* alloc.c (garbage_collect): Don't assume stack size fits in int.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
73b0cd50 2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
8cabe764 3 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
9ec0b715 7GNU Emacs is free software: you can redistribute it and/or modify
7146af97 8it under the terms of the GNU General Public License as published by
9ec0b715
GM
9the Free Software Foundation, either version 3 of the License, or
10(at your option) any later version.
7146af97
JB
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
9ec0b715 18along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 19
18160b98 20#include <config.h>
e9b309ac 21#include <stdio.h>
ab6780cd 22#include <limits.h> /* For CHAR_BIT. */
d7306fe6 23#include <setjmp.h>
92939d31 24
4455ad75
RS
25#ifdef ALLOC_DEBUG
26#undef INLINE
27#endif
28
68c45bf0 29#include <signal.h>
92939d31 30
aa477689
JD
31#ifdef HAVE_GTK_AND_PTHREAD
32#include <pthread.h>
33#endif
34
7539e11f
KR
35/* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
2e471eb5 38
7539e11f 39#undef HIDE_LISP_IMPLEMENTATION
7146af97 40#include "lisp.h"
ece93c02 41#include "process.h"
d5e35230 42#include "intervals.h"
4c0be5f4 43#include "puresize.h"
7146af97
JB
44#include "buffer.h"
45#include "window.h"
2538fae4 46#include "keyboard.h"
502b9b64 47#include "frame.h"
9ac0d9e0 48#include "blockinput.h"
9d80e883 49#include "character.h"
e065a56e 50#include "syssignal.h"
4a729fd8 51#include "termhooks.h" /* For struct terminal. */
34400008 52#include <setjmp.h>
e065a56e 53
6b61353c
KH
54/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58#undef GC_MALLOC_CHECK
59#endif
60
bf952fb6 61#include <unistd.h>
4004364e 62#ifndef HAVE_UNISTD_H
bf952fb6
DL
63extern POINTER_TYPE *sbrk ();
64#endif
ee1eea5c 65
de7124a7 66#include <fcntl.h>
de7124a7 67
69666f77 68#ifdef WINDOWSNT
f892cf9c 69#include "w32.h"
69666f77
EZ
70#endif
71
d1658221 72#ifdef DOUG_LEA_MALLOC
2e471eb5 73
d1658221 74#include <malloc.h>
3e60b029
DL
75/* malloc.h #defines this as size_t, at least in glibc2. */
76#ifndef __malloc_size_t
d1658221 77#define __malloc_size_t int
3e60b029 78#endif
81d492d5 79
2e471eb5
GM
80/* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
81d492d5
RS
83#define MMAP_MAX_AREAS 100000000
84
2e471eb5
GM
85#else /* not DOUG_LEA_MALLOC */
86
276cbe5a
RS
87/* The following come from gmalloc.c. */
88
276cbe5a 89#define __malloc_size_t size_t
276cbe5a 90extern __malloc_size_t _bytes_used;
3e60b029 91extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
92
93#endif /* not DOUG_LEA_MALLOC */
276cbe5a 94
7bc26fdb
PE
95#if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
96#ifdef HAVE_GTK_AND_PTHREAD
aa477689 97
f415cacd
JD
98/* When GTK uses the file chooser dialog, different backends can be loaded
99 dynamically. One such a backend is the Gnome VFS backend that gets loaded
100 if you run Gnome. That backend creates several threads and also allocates
101 memory with malloc.
102
103 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
104 functions below are called from malloc, there is a chance that one
105 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 106 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
107 that the backend handles concurrent access to malloc within its own threads
108 but Emacs code running in the main thread is not included in that control).
109
026cdede 110 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
111 happens in one of the backend threads we will have two threads that tries
112 to run Emacs code at once, and the code is not prepared for that.
113 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114
aa477689 115static pthread_mutex_t alloc_mutex;
aa477689 116
959dc601
JD
117#define BLOCK_INPUT_ALLOC \
118 do \
119 { \
120 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 121 BLOCK_INPUT; \
959dc601
JD
122 pthread_mutex_lock (&alloc_mutex); \
123 } \
aa477689 124 while (0)
959dc601
JD
125#define UNBLOCK_INPUT_ALLOC \
126 do \
127 { \
128 pthread_mutex_unlock (&alloc_mutex); \
129 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 130 UNBLOCK_INPUT; \
959dc601 131 } \
aa477689
JD
132 while (0)
133
7bc26fdb 134#else /* ! defined HAVE_GTK_AND_PTHREAD */
aa477689
JD
135
136#define BLOCK_INPUT_ALLOC BLOCK_INPUT
137#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138
7bc26fdb
PE
139#endif /* ! defined HAVE_GTK_AND_PTHREAD */
140#endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
aa477689 141
276cbe5a 142/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 143
276cbe5a
RS
144static __malloc_size_t bytes_used_when_full;
145
2e471eb5
GM
146/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
147 to a struct Lisp_String. */
148
7cdee936
SM
149#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
150#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 151#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 152
3ef06d12
SM
153#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
154#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
b059de99 155#define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
3ef06d12 156
7bc26fdb
PE
157/* Value is the number of bytes of S, a pointer to a struct Lisp_String.
158 Be careful during GC, because S->size contains the mark bit for
2e471eb5
GM
159 strings. */
160
3ef06d12 161#define GC_STRING_BYTES(S) (STRING_BYTES (S))
2e471eb5 162
29208e82
TT
163/* Global variables. */
164struct emacs_globals globals;
165
2e471eb5
GM
166/* Number of bytes of consing done since the last gc. */
167
7146af97
JB
168int consing_since_gc;
169
974aae61
RS
170/* Similar minimum, computed from Vgc_cons_percentage. */
171
172EMACS_INT gc_relative_threshold;
310ea200 173
24d8a105
RS
174/* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
176
177EMACS_INT memory_full_cons_threshold;
178
2e471eb5
GM
179/* Nonzero during GC. */
180
7146af97
JB
181int gc_in_progress;
182
3de0effb
RS
183/* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187int abort_on_gc;
188
34400008
GM
189/* Number of live and free conses etc. */
190
191static int total_conses, total_markers, total_symbols, total_vector_size;
192static int total_free_conses, total_free_markers, total_free_symbols;
193static int total_free_floats, total_floats;
fd27a537 194
2e471eb5 195/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
2e471eb5 198
d3d47262 199static char *spare_memory[7];
276cbe5a 200
24d8a105 201/* Amount of spare memory to keep in large reserve block. */
2e471eb5 202
276cbe5a
RS
203#define SPARE_MEMORY (1 << 14)
204
205/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 206
276cbe5a
RS
207static int malloc_hysteresis;
208
1b8950e5
RS
209/* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
2e471eb5 214
2c4685ee 215EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 216#define PUREBEG (char *) pure
2e471eb5 217
9e713715 218/* Pointer to the pure area, and its size. */
2e471eb5 219
9e713715
GM
220static char *purebeg;
221static size_t pure_size;
222
223/* Number of bytes of pure storage used before pure storage overflowed.
224 If this is non-zero, this implies that an overflow occurred. */
225
226static size_t pure_bytes_used_before_overflow;
7146af97 227
34400008
GM
228/* Value is non-zero if P points into pure space. */
229
230#define PURE_POINTER_P(P) \
231 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 232 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 233 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 234 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 235
e5bc14d4
YM
236/* Index in pure at which next pure Lisp object will be allocated.. */
237
238static EMACS_INT pure_bytes_used_lisp;
239
240/* Number of bytes allocated for non-Lisp objects in pure storage. */
241
242static EMACS_INT pure_bytes_used_non_lisp;
243
2e471eb5
GM
244/* If nonzero, this is a warning delivered by malloc and not yet
245 displayed. */
246
a8fe7202 247const char *pending_malloc_warning;
7146af97
JB
248
249/* Maximum amount of C stack to save when a GC happens. */
250
251#ifndef MAX_SAVE_STACK
252#define MAX_SAVE_STACK 16000
253#endif
254
255/* Buffer in which we save a copy of the C stack at each GC. */
256
dd3f25f7 257#if MAX_SAVE_STACK > 0
d3d47262 258static char *stack_copy;
dd3f25f7
PE
259static size_t stack_copy_size;
260#endif
7146af97 261
2e471eb5
GM
262/* Non-zero means ignore malloc warnings. Set during initialization.
263 Currently not used. */
264
d3d47262 265static int ignore_warnings;
350273a4 266
a59de17b 267Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 268
9e713715
GM
269/* Hook run after GC has finished. */
270
29208e82 271Lisp_Object Qpost_gc_hook;
2c5bd608 272
f57e2426
J
273static void mark_buffer (Lisp_Object);
274static void mark_terminals (void);
f57e2426
J
275static void gc_sweep (void);
276static void mark_glyph_matrix (struct glyph_matrix *);
277static void mark_face_cache (struct face_cache *);
41c28a37 278
f57e2426
J
279static struct Lisp_String *allocate_string (void);
280static void compact_small_strings (void);
281static void free_large_strings (void);
282static void sweep_strings (void);
7da0b0d3
RS
283
284extern int message_enable_multibyte;
34400008 285
34400008
GM
286/* When scanning the C stack for live Lisp objects, Emacs keeps track
287 of what memory allocated via lisp_malloc is intended for what
288 purpose. This enumeration specifies the type of memory. */
289
290enum mem_type
291{
292 MEM_TYPE_NON_LISP,
293 MEM_TYPE_BUFFER,
294 MEM_TYPE_CONS,
295 MEM_TYPE_STRING,
296 MEM_TYPE_MISC,
297 MEM_TYPE_SYMBOL,
298 MEM_TYPE_FLOAT,
9c545a55
SM
299 /* We used to keep separate mem_types for subtypes of vectors such as
300 process, hash_table, frame, terminal, and window, but we never made
301 use of the distinction, so it only caused source-code complexity
302 and runtime slowdown. Minor but pointless. */
303 MEM_TYPE_VECTORLIKE
34400008
GM
304};
305
f57e2426
J
306static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
307static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
225ccad6 308
24d8a105 309
877935b1 310#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
311
312#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
313#include <stdio.h> /* For fprintf. */
314#endif
315
316/* A unique object in pure space used to make some Lisp objects
317 on free lists recognizable in O(1). */
318
d3d47262 319static Lisp_Object Vdead;
0b378936 320
877935b1
GM
321#ifdef GC_MALLOC_CHECK
322
323enum mem_type allocated_mem_type;
d3d47262 324static int dont_register_blocks;
877935b1
GM
325
326#endif /* GC_MALLOC_CHECK */
327
328/* A node in the red-black tree describing allocated memory containing
329 Lisp data. Each such block is recorded with its start and end
330 address when it is allocated, and removed from the tree when it
331 is freed.
332
333 A red-black tree is a balanced binary tree with the following
334 properties:
335
336 1. Every node is either red or black.
337 2. Every leaf is black.
338 3. If a node is red, then both of its children are black.
339 4. Every simple path from a node to a descendant leaf contains
340 the same number of black nodes.
341 5. The root is always black.
342
343 When nodes are inserted into the tree, or deleted from the tree,
344 the tree is "fixed" so that these properties are always true.
345
346 A red-black tree with N internal nodes has height at most 2
347 log(N+1). Searches, insertions and deletions are done in O(log N).
348 Please see a text book about data structures for a detailed
349 description of red-black trees. Any book worth its salt should
350 describe them. */
351
352struct mem_node
353{
9f7d9210
RS
354 /* Children of this node. These pointers are never NULL. When there
355 is no child, the value is MEM_NIL, which points to a dummy node. */
356 struct mem_node *left, *right;
357
358 /* The parent of this node. In the root node, this is NULL. */
359 struct mem_node *parent;
877935b1
GM
360
361 /* Start and end of allocated region. */
362 void *start, *end;
363
364 /* Node color. */
365 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 366
877935b1
GM
367 /* Memory type. */
368 enum mem_type type;
369};
370
371/* Base address of stack. Set in main. */
372
373Lisp_Object *stack_base;
374
375/* Root of the tree describing allocated Lisp memory. */
376
377static struct mem_node *mem_root;
378
ece93c02
GM
379/* Lowest and highest known address in the heap. */
380
381static void *min_heap_address, *max_heap_address;
382
877935b1
GM
383/* Sentinel node of the tree. */
384
385static struct mem_node mem_z;
386#define MEM_NIL &mem_z
387
f57e2426
J
388static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
389static void lisp_free (POINTER_TYPE *);
390static void mark_stack (void);
391static int live_vector_p (struct mem_node *, void *);
392static int live_buffer_p (struct mem_node *, void *);
393static int live_string_p (struct mem_node *, void *);
394static int live_cons_p (struct mem_node *, void *);
395static int live_symbol_p (struct mem_node *, void *);
396static int live_float_p (struct mem_node *, void *);
397static int live_misc_p (struct mem_node *, void *);
398static void mark_maybe_object (Lisp_Object);
399static void mark_memory (void *, void *, int);
400static void mem_init (void);
401static struct mem_node *mem_insert (void *, void *, enum mem_type);
402static void mem_insert_fixup (struct mem_node *);
403static void mem_rotate_left (struct mem_node *);
404static void mem_rotate_right (struct mem_node *);
405static void mem_delete (struct mem_node *);
406static void mem_delete_fixup (struct mem_node *);
407static INLINE struct mem_node *mem_find (void *);
34400008 408
34400008
GM
409
410#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 411static void check_gcpros (void);
34400008
GM
412#endif
413
877935b1 414#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 415
1f0b3fd2
GM
416/* Recording what needs to be marked for gc. */
417
418struct gcpro *gcprolist;
419
379b98b1
PE
420/* Addresses of staticpro'd variables. Initialize it to a nonzero
421 value; otherwise some compilers put it into BSS. */
1f0b3fd2 422
0078170f 423#define NSTATICS 0x640
d3d47262 424static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
425
426/* Index of next unused slot in staticvec. */
427
d3d47262 428static int staticidx = 0;
1f0b3fd2 429
f57e2426 430static POINTER_TYPE *pure_alloc (size_t, int);
1f0b3fd2
GM
431
432
433/* Value is SZ rounded up to the next multiple of ALIGNMENT.
434 ALIGNMENT must be a power of 2. */
435
ab6780cd
SM
436#define ALIGN(ptr, ALIGNMENT) \
437 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
438 & ~((ALIGNMENT) - 1)))
1f0b3fd2 439
ece93c02 440
7146af97 441\f
34400008
GM
442/************************************************************************
443 Malloc
444 ************************************************************************/
445
4455ad75 446/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
447
448void
a8fe7202 449malloc_warning (const char *str)
7146af97
JB
450{
451 pending_malloc_warning = str;
452}
453
34400008 454
4455ad75 455/* Display an already-pending malloc warning. */
34400008 456
d457598b 457void
971de7fb 458display_malloc_warning (void)
7146af97 459{
4455ad75
RS
460 call3 (intern ("display-warning"),
461 intern ("alloc"),
462 build_string (pending_malloc_warning),
463 intern ("emergency"));
7146af97 464 pending_malloc_warning = 0;
7146af97
JB
465}
466
34400008 467
d1658221 468#ifdef DOUG_LEA_MALLOC
4d74a5fc 469# define BYTES_USED (mallinfo ().uordblks)
d1658221 470#else
1177ecf6 471# define BYTES_USED _bytes_used
d1658221 472#endif
49efed3a 473\f
276cbe5a
RS
474/* Called if we can't allocate relocatable space for a buffer. */
475
476void
971de7fb 477buffer_memory_full (void)
276cbe5a 478{
2e471eb5
GM
479 /* If buffers use the relocating allocator, no need to free
480 spare_memory, because we may have plenty of malloc space left
481 that we could get, and if we don't, the malloc that fails will
482 itself cause spare_memory to be freed. If buffers don't use the
483 relocating allocator, treat this like any other failing
484 malloc. */
276cbe5a
RS
485
486#ifndef REL_ALLOC
487 memory_full ();
488#endif
489
2e471eb5
GM
490 /* This used to call error, but if we've run out of memory, we could
491 get infinite recursion trying to build the string. */
9b306d37 492 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
493}
494
34400008 495
212f33f1
KS
496#ifdef XMALLOC_OVERRUN_CHECK
497
bdbed949
KS
498/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
499 and a 16 byte trailer around each block.
500
501 The header consists of 12 fixed bytes + a 4 byte integer contaning the
502 original block size, while the trailer consists of 16 fixed bytes.
503
504 The header is used to detect whether this block has been allocated
505 through these functions -- as it seems that some low-level libc
506 functions may bypass the malloc hooks.
507*/
508
509
212f33f1 510#define XMALLOC_OVERRUN_CHECK_SIZE 16
bdbed949 511
212f33f1
KS
512static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
513 { 0x9a, 0x9b, 0xae, 0xaf,
514 0xbf, 0xbe, 0xce, 0xcf,
515 0xea, 0xeb, 0xec, 0xed };
516
517static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
518 { 0xaa, 0xab, 0xac, 0xad,
519 0xba, 0xbb, 0xbc, 0xbd,
520 0xca, 0xcb, 0xcc, 0xcd,
521 0xda, 0xdb, 0xdc, 0xdd };
522
bdbed949
KS
523/* Macros to insert and extract the block size in the header. */
524
525#define XMALLOC_PUT_SIZE(ptr, size) \
526 (ptr[-1] = (size & 0xff), \
527 ptr[-2] = ((size >> 8) & 0xff), \
528 ptr[-3] = ((size >> 16) & 0xff), \
529 ptr[-4] = ((size >> 24) & 0xff))
530
531#define XMALLOC_GET_SIZE(ptr) \
532 (size_t)((unsigned)(ptr[-1]) | \
533 ((unsigned)(ptr[-2]) << 8) | \
534 ((unsigned)(ptr[-3]) << 16) | \
535 ((unsigned)(ptr[-4]) << 24))
536
537
d8f165a8
JD
538/* The call depth in overrun_check functions. For example, this might happen:
539 xmalloc()
540 overrun_check_malloc()
541 -> malloc -> (via hook)_-> emacs_blocked_malloc
542 -> overrun_check_malloc
543 call malloc (hooks are NULL, so real malloc is called).
544 malloc returns 10000.
545 add overhead, return 10016.
546 <- (back in overrun_check_malloc)
857ae68b 547 add overhead again, return 10032
d8f165a8 548 xmalloc returns 10032.
857ae68b
JD
549
550 (time passes).
551
d8f165a8
JD
552 xfree(10032)
553 overrun_check_free(10032)
554 decrease overhed
555 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b
JD
556
557static int check_depth;
558
bdbed949
KS
559/* Like malloc, but wraps allocated block with header and trailer. */
560
212f33f1
KS
561POINTER_TYPE *
562overrun_check_malloc (size)
563 size_t size;
564{
bdbed949 565 register unsigned char *val;
857ae68b 566 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1 567
857ae68b
JD
568 val = (unsigned char *) malloc (size + overhead);
569 if (val && check_depth == 1)
212f33f1 570 {
72af86bd
AS
571 memcpy (val, xmalloc_overrun_check_header,
572 XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 573 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 574 XMALLOC_PUT_SIZE(val, size);
72af86bd
AS
575 memcpy (val + size, xmalloc_overrun_check_trailer,
576 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 577 }
857ae68b 578 --check_depth;
212f33f1
KS
579 return (POINTER_TYPE *)val;
580}
581
bdbed949
KS
582
583/* Like realloc, but checks old block for overrun, and wraps new block
584 with header and trailer. */
585
212f33f1
KS
586POINTER_TYPE *
587overrun_check_realloc (block, size)
588 POINTER_TYPE *block;
589 size_t size;
590{
bdbed949 591 register unsigned char *val = (unsigned char *)block;
857ae68b 592 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1
KS
593
594 if (val
857ae68b 595 && check_depth == 1
72af86bd
AS
596 && memcmp (xmalloc_overrun_check_header,
597 val - XMALLOC_OVERRUN_CHECK_SIZE,
598 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
212f33f1 599 {
bdbed949 600 size_t osize = XMALLOC_GET_SIZE (val);
72af86bd
AS
601 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
602 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 603 abort ();
72af86bd 604 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 605 val -= XMALLOC_OVERRUN_CHECK_SIZE;
72af86bd 606 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1
KS
607 }
608
857ae68b 609 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
212f33f1 610
857ae68b 611 if (val && check_depth == 1)
212f33f1 612 {
72af86bd
AS
613 memcpy (val, xmalloc_overrun_check_header,
614 XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 615 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 616 XMALLOC_PUT_SIZE(val, size);
72af86bd
AS
617 memcpy (val + size, xmalloc_overrun_check_trailer,
618 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 619 }
857ae68b 620 --check_depth;
212f33f1
KS
621 return (POINTER_TYPE *)val;
622}
623
bdbed949
KS
624/* Like free, but checks block for overrun. */
625
212f33f1
KS
626void
627overrun_check_free (block)
628 POINTER_TYPE *block;
629{
bdbed949 630 unsigned char *val = (unsigned char *)block;
212f33f1 631
857ae68b 632 ++check_depth;
212f33f1 633 if (val
857ae68b 634 && check_depth == 1
72af86bd
AS
635 && memcmp (xmalloc_overrun_check_header,
636 val - XMALLOC_OVERRUN_CHECK_SIZE,
637 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
212f33f1 638 {
bdbed949 639 size_t osize = XMALLOC_GET_SIZE (val);
72af86bd
AS
640 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
641 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 642 abort ();
454d7973
KS
643#ifdef XMALLOC_CLEAR_FREE_MEMORY
644 val -= XMALLOC_OVERRUN_CHECK_SIZE;
645 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
646#else
72af86bd 647 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 648 val -= XMALLOC_OVERRUN_CHECK_SIZE;
72af86bd 649 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
454d7973 650#endif
212f33f1
KS
651 }
652
653 free (val);
857ae68b 654 --check_depth;
212f33f1
KS
655}
656
657#undef malloc
658#undef realloc
659#undef free
660#define malloc overrun_check_malloc
661#define realloc overrun_check_realloc
662#define free overrun_check_free
663#endif
664
dafc79fa
SM
665#ifdef SYNC_INPUT
666/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
667 there's no need to block input around malloc. */
668#define MALLOC_BLOCK_INPUT ((void)0)
669#define MALLOC_UNBLOCK_INPUT ((void)0)
670#else
671#define MALLOC_BLOCK_INPUT BLOCK_INPUT
672#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
673#endif
bdbed949 674
34400008 675/* Like malloc but check for no memory and block interrupt input.. */
7146af97 676
c971ff9a 677POINTER_TYPE *
971de7fb 678xmalloc (size_t size)
7146af97 679{
c971ff9a 680 register POINTER_TYPE *val;
7146af97 681
dafc79fa 682 MALLOC_BLOCK_INPUT;
c971ff9a 683 val = (POINTER_TYPE *) malloc (size);
dafc79fa 684 MALLOC_UNBLOCK_INPUT;
7146af97 685
2e471eb5
GM
686 if (!val && size)
687 memory_full ();
7146af97
JB
688 return val;
689}
690
34400008
GM
691
692/* Like realloc but check for no memory and block interrupt input.. */
693
c971ff9a 694POINTER_TYPE *
971de7fb 695xrealloc (POINTER_TYPE *block, size_t size)
7146af97 696{
c971ff9a 697 register POINTER_TYPE *val;
7146af97 698
dafc79fa 699 MALLOC_BLOCK_INPUT;
56d2031b
JB
700 /* We must call malloc explicitly when BLOCK is 0, since some
701 reallocs don't do this. */
702 if (! block)
c971ff9a 703 val = (POINTER_TYPE *) malloc (size);
f048679d 704 else
c971ff9a 705 val = (POINTER_TYPE *) realloc (block, size);
dafc79fa 706 MALLOC_UNBLOCK_INPUT;
7146af97
JB
707
708 if (!val && size) memory_full ();
709 return val;
710}
9ac0d9e0 711
34400008 712
005ca5c7 713/* Like free but block interrupt input. */
34400008 714
9ac0d9e0 715void
971de7fb 716xfree (POINTER_TYPE *block)
9ac0d9e0 717{
70fdbb46
JM
718 if (!block)
719 return;
dafc79fa 720 MALLOC_BLOCK_INPUT;
9ac0d9e0 721 free (block);
dafc79fa 722 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
723 /* We don't call refill_memory_reserve here
724 because that duplicates doing so in emacs_blocked_free
725 and the criterion should go there. */
9ac0d9e0
JB
726}
727
c8099634 728
dca7c6a8
GM
729/* Like strdup, but uses xmalloc. */
730
731char *
971de7fb 732xstrdup (const char *s)
dca7c6a8 733{
675d5130 734 size_t len = strlen (s) + 1;
dca7c6a8 735 char *p = (char *) xmalloc (len);
72af86bd 736 memcpy (p, s, len);
dca7c6a8
GM
737 return p;
738}
739
740
f61bef8b
KS
741/* Unwind for SAFE_ALLOCA */
742
743Lisp_Object
971de7fb 744safe_alloca_unwind (Lisp_Object arg)
f61bef8b 745{
b766f870
KS
746 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
747
748 p->dogc = 0;
749 xfree (p->pointer);
750 p->pointer = 0;
7b7990cc 751 free_misc (arg);
f61bef8b
KS
752 return Qnil;
753}
754
755
34400008
GM
756/* Like malloc but used for allocating Lisp data. NBYTES is the
757 number of bytes to allocate, TYPE describes the intended use of the
758 allcated memory block (for strings, for conses, ...). */
759
212f33f1 760#ifndef USE_LSB_TAG
918a23a7 761static void *lisp_malloc_loser;
212f33f1 762#endif
918a23a7 763
675d5130 764static POINTER_TYPE *
971de7fb 765lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 766{
34400008 767 register void *val;
c8099634 768
dafc79fa 769 MALLOC_BLOCK_INPUT;
877935b1
GM
770
771#ifdef GC_MALLOC_CHECK
772 allocated_mem_type = type;
773#endif
177c0ea7 774
34400008 775 val = (void *) malloc (nbytes);
c8099634 776
6b61353c 777#ifndef USE_LSB_TAG
918a23a7
RS
778 /* If the memory just allocated cannot be addressed thru a Lisp
779 object's pointer, and it needs to be,
780 that's equivalent to running out of memory. */
781 if (val && type != MEM_TYPE_NON_LISP)
782 {
783 Lisp_Object tem;
784 XSETCONS (tem, (char *) val + nbytes - 1);
785 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
786 {
787 lisp_malloc_loser = val;
788 free (val);
789 val = 0;
790 }
791 }
6b61353c 792#endif
918a23a7 793
877935b1 794#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 795 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
796 mem_insert (val, (char *) val + nbytes, type);
797#endif
177c0ea7 798
dafc79fa 799 MALLOC_UNBLOCK_INPUT;
dca7c6a8
GM
800 if (!val && nbytes)
801 memory_full ();
c8099634
RS
802 return val;
803}
804
34400008
GM
805/* Free BLOCK. This must be called to free memory allocated with a
806 call to lisp_malloc. */
807
bf952fb6 808static void
971de7fb 809lisp_free (POINTER_TYPE *block)
c8099634 810{
dafc79fa 811 MALLOC_BLOCK_INPUT;
c8099634 812 free (block);
877935b1 813#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
814 mem_delete (mem_find (block));
815#endif
dafc79fa 816 MALLOC_UNBLOCK_INPUT;
c8099634 817}
34400008 818
ab6780cd
SM
819/* Allocation of aligned blocks of memory to store Lisp data. */
820/* The entry point is lisp_align_malloc which returns blocks of at most */
821/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
822
349a4500
SM
823/* Use posix_memalloc if the system has it and we're using the system's
824 malloc (because our gmalloc.c routines don't have posix_memalign although
825 its memalloc could be used). */
b4181b01
KS
826#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
827#define USE_POSIX_MEMALIGN 1
828#endif
ab6780cd
SM
829
830/* BLOCK_ALIGN has to be a power of 2. */
831#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
832
833/* Padding to leave at the end of a malloc'd block. This is to give
834 malloc a chance to minimize the amount of memory wasted to alignment.
835 It should be tuned to the particular malloc library used.
19bcad1f
SM
836 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
837 posix_memalign on the other hand would ideally prefer a value of 4
838 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
839 In Emacs, testing shows that those 1020 can most of the time be
840 efficiently used by malloc to place other objects, so a value of 0 can
841 still preferable unless you have a lot of aligned blocks and virtually
842 nothing else. */
19bcad1f
SM
843#define BLOCK_PADDING 0
844#define BLOCK_BYTES \
f501ccb4 845 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
19bcad1f
SM
846
847/* Internal data structures and constants. */
848
ab6780cd
SM
849#define ABLOCKS_SIZE 16
850
851/* An aligned block of memory. */
852struct ablock
853{
854 union
855 {
856 char payload[BLOCK_BYTES];
857 struct ablock *next_free;
858 } x;
859 /* `abase' is the aligned base of the ablocks. */
860 /* It is overloaded to hold the virtual `busy' field that counts
861 the number of used ablock in the parent ablocks.
862 The first ablock has the `busy' field, the others have the `abase'
863 field. To tell the difference, we assume that pointers will have
864 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
865 is used to tell whether the real base of the parent ablocks is `abase'
866 (if not, the word before the first ablock holds a pointer to the
867 real base). */
868 struct ablocks *abase;
869 /* The padding of all but the last ablock is unused. The padding of
870 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
871#if BLOCK_PADDING
872 char padding[BLOCK_PADDING];
ebb8d410 873#endif
ab6780cd
SM
874};
875
876/* A bunch of consecutive aligned blocks. */
877struct ablocks
878{
879 struct ablock blocks[ABLOCKS_SIZE];
880};
881
882/* Size of the block requested from malloc or memalign. */
19bcad1f 883#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
884
885#define ABLOCK_ABASE(block) \
886 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
887 ? (struct ablocks *)(block) \
888 : (block)->abase)
889
890/* Virtual `busy' field. */
891#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
892
893/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 894#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
895#define ABLOCKS_BASE(abase) (abase)
896#else
ab6780cd 897#define ABLOCKS_BASE(abase) \
005ca5c7 898 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 899#endif
ab6780cd
SM
900
901/* The list of free ablock. */
902static struct ablock *free_ablock;
903
904/* Allocate an aligned block of nbytes.
905 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
906 smaller or equal to BLOCK_BYTES. */
907static POINTER_TYPE *
971de7fb 908lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
909{
910 void *base, *val;
911 struct ablocks *abase;
912
913 eassert (nbytes <= BLOCK_BYTES);
914
dafc79fa 915 MALLOC_BLOCK_INPUT;
ab6780cd
SM
916
917#ifdef GC_MALLOC_CHECK
918 allocated_mem_type = type;
919#endif
920
921 if (!free_ablock)
922 {
005ca5c7
DL
923 int i;
924 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
925
926#ifdef DOUG_LEA_MALLOC
927 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
928 because mapped region contents are not preserved in
929 a dumped Emacs. */
930 mallopt (M_MMAP_MAX, 0);
931#endif
932
349a4500 933#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
934 {
935 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
936 if (err)
937 base = NULL;
938 abase = base;
19bcad1f
SM
939 }
940#else
ab6780cd
SM
941 base = malloc (ABLOCKS_BYTES);
942 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
943#endif
944
6b61353c
KH
945 if (base == 0)
946 {
dafc79fa 947 MALLOC_UNBLOCK_INPUT;
6b61353c
KH
948 memory_full ();
949 }
ab6780cd
SM
950
951 aligned = (base == abase);
952 if (!aligned)
953 ((void**)abase)[-1] = base;
954
955#ifdef DOUG_LEA_MALLOC
956 /* Back to a reasonable maximum of mmap'ed areas. */
957 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
958#endif
959
6b61353c 960#ifndef USE_LSB_TAG
8f924df7
KH
961 /* If the memory just allocated cannot be addressed thru a Lisp
962 object's pointer, and it needs to be, that's equivalent to
963 running out of memory. */
964 if (type != MEM_TYPE_NON_LISP)
965 {
966 Lisp_Object tem;
967 char *end = (char *) base + ABLOCKS_BYTES - 1;
968 XSETCONS (tem, end);
969 if ((char *) XCONS (tem) != end)
970 {
971 lisp_malloc_loser = base;
972 free (base);
dafc79fa 973 MALLOC_UNBLOCK_INPUT;
8f924df7
KH
974 memory_full ();
975 }
976 }
6b61353c 977#endif
8f924df7 978
ab6780cd
SM
979 /* Initialize the blocks and put them on the free list.
980 Is `base' was not properly aligned, we can't use the last block. */
981 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
982 {
983 abase->blocks[i].abase = abase;
984 abase->blocks[i].x.next_free = free_ablock;
985 free_ablock = &abase->blocks[i];
986 }
005ca5c7 987 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
ab6780cd 988
19bcad1f 989 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
990 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
991 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
992 eassert (ABLOCKS_BASE (abase) == base);
005ca5c7 993 eassert (aligned == (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
994 }
995
996 abase = ABLOCK_ABASE (free_ablock);
005ca5c7 997 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
998 val = free_ablock;
999 free_ablock = free_ablock->x.next_free;
1000
ab6780cd
SM
1001#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1002 if (val && type != MEM_TYPE_NON_LISP)
1003 mem_insert (val, (char *) val + nbytes, type);
1004#endif
1005
dafc79fa 1006 MALLOC_UNBLOCK_INPUT;
ab6780cd
SM
1007 if (!val && nbytes)
1008 memory_full ();
1009
1010 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1011 return val;
1012}
1013
1014static void
971de7fb 1015lisp_align_free (POINTER_TYPE *block)
ab6780cd
SM
1016{
1017 struct ablock *ablock = block;
1018 struct ablocks *abase = ABLOCK_ABASE (ablock);
1019
dafc79fa 1020 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1021#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1022 mem_delete (mem_find (block));
1023#endif
1024 /* Put on free list. */
1025 ablock->x.next_free = free_ablock;
1026 free_ablock = ablock;
1027 /* Update busy count. */
005ca5c7 1028 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
d2db1c32 1029
005ca5c7 1030 if (2 > (long) ABLOCKS_BUSY (abase))
ab6780cd 1031 { /* All the blocks are free. */
005ca5c7 1032 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
ab6780cd
SM
1033 struct ablock **tem = &free_ablock;
1034 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1035
1036 while (*tem)
1037 {
1038 if (*tem >= (struct ablock *) abase && *tem < atop)
1039 {
1040 i++;
1041 *tem = (*tem)->x.next_free;
1042 }
1043 else
1044 tem = &(*tem)->x.next_free;
1045 }
1046 eassert ((aligned & 1) == aligned);
1047 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1048#ifdef USE_POSIX_MEMALIGN
cfb2f32e
SM
1049 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1050#endif
ab6780cd
SM
1051 free (ABLOCKS_BASE (abase));
1052 }
dafc79fa 1053 MALLOC_UNBLOCK_INPUT;
ab6780cd 1054}
3ef06d12
SM
1055
1056/* Return a new buffer structure allocated from the heap with
1057 a call to lisp_malloc. */
1058
1059struct buffer *
971de7fb 1060allocate_buffer (void)
3ef06d12
SM
1061{
1062 struct buffer *b
1063 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1064 MEM_TYPE_BUFFER);
67ee9f6e
SM
1065 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1066 XSETPVECTYPE (b, PVEC_BUFFER);
3ef06d12
SM
1067 return b;
1068}
1069
9ac0d9e0 1070\f
026cdede
SM
1071#ifndef SYSTEM_MALLOC
1072
9ac0d9e0
JB
1073/* Arranging to disable input signals while we're in malloc.
1074
1075 This only works with GNU malloc. To help out systems which can't
1076 use GNU malloc, all the calls to malloc, realloc, and free
1077 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1078 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1079 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1080 using GNU malloc. Fortunately, most of the major operating systems
1081 can use GNU malloc. */
9ac0d9e0 1082
026cdede 1083#ifndef SYNC_INPUT
dafc79fa
SM
1084/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1085 there's no need to block input around malloc. */
026cdede 1086
b3303f74 1087#ifndef DOUG_LEA_MALLOC
f57e2426
J
1088extern void * (*__malloc_hook) (size_t, const void *);
1089extern void * (*__realloc_hook) (void *, size_t, const void *);
1090extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1091/* Else declared in malloc.h, perhaps with an extra arg. */
1092#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1093static void * (*old_malloc_hook) (size_t, const void *);
1094static void * (*old_realloc_hook) (void *, size_t, const void*);
1095static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1096
ef1b0ba7
SM
1097static __malloc_size_t bytes_used_when_reconsidered;
1098
276cbe5a
RS
1099/* This function is used as the hook for free to call. */
1100
9ac0d9e0 1101static void
7c3320d8 1102emacs_blocked_free (void *ptr, const void *ptr2)
9ac0d9e0 1103{
aa477689 1104 BLOCK_INPUT_ALLOC;
877935b1
GM
1105
1106#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1107 if (ptr)
1108 {
1109 struct mem_node *m;
177c0ea7 1110
a83fee2c
GM
1111 m = mem_find (ptr);
1112 if (m == MEM_NIL || m->start != ptr)
1113 {
1114 fprintf (stderr,
1115 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1116 abort ();
1117 }
1118 else
1119 {
1120 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1121 mem_delete (m);
1122 }
1123 }
877935b1 1124#endif /* GC_MALLOC_CHECK */
177c0ea7 1125
9ac0d9e0
JB
1126 __free_hook = old_free_hook;
1127 free (ptr);
177c0ea7 1128
276cbe5a
RS
1129 /* If we released our reserve (due to running out of memory),
1130 and we have a fair amount free once again,
1131 try to set aside another reserve in case we run out once more. */
24d8a105 1132 if (! NILP (Vmemory_full)
276cbe5a
RS
1133 /* Verify there is enough space that even with the malloc
1134 hysteresis this call won't run out again.
1135 The code here is correct as long as SPARE_MEMORY
1136 is substantially larger than the block size malloc uses. */
1137 && (bytes_used_when_full
4d74a5fc 1138 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1139 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1140 refill_memory_reserve ();
276cbe5a 1141
b0846f52 1142 __free_hook = emacs_blocked_free;
aa477689 1143 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1144}
1145
34400008 1146
276cbe5a
RS
1147/* This function is the malloc hook that Emacs uses. */
1148
9ac0d9e0 1149static void *
7c3320d8 1150emacs_blocked_malloc (size_t size, const void *ptr)
9ac0d9e0
JB
1151{
1152 void *value;
1153
aa477689 1154 BLOCK_INPUT_ALLOC;
9ac0d9e0 1155 __malloc_hook = old_malloc_hook;
1177ecf6 1156#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1157 /* Segfaults on my system. --lorentey */
1158 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1159#else
d1658221 1160 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1161#endif
877935b1 1162
2756d8ee 1163 value = (void *) malloc (size);
877935b1
GM
1164
1165#ifdef GC_MALLOC_CHECK
1166 {
1167 struct mem_node *m = mem_find (value);
1168 if (m != MEM_NIL)
1169 {
1170 fprintf (stderr, "Malloc returned %p which is already in use\n",
1171 value);
1172 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1173 m->start, m->end, (char *) m->end - (char *) m->start,
1174 m->type);
1175 abort ();
1176 }
1177
1178 if (!dont_register_blocks)
1179 {
1180 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1181 allocated_mem_type = MEM_TYPE_NON_LISP;
1182 }
1183 }
1184#endif /* GC_MALLOC_CHECK */
177c0ea7 1185
b0846f52 1186 __malloc_hook = emacs_blocked_malloc;
aa477689 1187 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1188
877935b1 1189 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1190 return value;
1191}
1192
34400008
GM
1193
1194/* This function is the realloc hook that Emacs uses. */
1195
9ac0d9e0 1196static void *
7c3320d8 1197emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
9ac0d9e0
JB
1198{
1199 void *value;
1200
aa477689 1201 BLOCK_INPUT_ALLOC;
9ac0d9e0 1202 __realloc_hook = old_realloc_hook;
877935b1
GM
1203
1204#ifdef GC_MALLOC_CHECK
1205 if (ptr)
1206 {
1207 struct mem_node *m = mem_find (ptr);
1208 if (m == MEM_NIL || m->start != ptr)
1209 {
1210 fprintf (stderr,
1211 "Realloc of %p which wasn't allocated with malloc\n",
1212 ptr);
1213 abort ();
1214 }
1215
1216 mem_delete (m);
1217 }
177c0ea7 1218
877935b1 1219 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1220
877935b1
GM
1221 /* Prevent malloc from registering blocks. */
1222 dont_register_blocks = 1;
1223#endif /* GC_MALLOC_CHECK */
1224
2756d8ee 1225 value = (void *) realloc (ptr, size);
877935b1
GM
1226
1227#ifdef GC_MALLOC_CHECK
1228 dont_register_blocks = 0;
1229
1230 {
1231 struct mem_node *m = mem_find (value);
1232 if (m != MEM_NIL)
1233 {
1234 fprintf (stderr, "Realloc returns memory that is already in use\n");
1235 abort ();
1236 }
1237
1238 /* Can't handle zero size regions in the red-black tree. */
1239 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1240 }
177c0ea7 1241
877935b1
GM
1242 /* fprintf (stderr, "%p <- realloc\n", value); */
1243#endif /* GC_MALLOC_CHECK */
177c0ea7 1244
b0846f52 1245 __realloc_hook = emacs_blocked_realloc;
aa477689 1246 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1247
1248 return value;
1249}
1250
34400008 1251
aa477689
JD
1252#ifdef HAVE_GTK_AND_PTHREAD
1253/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1254 normal malloc. Some thread implementations need this as they call
1255 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1256 calls malloc because it is the first call, and we have an endless loop. */
1257
1258void
1259reset_malloc_hooks ()
1260{
4d580af2
AS
1261 __free_hook = old_free_hook;
1262 __malloc_hook = old_malloc_hook;
1263 __realloc_hook = old_realloc_hook;
aa477689
JD
1264}
1265#endif /* HAVE_GTK_AND_PTHREAD */
1266
1267
34400008
GM
1268/* Called from main to set up malloc to use our hooks. */
1269
9ac0d9e0 1270void
7c3320d8 1271uninterrupt_malloc (void)
9ac0d9e0 1272{
aa477689 1273#ifdef HAVE_GTK_AND_PTHREAD
a1b41389 1274#ifdef DOUG_LEA_MALLOC
aa477689
JD
1275 pthread_mutexattr_t attr;
1276
1277 /* GLIBC has a faster way to do this, but lets keep it portable.
1278 This is according to the Single UNIX Specification. */
1279 pthread_mutexattr_init (&attr);
1280 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1281 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1282#else /* !DOUG_LEA_MALLOC */
ce5b453a 1283 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1284 and the bundled gmalloc.c doesn't require it. */
1285 pthread_mutex_init (&alloc_mutex, NULL);
1286#endif /* !DOUG_LEA_MALLOC */
aa477689
JD
1287#endif /* HAVE_GTK_AND_PTHREAD */
1288
c8099634
RS
1289 if (__free_hook != emacs_blocked_free)
1290 old_free_hook = __free_hook;
b0846f52 1291 __free_hook = emacs_blocked_free;
9ac0d9e0 1292
c8099634
RS
1293 if (__malloc_hook != emacs_blocked_malloc)
1294 old_malloc_hook = __malloc_hook;
b0846f52 1295 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1296
c8099634
RS
1297 if (__realloc_hook != emacs_blocked_realloc)
1298 old_realloc_hook = __realloc_hook;
b0846f52 1299 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1300}
2e471eb5 1301
026cdede 1302#endif /* not SYNC_INPUT */
2e471eb5
GM
1303#endif /* not SYSTEM_MALLOC */
1304
1305
7146af97 1306\f
2e471eb5
GM
1307/***********************************************************************
1308 Interval Allocation
1309 ***********************************************************************/
1a4f1e2c 1310
34400008
GM
1311/* Number of intervals allocated in an interval_block structure.
1312 The 1020 is 1024 minus malloc overhead. */
1313
d5e35230
JA
1314#define INTERVAL_BLOCK_SIZE \
1315 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1316
34400008
GM
1317/* Intervals are allocated in chunks in form of an interval_block
1318 structure. */
1319
d5e35230 1320struct interval_block
2e471eb5 1321{
6b61353c 1322 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1323 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1324 struct interval_block *next;
2e471eb5 1325};
d5e35230 1326
34400008
GM
1327/* Current interval block. Its `next' pointer points to older
1328 blocks. */
1329
d3d47262 1330static struct interval_block *interval_block;
34400008
GM
1331
1332/* Index in interval_block above of the next unused interval
1333 structure. */
1334
d5e35230 1335static int interval_block_index;
34400008
GM
1336
1337/* Number of free and live intervals. */
1338
2e471eb5 1339static int total_free_intervals, total_intervals;
d5e35230 1340
34400008
GM
1341/* List of free intervals. */
1342
d5e35230
JA
1343INTERVAL interval_free_list;
1344
c8099634 1345/* Total number of interval blocks now in use. */
2e471eb5 1346
d3d47262 1347static int n_interval_blocks;
c8099634 1348
34400008
GM
1349
1350/* Initialize interval allocation. */
1351
d5e35230 1352static void
971de7fb 1353init_intervals (void)
d5e35230 1354{
005ca5c7
DL
1355 interval_block = NULL;
1356 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1357 interval_free_list = 0;
005ca5c7 1358 n_interval_blocks = 0;
d5e35230
JA
1359}
1360
34400008
GM
1361
1362/* Return a new interval. */
d5e35230
JA
1363
1364INTERVAL
971de7fb 1365make_interval (void)
d5e35230
JA
1366{
1367 INTERVAL val;
1368
e2984df0
CY
1369 /* eassert (!handling_signal); */
1370
dafc79fa 1371 MALLOC_BLOCK_INPUT;
cfb2f32e 1372
d5e35230
JA
1373 if (interval_free_list)
1374 {
1375 val = interval_free_list;
439d5cb4 1376 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1377 }
1378 else
1379 {
1380 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1381 {
3c06d205
KH
1382 register struct interval_block *newi;
1383
34400008
GM
1384 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1385 MEM_TYPE_NON_LISP);
d5e35230 1386
d5e35230
JA
1387 newi->next = interval_block;
1388 interval_block = newi;
1389 interval_block_index = 0;
c8099634 1390 n_interval_blocks++;
d5e35230
JA
1391 }
1392 val = &interval_block->intervals[interval_block_index++];
1393 }
e2984df0 1394
dafc79fa 1395 MALLOC_UNBLOCK_INPUT;
e2984df0 1396
d5e35230 1397 consing_since_gc += sizeof (struct interval);
310ea200 1398 intervals_consed++;
d5e35230 1399 RESET_INTERVAL (val);
2336fe58 1400 val->gcmarkbit = 0;
d5e35230
JA
1401 return val;
1402}
1403
34400008
GM
1404
1405/* Mark Lisp objects in interval I. */
d5e35230
JA
1406
1407static void
971de7fb 1408mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1409{
2336fe58
SM
1410 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1411 i->gcmarkbit = 1;
49723c04 1412 mark_object (i->plist);
d5e35230
JA
1413}
1414
34400008
GM
1415
1416/* Mark the interval tree rooted in TREE. Don't call this directly;
1417 use the macro MARK_INTERVAL_TREE instead. */
1418
d5e35230 1419static void
971de7fb 1420mark_interval_tree (register INTERVAL tree)
d5e35230 1421{
e8720644
JB
1422 /* No need to test if this tree has been marked already; this
1423 function is always called through the MARK_INTERVAL_TREE macro,
1424 which takes care of that. */
1425
1e934989 1426 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1427}
1428
34400008
GM
1429
1430/* Mark the interval tree rooted in I. */
1431
e8720644
JB
1432#define MARK_INTERVAL_TREE(i) \
1433 do { \
2336fe58 1434 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1435 mark_interval_tree (i); \
1436 } while (0)
d5e35230 1437
34400008 1438
2e471eb5
GM
1439#define UNMARK_BALANCE_INTERVALS(i) \
1440 do { \
1441 if (! NULL_INTERVAL_P (i)) \
2336fe58 1442 (i) = balance_intervals (i); \
2e471eb5 1443 } while (0)
d5e35230 1444
cc2d8c6b 1445\f
6e5cb96f 1446/* Number support. If USE_LISP_UNION_TYPE is in effect, we
cc2d8c6b
KR
1447 can't create number objects in macros. */
1448#ifndef make_number
1449Lisp_Object
ef1b0ba7 1450make_number (EMACS_INT n)
cc2d8c6b
KR
1451{
1452 Lisp_Object obj;
1453 obj.s.val = n;
1454 obj.s.type = Lisp_Int;
1455 return obj;
1456}
1457#endif
d5e35230 1458\f
2e471eb5
GM
1459/***********************************************************************
1460 String Allocation
1461 ***********************************************************************/
1a4f1e2c 1462
2e471eb5
GM
1463/* Lisp_Strings are allocated in string_block structures. When a new
1464 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1465 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1466 needed, it is taken from that list. During the sweep phase of GC,
1467 string_blocks that are entirely free are freed, except two which
1468 we keep.
7146af97 1469
2e471eb5
GM
1470 String data is allocated from sblock structures. Strings larger
1471 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1472 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1473
2e471eb5
GM
1474 Sblocks consist internally of sdata structures, one for each
1475 Lisp_String. The sdata structure points to the Lisp_String it
1476 belongs to. The Lisp_String points back to the `u.data' member of
1477 its sdata structure.
7146af97 1478
2e471eb5
GM
1479 When a Lisp_String is freed during GC, it is put back on
1480 string_free_list, and its `data' member and its sdata's `string'
1481 pointer is set to null. The size of the string is recorded in the
1482 `u.nbytes' member of the sdata. So, sdata structures that are no
1483 longer used, can be easily recognized, and it's easy to compact the
1484 sblocks of small strings which we do in compact_small_strings. */
7146af97 1485
2e471eb5
GM
1486/* Size in bytes of an sblock structure used for small strings. This
1487 is 8192 minus malloc overhead. */
7146af97 1488
2e471eb5 1489#define SBLOCK_SIZE 8188
c8099634 1490
2e471eb5
GM
1491/* Strings larger than this are considered large strings. String data
1492 for large strings is allocated from individual sblocks. */
7146af97 1493
2e471eb5
GM
1494#define LARGE_STRING_BYTES 1024
1495
1496/* Structure describing string memory sub-allocated from an sblock.
1497 This is where the contents of Lisp strings are stored. */
1498
1499struct sdata
7146af97 1500{
2e471eb5
GM
1501 /* Back-pointer to the string this sdata belongs to. If null, this
1502 structure is free, and the NBYTES member of the union below
34400008 1503 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1504 would return if STRING were non-null). If non-null, STRING_BYTES
1505 (STRING) is the size of the data, and DATA contains the string's
1506 contents. */
1507 struct Lisp_String *string;
7146af97 1508
31d929e5 1509#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1510
31d929e5
GM
1511 EMACS_INT nbytes;
1512 unsigned char data[1];
177c0ea7 1513
31d929e5
GM
1514#define SDATA_NBYTES(S) (S)->nbytes
1515#define SDATA_DATA(S) (S)->data
177c0ea7 1516
31d929e5
GM
1517#else /* not GC_CHECK_STRING_BYTES */
1518
2e471eb5
GM
1519 union
1520 {
1521 /* When STRING in non-null. */
1522 unsigned char data[1];
1523
1524 /* When STRING is null. */
1525 EMACS_INT nbytes;
1526 } u;
177c0ea7 1527
31d929e5
GM
1528
1529#define SDATA_NBYTES(S) (S)->u.nbytes
1530#define SDATA_DATA(S) (S)->u.data
1531
1532#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1533};
1534
31d929e5 1535
2e471eb5
GM
1536/* Structure describing a block of memory which is sub-allocated to
1537 obtain string data memory for strings. Blocks for small strings
1538 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1539 as large as needed. */
1540
1541struct sblock
7146af97 1542{
2e471eb5
GM
1543 /* Next in list. */
1544 struct sblock *next;
7146af97 1545
2e471eb5
GM
1546 /* Pointer to the next free sdata block. This points past the end
1547 of the sblock if there isn't any space left in this block. */
1548 struct sdata *next_free;
1549
1550 /* Start of data. */
1551 struct sdata first_data;
1552};
1553
1554/* Number of Lisp strings in a string_block structure. The 1020 is
1555 1024 minus malloc overhead. */
1556
19bcad1f 1557#define STRING_BLOCK_SIZE \
2e471eb5
GM
1558 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1559
1560/* Structure describing a block from which Lisp_String structures
1561 are allocated. */
1562
1563struct string_block
7146af97 1564{
6b61353c 1565 /* Place `strings' first, to preserve alignment. */
19bcad1f 1566 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1567 struct string_block *next;
2e471eb5 1568};
7146af97 1569
2e471eb5
GM
1570/* Head and tail of the list of sblock structures holding Lisp string
1571 data. We always allocate from current_sblock. The NEXT pointers
1572 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1573
2e471eb5 1574static struct sblock *oldest_sblock, *current_sblock;
7146af97 1575
2e471eb5 1576/* List of sblocks for large strings. */
7146af97 1577
2e471eb5 1578static struct sblock *large_sblocks;
7146af97 1579
2e471eb5 1580/* List of string_block structures, and how many there are. */
7146af97 1581
2e471eb5
GM
1582static struct string_block *string_blocks;
1583static int n_string_blocks;
7146af97 1584
2e471eb5 1585/* Free-list of Lisp_Strings. */
7146af97 1586
2e471eb5 1587static struct Lisp_String *string_free_list;
7146af97 1588
2e471eb5 1589/* Number of live and free Lisp_Strings. */
c8099634 1590
2e471eb5 1591static int total_strings, total_free_strings;
7146af97 1592
2e471eb5
GM
1593/* Number of bytes used by live strings. */
1594
14162469 1595static EMACS_INT total_string_size;
2e471eb5
GM
1596
1597/* Given a pointer to a Lisp_String S which is on the free-list
1598 string_free_list, return a pointer to its successor in the
1599 free-list. */
1600
1601#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1602
1603/* Return a pointer to the sdata structure belonging to Lisp string S.
1604 S must be live, i.e. S->data must not be null. S->data is actually
1605 a pointer to the `u.data' member of its sdata structure; the
1606 structure starts at a constant offset in front of that. */
177c0ea7 1607
31d929e5
GM
1608#ifdef GC_CHECK_STRING_BYTES
1609
1610#define SDATA_OF_STRING(S) \
1611 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1612 - sizeof (EMACS_INT)))
1613
1614#else /* not GC_CHECK_STRING_BYTES */
1615
2e471eb5
GM
1616#define SDATA_OF_STRING(S) \
1617 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1618
31d929e5
GM
1619#endif /* not GC_CHECK_STRING_BYTES */
1620
212f33f1
KS
1621
1622#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1623
1624/* We check for overrun in string data blocks by appending a small
1625 "cookie" after each allocated string data block, and check for the
8349069c 1626 presence of this cookie during GC. */
bdbed949
KS
1627
1628#define GC_STRING_OVERRUN_COOKIE_SIZE 4
1629static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1630 { 0xde, 0xad, 0xbe, 0xef };
1631
212f33f1 1632#else
bdbed949 1633#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1634#endif
1635
2e471eb5
GM
1636/* Value is the size of an sdata structure large enough to hold NBYTES
1637 bytes of string data. The value returned includes a terminating
1638 NUL byte, the size of the sdata structure, and padding. */
1639
31d929e5
GM
1640#ifdef GC_CHECK_STRING_BYTES
1641
2e471eb5
GM
1642#define SDATA_SIZE(NBYTES) \
1643 ((sizeof (struct Lisp_String *) \
1644 + (NBYTES) + 1 \
31d929e5 1645 + sizeof (EMACS_INT) \
2e471eb5
GM
1646 + sizeof (EMACS_INT) - 1) \
1647 & ~(sizeof (EMACS_INT) - 1))
1648
31d929e5
GM
1649#else /* not GC_CHECK_STRING_BYTES */
1650
1651#define SDATA_SIZE(NBYTES) \
1652 ((sizeof (struct Lisp_String *) \
1653 + (NBYTES) + 1 \
1654 + sizeof (EMACS_INT) - 1) \
1655 & ~(sizeof (EMACS_INT) - 1))
1656
1657#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1658
bdbed949
KS
1659/* Extra bytes to allocate for each string. */
1660
1661#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1662
2e471eb5 1663/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1664
d3d47262 1665static void
971de7fb 1666init_strings (void)
7146af97 1667{
2e471eb5
GM
1668 total_strings = total_free_strings = total_string_size = 0;
1669 oldest_sblock = current_sblock = large_sblocks = NULL;
1670 string_blocks = NULL;
1671 n_string_blocks = 0;
1672 string_free_list = NULL;
4d774b0f
JB
1673 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1674 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1675}
1676
2e471eb5 1677
361b097f
GM
1678#ifdef GC_CHECK_STRING_BYTES
1679
361b097f
GM
1680static int check_string_bytes_count;
1681
f57e2426
J
1682static void check_string_bytes (int);
1683static void check_sblock (struct sblock *);
676a7251
GM
1684
1685#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1686
1687
1688/* Like GC_STRING_BYTES, but with debugging check. */
1689
14162469
EZ
1690EMACS_INT
1691string_bytes (struct Lisp_String *s)
676a7251 1692{
14162469
EZ
1693 EMACS_INT nbytes =
1694 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1695
676a7251
GM
1696 if (!PURE_POINTER_P (s)
1697 && s->data
1698 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1699 abort ();
1700 return nbytes;
1701}
177c0ea7 1702
2c5bd608 1703/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1704
d3d47262 1705static void
676a7251
GM
1706check_sblock (b)
1707 struct sblock *b;
361b097f 1708{
676a7251 1709 struct sdata *from, *end, *from_end;
177c0ea7 1710
676a7251 1711 end = b->next_free;
177c0ea7 1712
676a7251 1713 for (from = &b->first_data; from < end; from = from_end)
361b097f 1714 {
676a7251
GM
1715 /* Compute the next FROM here because copying below may
1716 overwrite data we need to compute it. */
14162469 1717 EMACS_INT nbytes;
177c0ea7 1718
676a7251
GM
1719 /* Check that the string size recorded in the string is the
1720 same as the one recorded in the sdata structure. */
1721 if (from->string)
1722 CHECK_STRING_BYTES (from->string);
177c0ea7 1723
676a7251
GM
1724 if (from->string)
1725 nbytes = GC_STRING_BYTES (from->string);
1726 else
1727 nbytes = SDATA_NBYTES (from);
177c0ea7 1728
676a7251 1729 nbytes = SDATA_SIZE (nbytes);
212f33f1 1730 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1731 }
1732}
361b097f 1733
676a7251
GM
1734
1735/* Check validity of Lisp strings' string_bytes member. ALL_P
1736 non-zero means check all strings, otherwise check only most
1737 recently allocated strings. Used for hunting a bug. */
1738
d3d47262 1739static void
676a7251
GM
1740check_string_bytes (all_p)
1741 int all_p;
1742{
1743 if (all_p)
1744 {
1745 struct sblock *b;
1746
1747 for (b = large_sblocks; b; b = b->next)
1748 {
1749 struct Lisp_String *s = b->first_data.string;
1750 if (s)
1751 CHECK_STRING_BYTES (s);
361b097f 1752 }
177c0ea7 1753
676a7251
GM
1754 for (b = oldest_sblock; b; b = b->next)
1755 check_sblock (b);
361b097f 1756 }
676a7251
GM
1757 else
1758 check_sblock (current_sblock);
361b097f
GM
1759}
1760
1761#endif /* GC_CHECK_STRING_BYTES */
1762
212f33f1
KS
1763#ifdef GC_CHECK_STRING_FREE_LIST
1764
bdbed949
KS
1765/* Walk through the string free list looking for bogus next pointers.
1766 This may catch buffer overrun from a previous string. */
1767
212f33f1
KS
1768static void
1769check_string_free_list ()
1770{
1771 struct Lisp_String *s;
1772
1773 /* Pop a Lisp_String off the free-list. */
1774 s = string_free_list;
1775 while (s != NULL)
1776 {
14162469 1777 if ((unsigned long)s < 1024)
212f33f1
KS
1778 abort();
1779 s = NEXT_FREE_LISP_STRING (s);
1780 }
1781}
1782#else
1783#define check_string_free_list()
1784#endif
361b097f 1785
2e471eb5
GM
1786/* Return a new Lisp_String. */
1787
1788static struct Lisp_String *
971de7fb 1789allocate_string (void)
7146af97 1790{
2e471eb5 1791 struct Lisp_String *s;
7146af97 1792
e2984df0
CY
1793 /* eassert (!handling_signal); */
1794
dafc79fa 1795 MALLOC_BLOCK_INPUT;
cfb2f32e 1796
2e471eb5
GM
1797 /* If the free-list is empty, allocate a new string_block, and
1798 add all the Lisp_Strings in it to the free-list. */
1799 if (string_free_list == NULL)
7146af97 1800 {
2e471eb5
GM
1801 struct string_block *b;
1802 int i;
1803
34400008 1804 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
72af86bd 1805 memset (b, 0, sizeof *b);
2e471eb5
GM
1806 b->next = string_blocks;
1807 string_blocks = b;
1808 ++n_string_blocks;
1809
19bcad1f 1810 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1811 {
2e471eb5
GM
1812 s = b->strings + i;
1813 NEXT_FREE_LISP_STRING (s) = string_free_list;
1814 string_free_list = s;
7146af97 1815 }
2e471eb5 1816
19bcad1f 1817 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1818 }
c0f51373 1819
bdbed949 1820 check_string_free_list ();
212f33f1 1821
2e471eb5
GM
1822 /* Pop a Lisp_String off the free-list. */
1823 s = string_free_list;
1824 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1825
dafc79fa 1826 MALLOC_UNBLOCK_INPUT;
e2984df0 1827
2e471eb5 1828 /* Probably not strictly necessary, but play it safe. */
72af86bd 1829 memset (s, 0, sizeof *s);
c0f51373 1830
2e471eb5
GM
1831 --total_free_strings;
1832 ++total_strings;
1833 ++strings_consed;
1834 consing_since_gc += sizeof *s;
c0f51373 1835
361b097f 1836#ifdef GC_CHECK_STRING_BYTES
e39a993c 1837 if (!noninteractive)
361b097f 1838 {
676a7251
GM
1839 if (++check_string_bytes_count == 200)
1840 {
1841 check_string_bytes_count = 0;
1842 check_string_bytes (1);
1843 }
1844 else
1845 check_string_bytes (0);
361b097f 1846 }
676a7251 1847#endif /* GC_CHECK_STRING_BYTES */
361b097f 1848
2e471eb5 1849 return s;
c0f51373 1850}
7146af97 1851
7146af97 1852
2e471eb5
GM
1853/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1854 plus a NUL byte at the end. Allocate an sdata structure for S, and
1855 set S->data to its `u.data' member. Store a NUL byte at the end of
1856 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1857 S->data if it was initially non-null. */
7146af97 1858
2e471eb5 1859void
413d18e7
EZ
1860allocate_string_data (struct Lisp_String *s,
1861 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1862{
5c5fecb3 1863 struct sdata *data, *old_data;
2e471eb5 1864 struct sblock *b;
14162469 1865 EMACS_INT needed, old_nbytes;
7146af97 1866
2e471eb5
GM
1867 /* Determine the number of bytes needed to store NBYTES bytes
1868 of string data. */
1869 needed = SDATA_SIZE (nbytes);
e2984df0
CY
1870 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1871 old_nbytes = GC_STRING_BYTES (s);
1872
dafc79fa 1873 MALLOC_BLOCK_INPUT;
7146af97 1874
2e471eb5
GM
1875 if (nbytes > LARGE_STRING_BYTES)
1876 {
675d5130 1877 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1878
1879#ifdef DOUG_LEA_MALLOC
f8608968
GM
1880 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1881 because mapped region contents are not preserved in
d36b182f
DL
1882 a dumped Emacs.
1883
1884 In case you think of allowing it in a dumped Emacs at the
1885 cost of not being able to re-dump, there's another reason:
1886 mmap'ed data typically have an address towards the top of the
1887 address space, which won't fit into an EMACS_INT (at least on
1888 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1889 mallopt (M_MMAP_MAX, 0);
1890#endif
1891
212f33f1 1892 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1893
2e471eb5
GM
1894#ifdef DOUG_LEA_MALLOC
1895 /* Back to a reasonable maximum of mmap'ed areas. */
1896 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1897#endif
177c0ea7 1898
2e471eb5
GM
1899 b->next_free = &b->first_data;
1900 b->first_data.string = NULL;
1901 b->next = large_sblocks;
1902 large_sblocks = b;
1903 }
1904 else if (current_sblock == NULL
1905 || (((char *) current_sblock + SBLOCK_SIZE
1906 - (char *) current_sblock->next_free)
212f33f1 1907 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
1908 {
1909 /* Not enough room in the current sblock. */
34400008 1910 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1911 b->next_free = &b->first_data;
1912 b->first_data.string = NULL;
1913 b->next = NULL;
1914
1915 if (current_sblock)
1916 current_sblock->next = b;
1917 else
1918 oldest_sblock = b;
1919 current_sblock = b;
1920 }
1921 else
1922 b = current_sblock;
5c5fecb3 1923
2e471eb5 1924 data = b->next_free;
a0b08700
CY
1925 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1926
dafc79fa 1927 MALLOC_UNBLOCK_INPUT;
e2984df0 1928
2e471eb5 1929 data->string = s;
31d929e5
GM
1930 s->data = SDATA_DATA (data);
1931#ifdef GC_CHECK_STRING_BYTES
1932 SDATA_NBYTES (data) = nbytes;
1933#endif
2e471eb5
GM
1934 s->size = nchars;
1935 s->size_byte = nbytes;
1936 s->data[nbytes] = '\0';
212f33f1 1937#ifdef GC_CHECK_STRING_OVERRUN
72af86bd 1938 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 1939#endif
177c0ea7 1940
5c5fecb3
GM
1941 /* If S had already data assigned, mark that as free by setting its
1942 string back-pointer to null, and recording the size of the data
00c9c33c 1943 in it. */
5c5fecb3
GM
1944 if (old_data)
1945 {
31d929e5 1946 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
1947 old_data->string = NULL;
1948 }
1949
2e471eb5
GM
1950 consing_since_gc += needed;
1951}
1952
1953
1954/* Sweep and compact strings. */
1955
1956static void
971de7fb 1957sweep_strings (void)
2e471eb5
GM
1958{
1959 struct string_block *b, *next;
1960 struct string_block *live_blocks = NULL;
177c0ea7 1961
2e471eb5
GM
1962 string_free_list = NULL;
1963 total_strings = total_free_strings = 0;
1964 total_string_size = 0;
1965
1966 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1967 for (b = string_blocks; b; b = next)
1968 {
1969 int i, nfree = 0;
1970 struct Lisp_String *free_list_before = string_free_list;
1971
1972 next = b->next;
1973
19bcad1f 1974 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
1975 {
1976 struct Lisp_String *s = b->strings + i;
1977
1978 if (s->data)
1979 {
1980 /* String was not on free-list before. */
1981 if (STRING_MARKED_P (s))
1982 {
1983 /* String is live; unmark it and its intervals. */
1984 UNMARK_STRING (s);
177c0ea7 1985
2e471eb5
GM
1986 if (!NULL_INTERVAL_P (s->intervals))
1987 UNMARK_BALANCE_INTERVALS (s->intervals);
1988
1989 ++total_strings;
1990 total_string_size += STRING_BYTES (s);
1991 }
1992 else
1993 {
1994 /* String is dead. Put it on the free-list. */
1995 struct sdata *data = SDATA_OF_STRING (s);
1996
1997 /* Save the size of S in its sdata so that we know
1998 how large that is. Reset the sdata's string
1999 back-pointer so that we know it's free. */
31d929e5
GM
2000#ifdef GC_CHECK_STRING_BYTES
2001 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2002 abort ();
2003#else
2e471eb5 2004 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2005#endif
2e471eb5
GM
2006 data->string = NULL;
2007
2008 /* Reset the strings's `data' member so that we
2009 know it's free. */
2010 s->data = NULL;
2011
2012 /* Put the string on the free-list. */
2013 NEXT_FREE_LISP_STRING (s) = string_free_list;
2014 string_free_list = s;
2015 ++nfree;
2016 }
2017 }
2018 else
2019 {
2020 /* S was on the free-list before. Put it there again. */
2021 NEXT_FREE_LISP_STRING (s) = string_free_list;
2022 string_free_list = s;
2023 ++nfree;
2024 }
2025 }
2026
34400008 2027 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2028 the first two of them. */
19bcad1f
SM
2029 if (nfree == STRING_BLOCK_SIZE
2030 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2031 {
2032 lisp_free (b);
2033 --n_string_blocks;
2034 string_free_list = free_list_before;
2035 }
2036 else
2037 {
2038 total_free_strings += nfree;
2039 b->next = live_blocks;
2040 live_blocks = b;
2041 }
2042 }
2043
bdbed949 2044 check_string_free_list ();
212f33f1 2045
2e471eb5
GM
2046 string_blocks = live_blocks;
2047 free_large_strings ();
2048 compact_small_strings ();
212f33f1 2049
bdbed949 2050 check_string_free_list ();
2e471eb5
GM
2051}
2052
2053
2054/* Free dead large strings. */
2055
2056static void
971de7fb 2057free_large_strings (void)
2e471eb5
GM
2058{
2059 struct sblock *b, *next;
2060 struct sblock *live_blocks = NULL;
177c0ea7 2061
2e471eb5
GM
2062 for (b = large_sblocks; b; b = next)
2063 {
2064 next = b->next;
2065
2066 if (b->first_data.string == NULL)
2067 lisp_free (b);
2068 else
2069 {
2070 b->next = live_blocks;
2071 live_blocks = b;
2072 }
2073 }
2074
2075 large_sblocks = live_blocks;
2076}
2077
2078
2079/* Compact data of small strings. Free sblocks that don't contain
2080 data of live strings after compaction. */
2081
2082static void
971de7fb 2083compact_small_strings (void)
2e471eb5
GM
2084{
2085 struct sblock *b, *tb, *next;
2086 struct sdata *from, *to, *end, *tb_end;
2087 struct sdata *to_end, *from_end;
2088
2089 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2090 to, and TB_END is the end of TB. */
2091 tb = oldest_sblock;
2092 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2093 to = &tb->first_data;
2094
2095 /* Step through the blocks from the oldest to the youngest. We
2096 expect that old blocks will stabilize over time, so that less
2097 copying will happen this way. */
2098 for (b = oldest_sblock; b; b = b->next)
2099 {
2100 end = b->next_free;
2101 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2102
2e471eb5
GM
2103 for (from = &b->first_data; from < end; from = from_end)
2104 {
2105 /* Compute the next FROM here because copying below may
2106 overwrite data we need to compute it. */
14162469 2107 EMACS_INT nbytes;
2e471eb5 2108
31d929e5
GM
2109#ifdef GC_CHECK_STRING_BYTES
2110 /* Check that the string size recorded in the string is the
2111 same as the one recorded in the sdata structure. */
2112 if (from->string
2113 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2114 abort ();
2115#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2116
2e471eb5
GM
2117 if (from->string)
2118 nbytes = GC_STRING_BYTES (from->string);
2119 else
31d929e5 2120 nbytes = SDATA_NBYTES (from);
177c0ea7 2121
212f33f1
KS
2122 if (nbytes > LARGE_STRING_BYTES)
2123 abort ();
212f33f1 2124
2e471eb5 2125 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2126 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2127
2128#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
2129 if (memcmp (string_overrun_cookie,
2130 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2131 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2132 abort ();
2133#endif
177c0ea7 2134
2e471eb5
GM
2135 /* FROM->string non-null means it's alive. Copy its data. */
2136 if (from->string)
2137 {
2138 /* If TB is full, proceed with the next sblock. */
212f33f1 2139 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2140 if (to_end > tb_end)
2141 {
2142 tb->next_free = to;
2143 tb = tb->next;
2144 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2145 to = &tb->first_data;
212f33f1 2146 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2147 }
177c0ea7 2148
2e471eb5
GM
2149 /* Copy, and update the string's `data' pointer. */
2150 if (from != to)
2151 {
a2407477 2152 xassert (tb != b || to <= from);
72af86bd 2153 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2154 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2155 }
2156
2157 /* Advance past the sdata we copied to. */
2158 to = to_end;
2159 }
2160 }
2161 }
2162
2163 /* The rest of the sblocks following TB don't contain live data, so
2164 we can free them. */
2165 for (b = tb->next; b; b = next)
2166 {
2167 next = b->next;
2168 lisp_free (b);
2169 }
2170
2171 tb->next_free = to;
2172 tb->next = NULL;
2173 current_sblock = tb;
2174}
2175
2176
2177DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2178 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2179LENGTH must be an integer.
2180INIT must be an integer that represents a character. */)
5842a27b 2181 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2182{
2183 register Lisp_Object val;
2184 register unsigned char *p, *end;
14162469
EZ
2185 int c;
2186 EMACS_INT nbytes;
2e471eb5 2187
b7826503
PJ
2188 CHECK_NATNUM (length);
2189 CHECK_NUMBER (init);
2e471eb5
GM
2190
2191 c = XINT (init);
830ff83b 2192 if (ASCII_CHAR_P (c))
2e471eb5
GM
2193 {
2194 nbytes = XINT (length);
2195 val = make_uninit_string (nbytes);
d5db4077
KR
2196 p = SDATA (val);
2197 end = p + SCHARS (val);
2e471eb5
GM
2198 while (p != end)
2199 *p++ = c;
2200 }
2201 else
2202 {
d942b71c 2203 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 2204 int len = CHAR_STRING (c, str);
14162469 2205 EMACS_INT string_len = XINT (length);
2e471eb5 2206
14162469
EZ
2207 if (string_len > MOST_POSITIVE_FIXNUM / len)
2208 error ("Maximum string size exceeded");
2209 nbytes = len * string_len;
2210 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2211 p = SDATA (val);
2e471eb5
GM
2212 end = p + nbytes;
2213 while (p != end)
2214 {
72af86bd 2215 memcpy (p, str, len);
2e471eb5
GM
2216 p += len;
2217 }
2218 }
177c0ea7 2219
2e471eb5
GM
2220 *p = 0;
2221 return val;
2222}
2223
2224
2225DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2226 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2227LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2228 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2229{
2230 register Lisp_Object val;
2231 struct Lisp_Bool_Vector *p;
2232 int real_init, i;
14162469
EZ
2233 EMACS_INT length_in_chars, length_in_elts;
2234 int bits_per_value;
2e471eb5 2235
b7826503 2236 CHECK_NATNUM (length);
2e471eb5 2237
a097329f 2238 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2239
2240 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
2241 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2242 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
2243
2244 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2245 slot `size' of the struct Lisp_Bool_Vector. */
2246 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
177c0ea7 2247
2e471eb5 2248 /* Get rid of any bits that would cause confusion. */
d2029e5b 2249 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
d0fdb6da 2250 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
d2029e5b
SM
2251 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2252
2253 p = XBOOL_VECTOR (val);
2e471eb5 2254 p->size = XFASTINT (length);
177c0ea7 2255
2e471eb5
GM
2256 real_init = (NILP (init) ? 0 : -1);
2257 for (i = 0; i < length_in_chars ; i++)
2258 p->data[i] = real_init;
177c0ea7 2259
2e471eb5 2260 /* Clear the extraneous bits in the last byte. */
a097329f 2261 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
d2029e5b 2262 p->data[length_in_chars - 1]
a097329f 2263 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
2264
2265 return val;
2266}
2267
2268
2269/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2270 of characters from the contents. This string may be unibyte or
2271 multibyte, depending on the contents. */
2272
2273Lisp_Object
14162469 2274make_string (const char *contents, EMACS_INT nbytes)
2e471eb5
GM
2275{
2276 register Lisp_Object val;
14162469 2277 EMACS_INT nchars, multibyte_nbytes;
9eac9d59 2278
90256841
PE
2279 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2280 &nchars, &multibyte_nbytes);
9eac9d59
KH
2281 if (nbytes == nchars || nbytes != multibyte_nbytes)
2282 /* CONTENTS contains no multibyte sequences or contains an invalid
2283 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2284 val = make_unibyte_string (contents, nbytes);
2285 else
2286 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2287 return val;
2288}
2289
2290
2291/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2292
2293Lisp_Object
14162469 2294make_unibyte_string (const char *contents, EMACS_INT length)
2e471eb5
GM
2295{
2296 register Lisp_Object val;
2297 val = make_uninit_string (length);
72af86bd 2298 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2299 return val;
2300}
2301
2302
2303/* Make a multibyte string from NCHARS characters occupying NBYTES
2304 bytes at CONTENTS. */
2305
2306Lisp_Object
14162469
EZ
2307make_multibyte_string (const char *contents,
2308 EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2309{
2310 register Lisp_Object val;
2311 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2312 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2313 return val;
2314}
2315
2316
2317/* Make a string from NCHARS characters occupying NBYTES bytes at
2318 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2319
2320Lisp_Object
14162469
EZ
2321make_string_from_bytes (const char *contents,
2322 EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2323{
2324 register Lisp_Object val;
2325 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2326 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2327 if (SBYTES (val) == SCHARS (val))
2328 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2329 return val;
2330}
2331
2332
2333/* Make a string from NCHARS characters occupying NBYTES bytes at
2334 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2335 string as multibyte. If NCHARS is negative, it counts the number of
2336 characters by itself. */
2e471eb5
GM
2337
2338Lisp_Object
14162469
EZ
2339make_specified_string (const char *contents,
2340 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2e471eb5
GM
2341{
2342 register Lisp_Object val;
229b28c4
KH
2343
2344 if (nchars < 0)
2345 {
2346 if (multibyte)
90256841
PE
2347 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2348 nbytes);
229b28c4
KH
2349 else
2350 nchars = nbytes;
2351 }
2e471eb5 2352 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2353 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2354 if (!multibyte)
d5db4077 2355 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2356 return val;
2357}
2358
2359
2360/* Make a string from the data at STR, treating it as multibyte if the
2361 data warrants. */
2362
2363Lisp_Object
971de7fb 2364build_string (const char *str)
2e471eb5
GM
2365{
2366 return make_string (str, strlen (str));
2367}
2368
2369
2370/* Return an unibyte Lisp_String set up to hold LENGTH characters
2371 occupying LENGTH bytes. */
2372
2373Lisp_Object
413d18e7 2374make_uninit_string (EMACS_INT length)
2e471eb5
GM
2375{
2376 Lisp_Object val;
4d774b0f
JB
2377
2378 if (!length)
2379 return empty_unibyte_string;
2e471eb5 2380 val = make_uninit_multibyte_string (length, length);
d5db4077 2381 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2382 return val;
2383}
2384
2385
2386/* Return a multibyte Lisp_String set up to hold NCHARS characters
2387 which occupy NBYTES bytes. */
2388
2389Lisp_Object
413d18e7 2390make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2391{
2392 Lisp_Object string;
2393 struct Lisp_String *s;
2394
2395 if (nchars < 0)
2396 abort ();
4d774b0f
JB
2397 if (!nbytes)
2398 return empty_multibyte_string;
2e471eb5
GM
2399
2400 s = allocate_string ();
2401 allocate_string_data (s, nchars, nbytes);
2402 XSETSTRING (string, s);
2403 string_chars_consed += nbytes;
2404 return string;
2405}
2406
2407
2408\f
2409/***********************************************************************
2410 Float Allocation
2411 ***********************************************************************/
2412
2e471eb5
GM
2413/* We store float cells inside of float_blocks, allocating a new
2414 float_block with malloc whenever necessary. Float cells reclaimed
2415 by GC are put on a free list to be reallocated before allocating
ab6780cd 2416 any new float cells from the latest float_block. */
2e471eb5 2417
6b61353c
KH
2418#define FLOAT_BLOCK_SIZE \
2419 (((BLOCK_BYTES - sizeof (struct float_block *) \
2420 /* The compiler might add padding at the end. */ \
2421 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2422 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2423
2424#define GETMARKBIT(block,n) \
2425 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2426 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2427 & 1)
2428
2429#define SETMARKBIT(block,n) \
2430 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2431 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2432
2433#define UNSETMARKBIT(block,n) \
2434 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2435 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2436
2437#define FLOAT_BLOCK(fptr) \
2438 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2439
2440#define FLOAT_INDEX(fptr) \
2441 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2442
2443struct float_block
2444{
ab6780cd 2445 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2446 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2447 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2448 struct float_block *next;
2e471eb5
GM
2449};
2450
ab6780cd
SM
2451#define FLOAT_MARKED_P(fptr) \
2452 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2453
2454#define FLOAT_MARK(fptr) \
2455 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2456
2457#define FLOAT_UNMARK(fptr) \
2458 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2459
34400008
GM
2460/* Current float_block. */
2461
2e471eb5 2462struct float_block *float_block;
34400008
GM
2463
2464/* Index of first unused Lisp_Float in the current float_block. */
2465
2e471eb5
GM
2466int float_block_index;
2467
2468/* Total number of float blocks now in use. */
2469
2470int n_float_blocks;
2471
34400008
GM
2472/* Free-list of Lisp_Floats. */
2473
2e471eb5
GM
2474struct Lisp_Float *float_free_list;
2475
34400008 2476
966533c9 2477/* Initialize float allocation. */
34400008 2478
d3d47262 2479static void
971de7fb 2480init_float (void)
2e471eb5 2481{
08b7c2cb
SM
2482 float_block = NULL;
2483 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2484 float_free_list = 0;
08b7c2cb 2485 n_float_blocks = 0;
2e471eb5
GM
2486}
2487
34400008 2488
34400008
GM
2489/* Return a new float object with value FLOAT_VALUE. */
2490
2e471eb5 2491Lisp_Object
971de7fb 2492make_float (double float_value)
2e471eb5
GM
2493{
2494 register Lisp_Object val;
2495
e2984df0
CY
2496 /* eassert (!handling_signal); */
2497
dafc79fa 2498 MALLOC_BLOCK_INPUT;
cfb2f32e 2499
2e471eb5
GM
2500 if (float_free_list)
2501 {
2502 /* We use the data field for chaining the free list
2503 so that we won't use the same field that has the mark bit. */
2504 XSETFLOAT (val, float_free_list);
28a099a4 2505 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2506 }
2507 else
2508 {
2509 if (float_block_index == FLOAT_BLOCK_SIZE)
2510 {
2511 register struct float_block *new;
2512
ab6780cd
SM
2513 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2514 MEM_TYPE_FLOAT);
2e471eb5 2515 new->next = float_block;
72af86bd 2516 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2517 float_block = new;
2518 float_block_index = 0;
2519 n_float_blocks++;
2520 }
6b61353c
KH
2521 XSETFLOAT (val, &float_block->floats[float_block_index]);
2522 float_block_index++;
2e471eb5 2523 }
177c0ea7 2524
dafc79fa 2525 MALLOC_UNBLOCK_INPUT;
e2984df0 2526
f601cdf3 2527 XFLOAT_INIT (val, float_value);
6b61353c 2528 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2529 consing_since_gc += sizeof (struct Lisp_Float);
2530 floats_consed++;
2531 return val;
2532}
2533
2e471eb5
GM
2534
2535\f
2536/***********************************************************************
2537 Cons Allocation
2538 ***********************************************************************/
2539
2540/* We store cons cells inside of cons_blocks, allocating a new
2541 cons_block with malloc whenever necessary. Cons cells reclaimed by
2542 GC are put on a free list to be reallocated before allocating
08b7c2cb 2543 any new cons cells from the latest cons_block. */
2e471eb5
GM
2544
2545#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2546 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2547 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2548
2549#define CONS_BLOCK(fptr) \
2550 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2551
2552#define CONS_INDEX(fptr) \
2553 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2554
2555struct cons_block
2556{
08b7c2cb 2557 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2558 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2559 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2560 struct cons_block *next;
2e471eb5
GM
2561};
2562
08b7c2cb
SM
2563#define CONS_MARKED_P(fptr) \
2564 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2565
2566#define CONS_MARK(fptr) \
2567 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2568
2569#define CONS_UNMARK(fptr) \
2570 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2571
34400008
GM
2572/* Current cons_block. */
2573
2e471eb5 2574struct cons_block *cons_block;
34400008
GM
2575
2576/* Index of first unused Lisp_Cons in the current block. */
2577
2e471eb5
GM
2578int cons_block_index;
2579
34400008
GM
2580/* Free-list of Lisp_Cons structures. */
2581
2e471eb5
GM
2582struct Lisp_Cons *cons_free_list;
2583
2584/* Total number of cons blocks now in use. */
2585
d3d47262 2586static int n_cons_blocks;
2e471eb5 2587
34400008
GM
2588
2589/* Initialize cons allocation. */
2590
d3d47262 2591static void
971de7fb 2592init_cons (void)
2e471eb5 2593{
08b7c2cb
SM
2594 cons_block = NULL;
2595 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2596 cons_free_list = 0;
08b7c2cb 2597 n_cons_blocks = 0;
2e471eb5
GM
2598}
2599
34400008
GM
2600
2601/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2602
2603void
971de7fb 2604free_cons (struct Lisp_Cons *ptr)
2e471eb5 2605{
28a099a4 2606 ptr->u.chain = cons_free_list;
34400008
GM
2607#if GC_MARK_STACK
2608 ptr->car = Vdead;
2609#endif
2e471eb5
GM
2610 cons_free_list = ptr;
2611}
2612
2613DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2614 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2615 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2616{
2617 register Lisp_Object val;
2618
e2984df0
CY
2619 /* eassert (!handling_signal); */
2620
dafc79fa 2621 MALLOC_BLOCK_INPUT;
cfb2f32e 2622
2e471eb5
GM
2623 if (cons_free_list)
2624 {
2625 /* We use the cdr for chaining the free list
2626 so that we won't use the same field that has the mark bit. */
2627 XSETCONS (val, cons_free_list);
28a099a4 2628 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2629 }
2630 else
2631 {
2632 if (cons_block_index == CONS_BLOCK_SIZE)
2633 {
2634 register struct cons_block *new;
08b7c2cb
SM
2635 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2636 MEM_TYPE_CONS);
72af86bd 2637 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2638 new->next = cons_block;
2639 cons_block = new;
2640 cons_block_index = 0;
2641 n_cons_blocks++;
2642 }
6b61353c
KH
2643 XSETCONS (val, &cons_block->conses[cons_block_index]);
2644 cons_block_index++;
2e471eb5 2645 }
177c0ea7 2646
dafc79fa 2647 MALLOC_UNBLOCK_INPUT;
e2984df0 2648
f3fbd155
KR
2649 XSETCAR (val, car);
2650 XSETCDR (val, cdr);
6b61353c 2651 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2652 consing_since_gc += sizeof (struct Lisp_Cons);
2653 cons_cells_consed++;
2654 return val;
2655}
2656
e5aab7e7 2657#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2658/* Get an error now if there's any junk in the cons free list. */
2659void
971de7fb 2660check_cons_list (void)
e3e56238
RS
2661{
2662 struct Lisp_Cons *tail = cons_free_list;
2663
e3e56238 2664 while (tail)
28a099a4 2665 tail = tail->u.chain;
e3e56238 2666}
e5aab7e7 2667#endif
34400008 2668
9b306d37
KS
2669/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2670
2671Lisp_Object
971de7fb 2672list1 (Lisp_Object arg1)
9b306d37
KS
2673{
2674 return Fcons (arg1, Qnil);
2675}
2e471eb5
GM
2676
2677Lisp_Object
971de7fb 2678list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2679{
2680 return Fcons (arg1, Fcons (arg2, Qnil));
2681}
2682
34400008 2683
2e471eb5 2684Lisp_Object
971de7fb 2685list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2686{
2687 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2688}
2689
34400008 2690
2e471eb5 2691Lisp_Object
971de7fb 2692list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2693{
2694 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2695}
2696
34400008 2697
2e471eb5 2698Lisp_Object
971de7fb 2699list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2700{
2701 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2702 Fcons (arg5, Qnil)))));
2703}
2704
34400008 2705
2e471eb5 2706DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2707 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2708Any number of arguments, even zero arguments, are allowed.
2709usage: (list &rest OBJECTS) */)
5842a27b 2710 (int nargs, register Lisp_Object *args)
2e471eb5
GM
2711{
2712 register Lisp_Object val;
2713 val = Qnil;
2714
2715 while (nargs > 0)
2716 {
2717 nargs--;
2718 val = Fcons (args[nargs], val);
2719 }
2720 return val;
2721}
2722
34400008 2723
2e471eb5 2724DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2725 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2726 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2727{
2728 register Lisp_Object val;
14162469 2729 register EMACS_INT size;
2e471eb5 2730
b7826503 2731 CHECK_NATNUM (length);
2e471eb5
GM
2732 size = XFASTINT (length);
2733
2734 val = Qnil;
ce070307
GM
2735 while (size > 0)
2736 {
2737 val = Fcons (init, val);
2738 --size;
2739
2740 if (size > 0)
2741 {
2742 val = Fcons (init, val);
2743 --size;
177c0ea7 2744
ce070307
GM
2745 if (size > 0)
2746 {
2747 val = Fcons (init, val);
2748 --size;
177c0ea7 2749
ce070307
GM
2750 if (size > 0)
2751 {
2752 val = Fcons (init, val);
2753 --size;
177c0ea7 2754
ce070307
GM
2755 if (size > 0)
2756 {
2757 val = Fcons (init, val);
2758 --size;
2759 }
2760 }
2761 }
2762 }
2763
2764 QUIT;
2765 }
177c0ea7 2766
7146af97
JB
2767 return val;
2768}
2e471eb5
GM
2769
2770
7146af97 2771\f
2e471eb5
GM
2772/***********************************************************************
2773 Vector Allocation
2774 ***********************************************************************/
7146af97 2775
34400008
GM
2776/* Singly-linked list of all vectors. */
2777
d3d47262 2778static struct Lisp_Vector *all_vectors;
7146af97 2779
2e471eb5
GM
2780/* Total number of vector-like objects now in use. */
2781
d3d47262 2782static int n_vectors;
c8099634 2783
34400008
GM
2784
2785/* Value is a pointer to a newly allocated Lisp_Vector structure
2786 with room for LEN Lisp_Objects. */
2787
ece93c02 2788static struct Lisp_Vector *
971de7fb 2789allocate_vectorlike (EMACS_INT len)
1825c68d
KH
2790{
2791 struct Lisp_Vector *p;
675d5130 2792 size_t nbytes;
1825c68d 2793
dafc79fa
SM
2794 MALLOC_BLOCK_INPUT;
2795
d1658221 2796#ifdef DOUG_LEA_MALLOC
f8608968
GM
2797 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2798 because mapped region contents are not preserved in
2799 a dumped Emacs. */
d1658221
RS
2800 mallopt (M_MMAP_MAX, 0);
2801#endif
177c0ea7 2802
cfb2f32e
SM
2803 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2804 /* eassert (!handling_signal); */
2805
34400008 2806 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
9c545a55 2807 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
177c0ea7 2808
d1658221 2809#ifdef DOUG_LEA_MALLOC
34400008 2810 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 2811 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 2812#endif
177c0ea7 2813
34400008 2814 consing_since_gc += nbytes;
310ea200 2815 vector_cells_consed += len;
1825c68d
KH
2816
2817 p->next = all_vectors;
2818 all_vectors = p;
e2984df0 2819
dafc79fa 2820 MALLOC_UNBLOCK_INPUT;
e2984df0 2821
34400008 2822 ++n_vectors;
1825c68d
KH
2823 return p;
2824}
2825
34400008 2826
ece93c02
GM
2827/* Allocate a vector with NSLOTS slots. */
2828
2829struct Lisp_Vector *
971de7fb 2830allocate_vector (EMACS_INT nslots)
ece93c02 2831{
9c545a55 2832 struct Lisp_Vector *v = allocate_vectorlike (nslots);
ece93c02
GM
2833 v->size = nslots;
2834 return v;
2835}
2836
2837
2838/* Allocate other vector-like structures. */
2839
30f95089 2840struct Lisp_Vector *
971de7fb 2841allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
ece93c02 2842{
d2029e5b 2843 struct Lisp_Vector *v = allocate_vectorlike (memlen);
ece93c02 2844 EMACS_INT i;
177c0ea7 2845
d2029e5b
SM
2846 /* Only the first lisplen slots will be traced normally by the GC. */
2847 v->size = lisplen;
2848 for (i = 0; i < lisplen; ++i)
ece93c02 2849 v->contents[i] = Qnil;
177c0ea7 2850
d2029e5b
SM
2851 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2852 return v;
2853}
d2029e5b 2854
ece93c02 2855struct Lisp_Hash_Table *
878f97ff 2856allocate_hash_table (void)
ece93c02 2857{
878f97ff 2858 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
2859}
2860
2861
2862struct window *
971de7fb 2863allocate_window (void)
ece93c02 2864{
d2029e5b 2865 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
ece93c02 2866}
177c0ea7 2867
177c0ea7 2868
4a729fd8 2869struct terminal *
971de7fb 2870allocate_terminal (void)
4a729fd8 2871{
d2029e5b
SM
2872 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2873 next_terminal, PVEC_TERMINAL);
2874 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
2875 memset (&t->next_terminal, 0,
2876 (char*) (t + 1) - (char*) &t->next_terminal);
ece93c02 2877
d2029e5b 2878 return t;
4a729fd8 2879}
ece93c02
GM
2880
2881struct frame *
971de7fb 2882allocate_frame (void)
ece93c02 2883{
d2029e5b
SM
2884 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2885 face_cache, PVEC_FRAME);
2886 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
2887 memset (&f->face_cache, 0,
2888 (char *) (f + 1) - (char *) &f->face_cache);
d2029e5b 2889 return f;
ece93c02
GM
2890}
2891
2892
2893struct Lisp_Process *
971de7fb 2894allocate_process (void)
ece93c02 2895{
d2029e5b 2896 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
ece93c02
GM
2897}
2898
2899
7146af97 2900DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 2901 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 2902See also the function `vector'. */)
5842a27b 2903 (register Lisp_Object length, Lisp_Object init)
7146af97 2904{
1825c68d
KH
2905 Lisp_Object vector;
2906 register EMACS_INT sizei;
ae35e756 2907 register EMACS_INT i;
7146af97
JB
2908 register struct Lisp_Vector *p;
2909
b7826503 2910 CHECK_NATNUM (length);
c9dad5ed 2911 sizei = XFASTINT (length);
7146af97 2912
ece93c02 2913 p = allocate_vector (sizei);
ae35e756
PE
2914 for (i = 0; i < sizei; i++)
2915 p->contents[i] = init;
7146af97 2916
1825c68d 2917 XSETVECTOR (vector, p);
7146af97
JB
2918 return vector;
2919}
2920
34400008 2921
7146af97 2922DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 2923 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
2924Any number of arguments, even zero arguments, are allowed.
2925usage: (vector &rest OBJECTS) */)
5842a27b 2926 (register int nargs, Lisp_Object *args)
7146af97
JB
2927{
2928 register Lisp_Object len, val;
ae35e756 2929 register int i;
7146af97
JB
2930 register struct Lisp_Vector *p;
2931
67ba9986 2932 XSETFASTINT (len, nargs);
7146af97
JB
2933 val = Fmake_vector (len, Qnil);
2934 p = XVECTOR (val);
ae35e756
PE
2935 for (i = 0; i < nargs; i++)
2936 p->contents[i] = args[i];
7146af97
JB
2937 return val;
2938}
2939
34400008 2940
7146af97 2941DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 2942 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
2943The arguments should be the arglist, bytecode-string, constant vector,
2944stack size, (optional) doc string, and (optional) interactive spec.
2945The first four arguments are required; at most six have any
ae8e8122 2946significance.
92cc28b2 2947usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
5842a27b 2948 (register int nargs, Lisp_Object *args)
7146af97
JB
2949{
2950 register Lisp_Object len, val;
ae35e756 2951 register int i;
7146af97
JB
2952 register struct Lisp_Vector *p;
2953
67ba9986 2954 XSETFASTINT (len, nargs);
265a9e55 2955 if (!NILP (Vpurify_flag))
5a053ea9 2956 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
2957 else
2958 val = Fmake_vector (len, Qnil);
9eac9d59 2959
b1feb9b4 2960 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
9eac9d59
KH
2961 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2962 earlier because they produced a raw 8-bit string for byte-code
2963 and now such a byte-code string is loaded as multibyte while
2964 raw 8-bit characters converted to multibyte form. Thus, now we
2965 must convert them back to the original unibyte form. */
2966 args[1] = Fstring_as_unibyte (args[1]);
2967
7146af97 2968 p = XVECTOR (val);
ae35e756 2969 for (i = 0; i < nargs; i++)
7146af97 2970 {
265a9e55 2971 if (!NILP (Vpurify_flag))
ae35e756
PE
2972 args[i] = Fpurecopy (args[i]);
2973 p->contents[i] = args[i];
7146af97 2974 }
d2029e5b 2975 XSETPVECTYPE (p, PVEC_COMPILED);
50aee051 2976 XSETCOMPILED (val, p);
7146af97
JB
2977 return val;
2978}
2e471eb5 2979
34400008 2980
7146af97 2981\f
2e471eb5
GM
2982/***********************************************************************
2983 Symbol Allocation
2984 ***********************************************************************/
7146af97 2985
2e471eb5
GM
2986/* Each symbol_block is just under 1020 bytes long, since malloc
2987 really allocates in units of powers of two and uses 4 bytes for its
2988 own overhead. */
7146af97
JB
2989
2990#define SYMBOL_BLOCK_SIZE \
2991 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2992
2993struct symbol_block
2e471eb5 2994{
6b61353c 2995 /* Place `symbols' first, to preserve alignment. */
2e471eb5 2996 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 2997 struct symbol_block *next;
2e471eb5 2998};
7146af97 2999
34400008
GM
3000/* Current symbol block and index of first unused Lisp_Symbol
3001 structure in it. */
3002
d3d47262
JB
3003static struct symbol_block *symbol_block;
3004static int symbol_block_index;
7146af97 3005
34400008
GM
3006/* List of free symbols. */
3007
d3d47262 3008static struct Lisp_Symbol *symbol_free_list;
7146af97 3009
c8099634 3010/* Total number of symbol blocks now in use. */
2e471eb5 3011
d3d47262 3012static int n_symbol_blocks;
c8099634 3013
34400008
GM
3014
3015/* Initialize symbol allocation. */
3016
d3d47262 3017static void
971de7fb 3018init_symbol (void)
7146af97 3019{
005ca5c7
DL
3020 symbol_block = NULL;
3021 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3022 symbol_free_list = 0;
005ca5c7 3023 n_symbol_blocks = 0;
7146af97
JB
3024}
3025
34400008 3026
7146af97 3027DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3028 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3029Its value and function definition are void, and its property list is nil. */)
5842a27b 3030 (Lisp_Object name)
7146af97
JB
3031{
3032 register Lisp_Object val;
3033 register struct Lisp_Symbol *p;
3034
b7826503 3035 CHECK_STRING (name);
7146af97 3036
537407f0 3037 /* eassert (!handling_signal); */
cfb2f32e 3038
dafc79fa 3039 MALLOC_BLOCK_INPUT;
e2984df0 3040
7146af97
JB
3041 if (symbol_free_list)
3042 {
45d12a89 3043 XSETSYMBOL (val, symbol_free_list);
28a099a4 3044 symbol_free_list = symbol_free_list->next;
7146af97
JB
3045 }
3046 else
3047 {
3048 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3049 {
3c06d205 3050 struct symbol_block *new;
34400008
GM
3051 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3052 MEM_TYPE_SYMBOL);
7146af97
JB
3053 new->next = symbol_block;
3054 symbol_block = new;
3055 symbol_block_index = 0;
c8099634 3056 n_symbol_blocks++;
7146af97 3057 }
6b61353c
KH
3058 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3059 symbol_block_index++;
7146af97 3060 }
177c0ea7 3061
dafc79fa 3062 MALLOC_UNBLOCK_INPUT;
e2984df0 3063
7146af97 3064 p = XSYMBOL (val);
8fe5665d 3065 p->xname = name;
7146af97 3066 p->plist = Qnil;
ce5b453a
SM
3067 p->redirect = SYMBOL_PLAINVAL;
3068 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3069 p->function = Qunbound;
9e713715 3070 p->next = NULL;
2336fe58 3071 p->gcmarkbit = 0;
9e713715
GM
3072 p->interned = SYMBOL_UNINTERNED;
3073 p->constant = 0;
2e471eb5
GM
3074 consing_since_gc += sizeof (struct Lisp_Symbol);
3075 symbols_consed++;
7146af97
JB
3076 return val;
3077}
3078
3f25e183 3079
2e471eb5
GM
3080\f
3081/***********************************************************************
34400008 3082 Marker (Misc) Allocation
2e471eb5 3083 ***********************************************************************/
3f25e183 3084
2e471eb5
GM
3085/* Allocation of markers and other objects that share that structure.
3086 Works like allocation of conses. */
c0696668 3087
2e471eb5
GM
3088#define MARKER_BLOCK_SIZE \
3089 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3090
3091struct marker_block
c0696668 3092{
6b61353c 3093 /* Place `markers' first, to preserve alignment. */
2e471eb5 3094 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3095 struct marker_block *next;
2e471eb5 3096};
c0696668 3097
d3d47262
JB
3098static struct marker_block *marker_block;
3099static int marker_block_index;
c0696668 3100
d3d47262 3101static union Lisp_Misc *marker_free_list;
c0696668 3102
2e471eb5 3103/* Total number of marker blocks now in use. */
3f25e183 3104
d3d47262 3105static int n_marker_blocks;
2e471eb5 3106
d3d47262 3107static void
971de7fb 3108init_marker (void)
3f25e183 3109{
005ca5c7
DL
3110 marker_block = NULL;
3111 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3112 marker_free_list = 0;
005ca5c7 3113 n_marker_blocks = 0;
3f25e183
RS
3114}
3115
2e471eb5
GM
3116/* Return a newly allocated Lisp_Misc object, with no substructure. */
3117
3f25e183 3118Lisp_Object
971de7fb 3119allocate_misc (void)
7146af97 3120{
2e471eb5 3121 Lisp_Object val;
7146af97 3122
e2984df0
CY
3123 /* eassert (!handling_signal); */
3124
dafc79fa 3125 MALLOC_BLOCK_INPUT;
cfb2f32e 3126
2e471eb5 3127 if (marker_free_list)
7146af97 3128 {
2e471eb5
GM
3129 XSETMISC (val, marker_free_list);
3130 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3131 }
3132 else
7146af97 3133 {
2e471eb5
GM
3134 if (marker_block_index == MARKER_BLOCK_SIZE)
3135 {
3136 struct marker_block *new;
34400008
GM
3137 new = (struct marker_block *) lisp_malloc (sizeof *new,
3138 MEM_TYPE_MISC);
2e471eb5
GM
3139 new->next = marker_block;
3140 marker_block = new;
3141 marker_block_index = 0;
3142 n_marker_blocks++;
7b7990cc 3143 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3144 }
6b61353c
KH
3145 XSETMISC (val, &marker_block->markers[marker_block_index]);
3146 marker_block_index++;
7146af97 3147 }
177c0ea7 3148
dafc79fa 3149 MALLOC_UNBLOCK_INPUT;
e2984df0 3150
7b7990cc 3151 --total_free_markers;
2e471eb5
GM
3152 consing_since_gc += sizeof (union Lisp_Misc);
3153 misc_objects_consed++;
67ee9f6e 3154 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3155 return val;
3156}
3157
7b7990cc
KS
3158/* Free a Lisp_Misc object */
3159
3160void
971de7fb 3161free_misc (Lisp_Object misc)
7b7990cc 3162{
d314756e 3163 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3164 XMISC (misc)->u_free.chain = marker_free_list;
3165 marker_free_list = XMISC (misc);
3166
3167 total_free_markers++;
3168}
3169
42172a6b
RS
3170/* Return a Lisp_Misc_Save_Value object containing POINTER and
3171 INTEGER. This is used to package C values to call record_unwind_protect.
3172 The unwind function can get the C values back using XSAVE_VALUE. */
3173
3174Lisp_Object
971de7fb 3175make_save_value (void *pointer, int integer)
42172a6b
RS
3176{
3177 register Lisp_Object val;
3178 register struct Lisp_Save_Value *p;
3179
3180 val = allocate_misc ();
3181 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3182 p = XSAVE_VALUE (val);
3183 p->pointer = pointer;
3184 p->integer = integer;
b766f870 3185 p->dogc = 0;
42172a6b
RS
3186 return val;
3187}
3188
2e471eb5 3189DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3190 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3191 (void)
2e471eb5
GM
3192{
3193 register Lisp_Object val;
3194 register struct Lisp_Marker *p;
7146af97 3195
2e471eb5
GM
3196 val = allocate_misc ();
3197 XMISCTYPE (val) = Lisp_Misc_Marker;
3198 p = XMARKER (val);
3199 p->buffer = 0;
3200 p->bytepos = 0;
3201 p->charpos = 0;
ef89c2ce 3202 p->next = NULL;
2e471eb5 3203 p->insertion_type = 0;
7146af97
JB
3204 return val;
3205}
2e471eb5
GM
3206
3207/* Put MARKER back on the free list after using it temporarily. */
3208
3209void
971de7fb 3210free_marker (Lisp_Object marker)
2e471eb5 3211{
ef89c2ce 3212 unchain_marker (XMARKER (marker));
7b7990cc 3213 free_misc (marker);
2e471eb5
GM
3214}
3215
c0696668 3216\f
7146af97 3217/* Return a newly created vector or string with specified arguments as
736471d1
RS
3218 elements. If all the arguments are characters that can fit
3219 in a string of events, make a string; otherwise, make a vector.
3220
3221 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3222
3223Lisp_Object
971de7fb 3224make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3225{
3226 int i;
3227
3228 for (i = 0; i < nargs; i++)
736471d1 3229 /* The things that fit in a string
c9ca4659
RS
3230 are characters that are in 0...127,
3231 after discarding the meta bit and all the bits above it. */
e687453f 3232 if (!INTEGERP (args[i])
c9ca4659 3233 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3234 return Fvector (nargs, args);
3235
3236 /* Since the loop exited, we know that all the things in it are
3237 characters, so we can make a string. */
3238 {
c13ccad2 3239 Lisp_Object result;
177c0ea7 3240
50aee051 3241 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3242 for (i = 0; i < nargs; i++)
736471d1 3243 {
46e7e6b0 3244 SSET (result, i, XINT (args[i]));
736471d1
RS
3245 /* Move the meta bit to the right place for a string char. */
3246 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3247 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3248 }
177c0ea7 3249
7146af97
JB
3250 return result;
3251 }
3252}
2e471eb5
GM
3253
3254
7146af97 3255\f
24d8a105
RS
3256/************************************************************************
3257 Memory Full Handling
3258 ************************************************************************/
3259
3260
3261/* Called if malloc returns zero. */
3262
3263void
971de7fb 3264memory_full (void)
24d8a105
RS
3265{
3266 int i;
3267
3268 Vmemory_full = Qt;
3269
3270 memory_full_cons_threshold = sizeof (struct cons_block);
3271
3272 /* The first time we get here, free the spare memory. */
3273 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3274 if (spare_memory[i])
3275 {
3276 if (i == 0)
3277 free (spare_memory[i]);
3278 else if (i >= 1 && i <= 4)
3279 lisp_align_free (spare_memory[i]);
3280 else
3281 lisp_free (spare_memory[i]);
3282 spare_memory[i] = 0;
3283 }
3284
3285 /* Record the space now used. When it decreases substantially,
3286 we can refill the memory reserve. */
3287#ifndef SYSTEM_MALLOC
3288 bytes_used_when_full = BYTES_USED;
3289#endif
3290
3291 /* This used to call error, but if we've run out of memory, we could
3292 get infinite recursion trying to build the string. */
9b306d37 3293 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3294}
3295
3296/* If we released our reserve (due to running out of memory),
3297 and we have a fair amount free once again,
3298 try to set aside another reserve in case we run out once more.
3299
3300 This is called when a relocatable block is freed in ralloc.c,
3301 and also directly from this file, in case we're not using ralloc.c. */
3302
3303void
971de7fb 3304refill_memory_reserve (void)
24d8a105
RS
3305{
3306#ifndef SYSTEM_MALLOC
3307 if (spare_memory[0] == 0)
3308 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3309 if (spare_memory[1] == 0)
3310 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3311 MEM_TYPE_CONS);
3312 if (spare_memory[2] == 0)
3313 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3314 MEM_TYPE_CONS);
3315 if (spare_memory[3] == 0)
3316 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3317 MEM_TYPE_CONS);
3318 if (spare_memory[4] == 0)
3319 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3320 MEM_TYPE_CONS);
3321 if (spare_memory[5] == 0)
3322 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3323 MEM_TYPE_STRING);
3324 if (spare_memory[6] == 0)
3325 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3326 MEM_TYPE_STRING);
3327 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3328 Vmemory_full = Qnil;
3329#endif
3330}
3331\f
34400008
GM
3332/************************************************************************
3333 C Stack Marking
3334 ************************************************************************/
3335
13c844fb
GM
3336#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3337
71cf5fa0
GM
3338/* Conservative C stack marking requires a method to identify possibly
3339 live Lisp objects given a pointer value. We do this by keeping
3340 track of blocks of Lisp data that are allocated in a red-black tree
3341 (see also the comment of mem_node which is the type of nodes in
3342 that tree). Function lisp_malloc adds information for an allocated
3343 block to the red-black tree with calls to mem_insert, and function
3344 lisp_free removes it with mem_delete. Functions live_string_p etc
3345 call mem_find to lookup information about a given pointer in the
3346 tree, and use that to determine if the pointer points to a Lisp
3347 object or not. */
3348
34400008
GM
3349/* Initialize this part of alloc.c. */
3350
3351static void
971de7fb 3352mem_init (void)
34400008
GM
3353{
3354 mem_z.left = mem_z.right = MEM_NIL;
3355 mem_z.parent = NULL;
3356 mem_z.color = MEM_BLACK;
3357 mem_z.start = mem_z.end = NULL;
3358 mem_root = MEM_NIL;
3359}
3360
3361
3362/* Value is a pointer to the mem_node containing START. Value is
3363 MEM_NIL if there is no node in the tree containing START. */
3364
3365static INLINE struct mem_node *
971de7fb 3366mem_find (void *start)
34400008
GM
3367{
3368 struct mem_node *p;
3369
ece93c02
GM
3370 if (start < min_heap_address || start > max_heap_address)
3371 return MEM_NIL;
3372
34400008
GM
3373 /* Make the search always successful to speed up the loop below. */
3374 mem_z.start = start;
3375 mem_z.end = (char *) start + 1;
3376
3377 p = mem_root;
3378 while (start < p->start || start >= p->end)
3379 p = start < p->start ? p->left : p->right;
3380 return p;
3381}
3382
3383
3384/* Insert a new node into the tree for a block of memory with start
3385 address START, end address END, and type TYPE. Value is a
3386 pointer to the node that was inserted. */
3387
3388static struct mem_node *
971de7fb 3389mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3390{
3391 struct mem_node *c, *parent, *x;
3392
add3c3ea 3393 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3394 min_heap_address = start;
add3c3ea 3395 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3396 max_heap_address = end;
3397
34400008
GM
3398 /* See where in the tree a node for START belongs. In this
3399 particular application, it shouldn't happen that a node is already
3400 present. For debugging purposes, let's check that. */
3401 c = mem_root;
3402 parent = NULL;
3403
3404#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3405
34400008
GM
3406 while (c != MEM_NIL)
3407 {
3408 if (start >= c->start && start < c->end)
3409 abort ();
3410 parent = c;
3411 c = start < c->start ? c->left : c->right;
3412 }
177c0ea7 3413
34400008 3414#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3415
34400008
GM
3416 while (c != MEM_NIL)
3417 {
3418 parent = c;
3419 c = start < c->start ? c->left : c->right;
3420 }
177c0ea7 3421
34400008
GM
3422#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3423
3424 /* Create a new node. */
877935b1
GM
3425#ifdef GC_MALLOC_CHECK
3426 x = (struct mem_node *) _malloc_internal (sizeof *x);
3427 if (x == NULL)
3428 abort ();
3429#else
34400008 3430 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3431#endif
34400008
GM
3432 x->start = start;
3433 x->end = end;
3434 x->type = type;
3435 x->parent = parent;
3436 x->left = x->right = MEM_NIL;
3437 x->color = MEM_RED;
3438
3439 /* Insert it as child of PARENT or install it as root. */
3440 if (parent)
3441 {
3442 if (start < parent->start)
3443 parent->left = x;
3444 else
3445 parent->right = x;
3446 }
177c0ea7 3447 else
34400008
GM
3448 mem_root = x;
3449
3450 /* Re-establish red-black tree properties. */
3451 mem_insert_fixup (x);
877935b1 3452
34400008
GM
3453 return x;
3454}
3455
3456
3457/* Re-establish the red-black properties of the tree, and thereby
3458 balance the tree, after node X has been inserted; X is always red. */
3459
3460static void
971de7fb 3461mem_insert_fixup (struct mem_node *x)
34400008
GM
3462{
3463 while (x != mem_root && x->parent->color == MEM_RED)
3464 {
3465 /* X is red and its parent is red. This is a violation of
3466 red-black tree property #3. */
177c0ea7 3467
34400008
GM
3468 if (x->parent == x->parent->parent->left)
3469 {
3470 /* We're on the left side of our grandparent, and Y is our
3471 "uncle". */
3472 struct mem_node *y = x->parent->parent->right;
177c0ea7 3473
34400008
GM
3474 if (y->color == MEM_RED)
3475 {
3476 /* Uncle and parent are red but should be black because
3477 X is red. Change the colors accordingly and proceed
3478 with the grandparent. */
3479 x->parent->color = MEM_BLACK;
3480 y->color = MEM_BLACK;
3481 x->parent->parent->color = MEM_RED;
3482 x = x->parent->parent;
3483 }
3484 else
3485 {
3486 /* Parent and uncle have different colors; parent is
3487 red, uncle is black. */
3488 if (x == x->parent->right)
3489 {
3490 x = x->parent;
3491 mem_rotate_left (x);
3492 }
3493
3494 x->parent->color = MEM_BLACK;
3495 x->parent->parent->color = MEM_RED;
3496 mem_rotate_right (x->parent->parent);
3497 }
3498 }
3499 else
3500 {
3501 /* This is the symmetrical case of above. */
3502 struct mem_node *y = x->parent->parent->left;
177c0ea7 3503
34400008
GM
3504 if (y->color == MEM_RED)
3505 {
3506 x->parent->color = MEM_BLACK;
3507 y->color = MEM_BLACK;
3508 x->parent->parent->color = MEM_RED;
3509 x = x->parent->parent;
3510 }
3511 else
3512 {
3513 if (x == x->parent->left)
3514 {
3515 x = x->parent;
3516 mem_rotate_right (x);
3517 }
177c0ea7 3518
34400008
GM
3519 x->parent->color = MEM_BLACK;
3520 x->parent->parent->color = MEM_RED;
3521 mem_rotate_left (x->parent->parent);
3522 }
3523 }
3524 }
3525
3526 /* The root may have been changed to red due to the algorithm. Set
3527 it to black so that property #5 is satisfied. */
3528 mem_root->color = MEM_BLACK;
3529}
3530
3531
177c0ea7
JB
3532/* (x) (y)
3533 / \ / \
34400008
GM
3534 a (y) ===> (x) c
3535 / \ / \
3536 b c a b */
3537
3538static void
971de7fb 3539mem_rotate_left (struct mem_node *x)
34400008
GM
3540{
3541 struct mem_node *y;
3542
3543 /* Turn y's left sub-tree into x's right sub-tree. */
3544 y = x->right;
3545 x->right = y->left;
3546 if (y->left != MEM_NIL)
3547 y->left->parent = x;
3548
3549 /* Y's parent was x's parent. */
3550 if (y != MEM_NIL)
3551 y->parent = x->parent;
3552
3553 /* Get the parent to point to y instead of x. */
3554 if (x->parent)
3555 {
3556 if (x == x->parent->left)
3557 x->parent->left = y;
3558 else
3559 x->parent->right = y;
3560 }
3561 else
3562 mem_root = y;
3563
3564 /* Put x on y's left. */
3565 y->left = x;
3566 if (x != MEM_NIL)
3567 x->parent = y;
3568}
3569
3570
177c0ea7
JB
3571/* (x) (Y)
3572 / \ / \
3573 (y) c ===> a (x)
3574 / \ / \
34400008
GM
3575 a b b c */
3576
3577static void
971de7fb 3578mem_rotate_right (struct mem_node *x)
34400008
GM
3579{
3580 struct mem_node *y = x->left;
3581
3582 x->left = y->right;
3583 if (y->right != MEM_NIL)
3584 y->right->parent = x;
177c0ea7 3585
34400008
GM
3586 if (y != MEM_NIL)
3587 y->parent = x->parent;
3588 if (x->parent)
3589 {
3590 if (x == x->parent->right)
3591 x->parent->right = y;
3592 else
3593 x->parent->left = y;
3594 }
3595 else
3596 mem_root = y;
177c0ea7 3597
34400008
GM
3598 y->right = x;
3599 if (x != MEM_NIL)
3600 x->parent = y;
3601}
3602
3603
3604/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3605
3606static void
971de7fb 3607mem_delete (struct mem_node *z)
34400008
GM
3608{
3609 struct mem_node *x, *y;
3610
3611 if (!z || z == MEM_NIL)
3612 return;
3613
3614 if (z->left == MEM_NIL || z->right == MEM_NIL)
3615 y = z;
3616 else
3617 {
3618 y = z->right;
3619 while (y->left != MEM_NIL)
3620 y = y->left;
3621 }
3622
3623 if (y->left != MEM_NIL)
3624 x = y->left;
3625 else
3626 x = y->right;
3627
3628 x->parent = y->parent;
3629 if (y->parent)
3630 {
3631 if (y == y->parent->left)
3632 y->parent->left = x;
3633 else
3634 y->parent->right = x;
3635 }
3636 else
3637 mem_root = x;
3638
3639 if (y != z)
3640 {
3641 z->start = y->start;
3642 z->end = y->end;
3643 z->type = y->type;
3644 }
177c0ea7 3645
34400008
GM
3646 if (y->color == MEM_BLACK)
3647 mem_delete_fixup (x);
877935b1
GM
3648
3649#ifdef GC_MALLOC_CHECK
3650 _free_internal (y);
3651#else
34400008 3652 xfree (y);
877935b1 3653#endif
34400008
GM
3654}
3655
3656
3657/* Re-establish the red-black properties of the tree, after a
3658 deletion. */
3659
3660static void
971de7fb 3661mem_delete_fixup (struct mem_node *x)
34400008
GM
3662{
3663 while (x != mem_root && x->color == MEM_BLACK)
3664 {
3665 if (x == x->parent->left)
3666 {
3667 struct mem_node *w = x->parent->right;
177c0ea7 3668
34400008
GM
3669 if (w->color == MEM_RED)
3670 {
3671 w->color = MEM_BLACK;
3672 x->parent->color = MEM_RED;
3673 mem_rotate_left (x->parent);
3674 w = x->parent->right;
3675 }
177c0ea7 3676
34400008
GM
3677 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3678 {
3679 w->color = MEM_RED;
3680 x = x->parent;
3681 }
3682 else
3683 {
3684 if (w->right->color == MEM_BLACK)
3685 {
3686 w->left->color = MEM_BLACK;
3687 w->color = MEM_RED;
3688 mem_rotate_right (w);
3689 w = x->parent->right;
3690 }
3691 w->color = x->parent->color;
3692 x->parent->color = MEM_BLACK;
3693 w->right->color = MEM_BLACK;
3694 mem_rotate_left (x->parent);
3695 x = mem_root;
3696 }
3697 }
3698 else
3699 {
3700 struct mem_node *w = x->parent->left;
177c0ea7 3701
34400008
GM
3702 if (w->color == MEM_RED)
3703 {
3704 w->color = MEM_BLACK;
3705 x->parent->color = MEM_RED;
3706 mem_rotate_right (x->parent);
3707 w = x->parent->left;
3708 }
177c0ea7 3709
34400008
GM
3710 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3711 {
3712 w->color = MEM_RED;
3713 x = x->parent;
3714 }
3715 else
3716 {
3717 if (w->left->color == MEM_BLACK)
3718 {
3719 w->right->color = MEM_BLACK;
3720 w->color = MEM_RED;
3721 mem_rotate_left (w);
3722 w = x->parent->left;
3723 }
177c0ea7 3724
34400008
GM
3725 w->color = x->parent->color;
3726 x->parent->color = MEM_BLACK;
3727 w->left->color = MEM_BLACK;
3728 mem_rotate_right (x->parent);
3729 x = mem_root;
3730 }
3731 }
3732 }
177c0ea7 3733
34400008
GM
3734 x->color = MEM_BLACK;
3735}
3736
3737
3738/* Value is non-zero if P is a pointer to a live Lisp string on
3739 the heap. M is a pointer to the mem_block for P. */
3740
3741static INLINE int
971de7fb 3742live_string_p (struct mem_node *m, void *p)
34400008
GM
3743{
3744 if (m->type == MEM_TYPE_STRING)
3745 {
3746 struct string_block *b = (struct string_block *) m->start;
14162469 3747 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
3748
3749 /* P must point to the start of a Lisp_String structure, and it
3750 must not be on the free-list. */
176bc847
GM
3751 return (offset >= 0
3752 && offset % sizeof b->strings[0] == 0
6b61353c 3753 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3754 && ((struct Lisp_String *) p)->data != NULL);
3755 }
3756 else
3757 return 0;
3758}
3759
3760
3761/* Value is non-zero if P is a pointer to a live Lisp cons on
3762 the heap. M is a pointer to the mem_block for P. */
3763
3764static INLINE int
971de7fb 3765live_cons_p (struct mem_node *m, void *p)
34400008
GM
3766{
3767 if (m->type == MEM_TYPE_CONS)
3768 {
3769 struct cons_block *b = (struct cons_block *) m->start;
14162469 3770 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
3771
3772 /* P must point to the start of a Lisp_Cons, not be
3773 one of the unused cells in the current cons block,
3774 and not be on the free-list. */
176bc847
GM
3775 return (offset >= 0
3776 && offset % sizeof b->conses[0] == 0
6b61353c 3777 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3778 && (b != cons_block
3779 || offset / sizeof b->conses[0] < cons_block_index)
3780 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3781 }
3782 else
3783 return 0;
3784}
3785
3786
3787/* Value is non-zero if P is a pointer to a live Lisp symbol on
3788 the heap. M is a pointer to the mem_block for P. */
3789
3790static INLINE int
971de7fb 3791live_symbol_p (struct mem_node *m, void *p)
34400008
GM
3792{
3793 if (m->type == MEM_TYPE_SYMBOL)
3794 {
3795 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 3796 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3797
34400008
GM
3798 /* P must point to the start of a Lisp_Symbol, not be
3799 one of the unused cells in the current symbol block,
3800 and not be on the free-list. */
176bc847
GM
3801 return (offset >= 0
3802 && offset % sizeof b->symbols[0] == 0
6b61353c 3803 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3804 && (b != symbol_block
3805 || offset / sizeof b->symbols[0] < symbol_block_index)
3806 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3807 }
3808 else
3809 return 0;
3810}
3811
3812
3813/* Value is non-zero if P is a pointer to a live Lisp float on
3814 the heap. M is a pointer to the mem_block for P. */
3815
3816static INLINE int
971de7fb 3817live_float_p (struct mem_node *m, void *p)
34400008
GM
3818{
3819 if (m->type == MEM_TYPE_FLOAT)
3820 {
3821 struct float_block *b = (struct float_block *) m->start;
14162469 3822 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3823
ab6780cd
SM
3824 /* P must point to the start of a Lisp_Float and not be
3825 one of the unused cells in the current float block. */
176bc847
GM
3826 return (offset >= 0
3827 && offset % sizeof b->floats[0] == 0
6b61353c 3828 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3829 && (b != float_block
ab6780cd 3830 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3831 }
3832 else
3833 return 0;
3834}
3835
3836
3837/* Value is non-zero if P is a pointer to a live Lisp Misc on
3838 the heap. M is a pointer to the mem_block for P. */
3839
3840static INLINE int
971de7fb 3841live_misc_p (struct mem_node *m, void *p)
34400008
GM
3842{
3843 if (m->type == MEM_TYPE_MISC)
3844 {
3845 struct marker_block *b = (struct marker_block *) m->start;
14162469 3846 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3847
34400008
GM
3848 /* P must point to the start of a Lisp_Misc, not be
3849 one of the unused cells in the current misc block,
3850 and not be on the free-list. */
176bc847
GM
3851 return (offset >= 0
3852 && offset % sizeof b->markers[0] == 0
6b61353c 3853 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
3854 && (b != marker_block
3855 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 3856 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
3857 }
3858 else
3859 return 0;
3860}
3861
3862
3863/* Value is non-zero if P is a pointer to a live vector-like object.
3864 M is a pointer to the mem_block for P. */
3865
3866static INLINE int
971de7fb 3867live_vector_p (struct mem_node *m, void *p)
34400008 3868{
9c545a55 3869 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
34400008
GM
3870}
3871
3872
2336fe58 3873/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
3874 pointer to the mem_block for P. */
3875
3876static INLINE int
971de7fb 3877live_buffer_p (struct mem_node *m, void *p)
34400008
GM
3878{
3879 /* P must point to the start of the block, and the buffer
3880 must not have been killed. */
3881 return (m->type == MEM_TYPE_BUFFER
3882 && p == m->start
5d8ea120 3883 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
34400008
GM
3884}
3885
13c844fb
GM
3886#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3887
3888#if GC_MARK_STACK
3889
34400008
GM
3890#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3891
3892/* Array of objects that are kept alive because the C stack contains
3893 a pattern that looks like a reference to them . */
3894
3895#define MAX_ZOMBIES 10
3896static Lisp_Object zombies[MAX_ZOMBIES];
3897
3898/* Number of zombie objects. */
3899
3900static int nzombies;
3901
3902/* Number of garbage collections. */
3903
3904static int ngcs;
3905
3906/* Average percentage of zombies per collection. */
3907
3908static double avg_zombies;
3909
3910/* Max. number of live and zombie objects. */
3911
3912static int max_live, max_zombies;
3913
3914/* Average number of live objects per GC. */
3915
3916static double avg_live;
3917
3918DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 3919 doc: /* Show information about live and zombie objects. */)
5842a27b 3920 (void)
34400008 3921{
83fc9c63
DL
3922 Lisp_Object args[8], zombie_list = Qnil;
3923 int i;
3924 for (i = 0; i < nzombies; i++)
3925 zombie_list = Fcons (zombies[i], zombie_list);
3926 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
3927 args[1] = make_number (ngcs);
3928 args[2] = make_float (avg_live);
3929 args[3] = make_float (avg_zombies);
3930 args[4] = make_float (avg_zombies / avg_live / 100);
3931 args[5] = make_number (max_live);
3932 args[6] = make_number (max_zombies);
83fc9c63
DL
3933 args[7] = zombie_list;
3934 return Fmessage (8, args);
34400008
GM
3935}
3936
3937#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3938
3939
182ff242
GM
3940/* Mark OBJ if we can prove it's a Lisp_Object. */
3941
3942static INLINE void
971de7fb 3943mark_maybe_object (Lisp_Object obj)
182ff242 3944{
b609f591
YM
3945 void *po;
3946 struct mem_node *m;
3947
3948 if (INTEGERP (obj))
3949 return;
3950
3951 po = (void *) XPNTR (obj);
3952 m = mem_find (po);
177c0ea7 3953
182ff242
GM
3954 if (m != MEM_NIL)
3955 {
3956 int mark_p = 0;
3957
8e50cc2d 3958 switch (XTYPE (obj))
182ff242
GM
3959 {
3960 case Lisp_String:
3961 mark_p = (live_string_p (m, po)
3962 && !STRING_MARKED_P ((struct Lisp_String *) po));
3963 break;
3964
3965 case Lisp_Cons:
08b7c2cb 3966 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
3967 break;
3968
3969 case Lisp_Symbol:
2336fe58 3970 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
3971 break;
3972
3973 case Lisp_Float:
ab6780cd 3974 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
3975 break;
3976
3977 case Lisp_Vectorlike:
8e50cc2d 3978 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
3979 buffer because checking that dereferences the pointer
3980 PO which might point anywhere. */
3981 if (live_vector_p (m, po))
8e50cc2d 3982 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 3983 else if (live_buffer_p (m, po))
8e50cc2d 3984 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
3985 break;
3986
3987 case Lisp_Misc:
67ee9f6e 3988 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 3989 break;
6bbd7a29 3990
2de9f71c 3991 default:
6bbd7a29 3992 break;
182ff242
GM
3993 }
3994
3995 if (mark_p)
3996 {
3997#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3998 if (nzombies < MAX_ZOMBIES)
83fc9c63 3999 zombies[nzombies] = obj;
182ff242
GM
4000 ++nzombies;
4001#endif
49723c04 4002 mark_object (obj);
182ff242
GM
4003 }
4004 }
4005}
ece93c02
GM
4006
4007
4008/* If P points to Lisp data, mark that as live if it isn't already
4009 marked. */
4010
4011static INLINE void
971de7fb 4012mark_maybe_pointer (void *p)
ece93c02
GM
4013{
4014 struct mem_node *m;
4015
5045e68e
SM
4016 /* Quickly rule out some values which can't point to Lisp data. */
4017 if ((EMACS_INT) p %
4018#ifdef USE_LSB_TAG
4019 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4020#else
4021 2 /* We assume that Lisp data is aligned on even addresses. */
4022#endif
4023 )
ece93c02 4024 return;
177c0ea7 4025
ece93c02
GM
4026 m = mem_find (p);
4027 if (m != MEM_NIL)
4028 {
4029 Lisp_Object obj = Qnil;
177c0ea7 4030
ece93c02
GM
4031 switch (m->type)
4032 {
4033 case MEM_TYPE_NON_LISP:
2fe50224 4034 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4035 break;
177c0ea7 4036
ece93c02 4037 case MEM_TYPE_BUFFER:
3ef06d12 4038 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
4039 XSETVECTOR (obj, p);
4040 break;
177c0ea7 4041
ece93c02 4042 case MEM_TYPE_CONS:
08b7c2cb 4043 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4044 XSETCONS (obj, p);
4045 break;
177c0ea7 4046
ece93c02
GM
4047 case MEM_TYPE_STRING:
4048 if (live_string_p (m, p)
4049 && !STRING_MARKED_P ((struct Lisp_String *) p))
4050 XSETSTRING (obj, p);
4051 break;
4052
4053 case MEM_TYPE_MISC:
2336fe58
SM
4054 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4055 XSETMISC (obj, p);
ece93c02 4056 break;
177c0ea7 4057
ece93c02 4058 case MEM_TYPE_SYMBOL:
2336fe58 4059 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4060 XSETSYMBOL (obj, p);
4061 break;
177c0ea7 4062
ece93c02 4063 case MEM_TYPE_FLOAT:
ab6780cd 4064 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4065 XSETFLOAT (obj, p);
4066 break;
177c0ea7 4067
9c545a55 4068 case MEM_TYPE_VECTORLIKE:
ece93c02
GM
4069 if (live_vector_p (m, p))
4070 {
4071 Lisp_Object tem;
4072 XSETVECTOR (tem, p);
8e50cc2d 4073 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4074 obj = tem;
4075 }
4076 break;
4077
4078 default:
4079 abort ();
4080 }
4081
8e50cc2d 4082 if (!NILP (obj))
49723c04 4083 mark_object (obj);
ece93c02
GM
4084 }
4085}
4086
4087
55a314a5
YM
4088/* Mark Lisp objects referenced from the address range START+OFFSET..END
4089 or END+OFFSET..START. */
34400008 4090
177c0ea7 4091static void
971de7fb 4092mark_memory (void *start, void *end, int offset)
34400008
GM
4093{
4094 Lisp_Object *p;
ece93c02 4095 void **pp;
34400008
GM
4096
4097#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4098 nzombies = 0;
4099#endif
4100
4101 /* Make START the pointer to the start of the memory region,
4102 if it isn't already. */
4103 if (end < start)
4104 {
4105 void *tem = start;
4106 start = end;
4107 end = tem;
4108 }
ece93c02
GM
4109
4110 /* Mark Lisp_Objects. */
55a314a5 4111 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
182ff242 4112 mark_maybe_object (*p);
ece93c02
GM
4113
4114 /* Mark Lisp data pointed to. This is necessary because, in some
4115 situations, the C compiler optimizes Lisp objects away, so that
4116 only a pointer to them remains. Example:
4117
4118 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4119 ()
ece93c02
GM
4120 {
4121 Lisp_Object obj = build_string ("test");
4122 struct Lisp_String *s = XSTRING (obj);
4123 Fgarbage_collect ();
4124 fprintf (stderr, "test `%s'\n", s->data);
4125 return Qnil;
4126 }
4127
4128 Here, `obj' isn't really used, and the compiler optimizes it
4129 away. The only reference to the life string is through the
4130 pointer `s'. */
177c0ea7 4131
55a314a5 4132 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
ece93c02 4133 mark_maybe_pointer (*pp);
182ff242
GM
4134}
4135
30f637f8
DL
4136/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4137 the GCC system configuration. In gcc 3.2, the only systems for
4138 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4139 by others?) and ns32k-pc532-min. */
182ff242
GM
4140
4141#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4142
4143static int setjmp_tested_p, longjmps_done;
4144
4145#define SETJMP_WILL_LIKELY_WORK "\
4146\n\
4147Emacs garbage collector has been changed to use conservative stack\n\
4148marking. Emacs has determined that the method it uses to do the\n\
4149marking will likely work on your system, but this isn't sure.\n\
4150\n\
4151If you are a system-programmer, or can get the help of a local wizard\n\
4152who is, please take a look at the function mark_stack in alloc.c, and\n\
4153verify that the methods used are appropriate for your system.\n\
4154\n\
d191623b 4155Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4156"
4157
4158#define SETJMP_WILL_NOT_WORK "\
4159\n\
4160Emacs garbage collector has been changed to use conservative stack\n\
4161marking. Emacs has determined that the default method it uses to do the\n\
4162marking will not work on your system. We will need a system-dependent\n\
4163solution for your system.\n\
4164\n\
4165Please take a look at the function mark_stack in alloc.c, and\n\
4166try to find a way to make it work on your system.\n\
30f637f8
DL
4167\n\
4168Note that you may get false negatives, depending on the compiler.\n\
4169In particular, you need to use -O with GCC for this test.\n\
4170\n\
d191623b 4171Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4172"
4173
4174
4175/* Perform a quick check if it looks like setjmp saves registers in a
4176 jmp_buf. Print a message to stderr saying so. When this test
4177 succeeds, this is _not_ a proof that setjmp is sufficient for
4178 conservative stack marking. Only the sources or a disassembly
4179 can prove that. */
4180
4181static void
2018939f 4182test_setjmp (void)
182ff242
GM
4183{
4184 char buf[10];
4185 register int x;
4186 jmp_buf jbuf;
4187 int result = 0;
4188
4189 /* Arrange for X to be put in a register. */
4190 sprintf (buf, "1");
4191 x = strlen (buf);
4192 x = 2 * x - 1;
4193
4194 setjmp (jbuf);
4195 if (longjmps_done == 1)
34400008 4196 {
182ff242 4197 /* Came here after the longjmp at the end of the function.
34400008 4198
182ff242
GM
4199 If x == 1, the longjmp has restored the register to its
4200 value before the setjmp, and we can hope that setjmp
4201 saves all such registers in the jmp_buf, although that
4202 isn't sure.
34400008 4203
182ff242
GM
4204 For other values of X, either something really strange is
4205 taking place, or the setjmp just didn't save the register. */
4206
4207 if (x == 1)
4208 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4209 else
4210 {
4211 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4212 exit (1);
34400008
GM
4213 }
4214 }
182ff242
GM
4215
4216 ++longjmps_done;
4217 x = 2;
4218 if (longjmps_done == 1)
4219 longjmp (jbuf, 1);
34400008
GM
4220}
4221
182ff242
GM
4222#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4223
34400008
GM
4224
4225#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4226
4227/* Abort if anything GCPRO'd doesn't survive the GC. */
4228
4229static void
2018939f 4230check_gcpros (void)
34400008
GM
4231{
4232 struct gcpro *p;
4233 int i;
4234
4235 for (p = gcprolist; p; p = p->next)
4236 for (i = 0; i < p->nvars; ++i)
4237 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4238 /* FIXME: It's not necessarily a bug. It might just be that the
4239 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4240 abort ();
4241}
4242
4243#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4244
4245static void
2018939f 4246dump_zombies (void)
34400008
GM
4247{
4248 int i;
4249
4250 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4251 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4252 {
4253 fprintf (stderr, " %d = ", i);
4254 debug_print (zombies[i]);
4255 }
4256}
4257
4258#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4259
4260
182ff242
GM
4261/* Mark live Lisp objects on the C stack.
4262
4263 There are several system-dependent problems to consider when
4264 porting this to new architectures:
4265
4266 Processor Registers
4267
4268 We have to mark Lisp objects in CPU registers that can hold local
4269 variables or are used to pass parameters.
4270
4271 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4272 something that either saves relevant registers on the stack, or
4273 calls mark_maybe_object passing it each register's contents.
4274
4275 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4276 implementation assumes that calling setjmp saves registers we need
4277 to see in a jmp_buf which itself lies on the stack. This doesn't
4278 have to be true! It must be verified for each system, possibly
4279 by taking a look at the source code of setjmp.
4280
2018939f
AS
4281 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4282 can use it as a machine independent method to store all registers
4283 to the stack. In this case the macros described in the previous
4284 two paragraphs are not used.
4285
182ff242
GM
4286 Stack Layout
4287
4288 Architectures differ in the way their processor stack is organized.
4289 For example, the stack might look like this
4290
4291 +----------------+
4292 | Lisp_Object | size = 4
4293 +----------------+
4294 | something else | size = 2
4295 +----------------+
4296 | Lisp_Object | size = 4
4297 +----------------+
4298 | ... |
4299
4300 In such a case, not every Lisp_Object will be aligned equally. To
4301 find all Lisp_Object on the stack it won't be sufficient to walk
4302 the stack in steps of 4 bytes. Instead, two passes will be
4303 necessary, one starting at the start of the stack, and a second
4304 pass starting at the start of the stack + 2. Likewise, if the
4305 minimal alignment of Lisp_Objects on the stack is 1, four passes
4306 would be necessary, each one starting with one byte more offset
4307 from the stack start.
4308
4309 The current code assumes by default that Lisp_Objects are aligned
4310 equally on the stack. */
34400008
GM
4311
4312static void
971de7fb 4313mark_stack (void)
34400008 4314{
630909a5 4315 int i;
34400008
GM
4316 void *end;
4317
2018939f
AS
4318#ifdef HAVE___BUILTIN_UNWIND_INIT
4319 /* Force callee-saved registers and register windows onto the stack.
4320 This is the preferred method if available, obviating the need for
4321 machine dependent methods. */
4322 __builtin_unwind_init ();
4323 end = &end;
4324#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4325#ifndef GC_SAVE_REGISTERS_ON_STACK
4326 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4327 union aligned_jmpbuf {
4328 Lisp_Object o;
4329 jmp_buf j;
4330 } j;
4331 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4332#endif
34400008
GM
4333 /* This trick flushes the register windows so that all the state of
4334 the process is contained in the stack. */
ab6780cd 4335 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4336 needed on ia64 too. See mach_dep.c, where it also says inline
4337 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4338#ifdef __sparc__
4d18a7a2
DN
4339#if defined (__sparc64__) && defined (__FreeBSD__)
4340 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4341 asm ("flushw");
4342#else
34400008 4343 asm ("ta 3");
4c1616be 4344#endif
34400008 4345#endif
177c0ea7 4346
34400008
GM
4347 /* Save registers that we need to see on the stack. We need to see
4348 registers used to hold register variables and registers used to
4349 pass parameters. */
4350#ifdef GC_SAVE_REGISTERS_ON_STACK
4351 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4352#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4353
182ff242
GM
4354#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4355 setjmp will definitely work, test it
4356 and print a message with the result
4357 of the test. */
4358 if (!setjmp_tested_p)
4359 {
4360 setjmp_tested_p = 1;
4361 test_setjmp ();
4362 }
4363#endif /* GC_SETJMP_WORKS */
177c0ea7 4364
55a314a5 4365 setjmp (j.j);
34400008 4366 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4367#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4368#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4369
4370 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4371 that's not the case, something has to be done here to iterate
4372 over the stack segments. */
630909a5 4373#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4374#ifdef __GNUC__
4375#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4376#else
630909a5 4377#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4378#endif
182ff242 4379#endif
24452cd5 4380 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
55a314a5 4381 mark_memory (stack_base, end, i);
4dec23ff
AS
4382 /* Allow for marking a secondary stack, like the register stack on the
4383 ia64. */
4384#ifdef GC_MARK_SECONDARY_STACK
4385 GC_MARK_SECONDARY_STACK ();
4386#endif
34400008
GM
4387
4388#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4389 check_gcpros ();
4390#endif
4391}
4392
34400008
GM
4393#endif /* GC_MARK_STACK != 0 */
4394
4395
7ffb6955 4396/* Determine whether it is safe to access memory at address P. */
d3d47262 4397static int
971de7fb 4398valid_pointer_p (void *p)
7ffb6955 4399{
f892cf9c
EZ
4400#ifdef WINDOWSNT
4401 return w32_valid_pointer_p (p, 16);
4402#else
7ffb6955
KS
4403 int fd;
4404
4405 /* Obviously, we cannot just access it (we would SEGV trying), so we
4406 trick the o/s to tell us whether p is a valid pointer.
4407 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4408 not validate p in that case. */
4409
4410 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4411 {
4412 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4413 emacs_close (fd);
4414 unlink ("__Valid__Lisp__Object__");
4415 return valid;
4416 }
4417
4418 return -1;
f892cf9c 4419#endif
7ffb6955 4420}
3cd55735
KS
4421
4422/* Return 1 if OBJ is a valid lisp object.
4423 Return 0 if OBJ is NOT a valid lisp object.
4424 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4425 This function can be quite slow,
4426 so it should only be used in code for manual debugging. */
3cd55735
KS
4427
4428int
971de7fb 4429valid_lisp_object_p (Lisp_Object obj)
3cd55735 4430{
de7124a7 4431 void *p;
7ffb6955 4432#if GC_MARK_STACK
3cd55735 4433 struct mem_node *m;
de7124a7 4434#endif
3cd55735
KS
4435
4436 if (INTEGERP (obj))
4437 return 1;
4438
4439 p = (void *) XPNTR (obj);
3cd55735
KS
4440 if (PURE_POINTER_P (p))
4441 return 1;
4442
de7124a7 4443#if !GC_MARK_STACK
7ffb6955 4444 return valid_pointer_p (p);
de7124a7
KS
4445#else
4446
3cd55735
KS
4447 m = mem_find (p);
4448
4449 if (m == MEM_NIL)
7ffb6955
KS
4450 {
4451 int valid = valid_pointer_p (p);
4452 if (valid <= 0)
4453 return valid;
4454
4455 if (SUBRP (obj))
4456 return 1;
4457
4458 return 0;
4459 }
3cd55735
KS
4460
4461 switch (m->type)
4462 {
4463 case MEM_TYPE_NON_LISP:
4464 return 0;
4465
4466 case MEM_TYPE_BUFFER:
4467 return live_buffer_p (m, p);
4468
4469 case MEM_TYPE_CONS:
4470 return live_cons_p (m, p);
4471
4472 case MEM_TYPE_STRING:
4473 return live_string_p (m, p);
4474
4475 case MEM_TYPE_MISC:
4476 return live_misc_p (m, p);
4477
4478 case MEM_TYPE_SYMBOL:
4479 return live_symbol_p (m, p);
4480
4481 case MEM_TYPE_FLOAT:
4482 return live_float_p (m, p);
4483
9c545a55 4484 case MEM_TYPE_VECTORLIKE:
3cd55735
KS
4485 return live_vector_p (m, p);
4486
4487 default:
4488 break;
4489 }
4490
4491 return 0;
4492#endif
4493}
4494
4495
4496
34400008 4497\f
2e471eb5
GM
4498/***********************************************************************
4499 Pure Storage Management
4500 ***********************************************************************/
4501
1f0b3fd2
GM
4502/* Allocate room for SIZE bytes from pure Lisp storage and return a
4503 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 4504 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2
GM
4505
4506static POINTER_TYPE *
971de7fb 4507pure_alloc (size_t size, int type)
1f0b3fd2 4508{
1f0b3fd2 4509 POINTER_TYPE *result;
6b61353c
KH
4510#ifdef USE_LSB_TAG
4511 size_t alignment = (1 << GCTYPEBITS);
4512#else
44117420 4513 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4514
4515 /* Give Lisp_Floats an extra alignment. */
4516 if (type == Lisp_Float)
4517 {
1f0b3fd2
GM
4518#if defined __GNUC__ && __GNUC__ >= 2
4519 alignment = __alignof (struct Lisp_Float);
4520#else
4521 alignment = sizeof (struct Lisp_Float);
4522#endif
9e713715 4523 }
6b61353c 4524#endif
1f0b3fd2 4525
44117420 4526 again:
e5bc14d4
YM
4527 if (type >= 0)
4528 {
4529 /* Allocate space for a Lisp object from the beginning of the free
4530 space with taking account of alignment. */
4531 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4532 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4533 }
4534 else
4535 {
4536 /* Allocate space for a non-Lisp object from the end of the free
4537 space. */
4538 pure_bytes_used_non_lisp += size;
4539 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4540 }
4541 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
4542
4543 if (pure_bytes_used <= pure_size)
4544 return result;
4545
4546 /* Don't allocate a large amount here,
4547 because it might get mmap'd and then its address
4548 might not be usable. */
4549 purebeg = (char *) xmalloc (10000);
4550 pure_size = 10000;
4551 pure_bytes_used_before_overflow += pure_bytes_used - size;
4552 pure_bytes_used = 0;
e5bc14d4 4553 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 4554 goto again;
1f0b3fd2
GM
4555}
4556
4557
852f8cdc 4558/* Print a warning if PURESIZE is too small. */
9e713715
GM
4559
4560void
971de7fb 4561check_pure_size (void)
9e713715
GM
4562{
4563 if (pure_bytes_used_before_overflow)
2aee5ca3 4564 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
a4d35afd 4565 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4566}
4567
4568
79fd0489
YM
4569/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4570 the non-Lisp data pool of the pure storage, and return its start
4571 address. Return NULL if not found. */
4572
4573static char *
14162469 4574find_string_data_in_pure (const char *data, EMACS_INT nbytes)
79fd0489 4575{
14162469
EZ
4576 int i;
4577 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 4578 const unsigned char *p;
79fd0489
YM
4579 char *non_lisp_beg;
4580
4581 if (pure_bytes_used_non_lisp < nbytes + 1)
4582 return NULL;
4583
4584 /* Set up the Boyer-Moore table. */
4585 skip = nbytes + 1;
4586 for (i = 0; i < 256; i++)
4587 bm_skip[i] = skip;
4588
2aff7c53 4589 p = (const unsigned char *) data;
79fd0489
YM
4590 while (--skip > 0)
4591 bm_skip[*p++] = skip;
4592
4593 last_char_skip = bm_skip['\0'];
4594
4595 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4596 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4597
4598 /* See the comments in the function `boyer_moore' (search.c) for the
4599 use of `infinity'. */
4600 infinity = pure_bytes_used_non_lisp + 1;
4601 bm_skip['\0'] = infinity;
4602
2aff7c53 4603 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
4604 start = 0;
4605 do
4606 {
4607 /* Check the last character (== '\0'). */
4608 do
4609 {
4610 start += bm_skip[*(p + start)];
4611 }
4612 while (start <= start_max);
4613
4614 if (start < infinity)
4615 /* Couldn't find the last character. */
4616 return NULL;
4617
4618 /* No less than `infinity' means we could find the last
4619 character at `p[start - infinity]'. */
4620 start -= infinity;
4621
4622 /* Check the remaining characters. */
4623 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4624 /* Found. */
4625 return non_lisp_beg + start;
4626
4627 start += last_char_skip;
4628 }
4629 while (start <= start_max);
4630
4631 return NULL;
4632}
4633
4634
2e471eb5
GM
4635/* Return a string allocated in pure space. DATA is a buffer holding
4636 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4637 non-zero means make the result string multibyte.
1a4f1e2c 4638
2e471eb5
GM
4639 Must get an error if pure storage is full, since if it cannot hold
4640 a large string it may be able to hold conses that point to that
4641 string; then the string is not protected from gc. */
7146af97
JB
4642
4643Lisp_Object
14162469
EZ
4644make_pure_string (const char *data,
4645 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
7146af97 4646{
2e471eb5
GM
4647 Lisp_Object string;
4648 struct Lisp_String *s;
c0696668 4649
1f0b3fd2 4650 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
90256841 4651 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
4652 if (s->data == NULL)
4653 {
4654 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
72af86bd 4655 memcpy (s->data, data, nbytes);
79fd0489
YM
4656 s->data[nbytes] = '\0';
4657 }
2e471eb5
GM
4658 s->size = nchars;
4659 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 4660 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4661 XSETSTRING (string, s);
4662 return string;
7146af97
JB
4663}
4664
a56eaaef
DN
4665/* Return a string a string allocated in pure space. Do not allocate
4666 the string data, just point to DATA. */
4667
4668Lisp_Object
4669make_pure_c_string (const char *data)
4670{
4671 Lisp_Object string;
4672 struct Lisp_String *s;
14162469 4673 EMACS_INT nchars = strlen (data);
a56eaaef
DN
4674
4675 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4676 s->size = nchars;
4677 s->size_byte = -1;
323637a2 4678 s->data = (unsigned char *) data;
a56eaaef
DN
4679 s->intervals = NULL_INTERVAL;
4680 XSETSTRING (string, s);
4681 return string;
4682}
2e471eb5 4683
34400008
GM
4684/* Return a cons allocated from pure space. Give it pure copies
4685 of CAR as car and CDR as cdr. */
4686
7146af97 4687Lisp_Object
971de7fb 4688pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97
JB
4689{
4690 register Lisp_Object new;
1f0b3fd2 4691 struct Lisp_Cons *p;
7146af97 4692
1f0b3fd2
GM
4693 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4694 XSETCONS (new, p);
f3fbd155
KR
4695 XSETCAR (new, Fpurecopy (car));
4696 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4697 return new;
4698}
4699
7146af97 4700
34400008
GM
4701/* Value is a float object with value NUM allocated from pure space. */
4702
d3d47262 4703static Lisp_Object
971de7fb 4704make_pure_float (double num)
7146af97
JB
4705{
4706 register Lisp_Object new;
1f0b3fd2 4707 struct Lisp_Float *p;
7146af97 4708
1f0b3fd2
GM
4709 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4710 XSETFLOAT (new, p);
f601cdf3 4711 XFLOAT_INIT (new, num);
7146af97
JB
4712 return new;
4713}
4714
34400008
GM
4715
4716/* Return a vector with room for LEN Lisp_Objects allocated from
4717 pure space. */
4718
7146af97 4719Lisp_Object
971de7fb 4720make_pure_vector (EMACS_INT len)
7146af97 4721{
1f0b3fd2
GM
4722 Lisp_Object new;
4723 struct Lisp_Vector *p;
4724 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4725
1f0b3fd2
GM
4726 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4727 XSETVECTOR (new, p);
7146af97
JB
4728 XVECTOR (new)->size = len;
4729 return new;
4730}
4731
34400008 4732
7146af97 4733DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 4734 doc: /* Make a copy of object OBJ in pure storage.
228299fa 4735Recursively copies contents of vectors and cons cells.
7ee72033 4736Does not copy symbols. Copies strings without text properties. */)
5842a27b 4737 (register Lisp_Object obj)
7146af97 4738{
265a9e55 4739 if (NILP (Vpurify_flag))
7146af97
JB
4740 return obj;
4741
1f0b3fd2 4742 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4743 return obj;
4744
e9515805
SM
4745 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4746 {
4747 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4748 if (!NILP (tmp))
4749 return tmp;
4750 }
4751
d6dd74bb 4752 if (CONSP (obj))
e9515805 4753 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4754 else if (FLOATP (obj))
e9515805 4755 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4756 else if (STRINGP (obj))
42a5b22f 4757 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
4758 SBYTES (obj),
4759 STRING_MULTIBYTE (obj));
d6dd74bb
KH
4760 else if (COMPILEDP (obj) || VECTORP (obj))
4761 {
4762 register struct Lisp_Vector *vec;
14162469 4763 register EMACS_INT i;
6b61353c 4764 EMACS_INT size;
d6dd74bb
KH
4765
4766 size = XVECTOR (obj)->size;
7d535c68
KH
4767 if (size & PSEUDOVECTOR_FLAG)
4768 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 4769 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4770 for (i = 0; i < size; i++)
4771 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4772 if (COMPILEDP (obj))
985773c9
MB
4773 {
4774 XSETPVECTYPE (vec, PVEC_COMPILED);
4775 XSETCOMPILED (obj, vec);
4776 }
d6dd74bb
KH
4777 else
4778 XSETVECTOR (obj, vec);
7146af97 4779 }
d6dd74bb
KH
4780 else if (MARKERP (obj))
4781 error ("Attempt to copy a marker to pure storage");
e9515805
SM
4782 else
4783 /* Not purified, don't hash-cons. */
4784 return obj;
4785
4786 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4787 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
4788
4789 return obj;
7146af97 4790}
2e471eb5 4791
34400008 4792
7146af97 4793\f
34400008
GM
4794/***********************************************************************
4795 Protection from GC
4796 ***********************************************************************/
4797
2e471eb5
GM
4798/* Put an entry in staticvec, pointing at the variable with address
4799 VARADDRESS. */
7146af97
JB
4800
4801void
971de7fb 4802staticpro (Lisp_Object *varaddress)
7146af97
JB
4803{
4804 staticvec[staticidx++] = varaddress;
4805 if (staticidx >= NSTATICS)
4806 abort ();
4807}
4808
7146af97 4809\f
34400008
GM
4810/***********************************************************************
4811 Protection from GC
4812 ***********************************************************************/
1a4f1e2c 4813
e8197642
RS
4814/* Temporarily prevent garbage collection. */
4815
4816int
971de7fb 4817inhibit_garbage_collection (void)
e8197642 4818{
aed13378 4819 int count = SPECPDL_INDEX ();
54defd0d
AS
4820 int nbits = min (VALBITS, BITS_PER_INT);
4821
4822 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4823 return count;
4824}
4825
34400008 4826
7146af97 4827DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4828 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4829Garbage collection happens automatically if you cons more than
4830`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4831`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4832 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4833 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4834 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4835 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4836However, if there was overflow in pure space, `garbage-collect'
4837returns nil, because real GC can't be done. */)
5842a27b 4838 (void)
7146af97 4839{
7146af97 4840 register struct specbinding *bind;
7146af97
JB
4841 char stack_top_variable;
4842 register int i;
6efc7df7 4843 int message_p;
96117bc7 4844 Lisp_Object total[8];
331379bf 4845 int count = SPECPDL_INDEX ();
2c5bd608
DL
4846 EMACS_TIME t1, t2, t3;
4847
3de0effb
RS
4848 if (abort_on_gc)
4849 abort ();
4850
9e713715
GM
4851 /* Can't GC if pure storage overflowed because we can't determine
4852 if something is a pure object or not. */
4853 if (pure_bytes_used_before_overflow)
4854 return Qnil;
4855
bbc012e0
KS
4856 CHECK_CONS_LIST ();
4857
3c7e66a8
RS
4858 /* Don't keep undo information around forever.
4859 Do this early on, so it is no problem if the user quits. */
4860 {
4861 register struct buffer *nextb = all_buffers;
4862
4863 while (nextb)
4864 {
4865 /* If a buffer's undo list is Qt, that means that undo is
4866 turned off in that buffer. Calling truncate_undo_list on
4867 Qt tends to return NULL, which effectively turns undo back on.
4868 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 4869 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
3c7e66a8
RS
4870 truncate_undo_list (nextb);
4871
4872 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5d8ea120 4873 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
dc7b4525 4874 && ! nextb->text->inhibit_shrinking)
3c7e66a8
RS
4875 {
4876 /* If a buffer's gap size is more than 10% of the buffer
4877 size, or larger than 2000 bytes, then shrink it
4878 accordingly. Keep a minimum size of 20 bytes. */
4879 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4880
4881 if (nextb->text->gap_size > size)
4882 {
4883 struct buffer *save_current = current_buffer;
4884 current_buffer = nextb;
4885 make_gap (-(nextb->text->gap_size - size));
4886 current_buffer = save_current;
4887 }
4888 }
4889
4890 nextb = nextb->next;
4891 }
4892 }
4893
4894 EMACS_GET_TIME (t1);
4895
58595309
KH
4896 /* In case user calls debug_print during GC,
4897 don't let that cause a recursive GC. */
4898 consing_since_gc = 0;
4899
6efc7df7
GM
4900 /* Save what's currently displayed in the echo area. */
4901 message_p = push_message ();
c55b0da6 4902 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 4903
7146af97
JB
4904 /* Save a copy of the contents of the stack, for debugging. */
4905#if MAX_SAVE_STACK > 0
265a9e55 4906 if (NILP (Vpurify_flag))
7146af97 4907 {
dd3f25f7
PE
4908 char *stack;
4909 size_t stack_size;
4910 if (&stack_top_variable < stack_bottom)
4911 {
4912 stack = &stack_top_variable;
4913 stack_size = stack_bottom - &stack_top_variable;
4914 }
4915 else
4916 {
4917 stack = stack_bottom;
4918 stack_size = &stack_top_variable - stack_bottom;
4919 }
4920 if (stack_size <= MAX_SAVE_STACK)
7146af97 4921 {
dd3f25f7 4922 if (stack_copy_size < stack_size)
7146af97 4923 {
dd3f25f7
PE
4924 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4925 stack_copy_size = stack_size;
7146af97 4926 }
dd3f25f7 4927 memcpy (stack_copy, stack, stack_size);
7146af97
JB
4928 }
4929 }
4930#endif /* MAX_SAVE_STACK > 0 */
4931
299585ee 4932 if (garbage_collection_messages)
691c4285 4933 message1_nolog ("Garbage collecting...");
7146af97 4934
6e0fca1d
RS
4935 BLOCK_INPUT;
4936
eec7b73d
RS
4937 shrink_regexp_cache ();
4938
7146af97
JB
4939 gc_in_progress = 1;
4940
c23baf9f 4941 /* clear_marks (); */
7146af97 4942
005ca5c7 4943 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
4944
4945 for (i = 0; i < staticidx; i++)
49723c04 4946 mark_object (*staticvec[i]);
34400008 4947
126f9c02
SM
4948 for (bind = specpdl; bind != specpdl_ptr; bind++)
4949 {
4950 mark_object (bind->symbol);
4951 mark_object (bind->old_value);
4952 }
6ed8eeff 4953 mark_terminals ();
126f9c02 4954 mark_kboards ();
98a92e2d 4955 mark_ttys ();
126f9c02
SM
4956
4957#ifdef USE_GTK
4958 {
dd4c5104 4959 extern void xg_mark_data (void);
126f9c02
SM
4960 xg_mark_data ();
4961 }
4962#endif
4963
34400008
GM
4964#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4965 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4966 mark_stack ();
4967#else
acf5f7d3
SM
4968 {
4969 register struct gcpro *tail;
4970 for (tail = gcprolist; tail; tail = tail->next)
4971 for (i = 0; i < tail->nvars; i++)
005ca5c7 4972 mark_object (tail->var[i]);
acf5f7d3 4973 }
630686c8 4974 mark_byte_stack ();
b286858c
SM
4975 {
4976 struct catchtag *catch;
4977 struct handler *handler;
4978
7146af97
JB
4979 for (catch = catchlist; catch; catch = catch->next)
4980 {
49723c04
SM
4981 mark_object (catch->tag);
4982 mark_object (catch->val);
177c0ea7 4983 }
7146af97
JB
4984 for (handler = handlerlist; handler; handler = handler->next)
4985 {
49723c04
SM
4986 mark_object (handler->handler);
4987 mark_object (handler->var);
177c0ea7 4988 }
b286858c 4989 }
b40ea20a 4990 mark_backtrace ();
b286858c 4991#endif
7146af97 4992
454d7973
KS
4993#ifdef HAVE_WINDOW_SYSTEM
4994 mark_fringe_data ();
4995#endif
4996
74c35a48
SM
4997#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4998 mark_stack ();
4999#endif
5000
c37adf23
SM
5001 /* Everything is now marked, except for the things that require special
5002 finalization, i.e. the undo_list.
5003 Look thru every buffer's undo list
4c315bda
RS
5004 for elements that update markers that were not marked,
5005 and delete them. */
5006 {
5007 register struct buffer *nextb = all_buffers;
5008
5009 while (nextb)
5010 {
5011 /* If a buffer's undo list is Qt, that means that undo is
5012 turned off in that buffer. Calling truncate_undo_list on
5013 Qt tends to return NULL, which effectively turns undo back on.
5014 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5015 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4c315bda
RS
5016 {
5017 Lisp_Object tail, prev;
5d8ea120 5018 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
4c315bda
RS
5019 prev = Qnil;
5020 while (CONSP (tail))
5021 {
8e50cc2d
SM
5022 if (CONSP (XCAR (tail))
5023 && MARKERP (XCAR (XCAR (tail)))
2336fe58 5024 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5025 {
5026 if (NILP (prev))
5d8ea120 5027 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
4c315bda 5028 else
f3fbd155
KR
5029 {
5030 tail = XCDR (tail);
5031 XSETCDR (prev, tail);
5032 }
4c315bda
RS
5033 }
5034 else
5035 {
5036 prev = tail;
70949dac 5037 tail = XCDR (tail);
4c315bda
RS
5038 }
5039 }
5040 }
c37adf23
SM
5041 /* Now that we have stripped the elements that need not be in the
5042 undo_list any more, we can finally mark the list. */
5d8ea120 5043 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
4c315bda
RS
5044
5045 nextb = nextb->next;
5046 }
5047 }
5048
7146af97
JB
5049 gc_sweep ();
5050
5051 /* Clear the mark bits that we set in certain root slots. */
5052
033a5fa3 5053 unmark_byte_stack ();
3ef06d12
SM
5054 VECTOR_UNMARK (&buffer_defaults);
5055 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5056
34400008
GM
5057#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5058 dump_zombies ();
5059#endif
5060
6e0fca1d
RS
5061 UNBLOCK_INPUT;
5062
bbc012e0
KS
5063 CHECK_CONS_LIST ();
5064
c23baf9f 5065 /* clear_marks (); */
7146af97
JB
5066 gc_in_progress = 0;
5067
5068 consing_since_gc = 0;
5069 if (gc_cons_threshold < 10000)
5070 gc_cons_threshold = 10000;
5071
96f077ad
SM
5072 if (FLOATP (Vgc_cons_percentage))
5073 { /* Set gc_cons_combined_threshold. */
ae35e756
PE
5074 EMACS_INT tot = 0;
5075
5076 tot += total_conses * sizeof (struct Lisp_Cons);
5077 tot += total_symbols * sizeof (struct Lisp_Symbol);
5078 tot += total_markers * sizeof (union Lisp_Misc);
5079 tot += total_string_size;
5080 tot += total_vector_size * sizeof (Lisp_Object);
5081 tot += total_floats * sizeof (struct Lisp_Float);
5082 tot += total_intervals * sizeof (struct interval);
5083 tot += total_strings * sizeof (struct Lisp_String);
5084
5085 gc_relative_threshold = tot * XFLOAT_DATA (Vgc_cons_percentage);
96f077ad 5086 }
974aae61
RS
5087 else
5088 gc_relative_threshold = 0;
96f077ad 5089
299585ee
RS
5090 if (garbage_collection_messages)
5091 {
6efc7df7
GM
5092 if (message_p || minibuf_level > 0)
5093 restore_message ();
299585ee
RS
5094 else
5095 message1_nolog ("Garbage collecting...done");
5096 }
7146af97 5097
98edb5ff 5098 unbind_to (count, Qnil);
2e471eb5
GM
5099
5100 total[0] = Fcons (make_number (total_conses),
5101 make_number (total_free_conses));
5102 total[1] = Fcons (make_number (total_symbols),
5103 make_number (total_free_symbols));
5104 total[2] = Fcons (make_number (total_markers),
5105 make_number (total_free_markers));
96117bc7
GM
5106 total[3] = make_number (total_string_size);
5107 total[4] = make_number (total_vector_size);
5108 total[5] = Fcons (make_number (total_floats),
2e471eb5 5109 make_number (total_free_floats));
96117bc7 5110 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5111 make_number (total_free_intervals));
96117bc7 5112 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5113 make_number (total_free_strings));
5114
34400008 5115#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5116 {
34400008
GM
5117 /* Compute average percentage of zombies. */
5118 double nlive = 0;
177c0ea7 5119
34400008 5120 for (i = 0; i < 7; ++i)
83fc9c63
DL
5121 if (CONSP (total[i]))
5122 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5123
5124 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5125 max_live = max (nlive, max_live);
5126 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5127 max_zombies = max (nzombies, max_zombies);
5128 ++ngcs;
5129 }
5130#endif
7146af97 5131
9e713715
GM
5132 if (!NILP (Vpost_gc_hook))
5133 {
ae35e756 5134 int gc_count = inhibit_garbage_collection ();
9e713715 5135 safe_run_hooks (Qpost_gc_hook);
ae35e756 5136 unbind_to (gc_count, Qnil);
9e713715 5137 }
2c5bd608
DL
5138
5139 /* Accumulate statistics. */
5140 EMACS_GET_TIME (t2);
5141 EMACS_SUB_TIME (t3, t2, t1);
5142 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
5143 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5144 EMACS_SECS (t3) +
5145 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
5146 gcs_done++;
5147
96117bc7 5148 return Flist (sizeof total / sizeof *total, total);
7146af97 5149}
34400008 5150
41c28a37 5151
3770920e
GM
5152/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5153 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5154
5155static void
971de7fb 5156mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5157{
5158 struct glyph_row *row = matrix->rows;
5159 struct glyph_row *end = row + matrix->nrows;
5160
2e471eb5
GM
5161 for (; row < end; ++row)
5162 if (row->enabled_p)
5163 {
5164 int area;
5165 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5166 {
5167 struct glyph *glyph = row->glyphs[area];
5168 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5169
2e471eb5 5170 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5171 if (STRINGP (glyph->object)
2e471eb5 5172 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5173 mark_object (glyph->object);
2e471eb5
GM
5174 }
5175 }
41c28a37
GM
5176}
5177
34400008 5178
41c28a37
GM
5179/* Mark Lisp faces in the face cache C. */
5180
5181static void
971de7fb 5182mark_face_cache (struct face_cache *c)
41c28a37
GM
5183{
5184 if (c)
5185 {
5186 int i, j;
5187 for (i = 0; i < c->used; ++i)
5188 {
5189 struct face *face = FACE_FROM_ID (c->f, i);
5190
5191 if (face)
5192 {
5193 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5194 mark_object (face->lface[j]);
41c28a37
GM
5195 }
5196 }
5197 }
5198}
5199
5200
7146af97 5201\f
1a4f1e2c 5202/* Mark reference to a Lisp_Object.
2e471eb5
GM
5203 If the object referred to has not been seen yet, recursively mark
5204 all the references contained in it. */
7146af97 5205
785cd37f 5206#define LAST_MARKED_SIZE 500
d3d47262 5207static Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
5208int last_marked_index;
5209
1342fc6f
RS
5210/* For debugging--call abort when we cdr down this many
5211 links of a list, in mark_object. In debugging,
5212 the call to abort will hit a breakpoint.
5213 Normally this is zero and the check never goes off. */
d3d47262 5214static int mark_object_loop_halt;
1342fc6f 5215
8f11f7ec 5216static void
971de7fb 5217mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5218{
14162469
EZ
5219 register EMACS_UINT size = ptr->size;
5220 register EMACS_UINT i;
d2029e5b 5221
8f11f7ec 5222 eassert (!VECTOR_MARKED_P (ptr));
d2029e5b
SM
5223 VECTOR_MARK (ptr); /* Else mark it */
5224 if (size & PSEUDOVECTOR_FLAG)
5225 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5226
d2029e5b
SM
5227 /* Note that this size is not the memory-footprint size, but only
5228 the number of Lisp_Object fields that we should trace.
5229 The distinction is used e.g. by Lisp_Process which places extra
5230 non-Lisp_Object fields at the end of the structure. */
5231 for (i = 0; i < size; i++) /* and then mark its elements */
5232 mark_object (ptr->contents[i]);
d2029e5b
SM
5233}
5234
58026347
KH
5235/* Like mark_vectorlike but optimized for char-tables (and
5236 sub-char-tables) assuming that the contents are mostly integers or
5237 symbols. */
5238
5239static void
971de7fb 5240mark_char_table (struct Lisp_Vector *ptr)
58026347 5241{
14162469
EZ
5242 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5243 register EMACS_UINT i;
58026347 5244
8f11f7ec 5245 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5246 VECTOR_MARK (ptr);
5247 for (i = 0; i < size; i++)
5248 {
5249 Lisp_Object val = ptr->contents[i];
5250
ef1b0ba7 5251 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5252 continue;
5253 if (SUB_CHAR_TABLE_P (val))
5254 {
5255 if (! VECTOR_MARKED_P (XVECTOR (val)))
5256 mark_char_table (XVECTOR (val));
5257 }
5258 else
5259 mark_object (val);
5260 }
5261}
5262
41c28a37 5263void
971de7fb 5264mark_object (Lisp_Object arg)
7146af97 5265{
49723c04 5266 register Lisp_Object obj = arg;
4f5c1376
GM
5267#ifdef GC_CHECK_MARKED_OBJECTS
5268 void *po;
5269 struct mem_node *m;
5270#endif
1342fc6f 5271 int cdr_count = 0;
7146af97 5272
9149e743 5273 loop:
7146af97 5274
1f0b3fd2 5275 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5276 return;
5277
49723c04 5278 last_marked[last_marked_index++] = obj;
785cd37f
RS
5279 if (last_marked_index == LAST_MARKED_SIZE)
5280 last_marked_index = 0;
5281
4f5c1376
GM
5282 /* Perform some sanity checks on the objects marked here. Abort if
5283 we encounter an object we know is bogus. This increases GC time
5284 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5285#ifdef GC_CHECK_MARKED_OBJECTS
5286
5287 po = (void *) XPNTR (obj);
5288
5289 /* Check that the object pointed to by PO is known to be a Lisp
5290 structure allocated from the heap. */
5291#define CHECK_ALLOCATED() \
5292 do { \
5293 m = mem_find (po); \
5294 if (m == MEM_NIL) \
5295 abort (); \
5296 } while (0)
5297
5298 /* Check that the object pointed to by PO is live, using predicate
5299 function LIVEP. */
5300#define CHECK_LIVE(LIVEP) \
5301 do { \
5302 if (!LIVEP (m, po)) \
5303 abort (); \
5304 } while (0)
5305
5306 /* Check both of the above conditions. */
5307#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5308 do { \
5309 CHECK_ALLOCATED (); \
5310 CHECK_LIVE (LIVEP); \
5311 } while (0) \
177c0ea7 5312
4f5c1376 5313#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5314
4f5c1376
GM
5315#define CHECK_LIVE(LIVEP) (void) 0
5316#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5317
4f5c1376
GM
5318#endif /* not GC_CHECK_MARKED_OBJECTS */
5319
8e50cc2d 5320 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5321 {
5322 case Lisp_String:
5323 {
5324 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5325 if (STRING_MARKED_P (ptr))
5326 break;
4f5c1376 5327 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5328 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5329 MARK_STRING (ptr);
361b097f 5330#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5331 /* Check that the string size recorded in the string is the
5332 same as the one recorded in the sdata structure. */
5333 CHECK_STRING_BYTES (ptr);
361b097f 5334#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5335 }
5336 break;
5337
76437631 5338 case Lisp_Vectorlike:
8f11f7ec
SM
5339 if (VECTOR_MARKED_P (XVECTOR (obj)))
5340 break;
4f5c1376
GM
5341#ifdef GC_CHECK_MARKED_OBJECTS
5342 m = mem_find (po);
8e50cc2d 5343 if (m == MEM_NIL && !SUBRP (obj)
4f5c1376
GM
5344 && po != &buffer_defaults
5345 && po != &buffer_local_symbols)
5346 abort ();
5347#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5348
8e50cc2d 5349 if (BUFFERP (obj))
6b552283 5350 {
4f5c1376 5351#ifdef GC_CHECK_MARKED_OBJECTS
8f11f7ec
SM
5352 if (po != &buffer_defaults && po != &buffer_local_symbols)
5353 {
5354 struct buffer *b;
5355 for (b = all_buffers; b && b != po; b = b->next)
5356 ;
5357 if (b == NULL)
5358 abort ();
4f5c1376 5359 }
8f11f7ec
SM
5360#endif /* GC_CHECK_MARKED_OBJECTS */
5361 mark_buffer (obj);
6b552283 5362 }
8e50cc2d 5363 else if (SUBRP (obj))
169ee243 5364 break;
8e50cc2d 5365 else if (COMPILEDP (obj))
2e471eb5
GM
5366 /* We could treat this just like a vector, but it is better to
5367 save the COMPILED_CONSTANTS element for last and avoid
5368 recursion there. */
169ee243
RS
5369 {
5370 register struct Lisp_Vector *ptr = XVECTOR (obj);
14162469
EZ
5371 register EMACS_UINT size = ptr->size;
5372 register EMACS_UINT i;
169ee243 5373
4f5c1376 5374 CHECK_LIVE (live_vector_p);
3ef06d12 5375 VECTOR_MARK (ptr); /* Else mark it */
76437631 5376 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
5377 for (i = 0; i < size; i++) /* and then mark its elements */
5378 {
5379 if (i != COMPILED_CONSTANTS)
49723c04 5380 mark_object (ptr->contents[i]);
169ee243 5381 }
49723c04 5382 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5383 goto loop;
5384 }
8e50cc2d 5385 else if (FRAMEP (obj))
169ee243 5386 {
c70bbf06 5387 register struct frame *ptr = XFRAME (obj);
8f11f7ec
SM
5388 mark_vectorlike (XVECTOR (obj));
5389 mark_face_cache (ptr->face_cache);
707788bd 5390 }
8e50cc2d 5391 else if (WINDOWP (obj))
41c28a37
GM
5392 {
5393 register struct Lisp_Vector *ptr = XVECTOR (obj);
5394 struct window *w = XWINDOW (obj);
8f11f7ec
SM
5395 mark_vectorlike (ptr);
5396 /* Mark glyphs for leaf windows. Marking window matrices is
5397 sufficient because frame matrices use the same glyph
5398 memory. */
5399 if (NILP (w->hchild)
5400 && NILP (w->vchild)
5401 && w->current_matrix)
41c28a37 5402 {
8f11f7ec
SM
5403 mark_glyph_matrix (w->current_matrix);
5404 mark_glyph_matrix (w->desired_matrix);
41c28a37
GM
5405 }
5406 }
8e50cc2d 5407 else if (HASH_TABLE_P (obj))
41c28a37
GM
5408 {
5409 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
8f11f7ec
SM
5410 mark_vectorlike ((struct Lisp_Vector *)h);
5411 /* If hash table is not weak, mark all keys and values.
5412 For weak tables, mark only the vector. */
5413 if (NILP (h->weak))
5414 mark_object (h->key_and_value);
5415 else
5416 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5417 }
58026347 5418 else if (CHAR_TABLE_P (obj))
8f11f7ec 5419 mark_char_table (XVECTOR (obj));
04ff9756 5420 else
d2029e5b 5421 mark_vectorlike (XVECTOR (obj));
169ee243 5422 break;
7146af97 5423
7146af97
JB
5424 case Lisp_Symbol:
5425 {
c70bbf06 5426 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5427 struct Lisp_Symbol *ptrx;
5428
8f11f7ec
SM
5429 if (ptr->gcmarkbit)
5430 break;
4f5c1376 5431 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5432 ptr->gcmarkbit = 1;
49723c04
SM
5433 mark_object (ptr->function);
5434 mark_object (ptr->plist);
ce5b453a
SM
5435 switch (ptr->redirect)
5436 {
5437 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5438 case SYMBOL_VARALIAS:
5439 {
5440 Lisp_Object tem;
5441 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5442 mark_object (tem);
5443 break;
5444 }
5445 case SYMBOL_LOCALIZED:
5446 {
5447 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5448 /* If the value is forwarded to a buffer or keyboard field,
5449 these are marked when we see the corresponding object.
5450 And if it's forwarded to a C variable, either it's not
5451 a Lisp_Object var, or it's staticpro'd already. */
5452 mark_object (blv->where);
5453 mark_object (blv->valcell);
5454 mark_object (blv->defcell);
5455 break;
5456 }
5457 case SYMBOL_FORWARDED:
5458 /* If the value is forwarded to a buffer or keyboard field,
5459 these are marked when we see the corresponding object.
5460 And if it's forwarded to a C variable, either it's not
5461 a Lisp_Object var, or it's staticpro'd already. */
5462 break;
5463 default: abort ();
5464 }
8fe5665d
KR
5465 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5466 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5467 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5468
7146af97
JB
5469 ptr = ptr->next;
5470 if (ptr)
5471 {
b0846f52 5472 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 5473 XSETSYMBOL (obj, ptrx);
49723c04 5474 goto loop;
7146af97
JB
5475 }
5476 }
5477 break;
5478
a0a38eb7 5479 case Lisp_Misc:
4f5c1376 5480 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
67ee9f6e 5481 if (XMISCANY (obj)->gcmarkbit)
2336fe58 5482 break;
67ee9f6e 5483 XMISCANY (obj)->gcmarkbit = 1;
b766f870 5484
a5da44fe 5485 switch (XMISCTYPE (obj))
a0a38eb7 5486 {
465edf35 5487
2336fe58
SM
5488 case Lisp_Misc_Marker:
5489 /* DO NOT mark thru the marker's chain.
5490 The buffer's markers chain does not preserve markers from gc;
5491 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5492 break;
5493
8f924df7 5494 case Lisp_Misc_Save_Value:
9ea306d1 5495#if GC_MARK_STACK
b766f870
KS
5496 {
5497 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5498 /* If DOGC is set, POINTER is the address of a memory
5499 area containing INTEGER potential Lisp_Objects. */
5500 if (ptr->dogc)
5501 {
5502 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5503 int nelt;
5504 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5505 mark_maybe_object (*p);
5506 }
5507 }
9ea306d1 5508#endif
c8616056
KH
5509 break;
5510
e202fa34
KH
5511 case Lisp_Misc_Overlay:
5512 {
5513 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5514 mark_object (ptr->start);
5515 mark_object (ptr->end);
f54253ec
SM
5516 mark_object (ptr->plist);
5517 if (ptr->next)
5518 {
5519 XSETMISC (obj, ptr->next);
5520 goto loop;
5521 }
e202fa34
KH
5522 }
5523 break;
5524
a0a38eb7
KH
5525 default:
5526 abort ();
5527 }
7146af97
JB
5528 break;
5529
5530 case Lisp_Cons:
7146af97
JB
5531 {
5532 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
5533 if (CONS_MARKED_P (ptr))
5534 break;
4f5c1376 5535 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5536 CONS_MARK (ptr);
c54ca951 5537 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 5538 if (EQ (ptr->u.cdr, Qnil))
c54ca951 5539 {
49723c04 5540 obj = ptr->car;
1342fc6f 5541 cdr_count = 0;
c54ca951
RS
5542 goto loop;
5543 }
49723c04 5544 mark_object (ptr->car);
28a099a4 5545 obj = ptr->u.cdr;
1342fc6f
RS
5546 cdr_count++;
5547 if (cdr_count == mark_object_loop_halt)
5548 abort ();
7146af97
JB
5549 goto loop;
5550 }
5551
7146af97 5552 case Lisp_Float:
4f5c1376 5553 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5554 FLOAT_MARK (XFLOAT (obj));
7146af97 5555 break;
7146af97 5556
2de9f71c 5557 case_Lisp_Int:
7146af97
JB
5558 break;
5559
5560 default:
5561 abort ();
5562 }
4f5c1376
GM
5563
5564#undef CHECK_LIVE
5565#undef CHECK_ALLOCATED
5566#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5567}
5568
5569/* Mark the pointers in a buffer structure. */
5570
5571static void
971de7fb 5572mark_buffer (Lisp_Object buf)
7146af97 5573{
7146af97 5574 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5575 register Lisp_Object *ptr, tmp;
30e3190a 5576 Lisp_Object base_buffer;
7146af97 5577
8f11f7ec 5578 eassert (!VECTOR_MARKED_P (buffer));
3ef06d12 5579 VECTOR_MARK (buffer);
7146af97 5580
30e3190a 5581 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5582
c37adf23
SM
5583 /* For now, we just don't mark the undo_list. It's done later in
5584 a special way just before the sweep phase, and after stripping
5585 some of its elements that are not needed any more. */
4c315bda 5586
f54253ec
SM
5587 if (buffer->overlays_before)
5588 {
5589 XSETMISC (tmp, buffer->overlays_before);
5590 mark_object (tmp);
5591 }
5592 if (buffer->overlays_after)
5593 {
5594 XSETMISC (tmp, buffer->overlays_after);
5595 mark_object (tmp);
5596 }
5597
9ce376f9
SM
5598 /* buffer-local Lisp variables start at `undo_list',
5599 tho only the ones from `name' on are GC'd normally. */
5d8ea120 5600 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
7146af97
JB
5601 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5602 ptr++)
49723c04 5603 mark_object (*ptr);
30e3190a
RS
5604
5605 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5606 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5607 {
177c0ea7 5608 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5609 mark_buffer (base_buffer);
5610 }
7146af97 5611}
084b1a0c 5612
4a729fd8
SM
5613/* Mark the Lisp pointers in the terminal objects.
5614 Called by the Fgarbage_collector. */
5615
4a729fd8
SM
5616static void
5617mark_terminals (void)
5618{
5619 struct terminal *t;
5620 for (t = terminal_list; t; t = t->next_terminal)
5621 {
5622 eassert (t->name != NULL);
354884c4 5623#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
5624 /* If a terminal object is reachable from a stacpro'ed object,
5625 it might have been marked already. Make sure the image cache
5626 gets marked. */
5627 mark_image_cache (t->image_cache);
354884c4 5628#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
5629 if (!VECTOR_MARKED_P (t))
5630 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
5631 }
5632}
5633
5634
084b1a0c 5635
41c28a37
GM
5636/* Value is non-zero if OBJ will survive the current GC because it's
5637 either marked or does not need to be marked to survive. */
5638
5639int
971de7fb 5640survives_gc_p (Lisp_Object obj)
41c28a37
GM
5641{
5642 int survives_p;
177c0ea7 5643
8e50cc2d 5644 switch (XTYPE (obj))
41c28a37 5645 {
2de9f71c 5646 case_Lisp_Int:
41c28a37
GM
5647 survives_p = 1;
5648 break;
5649
5650 case Lisp_Symbol:
2336fe58 5651 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5652 break;
5653
5654 case Lisp_Misc:
67ee9f6e 5655 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
5656 break;
5657
5658 case Lisp_String:
08b7c2cb 5659 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5660 break;
5661
5662 case Lisp_Vectorlike:
8e50cc2d 5663 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5664 break;
5665
5666 case Lisp_Cons:
08b7c2cb 5667 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5668 break;
5669
41c28a37 5670 case Lisp_Float:
ab6780cd 5671 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5672 break;
41c28a37
GM
5673
5674 default:
5675 abort ();
5676 }
5677
34400008 5678 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5679}
5680
5681
7146af97 5682\f
1a4f1e2c 5683/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5684
5685static void
971de7fb 5686gc_sweep (void)
7146af97 5687{
41c28a37
GM
5688 /* Remove or mark entries in weak hash tables.
5689 This must be done before any object is unmarked. */
5690 sweep_weak_hash_tables ();
5691
2e471eb5 5692 sweep_strings ();
676a7251
GM
5693#ifdef GC_CHECK_STRING_BYTES
5694 if (!noninteractive)
5695 check_string_bytes (1);
5696#endif
7146af97
JB
5697
5698 /* Put all unmarked conses on free list */
5699 {
5700 register struct cons_block *cblk;
6ca94ac9 5701 struct cons_block **cprev = &cons_block;
7146af97
JB
5702 register int lim = cons_block_index;
5703 register int num_free = 0, num_used = 0;
5704
5705 cons_free_list = 0;
177c0ea7 5706
6ca94ac9 5707 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 5708 {
3ae2e3a3 5709 register int i = 0;
6ca94ac9 5710 int this_free = 0;
3ae2e3a3
RS
5711 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5712
5713 /* Scan the mark bits an int at a time. */
5714 for (i = 0; i <= ilim; i++)
5715 {
5716 if (cblk->gcmarkbits[i] == -1)
5717 {
5718 /* Fast path - all cons cells for this int are marked. */
5719 cblk->gcmarkbits[i] = 0;
5720 num_used += BITS_PER_INT;
5721 }
5722 else
5723 {
5724 /* Some cons cells for this int are not marked.
5725 Find which ones, and free them. */
5726 int start, pos, stop;
5727
5728 start = i * BITS_PER_INT;
5729 stop = lim - start;
5730 if (stop > BITS_PER_INT)
5731 stop = BITS_PER_INT;
5732 stop += start;
5733
5734 for (pos = start; pos < stop; pos++)
5735 {
5736 if (!CONS_MARKED_P (&cblk->conses[pos]))
5737 {
5738 this_free++;
5739 cblk->conses[pos].u.chain = cons_free_list;
5740 cons_free_list = &cblk->conses[pos];
34400008 5741#if GC_MARK_STACK
3ae2e3a3 5742 cons_free_list->car = Vdead;
34400008 5743#endif
3ae2e3a3
RS
5744 }
5745 else
5746 {
5747 num_used++;
5748 CONS_UNMARK (&cblk->conses[pos]);
5749 }
5750 }
5751 }
5752 }
5753
7146af97 5754 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5755 /* If this block contains only free conses and we have already
5756 seen more than two blocks worth of free conses then deallocate
5757 this block. */
6feef451 5758 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5759 {
6ca94ac9
KH
5760 *cprev = cblk->next;
5761 /* Unhook from the free list. */
28a099a4 5762 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 5763 lisp_align_free (cblk);
c8099634 5764 n_cons_blocks--;
6ca94ac9
KH
5765 }
5766 else
6feef451
AS
5767 {
5768 num_free += this_free;
5769 cprev = &cblk->next;
5770 }
7146af97
JB
5771 }
5772 total_conses = num_used;
5773 total_free_conses = num_free;
5774 }
5775
7146af97
JB
5776 /* Put all unmarked floats on free list */
5777 {
5778 register struct float_block *fblk;
6ca94ac9 5779 struct float_block **fprev = &float_block;
7146af97
JB
5780 register int lim = float_block_index;
5781 register int num_free = 0, num_used = 0;
5782
5783 float_free_list = 0;
177c0ea7 5784
6ca94ac9 5785 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5786 {
5787 register int i;
6ca94ac9 5788 int this_free = 0;
7146af97 5789 for (i = 0; i < lim; i++)
ab6780cd 5790 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5791 {
6ca94ac9 5792 this_free++;
28a099a4 5793 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
5794 float_free_list = &fblk->floats[i];
5795 }
5796 else
5797 {
5798 num_used++;
ab6780cd 5799 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5800 }
5801 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5802 /* If this block contains only free floats and we have already
5803 seen more than two blocks worth of free floats then deallocate
5804 this block. */
6feef451 5805 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5806 {
6ca94ac9
KH
5807 *fprev = fblk->next;
5808 /* Unhook from the free list. */
28a099a4 5809 float_free_list = fblk->floats[0].u.chain;
ab6780cd 5810 lisp_align_free (fblk);
c8099634 5811 n_float_blocks--;
6ca94ac9
KH
5812 }
5813 else
6feef451
AS
5814 {
5815 num_free += this_free;
5816 fprev = &fblk->next;
5817 }
7146af97
JB
5818 }
5819 total_floats = num_used;
5820 total_free_floats = num_free;
5821 }
7146af97 5822
d5e35230
JA
5823 /* Put all unmarked intervals on free list */
5824 {
5825 register struct interval_block *iblk;
6ca94ac9 5826 struct interval_block **iprev = &interval_block;
d5e35230
JA
5827 register int lim = interval_block_index;
5828 register int num_free = 0, num_used = 0;
5829
5830 interval_free_list = 0;
5831
6ca94ac9 5832 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5833 {
5834 register int i;
6ca94ac9 5835 int this_free = 0;
d5e35230
JA
5836
5837 for (i = 0; i < lim; i++)
5838 {
2336fe58 5839 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5840 {
439d5cb4 5841 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5842 interval_free_list = &iblk->intervals[i];
6ca94ac9 5843 this_free++;
d5e35230
JA
5844 }
5845 else
5846 {
5847 num_used++;
2336fe58 5848 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5849 }
5850 }
5851 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5852 /* If this block contains only free intervals and we have already
5853 seen more than two blocks worth of free intervals then
5854 deallocate this block. */
6feef451 5855 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5856 {
6ca94ac9
KH
5857 *iprev = iblk->next;
5858 /* Unhook from the free list. */
439d5cb4 5859 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
5860 lisp_free (iblk);
5861 n_interval_blocks--;
6ca94ac9
KH
5862 }
5863 else
6feef451
AS
5864 {
5865 num_free += this_free;
5866 iprev = &iblk->next;
5867 }
d5e35230
JA
5868 }
5869 total_intervals = num_used;
5870 total_free_intervals = num_free;
5871 }
d5e35230 5872
7146af97
JB
5873 /* Put all unmarked symbols on free list */
5874 {
5875 register struct symbol_block *sblk;
6ca94ac9 5876 struct symbol_block **sprev = &symbol_block;
7146af97
JB
5877 register int lim = symbol_block_index;
5878 register int num_free = 0, num_used = 0;
5879
d285b373 5880 symbol_free_list = NULL;
177c0ea7 5881
6ca94ac9 5882 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5883 {
6ca94ac9 5884 int this_free = 0;
d285b373
GM
5885 struct Lisp_Symbol *sym = sblk->symbols;
5886 struct Lisp_Symbol *end = sym + lim;
5887
5888 for (; sym < end; ++sym)
5889 {
20035321
SM
5890 /* Check if the symbol was created during loadup. In such a case
5891 it might be pointed to by pure bytecode which we don't trace,
5892 so we conservatively assume that it is live. */
8fe5665d 5893 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 5894
2336fe58 5895 if (!sym->gcmarkbit && !pure_p)
d285b373 5896 {
ce5b453a
SM
5897 if (sym->redirect == SYMBOL_LOCALIZED)
5898 xfree (SYMBOL_BLV (sym));
28a099a4 5899 sym->next = symbol_free_list;
d285b373 5900 symbol_free_list = sym;
34400008 5901#if GC_MARK_STACK
d285b373 5902 symbol_free_list->function = Vdead;
34400008 5903#endif
d285b373
GM
5904 ++this_free;
5905 }
5906 else
5907 {
5908 ++num_used;
5909 if (!pure_p)
8fe5665d 5910 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 5911 sym->gcmarkbit = 0;
d285b373
GM
5912 }
5913 }
177c0ea7 5914
7146af97 5915 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
5916 /* If this block contains only free symbols and we have already
5917 seen more than two blocks worth of free symbols then deallocate
5918 this block. */
6feef451 5919 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 5920 {
6ca94ac9
KH
5921 *sprev = sblk->next;
5922 /* Unhook from the free list. */
28a099a4 5923 symbol_free_list = sblk->symbols[0].next;
c8099634
RS
5924 lisp_free (sblk);
5925 n_symbol_blocks--;
6ca94ac9
KH
5926 }
5927 else
6feef451
AS
5928 {
5929 num_free += this_free;
5930 sprev = &sblk->next;
5931 }
7146af97
JB
5932 }
5933 total_symbols = num_used;
5934 total_free_symbols = num_free;
5935 }
5936
a9faeabe
RS
5937 /* Put all unmarked misc's on free list.
5938 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
5939 {
5940 register struct marker_block *mblk;
6ca94ac9 5941 struct marker_block **mprev = &marker_block;
7146af97
JB
5942 register int lim = marker_block_index;
5943 register int num_free = 0, num_used = 0;
5944
5945 marker_free_list = 0;
177c0ea7 5946
6ca94ac9 5947 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
5948 {
5949 register int i;
6ca94ac9 5950 int this_free = 0;
fa05e253 5951
7146af97 5952 for (i = 0; i < lim; i++)
465edf35 5953 {
d314756e 5954 if (!mblk->markers[i].u_any.gcmarkbit)
465edf35 5955 {
d314756e 5956 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
ef89c2ce 5957 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
5958 /* Set the type of the freed object to Lisp_Misc_Free.
5959 We could leave the type alone, since nobody checks it,
465edf35 5960 but this might catch bugs faster. */
a5da44fe 5961 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
5962 mblk->markers[i].u_free.chain = marker_free_list;
5963 marker_free_list = &mblk->markers[i];
6ca94ac9 5964 this_free++;
465edf35
KH
5965 }
5966 else
5967 {
5968 num_used++;
d314756e 5969 mblk->markers[i].u_any.gcmarkbit = 0;
465edf35
KH
5970 }
5971 }
7146af97 5972 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
5973 /* If this block contains only free markers and we have already
5974 seen more than two blocks worth of free markers then deallocate
5975 this block. */
6feef451 5976 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 5977 {
6ca94ac9
KH
5978 *mprev = mblk->next;
5979 /* Unhook from the free list. */
5980 marker_free_list = mblk->markers[0].u_free.chain;
c8099634
RS
5981 lisp_free (mblk);
5982 n_marker_blocks--;
6ca94ac9
KH
5983 }
5984 else
6feef451
AS
5985 {
5986 num_free += this_free;
5987 mprev = &mblk->next;
5988 }
7146af97
JB
5989 }
5990
5991 total_markers = num_used;
5992 total_free_markers = num_free;
5993 }
5994
5995 /* Free all unmarked buffers */
5996 {
5997 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5998
5999 while (buffer)
3ef06d12 6000 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6001 {
6002 if (prev)
6003 prev->next = buffer->next;
6004 else
6005 all_buffers = buffer->next;
6006 next = buffer->next;
34400008 6007 lisp_free (buffer);
7146af97
JB
6008 buffer = next;
6009 }
6010 else
6011 {
3ef06d12 6012 VECTOR_UNMARK (buffer);
30e3190a 6013 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
6014 prev = buffer, buffer = buffer->next;
6015 }
6016 }
6017
7146af97
JB
6018 /* Free all unmarked vectors */
6019 {
6020 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6021 total_vector_size = 0;
6022
6023 while (vector)
3ef06d12 6024 if (!VECTOR_MARKED_P (vector))
7146af97
JB
6025 {
6026 if (prev)
6027 prev->next = vector->next;
6028 else
6029 all_vectors = vector->next;
6030 next = vector->next;
c8099634
RS
6031 lisp_free (vector);
6032 n_vectors--;
7146af97 6033 vector = next;
41c28a37 6034
7146af97
JB
6035 }
6036 else
6037 {
3ef06d12 6038 VECTOR_UNMARK (vector);
fa05e253
RS
6039 if (vector->size & PSEUDOVECTOR_FLAG)
6040 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6041 else
6042 total_vector_size += vector->size;
7146af97
JB
6043 prev = vector, vector = vector->next;
6044 }
6045 }
177c0ea7 6046
676a7251
GM
6047#ifdef GC_CHECK_STRING_BYTES
6048 if (!noninteractive)
6049 check_string_bytes (1);
6050#endif
7146af97 6051}
7146af97 6052
7146af97 6053
7146af97 6054
7146af97 6055\f
20d24714
JB
6056/* Debugging aids. */
6057
31ce1c91 6058DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6059 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6060This may be helpful in debugging Emacs's memory usage.
7ee72033 6061We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6062 (void)
20d24714
JB
6063{
6064 Lisp_Object end;
6065
d40d4be1 6066 XSETINT (end, (EMACS_INT) (char *) sbrk (0) / 1024);
20d24714
JB
6067
6068 return end;
6069}
6070
310ea200 6071DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6072 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6073Each of these counters increments for a certain kind of object.
6074The counters wrap around from the largest positive integer to zero.
6075Garbage collection does not decrease them.
6076The elements of the value are as follows:
6077 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6078All are in units of 1 = one object consed
6079except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6080objects consed.
6081MISCS include overlays, markers, and some internal types.
6082Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6083 (but the contents of a buffer's text do not count here). */)
5842a27b 6084 (void)
310ea200 6085{
2e471eb5 6086 Lisp_Object consed[8];
310ea200 6087
78e985eb
GM
6088 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6089 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6090 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6091 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6092 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6093 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6094 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6095 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6096
2e471eb5 6097 return Flist (8, consed);
310ea200 6098}
e0b8c689
KR
6099
6100int suppress_checking;
d3d47262 6101
e0b8c689 6102void
971de7fb 6103die (const char *msg, const char *file, int line)
e0b8c689 6104{
67ee9f6e 6105 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6106 file, line, msg);
6107 abort ();
6108}
20d24714 6109\f
7146af97
JB
6110/* Initialization */
6111
dfcf069d 6112void
971de7fb 6113init_alloc_once (void)
7146af97
JB
6114{
6115 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6116 purebeg = PUREBEG;
6117 pure_size = PURESIZE;
1f0b3fd2 6118 pure_bytes_used = 0;
e5bc14d4 6119 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
9e713715
GM
6120 pure_bytes_used_before_overflow = 0;
6121
ab6780cd
SM
6122 /* Initialize the list of free aligned blocks. */
6123 free_ablock = NULL;
6124
877935b1 6125#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6126 mem_init ();
6127 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6128#endif
9e713715 6129
7146af97
JB
6130 all_vectors = 0;
6131 ignore_warnings = 1;
d1658221
RS
6132#ifdef DOUG_LEA_MALLOC
6133 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6134 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6135 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6136#endif
7146af97
JB
6137 init_strings ();
6138 init_cons ();
6139 init_symbol ();
6140 init_marker ();
7146af97 6141 init_float ();
34400008 6142 init_intervals ();
5ac58e4c 6143 init_weak_hash_tables ();
d5e35230 6144
276cbe5a
RS
6145#ifdef REL_ALLOC
6146 malloc_hysteresis = 32;
6147#else
6148 malloc_hysteresis = 0;
6149#endif
6150
24d8a105 6151 refill_memory_reserve ();
276cbe5a 6152
7146af97
JB
6153 ignore_warnings = 0;
6154 gcprolist = 0;
630686c8 6155 byte_stack_list = 0;
7146af97
JB
6156 staticidx = 0;
6157 consing_since_gc = 0;
7d179cea 6158 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61 6159 gc_relative_threshold = 0;
7146af97
JB
6160}
6161
dfcf069d 6162void
971de7fb 6163init_alloc (void)
7146af97
JB
6164{
6165 gcprolist = 0;
630686c8 6166 byte_stack_list = 0;
182ff242
GM
6167#if GC_MARK_STACK
6168#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6169 setjmp_tested_p = longjmps_done = 0;
6170#endif
6171#endif
2c5bd608
DL
6172 Vgc_elapsed = make_float (0.0);
6173 gcs_done = 0;
7146af97
JB
6174}
6175
6176void
971de7fb 6177syms_of_alloc (void)
7146af97 6178{
29208e82 6179 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
a6266d23 6180 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
6181Garbage collection can happen automatically once this many bytes have been
6182allocated since the last garbage collection. All data types count.
7146af97 6183
228299fa 6184Garbage collection happens automatically only when `eval' is called.
7146af97 6185
228299fa 6186By binding this temporarily to a large number, you can effectively
96f077ad
SM
6187prevent garbage collection during a part of the program.
6188See also `gc-cons-percentage'. */);
6189
29208e82 6190 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
96f077ad
SM
6191 doc: /* *Portion of the heap used for allocation.
6192Garbage collection can happen automatically once this portion of the heap
6193has been allocated since the last garbage collection.
6194If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6195 Vgc_cons_percentage = make_float (0.1);
0819585c 6196
29208e82 6197 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
a6266d23 6198 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 6199
29208e82 6200 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6201 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6202
29208e82 6203 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6204 doc: /* Number of floats that have been consed so far. */);
0819585c 6205
29208e82 6206 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6207 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6208
29208e82 6209 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6210 doc: /* Number of symbols that have been consed so far. */);
0819585c 6211
29208e82 6212 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6213 doc: /* Number of string characters that have been consed so far. */);
0819585c 6214
29208e82 6215 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
a6266d23 6216 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 6217
29208e82 6218 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6219 doc: /* Number of intervals that have been consed so far. */);
7146af97 6220
29208e82 6221 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6222 doc: /* Number of strings that have been consed so far. */);
228299fa 6223
29208e82 6224 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6225 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6226This means that certain objects should be allocated in shared (pure) space.
6227It can also be set to a hash-table, in which case this table is used to
6228do hash-consing of the objects allocated to pure space. */);
228299fa 6229
29208e82 6230 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6231 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6232 garbage_collection_messages = 0;
6233
29208e82 6234 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6235 doc: /* Hook run after garbage collection has finished. */);
9e713715 6236 Vpost_gc_hook = Qnil;
d67b4f80 6237 Qpost_gc_hook = intern_c_string ("post-gc-hook");
9e713715
GM
6238 staticpro (&Qpost_gc_hook);
6239
29208e82 6240 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6241 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6242 /* We build this in advance because if we wait until we need it, we might
6243 not be able to allocate the memory to hold it. */
74a54b04 6244 Vmemory_signal_data
f4265f6c
DN
6245 = pure_cons (Qerror,
6246 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
74a54b04 6247
29208e82 6248 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6249 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6250 Vmemory_full = Qnil;
bcb61d60 6251
e8197642 6252 staticpro (&Qgc_cons_threshold);
d67b4f80 6253 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
e8197642 6254
a59de17b 6255 staticpro (&Qchar_table_extra_slots);
d67b4f80 6256 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
a59de17b 6257
29208e82 6258 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6259 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6260The time is in seconds as a floating point value. */);
29208e82 6261 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6262 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6263
7146af97
JB
6264 defsubr (&Scons);
6265 defsubr (&Slist);
6266 defsubr (&Svector);
6267 defsubr (&Smake_byte_code);
6268 defsubr (&Smake_list);
6269 defsubr (&Smake_vector);
6270 defsubr (&Smake_string);
7b07587b 6271 defsubr (&Smake_bool_vector);
7146af97
JB
6272 defsubr (&Smake_symbol);
6273 defsubr (&Smake_marker);
6274 defsubr (&Spurecopy);
6275 defsubr (&Sgarbage_collect);
20d24714 6276 defsubr (&Smemory_limit);
310ea200 6277 defsubr (&Smemory_use_counts);
34400008
GM
6278
6279#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6280 defsubr (&Sgc_status);
6281#endif
7146af97 6282}