Merge from mainline.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
73b0cd50 2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
8cabe764 3 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
9ec0b715 7GNU Emacs is free software: you can redistribute it and/or modify
7146af97 8it under the terms of the GNU General Public License as published by
9ec0b715
GM
9the Free Software Foundation, either version 3 of the License, or
10(at your option) any later version.
7146af97
JB
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
9ec0b715 18along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 19
18160b98 20#include <config.h>
e9b309ac 21#include <stdio.h>
ab6780cd 22#include <limits.h> /* For CHAR_BIT. */
d7306fe6 23#include <setjmp.h>
92939d31 24
4455ad75
RS
25#ifdef ALLOC_DEBUG
26#undef INLINE
27#endif
28
68c45bf0 29#include <signal.h>
92939d31 30
aa477689
JD
31#ifdef HAVE_GTK_AND_PTHREAD
32#include <pthread.h>
33#endif
34
7539e11f
KR
35/* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
2e471eb5 38
7539e11f 39#undef HIDE_LISP_IMPLEMENTATION
7146af97 40#include "lisp.h"
ece93c02 41#include "process.h"
d5e35230 42#include "intervals.h"
4c0be5f4 43#include "puresize.h"
7146af97
JB
44#include "buffer.h"
45#include "window.h"
2538fae4 46#include "keyboard.h"
502b9b64 47#include "frame.h"
9ac0d9e0 48#include "blockinput.h"
9d80e883 49#include "character.h"
e065a56e 50#include "syssignal.h"
4a729fd8 51#include "termhooks.h" /* For struct terminal. */
34400008 52#include <setjmp.h>
e065a56e 53
6b61353c
KH
54/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58#undef GC_MALLOC_CHECK
59#endif
60
bf952fb6 61#include <unistd.h>
4004364e 62#ifndef HAVE_UNISTD_H
bf952fb6
DL
63extern POINTER_TYPE *sbrk ();
64#endif
ee1eea5c 65
de7124a7 66#include <fcntl.h>
de7124a7 67
69666f77 68#ifdef WINDOWSNT
f892cf9c 69#include "w32.h"
69666f77
EZ
70#endif
71
d1658221 72#ifdef DOUG_LEA_MALLOC
2e471eb5 73
d1658221 74#include <malloc.h>
3e60b029
DL
75/* malloc.h #defines this as size_t, at least in glibc2. */
76#ifndef __malloc_size_t
d1658221 77#define __malloc_size_t int
3e60b029 78#endif
81d492d5 79
2e471eb5
GM
80/* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
81d492d5
RS
83#define MMAP_MAX_AREAS 100000000
84
2e471eb5
GM
85#else /* not DOUG_LEA_MALLOC */
86
276cbe5a
RS
87/* The following come from gmalloc.c. */
88
276cbe5a 89#define __malloc_size_t size_t
276cbe5a 90extern __malloc_size_t _bytes_used;
3e60b029 91extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
92
93#endif /* not DOUG_LEA_MALLOC */
276cbe5a 94
7bc26fdb
PE
95#if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
96#ifdef HAVE_GTK_AND_PTHREAD
aa477689 97
f415cacd
JD
98/* When GTK uses the file chooser dialog, different backends can be loaded
99 dynamically. One such a backend is the Gnome VFS backend that gets loaded
100 if you run Gnome. That backend creates several threads and also allocates
101 memory with malloc.
102
103 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
104 functions below are called from malloc, there is a chance that one
105 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 106 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
107 that the backend handles concurrent access to malloc within its own threads
108 but Emacs code running in the main thread is not included in that control).
109
026cdede 110 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
111 happens in one of the backend threads we will have two threads that tries
112 to run Emacs code at once, and the code is not prepared for that.
113 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114
aa477689 115static pthread_mutex_t alloc_mutex;
aa477689 116
959dc601
JD
117#define BLOCK_INPUT_ALLOC \
118 do \
119 { \
120 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 121 BLOCK_INPUT; \
959dc601
JD
122 pthread_mutex_lock (&alloc_mutex); \
123 } \
aa477689 124 while (0)
959dc601
JD
125#define UNBLOCK_INPUT_ALLOC \
126 do \
127 { \
128 pthread_mutex_unlock (&alloc_mutex); \
129 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 130 UNBLOCK_INPUT; \
959dc601 131 } \
aa477689
JD
132 while (0)
133
7bc26fdb 134#else /* ! defined HAVE_GTK_AND_PTHREAD */
aa477689
JD
135
136#define BLOCK_INPUT_ALLOC BLOCK_INPUT
137#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138
7bc26fdb
PE
139#endif /* ! defined HAVE_GTK_AND_PTHREAD */
140#endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
aa477689 141
2e471eb5
GM
142/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
143 to a struct Lisp_String. */
144
7cdee936
SM
145#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
146#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 147#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 148
eab3844f
PE
149#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
150#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
151#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
3ef06d12 152
7bc26fdb
PE
153/* Value is the number of bytes of S, a pointer to a struct Lisp_String.
154 Be careful during GC, because S->size contains the mark bit for
2e471eb5
GM
155 strings. */
156
3ef06d12 157#define GC_STRING_BYTES(S) (STRING_BYTES (S))
2e471eb5 158
29208e82
TT
159/* Global variables. */
160struct emacs_globals globals;
161
2e471eb5
GM
162/* Number of bytes of consing done since the last gc. */
163
7146af97
JB
164int consing_since_gc;
165
974aae61
RS
166/* Similar minimum, computed from Vgc_cons_percentage. */
167
168EMACS_INT gc_relative_threshold;
310ea200 169
24d8a105
RS
170/* Minimum number of bytes of consing since GC before next GC,
171 when memory is full. */
172
173EMACS_INT memory_full_cons_threshold;
174
2e471eb5
GM
175/* Nonzero during GC. */
176
7146af97
JB
177int gc_in_progress;
178
3de0effb
RS
179/* Nonzero means abort if try to GC.
180 This is for code which is written on the assumption that
181 no GC will happen, so as to verify that assumption. */
182
183int abort_on_gc;
184
34400008
GM
185/* Number of live and free conses etc. */
186
187static int total_conses, total_markers, total_symbols, total_vector_size;
188static int total_free_conses, total_free_markers, total_free_symbols;
189static int total_free_floats, total_floats;
fd27a537 190
2e471eb5 191/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
192 out of memory. We keep one large block, four cons-blocks, and
193 two string blocks. */
2e471eb5 194
d3d47262 195static char *spare_memory[7];
276cbe5a 196
4e75f29d 197#ifndef SYSTEM_MALLOC
24d8a105 198/* Amount of spare memory to keep in large reserve block. */
2e471eb5 199
276cbe5a 200#define SPARE_MEMORY (1 << 14)
4e75f29d 201#endif
276cbe5a
RS
202
203/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 204
276cbe5a
RS
205static int malloc_hysteresis;
206
1b8950e5
RS
207/* Initialize it to a nonzero value to force it into data space
208 (rather than bss space). That way unexec will remap it into text
209 space (pure), on some systems. We have not implemented the
210 remapping on more recent systems because this is less important
211 nowadays than in the days of small memories and timesharing. */
2e471eb5 212
244ed907
PE
213#ifndef VIRT_ADDR_VARIES
214static
215#endif
2c4685ee 216EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 217#define PUREBEG (char *) pure
2e471eb5 218
9e713715 219/* Pointer to the pure area, and its size. */
2e471eb5 220
9e713715
GM
221static char *purebeg;
222static size_t pure_size;
223
224/* Number of bytes of pure storage used before pure storage overflowed.
225 If this is non-zero, this implies that an overflow occurred. */
226
227static size_t pure_bytes_used_before_overflow;
7146af97 228
34400008
GM
229/* Value is non-zero if P points into pure space. */
230
231#define PURE_POINTER_P(P) \
232 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 233 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 234 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 235 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 236
e5bc14d4
YM
237/* Index in pure at which next pure Lisp object will be allocated.. */
238
239static EMACS_INT pure_bytes_used_lisp;
240
241/* Number of bytes allocated for non-Lisp objects in pure storage. */
242
243static EMACS_INT pure_bytes_used_non_lisp;
244
2e471eb5
GM
245/* If nonzero, this is a warning delivered by malloc and not yet
246 displayed. */
247
a8fe7202 248const char *pending_malloc_warning;
7146af97
JB
249
250/* Maximum amount of C stack to save when a GC happens. */
251
252#ifndef MAX_SAVE_STACK
253#define MAX_SAVE_STACK 16000
254#endif
255
256/* Buffer in which we save a copy of the C stack at each GC. */
257
dd3f25f7 258#if MAX_SAVE_STACK > 0
d3d47262 259static char *stack_copy;
dd3f25f7
PE
260static size_t stack_copy_size;
261#endif
7146af97 262
2e471eb5
GM
263/* Non-zero means ignore malloc warnings. Set during initialization.
264 Currently not used. */
265
d3d47262 266static int ignore_warnings;
350273a4 267
955cbe7b
PE
268static Lisp_Object Qgc_cons_threshold;
269Lisp_Object Qchar_table_extra_slots;
e8197642 270
9e713715
GM
271/* Hook run after GC has finished. */
272
955cbe7b 273static Lisp_Object Qpost_gc_hook;
2c5bd608 274
f57e2426
J
275static void mark_buffer (Lisp_Object);
276static void mark_terminals (void);
f57e2426
J
277static void gc_sweep (void);
278static void mark_glyph_matrix (struct glyph_matrix *);
279static void mark_face_cache (struct face_cache *);
41c28a37 280
69003fd8
PE
281#if !defined REL_ALLOC || defined SYSTEM_MALLOC
282static void refill_memory_reserve (void);
283#endif
f57e2426
J
284static struct Lisp_String *allocate_string (void);
285static void compact_small_strings (void);
286static void free_large_strings (void);
287static void sweep_strings (void);
244ed907 288static void free_misc (Lisp_Object);
34400008 289
34400008
GM
290/* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
293
294enum mem_type
295{
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
9c545a55
SM
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
307 MEM_TYPE_VECTORLIKE
34400008
GM
308};
309
f57e2426
J
310static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
311static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
225ccad6 312
24d8a105 313
877935b1 314#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
315
316#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
317#include <stdio.h> /* For fprintf. */
318#endif
319
320/* A unique object in pure space used to make some Lisp objects
321 on free lists recognizable in O(1). */
322
d3d47262 323static Lisp_Object Vdead;
0b378936 324
877935b1
GM
325#ifdef GC_MALLOC_CHECK
326
327enum mem_type allocated_mem_type;
d3d47262 328static int dont_register_blocks;
877935b1
GM
329
330#endif /* GC_MALLOC_CHECK */
331
332/* A node in the red-black tree describing allocated memory containing
333 Lisp data. Each such block is recorded with its start and end
334 address when it is allocated, and removed from the tree when it
335 is freed.
336
337 A red-black tree is a balanced binary tree with the following
338 properties:
339
340 1. Every node is either red or black.
341 2. Every leaf is black.
342 3. If a node is red, then both of its children are black.
343 4. Every simple path from a node to a descendant leaf contains
344 the same number of black nodes.
345 5. The root is always black.
346
347 When nodes are inserted into the tree, or deleted from the tree,
348 the tree is "fixed" so that these properties are always true.
349
350 A red-black tree with N internal nodes has height at most 2
351 log(N+1). Searches, insertions and deletions are done in O(log N).
352 Please see a text book about data structures for a detailed
353 description of red-black trees. Any book worth its salt should
354 describe them. */
355
356struct mem_node
357{
9f7d9210
RS
358 /* Children of this node. These pointers are never NULL. When there
359 is no child, the value is MEM_NIL, which points to a dummy node. */
360 struct mem_node *left, *right;
361
362 /* The parent of this node. In the root node, this is NULL. */
363 struct mem_node *parent;
877935b1
GM
364
365 /* Start and end of allocated region. */
366 void *start, *end;
367
368 /* Node color. */
369 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 370
877935b1
GM
371 /* Memory type. */
372 enum mem_type type;
373};
374
375/* Base address of stack. Set in main. */
376
377Lisp_Object *stack_base;
378
379/* Root of the tree describing allocated Lisp memory. */
380
381static struct mem_node *mem_root;
382
ece93c02
GM
383/* Lowest and highest known address in the heap. */
384
385static void *min_heap_address, *max_heap_address;
386
877935b1
GM
387/* Sentinel node of the tree. */
388
389static struct mem_node mem_z;
390#define MEM_NIL &mem_z
391
f57e2426
J
392static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
393static void lisp_free (POINTER_TYPE *);
394static void mark_stack (void);
395static int live_vector_p (struct mem_node *, void *);
396static int live_buffer_p (struct mem_node *, void *);
397static int live_string_p (struct mem_node *, void *);
398static int live_cons_p (struct mem_node *, void *);
399static int live_symbol_p (struct mem_node *, void *);
400static int live_float_p (struct mem_node *, void *);
401static int live_misc_p (struct mem_node *, void *);
402static void mark_maybe_object (Lisp_Object);
403static void mark_memory (void *, void *, int);
404static void mem_init (void);
405static struct mem_node *mem_insert (void *, void *, enum mem_type);
406static void mem_insert_fixup (struct mem_node *);
407static void mem_rotate_left (struct mem_node *);
408static void mem_rotate_right (struct mem_node *);
409static void mem_delete (struct mem_node *);
410static void mem_delete_fixup (struct mem_node *);
411static INLINE struct mem_node *mem_find (void *);
34400008 412
34400008
GM
413
414#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 415static void check_gcpros (void);
34400008
GM
416#endif
417
877935b1 418#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 419
1f0b3fd2
GM
420/* Recording what needs to be marked for gc. */
421
422struct gcpro *gcprolist;
423
379b98b1
PE
424/* Addresses of staticpro'd variables. Initialize it to a nonzero
425 value; otherwise some compilers put it into BSS. */
1f0b3fd2 426
0078170f 427#define NSTATICS 0x640
d3d47262 428static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
429
430/* Index of next unused slot in staticvec. */
431
d3d47262 432static int staticidx = 0;
1f0b3fd2 433
f57e2426 434static POINTER_TYPE *pure_alloc (size_t, int);
1f0b3fd2
GM
435
436
437/* Value is SZ rounded up to the next multiple of ALIGNMENT.
438 ALIGNMENT must be a power of 2. */
439
ab6780cd 440#define ALIGN(ptr, ALIGNMENT) \
d01a7826 441 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
ab6780cd 442 & ~((ALIGNMENT) - 1)))
1f0b3fd2 443
ece93c02 444
7146af97 445\f
34400008
GM
446/************************************************************************
447 Malloc
448 ************************************************************************/
449
4455ad75 450/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
451
452void
a8fe7202 453malloc_warning (const char *str)
7146af97
JB
454{
455 pending_malloc_warning = str;
456}
457
34400008 458
4455ad75 459/* Display an already-pending malloc warning. */
34400008 460
d457598b 461void
971de7fb 462display_malloc_warning (void)
7146af97 463{
4455ad75
RS
464 call3 (intern ("display-warning"),
465 intern ("alloc"),
466 build_string (pending_malloc_warning),
467 intern ("emergency"));
7146af97 468 pending_malloc_warning = 0;
7146af97 469}
49efed3a 470\f
276cbe5a
RS
471/* Called if we can't allocate relocatable space for a buffer. */
472
473void
971de7fb 474buffer_memory_full (void)
276cbe5a 475{
2e471eb5
GM
476 /* If buffers use the relocating allocator, no need to free
477 spare_memory, because we may have plenty of malloc space left
478 that we could get, and if we don't, the malloc that fails will
479 itself cause spare_memory to be freed. If buffers don't use the
480 relocating allocator, treat this like any other failing
481 malloc. */
276cbe5a
RS
482
483#ifndef REL_ALLOC
484 memory_full ();
485#endif
486
2e471eb5
GM
487 /* This used to call error, but if we've run out of memory, we could
488 get infinite recursion trying to build the string. */
9b306d37 489 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
490}
491
34400008 492
212f33f1
KS
493#ifdef XMALLOC_OVERRUN_CHECK
494
bdbed949
KS
495/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
496 and a 16 byte trailer around each block.
497
498 The header consists of 12 fixed bytes + a 4 byte integer contaning the
499 original block size, while the trailer consists of 16 fixed bytes.
500
501 The header is used to detect whether this block has been allocated
502 through these functions -- as it seems that some low-level libc
503 functions may bypass the malloc hooks.
504*/
505
506
212f33f1 507#define XMALLOC_OVERRUN_CHECK_SIZE 16
bdbed949 508
212f33f1
KS
509static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
510 { 0x9a, 0x9b, 0xae, 0xaf,
511 0xbf, 0xbe, 0xce, 0xcf,
512 0xea, 0xeb, 0xec, 0xed };
513
514static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
515 { 0xaa, 0xab, 0xac, 0xad,
516 0xba, 0xbb, 0xbc, 0xbd,
517 0xca, 0xcb, 0xcc, 0xcd,
518 0xda, 0xdb, 0xdc, 0xdd };
519
bdbed949
KS
520/* Macros to insert and extract the block size in the header. */
521
522#define XMALLOC_PUT_SIZE(ptr, size) \
523 (ptr[-1] = (size & 0xff), \
524 ptr[-2] = ((size >> 8) & 0xff), \
525 ptr[-3] = ((size >> 16) & 0xff), \
526 ptr[-4] = ((size >> 24) & 0xff))
527
528#define XMALLOC_GET_SIZE(ptr) \
529 (size_t)((unsigned)(ptr[-1]) | \
530 ((unsigned)(ptr[-2]) << 8) | \
531 ((unsigned)(ptr[-3]) << 16) | \
532 ((unsigned)(ptr[-4]) << 24))
533
534
d8f165a8
JD
535/* The call depth in overrun_check functions. For example, this might happen:
536 xmalloc()
537 overrun_check_malloc()
538 -> malloc -> (via hook)_-> emacs_blocked_malloc
539 -> overrun_check_malloc
540 call malloc (hooks are NULL, so real malloc is called).
541 malloc returns 10000.
542 add overhead, return 10016.
543 <- (back in overrun_check_malloc)
857ae68b 544 add overhead again, return 10032
d8f165a8 545 xmalloc returns 10032.
857ae68b
JD
546
547 (time passes).
548
d8f165a8
JD
549 xfree(10032)
550 overrun_check_free(10032)
551 decrease overhed
552 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b
JD
553
554static int check_depth;
555
bdbed949
KS
556/* Like malloc, but wraps allocated block with header and trailer. */
557
2538aa2f 558static POINTER_TYPE *
e7974947 559overrun_check_malloc (size_t size)
212f33f1 560{
bdbed949 561 register unsigned char *val;
857ae68b 562 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1 563
857ae68b
JD
564 val = (unsigned char *) malloc (size + overhead);
565 if (val && check_depth == 1)
212f33f1 566 {
72af86bd
AS
567 memcpy (val, xmalloc_overrun_check_header,
568 XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 569 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 570 XMALLOC_PUT_SIZE(val, size);
72af86bd
AS
571 memcpy (val + size, xmalloc_overrun_check_trailer,
572 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 573 }
857ae68b 574 --check_depth;
212f33f1
KS
575 return (POINTER_TYPE *)val;
576}
577
bdbed949
KS
578
579/* Like realloc, but checks old block for overrun, and wraps new block
580 with header and trailer. */
581
2538aa2f 582static POINTER_TYPE *
e7974947 583overrun_check_realloc (POINTER_TYPE *block, size_t size)
212f33f1 584{
e7974947 585 register unsigned char *val = (unsigned char *) block;
857ae68b 586 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1
KS
587
588 if (val
857ae68b 589 && check_depth == 1
72af86bd
AS
590 && memcmp (xmalloc_overrun_check_header,
591 val - XMALLOC_OVERRUN_CHECK_SIZE,
592 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
212f33f1 593 {
bdbed949 594 size_t osize = XMALLOC_GET_SIZE (val);
72af86bd
AS
595 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
596 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 597 abort ();
72af86bd 598 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 599 val -= XMALLOC_OVERRUN_CHECK_SIZE;
72af86bd 600 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1
KS
601 }
602
857ae68b 603 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
212f33f1 604
857ae68b 605 if (val && check_depth == 1)
212f33f1 606 {
72af86bd
AS
607 memcpy (val, xmalloc_overrun_check_header,
608 XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 609 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 610 XMALLOC_PUT_SIZE(val, size);
72af86bd
AS
611 memcpy (val + size, xmalloc_overrun_check_trailer,
612 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 613 }
857ae68b 614 --check_depth;
212f33f1
KS
615 return (POINTER_TYPE *)val;
616}
617
bdbed949
KS
618/* Like free, but checks block for overrun. */
619
2538aa2f 620static void
e7974947 621overrun_check_free (POINTER_TYPE *block)
212f33f1 622{
e7974947 623 unsigned char *val = (unsigned char *) block;
212f33f1 624
857ae68b 625 ++check_depth;
212f33f1 626 if (val
857ae68b 627 && check_depth == 1
72af86bd
AS
628 && memcmp (xmalloc_overrun_check_header,
629 val - XMALLOC_OVERRUN_CHECK_SIZE,
630 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
212f33f1 631 {
bdbed949 632 size_t osize = XMALLOC_GET_SIZE (val);
72af86bd
AS
633 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
634 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 635 abort ();
454d7973
KS
636#ifdef XMALLOC_CLEAR_FREE_MEMORY
637 val -= XMALLOC_OVERRUN_CHECK_SIZE;
638 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
639#else
72af86bd 640 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 641 val -= XMALLOC_OVERRUN_CHECK_SIZE;
72af86bd 642 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
454d7973 643#endif
212f33f1
KS
644 }
645
646 free (val);
857ae68b 647 --check_depth;
212f33f1
KS
648}
649
650#undef malloc
651#undef realloc
652#undef free
653#define malloc overrun_check_malloc
654#define realloc overrun_check_realloc
655#define free overrun_check_free
656#endif
657
dafc79fa
SM
658#ifdef SYNC_INPUT
659/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
660 there's no need to block input around malloc. */
661#define MALLOC_BLOCK_INPUT ((void)0)
662#define MALLOC_UNBLOCK_INPUT ((void)0)
663#else
664#define MALLOC_BLOCK_INPUT BLOCK_INPUT
665#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
666#endif
bdbed949 667
34400008 668/* Like malloc but check for no memory and block interrupt input.. */
7146af97 669
c971ff9a 670POINTER_TYPE *
971de7fb 671xmalloc (size_t size)
7146af97 672{
c971ff9a 673 register POINTER_TYPE *val;
7146af97 674
dafc79fa 675 MALLOC_BLOCK_INPUT;
c971ff9a 676 val = (POINTER_TYPE *) malloc (size);
dafc79fa 677 MALLOC_UNBLOCK_INPUT;
7146af97 678
2e471eb5
GM
679 if (!val && size)
680 memory_full ();
7146af97
JB
681 return val;
682}
683
34400008
GM
684
685/* Like realloc but check for no memory and block interrupt input.. */
686
c971ff9a 687POINTER_TYPE *
971de7fb 688xrealloc (POINTER_TYPE *block, size_t size)
7146af97 689{
c971ff9a 690 register POINTER_TYPE *val;
7146af97 691
dafc79fa 692 MALLOC_BLOCK_INPUT;
56d2031b
JB
693 /* We must call malloc explicitly when BLOCK is 0, since some
694 reallocs don't do this. */
695 if (! block)
c971ff9a 696 val = (POINTER_TYPE *) malloc (size);
f048679d 697 else
c971ff9a 698 val = (POINTER_TYPE *) realloc (block, size);
dafc79fa 699 MALLOC_UNBLOCK_INPUT;
7146af97
JB
700
701 if (!val && size) memory_full ();
702 return val;
703}
9ac0d9e0 704
34400008 705
005ca5c7 706/* Like free but block interrupt input. */
34400008 707
9ac0d9e0 708void
971de7fb 709xfree (POINTER_TYPE *block)
9ac0d9e0 710{
70fdbb46
JM
711 if (!block)
712 return;
dafc79fa 713 MALLOC_BLOCK_INPUT;
9ac0d9e0 714 free (block);
dafc79fa 715 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
716 /* We don't call refill_memory_reserve here
717 because that duplicates doing so in emacs_blocked_free
718 and the criterion should go there. */
9ac0d9e0
JB
719}
720
c8099634 721
dca7c6a8
GM
722/* Like strdup, but uses xmalloc. */
723
724char *
971de7fb 725xstrdup (const char *s)
dca7c6a8 726{
675d5130 727 size_t len = strlen (s) + 1;
dca7c6a8 728 char *p = (char *) xmalloc (len);
72af86bd 729 memcpy (p, s, len);
dca7c6a8
GM
730 return p;
731}
732
733
f61bef8b
KS
734/* Unwind for SAFE_ALLOCA */
735
736Lisp_Object
971de7fb 737safe_alloca_unwind (Lisp_Object arg)
f61bef8b 738{
b766f870
KS
739 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
740
741 p->dogc = 0;
742 xfree (p->pointer);
743 p->pointer = 0;
7b7990cc 744 free_misc (arg);
f61bef8b
KS
745 return Qnil;
746}
747
748
34400008
GM
749/* Like malloc but used for allocating Lisp data. NBYTES is the
750 number of bytes to allocate, TYPE describes the intended use of the
751 allcated memory block (for strings, for conses, ...). */
752
212f33f1 753#ifndef USE_LSB_TAG
918a23a7 754static void *lisp_malloc_loser;
212f33f1 755#endif
918a23a7 756
675d5130 757static POINTER_TYPE *
971de7fb 758lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 759{
34400008 760 register void *val;
c8099634 761
dafc79fa 762 MALLOC_BLOCK_INPUT;
877935b1
GM
763
764#ifdef GC_MALLOC_CHECK
765 allocated_mem_type = type;
766#endif
177c0ea7 767
34400008 768 val = (void *) malloc (nbytes);
c8099634 769
6b61353c 770#ifndef USE_LSB_TAG
918a23a7
RS
771 /* If the memory just allocated cannot be addressed thru a Lisp
772 object's pointer, and it needs to be,
773 that's equivalent to running out of memory. */
774 if (val && type != MEM_TYPE_NON_LISP)
775 {
776 Lisp_Object tem;
777 XSETCONS (tem, (char *) val + nbytes - 1);
778 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
779 {
780 lisp_malloc_loser = val;
781 free (val);
782 val = 0;
783 }
784 }
6b61353c 785#endif
918a23a7 786
877935b1 787#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 788 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
789 mem_insert (val, (char *) val + nbytes, type);
790#endif
177c0ea7 791
dafc79fa 792 MALLOC_UNBLOCK_INPUT;
dca7c6a8
GM
793 if (!val && nbytes)
794 memory_full ();
c8099634
RS
795 return val;
796}
797
34400008
GM
798/* Free BLOCK. This must be called to free memory allocated with a
799 call to lisp_malloc. */
800
bf952fb6 801static void
971de7fb 802lisp_free (POINTER_TYPE *block)
c8099634 803{
dafc79fa 804 MALLOC_BLOCK_INPUT;
c8099634 805 free (block);
877935b1 806#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
807 mem_delete (mem_find (block));
808#endif
dafc79fa 809 MALLOC_UNBLOCK_INPUT;
c8099634 810}
34400008 811
ab6780cd
SM
812/* Allocation of aligned blocks of memory to store Lisp data. */
813/* The entry point is lisp_align_malloc which returns blocks of at most */
814/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
815
349a4500
SM
816/* Use posix_memalloc if the system has it and we're using the system's
817 malloc (because our gmalloc.c routines don't have posix_memalign although
818 its memalloc could be used). */
b4181b01
KS
819#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
820#define USE_POSIX_MEMALIGN 1
821#endif
ab6780cd
SM
822
823/* BLOCK_ALIGN has to be a power of 2. */
824#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
825
826/* Padding to leave at the end of a malloc'd block. This is to give
827 malloc a chance to minimize the amount of memory wasted to alignment.
828 It should be tuned to the particular malloc library used.
19bcad1f
SM
829 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
830 posix_memalign on the other hand would ideally prefer a value of 4
831 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
832 In Emacs, testing shows that those 1020 can most of the time be
833 efficiently used by malloc to place other objects, so a value of 0 can
834 still preferable unless you have a lot of aligned blocks and virtually
835 nothing else. */
19bcad1f
SM
836#define BLOCK_PADDING 0
837#define BLOCK_BYTES \
0b432f21 838 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
19bcad1f
SM
839
840/* Internal data structures and constants. */
841
ab6780cd
SM
842#define ABLOCKS_SIZE 16
843
844/* An aligned block of memory. */
845struct ablock
846{
847 union
848 {
849 char payload[BLOCK_BYTES];
850 struct ablock *next_free;
851 } x;
852 /* `abase' is the aligned base of the ablocks. */
853 /* It is overloaded to hold the virtual `busy' field that counts
854 the number of used ablock in the parent ablocks.
855 The first ablock has the `busy' field, the others have the `abase'
856 field. To tell the difference, we assume that pointers will have
857 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
858 is used to tell whether the real base of the parent ablocks is `abase'
859 (if not, the word before the first ablock holds a pointer to the
860 real base). */
861 struct ablocks *abase;
862 /* The padding of all but the last ablock is unused. The padding of
863 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
864#if BLOCK_PADDING
865 char padding[BLOCK_PADDING];
ebb8d410 866#endif
ab6780cd
SM
867};
868
869/* A bunch of consecutive aligned blocks. */
870struct ablocks
871{
872 struct ablock blocks[ABLOCKS_SIZE];
873};
874
875/* Size of the block requested from malloc or memalign. */
19bcad1f 876#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
877
878#define ABLOCK_ABASE(block) \
d01a7826 879 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
ab6780cd
SM
880 ? (struct ablocks *)(block) \
881 : (block)->abase)
882
883/* Virtual `busy' field. */
884#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
885
886/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 887#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
888#define ABLOCKS_BASE(abase) (abase)
889#else
ab6780cd 890#define ABLOCKS_BASE(abase) \
d01a7826 891 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 892#endif
ab6780cd
SM
893
894/* The list of free ablock. */
895static struct ablock *free_ablock;
896
897/* Allocate an aligned block of nbytes.
898 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
899 smaller or equal to BLOCK_BYTES. */
900static POINTER_TYPE *
971de7fb 901lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
902{
903 void *base, *val;
904 struct ablocks *abase;
905
906 eassert (nbytes <= BLOCK_BYTES);
907
dafc79fa 908 MALLOC_BLOCK_INPUT;
ab6780cd
SM
909
910#ifdef GC_MALLOC_CHECK
911 allocated_mem_type = type;
912#endif
913
914 if (!free_ablock)
915 {
005ca5c7 916 int i;
d01a7826 917 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
918
919#ifdef DOUG_LEA_MALLOC
920 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
921 because mapped region contents are not preserved in
922 a dumped Emacs. */
923 mallopt (M_MMAP_MAX, 0);
924#endif
925
349a4500 926#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
927 {
928 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
929 if (err)
930 base = NULL;
931 abase = base;
19bcad1f
SM
932 }
933#else
ab6780cd
SM
934 base = malloc (ABLOCKS_BYTES);
935 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
936#endif
937
6b61353c
KH
938 if (base == 0)
939 {
dafc79fa 940 MALLOC_UNBLOCK_INPUT;
6b61353c
KH
941 memory_full ();
942 }
ab6780cd
SM
943
944 aligned = (base == abase);
945 if (!aligned)
946 ((void**)abase)[-1] = base;
947
948#ifdef DOUG_LEA_MALLOC
949 /* Back to a reasonable maximum of mmap'ed areas. */
950 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
951#endif
952
6b61353c 953#ifndef USE_LSB_TAG
8f924df7
KH
954 /* If the memory just allocated cannot be addressed thru a Lisp
955 object's pointer, and it needs to be, that's equivalent to
956 running out of memory. */
957 if (type != MEM_TYPE_NON_LISP)
958 {
959 Lisp_Object tem;
960 char *end = (char *) base + ABLOCKS_BYTES - 1;
961 XSETCONS (tem, end);
962 if ((char *) XCONS (tem) != end)
963 {
964 lisp_malloc_loser = base;
965 free (base);
dafc79fa 966 MALLOC_UNBLOCK_INPUT;
8f924df7
KH
967 memory_full ();
968 }
969 }
6b61353c 970#endif
8f924df7 971
ab6780cd
SM
972 /* Initialize the blocks and put them on the free list.
973 Is `base' was not properly aligned, we can't use the last block. */
974 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
975 {
976 abase->blocks[i].abase = abase;
977 abase->blocks[i].x.next_free = free_ablock;
978 free_ablock = &abase->blocks[i];
979 }
8ac068ac 980 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
ab6780cd 981
d01a7826 982 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
ab6780cd
SM
983 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
984 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
985 eassert (ABLOCKS_BASE (abase) == base);
d01a7826 986 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
987 }
988
989 abase = ABLOCK_ABASE (free_ablock);
8ac068ac 990 ABLOCKS_BUSY (abase) =
d01a7826 991 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
992 val = free_ablock;
993 free_ablock = free_ablock->x.next_free;
994
ab6780cd
SM
995#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
996 if (val && type != MEM_TYPE_NON_LISP)
997 mem_insert (val, (char *) val + nbytes, type);
998#endif
999
dafc79fa 1000 MALLOC_UNBLOCK_INPUT;
ab6780cd
SM
1001 if (!val && nbytes)
1002 memory_full ();
1003
d01a7826 1004 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
ab6780cd
SM
1005 return val;
1006}
1007
1008static void
971de7fb 1009lisp_align_free (POINTER_TYPE *block)
ab6780cd
SM
1010{
1011 struct ablock *ablock = block;
1012 struct ablocks *abase = ABLOCK_ABASE (ablock);
1013
dafc79fa 1014 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1015#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1016 mem_delete (mem_find (block));
1017#endif
1018 /* Put on free list. */
1019 ablock->x.next_free = free_ablock;
1020 free_ablock = ablock;
1021 /* Update busy count. */
8ac068ac 1022 ABLOCKS_BUSY (abase) =
d01a7826 1023 (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
d2db1c32 1024
d01a7826 1025 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
ab6780cd 1026 { /* All the blocks are free. */
d01a7826 1027 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
ab6780cd
SM
1028 struct ablock **tem = &free_ablock;
1029 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1030
1031 while (*tem)
1032 {
1033 if (*tem >= (struct ablock *) abase && *tem < atop)
1034 {
1035 i++;
1036 *tem = (*tem)->x.next_free;
1037 }
1038 else
1039 tem = &(*tem)->x.next_free;
1040 }
1041 eassert ((aligned & 1) == aligned);
1042 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1043#ifdef USE_POSIX_MEMALIGN
d01a7826 1044 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
cfb2f32e 1045#endif
ab6780cd
SM
1046 free (ABLOCKS_BASE (abase));
1047 }
dafc79fa 1048 MALLOC_UNBLOCK_INPUT;
ab6780cd 1049}
3ef06d12
SM
1050
1051/* Return a new buffer structure allocated from the heap with
1052 a call to lisp_malloc. */
1053
1054struct buffer *
971de7fb 1055allocate_buffer (void)
3ef06d12
SM
1056{
1057 struct buffer *b
1058 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1059 MEM_TYPE_BUFFER);
eab3844f
PE
1060 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1061 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1062 / sizeof (EMACS_INT)));
3ef06d12
SM
1063 return b;
1064}
1065
9ac0d9e0 1066\f
026cdede
SM
1067#ifndef SYSTEM_MALLOC
1068
9ac0d9e0
JB
1069/* Arranging to disable input signals while we're in malloc.
1070
1071 This only works with GNU malloc. To help out systems which can't
1072 use GNU malloc, all the calls to malloc, realloc, and free
1073 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1074 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1075 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1076 using GNU malloc. Fortunately, most of the major operating systems
1077 can use GNU malloc. */
9ac0d9e0 1078
026cdede 1079#ifndef SYNC_INPUT
dafc79fa
SM
1080/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1081 there's no need to block input around malloc. */
026cdede 1082
b3303f74 1083#ifndef DOUG_LEA_MALLOC
f57e2426
J
1084extern void * (*__malloc_hook) (size_t, const void *);
1085extern void * (*__realloc_hook) (void *, size_t, const void *);
1086extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1087/* Else declared in malloc.h, perhaps with an extra arg. */
1088#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1089static void * (*old_malloc_hook) (size_t, const void *);
1090static void * (*old_realloc_hook) (void *, size_t, const void*);
1091static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1092
4e75f29d
PE
1093#ifdef DOUG_LEA_MALLOC
1094# define BYTES_USED (mallinfo ().uordblks)
1095#else
1096# define BYTES_USED _bytes_used
1097#endif
1098
ef1b0ba7
SM
1099static __malloc_size_t bytes_used_when_reconsidered;
1100
4e75f29d
PE
1101/* Value of _bytes_used, when spare_memory was freed. */
1102
1103static __malloc_size_t bytes_used_when_full;
1104
276cbe5a
RS
1105/* This function is used as the hook for free to call. */
1106
9ac0d9e0 1107static void
7c3320d8 1108emacs_blocked_free (void *ptr, const void *ptr2)
9ac0d9e0 1109{
aa477689 1110 BLOCK_INPUT_ALLOC;
877935b1
GM
1111
1112#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1113 if (ptr)
1114 {
1115 struct mem_node *m;
177c0ea7 1116
a83fee2c
GM
1117 m = mem_find (ptr);
1118 if (m == MEM_NIL || m->start != ptr)
1119 {
1120 fprintf (stderr,
1121 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1122 abort ();
1123 }
1124 else
1125 {
1126 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1127 mem_delete (m);
1128 }
1129 }
877935b1 1130#endif /* GC_MALLOC_CHECK */
177c0ea7 1131
9ac0d9e0
JB
1132 __free_hook = old_free_hook;
1133 free (ptr);
177c0ea7 1134
276cbe5a
RS
1135 /* If we released our reserve (due to running out of memory),
1136 and we have a fair amount free once again,
1137 try to set aside another reserve in case we run out once more. */
24d8a105 1138 if (! NILP (Vmemory_full)
276cbe5a
RS
1139 /* Verify there is enough space that even with the malloc
1140 hysteresis this call won't run out again.
1141 The code here is correct as long as SPARE_MEMORY
1142 is substantially larger than the block size malloc uses. */
1143 && (bytes_used_when_full
4d74a5fc 1144 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1145 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1146 refill_memory_reserve ();
276cbe5a 1147
b0846f52 1148 __free_hook = emacs_blocked_free;
aa477689 1149 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1150}
1151
34400008 1152
276cbe5a
RS
1153/* This function is the malloc hook that Emacs uses. */
1154
9ac0d9e0 1155static void *
7c3320d8 1156emacs_blocked_malloc (size_t size, const void *ptr)
9ac0d9e0
JB
1157{
1158 void *value;
1159
aa477689 1160 BLOCK_INPUT_ALLOC;
9ac0d9e0 1161 __malloc_hook = old_malloc_hook;
1177ecf6 1162#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1163 /* Segfaults on my system. --lorentey */
1164 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1165#else
d1658221 1166 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1167#endif
877935b1 1168
2756d8ee 1169 value = (void *) malloc (size);
877935b1
GM
1170
1171#ifdef GC_MALLOC_CHECK
1172 {
1173 struct mem_node *m = mem_find (value);
1174 if (m != MEM_NIL)
1175 {
1176 fprintf (stderr, "Malloc returned %p which is already in use\n",
1177 value);
1178 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1179 m->start, m->end, (char *) m->end - (char *) m->start,
1180 m->type);
1181 abort ();
1182 }
1183
1184 if (!dont_register_blocks)
1185 {
1186 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1187 allocated_mem_type = MEM_TYPE_NON_LISP;
1188 }
1189 }
1190#endif /* GC_MALLOC_CHECK */
177c0ea7 1191
b0846f52 1192 __malloc_hook = emacs_blocked_malloc;
aa477689 1193 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1194
877935b1 1195 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1196 return value;
1197}
1198
34400008
GM
1199
1200/* This function is the realloc hook that Emacs uses. */
1201
9ac0d9e0 1202static void *
7c3320d8 1203emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
9ac0d9e0
JB
1204{
1205 void *value;
1206
aa477689 1207 BLOCK_INPUT_ALLOC;
9ac0d9e0 1208 __realloc_hook = old_realloc_hook;
877935b1
GM
1209
1210#ifdef GC_MALLOC_CHECK
1211 if (ptr)
1212 {
1213 struct mem_node *m = mem_find (ptr);
1214 if (m == MEM_NIL || m->start != ptr)
1215 {
1216 fprintf (stderr,
1217 "Realloc of %p which wasn't allocated with malloc\n",
1218 ptr);
1219 abort ();
1220 }
1221
1222 mem_delete (m);
1223 }
177c0ea7 1224
877935b1 1225 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1226
877935b1
GM
1227 /* Prevent malloc from registering blocks. */
1228 dont_register_blocks = 1;
1229#endif /* GC_MALLOC_CHECK */
1230
2756d8ee 1231 value = (void *) realloc (ptr, size);
877935b1
GM
1232
1233#ifdef GC_MALLOC_CHECK
1234 dont_register_blocks = 0;
1235
1236 {
1237 struct mem_node *m = mem_find (value);
1238 if (m != MEM_NIL)
1239 {
1240 fprintf (stderr, "Realloc returns memory that is already in use\n");
1241 abort ();
1242 }
1243
1244 /* Can't handle zero size regions in the red-black tree. */
1245 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1246 }
177c0ea7 1247
877935b1
GM
1248 /* fprintf (stderr, "%p <- realloc\n", value); */
1249#endif /* GC_MALLOC_CHECK */
177c0ea7 1250
b0846f52 1251 __realloc_hook = emacs_blocked_realloc;
aa477689 1252 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1253
1254 return value;
1255}
1256
34400008 1257
aa477689
JD
1258#ifdef HAVE_GTK_AND_PTHREAD
1259/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1260 normal malloc. Some thread implementations need this as they call
1261 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1262 calls malloc because it is the first call, and we have an endless loop. */
1263
1264void
1265reset_malloc_hooks ()
1266{
4d580af2
AS
1267 __free_hook = old_free_hook;
1268 __malloc_hook = old_malloc_hook;
1269 __realloc_hook = old_realloc_hook;
aa477689
JD
1270}
1271#endif /* HAVE_GTK_AND_PTHREAD */
1272
1273
34400008
GM
1274/* Called from main to set up malloc to use our hooks. */
1275
9ac0d9e0 1276void
7c3320d8 1277uninterrupt_malloc (void)
9ac0d9e0 1278{
aa477689 1279#ifdef HAVE_GTK_AND_PTHREAD
a1b41389 1280#ifdef DOUG_LEA_MALLOC
aa477689
JD
1281 pthread_mutexattr_t attr;
1282
1283 /* GLIBC has a faster way to do this, but lets keep it portable.
1284 This is according to the Single UNIX Specification. */
1285 pthread_mutexattr_init (&attr);
1286 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1287 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1288#else /* !DOUG_LEA_MALLOC */
ce5b453a 1289 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1290 and the bundled gmalloc.c doesn't require it. */
1291 pthread_mutex_init (&alloc_mutex, NULL);
1292#endif /* !DOUG_LEA_MALLOC */
aa477689
JD
1293#endif /* HAVE_GTK_AND_PTHREAD */
1294
c8099634
RS
1295 if (__free_hook != emacs_blocked_free)
1296 old_free_hook = __free_hook;
b0846f52 1297 __free_hook = emacs_blocked_free;
9ac0d9e0 1298
c8099634
RS
1299 if (__malloc_hook != emacs_blocked_malloc)
1300 old_malloc_hook = __malloc_hook;
b0846f52 1301 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1302
c8099634
RS
1303 if (__realloc_hook != emacs_blocked_realloc)
1304 old_realloc_hook = __realloc_hook;
b0846f52 1305 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1306}
2e471eb5 1307
026cdede 1308#endif /* not SYNC_INPUT */
2e471eb5
GM
1309#endif /* not SYSTEM_MALLOC */
1310
1311
7146af97 1312\f
2e471eb5
GM
1313/***********************************************************************
1314 Interval Allocation
1315 ***********************************************************************/
1a4f1e2c 1316
34400008
GM
1317/* Number of intervals allocated in an interval_block structure.
1318 The 1020 is 1024 minus malloc overhead. */
1319
d5e35230
JA
1320#define INTERVAL_BLOCK_SIZE \
1321 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1322
34400008
GM
1323/* Intervals are allocated in chunks in form of an interval_block
1324 structure. */
1325
d5e35230 1326struct interval_block
2e471eb5 1327{
6b61353c 1328 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1329 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1330 struct interval_block *next;
2e471eb5 1331};
d5e35230 1332
34400008
GM
1333/* Current interval block. Its `next' pointer points to older
1334 blocks. */
1335
d3d47262 1336static struct interval_block *interval_block;
34400008
GM
1337
1338/* Index in interval_block above of the next unused interval
1339 structure. */
1340
d5e35230 1341static int interval_block_index;
34400008
GM
1342
1343/* Number of free and live intervals. */
1344
2e471eb5 1345static int total_free_intervals, total_intervals;
d5e35230 1346
34400008
GM
1347/* List of free intervals. */
1348
244ed907 1349static INTERVAL interval_free_list;
d5e35230 1350
c8099634 1351/* Total number of interval blocks now in use. */
2e471eb5 1352
d3d47262 1353static int n_interval_blocks;
c8099634 1354
34400008
GM
1355
1356/* Initialize interval allocation. */
1357
d5e35230 1358static void
971de7fb 1359init_intervals (void)
d5e35230 1360{
005ca5c7
DL
1361 interval_block = NULL;
1362 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1363 interval_free_list = 0;
005ca5c7 1364 n_interval_blocks = 0;
d5e35230
JA
1365}
1366
34400008
GM
1367
1368/* Return a new interval. */
d5e35230
JA
1369
1370INTERVAL
971de7fb 1371make_interval (void)
d5e35230
JA
1372{
1373 INTERVAL val;
1374
e2984df0
CY
1375 /* eassert (!handling_signal); */
1376
dafc79fa 1377 MALLOC_BLOCK_INPUT;
cfb2f32e 1378
d5e35230
JA
1379 if (interval_free_list)
1380 {
1381 val = interval_free_list;
439d5cb4 1382 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1383 }
1384 else
1385 {
1386 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1387 {
3c06d205
KH
1388 register struct interval_block *newi;
1389
34400008
GM
1390 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1391 MEM_TYPE_NON_LISP);
d5e35230 1392
d5e35230
JA
1393 newi->next = interval_block;
1394 interval_block = newi;
1395 interval_block_index = 0;
c8099634 1396 n_interval_blocks++;
d5e35230
JA
1397 }
1398 val = &interval_block->intervals[interval_block_index++];
1399 }
e2984df0 1400
dafc79fa 1401 MALLOC_UNBLOCK_INPUT;
e2984df0 1402
d5e35230 1403 consing_since_gc += sizeof (struct interval);
310ea200 1404 intervals_consed++;
d5e35230 1405 RESET_INTERVAL (val);
2336fe58 1406 val->gcmarkbit = 0;
d5e35230
JA
1407 return val;
1408}
1409
34400008
GM
1410
1411/* Mark Lisp objects in interval I. */
d5e35230
JA
1412
1413static void
971de7fb 1414mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1415{
2336fe58
SM
1416 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1417 i->gcmarkbit = 1;
49723c04 1418 mark_object (i->plist);
d5e35230
JA
1419}
1420
34400008
GM
1421
1422/* Mark the interval tree rooted in TREE. Don't call this directly;
1423 use the macro MARK_INTERVAL_TREE instead. */
1424
d5e35230 1425static void
971de7fb 1426mark_interval_tree (register INTERVAL tree)
d5e35230 1427{
e8720644
JB
1428 /* No need to test if this tree has been marked already; this
1429 function is always called through the MARK_INTERVAL_TREE macro,
1430 which takes care of that. */
1431
1e934989 1432 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1433}
1434
34400008
GM
1435
1436/* Mark the interval tree rooted in I. */
1437
e8720644
JB
1438#define MARK_INTERVAL_TREE(i) \
1439 do { \
2336fe58 1440 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1441 mark_interval_tree (i); \
1442 } while (0)
d5e35230 1443
34400008 1444
2e471eb5
GM
1445#define UNMARK_BALANCE_INTERVALS(i) \
1446 do { \
1447 if (! NULL_INTERVAL_P (i)) \
2336fe58 1448 (i) = balance_intervals (i); \
2e471eb5 1449 } while (0)
d5e35230 1450
cc2d8c6b 1451\f
6e5cb96f 1452/* Number support. If USE_LISP_UNION_TYPE is in effect, we
cc2d8c6b
KR
1453 can't create number objects in macros. */
1454#ifndef make_number
1455Lisp_Object
c566235d 1456make_number (EMACS_INT n)
cc2d8c6b
KR
1457{
1458 Lisp_Object obj;
1459 obj.s.val = n;
1460 obj.s.type = Lisp_Int;
1461 return obj;
1462}
1463#endif
d5e35230 1464\f
2e471eb5
GM
1465/***********************************************************************
1466 String Allocation
1467 ***********************************************************************/
1a4f1e2c 1468
2e471eb5
GM
1469/* Lisp_Strings are allocated in string_block structures. When a new
1470 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1471 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1472 needed, it is taken from that list. During the sweep phase of GC,
1473 string_blocks that are entirely free are freed, except two which
1474 we keep.
7146af97 1475
2e471eb5
GM
1476 String data is allocated from sblock structures. Strings larger
1477 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1478 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1479
2e471eb5
GM
1480 Sblocks consist internally of sdata structures, one for each
1481 Lisp_String. The sdata structure points to the Lisp_String it
1482 belongs to. The Lisp_String points back to the `u.data' member of
1483 its sdata structure.
7146af97 1484
2e471eb5
GM
1485 When a Lisp_String is freed during GC, it is put back on
1486 string_free_list, and its `data' member and its sdata's `string'
1487 pointer is set to null. The size of the string is recorded in the
1488 `u.nbytes' member of the sdata. So, sdata structures that are no
1489 longer used, can be easily recognized, and it's easy to compact the
1490 sblocks of small strings which we do in compact_small_strings. */
7146af97 1491
2e471eb5
GM
1492/* Size in bytes of an sblock structure used for small strings. This
1493 is 8192 minus malloc overhead. */
7146af97 1494
2e471eb5 1495#define SBLOCK_SIZE 8188
c8099634 1496
2e471eb5
GM
1497/* Strings larger than this are considered large strings. String data
1498 for large strings is allocated from individual sblocks. */
7146af97 1499
2e471eb5
GM
1500#define LARGE_STRING_BYTES 1024
1501
1502/* Structure describing string memory sub-allocated from an sblock.
1503 This is where the contents of Lisp strings are stored. */
1504
1505struct sdata
7146af97 1506{
2e471eb5
GM
1507 /* Back-pointer to the string this sdata belongs to. If null, this
1508 structure is free, and the NBYTES member of the union below
34400008 1509 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1510 would return if STRING were non-null). If non-null, STRING_BYTES
1511 (STRING) is the size of the data, and DATA contains the string's
1512 contents. */
1513 struct Lisp_String *string;
7146af97 1514
31d929e5 1515#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1516
31d929e5
GM
1517 EMACS_INT nbytes;
1518 unsigned char data[1];
177c0ea7 1519
31d929e5
GM
1520#define SDATA_NBYTES(S) (S)->nbytes
1521#define SDATA_DATA(S) (S)->data
36372bf9 1522#define SDATA_SELECTOR(member) member
177c0ea7 1523
31d929e5
GM
1524#else /* not GC_CHECK_STRING_BYTES */
1525
2e471eb5
GM
1526 union
1527 {
83998b7a 1528 /* When STRING is non-null. */
2e471eb5
GM
1529 unsigned char data[1];
1530
1531 /* When STRING is null. */
1532 EMACS_INT nbytes;
1533 } u;
177c0ea7 1534
31d929e5
GM
1535#define SDATA_NBYTES(S) (S)->u.nbytes
1536#define SDATA_DATA(S) (S)->u.data
36372bf9 1537#define SDATA_SELECTOR(member) u.member
31d929e5
GM
1538
1539#endif /* not GC_CHECK_STRING_BYTES */
36372bf9
PE
1540
1541#define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
2e471eb5
GM
1542};
1543
31d929e5 1544
2e471eb5
GM
1545/* Structure describing a block of memory which is sub-allocated to
1546 obtain string data memory for strings. Blocks for small strings
1547 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1548 as large as needed. */
1549
1550struct sblock
7146af97 1551{
2e471eb5
GM
1552 /* Next in list. */
1553 struct sblock *next;
7146af97 1554
2e471eb5
GM
1555 /* Pointer to the next free sdata block. This points past the end
1556 of the sblock if there isn't any space left in this block. */
1557 struct sdata *next_free;
1558
1559 /* Start of data. */
1560 struct sdata first_data;
1561};
1562
1563/* Number of Lisp strings in a string_block structure. The 1020 is
1564 1024 minus malloc overhead. */
1565
19bcad1f 1566#define STRING_BLOCK_SIZE \
2e471eb5
GM
1567 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1568
1569/* Structure describing a block from which Lisp_String structures
1570 are allocated. */
1571
1572struct string_block
7146af97 1573{
6b61353c 1574 /* Place `strings' first, to preserve alignment. */
19bcad1f 1575 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1576 struct string_block *next;
2e471eb5 1577};
7146af97 1578
2e471eb5
GM
1579/* Head and tail of the list of sblock structures holding Lisp string
1580 data. We always allocate from current_sblock. The NEXT pointers
1581 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1582
2e471eb5 1583static struct sblock *oldest_sblock, *current_sblock;
7146af97 1584
2e471eb5 1585/* List of sblocks for large strings. */
7146af97 1586
2e471eb5 1587static struct sblock *large_sblocks;
7146af97 1588
2e471eb5 1589/* List of string_block structures, and how many there are. */
7146af97 1590
2e471eb5
GM
1591static struct string_block *string_blocks;
1592static int n_string_blocks;
7146af97 1593
2e471eb5 1594/* Free-list of Lisp_Strings. */
7146af97 1595
2e471eb5 1596static struct Lisp_String *string_free_list;
7146af97 1597
2e471eb5 1598/* Number of live and free Lisp_Strings. */
c8099634 1599
2e471eb5 1600static int total_strings, total_free_strings;
7146af97 1601
2e471eb5
GM
1602/* Number of bytes used by live strings. */
1603
14162469 1604static EMACS_INT total_string_size;
2e471eb5
GM
1605
1606/* Given a pointer to a Lisp_String S which is on the free-list
1607 string_free_list, return a pointer to its successor in the
1608 free-list. */
1609
1610#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1611
1612/* Return a pointer to the sdata structure belonging to Lisp string S.
1613 S must be live, i.e. S->data must not be null. S->data is actually
1614 a pointer to the `u.data' member of its sdata structure; the
1615 structure starts at a constant offset in front of that. */
177c0ea7 1616
36372bf9 1617#define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
31d929e5 1618
212f33f1
KS
1619
1620#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1621
1622/* We check for overrun in string data blocks by appending a small
1623 "cookie" after each allocated string data block, and check for the
8349069c 1624 presence of this cookie during GC. */
bdbed949
KS
1625
1626#define GC_STRING_OVERRUN_COOKIE_SIZE 4
bfd1c781
PE
1627static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1628 { '\xde', '\xad', '\xbe', '\xef' };
bdbed949 1629
212f33f1 1630#else
bdbed949 1631#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1632#endif
1633
2e471eb5
GM
1634/* Value is the size of an sdata structure large enough to hold NBYTES
1635 bytes of string data. The value returned includes a terminating
1636 NUL byte, the size of the sdata structure, and padding. */
1637
31d929e5
GM
1638#ifdef GC_CHECK_STRING_BYTES
1639
2e471eb5 1640#define SDATA_SIZE(NBYTES) \
36372bf9 1641 ((SDATA_DATA_OFFSET \
2e471eb5
GM
1642 + (NBYTES) + 1 \
1643 + sizeof (EMACS_INT) - 1) \
1644 & ~(sizeof (EMACS_INT) - 1))
1645
31d929e5
GM
1646#else /* not GC_CHECK_STRING_BYTES */
1647
f2d3008d
PE
1648/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1649 less than the size of that member. The 'max' is not needed when
1650 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1651 alignment code reserves enough space. */
1652
1653#define SDATA_SIZE(NBYTES) \
1654 ((SDATA_DATA_OFFSET \
1655 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1656 ? NBYTES \
1657 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1658 + 1 \
1659 + sizeof (EMACS_INT) - 1) \
31d929e5
GM
1660 & ~(sizeof (EMACS_INT) - 1))
1661
1662#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1663
bdbed949
KS
1664/* Extra bytes to allocate for each string. */
1665
1666#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1667
2e471eb5 1668/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1669
d3d47262 1670static void
971de7fb 1671init_strings (void)
7146af97 1672{
2e471eb5
GM
1673 total_strings = total_free_strings = total_string_size = 0;
1674 oldest_sblock = current_sblock = large_sblocks = NULL;
1675 string_blocks = NULL;
1676 n_string_blocks = 0;
1677 string_free_list = NULL;
4d774b0f
JB
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1680}
1681
2e471eb5 1682
361b097f
GM
1683#ifdef GC_CHECK_STRING_BYTES
1684
361b097f
GM
1685static int check_string_bytes_count;
1686
676a7251
GM
1687#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1688
1689
1690/* Like GC_STRING_BYTES, but with debugging check. */
1691
14162469
EZ
1692EMACS_INT
1693string_bytes (struct Lisp_String *s)
676a7251 1694{
14162469
EZ
1695 EMACS_INT nbytes =
1696 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1697
676a7251
GM
1698 if (!PURE_POINTER_P (s)
1699 && s->data
1700 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1701 abort ();
1702 return nbytes;
1703}
177c0ea7 1704
2c5bd608 1705/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1706
d3d47262 1707static void
d0f4e1f5 1708check_sblock (struct sblock *b)
361b097f 1709{
676a7251 1710 struct sdata *from, *end, *from_end;
177c0ea7 1711
676a7251 1712 end = b->next_free;
177c0ea7 1713
676a7251 1714 for (from = &b->first_data; from < end; from = from_end)
361b097f 1715 {
676a7251
GM
1716 /* Compute the next FROM here because copying below may
1717 overwrite data we need to compute it. */
14162469 1718 EMACS_INT nbytes;
177c0ea7 1719
676a7251
GM
1720 /* Check that the string size recorded in the string is the
1721 same as the one recorded in the sdata structure. */
1722 if (from->string)
1723 CHECK_STRING_BYTES (from->string);
177c0ea7 1724
676a7251
GM
1725 if (from->string)
1726 nbytes = GC_STRING_BYTES (from->string);
1727 else
1728 nbytes = SDATA_NBYTES (from);
177c0ea7 1729
676a7251 1730 nbytes = SDATA_SIZE (nbytes);
212f33f1 1731 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1732 }
1733}
361b097f 1734
676a7251
GM
1735
1736/* Check validity of Lisp strings' string_bytes member. ALL_P
1737 non-zero means check all strings, otherwise check only most
1738 recently allocated strings. Used for hunting a bug. */
1739
d3d47262 1740static void
d0f4e1f5 1741check_string_bytes (int all_p)
676a7251
GM
1742{
1743 if (all_p)
1744 {
1745 struct sblock *b;
1746
1747 for (b = large_sblocks; b; b = b->next)
1748 {
1749 struct Lisp_String *s = b->first_data.string;
1750 if (s)
1751 CHECK_STRING_BYTES (s);
361b097f 1752 }
177c0ea7 1753
676a7251
GM
1754 for (b = oldest_sblock; b; b = b->next)
1755 check_sblock (b);
361b097f 1756 }
676a7251
GM
1757 else
1758 check_sblock (current_sblock);
361b097f
GM
1759}
1760
1761#endif /* GC_CHECK_STRING_BYTES */
1762
212f33f1
KS
1763#ifdef GC_CHECK_STRING_FREE_LIST
1764
bdbed949
KS
1765/* Walk through the string free list looking for bogus next pointers.
1766 This may catch buffer overrun from a previous string. */
1767
212f33f1 1768static void
d0f4e1f5 1769check_string_free_list (void)
212f33f1
KS
1770{
1771 struct Lisp_String *s;
1772
1773 /* Pop a Lisp_String off the free-list. */
1774 s = string_free_list;
1775 while (s != NULL)
1776 {
d01a7826 1777 if ((uintptr_t) s < 1024)
212f33f1
KS
1778 abort();
1779 s = NEXT_FREE_LISP_STRING (s);
1780 }
1781}
1782#else
1783#define check_string_free_list()
1784#endif
361b097f 1785
2e471eb5
GM
1786/* Return a new Lisp_String. */
1787
1788static struct Lisp_String *
971de7fb 1789allocate_string (void)
7146af97 1790{
2e471eb5 1791 struct Lisp_String *s;
7146af97 1792
e2984df0
CY
1793 /* eassert (!handling_signal); */
1794
dafc79fa 1795 MALLOC_BLOCK_INPUT;
cfb2f32e 1796
2e471eb5
GM
1797 /* If the free-list is empty, allocate a new string_block, and
1798 add all the Lisp_Strings in it to the free-list. */
1799 if (string_free_list == NULL)
7146af97 1800 {
2e471eb5
GM
1801 struct string_block *b;
1802 int i;
1803
34400008 1804 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
72af86bd 1805 memset (b, 0, sizeof *b);
2e471eb5
GM
1806 b->next = string_blocks;
1807 string_blocks = b;
1808 ++n_string_blocks;
1809
19bcad1f 1810 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1811 {
2e471eb5
GM
1812 s = b->strings + i;
1813 NEXT_FREE_LISP_STRING (s) = string_free_list;
1814 string_free_list = s;
7146af97 1815 }
2e471eb5 1816
19bcad1f 1817 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1818 }
c0f51373 1819
bdbed949 1820 check_string_free_list ();
212f33f1 1821
2e471eb5
GM
1822 /* Pop a Lisp_String off the free-list. */
1823 s = string_free_list;
1824 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1825
dafc79fa 1826 MALLOC_UNBLOCK_INPUT;
e2984df0 1827
2e471eb5 1828 /* Probably not strictly necessary, but play it safe. */
72af86bd 1829 memset (s, 0, sizeof *s);
c0f51373 1830
2e471eb5
GM
1831 --total_free_strings;
1832 ++total_strings;
1833 ++strings_consed;
1834 consing_since_gc += sizeof *s;
c0f51373 1835
361b097f 1836#ifdef GC_CHECK_STRING_BYTES
e39a993c 1837 if (!noninteractive)
361b097f 1838 {
676a7251
GM
1839 if (++check_string_bytes_count == 200)
1840 {
1841 check_string_bytes_count = 0;
1842 check_string_bytes (1);
1843 }
1844 else
1845 check_string_bytes (0);
361b097f 1846 }
676a7251 1847#endif /* GC_CHECK_STRING_BYTES */
361b097f 1848
2e471eb5 1849 return s;
c0f51373 1850}
7146af97 1851
7146af97 1852
2e471eb5
GM
1853/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1854 plus a NUL byte at the end. Allocate an sdata structure for S, and
1855 set S->data to its `u.data' member. Store a NUL byte at the end of
1856 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1857 S->data if it was initially non-null. */
7146af97 1858
2e471eb5 1859void
413d18e7
EZ
1860allocate_string_data (struct Lisp_String *s,
1861 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1862{
5c5fecb3 1863 struct sdata *data, *old_data;
2e471eb5 1864 struct sblock *b;
14162469 1865 EMACS_INT needed, old_nbytes;
7146af97 1866
2e471eb5
GM
1867 /* Determine the number of bytes needed to store NBYTES bytes
1868 of string data. */
1869 needed = SDATA_SIZE (nbytes);
e2984df0
CY
1870 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1871 old_nbytes = GC_STRING_BYTES (s);
1872
dafc79fa 1873 MALLOC_BLOCK_INPUT;
7146af97 1874
2e471eb5
GM
1875 if (nbytes > LARGE_STRING_BYTES)
1876 {
36372bf9 1877 size_t size = offsetof (struct sblock, first_data) + needed;
2e471eb5
GM
1878
1879#ifdef DOUG_LEA_MALLOC
f8608968
GM
1880 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1881 because mapped region contents are not preserved in
d36b182f
DL
1882 a dumped Emacs.
1883
1884 In case you think of allowing it in a dumped Emacs at the
1885 cost of not being able to re-dump, there's another reason:
1886 mmap'ed data typically have an address towards the top of the
1887 address space, which won't fit into an EMACS_INT (at least on
1888 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1889 mallopt (M_MMAP_MAX, 0);
1890#endif
1891
212f33f1 1892 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1893
2e471eb5
GM
1894#ifdef DOUG_LEA_MALLOC
1895 /* Back to a reasonable maximum of mmap'ed areas. */
1896 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1897#endif
177c0ea7 1898
2e471eb5
GM
1899 b->next_free = &b->first_data;
1900 b->first_data.string = NULL;
1901 b->next = large_sblocks;
1902 large_sblocks = b;
1903 }
1904 else if (current_sblock == NULL
1905 || (((char *) current_sblock + SBLOCK_SIZE
1906 - (char *) current_sblock->next_free)
212f33f1 1907 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
1908 {
1909 /* Not enough room in the current sblock. */
34400008 1910 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1911 b->next_free = &b->first_data;
1912 b->first_data.string = NULL;
1913 b->next = NULL;
1914
1915 if (current_sblock)
1916 current_sblock->next = b;
1917 else
1918 oldest_sblock = b;
1919 current_sblock = b;
1920 }
1921 else
1922 b = current_sblock;
5c5fecb3 1923
2e471eb5 1924 data = b->next_free;
a0b08700
CY
1925 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1926
dafc79fa 1927 MALLOC_UNBLOCK_INPUT;
e2984df0 1928
2e471eb5 1929 data->string = s;
31d929e5
GM
1930 s->data = SDATA_DATA (data);
1931#ifdef GC_CHECK_STRING_BYTES
1932 SDATA_NBYTES (data) = nbytes;
1933#endif
2e471eb5
GM
1934 s->size = nchars;
1935 s->size_byte = nbytes;
1936 s->data[nbytes] = '\0';
212f33f1 1937#ifdef GC_CHECK_STRING_OVERRUN
000098c1
PE
1938 memcpy ((char *) data + needed, string_overrun_cookie,
1939 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 1940#endif
177c0ea7 1941
5c5fecb3
GM
1942 /* If S had already data assigned, mark that as free by setting its
1943 string back-pointer to null, and recording the size of the data
00c9c33c 1944 in it. */
5c5fecb3
GM
1945 if (old_data)
1946 {
31d929e5 1947 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
1948 old_data->string = NULL;
1949 }
1950
2e471eb5
GM
1951 consing_since_gc += needed;
1952}
1953
1954
1955/* Sweep and compact strings. */
1956
1957static void
971de7fb 1958sweep_strings (void)
2e471eb5
GM
1959{
1960 struct string_block *b, *next;
1961 struct string_block *live_blocks = NULL;
177c0ea7 1962
2e471eb5
GM
1963 string_free_list = NULL;
1964 total_strings = total_free_strings = 0;
1965 total_string_size = 0;
1966
1967 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1968 for (b = string_blocks; b; b = next)
1969 {
1970 int i, nfree = 0;
1971 struct Lisp_String *free_list_before = string_free_list;
1972
1973 next = b->next;
1974
19bcad1f 1975 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
1976 {
1977 struct Lisp_String *s = b->strings + i;
1978
1979 if (s->data)
1980 {
1981 /* String was not on free-list before. */
1982 if (STRING_MARKED_P (s))
1983 {
1984 /* String is live; unmark it and its intervals. */
1985 UNMARK_STRING (s);
177c0ea7 1986
2e471eb5
GM
1987 if (!NULL_INTERVAL_P (s->intervals))
1988 UNMARK_BALANCE_INTERVALS (s->intervals);
1989
1990 ++total_strings;
1991 total_string_size += STRING_BYTES (s);
1992 }
1993 else
1994 {
1995 /* String is dead. Put it on the free-list. */
1996 struct sdata *data = SDATA_OF_STRING (s);
1997
1998 /* Save the size of S in its sdata so that we know
1999 how large that is. Reset the sdata's string
2000 back-pointer so that we know it's free. */
31d929e5
GM
2001#ifdef GC_CHECK_STRING_BYTES
2002 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2003 abort ();
2004#else
2e471eb5 2005 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2006#endif
2e471eb5
GM
2007 data->string = NULL;
2008
2009 /* Reset the strings's `data' member so that we
2010 know it's free. */
2011 s->data = NULL;
2012
2013 /* Put the string on the free-list. */
2014 NEXT_FREE_LISP_STRING (s) = string_free_list;
2015 string_free_list = s;
2016 ++nfree;
2017 }
2018 }
2019 else
2020 {
2021 /* S was on the free-list before. Put it there again. */
2022 NEXT_FREE_LISP_STRING (s) = string_free_list;
2023 string_free_list = s;
2024 ++nfree;
2025 }
2026 }
2027
34400008 2028 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2029 the first two of them. */
19bcad1f
SM
2030 if (nfree == STRING_BLOCK_SIZE
2031 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2032 {
2033 lisp_free (b);
2034 --n_string_blocks;
2035 string_free_list = free_list_before;
2036 }
2037 else
2038 {
2039 total_free_strings += nfree;
2040 b->next = live_blocks;
2041 live_blocks = b;
2042 }
2043 }
2044
bdbed949 2045 check_string_free_list ();
212f33f1 2046
2e471eb5
GM
2047 string_blocks = live_blocks;
2048 free_large_strings ();
2049 compact_small_strings ();
212f33f1 2050
bdbed949 2051 check_string_free_list ();
2e471eb5
GM
2052}
2053
2054
2055/* Free dead large strings. */
2056
2057static void
971de7fb 2058free_large_strings (void)
2e471eb5
GM
2059{
2060 struct sblock *b, *next;
2061 struct sblock *live_blocks = NULL;
177c0ea7 2062
2e471eb5
GM
2063 for (b = large_sblocks; b; b = next)
2064 {
2065 next = b->next;
2066
2067 if (b->first_data.string == NULL)
2068 lisp_free (b);
2069 else
2070 {
2071 b->next = live_blocks;
2072 live_blocks = b;
2073 }
2074 }
2075
2076 large_sblocks = live_blocks;
2077}
2078
2079
2080/* Compact data of small strings. Free sblocks that don't contain
2081 data of live strings after compaction. */
2082
2083static void
971de7fb 2084compact_small_strings (void)
2e471eb5
GM
2085{
2086 struct sblock *b, *tb, *next;
2087 struct sdata *from, *to, *end, *tb_end;
2088 struct sdata *to_end, *from_end;
2089
2090 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2091 to, and TB_END is the end of TB. */
2092 tb = oldest_sblock;
2093 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2094 to = &tb->first_data;
2095
2096 /* Step through the blocks from the oldest to the youngest. We
2097 expect that old blocks will stabilize over time, so that less
2098 copying will happen this way. */
2099 for (b = oldest_sblock; b; b = b->next)
2100 {
2101 end = b->next_free;
2102 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2103
2e471eb5
GM
2104 for (from = &b->first_data; from < end; from = from_end)
2105 {
2106 /* Compute the next FROM here because copying below may
2107 overwrite data we need to compute it. */
14162469 2108 EMACS_INT nbytes;
2e471eb5 2109
31d929e5
GM
2110#ifdef GC_CHECK_STRING_BYTES
2111 /* Check that the string size recorded in the string is the
2112 same as the one recorded in the sdata structure. */
2113 if (from->string
2114 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2115 abort ();
2116#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2117
2e471eb5
GM
2118 if (from->string)
2119 nbytes = GC_STRING_BYTES (from->string);
2120 else
31d929e5 2121 nbytes = SDATA_NBYTES (from);
177c0ea7 2122
212f33f1
KS
2123 if (nbytes > LARGE_STRING_BYTES)
2124 abort ();
212f33f1 2125
2e471eb5 2126 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2127 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2128
2129#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
2130 if (memcmp (string_overrun_cookie,
2131 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2132 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2133 abort ();
2134#endif
177c0ea7 2135
2e471eb5
GM
2136 /* FROM->string non-null means it's alive. Copy its data. */
2137 if (from->string)
2138 {
2139 /* If TB is full, proceed with the next sblock. */
212f33f1 2140 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2141 if (to_end > tb_end)
2142 {
2143 tb->next_free = to;
2144 tb = tb->next;
2145 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2146 to = &tb->first_data;
212f33f1 2147 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2148 }
177c0ea7 2149
2e471eb5
GM
2150 /* Copy, and update the string's `data' pointer. */
2151 if (from != to)
2152 {
3c616cfa 2153 xassert (tb != b || to < from);
72af86bd 2154 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2155 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2156 }
2157
2158 /* Advance past the sdata we copied to. */
2159 to = to_end;
2160 }
2161 }
2162 }
2163
2164 /* The rest of the sblocks following TB don't contain live data, so
2165 we can free them. */
2166 for (b = tb->next; b; b = next)
2167 {
2168 next = b->next;
2169 lisp_free (b);
2170 }
2171
2172 tb->next_free = to;
2173 tb->next = NULL;
2174 current_sblock = tb;
2175}
2176
2177
a7ca3326 2178DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2179 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2180LENGTH must be an integer.
2181INIT must be an integer that represents a character. */)
5842a27b 2182 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2183{
2184 register Lisp_Object val;
2185 register unsigned char *p, *end;
14162469
EZ
2186 int c;
2187 EMACS_INT nbytes;
2e471eb5 2188
b7826503
PJ
2189 CHECK_NATNUM (length);
2190 CHECK_NUMBER (init);
2e471eb5
GM
2191
2192 c = XINT (init);
830ff83b 2193 if (ASCII_CHAR_P (c))
2e471eb5
GM
2194 {
2195 nbytes = XINT (length);
2196 val = make_uninit_string (nbytes);
d5db4077
KR
2197 p = SDATA (val);
2198 end = p + SCHARS (val);
2e471eb5
GM
2199 while (p != end)
2200 *p++ = c;
2201 }
2202 else
2203 {
d942b71c 2204 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 2205 int len = CHAR_STRING (c, str);
14162469 2206 EMACS_INT string_len = XINT (length);
2e471eb5 2207
14162469
EZ
2208 if (string_len > MOST_POSITIVE_FIXNUM / len)
2209 error ("Maximum string size exceeded");
2210 nbytes = len * string_len;
2211 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2212 p = SDATA (val);
2e471eb5
GM
2213 end = p + nbytes;
2214 while (p != end)
2215 {
72af86bd 2216 memcpy (p, str, len);
2e471eb5
GM
2217 p += len;
2218 }
2219 }
177c0ea7 2220
2e471eb5
GM
2221 *p = 0;
2222 return val;
2223}
2224
2225
a7ca3326 2226DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2227 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2228LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2229 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2230{
2231 register Lisp_Object val;
2232 struct Lisp_Bool_Vector *p;
2233 int real_init, i;
14162469
EZ
2234 EMACS_INT length_in_chars, length_in_elts;
2235 int bits_per_value;
2e471eb5 2236
b7826503 2237 CHECK_NATNUM (length);
2e471eb5 2238
a097329f 2239 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2240
2241 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
2242 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2243 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
2244
2245 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2246 slot `size' of the struct Lisp_Bool_Vector. */
2247 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
177c0ea7 2248
eab3844f
PE
2249 /* No Lisp_Object to trace in there. */
2250 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
d2029e5b
SM
2251
2252 p = XBOOL_VECTOR (val);
2e471eb5 2253 p->size = XFASTINT (length);
177c0ea7 2254
2e471eb5
GM
2255 real_init = (NILP (init) ? 0 : -1);
2256 for (i = 0; i < length_in_chars ; i++)
2257 p->data[i] = real_init;
177c0ea7 2258
2e471eb5 2259 /* Clear the extraneous bits in the last byte. */
a097329f 2260 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
d2029e5b 2261 p->data[length_in_chars - 1]
a097329f 2262 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
2263
2264 return val;
2265}
2266
2267
2268/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2269 of characters from the contents. This string may be unibyte or
2270 multibyte, depending on the contents. */
2271
2272Lisp_Object
14162469 2273make_string (const char *contents, EMACS_INT nbytes)
2e471eb5
GM
2274{
2275 register Lisp_Object val;
14162469 2276 EMACS_INT nchars, multibyte_nbytes;
9eac9d59 2277
90256841
PE
2278 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2279 &nchars, &multibyte_nbytes);
9eac9d59
KH
2280 if (nbytes == nchars || nbytes != multibyte_nbytes)
2281 /* CONTENTS contains no multibyte sequences or contains an invalid
2282 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2283 val = make_unibyte_string (contents, nbytes);
2284 else
2285 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2286 return val;
2287}
2288
2289
2290/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2291
2292Lisp_Object
14162469 2293make_unibyte_string (const char *contents, EMACS_INT length)
2e471eb5
GM
2294{
2295 register Lisp_Object val;
2296 val = make_uninit_string (length);
72af86bd 2297 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2298 return val;
2299}
2300
2301
2302/* Make a multibyte string from NCHARS characters occupying NBYTES
2303 bytes at CONTENTS. */
2304
2305Lisp_Object
14162469
EZ
2306make_multibyte_string (const char *contents,
2307 EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2308{
2309 register Lisp_Object val;
2310 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2311 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2312 return val;
2313}
2314
2315
2316/* Make a string from NCHARS characters occupying NBYTES bytes at
2317 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2318
2319Lisp_Object
14162469
EZ
2320make_string_from_bytes (const char *contents,
2321 EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2322{
2323 register Lisp_Object val;
2324 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2325 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2326 if (SBYTES (val) == SCHARS (val))
2327 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2328 return val;
2329}
2330
2331
2332/* Make a string from NCHARS characters occupying NBYTES bytes at
2333 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2334 string as multibyte. If NCHARS is negative, it counts the number of
2335 characters by itself. */
2e471eb5
GM
2336
2337Lisp_Object
14162469
EZ
2338make_specified_string (const char *contents,
2339 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2e471eb5
GM
2340{
2341 register Lisp_Object val;
229b28c4
KH
2342
2343 if (nchars < 0)
2344 {
2345 if (multibyte)
90256841
PE
2346 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2347 nbytes);
229b28c4
KH
2348 else
2349 nchars = nbytes;
2350 }
2e471eb5 2351 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2352 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2353 if (!multibyte)
d5db4077 2354 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2355 return val;
2356}
2357
2358
2359/* Make a string from the data at STR, treating it as multibyte if the
2360 data warrants. */
2361
2362Lisp_Object
971de7fb 2363build_string (const char *str)
2e471eb5
GM
2364{
2365 return make_string (str, strlen (str));
2366}
2367
2368
2369/* Return an unibyte Lisp_String set up to hold LENGTH characters
2370 occupying LENGTH bytes. */
2371
2372Lisp_Object
413d18e7 2373make_uninit_string (EMACS_INT length)
2e471eb5
GM
2374{
2375 Lisp_Object val;
4d774b0f
JB
2376
2377 if (!length)
2378 return empty_unibyte_string;
2e471eb5 2379 val = make_uninit_multibyte_string (length, length);
d5db4077 2380 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2381 return val;
2382}
2383
2384
2385/* Return a multibyte Lisp_String set up to hold NCHARS characters
2386 which occupy NBYTES bytes. */
2387
2388Lisp_Object
413d18e7 2389make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2390{
2391 Lisp_Object string;
2392 struct Lisp_String *s;
2393
2394 if (nchars < 0)
2395 abort ();
4d774b0f
JB
2396 if (!nbytes)
2397 return empty_multibyte_string;
2e471eb5
GM
2398
2399 s = allocate_string ();
2400 allocate_string_data (s, nchars, nbytes);
2401 XSETSTRING (string, s);
2402 string_chars_consed += nbytes;
2403 return string;
2404}
2405
2406
2407\f
2408/***********************************************************************
2409 Float Allocation
2410 ***********************************************************************/
2411
2e471eb5
GM
2412/* We store float cells inside of float_blocks, allocating a new
2413 float_block with malloc whenever necessary. Float cells reclaimed
2414 by GC are put on a free list to be reallocated before allocating
ab6780cd 2415 any new float cells from the latest float_block. */
2e471eb5 2416
6b61353c
KH
2417#define FLOAT_BLOCK_SIZE \
2418 (((BLOCK_BYTES - sizeof (struct float_block *) \
2419 /* The compiler might add padding at the end. */ \
2420 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2421 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2422
2423#define GETMARKBIT(block,n) \
2424 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2425 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2426 & 1)
2427
2428#define SETMARKBIT(block,n) \
2429 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2430 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2431
2432#define UNSETMARKBIT(block,n) \
2433 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2434 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2435
2436#define FLOAT_BLOCK(fptr) \
d01a7826 2437 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
ab6780cd
SM
2438
2439#define FLOAT_INDEX(fptr) \
d01a7826 2440 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2441
2442struct float_block
2443{
ab6780cd 2444 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2445 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2446 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2447 struct float_block *next;
2e471eb5
GM
2448};
2449
ab6780cd
SM
2450#define FLOAT_MARKED_P(fptr) \
2451 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2452
2453#define FLOAT_MARK(fptr) \
2454 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2455
2456#define FLOAT_UNMARK(fptr) \
2457 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2458
34400008
GM
2459/* Current float_block. */
2460
244ed907 2461static struct float_block *float_block;
34400008
GM
2462
2463/* Index of first unused Lisp_Float in the current float_block. */
2464
244ed907 2465static int float_block_index;
2e471eb5
GM
2466
2467/* Total number of float blocks now in use. */
2468
244ed907 2469static int n_float_blocks;
2e471eb5 2470
34400008
GM
2471/* Free-list of Lisp_Floats. */
2472
244ed907 2473static struct Lisp_Float *float_free_list;
2e471eb5 2474
34400008 2475
966533c9 2476/* Initialize float allocation. */
34400008 2477
d3d47262 2478static void
971de7fb 2479init_float (void)
2e471eb5 2480{
08b7c2cb
SM
2481 float_block = NULL;
2482 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2483 float_free_list = 0;
08b7c2cb 2484 n_float_blocks = 0;
2e471eb5
GM
2485}
2486
34400008 2487
34400008
GM
2488/* Return a new float object with value FLOAT_VALUE. */
2489
2e471eb5 2490Lisp_Object
971de7fb 2491make_float (double float_value)
2e471eb5
GM
2492{
2493 register Lisp_Object val;
2494
e2984df0
CY
2495 /* eassert (!handling_signal); */
2496
dafc79fa 2497 MALLOC_BLOCK_INPUT;
cfb2f32e 2498
2e471eb5
GM
2499 if (float_free_list)
2500 {
2501 /* We use the data field for chaining the free list
2502 so that we won't use the same field that has the mark bit. */
2503 XSETFLOAT (val, float_free_list);
28a099a4 2504 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2505 }
2506 else
2507 {
2508 if (float_block_index == FLOAT_BLOCK_SIZE)
2509 {
2510 register struct float_block *new;
2511
ab6780cd
SM
2512 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2513 MEM_TYPE_FLOAT);
2e471eb5 2514 new->next = float_block;
72af86bd 2515 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2516 float_block = new;
2517 float_block_index = 0;
2518 n_float_blocks++;
2519 }
6b61353c
KH
2520 XSETFLOAT (val, &float_block->floats[float_block_index]);
2521 float_block_index++;
2e471eb5 2522 }
177c0ea7 2523
dafc79fa 2524 MALLOC_UNBLOCK_INPUT;
e2984df0 2525
f601cdf3 2526 XFLOAT_INIT (val, float_value);
6b61353c 2527 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2528 consing_since_gc += sizeof (struct Lisp_Float);
2529 floats_consed++;
2530 return val;
2531}
2532
2e471eb5
GM
2533
2534\f
2535/***********************************************************************
2536 Cons Allocation
2537 ***********************************************************************/
2538
2539/* We store cons cells inside of cons_blocks, allocating a new
2540 cons_block with malloc whenever necessary. Cons cells reclaimed by
2541 GC are put on a free list to be reallocated before allocating
08b7c2cb 2542 any new cons cells from the latest cons_block. */
2e471eb5
GM
2543
2544#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2545 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2546 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2547
2548#define CONS_BLOCK(fptr) \
d01a7826 2549 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
08b7c2cb
SM
2550
2551#define CONS_INDEX(fptr) \
d01a7826 2552 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2553
2554struct cons_block
2555{
08b7c2cb 2556 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2557 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2558 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2559 struct cons_block *next;
2e471eb5
GM
2560};
2561
08b7c2cb
SM
2562#define CONS_MARKED_P(fptr) \
2563 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2564
2565#define CONS_MARK(fptr) \
2566 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2567
2568#define CONS_UNMARK(fptr) \
2569 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2570
34400008
GM
2571/* Current cons_block. */
2572
244ed907 2573static struct cons_block *cons_block;
34400008
GM
2574
2575/* Index of first unused Lisp_Cons in the current block. */
2576
244ed907 2577static int cons_block_index;
2e471eb5 2578
34400008
GM
2579/* Free-list of Lisp_Cons structures. */
2580
244ed907 2581static struct Lisp_Cons *cons_free_list;
2e471eb5
GM
2582
2583/* Total number of cons blocks now in use. */
2584
d3d47262 2585static int n_cons_blocks;
2e471eb5 2586
34400008
GM
2587
2588/* Initialize cons allocation. */
2589
d3d47262 2590static void
971de7fb 2591init_cons (void)
2e471eb5 2592{
08b7c2cb
SM
2593 cons_block = NULL;
2594 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2595 cons_free_list = 0;
08b7c2cb 2596 n_cons_blocks = 0;
2e471eb5
GM
2597}
2598
34400008
GM
2599
2600/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2601
2602void
971de7fb 2603free_cons (struct Lisp_Cons *ptr)
2e471eb5 2604{
28a099a4 2605 ptr->u.chain = cons_free_list;
34400008
GM
2606#if GC_MARK_STACK
2607 ptr->car = Vdead;
2608#endif
2e471eb5
GM
2609 cons_free_list = ptr;
2610}
2611
a7ca3326 2612DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2613 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2614 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2615{
2616 register Lisp_Object val;
2617
e2984df0
CY
2618 /* eassert (!handling_signal); */
2619
dafc79fa 2620 MALLOC_BLOCK_INPUT;
cfb2f32e 2621
2e471eb5
GM
2622 if (cons_free_list)
2623 {
2624 /* We use the cdr for chaining the free list
2625 so that we won't use the same field that has the mark bit. */
2626 XSETCONS (val, cons_free_list);
28a099a4 2627 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2628 }
2629 else
2630 {
2631 if (cons_block_index == CONS_BLOCK_SIZE)
2632 {
2633 register struct cons_block *new;
08b7c2cb
SM
2634 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2635 MEM_TYPE_CONS);
72af86bd 2636 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2637 new->next = cons_block;
2638 cons_block = new;
2639 cons_block_index = 0;
2640 n_cons_blocks++;
2641 }
6b61353c
KH
2642 XSETCONS (val, &cons_block->conses[cons_block_index]);
2643 cons_block_index++;
2e471eb5 2644 }
177c0ea7 2645
dafc79fa 2646 MALLOC_UNBLOCK_INPUT;
e2984df0 2647
f3fbd155
KR
2648 XSETCAR (val, car);
2649 XSETCDR (val, cdr);
6b61353c 2650 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2651 consing_since_gc += sizeof (struct Lisp_Cons);
2652 cons_cells_consed++;
2653 return val;
2654}
2655
e5aab7e7 2656#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2657/* Get an error now if there's any junk in the cons free list. */
2658void
971de7fb 2659check_cons_list (void)
e3e56238
RS
2660{
2661 struct Lisp_Cons *tail = cons_free_list;
2662
e3e56238 2663 while (tail)
28a099a4 2664 tail = tail->u.chain;
e3e56238 2665}
e5aab7e7 2666#endif
34400008 2667
9b306d37
KS
2668/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2669
2670Lisp_Object
971de7fb 2671list1 (Lisp_Object arg1)
9b306d37
KS
2672{
2673 return Fcons (arg1, Qnil);
2674}
2e471eb5
GM
2675
2676Lisp_Object
971de7fb 2677list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2678{
2679 return Fcons (arg1, Fcons (arg2, Qnil));
2680}
2681
34400008 2682
2e471eb5 2683Lisp_Object
971de7fb 2684list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2685{
2686 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2687}
2688
34400008 2689
2e471eb5 2690Lisp_Object
971de7fb 2691list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2692{
2693 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2694}
2695
34400008 2696
2e471eb5 2697Lisp_Object
971de7fb 2698list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2699{
2700 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2701 Fcons (arg5, Qnil)))));
2702}
2703
34400008 2704
a7ca3326 2705DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2706 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2707Any number of arguments, even zero arguments, are allowed.
2708usage: (list &rest OBJECTS) */)
c5101a77 2709 (size_t nargs, register Lisp_Object *args)
2e471eb5
GM
2710{
2711 register Lisp_Object val;
2712 val = Qnil;
2713
2714 while (nargs > 0)
2715 {
2716 nargs--;
2717 val = Fcons (args[nargs], val);
2718 }
2719 return val;
2720}
2721
34400008 2722
a7ca3326 2723DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2724 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2725 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2726{
2727 register Lisp_Object val;
14162469 2728 register EMACS_INT size;
2e471eb5 2729
b7826503 2730 CHECK_NATNUM (length);
2e471eb5
GM
2731 size = XFASTINT (length);
2732
2733 val = Qnil;
ce070307
GM
2734 while (size > 0)
2735 {
2736 val = Fcons (init, val);
2737 --size;
2738
2739 if (size > 0)
2740 {
2741 val = Fcons (init, val);
2742 --size;
177c0ea7 2743
ce070307
GM
2744 if (size > 0)
2745 {
2746 val = Fcons (init, val);
2747 --size;
177c0ea7 2748
ce070307
GM
2749 if (size > 0)
2750 {
2751 val = Fcons (init, val);
2752 --size;
177c0ea7 2753
ce070307
GM
2754 if (size > 0)
2755 {
2756 val = Fcons (init, val);
2757 --size;
2758 }
2759 }
2760 }
2761 }
2762
2763 QUIT;
2764 }
177c0ea7 2765
7146af97
JB
2766 return val;
2767}
2e471eb5
GM
2768
2769
7146af97 2770\f
2e471eb5
GM
2771/***********************************************************************
2772 Vector Allocation
2773 ***********************************************************************/
7146af97 2774
34400008
GM
2775/* Singly-linked list of all vectors. */
2776
d3d47262 2777static struct Lisp_Vector *all_vectors;
7146af97 2778
2e471eb5
GM
2779/* Total number of vector-like objects now in use. */
2780
d3d47262 2781static int n_vectors;
c8099634 2782
34400008
GM
2783
2784/* Value is a pointer to a newly allocated Lisp_Vector structure
2785 with room for LEN Lisp_Objects. */
2786
ece93c02 2787static struct Lisp_Vector *
971de7fb 2788allocate_vectorlike (EMACS_INT len)
1825c68d
KH
2789{
2790 struct Lisp_Vector *p;
675d5130 2791 size_t nbytes;
1825c68d 2792
dafc79fa
SM
2793 MALLOC_BLOCK_INPUT;
2794
d1658221 2795#ifdef DOUG_LEA_MALLOC
f8608968
GM
2796 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2797 because mapped region contents are not preserved in
2798 a dumped Emacs. */
d1658221
RS
2799 mallopt (M_MMAP_MAX, 0);
2800#endif
177c0ea7 2801
cfb2f32e
SM
2802 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2803 /* eassert (!handling_signal); */
2804
36372bf9
PE
2805 nbytes = (offsetof (struct Lisp_Vector, contents)
2806 + len * sizeof p->contents[0]);
9c545a55 2807 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
177c0ea7 2808
d1658221 2809#ifdef DOUG_LEA_MALLOC
34400008 2810 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 2811 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 2812#endif
177c0ea7 2813
34400008 2814 consing_since_gc += nbytes;
310ea200 2815 vector_cells_consed += len;
1825c68d 2816
eab3844f 2817 p->header.next.vector = all_vectors;
1825c68d 2818 all_vectors = p;
e2984df0 2819
dafc79fa 2820 MALLOC_UNBLOCK_INPUT;
e2984df0 2821
34400008 2822 ++n_vectors;
1825c68d
KH
2823 return p;
2824}
2825
34400008 2826
ece93c02
GM
2827/* Allocate a vector with NSLOTS slots. */
2828
2829struct Lisp_Vector *
971de7fb 2830allocate_vector (EMACS_INT nslots)
ece93c02 2831{
9c545a55 2832 struct Lisp_Vector *v = allocate_vectorlike (nslots);
eab3844f 2833 v->header.size = nslots;
ece93c02
GM
2834 return v;
2835}
2836
2837
2838/* Allocate other vector-like structures. */
2839
30f95089 2840struct Lisp_Vector *
971de7fb 2841allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
ece93c02 2842{
d2029e5b 2843 struct Lisp_Vector *v = allocate_vectorlike (memlen);
ece93c02 2844 EMACS_INT i;
177c0ea7 2845
d2029e5b 2846 /* Only the first lisplen slots will be traced normally by the GC. */
d2029e5b 2847 for (i = 0; i < lisplen; ++i)
ece93c02 2848 v->contents[i] = Qnil;
177c0ea7 2849
eab3844f 2850 XSETPVECTYPESIZE (v, tag, lisplen);
d2029e5b
SM
2851 return v;
2852}
d2029e5b 2853
ece93c02 2854struct Lisp_Hash_Table *
878f97ff 2855allocate_hash_table (void)
ece93c02 2856{
878f97ff 2857 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
2858}
2859
2860
2861struct window *
971de7fb 2862allocate_window (void)
ece93c02 2863{
d2029e5b 2864 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
ece93c02 2865}
177c0ea7 2866
177c0ea7 2867
4a729fd8 2868struct terminal *
971de7fb 2869allocate_terminal (void)
4a729fd8 2870{
d2029e5b
SM
2871 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2872 next_terminal, PVEC_TERMINAL);
2873 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
2874 memset (&t->next_terminal, 0,
2875 (char*) (t + 1) - (char*) &t->next_terminal);
ece93c02 2876
d2029e5b 2877 return t;
4a729fd8 2878}
ece93c02
GM
2879
2880struct frame *
971de7fb 2881allocate_frame (void)
ece93c02 2882{
d2029e5b
SM
2883 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2884 face_cache, PVEC_FRAME);
2885 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
2886 memset (&f->face_cache, 0,
2887 (char *) (f + 1) - (char *) &f->face_cache);
d2029e5b 2888 return f;
ece93c02
GM
2889}
2890
2891
2892struct Lisp_Process *
971de7fb 2893allocate_process (void)
ece93c02 2894{
d2029e5b 2895 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
ece93c02
GM
2896}
2897
2898
a7ca3326 2899DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 2900 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 2901See also the function `vector'. */)
5842a27b 2902 (register Lisp_Object length, Lisp_Object init)
7146af97 2903{
1825c68d
KH
2904 Lisp_Object vector;
2905 register EMACS_INT sizei;
ae35e756 2906 register EMACS_INT i;
7146af97
JB
2907 register struct Lisp_Vector *p;
2908
b7826503 2909 CHECK_NATNUM (length);
c9dad5ed 2910 sizei = XFASTINT (length);
7146af97 2911
ece93c02 2912 p = allocate_vector (sizei);
ae35e756
PE
2913 for (i = 0; i < sizei; i++)
2914 p->contents[i] = init;
7146af97 2915
1825c68d 2916 XSETVECTOR (vector, p);
7146af97
JB
2917 return vector;
2918}
2919
34400008 2920
a7ca3326 2921DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 2922 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
2923Any number of arguments, even zero arguments, are allowed.
2924usage: (vector &rest OBJECTS) */)
c5101a77 2925 (register size_t nargs, Lisp_Object *args)
7146af97
JB
2926{
2927 register Lisp_Object len, val;
c5101a77 2928 register size_t i;
7146af97
JB
2929 register struct Lisp_Vector *p;
2930
67ba9986 2931 XSETFASTINT (len, nargs);
7146af97
JB
2932 val = Fmake_vector (len, Qnil);
2933 p = XVECTOR (val);
ae35e756
PE
2934 for (i = 0; i < nargs; i++)
2935 p->contents[i] = args[i];
7146af97
JB
2936 return val;
2937}
2938
34400008 2939
a7ca3326 2940DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 2941 doc: /* Create a byte-code object with specified arguments as elements.
e2abe5a1
SM
2942The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2943vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2944and (optional) INTERACTIVE-SPEC.
228299fa 2945The first four arguments are required; at most six have any
ae8e8122 2946significance.
e2abe5a1
SM
2947The ARGLIST can be either like the one of `lambda', in which case the arguments
2948will be dynamically bound before executing the byte code, or it can be an
2949integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2950minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2951of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2952argument to catch the left-over arguments. If such an integer is used, the
2953arguments will not be dynamically bound but will be instead pushed on the
2954stack before executing the byte-code.
92cc28b2 2955usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
c5101a77 2956 (register size_t nargs, Lisp_Object *args)
7146af97
JB
2957{
2958 register Lisp_Object len, val;
c5101a77 2959 register size_t i;
7146af97
JB
2960 register struct Lisp_Vector *p;
2961
67ba9986 2962 XSETFASTINT (len, nargs);
265a9e55 2963 if (!NILP (Vpurify_flag))
5a053ea9 2964 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
2965 else
2966 val = Fmake_vector (len, Qnil);
9eac9d59 2967
b1feb9b4 2968 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
9eac9d59
KH
2969 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2970 earlier because they produced a raw 8-bit string for byte-code
2971 and now such a byte-code string is loaded as multibyte while
2972 raw 8-bit characters converted to multibyte form. Thus, now we
2973 must convert them back to the original unibyte form. */
2974 args[1] = Fstring_as_unibyte (args[1]);
2975
7146af97 2976 p = XVECTOR (val);
ae35e756 2977 for (i = 0; i < nargs; i++)
7146af97 2978 {
265a9e55 2979 if (!NILP (Vpurify_flag))
ae35e756
PE
2980 args[i] = Fpurecopy (args[i]);
2981 p->contents[i] = args[i];
7146af97 2982 }
876c194c
SM
2983 XSETPVECTYPE (p, PVEC_COMPILED);
2984 XSETCOMPILED (val, p);
7146af97
JB
2985 return val;
2986}
2e471eb5 2987
34400008 2988
7146af97 2989\f
2e471eb5
GM
2990/***********************************************************************
2991 Symbol Allocation
2992 ***********************************************************************/
7146af97 2993
2e471eb5
GM
2994/* Each symbol_block is just under 1020 bytes long, since malloc
2995 really allocates in units of powers of two and uses 4 bytes for its
2996 own overhead. */
7146af97
JB
2997
2998#define SYMBOL_BLOCK_SIZE \
2999 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3000
3001struct symbol_block
2e471eb5 3002{
6b61353c 3003 /* Place `symbols' first, to preserve alignment. */
2e471eb5 3004 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3005 struct symbol_block *next;
2e471eb5 3006};
7146af97 3007
34400008
GM
3008/* Current symbol block and index of first unused Lisp_Symbol
3009 structure in it. */
3010
d3d47262
JB
3011static struct symbol_block *symbol_block;
3012static int symbol_block_index;
7146af97 3013
34400008
GM
3014/* List of free symbols. */
3015
d3d47262 3016static struct Lisp_Symbol *symbol_free_list;
7146af97 3017
c8099634 3018/* Total number of symbol blocks now in use. */
2e471eb5 3019
d3d47262 3020static int n_symbol_blocks;
c8099634 3021
34400008
GM
3022
3023/* Initialize symbol allocation. */
3024
d3d47262 3025static void
971de7fb 3026init_symbol (void)
7146af97 3027{
005ca5c7
DL
3028 symbol_block = NULL;
3029 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3030 symbol_free_list = 0;
005ca5c7 3031 n_symbol_blocks = 0;
7146af97
JB
3032}
3033
34400008 3034
a7ca3326 3035DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3036 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3037Its value and function definition are void, and its property list is nil. */)
5842a27b 3038 (Lisp_Object name)
7146af97
JB
3039{
3040 register Lisp_Object val;
3041 register struct Lisp_Symbol *p;
3042
b7826503 3043 CHECK_STRING (name);
7146af97 3044
537407f0 3045 /* eassert (!handling_signal); */
cfb2f32e 3046
dafc79fa 3047 MALLOC_BLOCK_INPUT;
e2984df0 3048
7146af97
JB
3049 if (symbol_free_list)
3050 {
45d12a89 3051 XSETSYMBOL (val, symbol_free_list);
28a099a4 3052 symbol_free_list = symbol_free_list->next;
7146af97
JB
3053 }
3054 else
3055 {
3056 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3057 {
3c06d205 3058 struct symbol_block *new;
34400008
GM
3059 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3060 MEM_TYPE_SYMBOL);
7146af97
JB
3061 new->next = symbol_block;
3062 symbol_block = new;
3063 symbol_block_index = 0;
c8099634 3064 n_symbol_blocks++;
7146af97 3065 }
6b61353c
KH
3066 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3067 symbol_block_index++;
7146af97 3068 }
177c0ea7 3069
dafc79fa 3070 MALLOC_UNBLOCK_INPUT;
e2984df0 3071
7146af97 3072 p = XSYMBOL (val);
8fe5665d 3073 p->xname = name;
7146af97 3074 p->plist = Qnil;
ce5b453a
SM
3075 p->redirect = SYMBOL_PLAINVAL;
3076 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3077 p->function = Qunbound;
9e713715 3078 p->next = NULL;
2336fe58 3079 p->gcmarkbit = 0;
9e713715
GM
3080 p->interned = SYMBOL_UNINTERNED;
3081 p->constant = 0;
b9598260 3082 p->declared_special = 0;
2e471eb5
GM
3083 consing_since_gc += sizeof (struct Lisp_Symbol);
3084 symbols_consed++;
7146af97
JB
3085 return val;
3086}
3087
3f25e183 3088
2e471eb5
GM
3089\f
3090/***********************************************************************
34400008 3091 Marker (Misc) Allocation
2e471eb5 3092 ***********************************************************************/
3f25e183 3093
2e471eb5
GM
3094/* Allocation of markers and other objects that share that structure.
3095 Works like allocation of conses. */
c0696668 3096
2e471eb5
GM
3097#define MARKER_BLOCK_SIZE \
3098 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3099
3100struct marker_block
c0696668 3101{
6b61353c 3102 /* Place `markers' first, to preserve alignment. */
2e471eb5 3103 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3104 struct marker_block *next;
2e471eb5 3105};
c0696668 3106
d3d47262
JB
3107static struct marker_block *marker_block;
3108static int marker_block_index;
c0696668 3109
d3d47262 3110static union Lisp_Misc *marker_free_list;
c0696668 3111
2e471eb5 3112/* Total number of marker blocks now in use. */
3f25e183 3113
d3d47262 3114static int n_marker_blocks;
2e471eb5 3115
d3d47262 3116static void
971de7fb 3117init_marker (void)
3f25e183 3118{
005ca5c7
DL
3119 marker_block = NULL;
3120 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3121 marker_free_list = 0;
005ca5c7 3122 n_marker_blocks = 0;
3f25e183
RS
3123}
3124
2e471eb5
GM
3125/* Return a newly allocated Lisp_Misc object, with no substructure. */
3126
3f25e183 3127Lisp_Object
971de7fb 3128allocate_misc (void)
7146af97 3129{
2e471eb5 3130 Lisp_Object val;
7146af97 3131
e2984df0
CY
3132 /* eassert (!handling_signal); */
3133
dafc79fa 3134 MALLOC_BLOCK_INPUT;
cfb2f32e 3135
2e471eb5 3136 if (marker_free_list)
7146af97 3137 {
2e471eb5
GM
3138 XSETMISC (val, marker_free_list);
3139 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3140 }
3141 else
7146af97 3142 {
2e471eb5
GM
3143 if (marker_block_index == MARKER_BLOCK_SIZE)
3144 {
3145 struct marker_block *new;
34400008
GM
3146 new = (struct marker_block *) lisp_malloc (sizeof *new,
3147 MEM_TYPE_MISC);
2e471eb5
GM
3148 new->next = marker_block;
3149 marker_block = new;
3150 marker_block_index = 0;
3151 n_marker_blocks++;
7b7990cc 3152 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3153 }
6b61353c
KH
3154 XSETMISC (val, &marker_block->markers[marker_block_index]);
3155 marker_block_index++;
7146af97 3156 }
177c0ea7 3157
dafc79fa 3158 MALLOC_UNBLOCK_INPUT;
e2984df0 3159
7b7990cc 3160 --total_free_markers;
2e471eb5
GM
3161 consing_since_gc += sizeof (union Lisp_Misc);
3162 misc_objects_consed++;
67ee9f6e 3163 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3164 return val;
3165}
3166
7b7990cc
KS
3167/* Free a Lisp_Misc object */
3168
244ed907 3169static void
971de7fb 3170free_misc (Lisp_Object misc)
7b7990cc 3171{
d314756e 3172 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3173 XMISC (misc)->u_free.chain = marker_free_list;
3174 marker_free_list = XMISC (misc);
3175
3176 total_free_markers++;
3177}
3178
42172a6b
RS
3179/* Return a Lisp_Misc_Save_Value object containing POINTER and
3180 INTEGER. This is used to package C values to call record_unwind_protect.
3181 The unwind function can get the C values back using XSAVE_VALUE. */
3182
3183Lisp_Object
971de7fb 3184make_save_value (void *pointer, int integer)
42172a6b
RS
3185{
3186 register Lisp_Object val;
3187 register struct Lisp_Save_Value *p;
3188
3189 val = allocate_misc ();
3190 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3191 p = XSAVE_VALUE (val);
3192 p->pointer = pointer;
3193 p->integer = integer;
b766f870 3194 p->dogc = 0;
42172a6b
RS
3195 return val;
3196}
3197
a7ca3326 3198DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3199 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3200 (void)
2e471eb5
GM
3201{
3202 register Lisp_Object val;
3203 register struct Lisp_Marker *p;
7146af97 3204
2e471eb5
GM
3205 val = allocate_misc ();
3206 XMISCTYPE (val) = Lisp_Misc_Marker;
3207 p = XMARKER (val);
3208 p->buffer = 0;
3209 p->bytepos = 0;
3210 p->charpos = 0;
ef89c2ce 3211 p->next = NULL;
2e471eb5 3212 p->insertion_type = 0;
7146af97
JB
3213 return val;
3214}
2e471eb5
GM
3215
3216/* Put MARKER back on the free list after using it temporarily. */
3217
3218void
971de7fb 3219free_marker (Lisp_Object marker)
2e471eb5 3220{
ef89c2ce 3221 unchain_marker (XMARKER (marker));
7b7990cc 3222 free_misc (marker);
2e471eb5
GM
3223}
3224
c0696668 3225\f
7146af97 3226/* Return a newly created vector or string with specified arguments as
736471d1
RS
3227 elements. If all the arguments are characters that can fit
3228 in a string of events, make a string; otherwise, make a vector.
3229
3230 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3231
3232Lisp_Object
971de7fb 3233make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3234{
3235 int i;
3236
3237 for (i = 0; i < nargs; i++)
736471d1 3238 /* The things that fit in a string
c9ca4659
RS
3239 are characters that are in 0...127,
3240 after discarding the meta bit and all the bits above it. */
e687453f 3241 if (!INTEGERP (args[i])
c9ca4659 3242 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3243 return Fvector (nargs, args);
3244
3245 /* Since the loop exited, we know that all the things in it are
3246 characters, so we can make a string. */
3247 {
c13ccad2 3248 Lisp_Object result;
177c0ea7 3249
50aee051 3250 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3251 for (i = 0; i < nargs; i++)
736471d1 3252 {
46e7e6b0 3253 SSET (result, i, XINT (args[i]));
736471d1
RS
3254 /* Move the meta bit to the right place for a string char. */
3255 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3256 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3257 }
177c0ea7 3258
7146af97
JB
3259 return result;
3260 }
3261}
2e471eb5
GM
3262
3263
7146af97 3264\f
24d8a105
RS
3265/************************************************************************
3266 Memory Full Handling
3267 ************************************************************************/
3268
3269
3270/* Called if malloc returns zero. */
3271
3272void
971de7fb 3273memory_full (void)
24d8a105
RS
3274{
3275 int i;
3276
3277 Vmemory_full = Qt;
3278
3279 memory_full_cons_threshold = sizeof (struct cons_block);
3280
3281 /* The first time we get here, free the spare memory. */
3282 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3283 if (spare_memory[i])
3284 {
3285 if (i == 0)
3286 free (spare_memory[i]);
3287 else if (i >= 1 && i <= 4)
3288 lisp_align_free (spare_memory[i]);
3289 else
3290 lisp_free (spare_memory[i]);
3291 spare_memory[i] = 0;
3292 }
3293
3294 /* Record the space now used. When it decreases substantially,
3295 we can refill the memory reserve. */
4e75f29d 3296#if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
24d8a105
RS
3297 bytes_used_when_full = BYTES_USED;
3298#endif
3299
3300 /* This used to call error, but if we've run out of memory, we could
3301 get infinite recursion trying to build the string. */
9b306d37 3302 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3303}
3304
3305/* If we released our reserve (due to running out of memory),
3306 and we have a fair amount free once again,
3307 try to set aside another reserve in case we run out once more.
3308
3309 This is called when a relocatable block is freed in ralloc.c,
3310 and also directly from this file, in case we're not using ralloc.c. */
3311
3312void
971de7fb 3313refill_memory_reserve (void)
24d8a105
RS
3314{
3315#ifndef SYSTEM_MALLOC
3316 if (spare_memory[0] == 0)
3317 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3318 if (spare_memory[1] == 0)
3319 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3320 MEM_TYPE_CONS);
3321 if (spare_memory[2] == 0)
3322 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3323 MEM_TYPE_CONS);
3324 if (spare_memory[3] == 0)
3325 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3326 MEM_TYPE_CONS);
3327 if (spare_memory[4] == 0)
3328 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3329 MEM_TYPE_CONS);
3330 if (spare_memory[5] == 0)
3331 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3332 MEM_TYPE_STRING);
3333 if (spare_memory[6] == 0)
3334 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3335 MEM_TYPE_STRING);
3336 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3337 Vmemory_full = Qnil;
3338#endif
3339}
3340\f
34400008
GM
3341/************************************************************************
3342 C Stack Marking
3343 ************************************************************************/
3344
13c844fb
GM
3345#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3346
71cf5fa0
GM
3347/* Conservative C stack marking requires a method to identify possibly
3348 live Lisp objects given a pointer value. We do this by keeping
3349 track of blocks of Lisp data that are allocated in a red-black tree
3350 (see also the comment of mem_node which is the type of nodes in
3351 that tree). Function lisp_malloc adds information for an allocated
3352 block to the red-black tree with calls to mem_insert, and function
3353 lisp_free removes it with mem_delete. Functions live_string_p etc
3354 call mem_find to lookup information about a given pointer in the
3355 tree, and use that to determine if the pointer points to a Lisp
3356 object or not. */
3357
34400008
GM
3358/* Initialize this part of alloc.c. */
3359
3360static void
971de7fb 3361mem_init (void)
34400008
GM
3362{
3363 mem_z.left = mem_z.right = MEM_NIL;
3364 mem_z.parent = NULL;
3365 mem_z.color = MEM_BLACK;
3366 mem_z.start = mem_z.end = NULL;
3367 mem_root = MEM_NIL;
3368}
3369
3370
3371/* Value is a pointer to the mem_node containing START. Value is
3372 MEM_NIL if there is no node in the tree containing START. */
3373
3374static INLINE struct mem_node *
971de7fb 3375mem_find (void *start)
34400008
GM
3376{
3377 struct mem_node *p;
3378
ece93c02
GM
3379 if (start < min_heap_address || start > max_heap_address)
3380 return MEM_NIL;
3381
34400008
GM
3382 /* Make the search always successful to speed up the loop below. */
3383 mem_z.start = start;
3384 mem_z.end = (char *) start + 1;
3385
3386 p = mem_root;
3387 while (start < p->start || start >= p->end)
3388 p = start < p->start ? p->left : p->right;
3389 return p;
3390}
3391
3392
3393/* Insert a new node into the tree for a block of memory with start
3394 address START, end address END, and type TYPE. Value is a
3395 pointer to the node that was inserted. */
3396
3397static struct mem_node *
971de7fb 3398mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3399{
3400 struct mem_node *c, *parent, *x;
3401
add3c3ea 3402 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3403 min_heap_address = start;
add3c3ea 3404 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3405 max_heap_address = end;
3406
34400008
GM
3407 /* See where in the tree a node for START belongs. In this
3408 particular application, it shouldn't happen that a node is already
3409 present. For debugging purposes, let's check that. */
3410 c = mem_root;
3411 parent = NULL;
3412
3413#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3414
34400008
GM
3415 while (c != MEM_NIL)
3416 {
3417 if (start >= c->start && start < c->end)
3418 abort ();
3419 parent = c;
3420 c = start < c->start ? c->left : c->right;
3421 }
177c0ea7 3422
34400008 3423#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3424
34400008
GM
3425 while (c != MEM_NIL)
3426 {
3427 parent = c;
3428 c = start < c->start ? c->left : c->right;
3429 }
177c0ea7 3430
34400008
GM
3431#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3432
3433 /* Create a new node. */
877935b1
GM
3434#ifdef GC_MALLOC_CHECK
3435 x = (struct mem_node *) _malloc_internal (sizeof *x);
3436 if (x == NULL)
3437 abort ();
3438#else
34400008 3439 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3440#endif
34400008
GM
3441 x->start = start;
3442 x->end = end;
3443 x->type = type;
3444 x->parent = parent;
3445 x->left = x->right = MEM_NIL;
3446 x->color = MEM_RED;
3447
3448 /* Insert it as child of PARENT or install it as root. */
3449 if (parent)
3450 {
3451 if (start < parent->start)
3452 parent->left = x;
3453 else
3454 parent->right = x;
3455 }
177c0ea7 3456 else
34400008
GM
3457 mem_root = x;
3458
3459 /* Re-establish red-black tree properties. */
3460 mem_insert_fixup (x);
877935b1 3461
34400008
GM
3462 return x;
3463}
3464
3465
3466/* Re-establish the red-black properties of the tree, and thereby
3467 balance the tree, after node X has been inserted; X is always red. */
3468
3469static void
971de7fb 3470mem_insert_fixup (struct mem_node *x)
34400008
GM
3471{
3472 while (x != mem_root && x->parent->color == MEM_RED)
3473 {
3474 /* X is red and its parent is red. This is a violation of
3475 red-black tree property #3. */
177c0ea7 3476
34400008
GM
3477 if (x->parent == x->parent->parent->left)
3478 {
3479 /* We're on the left side of our grandparent, and Y is our
3480 "uncle". */
3481 struct mem_node *y = x->parent->parent->right;
177c0ea7 3482
34400008
GM
3483 if (y->color == MEM_RED)
3484 {
3485 /* Uncle and parent are red but should be black because
3486 X is red. Change the colors accordingly and proceed
3487 with the grandparent. */
3488 x->parent->color = MEM_BLACK;
3489 y->color = MEM_BLACK;
3490 x->parent->parent->color = MEM_RED;
3491 x = x->parent->parent;
3492 }
3493 else
3494 {
3495 /* Parent and uncle have different colors; parent is
3496 red, uncle is black. */
3497 if (x == x->parent->right)
3498 {
3499 x = x->parent;
3500 mem_rotate_left (x);
3501 }
3502
3503 x->parent->color = MEM_BLACK;
3504 x->parent->parent->color = MEM_RED;
3505 mem_rotate_right (x->parent->parent);
3506 }
3507 }
3508 else
3509 {
3510 /* This is the symmetrical case of above. */
3511 struct mem_node *y = x->parent->parent->left;
177c0ea7 3512
34400008
GM
3513 if (y->color == MEM_RED)
3514 {
3515 x->parent->color = MEM_BLACK;
3516 y->color = MEM_BLACK;
3517 x->parent->parent->color = MEM_RED;
3518 x = x->parent->parent;
3519 }
3520 else
3521 {
3522 if (x == x->parent->left)
3523 {
3524 x = x->parent;
3525 mem_rotate_right (x);
3526 }
177c0ea7 3527
34400008
GM
3528 x->parent->color = MEM_BLACK;
3529 x->parent->parent->color = MEM_RED;
3530 mem_rotate_left (x->parent->parent);
3531 }
3532 }
3533 }
3534
3535 /* The root may have been changed to red due to the algorithm. Set
3536 it to black so that property #5 is satisfied. */
3537 mem_root->color = MEM_BLACK;
3538}
3539
3540
177c0ea7
JB
3541/* (x) (y)
3542 / \ / \
34400008
GM
3543 a (y) ===> (x) c
3544 / \ / \
3545 b c a b */
3546
3547static void
971de7fb 3548mem_rotate_left (struct mem_node *x)
34400008
GM
3549{
3550 struct mem_node *y;
3551
3552 /* Turn y's left sub-tree into x's right sub-tree. */
3553 y = x->right;
3554 x->right = y->left;
3555 if (y->left != MEM_NIL)
3556 y->left->parent = x;
3557
3558 /* Y's parent was x's parent. */
3559 if (y != MEM_NIL)
3560 y->parent = x->parent;
3561
3562 /* Get the parent to point to y instead of x. */
3563 if (x->parent)
3564 {
3565 if (x == x->parent->left)
3566 x->parent->left = y;
3567 else
3568 x->parent->right = y;
3569 }
3570 else
3571 mem_root = y;
3572
3573 /* Put x on y's left. */
3574 y->left = x;
3575 if (x != MEM_NIL)
3576 x->parent = y;
3577}
3578
3579
177c0ea7
JB
3580/* (x) (Y)
3581 / \ / \
3582 (y) c ===> a (x)
3583 / \ / \
34400008
GM
3584 a b b c */
3585
3586static void
971de7fb 3587mem_rotate_right (struct mem_node *x)
34400008
GM
3588{
3589 struct mem_node *y = x->left;
3590
3591 x->left = y->right;
3592 if (y->right != MEM_NIL)
3593 y->right->parent = x;
177c0ea7 3594
34400008
GM
3595 if (y != MEM_NIL)
3596 y->parent = x->parent;
3597 if (x->parent)
3598 {
3599 if (x == x->parent->right)
3600 x->parent->right = y;
3601 else
3602 x->parent->left = y;
3603 }
3604 else
3605 mem_root = y;
177c0ea7 3606
34400008
GM
3607 y->right = x;
3608 if (x != MEM_NIL)
3609 x->parent = y;
3610}
3611
3612
3613/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3614
3615static void
971de7fb 3616mem_delete (struct mem_node *z)
34400008
GM
3617{
3618 struct mem_node *x, *y;
3619
3620 if (!z || z == MEM_NIL)
3621 return;
3622
3623 if (z->left == MEM_NIL || z->right == MEM_NIL)
3624 y = z;
3625 else
3626 {
3627 y = z->right;
3628 while (y->left != MEM_NIL)
3629 y = y->left;
3630 }
3631
3632 if (y->left != MEM_NIL)
3633 x = y->left;
3634 else
3635 x = y->right;
3636
3637 x->parent = y->parent;
3638 if (y->parent)
3639 {
3640 if (y == y->parent->left)
3641 y->parent->left = x;
3642 else
3643 y->parent->right = x;
3644 }
3645 else
3646 mem_root = x;
3647
3648 if (y != z)
3649 {
3650 z->start = y->start;
3651 z->end = y->end;
3652 z->type = y->type;
3653 }
177c0ea7 3654
34400008
GM
3655 if (y->color == MEM_BLACK)
3656 mem_delete_fixup (x);
877935b1
GM
3657
3658#ifdef GC_MALLOC_CHECK
3659 _free_internal (y);
3660#else
34400008 3661 xfree (y);
877935b1 3662#endif
34400008
GM
3663}
3664
3665
3666/* Re-establish the red-black properties of the tree, after a
3667 deletion. */
3668
3669static void
971de7fb 3670mem_delete_fixup (struct mem_node *x)
34400008
GM
3671{
3672 while (x != mem_root && x->color == MEM_BLACK)
3673 {
3674 if (x == x->parent->left)
3675 {
3676 struct mem_node *w = x->parent->right;
177c0ea7 3677
34400008
GM
3678 if (w->color == MEM_RED)
3679 {
3680 w->color = MEM_BLACK;
3681 x->parent->color = MEM_RED;
3682 mem_rotate_left (x->parent);
3683 w = x->parent->right;
3684 }
177c0ea7 3685
34400008
GM
3686 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3687 {
3688 w->color = MEM_RED;
3689 x = x->parent;
3690 }
3691 else
3692 {
3693 if (w->right->color == MEM_BLACK)
3694 {
3695 w->left->color = MEM_BLACK;
3696 w->color = MEM_RED;
3697 mem_rotate_right (w);
3698 w = x->parent->right;
3699 }
3700 w->color = x->parent->color;
3701 x->parent->color = MEM_BLACK;
3702 w->right->color = MEM_BLACK;
3703 mem_rotate_left (x->parent);
3704 x = mem_root;
3705 }
3706 }
3707 else
3708 {
3709 struct mem_node *w = x->parent->left;
177c0ea7 3710
34400008
GM
3711 if (w->color == MEM_RED)
3712 {
3713 w->color = MEM_BLACK;
3714 x->parent->color = MEM_RED;
3715 mem_rotate_right (x->parent);
3716 w = x->parent->left;
3717 }
177c0ea7 3718
34400008
GM
3719 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3720 {
3721 w->color = MEM_RED;
3722 x = x->parent;
3723 }
3724 else
3725 {
3726 if (w->left->color == MEM_BLACK)
3727 {
3728 w->right->color = MEM_BLACK;
3729 w->color = MEM_RED;
3730 mem_rotate_left (w);
3731 w = x->parent->left;
3732 }
177c0ea7 3733
34400008
GM
3734 w->color = x->parent->color;
3735 x->parent->color = MEM_BLACK;
3736 w->left->color = MEM_BLACK;
3737 mem_rotate_right (x->parent);
3738 x = mem_root;
3739 }
3740 }
3741 }
177c0ea7 3742
34400008
GM
3743 x->color = MEM_BLACK;
3744}
3745
3746
3747/* Value is non-zero if P is a pointer to a live Lisp string on
3748 the heap. M is a pointer to the mem_block for P. */
3749
3750static INLINE int
971de7fb 3751live_string_p (struct mem_node *m, void *p)
34400008
GM
3752{
3753 if (m->type == MEM_TYPE_STRING)
3754 {
3755 struct string_block *b = (struct string_block *) m->start;
14162469 3756 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
3757
3758 /* P must point to the start of a Lisp_String structure, and it
3759 must not be on the free-list. */
176bc847
GM
3760 return (offset >= 0
3761 && offset % sizeof b->strings[0] == 0
6b61353c 3762 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3763 && ((struct Lisp_String *) p)->data != NULL);
3764 }
3765 else
3766 return 0;
3767}
3768
3769
3770/* Value is non-zero if P is a pointer to a live Lisp cons on
3771 the heap. M is a pointer to the mem_block for P. */
3772
3773static INLINE int
971de7fb 3774live_cons_p (struct mem_node *m, void *p)
34400008
GM
3775{
3776 if (m->type == MEM_TYPE_CONS)
3777 {
3778 struct cons_block *b = (struct cons_block *) m->start;
14162469 3779 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
3780
3781 /* P must point to the start of a Lisp_Cons, not be
3782 one of the unused cells in the current cons block,
3783 and not be on the free-list. */
176bc847
GM
3784 return (offset >= 0
3785 && offset % sizeof b->conses[0] == 0
6b61353c 3786 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3787 && (b != cons_block
3788 || offset / sizeof b->conses[0] < cons_block_index)
3789 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3790 }
3791 else
3792 return 0;
3793}
3794
3795
3796/* Value is non-zero if P is a pointer to a live Lisp symbol on
3797 the heap. M is a pointer to the mem_block for P. */
3798
3799static INLINE int
971de7fb 3800live_symbol_p (struct mem_node *m, void *p)
34400008
GM
3801{
3802 if (m->type == MEM_TYPE_SYMBOL)
3803 {
3804 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 3805 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3806
34400008
GM
3807 /* P must point to the start of a Lisp_Symbol, not be
3808 one of the unused cells in the current symbol block,
3809 and not be on the free-list. */
176bc847
GM
3810 return (offset >= 0
3811 && offset % sizeof b->symbols[0] == 0
6b61353c 3812 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3813 && (b != symbol_block
3814 || offset / sizeof b->symbols[0] < symbol_block_index)
3815 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3816 }
3817 else
3818 return 0;
3819}
3820
3821
3822/* Value is non-zero if P is a pointer to a live Lisp float on
3823 the heap. M is a pointer to the mem_block for P. */
3824
3825static INLINE int
971de7fb 3826live_float_p (struct mem_node *m, void *p)
34400008
GM
3827{
3828 if (m->type == MEM_TYPE_FLOAT)
3829 {
3830 struct float_block *b = (struct float_block *) m->start;
14162469 3831 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3832
ab6780cd
SM
3833 /* P must point to the start of a Lisp_Float and not be
3834 one of the unused cells in the current float block. */
176bc847
GM
3835 return (offset >= 0
3836 && offset % sizeof b->floats[0] == 0
6b61353c 3837 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3838 && (b != float_block
ab6780cd 3839 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3840 }
3841 else
3842 return 0;
3843}
3844
3845
3846/* Value is non-zero if P is a pointer to a live Lisp Misc on
3847 the heap. M is a pointer to the mem_block for P. */
3848
3849static INLINE int
971de7fb 3850live_misc_p (struct mem_node *m, void *p)
34400008
GM
3851{
3852 if (m->type == MEM_TYPE_MISC)
3853 {
3854 struct marker_block *b = (struct marker_block *) m->start;
14162469 3855 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3856
34400008
GM
3857 /* P must point to the start of a Lisp_Misc, not be
3858 one of the unused cells in the current misc block,
3859 and not be on the free-list. */
176bc847
GM
3860 return (offset >= 0
3861 && offset % sizeof b->markers[0] == 0
6b61353c 3862 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
3863 && (b != marker_block
3864 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 3865 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
3866 }
3867 else
3868 return 0;
3869}
3870
3871
3872/* Value is non-zero if P is a pointer to a live vector-like object.
3873 M is a pointer to the mem_block for P. */
3874
3875static INLINE int
971de7fb 3876live_vector_p (struct mem_node *m, void *p)
34400008 3877{
9c545a55 3878 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
34400008
GM
3879}
3880
3881
2336fe58 3882/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
3883 pointer to the mem_block for P. */
3884
3885static INLINE int
971de7fb 3886live_buffer_p (struct mem_node *m, void *p)
34400008
GM
3887{
3888 /* P must point to the start of the block, and the buffer
3889 must not have been killed. */
3890 return (m->type == MEM_TYPE_BUFFER
3891 && p == m->start
5d8ea120 3892 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
34400008
GM
3893}
3894
13c844fb
GM
3895#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3896
3897#if GC_MARK_STACK
3898
34400008
GM
3899#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3900
3901/* Array of objects that are kept alive because the C stack contains
3902 a pattern that looks like a reference to them . */
3903
3904#define MAX_ZOMBIES 10
3905static Lisp_Object zombies[MAX_ZOMBIES];
3906
3907/* Number of zombie objects. */
3908
3909static int nzombies;
3910
3911/* Number of garbage collections. */
3912
3913static int ngcs;
3914
3915/* Average percentage of zombies per collection. */
3916
3917static double avg_zombies;
3918
3919/* Max. number of live and zombie objects. */
3920
3921static int max_live, max_zombies;
3922
3923/* Average number of live objects per GC. */
3924
3925static double avg_live;
3926
a7ca3326 3927DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 3928 doc: /* Show information about live and zombie objects. */)
5842a27b 3929 (void)
34400008 3930{
83fc9c63
DL
3931 Lisp_Object args[8], zombie_list = Qnil;
3932 int i;
3933 for (i = 0; i < nzombies; i++)
3934 zombie_list = Fcons (zombies[i], zombie_list);
3935 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
3936 args[1] = make_number (ngcs);
3937 args[2] = make_float (avg_live);
3938 args[3] = make_float (avg_zombies);
3939 args[4] = make_float (avg_zombies / avg_live / 100);
3940 args[5] = make_number (max_live);
3941 args[6] = make_number (max_zombies);
83fc9c63
DL
3942 args[7] = zombie_list;
3943 return Fmessage (8, args);
34400008
GM
3944}
3945
3946#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3947
3948
182ff242
GM
3949/* Mark OBJ if we can prove it's a Lisp_Object. */
3950
3951static INLINE void
971de7fb 3952mark_maybe_object (Lisp_Object obj)
182ff242 3953{
b609f591
YM
3954 void *po;
3955 struct mem_node *m;
3956
3957 if (INTEGERP (obj))
3958 return;
3959
3960 po = (void *) XPNTR (obj);
3961 m = mem_find (po);
177c0ea7 3962
182ff242
GM
3963 if (m != MEM_NIL)
3964 {
3965 int mark_p = 0;
3966
8e50cc2d 3967 switch (XTYPE (obj))
182ff242
GM
3968 {
3969 case Lisp_String:
3970 mark_p = (live_string_p (m, po)
3971 && !STRING_MARKED_P ((struct Lisp_String *) po));
3972 break;
3973
3974 case Lisp_Cons:
08b7c2cb 3975 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
3976 break;
3977
3978 case Lisp_Symbol:
2336fe58 3979 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
3980 break;
3981
3982 case Lisp_Float:
ab6780cd 3983 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
3984 break;
3985
3986 case Lisp_Vectorlike:
8e50cc2d 3987 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
3988 buffer because checking that dereferences the pointer
3989 PO which might point anywhere. */
3990 if (live_vector_p (m, po))
8e50cc2d 3991 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 3992 else if (live_buffer_p (m, po))
8e50cc2d 3993 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
3994 break;
3995
3996 case Lisp_Misc:
67ee9f6e 3997 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 3998 break;
6bbd7a29 3999
2de9f71c 4000 default:
6bbd7a29 4001 break;
182ff242
GM
4002 }
4003
4004 if (mark_p)
4005 {
4006#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4007 if (nzombies < MAX_ZOMBIES)
83fc9c63 4008 zombies[nzombies] = obj;
182ff242
GM
4009 ++nzombies;
4010#endif
49723c04 4011 mark_object (obj);
182ff242
GM
4012 }
4013 }
4014}
ece93c02
GM
4015
4016
4017/* If P points to Lisp data, mark that as live if it isn't already
4018 marked. */
4019
4020static INLINE void
971de7fb 4021mark_maybe_pointer (void *p)
ece93c02
GM
4022{
4023 struct mem_node *m;
4024
5045e68e 4025 /* Quickly rule out some values which can't point to Lisp data. */
d01a7826 4026 if ((intptr_t) p %
5045e68e
SM
4027#ifdef USE_LSB_TAG
4028 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4029#else
4030 2 /* We assume that Lisp data is aligned on even addresses. */
4031#endif
4032 )
ece93c02 4033 return;
177c0ea7 4034
ece93c02
GM
4035 m = mem_find (p);
4036 if (m != MEM_NIL)
4037 {
4038 Lisp_Object obj = Qnil;
177c0ea7 4039
ece93c02
GM
4040 switch (m->type)
4041 {
4042 case MEM_TYPE_NON_LISP:
2fe50224 4043 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4044 break;
177c0ea7 4045
ece93c02 4046 case MEM_TYPE_BUFFER:
3ef06d12 4047 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
4048 XSETVECTOR (obj, p);
4049 break;
177c0ea7 4050
ece93c02 4051 case MEM_TYPE_CONS:
08b7c2cb 4052 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4053 XSETCONS (obj, p);
4054 break;
177c0ea7 4055
ece93c02
GM
4056 case MEM_TYPE_STRING:
4057 if (live_string_p (m, p)
4058 && !STRING_MARKED_P ((struct Lisp_String *) p))
4059 XSETSTRING (obj, p);
4060 break;
4061
4062 case MEM_TYPE_MISC:
2336fe58
SM
4063 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4064 XSETMISC (obj, p);
ece93c02 4065 break;
177c0ea7 4066
ece93c02 4067 case MEM_TYPE_SYMBOL:
2336fe58 4068 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4069 XSETSYMBOL (obj, p);
4070 break;
177c0ea7 4071
ece93c02 4072 case MEM_TYPE_FLOAT:
ab6780cd 4073 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4074 XSETFLOAT (obj, p);
4075 break;
177c0ea7 4076
9c545a55 4077 case MEM_TYPE_VECTORLIKE:
ece93c02
GM
4078 if (live_vector_p (m, p))
4079 {
4080 Lisp_Object tem;
4081 XSETVECTOR (tem, p);
8e50cc2d 4082 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4083 obj = tem;
4084 }
4085 break;
4086
4087 default:
4088 abort ();
4089 }
4090
8e50cc2d 4091 if (!NILP (obj))
49723c04 4092 mark_object (obj);
ece93c02
GM
4093 }
4094}
4095
4096
55a314a5
YM
4097/* Mark Lisp objects referenced from the address range START+OFFSET..END
4098 or END+OFFSET..START. */
34400008 4099
177c0ea7 4100static void
971de7fb 4101mark_memory (void *start, void *end, int offset)
34400008
GM
4102{
4103 Lisp_Object *p;
ece93c02 4104 void **pp;
34400008
GM
4105
4106#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4107 nzombies = 0;
4108#endif
4109
4110 /* Make START the pointer to the start of the memory region,
4111 if it isn't already. */
4112 if (end < start)
4113 {
4114 void *tem = start;
4115 start = end;
4116 end = tem;
4117 }
ece93c02
GM
4118
4119 /* Mark Lisp_Objects. */
55a314a5 4120 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
182ff242 4121 mark_maybe_object (*p);
ece93c02
GM
4122
4123 /* Mark Lisp data pointed to. This is necessary because, in some
4124 situations, the C compiler optimizes Lisp objects away, so that
4125 only a pointer to them remains. Example:
4126
4127 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4128 ()
ece93c02
GM
4129 {
4130 Lisp_Object obj = build_string ("test");
4131 struct Lisp_String *s = XSTRING (obj);
4132 Fgarbage_collect ();
4133 fprintf (stderr, "test `%s'\n", s->data);
4134 return Qnil;
4135 }
4136
4137 Here, `obj' isn't really used, and the compiler optimizes it
4138 away. The only reference to the life string is through the
4139 pointer `s'. */
177c0ea7 4140
55a314a5 4141 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
ece93c02 4142 mark_maybe_pointer (*pp);
182ff242
GM
4143}
4144
30f637f8
DL
4145/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4146 the GCC system configuration. In gcc 3.2, the only systems for
4147 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4148 by others?) and ns32k-pc532-min. */
182ff242
GM
4149
4150#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4151
4152static int setjmp_tested_p, longjmps_done;
4153
4154#define SETJMP_WILL_LIKELY_WORK "\
4155\n\
4156Emacs garbage collector has been changed to use conservative stack\n\
4157marking. Emacs has determined that the method it uses to do the\n\
4158marking will likely work on your system, but this isn't sure.\n\
4159\n\
4160If you are a system-programmer, or can get the help of a local wizard\n\
4161who is, please take a look at the function mark_stack in alloc.c, and\n\
4162verify that the methods used are appropriate for your system.\n\
4163\n\
d191623b 4164Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4165"
4166
4167#define SETJMP_WILL_NOT_WORK "\
4168\n\
4169Emacs garbage collector has been changed to use conservative stack\n\
4170marking. Emacs has determined that the default method it uses to do the\n\
4171marking will not work on your system. We will need a system-dependent\n\
4172solution for your system.\n\
4173\n\
4174Please take a look at the function mark_stack in alloc.c, and\n\
4175try to find a way to make it work on your system.\n\
30f637f8
DL
4176\n\
4177Note that you may get false negatives, depending on the compiler.\n\
4178In particular, you need to use -O with GCC for this test.\n\
4179\n\
d191623b 4180Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4181"
4182
4183
4184/* Perform a quick check if it looks like setjmp saves registers in a
4185 jmp_buf. Print a message to stderr saying so. When this test
4186 succeeds, this is _not_ a proof that setjmp is sufficient for
4187 conservative stack marking. Only the sources or a disassembly
4188 can prove that. */
4189
4190static void
2018939f 4191test_setjmp (void)
182ff242
GM
4192{
4193 char buf[10];
4194 register int x;
4195 jmp_buf jbuf;
4196 int result = 0;
4197
4198 /* Arrange for X to be put in a register. */
4199 sprintf (buf, "1");
4200 x = strlen (buf);
4201 x = 2 * x - 1;
4202
4203 setjmp (jbuf);
4204 if (longjmps_done == 1)
34400008 4205 {
182ff242 4206 /* Came here after the longjmp at the end of the function.
34400008 4207
182ff242
GM
4208 If x == 1, the longjmp has restored the register to its
4209 value before the setjmp, and we can hope that setjmp
4210 saves all such registers in the jmp_buf, although that
4211 isn't sure.
34400008 4212
182ff242
GM
4213 For other values of X, either something really strange is
4214 taking place, or the setjmp just didn't save the register. */
4215
4216 if (x == 1)
4217 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4218 else
4219 {
4220 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4221 exit (1);
34400008
GM
4222 }
4223 }
182ff242
GM
4224
4225 ++longjmps_done;
4226 x = 2;
4227 if (longjmps_done == 1)
4228 longjmp (jbuf, 1);
34400008
GM
4229}
4230
182ff242
GM
4231#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4232
34400008
GM
4233
4234#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4235
4236/* Abort if anything GCPRO'd doesn't survive the GC. */
4237
4238static void
2018939f 4239check_gcpros (void)
34400008
GM
4240{
4241 struct gcpro *p;
c5101a77 4242 size_t i;
34400008
GM
4243
4244 for (p = gcprolist; p; p = p->next)
4245 for (i = 0; i < p->nvars; ++i)
4246 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4247 /* FIXME: It's not necessarily a bug. It might just be that the
4248 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4249 abort ();
4250}
4251
4252#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4253
4254static void
2018939f 4255dump_zombies (void)
34400008
GM
4256{
4257 int i;
4258
4259 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4260 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4261 {
4262 fprintf (stderr, " %d = ", i);
4263 debug_print (zombies[i]);
4264 }
4265}
4266
4267#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4268
4269
182ff242
GM
4270/* Mark live Lisp objects on the C stack.
4271
4272 There are several system-dependent problems to consider when
4273 porting this to new architectures:
4274
4275 Processor Registers
4276
4277 We have to mark Lisp objects in CPU registers that can hold local
4278 variables or are used to pass parameters.
4279
4280 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4281 something that either saves relevant registers on the stack, or
4282 calls mark_maybe_object passing it each register's contents.
4283
4284 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4285 implementation assumes that calling setjmp saves registers we need
4286 to see in a jmp_buf which itself lies on the stack. This doesn't
4287 have to be true! It must be verified for each system, possibly
4288 by taking a look at the source code of setjmp.
4289
2018939f
AS
4290 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4291 can use it as a machine independent method to store all registers
4292 to the stack. In this case the macros described in the previous
4293 two paragraphs are not used.
4294
182ff242
GM
4295 Stack Layout
4296
4297 Architectures differ in the way their processor stack is organized.
4298 For example, the stack might look like this
4299
4300 +----------------+
4301 | Lisp_Object | size = 4
4302 +----------------+
4303 | something else | size = 2
4304 +----------------+
4305 | Lisp_Object | size = 4
4306 +----------------+
4307 | ... |
4308
4309 In such a case, not every Lisp_Object will be aligned equally. To
4310 find all Lisp_Object on the stack it won't be sufficient to walk
4311 the stack in steps of 4 bytes. Instead, two passes will be
4312 necessary, one starting at the start of the stack, and a second
4313 pass starting at the start of the stack + 2. Likewise, if the
4314 minimal alignment of Lisp_Objects on the stack is 1, four passes
4315 would be necessary, each one starting with one byte more offset
4316 from the stack start.
4317
4318 The current code assumes by default that Lisp_Objects are aligned
4319 equally on the stack. */
34400008
GM
4320
4321static void
971de7fb 4322mark_stack (void)
34400008 4323{
630909a5 4324 int i;
34400008
GM
4325 void *end;
4326
2018939f
AS
4327#ifdef HAVE___BUILTIN_UNWIND_INIT
4328 /* Force callee-saved registers and register windows onto the stack.
4329 This is the preferred method if available, obviating the need for
4330 machine dependent methods. */
4331 __builtin_unwind_init ();
4332 end = &end;
4333#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4334#ifndef GC_SAVE_REGISTERS_ON_STACK
4335 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4336 union aligned_jmpbuf {
4337 Lisp_Object o;
4338 jmp_buf j;
4339 } j;
4340 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4341#endif
34400008
GM
4342 /* This trick flushes the register windows so that all the state of
4343 the process is contained in the stack. */
ab6780cd 4344 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4345 needed on ia64 too. See mach_dep.c, where it also says inline
4346 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4347#ifdef __sparc__
4d18a7a2
DN
4348#if defined (__sparc64__) && defined (__FreeBSD__)
4349 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4350 asm ("flushw");
4351#else
34400008 4352 asm ("ta 3");
4c1616be 4353#endif
34400008 4354#endif
177c0ea7 4355
34400008
GM
4356 /* Save registers that we need to see on the stack. We need to see
4357 registers used to hold register variables and registers used to
4358 pass parameters. */
4359#ifdef GC_SAVE_REGISTERS_ON_STACK
4360 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4361#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4362
182ff242
GM
4363#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4364 setjmp will definitely work, test it
4365 and print a message with the result
4366 of the test. */
4367 if (!setjmp_tested_p)
4368 {
4369 setjmp_tested_p = 1;
4370 test_setjmp ();
4371 }
4372#endif /* GC_SETJMP_WORKS */
177c0ea7 4373
55a314a5 4374 setjmp (j.j);
34400008 4375 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4376#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4377#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4378
4379 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4380 that's not the case, something has to be done here to iterate
4381 over the stack segments. */
630909a5 4382#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4383#ifdef __GNUC__
4384#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4385#else
630909a5 4386#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4387#endif
182ff242 4388#endif
24452cd5 4389 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
55a314a5 4390 mark_memory (stack_base, end, i);
4dec23ff
AS
4391 /* Allow for marking a secondary stack, like the register stack on the
4392 ia64. */
4393#ifdef GC_MARK_SECONDARY_STACK
4394 GC_MARK_SECONDARY_STACK ();
4395#endif
34400008
GM
4396
4397#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4398 check_gcpros ();
4399#endif
4400}
4401
34400008
GM
4402#endif /* GC_MARK_STACK != 0 */
4403
4404
7ffb6955 4405/* Determine whether it is safe to access memory at address P. */
d3d47262 4406static int
971de7fb 4407valid_pointer_p (void *p)
7ffb6955 4408{
f892cf9c
EZ
4409#ifdef WINDOWSNT
4410 return w32_valid_pointer_p (p, 16);
4411#else
7ffb6955
KS
4412 int fd;
4413
4414 /* Obviously, we cannot just access it (we would SEGV trying), so we
4415 trick the o/s to tell us whether p is a valid pointer.
4416 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4417 not validate p in that case. */
4418
4419 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4420 {
4421 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4422 emacs_close (fd);
4423 unlink ("__Valid__Lisp__Object__");
4424 return valid;
4425 }
4426
4427 return -1;
f892cf9c 4428#endif
7ffb6955 4429}
3cd55735
KS
4430
4431/* Return 1 if OBJ is a valid lisp object.
4432 Return 0 if OBJ is NOT a valid lisp object.
4433 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4434 This function can be quite slow,
4435 so it should only be used in code for manual debugging. */
3cd55735
KS
4436
4437int
971de7fb 4438valid_lisp_object_p (Lisp_Object obj)
3cd55735 4439{
de7124a7 4440 void *p;
7ffb6955 4441#if GC_MARK_STACK
3cd55735 4442 struct mem_node *m;
de7124a7 4443#endif
3cd55735
KS
4444
4445 if (INTEGERP (obj))
4446 return 1;
4447
4448 p = (void *) XPNTR (obj);
3cd55735
KS
4449 if (PURE_POINTER_P (p))
4450 return 1;
4451
de7124a7 4452#if !GC_MARK_STACK
7ffb6955 4453 return valid_pointer_p (p);
de7124a7
KS
4454#else
4455
3cd55735
KS
4456 m = mem_find (p);
4457
4458 if (m == MEM_NIL)
7ffb6955
KS
4459 {
4460 int valid = valid_pointer_p (p);
4461 if (valid <= 0)
4462 return valid;
4463
4464 if (SUBRP (obj))
4465 return 1;
4466
4467 return 0;
4468 }
3cd55735
KS
4469
4470 switch (m->type)
4471 {
4472 case MEM_TYPE_NON_LISP:
4473 return 0;
4474
4475 case MEM_TYPE_BUFFER:
4476 return live_buffer_p (m, p);
4477
4478 case MEM_TYPE_CONS:
4479 return live_cons_p (m, p);
4480
4481 case MEM_TYPE_STRING:
4482 return live_string_p (m, p);
4483
4484 case MEM_TYPE_MISC:
4485 return live_misc_p (m, p);
4486
4487 case MEM_TYPE_SYMBOL:
4488 return live_symbol_p (m, p);
4489
4490 case MEM_TYPE_FLOAT:
4491 return live_float_p (m, p);
4492
9c545a55 4493 case MEM_TYPE_VECTORLIKE:
3cd55735
KS
4494 return live_vector_p (m, p);
4495
4496 default:
4497 break;
4498 }
4499
4500 return 0;
4501#endif
4502}
4503
4504
4505
34400008 4506\f
2e471eb5
GM
4507/***********************************************************************
4508 Pure Storage Management
4509 ***********************************************************************/
4510
1f0b3fd2
GM
4511/* Allocate room for SIZE bytes from pure Lisp storage and return a
4512 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 4513 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2
GM
4514
4515static POINTER_TYPE *
971de7fb 4516pure_alloc (size_t size, int type)
1f0b3fd2 4517{
1f0b3fd2 4518 POINTER_TYPE *result;
6b61353c
KH
4519#ifdef USE_LSB_TAG
4520 size_t alignment = (1 << GCTYPEBITS);
4521#else
44117420 4522 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4523
4524 /* Give Lisp_Floats an extra alignment. */
4525 if (type == Lisp_Float)
4526 {
1f0b3fd2
GM
4527#if defined __GNUC__ && __GNUC__ >= 2
4528 alignment = __alignof (struct Lisp_Float);
4529#else
4530 alignment = sizeof (struct Lisp_Float);
4531#endif
9e713715 4532 }
6b61353c 4533#endif
1f0b3fd2 4534
44117420 4535 again:
e5bc14d4
YM
4536 if (type >= 0)
4537 {
4538 /* Allocate space for a Lisp object from the beginning of the free
4539 space with taking account of alignment. */
4540 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4541 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4542 }
4543 else
4544 {
4545 /* Allocate space for a non-Lisp object from the end of the free
4546 space. */
4547 pure_bytes_used_non_lisp += size;
4548 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4549 }
4550 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
4551
4552 if (pure_bytes_used <= pure_size)
4553 return result;
4554
4555 /* Don't allocate a large amount here,
4556 because it might get mmap'd and then its address
4557 might not be usable. */
4558 purebeg = (char *) xmalloc (10000);
4559 pure_size = 10000;
4560 pure_bytes_used_before_overflow += pure_bytes_used - size;
4561 pure_bytes_used = 0;
e5bc14d4 4562 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 4563 goto again;
1f0b3fd2
GM
4564}
4565
4566
852f8cdc 4567/* Print a warning if PURESIZE is too small. */
9e713715
GM
4568
4569void
971de7fb 4570check_pure_size (void)
9e713715
GM
4571{
4572 if (pure_bytes_used_before_overflow)
c2982e87
PE
4573 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4574 " bytes needed)"),
4575 pure_bytes_used + pure_bytes_used_before_overflow);
9e713715
GM
4576}
4577
4578
79fd0489
YM
4579/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4580 the non-Lisp data pool of the pure storage, and return its start
4581 address. Return NULL if not found. */
4582
4583static char *
14162469 4584find_string_data_in_pure (const char *data, EMACS_INT nbytes)
79fd0489 4585{
14162469
EZ
4586 int i;
4587 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 4588 const unsigned char *p;
79fd0489
YM
4589 char *non_lisp_beg;
4590
4591 if (pure_bytes_used_non_lisp < nbytes + 1)
4592 return NULL;
4593
4594 /* Set up the Boyer-Moore table. */
4595 skip = nbytes + 1;
4596 for (i = 0; i < 256; i++)
4597 bm_skip[i] = skip;
4598
2aff7c53 4599 p = (const unsigned char *) data;
79fd0489
YM
4600 while (--skip > 0)
4601 bm_skip[*p++] = skip;
4602
4603 last_char_skip = bm_skip['\0'];
4604
4605 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4606 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4607
4608 /* See the comments in the function `boyer_moore' (search.c) for the
4609 use of `infinity'. */
4610 infinity = pure_bytes_used_non_lisp + 1;
4611 bm_skip['\0'] = infinity;
4612
2aff7c53 4613 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
4614 start = 0;
4615 do
4616 {
4617 /* Check the last character (== '\0'). */
4618 do
4619 {
4620 start += bm_skip[*(p + start)];
4621 }
4622 while (start <= start_max);
4623
4624 if (start < infinity)
4625 /* Couldn't find the last character. */
4626 return NULL;
4627
4628 /* No less than `infinity' means we could find the last
4629 character at `p[start - infinity]'. */
4630 start -= infinity;
4631
4632 /* Check the remaining characters. */
4633 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4634 /* Found. */
4635 return non_lisp_beg + start;
4636
4637 start += last_char_skip;
4638 }
4639 while (start <= start_max);
4640
4641 return NULL;
4642}
4643
4644
2e471eb5
GM
4645/* Return a string allocated in pure space. DATA is a buffer holding
4646 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4647 non-zero means make the result string multibyte.
1a4f1e2c 4648
2e471eb5
GM
4649 Must get an error if pure storage is full, since if it cannot hold
4650 a large string it may be able to hold conses that point to that
4651 string; then the string is not protected from gc. */
7146af97
JB
4652
4653Lisp_Object
14162469
EZ
4654make_pure_string (const char *data,
4655 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
7146af97 4656{
2e471eb5
GM
4657 Lisp_Object string;
4658 struct Lisp_String *s;
c0696668 4659
1f0b3fd2 4660 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
90256841 4661 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
4662 if (s->data == NULL)
4663 {
4664 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
72af86bd 4665 memcpy (s->data, data, nbytes);
79fd0489
YM
4666 s->data[nbytes] = '\0';
4667 }
2e471eb5
GM
4668 s->size = nchars;
4669 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 4670 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4671 XSETSTRING (string, s);
4672 return string;
7146af97
JB
4673}
4674
a56eaaef
DN
4675/* Return a string a string allocated in pure space. Do not allocate
4676 the string data, just point to DATA. */
4677
4678Lisp_Object
4679make_pure_c_string (const char *data)
4680{
4681 Lisp_Object string;
4682 struct Lisp_String *s;
14162469 4683 EMACS_INT nchars = strlen (data);
a56eaaef
DN
4684
4685 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4686 s->size = nchars;
4687 s->size_byte = -1;
323637a2 4688 s->data = (unsigned char *) data;
a56eaaef
DN
4689 s->intervals = NULL_INTERVAL;
4690 XSETSTRING (string, s);
4691 return string;
4692}
2e471eb5 4693
34400008
GM
4694/* Return a cons allocated from pure space. Give it pure copies
4695 of CAR as car and CDR as cdr. */
4696
7146af97 4697Lisp_Object
971de7fb 4698pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97
JB
4699{
4700 register Lisp_Object new;
1f0b3fd2 4701 struct Lisp_Cons *p;
7146af97 4702
1f0b3fd2
GM
4703 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4704 XSETCONS (new, p);
f3fbd155
KR
4705 XSETCAR (new, Fpurecopy (car));
4706 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4707 return new;
4708}
4709
7146af97 4710
34400008
GM
4711/* Value is a float object with value NUM allocated from pure space. */
4712
d3d47262 4713static Lisp_Object
971de7fb 4714make_pure_float (double num)
7146af97
JB
4715{
4716 register Lisp_Object new;
1f0b3fd2 4717 struct Lisp_Float *p;
7146af97 4718
1f0b3fd2
GM
4719 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4720 XSETFLOAT (new, p);
f601cdf3 4721 XFLOAT_INIT (new, num);
7146af97
JB
4722 return new;
4723}
4724
34400008
GM
4725
4726/* Return a vector with room for LEN Lisp_Objects allocated from
4727 pure space. */
4728
7146af97 4729Lisp_Object
971de7fb 4730make_pure_vector (EMACS_INT len)
7146af97 4731{
1f0b3fd2
GM
4732 Lisp_Object new;
4733 struct Lisp_Vector *p;
36372bf9
PE
4734 size_t size = (offsetof (struct Lisp_Vector, contents)
4735 + len * sizeof (Lisp_Object));
7146af97 4736
1f0b3fd2
GM
4737 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4738 XSETVECTOR (new, p);
eab3844f 4739 XVECTOR (new)->header.size = len;
7146af97
JB
4740 return new;
4741}
4742
34400008 4743
a7ca3326 4744DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 4745 doc: /* Make a copy of object OBJ in pure storage.
228299fa 4746Recursively copies contents of vectors and cons cells.
7ee72033 4747Does not copy symbols. Copies strings without text properties. */)
5842a27b 4748 (register Lisp_Object obj)
7146af97 4749{
265a9e55 4750 if (NILP (Vpurify_flag))
7146af97
JB
4751 return obj;
4752
1f0b3fd2 4753 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4754 return obj;
4755
e9515805
SM
4756 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4757 {
4758 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4759 if (!NILP (tmp))
4760 return tmp;
4761 }
4762
d6dd74bb 4763 if (CONSP (obj))
e9515805 4764 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4765 else if (FLOATP (obj))
e9515805 4766 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4767 else if (STRINGP (obj))
42a5b22f 4768 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
4769 SBYTES (obj),
4770 STRING_MULTIBYTE (obj));
876c194c 4771 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
4772 {
4773 register struct Lisp_Vector *vec;
14162469 4774 register EMACS_INT i;
6b61353c 4775 EMACS_INT size;
d6dd74bb 4776
77b37c05 4777 size = ASIZE (obj);
7d535c68
KH
4778 if (size & PSEUDOVECTOR_FLAG)
4779 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 4780 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4781 for (i = 0; i < size; i++)
4782 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
876c194c 4783 if (COMPILEDP (obj))
985773c9 4784 {
876c194c
SM
4785 XSETPVECTYPE (vec, PVEC_COMPILED);
4786 XSETCOMPILED (obj, vec);
985773c9 4787 }
d6dd74bb
KH
4788 else
4789 XSETVECTOR (obj, vec);
7146af97 4790 }
d6dd74bb
KH
4791 else if (MARKERP (obj))
4792 error ("Attempt to copy a marker to pure storage");
e9515805
SM
4793 else
4794 /* Not purified, don't hash-cons. */
4795 return obj;
4796
4797 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4798 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
4799
4800 return obj;
7146af97 4801}
2e471eb5 4802
34400008 4803
7146af97 4804\f
34400008
GM
4805/***********************************************************************
4806 Protection from GC
4807 ***********************************************************************/
4808
2e471eb5
GM
4809/* Put an entry in staticvec, pointing at the variable with address
4810 VARADDRESS. */
7146af97
JB
4811
4812void
971de7fb 4813staticpro (Lisp_Object *varaddress)
7146af97
JB
4814{
4815 staticvec[staticidx++] = varaddress;
4816 if (staticidx >= NSTATICS)
4817 abort ();
4818}
4819
7146af97 4820\f
34400008
GM
4821/***********************************************************************
4822 Protection from GC
4823 ***********************************************************************/
1a4f1e2c 4824
e8197642
RS
4825/* Temporarily prevent garbage collection. */
4826
4827int
971de7fb 4828inhibit_garbage_collection (void)
e8197642 4829{
aed13378 4830 int count = SPECPDL_INDEX ();
54defd0d
AS
4831 int nbits = min (VALBITS, BITS_PER_INT);
4832
4833 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4834 return count;
4835}
4836
34400008 4837
a7ca3326 4838DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4839 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4840Garbage collection happens automatically if you cons more than
4841`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4842`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4843 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4844 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4845 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4846 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4847However, if there was overflow in pure space, `garbage-collect'
4848returns nil, because real GC can't be done. */)
5842a27b 4849 (void)
7146af97 4850{
7146af97 4851 register struct specbinding *bind;
7146af97 4852 char stack_top_variable;
c5101a77 4853 register size_t i;
6efc7df7 4854 int message_p;
96117bc7 4855 Lisp_Object total[8];
331379bf 4856 int count = SPECPDL_INDEX ();
2c5bd608
DL
4857 EMACS_TIME t1, t2, t3;
4858
3de0effb
RS
4859 if (abort_on_gc)
4860 abort ();
4861
9e713715
GM
4862 /* Can't GC if pure storage overflowed because we can't determine
4863 if something is a pure object or not. */
4864 if (pure_bytes_used_before_overflow)
4865 return Qnil;
4866
bbc012e0
KS
4867 CHECK_CONS_LIST ();
4868
3c7e66a8
RS
4869 /* Don't keep undo information around forever.
4870 Do this early on, so it is no problem if the user quits. */
4871 {
4872 register struct buffer *nextb = all_buffers;
4873
4874 while (nextb)
4875 {
4876 /* If a buffer's undo list is Qt, that means that undo is
4877 turned off in that buffer. Calling truncate_undo_list on
4878 Qt tends to return NULL, which effectively turns undo back on.
4879 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 4880 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
3c7e66a8
RS
4881 truncate_undo_list (nextb);
4882
4883 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5d8ea120 4884 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
dc7b4525 4885 && ! nextb->text->inhibit_shrinking)
3c7e66a8
RS
4886 {
4887 /* If a buffer's gap size is more than 10% of the buffer
4888 size, or larger than 2000 bytes, then shrink it
4889 accordingly. Keep a minimum size of 20 bytes. */
4890 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4891
4892 if (nextb->text->gap_size > size)
4893 {
4894 struct buffer *save_current = current_buffer;
4895 current_buffer = nextb;
4896 make_gap (-(nextb->text->gap_size - size));
4897 current_buffer = save_current;
4898 }
4899 }
4900
eab3844f 4901 nextb = nextb->header.next.buffer;
3c7e66a8
RS
4902 }
4903 }
4904
4905 EMACS_GET_TIME (t1);
4906
58595309
KH
4907 /* In case user calls debug_print during GC,
4908 don't let that cause a recursive GC. */
4909 consing_since_gc = 0;
4910
6efc7df7
GM
4911 /* Save what's currently displayed in the echo area. */
4912 message_p = push_message ();
c55b0da6 4913 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 4914
7146af97
JB
4915 /* Save a copy of the contents of the stack, for debugging. */
4916#if MAX_SAVE_STACK > 0
265a9e55 4917 if (NILP (Vpurify_flag))
7146af97 4918 {
dd3f25f7
PE
4919 char *stack;
4920 size_t stack_size;
4921 if (&stack_top_variable < stack_bottom)
7146af97 4922 {
dd3f25f7
PE
4923 stack = &stack_top_variable;
4924 stack_size = stack_bottom - &stack_top_variable;
4925 }
4926 else
4927 {
4928 stack = stack_bottom;
4929 stack_size = &stack_top_variable - stack_bottom;
4930 }
4931 if (stack_size <= MAX_SAVE_STACK)
7146af97 4932 {
dd3f25f7 4933 if (stack_copy_size < stack_size)
7146af97 4934 {
dd3f25f7
PE
4935 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4936 stack_copy_size = stack_size;
7146af97 4937 }
dd3f25f7 4938 memcpy (stack_copy, stack, stack_size);
7146af97
JB
4939 }
4940 }
4941#endif /* MAX_SAVE_STACK > 0 */
4942
299585ee 4943 if (garbage_collection_messages)
691c4285 4944 message1_nolog ("Garbage collecting...");
7146af97 4945
6e0fca1d
RS
4946 BLOCK_INPUT;
4947
eec7b73d
RS
4948 shrink_regexp_cache ();
4949
7146af97
JB
4950 gc_in_progress = 1;
4951
c23baf9f 4952 /* clear_marks (); */
7146af97 4953
005ca5c7 4954 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
4955
4956 for (i = 0; i < staticidx; i++)
49723c04 4957 mark_object (*staticvec[i]);
34400008 4958
126f9c02
SM
4959 for (bind = specpdl; bind != specpdl_ptr; bind++)
4960 {
4961 mark_object (bind->symbol);
4962 mark_object (bind->old_value);
4963 }
6ed8eeff 4964 mark_terminals ();
126f9c02 4965 mark_kboards ();
98a92e2d 4966 mark_ttys ();
126f9c02
SM
4967
4968#ifdef USE_GTK
4969 {
dd4c5104 4970 extern void xg_mark_data (void);
126f9c02
SM
4971 xg_mark_data ();
4972 }
4973#endif
4974
34400008
GM
4975#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4976 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4977 mark_stack ();
4978#else
acf5f7d3
SM
4979 {
4980 register struct gcpro *tail;
4981 for (tail = gcprolist; tail; tail = tail->next)
4982 for (i = 0; i < tail->nvars; i++)
005ca5c7 4983 mark_object (tail->var[i]);
acf5f7d3 4984 }
3e21b6a7 4985 mark_byte_stack ();
b286858c
SM
4986 {
4987 struct catchtag *catch;
4988 struct handler *handler;
177c0ea7 4989
7146af97
JB
4990 for (catch = catchlist; catch; catch = catch->next)
4991 {
49723c04
SM
4992 mark_object (catch->tag);
4993 mark_object (catch->val);
177c0ea7 4994 }
7146af97
JB
4995 for (handler = handlerlist; handler; handler = handler->next)
4996 {
49723c04
SM
4997 mark_object (handler->handler);
4998 mark_object (handler->var);
177c0ea7 4999 }
b286858c 5000 }
b40ea20a 5001 mark_backtrace ();
b286858c 5002#endif
7146af97 5003
454d7973
KS
5004#ifdef HAVE_WINDOW_SYSTEM
5005 mark_fringe_data ();
5006#endif
5007
74c35a48
SM
5008#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5009 mark_stack ();
5010#endif
5011
c37adf23
SM
5012 /* Everything is now marked, except for the things that require special
5013 finalization, i.e. the undo_list.
5014 Look thru every buffer's undo list
4c315bda
RS
5015 for elements that update markers that were not marked,
5016 and delete them. */
5017 {
5018 register struct buffer *nextb = all_buffers;
5019
5020 while (nextb)
5021 {
5022 /* If a buffer's undo list is Qt, that means that undo is
5023 turned off in that buffer. Calling truncate_undo_list on
5024 Qt tends to return NULL, which effectively turns undo back on.
5025 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5026 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4c315bda
RS
5027 {
5028 Lisp_Object tail, prev;
5d8ea120 5029 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
4c315bda
RS
5030 prev = Qnil;
5031 while (CONSP (tail))
5032 {
8e50cc2d
SM
5033 if (CONSP (XCAR (tail))
5034 && MARKERP (XCAR (XCAR (tail)))
2336fe58 5035 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5036 {
5037 if (NILP (prev))
5d8ea120 5038 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
4c315bda 5039 else
f3fbd155
KR
5040 {
5041 tail = XCDR (tail);
5042 XSETCDR (prev, tail);
5043 }
4c315bda
RS
5044 }
5045 else
5046 {
5047 prev = tail;
70949dac 5048 tail = XCDR (tail);
4c315bda
RS
5049 }
5050 }
5051 }
c37adf23
SM
5052 /* Now that we have stripped the elements that need not be in the
5053 undo_list any more, we can finally mark the list. */
5d8ea120 5054 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
4c315bda 5055
eab3844f 5056 nextb = nextb->header.next.buffer;
4c315bda
RS
5057 }
5058 }
5059
7146af97
JB
5060 gc_sweep ();
5061
5062 /* Clear the mark bits that we set in certain root slots. */
5063
033a5fa3 5064 unmark_byte_stack ();
3ef06d12
SM
5065 VECTOR_UNMARK (&buffer_defaults);
5066 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5067
34400008
GM
5068#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5069 dump_zombies ();
5070#endif
5071
6e0fca1d
RS
5072 UNBLOCK_INPUT;
5073
bbc012e0
KS
5074 CHECK_CONS_LIST ();
5075
c23baf9f 5076 /* clear_marks (); */
7146af97
JB
5077 gc_in_progress = 0;
5078
5079 consing_since_gc = 0;
5080 if (gc_cons_threshold < 10000)
5081 gc_cons_threshold = 10000;
5082
96f077ad
SM
5083 if (FLOATP (Vgc_cons_percentage))
5084 { /* Set gc_cons_combined_threshold. */
ae35e756
PE
5085 EMACS_INT tot = 0;
5086
5087 tot += total_conses * sizeof (struct Lisp_Cons);
5088 tot += total_symbols * sizeof (struct Lisp_Symbol);
5089 tot += total_markers * sizeof (union Lisp_Misc);
5090 tot += total_string_size;
5091 tot += total_vector_size * sizeof (Lisp_Object);
5092 tot += total_floats * sizeof (struct Lisp_Float);
5093 tot += total_intervals * sizeof (struct interval);
5094 tot += total_strings * sizeof (struct Lisp_String);
5095
5096 gc_relative_threshold = tot * XFLOAT_DATA (Vgc_cons_percentage);
96f077ad 5097 }
974aae61
RS
5098 else
5099 gc_relative_threshold = 0;
96f077ad 5100
299585ee
RS
5101 if (garbage_collection_messages)
5102 {
6efc7df7
GM
5103 if (message_p || minibuf_level > 0)
5104 restore_message ();
299585ee
RS
5105 else
5106 message1_nolog ("Garbage collecting...done");
5107 }
7146af97 5108
98edb5ff 5109 unbind_to (count, Qnil);
2e471eb5
GM
5110
5111 total[0] = Fcons (make_number (total_conses),
5112 make_number (total_free_conses));
5113 total[1] = Fcons (make_number (total_symbols),
5114 make_number (total_free_symbols));
5115 total[2] = Fcons (make_number (total_markers),
5116 make_number (total_free_markers));
96117bc7
GM
5117 total[3] = make_number (total_string_size);
5118 total[4] = make_number (total_vector_size);
5119 total[5] = Fcons (make_number (total_floats),
2e471eb5 5120 make_number (total_free_floats));
96117bc7 5121 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5122 make_number (total_free_intervals));
96117bc7 5123 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5124 make_number (total_free_strings));
5125
34400008 5126#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5127 {
34400008
GM
5128 /* Compute average percentage of zombies. */
5129 double nlive = 0;
177c0ea7 5130
34400008 5131 for (i = 0; i < 7; ++i)
83fc9c63
DL
5132 if (CONSP (total[i]))
5133 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5134
5135 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5136 max_live = max (nlive, max_live);
5137 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5138 max_zombies = max (nzombies, max_zombies);
5139 ++ngcs;
5140 }
5141#endif
7146af97 5142
9e713715
GM
5143 if (!NILP (Vpost_gc_hook))
5144 {
ae35e756 5145 int gc_count = inhibit_garbage_collection ();
9e713715 5146 safe_run_hooks (Qpost_gc_hook);
ae35e756 5147 unbind_to (gc_count, Qnil);
9e713715 5148 }
2c5bd608
DL
5149
5150 /* Accumulate statistics. */
5151 EMACS_GET_TIME (t2);
5152 EMACS_SUB_TIME (t3, t2, t1);
5153 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
5154 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5155 EMACS_SECS (t3) +
5156 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
5157 gcs_done++;
5158
96117bc7 5159 return Flist (sizeof total / sizeof *total, total);
7146af97 5160}
34400008 5161
41c28a37 5162
3770920e
GM
5163/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5164 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5165
5166static void
971de7fb 5167mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5168{
5169 struct glyph_row *row = matrix->rows;
5170 struct glyph_row *end = row + matrix->nrows;
5171
2e471eb5
GM
5172 for (; row < end; ++row)
5173 if (row->enabled_p)
5174 {
5175 int area;
5176 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5177 {
5178 struct glyph *glyph = row->glyphs[area];
5179 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5180
2e471eb5 5181 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5182 if (STRINGP (glyph->object)
2e471eb5 5183 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5184 mark_object (glyph->object);
2e471eb5
GM
5185 }
5186 }
41c28a37
GM
5187}
5188
34400008 5189
41c28a37
GM
5190/* Mark Lisp faces in the face cache C. */
5191
5192static void
971de7fb 5193mark_face_cache (struct face_cache *c)
41c28a37
GM
5194{
5195 if (c)
5196 {
5197 int i, j;
5198 for (i = 0; i < c->used; ++i)
5199 {
5200 struct face *face = FACE_FROM_ID (c->f, i);
5201
5202 if (face)
5203 {
5204 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5205 mark_object (face->lface[j]);
41c28a37
GM
5206 }
5207 }
5208 }
5209}
5210
5211
7146af97 5212\f
1a4f1e2c 5213/* Mark reference to a Lisp_Object.
2e471eb5
GM
5214 If the object referred to has not been seen yet, recursively mark
5215 all the references contained in it. */
7146af97 5216
785cd37f 5217#define LAST_MARKED_SIZE 500
d3d47262 5218static Lisp_Object last_marked[LAST_MARKED_SIZE];
244ed907 5219static int last_marked_index;
785cd37f 5220
1342fc6f
RS
5221/* For debugging--call abort when we cdr down this many
5222 links of a list, in mark_object. In debugging,
5223 the call to abort will hit a breakpoint.
5224 Normally this is zero and the check never goes off. */
b895abce 5225static size_t mark_object_loop_halt;
1342fc6f 5226
8f11f7ec 5227static void
971de7fb 5228mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5229{
eab3844f 5230 register EMACS_UINT size = ptr->header.size;
14162469 5231 register EMACS_UINT i;
d2029e5b 5232
8f11f7ec 5233 eassert (!VECTOR_MARKED_P (ptr));
d2029e5b
SM
5234 VECTOR_MARK (ptr); /* Else mark it */
5235 if (size & PSEUDOVECTOR_FLAG)
5236 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5237
d2029e5b
SM
5238 /* Note that this size is not the memory-footprint size, but only
5239 the number of Lisp_Object fields that we should trace.
5240 The distinction is used e.g. by Lisp_Process which places extra
5241 non-Lisp_Object fields at the end of the structure. */
5242 for (i = 0; i < size; i++) /* and then mark its elements */
5243 mark_object (ptr->contents[i]);
d2029e5b
SM
5244}
5245
58026347
KH
5246/* Like mark_vectorlike but optimized for char-tables (and
5247 sub-char-tables) assuming that the contents are mostly integers or
5248 symbols. */
5249
5250static void
971de7fb 5251mark_char_table (struct Lisp_Vector *ptr)
58026347 5252{
eab3844f 5253 register EMACS_UINT size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
14162469 5254 register EMACS_UINT i;
58026347 5255
8f11f7ec 5256 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5257 VECTOR_MARK (ptr);
5258 for (i = 0; i < size; i++)
5259 {
5260 Lisp_Object val = ptr->contents[i];
5261
ef1b0ba7 5262 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5263 continue;
5264 if (SUB_CHAR_TABLE_P (val))
5265 {
5266 if (! VECTOR_MARKED_P (XVECTOR (val)))
5267 mark_char_table (XVECTOR (val));
5268 }
5269 else
5270 mark_object (val);
5271 }
5272}
5273
41c28a37 5274void
971de7fb 5275mark_object (Lisp_Object arg)
7146af97 5276{
49723c04 5277 register Lisp_Object obj = arg;
4f5c1376
GM
5278#ifdef GC_CHECK_MARKED_OBJECTS
5279 void *po;
5280 struct mem_node *m;
5281#endif
b895abce 5282 size_t cdr_count = 0;
7146af97 5283
9149e743 5284 loop:
7146af97 5285
1f0b3fd2 5286 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5287 return;
5288
49723c04 5289 last_marked[last_marked_index++] = obj;
785cd37f
RS
5290 if (last_marked_index == LAST_MARKED_SIZE)
5291 last_marked_index = 0;
5292
4f5c1376
GM
5293 /* Perform some sanity checks on the objects marked here. Abort if
5294 we encounter an object we know is bogus. This increases GC time
5295 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5296#ifdef GC_CHECK_MARKED_OBJECTS
5297
5298 po = (void *) XPNTR (obj);
5299
5300 /* Check that the object pointed to by PO is known to be a Lisp
5301 structure allocated from the heap. */
5302#define CHECK_ALLOCATED() \
5303 do { \
5304 m = mem_find (po); \
5305 if (m == MEM_NIL) \
5306 abort (); \
5307 } while (0)
5308
5309 /* Check that the object pointed to by PO is live, using predicate
5310 function LIVEP. */
5311#define CHECK_LIVE(LIVEP) \
5312 do { \
5313 if (!LIVEP (m, po)) \
5314 abort (); \
5315 } while (0)
5316
5317 /* Check both of the above conditions. */
5318#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5319 do { \
5320 CHECK_ALLOCATED (); \
5321 CHECK_LIVE (LIVEP); \
5322 } while (0) \
177c0ea7 5323
4f5c1376 5324#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5325
4f5c1376
GM
5326#define CHECK_LIVE(LIVEP) (void) 0
5327#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5328
4f5c1376
GM
5329#endif /* not GC_CHECK_MARKED_OBJECTS */
5330
8e50cc2d 5331 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5332 {
5333 case Lisp_String:
5334 {
5335 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5336 if (STRING_MARKED_P (ptr))
5337 break;
4f5c1376 5338 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5339 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5340 MARK_STRING (ptr);
361b097f 5341#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5342 /* Check that the string size recorded in the string is the
5343 same as the one recorded in the sdata structure. */
5344 CHECK_STRING_BYTES (ptr);
361b097f 5345#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5346 }
5347 break;
5348
76437631 5349 case Lisp_Vectorlike:
8f11f7ec
SM
5350 if (VECTOR_MARKED_P (XVECTOR (obj)))
5351 break;
4f5c1376
GM
5352#ifdef GC_CHECK_MARKED_OBJECTS
5353 m = mem_find (po);
8e50cc2d 5354 if (m == MEM_NIL && !SUBRP (obj)
4f5c1376
GM
5355 && po != &buffer_defaults
5356 && po != &buffer_local_symbols)
5357 abort ();
5358#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5359
8e50cc2d 5360 if (BUFFERP (obj))
6b552283 5361 {
4f5c1376 5362#ifdef GC_CHECK_MARKED_OBJECTS
8f11f7ec
SM
5363 if (po != &buffer_defaults && po != &buffer_local_symbols)
5364 {
5365 struct buffer *b;
179dade4 5366 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
8f11f7ec
SM
5367 ;
5368 if (b == NULL)
5369 abort ();
4f5c1376 5370 }
8f11f7ec
SM
5371#endif /* GC_CHECK_MARKED_OBJECTS */
5372 mark_buffer (obj);
6b552283 5373 }
8e50cc2d 5374 else if (SUBRP (obj))
169ee243 5375 break;
876c194c 5376 else if (COMPILEDP (obj))
2e471eb5
GM
5377 /* We could treat this just like a vector, but it is better to
5378 save the COMPILED_CONSTANTS element for last and avoid
5379 recursion there. */
169ee243
RS
5380 {
5381 register struct Lisp_Vector *ptr = XVECTOR (obj);
eab3844f 5382 register EMACS_UINT size = ptr->header.size;
14162469 5383 register EMACS_UINT i;
169ee243 5384
4f5c1376 5385 CHECK_LIVE (live_vector_p);
3ef06d12 5386 VECTOR_MARK (ptr); /* Else mark it */
76437631 5387 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
5388 for (i = 0; i < size; i++) /* and then mark its elements */
5389 {
5390 if (i != COMPILED_CONSTANTS)
49723c04 5391 mark_object (ptr->contents[i]);
169ee243 5392 }
49723c04 5393 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5394 goto loop;
5395 }
8e50cc2d 5396 else if (FRAMEP (obj))
169ee243 5397 {
c70bbf06 5398 register struct frame *ptr = XFRAME (obj);
8f11f7ec
SM
5399 mark_vectorlike (XVECTOR (obj));
5400 mark_face_cache (ptr->face_cache);
707788bd 5401 }
8e50cc2d 5402 else if (WINDOWP (obj))
41c28a37
GM
5403 {
5404 register struct Lisp_Vector *ptr = XVECTOR (obj);
5405 struct window *w = XWINDOW (obj);
8f11f7ec
SM
5406 mark_vectorlike (ptr);
5407 /* Mark glyphs for leaf windows. Marking window matrices is
5408 sufficient because frame matrices use the same glyph
5409 memory. */
5410 if (NILP (w->hchild)
5411 && NILP (w->vchild)
5412 && w->current_matrix)
41c28a37 5413 {
8f11f7ec
SM
5414 mark_glyph_matrix (w->current_matrix);
5415 mark_glyph_matrix (w->desired_matrix);
41c28a37
GM
5416 }
5417 }
8e50cc2d 5418 else if (HASH_TABLE_P (obj))
41c28a37
GM
5419 {
5420 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
8f11f7ec
SM
5421 mark_vectorlike ((struct Lisp_Vector *)h);
5422 /* If hash table is not weak, mark all keys and values.
5423 For weak tables, mark only the vector. */
5424 if (NILP (h->weak))
5425 mark_object (h->key_and_value);
5426 else
5427 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5428 }
58026347 5429 else if (CHAR_TABLE_P (obj))
8f11f7ec 5430 mark_char_table (XVECTOR (obj));
04ff9756 5431 else
d2029e5b 5432 mark_vectorlike (XVECTOR (obj));
169ee243 5433 break;
7146af97 5434
7146af97
JB
5435 case Lisp_Symbol:
5436 {
c70bbf06 5437 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5438 struct Lisp_Symbol *ptrx;
5439
8f11f7ec
SM
5440 if (ptr->gcmarkbit)
5441 break;
4f5c1376 5442 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5443 ptr->gcmarkbit = 1;
49723c04
SM
5444 mark_object (ptr->function);
5445 mark_object (ptr->plist);
ce5b453a
SM
5446 switch (ptr->redirect)
5447 {
5448 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5449 case SYMBOL_VARALIAS:
5450 {
5451 Lisp_Object tem;
5452 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5453 mark_object (tem);
5454 break;
5455 }
5456 case SYMBOL_LOCALIZED:
5457 {
5458 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5459 /* If the value is forwarded to a buffer or keyboard field,
5460 these are marked when we see the corresponding object.
5461 And if it's forwarded to a C variable, either it's not
5462 a Lisp_Object var, or it's staticpro'd already. */
5463 mark_object (blv->where);
5464 mark_object (blv->valcell);
5465 mark_object (blv->defcell);
5466 break;
5467 }
5468 case SYMBOL_FORWARDED:
5469 /* If the value is forwarded to a buffer or keyboard field,
5470 these are marked when we see the corresponding object.
5471 And if it's forwarded to a C variable, either it's not
5472 a Lisp_Object var, or it's staticpro'd already. */
5473 break;
5474 default: abort ();
5475 }
8fe5665d
KR
5476 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5477 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5478 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5479
7146af97
JB
5480 ptr = ptr->next;
5481 if (ptr)
5482 {
b0846f52 5483 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 5484 XSETSYMBOL (obj, ptrx);
49723c04 5485 goto loop;
7146af97
JB
5486 }
5487 }
5488 break;
5489
a0a38eb7 5490 case Lisp_Misc:
4f5c1376 5491 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
67ee9f6e 5492 if (XMISCANY (obj)->gcmarkbit)
2336fe58 5493 break;
67ee9f6e 5494 XMISCANY (obj)->gcmarkbit = 1;
b766f870 5495
a5da44fe 5496 switch (XMISCTYPE (obj))
a0a38eb7 5497 {
465edf35 5498
2336fe58
SM
5499 case Lisp_Misc_Marker:
5500 /* DO NOT mark thru the marker's chain.
5501 The buffer's markers chain does not preserve markers from gc;
5502 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5503 break;
5504
8f924df7 5505 case Lisp_Misc_Save_Value:
9ea306d1 5506#if GC_MARK_STACK
b766f870
KS
5507 {
5508 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5509 /* If DOGC is set, POINTER is the address of a memory
5510 area containing INTEGER potential Lisp_Objects. */
5511 if (ptr->dogc)
5512 {
5513 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5514 int nelt;
5515 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5516 mark_maybe_object (*p);
5517 }
5518 }
9ea306d1 5519#endif
c8616056
KH
5520 break;
5521
e202fa34
KH
5522 case Lisp_Misc_Overlay:
5523 {
5524 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5525 mark_object (ptr->start);
5526 mark_object (ptr->end);
f54253ec
SM
5527 mark_object (ptr->plist);
5528 if (ptr->next)
5529 {
5530 XSETMISC (obj, ptr->next);
5531 goto loop;
5532 }
e202fa34
KH
5533 }
5534 break;
5535
a0a38eb7
KH
5536 default:
5537 abort ();
5538 }
7146af97
JB
5539 break;
5540
5541 case Lisp_Cons:
7146af97
JB
5542 {
5543 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
5544 if (CONS_MARKED_P (ptr))
5545 break;
4f5c1376 5546 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5547 CONS_MARK (ptr);
c54ca951 5548 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 5549 if (EQ (ptr->u.cdr, Qnil))
c54ca951 5550 {
49723c04 5551 obj = ptr->car;
1342fc6f 5552 cdr_count = 0;
c54ca951
RS
5553 goto loop;
5554 }
49723c04 5555 mark_object (ptr->car);
28a099a4 5556 obj = ptr->u.cdr;
1342fc6f
RS
5557 cdr_count++;
5558 if (cdr_count == mark_object_loop_halt)
5559 abort ();
7146af97
JB
5560 goto loop;
5561 }
5562
7146af97 5563 case Lisp_Float:
4f5c1376 5564 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5565 FLOAT_MARK (XFLOAT (obj));
7146af97 5566 break;
7146af97 5567
2de9f71c 5568 case_Lisp_Int:
7146af97
JB
5569 break;
5570
5571 default:
5572 abort ();
5573 }
4f5c1376
GM
5574
5575#undef CHECK_LIVE
5576#undef CHECK_ALLOCATED
5577#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5578}
5579
5580/* Mark the pointers in a buffer structure. */
5581
5582static void
971de7fb 5583mark_buffer (Lisp_Object buf)
7146af97 5584{
7146af97 5585 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5586 register Lisp_Object *ptr, tmp;
30e3190a 5587 Lisp_Object base_buffer;
7146af97 5588
8f11f7ec 5589 eassert (!VECTOR_MARKED_P (buffer));
3ef06d12 5590 VECTOR_MARK (buffer);
7146af97 5591
30e3190a 5592 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5593
c37adf23
SM
5594 /* For now, we just don't mark the undo_list. It's done later in
5595 a special way just before the sweep phase, and after stripping
5596 some of its elements that are not needed any more. */
4c315bda 5597
f54253ec
SM
5598 if (buffer->overlays_before)
5599 {
5600 XSETMISC (tmp, buffer->overlays_before);
5601 mark_object (tmp);
5602 }
5603 if (buffer->overlays_after)
5604 {
5605 XSETMISC (tmp, buffer->overlays_after);
5606 mark_object (tmp);
5607 }
5608
9ce376f9
SM
5609 /* buffer-local Lisp variables start at `undo_list',
5610 tho only the ones from `name' on are GC'd normally. */
5d8ea120 5611 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
7146af97
JB
5612 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5613 ptr++)
49723c04 5614 mark_object (*ptr);
30e3190a
RS
5615
5616 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5617 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5618 {
177c0ea7 5619 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5620 mark_buffer (base_buffer);
5621 }
7146af97 5622}
084b1a0c 5623
4a729fd8
SM
5624/* Mark the Lisp pointers in the terminal objects.
5625 Called by the Fgarbage_collector. */
5626
4a729fd8
SM
5627static void
5628mark_terminals (void)
5629{
5630 struct terminal *t;
5631 for (t = terminal_list; t; t = t->next_terminal)
5632 {
5633 eassert (t->name != NULL);
354884c4 5634#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
5635 /* If a terminal object is reachable from a stacpro'ed object,
5636 it might have been marked already. Make sure the image cache
5637 gets marked. */
5638 mark_image_cache (t->image_cache);
354884c4 5639#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
5640 if (!VECTOR_MARKED_P (t))
5641 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
5642 }
5643}
5644
5645
084b1a0c 5646
41c28a37
GM
5647/* Value is non-zero if OBJ will survive the current GC because it's
5648 either marked or does not need to be marked to survive. */
5649
5650int
971de7fb 5651survives_gc_p (Lisp_Object obj)
41c28a37
GM
5652{
5653 int survives_p;
177c0ea7 5654
8e50cc2d 5655 switch (XTYPE (obj))
41c28a37 5656 {
2de9f71c 5657 case_Lisp_Int:
41c28a37
GM
5658 survives_p = 1;
5659 break;
5660
5661 case Lisp_Symbol:
2336fe58 5662 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5663 break;
5664
5665 case Lisp_Misc:
67ee9f6e 5666 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
5667 break;
5668
5669 case Lisp_String:
08b7c2cb 5670 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5671 break;
5672
5673 case Lisp_Vectorlike:
8e50cc2d 5674 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5675 break;
5676
5677 case Lisp_Cons:
08b7c2cb 5678 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5679 break;
5680
41c28a37 5681 case Lisp_Float:
ab6780cd 5682 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5683 break;
41c28a37
GM
5684
5685 default:
5686 abort ();
5687 }
5688
34400008 5689 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5690}
5691
5692
7146af97 5693\f
1a4f1e2c 5694/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5695
5696static void
971de7fb 5697gc_sweep (void)
7146af97 5698{
41c28a37
GM
5699 /* Remove or mark entries in weak hash tables.
5700 This must be done before any object is unmarked. */
5701 sweep_weak_hash_tables ();
5702
2e471eb5 5703 sweep_strings ();
676a7251
GM
5704#ifdef GC_CHECK_STRING_BYTES
5705 if (!noninteractive)
5706 check_string_bytes (1);
5707#endif
7146af97
JB
5708
5709 /* Put all unmarked conses on free list */
5710 {
5711 register struct cons_block *cblk;
6ca94ac9 5712 struct cons_block **cprev = &cons_block;
7146af97
JB
5713 register int lim = cons_block_index;
5714 register int num_free = 0, num_used = 0;
5715
5716 cons_free_list = 0;
177c0ea7 5717
6ca94ac9 5718 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 5719 {
3ae2e3a3 5720 register int i = 0;
6ca94ac9 5721 int this_free = 0;
3ae2e3a3
RS
5722 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5723
5724 /* Scan the mark bits an int at a time. */
5725 for (i = 0; i <= ilim; i++)
5726 {
5727 if (cblk->gcmarkbits[i] == -1)
5728 {
5729 /* Fast path - all cons cells for this int are marked. */
5730 cblk->gcmarkbits[i] = 0;
5731 num_used += BITS_PER_INT;
5732 }
5733 else
5734 {
5735 /* Some cons cells for this int are not marked.
5736 Find which ones, and free them. */
5737 int start, pos, stop;
5738
5739 start = i * BITS_PER_INT;
5740 stop = lim - start;
5741 if (stop > BITS_PER_INT)
5742 stop = BITS_PER_INT;
5743 stop += start;
5744
5745 for (pos = start; pos < stop; pos++)
5746 {
5747 if (!CONS_MARKED_P (&cblk->conses[pos]))
5748 {
5749 this_free++;
5750 cblk->conses[pos].u.chain = cons_free_list;
5751 cons_free_list = &cblk->conses[pos];
34400008 5752#if GC_MARK_STACK
3ae2e3a3 5753 cons_free_list->car = Vdead;
34400008 5754#endif
3ae2e3a3
RS
5755 }
5756 else
5757 {
5758 num_used++;
5759 CONS_UNMARK (&cblk->conses[pos]);
5760 }
5761 }
5762 }
5763 }
5764
7146af97 5765 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5766 /* If this block contains only free conses and we have already
5767 seen more than two blocks worth of free conses then deallocate
5768 this block. */
6feef451 5769 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5770 {
6ca94ac9
KH
5771 *cprev = cblk->next;
5772 /* Unhook from the free list. */
28a099a4 5773 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 5774 lisp_align_free (cblk);
c8099634 5775 n_cons_blocks--;
6ca94ac9
KH
5776 }
5777 else
6feef451
AS
5778 {
5779 num_free += this_free;
5780 cprev = &cblk->next;
5781 }
7146af97
JB
5782 }
5783 total_conses = num_used;
5784 total_free_conses = num_free;
5785 }
5786
7146af97
JB
5787 /* Put all unmarked floats on free list */
5788 {
5789 register struct float_block *fblk;
6ca94ac9 5790 struct float_block **fprev = &float_block;
7146af97
JB
5791 register int lim = float_block_index;
5792 register int num_free = 0, num_used = 0;
5793
5794 float_free_list = 0;
177c0ea7 5795
6ca94ac9 5796 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5797 {
5798 register int i;
6ca94ac9 5799 int this_free = 0;
7146af97 5800 for (i = 0; i < lim; i++)
ab6780cd 5801 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5802 {
6ca94ac9 5803 this_free++;
28a099a4 5804 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
5805 float_free_list = &fblk->floats[i];
5806 }
5807 else
5808 {
5809 num_used++;
ab6780cd 5810 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5811 }
5812 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5813 /* If this block contains only free floats and we have already
5814 seen more than two blocks worth of free floats then deallocate
5815 this block. */
6feef451 5816 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5817 {
6ca94ac9
KH
5818 *fprev = fblk->next;
5819 /* Unhook from the free list. */
28a099a4 5820 float_free_list = fblk->floats[0].u.chain;
ab6780cd 5821 lisp_align_free (fblk);
c8099634 5822 n_float_blocks--;
6ca94ac9
KH
5823 }
5824 else
6feef451
AS
5825 {
5826 num_free += this_free;
5827 fprev = &fblk->next;
5828 }
7146af97
JB
5829 }
5830 total_floats = num_used;
5831 total_free_floats = num_free;
5832 }
7146af97 5833
d5e35230
JA
5834 /* Put all unmarked intervals on free list */
5835 {
5836 register struct interval_block *iblk;
6ca94ac9 5837 struct interval_block **iprev = &interval_block;
d5e35230
JA
5838 register int lim = interval_block_index;
5839 register int num_free = 0, num_used = 0;
5840
5841 interval_free_list = 0;
5842
6ca94ac9 5843 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5844 {
5845 register int i;
6ca94ac9 5846 int this_free = 0;
d5e35230
JA
5847
5848 for (i = 0; i < lim; i++)
5849 {
2336fe58 5850 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5851 {
439d5cb4 5852 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5853 interval_free_list = &iblk->intervals[i];
6ca94ac9 5854 this_free++;
d5e35230
JA
5855 }
5856 else
5857 {
5858 num_used++;
2336fe58 5859 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5860 }
5861 }
5862 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5863 /* If this block contains only free intervals and we have already
5864 seen more than two blocks worth of free intervals then
5865 deallocate this block. */
6feef451 5866 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5867 {
6ca94ac9
KH
5868 *iprev = iblk->next;
5869 /* Unhook from the free list. */
439d5cb4 5870 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
5871 lisp_free (iblk);
5872 n_interval_blocks--;
6ca94ac9
KH
5873 }
5874 else
6feef451
AS
5875 {
5876 num_free += this_free;
5877 iprev = &iblk->next;
5878 }
d5e35230
JA
5879 }
5880 total_intervals = num_used;
5881 total_free_intervals = num_free;
5882 }
d5e35230 5883
7146af97
JB
5884 /* Put all unmarked symbols on free list */
5885 {
5886 register struct symbol_block *sblk;
6ca94ac9 5887 struct symbol_block **sprev = &symbol_block;
7146af97
JB
5888 register int lim = symbol_block_index;
5889 register int num_free = 0, num_used = 0;
5890
d285b373 5891 symbol_free_list = NULL;
177c0ea7 5892
6ca94ac9 5893 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5894 {
6ca94ac9 5895 int this_free = 0;
d285b373
GM
5896 struct Lisp_Symbol *sym = sblk->symbols;
5897 struct Lisp_Symbol *end = sym + lim;
5898
5899 for (; sym < end; ++sym)
5900 {
20035321
SM
5901 /* Check if the symbol was created during loadup. In such a case
5902 it might be pointed to by pure bytecode which we don't trace,
5903 so we conservatively assume that it is live. */
8fe5665d 5904 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 5905
2336fe58 5906 if (!sym->gcmarkbit && !pure_p)
d285b373 5907 {
ce5b453a
SM
5908 if (sym->redirect == SYMBOL_LOCALIZED)
5909 xfree (SYMBOL_BLV (sym));
28a099a4 5910 sym->next = symbol_free_list;
d285b373 5911 symbol_free_list = sym;
34400008 5912#if GC_MARK_STACK
d285b373 5913 symbol_free_list->function = Vdead;
34400008 5914#endif
d285b373
GM
5915 ++this_free;
5916 }
5917 else
5918 {
5919 ++num_used;
5920 if (!pure_p)
8fe5665d 5921 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 5922 sym->gcmarkbit = 0;
d285b373
GM
5923 }
5924 }
177c0ea7 5925
7146af97 5926 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
5927 /* If this block contains only free symbols and we have already
5928 seen more than two blocks worth of free symbols then deallocate
5929 this block. */
6feef451 5930 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 5931 {
6ca94ac9
KH
5932 *sprev = sblk->next;
5933 /* Unhook from the free list. */
28a099a4 5934 symbol_free_list = sblk->symbols[0].next;
c8099634
RS
5935 lisp_free (sblk);
5936 n_symbol_blocks--;
6ca94ac9
KH
5937 }
5938 else
6feef451
AS
5939 {
5940 num_free += this_free;
5941 sprev = &sblk->next;
5942 }
7146af97
JB
5943 }
5944 total_symbols = num_used;
5945 total_free_symbols = num_free;
5946 }
5947
a9faeabe
RS
5948 /* Put all unmarked misc's on free list.
5949 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
5950 {
5951 register struct marker_block *mblk;
6ca94ac9 5952 struct marker_block **mprev = &marker_block;
7146af97
JB
5953 register int lim = marker_block_index;
5954 register int num_free = 0, num_used = 0;
5955
5956 marker_free_list = 0;
177c0ea7 5957
6ca94ac9 5958 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
5959 {
5960 register int i;
6ca94ac9 5961 int this_free = 0;
fa05e253 5962
7146af97 5963 for (i = 0; i < lim; i++)
465edf35 5964 {
d314756e 5965 if (!mblk->markers[i].u_any.gcmarkbit)
465edf35 5966 {
d314756e 5967 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
ef89c2ce 5968 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
5969 /* Set the type of the freed object to Lisp_Misc_Free.
5970 We could leave the type alone, since nobody checks it,
465edf35 5971 but this might catch bugs faster. */
a5da44fe 5972 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
5973 mblk->markers[i].u_free.chain = marker_free_list;
5974 marker_free_list = &mblk->markers[i];
6ca94ac9 5975 this_free++;
465edf35
KH
5976 }
5977 else
5978 {
5979 num_used++;
d314756e 5980 mblk->markers[i].u_any.gcmarkbit = 0;
465edf35
KH
5981 }
5982 }
7146af97 5983 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
5984 /* If this block contains only free markers and we have already
5985 seen more than two blocks worth of free markers then deallocate
5986 this block. */
6feef451 5987 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 5988 {
6ca94ac9
KH
5989 *mprev = mblk->next;
5990 /* Unhook from the free list. */
5991 marker_free_list = mblk->markers[0].u_free.chain;
c8099634
RS
5992 lisp_free (mblk);
5993 n_marker_blocks--;
6ca94ac9
KH
5994 }
5995 else
6feef451
AS
5996 {
5997 num_free += this_free;
5998 mprev = &mblk->next;
5999 }
7146af97
JB
6000 }
6001
6002 total_markers = num_used;
6003 total_free_markers = num_free;
6004 }
6005
6006 /* Free all unmarked buffers */
6007 {
6008 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6009
6010 while (buffer)
3ef06d12 6011 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6012 {
6013 if (prev)
eab3844f 6014 prev->header.next = buffer->header.next;
7146af97 6015 else
eab3844f
PE
6016 all_buffers = buffer->header.next.buffer;
6017 next = buffer->header.next.buffer;
34400008 6018 lisp_free (buffer);
7146af97
JB
6019 buffer = next;
6020 }
6021 else
6022 {
3ef06d12 6023 VECTOR_UNMARK (buffer);
30e3190a 6024 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
eab3844f 6025 prev = buffer, buffer = buffer->header.next.buffer;
7146af97
JB
6026 }
6027 }
6028
7146af97
JB
6029 /* Free all unmarked vectors */
6030 {
6031 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6032 total_vector_size = 0;
6033
6034 while (vector)
3ef06d12 6035 if (!VECTOR_MARKED_P (vector))
7146af97
JB
6036 {
6037 if (prev)
eab3844f 6038 prev->header.next = vector->header.next;
7146af97 6039 else
eab3844f
PE
6040 all_vectors = vector->header.next.vector;
6041 next = vector->header.next.vector;
c8099634
RS
6042 lisp_free (vector);
6043 n_vectors--;
7146af97 6044 vector = next;
41c28a37 6045
7146af97
JB
6046 }
6047 else
6048 {
3ef06d12 6049 VECTOR_UNMARK (vector);
eab3844f
PE
6050 if (vector->header.size & PSEUDOVECTOR_FLAG)
6051 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
fa05e253 6052 else
eab3844f
PE
6053 total_vector_size += vector->header.size;
6054 prev = vector, vector = vector->header.next.vector;
7146af97
JB
6055 }
6056 }
177c0ea7 6057
676a7251
GM
6058#ifdef GC_CHECK_STRING_BYTES
6059 if (!noninteractive)
6060 check_string_bytes (1);
6061#endif
7146af97 6062}
7146af97 6063
7146af97 6064
7146af97 6065
7146af97 6066\f
20d24714
JB
6067/* Debugging aids. */
6068
31ce1c91 6069DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6070 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6071This may be helpful in debugging Emacs's memory usage.
7ee72033 6072We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6073 (void)
20d24714
JB
6074{
6075 Lisp_Object end;
6076
d01a7826 6077 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
20d24714
JB
6078
6079 return end;
6080}
6081
310ea200 6082DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6083 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6084Each of these counters increments for a certain kind of object.
6085The counters wrap around from the largest positive integer to zero.
6086Garbage collection does not decrease them.
6087The elements of the value are as follows:
6088 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6089All are in units of 1 = one object consed
6090except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6091objects consed.
6092MISCS include overlays, markers, and some internal types.
6093Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6094 (but the contents of a buffer's text do not count here). */)
5842a27b 6095 (void)
310ea200 6096{
2e471eb5 6097 Lisp_Object consed[8];
310ea200 6098
78e985eb
GM
6099 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6100 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6101 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6102 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6103 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6104 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6105 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6106 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6107
2e471eb5 6108 return Flist (8, consed);
310ea200 6109}
e0b8c689 6110
244ed907 6111#ifdef ENABLE_CHECKING
e0b8c689 6112int suppress_checking;
d3d47262 6113
e0b8c689 6114void
971de7fb 6115die (const char *msg, const char *file, int line)
e0b8c689 6116{
67ee9f6e 6117 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6118 file, line, msg);
6119 abort ();
6120}
244ed907 6121#endif
20d24714 6122\f
7146af97
JB
6123/* Initialization */
6124
dfcf069d 6125void
971de7fb 6126init_alloc_once (void)
7146af97
JB
6127{
6128 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6129 purebeg = PUREBEG;
6130 pure_size = PURESIZE;
1f0b3fd2 6131 pure_bytes_used = 0;
e5bc14d4 6132 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
9e713715
GM
6133 pure_bytes_used_before_overflow = 0;
6134
ab6780cd
SM
6135 /* Initialize the list of free aligned blocks. */
6136 free_ablock = NULL;
6137
877935b1 6138#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6139 mem_init ();
6140 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6141#endif
9e713715 6142
7146af97
JB
6143 all_vectors = 0;
6144 ignore_warnings = 1;
d1658221
RS
6145#ifdef DOUG_LEA_MALLOC
6146 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6147 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6148 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6149#endif
7146af97
JB
6150 init_strings ();
6151 init_cons ();
6152 init_symbol ();
6153 init_marker ();
7146af97 6154 init_float ();
34400008 6155 init_intervals ();
5ac58e4c 6156 init_weak_hash_tables ();
d5e35230 6157
276cbe5a
RS
6158#ifdef REL_ALLOC
6159 malloc_hysteresis = 32;
6160#else
6161 malloc_hysteresis = 0;
6162#endif
6163
24d8a105 6164 refill_memory_reserve ();
276cbe5a 6165
7146af97
JB
6166 ignore_warnings = 0;
6167 gcprolist = 0;
630686c8 6168 byte_stack_list = 0;
7146af97
JB
6169 staticidx = 0;
6170 consing_since_gc = 0;
7d179cea 6171 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61 6172 gc_relative_threshold = 0;
7146af97
JB
6173}
6174
dfcf069d 6175void
971de7fb 6176init_alloc (void)
7146af97
JB
6177{
6178 gcprolist = 0;
630686c8 6179 byte_stack_list = 0;
182ff242
GM
6180#if GC_MARK_STACK
6181#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6182 setjmp_tested_p = longjmps_done = 0;
6183#endif
6184#endif
2c5bd608
DL
6185 Vgc_elapsed = make_float (0.0);
6186 gcs_done = 0;
7146af97
JB
6187}
6188
6189void
971de7fb 6190syms_of_alloc (void)
7146af97 6191{
29208e82 6192 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
a6266d23 6193 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
6194Garbage collection can happen automatically once this many bytes have been
6195allocated since the last garbage collection. All data types count.
7146af97 6196
228299fa 6197Garbage collection happens automatically only when `eval' is called.
7146af97 6198
228299fa 6199By binding this temporarily to a large number, you can effectively
96f077ad
SM
6200prevent garbage collection during a part of the program.
6201See also `gc-cons-percentage'. */);
6202
29208e82 6203 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
96f077ad
SM
6204 doc: /* *Portion of the heap used for allocation.
6205Garbage collection can happen automatically once this portion of the heap
6206has been allocated since the last garbage collection.
6207If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6208 Vgc_cons_percentage = make_float (0.1);
0819585c 6209
29208e82 6210 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
a6266d23 6211 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 6212
29208e82 6213 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6214 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6215
29208e82 6216 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6217 doc: /* Number of floats that have been consed so far. */);
0819585c 6218
29208e82 6219 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6220 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6221
29208e82 6222 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6223 doc: /* Number of symbols that have been consed so far. */);
0819585c 6224
29208e82 6225 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6226 doc: /* Number of string characters that have been consed so far. */);
0819585c 6227
29208e82 6228 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
a6266d23 6229 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 6230
29208e82 6231 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6232 doc: /* Number of intervals that have been consed so far. */);
7146af97 6233
29208e82 6234 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6235 doc: /* Number of strings that have been consed so far. */);
228299fa 6236
29208e82 6237 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6238 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6239This means that certain objects should be allocated in shared (pure) space.
6240It can also be set to a hash-table, in which case this table is used to
6241do hash-consing of the objects allocated to pure space. */);
228299fa 6242
29208e82 6243 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6244 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6245 garbage_collection_messages = 0;
6246
29208e82 6247 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6248 doc: /* Hook run after garbage collection has finished. */);
9e713715 6249 Vpost_gc_hook = Qnil;
d67b4f80 6250 Qpost_gc_hook = intern_c_string ("post-gc-hook");
9e713715
GM
6251 staticpro (&Qpost_gc_hook);
6252
29208e82 6253 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6254 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6255 /* We build this in advance because if we wait until we need it, we might
6256 not be able to allocate the memory to hold it. */
74a54b04 6257 Vmemory_signal_data
f4265f6c
DN
6258 = pure_cons (Qerror,
6259 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
74a54b04 6260
29208e82 6261 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6262 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6263 Vmemory_full = Qnil;
bcb61d60 6264
e8197642 6265 staticpro (&Qgc_cons_threshold);
d67b4f80 6266 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
e8197642 6267
a59de17b 6268 staticpro (&Qchar_table_extra_slots);
d67b4f80 6269 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
a59de17b 6270
29208e82 6271 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6272 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6273The time is in seconds as a floating point value. */);
29208e82 6274 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6275 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6276
7146af97
JB
6277 defsubr (&Scons);
6278 defsubr (&Slist);
6279 defsubr (&Svector);
6280 defsubr (&Smake_byte_code);
6281 defsubr (&Smake_list);
6282 defsubr (&Smake_vector);
6283 defsubr (&Smake_string);
7b07587b 6284 defsubr (&Smake_bool_vector);
7146af97
JB
6285 defsubr (&Smake_symbol);
6286 defsubr (&Smake_marker);
6287 defsubr (&Spurecopy);
6288 defsubr (&Sgarbage_collect);
20d24714 6289 defsubr (&Smemory_limit);
310ea200 6290 defsubr (&Smemory_use_counts);
34400008
GM
6291
6292#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6293 defsubr (&Sgc_status);
6294#endif
7146af97 6295}