Copyedits and updates for Emacs manual's first few chapters.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
73b0cd50 2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
8cabe764 3 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
9ec0b715 7GNU Emacs is free software: you can redistribute it and/or modify
7146af97 8it under the terms of the GNU General Public License as published by
9ec0b715
GM
9the Free Software Foundation, either version 3 of the License, or
10(at your option) any later version.
7146af97
JB
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
9ec0b715 18along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 19
18160b98 20#include <config.h>
e9b309ac 21#include <stdio.h>
ab6780cd 22#include <limits.h> /* For CHAR_BIT. */
d7306fe6 23#include <setjmp.h>
92939d31 24
68c45bf0 25#include <signal.h>
92939d31 26
ae9e757a 27#ifdef HAVE_PTHREAD
aa477689
JD
28#include <pthread.h>
29#endif
30
7539e11f
KR
31/* This file is part of the core Lisp implementation, and thus must
32 deal with the real data structures. If the Lisp implementation is
33 replaced, this file likely will not be used. */
2e471eb5 34
7539e11f 35#undef HIDE_LISP_IMPLEMENTATION
7146af97 36#include "lisp.h"
ece93c02 37#include "process.h"
d5e35230 38#include "intervals.h"
4c0be5f4 39#include "puresize.h"
7146af97
JB
40#include "buffer.h"
41#include "window.h"
2538fae4 42#include "keyboard.h"
502b9b64 43#include "frame.h"
9ac0d9e0 44#include "blockinput.h"
9d80e883 45#include "character.h"
e065a56e 46#include "syssignal.h"
4a729fd8 47#include "termhooks.h" /* For struct terminal. */
34400008 48#include <setjmp.h>
0065d054 49#include <verify.h>
e065a56e 50
6b61353c
KH
51/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
52 memory. Can do this only if using gmalloc.c. */
53
54#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
55#undef GC_MALLOC_CHECK
56#endif
57
bf952fb6 58#include <unistd.h>
4004364e 59#ifndef HAVE_UNISTD_H
bf952fb6
DL
60extern POINTER_TYPE *sbrk ();
61#endif
ee1eea5c 62
de7124a7 63#include <fcntl.h>
de7124a7 64
69666f77 65#ifdef WINDOWSNT
f892cf9c 66#include "w32.h"
69666f77
EZ
67#endif
68
d1658221 69#ifdef DOUG_LEA_MALLOC
2e471eb5 70
d1658221 71#include <malloc.h>
81d492d5 72
2e471eb5
GM
73/* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
81d492d5
RS
76#define MMAP_MAX_AREAS 100000000
77
2e471eb5
GM
78#else /* not DOUG_LEA_MALLOC */
79
276cbe5a
RS
80/* The following come from gmalloc.c. */
81
5e927815
PE
82extern size_t _bytes_used;
83extern size_t __malloc_extra_blocks;
2e471eb5
GM
84
85#endif /* not DOUG_LEA_MALLOC */
276cbe5a 86
7bc26fdb 87#if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
ae9e757a 88#ifdef HAVE_PTHREAD
aa477689 89
f415cacd
JD
90/* When GTK uses the file chooser dialog, different backends can be loaded
91 dynamically. One such a backend is the Gnome VFS backend that gets loaded
92 if you run Gnome. That backend creates several threads and also allocates
93 memory with malloc.
94
ae9e757a
JD
95 Also, gconf and gsettings may create several threads.
96
f415cacd
JD
97 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
98 functions below are called from malloc, there is a chance that one
99 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 100 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
101 that the backend handles concurrent access to malloc within its own threads
102 but Emacs code running in the main thread is not included in that control).
103
026cdede 104 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
105 happens in one of the backend threads we will have two threads that tries
106 to run Emacs code at once, and the code is not prepared for that.
107 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
108
aa477689 109static pthread_mutex_t alloc_mutex;
aa477689 110
959dc601
JD
111#define BLOCK_INPUT_ALLOC \
112 do \
113 { \
114 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 115 BLOCK_INPUT; \
959dc601
JD
116 pthread_mutex_lock (&alloc_mutex); \
117 } \
aa477689 118 while (0)
959dc601
JD
119#define UNBLOCK_INPUT_ALLOC \
120 do \
121 { \
122 pthread_mutex_unlock (&alloc_mutex); \
123 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 124 UNBLOCK_INPUT; \
959dc601 125 } \
aa477689
JD
126 while (0)
127
ae9e757a 128#else /* ! defined HAVE_PTHREAD */
aa477689
JD
129
130#define BLOCK_INPUT_ALLOC BLOCK_INPUT
131#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
132
ae9e757a 133#endif /* ! defined HAVE_PTHREAD */
7bc26fdb 134#endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
aa477689 135
2e471eb5
GM
136/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
137 to a struct Lisp_String. */
138
7cdee936
SM
139#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
140#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 141#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 142
eab3844f
PE
143#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
144#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
145#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
3ef06d12 146
7bc26fdb
PE
147/* Value is the number of bytes of S, a pointer to a struct Lisp_String.
148 Be careful during GC, because S->size contains the mark bit for
2e471eb5
GM
149 strings. */
150
3ef06d12 151#define GC_STRING_BYTES(S) (STRING_BYTES (S))
2e471eb5 152
29208e82
TT
153/* Global variables. */
154struct emacs_globals globals;
155
2e471eb5
GM
156/* Number of bytes of consing done since the last gc. */
157
0de4bb68 158EMACS_INT consing_since_gc;
7146af97 159
974aae61
RS
160/* Similar minimum, computed from Vgc_cons_percentage. */
161
162EMACS_INT gc_relative_threshold;
310ea200 163
24d8a105
RS
164/* Minimum number of bytes of consing since GC before next GC,
165 when memory is full. */
166
167EMACS_INT memory_full_cons_threshold;
168
2e471eb5
GM
169/* Nonzero during GC. */
170
7146af97
JB
171int gc_in_progress;
172
3de0effb
RS
173/* Nonzero means abort if try to GC.
174 This is for code which is written on the assumption that
175 no GC will happen, so as to verify that assumption. */
176
177int abort_on_gc;
178
34400008
GM
179/* Number of live and free conses etc. */
180
c0c5c8ae
PE
181static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
182static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
183static EMACS_INT total_free_floats, total_floats;
fd27a537 184
2e471eb5 185/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
186 out of memory. We keep one large block, four cons-blocks, and
187 two string blocks. */
2e471eb5 188
d3d47262 189static char *spare_memory[7];
276cbe5a 190
2b6148e4
PE
191/* Amount of spare memory to keep in large reserve block, or to see
192 whether this much is available when malloc fails on a larger request. */
2e471eb5 193
276cbe5a 194#define SPARE_MEMORY (1 << 14)
4d09bcf6 195
276cbe5a 196/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 197
276cbe5a
RS
198static int malloc_hysteresis;
199
1b8950e5
RS
200/* Initialize it to a nonzero value to force it into data space
201 (rather than bss space). That way unexec will remap it into text
202 space (pure), on some systems. We have not implemented the
203 remapping on more recent systems because this is less important
204 nowadays than in the days of small memories and timesharing. */
2e471eb5 205
244ed907
PE
206#ifndef VIRT_ADDR_VARIES
207static
208#endif
2c4685ee 209EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 210#define PUREBEG (char *) pure
2e471eb5 211
9e713715 212/* Pointer to the pure area, and its size. */
2e471eb5 213
9e713715 214static char *purebeg;
903fe15d 215static ptrdiff_t pure_size;
9e713715
GM
216
217/* Number of bytes of pure storage used before pure storage overflowed.
218 If this is non-zero, this implies that an overflow occurred. */
219
903fe15d 220static ptrdiff_t pure_bytes_used_before_overflow;
7146af97 221
34400008
GM
222/* Value is non-zero if P points into pure space. */
223
224#define PURE_POINTER_P(P) \
225 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 226 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 227 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 228 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 229
e5bc14d4
YM
230/* Index in pure at which next pure Lisp object will be allocated.. */
231
232static EMACS_INT pure_bytes_used_lisp;
233
234/* Number of bytes allocated for non-Lisp objects in pure storage. */
235
236static EMACS_INT pure_bytes_used_non_lisp;
237
2e471eb5
GM
238/* If nonzero, this is a warning delivered by malloc and not yet
239 displayed. */
240
a8fe7202 241const char *pending_malloc_warning;
7146af97
JB
242
243/* Maximum amount of C stack to save when a GC happens. */
244
245#ifndef MAX_SAVE_STACK
246#define MAX_SAVE_STACK 16000
247#endif
248
249/* Buffer in which we save a copy of the C stack at each GC. */
250
dd3f25f7 251#if MAX_SAVE_STACK > 0
d3d47262 252static char *stack_copy;
903fe15d 253static ptrdiff_t stack_copy_size;
dd3f25f7 254#endif
7146af97 255
2e471eb5
GM
256/* Non-zero means ignore malloc warnings. Set during initialization.
257 Currently not used. */
258
d3d47262 259static int ignore_warnings;
350273a4 260
955cbe7b
PE
261static Lisp_Object Qgc_cons_threshold;
262Lisp_Object Qchar_table_extra_slots;
e8197642 263
9e713715
GM
264/* Hook run after GC has finished. */
265
955cbe7b 266static Lisp_Object Qpost_gc_hook;
2c5bd608 267
f57e2426
J
268static void mark_buffer (Lisp_Object);
269static void mark_terminals (void);
f57e2426
J
270static void gc_sweep (void);
271static void mark_glyph_matrix (struct glyph_matrix *);
272static void mark_face_cache (struct face_cache *);
41c28a37 273
69003fd8
PE
274#if !defined REL_ALLOC || defined SYSTEM_MALLOC
275static void refill_memory_reserve (void);
276#endif
f57e2426
J
277static struct Lisp_String *allocate_string (void);
278static void compact_small_strings (void);
279static void free_large_strings (void);
280static void sweep_strings (void);
244ed907 281static void free_misc (Lisp_Object);
34400008 282
34400008
GM
283/* When scanning the C stack for live Lisp objects, Emacs keeps track
284 of what memory allocated via lisp_malloc is intended for what
285 purpose. This enumeration specifies the type of memory. */
286
287enum mem_type
288{
289 MEM_TYPE_NON_LISP,
290 MEM_TYPE_BUFFER,
291 MEM_TYPE_CONS,
292 MEM_TYPE_STRING,
293 MEM_TYPE_MISC,
294 MEM_TYPE_SYMBOL,
295 MEM_TYPE_FLOAT,
9c545a55
SM
296 /* We used to keep separate mem_types for subtypes of vectors such as
297 process, hash_table, frame, terminal, and window, but we never made
298 use of the distinction, so it only caused source-code complexity
299 and runtime slowdown. Minor but pointless. */
300 MEM_TYPE_VECTORLIKE
34400008
GM
301};
302
f57e2426
J
303static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
304static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
225ccad6 305
24d8a105 306
877935b1 307#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
308
309#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
310#include <stdio.h> /* For fprintf. */
311#endif
312
313/* A unique object in pure space used to make some Lisp objects
314 on free lists recognizable in O(1). */
315
d3d47262 316static Lisp_Object Vdead;
0b378936 317
877935b1
GM
318#ifdef GC_MALLOC_CHECK
319
320enum mem_type allocated_mem_type;
d3d47262 321static int dont_register_blocks;
877935b1
GM
322
323#endif /* GC_MALLOC_CHECK */
324
325/* A node in the red-black tree describing allocated memory containing
326 Lisp data. Each such block is recorded with its start and end
327 address when it is allocated, and removed from the tree when it
328 is freed.
329
330 A red-black tree is a balanced binary tree with the following
331 properties:
332
333 1. Every node is either red or black.
334 2. Every leaf is black.
335 3. If a node is red, then both of its children are black.
336 4. Every simple path from a node to a descendant leaf contains
337 the same number of black nodes.
338 5. The root is always black.
339
340 When nodes are inserted into the tree, or deleted from the tree,
341 the tree is "fixed" so that these properties are always true.
342
343 A red-black tree with N internal nodes has height at most 2
344 log(N+1). Searches, insertions and deletions are done in O(log N).
345 Please see a text book about data structures for a detailed
346 description of red-black trees. Any book worth its salt should
347 describe them. */
348
349struct mem_node
350{
9f7d9210
RS
351 /* Children of this node. These pointers are never NULL. When there
352 is no child, the value is MEM_NIL, which points to a dummy node. */
353 struct mem_node *left, *right;
354
355 /* The parent of this node. In the root node, this is NULL. */
356 struct mem_node *parent;
877935b1
GM
357
358 /* Start and end of allocated region. */
359 void *start, *end;
360
361 /* Node color. */
362 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 363
877935b1
GM
364 /* Memory type. */
365 enum mem_type type;
366};
367
368/* Base address of stack. Set in main. */
369
370Lisp_Object *stack_base;
371
372/* Root of the tree describing allocated Lisp memory. */
373
374static struct mem_node *mem_root;
375
ece93c02
GM
376/* Lowest and highest known address in the heap. */
377
378static void *min_heap_address, *max_heap_address;
379
877935b1
GM
380/* Sentinel node of the tree. */
381
382static struct mem_node mem_z;
383#define MEM_NIL &mem_z
384
f57e2426
J
385static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
386static void lisp_free (POINTER_TYPE *);
387static void mark_stack (void);
388static int live_vector_p (struct mem_node *, void *);
389static int live_buffer_p (struct mem_node *, void *);
390static int live_string_p (struct mem_node *, void *);
391static int live_cons_p (struct mem_node *, void *);
392static int live_symbol_p (struct mem_node *, void *);
393static int live_float_p (struct mem_node *, void *);
394static int live_misc_p (struct mem_node *, void *);
395static void mark_maybe_object (Lisp_Object);
7c5ee88e 396static void mark_memory (void *, void *);
f57e2426
J
397static void mem_init (void);
398static struct mem_node *mem_insert (void *, void *, enum mem_type);
399static void mem_insert_fixup (struct mem_node *);
400static void mem_rotate_left (struct mem_node *);
401static void mem_rotate_right (struct mem_node *);
402static void mem_delete (struct mem_node *);
403static void mem_delete_fixup (struct mem_node *);
55d4c1b2 404static inline struct mem_node *mem_find (void *);
34400008 405
34400008
GM
406
407#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 408static void check_gcpros (void);
34400008
GM
409#endif
410
877935b1 411#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 412
1f0b3fd2
GM
413/* Recording what needs to be marked for gc. */
414
415struct gcpro *gcprolist;
416
379b98b1
PE
417/* Addresses of staticpro'd variables. Initialize it to a nonzero
418 value; otherwise some compilers put it into BSS. */
1f0b3fd2 419
0078170f 420#define NSTATICS 0x640
d3d47262 421static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
422
423/* Index of next unused slot in staticvec. */
424
d3d47262 425static int staticidx = 0;
1f0b3fd2 426
f57e2426 427static POINTER_TYPE *pure_alloc (size_t, int);
1f0b3fd2
GM
428
429
430/* Value is SZ rounded up to the next multiple of ALIGNMENT.
431 ALIGNMENT must be a power of 2. */
432
ab6780cd 433#define ALIGN(ptr, ALIGNMENT) \
d01a7826 434 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
ab6780cd 435 & ~((ALIGNMENT) - 1)))
1f0b3fd2 436
ece93c02 437
7146af97 438\f
34400008
GM
439/************************************************************************
440 Malloc
441 ************************************************************************/
442
4455ad75 443/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
444
445void
a8fe7202 446malloc_warning (const char *str)
7146af97
JB
447{
448 pending_malloc_warning = str;
449}
450
34400008 451
4455ad75 452/* Display an already-pending malloc warning. */
34400008 453
d457598b 454void
971de7fb 455display_malloc_warning (void)
7146af97 456{
4455ad75
RS
457 call3 (intern ("display-warning"),
458 intern ("alloc"),
459 build_string (pending_malloc_warning),
460 intern ("emergency"));
7146af97 461 pending_malloc_warning = 0;
7146af97 462}
49efed3a 463\f
276cbe5a
RS
464/* Called if we can't allocate relocatable space for a buffer. */
465
466void
531b0165 467buffer_memory_full (EMACS_INT nbytes)
276cbe5a 468{
2e471eb5
GM
469 /* If buffers use the relocating allocator, no need to free
470 spare_memory, because we may have plenty of malloc space left
471 that we could get, and if we don't, the malloc that fails will
472 itself cause spare_memory to be freed. If buffers don't use the
473 relocating allocator, treat this like any other failing
474 malloc. */
276cbe5a
RS
475
476#ifndef REL_ALLOC
531b0165 477 memory_full (nbytes);
276cbe5a
RS
478#endif
479
2e471eb5
GM
480 /* This used to call error, but if we've run out of memory, we could
481 get infinite recursion trying to build the string. */
9b306d37 482 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
483}
484
f701dc2a
PE
485
486#ifndef XMALLOC_OVERRUN_CHECK
487#define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
488#else
212f33f1 489
903fe15d 490/* Check for overrun in malloc'ed buffers by wrapping a header and trailer
f701dc2a
PE
491 around each block.
492
493 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
494 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
495 block size in little-endian order. The trailer consists of
496 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
497
498 The header is used to detect whether this block has been allocated
499 through these functions, as some low-level libc functions may
500 bypass the malloc hooks. */
501
502#define XMALLOC_OVERRUN_CHECK_SIZE 16
503#define XMALLOC_OVERRUN_CHECK_OVERHEAD \
504 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
505
506/* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
507 hold a size_t value and (2) the header size is a multiple of the
508 alignment that Emacs needs for C types and for USE_LSB_TAG. */
509#define XMALLOC_BASE_ALIGNMENT \
510 offsetof ( \
511 struct { \
512 union { long double d; intmax_t i; void *p; } u; \
513 char c; \
514 }, \
515 c)
516#ifdef USE_LSB_TAG
517/* A common multiple of the positive integers A and B. Ideally this
518 would be the least common multiple, but there's no way to do that
519 as a constant expression in C, so do the best that we can easily do. */
520# define COMMON_MULTIPLE(a, b) \
521 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
522# define XMALLOC_HEADER_ALIGNMENT \
523 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
524#else
525# define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
526#endif
527#define XMALLOC_OVERRUN_SIZE_SIZE \
528 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
529 + XMALLOC_HEADER_ALIGNMENT - 1) \
530 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
531 - XMALLOC_OVERRUN_CHECK_SIZE)
bdbed949 532
903fe15d
PE
533static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
534 { '\x9a', '\x9b', '\xae', '\xaf',
535 '\xbf', '\xbe', '\xce', '\xcf',
536 '\xea', '\xeb', '\xec', '\xed',
537 '\xdf', '\xde', '\x9c', '\x9d' };
212f33f1 538
903fe15d
PE
539static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
540 { '\xaa', '\xab', '\xac', '\xad',
541 '\xba', '\xbb', '\xbc', '\xbd',
542 '\xca', '\xcb', '\xcc', '\xcd',
543 '\xda', '\xdb', '\xdc', '\xdd' };
212f33f1 544
903fe15d 545/* Insert and extract the block size in the header. */
bdbed949 546
903fe15d
PE
547static void
548xmalloc_put_size (unsigned char *ptr, size_t size)
549{
550 int i;
cb993c58 551 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d 552 {
cb993c58 553 *--ptr = size & ((1 << CHAR_BIT) - 1);
903fe15d
PE
554 size >>= CHAR_BIT;
555 }
556}
bdbed949 557
903fe15d
PE
558static size_t
559xmalloc_get_size (unsigned char *ptr)
560{
561 size_t size = 0;
562 int i;
cb993c58
PE
563 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
564 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d
PE
565 {
566 size <<= CHAR_BIT;
567 size += *ptr++;
568 }
569 return size;
570}
bdbed949
KS
571
572
d8f165a8
JD
573/* The call depth in overrun_check functions. For example, this might happen:
574 xmalloc()
575 overrun_check_malloc()
576 -> malloc -> (via hook)_-> emacs_blocked_malloc
577 -> overrun_check_malloc
578 call malloc (hooks are NULL, so real malloc is called).
579 malloc returns 10000.
580 add overhead, return 10016.
581 <- (back in overrun_check_malloc)
857ae68b 582 add overhead again, return 10032
d8f165a8 583 xmalloc returns 10032.
857ae68b
JD
584
585 (time passes).
586
d8f165a8
JD
587 xfree(10032)
588 overrun_check_free(10032)
903fe15d 589 decrease overhead
d8f165a8 590 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b 591
903fe15d 592static ptrdiff_t check_depth;
857ae68b 593
bdbed949
KS
594/* Like malloc, but wraps allocated block with header and trailer. */
595
2538aa2f 596static POINTER_TYPE *
e7974947 597overrun_check_malloc (size_t size)
212f33f1 598{
bdbed949 599 register unsigned char *val;
903fe15d
PE
600 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
601 if (SIZE_MAX - overhead < size)
602 abort ();
212f33f1 603
857ae68b
JD
604 val = (unsigned char *) malloc (size + overhead);
605 if (val && check_depth == 1)
212f33f1 606 {
903fe15d 607 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
cb993c58 608 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 609 xmalloc_put_size (val, size);
72af86bd
AS
610 memcpy (val + size, xmalloc_overrun_check_trailer,
611 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 612 }
857ae68b 613 --check_depth;
212f33f1
KS
614 return (POINTER_TYPE *)val;
615}
616
bdbed949
KS
617
618/* Like realloc, but checks old block for overrun, and wraps new block
619 with header and trailer. */
620
2538aa2f 621static POINTER_TYPE *
e7974947 622overrun_check_realloc (POINTER_TYPE *block, size_t size)
212f33f1 623{
e7974947 624 register unsigned char *val = (unsigned char *) block;
903fe15d
PE
625 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
626 if (SIZE_MAX - overhead < size)
627 abort ();
212f33f1
KS
628
629 if (val
857ae68b 630 && check_depth == 1
72af86bd 631 && memcmp (xmalloc_overrun_check_header,
cb993c58 632 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 633 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 634 {
903fe15d 635 size_t osize = xmalloc_get_size (val);
72af86bd
AS
636 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
637 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 638 abort ();
72af86bd 639 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
cb993c58
PE
640 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
641 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
212f33f1
KS
642 }
643
857ae68b 644 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
212f33f1 645
857ae68b 646 if (val && check_depth == 1)
212f33f1 647 {
903fe15d 648 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
cb993c58 649 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 650 xmalloc_put_size (val, size);
72af86bd
AS
651 memcpy (val + size, xmalloc_overrun_check_trailer,
652 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 653 }
857ae68b 654 --check_depth;
212f33f1
KS
655 return (POINTER_TYPE *)val;
656}
657
bdbed949
KS
658/* Like free, but checks block for overrun. */
659
2538aa2f 660static void
e7974947 661overrun_check_free (POINTER_TYPE *block)
212f33f1 662{
e7974947 663 unsigned char *val = (unsigned char *) block;
212f33f1 664
857ae68b 665 ++check_depth;
212f33f1 666 if (val
857ae68b 667 && check_depth == 1
72af86bd 668 && memcmp (xmalloc_overrun_check_header,
cb993c58 669 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 670 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 671 {
903fe15d 672 size_t osize = xmalloc_get_size (val);
72af86bd
AS
673 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
674 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 675 abort ();
454d7973 676#ifdef XMALLOC_CLEAR_FREE_MEMORY
cb993c58 677 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 678 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
454d7973 679#else
72af86bd 680 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
cb993c58
PE
681 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
682 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
454d7973 683#endif
212f33f1
KS
684 }
685
686 free (val);
857ae68b 687 --check_depth;
212f33f1
KS
688}
689
690#undef malloc
691#undef realloc
692#undef free
693#define malloc overrun_check_malloc
694#define realloc overrun_check_realloc
695#define free overrun_check_free
696#endif
697
dafc79fa
SM
698#ifdef SYNC_INPUT
699/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
700 there's no need to block input around malloc. */
701#define MALLOC_BLOCK_INPUT ((void)0)
702#define MALLOC_UNBLOCK_INPUT ((void)0)
703#else
704#define MALLOC_BLOCK_INPUT BLOCK_INPUT
705#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
706#endif
bdbed949 707
34400008 708/* Like malloc but check for no memory and block interrupt input.. */
7146af97 709
c971ff9a 710POINTER_TYPE *
971de7fb 711xmalloc (size_t size)
7146af97 712{
c971ff9a 713 register POINTER_TYPE *val;
7146af97 714
dafc79fa 715 MALLOC_BLOCK_INPUT;
c971ff9a 716 val = (POINTER_TYPE *) malloc (size);
dafc79fa 717 MALLOC_UNBLOCK_INPUT;
7146af97 718
2e471eb5 719 if (!val && size)
531b0165 720 memory_full (size);
7146af97
JB
721 return val;
722}
723
34400008
GM
724
725/* Like realloc but check for no memory and block interrupt input.. */
726
c971ff9a 727POINTER_TYPE *
971de7fb 728xrealloc (POINTER_TYPE *block, size_t size)
7146af97 729{
c971ff9a 730 register POINTER_TYPE *val;
7146af97 731
dafc79fa 732 MALLOC_BLOCK_INPUT;
56d2031b
JB
733 /* We must call malloc explicitly when BLOCK is 0, since some
734 reallocs don't do this. */
735 if (! block)
c971ff9a 736 val = (POINTER_TYPE *) malloc (size);
f048679d 737 else
c971ff9a 738 val = (POINTER_TYPE *) realloc (block, size);
dafc79fa 739 MALLOC_UNBLOCK_INPUT;
7146af97 740
531b0165
PE
741 if (!val && size)
742 memory_full (size);
7146af97
JB
743 return val;
744}
9ac0d9e0 745
34400008 746
005ca5c7 747/* Like free but block interrupt input. */
34400008 748
9ac0d9e0 749void
971de7fb 750xfree (POINTER_TYPE *block)
9ac0d9e0 751{
70fdbb46
JM
752 if (!block)
753 return;
dafc79fa 754 MALLOC_BLOCK_INPUT;
9ac0d9e0 755 free (block);
dafc79fa 756 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
757 /* We don't call refill_memory_reserve here
758 because that duplicates doing so in emacs_blocked_free
759 and the criterion should go there. */
9ac0d9e0
JB
760}
761
c8099634 762
0065d054
PE
763/* Other parts of Emacs pass large int values to allocator functions
764 expecting ptrdiff_t. This is portable in practice, but check it to
765 be safe. */
766verify (INT_MAX <= PTRDIFF_MAX);
767
768
769/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
770 Signal an error on memory exhaustion, and block interrupt input. */
771
772void *
773xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
774{
775 xassert (0 <= nitems && 0 < item_size);
776 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
777 memory_full (SIZE_MAX);
778 return xmalloc (nitems * item_size);
779}
780
781
782/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
783 Signal an error on memory exhaustion, and block interrupt input. */
784
785void *
786xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
787{
788 xassert (0 <= nitems && 0 < item_size);
789 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
790 memory_full (SIZE_MAX);
791 return xrealloc (pa, nitems * item_size);
792}
793
794
795/* Grow PA, which points to an array of *NITEMS items, and return the
796 location of the reallocated array, updating *NITEMS to reflect its
797 new size. The new array will contain at least NITEMS_INCR_MIN more
798 items, but will not contain more than NITEMS_MAX items total.
799 ITEM_SIZE is the size of each item, in bytes.
800
801 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
802 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
803 infinity.
804
805 If PA is null, then allocate a new array instead of reallocating
806 the old one. Thus, to grow an array A without saving its old
807 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
808 &NITEMS, ...).
809
810 Block interrupt input as needed. If memory exhaustion occurs, set
811 *NITEMS to zero if PA is null, and signal an error (i.e., do not
812 return). */
813
814void *
815xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
816 ptrdiff_t nitems_max, ptrdiff_t item_size)
817{
818 /* The approximate size to use for initial small allocation
819 requests. This is the largest "small" request for the GNU C
820 library malloc. */
821 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
822
823 /* If the array is tiny, grow it to about (but no greater than)
824 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
825 ptrdiff_t n = *nitems;
826 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
827 ptrdiff_t half_again = n >> 1;
828 ptrdiff_t incr_estimate = max (tiny_max, half_again);
829
830 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
831 NITEMS_MAX, and what the C language can represent safely. */
832 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
833 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
834 ? nitems_max : C_language_max);
835 ptrdiff_t nitems_incr_max = n_max - n;
836 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
837
838 xassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
839 if (! pa)
840 *nitems = 0;
841 if (nitems_incr_max < incr)
842 memory_full (SIZE_MAX);
843 n += incr;
844 pa = xrealloc (pa, n * item_size);
845 *nitems = n;
846 return pa;
847}
848
849
dca7c6a8
GM
850/* Like strdup, but uses xmalloc. */
851
852char *
971de7fb 853xstrdup (const char *s)
dca7c6a8 854{
675d5130 855 size_t len = strlen (s) + 1;
dca7c6a8 856 char *p = (char *) xmalloc (len);
72af86bd 857 memcpy (p, s, len);
dca7c6a8
GM
858 return p;
859}
860
861
f61bef8b
KS
862/* Unwind for SAFE_ALLOCA */
863
864Lisp_Object
971de7fb 865safe_alloca_unwind (Lisp_Object arg)
f61bef8b 866{
b766f870
KS
867 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
868
869 p->dogc = 0;
870 xfree (p->pointer);
871 p->pointer = 0;
7b7990cc 872 free_misc (arg);
f61bef8b
KS
873 return Qnil;
874}
875
876
34400008
GM
877/* Like malloc but used for allocating Lisp data. NBYTES is the
878 number of bytes to allocate, TYPE describes the intended use of the
879 allcated memory block (for strings, for conses, ...). */
880
212f33f1 881#ifndef USE_LSB_TAG
918a23a7 882static void *lisp_malloc_loser;
212f33f1 883#endif
918a23a7 884
675d5130 885static POINTER_TYPE *
971de7fb 886lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 887{
34400008 888 register void *val;
c8099634 889
dafc79fa 890 MALLOC_BLOCK_INPUT;
877935b1
GM
891
892#ifdef GC_MALLOC_CHECK
893 allocated_mem_type = type;
894#endif
177c0ea7 895
34400008 896 val = (void *) malloc (nbytes);
c8099634 897
6b61353c 898#ifndef USE_LSB_TAG
918a23a7
RS
899 /* If the memory just allocated cannot be addressed thru a Lisp
900 object's pointer, and it needs to be,
901 that's equivalent to running out of memory. */
902 if (val && type != MEM_TYPE_NON_LISP)
903 {
904 Lisp_Object tem;
905 XSETCONS (tem, (char *) val + nbytes - 1);
906 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
907 {
908 lisp_malloc_loser = val;
909 free (val);
910 val = 0;
911 }
912 }
6b61353c 913#endif
918a23a7 914
877935b1 915#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 916 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
917 mem_insert (val, (char *) val + nbytes, type);
918#endif
177c0ea7 919
dafc79fa 920 MALLOC_UNBLOCK_INPUT;
dca7c6a8 921 if (!val && nbytes)
531b0165 922 memory_full (nbytes);
c8099634
RS
923 return val;
924}
925
34400008
GM
926/* Free BLOCK. This must be called to free memory allocated with a
927 call to lisp_malloc. */
928
bf952fb6 929static void
971de7fb 930lisp_free (POINTER_TYPE *block)
c8099634 931{
dafc79fa 932 MALLOC_BLOCK_INPUT;
c8099634 933 free (block);
877935b1 934#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
935 mem_delete (mem_find (block));
936#endif
dafc79fa 937 MALLOC_UNBLOCK_INPUT;
c8099634 938}
34400008 939
ab6780cd
SM
940/* Allocation of aligned blocks of memory to store Lisp data. */
941/* The entry point is lisp_align_malloc which returns blocks of at most */
942/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
943
349a4500
SM
944/* Use posix_memalloc if the system has it and we're using the system's
945 malloc (because our gmalloc.c routines don't have posix_memalign although
946 its memalloc could be used). */
b4181b01
KS
947#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
948#define USE_POSIX_MEMALIGN 1
949#endif
ab6780cd
SM
950
951/* BLOCK_ALIGN has to be a power of 2. */
952#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
953
954/* Padding to leave at the end of a malloc'd block. This is to give
955 malloc a chance to minimize the amount of memory wasted to alignment.
956 It should be tuned to the particular malloc library used.
19bcad1f
SM
957 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
958 posix_memalign on the other hand would ideally prefer a value of 4
959 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
960 In Emacs, testing shows that those 1020 can most of the time be
961 efficiently used by malloc to place other objects, so a value of 0 can
962 still preferable unless you have a lot of aligned blocks and virtually
963 nothing else. */
19bcad1f
SM
964#define BLOCK_PADDING 0
965#define BLOCK_BYTES \
0b432f21 966 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
19bcad1f
SM
967
968/* Internal data structures and constants. */
969
ab6780cd
SM
970#define ABLOCKS_SIZE 16
971
972/* An aligned block of memory. */
973struct ablock
974{
975 union
976 {
977 char payload[BLOCK_BYTES];
978 struct ablock *next_free;
979 } x;
980 /* `abase' is the aligned base of the ablocks. */
981 /* It is overloaded to hold the virtual `busy' field that counts
982 the number of used ablock in the parent ablocks.
983 The first ablock has the `busy' field, the others have the `abase'
984 field. To tell the difference, we assume that pointers will have
985 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
986 is used to tell whether the real base of the parent ablocks is `abase'
987 (if not, the word before the first ablock holds a pointer to the
988 real base). */
989 struct ablocks *abase;
990 /* The padding of all but the last ablock is unused. The padding of
991 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
992#if BLOCK_PADDING
993 char padding[BLOCK_PADDING];
ebb8d410 994#endif
ab6780cd
SM
995};
996
997/* A bunch of consecutive aligned blocks. */
998struct ablocks
999{
1000 struct ablock blocks[ABLOCKS_SIZE];
1001};
1002
1003/* Size of the block requested from malloc or memalign. */
19bcad1f 1004#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
1005
1006#define ABLOCK_ABASE(block) \
d01a7826 1007 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
ab6780cd
SM
1008 ? (struct ablocks *)(block) \
1009 : (block)->abase)
1010
1011/* Virtual `busy' field. */
1012#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1013
1014/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 1015#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1016#define ABLOCKS_BASE(abase) (abase)
1017#else
ab6780cd 1018#define ABLOCKS_BASE(abase) \
d01a7826 1019 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 1020#endif
ab6780cd
SM
1021
1022/* The list of free ablock. */
1023static struct ablock *free_ablock;
1024
1025/* Allocate an aligned block of nbytes.
1026 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1027 smaller or equal to BLOCK_BYTES. */
1028static POINTER_TYPE *
971de7fb 1029lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
1030{
1031 void *base, *val;
1032 struct ablocks *abase;
1033
1034 eassert (nbytes <= BLOCK_BYTES);
1035
dafc79fa 1036 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1037
1038#ifdef GC_MALLOC_CHECK
1039 allocated_mem_type = type;
1040#endif
1041
1042 if (!free_ablock)
1043 {
005ca5c7 1044 int i;
d01a7826 1045 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1046
1047#ifdef DOUG_LEA_MALLOC
1048 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1049 because mapped region contents are not preserved in
1050 a dumped Emacs. */
1051 mallopt (M_MMAP_MAX, 0);
1052#endif
1053
349a4500 1054#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1055 {
1056 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1057 if (err)
1058 base = NULL;
1059 abase = base;
19bcad1f
SM
1060 }
1061#else
ab6780cd
SM
1062 base = malloc (ABLOCKS_BYTES);
1063 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1064#endif
1065
6b61353c
KH
1066 if (base == 0)
1067 {
dafc79fa 1068 MALLOC_UNBLOCK_INPUT;
531b0165 1069 memory_full (ABLOCKS_BYTES);
6b61353c 1070 }
ab6780cd
SM
1071
1072 aligned = (base == abase);
1073 if (!aligned)
1074 ((void**)abase)[-1] = base;
1075
1076#ifdef DOUG_LEA_MALLOC
1077 /* Back to a reasonable maximum of mmap'ed areas. */
1078 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1079#endif
1080
6b61353c 1081#ifndef USE_LSB_TAG
8f924df7
KH
1082 /* If the memory just allocated cannot be addressed thru a Lisp
1083 object's pointer, and it needs to be, that's equivalent to
1084 running out of memory. */
1085 if (type != MEM_TYPE_NON_LISP)
1086 {
1087 Lisp_Object tem;
1088 char *end = (char *) base + ABLOCKS_BYTES - 1;
1089 XSETCONS (tem, end);
1090 if ((char *) XCONS (tem) != end)
1091 {
1092 lisp_malloc_loser = base;
1093 free (base);
dafc79fa 1094 MALLOC_UNBLOCK_INPUT;
531b0165 1095 memory_full (SIZE_MAX);
8f924df7
KH
1096 }
1097 }
6b61353c 1098#endif
8f924df7 1099
ab6780cd
SM
1100 /* Initialize the blocks and put them on the free list.
1101 Is `base' was not properly aligned, we can't use the last block. */
1102 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1103 {
1104 abase->blocks[i].abase = abase;
1105 abase->blocks[i].x.next_free = free_ablock;
1106 free_ablock = &abase->blocks[i];
1107 }
8ac068ac 1108 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
ab6780cd 1109
d01a7826 1110 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
ab6780cd
SM
1111 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1112 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1113 eassert (ABLOCKS_BASE (abase) == base);
d01a7826 1114 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1115 }
1116
1117 abase = ABLOCK_ABASE (free_ablock);
8ac068ac 1118 ABLOCKS_BUSY (abase) =
d01a7826 1119 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1120 val = free_ablock;
1121 free_ablock = free_ablock->x.next_free;
1122
ab6780cd 1123#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3687c2ef 1124 if (type != MEM_TYPE_NON_LISP)
ab6780cd
SM
1125 mem_insert (val, (char *) val + nbytes, type);
1126#endif
1127
dafc79fa 1128 MALLOC_UNBLOCK_INPUT;
ab6780cd 1129
d01a7826 1130 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
ab6780cd
SM
1131 return val;
1132}
1133
1134static void
971de7fb 1135lisp_align_free (POINTER_TYPE *block)
ab6780cd
SM
1136{
1137 struct ablock *ablock = block;
1138 struct ablocks *abase = ABLOCK_ABASE (ablock);
1139
dafc79fa 1140 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1141#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1142 mem_delete (mem_find (block));
1143#endif
1144 /* Put on free list. */
1145 ablock->x.next_free = free_ablock;
1146 free_ablock = ablock;
1147 /* Update busy count. */
8ac068ac 1148 ABLOCKS_BUSY (abase) =
d01a7826 1149 (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
d2db1c32 1150
d01a7826 1151 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
ab6780cd 1152 { /* All the blocks are free. */
d01a7826 1153 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
ab6780cd
SM
1154 struct ablock **tem = &free_ablock;
1155 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1156
1157 while (*tem)
1158 {
1159 if (*tem >= (struct ablock *) abase && *tem < atop)
1160 {
1161 i++;
1162 *tem = (*tem)->x.next_free;
1163 }
1164 else
1165 tem = &(*tem)->x.next_free;
1166 }
1167 eassert ((aligned & 1) == aligned);
1168 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1169#ifdef USE_POSIX_MEMALIGN
d01a7826 1170 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
cfb2f32e 1171#endif
ab6780cd
SM
1172 free (ABLOCKS_BASE (abase));
1173 }
dafc79fa 1174 MALLOC_UNBLOCK_INPUT;
ab6780cd 1175}
3ef06d12
SM
1176
1177/* Return a new buffer structure allocated from the heap with
1178 a call to lisp_malloc. */
1179
1180struct buffer *
971de7fb 1181allocate_buffer (void)
3ef06d12
SM
1182{
1183 struct buffer *b
1184 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1185 MEM_TYPE_BUFFER);
eab3844f
PE
1186 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1187 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1188 / sizeof (EMACS_INT)));
3ef06d12
SM
1189 return b;
1190}
1191
9ac0d9e0 1192\f
026cdede
SM
1193#ifndef SYSTEM_MALLOC
1194
9ac0d9e0
JB
1195/* Arranging to disable input signals while we're in malloc.
1196
1197 This only works with GNU malloc. To help out systems which can't
1198 use GNU malloc, all the calls to malloc, realloc, and free
1199 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1200 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1201 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1202 using GNU malloc. Fortunately, most of the major operating systems
1203 can use GNU malloc. */
9ac0d9e0 1204
026cdede 1205#ifndef SYNC_INPUT
dafc79fa
SM
1206/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1207 there's no need to block input around malloc. */
026cdede 1208
b3303f74 1209#ifndef DOUG_LEA_MALLOC
f57e2426
J
1210extern void * (*__malloc_hook) (size_t, const void *);
1211extern void * (*__realloc_hook) (void *, size_t, const void *);
1212extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1213/* Else declared in malloc.h, perhaps with an extra arg. */
1214#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1215static void * (*old_malloc_hook) (size_t, const void *);
1216static void * (*old_realloc_hook) (void *, size_t, const void*);
1217static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1218
4e75f29d
PE
1219#ifdef DOUG_LEA_MALLOC
1220# define BYTES_USED (mallinfo ().uordblks)
1221#else
1222# define BYTES_USED _bytes_used
1223#endif
1224
5e927815 1225static size_t bytes_used_when_reconsidered;
ef1b0ba7 1226
4e75f29d
PE
1227/* Value of _bytes_used, when spare_memory was freed. */
1228
5e927815 1229static size_t bytes_used_when_full;
4e75f29d 1230
276cbe5a
RS
1231/* This function is used as the hook for free to call. */
1232
9ac0d9e0 1233static void
7c3320d8 1234emacs_blocked_free (void *ptr, const void *ptr2)
9ac0d9e0 1235{
aa477689 1236 BLOCK_INPUT_ALLOC;
877935b1
GM
1237
1238#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1239 if (ptr)
1240 {
1241 struct mem_node *m;
177c0ea7 1242
a83fee2c
GM
1243 m = mem_find (ptr);
1244 if (m == MEM_NIL || m->start != ptr)
1245 {
1246 fprintf (stderr,
1247 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1248 abort ();
1249 }
1250 else
1251 {
1252 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1253 mem_delete (m);
1254 }
1255 }
877935b1 1256#endif /* GC_MALLOC_CHECK */
177c0ea7 1257
9ac0d9e0
JB
1258 __free_hook = old_free_hook;
1259 free (ptr);
177c0ea7 1260
276cbe5a
RS
1261 /* If we released our reserve (due to running out of memory),
1262 and we have a fair amount free once again,
1263 try to set aside another reserve in case we run out once more. */
24d8a105 1264 if (! NILP (Vmemory_full)
276cbe5a
RS
1265 /* Verify there is enough space that even with the malloc
1266 hysteresis this call won't run out again.
1267 The code here is correct as long as SPARE_MEMORY
1268 is substantially larger than the block size malloc uses. */
1269 && (bytes_used_when_full
4d74a5fc 1270 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1271 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1272 refill_memory_reserve ();
276cbe5a 1273
b0846f52 1274 __free_hook = emacs_blocked_free;
aa477689 1275 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1276}
1277
34400008 1278
276cbe5a
RS
1279/* This function is the malloc hook that Emacs uses. */
1280
9ac0d9e0 1281static void *
7c3320d8 1282emacs_blocked_malloc (size_t size, const void *ptr)
9ac0d9e0
JB
1283{
1284 void *value;
1285
aa477689 1286 BLOCK_INPUT_ALLOC;
9ac0d9e0 1287 __malloc_hook = old_malloc_hook;
1177ecf6 1288#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1289 /* Segfaults on my system. --lorentey */
1290 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1291#else
d1658221 1292 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1293#endif
877935b1 1294
2756d8ee 1295 value = (void *) malloc (size);
877935b1
GM
1296
1297#ifdef GC_MALLOC_CHECK
1298 {
1299 struct mem_node *m = mem_find (value);
1300 if (m != MEM_NIL)
1301 {
1302 fprintf (stderr, "Malloc returned %p which is already in use\n",
1303 value);
1304 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1305 m->start, m->end, (char *) m->end - (char *) m->start,
1306 m->type);
1307 abort ();
1308 }
1309
1310 if (!dont_register_blocks)
1311 {
1312 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1313 allocated_mem_type = MEM_TYPE_NON_LISP;
1314 }
1315 }
1316#endif /* GC_MALLOC_CHECK */
177c0ea7 1317
b0846f52 1318 __malloc_hook = emacs_blocked_malloc;
aa477689 1319 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1320
877935b1 1321 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1322 return value;
1323}
1324
34400008
GM
1325
1326/* This function is the realloc hook that Emacs uses. */
1327
9ac0d9e0 1328static void *
7c3320d8 1329emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
9ac0d9e0
JB
1330{
1331 void *value;
1332
aa477689 1333 BLOCK_INPUT_ALLOC;
9ac0d9e0 1334 __realloc_hook = old_realloc_hook;
877935b1
GM
1335
1336#ifdef GC_MALLOC_CHECK
1337 if (ptr)
1338 {
1339 struct mem_node *m = mem_find (ptr);
1340 if (m == MEM_NIL || m->start != ptr)
1341 {
1342 fprintf (stderr,
1343 "Realloc of %p which wasn't allocated with malloc\n",
1344 ptr);
1345 abort ();
1346 }
1347
1348 mem_delete (m);
1349 }
177c0ea7 1350
877935b1 1351 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1352
877935b1
GM
1353 /* Prevent malloc from registering blocks. */
1354 dont_register_blocks = 1;
1355#endif /* GC_MALLOC_CHECK */
1356
2756d8ee 1357 value = (void *) realloc (ptr, size);
877935b1
GM
1358
1359#ifdef GC_MALLOC_CHECK
1360 dont_register_blocks = 0;
1361
1362 {
1363 struct mem_node *m = mem_find (value);
1364 if (m != MEM_NIL)
1365 {
1366 fprintf (stderr, "Realloc returns memory that is already in use\n");
1367 abort ();
1368 }
1369
1370 /* Can't handle zero size regions in the red-black tree. */
1371 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1372 }
177c0ea7 1373
877935b1
GM
1374 /* fprintf (stderr, "%p <- realloc\n", value); */
1375#endif /* GC_MALLOC_CHECK */
177c0ea7 1376
b0846f52 1377 __realloc_hook = emacs_blocked_realloc;
aa477689 1378 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1379
1380 return value;
1381}
1382
34400008 1383
ae9e757a 1384#ifdef HAVE_PTHREAD
aa477689
JD
1385/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1386 normal malloc. Some thread implementations need this as they call
1387 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1388 calls malloc because it is the first call, and we have an endless loop. */
1389
1390void
268c2c36 1391reset_malloc_hooks (void)
aa477689 1392{
4d580af2
AS
1393 __free_hook = old_free_hook;
1394 __malloc_hook = old_malloc_hook;
1395 __realloc_hook = old_realloc_hook;
aa477689 1396}
ae9e757a 1397#endif /* HAVE_PTHREAD */
aa477689
JD
1398
1399
34400008
GM
1400/* Called from main to set up malloc to use our hooks. */
1401
9ac0d9e0 1402void
7c3320d8 1403uninterrupt_malloc (void)
9ac0d9e0 1404{
ae9e757a 1405#ifdef HAVE_PTHREAD
a1b41389 1406#ifdef DOUG_LEA_MALLOC
aa477689
JD
1407 pthread_mutexattr_t attr;
1408
1409 /* GLIBC has a faster way to do this, but lets keep it portable.
1410 This is according to the Single UNIX Specification. */
1411 pthread_mutexattr_init (&attr);
1412 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1413 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1414#else /* !DOUG_LEA_MALLOC */
ce5b453a 1415 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1416 and the bundled gmalloc.c doesn't require it. */
1417 pthread_mutex_init (&alloc_mutex, NULL);
1418#endif /* !DOUG_LEA_MALLOC */
ae9e757a 1419#endif /* HAVE_PTHREAD */
aa477689 1420
c8099634
RS
1421 if (__free_hook != emacs_blocked_free)
1422 old_free_hook = __free_hook;
b0846f52 1423 __free_hook = emacs_blocked_free;
9ac0d9e0 1424
c8099634
RS
1425 if (__malloc_hook != emacs_blocked_malloc)
1426 old_malloc_hook = __malloc_hook;
b0846f52 1427 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1428
c8099634
RS
1429 if (__realloc_hook != emacs_blocked_realloc)
1430 old_realloc_hook = __realloc_hook;
b0846f52 1431 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1432}
2e471eb5 1433
026cdede 1434#endif /* not SYNC_INPUT */
2e471eb5
GM
1435#endif /* not SYSTEM_MALLOC */
1436
1437
7146af97 1438\f
2e471eb5
GM
1439/***********************************************************************
1440 Interval Allocation
1441 ***********************************************************************/
1a4f1e2c 1442
34400008
GM
1443/* Number of intervals allocated in an interval_block structure.
1444 The 1020 is 1024 minus malloc overhead. */
1445
d5e35230
JA
1446#define INTERVAL_BLOCK_SIZE \
1447 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1448
34400008
GM
1449/* Intervals are allocated in chunks in form of an interval_block
1450 structure. */
1451
d5e35230 1452struct interval_block
2e471eb5 1453{
6b61353c 1454 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1455 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1456 struct interval_block *next;
2e471eb5 1457};
d5e35230 1458
34400008
GM
1459/* Current interval block. Its `next' pointer points to older
1460 blocks. */
1461
d3d47262 1462static struct interval_block *interval_block;
34400008
GM
1463
1464/* Index in interval_block above of the next unused interval
1465 structure. */
1466
d5e35230 1467static int interval_block_index;
34400008
GM
1468
1469/* Number of free and live intervals. */
1470
c0c5c8ae 1471static EMACS_INT total_free_intervals, total_intervals;
d5e35230 1472
34400008
GM
1473/* List of free intervals. */
1474
244ed907 1475static INTERVAL interval_free_list;
d5e35230 1476
34400008
GM
1477
1478/* Initialize interval allocation. */
1479
d5e35230 1480static void
971de7fb 1481init_intervals (void)
d5e35230 1482{
005ca5c7
DL
1483 interval_block = NULL;
1484 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230
JA
1485 interval_free_list = 0;
1486}
1487
34400008
GM
1488
1489/* Return a new interval. */
d5e35230
JA
1490
1491INTERVAL
971de7fb 1492make_interval (void)
d5e35230
JA
1493{
1494 INTERVAL val;
1495
e2984df0
CY
1496 /* eassert (!handling_signal); */
1497
dafc79fa 1498 MALLOC_BLOCK_INPUT;
cfb2f32e 1499
d5e35230
JA
1500 if (interval_free_list)
1501 {
1502 val = interval_free_list;
439d5cb4 1503 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1504 }
1505 else
1506 {
1507 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1508 {
3c06d205
KH
1509 register struct interval_block *newi;
1510
34400008
GM
1511 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1512 MEM_TYPE_NON_LISP);
d5e35230 1513
d5e35230
JA
1514 newi->next = interval_block;
1515 interval_block = newi;
1516 interval_block_index = 0;
1517 }
1518 val = &interval_block->intervals[interval_block_index++];
1519 }
e2984df0 1520
dafc79fa 1521 MALLOC_UNBLOCK_INPUT;
e2984df0 1522
d5e35230 1523 consing_since_gc += sizeof (struct interval);
310ea200 1524 intervals_consed++;
d5e35230 1525 RESET_INTERVAL (val);
2336fe58 1526 val->gcmarkbit = 0;
d5e35230
JA
1527 return val;
1528}
1529
34400008
GM
1530
1531/* Mark Lisp objects in interval I. */
d5e35230
JA
1532
1533static void
971de7fb 1534mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1535{
2336fe58
SM
1536 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1537 i->gcmarkbit = 1;
49723c04 1538 mark_object (i->plist);
d5e35230
JA
1539}
1540
34400008
GM
1541
1542/* Mark the interval tree rooted in TREE. Don't call this directly;
1543 use the macro MARK_INTERVAL_TREE instead. */
1544
d5e35230 1545static void
971de7fb 1546mark_interval_tree (register INTERVAL tree)
d5e35230 1547{
e8720644
JB
1548 /* No need to test if this tree has been marked already; this
1549 function is always called through the MARK_INTERVAL_TREE macro,
1550 which takes care of that. */
1551
1e934989 1552 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1553}
1554
34400008
GM
1555
1556/* Mark the interval tree rooted in I. */
1557
e8720644
JB
1558#define MARK_INTERVAL_TREE(i) \
1559 do { \
2336fe58 1560 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1561 mark_interval_tree (i); \
1562 } while (0)
d5e35230 1563
34400008 1564
2e471eb5
GM
1565#define UNMARK_BALANCE_INTERVALS(i) \
1566 do { \
1567 if (! NULL_INTERVAL_P (i)) \
2336fe58 1568 (i) = balance_intervals (i); \
2e471eb5 1569 } while (0)
d5e35230 1570
cc2d8c6b 1571\f
6e5cb96f 1572/* Number support. If USE_LISP_UNION_TYPE is in effect, we
cc2d8c6b
KR
1573 can't create number objects in macros. */
1574#ifndef make_number
1575Lisp_Object
c566235d 1576make_number (EMACS_INT n)
cc2d8c6b
KR
1577{
1578 Lisp_Object obj;
1579 obj.s.val = n;
1580 obj.s.type = Lisp_Int;
1581 return obj;
1582}
1583#endif
d5e35230 1584\f
2e471eb5
GM
1585/***********************************************************************
1586 String Allocation
1587 ***********************************************************************/
1a4f1e2c 1588
2e471eb5
GM
1589/* Lisp_Strings are allocated in string_block structures. When a new
1590 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1591 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1592 needed, it is taken from that list. During the sweep phase of GC,
1593 string_blocks that are entirely free are freed, except two which
1594 we keep.
7146af97 1595
2e471eb5
GM
1596 String data is allocated from sblock structures. Strings larger
1597 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1598 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1599
2e471eb5
GM
1600 Sblocks consist internally of sdata structures, one for each
1601 Lisp_String. The sdata structure points to the Lisp_String it
1602 belongs to. The Lisp_String points back to the `u.data' member of
1603 its sdata structure.
7146af97 1604
2e471eb5
GM
1605 When a Lisp_String is freed during GC, it is put back on
1606 string_free_list, and its `data' member and its sdata's `string'
1607 pointer is set to null. The size of the string is recorded in the
1608 `u.nbytes' member of the sdata. So, sdata structures that are no
1609 longer used, can be easily recognized, and it's easy to compact the
1610 sblocks of small strings which we do in compact_small_strings. */
7146af97 1611
2e471eb5
GM
1612/* Size in bytes of an sblock structure used for small strings. This
1613 is 8192 minus malloc overhead. */
7146af97 1614
2e471eb5 1615#define SBLOCK_SIZE 8188
c8099634 1616
2e471eb5
GM
1617/* Strings larger than this are considered large strings. String data
1618 for large strings is allocated from individual sblocks. */
7146af97 1619
2e471eb5
GM
1620#define LARGE_STRING_BYTES 1024
1621
1622/* Structure describing string memory sub-allocated from an sblock.
1623 This is where the contents of Lisp strings are stored. */
1624
1625struct sdata
7146af97 1626{
2e471eb5
GM
1627 /* Back-pointer to the string this sdata belongs to. If null, this
1628 structure is free, and the NBYTES member of the union below
34400008 1629 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1630 would return if STRING were non-null). If non-null, STRING_BYTES
1631 (STRING) is the size of the data, and DATA contains the string's
1632 contents. */
1633 struct Lisp_String *string;
7146af97 1634
31d929e5 1635#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1636
31d929e5
GM
1637 EMACS_INT nbytes;
1638 unsigned char data[1];
177c0ea7 1639
31d929e5
GM
1640#define SDATA_NBYTES(S) (S)->nbytes
1641#define SDATA_DATA(S) (S)->data
36372bf9 1642#define SDATA_SELECTOR(member) member
177c0ea7 1643
31d929e5
GM
1644#else /* not GC_CHECK_STRING_BYTES */
1645
2e471eb5
GM
1646 union
1647 {
83998b7a 1648 /* When STRING is non-null. */
2e471eb5
GM
1649 unsigned char data[1];
1650
1651 /* When STRING is null. */
1652 EMACS_INT nbytes;
1653 } u;
177c0ea7 1654
31d929e5
GM
1655#define SDATA_NBYTES(S) (S)->u.nbytes
1656#define SDATA_DATA(S) (S)->u.data
36372bf9 1657#define SDATA_SELECTOR(member) u.member
31d929e5
GM
1658
1659#endif /* not GC_CHECK_STRING_BYTES */
36372bf9
PE
1660
1661#define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
2e471eb5
GM
1662};
1663
31d929e5 1664
2e471eb5
GM
1665/* Structure describing a block of memory which is sub-allocated to
1666 obtain string data memory for strings. Blocks for small strings
1667 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1668 as large as needed. */
1669
1670struct sblock
7146af97 1671{
2e471eb5
GM
1672 /* Next in list. */
1673 struct sblock *next;
7146af97 1674
2e471eb5
GM
1675 /* Pointer to the next free sdata block. This points past the end
1676 of the sblock if there isn't any space left in this block. */
1677 struct sdata *next_free;
1678
1679 /* Start of data. */
1680 struct sdata first_data;
1681};
1682
1683/* Number of Lisp strings in a string_block structure. The 1020 is
1684 1024 minus malloc overhead. */
1685
19bcad1f 1686#define STRING_BLOCK_SIZE \
2e471eb5
GM
1687 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1688
1689/* Structure describing a block from which Lisp_String structures
1690 are allocated. */
1691
1692struct string_block
7146af97 1693{
6b61353c 1694 /* Place `strings' first, to preserve alignment. */
19bcad1f 1695 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1696 struct string_block *next;
2e471eb5 1697};
7146af97 1698
2e471eb5
GM
1699/* Head and tail of the list of sblock structures holding Lisp string
1700 data. We always allocate from current_sblock. The NEXT pointers
1701 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1702
2e471eb5 1703static struct sblock *oldest_sblock, *current_sblock;
7146af97 1704
2e471eb5 1705/* List of sblocks for large strings. */
7146af97 1706
2e471eb5 1707static struct sblock *large_sblocks;
7146af97 1708
5a25e253 1709/* List of string_block structures. */
7146af97 1710
2e471eb5 1711static struct string_block *string_blocks;
7146af97 1712
2e471eb5 1713/* Free-list of Lisp_Strings. */
7146af97 1714
2e471eb5 1715static struct Lisp_String *string_free_list;
7146af97 1716
2e471eb5 1717/* Number of live and free Lisp_Strings. */
c8099634 1718
c0c5c8ae 1719static EMACS_INT total_strings, total_free_strings;
7146af97 1720
2e471eb5
GM
1721/* Number of bytes used by live strings. */
1722
14162469 1723static EMACS_INT total_string_size;
2e471eb5
GM
1724
1725/* Given a pointer to a Lisp_String S which is on the free-list
1726 string_free_list, return a pointer to its successor in the
1727 free-list. */
1728
1729#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1730
1731/* Return a pointer to the sdata structure belonging to Lisp string S.
1732 S must be live, i.e. S->data must not be null. S->data is actually
1733 a pointer to the `u.data' member of its sdata structure; the
1734 structure starts at a constant offset in front of that. */
177c0ea7 1735
36372bf9 1736#define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
31d929e5 1737
212f33f1
KS
1738
1739#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1740
1741/* We check for overrun in string data blocks by appending a small
1742 "cookie" after each allocated string data block, and check for the
8349069c 1743 presence of this cookie during GC. */
bdbed949
KS
1744
1745#define GC_STRING_OVERRUN_COOKIE_SIZE 4
bfd1c781
PE
1746static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1747 { '\xde', '\xad', '\xbe', '\xef' };
bdbed949 1748
212f33f1 1749#else
bdbed949 1750#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1751#endif
1752
2e471eb5
GM
1753/* Value is the size of an sdata structure large enough to hold NBYTES
1754 bytes of string data. The value returned includes a terminating
1755 NUL byte, the size of the sdata structure, and padding. */
1756
31d929e5
GM
1757#ifdef GC_CHECK_STRING_BYTES
1758
2e471eb5 1759#define SDATA_SIZE(NBYTES) \
36372bf9 1760 ((SDATA_DATA_OFFSET \
2e471eb5
GM
1761 + (NBYTES) + 1 \
1762 + sizeof (EMACS_INT) - 1) \
1763 & ~(sizeof (EMACS_INT) - 1))
1764
31d929e5
GM
1765#else /* not GC_CHECK_STRING_BYTES */
1766
f2d3008d
PE
1767/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1768 less than the size of that member. The 'max' is not needed when
1769 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1770 alignment code reserves enough space. */
1771
1772#define SDATA_SIZE(NBYTES) \
1773 ((SDATA_DATA_OFFSET \
1774 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1775 ? NBYTES \
1776 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1777 + 1 \
1778 + sizeof (EMACS_INT) - 1) \
31d929e5
GM
1779 & ~(sizeof (EMACS_INT) - 1))
1780
1781#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1782
bdbed949
KS
1783/* Extra bytes to allocate for each string. */
1784
1785#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1786
c9d624c6
PE
1787/* Exact bound on the number of bytes in a string, not counting the
1788 terminating null. A string cannot contain more bytes than
1789 STRING_BYTES_BOUND, nor can it be so long that the size_t
1790 arithmetic in allocate_string_data would overflow while it is
1791 calculating a value to be passed to malloc. */
1792#define STRING_BYTES_MAX \
1793 min (STRING_BYTES_BOUND, \
903fe15d
PE
1794 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1795 - GC_STRING_EXTRA \
c9d624c6
PE
1796 - offsetof (struct sblock, first_data) \
1797 - SDATA_DATA_OFFSET) \
1798 & ~(sizeof (EMACS_INT) - 1)))
1799
2e471eb5 1800/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1801
d3d47262 1802static void
971de7fb 1803init_strings (void)
7146af97 1804{
2e471eb5
GM
1805 total_strings = total_free_strings = total_string_size = 0;
1806 oldest_sblock = current_sblock = large_sblocks = NULL;
1807 string_blocks = NULL;
2e471eb5 1808 string_free_list = NULL;
4d774b0f
JB
1809 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1810 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1811}
1812
2e471eb5 1813
361b097f
GM
1814#ifdef GC_CHECK_STRING_BYTES
1815
361b097f
GM
1816static int check_string_bytes_count;
1817
676a7251
GM
1818#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1819
1820
1821/* Like GC_STRING_BYTES, but with debugging check. */
1822
14162469
EZ
1823EMACS_INT
1824string_bytes (struct Lisp_String *s)
676a7251 1825{
14162469
EZ
1826 EMACS_INT nbytes =
1827 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1828
676a7251
GM
1829 if (!PURE_POINTER_P (s)
1830 && s->data
1831 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1832 abort ();
1833 return nbytes;
1834}
177c0ea7 1835
2c5bd608 1836/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1837
d3d47262 1838static void
d0f4e1f5 1839check_sblock (struct sblock *b)
361b097f 1840{
676a7251 1841 struct sdata *from, *end, *from_end;
177c0ea7 1842
676a7251 1843 end = b->next_free;
177c0ea7 1844
676a7251 1845 for (from = &b->first_data; from < end; from = from_end)
361b097f 1846 {
676a7251
GM
1847 /* Compute the next FROM here because copying below may
1848 overwrite data we need to compute it. */
14162469 1849 EMACS_INT nbytes;
177c0ea7 1850
676a7251
GM
1851 /* Check that the string size recorded in the string is the
1852 same as the one recorded in the sdata structure. */
1853 if (from->string)
1854 CHECK_STRING_BYTES (from->string);
177c0ea7 1855
676a7251
GM
1856 if (from->string)
1857 nbytes = GC_STRING_BYTES (from->string);
1858 else
1859 nbytes = SDATA_NBYTES (from);
177c0ea7 1860
676a7251 1861 nbytes = SDATA_SIZE (nbytes);
212f33f1 1862 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1863 }
1864}
361b097f 1865
676a7251
GM
1866
1867/* Check validity of Lisp strings' string_bytes member. ALL_P
1868 non-zero means check all strings, otherwise check only most
1869 recently allocated strings. Used for hunting a bug. */
1870
d3d47262 1871static void
d0f4e1f5 1872check_string_bytes (int all_p)
676a7251
GM
1873{
1874 if (all_p)
1875 {
1876 struct sblock *b;
1877
1878 for (b = large_sblocks; b; b = b->next)
1879 {
1880 struct Lisp_String *s = b->first_data.string;
1881 if (s)
1882 CHECK_STRING_BYTES (s);
361b097f 1883 }
177c0ea7 1884
676a7251
GM
1885 for (b = oldest_sblock; b; b = b->next)
1886 check_sblock (b);
361b097f 1887 }
676a7251
GM
1888 else
1889 check_sblock (current_sblock);
361b097f
GM
1890}
1891
1892#endif /* GC_CHECK_STRING_BYTES */
1893
212f33f1
KS
1894#ifdef GC_CHECK_STRING_FREE_LIST
1895
bdbed949
KS
1896/* Walk through the string free list looking for bogus next pointers.
1897 This may catch buffer overrun from a previous string. */
1898
212f33f1 1899static void
d0f4e1f5 1900check_string_free_list (void)
212f33f1
KS
1901{
1902 struct Lisp_String *s;
1903
1904 /* Pop a Lisp_String off the free-list. */
1905 s = string_free_list;
1906 while (s != NULL)
1907 {
d01a7826 1908 if ((uintptr_t) s < 1024)
5e617bc2 1909 abort ();
212f33f1
KS
1910 s = NEXT_FREE_LISP_STRING (s);
1911 }
1912}
1913#else
1914#define check_string_free_list()
1915#endif
361b097f 1916
2e471eb5
GM
1917/* Return a new Lisp_String. */
1918
1919static struct Lisp_String *
971de7fb 1920allocate_string (void)
7146af97 1921{
2e471eb5 1922 struct Lisp_String *s;
7146af97 1923
e2984df0
CY
1924 /* eassert (!handling_signal); */
1925
dafc79fa 1926 MALLOC_BLOCK_INPUT;
cfb2f32e 1927
2e471eb5
GM
1928 /* If the free-list is empty, allocate a new string_block, and
1929 add all the Lisp_Strings in it to the free-list. */
1930 if (string_free_list == NULL)
7146af97 1931 {
2e471eb5
GM
1932 struct string_block *b;
1933 int i;
1934
34400008 1935 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
72af86bd 1936 memset (b, 0, sizeof *b);
2e471eb5
GM
1937 b->next = string_blocks;
1938 string_blocks = b;
2e471eb5 1939
19bcad1f 1940 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1941 {
2e471eb5
GM
1942 s = b->strings + i;
1943 NEXT_FREE_LISP_STRING (s) = string_free_list;
1944 string_free_list = s;
7146af97 1945 }
2e471eb5 1946
19bcad1f 1947 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1948 }
c0f51373 1949
bdbed949 1950 check_string_free_list ();
212f33f1 1951
2e471eb5
GM
1952 /* Pop a Lisp_String off the free-list. */
1953 s = string_free_list;
1954 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1955
dafc79fa 1956 MALLOC_UNBLOCK_INPUT;
e2984df0 1957
2e471eb5 1958 /* Probably not strictly necessary, but play it safe. */
72af86bd 1959 memset (s, 0, sizeof *s);
c0f51373 1960
2e471eb5
GM
1961 --total_free_strings;
1962 ++total_strings;
1963 ++strings_consed;
1964 consing_since_gc += sizeof *s;
c0f51373 1965
361b097f 1966#ifdef GC_CHECK_STRING_BYTES
e39a993c 1967 if (!noninteractive)
361b097f 1968 {
676a7251
GM
1969 if (++check_string_bytes_count == 200)
1970 {
1971 check_string_bytes_count = 0;
1972 check_string_bytes (1);
1973 }
1974 else
1975 check_string_bytes (0);
361b097f 1976 }
676a7251 1977#endif /* GC_CHECK_STRING_BYTES */
361b097f 1978
2e471eb5 1979 return s;
c0f51373 1980}
7146af97 1981
7146af97 1982
2e471eb5
GM
1983/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1984 plus a NUL byte at the end. Allocate an sdata structure for S, and
1985 set S->data to its `u.data' member. Store a NUL byte at the end of
1986 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1987 S->data if it was initially non-null. */
7146af97 1988
2e471eb5 1989void
413d18e7
EZ
1990allocate_string_data (struct Lisp_String *s,
1991 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1992{
5c5fecb3 1993 struct sdata *data, *old_data;
2e471eb5 1994 struct sblock *b;
14162469 1995 EMACS_INT needed, old_nbytes;
7146af97 1996
c9d624c6
PE
1997 if (STRING_BYTES_MAX < nbytes)
1998 string_overflow ();
1999
2e471eb5
GM
2000 /* Determine the number of bytes needed to store NBYTES bytes
2001 of string data. */
2002 needed = SDATA_SIZE (nbytes);
e2984df0
CY
2003 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
2004 old_nbytes = GC_STRING_BYTES (s);
2005
dafc79fa 2006 MALLOC_BLOCK_INPUT;
7146af97 2007
2e471eb5
GM
2008 if (nbytes > LARGE_STRING_BYTES)
2009 {
36372bf9 2010 size_t size = offsetof (struct sblock, first_data) + needed;
2e471eb5
GM
2011
2012#ifdef DOUG_LEA_MALLOC
f8608968
GM
2013 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2014 because mapped region contents are not preserved in
d36b182f
DL
2015 a dumped Emacs.
2016
2017 In case you think of allowing it in a dumped Emacs at the
2018 cost of not being able to re-dump, there's another reason:
2019 mmap'ed data typically have an address towards the top of the
2020 address space, which won't fit into an EMACS_INT (at least on
2021 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
2022 mallopt (M_MMAP_MAX, 0);
2023#endif
2024
212f33f1 2025 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 2026
2e471eb5
GM
2027#ifdef DOUG_LEA_MALLOC
2028 /* Back to a reasonable maximum of mmap'ed areas. */
2029 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2030#endif
177c0ea7 2031
2e471eb5
GM
2032 b->next_free = &b->first_data;
2033 b->first_data.string = NULL;
2034 b->next = large_sblocks;
2035 large_sblocks = b;
2036 }
2037 else if (current_sblock == NULL
2038 || (((char *) current_sblock + SBLOCK_SIZE
2039 - (char *) current_sblock->next_free)
212f33f1 2040 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
2041 {
2042 /* Not enough room in the current sblock. */
34400008 2043 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
2044 b->next_free = &b->first_data;
2045 b->first_data.string = NULL;
2046 b->next = NULL;
2047
2048 if (current_sblock)
2049 current_sblock->next = b;
2050 else
2051 oldest_sblock = b;
2052 current_sblock = b;
2053 }
2054 else
2055 b = current_sblock;
5c5fecb3 2056
2e471eb5 2057 data = b->next_free;
a0b08700
CY
2058 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2059
dafc79fa 2060 MALLOC_UNBLOCK_INPUT;
e2984df0 2061
2e471eb5 2062 data->string = s;
31d929e5
GM
2063 s->data = SDATA_DATA (data);
2064#ifdef GC_CHECK_STRING_BYTES
2065 SDATA_NBYTES (data) = nbytes;
2066#endif
2e471eb5
GM
2067 s->size = nchars;
2068 s->size_byte = nbytes;
2069 s->data[nbytes] = '\0';
212f33f1 2070#ifdef GC_CHECK_STRING_OVERRUN
000098c1
PE
2071 memcpy ((char *) data + needed, string_overrun_cookie,
2072 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 2073#endif
177c0ea7 2074
5c5fecb3
GM
2075 /* If S had already data assigned, mark that as free by setting its
2076 string back-pointer to null, and recording the size of the data
00c9c33c 2077 in it. */
5c5fecb3
GM
2078 if (old_data)
2079 {
31d929e5 2080 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
2081 old_data->string = NULL;
2082 }
2083
2e471eb5
GM
2084 consing_since_gc += needed;
2085}
2086
2087
2088/* Sweep and compact strings. */
2089
2090static void
971de7fb 2091sweep_strings (void)
2e471eb5
GM
2092{
2093 struct string_block *b, *next;
2094 struct string_block *live_blocks = NULL;
177c0ea7 2095
2e471eb5
GM
2096 string_free_list = NULL;
2097 total_strings = total_free_strings = 0;
2098 total_string_size = 0;
2099
2100 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2101 for (b = string_blocks; b; b = next)
2102 {
2103 int i, nfree = 0;
2104 struct Lisp_String *free_list_before = string_free_list;
2105
2106 next = b->next;
2107
19bcad1f 2108 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2109 {
2110 struct Lisp_String *s = b->strings + i;
2111
2112 if (s->data)
2113 {
2114 /* String was not on free-list before. */
2115 if (STRING_MARKED_P (s))
2116 {
2117 /* String is live; unmark it and its intervals. */
2118 UNMARK_STRING (s);
177c0ea7 2119
2e471eb5
GM
2120 if (!NULL_INTERVAL_P (s->intervals))
2121 UNMARK_BALANCE_INTERVALS (s->intervals);
2122
2123 ++total_strings;
2124 total_string_size += STRING_BYTES (s);
2125 }
2126 else
2127 {
2128 /* String is dead. Put it on the free-list. */
2129 struct sdata *data = SDATA_OF_STRING (s);
2130
2131 /* Save the size of S in its sdata so that we know
2132 how large that is. Reset the sdata's string
2133 back-pointer so that we know it's free. */
31d929e5
GM
2134#ifdef GC_CHECK_STRING_BYTES
2135 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2136 abort ();
2137#else
2e471eb5 2138 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2139#endif
2e471eb5
GM
2140 data->string = NULL;
2141
2142 /* Reset the strings's `data' member so that we
2143 know it's free. */
2144 s->data = NULL;
2145
2146 /* Put the string on the free-list. */
2147 NEXT_FREE_LISP_STRING (s) = string_free_list;
2148 string_free_list = s;
2149 ++nfree;
2150 }
2151 }
2152 else
2153 {
2154 /* S was on the free-list before. Put it there again. */
2155 NEXT_FREE_LISP_STRING (s) = string_free_list;
2156 string_free_list = s;
2157 ++nfree;
2158 }
2159 }
2160
34400008 2161 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2162 the first two of them. */
19bcad1f
SM
2163 if (nfree == STRING_BLOCK_SIZE
2164 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2165 {
2166 lisp_free (b);
2e471eb5
GM
2167 string_free_list = free_list_before;
2168 }
2169 else
2170 {
2171 total_free_strings += nfree;
2172 b->next = live_blocks;
2173 live_blocks = b;
2174 }
2175 }
2176
bdbed949 2177 check_string_free_list ();
212f33f1 2178
2e471eb5
GM
2179 string_blocks = live_blocks;
2180 free_large_strings ();
2181 compact_small_strings ();
212f33f1 2182
bdbed949 2183 check_string_free_list ();
2e471eb5
GM
2184}
2185
2186
2187/* Free dead large strings. */
2188
2189static void
971de7fb 2190free_large_strings (void)
2e471eb5
GM
2191{
2192 struct sblock *b, *next;
2193 struct sblock *live_blocks = NULL;
177c0ea7 2194
2e471eb5
GM
2195 for (b = large_sblocks; b; b = next)
2196 {
2197 next = b->next;
2198
2199 if (b->first_data.string == NULL)
2200 lisp_free (b);
2201 else
2202 {
2203 b->next = live_blocks;
2204 live_blocks = b;
2205 }
2206 }
2207
2208 large_sblocks = live_blocks;
2209}
2210
2211
2212/* Compact data of small strings. Free sblocks that don't contain
2213 data of live strings after compaction. */
2214
2215static void
971de7fb 2216compact_small_strings (void)
2e471eb5
GM
2217{
2218 struct sblock *b, *tb, *next;
2219 struct sdata *from, *to, *end, *tb_end;
2220 struct sdata *to_end, *from_end;
2221
2222 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2223 to, and TB_END is the end of TB. */
2224 tb = oldest_sblock;
2225 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2226 to = &tb->first_data;
2227
2228 /* Step through the blocks from the oldest to the youngest. We
2229 expect that old blocks will stabilize over time, so that less
2230 copying will happen this way. */
2231 for (b = oldest_sblock; b; b = b->next)
2232 {
2233 end = b->next_free;
2234 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2235
2e471eb5
GM
2236 for (from = &b->first_data; from < end; from = from_end)
2237 {
2238 /* Compute the next FROM here because copying below may
2239 overwrite data we need to compute it. */
14162469 2240 EMACS_INT nbytes;
2e471eb5 2241
31d929e5
GM
2242#ifdef GC_CHECK_STRING_BYTES
2243 /* Check that the string size recorded in the string is the
2244 same as the one recorded in the sdata structure. */
2245 if (from->string
2246 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2247 abort ();
2248#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2249
2e471eb5
GM
2250 if (from->string)
2251 nbytes = GC_STRING_BYTES (from->string);
2252 else
31d929e5 2253 nbytes = SDATA_NBYTES (from);
177c0ea7 2254
212f33f1
KS
2255 if (nbytes > LARGE_STRING_BYTES)
2256 abort ();
212f33f1 2257
2e471eb5 2258 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2259 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2260
2261#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
2262 if (memcmp (string_overrun_cookie,
2263 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2264 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2265 abort ();
2266#endif
177c0ea7 2267
2e471eb5
GM
2268 /* FROM->string non-null means it's alive. Copy its data. */
2269 if (from->string)
2270 {
2271 /* If TB is full, proceed with the next sblock. */
212f33f1 2272 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2273 if (to_end > tb_end)
2274 {
2275 tb->next_free = to;
2276 tb = tb->next;
2277 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2278 to = &tb->first_data;
212f33f1 2279 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2280 }
177c0ea7 2281
2e471eb5
GM
2282 /* Copy, and update the string's `data' pointer. */
2283 if (from != to)
2284 {
3c616cfa 2285 xassert (tb != b || to < from);
72af86bd 2286 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2287 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2288 }
2289
2290 /* Advance past the sdata we copied to. */
2291 to = to_end;
2292 }
2293 }
2294 }
2295
2296 /* The rest of the sblocks following TB don't contain live data, so
2297 we can free them. */
2298 for (b = tb->next; b; b = next)
2299 {
2300 next = b->next;
2301 lisp_free (b);
2302 }
2303
2304 tb->next_free = to;
2305 tb->next = NULL;
2306 current_sblock = tb;
2307}
2308
cb93f9be
PE
2309void
2310string_overflow (void)
2311{
2312 error ("Maximum string size exceeded");
2313}
2e471eb5 2314
a7ca3326 2315DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2316 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2317LENGTH must be an integer.
2318INIT must be an integer that represents a character. */)
5842a27b 2319 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2320{
2321 register Lisp_Object val;
2322 register unsigned char *p, *end;
14162469
EZ
2323 int c;
2324 EMACS_INT nbytes;
2e471eb5 2325
b7826503 2326 CHECK_NATNUM (length);
2bccce07 2327 CHECK_CHARACTER (init);
2e471eb5 2328
2bccce07 2329 c = XFASTINT (init);
830ff83b 2330 if (ASCII_CHAR_P (c))
2e471eb5
GM
2331 {
2332 nbytes = XINT (length);
2333 val = make_uninit_string (nbytes);
d5db4077
KR
2334 p = SDATA (val);
2335 end = p + SCHARS (val);
2e471eb5
GM
2336 while (p != end)
2337 *p++ = c;
2338 }
2339 else
2340 {
d942b71c 2341 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 2342 int len = CHAR_STRING (c, str);
14162469 2343 EMACS_INT string_len = XINT (length);
2e471eb5 2344
d1f3d2af 2345 if (string_len > STRING_BYTES_MAX / len)
cb93f9be 2346 string_overflow ();
14162469
EZ
2347 nbytes = len * string_len;
2348 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2349 p = SDATA (val);
2e471eb5
GM
2350 end = p + nbytes;
2351 while (p != end)
2352 {
72af86bd 2353 memcpy (p, str, len);
2e471eb5
GM
2354 p += len;
2355 }
2356 }
177c0ea7 2357
2e471eb5
GM
2358 *p = 0;
2359 return val;
2360}
2361
2362
a7ca3326 2363DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2364 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2365LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2366 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2367{
2368 register Lisp_Object val;
2369 struct Lisp_Bool_Vector *p;
14162469
EZ
2370 EMACS_INT length_in_chars, length_in_elts;
2371 int bits_per_value;
2e471eb5 2372
b7826503 2373 CHECK_NATNUM (length);
2e471eb5 2374
a097329f 2375 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2376
2377 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
2378 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2379 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
2380
2381 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2382 slot `size' of the struct Lisp_Bool_Vector. */
2383 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
177c0ea7 2384
eab3844f
PE
2385 /* No Lisp_Object to trace in there. */
2386 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
d2029e5b
SM
2387
2388 p = XBOOL_VECTOR (val);
2e471eb5 2389 p->size = XFASTINT (length);
177c0ea7 2390
c0c1ee9f
PE
2391 if (length_in_chars)
2392 {
2393 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
177c0ea7 2394
c0c1ee9f
PE
2395 /* Clear any extraneous bits in the last byte. */
2396 p->data[length_in_chars - 1]
2397 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2398 }
2e471eb5
GM
2399
2400 return val;
2401}
2402
2403
2404/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2405 of characters from the contents. This string may be unibyte or
2406 multibyte, depending on the contents. */
2407
2408Lisp_Object
14162469 2409make_string (const char *contents, EMACS_INT nbytes)
2e471eb5
GM
2410{
2411 register Lisp_Object val;
14162469 2412 EMACS_INT nchars, multibyte_nbytes;
9eac9d59 2413
90256841
PE
2414 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2415 &nchars, &multibyte_nbytes);
9eac9d59
KH
2416 if (nbytes == nchars || nbytes != multibyte_nbytes)
2417 /* CONTENTS contains no multibyte sequences or contains an invalid
2418 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2419 val = make_unibyte_string (contents, nbytes);
2420 else
2421 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2422 return val;
2423}
2424
2425
2426/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2427
2428Lisp_Object
14162469 2429make_unibyte_string (const char *contents, EMACS_INT length)
2e471eb5
GM
2430{
2431 register Lisp_Object val;
2432 val = make_uninit_string (length);
72af86bd 2433 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2434 return val;
2435}
2436
2437
2438/* Make a multibyte string from NCHARS characters occupying NBYTES
2439 bytes at CONTENTS. */
2440
2441Lisp_Object
14162469
EZ
2442make_multibyte_string (const char *contents,
2443 EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2444{
2445 register Lisp_Object val;
2446 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2447 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2448 return val;
2449}
2450
2451
2452/* Make a string from NCHARS characters occupying NBYTES bytes at
2453 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2454
2455Lisp_Object
14162469
EZ
2456make_string_from_bytes (const char *contents,
2457 EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2458{
2459 register Lisp_Object val;
2460 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2461 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2462 if (SBYTES (val) == SCHARS (val))
2463 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2464 return val;
2465}
2466
2467
2468/* Make a string from NCHARS characters occupying NBYTES bytes at
2469 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2470 string as multibyte. If NCHARS is negative, it counts the number of
2471 characters by itself. */
2e471eb5
GM
2472
2473Lisp_Object
14162469
EZ
2474make_specified_string (const char *contents,
2475 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2e471eb5
GM
2476{
2477 register Lisp_Object val;
229b28c4
KH
2478
2479 if (nchars < 0)
2480 {
2481 if (multibyte)
90256841
PE
2482 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2483 nbytes);
229b28c4
KH
2484 else
2485 nchars = nbytes;
2486 }
2e471eb5 2487 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2488 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2489 if (!multibyte)
d5db4077 2490 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2491 return val;
2492}
2493
2494
2495/* Make a string from the data at STR, treating it as multibyte if the
2496 data warrants. */
2497
2498Lisp_Object
971de7fb 2499build_string (const char *str)
2e471eb5
GM
2500{
2501 return make_string (str, strlen (str));
2502}
2503
2504
2505/* Return an unibyte Lisp_String set up to hold LENGTH characters
2506 occupying LENGTH bytes. */
2507
2508Lisp_Object
413d18e7 2509make_uninit_string (EMACS_INT length)
2e471eb5
GM
2510{
2511 Lisp_Object val;
4d774b0f
JB
2512
2513 if (!length)
2514 return empty_unibyte_string;
2e471eb5 2515 val = make_uninit_multibyte_string (length, length);
d5db4077 2516 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2517 return val;
2518}
2519
2520
2521/* Return a multibyte Lisp_String set up to hold NCHARS characters
2522 which occupy NBYTES bytes. */
2523
2524Lisp_Object
413d18e7 2525make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2526{
2527 Lisp_Object string;
2528 struct Lisp_String *s;
2529
2530 if (nchars < 0)
2531 abort ();
4d774b0f
JB
2532 if (!nbytes)
2533 return empty_multibyte_string;
2e471eb5
GM
2534
2535 s = allocate_string ();
2536 allocate_string_data (s, nchars, nbytes);
2537 XSETSTRING (string, s);
2538 string_chars_consed += nbytes;
2539 return string;
2540}
2541
2542
2543\f
2544/***********************************************************************
2545 Float Allocation
2546 ***********************************************************************/
2547
2e471eb5
GM
2548/* We store float cells inside of float_blocks, allocating a new
2549 float_block with malloc whenever necessary. Float cells reclaimed
2550 by GC are put on a free list to be reallocated before allocating
ab6780cd 2551 any new float cells from the latest float_block. */
2e471eb5 2552
6b61353c
KH
2553#define FLOAT_BLOCK_SIZE \
2554 (((BLOCK_BYTES - sizeof (struct float_block *) \
2555 /* The compiler might add padding at the end. */ \
2556 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2557 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2558
2559#define GETMARKBIT(block,n) \
5e617bc2
JB
2560 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2561 >> ((n) % (sizeof (int) * CHAR_BIT))) \
ab6780cd
SM
2562 & 1)
2563
2564#define SETMARKBIT(block,n) \
5e617bc2
JB
2565 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2566 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
ab6780cd
SM
2567
2568#define UNSETMARKBIT(block,n) \
5e617bc2
JB
2569 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2570 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
ab6780cd
SM
2571
2572#define FLOAT_BLOCK(fptr) \
d01a7826 2573 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
ab6780cd
SM
2574
2575#define FLOAT_INDEX(fptr) \
d01a7826 2576 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2577
2578struct float_block
2579{
ab6780cd 2580 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2581 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
5e617bc2 2582 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
ab6780cd 2583 struct float_block *next;
2e471eb5
GM
2584};
2585
ab6780cd
SM
2586#define FLOAT_MARKED_P(fptr) \
2587 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2588
2589#define FLOAT_MARK(fptr) \
2590 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2591
2592#define FLOAT_UNMARK(fptr) \
2593 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2594
34400008
GM
2595/* Current float_block. */
2596
244ed907 2597static struct float_block *float_block;
34400008
GM
2598
2599/* Index of first unused Lisp_Float in the current float_block. */
2600
244ed907 2601static int float_block_index;
2e471eb5 2602
34400008
GM
2603/* Free-list of Lisp_Floats. */
2604
244ed907 2605static struct Lisp_Float *float_free_list;
2e471eb5 2606
34400008 2607
966533c9 2608/* Initialize float allocation. */
34400008 2609
d3d47262 2610static void
971de7fb 2611init_float (void)
2e471eb5 2612{
08b7c2cb
SM
2613 float_block = NULL;
2614 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2615 float_free_list = 0;
2e471eb5
GM
2616}
2617
34400008 2618
34400008
GM
2619/* Return a new float object with value FLOAT_VALUE. */
2620
2e471eb5 2621Lisp_Object
971de7fb 2622make_float (double float_value)
2e471eb5
GM
2623{
2624 register Lisp_Object val;
2625
e2984df0
CY
2626 /* eassert (!handling_signal); */
2627
dafc79fa 2628 MALLOC_BLOCK_INPUT;
cfb2f32e 2629
2e471eb5
GM
2630 if (float_free_list)
2631 {
2632 /* We use the data field for chaining the free list
2633 so that we won't use the same field that has the mark bit. */
2634 XSETFLOAT (val, float_free_list);
28a099a4 2635 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2636 }
2637 else
2638 {
2639 if (float_block_index == FLOAT_BLOCK_SIZE)
2640 {
2641 register struct float_block *new;
2642
ab6780cd
SM
2643 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2644 MEM_TYPE_FLOAT);
2e471eb5 2645 new->next = float_block;
72af86bd 2646 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2647 float_block = new;
2648 float_block_index = 0;
2e471eb5 2649 }
6b61353c
KH
2650 XSETFLOAT (val, &float_block->floats[float_block_index]);
2651 float_block_index++;
2e471eb5 2652 }
177c0ea7 2653
dafc79fa 2654 MALLOC_UNBLOCK_INPUT;
e2984df0 2655
f601cdf3 2656 XFLOAT_INIT (val, float_value);
6b61353c 2657 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2658 consing_since_gc += sizeof (struct Lisp_Float);
2659 floats_consed++;
2660 return val;
2661}
2662
2e471eb5
GM
2663
2664\f
2665/***********************************************************************
2666 Cons Allocation
2667 ***********************************************************************/
2668
2669/* We store cons cells inside of cons_blocks, allocating a new
2670 cons_block with malloc whenever necessary. Cons cells reclaimed by
2671 GC are put on a free list to be reallocated before allocating
08b7c2cb 2672 any new cons cells from the latest cons_block. */
2e471eb5
GM
2673
2674#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2675 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2676 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2677
2678#define CONS_BLOCK(fptr) \
d01a7826 2679 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
08b7c2cb
SM
2680
2681#define CONS_INDEX(fptr) \
d01a7826 2682 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2683
2684struct cons_block
2685{
08b7c2cb 2686 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2687 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
5e617bc2 2688 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
08b7c2cb 2689 struct cons_block *next;
2e471eb5
GM
2690};
2691
08b7c2cb
SM
2692#define CONS_MARKED_P(fptr) \
2693 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2694
2695#define CONS_MARK(fptr) \
2696 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2697
2698#define CONS_UNMARK(fptr) \
2699 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2700
34400008
GM
2701/* Current cons_block. */
2702
244ed907 2703static struct cons_block *cons_block;
34400008
GM
2704
2705/* Index of first unused Lisp_Cons in the current block. */
2706
244ed907 2707static int cons_block_index;
2e471eb5 2708
34400008
GM
2709/* Free-list of Lisp_Cons structures. */
2710
244ed907 2711static struct Lisp_Cons *cons_free_list;
2e471eb5 2712
34400008
GM
2713
2714/* Initialize cons allocation. */
2715
d3d47262 2716static void
971de7fb 2717init_cons (void)
2e471eb5 2718{
08b7c2cb
SM
2719 cons_block = NULL;
2720 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2721 cons_free_list = 0;
2e471eb5
GM
2722}
2723
34400008
GM
2724
2725/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2726
2727void
971de7fb 2728free_cons (struct Lisp_Cons *ptr)
2e471eb5 2729{
28a099a4 2730 ptr->u.chain = cons_free_list;
34400008
GM
2731#if GC_MARK_STACK
2732 ptr->car = Vdead;
2733#endif
2e471eb5
GM
2734 cons_free_list = ptr;
2735}
2736
a7ca3326 2737DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2738 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2739 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2740{
2741 register Lisp_Object val;
2742
e2984df0
CY
2743 /* eassert (!handling_signal); */
2744
dafc79fa 2745 MALLOC_BLOCK_INPUT;
cfb2f32e 2746
2e471eb5
GM
2747 if (cons_free_list)
2748 {
2749 /* We use the cdr for chaining the free list
2750 so that we won't use the same field that has the mark bit. */
2751 XSETCONS (val, cons_free_list);
28a099a4 2752 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2753 }
2754 else
2755 {
2756 if (cons_block_index == CONS_BLOCK_SIZE)
2757 {
2758 register struct cons_block *new;
08b7c2cb
SM
2759 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2760 MEM_TYPE_CONS);
72af86bd 2761 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2762 new->next = cons_block;
2763 cons_block = new;
2764 cons_block_index = 0;
2e471eb5 2765 }
6b61353c
KH
2766 XSETCONS (val, &cons_block->conses[cons_block_index]);
2767 cons_block_index++;
2e471eb5 2768 }
177c0ea7 2769
dafc79fa 2770 MALLOC_UNBLOCK_INPUT;
e2984df0 2771
f3fbd155
KR
2772 XSETCAR (val, car);
2773 XSETCDR (val, cdr);
6b61353c 2774 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2775 consing_since_gc += sizeof (struct Lisp_Cons);
2776 cons_cells_consed++;
2777 return val;
2778}
2779
e5aab7e7 2780#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2781/* Get an error now if there's any junk in the cons free list. */
2782void
971de7fb 2783check_cons_list (void)
e3e56238
RS
2784{
2785 struct Lisp_Cons *tail = cons_free_list;
2786
e3e56238 2787 while (tail)
28a099a4 2788 tail = tail->u.chain;
e3e56238 2789}
e5aab7e7 2790#endif
34400008 2791
9b306d37
KS
2792/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2793
2794Lisp_Object
971de7fb 2795list1 (Lisp_Object arg1)
9b306d37
KS
2796{
2797 return Fcons (arg1, Qnil);
2798}
2e471eb5
GM
2799
2800Lisp_Object
971de7fb 2801list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2802{
2803 return Fcons (arg1, Fcons (arg2, Qnil));
2804}
2805
34400008 2806
2e471eb5 2807Lisp_Object
971de7fb 2808list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2809{
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2811}
2812
34400008 2813
2e471eb5 2814Lisp_Object
971de7fb 2815list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2816{
2817 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2818}
2819
34400008 2820
2e471eb5 2821Lisp_Object
971de7fb 2822list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2823{
2824 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2825 Fcons (arg5, Qnil)))));
2826}
2827
34400008 2828
a7ca3326 2829DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2830 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2831Any number of arguments, even zero arguments, are allowed.
2832usage: (list &rest OBJECTS) */)
f66c7cf8 2833 (ptrdiff_t nargs, Lisp_Object *args)
2e471eb5
GM
2834{
2835 register Lisp_Object val;
2836 val = Qnil;
2837
2838 while (nargs > 0)
2839 {
2840 nargs--;
2841 val = Fcons (args[nargs], val);
2842 }
2843 return val;
2844}
2845
34400008 2846
a7ca3326 2847DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2848 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2849 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2850{
2851 register Lisp_Object val;
14162469 2852 register EMACS_INT size;
2e471eb5 2853
b7826503 2854 CHECK_NATNUM (length);
2e471eb5
GM
2855 size = XFASTINT (length);
2856
2857 val = Qnil;
ce070307
GM
2858 while (size > 0)
2859 {
2860 val = Fcons (init, val);
2861 --size;
2862
2863 if (size > 0)
2864 {
2865 val = Fcons (init, val);
2866 --size;
177c0ea7 2867
ce070307
GM
2868 if (size > 0)
2869 {
2870 val = Fcons (init, val);
2871 --size;
177c0ea7 2872
ce070307
GM
2873 if (size > 0)
2874 {
2875 val = Fcons (init, val);
2876 --size;
177c0ea7 2877
ce070307
GM
2878 if (size > 0)
2879 {
2880 val = Fcons (init, val);
2881 --size;
2882 }
2883 }
2884 }
2885 }
2886
2887 QUIT;
2888 }
177c0ea7 2889
7146af97
JB
2890 return val;
2891}
2e471eb5
GM
2892
2893
7146af97 2894\f
2e471eb5
GM
2895/***********************************************************************
2896 Vector Allocation
2897 ***********************************************************************/
7146af97 2898
34400008
GM
2899/* Singly-linked list of all vectors. */
2900
d3d47262 2901static struct Lisp_Vector *all_vectors;
7146af97 2902
dd0b0efb
PE
2903/* Handy constants for vectorlike objects. */
2904enum
2905 {
2906 header_size = offsetof (struct Lisp_Vector, contents),
2907 word_size = sizeof (Lisp_Object)
2908 };
34400008
GM
2909
2910/* Value is a pointer to a newly allocated Lisp_Vector structure
2911 with room for LEN Lisp_Objects. */
2912
ece93c02 2913static struct Lisp_Vector *
971de7fb 2914allocate_vectorlike (EMACS_INT len)
1825c68d
KH
2915{
2916 struct Lisp_Vector *p;
675d5130 2917 size_t nbytes;
1825c68d 2918
dafc79fa
SM
2919 MALLOC_BLOCK_INPUT;
2920
d1658221 2921#ifdef DOUG_LEA_MALLOC
f8608968
GM
2922 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2923 because mapped region contents are not preserved in
2924 a dumped Emacs. */
d1658221
RS
2925 mallopt (M_MMAP_MAX, 0);
2926#endif
177c0ea7 2927
cfb2f32e
SM
2928 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2929 /* eassert (!handling_signal); */
2930
0de4bb68 2931 nbytes = header_size + len * word_size;
9c545a55 2932 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
177c0ea7 2933
d1658221 2934#ifdef DOUG_LEA_MALLOC
34400008 2935 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 2936 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 2937#endif
177c0ea7 2938
34400008 2939 consing_since_gc += nbytes;
310ea200 2940 vector_cells_consed += len;
1825c68d 2941
eab3844f 2942 p->header.next.vector = all_vectors;
1825c68d 2943 all_vectors = p;
e2984df0 2944
dafc79fa 2945 MALLOC_UNBLOCK_INPUT;
e2984df0 2946
1825c68d
KH
2947 return p;
2948}
2949
34400008 2950
dd0b0efb 2951/* Allocate a vector with LEN slots. */
ece93c02
GM
2952
2953struct Lisp_Vector *
dd0b0efb 2954allocate_vector (EMACS_INT len)
ece93c02 2955{
dd0b0efb
PE
2956 struct Lisp_Vector *v;
2957 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2958
2959 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2960 memory_full (SIZE_MAX);
2961 v = allocate_vectorlike (len);
2962 v->header.size = len;
ece93c02
GM
2963 return v;
2964}
2965
2966
2967/* Allocate other vector-like structures. */
2968
30f95089 2969struct Lisp_Vector *
971de7fb 2970allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
ece93c02 2971{
d2029e5b 2972 struct Lisp_Vector *v = allocate_vectorlike (memlen);
e46bb31a 2973 int i;
177c0ea7 2974
d2029e5b 2975 /* Only the first lisplen slots will be traced normally by the GC. */
d2029e5b 2976 for (i = 0; i < lisplen; ++i)
ece93c02 2977 v->contents[i] = Qnil;
177c0ea7 2978
eab3844f 2979 XSETPVECTYPESIZE (v, tag, lisplen);
d2029e5b
SM
2980 return v;
2981}
d2029e5b 2982
ece93c02 2983struct Lisp_Hash_Table *
878f97ff 2984allocate_hash_table (void)
ece93c02 2985{
878f97ff 2986 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
2987}
2988
2989
2990struct window *
971de7fb 2991allocate_window (void)
ece93c02 2992{
5e617bc2 2993 return ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
ece93c02 2994}
177c0ea7 2995
177c0ea7 2996
4a729fd8 2997struct terminal *
971de7fb 2998allocate_terminal (void)
4a729fd8 2999{
d2029e5b
SM
3000 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3001 next_terminal, PVEC_TERMINAL);
3002 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
3003 memset (&t->next_terminal, 0,
3004 (char*) (t + 1) - (char*) &t->next_terminal);
ece93c02 3005
d2029e5b 3006 return t;
4a729fd8 3007}
ece93c02
GM
3008
3009struct frame *
971de7fb 3010allocate_frame (void)
ece93c02 3011{
d2029e5b
SM
3012 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3013 face_cache, PVEC_FRAME);
3014 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
3015 memset (&f->face_cache, 0,
3016 (char *) (f + 1) - (char *) &f->face_cache);
d2029e5b 3017 return f;
ece93c02
GM
3018}
3019
3020
3021struct Lisp_Process *
971de7fb 3022allocate_process (void)
ece93c02 3023{
d2029e5b 3024 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
ece93c02
GM
3025}
3026
3027
a7ca3326 3028DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3029 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 3030See also the function `vector'. */)
5842a27b 3031 (register Lisp_Object length, Lisp_Object init)
7146af97 3032{
1825c68d
KH
3033 Lisp_Object vector;
3034 register EMACS_INT sizei;
ae35e756 3035 register EMACS_INT i;
7146af97
JB
3036 register struct Lisp_Vector *p;
3037
b7826503 3038 CHECK_NATNUM (length);
c9dad5ed 3039 sizei = XFASTINT (length);
7146af97 3040
ece93c02 3041 p = allocate_vector (sizei);
ae35e756
PE
3042 for (i = 0; i < sizei; i++)
3043 p->contents[i] = init;
7146af97 3044
1825c68d 3045 XSETVECTOR (vector, p);
7146af97
JB
3046 return vector;
3047}
3048
34400008 3049
a7ca3326 3050DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3051 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3052Any number of arguments, even zero arguments, are allowed.
3053usage: (vector &rest OBJECTS) */)
f66c7cf8 3054 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3055{
3056 register Lisp_Object len, val;
f66c7cf8 3057 ptrdiff_t i;
7146af97
JB
3058 register struct Lisp_Vector *p;
3059
67ba9986 3060 XSETFASTINT (len, nargs);
7146af97
JB
3061 val = Fmake_vector (len, Qnil);
3062 p = XVECTOR (val);
ae35e756
PE
3063 for (i = 0; i < nargs; i++)
3064 p->contents[i] = args[i];
7146af97
JB
3065 return val;
3066}
3067
34400008 3068
a7ca3326 3069DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3070 doc: /* Create a byte-code object with specified arguments as elements.
e2abe5a1
SM
3071The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3072vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3073and (optional) INTERACTIVE-SPEC.
228299fa 3074The first four arguments are required; at most six have any
ae8e8122 3075significance.
e2abe5a1
SM
3076The ARGLIST can be either like the one of `lambda', in which case the arguments
3077will be dynamically bound before executing the byte code, or it can be an
3078integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3079minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3080of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3081argument to catch the left-over arguments. If such an integer is used, the
3082arguments will not be dynamically bound but will be instead pushed on the
3083stack before executing the byte-code.
92cc28b2 3084usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
f66c7cf8 3085 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3086{
3087 register Lisp_Object len, val;
f66c7cf8 3088 ptrdiff_t i;
7146af97
JB
3089 register struct Lisp_Vector *p;
3090
67ba9986 3091 XSETFASTINT (len, nargs);
265a9e55 3092 if (!NILP (Vpurify_flag))
f66c7cf8 3093 val = make_pure_vector (nargs);
7146af97
JB
3094 else
3095 val = Fmake_vector (len, Qnil);
9eac9d59 3096
b1feb9b4 3097 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
9eac9d59
KH
3098 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3099 earlier because they produced a raw 8-bit string for byte-code
3100 and now such a byte-code string is loaded as multibyte while
3101 raw 8-bit characters converted to multibyte form. Thus, now we
3102 must convert them back to the original unibyte form. */
3103 args[1] = Fstring_as_unibyte (args[1]);
3104
7146af97 3105 p = XVECTOR (val);
ae35e756 3106 for (i = 0; i < nargs; i++)
7146af97 3107 {
265a9e55 3108 if (!NILP (Vpurify_flag))
ae35e756
PE
3109 args[i] = Fpurecopy (args[i]);
3110 p->contents[i] = args[i];
7146af97 3111 }
876c194c
SM
3112 XSETPVECTYPE (p, PVEC_COMPILED);
3113 XSETCOMPILED (val, p);
7146af97
JB
3114 return val;
3115}
2e471eb5 3116
34400008 3117
7146af97 3118\f
2e471eb5
GM
3119/***********************************************************************
3120 Symbol Allocation
3121 ***********************************************************************/
7146af97 3122
2e471eb5
GM
3123/* Each symbol_block is just under 1020 bytes long, since malloc
3124 really allocates in units of powers of two and uses 4 bytes for its
3125 own overhead. */
7146af97
JB
3126
3127#define SYMBOL_BLOCK_SIZE \
3128 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3129
3130struct symbol_block
2e471eb5 3131{
6b61353c 3132 /* Place `symbols' first, to preserve alignment. */
2e471eb5 3133 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3134 struct symbol_block *next;
2e471eb5 3135};
7146af97 3136
34400008
GM
3137/* Current symbol block and index of first unused Lisp_Symbol
3138 structure in it. */
3139
d3d47262
JB
3140static struct symbol_block *symbol_block;
3141static int symbol_block_index;
7146af97 3142
34400008
GM
3143/* List of free symbols. */
3144
d3d47262 3145static struct Lisp_Symbol *symbol_free_list;
7146af97 3146
34400008
GM
3147
3148/* Initialize symbol allocation. */
3149
d3d47262 3150static void
971de7fb 3151init_symbol (void)
7146af97 3152{
005ca5c7
DL
3153 symbol_block = NULL;
3154 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97
JB
3155 symbol_free_list = 0;
3156}
3157
34400008 3158
a7ca3326 3159DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3160 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3161Its value and function definition are void, and its property list is nil. */)
5842a27b 3162 (Lisp_Object name)
7146af97
JB
3163{
3164 register Lisp_Object val;
3165 register struct Lisp_Symbol *p;
3166
b7826503 3167 CHECK_STRING (name);
7146af97 3168
537407f0 3169 /* eassert (!handling_signal); */
cfb2f32e 3170
dafc79fa 3171 MALLOC_BLOCK_INPUT;
e2984df0 3172
7146af97
JB
3173 if (symbol_free_list)
3174 {
45d12a89 3175 XSETSYMBOL (val, symbol_free_list);
28a099a4 3176 symbol_free_list = symbol_free_list->next;
7146af97
JB
3177 }
3178 else
3179 {
3180 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3181 {
3c06d205 3182 struct symbol_block *new;
34400008
GM
3183 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3184 MEM_TYPE_SYMBOL);
7146af97
JB
3185 new->next = symbol_block;
3186 symbol_block = new;
3187 symbol_block_index = 0;
3188 }
6b61353c
KH
3189 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3190 symbol_block_index++;
7146af97 3191 }
177c0ea7 3192
dafc79fa 3193 MALLOC_UNBLOCK_INPUT;
e2984df0 3194
7146af97 3195 p = XSYMBOL (val);
8fe5665d 3196 p->xname = name;
7146af97 3197 p->plist = Qnil;
ce5b453a
SM
3198 p->redirect = SYMBOL_PLAINVAL;
3199 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3200 p->function = Qunbound;
9e713715 3201 p->next = NULL;
2336fe58 3202 p->gcmarkbit = 0;
9e713715
GM
3203 p->interned = SYMBOL_UNINTERNED;
3204 p->constant = 0;
b9598260 3205 p->declared_special = 0;
2e471eb5
GM
3206 consing_since_gc += sizeof (struct Lisp_Symbol);
3207 symbols_consed++;
7146af97
JB
3208 return val;
3209}
3210
3f25e183 3211
2e471eb5
GM
3212\f
3213/***********************************************************************
34400008 3214 Marker (Misc) Allocation
2e471eb5 3215 ***********************************************************************/
3f25e183 3216
2e471eb5
GM
3217/* Allocation of markers and other objects that share that structure.
3218 Works like allocation of conses. */
c0696668 3219
2e471eb5
GM
3220#define MARKER_BLOCK_SIZE \
3221 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3222
3223struct marker_block
c0696668 3224{
6b61353c 3225 /* Place `markers' first, to preserve alignment. */
2e471eb5 3226 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3227 struct marker_block *next;
2e471eb5 3228};
c0696668 3229
d3d47262
JB
3230static struct marker_block *marker_block;
3231static int marker_block_index;
c0696668 3232
d3d47262 3233static union Lisp_Misc *marker_free_list;
c0696668 3234
d3d47262 3235static void
971de7fb 3236init_marker (void)
3f25e183 3237{
005ca5c7
DL
3238 marker_block = NULL;
3239 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3240 marker_free_list = 0;
3f25e183
RS
3241}
3242
2e471eb5
GM
3243/* Return a newly allocated Lisp_Misc object, with no substructure. */
3244
3f25e183 3245Lisp_Object
971de7fb 3246allocate_misc (void)
7146af97 3247{
2e471eb5 3248 Lisp_Object val;
7146af97 3249
e2984df0
CY
3250 /* eassert (!handling_signal); */
3251
dafc79fa 3252 MALLOC_BLOCK_INPUT;
cfb2f32e 3253
2e471eb5 3254 if (marker_free_list)
7146af97 3255 {
2e471eb5
GM
3256 XSETMISC (val, marker_free_list);
3257 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3258 }
3259 else
7146af97 3260 {
2e471eb5
GM
3261 if (marker_block_index == MARKER_BLOCK_SIZE)
3262 {
3263 struct marker_block *new;
34400008
GM
3264 new = (struct marker_block *) lisp_malloc (sizeof *new,
3265 MEM_TYPE_MISC);
2e471eb5
GM
3266 new->next = marker_block;
3267 marker_block = new;
3268 marker_block_index = 0;
7b7990cc 3269 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3270 }
6b61353c
KH
3271 XSETMISC (val, &marker_block->markers[marker_block_index]);
3272 marker_block_index++;
7146af97 3273 }
177c0ea7 3274
dafc79fa 3275 MALLOC_UNBLOCK_INPUT;
e2984df0 3276
7b7990cc 3277 --total_free_markers;
2e471eb5
GM
3278 consing_since_gc += sizeof (union Lisp_Misc);
3279 misc_objects_consed++;
67ee9f6e 3280 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3281 return val;
3282}
3283
7b7990cc
KS
3284/* Free a Lisp_Misc object */
3285
244ed907 3286static void
971de7fb 3287free_misc (Lisp_Object misc)
7b7990cc 3288{
d314756e 3289 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3290 XMISC (misc)->u_free.chain = marker_free_list;
3291 marker_free_list = XMISC (misc);
3292
3293 total_free_markers++;
3294}
3295
42172a6b
RS
3296/* Return a Lisp_Misc_Save_Value object containing POINTER and
3297 INTEGER. This is used to package C values to call record_unwind_protect.
3298 The unwind function can get the C values back using XSAVE_VALUE. */
3299
3300Lisp_Object
9c4c5f81 3301make_save_value (void *pointer, ptrdiff_t integer)
42172a6b
RS
3302{
3303 register Lisp_Object val;
3304 register struct Lisp_Save_Value *p;
3305
3306 val = allocate_misc ();
3307 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3308 p = XSAVE_VALUE (val);
3309 p->pointer = pointer;
3310 p->integer = integer;
b766f870 3311 p->dogc = 0;
42172a6b
RS
3312 return val;
3313}
3314
a7ca3326 3315DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3316 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3317 (void)
2e471eb5
GM
3318{
3319 register Lisp_Object val;
3320 register struct Lisp_Marker *p;
7146af97 3321
2e471eb5
GM
3322 val = allocate_misc ();
3323 XMISCTYPE (val) = Lisp_Misc_Marker;
3324 p = XMARKER (val);
3325 p->buffer = 0;
3326 p->bytepos = 0;
3327 p->charpos = 0;
ef89c2ce 3328 p->next = NULL;
2e471eb5 3329 p->insertion_type = 0;
7146af97
JB
3330 return val;
3331}
2e471eb5
GM
3332
3333/* Put MARKER back on the free list after using it temporarily. */
3334
3335void
971de7fb 3336free_marker (Lisp_Object marker)
2e471eb5 3337{
ef89c2ce 3338 unchain_marker (XMARKER (marker));
7b7990cc 3339 free_misc (marker);
2e471eb5
GM
3340}
3341
c0696668 3342\f
7146af97 3343/* Return a newly created vector or string with specified arguments as
736471d1
RS
3344 elements. If all the arguments are characters that can fit
3345 in a string of events, make a string; otherwise, make a vector.
3346
3347 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3348
3349Lisp_Object
971de7fb 3350make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3351{
3352 int i;
3353
3354 for (i = 0; i < nargs; i++)
736471d1 3355 /* The things that fit in a string
c9ca4659
RS
3356 are characters that are in 0...127,
3357 after discarding the meta bit and all the bits above it. */
e687453f 3358 if (!INTEGERP (args[i])
c11285dc 3359 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3360 return Fvector (nargs, args);
3361
3362 /* Since the loop exited, we know that all the things in it are
3363 characters, so we can make a string. */
3364 {
c13ccad2 3365 Lisp_Object result;
177c0ea7 3366
50aee051 3367 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3368 for (i = 0; i < nargs; i++)
736471d1 3369 {
46e7e6b0 3370 SSET (result, i, XINT (args[i]));
736471d1
RS
3371 /* Move the meta bit to the right place for a string char. */
3372 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3373 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3374 }
177c0ea7 3375
7146af97
JB
3376 return result;
3377 }
3378}
2e471eb5
GM
3379
3380
7146af97 3381\f
24d8a105
RS
3382/************************************************************************
3383 Memory Full Handling
3384 ************************************************************************/
3385
3386
531b0165
PE
3387/* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3388 there may have been size_t overflow so that malloc was never
3389 called, or perhaps malloc was invoked successfully but the
3390 resulting pointer had problems fitting into a tagged EMACS_INT. In
3391 either case this counts as memory being full even though malloc did
3392 not fail. */
24d8a105
RS
3393
3394void
531b0165 3395memory_full (size_t nbytes)
24d8a105 3396{
531b0165
PE
3397 /* Do not go into hysterics merely because a large request failed. */
3398 int enough_free_memory = 0;
2b6148e4 3399 if (SPARE_MEMORY < nbytes)
531b0165 3400 {
66606eea
PE
3401 void *p;
3402
3403 MALLOC_BLOCK_INPUT;
3404 p = malloc (SPARE_MEMORY);
531b0165
PE
3405 if (p)
3406 {
4d09bcf6 3407 free (p);
531b0165
PE
3408 enough_free_memory = 1;
3409 }
66606eea 3410 MALLOC_UNBLOCK_INPUT;
531b0165 3411 }
24d8a105 3412
531b0165
PE
3413 if (! enough_free_memory)
3414 {
3415 int i;
24d8a105 3416
531b0165
PE
3417 Vmemory_full = Qt;
3418
3419 memory_full_cons_threshold = sizeof (struct cons_block);
3420
3421 /* The first time we get here, free the spare memory. */
3422 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3423 if (spare_memory[i])
3424 {
3425 if (i == 0)
3426 free (spare_memory[i]);
3427 else if (i >= 1 && i <= 4)
3428 lisp_align_free (spare_memory[i]);
3429 else
3430 lisp_free (spare_memory[i]);
3431 spare_memory[i] = 0;
3432 }
3433
3434 /* Record the space now used. When it decreases substantially,
3435 we can refill the memory reserve. */
4e75f29d 3436#if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
531b0165 3437 bytes_used_when_full = BYTES_USED;
24d8a105 3438#endif
531b0165 3439 }
24d8a105
RS
3440
3441 /* This used to call error, but if we've run out of memory, we could
3442 get infinite recursion trying to build the string. */
9b306d37 3443 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3444}
3445
3446/* If we released our reserve (due to running out of memory),
3447 and we have a fair amount free once again,
3448 try to set aside another reserve in case we run out once more.
3449
3450 This is called when a relocatable block is freed in ralloc.c,
3451 and also directly from this file, in case we're not using ralloc.c. */
3452
3453void
971de7fb 3454refill_memory_reserve (void)
24d8a105
RS
3455{
3456#ifndef SYSTEM_MALLOC
3457 if (spare_memory[0] == 0)
903fe15d 3458 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
24d8a105
RS
3459 if (spare_memory[1] == 0)
3460 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3461 MEM_TYPE_CONS);
3462 if (spare_memory[2] == 0)
3463 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3464 MEM_TYPE_CONS);
3465 if (spare_memory[3] == 0)
3466 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3467 MEM_TYPE_CONS);
3468 if (spare_memory[4] == 0)
3469 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3470 MEM_TYPE_CONS);
3471 if (spare_memory[5] == 0)
3472 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3473 MEM_TYPE_STRING);
3474 if (spare_memory[6] == 0)
3475 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3476 MEM_TYPE_STRING);
3477 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3478 Vmemory_full = Qnil;
3479#endif
3480}
3481\f
34400008
GM
3482/************************************************************************
3483 C Stack Marking
3484 ************************************************************************/
3485
13c844fb
GM
3486#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3487
71cf5fa0
GM
3488/* Conservative C stack marking requires a method to identify possibly
3489 live Lisp objects given a pointer value. We do this by keeping
3490 track of blocks of Lisp data that are allocated in a red-black tree
3491 (see also the comment of mem_node which is the type of nodes in
3492 that tree). Function lisp_malloc adds information for an allocated
3493 block to the red-black tree with calls to mem_insert, and function
3494 lisp_free removes it with mem_delete. Functions live_string_p etc
3495 call mem_find to lookup information about a given pointer in the
3496 tree, and use that to determine if the pointer points to a Lisp
3497 object or not. */
3498
34400008
GM
3499/* Initialize this part of alloc.c. */
3500
3501static void
971de7fb 3502mem_init (void)
34400008
GM
3503{
3504 mem_z.left = mem_z.right = MEM_NIL;
3505 mem_z.parent = NULL;
3506 mem_z.color = MEM_BLACK;
3507 mem_z.start = mem_z.end = NULL;
3508 mem_root = MEM_NIL;
3509}
3510
3511
3512/* Value is a pointer to the mem_node containing START. Value is
3513 MEM_NIL if there is no node in the tree containing START. */
3514
55d4c1b2 3515static inline struct mem_node *
971de7fb 3516mem_find (void *start)
34400008
GM
3517{
3518 struct mem_node *p;
3519
ece93c02
GM
3520 if (start < min_heap_address || start > max_heap_address)
3521 return MEM_NIL;
3522
34400008
GM
3523 /* Make the search always successful to speed up the loop below. */
3524 mem_z.start = start;
3525 mem_z.end = (char *) start + 1;
3526
3527 p = mem_root;
3528 while (start < p->start || start >= p->end)
3529 p = start < p->start ? p->left : p->right;
3530 return p;
3531}
3532
3533
3534/* Insert a new node into the tree for a block of memory with start
3535 address START, end address END, and type TYPE. Value is a
3536 pointer to the node that was inserted. */
3537
3538static struct mem_node *
971de7fb 3539mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3540{
3541 struct mem_node *c, *parent, *x;
3542
add3c3ea 3543 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3544 min_heap_address = start;
add3c3ea 3545 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3546 max_heap_address = end;
3547
34400008
GM
3548 /* See where in the tree a node for START belongs. In this
3549 particular application, it shouldn't happen that a node is already
3550 present. For debugging purposes, let's check that. */
3551 c = mem_root;
3552 parent = NULL;
3553
3554#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3555
34400008
GM
3556 while (c != MEM_NIL)
3557 {
3558 if (start >= c->start && start < c->end)
3559 abort ();
3560 parent = c;
3561 c = start < c->start ? c->left : c->right;
3562 }
177c0ea7 3563
34400008 3564#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3565
34400008
GM
3566 while (c != MEM_NIL)
3567 {
3568 parent = c;
3569 c = start < c->start ? c->left : c->right;
3570 }
177c0ea7 3571
34400008
GM
3572#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3573
3574 /* Create a new node. */
877935b1
GM
3575#ifdef GC_MALLOC_CHECK
3576 x = (struct mem_node *) _malloc_internal (sizeof *x);
3577 if (x == NULL)
3578 abort ();
3579#else
34400008 3580 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3581#endif
34400008
GM
3582 x->start = start;
3583 x->end = end;
3584 x->type = type;
3585 x->parent = parent;
3586 x->left = x->right = MEM_NIL;
3587 x->color = MEM_RED;
3588
3589 /* Insert it as child of PARENT or install it as root. */
3590 if (parent)
3591 {
3592 if (start < parent->start)
3593 parent->left = x;
3594 else
3595 parent->right = x;
3596 }
177c0ea7 3597 else
34400008
GM
3598 mem_root = x;
3599
3600 /* Re-establish red-black tree properties. */
3601 mem_insert_fixup (x);
877935b1 3602
34400008
GM
3603 return x;
3604}
3605
3606
3607/* Re-establish the red-black properties of the tree, and thereby
3608 balance the tree, after node X has been inserted; X is always red. */
3609
3610static void
971de7fb 3611mem_insert_fixup (struct mem_node *x)
34400008
GM
3612{
3613 while (x != mem_root && x->parent->color == MEM_RED)
3614 {
3615 /* X is red and its parent is red. This is a violation of
3616 red-black tree property #3. */
177c0ea7 3617
34400008
GM
3618 if (x->parent == x->parent->parent->left)
3619 {
3620 /* We're on the left side of our grandparent, and Y is our
3621 "uncle". */
3622 struct mem_node *y = x->parent->parent->right;
177c0ea7 3623
34400008
GM
3624 if (y->color == MEM_RED)
3625 {
3626 /* Uncle and parent are red but should be black because
3627 X is red. Change the colors accordingly and proceed
3628 with the grandparent. */
3629 x->parent->color = MEM_BLACK;
3630 y->color = MEM_BLACK;
3631 x->parent->parent->color = MEM_RED;
3632 x = x->parent->parent;
3633 }
3634 else
3635 {
3636 /* Parent and uncle have different colors; parent is
3637 red, uncle is black. */
3638 if (x == x->parent->right)
3639 {
3640 x = x->parent;
3641 mem_rotate_left (x);
3642 }
3643
3644 x->parent->color = MEM_BLACK;
3645 x->parent->parent->color = MEM_RED;
3646 mem_rotate_right (x->parent->parent);
3647 }
3648 }
3649 else
3650 {
3651 /* This is the symmetrical case of above. */
3652 struct mem_node *y = x->parent->parent->left;
177c0ea7 3653
34400008
GM
3654 if (y->color == MEM_RED)
3655 {
3656 x->parent->color = MEM_BLACK;
3657 y->color = MEM_BLACK;
3658 x->parent->parent->color = MEM_RED;
3659 x = x->parent->parent;
3660 }
3661 else
3662 {
3663 if (x == x->parent->left)
3664 {
3665 x = x->parent;
3666 mem_rotate_right (x);
3667 }
177c0ea7 3668
34400008
GM
3669 x->parent->color = MEM_BLACK;
3670 x->parent->parent->color = MEM_RED;
3671 mem_rotate_left (x->parent->parent);
3672 }
3673 }
3674 }
3675
3676 /* The root may have been changed to red due to the algorithm. Set
3677 it to black so that property #5 is satisfied. */
3678 mem_root->color = MEM_BLACK;
3679}
3680
3681
177c0ea7
JB
3682/* (x) (y)
3683 / \ / \
34400008
GM
3684 a (y) ===> (x) c
3685 / \ / \
3686 b c a b */
3687
3688static void
971de7fb 3689mem_rotate_left (struct mem_node *x)
34400008
GM
3690{
3691 struct mem_node *y;
3692
3693 /* Turn y's left sub-tree into x's right sub-tree. */
3694 y = x->right;
3695 x->right = y->left;
3696 if (y->left != MEM_NIL)
3697 y->left->parent = x;
3698
3699 /* Y's parent was x's parent. */
3700 if (y != MEM_NIL)
3701 y->parent = x->parent;
3702
3703 /* Get the parent to point to y instead of x. */
3704 if (x->parent)
3705 {
3706 if (x == x->parent->left)
3707 x->parent->left = y;
3708 else
3709 x->parent->right = y;
3710 }
3711 else
3712 mem_root = y;
3713
3714 /* Put x on y's left. */
3715 y->left = x;
3716 if (x != MEM_NIL)
3717 x->parent = y;
3718}
3719
3720
177c0ea7
JB
3721/* (x) (Y)
3722 / \ / \
3723 (y) c ===> a (x)
3724 / \ / \
34400008
GM
3725 a b b c */
3726
3727static void
971de7fb 3728mem_rotate_right (struct mem_node *x)
34400008
GM
3729{
3730 struct mem_node *y = x->left;
3731
3732 x->left = y->right;
3733 if (y->right != MEM_NIL)
3734 y->right->parent = x;
177c0ea7 3735
34400008
GM
3736 if (y != MEM_NIL)
3737 y->parent = x->parent;
3738 if (x->parent)
3739 {
3740 if (x == x->parent->right)
3741 x->parent->right = y;
3742 else
3743 x->parent->left = y;
3744 }
3745 else
3746 mem_root = y;
177c0ea7 3747
34400008
GM
3748 y->right = x;
3749 if (x != MEM_NIL)
3750 x->parent = y;
3751}
3752
3753
3754/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3755
3756static void
971de7fb 3757mem_delete (struct mem_node *z)
34400008
GM
3758{
3759 struct mem_node *x, *y;
3760
3761 if (!z || z == MEM_NIL)
3762 return;
3763
3764 if (z->left == MEM_NIL || z->right == MEM_NIL)
3765 y = z;
3766 else
3767 {
3768 y = z->right;
3769 while (y->left != MEM_NIL)
3770 y = y->left;
3771 }
3772
3773 if (y->left != MEM_NIL)
3774 x = y->left;
3775 else
3776 x = y->right;
3777
3778 x->parent = y->parent;
3779 if (y->parent)
3780 {
3781 if (y == y->parent->left)
3782 y->parent->left = x;
3783 else
3784 y->parent->right = x;
3785 }
3786 else
3787 mem_root = x;
3788
3789 if (y != z)
3790 {
3791 z->start = y->start;
3792 z->end = y->end;
3793 z->type = y->type;
3794 }
177c0ea7 3795
34400008
GM
3796 if (y->color == MEM_BLACK)
3797 mem_delete_fixup (x);
877935b1
GM
3798
3799#ifdef GC_MALLOC_CHECK
3800 _free_internal (y);
3801#else
34400008 3802 xfree (y);
877935b1 3803#endif
34400008
GM
3804}
3805
3806
3807/* Re-establish the red-black properties of the tree, after a
3808 deletion. */
3809
3810static void
971de7fb 3811mem_delete_fixup (struct mem_node *x)
34400008
GM
3812{
3813 while (x != mem_root && x->color == MEM_BLACK)
3814 {
3815 if (x == x->parent->left)
3816 {
3817 struct mem_node *w = x->parent->right;
177c0ea7 3818
34400008
GM
3819 if (w->color == MEM_RED)
3820 {
3821 w->color = MEM_BLACK;
3822 x->parent->color = MEM_RED;
3823 mem_rotate_left (x->parent);
3824 w = x->parent->right;
3825 }
177c0ea7 3826
34400008
GM
3827 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3828 {
3829 w->color = MEM_RED;
3830 x = x->parent;
3831 }
3832 else
3833 {
3834 if (w->right->color == MEM_BLACK)
3835 {
3836 w->left->color = MEM_BLACK;
3837 w->color = MEM_RED;
3838 mem_rotate_right (w);
3839 w = x->parent->right;
3840 }
3841 w->color = x->parent->color;
3842 x->parent->color = MEM_BLACK;
3843 w->right->color = MEM_BLACK;
3844 mem_rotate_left (x->parent);
3845 x = mem_root;
3846 }
3847 }
3848 else
3849 {
3850 struct mem_node *w = x->parent->left;
177c0ea7 3851
34400008
GM
3852 if (w->color == MEM_RED)
3853 {
3854 w->color = MEM_BLACK;
3855 x->parent->color = MEM_RED;
3856 mem_rotate_right (x->parent);
3857 w = x->parent->left;
3858 }
177c0ea7 3859
34400008
GM
3860 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3861 {
3862 w->color = MEM_RED;
3863 x = x->parent;
3864 }
3865 else
3866 {
3867 if (w->left->color == MEM_BLACK)
3868 {
3869 w->right->color = MEM_BLACK;
3870 w->color = MEM_RED;
3871 mem_rotate_left (w);
3872 w = x->parent->left;
3873 }
177c0ea7 3874
34400008
GM
3875 w->color = x->parent->color;
3876 x->parent->color = MEM_BLACK;
3877 w->left->color = MEM_BLACK;
3878 mem_rotate_right (x->parent);
3879 x = mem_root;
3880 }
3881 }
3882 }
177c0ea7 3883
34400008
GM
3884 x->color = MEM_BLACK;
3885}
3886
3887
3888/* Value is non-zero if P is a pointer to a live Lisp string on
3889 the heap. M is a pointer to the mem_block for P. */
3890
55d4c1b2 3891static inline int
971de7fb 3892live_string_p (struct mem_node *m, void *p)
34400008
GM
3893{
3894 if (m->type == MEM_TYPE_STRING)
3895 {
3896 struct string_block *b = (struct string_block *) m->start;
14162469 3897 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
3898
3899 /* P must point to the start of a Lisp_String structure, and it
3900 must not be on the free-list. */
176bc847
GM
3901 return (offset >= 0
3902 && offset % sizeof b->strings[0] == 0
6b61353c 3903 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3904 && ((struct Lisp_String *) p)->data != NULL);
3905 }
3906 else
3907 return 0;
3908}
3909
3910
3911/* Value is non-zero if P is a pointer to a live Lisp cons on
3912 the heap. M is a pointer to the mem_block for P. */
3913
55d4c1b2 3914static inline int
971de7fb 3915live_cons_p (struct mem_node *m, void *p)
34400008
GM
3916{
3917 if (m->type == MEM_TYPE_CONS)
3918 {
3919 struct cons_block *b = (struct cons_block *) m->start;
14162469 3920 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
3921
3922 /* P must point to the start of a Lisp_Cons, not be
3923 one of the unused cells in the current cons block,
3924 and not be on the free-list. */
176bc847
GM
3925 return (offset >= 0
3926 && offset % sizeof b->conses[0] == 0
6b61353c 3927 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3928 && (b != cons_block
3929 || offset / sizeof b->conses[0] < cons_block_index)
3930 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3931 }
3932 else
3933 return 0;
3934}
3935
3936
3937/* Value is non-zero if P is a pointer to a live Lisp symbol on
3938 the heap. M is a pointer to the mem_block for P. */
3939
55d4c1b2 3940static inline int
971de7fb 3941live_symbol_p (struct mem_node *m, void *p)
34400008
GM
3942{
3943 if (m->type == MEM_TYPE_SYMBOL)
3944 {
3945 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 3946 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3947
34400008
GM
3948 /* P must point to the start of a Lisp_Symbol, not be
3949 one of the unused cells in the current symbol block,
3950 and not be on the free-list. */
176bc847
GM
3951 return (offset >= 0
3952 && offset % sizeof b->symbols[0] == 0
6b61353c 3953 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3954 && (b != symbol_block
3955 || offset / sizeof b->symbols[0] < symbol_block_index)
3956 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3957 }
3958 else
3959 return 0;
3960}
3961
3962
3963/* Value is non-zero if P is a pointer to a live Lisp float on
3964 the heap. M is a pointer to the mem_block for P. */
3965
55d4c1b2 3966static inline int
971de7fb 3967live_float_p (struct mem_node *m, void *p)
34400008
GM
3968{
3969 if (m->type == MEM_TYPE_FLOAT)
3970 {
3971 struct float_block *b = (struct float_block *) m->start;
14162469 3972 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3973
ab6780cd
SM
3974 /* P must point to the start of a Lisp_Float and not be
3975 one of the unused cells in the current float block. */
176bc847
GM
3976 return (offset >= 0
3977 && offset % sizeof b->floats[0] == 0
6b61353c 3978 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3979 && (b != float_block
ab6780cd 3980 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3981 }
3982 else
3983 return 0;
3984}
3985
3986
3987/* Value is non-zero if P is a pointer to a live Lisp Misc on
3988 the heap. M is a pointer to the mem_block for P. */
3989
55d4c1b2 3990static inline int
971de7fb 3991live_misc_p (struct mem_node *m, void *p)
34400008
GM
3992{
3993 if (m->type == MEM_TYPE_MISC)
3994 {
3995 struct marker_block *b = (struct marker_block *) m->start;
14162469 3996 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3997
34400008
GM
3998 /* P must point to the start of a Lisp_Misc, not be
3999 one of the unused cells in the current misc block,
4000 and not be on the free-list. */
176bc847
GM
4001 return (offset >= 0
4002 && offset % sizeof b->markers[0] == 0
6b61353c 4003 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4004 && (b != marker_block
4005 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 4006 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
4007 }
4008 else
4009 return 0;
4010}
4011
4012
4013/* Value is non-zero if P is a pointer to a live vector-like object.
4014 M is a pointer to the mem_block for P. */
4015
55d4c1b2 4016static inline int
971de7fb 4017live_vector_p (struct mem_node *m, void *p)
34400008 4018{
9c545a55 4019 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
34400008
GM
4020}
4021
4022
2336fe58 4023/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4024 pointer to the mem_block for P. */
4025
55d4c1b2 4026static inline int
971de7fb 4027live_buffer_p (struct mem_node *m, void *p)
34400008
GM
4028{
4029 /* P must point to the start of the block, and the buffer
4030 must not have been killed. */
4031 return (m->type == MEM_TYPE_BUFFER
4032 && p == m->start
5d8ea120 4033 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
34400008
GM
4034}
4035
13c844fb
GM
4036#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4037
4038#if GC_MARK_STACK
4039
34400008
GM
4040#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4041
4042/* Array of objects that are kept alive because the C stack contains
4043 a pattern that looks like a reference to them . */
4044
4045#define MAX_ZOMBIES 10
4046static Lisp_Object zombies[MAX_ZOMBIES];
4047
4048/* Number of zombie objects. */
4049
211a0b2a 4050static EMACS_INT nzombies;
34400008
GM
4051
4052/* Number of garbage collections. */
4053
211a0b2a 4054static EMACS_INT ngcs;
34400008
GM
4055
4056/* Average percentage of zombies per collection. */
4057
4058static double avg_zombies;
4059
4060/* Max. number of live and zombie objects. */
4061
211a0b2a 4062static EMACS_INT max_live, max_zombies;
34400008
GM
4063
4064/* Average number of live objects per GC. */
4065
4066static double avg_live;
4067
a7ca3326 4068DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 4069 doc: /* Show information about live and zombie objects. */)
5842a27b 4070 (void)
34400008 4071{
83fc9c63 4072 Lisp_Object args[8], zombie_list = Qnil;
211a0b2a 4073 EMACS_INT i;
83fc9c63
DL
4074 for (i = 0; i < nzombies; i++)
4075 zombie_list = Fcons (zombies[i], zombie_list);
4076 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4077 args[1] = make_number (ngcs);
4078 args[2] = make_float (avg_live);
4079 args[3] = make_float (avg_zombies);
4080 args[4] = make_float (avg_zombies / avg_live / 100);
4081 args[5] = make_number (max_live);
4082 args[6] = make_number (max_zombies);
83fc9c63
DL
4083 args[7] = zombie_list;
4084 return Fmessage (8, args);
34400008
GM
4085}
4086
4087#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4088
4089
182ff242
GM
4090/* Mark OBJ if we can prove it's a Lisp_Object. */
4091
55d4c1b2 4092static inline void
971de7fb 4093mark_maybe_object (Lisp_Object obj)
182ff242 4094{
b609f591
YM
4095 void *po;
4096 struct mem_node *m;
4097
4098 if (INTEGERP (obj))
4099 return;
4100
4101 po = (void *) XPNTR (obj);
4102 m = mem_find (po);
177c0ea7 4103
182ff242
GM
4104 if (m != MEM_NIL)
4105 {
4106 int mark_p = 0;
4107
8e50cc2d 4108 switch (XTYPE (obj))
182ff242
GM
4109 {
4110 case Lisp_String:
4111 mark_p = (live_string_p (m, po)
4112 && !STRING_MARKED_P ((struct Lisp_String *) po));
4113 break;
4114
4115 case Lisp_Cons:
08b7c2cb 4116 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4117 break;
4118
4119 case Lisp_Symbol:
2336fe58 4120 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4121 break;
4122
4123 case Lisp_Float:
ab6780cd 4124 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4125 break;
4126
4127 case Lisp_Vectorlike:
8e50cc2d 4128 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
4129 buffer because checking that dereferences the pointer
4130 PO which might point anywhere. */
4131 if (live_vector_p (m, po))
8e50cc2d 4132 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4133 else if (live_buffer_p (m, po))
8e50cc2d 4134 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4135 break;
4136
4137 case Lisp_Misc:
67ee9f6e 4138 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4139 break;
6bbd7a29 4140
2de9f71c 4141 default:
6bbd7a29 4142 break;
182ff242
GM
4143 }
4144
4145 if (mark_p)
4146 {
4147#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4148 if (nzombies < MAX_ZOMBIES)
83fc9c63 4149 zombies[nzombies] = obj;
182ff242
GM
4150 ++nzombies;
4151#endif
49723c04 4152 mark_object (obj);
182ff242
GM
4153 }
4154 }
4155}
ece93c02
GM
4156
4157
4158/* If P points to Lisp data, mark that as live if it isn't already
4159 marked. */
4160
55d4c1b2 4161static inline void
971de7fb 4162mark_maybe_pointer (void *p)
ece93c02
GM
4163{
4164 struct mem_node *m;
4165
5045e68e 4166 /* Quickly rule out some values which can't point to Lisp data. */
d01a7826 4167 if ((intptr_t) p %
5045e68e
SM
4168#ifdef USE_LSB_TAG
4169 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4170#else
4171 2 /* We assume that Lisp data is aligned on even addresses. */
4172#endif
4173 )
ece93c02 4174 return;
177c0ea7 4175
ece93c02
GM
4176 m = mem_find (p);
4177 if (m != MEM_NIL)
4178 {
4179 Lisp_Object obj = Qnil;
177c0ea7 4180
ece93c02
GM
4181 switch (m->type)
4182 {
4183 case MEM_TYPE_NON_LISP:
2fe50224 4184 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4185 break;
177c0ea7 4186
ece93c02 4187 case MEM_TYPE_BUFFER:
5e617bc2 4188 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
ece93c02
GM
4189 XSETVECTOR (obj, p);
4190 break;
177c0ea7 4191
ece93c02 4192 case MEM_TYPE_CONS:
08b7c2cb 4193 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4194 XSETCONS (obj, p);
4195 break;
177c0ea7 4196
ece93c02
GM
4197 case MEM_TYPE_STRING:
4198 if (live_string_p (m, p)
4199 && !STRING_MARKED_P ((struct Lisp_String *) p))
4200 XSETSTRING (obj, p);
4201 break;
4202
4203 case MEM_TYPE_MISC:
2336fe58
SM
4204 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4205 XSETMISC (obj, p);
ece93c02 4206 break;
177c0ea7 4207
ece93c02 4208 case MEM_TYPE_SYMBOL:
2336fe58 4209 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4210 XSETSYMBOL (obj, p);
4211 break;
177c0ea7 4212
ece93c02 4213 case MEM_TYPE_FLOAT:
ab6780cd 4214 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4215 XSETFLOAT (obj, p);
4216 break;
177c0ea7 4217
9c545a55 4218 case MEM_TYPE_VECTORLIKE:
ece93c02
GM
4219 if (live_vector_p (m, p))
4220 {
4221 Lisp_Object tem;
4222 XSETVECTOR (tem, p);
8e50cc2d 4223 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4224 obj = tem;
4225 }
4226 break;
4227
4228 default:
4229 abort ();
4230 }
4231
8e50cc2d 4232 if (!NILP (obj))
49723c04 4233 mark_object (obj);
ece93c02
GM
4234 }
4235}
4236
4237
7c5ee88e
PE
4238#ifndef GC_LISP_OBJECT_ALIGNMENT
4239# define GC_LISP_OBJECT_ALIGNMENT offsetof (struct {char a; Lisp_Object b;}, b)
4240#endif
4241#define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4242
55a314a5
YM
4243/* Mark Lisp objects referenced from the address range START+OFFSET..END
4244 or END+OFFSET..START. */
34400008 4245
177c0ea7 4246static void
7c5ee88e 4247mark_memory (void *start, void *end)
34400008
GM
4248{
4249 Lisp_Object *p;
ece93c02 4250 void **pp;
7c5ee88e 4251 int i;
34400008
GM
4252
4253#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4254 nzombies = 0;
4255#endif
4256
4257 /* Make START the pointer to the start of the memory region,
4258 if it isn't already. */
4259 if (end < start)
4260 {
4261 void *tem = start;
4262 start = end;
4263 end = tem;
4264 }
ece93c02
GM
4265
4266 /* Mark Lisp_Objects. */
7c5ee88e
PE
4267 for (p = start; (void *) p < end; p++)
4268 for (i = 0; i < sizeof *p; i += GC_LISP_OBJECT_ALIGNMENT)
4269 mark_maybe_object (*(Lisp_Object *) ((char *) p + i));
ece93c02
GM
4270
4271 /* Mark Lisp data pointed to. This is necessary because, in some
4272 situations, the C compiler optimizes Lisp objects away, so that
4273 only a pointer to them remains. Example:
4274
4275 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4276 ()
ece93c02
GM
4277 {
4278 Lisp_Object obj = build_string ("test");
4279 struct Lisp_String *s = XSTRING (obj);
4280 Fgarbage_collect ();
4281 fprintf (stderr, "test `%s'\n", s->data);
4282 return Qnil;
4283 }
4284
4285 Here, `obj' isn't really used, and the compiler optimizes it
4286 away. The only reference to the life string is through the
4287 pointer `s'. */
177c0ea7 4288
7c5ee88e
PE
4289 for (pp = start; (void *) pp < end; pp++)
4290 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4291 mark_maybe_pointer (*(void **) ((char *) pp + i));
182ff242
GM
4292}
4293
30f637f8
DL
4294/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4295 the GCC system configuration. In gcc 3.2, the only systems for
4296 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4297 by others?) and ns32k-pc532-min. */
182ff242
GM
4298
4299#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4300
4301static int setjmp_tested_p, longjmps_done;
4302
4303#define SETJMP_WILL_LIKELY_WORK "\
4304\n\
4305Emacs garbage collector has been changed to use conservative stack\n\
4306marking. Emacs has determined that the method it uses to do the\n\
4307marking will likely work on your system, but this isn't sure.\n\
4308\n\
4309If you are a system-programmer, or can get the help of a local wizard\n\
4310who is, please take a look at the function mark_stack in alloc.c, and\n\
4311verify that the methods used are appropriate for your system.\n\
4312\n\
d191623b 4313Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4314"
4315
4316#define SETJMP_WILL_NOT_WORK "\
4317\n\
4318Emacs garbage collector has been changed to use conservative stack\n\
4319marking. Emacs has determined that the default method it uses to do the\n\
4320marking will not work on your system. We will need a system-dependent\n\
4321solution for your system.\n\
4322\n\
4323Please take a look at the function mark_stack in alloc.c, and\n\
4324try to find a way to make it work on your system.\n\
30f637f8
DL
4325\n\
4326Note that you may get false negatives, depending on the compiler.\n\
4327In particular, you need to use -O with GCC for this test.\n\
4328\n\
d191623b 4329Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4330"
4331
4332
4333/* Perform a quick check if it looks like setjmp saves registers in a
4334 jmp_buf. Print a message to stderr saying so. When this test
4335 succeeds, this is _not_ a proof that setjmp is sufficient for
4336 conservative stack marking. Only the sources or a disassembly
4337 can prove that. */
4338
4339static void
2018939f 4340test_setjmp (void)
182ff242
GM
4341{
4342 char buf[10];
4343 register int x;
4344 jmp_buf jbuf;
4345 int result = 0;
4346
4347 /* Arrange for X to be put in a register. */
4348 sprintf (buf, "1");
4349 x = strlen (buf);
4350 x = 2 * x - 1;
4351
4352 setjmp (jbuf);
4353 if (longjmps_done == 1)
34400008 4354 {
182ff242 4355 /* Came here after the longjmp at the end of the function.
34400008 4356
182ff242
GM
4357 If x == 1, the longjmp has restored the register to its
4358 value before the setjmp, and we can hope that setjmp
4359 saves all such registers in the jmp_buf, although that
4360 isn't sure.
34400008 4361
182ff242
GM
4362 For other values of X, either something really strange is
4363 taking place, or the setjmp just didn't save the register. */
4364
4365 if (x == 1)
4366 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4367 else
4368 {
4369 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4370 exit (1);
34400008
GM
4371 }
4372 }
182ff242
GM
4373
4374 ++longjmps_done;
4375 x = 2;
4376 if (longjmps_done == 1)
4377 longjmp (jbuf, 1);
34400008
GM
4378}
4379
182ff242
GM
4380#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4381
34400008
GM
4382
4383#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4384
4385/* Abort if anything GCPRO'd doesn't survive the GC. */
4386
4387static void
2018939f 4388check_gcpros (void)
34400008
GM
4389{
4390 struct gcpro *p;
f66c7cf8 4391 ptrdiff_t i;
34400008
GM
4392
4393 for (p = gcprolist; p; p = p->next)
4394 for (i = 0; i < p->nvars; ++i)
4395 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4396 /* FIXME: It's not necessarily a bug. It might just be that the
4397 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4398 abort ();
4399}
4400
4401#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4402
4403static void
2018939f 4404dump_zombies (void)
34400008
GM
4405{
4406 int i;
4407
211a0b2a 4408 fprintf (stderr, "\nZombies kept alive = %"pI":\n", nzombies);
34400008
GM
4409 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4410 {
4411 fprintf (stderr, " %d = ", i);
4412 debug_print (zombies[i]);
4413 }
4414}
4415
4416#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4417
4418
182ff242
GM
4419/* Mark live Lisp objects on the C stack.
4420
4421 There are several system-dependent problems to consider when
4422 porting this to new architectures:
4423
4424 Processor Registers
4425
4426 We have to mark Lisp objects in CPU registers that can hold local
4427 variables or are used to pass parameters.
4428
4429 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4430 something that either saves relevant registers on the stack, or
4431 calls mark_maybe_object passing it each register's contents.
4432
4433 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4434 implementation assumes that calling setjmp saves registers we need
4435 to see in a jmp_buf which itself lies on the stack. This doesn't
4436 have to be true! It must be verified for each system, possibly
4437 by taking a look at the source code of setjmp.
4438
2018939f
AS
4439 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4440 can use it as a machine independent method to store all registers
4441 to the stack. In this case the macros described in the previous
4442 two paragraphs are not used.
4443
182ff242
GM
4444 Stack Layout
4445
4446 Architectures differ in the way their processor stack is organized.
4447 For example, the stack might look like this
4448
4449 +----------------+
4450 | Lisp_Object | size = 4
4451 +----------------+
4452 | something else | size = 2
4453 +----------------+
4454 | Lisp_Object | size = 4
4455 +----------------+
4456 | ... |
4457
4458 In such a case, not every Lisp_Object will be aligned equally. To
4459 find all Lisp_Object on the stack it won't be sufficient to walk
4460 the stack in steps of 4 bytes. Instead, two passes will be
4461 necessary, one starting at the start of the stack, and a second
4462 pass starting at the start of the stack + 2. Likewise, if the
4463 minimal alignment of Lisp_Objects on the stack is 1, four passes
4464 would be necessary, each one starting with one byte more offset
7c5ee88e 4465 from the stack start. */
34400008
GM
4466
4467static void
971de7fb 4468mark_stack (void)
34400008 4469{
34400008
GM
4470 void *end;
4471
2018939f
AS
4472#ifdef HAVE___BUILTIN_UNWIND_INIT
4473 /* Force callee-saved registers and register windows onto the stack.
4474 This is the preferred method if available, obviating the need for
4475 machine dependent methods. */
4476 __builtin_unwind_init ();
4477 end = &end;
4478#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4479#ifndef GC_SAVE_REGISTERS_ON_STACK
4480 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4481 union aligned_jmpbuf {
4482 Lisp_Object o;
4483 jmp_buf j;
4484 } j;
4485 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4486#endif
34400008
GM
4487 /* This trick flushes the register windows so that all the state of
4488 the process is contained in the stack. */
ab6780cd 4489 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4490 needed on ia64 too. See mach_dep.c, where it also says inline
4491 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4492#ifdef __sparc__
4d18a7a2
DN
4493#if defined (__sparc64__) && defined (__FreeBSD__)
4494 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4495 asm ("flushw");
4496#else
34400008 4497 asm ("ta 3");
4c1616be 4498#endif
34400008 4499#endif
177c0ea7 4500
34400008
GM
4501 /* Save registers that we need to see on the stack. We need to see
4502 registers used to hold register variables and registers used to
4503 pass parameters. */
4504#ifdef GC_SAVE_REGISTERS_ON_STACK
4505 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4506#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4507
182ff242
GM
4508#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4509 setjmp will definitely work, test it
4510 and print a message with the result
4511 of the test. */
4512 if (!setjmp_tested_p)
4513 {
4514 setjmp_tested_p = 1;
4515 test_setjmp ();
4516 }
4517#endif /* GC_SETJMP_WORKS */
177c0ea7 4518
55a314a5 4519 setjmp (j.j);
34400008 4520 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4521#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4522#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4523
4524 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4525 that's not the case, something has to be done here to iterate
4526 over the stack segments. */
7c5ee88e
PE
4527 mark_memory (stack_base, end);
4528
4dec23ff
AS
4529 /* Allow for marking a secondary stack, like the register stack on the
4530 ia64. */
4531#ifdef GC_MARK_SECONDARY_STACK
4532 GC_MARK_SECONDARY_STACK ();
4533#endif
34400008
GM
4534
4535#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4536 check_gcpros ();
4537#endif
4538}
4539
34400008
GM
4540#endif /* GC_MARK_STACK != 0 */
4541
4542
7ffb6955 4543/* Determine whether it is safe to access memory at address P. */
d3d47262 4544static int
971de7fb 4545valid_pointer_p (void *p)
7ffb6955 4546{
f892cf9c
EZ
4547#ifdef WINDOWSNT
4548 return w32_valid_pointer_p (p, 16);
4549#else
41bed37d 4550 int fd[2];
7ffb6955
KS
4551
4552 /* Obviously, we cannot just access it (we would SEGV trying), so we
4553 trick the o/s to tell us whether p is a valid pointer.
4554 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4555 not validate p in that case. */
4556
41bed37d 4557 if (pipe (fd) == 0)
7ffb6955 4558 {
41bed37d
PE
4559 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4560 emacs_close (fd[1]);
4561 emacs_close (fd[0]);
7ffb6955
KS
4562 return valid;
4563 }
4564
4565 return -1;
f892cf9c 4566#endif
7ffb6955 4567}
3cd55735
KS
4568
4569/* Return 1 if OBJ is a valid lisp object.
4570 Return 0 if OBJ is NOT a valid lisp object.
4571 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4572 This function can be quite slow,
4573 so it should only be used in code for manual debugging. */
3cd55735
KS
4574
4575int
971de7fb 4576valid_lisp_object_p (Lisp_Object obj)
3cd55735 4577{
de7124a7 4578 void *p;
7ffb6955 4579#if GC_MARK_STACK
3cd55735 4580 struct mem_node *m;
de7124a7 4581#endif
3cd55735
KS
4582
4583 if (INTEGERP (obj))
4584 return 1;
4585
4586 p = (void *) XPNTR (obj);
3cd55735
KS
4587 if (PURE_POINTER_P (p))
4588 return 1;
4589
de7124a7 4590#if !GC_MARK_STACK
7ffb6955 4591 return valid_pointer_p (p);
de7124a7
KS
4592#else
4593
3cd55735
KS
4594 m = mem_find (p);
4595
4596 if (m == MEM_NIL)
7ffb6955
KS
4597 {
4598 int valid = valid_pointer_p (p);
4599 if (valid <= 0)
4600 return valid;
4601
4602 if (SUBRP (obj))
4603 return 1;
4604
4605 return 0;
4606 }
3cd55735
KS
4607
4608 switch (m->type)
4609 {
4610 case MEM_TYPE_NON_LISP:
4611 return 0;
4612
4613 case MEM_TYPE_BUFFER:
4614 return live_buffer_p (m, p);
4615
4616 case MEM_TYPE_CONS:
4617 return live_cons_p (m, p);
4618
4619 case MEM_TYPE_STRING:
4620 return live_string_p (m, p);
4621
4622 case MEM_TYPE_MISC:
4623 return live_misc_p (m, p);
4624
4625 case MEM_TYPE_SYMBOL:
4626 return live_symbol_p (m, p);
4627
4628 case MEM_TYPE_FLOAT:
4629 return live_float_p (m, p);
4630
9c545a55 4631 case MEM_TYPE_VECTORLIKE:
3cd55735
KS
4632 return live_vector_p (m, p);
4633
4634 default:
4635 break;
4636 }
4637
4638 return 0;
4639#endif
4640}
4641
4642
4643
34400008 4644\f
2e471eb5
GM
4645/***********************************************************************
4646 Pure Storage Management
4647 ***********************************************************************/
4648
1f0b3fd2
GM
4649/* Allocate room for SIZE bytes from pure Lisp storage and return a
4650 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 4651 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2
GM
4652
4653static POINTER_TYPE *
971de7fb 4654pure_alloc (size_t size, int type)
1f0b3fd2 4655{
1f0b3fd2 4656 POINTER_TYPE *result;
6b61353c
KH
4657#ifdef USE_LSB_TAG
4658 size_t alignment = (1 << GCTYPEBITS);
4659#else
44117420 4660 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4661
4662 /* Give Lisp_Floats an extra alignment. */
4663 if (type == Lisp_Float)
4664 {
1f0b3fd2
GM
4665#if defined __GNUC__ && __GNUC__ >= 2
4666 alignment = __alignof (struct Lisp_Float);
4667#else
4668 alignment = sizeof (struct Lisp_Float);
4669#endif
9e713715 4670 }
6b61353c 4671#endif
1f0b3fd2 4672
44117420 4673 again:
e5bc14d4
YM
4674 if (type >= 0)
4675 {
4676 /* Allocate space for a Lisp object from the beginning of the free
4677 space with taking account of alignment. */
4678 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4679 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4680 }
4681 else
4682 {
4683 /* Allocate space for a non-Lisp object from the end of the free
4684 space. */
4685 pure_bytes_used_non_lisp += size;
4686 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4687 }
4688 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
4689
4690 if (pure_bytes_used <= pure_size)
4691 return result;
4692
4693 /* Don't allocate a large amount here,
4694 because it might get mmap'd and then its address
4695 might not be usable. */
4696 purebeg = (char *) xmalloc (10000);
4697 pure_size = 10000;
4698 pure_bytes_used_before_overflow += pure_bytes_used - size;
4699 pure_bytes_used = 0;
e5bc14d4 4700 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 4701 goto again;
1f0b3fd2
GM
4702}
4703
4704
852f8cdc 4705/* Print a warning if PURESIZE is too small. */
9e713715
GM
4706
4707void
971de7fb 4708check_pure_size (void)
9e713715
GM
4709{
4710 if (pure_bytes_used_before_overflow)
c2982e87
PE
4711 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4712 " bytes needed)"),
4713 pure_bytes_used + pure_bytes_used_before_overflow);
9e713715
GM
4714}
4715
4716
79fd0489
YM
4717/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4718 the non-Lisp data pool of the pure storage, and return its start
4719 address. Return NULL if not found. */
4720
4721static char *
14162469 4722find_string_data_in_pure (const char *data, EMACS_INT nbytes)
79fd0489 4723{
14162469
EZ
4724 int i;
4725 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 4726 const unsigned char *p;
79fd0489
YM
4727 char *non_lisp_beg;
4728
4729 if (pure_bytes_used_non_lisp < nbytes + 1)
4730 return NULL;
4731
4732 /* Set up the Boyer-Moore table. */
4733 skip = nbytes + 1;
4734 for (i = 0; i < 256; i++)
4735 bm_skip[i] = skip;
4736
2aff7c53 4737 p = (const unsigned char *) data;
79fd0489
YM
4738 while (--skip > 0)
4739 bm_skip[*p++] = skip;
4740
4741 last_char_skip = bm_skip['\0'];
4742
4743 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4744 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4745
4746 /* See the comments in the function `boyer_moore' (search.c) for the
4747 use of `infinity'. */
4748 infinity = pure_bytes_used_non_lisp + 1;
4749 bm_skip['\0'] = infinity;
4750
2aff7c53 4751 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
4752 start = 0;
4753 do
4754 {
4755 /* Check the last character (== '\0'). */
4756 do
4757 {
4758 start += bm_skip[*(p + start)];
4759 }
4760 while (start <= start_max);
4761
4762 if (start < infinity)
4763 /* Couldn't find the last character. */
4764 return NULL;
4765
4766 /* No less than `infinity' means we could find the last
4767 character at `p[start - infinity]'. */
4768 start -= infinity;
4769
4770 /* Check the remaining characters. */
4771 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4772 /* Found. */
4773 return non_lisp_beg + start;
4774
4775 start += last_char_skip;
4776 }
4777 while (start <= start_max);
4778
4779 return NULL;
4780}
4781
4782
2e471eb5
GM
4783/* Return a string allocated in pure space. DATA is a buffer holding
4784 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4785 non-zero means make the result string multibyte.
1a4f1e2c 4786
2e471eb5
GM
4787 Must get an error if pure storage is full, since if it cannot hold
4788 a large string it may be able to hold conses that point to that
4789 string; then the string is not protected from gc. */
7146af97
JB
4790
4791Lisp_Object
14162469
EZ
4792make_pure_string (const char *data,
4793 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
7146af97 4794{
2e471eb5
GM
4795 Lisp_Object string;
4796 struct Lisp_String *s;
c0696668 4797
1f0b3fd2 4798 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
90256841 4799 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
4800 if (s->data == NULL)
4801 {
4802 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
72af86bd 4803 memcpy (s->data, data, nbytes);
79fd0489
YM
4804 s->data[nbytes] = '\0';
4805 }
2e471eb5
GM
4806 s->size = nchars;
4807 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 4808 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4809 XSETSTRING (string, s);
4810 return string;
7146af97
JB
4811}
4812
a56eaaef
DN
4813/* Return a string a string allocated in pure space. Do not allocate
4814 the string data, just point to DATA. */
4815
4816Lisp_Object
4817make_pure_c_string (const char *data)
4818{
4819 Lisp_Object string;
4820 struct Lisp_String *s;
14162469 4821 EMACS_INT nchars = strlen (data);
a56eaaef
DN
4822
4823 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4824 s->size = nchars;
4825 s->size_byte = -1;
323637a2 4826 s->data = (unsigned char *) data;
a56eaaef
DN
4827 s->intervals = NULL_INTERVAL;
4828 XSETSTRING (string, s);
4829 return string;
4830}
2e471eb5 4831
34400008
GM
4832/* Return a cons allocated from pure space. Give it pure copies
4833 of CAR as car and CDR as cdr. */
4834
7146af97 4835Lisp_Object
971de7fb 4836pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97
JB
4837{
4838 register Lisp_Object new;
1f0b3fd2 4839 struct Lisp_Cons *p;
7146af97 4840
1f0b3fd2
GM
4841 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4842 XSETCONS (new, p);
f3fbd155
KR
4843 XSETCAR (new, Fpurecopy (car));
4844 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4845 return new;
4846}
4847
7146af97 4848
34400008
GM
4849/* Value is a float object with value NUM allocated from pure space. */
4850
d3d47262 4851static Lisp_Object
971de7fb 4852make_pure_float (double num)
7146af97
JB
4853{
4854 register Lisp_Object new;
1f0b3fd2 4855 struct Lisp_Float *p;
7146af97 4856
1f0b3fd2
GM
4857 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4858 XSETFLOAT (new, p);
f601cdf3 4859 XFLOAT_INIT (new, num);
7146af97
JB
4860 return new;
4861}
4862
34400008
GM
4863
4864/* Return a vector with room for LEN Lisp_Objects allocated from
4865 pure space. */
4866
7146af97 4867Lisp_Object
971de7fb 4868make_pure_vector (EMACS_INT len)
7146af97 4869{
1f0b3fd2
GM
4870 Lisp_Object new;
4871 struct Lisp_Vector *p;
36372bf9
PE
4872 size_t size = (offsetof (struct Lisp_Vector, contents)
4873 + len * sizeof (Lisp_Object));
7146af97 4874
1f0b3fd2
GM
4875 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4876 XSETVECTOR (new, p);
eab3844f 4877 XVECTOR (new)->header.size = len;
7146af97
JB
4878 return new;
4879}
4880
34400008 4881
a7ca3326 4882DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 4883 doc: /* Make a copy of object OBJ in pure storage.
228299fa 4884Recursively copies contents of vectors and cons cells.
7ee72033 4885Does not copy symbols. Copies strings without text properties. */)
5842a27b 4886 (register Lisp_Object obj)
7146af97 4887{
265a9e55 4888 if (NILP (Vpurify_flag))
7146af97
JB
4889 return obj;
4890
1f0b3fd2 4891 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4892 return obj;
4893
e9515805
SM
4894 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4895 {
4896 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4897 if (!NILP (tmp))
4898 return tmp;
4899 }
4900
d6dd74bb 4901 if (CONSP (obj))
e9515805 4902 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4903 else if (FLOATP (obj))
e9515805 4904 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4905 else if (STRINGP (obj))
42a5b22f 4906 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
4907 SBYTES (obj),
4908 STRING_MULTIBYTE (obj));
876c194c 4909 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
4910 {
4911 register struct Lisp_Vector *vec;
14162469 4912 register EMACS_INT i;
6b61353c 4913 EMACS_INT size;
d6dd74bb 4914
77b37c05 4915 size = ASIZE (obj);
7d535c68
KH
4916 if (size & PSEUDOVECTOR_FLAG)
4917 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 4918 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4919 for (i = 0; i < size; i++)
4920 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
876c194c 4921 if (COMPILEDP (obj))
985773c9 4922 {
876c194c
SM
4923 XSETPVECTYPE (vec, PVEC_COMPILED);
4924 XSETCOMPILED (obj, vec);
985773c9 4925 }
d6dd74bb
KH
4926 else
4927 XSETVECTOR (obj, vec);
7146af97 4928 }
d6dd74bb
KH
4929 else if (MARKERP (obj))
4930 error ("Attempt to copy a marker to pure storage");
e9515805
SM
4931 else
4932 /* Not purified, don't hash-cons. */
4933 return obj;
4934
4935 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4936 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
4937
4938 return obj;
7146af97 4939}
2e471eb5 4940
34400008 4941
7146af97 4942\f
34400008
GM
4943/***********************************************************************
4944 Protection from GC
4945 ***********************************************************************/
4946
2e471eb5
GM
4947/* Put an entry in staticvec, pointing at the variable with address
4948 VARADDRESS. */
7146af97
JB
4949
4950void
971de7fb 4951staticpro (Lisp_Object *varaddress)
7146af97
JB
4952{
4953 staticvec[staticidx++] = varaddress;
4954 if (staticidx >= NSTATICS)
4955 abort ();
4956}
4957
7146af97 4958\f
34400008
GM
4959/***********************************************************************
4960 Protection from GC
4961 ***********************************************************************/
1a4f1e2c 4962
e8197642
RS
4963/* Temporarily prevent garbage collection. */
4964
4965int
971de7fb 4966inhibit_garbage_collection (void)
e8197642 4967{
aed13378 4968 int count = SPECPDL_INDEX ();
54defd0d 4969
6349ae4d 4970 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
e8197642
RS
4971 return count;
4972}
4973
34400008 4974
a7ca3326 4975DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4976 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4977Garbage collection happens automatically if you cons more than
4978`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4979`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4980 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4981 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4982 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4983 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4984However, if there was overflow in pure space, `garbage-collect'
4985returns nil, because real GC can't be done. */)
5842a27b 4986 (void)
7146af97 4987{
7146af97 4988 register struct specbinding *bind;
7146af97 4989 char stack_top_variable;
f66c7cf8 4990 ptrdiff_t i;
6efc7df7 4991 int message_p;
96117bc7 4992 Lisp_Object total[8];
331379bf 4993 int count = SPECPDL_INDEX ();
2c5bd608
DL
4994 EMACS_TIME t1, t2, t3;
4995
3de0effb
RS
4996 if (abort_on_gc)
4997 abort ();
4998
9e713715
GM
4999 /* Can't GC if pure storage overflowed because we can't determine
5000 if something is a pure object or not. */
5001 if (pure_bytes_used_before_overflow)
5002 return Qnil;
5003
bbc012e0
KS
5004 CHECK_CONS_LIST ();
5005
3c7e66a8
RS
5006 /* Don't keep undo information around forever.
5007 Do this early on, so it is no problem if the user quits. */
5008 {
5009 register struct buffer *nextb = all_buffers;
5010
5011 while (nextb)
5012 {
5013 /* If a buffer's undo list is Qt, that means that undo is
5014 turned off in that buffer. Calling truncate_undo_list on
5015 Qt tends to return NULL, which effectively turns undo back on.
5016 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5017 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
3c7e66a8
RS
5018 truncate_undo_list (nextb);
5019
5020 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5d8ea120 5021 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
dc7b4525 5022 && ! nextb->text->inhibit_shrinking)
3c7e66a8
RS
5023 {
5024 /* If a buffer's gap size is more than 10% of the buffer
5025 size, or larger than 2000 bytes, then shrink it
5026 accordingly. Keep a minimum size of 20 bytes. */
5027 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5028
5029 if (nextb->text->gap_size > size)
5030 {
5031 struct buffer *save_current = current_buffer;
5032 current_buffer = nextb;
5033 make_gap (-(nextb->text->gap_size - size));
5034 current_buffer = save_current;
5035 }
5036 }
5037
eab3844f 5038 nextb = nextb->header.next.buffer;
3c7e66a8
RS
5039 }
5040 }
5041
5042 EMACS_GET_TIME (t1);
5043
58595309
KH
5044 /* In case user calls debug_print during GC,
5045 don't let that cause a recursive GC. */
5046 consing_since_gc = 0;
5047
6efc7df7
GM
5048 /* Save what's currently displayed in the echo area. */
5049 message_p = push_message ();
c55b0da6 5050 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 5051
7146af97
JB
5052 /* Save a copy of the contents of the stack, for debugging. */
5053#if MAX_SAVE_STACK > 0
265a9e55 5054 if (NILP (Vpurify_flag))
7146af97 5055 {
dd3f25f7 5056 char *stack;
903fe15d 5057 ptrdiff_t stack_size;
dd3f25f7 5058 if (&stack_top_variable < stack_bottom)
7146af97 5059 {
dd3f25f7
PE
5060 stack = &stack_top_variable;
5061 stack_size = stack_bottom - &stack_top_variable;
5062 }
5063 else
5064 {
5065 stack = stack_bottom;
5066 stack_size = &stack_top_variable - stack_bottom;
5067 }
5068 if (stack_size <= MAX_SAVE_STACK)
7146af97 5069 {
dd3f25f7 5070 if (stack_copy_size < stack_size)
7146af97 5071 {
dd3f25f7
PE
5072 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5073 stack_copy_size = stack_size;
7146af97 5074 }
dd3f25f7 5075 memcpy (stack_copy, stack, stack_size);
7146af97
JB
5076 }
5077 }
5078#endif /* MAX_SAVE_STACK > 0 */
5079
299585ee 5080 if (garbage_collection_messages)
691c4285 5081 message1_nolog ("Garbage collecting...");
7146af97 5082
6e0fca1d
RS
5083 BLOCK_INPUT;
5084
eec7b73d
RS
5085 shrink_regexp_cache ();
5086
7146af97
JB
5087 gc_in_progress = 1;
5088
c23baf9f 5089 /* clear_marks (); */
7146af97 5090
005ca5c7 5091 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
5092
5093 for (i = 0; i < staticidx; i++)
49723c04 5094 mark_object (*staticvec[i]);
34400008 5095
126f9c02
SM
5096 for (bind = specpdl; bind != specpdl_ptr; bind++)
5097 {
5098 mark_object (bind->symbol);
5099 mark_object (bind->old_value);
5100 }
6ed8eeff 5101 mark_terminals ();
126f9c02 5102 mark_kboards ();
98a92e2d 5103 mark_ttys ();
126f9c02
SM
5104
5105#ifdef USE_GTK
5106 {
dd4c5104 5107 extern void xg_mark_data (void);
126f9c02
SM
5108 xg_mark_data ();
5109 }
5110#endif
5111
34400008
GM
5112#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5113 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5114 mark_stack ();
5115#else
acf5f7d3
SM
5116 {
5117 register struct gcpro *tail;
5118 for (tail = gcprolist; tail; tail = tail->next)
5119 for (i = 0; i < tail->nvars; i++)
005ca5c7 5120 mark_object (tail->var[i]);
acf5f7d3 5121 }
3e21b6a7 5122 mark_byte_stack ();
b286858c
SM
5123 {
5124 struct catchtag *catch;
5125 struct handler *handler;
177c0ea7 5126
7146af97
JB
5127 for (catch = catchlist; catch; catch = catch->next)
5128 {
49723c04
SM
5129 mark_object (catch->tag);
5130 mark_object (catch->val);
177c0ea7 5131 }
7146af97
JB
5132 for (handler = handlerlist; handler; handler = handler->next)
5133 {
49723c04
SM
5134 mark_object (handler->handler);
5135 mark_object (handler->var);
177c0ea7 5136 }
b286858c 5137 }
b40ea20a 5138 mark_backtrace ();
b286858c 5139#endif
7146af97 5140
454d7973
KS
5141#ifdef HAVE_WINDOW_SYSTEM
5142 mark_fringe_data ();
5143#endif
5144
74c35a48
SM
5145#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5146 mark_stack ();
5147#endif
5148
c37adf23
SM
5149 /* Everything is now marked, except for the things that require special
5150 finalization, i.e. the undo_list.
5151 Look thru every buffer's undo list
4c315bda
RS
5152 for elements that update markers that were not marked,
5153 and delete them. */
5154 {
5155 register struct buffer *nextb = all_buffers;
5156
5157 while (nextb)
5158 {
5159 /* If a buffer's undo list is Qt, that means that undo is
5160 turned off in that buffer. Calling truncate_undo_list on
5161 Qt tends to return NULL, which effectively turns undo back on.
5162 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5163 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4c315bda
RS
5164 {
5165 Lisp_Object tail, prev;
5d8ea120 5166 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
4c315bda
RS
5167 prev = Qnil;
5168 while (CONSP (tail))
5169 {
8e50cc2d
SM
5170 if (CONSP (XCAR (tail))
5171 && MARKERP (XCAR (XCAR (tail)))
2336fe58 5172 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5173 {
5174 if (NILP (prev))
5d8ea120 5175 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
4c315bda 5176 else
f3fbd155
KR
5177 {
5178 tail = XCDR (tail);
5179 XSETCDR (prev, tail);
5180 }
4c315bda
RS
5181 }
5182 else
5183 {
5184 prev = tail;
70949dac 5185 tail = XCDR (tail);
4c315bda
RS
5186 }
5187 }
5188 }
c37adf23
SM
5189 /* Now that we have stripped the elements that need not be in the
5190 undo_list any more, we can finally mark the list. */
5d8ea120 5191 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
4c315bda 5192
eab3844f 5193 nextb = nextb->header.next.buffer;
4c315bda
RS
5194 }
5195 }
5196
7146af97
JB
5197 gc_sweep ();
5198
5199 /* Clear the mark bits that we set in certain root slots. */
5200
033a5fa3 5201 unmark_byte_stack ();
3ef06d12
SM
5202 VECTOR_UNMARK (&buffer_defaults);
5203 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5204
34400008
GM
5205#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5206 dump_zombies ();
5207#endif
5208
6e0fca1d
RS
5209 UNBLOCK_INPUT;
5210
bbc012e0
KS
5211 CHECK_CONS_LIST ();
5212
c23baf9f 5213 /* clear_marks (); */
7146af97
JB
5214 gc_in_progress = 0;
5215
5216 consing_since_gc = 0;
5217 if (gc_cons_threshold < 10000)
5218 gc_cons_threshold = 10000;
5219
c0c5c8ae 5220 gc_relative_threshold = 0;
96f077ad
SM
5221 if (FLOATP (Vgc_cons_percentage))
5222 { /* Set gc_cons_combined_threshold. */
c0c5c8ae 5223 double tot = 0;
ae35e756
PE
5224
5225 tot += total_conses * sizeof (struct Lisp_Cons);
5226 tot += total_symbols * sizeof (struct Lisp_Symbol);
5227 tot += total_markers * sizeof (union Lisp_Misc);
5228 tot += total_string_size;
5229 tot += total_vector_size * sizeof (Lisp_Object);
5230 tot += total_floats * sizeof (struct Lisp_Float);
5231 tot += total_intervals * sizeof (struct interval);
5232 tot += total_strings * sizeof (struct Lisp_String);
5233
c0c5c8ae
PE
5234 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5235 if (0 < tot)
5236 {
5237 if (tot < TYPE_MAXIMUM (EMACS_INT))
5238 gc_relative_threshold = tot;
5239 else
5240 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5241 }
96f077ad
SM
5242 }
5243
299585ee
RS
5244 if (garbage_collection_messages)
5245 {
6efc7df7
GM
5246 if (message_p || minibuf_level > 0)
5247 restore_message ();
299585ee
RS
5248 else
5249 message1_nolog ("Garbage collecting...done");
5250 }
7146af97 5251
98edb5ff 5252 unbind_to (count, Qnil);
2e471eb5
GM
5253
5254 total[0] = Fcons (make_number (total_conses),
5255 make_number (total_free_conses));
5256 total[1] = Fcons (make_number (total_symbols),
5257 make_number (total_free_symbols));
5258 total[2] = Fcons (make_number (total_markers),
5259 make_number (total_free_markers));
96117bc7
GM
5260 total[3] = make_number (total_string_size);
5261 total[4] = make_number (total_vector_size);
5262 total[5] = Fcons (make_number (total_floats),
2e471eb5 5263 make_number (total_free_floats));
96117bc7 5264 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5265 make_number (total_free_intervals));
96117bc7 5266 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5267 make_number (total_free_strings));
5268
34400008 5269#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5270 {
34400008
GM
5271 /* Compute average percentage of zombies. */
5272 double nlive = 0;
177c0ea7 5273
34400008 5274 for (i = 0; i < 7; ++i)
83fc9c63
DL
5275 if (CONSP (total[i]))
5276 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5277
5278 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5279 max_live = max (nlive, max_live);
5280 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5281 max_zombies = max (nzombies, max_zombies);
5282 ++ngcs;
5283 }
5284#endif
7146af97 5285
9e713715
GM
5286 if (!NILP (Vpost_gc_hook))
5287 {
ae35e756 5288 int gc_count = inhibit_garbage_collection ();
9e713715 5289 safe_run_hooks (Qpost_gc_hook);
ae35e756 5290 unbind_to (gc_count, Qnil);
9e713715 5291 }
2c5bd608
DL
5292
5293 /* Accumulate statistics. */
5294 EMACS_GET_TIME (t2);
5295 EMACS_SUB_TIME (t3, t2, t1);
5296 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
5297 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5298 EMACS_SECS (t3) +
5299 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
5300 gcs_done++;
5301
96117bc7 5302 return Flist (sizeof total / sizeof *total, total);
7146af97 5303}
34400008 5304
41c28a37 5305
3770920e
GM
5306/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5307 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5308
5309static void
971de7fb 5310mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5311{
5312 struct glyph_row *row = matrix->rows;
5313 struct glyph_row *end = row + matrix->nrows;
5314
2e471eb5
GM
5315 for (; row < end; ++row)
5316 if (row->enabled_p)
5317 {
5318 int area;
5319 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5320 {
5321 struct glyph *glyph = row->glyphs[area];
5322 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5323
2e471eb5 5324 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5325 if (STRINGP (glyph->object)
2e471eb5 5326 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5327 mark_object (glyph->object);
2e471eb5
GM
5328 }
5329 }
41c28a37
GM
5330}
5331
34400008 5332
41c28a37
GM
5333/* Mark Lisp faces in the face cache C. */
5334
5335static void
971de7fb 5336mark_face_cache (struct face_cache *c)
41c28a37
GM
5337{
5338 if (c)
5339 {
5340 int i, j;
5341 for (i = 0; i < c->used; ++i)
5342 {
5343 struct face *face = FACE_FROM_ID (c->f, i);
5344
5345 if (face)
5346 {
5347 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5348 mark_object (face->lface[j]);
41c28a37
GM
5349 }
5350 }
5351 }
5352}
5353
5354
7146af97 5355\f
1a4f1e2c 5356/* Mark reference to a Lisp_Object.
2e471eb5
GM
5357 If the object referred to has not been seen yet, recursively mark
5358 all the references contained in it. */
7146af97 5359
785cd37f 5360#define LAST_MARKED_SIZE 500
d3d47262 5361static Lisp_Object last_marked[LAST_MARKED_SIZE];
244ed907 5362static int last_marked_index;
785cd37f 5363
1342fc6f
RS
5364/* For debugging--call abort when we cdr down this many
5365 links of a list, in mark_object. In debugging,
5366 the call to abort will hit a breakpoint.
5367 Normally this is zero and the check never goes off. */
903fe15d 5368ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
1342fc6f 5369
8f11f7ec 5370static void
971de7fb 5371mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5372{
b6439961
PE
5373 EMACS_INT size = ptr->header.size;
5374 EMACS_INT i;
d2029e5b 5375
8f11f7ec 5376 eassert (!VECTOR_MARKED_P (ptr));
d2029e5b
SM
5377 VECTOR_MARK (ptr); /* Else mark it */
5378 if (size & PSEUDOVECTOR_FLAG)
5379 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5380
d2029e5b
SM
5381 /* Note that this size is not the memory-footprint size, but only
5382 the number of Lisp_Object fields that we should trace.
5383 The distinction is used e.g. by Lisp_Process which places extra
5384 non-Lisp_Object fields at the end of the structure. */
5385 for (i = 0; i < size; i++) /* and then mark its elements */
5386 mark_object (ptr->contents[i]);
d2029e5b
SM
5387}
5388
58026347
KH
5389/* Like mark_vectorlike but optimized for char-tables (and
5390 sub-char-tables) assuming that the contents are mostly integers or
5391 symbols. */
5392
5393static void
971de7fb 5394mark_char_table (struct Lisp_Vector *ptr)
58026347 5395{
b6439961
PE
5396 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5397 int i;
58026347 5398
8f11f7ec 5399 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5400 VECTOR_MARK (ptr);
5401 for (i = 0; i < size; i++)
5402 {
5403 Lisp_Object val = ptr->contents[i];
5404
ef1b0ba7 5405 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5406 continue;
5407 if (SUB_CHAR_TABLE_P (val))
5408 {
5409 if (! VECTOR_MARKED_P (XVECTOR (val)))
5410 mark_char_table (XVECTOR (val));
5411 }
5412 else
5413 mark_object (val);
5414 }
5415}
5416
41c28a37 5417void
971de7fb 5418mark_object (Lisp_Object arg)
7146af97 5419{
49723c04 5420 register Lisp_Object obj = arg;
4f5c1376
GM
5421#ifdef GC_CHECK_MARKED_OBJECTS
5422 void *po;
5423 struct mem_node *m;
5424#endif
903fe15d 5425 ptrdiff_t cdr_count = 0;
7146af97 5426
9149e743 5427 loop:
7146af97 5428
1f0b3fd2 5429 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5430 return;
5431
49723c04 5432 last_marked[last_marked_index++] = obj;
785cd37f
RS
5433 if (last_marked_index == LAST_MARKED_SIZE)
5434 last_marked_index = 0;
5435
4f5c1376
GM
5436 /* Perform some sanity checks on the objects marked here. Abort if
5437 we encounter an object we know is bogus. This increases GC time
5438 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5439#ifdef GC_CHECK_MARKED_OBJECTS
5440
5441 po = (void *) XPNTR (obj);
5442
5443 /* Check that the object pointed to by PO is known to be a Lisp
5444 structure allocated from the heap. */
5445#define CHECK_ALLOCATED() \
5446 do { \
5447 m = mem_find (po); \
5448 if (m == MEM_NIL) \
5449 abort (); \
5450 } while (0)
5451
5452 /* Check that the object pointed to by PO is live, using predicate
5453 function LIVEP. */
5454#define CHECK_LIVE(LIVEP) \
5455 do { \
5456 if (!LIVEP (m, po)) \
5457 abort (); \
5458 } while (0)
5459
5460 /* Check both of the above conditions. */
5461#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5462 do { \
5463 CHECK_ALLOCATED (); \
5464 CHECK_LIVE (LIVEP); \
5465 } while (0) \
177c0ea7 5466
4f5c1376 5467#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5468
4f5c1376
GM
5469#define CHECK_LIVE(LIVEP) (void) 0
5470#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5471
4f5c1376
GM
5472#endif /* not GC_CHECK_MARKED_OBJECTS */
5473
8e50cc2d 5474 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5475 {
5476 case Lisp_String:
5477 {
5478 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5479 if (STRING_MARKED_P (ptr))
5480 break;
4f5c1376 5481 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5482 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5483 MARK_STRING (ptr);
361b097f 5484#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5485 /* Check that the string size recorded in the string is the
5486 same as the one recorded in the sdata structure. */
5487 CHECK_STRING_BYTES (ptr);
361b097f 5488#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5489 }
5490 break;
5491
76437631 5492 case Lisp_Vectorlike:
8f11f7ec
SM
5493 if (VECTOR_MARKED_P (XVECTOR (obj)))
5494 break;
4f5c1376
GM
5495#ifdef GC_CHECK_MARKED_OBJECTS
5496 m = mem_find (po);
8e50cc2d 5497 if (m == MEM_NIL && !SUBRP (obj)
4f5c1376
GM
5498 && po != &buffer_defaults
5499 && po != &buffer_local_symbols)
5500 abort ();
5501#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5502
8e50cc2d 5503 if (BUFFERP (obj))
6b552283 5504 {
4f5c1376 5505#ifdef GC_CHECK_MARKED_OBJECTS
8f11f7ec
SM
5506 if (po != &buffer_defaults && po != &buffer_local_symbols)
5507 {
5508 struct buffer *b;
179dade4 5509 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
8f11f7ec
SM
5510 ;
5511 if (b == NULL)
5512 abort ();
4f5c1376 5513 }
8f11f7ec
SM
5514#endif /* GC_CHECK_MARKED_OBJECTS */
5515 mark_buffer (obj);
6b552283 5516 }
8e50cc2d 5517 else if (SUBRP (obj))
169ee243 5518 break;
876c194c 5519 else if (COMPILEDP (obj))
2e471eb5
GM
5520 /* We could treat this just like a vector, but it is better to
5521 save the COMPILED_CONSTANTS element for last and avoid
5522 recursion there. */
169ee243
RS
5523 {
5524 register struct Lisp_Vector *ptr = XVECTOR (obj);
b6439961
PE
5525 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5526 int i;
169ee243 5527
4f5c1376 5528 CHECK_LIVE (live_vector_p);
3ef06d12 5529 VECTOR_MARK (ptr); /* Else mark it */
169ee243
RS
5530 for (i = 0; i < size; i++) /* and then mark its elements */
5531 {
5532 if (i != COMPILED_CONSTANTS)
49723c04 5533 mark_object (ptr->contents[i]);
169ee243 5534 }
49723c04 5535 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5536 goto loop;
5537 }
8e50cc2d 5538 else if (FRAMEP (obj))
169ee243 5539 {
c70bbf06 5540 register struct frame *ptr = XFRAME (obj);
8f11f7ec
SM
5541 mark_vectorlike (XVECTOR (obj));
5542 mark_face_cache (ptr->face_cache);
707788bd 5543 }
8e50cc2d 5544 else if (WINDOWP (obj))
41c28a37
GM
5545 {
5546 register struct Lisp_Vector *ptr = XVECTOR (obj);
5547 struct window *w = XWINDOW (obj);
8f11f7ec
SM
5548 mark_vectorlike (ptr);
5549 /* Mark glyphs for leaf windows. Marking window matrices is
5550 sufficient because frame matrices use the same glyph
5551 memory. */
5552 if (NILP (w->hchild)
5553 && NILP (w->vchild)
5554 && w->current_matrix)
41c28a37 5555 {
8f11f7ec
SM
5556 mark_glyph_matrix (w->current_matrix);
5557 mark_glyph_matrix (w->desired_matrix);
41c28a37
GM
5558 }
5559 }
8e50cc2d 5560 else if (HASH_TABLE_P (obj))
41c28a37
GM
5561 {
5562 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
8f11f7ec
SM
5563 mark_vectorlike ((struct Lisp_Vector *)h);
5564 /* If hash table is not weak, mark all keys and values.
5565 For weak tables, mark only the vector. */
5566 if (NILP (h->weak))
5567 mark_object (h->key_and_value);
5568 else
5569 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5570 }
58026347 5571 else if (CHAR_TABLE_P (obj))
8f11f7ec 5572 mark_char_table (XVECTOR (obj));
04ff9756 5573 else
d2029e5b 5574 mark_vectorlike (XVECTOR (obj));
169ee243 5575 break;
7146af97 5576
7146af97
JB
5577 case Lisp_Symbol:
5578 {
c70bbf06 5579 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5580 struct Lisp_Symbol *ptrx;
5581
8f11f7ec
SM
5582 if (ptr->gcmarkbit)
5583 break;
4f5c1376 5584 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5585 ptr->gcmarkbit = 1;
49723c04
SM
5586 mark_object (ptr->function);
5587 mark_object (ptr->plist);
ce5b453a
SM
5588 switch (ptr->redirect)
5589 {
5590 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5591 case SYMBOL_VARALIAS:
5592 {
5593 Lisp_Object tem;
5594 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5595 mark_object (tem);
5596 break;
5597 }
5598 case SYMBOL_LOCALIZED:
5599 {
5600 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5601 /* If the value is forwarded to a buffer or keyboard field,
5602 these are marked when we see the corresponding object.
5603 And if it's forwarded to a C variable, either it's not
5604 a Lisp_Object var, or it's staticpro'd already. */
5605 mark_object (blv->where);
5606 mark_object (blv->valcell);
5607 mark_object (blv->defcell);
5608 break;
5609 }
5610 case SYMBOL_FORWARDED:
5611 /* If the value is forwarded to a buffer or keyboard field,
5612 these are marked when we see the corresponding object.
5613 And if it's forwarded to a C variable, either it's not
5614 a Lisp_Object var, or it's staticpro'd already. */
5615 break;
5616 default: abort ();
5617 }
8fe5665d
KR
5618 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5619 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5620 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5621
7146af97
JB
5622 ptr = ptr->next;
5623 if (ptr)
5624 {
b0846f52 5625 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 5626 XSETSYMBOL (obj, ptrx);
49723c04 5627 goto loop;
7146af97
JB
5628 }
5629 }
5630 break;
5631
a0a38eb7 5632 case Lisp_Misc:
4f5c1376 5633 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
67ee9f6e 5634 if (XMISCANY (obj)->gcmarkbit)
2336fe58 5635 break;
67ee9f6e 5636 XMISCANY (obj)->gcmarkbit = 1;
b766f870 5637
a5da44fe 5638 switch (XMISCTYPE (obj))
a0a38eb7 5639 {
465edf35 5640
2336fe58
SM
5641 case Lisp_Misc_Marker:
5642 /* DO NOT mark thru the marker's chain.
5643 The buffer's markers chain does not preserve markers from gc;
5644 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5645 break;
5646
8f924df7 5647 case Lisp_Misc_Save_Value:
9ea306d1 5648#if GC_MARK_STACK
b766f870
KS
5649 {
5650 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5651 /* If DOGC is set, POINTER is the address of a memory
5652 area containing INTEGER potential Lisp_Objects. */
5653 if (ptr->dogc)
5654 {
5655 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
9c4c5f81 5656 ptrdiff_t nelt;
b766f870
KS
5657 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5658 mark_maybe_object (*p);
5659 }
5660 }
9ea306d1 5661#endif
c8616056
KH
5662 break;
5663
e202fa34
KH
5664 case Lisp_Misc_Overlay:
5665 {
5666 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5667 mark_object (ptr->start);
5668 mark_object (ptr->end);
f54253ec
SM
5669 mark_object (ptr->plist);
5670 if (ptr->next)
5671 {
5672 XSETMISC (obj, ptr->next);
5673 goto loop;
5674 }
e202fa34
KH
5675 }
5676 break;
5677
a0a38eb7
KH
5678 default:
5679 abort ();
5680 }
7146af97
JB
5681 break;
5682
5683 case Lisp_Cons:
7146af97
JB
5684 {
5685 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
5686 if (CONS_MARKED_P (ptr))
5687 break;
4f5c1376 5688 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5689 CONS_MARK (ptr);
c54ca951 5690 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 5691 if (EQ (ptr->u.cdr, Qnil))
c54ca951 5692 {
49723c04 5693 obj = ptr->car;
1342fc6f 5694 cdr_count = 0;
c54ca951
RS
5695 goto loop;
5696 }
49723c04 5697 mark_object (ptr->car);
28a099a4 5698 obj = ptr->u.cdr;
1342fc6f
RS
5699 cdr_count++;
5700 if (cdr_count == mark_object_loop_halt)
5701 abort ();
7146af97
JB
5702 goto loop;
5703 }
5704
7146af97 5705 case Lisp_Float:
4f5c1376 5706 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5707 FLOAT_MARK (XFLOAT (obj));
7146af97 5708 break;
7146af97 5709
2de9f71c 5710 case_Lisp_Int:
7146af97
JB
5711 break;
5712
5713 default:
5714 abort ();
5715 }
4f5c1376
GM
5716
5717#undef CHECK_LIVE
5718#undef CHECK_ALLOCATED
5719#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5720}
5721
5722/* Mark the pointers in a buffer structure. */
5723
5724static void
971de7fb 5725mark_buffer (Lisp_Object buf)
7146af97 5726{
7146af97 5727 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5728 register Lisp_Object *ptr, tmp;
30e3190a 5729 Lisp_Object base_buffer;
7146af97 5730
8f11f7ec 5731 eassert (!VECTOR_MARKED_P (buffer));
3ef06d12 5732 VECTOR_MARK (buffer);
7146af97 5733
30e3190a 5734 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5735
c37adf23
SM
5736 /* For now, we just don't mark the undo_list. It's done later in
5737 a special way just before the sweep phase, and after stripping
5738 some of its elements that are not needed any more. */
4c315bda 5739
f54253ec
SM
5740 if (buffer->overlays_before)
5741 {
5742 XSETMISC (tmp, buffer->overlays_before);
5743 mark_object (tmp);
5744 }
5745 if (buffer->overlays_after)
5746 {
5747 XSETMISC (tmp, buffer->overlays_after);
5748 mark_object (tmp);
5749 }
5750
9ce376f9
SM
5751 /* buffer-local Lisp variables start at `undo_list',
5752 tho only the ones from `name' on are GC'd normally. */
5d8ea120 5753 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
8a5c77bb
PE
5754 ptr <= &PER_BUFFER_VALUE (buffer,
5755 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
7146af97 5756 ptr++)
49723c04 5757 mark_object (*ptr);
30e3190a
RS
5758
5759 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5760 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5761 {
177c0ea7 5762 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5763 mark_buffer (base_buffer);
5764 }
7146af97 5765}
084b1a0c 5766
4a729fd8
SM
5767/* Mark the Lisp pointers in the terminal objects.
5768 Called by the Fgarbage_collector. */
5769
4a729fd8
SM
5770static void
5771mark_terminals (void)
5772{
5773 struct terminal *t;
5774 for (t = terminal_list; t; t = t->next_terminal)
5775 {
5776 eassert (t->name != NULL);
354884c4 5777#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
5778 /* If a terminal object is reachable from a stacpro'ed object,
5779 it might have been marked already. Make sure the image cache
5780 gets marked. */
5781 mark_image_cache (t->image_cache);
354884c4 5782#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
5783 if (!VECTOR_MARKED_P (t))
5784 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
5785 }
5786}
5787
5788
084b1a0c 5789
41c28a37
GM
5790/* Value is non-zero if OBJ will survive the current GC because it's
5791 either marked or does not need to be marked to survive. */
5792
5793int
971de7fb 5794survives_gc_p (Lisp_Object obj)
41c28a37
GM
5795{
5796 int survives_p;
177c0ea7 5797
8e50cc2d 5798 switch (XTYPE (obj))
41c28a37 5799 {
2de9f71c 5800 case_Lisp_Int:
41c28a37
GM
5801 survives_p = 1;
5802 break;
5803
5804 case Lisp_Symbol:
2336fe58 5805 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5806 break;
5807
5808 case Lisp_Misc:
67ee9f6e 5809 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
5810 break;
5811
5812 case Lisp_String:
08b7c2cb 5813 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5814 break;
5815
5816 case Lisp_Vectorlike:
8e50cc2d 5817 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5818 break;
5819
5820 case Lisp_Cons:
08b7c2cb 5821 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5822 break;
5823
41c28a37 5824 case Lisp_Float:
ab6780cd 5825 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5826 break;
41c28a37
GM
5827
5828 default:
5829 abort ();
5830 }
5831
34400008 5832 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5833}
5834
5835
7146af97 5836\f
1a4f1e2c 5837/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5838
5839static void
971de7fb 5840gc_sweep (void)
7146af97 5841{
41c28a37
GM
5842 /* Remove or mark entries in weak hash tables.
5843 This must be done before any object is unmarked. */
5844 sweep_weak_hash_tables ();
5845
2e471eb5 5846 sweep_strings ();
676a7251
GM
5847#ifdef GC_CHECK_STRING_BYTES
5848 if (!noninteractive)
5849 check_string_bytes (1);
5850#endif
7146af97
JB
5851
5852 /* Put all unmarked conses on free list */
5853 {
5854 register struct cons_block *cblk;
6ca94ac9 5855 struct cons_block **cprev = &cons_block;
7146af97 5856 register int lim = cons_block_index;
c0c5c8ae 5857 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
5858
5859 cons_free_list = 0;
177c0ea7 5860
6ca94ac9 5861 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 5862 {
3ae2e3a3 5863 register int i = 0;
6ca94ac9 5864 int this_free = 0;
3ae2e3a3
RS
5865 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5866
5867 /* Scan the mark bits an int at a time. */
47ea7f44 5868 for (i = 0; i < ilim; i++)
3ae2e3a3
RS
5869 {
5870 if (cblk->gcmarkbits[i] == -1)
5871 {
5872 /* Fast path - all cons cells for this int are marked. */
5873 cblk->gcmarkbits[i] = 0;
5874 num_used += BITS_PER_INT;
5875 }
5876 else
5877 {
5878 /* Some cons cells for this int are not marked.
5879 Find which ones, and free them. */
5880 int start, pos, stop;
5881
5882 start = i * BITS_PER_INT;
5883 stop = lim - start;
5884 if (stop > BITS_PER_INT)
5885 stop = BITS_PER_INT;
5886 stop += start;
5887
5888 for (pos = start; pos < stop; pos++)
5889 {
5890 if (!CONS_MARKED_P (&cblk->conses[pos]))
5891 {
5892 this_free++;
5893 cblk->conses[pos].u.chain = cons_free_list;
5894 cons_free_list = &cblk->conses[pos];
34400008 5895#if GC_MARK_STACK
3ae2e3a3 5896 cons_free_list->car = Vdead;
34400008 5897#endif
3ae2e3a3
RS
5898 }
5899 else
5900 {
5901 num_used++;
5902 CONS_UNMARK (&cblk->conses[pos]);
5903 }
5904 }
5905 }
5906 }
5907
7146af97 5908 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5909 /* If this block contains only free conses and we have already
5910 seen more than two blocks worth of free conses then deallocate
5911 this block. */
6feef451 5912 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5913 {
6ca94ac9
KH
5914 *cprev = cblk->next;
5915 /* Unhook from the free list. */
28a099a4 5916 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 5917 lisp_align_free (cblk);
6ca94ac9
KH
5918 }
5919 else
6feef451
AS
5920 {
5921 num_free += this_free;
5922 cprev = &cblk->next;
5923 }
7146af97
JB
5924 }
5925 total_conses = num_used;
5926 total_free_conses = num_free;
5927 }
5928
7146af97
JB
5929 /* Put all unmarked floats on free list */
5930 {
5931 register struct float_block *fblk;
6ca94ac9 5932 struct float_block **fprev = &float_block;
7146af97 5933 register int lim = float_block_index;
c0c5c8ae 5934 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
5935
5936 float_free_list = 0;
177c0ea7 5937
6ca94ac9 5938 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5939 {
5940 register int i;
6ca94ac9 5941 int this_free = 0;
7146af97 5942 for (i = 0; i < lim; i++)
ab6780cd 5943 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5944 {
6ca94ac9 5945 this_free++;
28a099a4 5946 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
5947 float_free_list = &fblk->floats[i];
5948 }
5949 else
5950 {
5951 num_used++;
ab6780cd 5952 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5953 }
5954 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5955 /* If this block contains only free floats and we have already
5956 seen more than two blocks worth of free floats then deallocate
5957 this block. */
6feef451 5958 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5959 {
6ca94ac9
KH
5960 *fprev = fblk->next;
5961 /* Unhook from the free list. */
28a099a4 5962 float_free_list = fblk->floats[0].u.chain;
ab6780cd 5963 lisp_align_free (fblk);
6ca94ac9
KH
5964 }
5965 else
6feef451
AS
5966 {
5967 num_free += this_free;
5968 fprev = &fblk->next;
5969 }
7146af97
JB
5970 }
5971 total_floats = num_used;
5972 total_free_floats = num_free;
5973 }
7146af97 5974
d5e35230
JA
5975 /* Put all unmarked intervals on free list */
5976 {
5977 register struct interval_block *iblk;
6ca94ac9 5978 struct interval_block **iprev = &interval_block;
d5e35230 5979 register int lim = interval_block_index;
c0c5c8ae 5980 EMACS_INT num_free = 0, num_used = 0;
d5e35230
JA
5981
5982 interval_free_list = 0;
5983
6ca94ac9 5984 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5985 {
5986 register int i;
6ca94ac9 5987 int this_free = 0;
d5e35230
JA
5988
5989 for (i = 0; i < lim; i++)
5990 {
2336fe58 5991 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5992 {
439d5cb4 5993 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5994 interval_free_list = &iblk->intervals[i];
6ca94ac9 5995 this_free++;
d5e35230
JA
5996 }
5997 else
5998 {
5999 num_used++;
2336fe58 6000 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
6001 }
6002 }
6003 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
6004 /* If this block contains only free intervals and we have already
6005 seen more than two blocks worth of free intervals then
6006 deallocate this block. */
6feef451 6007 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 6008 {
6ca94ac9
KH
6009 *iprev = iblk->next;
6010 /* Unhook from the free list. */
439d5cb4 6011 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634 6012 lisp_free (iblk);
6ca94ac9
KH
6013 }
6014 else
6feef451
AS
6015 {
6016 num_free += this_free;
6017 iprev = &iblk->next;
6018 }
d5e35230
JA
6019 }
6020 total_intervals = num_used;
6021 total_free_intervals = num_free;
6022 }
d5e35230 6023
7146af97
JB
6024 /* Put all unmarked symbols on free list */
6025 {
6026 register struct symbol_block *sblk;
6ca94ac9 6027 struct symbol_block **sprev = &symbol_block;
7146af97 6028 register int lim = symbol_block_index;
c0c5c8ae 6029 EMACS_INT num_free = 0, num_used = 0;
7146af97 6030
d285b373 6031 symbol_free_list = NULL;
177c0ea7 6032
6ca94ac9 6033 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 6034 {
6ca94ac9 6035 int this_free = 0;
d285b373
GM
6036 struct Lisp_Symbol *sym = sblk->symbols;
6037 struct Lisp_Symbol *end = sym + lim;
6038
6039 for (; sym < end; ++sym)
6040 {
20035321
SM
6041 /* Check if the symbol was created during loadup. In such a case
6042 it might be pointed to by pure bytecode which we don't trace,
6043 so we conservatively assume that it is live. */
8fe5665d 6044 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 6045
2336fe58 6046 if (!sym->gcmarkbit && !pure_p)
d285b373 6047 {
ce5b453a
SM
6048 if (sym->redirect == SYMBOL_LOCALIZED)
6049 xfree (SYMBOL_BLV (sym));
28a099a4 6050 sym->next = symbol_free_list;
d285b373 6051 symbol_free_list = sym;
34400008 6052#if GC_MARK_STACK
d285b373 6053 symbol_free_list->function = Vdead;
34400008 6054#endif
d285b373
GM
6055 ++this_free;
6056 }
6057 else
6058 {
6059 ++num_used;
6060 if (!pure_p)
8fe5665d 6061 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 6062 sym->gcmarkbit = 0;
d285b373
GM
6063 }
6064 }
177c0ea7 6065
7146af97 6066 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6067 /* If this block contains only free symbols and we have already
6068 seen more than two blocks worth of free symbols then deallocate
6069 this block. */
6feef451 6070 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6071 {
6ca94ac9
KH
6072 *sprev = sblk->next;
6073 /* Unhook from the free list. */
28a099a4 6074 symbol_free_list = sblk->symbols[0].next;
c8099634 6075 lisp_free (sblk);
6ca94ac9
KH
6076 }
6077 else
6feef451
AS
6078 {
6079 num_free += this_free;
6080 sprev = &sblk->next;
6081 }
7146af97
JB
6082 }
6083 total_symbols = num_used;
6084 total_free_symbols = num_free;
6085 }
6086
a9faeabe
RS
6087 /* Put all unmarked misc's on free list.
6088 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6089 {
6090 register struct marker_block *mblk;
6ca94ac9 6091 struct marker_block **mprev = &marker_block;
7146af97 6092 register int lim = marker_block_index;
c0c5c8ae 6093 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6094
6095 marker_free_list = 0;
177c0ea7 6096
6ca94ac9 6097 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6098 {
6099 register int i;
6ca94ac9 6100 int this_free = 0;
fa05e253 6101
7146af97 6102 for (i = 0; i < lim; i++)
465edf35 6103 {
d314756e 6104 if (!mblk->markers[i].u_any.gcmarkbit)
465edf35 6105 {
d314756e 6106 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
ef89c2ce 6107 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
6108 /* Set the type of the freed object to Lisp_Misc_Free.
6109 We could leave the type alone, since nobody checks it,
465edf35 6110 but this might catch bugs faster. */
a5da44fe 6111 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
6112 mblk->markers[i].u_free.chain = marker_free_list;
6113 marker_free_list = &mblk->markers[i];
6ca94ac9 6114 this_free++;
465edf35
KH
6115 }
6116 else
6117 {
6118 num_used++;
d314756e 6119 mblk->markers[i].u_any.gcmarkbit = 0;
465edf35
KH
6120 }
6121 }
7146af97 6122 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6123 /* If this block contains only free markers and we have already
6124 seen more than two blocks worth of free markers then deallocate
6125 this block. */
6feef451 6126 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6127 {
6ca94ac9
KH
6128 *mprev = mblk->next;
6129 /* Unhook from the free list. */
6130 marker_free_list = mblk->markers[0].u_free.chain;
c8099634 6131 lisp_free (mblk);
6ca94ac9
KH
6132 }
6133 else
6feef451
AS
6134 {
6135 num_free += this_free;
6136 mprev = &mblk->next;
6137 }
7146af97
JB
6138 }
6139
6140 total_markers = num_used;
6141 total_free_markers = num_free;
6142 }
6143
6144 /* Free all unmarked buffers */
6145 {
6146 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6147
6148 while (buffer)
3ef06d12 6149 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6150 {
6151 if (prev)
eab3844f 6152 prev->header.next = buffer->header.next;
7146af97 6153 else
eab3844f
PE
6154 all_buffers = buffer->header.next.buffer;
6155 next = buffer->header.next.buffer;
34400008 6156 lisp_free (buffer);
7146af97
JB
6157 buffer = next;
6158 }
6159 else
6160 {
3ef06d12 6161 VECTOR_UNMARK (buffer);
30e3190a 6162 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
eab3844f 6163 prev = buffer, buffer = buffer->header.next.buffer;
7146af97
JB
6164 }
6165 }
6166
7146af97
JB
6167 /* Free all unmarked vectors */
6168 {
6169 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6170 total_vector_size = 0;
6171
6172 while (vector)
3ef06d12 6173 if (!VECTOR_MARKED_P (vector))
7146af97
JB
6174 {
6175 if (prev)
eab3844f 6176 prev->header.next = vector->header.next;
7146af97 6177 else
eab3844f
PE
6178 all_vectors = vector->header.next.vector;
6179 next = vector->header.next.vector;
c8099634 6180 lisp_free (vector);
7146af97 6181 vector = next;
41c28a37 6182
7146af97
JB
6183 }
6184 else
6185 {
3ef06d12 6186 VECTOR_UNMARK (vector);
eab3844f
PE
6187 if (vector->header.size & PSEUDOVECTOR_FLAG)
6188 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
fa05e253 6189 else
eab3844f
PE
6190 total_vector_size += vector->header.size;
6191 prev = vector, vector = vector->header.next.vector;
7146af97
JB
6192 }
6193 }
177c0ea7 6194
676a7251
GM
6195#ifdef GC_CHECK_STRING_BYTES
6196 if (!noninteractive)
6197 check_string_bytes (1);
6198#endif
7146af97 6199}
7146af97 6200
7146af97 6201
7146af97 6202
7146af97 6203\f
20d24714
JB
6204/* Debugging aids. */
6205
31ce1c91 6206DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6207 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6208This may be helpful in debugging Emacs's memory usage.
7ee72033 6209We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6210 (void)
20d24714
JB
6211{
6212 Lisp_Object end;
6213
d01a7826 6214 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
20d24714
JB
6215
6216 return end;
6217}
6218
310ea200 6219DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6220 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6221Each of these counters increments for a certain kind of object.
6222The counters wrap around from the largest positive integer to zero.
6223Garbage collection does not decrease them.
6224The elements of the value are as follows:
6225 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6226All are in units of 1 = one object consed
6227except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6228objects consed.
6229MISCS include overlays, markers, and some internal types.
6230Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6231 (but the contents of a buffer's text do not count here). */)
5842a27b 6232 (void)
310ea200 6233{
2e471eb5 6234 Lisp_Object consed[8];
310ea200 6235
78e985eb
GM
6236 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6237 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6238 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6239 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6240 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6241 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6242 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6243 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6244
2e471eb5 6245 return Flist (8, consed);
310ea200 6246}
e0b8c689 6247
244ed907 6248#ifdef ENABLE_CHECKING
e0b8c689 6249int suppress_checking;
d3d47262 6250
e0b8c689 6251void
971de7fb 6252die (const char *msg, const char *file, int line)
e0b8c689 6253{
67ee9f6e 6254 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6255 file, line, msg);
6256 abort ();
6257}
244ed907 6258#endif
20d24714 6259\f
7146af97
JB
6260/* Initialization */
6261
dfcf069d 6262void
971de7fb 6263init_alloc_once (void)
7146af97
JB
6264{
6265 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6266 purebeg = PUREBEG;
6267 pure_size = PURESIZE;
1f0b3fd2 6268 pure_bytes_used = 0;
e5bc14d4 6269 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
9e713715
GM
6270 pure_bytes_used_before_overflow = 0;
6271
ab6780cd
SM
6272 /* Initialize the list of free aligned blocks. */
6273 free_ablock = NULL;
6274
877935b1 6275#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6276 mem_init ();
6277 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6278#endif
9e713715 6279
7146af97
JB
6280 all_vectors = 0;
6281 ignore_warnings = 1;
d1658221
RS
6282#ifdef DOUG_LEA_MALLOC
6283 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6284 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6285 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6286#endif
7146af97
JB
6287 init_strings ();
6288 init_cons ();
6289 init_symbol ();
6290 init_marker ();
7146af97 6291 init_float ();
34400008 6292 init_intervals ();
5ac58e4c 6293 init_weak_hash_tables ();
d5e35230 6294
276cbe5a
RS
6295#ifdef REL_ALLOC
6296 malloc_hysteresis = 32;
6297#else
6298 malloc_hysteresis = 0;
6299#endif
6300
24d8a105 6301 refill_memory_reserve ();
276cbe5a 6302
7146af97
JB
6303 ignore_warnings = 0;
6304 gcprolist = 0;
630686c8 6305 byte_stack_list = 0;
7146af97
JB
6306 staticidx = 0;
6307 consing_since_gc = 0;
7d179cea 6308 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61 6309 gc_relative_threshold = 0;
7146af97
JB
6310}
6311
dfcf069d 6312void
971de7fb 6313init_alloc (void)
7146af97
JB
6314{
6315 gcprolist = 0;
630686c8 6316 byte_stack_list = 0;
182ff242
GM
6317#if GC_MARK_STACK
6318#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6319 setjmp_tested_p = longjmps_done = 0;
6320#endif
6321#endif
2c5bd608
DL
6322 Vgc_elapsed = make_float (0.0);
6323 gcs_done = 0;
7146af97
JB
6324}
6325
6326void
971de7fb 6327syms_of_alloc (void)
7146af97 6328{
29208e82 6329 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
a6266d23 6330 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
6331Garbage collection can happen automatically once this many bytes have been
6332allocated since the last garbage collection. All data types count.
7146af97 6333
228299fa 6334Garbage collection happens automatically only when `eval' is called.
7146af97 6335
228299fa 6336By binding this temporarily to a large number, you can effectively
96f077ad
SM
6337prevent garbage collection during a part of the program.
6338See also `gc-cons-percentage'. */);
6339
29208e82 6340 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
96f077ad
SM
6341 doc: /* *Portion of the heap used for allocation.
6342Garbage collection can happen automatically once this portion of the heap
6343has been allocated since the last garbage collection.
6344If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6345 Vgc_cons_percentage = make_float (0.1);
0819585c 6346
29208e82 6347 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
a6266d23 6348 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 6349
29208e82 6350 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6351 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6352
29208e82 6353 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6354 doc: /* Number of floats that have been consed so far. */);
0819585c 6355
29208e82 6356 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6357 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6358
29208e82 6359 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6360 doc: /* Number of symbols that have been consed so far. */);
0819585c 6361
29208e82 6362 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6363 doc: /* Number of string characters that have been consed so far. */);
0819585c 6364
29208e82 6365 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
a6266d23 6366 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 6367
29208e82 6368 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6369 doc: /* Number of intervals that have been consed so far. */);
7146af97 6370
29208e82 6371 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6372 doc: /* Number of strings that have been consed so far. */);
228299fa 6373
29208e82 6374 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6375 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6376This means that certain objects should be allocated in shared (pure) space.
6377It can also be set to a hash-table, in which case this table is used to
6378do hash-consing of the objects allocated to pure space. */);
228299fa 6379
29208e82 6380 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6381 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6382 garbage_collection_messages = 0;
6383
29208e82 6384 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6385 doc: /* Hook run after garbage collection has finished. */);
9e713715 6386 Vpost_gc_hook = Qnil;
cd3520a4 6387 DEFSYM (Qpost_gc_hook, "post-gc-hook");
9e713715 6388
29208e82 6389 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6390 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6391 /* We build this in advance because if we wait until we need it, we might
6392 not be able to allocate the memory to hold it. */
74a54b04 6393 Vmemory_signal_data
f4265f6c
DN
6394 = pure_cons (Qerror,
6395 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
74a54b04 6396
29208e82 6397 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6398 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6399 Vmemory_full = Qnil;
bcb61d60 6400
cd3520a4
JB
6401 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6402 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
a59de17b 6403
29208e82 6404 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6405 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6406The time is in seconds as a floating point value. */);
29208e82 6407 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6408 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6409
7146af97
JB
6410 defsubr (&Scons);
6411 defsubr (&Slist);
6412 defsubr (&Svector);
6413 defsubr (&Smake_byte_code);
6414 defsubr (&Smake_list);
6415 defsubr (&Smake_vector);
6416 defsubr (&Smake_string);
7b07587b 6417 defsubr (&Smake_bool_vector);
7146af97
JB
6418 defsubr (&Smake_symbol);
6419 defsubr (&Smake_marker);
6420 defsubr (&Spurecopy);
6421 defsubr (&Sgarbage_collect);
20d24714 6422 defsubr (&Smemory_limit);
310ea200 6423 defsubr (&Smemory_use_counts);
34400008
GM
6424
6425#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6426 defsubr (&Sgc_status);
6427#endif
7146af97 6428}