SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
1349 (SCM x, SCM y, SCM rest),
1350 "Return the bitwise OR of the integer arguments.\n\n"
1351 "@lisp\n"
1352 "(logior) @result{} 0\n"
1353 "(logior 7) @result{} 7\n"
1354 "(logior #b000 #b001 #b011) @result{} 3\n"
1355 "@end lisp")
1356#define FUNC_NAME s_scm_i_logior
1357{
1358 while (!scm_is_null (rest))
1359 { x = scm_logior (x, y);
1360 y = scm_car (rest);
1361 rest = scm_cdr (rest);
1362 }
1363 return scm_logior (x, y);
1364}
1365#undef FUNC_NAME
1366
1367#define s_scm_logior s_scm_i_logior
1368
1369SCM scm_logior (SCM n1, SCM n2)
1bbd0b84 1370#define FUNC_NAME s_scm_logior
0f2d19dd 1371{
9a00c9fc
DH
1372 long int nn1;
1373
0aacf84e
MD
1374 if (SCM_UNBNDP (n2))
1375 {
1376 if (SCM_UNBNDP (n1))
1377 return SCM_INUM0;
1378 else if (SCM_NUMBERP (n1))
1379 return n1;
1380 else
1381 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1382 }
09fb7599 1383
e11e83f3 1384 if (SCM_I_INUMP (n1))
0aacf84e 1385 {
e11e83f3
MV
1386 nn1 = SCM_I_INUM (n1);
1387 if (SCM_I_INUMP (n2))
0aacf84e 1388 {
e11e83f3 1389 long nn2 = SCM_I_INUM (n2);
d956fa6f 1390 return SCM_I_MAKINUM (nn1 | nn2);
0aacf84e
MD
1391 }
1392 else if (SCM_BIGP (n2))
1393 {
1394 intbig:
1395 if (nn1 == 0)
1396 return n2;
1397 {
1398 SCM result_z = scm_i_mkbig ();
1399 mpz_t nn1_z;
1400 mpz_init_set_si (nn1_z, nn1);
1401 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1402 scm_remember_upto_here_1 (n2);
1403 mpz_clear (nn1_z);
9806de0d 1404 return scm_i_normbig (result_z);
0aacf84e
MD
1405 }
1406 }
1407 else
1408 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1409 }
1410 else if (SCM_BIGP (n1))
1411 {
e11e83f3 1412 if (SCM_I_INUMP (n2))
0aacf84e
MD
1413 {
1414 SCM_SWAP (n1, n2);
e11e83f3 1415 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1416 goto intbig;
1417 }
1418 else if (SCM_BIGP (n2))
1419 {
1420 SCM result_z = scm_i_mkbig ();
1421 mpz_ior (SCM_I_BIG_MPZ (result_z),
1422 SCM_I_BIG_MPZ (n1),
1423 SCM_I_BIG_MPZ (n2));
1424 scm_remember_upto_here_2 (n1, n2);
9806de0d 1425 return scm_i_normbig (result_z);
0aacf84e
MD
1426 }
1427 else
1428 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1429 }
0aacf84e 1430 else
09fb7599 1431 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1432}
1bbd0b84 1433#undef FUNC_NAME
0f2d19dd 1434
09fb7599 1435
78d3deb1
AW
1436SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
1437 (SCM x, SCM y, SCM rest),
3c3db128
GH
1438 "Return the bitwise XOR of the integer arguments. A bit is\n"
1439 "set in the result if it is set in an odd number of arguments.\n"
1440 "@lisp\n"
1441 "(logxor) @result{} 0\n"
1442 "(logxor 7) @result{} 7\n"
1443 "(logxor #b000 #b001 #b011) @result{} 2\n"
1444 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1e6808ea 1445 "@end lisp")
78d3deb1
AW
1446#define FUNC_NAME s_scm_i_logxor
1447{
1448 while (!scm_is_null (rest))
1449 { x = scm_logxor (x, y);
1450 y = scm_car (rest);
1451 rest = scm_cdr (rest);
1452 }
1453 return scm_logxor (x, y);
1454}
1455#undef FUNC_NAME
1456
1457#define s_scm_logxor s_scm_i_logxor
1458
1459SCM scm_logxor (SCM n1, SCM n2)
1bbd0b84 1460#define FUNC_NAME s_scm_logxor
0f2d19dd 1461{
9a00c9fc
DH
1462 long int nn1;
1463
0aacf84e
MD
1464 if (SCM_UNBNDP (n2))
1465 {
1466 if (SCM_UNBNDP (n1))
1467 return SCM_INUM0;
1468 else if (SCM_NUMBERP (n1))
1469 return n1;
1470 else
1471 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1472 }
09fb7599 1473
e11e83f3 1474 if (SCM_I_INUMP (n1))
0aacf84e 1475 {
e11e83f3
MV
1476 nn1 = SCM_I_INUM (n1);
1477 if (SCM_I_INUMP (n2))
0aacf84e 1478 {
e11e83f3 1479 long nn2 = SCM_I_INUM (n2);
d956fa6f 1480 return SCM_I_MAKINUM (nn1 ^ nn2);
0aacf84e
MD
1481 }
1482 else if (SCM_BIGP (n2))
1483 {
1484 intbig:
1485 {
1486 SCM result_z = scm_i_mkbig ();
1487 mpz_t nn1_z;
1488 mpz_init_set_si (nn1_z, nn1);
1489 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1490 scm_remember_upto_here_1 (n2);
1491 mpz_clear (nn1_z);
1492 return scm_i_normbig (result_z);
1493 }
1494 }
1495 else
1496 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1497 }
1498 else if (SCM_BIGP (n1))
1499 {
e11e83f3 1500 if (SCM_I_INUMP (n2))
0aacf84e
MD
1501 {
1502 SCM_SWAP (n1, n2);
e11e83f3 1503 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1504 goto intbig;
1505 }
1506 else if (SCM_BIGP (n2))
1507 {
1508 SCM result_z = scm_i_mkbig ();
1509 mpz_xor (SCM_I_BIG_MPZ (result_z),
1510 SCM_I_BIG_MPZ (n1),
1511 SCM_I_BIG_MPZ (n2));
1512 scm_remember_upto_here_2 (n1, n2);
1513 return scm_i_normbig (result_z);
1514 }
1515 else
1516 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1517 }
0aacf84e 1518 else
09fb7599 1519 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1520}
1bbd0b84 1521#undef FUNC_NAME
0f2d19dd 1522
09fb7599 1523
a1ec6916 1524SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1e6808ea 1525 (SCM j, SCM k),
ba6e7231
KR
1526 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
1527 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
1528 "without actually calculating the @code{logand}, just testing\n"
1529 "for non-zero.\n"
1530 "\n"
1e6808ea 1531 "@lisp\n"
b380b885
MD
1532 "(logtest #b0100 #b1011) @result{} #f\n"
1533 "(logtest #b0100 #b0111) @result{} #t\n"
1e6808ea 1534 "@end lisp")
1bbd0b84 1535#define FUNC_NAME s_scm_logtest
0f2d19dd 1536{
1e6808ea 1537 long int nj;
9a00c9fc 1538
e11e83f3 1539 if (SCM_I_INUMP (j))
0aacf84e 1540 {
e11e83f3
MV
1541 nj = SCM_I_INUM (j);
1542 if (SCM_I_INUMP (k))
0aacf84e 1543 {
e11e83f3 1544 long nk = SCM_I_INUM (k);
73e4de09 1545 return scm_from_bool (nj & nk);
0aacf84e
MD
1546 }
1547 else if (SCM_BIGP (k))
1548 {
1549 intbig:
1550 if (nj == 0)
1551 return SCM_BOOL_F;
1552 {
1553 SCM result;
1554 mpz_t nj_z;
1555 mpz_init_set_si (nj_z, nj);
1556 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1557 scm_remember_upto_here_1 (k);
73e4de09 1558 result = scm_from_bool (mpz_sgn (nj_z) != 0);
0aacf84e
MD
1559 mpz_clear (nj_z);
1560 return result;
1561 }
1562 }
1563 else
1564 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1565 }
1566 else if (SCM_BIGP (j))
1567 {
e11e83f3 1568 if (SCM_I_INUMP (k))
0aacf84e
MD
1569 {
1570 SCM_SWAP (j, k);
e11e83f3 1571 nj = SCM_I_INUM (j);
0aacf84e
MD
1572 goto intbig;
1573 }
1574 else if (SCM_BIGP (k))
1575 {
1576 SCM result;
1577 mpz_t result_z;
1578 mpz_init (result_z);
1579 mpz_and (result_z,
1580 SCM_I_BIG_MPZ (j),
1581 SCM_I_BIG_MPZ (k));
1582 scm_remember_upto_here_2 (j, k);
73e4de09 1583 result = scm_from_bool (mpz_sgn (result_z) != 0);
0aacf84e
MD
1584 mpz_clear (result_z);
1585 return result;
1586 }
1587 else
1588 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1589 }
1590 else
1591 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
0f2d19dd 1592}
1bbd0b84 1593#undef FUNC_NAME
0f2d19dd 1594
c1bfcf60 1595
a1ec6916 1596SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
2cd04b42 1597 (SCM index, SCM j),
ba6e7231
KR
1598 "Test whether bit number @var{index} in @var{j} is set.\n"
1599 "@var{index} starts from 0 for the least significant bit.\n"
1600 "\n"
1e6808ea 1601 "@lisp\n"
b380b885
MD
1602 "(logbit? 0 #b1101) @result{} #t\n"
1603 "(logbit? 1 #b1101) @result{} #f\n"
1604 "(logbit? 2 #b1101) @result{} #t\n"
1605 "(logbit? 3 #b1101) @result{} #t\n"
1606 "(logbit? 4 #b1101) @result{} #f\n"
1e6808ea 1607 "@end lisp")
1bbd0b84 1608#define FUNC_NAME s_scm_logbit_p
0f2d19dd 1609{
78166ad5 1610 unsigned long int iindex;
5efd3c7d 1611 iindex = scm_to_ulong (index);
78166ad5 1612
e11e83f3 1613 if (SCM_I_INUMP (j))
0d75f6d8
KR
1614 {
1615 /* bits above what's in an inum follow the sign bit */
20fcc8ed 1616 iindex = min (iindex, SCM_LONG_BIT - 1);
e11e83f3 1617 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
0d75f6d8 1618 }
0aacf84e
MD
1619 else if (SCM_BIGP (j))
1620 {
1621 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1622 scm_remember_upto_here_1 (j);
73e4de09 1623 return scm_from_bool (val);
0aacf84e
MD
1624 }
1625 else
78166ad5 1626 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
0f2d19dd 1627}
1bbd0b84 1628#undef FUNC_NAME
0f2d19dd 1629
78166ad5 1630
a1ec6916 1631SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1bbd0b84 1632 (SCM n),
4d814788 1633 "Return the integer which is the ones-complement of the integer\n"
1e6808ea
MG
1634 "argument.\n"
1635 "\n"
b380b885
MD
1636 "@lisp\n"
1637 "(number->string (lognot #b10000000) 2)\n"
1638 " @result{} \"-10000001\"\n"
1639 "(number->string (lognot #b0) 2)\n"
1640 " @result{} \"-1\"\n"
1e6808ea 1641 "@end lisp")
1bbd0b84 1642#define FUNC_NAME s_scm_lognot
0f2d19dd 1643{
e11e83f3 1644 if (SCM_I_INUMP (n)) {
f9811f9f
KR
1645 /* No overflow here, just need to toggle all the bits making up the inum.
1646 Enhancement: No need to strip the tag and add it back, could just xor
1647 a block of 1 bits, if that worked with the various debug versions of
1648 the SCM typedef. */
e11e83f3 1649 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
f9811f9f
KR
1650
1651 } else if (SCM_BIGP (n)) {
1652 SCM result = scm_i_mkbig ();
1653 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1654 scm_remember_upto_here_1 (n);
1655 return result;
1656
1657 } else {
1658 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1659 }
0f2d19dd 1660}
1bbd0b84 1661#undef FUNC_NAME
0f2d19dd 1662
518b7508
KR
1663/* returns 0 if IN is not an integer. OUT must already be
1664 initialized. */
1665static int
1666coerce_to_big (SCM in, mpz_t out)
1667{
1668 if (SCM_BIGP (in))
1669 mpz_set (out, SCM_I_BIG_MPZ (in));
e11e83f3
MV
1670 else if (SCM_I_INUMP (in))
1671 mpz_set_si (out, SCM_I_INUM (in));
518b7508
KR
1672 else
1673 return 0;
1674
1675 return 1;
1676}
1677
d885e204 1678SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
518b7508
KR
1679 (SCM n, SCM k, SCM m),
1680 "Return @var{n} raised to the integer exponent\n"
1681 "@var{k}, modulo @var{m}.\n"
1682 "\n"
1683 "@lisp\n"
1684 "(modulo-expt 2 3 5)\n"
1685 " @result{} 3\n"
1686 "@end lisp")
d885e204 1687#define FUNC_NAME s_scm_modulo_expt
518b7508
KR
1688{
1689 mpz_t n_tmp;
1690 mpz_t k_tmp;
1691 mpz_t m_tmp;
1692
1693 /* There are two classes of error we might encounter --
1694 1) Math errors, which we'll report by calling scm_num_overflow,
1695 and
1696 2) wrong-type errors, which of course we'll report by calling
1697 SCM_WRONG_TYPE_ARG.
1698 We don't report those errors immediately, however; instead we do
1699 some cleanup first. These variables tell us which error (if
1700 any) we should report after cleaning up.
1701 */
1702 int report_overflow = 0;
1703
1704 int position_of_wrong_type = 0;
1705 SCM value_of_wrong_type = SCM_INUM0;
1706
1707 SCM result = SCM_UNDEFINED;
1708
1709 mpz_init (n_tmp);
1710 mpz_init (k_tmp);
1711 mpz_init (m_tmp);
1712
bc36d050 1713 if (scm_is_eq (m, SCM_INUM0))
518b7508
KR
1714 {
1715 report_overflow = 1;
1716 goto cleanup;
1717 }
1718
1719 if (!coerce_to_big (n, n_tmp))
1720 {
1721 value_of_wrong_type = n;
1722 position_of_wrong_type = 1;
1723 goto cleanup;
1724 }
1725
1726 if (!coerce_to_big (k, k_tmp))
1727 {
1728 value_of_wrong_type = k;
1729 position_of_wrong_type = 2;
1730 goto cleanup;
1731 }
1732
1733 if (!coerce_to_big (m, m_tmp))
1734 {
1735 value_of_wrong_type = m;
1736 position_of_wrong_type = 3;
1737 goto cleanup;
1738 }
1739
1740 /* if the exponent K is negative, and we simply call mpz_powm, we
1741 will get a divide-by-zero exception when an inverse 1/n mod m
1742 doesn't exist (or is not unique). Since exceptions are hard to
1743 handle, we'll attempt the inversion "by hand" -- that way, we get
1744 a simple failure code, which is easy to handle. */
1745
1746 if (-1 == mpz_sgn (k_tmp))
1747 {
1748 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1749 {
1750 report_overflow = 1;
1751 goto cleanup;
1752 }
1753 mpz_neg (k_tmp, k_tmp);
1754 }
1755
1756 result = scm_i_mkbig ();
1757 mpz_powm (SCM_I_BIG_MPZ (result),
1758 n_tmp,
1759 k_tmp,
1760 m_tmp);
b7b8c575
KR
1761
1762 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1763 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1764
518b7508
KR
1765 cleanup:
1766 mpz_clear (m_tmp);
1767 mpz_clear (k_tmp);
1768 mpz_clear (n_tmp);
1769
1770 if (report_overflow)
1771 scm_num_overflow (FUNC_NAME);
1772
1773 if (position_of_wrong_type)
1774 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1775 value_of_wrong_type);
1776
1777 return scm_i_normbig (result);
1778}
1779#undef FUNC_NAME
1780
a1ec6916 1781SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
2cd04b42 1782 (SCM n, SCM k),
ba6e7231
KR
1783 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
1784 "exact integer, @var{n} can be any number.\n"
1785 "\n"
1786 "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
1787 "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
1788 "includes @math{0^0} is 1.\n"
1e6808ea 1789 "\n"
b380b885 1790 "@lisp\n"
ba6e7231
KR
1791 "(integer-expt 2 5) @result{} 32\n"
1792 "(integer-expt -3 3) @result{} -27\n"
1793 "(integer-expt 5 -3) @result{} 1/125\n"
1794 "(integer-expt 0 0) @result{} 1\n"
b380b885 1795 "@end lisp")
1bbd0b84 1796#define FUNC_NAME s_scm_integer_expt
0f2d19dd 1797{
1c35cb19
RB
1798 long i2 = 0;
1799 SCM z_i2 = SCM_BOOL_F;
1800 int i2_is_big = 0;
d956fa6f 1801 SCM acc = SCM_I_MAKINUM (1L);
ca46fb90 1802
d57ed702 1803 /* 0^0 == 1 according to R5RS */
bc36d050 1804 if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
73e4de09 1805 return scm_is_false (scm_zero_p(k)) ? n : acc;
bc36d050 1806 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
73e4de09 1807 return scm_is_false (scm_even_p (k)) ? n : acc;
ca46fb90 1808
e11e83f3
MV
1809 if (SCM_I_INUMP (k))
1810 i2 = SCM_I_INUM (k);
ca46fb90
RB
1811 else if (SCM_BIGP (k))
1812 {
1813 z_i2 = scm_i_clonebig (k, 1);
ca46fb90
RB
1814 scm_remember_upto_here_1 (k);
1815 i2_is_big = 1;
1816 }
2830fd91 1817 else
ca46fb90
RB
1818 SCM_WRONG_TYPE_ARG (2, k);
1819
1820 if (i2_is_big)
f872b822 1821 {
ca46fb90
RB
1822 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1823 {
1824 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1825 n = scm_divide (n, SCM_UNDEFINED);
1826 }
1827 while (1)
1828 {
1829 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1830 {
ca46fb90
RB
1831 return acc;
1832 }
1833 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1834 {
ca46fb90
RB
1835 return scm_product (acc, n);
1836 }
1837 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1838 acc = scm_product (acc, n);
1839 n = scm_product (n, n);
1840 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1841 }
f872b822 1842 }
ca46fb90 1843 else
f872b822 1844 {
ca46fb90
RB
1845 if (i2 < 0)
1846 {
1847 i2 = -i2;
1848 n = scm_divide (n, SCM_UNDEFINED);
1849 }
1850 while (1)
1851 {
1852 if (0 == i2)
1853 return acc;
1854 if (1 == i2)
1855 return scm_product (acc, n);
1856 if (i2 & 1)
1857 acc = scm_product (acc, n);
1858 n = scm_product (n, n);
1859 i2 >>= 1;
1860 }
f872b822 1861 }
0f2d19dd 1862}
1bbd0b84 1863#undef FUNC_NAME
0f2d19dd 1864
a1ec6916 1865SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1bbd0b84 1866 (SCM n, SCM cnt),
32f19569
KR
1867 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1868 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1e6808ea 1869 "\n"
e7644cb2 1870 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
32f19569
KR
1871 "@var{cnt} is negative it's a division, rounded towards negative\n"
1872 "infinity. (Note that this is not the same rounding as\n"
1873 "@code{quotient} does.)\n"
1874 "\n"
1875 "With @var{n} viewed as an infinite precision twos complement,\n"
1876 "@code{ash} means a left shift introducing zero bits, or a right\n"
1877 "shift dropping bits.\n"
1e6808ea 1878 "\n"
b380b885 1879 "@lisp\n"
1e6808ea
MG
1880 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1881 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
32f19569
KR
1882 "\n"
1883 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1884 "(ash -23 -2) @result{} -6\n"
a3c8b9fc 1885 "@end lisp")
1bbd0b84 1886#define FUNC_NAME s_scm_ash
0f2d19dd 1887{
3ab9f56e 1888 long bits_to_shift;
5efd3c7d 1889 bits_to_shift = scm_to_long (cnt);
ca46fb90 1890
788aca27
KR
1891 if (SCM_I_INUMP (n))
1892 {
1893 long nn = SCM_I_INUM (n);
1894
1895 if (bits_to_shift > 0)
1896 {
1897 /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
1898 overflow a non-zero fixnum. For smaller shifts we check the
1899 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
1900 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
1901 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
1902 bits_to_shift)". */
1903
1904 if (nn == 0)
1905 return n;
1906
1907 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
1908 && ((unsigned long)
1909 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
1910 <= 1))
1911 {
1912 return SCM_I_MAKINUM (nn << bits_to_shift);
1913 }
1914 else
1915 {
1916 SCM result = scm_i_long2big (nn);
1917 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1918 bits_to_shift);
1919 return result;
1920 }
1921 }
1922 else
1923 {
1924 bits_to_shift = -bits_to_shift;
1925 if (bits_to_shift >= SCM_LONG_BIT)
1926 return (nn >= 0 ? SCM_I_MAKINUM (0) : SCM_I_MAKINUM(-1));
1927 else
1928 return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
1929 }
1930
1931 }
1932 else if (SCM_BIGP (n))
ca46fb90 1933 {
788aca27
KR
1934 SCM result;
1935
1936 if (bits_to_shift == 0)
1937 return n;
1938
1939 result = scm_i_mkbig ();
1940 if (bits_to_shift >= 0)
1941 {
1942 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1943 bits_to_shift);
1944 return result;
1945 }
ca46fb90 1946 else
788aca27
KR
1947 {
1948 /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
1949 we have to allocate a bignum even if the result is going to be a
1950 fixnum. */
1951 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1952 -bits_to_shift);
1953 return scm_i_normbig (result);
1954 }
1955
ca46fb90
RB
1956 }
1957 else
788aca27
KR
1958 {
1959 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1960 }
0f2d19dd 1961}
1bbd0b84 1962#undef FUNC_NAME
0f2d19dd 1963
3c9f20f8 1964
a1ec6916 1965SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1bbd0b84 1966 (SCM n, SCM start, SCM end),
1e6808ea
MG
1967 "Return the integer composed of the @var{start} (inclusive)\n"
1968 "through @var{end} (exclusive) bits of @var{n}. The\n"
1969 "@var{start}th bit becomes the 0-th bit in the result.\n"
1970 "\n"
b380b885
MD
1971 "@lisp\n"
1972 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1973 " @result{} \"1010\"\n"
1974 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1975 " @result{} \"10110\"\n"
1976 "@end lisp")
1bbd0b84 1977#define FUNC_NAME s_scm_bit_extract
0f2d19dd 1978{
7f848242 1979 unsigned long int istart, iend, bits;
5efd3c7d
MV
1980 istart = scm_to_ulong (start);
1981 iend = scm_to_ulong (end);
c1bfcf60 1982 SCM_ASSERT_RANGE (3, end, (iend >= istart));
78166ad5 1983
7f848242
KR
1984 /* how many bits to keep */
1985 bits = iend - istart;
1986
e11e83f3 1987 if (SCM_I_INUMP (n))
0aacf84e 1988 {
e11e83f3 1989 long int in = SCM_I_INUM (n);
7f848242
KR
1990
1991 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
d77ad560 1992 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
857ae6af 1993 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
ac0c002c 1994
0aacf84e
MD
1995 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
1996 {
1997 /* Since we emulate two's complement encoded numbers, this
1998 * special case requires us to produce a result that has
7f848242 1999 * more bits than can be stored in a fixnum.
0aacf84e 2000 */
7f848242
KR
2001 SCM result = scm_i_long2big (in);
2002 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
2003 bits);
2004 return result;
0aacf84e 2005 }
ac0c002c 2006
7f848242 2007 /* mask down to requisite bits */
857ae6af 2008 bits = min (bits, SCM_I_FIXNUM_BIT);
d956fa6f 2009 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
0aacf84e
MD
2010 }
2011 else if (SCM_BIGP (n))
ac0c002c 2012 {
7f848242
KR
2013 SCM result;
2014 if (bits == 1)
2015 {
d956fa6f 2016 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
7f848242
KR
2017 }
2018 else
2019 {
2020 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
2021 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
2022 such bits into a ulong. */
2023 result = scm_i_mkbig ();
2024 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
2025 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
2026 result = scm_i_normbig (result);
2027 }
2028 scm_remember_upto_here_1 (n);
2029 return result;
ac0c002c 2030 }
0aacf84e 2031 else
78166ad5 2032 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 2033}
1bbd0b84 2034#undef FUNC_NAME
0f2d19dd 2035
7f848242 2036
e4755e5c
JB
2037static const char scm_logtab[] = {
2038 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
2039};
1cc91f1b 2040
a1ec6916 2041SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1bbd0b84 2042 (SCM n),
1e6808ea
MG
2043 "Return the number of bits in integer @var{n}. If integer is\n"
2044 "positive, the 1-bits in its binary representation are counted.\n"
2045 "If negative, the 0-bits in its two's-complement binary\n"
2046 "representation are counted. If 0, 0 is returned.\n"
2047 "\n"
b380b885
MD
2048 "@lisp\n"
2049 "(logcount #b10101010)\n"
ca46fb90
RB
2050 " @result{} 4\n"
2051 "(logcount 0)\n"
2052 " @result{} 0\n"
2053 "(logcount -2)\n"
2054 " @result{} 1\n"
2055 "@end lisp")
2056#define FUNC_NAME s_scm_logcount
2057{
e11e83f3 2058 if (SCM_I_INUMP (n))
f872b822 2059 {
ca46fb90 2060 unsigned long int c = 0;
e11e83f3 2061 long int nn = SCM_I_INUM (n);
ca46fb90
RB
2062 if (nn < 0)
2063 nn = -1 - nn;
2064 while (nn)
2065 {
2066 c += scm_logtab[15 & nn];
2067 nn >>= 4;
2068 }
d956fa6f 2069 return SCM_I_MAKINUM (c);
f872b822 2070 }
ca46fb90 2071 else if (SCM_BIGP (n))
f872b822 2072 {
ca46fb90 2073 unsigned long count;
713a4259
KR
2074 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
2075 count = mpz_popcount (SCM_I_BIG_MPZ (n));
ca46fb90 2076 else
713a4259
KR
2077 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
2078 scm_remember_upto_here_1 (n);
d956fa6f 2079 return SCM_I_MAKINUM (count);
f872b822 2080 }
ca46fb90
RB
2081 else
2082 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 2083}
ca46fb90 2084#undef FUNC_NAME
0f2d19dd
JB
2085
2086
ca46fb90
RB
2087static const char scm_ilentab[] = {
2088 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
2089};
2090
0f2d19dd 2091
ca46fb90
RB
2092SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
2093 (SCM n),
2094 "Return the number of bits necessary to represent @var{n}.\n"
2095 "\n"
2096 "@lisp\n"
2097 "(integer-length #b10101010)\n"
2098 " @result{} 8\n"
2099 "(integer-length 0)\n"
2100 " @result{} 0\n"
2101 "(integer-length #b1111)\n"
2102 " @result{} 4\n"
2103 "@end lisp")
2104#define FUNC_NAME s_scm_integer_length
2105{
e11e83f3 2106 if (SCM_I_INUMP (n))
0aacf84e
MD
2107 {
2108 unsigned long int c = 0;
2109 unsigned int l = 4;
e11e83f3 2110 long int nn = SCM_I_INUM (n);
0aacf84e
MD
2111 if (nn < 0)
2112 nn = -1 - nn;
2113 while (nn)
2114 {
2115 c += 4;
2116 l = scm_ilentab [15 & nn];
2117 nn >>= 4;
2118 }
d956fa6f 2119 return SCM_I_MAKINUM (c - 4 + l);
0aacf84e
MD
2120 }
2121 else if (SCM_BIGP (n))
2122 {
2123 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
2124 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
2125 1 too big, so check for that and adjust. */
2126 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
2127 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
2128 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
2129 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
2130 size--;
2131 scm_remember_upto_here_1 (n);
d956fa6f 2132 return SCM_I_MAKINUM (size);
0aacf84e
MD
2133 }
2134 else
ca46fb90 2135 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
ca46fb90
RB
2136}
2137#undef FUNC_NAME
0f2d19dd
JB
2138
2139/*** NUMBERS -> STRINGS ***/
0b799eea
MV
2140#define SCM_MAX_DBL_PREC 60
2141#define SCM_MAX_DBL_RADIX 36
2142
2143/* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
2144static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
2145static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
2146
2147static
2148void init_dblprec(int *prec, int radix) {
2149 /* determine floating point precision by adding successively
2150 smaller increments to 1.0 until it is considered == 1.0 */
2151 double f = ((double)1.0)/radix;
2152 double fsum = 1.0 + f;
2153
2154 *prec = 0;
2155 while (fsum != 1.0)
2156 {
2157 if (++(*prec) > SCM_MAX_DBL_PREC)
2158 fsum = 1.0;
2159 else
2160 {
2161 f /= radix;
2162 fsum = f + 1.0;
2163 }
2164 }
2165 (*prec) -= 1;
2166}
2167
2168static
2169void init_fx_radix(double *fx_list, int radix)
2170{
2171 /* initialize a per-radix list of tolerances. When added
2172 to a number < 1.0, we can determine if we should raund
2173 up and quit converting a number to a string. */
2174 int i;
2175 fx_list[0] = 0.0;
2176 fx_list[1] = 0.5;
2177 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2178 fx_list[i] = (fx_list[i-1] / radix);
2179}
2180
2181/* use this array as a way to generate a single digit */
2182static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
0f2d19dd 2183
1be6b49c 2184static size_t
0b799eea 2185idbl2str (double f, char *a, int radix)
0f2d19dd 2186{
0b799eea
MV
2187 int efmt, dpt, d, i, wp;
2188 double *fx;
2189#ifdef DBL_MIN_10_EXP
2190 double f_cpy;
2191 int exp_cpy;
2192#endif /* DBL_MIN_10_EXP */
2193 size_t ch = 0;
2194 int exp = 0;
2195
2196 if(radix < 2 ||
2197 radix > SCM_MAX_DBL_RADIX)
2198 {
2199 /* revert to existing behavior */
2200 radix = 10;
2201 }
2202
2203 wp = scm_dblprec[radix-2];
2204 fx = fx_per_radix[radix-2];
0f2d19dd 2205
f872b822 2206 if (f == 0.0)
abb7e44d
MV
2207 {
2208#ifdef HAVE_COPYSIGN
2209 double sgn = copysign (1.0, f);
2210
2211 if (sgn < 0.0)
2212 a[ch++] = '-';
2213#endif
abb7e44d
MV
2214 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2215 }
7351e207
MV
2216
2217 if (xisinf (f))
2218 {
2219 if (f < 0)
2220 strcpy (a, "-inf.0");
2221 else
2222 strcpy (a, "+inf.0");
2223 return ch+6;
2224 }
2225 else if (xisnan (f))
2226 {
2227 strcpy (a, "+nan.0");
2228 return ch+6;
2229 }
2230
f872b822
MD
2231 if (f < 0.0)
2232 {
2233 f = -f;
2234 a[ch++] = '-';
2235 }
7351e207 2236
f872b822
MD
2237#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2238 make-uniform-vector, from causing infinite loops. */
0b799eea
MV
2239 /* just do the checking...if it passes, we do the conversion for our
2240 radix again below */
2241 f_cpy = f;
2242 exp_cpy = exp;
2243
2244 while (f_cpy < 1.0)
f872b822 2245 {
0b799eea
MV
2246 f_cpy *= 10.0;
2247 if (exp_cpy-- < DBL_MIN_10_EXP)
7351e207
MV
2248 {
2249 a[ch++] = '#';
2250 a[ch++] = '.';
2251 a[ch++] = '#';
2252 return ch;
2253 }
f872b822 2254 }
0b799eea 2255 while (f_cpy > 10.0)
f872b822 2256 {
0b799eea
MV
2257 f_cpy *= 0.10;
2258 if (exp_cpy++ > DBL_MAX_10_EXP)
7351e207
MV
2259 {
2260 a[ch++] = '#';
2261 a[ch++] = '.';
2262 a[ch++] = '#';
2263 return ch;
2264 }
f872b822 2265 }
0b799eea
MV
2266#endif
2267
f872b822
MD
2268 while (f < 1.0)
2269 {
0b799eea 2270 f *= radix;
f872b822
MD
2271 exp--;
2272 }
0b799eea 2273 while (f > radix)
f872b822 2274 {
0b799eea 2275 f /= radix;
f872b822
MD
2276 exp++;
2277 }
0b799eea
MV
2278
2279 if (f + fx[wp] >= radix)
f872b822
MD
2280 {
2281 f = 1.0;
2282 exp++;
2283 }
0f2d19dd 2284 zero:
0b799eea
MV
2285#ifdef ENGNOT
2286 /* adding 9999 makes this equivalent to abs(x) % 3 */
f872b822 2287 dpt = (exp + 9999) % 3;
0f2d19dd
JB
2288 exp -= dpt++;
2289 efmt = 1;
f872b822
MD
2290#else
2291 efmt = (exp < -3) || (exp > wp + 2);
0f2d19dd 2292 if (!efmt)
cda139a7
MD
2293 {
2294 if (exp < 0)
2295 {
2296 a[ch++] = '0';
2297 a[ch++] = '.';
2298 dpt = exp;
f872b822
MD
2299 while (++dpt)
2300 a[ch++] = '0';
cda139a7
MD
2301 }
2302 else
f872b822 2303 dpt = exp + 1;
cda139a7 2304 }
0f2d19dd
JB
2305 else
2306 dpt = 1;
f872b822
MD
2307#endif
2308
2309 do
2310 {
2311 d = f;
2312 f -= d;
0b799eea 2313 a[ch++] = number_chars[d];
f872b822
MD
2314 if (f < fx[wp])
2315 break;
2316 if (f + fx[wp] >= 1.0)
2317 {
0b799eea 2318 a[ch - 1] = number_chars[d+1];
f872b822
MD
2319 break;
2320 }
0b799eea 2321 f *= radix;
f872b822
MD
2322 if (!(--dpt))
2323 a[ch++] = '.';
0f2d19dd 2324 }
f872b822 2325 while (wp--);
0f2d19dd
JB
2326
2327 if (dpt > 0)
cda139a7 2328 {
f872b822 2329#ifndef ENGNOT
cda139a7
MD
2330 if ((dpt > 4) && (exp > 6))
2331 {
f872b822 2332 d = (a[0] == '-' ? 2 : 1);
cda139a7 2333 for (i = ch++; i > d; i--)
f872b822 2334 a[i] = a[i - 1];
cda139a7
MD
2335 a[d] = '.';
2336 efmt = 1;
2337 }
2338 else
f872b822 2339#endif
cda139a7 2340 {
f872b822
MD
2341 while (--dpt)
2342 a[ch++] = '0';
cda139a7
MD
2343 a[ch++] = '.';
2344 }
2345 }
f872b822
MD
2346 if (a[ch - 1] == '.')
2347 a[ch++] = '0'; /* trailing zero */
2348 if (efmt && exp)
2349 {
2350 a[ch++] = 'e';
2351 if (exp < 0)
2352 {
2353 exp = -exp;
2354 a[ch++] = '-';
2355 }
0b799eea
MV
2356 for (i = radix; i <= exp; i *= radix);
2357 for (i /= radix; i; i /= radix)
f872b822 2358 {
0b799eea 2359 a[ch++] = number_chars[exp / i];
f872b822
MD
2360 exp %= i;
2361 }
0f2d19dd 2362 }
0f2d19dd
JB
2363 return ch;
2364}
2365
7a1aba42
MV
2366
2367static size_t
2368icmplx2str (double real, double imag, char *str, int radix)
2369{
2370 size_t i;
2371
2372 i = idbl2str (real, str, radix);
2373 if (imag != 0.0)
2374 {
2375 /* Don't output a '+' for negative numbers or for Inf and
2376 NaN. They will provide their own sign. */
2377 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
2378 str[i++] = '+';
2379 i += idbl2str (imag, &str[i], radix);
2380 str[i++] = 'i';
2381 }
2382 return i;
2383}
2384
1be6b49c 2385static size_t
0b799eea 2386iflo2str (SCM flt, char *str, int radix)
0f2d19dd 2387{
1be6b49c 2388 size_t i;
3c9a524f 2389 if (SCM_REALP (flt))
0b799eea 2390 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
0f2d19dd 2391 else
7a1aba42
MV
2392 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
2393 str, radix);
0f2d19dd
JB
2394 return i;
2395}
0f2d19dd 2396
2881e77b 2397/* convert a scm_t_intmax to a string (unterminated). returns the number of
1bbd0b84
GB
2398 characters in the result.
2399 rad is output base
2400 p is destination: worst case (base 2) is SCM_INTBUFLEN */
1be6b49c 2401size_t
2881e77b
MV
2402scm_iint2str (scm_t_intmax num, int rad, char *p)
2403{
2404 if (num < 0)
2405 {
2406 *p++ = '-';
2407 return scm_iuint2str (-num, rad, p) + 1;
2408 }
2409 else
2410 return scm_iuint2str (num, rad, p);
2411}
2412
2413/* convert a scm_t_intmax to a string (unterminated). returns the number of
2414 characters in the result.
2415 rad is output base
2416 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2417size_t
2418scm_iuint2str (scm_t_uintmax num, int rad, char *p)
0f2d19dd 2419{
1be6b49c
ML
2420 size_t j = 1;
2421 size_t i;
2881e77b 2422 scm_t_uintmax n = num;
5c11cc9d 2423
f872b822 2424 for (n /= rad; n > 0; n /= rad)
5c11cc9d
GH
2425 j++;
2426
2427 i = j;
2881e77b 2428 n = num;
f872b822
MD
2429 while (i--)
2430 {
5c11cc9d
GH
2431 int d = n % rad;
2432
f872b822
MD
2433 n /= rad;
2434 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2435 }
0f2d19dd
JB
2436 return j;
2437}
2438
a1ec6916 2439SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
bb628794
DH
2440 (SCM n, SCM radix),
2441 "Return a string holding the external representation of the\n"
942e5b91
MG
2442 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2443 "inexact, a radix of 10 will be used.")
1bbd0b84 2444#define FUNC_NAME s_scm_number_to_string
0f2d19dd 2445{
1bbd0b84 2446 int base;
98cb6e75 2447
0aacf84e 2448 if (SCM_UNBNDP (radix))
98cb6e75 2449 base = 10;
0aacf84e 2450 else
5efd3c7d 2451 base = scm_to_signed_integer (radix, 2, 36);
98cb6e75 2452
e11e83f3 2453 if (SCM_I_INUMP (n))
0aacf84e
MD
2454 {
2455 char num_buf [SCM_INTBUFLEN];
e11e83f3 2456 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
cc95e00a 2457 return scm_from_locale_stringn (num_buf, length);
0aacf84e
MD
2458 }
2459 else if (SCM_BIGP (n))
2460 {
2461 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2462 scm_remember_upto_here_1 (n);
cc95e00a 2463 return scm_take_locale_string (str);
0aacf84e 2464 }
f92e85f7
MV
2465 else if (SCM_FRACTIONP (n))
2466 {
f92e85f7 2467 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
cc95e00a 2468 scm_from_locale_string ("/"),
f92e85f7
MV
2469 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2470 }
0aacf84e
MD
2471 else if (SCM_INEXACTP (n))
2472 {
2473 char num_buf [FLOBUFLEN];
cc95e00a 2474 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
0aacf84e
MD
2475 }
2476 else
bb628794 2477 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 2478}
1bbd0b84 2479#undef FUNC_NAME
0f2d19dd
JB
2480
2481
ca46fb90
RB
2482/* These print routines used to be stubbed here so that scm_repl.c
2483 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
1cc91f1b 2484
0f2d19dd 2485int
e81d98ec 2486scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2487{
56e55ac7 2488 char num_buf[FLOBUFLEN];
0b799eea 2489 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
0f2d19dd
JB
2490 return !0;
2491}
2492
b479fe9a
MV
2493void
2494scm_i_print_double (double val, SCM port)
2495{
2496 char num_buf[FLOBUFLEN];
2497 scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
2498}
2499
f3ae5d60 2500int
e81d98ec 2501scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
f92e85f7 2502
f3ae5d60 2503{
56e55ac7 2504 char num_buf[FLOBUFLEN];
0b799eea 2505 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
f3ae5d60
MD
2506 return !0;
2507}
1cc91f1b 2508
7a1aba42
MV
2509void
2510scm_i_print_complex (double real, double imag, SCM port)
2511{
2512 char num_buf[FLOBUFLEN];
2513 scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
2514}
2515
f92e85f7
MV
2516int
2517scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2518{
2519 SCM str;
f92e85f7 2520 str = scm_number_to_string (sexp, SCM_UNDEFINED);
3f47e526 2521 scm_lfwrite_str (str, port);
f92e85f7
MV
2522 scm_remember_upto_here_1 (str);
2523 return !0;
2524}
2525
0f2d19dd 2526int
e81d98ec 2527scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2528{
ca46fb90
RB
2529 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2530 scm_remember_upto_here_1 (exp);
2531 scm_lfwrite (str, (size_t) strlen (str), port);
2532 free (str);
0f2d19dd
JB
2533 return !0;
2534}
2535/*** END nums->strs ***/
2536
3c9a524f 2537
0f2d19dd 2538/*** STRINGS -> NUMBERS ***/
2a8fecee 2539
3c9a524f
DH
2540/* The following functions implement the conversion from strings to numbers.
2541 * The implementation somehow follows the grammar for numbers as it is given
2542 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2543 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2544 * points should be noted about the implementation:
2545 * * Each function keeps a local index variable 'idx' that points at the
2546 * current position within the parsed string. The global index is only
2547 * updated if the function could parse the corresponding syntactic unit
2548 * successfully.
2549 * * Similarly, the functions keep track of indicators of inexactness ('#',
2550 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2551 * global exactness information is only updated after each part has been
2552 * successfully parsed.
2553 * * Sequences of digits are parsed into temporary variables holding fixnums.
2554 * Only if these fixnums would overflow, the result variables are updated
2555 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2556 * the temporary variables holding the fixnums are cleared, and the process
2557 * starts over again. If for example fixnums were able to store five decimal
2558 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2559 * and the result was computed as 12345 * 100000 + 67890. In other words,
2560 * only every five digits two bignum operations were performed.
2561 */
2562
2563enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2564
2565/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2566
2567/* In non ASCII-style encodings the following macro might not work. */
3f47e526
MG
2568#define XDIGIT2UINT(d) \
2569 (uc_is_property_decimal_digit ((int) (unsigned char) d) \
2570 ? (d) - '0' \
cdf8f9e6 2571 : uc_tolower ((int) (unsigned char) d) - 'a' + 10)
3c9a524f 2572
2a8fecee 2573static SCM
3f47e526 2574mem2uinteger (SCM mem, unsigned int *p_idx,
3c9a524f 2575 unsigned int radix, enum t_exactness *p_exactness)
2a8fecee 2576{
3c9a524f
DH
2577 unsigned int idx = *p_idx;
2578 unsigned int hash_seen = 0;
2579 scm_t_bits shift = 1;
2580 scm_t_bits add = 0;
2581 unsigned int digit_value;
2582 SCM result;
2583 char c;
3f47e526 2584 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2585
2586 if (idx == len)
2587 return SCM_BOOL_F;
2a8fecee 2588
3f47e526
MG
2589 c = scm_i_string_ref (mem, idx);
2590 if (!uc_is_property_ascii_hex_digit ((scm_t_uint32) c))
3c9a524f
DH
2591 return SCM_BOOL_F;
2592 digit_value = XDIGIT2UINT (c);
2593 if (digit_value >= radix)
2594 return SCM_BOOL_F;
2595
2596 idx++;
d956fa6f 2597 result = SCM_I_MAKINUM (digit_value);
3c9a524f 2598 while (idx != len)
f872b822 2599 {
3f47e526
MG
2600 scm_t_wchar c = scm_i_string_ref (mem, idx);
2601 if (uc_is_property_ascii_hex_digit ((scm_t_uint32) c))
f872b822 2602 {
3c9a524f 2603 if (hash_seen)
1fe5e088 2604 break;
3c9a524f
DH
2605 digit_value = XDIGIT2UINT (c);
2606 if (digit_value >= radix)
1fe5e088 2607 break;
f872b822 2608 }
3c9a524f
DH
2609 else if (c == '#')
2610 {
2611 hash_seen = 1;
2612 digit_value = 0;
2613 }
2614 else
2615 break;
2616
2617 idx++;
2618 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2619 {
d956fa6f 2620 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2621 if (add > 0)
d956fa6f 2622 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2623
2624 shift = radix;
2625 add = digit_value;
2626 }
2627 else
2628 {
2629 shift = shift * radix;
2630 add = add * radix + digit_value;
2631 }
2632 };
2633
2634 if (shift > 1)
d956fa6f 2635 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2636 if (add > 0)
d956fa6f 2637 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2638
2639 *p_idx = idx;
2640 if (hash_seen)
2641 *p_exactness = INEXACT;
2642
2643 return result;
2a8fecee
JB
2644}
2645
2646
3c9a524f
DH
2647/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2648 * covers the parts of the rules that start at a potential point. The value
2649 * of the digits up to the point have been parsed by the caller and are given
79d34f68
DH
2650 * in variable result. The content of *p_exactness indicates, whether a hash
2651 * has already been seen in the digits before the point.
3c9a524f 2652 */
1cc91f1b 2653
3f47e526 2654#define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
3c9a524f
DH
2655
2656static SCM
3f47e526 2657mem2decimal_from_point (SCM result, SCM mem,
3c9a524f 2658 unsigned int *p_idx, enum t_exactness *p_exactness)
0f2d19dd 2659{
3c9a524f
DH
2660 unsigned int idx = *p_idx;
2661 enum t_exactness x = *p_exactness;
3f47e526 2662 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2663
2664 if (idx == len)
79d34f68 2665 return result;
3c9a524f 2666
3f47e526 2667 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
2668 {
2669 scm_t_bits shift = 1;
2670 scm_t_bits add = 0;
2671 unsigned int digit_value;
d956fa6f 2672 SCM big_shift = SCM_I_MAKINUM (1);
3c9a524f
DH
2673
2674 idx++;
2675 while (idx != len)
2676 {
3f47e526
MG
2677 scm_t_wchar c = scm_i_string_ref (mem, idx);
2678 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2679 {
2680 if (x == INEXACT)
2681 return SCM_BOOL_F;
2682 else
2683 digit_value = DIGIT2UINT (c);
2684 }
2685 else if (c == '#')
2686 {
2687 x = INEXACT;
2688 digit_value = 0;
2689 }
2690 else
2691 break;
2692
2693 idx++;
2694 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2695 {
d956fa6f
MV
2696 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2697 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2698 if (add > 0)
d956fa6f 2699 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2700
2701 shift = 10;
2702 add = digit_value;
2703 }
2704 else
2705 {
2706 shift = shift * 10;
2707 add = add * 10 + digit_value;
2708 }
2709 };
2710
2711 if (add > 0)
2712 {
d956fa6f
MV
2713 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2714 result = scm_product (result, SCM_I_MAKINUM (shift));
2715 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2716 }
2717
d8592269 2718 result = scm_divide (result, big_shift);
79d34f68 2719
3c9a524f
DH
2720 /* We've seen a decimal point, thus the value is implicitly inexact. */
2721 x = INEXACT;
f872b822 2722 }
3c9a524f 2723
3c9a524f 2724 if (idx != len)
f872b822 2725 {
3c9a524f
DH
2726 int sign = 1;
2727 unsigned int start;
3f47e526 2728 scm_t_wchar c;
3c9a524f
DH
2729 int exponent;
2730 SCM e;
2731
2732 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2733
3f47e526 2734 switch (scm_i_string_ref (mem, idx))
f872b822 2735 {
3c9a524f
DH
2736 case 'd': case 'D':
2737 case 'e': case 'E':
2738 case 'f': case 'F':
2739 case 'l': case 'L':
2740 case 's': case 'S':
2741 idx++;
ee0ddd21
AW
2742 if (idx == len)
2743 return SCM_BOOL_F;
2744
3c9a524f 2745 start = idx;
3f47e526 2746 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2747 if (c == '-')
2748 {
2749 idx++;
ee0ddd21
AW
2750 if (idx == len)
2751 return SCM_BOOL_F;
2752
3c9a524f 2753 sign = -1;
3f47e526 2754 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2755 }
2756 else if (c == '+')
2757 {
2758 idx++;
ee0ddd21
AW
2759 if (idx == len)
2760 return SCM_BOOL_F;
2761
3c9a524f 2762 sign = 1;
3f47e526 2763 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2764 }
2765 else
2766 sign = 1;
2767
3f47e526 2768 if (!uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2769 return SCM_BOOL_F;
2770
2771 idx++;
2772 exponent = DIGIT2UINT (c);
2773 while (idx != len)
f872b822 2774 {
3f47e526
MG
2775 scm_t_wchar c = scm_i_string_ref (mem, idx);
2776 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
3c9a524f
DH
2777 {
2778 idx++;
2779 if (exponent <= SCM_MAXEXP)
2780 exponent = exponent * 10 + DIGIT2UINT (c);
2781 }
2782 else
2783 break;
f872b822 2784 }
3c9a524f
DH
2785
2786 if (exponent > SCM_MAXEXP)
f872b822 2787 {
3c9a524f 2788 size_t exp_len = idx - start;
3f47e526 2789 SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
3c9a524f
DH
2790 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2791 scm_out_of_range ("string->number", exp_num);
f872b822 2792 }
3c9a524f 2793
d956fa6f 2794 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
3c9a524f
DH
2795 if (sign == 1)
2796 result = scm_product (result, e);
2797 else
f92e85f7 2798 result = scm_divide2real (result, e);
3c9a524f
DH
2799
2800 /* We've seen an exponent, thus the value is implicitly inexact. */
2801 x = INEXACT;
2802
f872b822 2803 break;
3c9a524f 2804
f872b822 2805 default:
3c9a524f 2806 break;
f872b822 2807 }
0f2d19dd 2808 }
3c9a524f
DH
2809
2810 *p_idx = idx;
2811 if (x == INEXACT)
2812 *p_exactness = x;
2813
2814 return result;
0f2d19dd 2815}
0f2d19dd 2816
3c9a524f
DH
2817
2818/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2819
2820static SCM
3f47e526 2821mem2ureal (SCM mem, unsigned int *p_idx,
3c9a524f 2822 unsigned int radix, enum t_exactness *p_exactness)
0f2d19dd 2823{
3c9a524f 2824 unsigned int idx = *p_idx;
164d2481 2825 SCM result;
3f47e526 2826 size_t len = scm_i_string_length (mem);
3c9a524f 2827
40f89215
NJ
2828 /* Start off believing that the number will be exact. This changes
2829 to INEXACT if we see a decimal point or a hash. */
2830 enum t_exactness x = EXACT;
2831
3c9a524f
DH
2832 if (idx == len)
2833 return SCM_BOOL_F;
2834
3f47e526 2835 if (idx+5 <= len && !scm_i_string_strcmp (mem, idx, "inf.0"))
7351e207
MV
2836 {
2837 *p_idx = idx+5;
2838 return scm_inf ();
2839 }
2840
3f47e526 2841 if (idx+4 < len && !scm_i_string_strcmp (mem, idx, "nan."))
7351e207 2842 {
d8592269
MV
2843 /* Cobble up the fractional part. We might want to set the
2844 NaN's mantissa from it. */
7351e207 2845 idx += 4;
3f47e526 2846 mem2uinteger (mem, &idx, 10, &x);
7351e207
MV
2847 *p_idx = idx;
2848 return scm_nan ();
2849 }
2850
3f47e526 2851 if (scm_i_string_ref (mem, idx) == '.')
3c9a524f
DH
2852 {
2853 if (radix != 10)
2854 return SCM_BOOL_F;
2855 else if (idx + 1 == len)
2856 return SCM_BOOL_F;
3f47e526 2857 else if (!uc_is_property_decimal_digit ((scm_t_uint32) scm_i_string_ref (mem, idx+1)))
3c9a524f
DH
2858 return SCM_BOOL_F;
2859 else
3f47e526 2860 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem,
40f89215 2861 p_idx, &x);
f872b822 2862 }
3c9a524f
DH
2863 else
2864 {
3c9a524f 2865 SCM uinteger;
3c9a524f 2866
3f47e526 2867 uinteger = mem2uinteger (mem, &idx, radix, &x);
73e4de09 2868 if (scm_is_false (uinteger))
3c9a524f
DH
2869 return SCM_BOOL_F;
2870
2871 if (idx == len)
2872 result = uinteger;
3f47e526 2873 else if (scm_i_string_ref (mem, idx) == '/')
f872b822 2874 {
3c9a524f
DH
2875 SCM divisor;
2876
2877 idx++;
ee0ddd21
AW
2878 if (idx == len)
2879 return SCM_BOOL_F;
3c9a524f 2880
3f47e526 2881 divisor = mem2uinteger (mem, &idx, radix, &x);
73e4de09 2882 if (scm_is_false (divisor))
3c9a524f
DH
2883 return SCM_BOOL_F;
2884
f92e85f7 2885 /* both are int/big here, I assume */
cba42c93 2886 result = scm_i_make_ratio (uinteger, divisor);
f872b822 2887 }
3c9a524f
DH
2888 else if (radix == 10)
2889 {
3f47e526 2890 result = mem2decimal_from_point (uinteger, mem, &idx, &x);
73e4de09 2891 if (scm_is_false (result))
3c9a524f
DH
2892 return SCM_BOOL_F;
2893 }
2894 else
2895 result = uinteger;
2896
2897 *p_idx = idx;
f872b822 2898 }
164d2481 2899
40f89215
NJ
2900 /* Update *p_exactness if the number just read was inexact. This is
2901 important for complex numbers, so that a complex number is
2902 treated as inexact overall if either its real or imaginary part
2903 is inexact.
2904 */
2905 if (x == INEXACT)
2906 *p_exactness = x;
2907
164d2481
MV
2908 /* When returning an inexact zero, make sure it is represented as a
2909 floating point value so that we can change its sign.
2910 */
bc36d050 2911 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
55f26379 2912 result = scm_from_double (0.0);
164d2481
MV
2913
2914 return result;
3c9a524f 2915}
0f2d19dd 2916
0f2d19dd 2917
3c9a524f 2918/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
0f2d19dd 2919
3c9a524f 2920static SCM
3f47e526 2921mem2complex (SCM mem, unsigned int idx,
3c9a524f
DH
2922 unsigned int radix, enum t_exactness *p_exactness)
2923{
3f47e526 2924 scm_t_wchar c;
3c9a524f
DH
2925 int sign = 0;
2926 SCM ureal;
3f47e526 2927 size_t len = scm_i_string_length (mem);
3c9a524f
DH
2928
2929 if (idx == len)
2930 return SCM_BOOL_F;
2931
3f47e526 2932 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
2933 if (c == '+')
2934 {
2935 idx++;
2936 sign = 1;
2937 }
2938 else if (c == '-')
2939 {
2940 idx++;
2941 sign = -1;
0f2d19dd 2942 }
0f2d19dd 2943
3c9a524f
DH
2944 if (idx == len)
2945 return SCM_BOOL_F;
2946
3f47e526 2947 ureal = mem2ureal (mem, &idx, radix, p_exactness);
73e4de09 2948 if (scm_is_false (ureal))
f872b822 2949 {
3c9a524f
DH
2950 /* input must be either +i or -i */
2951
2952 if (sign == 0)
2953 return SCM_BOOL_F;
2954
3f47e526
MG
2955 if (scm_i_string_ref (mem, idx) == 'i'
2956 || scm_i_string_ref (mem, idx) == 'I')
f872b822 2957 {
3c9a524f
DH
2958 idx++;
2959 if (idx != len)
2960 return SCM_BOOL_F;
2961
d956fa6f 2962 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
f872b822 2963 }
3c9a524f
DH
2964 else
2965 return SCM_BOOL_F;
0f2d19dd 2966 }
3c9a524f
DH
2967 else
2968 {
73e4de09 2969 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f 2970 ureal = scm_difference (ureal, SCM_UNDEFINED);
f872b822 2971
3c9a524f
DH
2972 if (idx == len)
2973 return ureal;
2974
3f47e526 2975 c = scm_i_string_ref (mem, idx);
3c9a524f 2976 switch (c)
f872b822 2977 {
3c9a524f
DH
2978 case 'i': case 'I':
2979 /* either +<ureal>i or -<ureal>i */
2980
2981 idx++;
2982 if (sign == 0)
2983 return SCM_BOOL_F;
2984 if (idx != len)
2985 return SCM_BOOL_F;
d956fa6f 2986 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
3c9a524f
DH
2987
2988 case '@':
2989 /* polar input: <real>@<real>. */
2990
2991 idx++;
2992 if (idx == len)
2993 return SCM_BOOL_F;
2994 else
f872b822 2995 {
3c9a524f
DH
2996 int sign;
2997 SCM angle;
2998 SCM result;
2999
3f47e526 3000 c = scm_i_string_ref (mem, idx);
3c9a524f
DH
3001 if (c == '+')
3002 {
3003 idx++;
ee0ddd21
AW
3004 if (idx == len)
3005 return SCM_BOOL_F;
3c9a524f
DH
3006 sign = 1;
3007 }
3008 else if (c == '-')
3009 {
3010 idx++;
ee0ddd21
AW
3011 if (idx == len)
3012 return SCM_BOOL_F;
3c9a524f
DH
3013 sign = -1;
3014 }
3015 else
3016 sign = 1;
3017
3f47e526 3018 angle = mem2ureal (mem, &idx, radix, p_exactness);
73e4de09 3019 if (scm_is_false (angle))
3c9a524f
DH
3020 return SCM_BOOL_F;
3021 if (idx != len)
3022 return SCM_BOOL_F;
3023
73e4de09 3024 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f
DH
3025 angle = scm_difference (angle, SCM_UNDEFINED);
3026
3027 result = scm_make_polar (ureal, angle);
3028 return result;
f872b822 3029 }
3c9a524f
DH
3030 case '+':
3031 case '-':
3032 /* expecting input matching <real>[+-]<ureal>?i */
0f2d19dd 3033
3c9a524f
DH
3034 idx++;
3035 if (idx == len)
3036 return SCM_BOOL_F;
3037 else
3038 {
3039 int sign = (c == '+') ? 1 : -1;
3f47e526 3040 SCM imag = mem2ureal (mem, &idx, radix, p_exactness);
0f2d19dd 3041
73e4de09 3042 if (scm_is_false (imag))
d956fa6f 3043 imag = SCM_I_MAKINUM (sign);
73e4de09 3044 else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
1fe5e088 3045 imag = scm_difference (imag, SCM_UNDEFINED);
0f2d19dd 3046
3c9a524f
DH
3047 if (idx == len)
3048 return SCM_BOOL_F;
3f47e526
MG
3049 if (scm_i_string_ref (mem, idx) != 'i'
3050 && scm_i_string_ref (mem, idx) != 'I')
3c9a524f 3051 return SCM_BOOL_F;
0f2d19dd 3052
3c9a524f
DH
3053 idx++;
3054 if (idx != len)
3055 return SCM_BOOL_F;
0f2d19dd 3056
1fe5e088 3057 return scm_make_rectangular (ureal, imag);
3c9a524f
DH
3058 }
3059 default:
3060 return SCM_BOOL_F;
3061 }
3062 }
0f2d19dd 3063}
0f2d19dd
JB
3064
3065
3c9a524f
DH
3066/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
3067
3068enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
1cc91f1b 3069
0f2d19dd 3070SCM
3f47e526 3071scm_i_string_to_number (SCM mem, unsigned int default_radix)
0f2d19dd 3072{
3c9a524f
DH
3073 unsigned int idx = 0;
3074 unsigned int radix = NO_RADIX;
3075 enum t_exactness forced_x = NO_EXACTNESS;
3076 enum t_exactness implicit_x = EXACT;
3077 SCM result;
3f47e526 3078 size_t len = scm_i_string_length (mem);
3c9a524f
DH
3079
3080 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
3f47e526 3081 while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
3c9a524f 3082 {
3f47e526 3083 switch (scm_i_string_ref (mem, idx + 1))
3c9a524f
DH
3084 {
3085 case 'b': case 'B':
3086 if (radix != NO_RADIX)
3087 return SCM_BOOL_F;
3088 radix = DUAL;
3089 break;
3090 case 'd': case 'D':
3091 if (radix != NO_RADIX)
3092 return SCM_BOOL_F;
3093 radix = DEC;
3094 break;
3095 case 'i': case 'I':
3096 if (forced_x != NO_EXACTNESS)
3097 return SCM_BOOL_F;
3098 forced_x = INEXACT;
3099 break;
3100 case 'e': case 'E':
3101 if (forced_x != NO_EXACTNESS)
3102 return SCM_BOOL_F;
3103 forced_x = EXACT;
3104 break;
3105 case 'o': case 'O':
3106 if (radix != NO_RADIX)
3107 return SCM_BOOL_F;
3108 radix = OCT;
3109 break;
3110 case 'x': case 'X':
3111 if (radix != NO_RADIX)
3112 return SCM_BOOL_F;
3113 radix = HEX;
3114 break;
3115 default:
f872b822 3116 return SCM_BOOL_F;
3c9a524f
DH
3117 }
3118 idx += 2;
3119 }
3120
3121 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
3122 if (radix == NO_RADIX)
3f47e526 3123 result = mem2complex (mem, idx, default_radix, &implicit_x);
3c9a524f 3124 else
3f47e526 3125 result = mem2complex (mem, idx, (unsigned int) radix, &implicit_x);
3c9a524f 3126
73e4de09 3127 if (scm_is_false (result))
3c9a524f 3128 return SCM_BOOL_F;
f872b822 3129
3c9a524f 3130 switch (forced_x)
f872b822 3131 {
3c9a524f
DH
3132 case EXACT:
3133 if (SCM_INEXACTP (result))
3c9a524f
DH
3134 return scm_inexact_to_exact (result);
3135 else
3136 return result;
3137 case INEXACT:
3138 if (SCM_INEXACTP (result))
3139 return result;
3140 else
3141 return scm_exact_to_inexact (result);
3142 case NO_EXACTNESS:
3143 default:
3144 if (implicit_x == INEXACT)
3145 {
3146 if (SCM_INEXACTP (result))
3147 return result;
3148 else
3149 return scm_exact_to_inexact (result);
3150 }
3151 else
3152 return result;
f872b822 3153 }
0f2d19dd
JB
3154}
3155
3f47e526
MG
3156SCM
3157scm_c_locale_stringn_to_number (const char* mem, size_t len,
3158 unsigned int default_radix)
3159{
3160 SCM str = scm_from_locale_stringn (mem, len);
3161
3162 return scm_i_string_to_number (str, default_radix);
3163}
3164
0f2d19dd 3165
a1ec6916 3166SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
bb628794 3167 (SCM string, SCM radix),
1e6808ea 3168 "Return a number of the maximally precise representation\n"
942e5b91 3169 "expressed by the given @var{string}. @var{radix} must be an\n"
5352393c
MG
3170 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
3171 "is a default radix that may be overridden by an explicit radix\n"
3172 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
3173 "supplied, then the default radix is 10. If string is not a\n"
3174 "syntactically valid notation for a number, then\n"
3175 "@code{string->number} returns @code{#f}.")
1bbd0b84 3176#define FUNC_NAME s_scm_string_to_number
0f2d19dd
JB
3177{
3178 SCM answer;
5efd3c7d 3179 unsigned int base;
a6d9e5ab 3180 SCM_VALIDATE_STRING (1, string);
5efd3c7d
MV
3181
3182 if (SCM_UNBNDP (radix))
3183 base = 10;
3184 else
3185 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
3186
3f47e526 3187 answer = scm_i_string_to_number (string, base);
8824ac88
MV
3188 scm_remember_upto_here_1 (string);
3189 return answer;
0f2d19dd 3190}
1bbd0b84 3191#undef FUNC_NAME
3c9a524f
DH
3192
3193
0f2d19dd
JB
3194/*** END strs->nums ***/
3195
5986c47d 3196
0f2d19dd 3197SCM
1bbd0b84 3198scm_bigequal (SCM x, SCM y)
0f2d19dd 3199{
47ae1f0e 3200 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
ca46fb90 3201 scm_remember_upto_here_2 (x, y);
73e4de09 3202 return scm_from_bool (0 == result);
0f2d19dd
JB
3203}
3204
0f2d19dd 3205SCM
f3ae5d60 3206scm_real_equalp (SCM x, SCM y)
0f2d19dd 3207{
73e4de09 3208 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0f2d19dd
JB
3209}
3210
f3ae5d60
MD
3211SCM
3212scm_complex_equalp (SCM x, SCM y)
3213{
73e4de09 3214 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
f3ae5d60
MD
3215 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3216}
0f2d19dd 3217
f92e85f7
MV
3218SCM
3219scm_i_fraction_equalp (SCM x, SCM y)
3220{
73e4de09 3221 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
02164269 3222 SCM_FRACTION_NUMERATOR (y)))
73e4de09 3223 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
02164269
MV
3224 SCM_FRACTION_DENOMINATOR (y))))
3225 return SCM_BOOL_F;
3226 else
3227 return SCM_BOOL_T;
f92e85f7 3228}
0f2d19dd
JB
3229
3230
8507ec80
MV
3231SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3232 (SCM x),
3233 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3234 "otherwise.")
3235#define FUNC_NAME s_scm_number_p
3236{
3237 return scm_from_bool (SCM_NUMBERP (x));
3238}
3239#undef FUNC_NAME
3240
3241SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
1bbd0b84 3242 (SCM x),
942e5b91 3243 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
bb2c02f2 3244 "otherwise. Note that the sets of real, rational and integer\n"
942e5b91
MG
3245 "values form subsets of the set of complex numbers, i. e. the\n"
3246 "predicate will also be fulfilled if @var{x} is a real,\n"
3247 "rational or integer number.")
8507ec80 3248#define FUNC_NAME s_scm_complex_p
0f2d19dd 3249{
8507ec80
MV
3250 /* all numbers are complex. */
3251 return scm_number_p (x);
0f2d19dd 3252}
1bbd0b84 3253#undef FUNC_NAME
0f2d19dd 3254
f92e85f7
MV
3255SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3256 (SCM x),
3257 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3258 "otherwise. Note that the set of integer values forms a subset of\n"
3259 "the set of real numbers, i. e. the predicate will also be\n"
3260 "fulfilled if @var{x} is an integer number.")
3261#define FUNC_NAME s_scm_real_p
3262{
3263 /* we can't represent irrational numbers. */
3264 return scm_rational_p (x);
3265}
3266#undef FUNC_NAME
3267
3268SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
1bbd0b84 3269 (SCM x),
942e5b91 3270 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
bb2c02f2 3271 "otherwise. Note that the set of integer values forms a subset of\n"
942e5b91 3272 "the set of rational numbers, i. e. the predicate will also be\n"
f92e85f7
MV
3273 "fulfilled if @var{x} is an integer number.")
3274#define FUNC_NAME s_scm_rational_p
0f2d19dd 3275{
e11e83f3 3276 if (SCM_I_INUMP (x))
0f2d19dd 3277 return SCM_BOOL_T;
0aacf84e 3278 else if (SCM_IMP (x))
0f2d19dd 3279 return SCM_BOOL_F;
0aacf84e 3280 else if (SCM_BIGP (x))
0f2d19dd 3281 return SCM_BOOL_T;
f92e85f7
MV
3282 else if (SCM_FRACTIONP (x))
3283 return SCM_BOOL_T;
3284 else if (SCM_REALP (x))
3285 /* due to their limited precision, all floating point numbers are
3286 rational as well. */
3287 return SCM_BOOL_T;
0aacf84e 3288 else
bb628794 3289 return SCM_BOOL_F;
0f2d19dd 3290}
1bbd0b84 3291#undef FUNC_NAME
0f2d19dd 3292
a1ec6916 3293SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
1bbd0b84 3294 (SCM x),
942e5b91
MG
3295 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3296 "else.")
1bbd0b84 3297#define FUNC_NAME s_scm_integer_p
0f2d19dd
JB
3298{
3299 double r;
e11e83f3 3300 if (SCM_I_INUMP (x))
f872b822
MD
3301 return SCM_BOOL_T;
3302 if (SCM_IMP (x))
3303 return SCM_BOOL_F;
f872b822
MD
3304 if (SCM_BIGP (x))
3305 return SCM_BOOL_T;
3c9a524f 3306 if (!SCM_INEXACTP (x))
f872b822 3307 return SCM_BOOL_F;
3c9a524f 3308 if (SCM_COMPLEXP (x))
f872b822 3309 return SCM_BOOL_F;
5986c47d 3310 r = SCM_REAL_VALUE (x);
1e35a229 3311 /* +/-inf passes r==floor(r), making those #t */
f872b822
MD
3312 if (r == floor (r))
3313 return SCM_BOOL_T;
0f2d19dd
JB
3314 return SCM_BOOL_F;
3315}
1bbd0b84 3316#undef FUNC_NAME
0f2d19dd
JB
3317
3318
a1ec6916 3319SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
1bbd0b84 3320 (SCM x),
942e5b91
MG
3321 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3322 "else.")
1bbd0b84 3323#define FUNC_NAME s_scm_inexact_p
0f2d19dd 3324{
eb927cb9
MV
3325 if (SCM_INEXACTP (x))
3326 return SCM_BOOL_T;
3327 if (SCM_NUMBERP (x))
3328 return SCM_BOOL_F;
3329 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 3330}
1bbd0b84 3331#undef FUNC_NAME
0f2d19dd
JB
3332
3333
8a1f4f98
AW
3334SCM scm_i_num_eq_p (SCM, SCM, SCM);
3335SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1,
3336 (SCM x, SCM y, SCM rest),
3337 "Return @code{#t} if all parameters are numerically equal.")
3338#define FUNC_NAME s_scm_i_num_eq_p
3339{
3340 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3341 return SCM_BOOL_T;
3342 while (!scm_is_null (rest))
3343 {
3344 if (scm_is_false (scm_num_eq_p (x, y)))
3345 return SCM_BOOL_F;
3346 x = y;
3347 y = scm_car (rest);
3348 rest = scm_cdr (rest);
3349 }
3350 return scm_num_eq_p (x, y);
3351}
3352#undef FUNC_NAME
0f2d19dd 3353SCM
6e8d25a6 3354scm_num_eq_p (SCM x, SCM y)
0f2d19dd 3355{
d8b95e27 3356 again:
e11e83f3 3357 if (SCM_I_INUMP (x))
0aacf84e 3358 {
e11e83f3
MV
3359 long xx = SCM_I_INUM (x);
3360 if (SCM_I_INUMP (y))
0aacf84e 3361 {
e11e83f3 3362 long yy = SCM_I_INUM (y);
73e4de09 3363 return scm_from_bool (xx == yy);
0aacf84e
MD
3364 }
3365 else if (SCM_BIGP (y))
3366 return SCM_BOOL_F;
3367 else if (SCM_REALP (y))
e8c5b1f2
KR
3368 {
3369 /* On a 32-bit system an inum fits a double, we can cast the inum
3370 to a double and compare.
3371
3372 But on a 64-bit system an inum is bigger than a double and
3373 casting it to a double (call that dxx) will round. dxx is at
3374 worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
3375 an integer and fits a long. So we cast yy to a long and
3376 compare with plain xx.
3377
3378 An alternative (for any size system actually) would be to check
3379 yy is an integer (with floor) and is in range of an inum
3380 (compare against appropriate powers of 2) then test
3381 xx==(long)yy. It's just a matter of which casts/comparisons
3382 might be fastest or easiest for the cpu. */
3383
3384 double yy = SCM_REAL_VALUE (y);
3a1b45fd
MV
3385 return scm_from_bool ((double) xx == yy
3386 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3387 || xx == (long) yy));
e8c5b1f2 3388 }
0aacf84e 3389 else if (SCM_COMPLEXP (y))
73e4de09 3390 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
0aacf84e 3391 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7
MV
3392 else if (SCM_FRACTIONP (y))
3393 return SCM_BOOL_F;
0aacf84e 3394 else
8a1f4f98 3395 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f872b822 3396 }
0aacf84e
MD
3397 else if (SCM_BIGP (x))
3398 {
e11e83f3 3399 if (SCM_I_INUMP (y))
0aacf84e
MD
3400 return SCM_BOOL_F;
3401 else if (SCM_BIGP (y))
3402 {
3403 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3404 scm_remember_upto_here_2 (x, y);
73e4de09 3405 return scm_from_bool (0 == cmp);
0aacf84e
MD
3406 }
3407 else if (SCM_REALP (y))
3408 {
3409 int cmp;
3410 if (xisnan (SCM_REAL_VALUE (y)))
3411 return SCM_BOOL_F;
3412 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3413 scm_remember_upto_here_1 (x);
73e4de09 3414 return scm_from_bool (0 == cmp);
0aacf84e
MD
3415 }
3416 else if (SCM_COMPLEXP (y))
3417 {
3418 int cmp;
3419 if (0.0 != SCM_COMPLEX_IMAG (y))
3420 return SCM_BOOL_F;
3421 if (xisnan (SCM_COMPLEX_REAL (y)))
3422 return SCM_BOOL_F;
3423 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3424 scm_remember_upto_here_1 (x);
73e4de09 3425 return scm_from_bool (0 == cmp);
0aacf84e 3426 }
f92e85f7
MV
3427 else if (SCM_FRACTIONP (y))
3428 return SCM_BOOL_F;
0aacf84e 3429 else
8a1f4f98 3430 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f4c627b3 3431 }
0aacf84e
MD
3432 else if (SCM_REALP (x))
3433 {
e8c5b1f2 3434 double xx = SCM_REAL_VALUE (x);
e11e83f3 3435 if (SCM_I_INUMP (y))
e8c5b1f2
KR
3436 {
3437 /* see comments with inum/real above */
3438 long yy = SCM_I_INUM (y);
3a1b45fd
MV
3439 return scm_from_bool (xx == (double) yy
3440 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3441 || (long) xx == yy));
e8c5b1f2 3442 }
0aacf84e
MD
3443 else if (SCM_BIGP (y))
3444 {
3445 int cmp;
3446 if (xisnan (SCM_REAL_VALUE (x)))
3447 return SCM_BOOL_F;
3448 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3449 scm_remember_upto_here_1 (y);
73e4de09 3450 return scm_from_bool (0 == cmp);
0aacf84e
MD
3451 }
3452 else if (SCM_REALP (y))
73e4de09 3453 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0aacf84e 3454 else if (SCM_COMPLEXP (y))
73e4de09 3455 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3456 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7 3457 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3458 {
3459 double xx = SCM_REAL_VALUE (x);
3460 if (xisnan (xx))
3461 return SCM_BOOL_F;
3462 if (xisinf (xx))
73e4de09 3463 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3464 x = scm_inexact_to_exact (x); /* with x as frac or int */
3465 goto again;
3466 }
0aacf84e 3467 else
8a1f4f98 3468 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f872b822 3469 }
0aacf84e
MD
3470 else if (SCM_COMPLEXP (x))
3471 {
e11e83f3
MV
3472 if (SCM_I_INUMP (y))
3473 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
0aacf84e
MD
3474 && (SCM_COMPLEX_IMAG (x) == 0.0));
3475 else if (SCM_BIGP (y))
3476 {
3477 int cmp;
3478 if (0.0 != SCM_COMPLEX_IMAG (x))
3479 return SCM_BOOL_F;
3480 if (xisnan (SCM_COMPLEX_REAL (x)))
3481 return SCM_BOOL_F;
3482 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3483 scm_remember_upto_here_1 (y);
73e4de09 3484 return scm_from_bool (0 == cmp);
0aacf84e
MD
3485 }
3486 else if (SCM_REALP (y))
73e4de09 3487 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
0aacf84e
MD
3488 && (SCM_COMPLEX_IMAG (x) == 0.0));
3489 else if (SCM_COMPLEXP (y))
73e4de09 3490 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3491 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
f92e85f7 3492 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3493 {
3494 double xx;
3495 if (SCM_COMPLEX_IMAG (x) != 0.0)
3496 return SCM_BOOL_F;
3497 xx = SCM_COMPLEX_REAL (x);
3498 if (xisnan (xx))
3499 return SCM_BOOL_F;
3500 if (xisinf (xx))
73e4de09 3501 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3502 x = scm_inexact_to_exact (x); /* with x as frac or int */
3503 goto again;
3504 }
f92e85f7 3505 else
8a1f4f98 3506 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f92e85f7
MV
3507 }
3508 else if (SCM_FRACTIONP (x))
3509 {
e11e83f3 3510 if (SCM_I_INUMP (y))
f92e85f7
MV
3511 return SCM_BOOL_F;
3512 else if (SCM_BIGP (y))
3513 return SCM_BOOL_F;
3514 else if (SCM_REALP (y))
d8b95e27
KR
3515 {
3516 double yy = SCM_REAL_VALUE (y);
3517 if (xisnan (yy))
3518 return SCM_BOOL_F;
3519 if (xisinf (yy))
73e4de09 3520 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3521 y = scm_inexact_to_exact (y); /* with y as frac or int */
3522 goto again;
3523 }
f92e85f7 3524 else if (SCM_COMPLEXP (y))
d8b95e27
KR
3525 {
3526 double yy;
3527 if (SCM_COMPLEX_IMAG (y) != 0.0)
3528 return SCM_BOOL_F;
3529 yy = SCM_COMPLEX_REAL (y);
3530 if (xisnan (yy))
3531 return SCM_BOOL_F;
3532 if (xisinf (yy))
73e4de09 3533 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3534 y = scm_inexact_to_exact (y); /* with y as frac or int */
3535 goto again;
3536 }
f92e85f7
MV
3537 else if (SCM_FRACTIONP (y))
3538 return scm_i_fraction_equalp (x, y);
0aacf84e 3539 else
8a1f4f98 3540 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
f4c627b3 3541 }
0aacf84e 3542 else
8a1f4f98 3543 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1, s_scm_i_num_eq_p);
0f2d19dd
JB
3544}
3545
3546
a5f0b599
KR
3547/* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3548 done are good for inums, but for bignums an answer can almost always be
3549 had by just examining a few high bits of the operands, as done by GMP in
3550 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3551 of the float exponent to take into account. */
3552
8a1f4f98
AW
3553SCM scm_i_num_less_p (SCM, SCM, SCM);
3554SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1,
3555 (SCM x, SCM y, SCM rest),
3556 "Return @code{#t} if the list of parameters is monotonically\n"
3557 "increasing.")
3558#define FUNC_NAME s_scm_i_num_less_p
3559{
3560 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3561 return SCM_BOOL_T;
3562 while (!scm_is_null (rest))
3563 {
3564 if (scm_is_false (scm_less_p (x, y)))
3565 return SCM_BOOL_F;
3566 x = y;
3567 y = scm_car (rest);
3568 rest = scm_cdr (rest);
3569 }
3570 return scm_less_p (x, y);
3571}
3572#undef FUNC_NAME
0f2d19dd 3573SCM
6e8d25a6 3574scm_less_p (SCM x, SCM y)
0f2d19dd 3575{
a5f0b599 3576 again:
e11e83f3 3577 if (SCM_I_INUMP (x))
0aacf84e 3578 {
e11e83f3
MV
3579 long xx = SCM_I_INUM (x);
3580 if (SCM_I_INUMP (y))
0aacf84e 3581 {
e11e83f3 3582 long yy = SCM_I_INUM (y);
73e4de09 3583 return scm_from_bool (xx < yy);
0aacf84e
MD
3584 }
3585 else if (SCM_BIGP (y))
3586 {
3587 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3588 scm_remember_upto_here_1 (y);
73e4de09 3589 return scm_from_bool (sgn > 0);
0aacf84e
MD
3590 }
3591 else if (SCM_REALP (y))
73e4de09 3592 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
f92e85f7 3593 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3594 {
3595 /* "x < a/b" becomes "x*b < a" */
3596 int_frac:
3597 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3598 y = SCM_FRACTION_NUMERATOR (y);
3599 goto again;
3600 }
0aacf84e 3601 else
8a1f4f98 3602 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f872b822 3603 }
0aacf84e
MD
3604 else if (SCM_BIGP (x))
3605 {
e11e83f3 3606 if (SCM_I_INUMP (y))
0aacf84e
MD
3607 {
3608 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3609 scm_remember_upto_here_1 (x);
73e4de09 3610 return scm_from_bool (sgn < 0);
0aacf84e
MD
3611 }
3612 else if (SCM_BIGP (y))
3613 {
3614 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3615 scm_remember_upto_here_2 (x, y);
73e4de09 3616 return scm_from_bool (cmp < 0);
0aacf84e
MD
3617 }
3618 else if (SCM_REALP (y))
3619 {
3620 int cmp;
3621 if (xisnan (SCM_REAL_VALUE (y)))
3622 return SCM_BOOL_F;
3623 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3624 scm_remember_upto_here_1 (x);
73e4de09 3625 return scm_from_bool (cmp < 0);
0aacf84e 3626 }
f92e85f7 3627 else if (SCM_FRACTIONP (y))
a5f0b599 3628 goto int_frac;
0aacf84e 3629 else
8a1f4f98 3630 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f4c627b3 3631 }
0aacf84e
MD
3632 else if (SCM_REALP (x))
3633 {
e11e83f3
MV
3634 if (SCM_I_INUMP (y))
3635 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
0aacf84e
MD
3636 else if (SCM_BIGP (y))
3637 {
3638 int cmp;
3639 if (xisnan (SCM_REAL_VALUE (x)))
3640 return SCM_BOOL_F;
3641 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3642 scm_remember_upto_here_1 (y);
73e4de09 3643 return scm_from_bool (cmp > 0);
0aacf84e
MD
3644 }
3645 else if (SCM_REALP (y))
73e4de09 3646 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
f92e85f7 3647 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3648 {
3649 double xx = SCM_REAL_VALUE (x);
3650 if (xisnan (xx))
3651 return SCM_BOOL_F;
3652 if (xisinf (xx))
73e4de09 3653 return scm_from_bool (xx < 0.0);
a5f0b599
KR
3654 x = scm_inexact_to_exact (x); /* with x as frac or int */
3655 goto again;
3656 }
f92e85f7 3657 else
8a1f4f98 3658 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f92e85f7
MV
3659 }
3660 else if (SCM_FRACTIONP (x))
3661 {
e11e83f3 3662 if (SCM_I_INUMP (y) || SCM_BIGP (y))
a5f0b599
KR
3663 {
3664 /* "a/b < y" becomes "a < y*b" */
3665 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3666 x = SCM_FRACTION_NUMERATOR (x);
3667 goto again;
3668 }
f92e85f7 3669 else if (SCM_REALP (y))
a5f0b599
KR
3670 {
3671 double yy = SCM_REAL_VALUE (y);
3672 if (xisnan (yy))
3673 return SCM_BOOL_F;
3674 if (xisinf (yy))
73e4de09 3675 return scm_from_bool (0.0 < yy);
a5f0b599
KR
3676 y = scm_inexact_to_exact (y); /* with y as frac or int */
3677 goto again;
3678 }
f92e85f7 3679 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3680 {
3681 /* "a/b < c/d" becomes "a*d < c*b" */
3682 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3683 SCM_FRACTION_DENOMINATOR (y));
3684 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3685 SCM_FRACTION_DENOMINATOR (x));
3686 x = new_x;
3687 y = new_y;
3688 goto again;
3689 }
0aacf84e 3690 else
8a1f4f98 3691 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
f872b822 3692 }
0aacf84e 3693 else
8a1f4f98 3694 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARG1, s_scm_i_num_less_p);
0f2d19dd
JB
3695}
3696
3697
8a1f4f98
AW
3698SCM scm_i_num_gr_p (SCM, SCM, SCM);
3699SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1,
3700 (SCM x, SCM y, SCM rest),
3701 "Return @code{#t} if the list of parameters is monotonically\n"
3702 "decreasing.")
3703#define FUNC_NAME s_scm_i_num_gr_p
3704{
3705 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3706 return SCM_BOOL_T;
3707 while (!scm_is_null (rest))
3708 {
3709 if (scm_is_false (scm_gr_p (x, y)))
3710 return SCM_BOOL_F;
3711 x = y;
3712 y = scm_car (rest);
3713 rest = scm_cdr (rest);
3714 }
3715 return scm_gr_p (x, y);
3716}
3717#undef FUNC_NAME
3718#define FUNC_NAME s_scm_i_num_gr_p
c76b1eaf
MD
3719SCM
3720scm_gr_p (SCM x, SCM y)
0f2d19dd 3721{
c76b1eaf 3722 if (!SCM_NUMBERP (x))
8a1f4f98 3723 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3724 else if (!SCM_NUMBERP (y))
8a1f4f98 3725 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME);
c76b1eaf
MD
3726 else
3727 return scm_less_p (y, x);
0f2d19dd 3728}
1bbd0b84 3729#undef FUNC_NAME
0f2d19dd
JB
3730
3731
8a1f4f98
AW
3732SCM scm_i_num_leq_p (SCM, SCM, SCM);
3733SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1,
3734 (SCM x, SCM y, SCM rest),
3735 "Return @code{#t} if the list of parameters is monotonically\n"
3736 "non-decreasing.")
3737#define FUNC_NAME s_scm_i_num_leq_p
3738{
3739 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3740 return SCM_BOOL_T;
3741 while (!scm_is_null (rest))
3742 {
3743 if (scm_is_false (scm_leq_p (x, y)))
3744 return SCM_BOOL_F;
3745 x = y;
3746 y = scm_car (rest);
3747 rest = scm_cdr (rest);
3748 }
3749 return scm_leq_p (x, y);
3750}
3751#undef FUNC_NAME
3752#define FUNC_NAME s_scm_i_num_leq_p
c76b1eaf
MD
3753SCM
3754scm_leq_p (SCM x, SCM y)
0f2d19dd 3755{
c76b1eaf 3756 if (!SCM_NUMBERP (x))
8a1f4f98 3757 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3758 else if (!SCM_NUMBERP (y))
8a1f4f98 3759 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3760 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3761 return SCM_BOOL_F;
c76b1eaf 3762 else
73e4de09 3763 return scm_not (scm_less_p (y, x));
0f2d19dd 3764}
1bbd0b84 3765#undef FUNC_NAME
0f2d19dd
JB
3766
3767
8a1f4f98
AW
3768SCM scm_i_num_geq_p (SCM, SCM, SCM);
3769SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1,
3770 (SCM x, SCM y, SCM rest),
3771 "Return @code{#t} if the list of parameters is monotonically\n"
3772 "non-increasing.")
3773#define FUNC_NAME s_scm_i_num_geq_p
3774{
3775 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3776 return SCM_BOOL_T;
3777 while (!scm_is_null (rest))
3778 {
3779 if (scm_is_false (scm_geq_p (x, y)))
3780 return SCM_BOOL_F;
3781 x = y;
3782 y = scm_car (rest);
3783 rest = scm_cdr (rest);
3784 }
3785 return scm_geq_p (x, y);
3786}
3787#undef FUNC_NAME
3788#define FUNC_NAME s_scm_i_num_geq_p
c76b1eaf
MD
3789SCM
3790scm_geq_p (SCM x, SCM y)
0f2d19dd 3791{
c76b1eaf 3792 if (!SCM_NUMBERP (x))
8a1f4f98 3793 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME);
c76b1eaf 3794 else if (!SCM_NUMBERP (y))
8a1f4f98 3795 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3796 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3797 return SCM_BOOL_F;
c76b1eaf 3798 else
73e4de09 3799 return scm_not (scm_less_p (x, y));
0f2d19dd 3800}
1bbd0b84 3801#undef FUNC_NAME
0f2d19dd
JB
3802
3803
152f82bf 3804SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
942e5b91
MG
3805/* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3806 * "zero."
3807 */
0f2d19dd 3808SCM
6e8d25a6 3809scm_zero_p (SCM z)
0f2d19dd 3810{
e11e83f3 3811 if (SCM_I_INUMP (z))
bc36d050 3812 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
0aacf84e 3813 else if (SCM_BIGP (z))
c2ff8ab0 3814 return SCM_BOOL_F;
0aacf84e 3815 else if (SCM_REALP (z))
73e4de09 3816 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
0aacf84e 3817 else if (SCM_COMPLEXP (z))
73e4de09 3818 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
c2ff8ab0 3819 && SCM_COMPLEX_IMAG (z) == 0.0);
f92e85f7
MV
3820 else if (SCM_FRACTIONP (z))
3821 return SCM_BOOL_F;
0aacf84e 3822 else
c2ff8ab0 3823 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
0f2d19dd
JB
3824}
3825
3826
152f82bf 3827SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
942e5b91
MG
3828/* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3829 * "zero."
3830 */
0f2d19dd 3831SCM
6e8d25a6 3832scm_positive_p (SCM x)
0f2d19dd 3833{
e11e83f3
MV
3834 if (SCM_I_INUMP (x))
3835 return scm_from_bool (SCM_I_INUM (x) > 0);
0aacf84e
MD
3836 else if (SCM_BIGP (x))
3837 {
3838 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3839 scm_remember_upto_here_1 (x);
73e4de09 3840 return scm_from_bool (sgn > 0);
0aacf84e
MD
3841 }
3842 else if (SCM_REALP (x))
73e4de09 3843 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
f92e85f7
MV
3844 else if (SCM_FRACTIONP (x))
3845 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3846 else
c2ff8ab0 3847 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
0f2d19dd
JB
3848}
3849
3850
152f82bf 3851SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
942e5b91
MG
3852/* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3853 * "zero."
3854 */
0f2d19dd 3855SCM
6e8d25a6 3856scm_negative_p (SCM x)
0f2d19dd 3857{
e11e83f3
MV
3858 if (SCM_I_INUMP (x))
3859 return scm_from_bool (SCM_I_INUM (x) < 0);
0aacf84e
MD
3860 else if (SCM_BIGP (x))
3861 {
3862 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3863 scm_remember_upto_here_1 (x);
73e4de09 3864 return scm_from_bool (sgn < 0);
0aacf84e
MD
3865 }
3866 else if (SCM_REALP (x))
73e4de09 3867 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
f92e85f7
MV
3868 else if (SCM_FRACTIONP (x))
3869 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3870 else
c2ff8ab0 3871 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
0f2d19dd
JB
3872}
3873
3874
2a06f791
KR
3875/* scm_min and scm_max return an inexact when either argument is inexact, as
3876 required by r5rs. On that basis, for exact/inexact combinations the
3877 exact is converted to inexact to compare and possibly return. This is
3878 unlike scm_less_p above which takes some trouble to preserve all bits in
3879 its test, such trouble is not required for min and max. */
3880
78d3deb1
AW
3881SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
3882 (SCM x, SCM y, SCM rest),
3883 "Return the maximum of all parameter values.")
3884#define FUNC_NAME s_scm_i_max
3885{
3886 while (!scm_is_null (rest))
3887 { x = scm_max (x, y);
3888 y = scm_car (rest);
3889 rest = scm_cdr (rest);
3890 }
3891 return scm_max (x, y);
3892}
3893#undef FUNC_NAME
3894
3895#define s_max s_scm_i_max
3896#define g_max g_scm_i_max
3897
0f2d19dd 3898SCM
6e8d25a6 3899scm_max (SCM x, SCM y)
0f2d19dd 3900{
0aacf84e
MD
3901 if (SCM_UNBNDP (y))
3902 {
3903 if (SCM_UNBNDP (x))
3904 SCM_WTA_DISPATCH_0 (g_max, s_max);
e11e83f3 3905 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
3906 return x;
3907 else
3908 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
f872b822 3909 }
f4c627b3 3910
e11e83f3 3911 if (SCM_I_INUMP (x))
0aacf84e 3912 {
e11e83f3
MV
3913 long xx = SCM_I_INUM (x);
3914 if (SCM_I_INUMP (y))
0aacf84e 3915 {
e11e83f3 3916 long yy = SCM_I_INUM (y);
0aacf84e
MD
3917 return (xx < yy) ? y : x;
3918 }
3919 else if (SCM_BIGP (y))
3920 {
3921 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3922 scm_remember_upto_here_1 (y);
3923 return (sgn < 0) ? x : y;
3924 }
3925 else if (SCM_REALP (y))
3926 {
3927 double z = xx;
3928 /* if y==NaN then ">" is false and we return NaN */
55f26379 3929 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 3930 }
f92e85f7
MV
3931 else if (SCM_FRACTIONP (y))
3932 {
e4bc5d6c 3933 use_less:
73e4de09 3934 return (scm_is_false (scm_less_p (x, y)) ? x : y);
f92e85f7 3935 }
0aacf84e
MD
3936 else
3937 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 3938 }
0aacf84e
MD
3939 else if (SCM_BIGP (x))
3940 {
e11e83f3 3941 if (SCM_I_INUMP (y))
0aacf84e
MD
3942 {
3943 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3944 scm_remember_upto_here_1 (x);
3945 return (sgn < 0) ? y : x;
3946 }
3947 else if (SCM_BIGP (y))
3948 {
3949 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3950 scm_remember_upto_here_2 (x, y);
3951 return (cmp > 0) ? x : y;
3952 }
3953 else if (SCM_REALP (y))
3954 {
2a06f791
KR
3955 /* if y==NaN then xx>yy is false, so we return the NaN y */
3956 double xx, yy;
3957 big_real:
3958 xx = scm_i_big2dbl (x);
3959 yy = SCM_REAL_VALUE (y);
55f26379 3960 return (xx > yy ? scm_from_double (xx) : y);
0aacf84e 3961 }
f92e85f7
MV
3962 else if (SCM_FRACTIONP (y))
3963 {
e4bc5d6c 3964 goto use_less;
f92e85f7 3965 }
0aacf84e
MD
3966 else
3967 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f4c627b3 3968 }
0aacf84e
MD
3969 else if (SCM_REALP (x))
3970 {
e11e83f3 3971 if (SCM_I_INUMP (y))
0aacf84e 3972 {
e11e83f3 3973 double z = SCM_I_INUM (y);
0aacf84e 3974 /* if x==NaN then "<" is false and we return NaN */
55f26379 3975 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
0aacf84e
MD
3976 }
3977 else if (SCM_BIGP (y))
3978 {
b6f8f763 3979 SCM_SWAP (x, y);
2a06f791 3980 goto big_real;
0aacf84e
MD
3981 }
3982 else if (SCM_REALP (y))
3983 {
3984 /* if x==NaN then our explicit check means we return NaN
3985 if y==NaN then ">" is false and we return NaN
3986 calling isnan is unavoidable, since it's the only way to know
3987 which of x or y causes any compares to be false */
3988 double xx = SCM_REAL_VALUE (x);
3989 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3990 }
f92e85f7
MV
3991 else if (SCM_FRACTIONP (y))
3992 {
3993 double yy = scm_i_fraction2double (y);
3994 double xx = SCM_REAL_VALUE (x);
55f26379 3995 return (xx < yy) ? scm_from_double (yy) : x;
f92e85f7
MV
3996 }
3997 else
3998 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3999 }
4000 else if (SCM_FRACTIONP (x))
4001 {
e11e83f3 4002 if (SCM_I_INUMP (y))
f92e85f7 4003 {
e4bc5d6c 4004 goto use_less;
f92e85f7
MV
4005 }
4006 else if (SCM_BIGP (y))
4007 {
e4bc5d6c 4008 goto use_less;
f92e85f7
MV
4009 }
4010 else if (SCM_REALP (y))
4011 {
4012 double xx = scm_i_fraction2double (x);
55f26379 4013 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
f92e85f7
MV
4014 }
4015 else if (SCM_FRACTIONP (y))
4016 {
e4bc5d6c 4017 goto use_less;
f92e85f7 4018 }
0aacf84e
MD
4019 else
4020 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 4021 }
0aacf84e 4022 else
f4c627b3 4023 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
0f2d19dd
JB
4024}
4025
4026
78d3deb1
AW
4027SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
4028 (SCM x, SCM y, SCM rest),
4029 "Return the minimum of all parameter values.")
4030#define FUNC_NAME s_scm_i_min
4031{
4032 while (!scm_is_null (rest))
4033 { x = scm_min (x, y);
4034 y = scm_car (rest);
4035 rest = scm_cdr (rest);
4036 }
4037 return scm_min (x, y);
4038}
4039#undef FUNC_NAME
4040
4041#define s_min s_scm_i_min
4042#define g_min g_scm_i_min
4043
0f2d19dd 4044SCM
6e8d25a6 4045scm_min (SCM x, SCM y)
0f2d19dd 4046{
0aacf84e
MD
4047 if (SCM_UNBNDP (y))
4048 {
4049 if (SCM_UNBNDP (x))
4050 SCM_WTA_DISPATCH_0 (g_min, s_min);
e11e83f3 4051 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
4052 return x;
4053 else
4054 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
f872b822 4055 }
f4c627b3 4056
e11e83f3 4057 if (SCM_I_INUMP (x))
0aacf84e 4058 {
e11e83f3
MV
4059 long xx = SCM_I_INUM (x);
4060 if (SCM_I_INUMP (y))
0aacf84e 4061 {
e11e83f3 4062 long yy = SCM_I_INUM (y);
0aacf84e
MD
4063 return (xx < yy) ? x : y;
4064 }
4065 else if (SCM_BIGP (y))
4066 {
4067 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
4068 scm_remember_upto_here_1 (y);
4069 return (sgn < 0) ? y : x;
4070 }
4071 else if (SCM_REALP (y))
4072 {
4073 double z = xx;
4074 /* if y==NaN then "<" is false and we return NaN */
55f26379 4075 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 4076 }
f92e85f7
MV
4077 else if (SCM_FRACTIONP (y))
4078 {
e4bc5d6c 4079 use_less:
73e4de09 4080 return (scm_is_false (scm_less_p (x, y)) ? y : x);
f92e85f7 4081 }
0aacf84e
MD
4082 else
4083 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 4084 }
0aacf84e
MD
4085 else if (SCM_BIGP (x))
4086 {
e11e83f3 4087 if (SCM_I_INUMP (y))
0aacf84e
MD
4088 {
4089 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4090 scm_remember_upto_here_1 (x);
4091 return (sgn < 0) ? x : y;
4092 }
4093 else if (SCM_BIGP (y))
4094 {
4095 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
4096 scm_remember_upto_here_2 (x, y);
4097 return (cmp > 0) ? y : x;
4098 }
4099 else if (SCM_REALP (y))
4100 {
2a06f791
KR
4101 /* if y==NaN then xx<yy is false, so we return the NaN y */
4102 double xx, yy;
4103 big_real:
4104 xx = scm_i_big2dbl (x);
4105 yy = SCM_REAL_VALUE (y);
55f26379 4106 return (xx < yy ? scm_from_double (xx) : y);
0aacf84e 4107 }
f92e85f7
MV
4108 else if (SCM_FRACTIONP (y))
4109 {
e4bc5d6c 4110 goto use_less;
f92e85f7 4111 }
0aacf84e
MD
4112 else
4113 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f4c627b3 4114 }
0aacf84e
MD
4115 else if (SCM_REALP (x))
4116 {
e11e83f3 4117 if (SCM_I_INUMP (y))
0aacf84e 4118 {
e11e83f3 4119 double z = SCM_I_INUM (y);
0aacf84e 4120 /* if x==NaN then "<" is false and we return NaN */
55f26379 4121 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
0aacf84e
MD
4122 }
4123 else if (SCM_BIGP (y))
4124 {
b6f8f763 4125 SCM_SWAP (x, y);
2a06f791 4126 goto big_real;
0aacf84e
MD
4127 }
4128 else if (SCM_REALP (y))
4129 {
4130 /* if x==NaN then our explicit check means we return NaN
4131 if y==NaN then "<" is false and we return NaN
4132 calling isnan is unavoidable, since it's the only way to know
4133 which of x or y causes any compares to be false */
4134 double xx = SCM_REAL_VALUE (x);
4135 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
4136 }
f92e85f7
MV
4137 else if (SCM_FRACTIONP (y))
4138 {
4139 double yy = scm_i_fraction2double (y);
4140 double xx = SCM_REAL_VALUE (x);
55f26379 4141 return (yy < xx) ? scm_from_double (yy) : x;
f92e85f7 4142 }
0aacf84e
MD
4143 else
4144 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 4145 }
f92e85f7
MV
4146 else if (SCM_FRACTIONP (x))
4147 {
e11e83f3 4148 if (SCM_I_INUMP (y))
f92e85f7 4149 {
e4bc5d6c 4150 goto use_less;
f92e85f7
MV
4151 }
4152 else if (SCM_BIGP (y))
4153 {
e4bc5d6c 4154 goto use_less;
f92e85f7
MV
4155 }
4156 else if (SCM_REALP (y))
4157 {
4158 double xx = scm_i_fraction2double (x);
55f26379 4159 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
f92e85f7
MV
4160 }
4161 else if (SCM_FRACTIONP (y))
4162 {
e4bc5d6c 4163 goto use_less;
f92e85f7
MV
4164 }
4165 else
78d3deb1 4166 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f92e85f7 4167 }
0aacf84e 4168 else
f4c627b3 4169 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
0f2d19dd
JB
4170}
4171
4172
8ccd24f7
AW
4173SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
4174 (SCM x, SCM y, SCM rest),
4175 "Return the sum of all parameter values. Return 0 if called without\n"
4176 "any parameters." )
4177#define FUNC_NAME s_scm_i_sum
4178{
4179 while (!scm_is_null (rest))
4180 { x = scm_sum (x, y);
4181 y = scm_car (rest);
4182 rest = scm_cdr (rest);
4183 }
4184 return scm_sum (x, y);
4185}
4186#undef FUNC_NAME
4187
4188#define s_sum s_scm_i_sum
4189#define g_sum g_scm_i_sum
4190
0f2d19dd 4191SCM
6e8d25a6 4192scm_sum (SCM x, SCM y)
0f2d19dd 4193{
9cc37597 4194 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
4195 {
4196 if (SCM_NUMBERP (x)) return x;
4197 if (SCM_UNBNDP (x)) return SCM_INUM0;
98cb6e75 4198 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
f872b822 4199 }
c209c88e 4200
9cc37597 4201 if (SCM_LIKELY (SCM_I_INUMP (x)))
ca46fb90 4202 {
9cc37597 4203 if (SCM_LIKELY (SCM_I_INUMP (y)))
ca46fb90 4204 {
e11e83f3
MV
4205 long xx = SCM_I_INUM (x);
4206 long yy = SCM_I_INUM (y);
ca46fb90 4207 long int z = xx + yy;
d956fa6f 4208 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
ca46fb90
RB
4209 }
4210 else if (SCM_BIGP (y))
4211 {
4212 SCM_SWAP (x, y);
4213 goto add_big_inum;
4214 }
4215 else if (SCM_REALP (y))
4216 {
e11e83f3 4217 long int xx = SCM_I_INUM (x);
55f26379 4218 return scm_from_double (xx + SCM_REAL_VALUE (y));
ca46fb90
RB
4219 }
4220 else if (SCM_COMPLEXP (y))
4221 {
e11e83f3 4222 long int xx = SCM_I_INUM (x);
8507ec80 4223 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
ca46fb90
RB
4224 SCM_COMPLEX_IMAG (y));
4225 }
f92e85f7 4226 else if (SCM_FRACTIONP (y))
cba42c93 4227 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
4228 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4229 SCM_FRACTION_DENOMINATOR (y));
ca46fb90
RB
4230 else
4231 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0aacf84e
MD
4232 } else if (SCM_BIGP (x))
4233 {
e11e83f3 4234 if (SCM_I_INUMP (y))
0aacf84e
MD
4235 {
4236 long int inum;
4237 int bigsgn;
4238 add_big_inum:
e11e83f3 4239 inum = SCM_I_INUM (y);
0aacf84e
MD
4240 if (inum == 0)
4241 return x;
4242 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4243 if (inum < 0)
4244 {
4245 SCM result = scm_i_mkbig ();
4246 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
4247 scm_remember_upto_here_1 (x);
4248 /* we know the result will have to be a bignum */
4249 if (bigsgn == -1)
4250 return result;
4251 return scm_i_normbig (result);
4252 }
4253 else
4254 {
4255 SCM result = scm_i_mkbig ();
4256 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
4257 scm_remember_upto_here_1 (x);
4258 /* we know the result will have to be a bignum */
4259 if (bigsgn == 1)
4260 return result;
4261 return scm_i_normbig (result);
4262 }
4263 }
4264 else if (SCM_BIGP (y))
4265 {
4266 SCM result = scm_i_mkbig ();
4267 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4268 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4269 mpz_add (SCM_I_BIG_MPZ (result),
4270 SCM_I_BIG_MPZ (x),
4271 SCM_I_BIG_MPZ (y));
4272 scm_remember_upto_here_2 (x, y);
4273 /* we know the result will have to be a bignum */
4274 if (sgn_x == sgn_y)
4275 return result;
4276 return scm_i_normbig (result);
4277 }
4278 else if (SCM_REALP (y))
4279 {
4280 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
4281 scm_remember_upto_here_1 (x);
55f26379 4282 return scm_from_double (result);
0aacf84e
MD
4283 }
4284 else if (SCM_COMPLEXP (y))
4285 {
4286 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4287 + SCM_COMPLEX_REAL (y));
4288 scm_remember_upto_here_1 (x);
8507ec80 4289 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e 4290 }
f92e85f7 4291 else if (SCM_FRACTIONP (y))
cba42c93 4292 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
4293 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4294 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4295 else
4296 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0f2d19dd 4297 }
0aacf84e
MD
4298 else if (SCM_REALP (x))
4299 {
e11e83f3 4300 if (SCM_I_INUMP (y))
55f26379 4301 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
0aacf84e
MD
4302 else if (SCM_BIGP (y))
4303 {
4304 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
4305 scm_remember_upto_here_1 (y);
55f26379 4306 return scm_from_double (result);
0aacf84e
MD
4307 }
4308 else if (SCM_REALP (y))
55f26379 4309 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
0aacf84e 4310 else if (SCM_COMPLEXP (y))
8507ec80 4311 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4312 SCM_COMPLEX_IMAG (y));
f92e85f7 4313 else if (SCM_FRACTIONP (y))
55f26379 4314 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
0aacf84e
MD
4315 else
4316 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
f872b822 4317 }
0aacf84e
MD
4318 else if (SCM_COMPLEXP (x))
4319 {
e11e83f3 4320 if (SCM_I_INUMP (y))
8507ec80 4321 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
0aacf84e
MD
4322 SCM_COMPLEX_IMAG (x));
4323 else if (SCM_BIGP (y))
4324 {
4325 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
4326 + SCM_COMPLEX_REAL (x));
4327 scm_remember_upto_here_1 (y);
8507ec80 4328 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4329 }
4330 else if (SCM_REALP (y))
8507ec80 4331 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
0aacf84e
MD
4332 SCM_COMPLEX_IMAG (x));
4333 else if (SCM_COMPLEXP (y))
8507ec80 4334 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4335 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
f92e85f7 4336 else if (SCM_FRACTIONP (y))
8507ec80 4337 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
f92e85f7
MV
4338 SCM_COMPLEX_IMAG (x));
4339 else
4340 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4341 }
4342 else if (SCM_FRACTIONP (x))
4343 {
e11e83f3 4344 if (SCM_I_INUMP (y))
cba42c93 4345 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4346 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4347 SCM_FRACTION_DENOMINATOR (x));
4348 else if (SCM_BIGP (y))
cba42c93 4349 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4350 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4351 SCM_FRACTION_DENOMINATOR (x));
4352 else if (SCM_REALP (y))
55f26379 4353 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
f92e85f7 4354 else if (SCM_COMPLEXP (y))
8507ec80 4355 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
f92e85f7
MV
4356 SCM_COMPLEX_IMAG (y));
4357 else if (SCM_FRACTIONP (y))
4358 /* a/b + c/d = (ad + bc) / bd */
cba42c93 4359 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4360 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4361 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4362 else
4363 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
98cb6e75 4364 }
0aacf84e 4365 else
98cb6e75 4366 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
0f2d19dd
JB
4367}
4368
4369
40882e3d
KR
4370SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
4371 (SCM x),
4372 "Return @math{@var{x}+1}.")
4373#define FUNC_NAME s_scm_oneplus
4374{
4375 return scm_sum (x, SCM_I_MAKINUM (1));
4376}
4377#undef FUNC_NAME
4378
4379
78d3deb1
AW
4380SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
4381 (SCM x, SCM y, SCM rest),
4382 "If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
4383 "the sum of all but the first argument are subtracted from the first\n"
4384 "argument.")
4385#define FUNC_NAME s_scm_i_difference
4386{
4387 while (!scm_is_null (rest))
4388 { x = scm_difference (x, y);
4389 y = scm_car (rest);
4390 rest = scm_cdr (rest);
4391 }
4392 return scm_difference (x, y);
4393}
4394#undef FUNC_NAME
4395
4396#define s_difference s_scm_i_difference
4397#define g_difference g_scm_i_difference
4398
0f2d19dd 4399SCM
6e8d25a6 4400scm_difference (SCM x, SCM y)
78d3deb1 4401#define FUNC_NAME s_difference
0f2d19dd 4402{
9cc37597 4403 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
ca46fb90
RB
4404 {
4405 if (SCM_UNBNDP (x))
4406 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4407 else
e11e83f3 4408 if (SCM_I_INUMP (x))
ca46fb90 4409 {
e11e83f3 4410 long xx = -SCM_I_INUM (x);
ca46fb90 4411 if (SCM_FIXABLE (xx))
d956fa6f 4412 return SCM_I_MAKINUM (xx);
ca46fb90
RB
4413 else
4414 return scm_i_long2big (xx);
4415 }
4416 else if (SCM_BIGP (x))
a9ad4847
KR
4417 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4418 bignum, but negating that gives a fixnum. */
ca46fb90
RB
4419 return scm_i_normbig (scm_i_clonebig (x, 0));
4420 else if (SCM_REALP (x))
55f26379 4421 return scm_from_double (-SCM_REAL_VALUE (x));
ca46fb90 4422 else if (SCM_COMPLEXP (x))
8507ec80 4423 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
ca46fb90 4424 -SCM_COMPLEX_IMAG (x));
f92e85f7 4425 else if (SCM_FRACTIONP (x))
cba42c93 4426 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7 4427 SCM_FRACTION_DENOMINATOR (x));
ca46fb90
RB
4428 else
4429 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
f872b822 4430 }
ca46fb90 4431
9cc37597 4432 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 4433 {
9cc37597 4434 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4435 {
e11e83f3
MV
4436 long int xx = SCM_I_INUM (x);
4437 long int yy = SCM_I_INUM (y);
0aacf84e
MD
4438 long int z = xx - yy;
4439 if (SCM_FIXABLE (z))
d956fa6f 4440 return SCM_I_MAKINUM (z);
0aacf84e
MD
4441 else
4442 return scm_i_long2big (z);
4443 }
4444 else if (SCM_BIGP (y))
4445 {
4446 /* inum-x - big-y */
e11e83f3 4447 long xx = SCM_I_INUM (x);
ca46fb90 4448
0aacf84e
MD
4449 if (xx == 0)
4450 return scm_i_clonebig (y, 0);
4451 else
4452 {
4453 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4454 SCM result = scm_i_mkbig ();
ca46fb90 4455
0aacf84e
MD
4456 if (xx >= 0)
4457 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4458 else
4459 {
4460 /* x - y == -(y + -x) */
4461 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4462 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4463 }
4464 scm_remember_upto_here_1 (y);
ca46fb90 4465
0aacf84e
MD
4466 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4467 /* we know the result will have to be a bignum */
4468 return result;
4469 else
4470 return scm_i_normbig (result);
4471 }
4472 }
4473 else if (SCM_REALP (y))
4474 {
e11e83f3 4475 long int xx = SCM_I_INUM (x);
55f26379 4476 return scm_from_double (xx - SCM_REAL_VALUE (y));
0aacf84e
MD
4477 }
4478 else if (SCM_COMPLEXP (y))
4479 {
e11e83f3 4480 long int xx = SCM_I_INUM (x);
8507ec80 4481 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
0aacf84e
MD
4482 - SCM_COMPLEX_IMAG (y));
4483 }
f92e85f7
MV
4484 else if (SCM_FRACTIONP (y))
4485 /* a - b/c = (ac - b) / c */
cba42c93 4486 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4487 SCM_FRACTION_NUMERATOR (y)),
4488 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4489 else
4490 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
f872b822 4491 }
0aacf84e
MD
4492 else if (SCM_BIGP (x))
4493 {
e11e83f3 4494 if (SCM_I_INUMP (y))
0aacf84e
MD
4495 {
4496 /* big-x - inum-y */
e11e83f3 4497 long yy = SCM_I_INUM (y);
0aacf84e 4498 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
ca46fb90 4499
0aacf84e
MD
4500 scm_remember_upto_here_1 (x);
4501 if (sgn_x == 0)
c71b0706
MV
4502 return (SCM_FIXABLE (-yy) ?
4503 SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
0aacf84e
MD
4504 else
4505 {
4506 SCM result = scm_i_mkbig ();
ca46fb90 4507
708f22c6
KR
4508 if (yy >= 0)
4509 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4510 else
4511 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
0aacf84e 4512 scm_remember_upto_here_1 (x);
ca46fb90 4513
0aacf84e
MD
4514 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4515 /* we know the result will have to be a bignum */
4516 return result;
4517 else
4518 return scm_i_normbig (result);
4519 }
4520 }
4521 else if (SCM_BIGP (y))
4522 {
4523 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4524 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4525 SCM result = scm_i_mkbig ();
4526 mpz_sub (SCM_I_BIG_MPZ (result),
4527 SCM_I_BIG_MPZ (x),
4528 SCM_I_BIG_MPZ (y));
4529 scm_remember_upto_here_2 (x, y);
4530 /* we know the result will have to be a bignum */
4531 if ((sgn_x == 1) && (sgn_y == -1))
4532 return result;
4533 if ((sgn_x == -1) && (sgn_y == 1))
4534 return result;
4535 return scm_i_normbig (result);
4536 }
4537 else if (SCM_REALP (y))
4538 {
4539 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4540 scm_remember_upto_here_1 (x);
55f26379 4541 return scm_from_double (result);
0aacf84e
MD
4542 }
4543 else if (SCM_COMPLEXP (y))
4544 {
4545 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4546 - SCM_COMPLEX_REAL (y));
4547 scm_remember_upto_here_1 (x);
8507ec80 4548 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
0aacf84e 4549 }
f92e85f7 4550 else if (SCM_FRACTIONP (y))
cba42c93 4551 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4552 SCM_FRACTION_NUMERATOR (y)),
4553 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 4554 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
ca46fb90 4555 }
0aacf84e
MD
4556 else if (SCM_REALP (x))
4557 {
e11e83f3 4558 if (SCM_I_INUMP (y))
55f26379 4559 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
0aacf84e
MD
4560 else if (SCM_BIGP (y))
4561 {
4562 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4563 scm_remember_upto_here_1 (x);
55f26379 4564 return scm_from_double (result);
0aacf84e
MD
4565 }
4566 else if (SCM_REALP (y))
55f26379 4567 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
0aacf84e 4568 else if (SCM_COMPLEXP (y))
8507ec80 4569 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4570 -SCM_COMPLEX_IMAG (y));
f92e85f7 4571 else if (SCM_FRACTIONP (y))
55f26379 4572 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
0aacf84e
MD
4573 else
4574 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4575 }
0aacf84e
MD
4576 else if (SCM_COMPLEXP (x))
4577 {
e11e83f3 4578 if (SCM_I_INUMP (y))
8507ec80 4579 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
0aacf84e
MD
4580 SCM_COMPLEX_IMAG (x));
4581 else if (SCM_BIGP (y))
4582 {
4583 double real_part = (SCM_COMPLEX_REAL (x)
4584 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4585 scm_remember_upto_here_1 (x);
8507ec80 4586 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e
MD
4587 }
4588 else if (SCM_REALP (y))
8507ec80 4589 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
0aacf84e
MD
4590 SCM_COMPLEX_IMAG (x));
4591 else if (SCM_COMPLEXP (y))
8507ec80 4592 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4593 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
f92e85f7 4594 else if (SCM_FRACTIONP (y))
8507ec80 4595 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
f92e85f7
MV
4596 SCM_COMPLEX_IMAG (x));
4597 else
4598 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4599 }
4600 else if (SCM_FRACTIONP (x))
4601 {
e11e83f3 4602 if (SCM_I_INUMP (y))
f92e85f7 4603 /* a/b - c = (a - cb) / b */
cba42c93 4604 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4605 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4606 SCM_FRACTION_DENOMINATOR (x));
4607 else if (SCM_BIGP (y))
cba42c93 4608 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4609 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4610 SCM_FRACTION_DENOMINATOR (x));
4611 else if (SCM_REALP (y))
55f26379 4612 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
f92e85f7 4613 else if (SCM_COMPLEXP (y))
8507ec80 4614 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
f92e85f7
MV
4615 -SCM_COMPLEX_IMAG (y));
4616 else if (SCM_FRACTIONP (y))
4617 /* a/b - c/d = (ad - bc) / bd */
cba42c93 4618 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4619 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4620 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4621 else
4622 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4623 }
0aacf84e 4624 else
98cb6e75 4625 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
0f2d19dd 4626}
c05e97b7 4627#undef FUNC_NAME
0f2d19dd 4628
ca46fb90 4629
40882e3d
KR
4630SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
4631 (SCM x),
4632 "Return @math{@var{x}-1}.")
4633#define FUNC_NAME s_scm_oneminus
4634{
4635 return scm_difference (x, SCM_I_MAKINUM (1));
4636}
4637#undef FUNC_NAME
4638
4639
78d3deb1
AW
4640SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
4641 (SCM x, SCM y, SCM rest),
4642 "Return the product of all arguments. If called without arguments,\n"
4643 "1 is returned.")
4644#define FUNC_NAME s_scm_i_product
4645{
4646 while (!scm_is_null (rest))
4647 { x = scm_product (x, y);
4648 y = scm_car (rest);
4649 rest = scm_cdr (rest);
4650 }
4651 return scm_product (x, y);
4652}
4653#undef FUNC_NAME
4654
4655#define s_product s_scm_i_product
4656#define g_product g_scm_i_product
4657
0f2d19dd 4658SCM
6e8d25a6 4659scm_product (SCM x, SCM y)
0f2d19dd 4660{
9cc37597 4661 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
4662 {
4663 if (SCM_UNBNDP (x))
d956fa6f 4664 return SCM_I_MAKINUM (1L);
0aacf84e
MD
4665 else if (SCM_NUMBERP (x))
4666 return x;
4667 else
4668 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
f872b822 4669 }
ca46fb90 4670
9cc37597 4671 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e
MD
4672 {
4673 long xx;
f4c627b3 4674
0aacf84e 4675 intbig:
e11e83f3 4676 xx = SCM_I_INUM (x);
f4c627b3 4677
0aacf84e
MD
4678 switch (xx)
4679 {
ca46fb90
RB
4680 case 0: return x; break;
4681 case 1: return y; break;
0aacf84e 4682 }
f4c627b3 4683
9cc37597 4684 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4685 {
e11e83f3 4686 long yy = SCM_I_INUM (y);
0aacf84e 4687 long kk = xx * yy;
d956fa6f 4688 SCM k = SCM_I_MAKINUM (kk);
e11e83f3 4689 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
0aacf84e
MD
4690 return k;
4691 else
4692 {
4693 SCM result = scm_i_long2big (xx);
4694 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4695 return scm_i_normbig (result);
4696 }
4697 }
4698 else if (SCM_BIGP (y))
4699 {
4700 SCM result = scm_i_mkbig ();
4701 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4702 scm_remember_upto_here_1 (y);
4703 return result;
4704 }
4705 else if (SCM_REALP (y))
55f26379 4706 return scm_from_double (xx * SCM_REAL_VALUE (y));
0aacf84e 4707 else if (SCM_COMPLEXP (y))
8507ec80 4708 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
0aacf84e 4709 xx * SCM_COMPLEX_IMAG (y));
f92e85f7 4710 else if (SCM_FRACTIONP (y))
cba42c93 4711 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4712 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4713 else
4714 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4715 }
0aacf84e
MD
4716 else if (SCM_BIGP (x))
4717 {
e11e83f3 4718 if (SCM_I_INUMP (y))
0aacf84e
MD
4719 {
4720 SCM_SWAP (x, y);
4721 goto intbig;
4722 }
4723 else if (SCM_BIGP (y))
4724 {
4725 SCM result = scm_i_mkbig ();
4726 mpz_mul (SCM_I_BIG_MPZ (result),
4727 SCM_I_BIG_MPZ (x),
4728 SCM_I_BIG_MPZ (y));
4729 scm_remember_upto_here_2 (x, y);
4730 return result;
4731 }
4732 else if (SCM_REALP (y))
4733 {
4734 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4735 scm_remember_upto_here_1 (x);
55f26379 4736 return scm_from_double (result);
0aacf84e
MD
4737 }
4738 else if (SCM_COMPLEXP (y))
4739 {
4740 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4741 scm_remember_upto_here_1 (x);
8507ec80 4742 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
0aacf84e
MD
4743 z * SCM_COMPLEX_IMAG (y));
4744 }
f92e85f7 4745 else if (SCM_FRACTIONP (y))
cba42c93 4746 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4747 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4748 else
4749 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4750 }
0aacf84e
MD
4751 else if (SCM_REALP (x))
4752 {
e11e83f3 4753 if (SCM_I_INUMP (y))
23d72566
KR
4754 {
4755 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4756 if (scm_is_eq (y, SCM_INUM0))
4757 return y;
4758 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
4759 }
0aacf84e
MD
4760 else if (SCM_BIGP (y))
4761 {
4762 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4763 scm_remember_upto_here_1 (y);
55f26379 4764 return scm_from_double (result);
0aacf84e
MD
4765 }
4766 else if (SCM_REALP (y))
55f26379 4767 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
0aacf84e 4768 else if (SCM_COMPLEXP (y))
8507ec80 4769 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
0aacf84e 4770 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
f92e85f7 4771 else if (SCM_FRACTIONP (y))
55f26379 4772 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
0aacf84e
MD
4773 else
4774 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4775 }
0aacf84e
MD
4776 else if (SCM_COMPLEXP (x))
4777 {
e11e83f3 4778 if (SCM_I_INUMP (y))
23d72566
KR
4779 {
4780 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4781 if (scm_is_eq (y, SCM_INUM0))
4782 return y;
4783 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
4784 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
4785 }
0aacf84e
MD
4786 else if (SCM_BIGP (y))
4787 {
4788 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4789 scm_remember_upto_here_1 (y);
8507ec80 4790 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
76506335 4791 z * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4792 }
4793 else if (SCM_REALP (y))
8507ec80 4794 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
0aacf84e
MD
4795 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4796 else if (SCM_COMPLEXP (y))
4797 {
8507ec80 4798 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
0aacf84e
MD
4799 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4800 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4801 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4802 }
f92e85f7
MV
4803 else if (SCM_FRACTIONP (y))
4804 {
4805 double yy = scm_i_fraction2double (y);
8507ec80 4806 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
f92e85f7
MV
4807 yy * SCM_COMPLEX_IMAG (x));
4808 }
4809 else
4810 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4811 }
4812 else if (SCM_FRACTIONP (x))
4813 {
e11e83f3 4814 if (SCM_I_INUMP (y))
cba42c93 4815 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4816 SCM_FRACTION_DENOMINATOR (x));
4817 else if (SCM_BIGP (y))
cba42c93 4818 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4819 SCM_FRACTION_DENOMINATOR (x));
4820 else if (SCM_REALP (y))
55f26379 4821 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
f92e85f7
MV
4822 else if (SCM_COMPLEXP (y))
4823 {
4824 double xx = scm_i_fraction2double (x);
8507ec80 4825 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
f92e85f7
MV
4826 xx * SCM_COMPLEX_IMAG (y));
4827 }
4828 else if (SCM_FRACTIONP (y))
4829 /* a/b * c/d = ac / bd */
cba42c93 4830 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4831 SCM_FRACTION_NUMERATOR (y)),
4832 scm_product (SCM_FRACTION_DENOMINATOR (x),
4833 SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4834 else
4835 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4836 }
0aacf84e 4837 else
f4c627b3 4838 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
0f2d19dd
JB
4839}
4840
7351e207
MV
4841#if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4842 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4843#define ALLOW_DIVIDE_BY_ZERO
4844/* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4845#endif
0f2d19dd 4846
ba74ef4e
MV
4847/* The code below for complex division is adapted from the GNU
4848 libstdc++, which adapted it from f2c's libF77, and is subject to
4849 this copyright: */
4850
4851/****************************************************************
4852Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4853
4854Permission to use, copy, modify, and distribute this software
4855and its documentation for any purpose and without fee is hereby
4856granted, provided that the above copyright notice appear in all
4857copies and that both that the copyright notice and this
4858permission notice and warranty disclaimer appear in supporting
4859documentation, and that the names of AT&T Bell Laboratories or
4860Bellcore or any of their entities not be used in advertising or
4861publicity pertaining to distribution of the software without
4862specific, written prior permission.
4863
4864AT&T and Bellcore disclaim all warranties with regard to this
4865software, including all implied warranties of merchantability
4866and fitness. In no event shall AT&T or Bellcore be liable for
4867any special, indirect or consequential damages or any damages
4868whatsoever resulting from loss of use, data or profits, whether
4869in an action of contract, negligence or other tortious action,
4870arising out of or in connection with the use or performance of
4871this software.
4872****************************************************************/
4873
78d3deb1
AW
4874SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
4875 (SCM x, SCM y, SCM rest),
4876 "Divide the first argument by the product of the remaining\n"
4877 "arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
4878 "returned.")
4879#define FUNC_NAME s_scm_i_divide
4880{
4881 while (!scm_is_null (rest))
4882 { x = scm_divide (x, y);
4883 y = scm_car (rest);
4884 rest = scm_cdr (rest);
4885 }
4886 return scm_divide (x, y);
4887}
4888#undef FUNC_NAME
4889
4890#define s_divide s_scm_i_divide
4891#define g_divide g_scm_i_divide
4892
f92e85f7 4893static SCM
78d3deb1
AW
4894do_divide (SCM x, SCM y, int inexact)
4895#define FUNC_NAME s_divide
0f2d19dd 4896{
f8de44c1
DH
4897 double a;
4898
9cc37597 4899 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
0aacf84e
MD
4900 {
4901 if (SCM_UNBNDP (x))
4902 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
e11e83f3 4903 else if (SCM_I_INUMP (x))
0aacf84e 4904 {
e11e83f3 4905 long xx = SCM_I_INUM (x);
0aacf84e
MD
4906 if (xx == 1 || xx == -1)
4907 return x;
7351e207 4908#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4909 else if (xx == 0)
4910 scm_num_overflow (s_divide);
7351e207 4911#endif
0aacf84e 4912 else
f92e85f7
MV
4913 {
4914 if (inexact)
55f26379 4915 return scm_from_double (1.0 / (double) xx);
cba42c93 4916 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4917 }
0aacf84e
MD
4918 }
4919 else if (SCM_BIGP (x))
f92e85f7
MV
4920 {
4921 if (inexact)
55f26379 4922 return scm_from_double (1.0 / scm_i_big2dbl (x));
cba42c93 4923 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4924 }
0aacf84e
MD
4925 else if (SCM_REALP (x))
4926 {
4927 double xx = SCM_REAL_VALUE (x);
7351e207 4928#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4929 if (xx == 0.0)
4930 scm_num_overflow (s_divide);
4931 else
7351e207 4932#endif
55f26379 4933 return scm_from_double (1.0 / xx);
0aacf84e
MD
4934 }
4935 else if (SCM_COMPLEXP (x))
4936 {
4937 double r = SCM_COMPLEX_REAL (x);
4938 double i = SCM_COMPLEX_IMAG (x);
4c6e36a6 4939 if (fabs(r) <= fabs(i))
0aacf84e
MD
4940 {
4941 double t = r / i;
4942 double d = i * (1.0 + t * t);
8507ec80 4943 return scm_c_make_rectangular (t / d, -1.0 / d);
0aacf84e
MD
4944 }
4945 else
4946 {
4947 double t = i / r;
4948 double d = r * (1.0 + t * t);
8507ec80 4949 return scm_c_make_rectangular (1.0 / d, -t / d);
0aacf84e
MD
4950 }
4951 }
f92e85f7 4952 else if (SCM_FRACTIONP (x))
cba42c93 4953 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
f92e85f7 4954 SCM_FRACTION_NUMERATOR (x));
0aacf84e
MD
4955 else
4956 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
f8de44c1 4957 }
f8de44c1 4958
9cc37597 4959 if (SCM_LIKELY (SCM_I_INUMP (x)))
0aacf84e 4960 {
e11e83f3 4961 long xx = SCM_I_INUM (x);
9cc37597 4962 if (SCM_LIKELY (SCM_I_INUMP (y)))
0aacf84e 4963 {
e11e83f3 4964 long yy = SCM_I_INUM (y);
0aacf84e
MD
4965 if (yy == 0)
4966 {
7351e207 4967#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4968 scm_num_overflow (s_divide);
7351e207 4969#else
55f26379 4970 return scm_from_double ((double) xx / (double) yy);
7351e207 4971#endif
0aacf84e
MD
4972 }
4973 else if (xx % yy != 0)
f92e85f7
MV
4974 {
4975 if (inexact)
55f26379 4976 return scm_from_double ((double) xx / (double) yy);
cba42c93 4977 else return scm_i_make_ratio (x, y);
f92e85f7 4978 }
0aacf84e
MD
4979 else
4980 {
4981 long z = xx / yy;
4982 if (SCM_FIXABLE (z))
d956fa6f 4983 return SCM_I_MAKINUM (z);
0aacf84e
MD
4984 else
4985 return scm_i_long2big (z);
4986 }
f872b822 4987 }
0aacf84e 4988 else if (SCM_BIGP (y))
f92e85f7
MV
4989 {
4990 if (inexact)
55f26379 4991 return scm_from_double ((double) xx / scm_i_big2dbl (y));
cba42c93 4992 else return scm_i_make_ratio (x, y);
f92e85f7 4993 }
0aacf84e
MD
4994 else if (SCM_REALP (y))
4995 {
4996 double yy = SCM_REAL_VALUE (y);
7351e207 4997#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4998 if (yy == 0.0)
4999 scm_num_overflow (s_divide);
5000 else
7351e207 5001#endif
55f26379 5002 return scm_from_double ((double) xx / yy);
ba74ef4e 5003 }
0aacf84e
MD
5004 else if (SCM_COMPLEXP (y))
5005 {
5006 a = xx;
5007 complex_div: /* y _must_ be a complex number */
5008 {
5009 double r = SCM_COMPLEX_REAL (y);
5010 double i = SCM_COMPLEX_IMAG (y);
4c6e36a6 5011 if (fabs(r) <= fabs(i))
0aacf84e
MD
5012 {
5013 double t = r / i;
5014 double d = i * (1.0 + t * t);
8507ec80 5015 return scm_c_make_rectangular ((a * t) / d, -a / d);
0aacf84e
MD
5016 }
5017 else
5018 {
5019 double t = i / r;
5020 double d = r * (1.0 + t * t);
8507ec80 5021 return scm_c_make_rectangular (a / d, -(a * t) / d);
0aacf84e
MD
5022 }
5023 }
5024 }
f92e85f7
MV
5025 else if (SCM_FRACTIONP (y))
5026 /* a / b/c = ac / b */
cba42c93 5027 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 5028 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
5029 else
5030 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 5031 }
0aacf84e
MD
5032 else if (SCM_BIGP (x))
5033 {
e11e83f3 5034 if (SCM_I_INUMP (y))
0aacf84e 5035 {
e11e83f3 5036 long int yy = SCM_I_INUM (y);
0aacf84e
MD
5037 if (yy == 0)
5038 {
7351e207 5039#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 5040 scm_num_overflow (s_divide);
7351e207 5041#else
0aacf84e
MD
5042 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
5043 scm_remember_upto_here_1 (x);
5044 return (sgn == 0) ? scm_nan () : scm_inf ();
7351e207 5045#endif
0aacf84e
MD
5046 }
5047 else if (yy == 1)
5048 return x;
5049 else
5050 {
5051 /* FIXME: HMM, what are the relative performance issues here?
5052 We need to test. Is it faster on average to test
5053 divisible_p, then perform whichever operation, or is it
5054 faster to perform the integer div opportunistically and
5055 switch to real if there's a remainder? For now we take the
5056 middle ground: test, then if divisible, use the faster div
5057 func. */
5058
5059 long abs_yy = yy < 0 ? -yy : yy;
5060 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
5061
5062 if (divisible_p)
5063 {
5064 SCM result = scm_i_mkbig ();
5065 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
5066 scm_remember_upto_here_1 (x);
5067 if (yy < 0)
5068 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
5069 return scm_i_normbig (result);
5070 }
5071 else
f92e85f7
MV
5072 {
5073 if (inexact)
55f26379 5074 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
cba42c93 5075 else return scm_i_make_ratio (x, y);
f92e85f7 5076 }
0aacf84e
MD
5077 }
5078 }
5079 else if (SCM_BIGP (y))
5080 {
5081 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
5082 if (y_is_zero)
5083 {
ca46fb90 5084#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 5085 scm_num_overflow (s_divide);
f872b822 5086#else
0aacf84e
MD
5087 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
5088 scm_remember_upto_here_1 (x);
5089 return (sgn == 0) ? scm_nan () : scm_inf ();
f872b822 5090#endif
0aacf84e
MD
5091 }
5092 else
5093 {
5094 /* big_x / big_y */
23f2b9a3
KR
5095 if (inexact)
5096 {
5097 /* It's easily possible for the ratio x/y to fit a double
5098 but one or both x and y be too big to fit a double,
5099 hence the use of mpq_get_d rather than converting and
5100 dividing. */
5101 mpq_t q;
5102 *mpq_numref(q) = *SCM_I_BIG_MPZ (x);
5103 *mpq_denref(q) = *SCM_I_BIG_MPZ (y);
5104 return scm_from_double (mpq_get_d (q));
5105 }
5106 else
5107 {
5108 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
5109 SCM_I_BIG_MPZ (y));
5110 if (divisible_p)
5111 {
5112 SCM result = scm_i_mkbig ();
5113 mpz_divexact (SCM_I_BIG_MPZ (result),
5114 SCM_I_BIG_MPZ (x),
5115 SCM_I_BIG_MPZ (y));
5116 scm_remember_upto_here_2 (x, y);
5117 return scm_i_normbig (result);
5118 }
5119 else
5120 return scm_i_make_ratio (x, y);
5121 }
0aacf84e
MD
5122 }
5123 }
5124 else if (SCM_REALP (y))
5125 {
5126 double yy = SCM_REAL_VALUE (y);
7351e207 5127#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5128 if (yy == 0.0)
5129 scm_num_overflow (s_divide);
5130 else
7351e207 5131#endif
55f26379 5132 return scm_from_double (scm_i_big2dbl (x) / yy);
0aacf84e
MD
5133 }
5134 else if (SCM_COMPLEXP (y))
5135 {
5136 a = scm_i_big2dbl (x);
5137 goto complex_div;
5138 }
f92e85f7 5139 else if (SCM_FRACTIONP (y))
cba42c93 5140 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 5141 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
5142 else
5143 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 5144 }
0aacf84e
MD
5145 else if (SCM_REALP (x))
5146 {
5147 double rx = SCM_REAL_VALUE (x);
e11e83f3 5148 if (SCM_I_INUMP (y))
0aacf84e 5149 {
e11e83f3 5150 long int yy = SCM_I_INUM (y);
7351e207 5151#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
5152 if (yy == 0)
5153 scm_num_overflow (s_divide);
5154 else
7351e207 5155#endif
55f26379 5156 return scm_from_double (rx / (double) yy);
0aacf84e
MD
5157 }
5158 else if (SCM_BIGP (y))
5159 {
5160 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5161 scm_remember_upto_here_1 (y);
55f26379 5162 return scm_from_double (rx / dby);
0aacf84e
MD
5163 }
5164 else if (SCM_REALP (y))
5165 {
5166 double yy = SCM_REAL_VALUE (y);
7351e207 5167#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5168 if (yy == 0.0)
5169 scm_num_overflow (s_divide);
5170 else
7351e207 5171#endif
55f26379 5172 return scm_from_double (rx / yy);
0aacf84e
MD
5173 }
5174 else if (SCM_COMPLEXP (y))
5175 {
5176 a = rx;
5177 goto complex_div;
5178 }
f92e85f7 5179 else if (SCM_FRACTIONP (y))
55f26379 5180 return scm_from_double (rx / scm_i_fraction2double (y));
0aacf84e
MD
5181 else
5182 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 5183 }
0aacf84e
MD
5184 else if (SCM_COMPLEXP (x))
5185 {
5186 double rx = SCM_COMPLEX_REAL (x);
5187 double ix = SCM_COMPLEX_IMAG (x);
e11e83f3 5188 if (SCM_I_INUMP (y))
0aacf84e 5189 {
e11e83f3 5190 long int yy = SCM_I_INUM (y);
7351e207 5191#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
5192 if (yy == 0)
5193 scm_num_overflow (s_divide);
5194 else
7351e207 5195#endif
0aacf84e
MD
5196 {
5197 double d = yy;
8507ec80 5198 return scm_c_make_rectangular (rx / d, ix / d);
0aacf84e
MD
5199 }
5200 }
5201 else if (SCM_BIGP (y))
5202 {
5203 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5204 scm_remember_upto_here_1 (y);
8507ec80 5205 return scm_c_make_rectangular (rx / dby, ix / dby);
0aacf84e
MD
5206 }
5207 else if (SCM_REALP (y))
5208 {
5209 double yy = SCM_REAL_VALUE (y);
7351e207 5210#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
5211 if (yy == 0.0)
5212 scm_num_overflow (s_divide);
5213 else
7351e207 5214#endif
8507ec80 5215 return scm_c_make_rectangular (rx / yy, ix / yy);
0aacf84e
MD
5216 }
5217 else if (SCM_COMPLEXP (y))
5218 {
5219 double ry = SCM_COMPLEX_REAL (y);
5220 double iy = SCM_COMPLEX_IMAG (y);
4c6e36a6 5221 if (fabs(ry) <= fabs(iy))
0aacf84e
MD
5222 {
5223 double t = ry / iy;
5224 double d = iy * (1.0 + t * t);
8507ec80 5225 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
0aacf84e
MD
5226 }
5227 else
5228 {
5229 double t = iy / ry;
5230 double d = ry * (1.0 + t * t);
8507ec80 5231 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
0aacf84e
MD
5232 }
5233 }
f92e85f7
MV
5234 else if (SCM_FRACTIONP (y))
5235 {
5236 double yy = scm_i_fraction2double (y);
8507ec80 5237 return scm_c_make_rectangular (rx / yy, ix / yy);
f92e85f7 5238 }
0aacf84e
MD
5239 else
5240 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 5241 }
f92e85f7
MV
5242 else if (SCM_FRACTIONP (x))
5243 {
e11e83f3 5244 if (SCM_I_INUMP (y))
f92e85f7 5245 {
e11e83f3 5246 long int yy = SCM_I_INUM (y);
f92e85f7
MV
5247#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5248 if (yy == 0)
5249 scm_num_overflow (s_divide);
5250 else
5251#endif
cba42c93 5252 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
5253 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5254 }
5255 else if (SCM_BIGP (y))
5256 {
cba42c93 5257 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
5258 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5259 }
5260 else if (SCM_REALP (y))
5261 {
5262 double yy = SCM_REAL_VALUE (y);
5263#ifndef ALLOW_DIVIDE_BY_ZERO
5264 if (yy == 0.0)
5265 scm_num_overflow (s_divide);
5266 else
5267#endif
55f26379 5268 return scm_from_double (scm_i_fraction2double (x) / yy);
f92e85f7
MV
5269 }
5270 else if (SCM_COMPLEXP (y))
5271 {
5272 a = scm_i_fraction2double (x);
5273 goto complex_div;
5274 }
5275 else if (SCM_FRACTIONP (y))
cba42c93 5276 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
5277 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
5278 else
5279 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5280 }
0aacf84e 5281 else
f8de44c1 5282 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
0f2d19dd 5283}
f92e85f7
MV
5284
5285SCM
5286scm_divide (SCM x, SCM y)
5287{
78d3deb1 5288 return do_divide (x, y, 0);
f92e85f7
MV
5289}
5290
5291static SCM scm_divide2real (SCM x, SCM y)
5292{
78d3deb1 5293 return do_divide (x, y, 1);
f92e85f7 5294}
c05e97b7 5295#undef FUNC_NAME
0f2d19dd 5296
fa605590 5297
0f2d19dd 5298double
3101f40f 5299scm_c_truncate (double x)
0f2d19dd 5300{
fa605590
KR
5301#if HAVE_TRUNC
5302 return trunc (x);
5303#else
f872b822
MD
5304 if (x < 0.0)
5305 return -floor (-x);
5306 return floor (x);
fa605590 5307#endif
0f2d19dd 5308}
0f2d19dd 5309
3101f40f
MV
5310/* scm_c_round is done using floor(x+0.5) to round to nearest and with
5311 half-way case (ie. when x is an integer plus 0.5) going upwards.
5312 Then half-way cases are identified and adjusted down if the
5313 round-upwards didn't give the desired even integer.
6187f48b
KR
5314
5315 "plus_half == result" identifies a half-way case. If plus_half, which is
5316 x + 0.5, is an integer then x must be an integer plus 0.5.
5317
5318 An odd "result" value is identified with result/2 != floor(result/2).
5319 This is done with plus_half, since that value is ready for use sooner in
5320 a pipelined cpu, and we're already requiring plus_half == result.
5321
5322 Note however that we need to be careful when x is big and already an
5323 integer. In that case "x+0.5" may round to an adjacent integer, causing
5324 us to return such a value, incorrectly. For instance if the hardware is
5325 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
5326 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
5327 returned. Or if the hardware is in round-upwards mode, then other bigger
5328 values like say x == 2^128 will see x+0.5 rounding up to the next higher
5329 representable value, 2^128+2^76 (or whatever), again incorrect.
5330
5331 These bad roundings of x+0.5 are avoided by testing at the start whether
5332 x is already an integer. If it is then clearly that's the desired result
5333 already. And if it's not then the exponent must be small enough to allow
5334 an 0.5 to be represented, and hence added without a bad rounding. */
5335
0f2d19dd 5336double
3101f40f 5337scm_c_round (double x)
0f2d19dd 5338{
6187f48b
KR
5339 double plus_half, result;
5340
5341 if (x == floor (x))
5342 return x;
5343
5344 plus_half = x + 0.5;
5345 result = floor (plus_half);
3101f40f 5346 /* Adjust so that the rounding is towards even. */
0aacf84e
MD
5347 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
5348 ? result - 1
5349 : result);
0f2d19dd
JB
5350}
5351
f92e85f7
MV
5352SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
5353 (SCM x),
5354 "Round the number @var{x} towards zero.")
5355#define FUNC_NAME s_scm_truncate_number
5356{
73e4de09 5357 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5358 return scm_floor (x);
5359 else
5360 return scm_ceiling (x);
5361}
5362#undef FUNC_NAME
5363
5364static SCM exactly_one_half;
5365
5366SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5367 (SCM x),
5368 "Round the number @var{x} towards the nearest integer. "
5369 "When it is exactly halfway between two integers, "
5370 "round towards the even one.")
5371#define FUNC_NAME s_scm_round_number
5372{
e11e83f3 5373 if (SCM_I_INUMP (x) || SCM_BIGP (x))
bae30667
KR
5374 return x;
5375 else if (SCM_REALP (x))
3101f40f 5376 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
f92e85f7 5377 else
bae30667
KR
5378 {
5379 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5380 single quotient+remainder division then examining to see which way
5381 the rounding should go. */
5382 SCM plus_half = scm_sum (x, exactly_one_half);
5383 SCM result = scm_floor (plus_half);
3101f40f 5384 /* Adjust so that the rounding is towards even. */
73e4de09
MV
5385 if (scm_is_true (scm_num_eq_p (plus_half, result))
5386 && scm_is_true (scm_odd_p (result)))
d956fa6f 5387 return scm_difference (result, SCM_I_MAKINUM (1));
bae30667
KR
5388 else
5389 return result;
5390 }
f92e85f7
MV
5391}
5392#undef FUNC_NAME
5393
5394SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5395 (SCM x),
5396 "Round the number @var{x} towards minus infinity.")
5397#define FUNC_NAME s_scm_floor
5398{
e11e83f3 5399 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5400 return x;
5401 else if (SCM_REALP (x))
55f26379 5402 return scm_from_double (floor (SCM_REAL_VALUE (x)));
f92e85f7
MV
5403 else if (SCM_FRACTIONP (x))
5404 {
5405 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5406 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5407 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5408 {
5409 /* For positive x, rounding towards zero is correct. */
5410 return q;
5411 }
5412 else
5413 {
5414 /* For negative x, we need to return q-1 unless x is an
5415 integer. But fractions are never integer, per our
5416 assumptions. */
d956fa6f 5417 return scm_difference (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5418 }
5419 }
5420 else
5421 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5422}
5423#undef FUNC_NAME
5424
5425SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5426 (SCM x),
5427 "Round the number @var{x} towards infinity.")
5428#define FUNC_NAME s_scm_ceiling
5429{
e11e83f3 5430 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5431 return x;
5432 else if (SCM_REALP (x))
55f26379 5433 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
f92e85f7
MV
5434 else if (SCM_FRACTIONP (x))
5435 {
5436 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5437 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5438 if (scm_is_false (scm_positive_p (x)))
f92e85f7
MV
5439 {
5440 /* For negative x, rounding towards zero is correct. */
5441 return q;
5442 }
5443 else
5444 {
5445 /* For positive x, we need to return q+1 unless x is an
5446 integer. But fractions are never integer, per our
5447 assumptions. */
d956fa6f 5448 return scm_sum (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5449 }
5450 }
5451 else
5452 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5453}
5454#undef FUNC_NAME
0f2d19dd 5455
ad79736c
AW
5456/* sin/cos/tan/asin/acos/atan
5457 sinh/cosh/tanh/asinh/acosh/atanh
5458 Derived from "Transcen.scm", Complex trancendental functions for SCM.
5459 Written by Jerry D. Hedden, (C) FSF.
5460 See the file `COPYING' for terms applying to this program. */
0f2d19dd 5461
6fc4d012 5462SCM_DEFINE (scm_expt, "expt", 2, 0, 0,
27c37006 5463 (SCM x, SCM y),
6fc4d012
AW
5464 "Return @var{x} raised to the power of @var{y}.")
5465#define FUNC_NAME s_scm_expt
0f2d19dd 5466{
6fc4d012
AW
5467 if (!SCM_INEXACTP (y) && scm_is_integer (y))
5468 return scm_integer_expt (x, y);
5469 else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
5470 {
5471 return scm_from_double (pow (scm_to_double (x), scm_to_double (y)));
5472 }
5473 else
5474 return scm_exp (scm_product (scm_log (x), y));
0f2d19dd 5475}
1bbd0b84 5476#undef FUNC_NAME
0f2d19dd 5477
ad79736c
AW
5478SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
5479 (SCM z),
5480 "Compute the sine of @var{z}.")
5481#define FUNC_NAME s_scm_sin
5482{
5483 if (scm_is_real (z))
5484 return scm_from_double (sin (scm_to_double (z)));
5485 else if (SCM_COMPLEXP (z))
5486 { double x, y;
5487 x = SCM_COMPLEX_REAL (z);
5488 y = SCM_COMPLEX_IMAG (z);
5489 return scm_c_make_rectangular (sin (x) * cosh (y),
5490 cos (x) * sinh (y));
5491 }
5492 else
5493 SCM_WTA_DISPATCH_1 (g_scm_sin, z, 1, s_scm_sin);
5494}
5495#undef FUNC_NAME
0f2d19dd 5496
ad79736c
AW
5497SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
5498 (SCM z),
5499 "Compute the cosine of @var{z}.")
5500#define FUNC_NAME s_scm_cos
5501{
5502 if (scm_is_real (z))
5503 return scm_from_double (cos (scm_to_double (z)));
5504 else if (SCM_COMPLEXP (z))
5505 { double x, y;
5506 x = SCM_COMPLEX_REAL (z);
5507 y = SCM_COMPLEX_IMAG (z);
5508 return scm_c_make_rectangular (cos (x) * cosh (y),
5509 -sin (x) * sinh (y));
5510 }
5511 else
5512 SCM_WTA_DISPATCH_1 (g_scm_cos, z, 1, s_scm_cos);
5513}
5514#undef FUNC_NAME
5515
5516SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
5517 (SCM z),
5518 "Compute the tangent of @var{z}.")
5519#define FUNC_NAME s_scm_tan
0f2d19dd 5520{
ad79736c
AW
5521 if (scm_is_real (z))
5522 return scm_from_double (tan (scm_to_double (z)));
5523 else if (SCM_COMPLEXP (z))
5524 { double x, y, w;
5525 x = 2.0 * SCM_COMPLEX_REAL (z);
5526 y = 2.0 * SCM_COMPLEX_IMAG (z);
5527 w = cos (x) + cosh (y);
5528#ifndef ALLOW_DIVIDE_BY_ZERO
5529 if (w == 0.0)
5530 scm_num_overflow (s_scm_tan);
5531#endif
5532 return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
5533 }
5534 else
5535 SCM_WTA_DISPATCH_1 (g_scm_tan, z, 1, s_scm_tan);
5536}
5537#undef FUNC_NAME
5538
5539SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
5540 (SCM z),
5541 "Compute the hyperbolic sine of @var{z}.")
5542#define FUNC_NAME s_scm_sinh
5543{
5544 if (scm_is_real (z))
5545 return scm_from_double (sinh (scm_to_double (z)));
5546 else if (SCM_COMPLEXP (z))
5547 { double x, y;
5548 x = SCM_COMPLEX_REAL (z);
5549 y = SCM_COMPLEX_IMAG (z);
5550 return scm_c_make_rectangular (sinh (x) * cos (y),
5551 cosh (x) * sin (y));
5552 }
5553 else
5554 SCM_WTA_DISPATCH_1 (g_scm_sinh, z, 1, s_scm_sinh);
5555}
5556#undef FUNC_NAME
5557
5558SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
5559 (SCM z),
5560 "Compute the hyperbolic cosine of @var{z}.")
5561#define FUNC_NAME s_scm_cosh
5562{
5563 if (scm_is_real (z))
5564 return scm_from_double (cosh (scm_to_double (z)));
5565 else if (SCM_COMPLEXP (z))
5566 { double x, y;
5567 x = SCM_COMPLEX_REAL (z);
5568 y = SCM_COMPLEX_IMAG (z);
5569 return scm_c_make_rectangular (cosh (x) * cos (y),
5570 sinh (x) * sin (y));
5571 }
5572 else
5573 SCM_WTA_DISPATCH_1 (g_scm_cosh, z, 1, s_scm_cosh);
5574}
5575#undef FUNC_NAME
5576
5577SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
5578 (SCM z),
5579 "Compute the hyperbolic tangent of @var{z}.")
5580#define FUNC_NAME s_scm_tanh
5581{
5582 if (scm_is_real (z))
5583 return scm_from_double (tanh (scm_to_double (z)));
5584 else if (SCM_COMPLEXP (z))
5585 { double x, y, w;
5586 x = 2.0 * SCM_COMPLEX_REAL (z);
5587 y = 2.0 * SCM_COMPLEX_IMAG (z);
5588 w = cosh (x) + cos (y);
5589#ifndef ALLOW_DIVIDE_BY_ZERO
5590 if (w == 0.0)
5591 scm_num_overflow (s_scm_tanh);
5592#endif
5593 return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
5594 }
5595 else
5596 SCM_WTA_DISPATCH_1 (g_scm_tanh, z, 1, s_scm_tanh);
5597}
5598#undef FUNC_NAME
5599
5600SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
5601 (SCM z),
5602 "Compute the arc sine of @var{z}.")
5603#define FUNC_NAME s_scm_asin
5604{
5605 if (scm_is_real (z))
5606 {
5607 double w = scm_to_double (z);
5608 if (w >= -1.0 && w <= 1.0)
5609 return scm_from_double (asin (w));
5610 else
5611 return scm_product (scm_c_make_rectangular (0, -1),
5612 scm_sys_asinh (scm_c_make_rectangular (0, w)));
5613 }
5614 else if (SCM_COMPLEXP (z))
5615 { double x, y;
5616 x = SCM_COMPLEX_REAL (z);
5617 y = SCM_COMPLEX_IMAG (z);
5618 return scm_product (scm_c_make_rectangular (0, -1),
5619 scm_sys_asinh (scm_c_make_rectangular (-y, x)));
5620 }
5621 else
5622 SCM_WTA_DISPATCH_1 (g_scm_asin, z, 1, s_scm_asin);
5623}
5624#undef FUNC_NAME
5625
5626SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
5627 (SCM z),
5628 "Compute the arc cosine of @var{z}.")
5629#define FUNC_NAME s_scm_acos
5630{
5631 if (scm_is_real (z))
5632 {
5633 double w = scm_to_double (z);
5634 if (w >= -1.0 && w <= 1.0)
5635 return scm_from_double (acos (w));
5636 else
5637 return scm_sum (scm_from_double (acos (0.0)),
5638 scm_product (scm_c_make_rectangular (0, 1),
5639 scm_sys_asinh (scm_c_make_rectangular (0, w))));
5640 }
5641 else if (SCM_COMPLEXP (z))
5642 { double x, y;
5643 x = SCM_COMPLEX_REAL (z);
5644 y = SCM_COMPLEX_IMAG (z);
5645 return scm_sum (scm_from_double (acos (0.0)),
5646 scm_product (scm_c_make_rectangular (0, 1),
5647 scm_sys_asinh (scm_c_make_rectangular (-y, x))));
5648 }
5649 else
5650 SCM_WTA_DISPATCH_1 (g_scm_acos, z, 1, s_scm_acos);
5651}
5652#undef FUNC_NAME
5653
5654SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
5655 (SCM z, SCM y),
5656 "With one argument, compute the arc tangent of @var{z}.\n"
5657 "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
5658 "using the sign of @var{z} and @var{y} to determine the quadrant.")
5659#define FUNC_NAME s_scm_atan
5660{
5661 if (SCM_UNBNDP (y))
5662 {
5663 if (scm_is_real (z))
5664 return scm_from_double (atan (scm_to_double (z)));
5665 else if (SCM_COMPLEXP (z))
5666 {
5667 double v, w;
5668 v = SCM_COMPLEX_REAL (z);
5669 w = SCM_COMPLEX_IMAG (z);
5670 return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (v, w - 1.0),
5671 scm_c_make_rectangular (v, w + 1.0))),
5672 scm_c_make_rectangular (0, 2));
5673 }
5674 else
5675 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5676 }
5677 else if (scm_is_real (z))
5678 {
5679 if (scm_is_real (y))
5680 return scm_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
5681 else
5682 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
5683 }
5684 else
5685 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5686}
5687#undef FUNC_NAME
5688
5689SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
5690 (SCM z),
5691 "Compute the inverse hyperbolic sine of @var{z}.")
5692#define FUNC_NAME s_scm_sys_asinh
5693{
5694 if (scm_is_real (z))
5695 return scm_from_double (asinh (scm_to_double (z)));
5696 else if (scm_is_number (z))
5697 return scm_log (scm_sum (z,
5698 scm_sqrt (scm_sum (scm_product (z, z),
5699 SCM_I_MAKINUM (1)))));
5700 else
5701 SCM_WTA_DISPATCH_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
5702}
5703#undef FUNC_NAME
5704
5705SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
5706 (SCM z),
5707 "Compute the inverse hyperbolic cosine of @var{z}.")
5708#define FUNC_NAME s_scm_sys_acosh
5709{
5710 if (scm_is_real (z) && scm_to_double (z) >= 1.0)
5711 return scm_from_double (acosh (scm_to_double (z)));
5712 else if (scm_is_number (z))
5713 return scm_log (scm_sum (z,
5714 scm_sqrt (scm_difference (scm_product (z, z),
5715 SCM_I_MAKINUM (1)))));
5716 else
5717 SCM_WTA_DISPATCH_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
5718}
5719#undef FUNC_NAME
5720
5721SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
5722 (SCM z),
5723 "Compute the inverse hyperbolic tangent of @var{z}.")
5724#define FUNC_NAME s_scm_sys_atanh
5725{
5726 if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
5727 return scm_from_double (atanh (scm_to_double (z)));
5728 else if (scm_is_number (z))
5729 return scm_divide (scm_log (scm_divide (scm_sum (SCM_I_MAKINUM (1), z),
5730 scm_difference (SCM_I_MAKINUM (1), z))),
5731 SCM_I_MAKINUM (2));
5732 else
5733 SCM_WTA_DISPATCH_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
0f2d19dd 5734}
1bbd0b84 5735#undef FUNC_NAME
0f2d19dd 5736
8507ec80
MV
5737SCM
5738scm_c_make_rectangular (double re, double im)
5739{
5740 if (im == 0.0)
5741 return scm_from_double (re);
5742 else
5743 {
5744 SCM z;
92d8fd32
LC
5745 SCM_NEWSMOB (z, scm_tc16_complex,
5746 scm_gc_malloc_pointerless (sizeof (scm_t_complex),
5747 "complex"));
8507ec80
MV
5748 SCM_COMPLEX_REAL (z) = re;
5749 SCM_COMPLEX_IMAG (z) = im;
5750 return z;
5751 }
5752}
0f2d19dd 5753
a1ec6916 5754SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
a2c25234
LC
5755 (SCM real_part, SCM imaginary_part),
5756 "Return a complex number constructed of the given @var{real-part} "
5757 "and @var{imaginary-part} parts.")
1bbd0b84 5758#define FUNC_NAME s_scm_make_rectangular
0f2d19dd 5759{
ad79736c
AW
5760 SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
5761 SCM_ARG1, FUNC_NAME, "real");
5762 SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
5763 SCM_ARG2, FUNC_NAME, "real");
5764 return scm_c_make_rectangular (scm_to_double (real_part),
5765 scm_to_double (imaginary_part));
0f2d19dd 5766}
1bbd0b84 5767#undef FUNC_NAME
0f2d19dd 5768
8507ec80
MV
5769SCM
5770scm_c_make_polar (double mag, double ang)
5771{
5772 double s, c;
5e647d08
LC
5773
5774 /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
5775 use it on Glibc-based systems that have it (it's a GNU extension). See
5776 http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
5777 details. */
5778#if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
8507ec80
MV
5779 sincos (ang, &s, &c);
5780#else
5781 s = sin (ang);
5782 c = cos (ang);
5783#endif
5784 return scm_c_make_rectangular (mag * c, mag * s);
5785}
0f2d19dd 5786
a1ec6916 5787SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
27c37006 5788 (SCM x, SCM y),
942e5b91 5789 "Return the complex number @var{x} * e^(i * @var{y}).")
1bbd0b84 5790#define FUNC_NAME s_scm_make_polar
0f2d19dd 5791{
ad79736c
AW
5792 SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
5793 SCM_ASSERT_TYPE (scm_is_real (y), y, SCM_ARG2, FUNC_NAME, "real");
5794 return scm_c_make_polar (scm_to_double (x), scm_to_double (y));
0f2d19dd 5795}
1bbd0b84 5796#undef FUNC_NAME
0f2d19dd
JB
5797
5798
152f82bf 5799SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
942e5b91
MG
5800/* "Return the real part of the number @var{z}."
5801 */
0f2d19dd 5802SCM
6e8d25a6 5803scm_real_part (SCM z)
0f2d19dd 5804{
e11e83f3 5805 if (SCM_I_INUMP (z))
c2ff8ab0 5806 return z;
0aacf84e 5807 else if (SCM_BIGP (z))
c2ff8ab0 5808 return z;
0aacf84e 5809 else if (SCM_REALP (z))
c2ff8ab0 5810 return z;
0aacf84e 5811 else if (SCM_COMPLEXP (z))
55f26379 5812 return scm_from_double (SCM_COMPLEX_REAL (z));
f92e85f7 5813 else if (SCM_FRACTIONP (z))
2fa2d879 5814 return z;
0aacf84e 5815 else
c2ff8ab0 5816 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
0f2d19dd
JB
5817}
5818
5819
152f82bf 5820SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
942e5b91
MG
5821/* "Return the imaginary part of the number @var{z}."
5822 */
0f2d19dd 5823SCM
6e8d25a6 5824scm_imag_part (SCM z)
0f2d19dd 5825{
e11e83f3 5826 if (SCM_I_INUMP (z))
f872b822 5827 return SCM_INUM0;
0aacf84e 5828 else if (SCM_BIGP (z))
f872b822 5829 return SCM_INUM0;
0aacf84e 5830 else if (SCM_REALP (z))
c2ff8ab0 5831 return scm_flo0;
0aacf84e 5832 else if (SCM_COMPLEXP (z))
55f26379 5833 return scm_from_double (SCM_COMPLEX_IMAG (z));
f92e85f7
MV
5834 else if (SCM_FRACTIONP (z))
5835 return SCM_INUM0;
0aacf84e 5836 else
c2ff8ab0 5837 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
0f2d19dd
JB
5838}
5839
f92e85f7
MV
5840SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5841/* "Return the numerator of the number @var{z}."
5842 */
5843SCM
5844scm_numerator (SCM z)
5845{
e11e83f3 5846 if (SCM_I_INUMP (z))
f92e85f7
MV
5847 return z;
5848 else if (SCM_BIGP (z))
5849 return z;
5850 else if (SCM_FRACTIONP (z))
e2bf3b19 5851 return SCM_FRACTION_NUMERATOR (z);
f92e85f7
MV
5852 else if (SCM_REALP (z))
5853 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5854 else
5855 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5856}
5857
5858
5859SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5860/* "Return the denominator of the number @var{z}."
5861 */
5862SCM
5863scm_denominator (SCM z)
5864{
e11e83f3 5865 if (SCM_I_INUMP (z))
d956fa6f 5866 return SCM_I_MAKINUM (1);
f92e85f7 5867 else if (SCM_BIGP (z))
d956fa6f 5868 return SCM_I_MAKINUM (1);
f92e85f7 5869 else if (SCM_FRACTIONP (z))
e2bf3b19 5870 return SCM_FRACTION_DENOMINATOR (z);
f92e85f7
MV
5871 else if (SCM_REALP (z))
5872 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5873 else
5874 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5875}
0f2d19dd 5876
9de33deb 5877SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
942e5b91
MG
5878/* "Return the magnitude of the number @var{z}. This is the same as\n"
5879 * "@code{abs} for real arguments, but also allows complex numbers."
5880 */
0f2d19dd 5881SCM
6e8d25a6 5882scm_magnitude (SCM z)
0f2d19dd 5883{
e11e83f3 5884 if (SCM_I_INUMP (z))
0aacf84e 5885 {
e11e83f3 5886 long int zz = SCM_I_INUM (z);
0aacf84e
MD
5887 if (zz >= 0)
5888 return z;
5889 else if (SCM_POSFIXABLE (-zz))
d956fa6f 5890 return SCM_I_MAKINUM (-zz);
0aacf84e
MD
5891 else
5892 return scm_i_long2big (-zz);
5986c47d 5893 }
0aacf84e
MD
5894 else if (SCM_BIGP (z))
5895 {
5896 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5897 scm_remember_upto_here_1 (z);
5898 if (sgn < 0)
5899 return scm_i_clonebig (z, 0);
5900 else
5901 return z;
5986c47d 5902 }
0aacf84e 5903 else if (SCM_REALP (z))
55f26379 5904 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
0aacf84e 5905 else if (SCM_COMPLEXP (z))
55f26379 5906 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
f92e85f7
MV
5907 else if (SCM_FRACTIONP (z))
5908 {
73e4de09 5909 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 5910 return z;
cba42c93 5911 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
f92e85f7
MV
5912 SCM_FRACTION_DENOMINATOR (z));
5913 }
0aacf84e 5914 else
c2ff8ab0 5915 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
0f2d19dd
JB
5916}
5917
5918
9de33deb 5919SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
942e5b91
MG
5920/* "Return the angle of the complex number @var{z}."
5921 */
0f2d19dd 5922SCM
6e8d25a6 5923scm_angle (SCM z)
0f2d19dd 5924{
c8ae173e 5925 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
55f26379 5926 scm_flo0 to save allocating a new flonum with scm_from_double each time.
c8ae173e
KR
5927 But if atan2 follows the floating point rounding mode, then the value
5928 is not a constant. Maybe it'd be close enough though. */
e11e83f3 5929 if (SCM_I_INUMP (z))
0aacf84e 5930 {
e11e83f3 5931 if (SCM_I_INUM (z) >= 0)
c8ae173e 5932 return scm_flo0;
0aacf84e 5933 else
55f26379 5934 return scm_from_double (atan2 (0.0, -1.0));
f872b822 5935 }
0aacf84e
MD
5936 else if (SCM_BIGP (z))
5937 {
5938 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5939 scm_remember_upto_here_1 (z);
5940 if (sgn < 0)
55f26379 5941 return scm_from_double (atan2 (0.0, -1.0));
0aacf84e 5942 else
c8ae173e 5943 return scm_flo0;
0f2d19dd 5944 }
0aacf84e 5945 else if (SCM_REALP (z))
c8ae173e
KR
5946 {
5947 if (SCM_REAL_VALUE (z) >= 0)
5948 return scm_flo0;
5949 else
55f26379 5950 return scm_from_double (atan2 (0.0, -1.0));
c8ae173e 5951 }
0aacf84e 5952 else if (SCM_COMPLEXP (z))
55f26379 5953 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
f92e85f7
MV
5954 else if (SCM_FRACTIONP (z))
5955 {
73e4de09 5956 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 5957 return scm_flo0;
55f26379 5958 else return scm_from_double (atan2 (0.0, -1.0));
f92e85f7 5959 }
0aacf84e 5960 else
f4c627b3 5961 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
0f2d19dd
JB
5962}
5963
5964
3c9a524f
DH
5965SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5966/* Convert the number @var{x} to its inexact representation.\n"
5967 */
5968SCM
5969scm_exact_to_inexact (SCM z)
5970{
e11e83f3 5971 if (SCM_I_INUMP (z))
55f26379 5972 return scm_from_double ((double) SCM_I_INUM (z));
3c9a524f 5973 else if (SCM_BIGP (z))
55f26379 5974 return scm_from_double (scm_i_big2dbl (z));
f92e85f7 5975 else if (SCM_FRACTIONP (z))
55f26379 5976 return scm_from_double (scm_i_fraction2double (z));
3c9a524f
DH
5977 else if (SCM_INEXACTP (z))
5978 return z;
5979 else
5980 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5981}
5982
5983
a1ec6916 5984SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
1bbd0b84 5985 (SCM z),
1e6808ea 5986 "Return an exact number that is numerically closest to @var{z}.")
1bbd0b84 5987#define FUNC_NAME s_scm_inexact_to_exact
0f2d19dd 5988{
e11e83f3 5989 if (SCM_I_INUMP (z))
f872b822 5990 return z;
0aacf84e 5991 else if (SCM_BIGP (z))
f872b822 5992 return z;
0aacf84e
MD
5993 else if (SCM_REALP (z))
5994 {
f92e85f7
MV
5995 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
5996 SCM_OUT_OF_RANGE (1, z);
2be24db4 5997 else
f92e85f7
MV
5998 {
5999 mpq_t frac;
6000 SCM q;
6001
6002 mpq_init (frac);
6003 mpq_set_d (frac, SCM_REAL_VALUE (z));
cba42c93 6004 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
f92e85f7
MV
6005 scm_i_mpz2num (mpq_denref (frac)));
6006
cba42c93 6007 /* When scm_i_make_ratio throws, we leak the memory allocated
f92e85f7
MV
6008 for frac...
6009 */
6010 mpq_clear (frac);
6011 return q;
6012 }
c2ff8ab0 6013 }
f92e85f7
MV
6014 else if (SCM_FRACTIONP (z))
6015 return z;
0aacf84e 6016 else
c2ff8ab0 6017 SCM_WRONG_TYPE_ARG (1, z);
0f2d19dd 6018}
1bbd0b84 6019#undef FUNC_NAME
0f2d19dd 6020
f92e85f7 6021SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
76dae881
NJ
6022 (SCM x, SCM eps),
6023 "Returns the @emph{simplest} rational number differing\n"
6024 "from @var{x} by no more than @var{eps}.\n"
6025 "\n"
6026 "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
6027 "exact result when both its arguments are exact. Thus, you might need\n"
6028 "to use @code{inexact->exact} on the arguments.\n"
6029 "\n"
6030 "@lisp\n"
6031 "(rationalize (inexact->exact 1.2) 1/100)\n"
6032 "@result{} 6/5\n"
6033 "@end lisp")
f92e85f7
MV
6034#define FUNC_NAME s_scm_rationalize
6035{
e11e83f3 6036 if (SCM_I_INUMP (x))
f92e85f7
MV
6037 return x;
6038 else if (SCM_BIGP (x))
6039 return x;
6040 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
6041 {
6042 /* Use continued fractions to find closest ratio. All
6043 arithmetic is done with exact numbers.
6044 */
6045
6046 SCM ex = scm_inexact_to_exact (x);
6047 SCM int_part = scm_floor (ex);
d956fa6f
MV
6048 SCM tt = SCM_I_MAKINUM (1);
6049 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
6050 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
f92e85f7
MV
6051 SCM rx;
6052 int i = 0;
6053
73e4de09 6054 if (scm_is_true (scm_num_eq_p (ex, int_part)))
f92e85f7
MV
6055 return ex;
6056
6057 ex = scm_difference (ex, int_part); /* x = x-int_part */
6058 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
6059
6060 /* We stop after a million iterations just to be absolutely sure
6061 that we don't go into an infinite loop. The process normally
6062 converges after less than a dozen iterations.
6063 */
6064
76dae881 6065 eps = scm_abs (eps);
f92e85f7
MV
6066 while (++i < 1000000)
6067 {
6068 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
6069 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
73e4de09
MV
6070 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
6071 scm_is_false
f92e85f7 6072 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
76dae881 6073 eps))) /* abs(x-a/b) <= eps */
02164269
MV
6074 {
6075 SCM res = scm_sum (int_part, scm_divide (a, b));
73e4de09 6076 if (scm_is_false (scm_exact_p (x))
76dae881 6077 || scm_is_false (scm_exact_p (eps)))
02164269
MV
6078 return scm_exact_to_inexact (res);
6079 else
6080 return res;
6081 }
f92e85f7
MV
6082 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
6083 SCM_UNDEFINED);
6084 tt = scm_floor (rx); /* tt = floor (rx) */
6085 a2 = a1;
6086 b2 = b1;
6087 a1 = a;
6088 b1 = b;
6089 }
6090 scm_num_overflow (s_scm_rationalize);
6091 }
6092 else
6093 SCM_WRONG_TYPE_ARG (1, x);
6094}
6095#undef FUNC_NAME
6096
73e4de09
MV
6097/* conversion functions */
6098
6099int
6100scm_is_integer (SCM val)
6101{
6102 return scm_is_true (scm_integer_p (val));
6103}
6104
6105int
6106scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
6107{
e11e83f3 6108 if (SCM_I_INUMP (val))
73e4de09 6109 {
e11e83f3 6110 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
6111 return n >= min && n <= max;
6112 }
6113 else if (SCM_BIGP (val))
6114 {
6115 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
6116 return 0;
6117 else if (min >= LONG_MIN && max <= LONG_MAX)
d956fa6f
MV
6118 {
6119 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
6120 {
6121 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
6122 return n >= min && n <= max;
6123 }
6124 else
6125 return 0;
6126 }
73e4de09
MV
6127 else
6128 {
d956fa6f
MV
6129 scm_t_intmax n;
6130 size_t count;
73e4de09 6131
d956fa6f
MV
6132 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6133 > CHAR_BIT*sizeof (scm_t_uintmax))
6134 return 0;
6135
6136 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6137 SCM_I_BIG_MPZ (val));
73e4de09 6138
d956fa6f 6139 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
73e4de09 6140 {
d956fa6f
MV
6141 if (n < 0)
6142 return 0;
73e4de09 6143 }
73e4de09
MV
6144 else
6145 {
d956fa6f
MV
6146 n = -n;
6147 if (n >= 0)
6148 return 0;
73e4de09 6149 }
d956fa6f
MV
6150
6151 return n >= min && n <= max;
73e4de09
MV
6152 }
6153 }
73e4de09
MV
6154 else
6155 return 0;
6156}
6157
6158int
6159scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
6160{
e11e83f3 6161 if (SCM_I_INUMP (val))
73e4de09 6162 {
e11e83f3 6163 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
6164 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
6165 }
6166 else if (SCM_BIGP (val))
6167 {
6168 if (max <= SCM_MOST_POSITIVE_FIXNUM)
6169 return 0;
6170 else if (max <= ULONG_MAX)
d956fa6f
MV
6171 {
6172 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
6173 {
6174 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
6175 return n >= min && n <= max;
6176 }
6177 else
6178 return 0;
6179 }
73e4de09
MV
6180 else
6181 {
d956fa6f
MV
6182 scm_t_uintmax n;
6183 size_t count;
73e4de09 6184
d956fa6f
MV
6185 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
6186 return 0;
73e4de09 6187
d956fa6f
MV
6188 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6189 > CHAR_BIT*sizeof (scm_t_uintmax))
73e4de09 6190 return 0;
d956fa6f
MV
6191
6192 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6193 SCM_I_BIG_MPZ (val));
73e4de09 6194
d956fa6f 6195 return n >= min && n <= max;
73e4de09
MV
6196 }
6197 }
73e4de09
MV
6198 else
6199 return 0;
6200}
6201
1713d319
MV
6202static void
6203scm_i_range_error (SCM bad_val, SCM min, SCM max)
6204{
6205 scm_error (scm_out_of_range_key,
6206 NULL,
6207 "Value out of range ~S to ~S: ~S",
6208 scm_list_3 (min, max, bad_val),
6209 scm_list_1 (bad_val));
6210}
6211
bfd7932e
MV
6212#define TYPE scm_t_intmax
6213#define TYPE_MIN min
6214#define TYPE_MAX max
6215#define SIZEOF_TYPE 0
6216#define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
6217#define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
6218#include "libguile/conv-integer.i.c"
6219
6220#define TYPE scm_t_uintmax
6221#define TYPE_MIN min
6222#define TYPE_MAX max
6223#define SIZEOF_TYPE 0
6224#define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
6225#define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
6226#include "libguile/conv-uinteger.i.c"
6227
6228#define TYPE scm_t_int8
6229#define TYPE_MIN SCM_T_INT8_MIN
6230#define TYPE_MAX SCM_T_INT8_MAX
6231#define SIZEOF_TYPE 1
6232#define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
6233#define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
6234#include "libguile/conv-integer.i.c"
6235
6236#define TYPE scm_t_uint8
6237#define TYPE_MIN 0
6238#define TYPE_MAX SCM_T_UINT8_MAX
6239#define SIZEOF_TYPE 1
6240#define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
6241#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
6242#include "libguile/conv-uinteger.i.c"
6243
6244#define TYPE scm_t_int16
6245#define TYPE_MIN SCM_T_INT16_MIN
6246#define TYPE_MAX SCM_T_INT16_MAX
6247#define SIZEOF_TYPE 2
6248#define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
6249#define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
6250#include "libguile/conv-integer.i.c"
6251
6252#define TYPE scm_t_uint16
6253#define TYPE_MIN 0
6254#define TYPE_MAX SCM_T_UINT16_MAX
6255#define SIZEOF_TYPE 2
6256#define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
6257#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
6258#include "libguile/conv-uinteger.i.c"
6259
6260#define TYPE scm_t_int32
6261#define TYPE_MIN SCM_T_INT32_MIN
6262#define TYPE_MAX SCM_T_INT32_MAX
6263#define SIZEOF_TYPE 4
6264#define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
6265#define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
6266#include "libguile/conv-integer.i.c"
6267
6268#define TYPE scm_t_uint32
6269#define TYPE_MIN 0
6270#define TYPE_MAX SCM_T_UINT32_MAX
6271#define SIZEOF_TYPE 4
6272#define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
6273#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
6274#include "libguile/conv-uinteger.i.c"
6275
904a78f1
MG
6276#define TYPE scm_t_wchar
6277#define TYPE_MIN (scm_t_int32)-1
6278#define TYPE_MAX (scm_t_int32)0x10ffff
6279#define SIZEOF_TYPE 4
6280#define SCM_TO_TYPE_PROTO(arg) scm_to_wchar (arg)
6281#define SCM_FROM_TYPE_PROTO(arg) scm_from_wchar (arg)
6282#include "libguile/conv-integer.i.c"
6283
bfd7932e
MV
6284#if SCM_HAVE_T_INT64
6285
6286#define TYPE scm_t_int64
6287#define TYPE_MIN SCM_T_INT64_MIN
6288#define TYPE_MAX SCM_T_INT64_MAX
6289#define SIZEOF_TYPE 8
6290#define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
6291#define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
6292#include "libguile/conv-integer.i.c"
6293
6294#define TYPE scm_t_uint64
6295#define TYPE_MIN 0
6296#define TYPE_MAX SCM_T_UINT64_MAX
6297#define SIZEOF_TYPE 8
6298#define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
6299#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
6300#include "libguile/conv-uinteger.i.c"
73e4de09 6301
bfd7932e 6302#endif
73e4de09 6303
cd036260
MV
6304void
6305scm_to_mpz (SCM val, mpz_t rop)
6306{
6307 if (SCM_I_INUMP (val))
6308 mpz_set_si (rop, SCM_I_INUM (val));
6309 else if (SCM_BIGP (val))
6310 mpz_set (rop, SCM_I_BIG_MPZ (val));
6311 else
6312 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
6313}
6314
6315SCM
6316scm_from_mpz (mpz_t val)
6317{
6318 return scm_i_mpz2num (val);
6319}
6320
73e4de09
MV
6321int
6322scm_is_real (SCM val)
6323{
6324 return scm_is_true (scm_real_p (val));
6325}
6326
55f26379
MV
6327int
6328scm_is_rational (SCM val)
6329{
6330 return scm_is_true (scm_rational_p (val));
6331}
6332
73e4de09
MV
6333double
6334scm_to_double (SCM val)
6335{
55f26379
MV
6336 if (SCM_I_INUMP (val))
6337 return SCM_I_INUM (val);
6338 else if (SCM_BIGP (val))
6339 return scm_i_big2dbl (val);
6340 else if (SCM_FRACTIONP (val))
6341 return scm_i_fraction2double (val);
6342 else if (SCM_REALP (val))
6343 return SCM_REAL_VALUE (val);
6344 else
7a1aba42 6345 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
73e4de09
MV
6346}
6347
6348SCM
6349scm_from_double (double val)
6350{
55f26379
MV
6351 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
6352 SCM_REAL_VALUE (z) = val;
6353 return z;
73e4de09
MV
6354}
6355
55f26379
MV
6356#if SCM_ENABLE_DISCOURAGED == 1
6357
6358float
6359scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
6360{
6361 if (SCM_BIGP (num))
6362 {
6363 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
6364 if (!xisinf (res))
6365 return res;
6366 else
6367 scm_out_of_range (NULL, num);
6368 }
6369 else
6370 return scm_to_double (num);
6371}
6372
6373double
6374scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
6375{
6376 if (SCM_BIGP (num))
6377 {
6378 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
6379 if (!xisinf (res))
6380 return res;
6381 else
6382 scm_out_of_range (NULL, num);
6383 }
6384 else
6385 return scm_to_double (num);
6386}
6387
6388#endif
6389
8507ec80
MV
6390int
6391scm_is_complex (SCM val)
6392{
6393 return scm_is_true (scm_complex_p (val));
6394}
6395
6396double
6397scm_c_real_part (SCM z)
6398{
6399 if (SCM_COMPLEXP (z))
6400 return SCM_COMPLEX_REAL (z);
6401 else
6402 {
6403 /* Use the scm_real_part to get proper error checking and
6404 dispatching.
6405 */
6406 return scm_to_double (scm_real_part (z));
6407 }
6408}
6409
6410double
6411scm_c_imag_part (SCM z)
6412{
6413 if (SCM_COMPLEXP (z))
6414 return SCM_COMPLEX_IMAG (z);
6415 else
6416 {
6417 /* Use the scm_imag_part to get proper error checking and
6418 dispatching. The result will almost always be 0.0, but not
6419 always.
6420 */
6421 return scm_to_double (scm_imag_part (z));
6422 }
6423}
6424
6425double
6426scm_c_magnitude (SCM z)
6427{
6428 return scm_to_double (scm_magnitude (z));
6429}
6430
6431double
6432scm_c_angle (SCM z)
6433{
6434 return scm_to_double (scm_angle (z));
6435}
6436
6437int
6438scm_is_number (SCM z)
6439{
6440 return scm_is_true (scm_number_p (z));
6441}
6442
8ab3d8a0
KR
6443
6444/* In the following functions we dispatch to the real-arg funcs like log()
6445 when we know the arg is real, instead of just handing everything to
6446 clog() for instance. This is in case clog() doesn't optimize for a
6447 real-only case, and because we have to test SCM_COMPLEXP anyway so may as
6448 well use it to go straight to the applicable C func. */
6449
6450SCM_DEFINE (scm_log, "log", 1, 0, 0,
6451 (SCM z),
6452 "Return the natural logarithm of @var{z}.")
6453#define FUNC_NAME s_scm_log
6454{
6455 if (SCM_COMPLEXP (z))
6456 {
4b26c03e 6457#if HAVE_COMPLEX_DOUBLE && HAVE_CLOG && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6458 return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
6459#else
6460 double re = SCM_COMPLEX_REAL (z);
6461 double im = SCM_COMPLEX_IMAG (z);
6462 return scm_c_make_rectangular (log (hypot (re, im)),
6463 atan2 (im, re));
6464#endif
6465 }
6466 else
6467 {
6468 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6469 although the value itself overflows. */
6470 double re = scm_to_double (z);
6471 double l = log (fabs (re));
6472 if (re >= 0.0)
6473 return scm_from_double (l);
6474 else
6475 return scm_c_make_rectangular (l, M_PI);
6476 }
6477}
6478#undef FUNC_NAME
6479
6480
6481SCM_DEFINE (scm_log10, "log10", 1, 0, 0,
6482 (SCM z),
6483 "Return the base 10 logarithm of @var{z}.")
6484#define FUNC_NAME s_scm_log10
6485{
6486 if (SCM_COMPLEXP (z))
6487 {
6488 /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
6489 clog() and a multiply by M_LOG10E, rather than the fallback
6490 log10+hypot+atan2.) */
4b26c03e 6491#if HAVE_COMPLEX_DOUBLE && HAVE_CLOG10 && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6492 return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
6493#else
6494 double re = SCM_COMPLEX_REAL (z);
6495 double im = SCM_COMPLEX_IMAG (z);
6496 return scm_c_make_rectangular (log10 (hypot (re, im)),
6497 M_LOG10E * atan2 (im, re));
6498#endif
6499 }
6500 else
6501 {
6502 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6503 although the value itself overflows. */
6504 double re = scm_to_double (z);
6505 double l = log10 (fabs (re));
6506 if (re >= 0.0)
6507 return scm_from_double (l);
6508 else
6509 return scm_c_make_rectangular (l, M_LOG10E * M_PI);
6510 }
6511}
6512#undef FUNC_NAME
6513
6514
6515SCM_DEFINE (scm_exp, "exp", 1, 0, 0,
6516 (SCM z),
6517 "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
6518 "base of natural logarithms (2.71828@dots{}).")
6519#define FUNC_NAME s_scm_exp
6520{
6521 if (SCM_COMPLEXP (z))
6522 {
4b26c03e 6523#if HAVE_COMPLEX_DOUBLE && HAVE_CEXP && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6524 return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
6525#else
6526 return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
6527 SCM_COMPLEX_IMAG (z));
6528#endif
6529 }
6530 else
6531 {
6532 /* When z is a negative bignum the conversion to double overflows,
6533 giving -infinity, but that's ok, the exp is still 0.0. */
6534 return scm_from_double (exp (scm_to_double (z)));
6535 }
6536}
6537#undef FUNC_NAME
6538
6539
6540SCM_DEFINE (scm_sqrt, "sqrt", 1, 0, 0,
6541 (SCM x),
6542 "Return the square root of @var{z}. Of the two possible roots\n"
6543 "(positive and negative), the one with the a positive real part\n"
6544 "is returned, or if that's zero then a positive imaginary part.\n"
6545 "Thus,\n"
6546 "\n"
6547 "@example\n"
6548 "(sqrt 9.0) @result{} 3.0\n"
6549 "(sqrt -9.0) @result{} 0.0+3.0i\n"
6550 "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
6551 "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
6552 "@end example")
6553#define FUNC_NAME s_scm_sqrt
6554{
6555 if (SCM_COMPLEXP (x))
6556 {
4b26c03e 6557#if HAVE_COMPLEX_DOUBLE && HAVE_USABLE_CSQRT && defined (SCM_COMPLEX_VALUE)
8ab3d8a0
KR
6558 return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (x)));
6559#else
6560 double re = SCM_COMPLEX_REAL (x);
6561 double im = SCM_COMPLEX_IMAG (x);
6562 return scm_c_make_polar (sqrt (hypot (re, im)),
6563 0.5 * atan2 (im, re));
6564#endif
6565 }
6566 else
6567 {
6568 double xx = scm_to_double (x);
6569 if (xx < 0)
6570 return scm_c_make_rectangular (0.0, sqrt (-xx));
6571 else
6572 return scm_from_double (sqrt (xx));
6573 }
6574}
6575#undef FUNC_NAME
6576
6577
6578
0f2d19dd
JB
6579void
6580scm_init_numbers ()
0f2d19dd 6581{
0b799eea
MV
6582 int i;
6583
713a4259
KR
6584 mpz_init_set_si (z_negative_one, -1);
6585
a261c0e9
DH
6586 /* It may be possible to tune the performance of some algorithms by using
6587 * the following constants to avoid the creation of bignums. Please, before
6588 * using these values, remember the two rules of program optimization:
6589 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
86d31dfe 6590 scm_c_define ("most-positive-fixnum",
d956fa6f 6591 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
86d31dfe 6592 scm_c_define ("most-negative-fixnum",
d956fa6f 6593 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
a261c0e9 6594
f3ae5d60
MD
6595 scm_add_feature ("complex");
6596 scm_add_feature ("inexact");
55f26379 6597 scm_flo0 = scm_from_double (0.0);
0b799eea
MV
6598
6599 /* determine floating point precision */
55f26379 6600 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
0b799eea
MV
6601 {
6602 init_dblprec(&scm_dblprec[i-2],i);
6603 init_fx_radix(fx_per_radix[i-2],i);
6604 }
f872b822 6605#ifdef DBL_DIG
0b799eea 6606 /* hard code precision for base 10 if the preprocessor tells us to... */
f39448c5 6607 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
0b799eea 6608#endif
1be6b49c 6609
f39448c5 6610 exactly_one_half = scm_divide (SCM_I_MAKINUM (1), SCM_I_MAKINUM (2));
a0599745 6611#include "libguile/numbers.x"
0f2d19dd 6612}
89e00824
ML
6613
6614/*
6615 Local Variables:
6616 c-file-style: "gnu"
6617 End:
6618*/