* alloc.c, bytecode.c, ccl.c, coding.c, composite.c, data.c, dosfns.c:
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
999dd333
GM
2
3Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
7146af97
JB
5
6This file is part of GNU Emacs.
7
9ec0b715 8GNU Emacs is free software: you can redistribute it and/or modify
7146af97 9it under the terms of the GNU General Public License as published by
9ec0b715
GM
10the Free Software Foundation, either version 3 of the License, or
11(at your option) any later version.
7146af97
JB
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
9ec0b715 19along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 20
18160b98 21#include <config.h>
e9b309ac 22#include <stdio.h>
ab6780cd 23#include <limits.h> /* For CHAR_BIT. */
d7306fe6 24#include <setjmp.h>
92939d31 25
68c45bf0 26#include <signal.h>
92939d31 27
ae9e757a 28#ifdef HAVE_PTHREAD
aa477689
JD
29#include <pthread.h>
30#endif
31
7539e11f
KR
32/* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
2e471eb5 35
7539e11f 36#undef HIDE_LISP_IMPLEMENTATION
7146af97 37#include "lisp.h"
ece93c02 38#include "process.h"
d5e35230 39#include "intervals.h"
4c0be5f4 40#include "puresize.h"
e5560ff7 41#include "character.h"
7146af97
JB
42#include "buffer.h"
43#include "window.h"
2538fae4 44#include "keyboard.h"
502b9b64 45#include "frame.h"
9ac0d9e0 46#include "blockinput.h"
e065a56e 47#include "syssignal.h"
4a729fd8 48#include "termhooks.h" /* For struct terminal. */
34400008 49#include <setjmp.h>
0065d054 50#include <verify.h>
e065a56e 51
52828e02
PE
52/* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54#if ! GC_MARK_STACK
55# undef GC_CHECK_MARKED_OBJECTS
56#endif
57
6b61353c 58/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
52828e02
PE
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
6b61353c 61
52828e02
PE
62#if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
6b61353c
KH
64#undef GC_MALLOC_CHECK
65#endif
66
bf952fb6 67#include <unistd.h>
4004364e 68#ifndef HAVE_UNISTD_H
261cb4bb 69extern void *sbrk ();
bf952fb6 70#endif
ee1eea5c 71
de7124a7 72#include <fcntl.h>
de7124a7 73
69666f77 74#ifdef WINDOWSNT
f892cf9c 75#include "w32.h"
69666f77
EZ
76#endif
77
d1658221 78#ifdef DOUG_LEA_MALLOC
2e471eb5 79
d1658221 80#include <malloc.h>
81d492d5 81
2e471eb5
GM
82/* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
81d492d5
RS
85#define MMAP_MAX_AREAS 100000000
86
2e471eb5
GM
87#else /* not DOUG_LEA_MALLOC */
88
276cbe5a
RS
89/* The following come from gmalloc.c. */
90
5e927815
PE
91extern size_t _bytes_used;
92extern size_t __malloc_extra_blocks;
b62a57be
PE
93extern void *_malloc_internal (size_t);
94extern void _free_internal (void *);
2e471eb5
GM
95
96#endif /* not DOUG_LEA_MALLOC */
276cbe5a 97
7bc26fdb 98#if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
ae9e757a 99#ifdef HAVE_PTHREAD
aa477689 100
f415cacd
JD
101/* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
ae9e757a
JD
106 Also, gconf and gsettings may create several threads.
107
f415cacd
JD
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 111 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
026cdede 115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
aa477689 120static pthread_mutex_t alloc_mutex;
aa477689 121
959dc601
JD
122#define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 126 BLOCK_INPUT; \
959dc601
JD
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
aa477689 129 while (0)
959dc601
JD
130#define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 135 UNBLOCK_INPUT; \
959dc601 136 } \
aa477689
JD
137 while (0)
138
ae9e757a 139#else /* ! defined HAVE_PTHREAD */
aa477689
JD
140
141#define BLOCK_INPUT_ALLOC BLOCK_INPUT
142#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
ae9e757a 144#endif /* ! defined HAVE_PTHREAD */
7bc26fdb 145#endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
aa477689 146
2e471eb5
GM
147/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
7cdee936
SM
150#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 152#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 153
eab3844f
PE
154#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
3ef06d12 157
7bc26fdb
PE
158/* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
2e471eb5
GM
160 strings. */
161
3ef06d12 162#define GC_STRING_BYTES(S) (STRING_BYTES (S))
2e471eb5 163
29208e82
TT
164/* Global variables. */
165struct emacs_globals globals;
166
2e471eb5
GM
167/* Number of bytes of consing done since the last gc. */
168
0de4bb68 169EMACS_INT consing_since_gc;
7146af97 170
974aae61
RS
171/* Similar minimum, computed from Vgc_cons_percentage. */
172
173EMACS_INT gc_relative_threshold;
310ea200 174
24d8a105
RS
175/* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178EMACS_INT memory_full_cons_threshold;
179
2e471eb5
GM
180/* Nonzero during GC. */
181
7146af97
JB
182int gc_in_progress;
183
3de0effb
RS
184/* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188int abort_on_gc;
189
34400008
GM
190/* Number of live and free conses etc. */
191
c0c5c8ae
PE
192static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
193static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194static EMACS_INT total_free_floats, total_floats;
fd27a537 195
2e471eb5 196/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
2e471eb5 199
d3d47262 200static char *spare_memory[7];
276cbe5a 201
2b6148e4
PE
202/* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
2e471eb5 204
276cbe5a 205#define SPARE_MEMORY (1 << 14)
4d09bcf6 206
276cbe5a 207/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 208
276cbe5a
RS
209static int malloc_hysteresis;
210
1b8950e5
RS
211/* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
2e471eb5 216
2c4685ee 217EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 218#define PUREBEG (char *) pure
2e471eb5 219
9e713715 220/* Pointer to the pure area, and its size. */
2e471eb5 221
9e713715 222static char *purebeg;
903fe15d 223static ptrdiff_t pure_size;
9e713715
GM
224
225/* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
903fe15d 228static ptrdiff_t pure_bytes_used_before_overflow;
7146af97 229
34400008
GM
230/* Value is non-zero if P points into pure space. */
231
232#define PURE_POINTER_P(P) \
6a0bf43d 233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
34400008 234
e5bc14d4
YM
235/* Index in pure at which next pure Lisp object will be allocated.. */
236
d311d28c 237static ptrdiff_t pure_bytes_used_lisp;
e5bc14d4
YM
238
239/* Number of bytes allocated for non-Lisp objects in pure storage. */
240
d311d28c 241static ptrdiff_t pure_bytes_used_non_lisp;
e5bc14d4 242
2e471eb5
GM
243/* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
a8fe7202 246const char *pending_malloc_warning;
7146af97
JB
247
248/* Maximum amount of C stack to save when a GC happens. */
249
250#ifndef MAX_SAVE_STACK
251#define MAX_SAVE_STACK 16000
252#endif
253
254/* Buffer in which we save a copy of the C stack at each GC. */
255
dd3f25f7 256#if MAX_SAVE_STACK > 0
d3d47262 257static char *stack_copy;
903fe15d 258static ptrdiff_t stack_copy_size;
dd3f25f7 259#endif
7146af97 260
2e471eb5
GM
261/* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
263
d3d47262 264static int ignore_warnings;
350273a4 265
955cbe7b
PE
266static Lisp_Object Qgc_cons_threshold;
267Lisp_Object Qchar_table_extra_slots;
e8197642 268
9e713715
GM
269/* Hook run after GC has finished. */
270
955cbe7b 271static Lisp_Object Qpost_gc_hook;
2c5bd608 272
f57e2426
J
273static void mark_buffer (Lisp_Object);
274static void mark_terminals (void);
f57e2426 275static void gc_sweep (void);
72cb32cf 276static Lisp_Object make_pure_vector (ptrdiff_t);
f57e2426
J
277static void mark_glyph_matrix (struct glyph_matrix *);
278static void mark_face_cache (struct face_cache *);
41c28a37 279
69003fd8
PE
280#if !defined REL_ALLOC || defined SYSTEM_MALLOC
281static void refill_memory_reserve (void);
282#endif
f57e2426
J
283static struct Lisp_String *allocate_string (void);
284static void compact_small_strings (void);
285static void free_large_strings (void);
286static void sweep_strings (void);
244ed907 287static void free_misc (Lisp_Object);
196e41e4 288extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
34400008 289
34400008
GM
290/* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
293
294enum mem_type
295{
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
9c545a55
SM
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
f3372c87
DA
307 MEM_TYPE_VECTORLIKE,
308 /* Special type to denote vector blocks. */
309 MEM_TYPE_VECTOR_BLOCK
34400008
GM
310};
311
261cb4bb 312static void *lisp_malloc (size_t, enum mem_type);
225ccad6 313
24d8a105 314
877935b1 315#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
316
317#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318#include <stdio.h> /* For fprintf. */
319#endif
320
321/* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
323
d3d47262 324static Lisp_Object Vdead;
ca78dc43 325#define DEADP(x) EQ (x, Vdead)
0b378936 326
877935b1
GM
327#ifdef GC_MALLOC_CHECK
328
329enum mem_type allocated_mem_type;
877935b1
GM
330
331#endif /* GC_MALLOC_CHECK */
332
333/* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
337
338 A red-black tree is a balanced binary tree with the following
339 properties:
340
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
347
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
350
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
356
357struct mem_node
358{
9f7d9210
RS
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
362
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
877935b1
GM
365
366 /* Start and end of allocated region. */
367 void *start, *end;
368
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 371
877935b1
GM
372 /* Memory type. */
373 enum mem_type type;
374};
375
376/* Base address of stack. Set in main. */
377
378Lisp_Object *stack_base;
379
380/* Root of the tree describing allocated Lisp memory. */
381
382static struct mem_node *mem_root;
383
ece93c02
GM
384/* Lowest and highest known address in the heap. */
385
386static void *min_heap_address, *max_heap_address;
387
877935b1
GM
388/* Sentinel node of the tree. */
389
390static struct mem_node mem_z;
391#define MEM_NIL &mem_z
392
d311d28c 393static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
261cb4bb 394static void lisp_free (void *);
f57e2426
J
395static void mark_stack (void);
396static int live_vector_p (struct mem_node *, void *);
397static int live_buffer_p (struct mem_node *, void *);
398static int live_string_p (struct mem_node *, void *);
399static int live_cons_p (struct mem_node *, void *);
400static int live_symbol_p (struct mem_node *, void *);
401static int live_float_p (struct mem_node *, void *);
402static int live_misc_p (struct mem_node *, void *);
403static void mark_maybe_object (Lisp_Object);
3164aeac 404static void mark_memory (void *, void *);
52828e02 405#if GC_MARK_STACK || defined GC_MALLOC_CHECK
f57e2426
J
406static void mem_init (void);
407static struct mem_node *mem_insert (void *, void *, enum mem_type);
408static void mem_insert_fixup (struct mem_node *);
b62a57be 409#endif
f57e2426
J
410static void mem_rotate_left (struct mem_node *);
411static void mem_rotate_right (struct mem_node *);
412static void mem_delete (struct mem_node *);
413static void mem_delete_fixup (struct mem_node *);
55d4c1b2 414static inline struct mem_node *mem_find (void *);
34400008 415
34400008
GM
416
417#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 418static void check_gcpros (void);
34400008
GM
419#endif
420
877935b1 421#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 422
ca78dc43
PE
423#ifndef DEADP
424# define DEADP(x) 0
425#endif
426
1f0b3fd2
GM
427/* Recording what needs to be marked for gc. */
428
429struct gcpro *gcprolist;
430
379b98b1
PE
431/* Addresses of staticpro'd variables. Initialize it to a nonzero
432 value; otherwise some compilers put it into BSS. */
1f0b3fd2 433
0078170f 434#define NSTATICS 0x640
d3d47262 435static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
436
437/* Index of next unused slot in staticvec. */
438
d3d47262 439static int staticidx = 0;
1f0b3fd2 440
261cb4bb 441static void *pure_alloc (size_t, int);
1f0b3fd2
GM
442
443
444/* Value is SZ rounded up to the next multiple of ALIGNMENT.
445 ALIGNMENT must be a power of 2. */
446
ab6780cd 447#define ALIGN(ptr, ALIGNMENT) \
261cb4bb
PE
448 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
449 & ~ ((ALIGNMENT) - 1)))
1f0b3fd2 450
ece93c02 451
7146af97 452\f
34400008
GM
453/************************************************************************
454 Malloc
455 ************************************************************************/
456
4455ad75 457/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
458
459void
a8fe7202 460malloc_warning (const char *str)
7146af97
JB
461{
462 pending_malloc_warning = str;
463}
464
34400008 465
4455ad75 466/* Display an already-pending malloc warning. */
34400008 467
d457598b 468void
971de7fb 469display_malloc_warning (void)
7146af97 470{
4455ad75
RS
471 call3 (intern ("display-warning"),
472 intern ("alloc"),
473 build_string (pending_malloc_warning),
474 intern ("emergency"));
7146af97 475 pending_malloc_warning = 0;
7146af97 476}
49efed3a 477\f
276cbe5a
RS
478/* Called if we can't allocate relocatable space for a buffer. */
479
480void
d311d28c 481buffer_memory_full (ptrdiff_t nbytes)
276cbe5a 482{
2e471eb5
GM
483 /* If buffers use the relocating allocator, no need to free
484 spare_memory, because we may have plenty of malloc space left
485 that we could get, and if we don't, the malloc that fails will
486 itself cause spare_memory to be freed. If buffers don't use the
487 relocating allocator, treat this like any other failing
488 malloc. */
276cbe5a
RS
489
490#ifndef REL_ALLOC
531b0165 491 memory_full (nbytes);
276cbe5a
RS
492#endif
493
2e471eb5
GM
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
9b306d37 496 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
497}
498
f3372c87
DA
499/* A common multiple of the positive integers A and B. Ideally this
500 would be the least common multiple, but there's no way to do that
501 as a constant expression in C, so do the best that we can easily do. */
502#define COMMON_MULTIPLE(a, b) \
503 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
34400008 504
c9d624c6 505#ifndef XMALLOC_OVERRUN_CHECK
903fe15d 506#define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
c9d624c6 507#else
212f33f1 508
903fe15d
PE
509/* Check for overrun in malloc'ed buffers by wrapping a header and trailer
510 around each block.
bdbed949 511
f701dc2a
PE
512 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
513 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
514 block size in little-endian order. The trailer consists of
515 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
bdbed949
KS
516
517 The header is used to detect whether this block has been allocated
f701dc2a
PE
518 through these functions, as some low-level libc functions may
519 bypass the malloc hooks. */
bdbed949 520
212f33f1 521#define XMALLOC_OVERRUN_CHECK_SIZE 16
903fe15d 522#define XMALLOC_OVERRUN_CHECK_OVERHEAD \
38532ce6
PE
523 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
524
525/* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
f701dc2a
PE
526 hold a size_t value and (2) the header size is a multiple of the
527 alignment that Emacs needs for C types and for USE_LSB_TAG. */
528#define XMALLOC_BASE_ALIGNMENT \
529 offsetof ( \
530 struct { \
531 union { long double d; intmax_t i; void *p; } u; \
532 char c; \
533 }, \
534 c)
f3372c87 535
bfe3e0a2 536#if USE_LSB_TAG
f701dc2a
PE
537# define XMALLOC_HEADER_ALIGNMENT \
538 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
38532ce6
PE
539#else
540# define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
541#endif
542#define XMALLOC_OVERRUN_SIZE_SIZE \
f701dc2a
PE
543 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
544 + XMALLOC_HEADER_ALIGNMENT - 1) \
545 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
546 - XMALLOC_OVERRUN_CHECK_SIZE)
bdbed949 547
903fe15d
PE
548static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
549 { '\x9a', '\x9b', '\xae', '\xaf',
550 '\xbf', '\xbe', '\xce', '\xcf',
551 '\xea', '\xeb', '\xec', '\xed',
552 '\xdf', '\xde', '\x9c', '\x9d' };
212f33f1 553
903fe15d
PE
554static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
555 { '\xaa', '\xab', '\xac', '\xad',
556 '\xba', '\xbb', '\xbc', '\xbd',
557 '\xca', '\xcb', '\xcc', '\xcd',
558 '\xda', '\xdb', '\xdc', '\xdd' };
212f33f1 559
903fe15d 560/* Insert and extract the block size in the header. */
bdbed949 561
903fe15d
PE
562static void
563xmalloc_put_size (unsigned char *ptr, size_t size)
564{
565 int i;
38532ce6 566 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d 567 {
38532ce6 568 *--ptr = size & ((1 << CHAR_BIT) - 1);
903fe15d
PE
569 size >>= CHAR_BIT;
570 }
571}
bdbed949 572
903fe15d
PE
573static size_t
574xmalloc_get_size (unsigned char *ptr)
575{
576 size_t size = 0;
577 int i;
38532ce6
PE
578 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
579 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d
PE
580 {
581 size <<= CHAR_BIT;
582 size += *ptr++;
583 }
584 return size;
585}
bdbed949
KS
586
587
d8f165a8
JD
588/* The call depth in overrun_check functions. For example, this might happen:
589 xmalloc()
590 overrun_check_malloc()
591 -> malloc -> (via hook)_-> emacs_blocked_malloc
592 -> overrun_check_malloc
593 call malloc (hooks are NULL, so real malloc is called).
594 malloc returns 10000.
595 add overhead, return 10016.
596 <- (back in overrun_check_malloc)
857ae68b 597 add overhead again, return 10032
d8f165a8 598 xmalloc returns 10032.
857ae68b
JD
599
600 (time passes).
601
d8f165a8
JD
602 xfree(10032)
603 overrun_check_free(10032)
903fe15d 604 decrease overhead
d8f165a8 605 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b 606
903fe15d 607static ptrdiff_t check_depth;
857ae68b 608
bdbed949
KS
609/* Like malloc, but wraps allocated block with header and trailer. */
610
261cb4bb 611static void *
e7974947 612overrun_check_malloc (size_t size)
212f33f1 613{
bdbed949 614 register unsigned char *val;
903fe15d
PE
615 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
616 if (SIZE_MAX - overhead < size)
617 abort ();
212f33f1 618
857ae68b
JD
619 val = (unsigned char *) malloc (size + overhead);
620 if (val && check_depth == 1)
212f33f1 621 {
903fe15d 622 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 623 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 624 xmalloc_put_size (val, size);
72af86bd
AS
625 memcpy (val + size, xmalloc_overrun_check_trailer,
626 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 627 }
857ae68b 628 --check_depth;
261cb4bb 629 return val;
212f33f1
KS
630}
631
bdbed949
KS
632
633/* Like realloc, but checks old block for overrun, and wraps new block
634 with header and trailer. */
635
261cb4bb
PE
636static void *
637overrun_check_realloc (void *block, size_t size)
212f33f1 638{
e7974947 639 register unsigned char *val = (unsigned char *) block;
903fe15d
PE
640 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
641 if (SIZE_MAX - overhead < size)
642 abort ();
212f33f1
KS
643
644 if (val
857ae68b 645 && check_depth == 1
72af86bd 646 && memcmp (xmalloc_overrun_check_header,
38532ce6 647 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 648 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 649 {
903fe15d 650 size_t osize = xmalloc_get_size (val);
72af86bd
AS
651 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
652 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 653 abort ();
72af86bd 654 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
655 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
656 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
212f33f1
KS
657 }
658
261cb4bb 659 val = realloc (val, size + overhead);
212f33f1 660
857ae68b 661 if (val && check_depth == 1)
212f33f1 662 {
903fe15d 663 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 664 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 665 xmalloc_put_size (val, size);
72af86bd
AS
666 memcpy (val + size, xmalloc_overrun_check_trailer,
667 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 668 }
857ae68b 669 --check_depth;
261cb4bb 670 return val;
212f33f1
KS
671}
672
bdbed949
KS
673/* Like free, but checks block for overrun. */
674
2538aa2f 675static void
261cb4bb 676overrun_check_free (void *block)
212f33f1 677{
e7974947 678 unsigned char *val = (unsigned char *) block;
212f33f1 679
857ae68b 680 ++check_depth;
212f33f1 681 if (val
857ae68b 682 && check_depth == 1
72af86bd 683 && memcmp (xmalloc_overrun_check_header,
38532ce6 684 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 685 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 686 {
903fe15d 687 size_t osize = xmalloc_get_size (val);
72af86bd
AS
688 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
689 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 690 abort ();
454d7973 691#ifdef XMALLOC_CLEAR_FREE_MEMORY
38532ce6 692 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 693 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
454d7973 694#else
72af86bd 695 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
696 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
697 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
454d7973 698#endif
212f33f1
KS
699 }
700
701 free (val);
857ae68b 702 --check_depth;
212f33f1
KS
703}
704
705#undef malloc
706#undef realloc
707#undef free
708#define malloc overrun_check_malloc
709#define realloc overrun_check_realloc
710#define free overrun_check_free
711#endif
712
dafc79fa
SM
713#ifdef SYNC_INPUT
714/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
715 there's no need to block input around malloc. */
716#define MALLOC_BLOCK_INPUT ((void)0)
717#define MALLOC_UNBLOCK_INPUT ((void)0)
718#else
719#define MALLOC_BLOCK_INPUT BLOCK_INPUT
720#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
721#endif
bdbed949 722
34400008 723/* Like malloc but check for no memory and block interrupt input.. */
7146af97 724
261cb4bb 725void *
971de7fb 726xmalloc (size_t size)
7146af97 727{
261cb4bb 728 void *val;
7146af97 729
dafc79fa 730 MALLOC_BLOCK_INPUT;
261cb4bb 731 val = malloc (size);
dafc79fa 732 MALLOC_UNBLOCK_INPUT;
7146af97 733
2e471eb5 734 if (!val && size)
531b0165 735 memory_full (size);
7146af97
JB
736 return val;
737}
738
34400008
GM
739
740/* Like realloc but check for no memory and block interrupt input.. */
741
261cb4bb
PE
742void *
743xrealloc (void *block, size_t size)
7146af97 744{
261cb4bb 745 void *val;
7146af97 746
dafc79fa 747 MALLOC_BLOCK_INPUT;
56d2031b
JB
748 /* We must call malloc explicitly when BLOCK is 0, since some
749 reallocs don't do this. */
750 if (! block)
261cb4bb 751 val = malloc (size);
f048679d 752 else
261cb4bb 753 val = realloc (block, size);
dafc79fa 754 MALLOC_UNBLOCK_INPUT;
7146af97 755
531b0165
PE
756 if (!val && size)
757 memory_full (size);
7146af97
JB
758 return val;
759}
9ac0d9e0 760
34400008 761
005ca5c7 762/* Like free but block interrupt input. */
34400008 763
9ac0d9e0 764void
261cb4bb 765xfree (void *block)
9ac0d9e0 766{
70fdbb46
JM
767 if (!block)
768 return;
dafc79fa 769 MALLOC_BLOCK_INPUT;
9ac0d9e0 770 free (block);
dafc79fa 771 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
772 /* We don't call refill_memory_reserve here
773 because that duplicates doing so in emacs_blocked_free
774 and the criterion should go there. */
9ac0d9e0
JB
775}
776
c8099634 777
0065d054
PE
778/* Other parts of Emacs pass large int values to allocator functions
779 expecting ptrdiff_t. This is portable in practice, but check it to
780 be safe. */
781verify (INT_MAX <= PTRDIFF_MAX);
782
783
784/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
785 Signal an error on memory exhaustion, and block interrupt input. */
786
787void *
788xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
789{
790 xassert (0 <= nitems && 0 < item_size);
791 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
792 memory_full (SIZE_MAX);
793 return xmalloc (nitems * item_size);
794}
795
796
797/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
798 Signal an error on memory exhaustion, and block interrupt input. */
799
800void *
801xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
802{
803 xassert (0 <= nitems && 0 < item_size);
804 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
805 memory_full (SIZE_MAX);
806 return xrealloc (pa, nitems * item_size);
807}
808
809
810/* Grow PA, which points to an array of *NITEMS items, and return the
811 location of the reallocated array, updating *NITEMS to reflect its
812 new size. The new array will contain at least NITEMS_INCR_MIN more
813 items, but will not contain more than NITEMS_MAX items total.
814 ITEM_SIZE is the size of each item, in bytes.
815
816 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
817 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
818 infinity.
819
820 If PA is null, then allocate a new array instead of reallocating
821 the old one. Thus, to grow an array A without saving its old
822 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
823 &NITEMS, ...).
824
825 Block interrupt input as needed. If memory exhaustion occurs, set
826 *NITEMS to zero if PA is null, and signal an error (i.e., do not
827 return). */
828
829void *
830xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
831 ptrdiff_t nitems_max, ptrdiff_t item_size)
832{
833 /* The approximate size to use for initial small allocation
834 requests. This is the largest "small" request for the GNU C
835 library malloc. */
836 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
837
838 /* If the array is tiny, grow it to about (but no greater than)
839 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
840 ptrdiff_t n = *nitems;
841 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
842 ptrdiff_t half_again = n >> 1;
843 ptrdiff_t incr_estimate = max (tiny_max, half_again);
844
845 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
846 NITEMS_MAX, and what the C language can represent safely. */
847 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
848 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
849 ? nitems_max : C_language_max);
850 ptrdiff_t nitems_incr_max = n_max - n;
851 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
852
853 xassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
854 if (! pa)
855 *nitems = 0;
856 if (nitems_incr_max < incr)
857 memory_full (SIZE_MAX);
858 n += incr;
859 pa = xrealloc (pa, n * item_size);
860 *nitems = n;
861 return pa;
862}
863
864
dca7c6a8
GM
865/* Like strdup, but uses xmalloc. */
866
867char *
971de7fb 868xstrdup (const char *s)
dca7c6a8 869{
675d5130 870 size_t len = strlen (s) + 1;
dca7c6a8 871 char *p = (char *) xmalloc (len);
72af86bd 872 memcpy (p, s, len);
dca7c6a8
GM
873 return p;
874}
875
876
f61bef8b
KS
877/* Unwind for SAFE_ALLOCA */
878
879Lisp_Object
971de7fb 880safe_alloca_unwind (Lisp_Object arg)
f61bef8b 881{
b766f870
KS
882 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
883
884 p->dogc = 0;
885 xfree (p->pointer);
886 p->pointer = 0;
7b7990cc 887 free_misc (arg);
f61bef8b
KS
888 return Qnil;
889}
890
891
34400008
GM
892/* Like malloc but used for allocating Lisp data. NBYTES is the
893 number of bytes to allocate, TYPE describes the intended use of the
91af3942 894 allocated memory block (for strings, for conses, ...). */
34400008 895
bfe3e0a2
PE
896#if ! USE_LSB_TAG
897void *lisp_malloc_loser EXTERNALLY_VISIBLE;
212f33f1 898#endif
918a23a7 899
261cb4bb 900static void *
971de7fb 901lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 902{
34400008 903 register void *val;
c8099634 904
dafc79fa 905 MALLOC_BLOCK_INPUT;
877935b1
GM
906
907#ifdef GC_MALLOC_CHECK
908 allocated_mem_type = type;
909#endif
177c0ea7 910
34400008 911 val = (void *) malloc (nbytes);
c8099634 912
bfe3e0a2 913#if ! USE_LSB_TAG
918a23a7
RS
914 /* If the memory just allocated cannot be addressed thru a Lisp
915 object's pointer, and it needs to be,
916 that's equivalent to running out of memory. */
917 if (val && type != MEM_TYPE_NON_LISP)
918 {
919 Lisp_Object tem;
920 XSETCONS (tem, (char *) val + nbytes - 1);
921 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
922 {
923 lisp_malloc_loser = val;
924 free (val);
925 val = 0;
926 }
927 }
6b61353c 928#endif
918a23a7 929
877935b1 930#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 931 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
932 mem_insert (val, (char *) val + nbytes, type);
933#endif
177c0ea7 934
dafc79fa 935 MALLOC_UNBLOCK_INPUT;
dca7c6a8 936 if (!val && nbytes)
531b0165 937 memory_full (nbytes);
c8099634
RS
938 return val;
939}
940
34400008
GM
941/* Free BLOCK. This must be called to free memory allocated with a
942 call to lisp_malloc. */
943
bf952fb6 944static void
261cb4bb 945lisp_free (void *block)
c8099634 946{
dafc79fa 947 MALLOC_BLOCK_INPUT;
c8099634 948 free (block);
877935b1 949#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
950 mem_delete (mem_find (block));
951#endif
dafc79fa 952 MALLOC_UNBLOCK_INPUT;
c8099634 953}
34400008 954
453b951e
SM
955/***** Allocation of aligned blocks of memory to store Lisp data. *****/
956
957/* The entry point is lisp_align_malloc which returns blocks of at most
958 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
ab6780cd 959
b4181b01
KS
960#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
961#define USE_POSIX_MEMALIGN 1
962#endif
ab6780cd
SM
963
964/* BLOCK_ALIGN has to be a power of 2. */
965#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
966
967/* Padding to leave at the end of a malloc'd block. This is to give
968 malloc a chance to minimize the amount of memory wasted to alignment.
969 It should be tuned to the particular malloc library used.
19bcad1f
SM
970 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
971 posix_memalign on the other hand would ideally prefer a value of 4
972 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
973 In Emacs, testing shows that those 1020 can most of the time be
974 efficiently used by malloc to place other objects, so a value of 0 can
975 still preferable unless you have a lot of aligned blocks and virtually
976 nothing else. */
19bcad1f
SM
977#define BLOCK_PADDING 0
978#define BLOCK_BYTES \
0b432f21 979 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
19bcad1f
SM
980
981/* Internal data structures and constants. */
982
ab6780cd
SM
983#define ABLOCKS_SIZE 16
984
985/* An aligned block of memory. */
986struct ablock
987{
988 union
989 {
990 char payload[BLOCK_BYTES];
991 struct ablock *next_free;
992 } x;
993 /* `abase' is the aligned base of the ablocks. */
994 /* It is overloaded to hold the virtual `busy' field that counts
995 the number of used ablock in the parent ablocks.
996 The first ablock has the `busy' field, the others have the `abase'
997 field. To tell the difference, we assume that pointers will have
998 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
999 is used to tell whether the real base of the parent ablocks is `abase'
1000 (if not, the word before the first ablock holds a pointer to the
1001 real base). */
1002 struct ablocks *abase;
1003 /* The padding of all but the last ablock is unused. The padding of
1004 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
1005#if BLOCK_PADDING
1006 char padding[BLOCK_PADDING];
ebb8d410 1007#endif
ab6780cd
SM
1008};
1009
1010/* A bunch of consecutive aligned blocks. */
1011struct ablocks
1012{
1013 struct ablock blocks[ABLOCKS_SIZE];
1014};
1015
4b5afbb0 1016/* Size of the block requested from malloc or posix_memalign. */
19bcad1f 1017#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
1018
1019#define ABLOCK_ABASE(block) \
d01a7826 1020 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
ab6780cd
SM
1021 ? (struct ablocks *)(block) \
1022 : (block)->abase)
1023
1024/* Virtual `busy' field. */
1025#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1026
1027/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 1028#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1029#define ABLOCKS_BASE(abase) (abase)
1030#else
ab6780cd 1031#define ABLOCKS_BASE(abase) \
d01a7826 1032 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 1033#endif
ab6780cd
SM
1034
1035/* The list of free ablock. */
1036static struct ablock *free_ablock;
1037
1038/* Allocate an aligned block of nbytes.
1039 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1040 smaller or equal to BLOCK_BYTES. */
261cb4bb 1041static void *
971de7fb 1042lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
1043{
1044 void *base, *val;
1045 struct ablocks *abase;
1046
1047 eassert (nbytes <= BLOCK_BYTES);
1048
dafc79fa 1049 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1050
1051#ifdef GC_MALLOC_CHECK
1052 allocated_mem_type = type;
1053#endif
1054
1055 if (!free_ablock)
1056 {
005ca5c7 1057 int i;
d01a7826 1058 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1059
1060#ifdef DOUG_LEA_MALLOC
1061 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1062 because mapped region contents are not preserved in
1063 a dumped Emacs. */
1064 mallopt (M_MMAP_MAX, 0);
1065#endif
1066
349a4500 1067#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1068 {
1069 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1070 if (err)
1071 base = NULL;
1072 abase = base;
19bcad1f
SM
1073 }
1074#else
ab6780cd
SM
1075 base = malloc (ABLOCKS_BYTES);
1076 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1077#endif
1078
6b61353c
KH
1079 if (base == 0)
1080 {
dafc79fa 1081 MALLOC_UNBLOCK_INPUT;
531b0165 1082 memory_full (ABLOCKS_BYTES);
6b61353c 1083 }
ab6780cd
SM
1084
1085 aligned = (base == abase);
1086 if (!aligned)
1087 ((void**)abase)[-1] = base;
1088
1089#ifdef DOUG_LEA_MALLOC
1090 /* Back to a reasonable maximum of mmap'ed areas. */
1091 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1092#endif
1093
bfe3e0a2 1094#if ! USE_LSB_TAG
8f924df7
KH
1095 /* If the memory just allocated cannot be addressed thru a Lisp
1096 object's pointer, and it needs to be, that's equivalent to
1097 running out of memory. */
1098 if (type != MEM_TYPE_NON_LISP)
1099 {
1100 Lisp_Object tem;
1101 char *end = (char *) base + ABLOCKS_BYTES - 1;
1102 XSETCONS (tem, end);
1103 if ((char *) XCONS (tem) != end)
1104 {
1105 lisp_malloc_loser = base;
1106 free (base);
dafc79fa 1107 MALLOC_UNBLOCK_INPUT;
531b0165 1108 memory_full (SIZE_MAX);
8f924df7
KH
1109 }
1110 }
6b61353c 1111#endif
8f924df7 1112
ab6780cd 1113 /* Initialize the blocks and put them on the free list.
453b951e 1114 If `base' was not properly aligned, we can't use the last block. */
ab6780cd
SM
1115 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1116 {
1117 abase->blocks[i].abase = abase;
1118 abase->blocks[i].x.next_free = free_ablock;
1119 free_ablock = &abase->blocks[i];
1120 }
8ac068ac 1121 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
ab6780cd 1122
d01a7826 1123 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
ab6780cd
SM
1124 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1125 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1126 eassert (ABLOCKS_BASE (abase) == base);
d01a7826 1127 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1128 }
1129
1130 abase = ABLOCK_ABASE (free_ablock);
8ac068ac 1131 ABLOCKS_BUSY (abase) =
d01a7826 1132 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1133 val = free_ablock;
1134 free_ablock = free_ablock->x.next_free;
1135
ab6780cd 1136#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3687c2ef 1137 if (type != MEM_TYPE_NON_LISP)
ab6780cd
SM
1138 mem_insert (val, (char *) val + nbytes, type);
1139#endif
1140
dafc79fa 1141 MALLOC_UNBLOCK_INPUT;
ab6780cd 1142
d01a7826 1143 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
ab6780cd
SM
1144 return val;
1145}
1146
1147static void
261cb4bb 1148lisp_align_free (void *block)
ab6780cd
SM
1149{
1150 struct ablock *ablock = block;
1151 struct ablocks *abase = ABLOCK_ABASE (ablock);
1152
dafc79fa 1153 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1154#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1155 mem_delete (mem_find (block));
1156#endif
1157 /* Put on free list. */
1158 ablock->x.next_free = free_ablock;
1159 free_ablock = ablock;
1160 /* Update busy count. */
453b951e
SM
1161 ABLOCKS_BUSY (abase)
1162 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
d2db1c32 1163
d01a7826 1164 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
ab6780cd 1165 { /* All the blocks are free. */
d01a7826 1166 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
ab6780cd
SM
1167 struct ablock **tem = &free_ablock;
1168 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1169
1170 while (*tem)
1171 {
1172 if (*tem >= (struct ablock *) abase && *tem < atop)
1173 {
1174 i++;
1175 *tem = (*tem)->x.next_free;
1176 }
1177 else
1178 tem = &(*tem)->x.next_free;
1179 }
1180 eassert ((aligned & 1) == aligned);
1181 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1182#ifdef USE_POSIX_MEMALIGN
d01a7826 1183 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
cfb2f32e 1184#endif
ab6780cd
SM
1185 free (ABLOCKS_BASE (abase));
1186 }
dafc79fa 1187 MALLOC_UNBLOCK_INPUT;
ab6780cd 1188}
3ef06d12
SM
1189
1190/* Return a new buffer structure allocated from the heap with
1191 a call to lisp_malloc. */
1192
1193struct buffer *
971de7fb 1194allocate_buffer (void)
3ef06d12
SM
1195{
1196 struct buffer *b
1197 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1198 MEM_TYPE_BUFFER);
eab3844f
PE
1199 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1200 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1201 / sizeof (EMACS_INT)));
3ef06d12
SM
1202 return b;
1203}
1204
9ac0d9e0 1205\f
026cdede
SM
1206#ifndef SYSTEM_MALLOC
1207
9ac0d9e0
JB
1208/* Arranging to disable input signals while we're in malloc.
1209
1210 This only works with GNU malloc. To help out systems which can't
1211 use GNU malloc, all the calls to malloc, realloc, and free
1212 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1213 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1214 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1215 using GNU malloc. Fortunately, most of the major operating systems
1216 can use GNU malloc. */
9ac0d9e0 1217
026cdede 1218#ifndef SYNC_INPUT
dafc79fa
SM
1219/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1220 there's no need to block input around malloc. */
026cdede 1221
b3303f74 1222#ifndef DOUG_LEA_MALLOC
f57e2426
J
1223extern void * (*__malloc_hook) (size_t, const void *);
1224extern void * (*__realloc_hook) (void *, size_t, const void *);
1225extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1226/* Else declared in malloc.h, perhaps with an extra arg. */
1227#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1228static void * (*old_malloc_hook) (size_t, const void *);
1229static void * (*old_realloc_hook) (void *, size_t, const void*);
1230static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1231
4e75f29d
PE
1232#ifdef DOUG_LEA_MALLOC
1233# define BYTES_USED (mallinfo ().uordblks)
1234#else
1235# define BYTES_USED _bytes_used
1236#endif
1237
b62a57be
PE
1238#ifdef GC_MALLOC_CHECK
1239static int dont_register_blocks;
1240#endif
1241
5e927815 1242static size_t bytes_used_when_reconsidered;
ef1b0ba7 1243
4e75f29d
PE
1244/* Value of _bytes_used, when spare_memory was freed. */
1245
5e927815 1246static size_t bytes_used_when_full;
4e75f29d 1247
276cbe5a
RS
1248/* This function is used as the hook for free to call. */
1249
9ac0d9e0 1250static void
7c3320d8 1251emacs_blocked_free (void *ptr, const void *ptr2)
9ac0d9e0 1252{
aa477689 1253 BLOCK_INPUT_ALLOC;
877935b1
GM
1254
1255#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1256 if (ptr)
1257 {
1258 struct mem_node *m;
177c0ea7 1259
a83fee2c
GM
1260 m = mem_find (ptr);
1261 if (m == MEM_NIL || m->start != ptr)
1262 {
1263 fprintf (stderr,
1264 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1265 abort ();
1266 }
1267 else
1268 {
1269 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1270 mem_delete (m);
1271 }
1272 }
877935b1 1273#endif /* GC_MALLOC_CHECK */
177c0ea7 1274
9ac0d9e0
JB
1275 __free_hook = old_free_hook;
1276 free (ptr);
177c0ea7 1277
276cbe5a
RS
1278 /* If we released our reserve (due to running out of memory),
1279 and we have a fair amount free once again,
1280 try to set aside another reserve in case we run out once more. */
24d8a105 1281 if (! NILP (Vmemory_full)
276cbe5a
RS
1282 /* Verify there is enough space that even with the malloc
1283 hysteresis this call won't run out again.
1284 The code here is correct as long as SPARE_MEMORY
1285 is substantially larger than the block size malloc uses. */
1286 && (bytes_used_when_full
4d74a5fc 1287 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1288 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1289 refill_memory_reserve ();
276cbe5a 1290
b0846f52 1291 __free_hook = emacs_blocked_free;
aa477689 1292 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1293}
1294
34400008 1295
276cbe5a
RS
1296/* This function is the malloc hook that Emacs uses. */
1297
9ac0d9e0 1298static void *
7c3320d8 1299emacs_blocked_malloc (size_t size, const void *ptr)
9ac0d9e0
JB
1300{
1301 void *value;
1302
aa477689 1303 BLOCK_INPUT_ALLOC;
9ac0d9e0 1304 __malloc_hook = old_malloc_hook;
1177ecf6 1305#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1306 /* Segfaults on my system. --lorentey */
1307 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1308#else
d1658221 1309 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1310#endif
877935b1 1311
2756d8ee 1312 value = (void *) malloc (size);
877935b1
GM
1313
1314#ifdef GC_MALLOC_CHECK
1315 {
1316 struct mem_node *m = mem_find (value);
1317 if (m != MEM_NIL)
1318 {
1319 fprintf (stderr, "Malloc returned %p which is already in use\n",
1320 value);
da05bc4c 1321 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
877935b1
GM
1322 m->start, m->end, (char *) m->end - (char *) m->start,
1323 m->type);
1324 abort ();
1325 }
1326
1327 if (!dont_register_blocks)
1328 {
1329 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1330 allocated_mem_type = MEM_TYPE_NON_LISP;
1331 }
1332 }
1333#endif /* GC_MALLOC_CHECK */
177c0ea7 1334
b0846f52 1335 __malloc_hook = emacs_blocked_malloc;
aa477689 1336 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1337
877935b1 1338 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1339 return value;
1340}
1341
34400008
GM
1342
1343/* This function is the realloc hook that Emacs uses. */
1344
9ac0d9e0 1345static void *
7c3320d8 1346emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
9ac0d9e0
JB
1347{
1348 void *value;
1349
aa477689 1350 BLOCK_INPUT_ALLOC;
9ac0d9e0 1351 __realloc_hook = old_realloc_hook;
877935b1
GM
1352
1353#ifdef GC_MALLOC_CHECK
1354 if (ptr)
1355 {
1356 struct mem_node *m = mem_find (ptr);
1357 if (m == MEM_NIL || m->start != ptr)
1358 {
1359 fprintf (stderr,
1360 "Realloc of %p which wasn't allocated with malloc\n",
1361 ptr);
1362 abort ();
1363 }
1364
1365 mem_delete (m);
1366 }
177c0ea7 1367
877935b1 1368 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1369
877935b1
GM
1370 /* Prevent malloc from registering blocks. */
1371 dont_register_blocks = 1;
1372#endif /* GC_MALLOC_CHECK */
1373
2756d8ee 1374 value = (void *) realloc (ptr, size);
877935b1
GM
1375
1376#ifdef GC_MALLOC_CHECK
1377 dont_register_blocks = 0;
1378
1379 {
1380 struct mem_node *m = mem_find (value);
1381 if (m != MEM_NIL)
1382 {
1383 fprintf (stderr, "Realloc returns memory that is already in use\n");
1384 abort ();
1385 }
1386
1387 /* Can't handle zero size regions in the red-black tree. */
1388 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1389 }
177c0ea7 1390
877935b1
GM
1391 /* fprintf (stderr, "%p <- realloc\n", value); */
1392#endif /* GC_MALLOC_CHECK */
177c0ea7 1393
b0846f52 1394 __realloc_hook = emacs_blocked_realloc;
aa477689 1395 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1396
1397 return value;
1398}
1399
34400008 1400
ae9e757a 1401#ifdef HAVE_PTHREAD
aa477689
JD
1402/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1403 normal malloc. Some thread implementations need this as they call
1404 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1405 calls malloc because it is the first call, and we have an endless loop. */
1406
1407void
268c2c36 1408reset_malloc_hooks (void)
aa477689 1409{
4d580af2
AS
1410 __free_hook = old_free_hook;
1411 __malloc_hook = old_malloc_hook;
1412 __realloc_hook = old_realloc_hook;
aa477689 1413}
ae9e757a 1414#endif /* HAVE_PTHREAD */
aa477689
JD
1415
1416
34400008
GM
1417/* Called from main to set up malloc to use our hooks. */
1418
9ac0d9e0 1419void
7c3320d8 1420uninterrupt_malloc (void)
9ac0d9e0 1421{
ae9e757a 1422#ifdef HAVE_PTHREAD
a1b41389 1423#ifdef DOUG_LEA_MALLOC
aa477689
JD
1424 pthread_mutexattr_t attr;
1425
c7015153 1426 /* GLIBC has a faster way to do this, but let's keep it portable.
aa477689
JD
1427 This is according to the Single UNIX Specification. */
1428 pthread_mutexattr_init (&attr);
1429 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1430 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1431#else /* !DOUG_LEA_MALLOC */
ce5b453a 1432 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1433 and the bundled gmalloc.c doesn't require it. */
1434 pthread_mutex_init (&alloc_mutex, NULL);
1435#endif /* !DOUG_LEA_MALLOC */
ae9e757a 1436#endif /* HAVE_PTHREAD */
aa477689 1437
c8099634
RS
1438 if (__free_hook != emacs_blocked_free)
1439 old_free_hook = __free_hook;
b0846f52 1440 __free_hook = emacs_blocked_free;
9ac0d9e0 1441
c8099634
RS
1442 if (__malloc_hook != emacs_blocked_malloc)
1443 old_malloc_hook = __malloc_hook;
b0846f52 1444 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1445
c8099634
RS
1446 if (__realloc_hook != emacs_blocked_realloc)
1447 old_realloc_hook = __realloc_hook;
b0846f52 1448 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1449}
2e471eb5 1450
026cdede 1451#endif /* not SYNC_INPUT */
2e471eb5
GM
1452#endif /* not SYSTEM_MALLOC */
1453
1454
7146af97 1455\f
2e471eb5
GM
1456/***********************************************************************
1457 Interval Allocation
1458 ***********************************************************************/
1a4f1e2c 1459
34400008
GM
1460/* Number of intervals allocated in an interval_block structure.
1461 The 1020 is 1024 minus malloc overhead. */
1462
d5e35230
JA
1463#define INTERVAL_BLOCK_SIZE \
1464 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1465
34400008
GM
1466/* Intervals are allocated in chunks in form of an interval_block
1467 structure. */
1468
d5e35230 1469struct interval_block
2e471eb5 1470{
6b61353c 1471 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1472 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1473 struct interval_block *next;
2e471eb5 1474};
d5e35230 1475
34400008
GM
1476/* Current interval block. Its `next' pointer points to older
1477 blocks. */
1478
d3d47262 1479static struct interval_block *interval_block;
34400008
GM
1480
1481/* Index in interval_block above of the next unused interval
1482 structure. */
1483
d5e35230 1484static int interval_block_index;
34400008
GM
1485
1486/* Number of free and live intervals. */
1487
c0c5c8ae 1488static EMACS_INT total_free_intervals, total_intervals;
d5e35230 1489
34400008
GM
1490/* List of free intervals. */
1491
244ed907 1492static INTERVAL interval_free_list;
d5e35230 1493
34400008
GM
1494
1495/* Initialize interval allocation. */
1496
d5e35230 1497static void
971de7fb 1498init_intervals (void)
d5e35230 1499{
005ca5c7
DL
1500 interval_block = NULL;
1501 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230
JA
1502 interval_free_list = 0;
1503}
1504
34400008
GM
1505
1506/* Return a new interval. */
d5e35230
JA
1507
1508INTERVAL
971de7fb 1509make_interval (void)
d5e35230
JA
1510{
1511 INTERVAL val;
1512
e2984df0
CY
1513 /* eassert (!handling_signal); */
1514
dafc79fa 1515 MALLOC_BLOCK_INPUT;
cfb2f32e 1516
d5e35230
JA
1517 if (interval_free_list)
1518 {
1519 val = interval_free_list;
439d5cb4 1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1521 }
1522 else
1523 {
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 {
3c06d205
KH
1526 register struct interval_block *newi;
1527
34400008
GM
1528 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1529 MEM_TYPE_NON_LISP);
d5e35230 1530
d5e35230
JA
1531 newi->next = interval_block;
1532 interval_block = newi;
1533 interval_block_index = 0;
1534 }
1535 val = &interval_block->intervals[interval_block_index++];
1536 }
e2984df0 1537
dafc79fa 1538 MALLOC_UNBLOCK_INPUT;
e2984df0 1539
d5e35230 1540 consing_since_gc += sizeof (struct interval);
310ea200 1541 intervals_consed++;
d5e35230 1542 RESET_INTERVAL (val);
2336fe58 1543 val->gcmarkbit = 0;
d5e35230
JA
1544 return val;
1545}
1546
34400008
GM
1547
1548/* Mark Lisp objects in interval I. */
d5e35230
JA
1549
1550static void
971de7fb 1551mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1552{
2336fe58
SM
1553 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1554 i->gcmarkbit = 1;
49723c04 1555 mark_object (i->plist);
d5e35230
JA
1556}
1557
34400008
GM
1558
1559/* Mark the interval tree rooted in TREE. Don't call this directly;
1560 use the macro MARK_INTERVAL_TREE instead. */
1561
d5e35230 1562static void
971de7fb 1563mark_interval_tree (register INTERVAL tree)
d5e35230 1564{
e8720644
JB
1565 /* No need to test if this tree has been marked already; this
1566 function is always called through the MARK_INTERVAL_TREE macro,
1567 which takes care of that. */
1568
1e934989 1569 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1570}
1571
34400008
GM
1572
1573/* Mark the interval tree rooted in I. */
1574
e8720644
JB
1575#define MARK_INTERVAL_TREE(i) \
1576 do { \
2336fe58 1577 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1578 mark_interval_tree (i); \
1579 } while (0)
d5e35230 1580
34400008 1581
2e471eb5
GM
1582#define UNMARK_BALANCE_INTERVALS(i) \
1583 do { \
1584 if (! NULL_INTERVAL_P (i)) \
2336fe58 1585 (i) = balance_intervals (i); \
2e471eb5 1586 } while (0)
d5e35230 1587\f
2e471eb5
GM
1588/***********************************************************************
1589 String Allocation
1590 ***********************************************************************/
1a4f1e2c 1591
2e471eb5
GM
1592/* Lisp_Strings are allocated in string_block structures. When a new
1593 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1594 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1595 needed, it is taken from that list. During the sweep phase of GC,
1596 string_blocks that are entirely free are freed, except two which
1597 we keep.
7146af97 1598
2e471eb5
GM
1599 String data is allocated from sblock structures. Strings larger
1600 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1601 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1602
2e471eb5
GM
1603 Sblocks consist internally of sdata structures, one for each
1604 Lisp_String. The sdata structure points to the Lisp_String it
1605 belongs to. The Lisp_String points back to the `u.data' member of
1606 its sdata structure.
7146af97 1607
2e471eb5
GM
1608 When a Lisp_String is freed during GC, it is put back on
1609 string_free_list, and its `data' member and its sdata's `string'
1610 pointer is set to null. The size of the string is recorded in the
1611 `u.nbytes' member of the sdata. So, sdata structures that are no
1612 longer used, can be easily recognized, and it's easy to compact the
1613 sblocks of small strings which we do in compact_small_strings. */
7146af97 1614
2e471eb5
GM
1615/* Size in bytes of an sblock structure used for small strings. This
1616 is 8192 minus malloc overhead. */
7146af97 1617
2e471eb5 1618#define SBLOCK_SIZE 8188
c8099634 1619
2e471eb5
GM
1620/* Strings larger than this are considered large strings. String data
1621 for large strings is allocated from individual sblocks. */
7146af97 1622
2e471eb5
GM
1623#define LARGE_STRING_BYTES 1024
1624
1625/* Structure describing string memory sub-allocated from an sblock.
1626 This is where the contents of Lisp strings are stored. */
1627
1628struct sdata
7146af97 1629{
2e471eb5
GM
1630 /* Back-pointer to the string this sdata belongs to. If null, this
1631 structure is free, and the NBYTES member of the union below
34400008 1632 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1633 would return if STRING were non-null). If non-null, STRING_BYTES
1634 (STRING) is the size of the data, and DATA contains the string's
1635 contents. */
1636 struct Lisp_String *string;
7146af97 1637
31d929e5 1638#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1639
d311d28c 1640 ptrdiff_t nbytes;
31d929e5 1641 unsigned char data[1];
177c0ea7 1642
31d929e5
GM
1643#define SDATA_NBYTES(S) (S)->nbytes
1644#define SDATA_DATA(S) (S)->data
36372bf9 1645#define SDATA_SELECTOR(member) member
177c0ea7 1646
31d929e5
GM
1647#else /* not GC_CHECK_STRING_BYTES */
1648
2e471eb5
GM
1649 union
1650 {
83998b7a 1651 /* When STRING is non-null. */
2e471eb5
GM
1652 unsigned char data[1];
1653
1654 /* When STRING is null. */
d311d28c 1655 ptrdiff_t nbytes;
2e471eb5 1656 } u;
177c0ea7 1657
31d929e5
GM
1658#define SDATA_NBYTES(S) (S)->u.nbytes
1659#define SDATA_DATA(S) (S)->u.data
36372bf9 1660#define SDATA_SELECTOR(member) u.member
31d929e5
GM
1661
1662#endif /* not GC_CHECK_STRING_BYTES */
36372bf9
PE
1663
1664#define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
2e471eb5
GM
1665};
1666
31d929e5 1667
2e471eb5
GM
1668/* Structure describing a block of memory which is sub-allocated to
1669 obtain string data memory for strings. Blocks for small strings
1670 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1671 as large as needed. */
1672
1673struct sblock
7146af97 1674{
2e471eb5
GM
1675 /* Next in list. */
1676 struct sblock *next;
7146af97 1677
2e471eb5
GM
1678 /* Pointer to the next free sdata block. This points past the end
1679 of the sblock if there isn't any space left in this block. */
1680 struct sdata *next_free;
1681
1682 /* Start of data. */
1683 struct sdata first_data;
1684};
1685
1686/* Number of Lisp strings in a string_block structure. The 1020 is
1687 1024 minus malloc overhead. */
1688
19bcad1f 1689#define STRING_BLOCK_SIZE \
2e471eb5
GM
1690 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1691
1692/* Structure describing a block from which Lisp_String structures
1693 are allocated. */
1694
1695struct string_block
7146af97 1696{
6b61353c 1697 /* Place `strings' first, to preserve alignment. */
19bcad1f 1698 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1699 struct string_block *next;
2e471eb5 1700};
7146af97 1701
2e471eb5
GM
1702/* Head and tail of the list of sblock structures holding Lisp string
1703 data. We always allocate from current_sblock. The NEXT pointers
1704 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1705
2e471eb5 1706static struct sblock *oldest_sblock, *current_sblock;
7146af97 1707
2e471eb5 1708/* List of sblocks for large strings. */
7146af97 1709
2e471eb5 1710static struct sblock *large_sblocks;
7146af97 1711
5a25e253 1712/* List of string_block structures. */
7146af97 1713
2e471eb5 1714static struct string_block *string_blocks;
7146af97 1715
2e471eb5 1716/* Free-list of Lisp_Strings. */
7146af97 1717
2e471eb5 1718static struct Lisp_String *string_free_list;
7146af97 1719
2e471eb5 1720/* Number of live and free Lisp_Strings. */
c8099634 1721
c0c5c8ae 1722static EMACS_INT total_strings, total_free_strings;
7146af97 1723
2e471eb5
GM
1724/* Number of bytes used by live strings. */
1725
14162469 1726static EMACS_INT total_string_size;
2e471eb5
GM
1727
1728/* Given a pointer to a Lisp_String S which is on the free-list
1729 string_free_list, return a pointer to its successor in the
1730 free-list. */
1731
1732#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1733
1734/* Return a pointer to the sdata structure belonging to Lisp string S.
1735 S must be live, i.e. S->data must not be null. S->data is actually
1736 a pointer to the `u.data' member of its sdata structure; the
1737 structure starts at a constant offset in front of that. */
177c0ea7 1738
36372bf9 1739#define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
31d929e5 1740
212f33f1
KS
1741
1742#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1743
1744/* We check for overrun in string data blocks by appending a small
1745 "cookie" after each allocated string data block, and check for the
8349069c 1746 presence of this cookie during GC. */
bdbed949
KS
1747
1748#define GC_STRING_OVERRUN_COOKIE_SIZE 4
bfd1c781
PE
1749static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1750 { '\xde', '\xad', '\xbe', '\xef' };
bdbed949 1751
212f33f1 1752#else
bdbed949 1753#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1754#endif
1755
2e471eb5
GM
1756/* Value is the size of an sdata structure large enough to hold NBYTES
1757 bytes of string data. The value returned includes a terminating
1758 NUL byte, the size of the sdata structure, and padding. */
1759
31d929e5
GM
1760#ifdef GC_CHECK_STRING_BYTES
1761
2e471eb5 1762#define SDATA_SIZE(NBYTES) \
36372bf9 1763 ((SDATA_DATA_OFFSET \
2e471eb5 1764 + (NBYTES) + 1 \
d311d28c
PE
1765 + sizeof (ptrdiff_t) - 1) \
1766 & ~(sizeof (ptrdiff_t) - 1))
2e471eb5 1767
31d929e5
GM
1768#else /* not GC_CHECK_STRING_BYTES */
1769
f2d3008d
PE
1770/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1771 less than the size of that member. The 'max' is not needed when
d311d28c 1772 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
f2d3008d
PE
1773 alignment code reserves enough space. */
1774
1775#define SDATA_SIZE(NBYTES) \
1776 ((SDATA_DATA_OFFSET \
d311d28c 1777 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
f2d3008d 1778 ? NBYTES \
d311d28c 1779 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
f2d3008d 1780 + 1 \
d311d28c
PE
1781 + sizeof (ptrdiff_t) - 1) \
1782 & ~(sizeof (ptrdiff_t) - 1))
31d929e5
GM
1783
1784#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1785
bdbed949
KS
1786/* Extra bytes to allocate for each string. */
1787
1788#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1789
c9d624c6
PE
1790/* Exact bound on the number of bytes in a string, not counting the
1791 terminating null. A string cannot contain more bytes than
1792 STRING_BYTES_BOUND, nor can it be so long that the size_t
1793 arithmetic in allocate_string_data would overflow while it is
1794 calculating a value to be passed to malloc. */
1795#define STRING_BYTES_MAX \
1796 min (STRING_BYTES_BOUND, \
903fe15d
PE
1797 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1798 - GC_STRING_EXTRA \
c9d624c6
PE
1799 - offsetof (struct sblock, first_data) \
1800 - SDATA_DATA_OFFSET) \
1801 & ~(sizeof (EMACS_INT) - 1)))
1802
2e471eb5 1803/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1804
d3d47262 1805static void
971de7fb 1806init_strings (void)
7146af97 1807{
2e471eb5
GM
1808 total_strings = total_free_strings = total_string_size = 0;
1809 oldest_sblock = current_sblock = large_sblocks = NULL;
1810 string_blocks = NULL;
2e471eb5 1811 string_free_list = NULL;
4d774b0f
JB
1812 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1813 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1814}
1815
2e471eb5 1816
361b097f
GM
1817#ifdef GC_CHECK_STRING_BYTES
1818
361b097f
GM
1819static int check_string_bytes_count;
1820
676a7251
GM
1821#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1822
1823
1824/* Like GC_STRING_BYTES, but with debugging check. */
1825
d311d28c 1826ptrdiff_t
14162469 1827string_bytes (struct Lisp_String *s)
676a7251 1828{
d311d28c 1829 ptrdiff_t nbytes =
14162469
EZ
1830 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1831
676a7251
GM
1832 if (!PURE_POINTER_P (s)
1833 && s->data
1834 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1835 abort ();
1836 return nbytes;
1837}
177c0ea7 1838
2c5bd608 1839/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1840
d3d47262 1841static void
d0f4e1f5 1842check_sblock (struct sblock *b)
361b097f 1843{
676a7251 1844 struct sdata *from, *end, *from_end;
177c0ea7 1845
676a7251 1846 end = b->next_free;
177c0ea7 1847
676a7251 1848 for (from = &b->first_data; from < end; from = from_end)
361b097f 1849 {
676a7251
GM
1850 /* Compute the next FROM here because copying below may
1851 overwrite data we need to compute it. */
d311d28c 1852 ptrdiff_t nbytes;
177c0ea7 1853
676a7251
GM
1854 /* Check that the string size recorded in the string is the
1855 same as the one recorded in the sdata structure. */
1856 if (from->string)
1857 CHECK_STRING_BYTES (from->string);
177c0ea7 1858
676a7251
GM
1859 if (from->string)
1860 nbytes = GC_STRING_BYTES (from->string);
1861 else
1862 nbytes = SDATA_NBYTES (from);
177c0ea7 1863
676a7251 1864 nbytes = SDATA_SIZE (nbytes);
212f33f1 1865 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1866 }
1867}
361b097f 1868
676a7251
GM
1869
1870/* Check validity of Lisp strings' string_bytes member. ALL_P
1871 non-zero means check all strings, otherwise check only most
1872 recently allocated strings. Used for hunting a bug. */
1873
d3d47262 1874static void
d0f4e1f5 1875check_string_bytes (int all_p)
676a7251
GM
1876{
1877 if (all_p)
1878 {
1879 struct sblock *b;
1880
1881 for (b = large_sblocks; b; b = b->next)
1882 {
1883 struct Lisp_String *s = b->first_data.string;
1884 if (s)
1885 CHECK_STRING_BYTES (s);
361b097f 1886 }
177c0ea7 1887
676a7251
GM
1888 for (b = oldest_sblock; b; b = b->next)
1889 check_sblock (b);
361b097f 1890 }
676a7251
GM
1891 else
1892 check_sblock (current_sblock);
361b097f
GM
1893}
1894
1895#endif /* GC_CHECK_STRING_BYTES */
1896
212f33f1
KS
1897#ifdef GC_CHECK_STRING_FREE_LIST
1898
bdbed949
KS
1899/* Walk through the string free list looking for bogus next pointers.
1900 This may catch buffer overrun from a previous string. */
1901
212f33f1 1902static void
d0f4e1f5 1903check_string_free_list (void)
212f33f1
KS
1904{
1905 struct Lisp_String *s;
1906
1907 /* Pop a Lisp_String off the free-list. */
1908 s = string_free_list;
1909 while (s != NULL)
1910 {
d01a7826 1911 if ((uintptr_t) s < 1024)
5e617bc2 1912 abort ();
212f33f1
KS
1913 s = NEXT_FREE_LISP_STRING (s);
1914 }
1915}
1916#else
1917#define check_string_free_list()
1918#endif
361b097f 1919
2e471eb5
GM
1920/* Return a new Lisp_String. */
1921
1922static struct Lisp_String *
971de7fb 1923allocate_string (void)
7146af97 1924{
2e471eb5 1925 struct Lisp_String *s;
7146af97 1926
e2984df0
CY
1927 /* eassert (!handling_signal); */
1928
dafc79fa 1929 MALLOC_BLOCK_INPUT;
cfb2f32e 1930
2e471eb5
GM
1931 /* If the free-list is empty, allocate a new string_block, and
1932 add all the Lisp_Strings in it to the free-list. */
1933 if (string_free_list == NULL)
7146af97 1934 {
2e471eb5
GM
1935 struct string_block *b;
1936 int i;
1937
34400008 1938 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
72af86bd 1939 memset (b, 0, sizeof *b);
2e471eb5
GM
1940 b->next = string_blocks;
1941 string_blocks = b;
2e471eb5 1942
19bcad1f 1943 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1944 {
2e471eb5
GM
1945 s = b->strings + i;
1946 NEXT_FREE_LISP_STRING (s) = string_free_list;
1947 string_free_list = s;
7146af97 1948 }
2e471eb5 1949
19bcad1f 1950 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1951 }
c0f51373 1952
bdbed949 1953 check_string_free_list ();
212f33f1 1954
2e471eb5
GM
1955 /* Pop a Lisp_String off the free-list. */
1956 s = string_free_list;
1957 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1958
dafc79fa 1959 MALLOC_UNBLOCK_INPUT;
e2984df0 1960
2e471eb5 1961 /* Probably not strictly necessary, but play it safe. */
72af86bd 1962 memset (s, 0, sizeof *s);
c0f51373 1963
2e471eb5
GM
1964 --total_free_strings;
1965 ++total_strings;
1966 ++strings_consed;
1967 consing_since_gc += sizeof *s;
c0f51373 1968
361b097f 1969#ifdef GC_CHECK_STRING_BYTES
e39a993c 1970 if (!noninteractive)
361b097f 1971 {
676a7251
GM
1972 if (++check_string_bytes_count == 200)
1973 {
1974 check_string_bytes_count = 0;
1975 check_string_bytes (1);
1976 }
1977 else
1978 check_string_bytes (0);
361b097f 1979 }
676a7251 1980#endif /* GC_CHECK_STRING_BYTES */
361b097f 1981
2e471eb5 1982 return s;
c0f51373 1983}
7146af97 1984
7146af97 1985
2e471eb5
GM
1986/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1987 plus a NUL byte at the end. Allocate an sdata structure for S, and
1988 set S->data to its `u.data' member. Store a NUL byte at the end of
1989 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1990 S->data if it was initially non-null. */
7146af97 1991
2e471eb5 1992void
413d18e7
EZ
1993allocate_string_data (struct Lisp_String *s,
1994 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1995{
5c5fecb3 1996 struct sdata *data, *old_data;
2e471eb5 1997 struct sblock *b;
d311d28c 1998 ptrdiff_t needed, old_nbytes;
7146af97 1999
c9d624c6
PE
2000 if (STRING_BYTES_MAX < nbytes)
2001 string_overflow ();
2002
2e471eb5
GM
2003 /* Determine the number of bytes needed to store NBYTES bytes
2004 of string data. */
2005 needed = SDATA_SIZE (nbytes);
e2984df0
CY
2006 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
2007 old_nbytes = GC_STRING_BYTES (s);
2008
dafc79fa 2009 MALLOC_BLOCK_INPUT;
7146af97 2010
2e471eb5
GM
2011 if (nbytes > LARGE_STRING_BYTES)
2012 {
36372bf9 2013 size_t size = offsetof (struct sblock, first_data) + needed;
2e471eb5
GM
2014
2015#ifdef DOUG_LEA_MALLOC
f8608968
GM
2016 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2017 because mapped region contents are not preserved in
d36b182f
DL
2018 a dumped Emacs.
2019
2020 In case you think of allowing it in a dumped Emacs at the
2021 cost of not being able to re-dump, there's another reason:
2022 mmap'ed data typically have an address towards the top of the
2023 address space, which won't fit into an EMACS_INT (at least on
2024 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
2025 mallopt (M_MMAP_MAX, 0);
2026#endif
2027
212f33f1 2028 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 2029
2e471eb5
GM
2030#ifdef DOUG_LEA_MALLOC
2031 /* Back to a reasonable maximum of mmap'ed areas. */
2032 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2033#endif
177c0ea7 2034
2e471eb5
GM
2035 b->next_free = &b->first_data;
2036 b->first_data.string = NULL;
2037 b->next = large_sblocks;
2038 large_sblocks = b;
2039 }
2040 else if (current_sblock == NULL
2041 || (((char *) current_sblock + SBLOCK_SIZE
2042 - (char *) current_sblock->next_free)
212f33f1 2043 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
2044 {
2045 /* Not enough room in the current sblock. */
34400008 2046 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
2047 b->next_free = &b->first_data;
2048 b->first_data.string = NULL;
2049 b->next = NULL;
2050
2051 if (current_sblock)
2052 current_sblock->next = b;
2053 else
2054 oldest_sblock = b;
2055 current_sblock = b;
2056 }
2057 else
2058 b = current_sblock;
5c5fecb3 2059
2e471eb5 2060 data = b->next_free;
a0b08700
CY
2061 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2062
dafc79fa 2063 MALLOC_UNBLOCK_INPUT;
e2984df0 2064
2e471eb5 2065 data->string = s;
31d929e5
GM
2066 s->data = SDATA_DATA (data);
2067#ifdef GC_CHECK_STRING_BYTES
2068 SDATA_NBYTES (data) = nbytes;
2069#endif
2e471eb5
GM
2070 s->size = nchars;
2071 s->size_byte = nbytes;
2072 s->data[nbytes] = '\0';
212f33f1 2073#ifdef GC_CHECK_STRING_OVERRUN
000098c1
PE
2074 memcpy ((char *) data + needed, string_overrun_cookie,
2075 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 2076#endif
177c0ea7 2077
5c5fecb3
GM
2078 /* If S had already data assigned, mark that as free by setting its
2079 string back-pointer to null, and recording the size of the data
00c9c33c 2080 in it. */
5c5fecb3
GM
2081 if (old_data)
2082 {
31d929e5 2083 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
2084 old_data->string = NULL;
2085 }
2086
2e471eb5
GM
2087 consing_since_gc += needed;
2088}
2089
2090
2091/* Sweep and compact strings. */
2092
2093static void
971de7fb 2094sweep_strings (void)
2e471eb5
GM
2095{
2096 struct string_block *b, *next;
2097 struct string_block *live_blocks = NULL;
177c0ea7 2098
2e471eb5
GM
2099 string_free_list = NULL;
2100 total_strings = total_free_strings = 0;
2101 total_string_size = 0;
2102
2103 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2104 for (b = string_blocks; b; b = next)
2105 {
2106 int i, nfree = 0;
2107 struct Lisp_String *free_list_before = string_free_list;
2108
2109 next = b->next;
2110
19bcad1f 2111 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2112 {
2113 struct Lisp_String *s = b->strings + i;
2114
2115 if (s->data)
2116 {
2117 /* String was not on free-list before. */
2118 if (STRING_MARKED_P (s))
2119 {
2120 /* String is live; unmark it and its intervals. */
2121 UNMARK_STRING (s);
177c0ea7 2122
2e471eb5
GM
2123 if (!NULL_INTERVAL_P (s->intervals))
2124 UNMARK_BALANCE_INTERVALS (s->intervals);
2125
2126 ++total_strings;
2127 total_string_size += STRING_BYTES (s);
2128 }
2129 else
2130 {
2131 /* String is dead. Put it on the free-list. */
2132 struct sdata *data = SDATA_OF_STRING (s);
2133
2134 /* Save the size of S in its sdata so that we know
2135 how large that is. Reset the sdata's string
2136 back-pointer so that we know it's free. */
31d929e5
GM
2137#ifdef GC_CHECK_STRING_BYTES
2138 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2139 abort ();
2140#else
2e471eb5 2141 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2142#endif
2e471eb5
GM
2143 data->string = NULL;
2144
2145 /* Reset the strings's `data' member so that we
2146 know it's free. */
2147 s->data = NULL;
2148
2149 /* Put the string on the free-list. */
2150 NEXT_FREE_LISP_STRING (s) = string_free_list;
2151 string_free_list = s;
2152 ++nfree;
2153 }
2154 }
2155 else
2156 {
2157 /* S was on the free-list before. Put it there again. */
2158 NEXT_FREE_LISP_STRING (s) = string_free_list;
2159 string_free_list = s;
2160 ++nfree;
2161 }
2162 }
2163
34400008 2164 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2165 the first two of them. */
19bcad1f
SM
2166 if (nfree == STRING_BLOCK_SIZE
2167 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2168 {
2169 lisp_free (b);
2e471eb5
GM
2170 string_free_list = free_list_before;
2171 }
2172 else
2173 {
2174 total_free_strings += nfree;
2175 b->next = live_blocks;
2176 live_blocks = b;
2177 }
2178 }
2179
bdbed949 2180 check_string_free_list ();
212f33f1 2181
2e471eb5
GM
2182 string_blocks = live_blocks;
2183 free_large_strings ();
2184 compact_small_strings ();
212f33f1 2185
bdbed949 2186 check_string_free_list ();
2e471eb5
GM
2187}
2188
2189
2190/* Free dead large strings. */
2191
2192static void
971de7fb 2193free_large_strings (void)
2e471eb5
GM
2194{
2195 struct sblock *b, *next;
2196 struct sblock *live_blocks = NULL;
177c0ea7 2197
2e471eb5
GM
2198 for (b = large_sblocks; b; b = next)
2199 {
2200 next = b->next;
2201
2202 if (b->first_data.string == NULL)
2203 lisp_free (b);
2204 else
2205 {
2206 b->next = live_blocks;
2207 live_blocks = b;
2208 }
2209 }
2210
2211 large_sblocks = live_blocks;
2212}
2213
2214
2215/* Compact data of small strings. Free sblocks that don't contain
2216 data of live strings after compaction. */
2217
2218static void
971de7fb 2219compact_small_strings (void)
2e471eb5
GM
2220{
2221 struct sblock *b, *tb, *next;
2222 struct sdata *from, *to, *end, *tb_end;
2223 struct sdata *to_end, *from_end;
2224
2225 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2226 to, and TB_END is the end of TB. */
2227 tb = oldest_sblock;
2228 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2229 to = &tb->first_data;
2230
2231 /* Step through the blocks from the oldest to the youngest. We
2232 expect that old blocks will stabilize over time, so that less
2233 copying will happen this way. */
2234 for (b = oldest_sblock; b; b = b->next)
2235 {
2236 end = b->next_free;
2237 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2238
2e471eb5
GM
2239 for (from = &b->first_data; from < end; from = from_end)
2240 {
2241 /* Compute the next FROM here because copying below may
2242 overwrite data we need to compute it. */
d311d28c 2243 ptrdiff_t nbytes;
2e471eb5 2244
31d929e5
GM
2245#ifdef GC_CHECK_STRING_BYTES
2246 /* Check that the string size recorded in the string is the
2247 same as the one recorded in the sdata structure. */
2248 if (from->string
2249 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2250 abort ();
2251#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2252
2e471eb5
GM
2253 if (from->string)
2254 nbytes = GC_STRING_BYTES (from->string);
2255 else
31d929e5 2256 nbytes = SDATA_NBYTES (from);
177c0ea7 2257
212f33f1
KS
2258 if (nbytes > LARGE_STRING_BYTES)
2259 abort ();
212f33f1 2260
2e471eb5 2261 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2262 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2263
2264#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
2265 if (memcmp (string_overrun_cookie,
2266 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2267 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2268 abort ();
2269#endif
177c0ea7 2270
2e471eb5
GM
2271 /* FROM->string non-null means it's alive. Copy its data. */
2272 if (from->string)
2273 {
2274 /* If TB is full, proceed with the next sblock. */
212f33f1 2275 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2276 if (to_end > tb_end)
2277 {
2278 tb->next_free = to;
2279 tb = tb->next;
2280 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2281 to = &tb->first_data;
212f33f1 2282 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2283 }
177c0ea7 2284
2e471eb5
GM
2285 /* Copy, and update the string's `data' pointer. */
2286 if (from != to)
2287 {
3c616cfa 2288 xassert (tb != b || to < from);
72af86bd 2289 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2290 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2291 }
2292
2293 /* Advance past the sdata we copied to. */
2294 to = to_end;
2295 }
2296 }
2297 }
2298
2299 /* The rest of the sblocks following TB don't contain live data, so
2300 we can free them. */
2301 for (b = tb->next; b; b = next)
2302 {
2303 next = b->next;
2304 lisp_free (b);
2305 }
2306
2307 tb->next_free = to;
2308 tb->next = NULL;
2309 current_sblock = tb;
2310}
2311
cb93f9be
PE
2312void
2313string_overflow (void)
2314{
2315 error ("Maximum string size exceeded");
2316}
2e471eb5 2317
a7ca3326 2318DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2319 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2320LENGTH must be an integer.
2321INIT must be an integer that represents a character. */)
5842a27b 2322 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2323{
2324 register Lisp_Object val;
2325 register unsigned char *p, *end;
14162469
EZ
2326 int c;
2327 EMACS_INT nbytes;
2e471eb5 2328
b7826503 2329 CHECK_NATNUM (length);
2bccce07 2330 CHECK_CHARACTER (init);
2e471eb5 2331
2bccce07 2332 c = XFASTINT (init);
830ff83b 2333 if (ASCII_CHAR_P (c))
2e471eb5
GM
2334 {
2335 nbytes = XINT (length);
2336 val = make_uninit_string (nbytes);
d5db4077
KR
2337 p = SDATA (val);
2338 end = p + SCHARS (val);
2e471eb5
GM
2339 while (p != end)
2340 *p++ = c;
2341 }
2342 else
2343 {
d942b71c 2344 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 2345 int len = CHAR_STRING (c, str);
14162469 2346 EMACS_INT string_len = XINT (length);
2e471eb5 2347
d1f3d2af 2348 if (string_len > STRING_BYTES_MAX / len)
cb93f9be 2349 string_overflow ();
14162469
EZ
2350 nbytes = len * string_len;
2351 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2352 p = SDATA (val);
2e471eb5
GM
2353 end = p + nbytes;
2354 while (p != end)
2355 {
72af86bd 2356 memcpy (p, str, len);
2e471eb5
GM
2357 p += len;
2358 }
2359 }
177c0ea7 2360
2e471eb5
GM
2361 *p = 0;
2362 return val;
2363}
2364
2365
a7ca3326 2366DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2367 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2368LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2369 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2370{
2371 register Lisp_Object val;
2372 struct Lisp_Bool_Vector *p;
d311d28c
PE
2373 ptrdiff_t length_in_chars;
2374 EMACS_INT length_in_elts;
14162469 2375 int bits_per_value;
2e471eb5 2376
b7826503 2377 CHECK_NATNUM (length);
2e471eb5 2378
a097329f 2379 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2380
2381 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2e471eb5
GM
2382
2383 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2384 slot `size' of the struct Lisp_Bool_Vector. */
2385 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
177c0ea7 2386
eab3844f
PE
2387 /* No Lisp_Object to trace in there. */
2388 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
d2029e5b
SM
2389
2390 p = XBOOL_VECTOR (val);
2e471eb5 2391 p->size = XFASTINT (length);
177c0ea7 2392
d311d28c
PE
2393 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2394 / BOOL_VECTOR_BITS_PER_CHAR);
c0c1ee9f
PE
2395 if (length_in_chars)
2396 {
2397 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
177c0ea7 2398
c0c1ee9f
PE
2399 /* Clear any extraneous bits in the last byte. */
2400 p->data[length_in_chars - 1]
2401 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2402 }
2e471eb5
GM
2403
2404 return val;
2405}
2406
2407
2408/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2409 of characters from the contents. This string may be unibyte or
2410 multibyte, depending on the contents. */
2411
2412Lisp_Object
d311d28c 2413make_string (const char *contents, ptrdiff_t nbytes)
2e471eb5
GM
2414{
2415 register Lisp_Object val;
d311d28c 2416 ptrdiff_t nchars, multibyte_nbytes;
9eac9d59 2417
90256841
PE
2418 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2419 &nchars, &multibyte_nbytes);
9eac9d59
KH
2420 if (nbytes == nchars || nbytes != multibyte_nbytes)
2421 /* CONTENTS contains no multibyte sequences or contains an invalid
2422 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2423 val = make_unibyte_string (contents, nbytes);
2424 else
2425 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2426 return val;
2427}
2428
2429
2430/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2431
2432Lisp_Object
d311d28c 2433make_unibyte_string (const char *contents, ptrdiff_t length)
2e471eb5
GM
2434{
2435 register Lisp_Object val;
2436 val = make_uninit_string (length);
72af86bd 2437 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2438 return val;
2439}
2440
2441
2442/* Make a multibyte string from NCHARS characters occupying NBYTES
2443 bytes at CONTENTS. */
2444
2445Lisp_Object
14162469 2446make_multibyte_string (const char *contents,
d311d28c 2447 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2448{
2449 register Lisp_Object val;
2450 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2451 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2452 return val;
2453}
2454
2455
2456/* Make a string from NCHARS characters occupying NBYTES bytes at
2457 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2458
2459Lisp_Object
14162469 2460make_string_from_bytes (const char *contents,
d311d28c 2461 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2462{
2463 register Lisp_Object val;
2464 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2465 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2466 if (SBYTES (val) == SCHARS (val))
2467 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2468 return val;
2469}
2470
2471
2472/* Make a string from NCHARS characters occupying NBYTES bytes at
2473 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2474 string as multibyte. If NCHARS is negative, it counts the number of
2475 characters by itself. */
2e471eb5
GM
2476
2477Lisp_Object
14162469 2478make_specified_string (const char *contents,
d311d28c 2479 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2e471eb5
GM
2480{
2481 register Lisp_Object val;
229b28c4
KH
2482
2483 if (nchars < 0)
2484 {
2485 if (multibyte)
90256841
PE
2486 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2487 nbytes);
229b28c4
KH
2488 else
2489 nchars = nbytes;
2490 }
2e471eb5 2491 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2492 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2493 if (!multibyte)
d5db4077 2494 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2495 return val;
2496}
2497
2498
2499/* Make a string from the data at STR, treating it as multibyte if the
2500 data warrants. */
2501
2502Lisp_Object
971de7fb 2503build_string (const char *str)
2e471eb5
GM
2504{
2505 return make_string (str, strlen (str));
2506}
2507
2508
2509/* Return an unibyte Lisp_String set up to hold LENGTH characters
2510 occupying LENGTH bytes. */
2511
2512Lisp_Object
413d18e7 2513make_uninit_string (EMACS_INT length)
2e471eb5
GM
2514{
2515 Lisp_Object val;
4d774b0f
JB
2516
2517 if (!length)
2518 return empty_unibyte_string;
2e471eb5 2519 val = make_uninit_multibyte_string (length, length);
d5db4077 2520 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2521 return val;
2522}
2523
2524
2525/* Return a multibyte Lisp_String set up to hold NCHARS characters
2526 which occupy NBYTES bytes. */
2527
2528Lisp_Object
413d18e7 2529make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2530{
2531 Lisp_Object string;
2532 struct Lisp_String *s;
2533
2534 if (nchars < 0)
2535 abort ();
4d774b0f
JB
2536 if (!nbytes)
2537 return empty_multibyte_string;
2e471eb5
GM
2538
2539 s = allocate_string ();
2540 allocate_string_data (s, nchars, nbytes);
2541 XSETSTRING (string, s);
2542 string_chars_consed += nbytes;
2543 return string;
2544}
2545
2546
2547\f
2548/***********************************************************************
2549 Float Allocation
2550 ***********************************************************************/
2551
2e471eb5
GM
2552/* We store float cells inside of float_blocks, allocating a new
2553 float_block with malloc whenever necessary. Float cells reclaimed
2554 by GC are put on a free list to be reallocated before allocating
ab6780cd 2555 any new float cells from the latest float_block. */
2e471eb5 2556
6b61353c
KH
2557#define FLOAT_BLOCK_SIZE \
2558 (((BLOCK_BYTES - sizeof (struct float_block *) \
2559 /* The compiler might add padding at the end. */ \
2560 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2561 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2562
2563#define GETMARKBIT(block,n) \
5e617bc2
JB
2564 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2565 >> ((n) % (sizeof (int) * CHAR_BIT))) \
ab6780cd
SM
2566 & 1)
2567
2568#define SETMARKBIT(block,n) \
5e617bc2
JB
2569 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2570 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
ab6780cd
SM
2571
2572#define UNSETMARKBIT(block,n) \
5e617bc2
JB
2573 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2574 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
ab6780cd
SM
2575
2576#define FLOAT_BLOCK(fptr) \
d01a7826 2577 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
ab6780cd
SM
2578
2579#define FLOAT_INDEX(fptr) \
d01a7826 2580 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2581
2582struct float_block
2583{
ab6780cd 2584 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2585 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
5e617bc2 2586 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
ab6780cd 2587 struct float_block *next;
2e471eb5
GM
2588};
2589
ab6780cd
SM
2590#define FLOAT_MARKED_P(fptr) \
2591 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2592
2593#define FLOAT_MARK(fptr) \
2594 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2595
2596#define FLOAT_UNMARK(fptr) \
2597 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2598
34400008
GM
2599/* Current float_block. */
2600
244ed907 2601static struct float_block *float_block;
34400008
GM
2602
2603/* Index of first unused Lisp_Float in the current float_block. */
2604
244ed907 2605static int float_block_index;
2e471eb5 2606
34400008
GM
2607/* Free-list of Lisp_Floats. */
2608
244ed907 2609static struct Lisp_Float *float_free_list;
2e471eb5 2610
34400008 2611
966533c9 2612/* Initialize float allocation. */
34400008 2613
d3d47262 2614static void
971de7fb 2615init_float (void)
2e471eb5 2616{
08b7c2cb
SM
2617 float_block = NULL;
2618 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2619 float_free_list = 0;
2e471eb5
GM
2620}
2621
34400008 2622
34400008
GM
2623/* Return a new float object with value FLOAT_VALUE. */
2624
2e471eb5 2625Lisp_Object
971de7fb 2626make_float (double float_value)
2e471eb5
GM
2627{
2628 register Lisp_Object val;
2629
e2984df0
CY
2630 /* eassert (!handling_signal); */
2631
dafc79fa 2632 MALLOC_BLOCK_INPUT;
cfb2f32e 2633
2e471eb5
GM
2634 if (float_free_list)
2635 {
2636 /* We use the data field for chaining the free list
2637 so that we won't use the same field that has the mark bit. */
2638 XSETFLOAT (val, float_free_list);
28a099a4 2639 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2640 }
2641 else
2642 {
2643 if (float_block_index == FLOAT_BLOCK_SIZE)
2644 {
2645 register struct float_block *new;
2646
ab6780cd
SM
2647 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2648 MEM_TYPE_FLOAT);
2e471eb5 2649 new->next = float_block;
72af86bd 2650 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2651 float_block = new;
2652 float_block_index = 0;
2e471eb5 2653 }
6b61353c
KH
2654 XSETFLOAT (val, &float_block->floats[float_block_index]);
2655 float_block_index++;
2e471eb5 2656 }
177c0ea7 2657
dafc79fa 2658 MALLOC_UNBLOCK_INPUT;
e2984df0 2659
f601cdf3 2660 XFLOAT_INIT (val, float_value);
6b61353c 2661 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2662 consing_since_gc += sizeof (struct Lisp_Float);
2663 floats_consed++;
2664 return val;
2665}
2666
2e471eb5
GM
2667
2668\f
2669/***********************************************************************
2670 Cons Allocation
2671 ***********************************************************************/
2672
2673/* We store cons cells inside of cons_blocks, allocating a new
2674 cons_block with malloc whenever necessary. Cons cells reclaimed by
2675 GC are put on a free list to be reallocated before allocating
08b7c2cb 2676 any new cons cells from the latest cons_block. */
2e471eb5 2677
a2821611
AS
2678#define CONS_BLOCK_SIZE \
2679 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2680 /* The compiler might add padding at the end. */ \
2681 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
08b7c2cb
SM
2682 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2683
2684#define CONS_BLOCK(fptr) \
d01a7826 2685 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
08b7c2cb
SM
2686
2687#define CONS_INDEX(fptr) \
d01a7826 2688 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2689
2690struct cons_block
2691{
08b7c2cb 2692 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2693 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
5e617bc2 2694 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
08b7c2cb 2695 struct cons_block *next;
2e471eb5
GM
2696};
2697
08b7c2cb
SM
2698#define CONS_MARKED_P(fptr) \
2699 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2700
2701#define CONS_MARK(fptr) \
2702 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2703
2704#define CONS_UNMARK(fptr) \
2705 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2706
34400008
GM
2707/* Current cons_block. */
2708
244ed907 2709static struct cons_block *cons_block;
34400008
GM
2710
2711/* Index of first unused Lisp_Cons in the current block. */
2712
244ed907 2713static int cons_block_index;
2e471eb5 2714
34400008
GM
2715/* Free-list of Lisp_Cons structures. */
2716
244ed907 2717static struct Lisp_Cons *cons_free_list;
2e471eb5 2718
34400008
GM
2719
2720/* Initialize cons allocation. */
2721
d3d47262 2722static void
971de7fb 2723init_cons (void)
2e471eb5 2724{
08b7c2cb
SM
2725 cons_block = NULL;
2726 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2727 cons_free_list = 0;
2e471eb5
GM
2728}
2729
34400008
GM
2730
2731/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2732
2733void
971de7fb 2734free_cons (struct Lisp_Cons *ptr)
2e471eb5 2735{
28a099a4 2736 ptr->u.chain = cons_free_list;
34400008
GM
2737#if GC_MARK_STACK
2738 ptr->car = Vdead;
2739#endif
2e471eb5
GM
2740 cons_free_list = ptr;
2741}
2742
a7ca3326 2743DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2744 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2745 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2746{
2747 register Lisp_Object val;
2748
e2984df0
CY
2749 /* eassert (!handling_signal); */
2750
dafc79fa 2751 MALLOC_BLOCK_INPUT;
cfb2f32e 2752
2e471eb5
GM
2753 if (cons_free_list)
2754 {
2755 /* We use the cdr for chaining the free list
2756 so that we won't use the same field that has the mark bit. */
2757 XSETCONS (val, cons_free_list);
28a099a4 2758 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2759 }
2760 else
2761 {
2762 if (cons_block_index == CONS_BLOCK_SIZE)
2763 {
2764 register struct cons_block *new;
08b7c2cb
SM
2765 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2766 MEM_TYPE_CONS);
72af86bd 2767 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2768 new->next = cons_block;
2769 cons_block = new;
2770 cons_block_index = 0;
2e471eb5 2771 }
6b61353c
KH
2772 XSETCONS (val, &cons_block->conses[cons_block_index]);
2773 cons_block_index++;
2e471eb5 2774 }
177c0ea7 2775
dafc79fa 2776 MALLOC_UNBLOCK_INPUT;
e2984df0 2777
f3fbd155
KR
2778 XSETCAR (val, car);
2779 XSETCDR (val, cdr);
6b61353c 2780 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2781 consing_since_gc += sizeof (struct Lisp_Cons);
2782 cons_cells_consed++;
2783 return val;
2784}
2785
e5aab7e7 2786#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2787/* Get an error now if there's any junk in the cons free list. */
2788void
971de7fb 2789check_cons_list (void)
e3e56238
RS
2790{
2791 struct Lisp_Cons *tail = cons_free_list;
2792
e3e56238 2793 while (tail)
28a099a4 2794 tail = tail->u.chain;
e3e56238 2795}
e5aab7e7 2796#endif
34400008 2797
9b306d37
KS
2798/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2799
2800Lisp_Object
971de7fb 2801list1 (Lisp_Object arg1)
9b306d37
KS
2802{
2803 return Fcons (arg1, Qnil);
2804}
2e471eb5
GM
2805
2806Lisp_Object
971de7fb 2807list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2808{
2809 return Fcons (arg1, Fcons (arg2, Qnil));
2810}
2811
34400008 2812
2e471eb5 2813Lisp_Object
971de7fb 2814list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2815{
2816 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2817}
2818
34400008 2819
2e471eb5 2820Lisp_Object
971de7fb 2821list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2822{
2823 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2824}
2825
34400008 2826
2e471eb5 2827Lisp_Object
971de7fb 2828list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2829{
2830 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2831 Fcons (arg5, Qnil)))));
2832}
2833
34400008 2834
a7ca3326 2835DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2836 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2837Any number of arguments, even zero arguments, are allowed.
2838usage: (list &rest OBJECTS) */)
f66c7cf8 2839 (ptrdiff_t nargs, Lisp_Object *args)
2e471eb5
GM
2840{
2841 register Lisp_Object val;
2842 val = Qnil;
2843
2844 while (nargs > 0)
2845 {
2846 nargs--;
2847 val = Fcons (args[nargs], val);
2848 }
2849 return val;
2850}
2851
34400008 2852
a7ca3326 2853DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2854 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2855 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2856{
2857 register Lisp_Object val;
14162469 2858 register EMACS_INT size;
2e471eb5 2859
b7826503 2860 CHECK_NATNUM (length);
2e471eb5
GM
2861 size = XFASTINT (length);
2862
2863 val = Qnil;
ce070307
GM
2864 while (size > 0)
2865 {
2866 val = Fcons (init, val);
2867 --size;
2868
2869 if (size > 0)
2870 {
2871 val = Fcons (init, val);
2872 --size;
177c0ea7 2873
ce070307
GM
2874 if (size > 0)
2875 {
2876 val = Fcons (init, val);
2877 --size;
177c0ea7 2878
ce070307
GM
2879 if (size > 0)
2880 {
2881 val = Fcons (init, val);
2882 --size;
177c0ea7 2883
ce070307
GM
2884 if (size > 0)
2885 {
2886 val = Fcons (init, val);
2887 --size;
2888 }
2889 }
2890 }
2891 }
2892
2893 QUIT;
2894 }
177c0ea7 2895
7146af97
JB
2896 return val;
2897}
2e471eb5
GM
2898
2899
7146af97 2900\f
2e471eb5
GM
2901/***********************************************************************
2902 Vector Allocation
2903 ***********************************************************************/
7146af97 2904
f3372c87
DA
2905/* This value is balanced well enough to avoid too much internal overhead
2906 for the most common cases; it's not required to be a power of two, but
2907 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
34400008 2908
f3372c87 2909#define VECTOR_BLOCK_SIZE 4096
7146af97 2910
dd0b0efb
PE
2911/* Handy constants for vectorlike objects. */
2912enum
2913 {
2914 header_size = offsetof (struct Lisp_Vector, contents),
f3372c87
DA
2915 word_size = sizeof (Lisp_Object),
2916 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
bfe3e0a2 2917 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
dd0b0efb 2918 };
34400008 2919
bfe3e0a2
PE
2920/* ROUNDUP_SIZE must be a power of 2. */
2921verify ((roundup_size & (roundup_size - 1)) == 0);
2922
2923/* Round up X to nearest mult-of-ROUNDUP_SIZE. */
f3372c87
DA
2924
2925#define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2926
2927/* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2928
2929#define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2930
2931/* Size of the minimal vector allocated from block. */
2932
2933#define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2934
2935/* Size of the largest vector allocated from block. */
2936
2937#define VBLOCK_BYTES_MAX \
2938 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2939
2940/* We maintain one free list for each possible block-allocated
2941 vector size, and this is the number of free lists we have. */
2942
2943#define VECTOR_MAX_FREE_LIST_INDEX \
2944 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2945
2946/* When the vector is on a free list, vectorlike_header.SIZE is set to
2947 this special value ORed with vector's memory footprint size. */
2948
2949#define VECTOR_FREE_LIST_FLAG (~(ARRAY_MARK_FLAG | PSEUDOVECTOR_FLAG \
2950 | (VECTOR_BLOCK_SIZE - 1)))
2951
2952/* Common shortcut to advance vector pointer over a block data. */
2953
2954#define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2955
2956/* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2957
2958#define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2959
2960/* Common shortcut to setup vector on a free list. */
2961
2962#define SETUP_ON_FREE_LIST(v, nbytes, index) \
2963 do { \
2964 (v)->header.size = VECTOR_FREE_LIST_FLAG | (nbytes); \
2965 eassert ((nbytes) % roundup_size == 0); \
2966 (index) = VINDEX (nbytes); \
2967 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2968 (v)->header.next.vector = vector_free_lists[index]; \
2969 vector_free_lists[index] = (v); \
2970 } while (0)
2971
2972struct vector_block
2973{
2974 char data[VECTOR_BLOCK_BYTES];
2975 struct vector_block *next;
2976};
2977
2978/* Chain of vector blocks. */
2979
2980static struct vector_block *vector_blocks;
2981
2982/* Vector free lists, where NTH item points to a chain of free
2983 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2984
2985static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2986
2987/* Singly-linked list of large vectors. */
2988
2989static struct Lisp_Vector *large_vectors;
2990
2991/* The only vector with 0 slots, allocated from pure space. */
2992
2993static struct Lisp_Vector *zero_vector;
2994
2995/* Get a new vector block. */
2996
2997static struct vector_block *
2998allocate_vector_block (void)
2999{
3000 struct vector_block *block;
3001
3002#ifdef DOUG_LEA_MALLOC
3003 mallopt (M_MMAP_MAX, 0);
3004#endif
3005
3006 block = xmalloc (sizeof (struct vector_block));
3007
3008#ifdef DOUG_LEA_MALLOC
3009 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3010#endif
3011
3012#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3013 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3014 MEM_TYPE_VECTOR_BLOCK);
3015#endif
3016
3017 block->next = vector_blocks;
3018 vector_blocks = block;
3019 return block;
3020}
3021
3022/* Called once to initialize vector allocation. */
3023
3024static void
3025init_vectors (void)
3026{
3027 zero_vector = pure_alloc (header_size, Lisp_Vectorlike);
3028 zero_vector->header.size = 0;
3029}
3030
3031/* Allocate vector from a vector block. */
3032
3033static struct Lisp_Vector *
3034allocate_vector_from_block (size_t nbytes)
3035{
3036 struct Lisp_Vector *vector, *rest;
3037 struct vector_block *block;
3038 size_t index, restbytes;
3039
3040 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3041 eassert (nbytes % roundup_size == 0);
3042
3043 /* First, try to allocate from a free list
3044 containing vectors of the requested size. */
3045 index = VINDEX (nbytes);
3046 if (vector_free_lists[index])
3047 {
3048 vector = vector_free_lists[index];
3049 vector_free_lists[index] = vector->header.next.vector;
3050 vector->header.next.nbytes = nbytes;
3051 return vector;
3052 }
3053
3054 /* Next, check free lists containing larger vectors. Since
3055 we will split the result, we should have remaining space
3056 large enough to use for one-slot vector at least. */
3057 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3058 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3059 if (vector_free_lists[index])
3060 {
3061 /* This vector is larger than requested. */
3062 vector = vector_free_lists[index];
3063 vector_free_lists[index] = vector->header.next.vector;
3064 vector->header.next.nbytes = nbytes;
3065
3066 /* Excess bytes are used for the smaller vector,
3067 which should be set on an appropriate free list. */
3068 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3069 eassert (restbytes % roundup_size == 0);
3070 rest = ADVANCE (vector, nbytes);
3071 SETUP_ON_FREE_LIST (rest, restbytes, index);
3072 return vector;
3073 }
3074
3075 /* Finally, need a new vector block. */
3076 block = allocate_vector_block ();
3077
3078 /* New vector will be at the beginning of this block. */
3079 vector = (struct Lisp_Vector *) block->data;
3080 vector->header.next.nbytes = nbytes;
3081
3082 /* If the rest of space from this block is large enough
3083 for one-slot vector at least, set up it on a free list. */
3084 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3085 if (restbytes >= VBLOCK_BYTES_MIN)
3086 {
3087 eassert (restbytes % roundup_size == 0);
3088 rest = ADVANCE (vector, nbytes);
3089 SETUP_ON_FREE_LIST (rest, restbytes, index);
3090 }
3091 return vector;
3092 }
3093
3094/* Return how many Lisp_Objects can be stored in V. */
3095
3096#define VECTOR_SIZE(v) ((v)->header.size & PSEUDOVECTOR_FLAG ? \
3097 (PSEUDOVECTOR_SIZE_MASK & (v)->header.size) : \
3098 (v)->header.size)
3099
3100/* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3101
3102#define VECTOR_IN_BLOCK(vector, block) \
3103 ((char *) (vector) <= (block)->data \
3104 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3105
3106/* Reclaim space used by unmarked vectors. */
3107
3108static void
3109sweep_vectors (void)
3110{
3111 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3112 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3113
3114 total_vector_size = 0;
3115 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3116
3117 /* Looking through vector blocks. */
3118
3119 for (block = vector_blocks; block; block = *bprev)
3120 {
3121 int free_this_block = 0;
3122
3123 for (vector = (struct Lisp_Vector *) block->data;
3124 VECTOR_IN_BLOCK (vector, block); vector = next)
3125 {
3126 if (VECTOR_MARKED_P (vector))
3127 {
3128 VECTOR_UNMARK (vector);
3129 total_vector_size += VECTOR_SIZE (vector);
3130 next = ADVANCE (vector, vector->header.next.nbytes);
3131 }
3132 else
3133 {
3134 ptrdiff_t nbytes;
3135
3136 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
3137 == VECTOR_FREE_LIST_FLAG)
3138 vector->header.next.nbytes =
3139 vector->header.size & (VECTOR_BLOCK_SIZE - 1);
bfe3e0a2 3140
f3372c87
DA
3141 next = ADVANCE (vector, vector->header.next.nbytes);
3142
3143 /* While NEXT is not marked, try to coalesce with VECTOR,
3144 thus making VECTOR of the largest possible size. */
3145
3146 while (VECTOR_IN_BLOCK (next, block))
3147 {
3148 if (VECTOR_MARKED_P (next))
3149 break;
3150 if ((next->header.size & VECTOR_FREE_LIST_FLAG)
3151 == VECTOR_FREE_LIST_FLAG)
3152 nbytes = next->header.size & (VECTOR_BLOCK_SIZE - 1);
3153 else
3154 nbytes = next->header.next.nbytes;
3155 vector->header.next.nbytes += nbytes;
3156 next = ADVANCE (next, nbytes);
3157 }
bfe3e0a2 3158
f3372c87
DA
3159 eassert (vector->header.next.nbytes % roundup_size == 0);
3160
3161 if (vector == (struct Lisp_Vector *) block->data
3162 && !VECTOR_IN_BLOCK (next, block))
3163 /* This block should be freed because all of it's
3164 space was coalesced into the only free vector. */
3165 free_this_block = 1;
3166 else
3167 SETUP_ON_FREE_LIST (vector, vector->header.next.nbytes, nbytes);
3168 }
3169 }
3170
3171 if (free_this_block)
3172 {
3173 *bprev = block->next;
3174#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3175 mem_delete (mem_find (block->data));
3176#endif
3177 xfree (block);
3178 }
3179 else
3180 bprev = &block->next;
3181 }
3182
3183 /* Sweep large vectors. */
3184
3185 for (vector = large_vectors; vector; vector = *vprev)
3186 {
3187 if (VECTOR_MARKED_P (vector))
3188 {
3189 VECTOR_UNMARK (vector);
3190 total_vector_size += VECTOR_SIZE (vector);
3191 vprev = &vector->header.next.vector;
3192 }
3193 else
3194 {
3195 *vprev = vector->header.next.vector;
3196 lisp_free (vector);
3197 }
3198 }
3199}
3200
34400008
GM
3201/* Value is a pointer to a newly allocated Lisp_Vector structure
3202 with room for LEN Lisp_Objects. */
3203
ece93c02 3204static struct Lisp_Vector *
d311d28c 3205allocate_vectorlike (ptrdiff_t len)
1825c68d
KH
3206{
3207 struct Lisp_Vector *p;
675d5130 3208 size_t nbytes;
1825c68d 3209
dafc79fa
SM
3210 MALLOC_BLOCK_INPUT;
3211
d1658221 3212#ifdef DOUG_LEA_MALLOC
f8608968
GM
3213 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3214 because mapped region contents are not preserved in
3215 a dumped Emacs. */
d1658221
RS
3216 mallopt (M_MMAP_MAX, 0);
3217#endif
177c0ea7 3218
cfb2f32e
SM
3219 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3220 /* eassert (!handling_signal); */
3221
f3372c87 3222 if (len == 0)
8bbbc977
EZ
3223 {
3224 MALLOC_UNBLOCK_INPUT;
3225 return zero_vector;
3226 }
f3372c87 3227
0de4bb68 3228 nbytes = header_size + len * word_size;
f3372c87
DA
3229
3230 if (nbytes <= VBLOCK_BYTES_MAX)
3231 p = allocate_vector_from_block (vroundup (nbytes));
3232 else
3233 {
3234 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3235 p->header.next.vector = large_vectors;
3236 large_vectors = p;
3237 }
177c0ea7 3238
d1658221 3239#ifdef DOUG_LEA_MALLOC
34400008 3240 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 3241 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 3242#endif
177c0ea7 3243
34400008 3244 consing_since_gc += nbytes;
310ea200 3245 vector_cells_consed += len;
1825c68d 3246
dafc79fa 3247 MALLOC_UNBLOCK_INPUT;
e2984df0 3248
1825c68d
KH
3249 return p;
3250}
3251
34400008 3252
dd0b0efb 3253/* Allocate a vector with LEN slots. */
ece93c02
GM
3254
3255struct Lisp_Vector *
dd0b0efb 3256allocate_vector (EMACS_INT len)
ece93c02 3257{
dd0b0efb
PE
3258 struct Lisp_Vector *v;
3259 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3260
3261 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3262 memory_full (SIZE_MAX);
3263 v = allocate_vectorlike (len);
3264 v->header.size = len;
ece93c02
GM
3265 return v;
3266}
3267
3268
3269/* Allocate other vector-like structures. */
3270
30f95089 3271struct Lisp_Vector *
d311d28c 3272allocate_pseudovector (int memlen, int lisplen, int tag)
ece93c02 3273{
d2029e5b 3274 struct Lisp_Vector *v = allocate_vectorlike (memlen);
e46bb31a 3275 int i;
177c0ea7 3276
d2029e5b 3277 /* Only the first lisplen slots will be traced normally by the GC. */
d2029e5b 3278 for (i = 0; i < lisplen; ++i)
ece93c02 3279 v->contents[i] = Qnil;
177c0ea7 3280
eab3844f 3281 XSETPVECTYPESIZE (v, tag, lisplen);
d2029e5b
SM
3282 return v;
3283}
d2029e5b 3284
ece93c02 3285struct Lisp_Hash_Table *
878f97ff 3286allocate_hash_table (void)
ece93c02 3287{
878f97ff 3288 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
3289}
3290
3291
3292struct window *
971de7fb 3293allocate_window (void)
ece93c02 3294{
5e617bc2 3295 return ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
ece93c02 3296}
177c0ea7 3297
177c0ea7 3298
4a729fd8 3299struct terminal *
971de7fb 3300allocate_terminal (void)
4a729fd8 3301{
d2029e5b
SM
3302 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3303 next_terminal, PVEC_TERMINAL);
3304 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
3305 memset (&t->next_terminal, 0,
3306 (char*) (t + 1) - (char*) &t->next_terminal);
ece93c02 3307
d2029e5b 3308 return t;
4a729fd8 3309}
ece93c02
GM
3310
3311struct frame *
971de7fb 3312allocate_frame (void)
ece93c02 3313{
d2029e5b
SM
3314 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3315 face_cache, PVEC_FRAME);
3316 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
3317 memset (&f->face_cache, 0,
3318 (char *) (f + 1) - (char *) &f->face_cache);
d2029e5b 3319 return f;
ece93c02
GM
3320}
3321
3322
3323struct Lisp_Process *
971de7fb 3324allocate_process (void)
ece93c02 3325{
d2029e5b 3326 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
ece93c02
GM
3327}
3328
3329
a7ca3326 3330DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3331 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 3332See also the function `vector'. */)
5842a27b 3333 (register Lisp_Object length, Lisp_Object init)
7146af97 3334{
1825c68d 3335 Lisp_Object vector;
d311d28c
PE
3336 register ptrdiff_t sizei;
3337 register ptrdiff_t i;
7146af97
JB
3338 register struct Lisp_Vector *p;
3339
b7826503 3340 CHECK_NATNUM (length);
7146af97 3341
d311d28c
PE
3342 p = allocate_vector (XFASTINT (length));
3343 sizei = XFASTINT (length);
ae35e756
PE
3344 for (i = 0; i < sizei; i++)
3345 p->contents[i] = init;
7146af97 3346
1825c68d 3347 XSETVECTOR (vector, p);
7146af97
JB
3348 return vector;
3349}
3350
34400008 3351
a7ca3326 3352DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3353 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3354Any number of arguments, even zero arguments, are allowed.
3355usage: (vector &rest OBJECTS) */)
f66c7cf8 3356 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3357{
3358 register Lisp_Object len, val;
f66c7cf8 3359 ptrdiff_t i;
7146af97
JB
3360 register struct Lisp_Vector *p;
3361
67ba9986 3362 XSETFASTINT (len, nargs);
7146af97
JB
3363 val = Fmake_vector (len, Qnil);
3364 p = XVECTOR (val);
ae35e756
PE
3365 for (i = 0; i < nargs; i++)
3366 p->contents[i] = args[i];
7146af97
JB
3367 return val;
3368}
3369
3017f87f
SM
3370void
3371make_byte_code (struct Lisp_Vector *v)
3372{
3373 if (v->header.size > 1 && STRINGP (v->contents[1])
3374 && STRING_MULTIBYTE (v->contents[1]))
3375 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3376 earlier because they produced a raw 8-bit string for byte-code
3377 and now such a byte-code string is loaded as multibyte while
3378 raw 8-bit characters converted to multibyte form. Thus, now we
3379 must convert them back to the original unibyte form. */
3380 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3381 XSETPVECTYPE (v, PVEC_COMPILED);
3382}
34400008 3383
a7ca3326 3384DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3385 doc: /* Create a byte-code object with specified arguments as elements.
e2abe5a1
SM
3386The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3387vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3388and (optional) INTERACTIVE-SPEC.
228299fa 3389The first four arguments are required; at most six have any
ae8e8122 3390significance.
e2abe5a1
SM
3391The ARGLIST can be either like the one of `lambda', in which case the arguments
3392will be dynamically bound before executing the byte code, or it can be an
3393integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3394minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3395of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3396argument to catch the left-over arguments. If such an integer is used, the
3397arguments will not be dynamically bound but will be instead pushed on the
3398stack before executing the byte-code.
92cc28b2 3399usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
f66c7cf8 3400 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3401{
3402 register Lisp_Object len, val;
f66c7cf8 3403 ptrdiff_t i;
7146af97
JB
3404 register struct Lisp_Vector *p;
3405
3017f87f
SM
3406 /* We used to purecopy everything here, if purify-flga was set. This worked
3407 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3408 dangerous, since make-byte-code is used during execution to build
3409 closures, so any closure built during the preload phase would end up
3410 copied into pure space, including its free variables, which is sometimes
3411 just wasteful and other times plainly wrong (e.g. those free vars may want
3412 to be setcar'd). */
9eac9d59 3413
3017f87f
SM
3414 XSETFASTINT (len, nargs);
3415 val = Fmake_vector (len, Qnil);
9eac9d59 3416
7146af97 3417 p = XVECTOR (val);
ae35e756 3418 for (i = 0; i < nargs; i++)
3017f87f
SM
3419 p->contents[i] = args[i];
3420 make_byte_code (p);
876c194c 3421 XSETCOMPILED (val, p);
7146af97
JB
3422 return val;
3423}
2e471eb5 3424
34400008 3425
7146af97 3426\f
2e471eb5
GM
3427/***********************************************************************
3428 Symbol Allocation
3429 ***********************************************************************/
7146af97 3430
d55c12ed
AS
3431/* Like struct Lisp_Symbol, but padded so that the size is a multiple
3432 of the required alignment if LSB tags are used. */
3433
3434union aligned_Lisp_Symbol
3435{
3436 struct Lisp_Symbol s;
bfe3e0a2 3437#if USE_LSB_TAG
d55c12ed
AS
3438 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3439 & -(1 << GCTYPEBITS)];
3440#endif
3441};
3442
2e471eb5
GM
3443/* Each symbol_block is just under 1020 bytes long, since malloc
3444 really allocates in units of powers of two and uses 4 bytes for its
3017f87f 3445 own overhead. */
7146af97
JB
3446
3447#define SYMBOL_BLOCK_SIZE \
d55c12ed 3448 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
7146af97
JB
3449
3450struct symbol_block
2e471eb5 3451{
6b61353c 3452 /* Place `symbols' first, to preserve alignment. */
d55c12ed 3453 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3454 struct symbol_block *next;
2e471eb5 3455};
7146af97 3456
34400008
GM
3457/* Current symbol block and index of first unused Lisp_Symbol
3458 structure in it. */
3459
d3d47262
JB
3460static struct symbol_block *symbol_block;
3461static int symbol_block_index;
7146af97 3462
34400008
GM
3463/* List of free symbols. */
3464
d3d47262 3465static struct Lisp_Symbol *symbol_free_list;
7146af97 3466
34400008
GM
3467
3468/* Initialize symbol allocation. */
3469
d3d47262 3470static void
971de7fb 3471init_symbol (void)
7146af97 3472{
005ca5c7
DL
3473 symbol_block = NULL;
3474 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97
JB
3475 symbol_free_list = 0;
3476}
3477
34400008 3478
a7ca3326 3479DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3480 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3481Its value and function definition are void, and its property list is nil. */)
5842a27b 3482 (Lisp_Object name)
7146af97
JB
3483{
3484 register Lisp_Object val;
3485 register struct Lisp_Symbol *p;
3486
b7826503 3487 CHECK_STRING (name);
7146af97 3488
537407f0 3489 /* eassert (!handling_signal); */
cfb2f32e 3490
dafc79fa 3491 MALLOC_BLOCK_INPUT;
e2984df0 3492
7146af97
JB
3493 if (symbol_free_list)
3494 {
45d12a89 3495 XSETSYMBOL (val, symbol_free_list);
28a099a4 3496 symbol_free_list = symbol_free_list->next;
7146af97
JB
3497 }
3498 else
3499 {
3500 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3501 {
3c06d205 3502 struct symbol_block *new;
34400008
GM
3503 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3504 MEM_TYPE_SYMBOL);
7146af97
JB
3505 new->next = symbol_block;
3506 symbol_block = new;
3507 symbol_block_index = 0;
3508 }
d55c12ed 3509 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
6b61353c 3510 symbol_block_index++;
7146af97 3511 }
177c0ea7 3512
dafc79fa 3513 MALLOC_UNBLOCK_INPUT;
e2984df0 3514
7146af97 3515 p = XSYMBOL (val);
8fe5665d 3516 p->xname = name;
7146af97 3517 p->plist = Qnil;
ce5b453a
SM
3518 p->redirect = SYMBOL_PLAINVAL;
3519 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3520 p->function = Qunbound;
9e713715 3521 p->next = NULL;
2336fe58 3522 p->gcmarkbit = 0;
9e713715
GM
3523 p->interned = SYMBOL_UNINTERNED;
3524 p->constant = 0;
b9598260 3525 p->declared_special = 0;
2e471eb5
GM
3526 consing_since_gc += sizeof (struct Lisp_Symbol);
3527 symbols_consed++;
7146af97
JB
3528 return val;
3529}
3530
3f25e183 3531
2e471eb5
GM
3532\f
3533/***********************************************************************
34400008 3534 Marker (Misc) Allocation
2e471eb5 3535 ***********************************************************************/
3f25e183 3536
d55c12ed
AS
3537/* Like union Lisp_Misc, but padded so that its size is a multiple of
3538 the required alignment when LSB tags are used. */
3539
3540union aligned_Lisp_Misc
3541{
3542 union Lisp_Misc m;
bfe3e0a2 3543#if USE_LSB_TAG
d55c12ed
AS
3544 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3545 & -(1 << GCTYPEBITS)];
3546#endif
3547};
3548
2e471eb5
GM
3549/* Allocation of markers and other objects that share that structure.
3550 Works like allocation of conses. */
c0696668 3551
2e471eb5 3552#define MARKER_BLOCK_SIZE \
d55c12ed 3553 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
2e471eb5
GM
3554
3555struct marker_block
c0696668 3556{
6b61353c 3557 /* Place `markers' first, to preserve alignment. */
d55c12ed 3558 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3559 struct marker_block *next;
2e471eb5 3560};
c0696668 3561
d3d47262
JB
3562static struct marker_block *marker_block;
3563static int marker_block_index;
c0696668 3564
d3d47262 3565static union Lisp_Misc *marker_free_list;
c0696668 3566
d3d47262 3567static void
971de7fb 3568init_marker (void)
3f25e183 3569{
005ca5c7
DL
3570 marker_block = NULL;
3571 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3572 marker_free_list = 0;
3f25e183
RS
3573}
3574
2e471eb5
GM
3575/* Return a newly allocated Lisp_Misc object, with no substructure. */
3576
3f25e183 3577Lisp_Object
971de7fb 3578allocate_misc (void)
7146af97 3579{
2e471eb5 3580 Lisp_Object val;
7146af97 3581
e2984df0
CY
3582 /* eassert (!handling_signal); */
3583
dafc79fa 3584 MALLOC_BLOCK_INPUT;
cfb2f32e 3585
2e471eb5 3586 if (marker_free_list)
7146af97 3587 {
2e471eb5
GM
3588 XSETMISC (val, marker_free_list);
3589 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3590 }
3591 else
7146af97 3592 {
2e471eb5
GM
3593 if (marker_block_index == MARKER_BLOCK_SIZE)
3594 {
3595 struct marker_block *new;
34400008
GM
3596 new = (struct marker_block *) lisp_malloc (sizeof *new,
3597 MEM_TYPE_MISC);
2e471eb5
GM
3598 new->next = marker_block;
3599 marker_block = new;
3600 marker_block_index = 0;
7b7990cc 3601 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3602 }
d55c12ed 3603 XSETMISC (val, &marker_block->markers[marker_block_index].m);
6b61353c 3604 marker_block_index++;
7146af97 3605 }
177c0ea7 3606
dafc79fa 3607 MALLOC_UNBLOCK_INPUT;
e2984df0 3608
7b7990cc 3609 --total_free_markers;
2e471eb5
GM
3610 consing_since_gc += sizeof (union Lisp_Misc);
3611 misc_objects_consed++;
67ee9f6e 3612 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3613 return val;
3614}
3615
7b7990cc
KS
3616/* Free a Lisp_Misc object */
3617
244ed907 3618static void
971de7fb 3619free_misc (Lisp_Object misc)
7b7990cc 3620{
d314756e 3621 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3622 XMISC (misc)->u_free.chain = marker_free_list;
3623 marker_free_list = XMISC (misc);
3624
3625 total_free_markers++;
3626}
3627
42172a6b
RS
3628/* Return a Lisp_Misc_Save_Value object containing POINTER and
3629 INTEGER. This is used to package C values to call record_unwind_protect.
3630 The unwind function can get the C values back using XSAVE_VALUE. */
3631
3632Lisp_Object
9c4c5f81 3633make_save_value (void *pointer, ptrdiff_t integer)
42172a6b
RS
3634{
3635 register Lisp_Object val;
3636 register struct Lisp_Save_Value *p;
3637
3638 val = allocate_misc ();
3639 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3640 p = XSAVE_VALUE (val);
3641 p->pointer = pointer;
3642 p->integer = integer;
b766f870 3643 p->dogc = 0;
42172a6b
RS
3644 return val;
3645}
3646
a7ca3326 3647DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3648 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3649 (void)
2e471eb5
GM
3650{
3651 register Lisp_Object val;
3652 register struct Lisp_Marker *p;
7146af97 3653
2e471eb5
GM
3654 val = allocate_misc ();
3655 XMISCTYPE (val) = Lisp_Misc_Marker;
3656 p = XMARKER (val);
3657 p->buffer = 0;
3658 p->bytepos = 0;
3659 p->charpos = 0;
ef89c2ce 3660 p->next = NULL;
2e471eb5 3661 p->insertion_type = 0;
7146af97
JB
3662 return val;
3663}
2e471eb5
GM
3664
3665/* Put MARKER back on the free list after using it temporarily. */
3666
3667void
971de7fb 3668free_marker (Lisp_Object marker)
2e471eb5 3669{
ef89c2ce 3670 unchain_marker (XMARKER (marker));
7b7990cc 3671 free_misc (marker);
2e471eb5
GM
3672}
3673
c0696668 3674\f
7146af97 3675/* Return a newly created vector or string with specified arguments as
736471d1
RS
3676 elements. If all the arguments are characters that can fit
3677 in a string of events, make a string; otherwise, make a vector.
3678
3679 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3680
3681Lisp_Object
971de7fb 3682make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3683{
3684 int i;
3685
3686 for (i = 0; i < nargs; i++)
736471d1 3687 /* The things that fit in a string
c9ca4659
RS
3688 are characters that are in 0...127,
3689 after discarding the meta bit and all the bits above it. */
e687453f 3690 if (!INTEGERP (args[i])
c11285dc 3691 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3692 return Fvector (nargs, args);
3693
3694 /* Since the loop exited, we know that all the things in it are
3695 characters, so we can make a string. */
3696 {
c13ccad2 3697 Lisp_Object result;
177c0ea7 3698
50aee051 3699 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3700 for (i = 0; i < nargs; i++)
736471d1 3701 {
46e7e6b0 3702 SSET (result, i, XINT (args[i]));
736471d1
RS
3703 /* Move the meta bit to the right place for a string char. */
3704 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3705 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3706 }
177c0ea7 3707
7146af97
JB
3708 return result;
3709 }
3710}
2e471eb5
GM
3711
3712
7146af97 3713\f
24d8a105
RS
3714/************************************************************************
3715 Memory Full Handling
3716 ************************************************************************/
3717
3718
531b0165
PE
3719/* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3720 there may have been size_t overflow so that malloc was never
3721 called, or perhaps malloc was invoked successfully but the
3722 resulting pointer had problems fitting into a tagged EMACS_INT. In
3723 either case this counts as memory being full even though malloc did
3724 not fail. */
24d8a105
RS
3725
3726void
531b0165 3727memory_full (size_t nbytes)
24d8a105 3728{
531b0165
PE
3729 /* Do not go into hysterics merely because a large request failed. */
3730 int enough_free_memory = 0;
2b6148e4 3731 if (SPARE_MEMORY < nbytes)
531b0165 3732 {
66606eea
PE
3733 void *p;
3734
3735 MALLOC_BLOCK_INPUT;
3736 p = malloc (SPARE_MEMORY);
531b0165
PE
3737 if (p)
3738 {
4d09bcf6 3739 free (p);
531b0165
PE
3740 enough_free_memory = 1;
3741 }
66606eea 3742 MALLOC_UNBLOCK_INPUT;
531b0165 3743 }
24d8a105 3744
531b0165
PE
3745 if (! enough_free_memory)
3746 {
3747 int i;
24d8a105 3748
531b0165
PE
3749 Vmemory_full = Qt;
3750
3751 memory_full_cons_threshold = sizeof (struct cons_block);
3752
3753 /* The first time we get here, free the spare memory. */
3754 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3755 if (spare_memory[i])
3756 {
3757 if (i == 0)
3758 free (spare_memory[i]);
3759 else if (i >= 1 && i <= 4)
3760 lisp_align_free (spare_memory[i]);
3761 else
3762 lisp_free (spare_memory[i]);
3763 spare_memory[i] = 0;
3764 }
3765
3766 /* Record the space now used. When it decreases substantially,
3767 we can refill the memory reserve. */
4e75f29d 3768#if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
531b0165 3769 bytes_used_when_full = BYTES_USED;
24d8a105 3770#endif
531b0165 3771 }
24d8a105
RS
3772
3773 /* This used to call error, but if we've run out of memory, we could
3774 get infinite recursion trying to build the string. */
9b306d37 3775 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3776}
3777
3778/* If we released our reserve (due to running out of memory),
3779 and we have a fair amount free once again,
3780 try to set aside another reserve in case we run out once more.
3781
3782 This is called when a relocatable block is freed in ralloc.c,
3783 and also directly from this file, in case we're not using ralloc.c. */
3784
3785void
971de7fb 3786refill_memory_reserve (void)
24d8a105
RS
3787{
3788#ifndef SYSTEM_MALLOC
3789 if (spare_memory[0] == 0)
903fe15d 3790 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
24d8a105
RS
3791 if (spare_memory[1] == 0)
3792 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3793 MEM_TYPE_CONS);
3794 if (spare_memory[2] == 0)
3795 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3796 MEM_TYPE_CONS);
3797 if (spare_memory[3] == 0)
3798 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3799 MEM_TYPE_CONS);
3800 if (spare_memory[4] == 0)
3801 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3802 MEM_TYPE_CONS);
3803 if (spare_memory[5] == 0)
3804 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3805 MEM_TYPE_STRING);
3806 if (spare_memory[6] == 0)
3807 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3808 MEM_TYPE_STRING);
3809 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3810 Vmemory_full = Qnil;
3811#endif
3812}
3813\f
34400008
GM
3814/************************************************************************
3815 C Stack Marking
3816 ************************************************************************/
3817
13c844fb
GM
3818#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3819
71cf5fa0
GM
3820/* Conservative C stack marking requires a method to identify possibly
3821 live Lisp objects given a pointer value. We do this by keeping
3822 track of blocks of Lisp data that are allocated in a red-black tree
3823 (see also the comment of mem_node which is the type of nodes in
3824 that tree). Function lisp_malloc adds information for an allocated
3825 block to the red-black tree with calls to mem_insert, and function
3826 lisp_free removes it with mem_delete. Functions live_string_p etc
3827 call mem_find to lookup information about a given pointer in the
3828 tree, and use that to determine if the pointer points to a Lisp
3829 object or not. */
3830
34400008
GM
3831/* Initialize this part of alloc.c. */
3832
3833static void
971de7fb 3834mem_init (void)
34400008
GM
3835{
3836 mem_z.left = mem_z.right = MEM_NIL;
3837 mem_z.parent = NULL;
3838 mem_z.color = MEM_BLACK;
3839 mem_z.start = mem_z.end = NULL;
3840 mem_root = MEM_NIL;
3841}
3842
3843
3844/* Value is a pointer to the mem_node containing START. Value is
3845 MEM_NIL if there is no node in the tree containing START. */
3846
55d4c1b2 3847static inline struct mem_node *
971de7fb 3848mem_find (void *start)
34400008
GM
3849{
3850 struct mem_node *p;
3851
ece93c02
GM
3852 if (start < min_heap_address || start > max_heap_address)
3853 return MEM_NIL;
3854
34400008
GM
3855 /* Make the search always successful to speed up the loop below. */
3856 mem_z.start = start;
3857 mem_z.end = (char *) start + 1;
3858
3859 p = mem_root;
3860 while (start < p->start || start >= p->end)
3861 p = start < p->start ? p->left : p->right;
3862 return p;
3863}
3864
3865
3866/* Insert a new node into the tree for a block of memory with start
3867 address START, end address END, and type TYPE. Value is a
3868 pointer to the node that was inserted. */
3869
3870static struct mem_node *
971de7fb 3871mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3872{
3873 struct mem_node *c, *parent, *x;
3874
add3c3ea 3875 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3876 min_heap_address = start;
add3c3ea 3877 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3878 max_heap_address = end;
3879
34400008
GM
3880 /* See where in the tree a node for START belongs. In this
3881 particular application, it shouldn't happen that a node is already
3882 present. For debugging purposes, let's check that. */
3883 c = mem_root;
3884 parent = NULL;
3885
3886#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3887
34400008
GM
3888 while (c != MEM_NIL)
3889 {
3890 if (start >= c->start && start < c->end)
3891 abort ();
3892 parent = c;
3893 c = start < c->start ? c->left : c->right;
3894 }
177c0ea7 3895
34400008 3896#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3897
34400008
GM
3898 while (c != MEM_NIL)
3899 {
3900 parent = c;
3901 c = start < c->start ? c->left : c->right;
3902 }
177c0ea7 3903
34400008
GM
3904#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3905
3906 /* Create a new node. */
877935b1
GM
3907#ifdef GC_MALLOC_CHECK
3908 x = (struct mem_node *) _malloc_internal (sizeof *x);
3909 if (x == NULL)
3910 abort ();
3911#else
34400008 3912 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3913#endif
34400008
GM
3914 x->start = start;
3915 x->end = end;
3916 x->type = type;
3917 x->parent = parent;
3918 x->left = x->right = MEM_NIL;
3919 x->color = MEM_RED;
3920
3921 /* Insert it as child of PARENT or install it as root. */
3922 if (parent)
3923 {
3924 if (start < parent->start)
3925 parent->left = x;
3926 else
3927 parent->right = x;
3928 }
177c0ea7 3929 else
34400008
GM
3930 mem_root = x;
3931
3932 /* Re-establish red-black tree properties. */
3933 mem_insert_fixup (x);
877935b1 3934
34400008
GM
3935 return x;
3936}
3937
3938
3939/* Re-establish the red-black properties of the tree, and thereby
3940 balance the tree, after node X has been inserted; X is always red. */
3941
3942static void
971de7fb 3943mem_insert_fixup (struct mem_node *x)
34400008
GM
3944{
3945 while (x != mem_root && x->parent->color == MEM_RED)
3946 {
3947 /* X is red and its parent is red. This is a violation of
3948 red-black tree property #3. */
177c0ea7 3949
34400008
GM
3950 if (x->parent == x->parent->parent->left)
3951 {
3952 /* We're on the left side of our grandparent, and Y is our
3953 "uncle". */
3954 struct mem_node *y = x->parent->parent->right;
177c0ea7 3955
34400008
GM
3956 if (y->color == MEM_RED)
3957 {
3958 /* Uncle and parent are red but should be black because
3959 X is red. Change the colors accordingly and proceed
3960 with the grandparent. */
3961 x->parent->color = MEM_BLACK;
3962 y->color = MEM_BLACK;
3963 x->parent->parent->color = MEM_RED;
3964 x = x->parent->parent;
3965 }
3966 else
3967 {
3968 /* Parent and uncle have different colors; parent is
3969 red, uncle is black. */
3970 if (x == x->parent->right)
3971 {
3972 x = x->parent;
3973 mem_rotate_left (x);
3974 }
3975
3976 x->parent->color = MEM_BLACK;
3977 x->parent->parent->color = MEM_RED;
3978 mem_rotate_right (x->parent->parent);
3979 }
3980 }
3981 else
3982 {
3983 /* This is the symmetrical case of above. */
3984 struct mem_node *y = x->parent->parent->left;
177c0ea7 3985
34400008
GM
3986 if (y->color == MEM_RED)
3987 {
3988 x->parent->color = MEM_BLACK;
3989 y->color = MEM_BLACK;
3990 x->parent->parent->color = MEM_RED;
3991 x = x->parent->parent;
3992 }
3993 else
3994 {
3995 if (x == x->parent->left)
3996 {
3997 x = x->parent;
3998 mem_rotate_right (x);
3999 }
177c0ea7 4000
34400008
GM
4001 x->parent->color = MEM_BLACK;
4002 x->parent->parent->color = MEM_RED;
4003 mem_rotate_left (x->parent->parent);
4004 }
4005 }
4006 }
4007
4008 /* The root may have been changed to red due to the algorithm. Set
4009 it to black so that property #5 is satisfied. */
4010 mem_root->color = MEM_BLACK;
4011}
4012
4013
177c0ea7
JB
4014/* (x) (y)
4015 / \ / \
34400008
GM
4016 a (y) ===> (x) c
4017 / \ / \
4018 b c a b */
4019
4020static void
971de7fb 4021mem_rotate_left (struct mem_node *x)
34400008
GM
4022{
4023 struct mem_node *y;
4024
4025 /* Turn y's left sub-tree into x's right sub-tree. */
4026 y = x->right;
4027 x->right = y->left;
4028 if (y->left != MEM_NIL)
4029 y->left->parent = x;
4030
4031 /* Y's parent was x's parent. */
4032 if (y != MEM_NIL)
4033 y->parent = x->parent;
4034
4035 /* Get the parent to point to y instead of x. */
4036 if (x->parent)
4037 {
4038 if (x == x->parent->left)
4039 x->parent->left = y;
4040 else
4041 x->parent->right = y;
4042 }
4043 else
4044 mem_root = y;
4045
4046 /* Put x on y's left. */
4047 y->left = x;
4048 if (x != MEM_NIL)
4049 x->parent = y;
4050}
4051
4052
177c0ea7
JB
4053/* (x) (Y)
4054 / \ / \
4055 (y) c ===> a (x)
4056 / \ / \
34400008
GM
4057 a b b c */
4058
4059static void
971de7fb 4060mem_rotate_right (struct mem_node *x)
34400008
GM
4061{
4062 struct mem_node *y = x->left;
4063
4064 x->left = y->right;
4065 if (y->right != MEM_NIL)
4066 y->right->parent = x;
177c0ea7 4067
34400008
GM
4068 if (y != MEM_NIL)
4069 y->parent = x->parent;
4070 if (x->parent)
4071 {
4072 if (x == x->parent->right)
4073 x->parent->right = y;
4074 else
4075 x->parent->left = y;
4076 }
4077 else
4078 mem_root = y;
177c0ea7 4079
34400008
GM
4080 y->right = x;
4081 if (x != MEM_NIL)
4082 x->parent = y;
4083}
4084
4085
4086/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4087
4088static void
971de7fb 4089mem_delete (struct mem_node *z)
34400008
GM
4090{
4091 struct mem_node *x, *y;
4092
4093 if (!z || z == MEM_NIL)
4094 return;
4095
4096 if (z->left == MEM_NIL || z->right == MEM_NIL)
4097 y = z;
4098 else
4099 {
4100 y = z->right;
4101 while (y->left != MEM_NIL)
4102 y = y->left;
4103 }
4104
4105 if (y->left != MEM_NIL)
4106 x = y->left;
4107 else
4108 x = y->right;
4109
4110 x->parent = y->parent;
4111 if (y->parent)
4112 {
4113 if (y == y->parent->left)
4114 y->parent->left = x;
4115 else
4116 y->parent->right = x;
4117 }
4118 else
4119 mem_root = x;
4120
4121 if (y != z)
4122 {
4123 z->start = y->start;
4124 z->end = y->end;
4125 z->type = y->type;
4126 }
177c0ea7 4127
34400008
GM
4128 if (y->color == MEM_BLACK)
4129 mem_delete_fixup (x);
877935b1
GM
4130
4131#ifdef GC_MALLOC_CHECK
4132 _free_internal (y);
4133#else
34400008 4134 xfree (y);
877935b1 4135#endif
34400008
GM
4136}
4137
4138
4139/* Re-establish the red-black properties of the tree, after a
4140 deletion. */
4141
4142static void
971de7fb 4143mem_delete_fixup (struct mem_node *x)
34400008
GM
4144{
4145 while (x != mem_root && x->color == MEM_BLACK)
4146 {
4147 if (x == x->parent->left)
4148 {
4149 struct mem_node *w = x->parent->right;
177c0ea7 4150
34400008
GM
4151 if (w->color == MEM_RED)
4152 {
4153 w->color = MEM_BLACK;
4154 x->parent->color = MEM_RED;
4155 mem_rotate_left (x->parent);
4156 w = x->parent->right;
4157 }
177c0ea7 4158
34400008
GM
4159 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4160 {
4161 w->color = MEM_RED;
4162 x = x->parent;
4163 }
4164 else
4165 {
4166 if (w->right->color == MEM_BLACK)
4167 {
4168 w->left->color = MEM_BLACK;
4169 w->color = MEM_RED;
4170 mem_rotate_right (w);
4171 w = x->parent->right;
4172 }
4173 w->color = x->parent->color;
4174 x->parent->color = MEM_BLACK;
4175 w->right->color = MEM_BLACK;
4176 mem_rotate_left (x->parent);
4177 x = mem_root;
4178 }
4179 }
4180 else
4181 {
4182 struct mem_node *w = x->parent->left;
177c0ea7 4183
34400008
GM
4184 if (w->color == MEM_RED)
4185 {
4186 w->color = MEM_BLACK;
4187 x->parent->color = MEM_RED;
4188 mem_rotate_right (x->parent);
4189 w = x->parent->left;
4190 }
177c0ea7 4191
34400008
GM
4192 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4193 {
4194 w->color = MEM_RED;
4195 x = x->parent;
4196 }
4197 else
4198 {
4199 if (w->left->color == MEM_BLACK)
4200 {
4201 w->right->color = MEM_BLACK;
4202 w->color = MEM_RED;
4203 mem_rotate_left (w);
4204 w = x->parent->left;
4205 }
177c0ea7 4206
34400008
GM
4207 w->color = x->parent->color;
4208 x->parent->color = MEM_BLACK;
4209 w->left->color = MEM_BLACK;
4210 mem_rotate_right (x->parent);
4211 x = mem_root;
4212 }
4213 }
4214 }
177c0ea7 4215
34400008
GM
4216 x->color = MEM_BLACK;
4217}
4218
4219
4220/* Value is non-zero if P is a pointer to a live Lisp string on
4221 the heap. M is a pointer to the mem_block for P. */
4222
55d4c1b2 4223static inline int
971de7fb 4224live_string_p (struct mem_node *m, void *p)
34400008
GM
4225{
4226 if (m->type == MEM_TYPE_STRING)
4227 {
4228 struct string_block *b = (struct string_block *) m->start;
14162469 4229 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
4230
4231 /* P must point to the start of a Lisp_String structure, and it
4232 must not be on the free-list. */
176bc847
GM
4233 return (offset >= 0
4234 && offset % sizeof b->strings[0] == 0
6b61353c 4235 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
4236 && ((struct Lisp_String *) p)->data != NULL);
4237 }
4238 else
4239 return 0;
4240}
4241
4242
4243/* Value is non-zero if P is a pointer to a live Lisp cons on
4244 the heap. M is a pointer to the mem_block for P. */
4245
55d4c1b2 4246static inline int
971de7fb 4247live_cons_p (struct mem_node *m, void *p)
34400008
GM
4248{
4249 if (m->type == MEM_TYPE_CONS)
4250 {
4251 struct cons_block *b = (struct cons_block *) m->start;
14162469 4252 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
4253
4254 /* P must point to the start of a Lisp_Cons, not be
4255 one of the unused cells in the current cons block,
4256 and not be on the free-list. */
176bc847
GM
4257 return (offset >= 0
4258 && offset % sizeof b->conses[0] == 0
6b61353c 4259 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
4260 && (b != cons_block
4261 || offset / sizeof b->conses[0] < cons_block_index)
4262 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4263 }
4264 else
4265 return 0;
4266}
4267
4268
4269/* Value is non-zero if P is a pointer to a live Lisp symbol on
4270 the heap. M is a pointer to the mem_block for P. */
4271
55d4c1b2 4272static inline int
971de7fb 4273live_symbol_p (struct mem_node *m, void *p)
34400008
GM
4274{
4275 if (m->type == MEM_TYPE_SYMBOL)
4276 {
4277 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 4278 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 4279
34400008
GM
4280 /* P must point to the start of a Lisp_Symbol, not be
4281 one of the unused cells in the current symbol block,
4282 and not be on the free-list. */
176bc847
GM
4283 return (offset >= 0
4284 && offset % sizeof b->symbols[0] == 0
6b61353c 4285 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
4286 && (b != symbol_block
4287 || offset / sizeof b->symbols[0] < symbol_block_index)
4288 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4289 }
4290 else
4291 return 0;
4292}
4293
4294
4295/* Value is non-zero if P is a pointer to a live Lisp float on
4296 the heap. M is a pointer to the mem_block for P. */
4297
55d4c1b2 4298static inline int
971de7fb 4299live_float_p (struct mem_node *m, void *p)
34400008
GM
4300{
4301 if (m->type == MEM_TYPE_FLOAT)
4302 {
4303 struct float_block *b = (struct float_block *) m->start;
14162469 4304 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 4305
ab6780cd
SM
4306 /* P must point to the start of a Lisp_Float and not be
4307 one of the unused cells in the current float block. */
176bc847
GM
4308 return (offset >= 0
4309 && offset % sizeof b->floats[0] == 0
6b61353c 4310 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 4311 && (b != float_block
ab6780cd 4312 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
4313 }
4314 else
4315 return 0;
4316}
4317
4318
4319/* Value is non-zero if P is a pointer to a live Lisp Misc on
4320 the heap. M is a pointer to the mem_block for P. */
4321
55d4c1b2 4322static inline int
971de7fb 4323live_misc_p (struct mem_node *m, void *p)
34400008
GM
4324{
4325 if (m->type == MEM_TYPE_MISC)
4326 {
4327 struct marker_block *b = (struct marker_block *) m->start;
14162469 4328 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 4329
34400008
GM
4330 /* P must point to the start of a Lisp_Misc, not be
4331 one of the unused cells in the current misc block,
4332 and not be on the free-list. */
176bc847
GM
4333 return (offset >= 0
4334 && offset % sizeof b->markers[0] == 0
6b61353c 4335 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4336 && (b != marker_block
4337 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 4338 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
4339 }
4340 else
4341 return 0;
4342}
4343
4344
4345/* Value is non-zero if P is a pointer to a live vector-like object.
4346 M is a pointer to the mem_block for P. */
4347
55d4c1b2 4348static inline int
971de7fb 4349live_vector_p (struct mem_node *m, void *p)
34400008 4350{
f3372c87
DA
4351 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4352 {
4353 /* This memory node corresponds to a vector block. */
4354 struct vector_block *block = (struct vector_block *) m->start;
4355 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4356
4357 /* P is in the block's allocation range. Scan the block
4358 up to P and see whether P points to the start of some
4359 vector which is not on a free list. FIXME: check whether
4360 some allocation patterns (probably a lot of short vectors)
4361 may cause a substantial overhead of this loop. */
4362 while (VECTOR_IN_BLOCK (vector, block)
4363 && vector <= (struct Lisp_Vector *) p)
4364 {
4365 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
4366 == VECTOR_FREE_LIST_FLAG)
4367 vector = ADVANCE (vector, (vector->header.size
4368 & (VECTOR_BLOCK_SIZE - 1)));
4369 else if (vector == p)
4370 return 1;
4371 else
4372 vector = ADVANCE (vector, vector->header.next.nbytes);
4373 }
4374 }
4375 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4376 /* This memory node corresponds to a large vector. */
4377 return 1;
4378 return 0;
34400008
GM
4379}
4380
4381
2336fe58 4382/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4383 pointer to the mem_block for P. */
4384
55d4c1b2 4385static inline int
971de7fb 4386live_buffer_p (struct mem_node *m, void *p)
34400008
GM
4387{
4388 /* P must point to the start of the block, and the buffer
4389 must not have been killed. */
4390 return (m->type == MEM_TYPE_BUFFER
4391 && p == m->start
5d8ea120 4392 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
34400008
GM
4393}
4394
13c844fb
GM
4395#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4396
4397#if GC_MARK_STACK
4398
34400008
GM
4399#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4400
4401/* Array of objects that are kept alive because the C stack contains
4402 a pattern that looks like a reference to them . */
4403
4404#define MAX_ZOMBIES 10
4405static Lisp_Object zombies[MAX_ZOMBIES];
4406
4407/* Number of zombie objects. */
4408
211a0b2a 4409static EMACS_INT nzombies;
34400008
GM
4410
4411/* Number of garbage collections. */
4412
211a0b2a 4413static EMACS_INT ngcs;
34400008
GM
4414
4415/* Average percentage of zombies per collection. */
4416
4417static double avg_zombies;
4418
4419/* Max. number of live and zombie objects. */
4420
211a0b2a 4421static EMACS_INT max_live, max_zombies;
34400008
GM
4422
4423/* Average number of live objects per GC. */
4424
4425static double avg_live;
4426
a7ca3326 4427DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 4428 doc: /* Show information about live and zombie objects. */)
5842a27b 4429 (void)
34400008 4430{
83fc9c63 4431 Lisp_Object args[8], zombie_list = Qnil;
211a0b2a 4432 EMACS_INT i;
6e4b3fbe 4433 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
83fc9c63
DL
4434 zombie_list = Fcons (zombies[i], zombie_list);
4435 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4436 args[1] = make_number (ngcs);
4437 args[2] = make_float (avg_live);
4438 args[3] = make_float (avg_zombies);
4439 args[4] = make_float (avg_zombies / avg_live / 100);
4440 args[5] = make_number (max_live);
4441 args[6] = make_number (max_zombies);
83fc9c63
DL
4442 args[7] = zombie_list;
4443 return Fmessage (8, args);
34400008
GM
4444}
4445
4446#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4447
4448
182ff242
GM
4449/* Mark OBJ if we can prove it's a Lisp_Object. */
4450
55d4c1b2 4451static inline void
971de7fb 4452mark_maybe_object (Lisp_Object obj)
182ff242 4453{
b609f591
YM
4454 void *po;
4455 struct mem_node *m;
4456
4457 if (INTEGERP (obj))
4458 return;
4459
4460 po = (void *) XPNTR (obj);
4461 m = mem_find (po);
177c0ea7 4462
182ff242
GM
4463 if (m != MEM_NIL)
4464 {
4465 int mark_p = 0;
4466
8e50cc2d 4467 switch (XTYPE (obj))
182ff242
GM
4468 {
4469 case Lisp_String:
4470 mark_p = (live_string_p (m, po)
4471 && !STRING_MARKED_P ((struct Lisp_String *) po));
4472 break;
4473
4474 case Lisp_Cons:
08b7c2cb 4475 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4476 break;
4477
4478 case Lisp_Symbol:
2336fe58 4479 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4480 break;
4481
4482 case Lisp_Float:
ab6780cd 4483 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4484 break;
4485
4486 case Lisp_Vectorlike:
8e50cc2d 4487 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
4488 buffer because checking that dereferences the pointer
4489 PO which might point anywhere. */
4490 if (live_vector_p (m, po))
8e50cc2d 4491 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4492 else if (live_buffer_p (m, po))
8e50cc2d 4493 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4494 break;
4495
4496 case Lisp_Misc:
67ee9f6e 4497 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4498 break;
6bbd7a29 4499
2de9f71c 4500 default:
6bbd7a29 4501 break;
182ff242
GM
4502 }
4503
4504 if (mark_p)
4505 {
4506#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4507 if (nzombies < MAX_ZOMBIES)
83fc9c63 4508 zombies[nzombies] = obj;
182ff242
GM
4509 ++nzombies;
4510#endif
49723c04 4511 mark_object (obj);
182ff242
GM
4512 }
4513 }
4514}
ece93c02
GM
4515
4516
4517/* If P points to Lisp data, mark that as live if it isn't already
4518 marked. */
4519
55d4c1b2 4520static inline void
971de7fb 4521mark_maybe_pointer (void *p)
ece93c02
GM
4522{
4523 struct mem_node *m;
4524
bfe3e0a2
PE
4525 /* Quickly rule out some values which can't point to Lisp data.
4526 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4527 Otherwise, assume that Lisp data is aligned on even addresses. */
4528 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
ece93c02 4529 return;
177c0ea7 4530
ece93c02
GM
4531 m = mem_find (p);
4532 if (m != MEM_NIL)
4533 {
4534 Lisp_Object obj = Qnil;
177c0ea7 4535
ece93c02
GM
4536 switch (m->type)
4537 {
4538 case MEM_TYPE_NON_LISP:
2fe50224 4539 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4540 break;
177c0ea7 4541
ece93c02 4542 case MEM_TYPE_BUFFER:
5e617bc2 4543 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
ece93c02
GM
4544 XSETVECTOR (obj, p);
4545 break;
177c0ea7 4546
ece93c02 4547 case MEM_TYPE_CONS:
08b7c2cb 4548 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4549 XSETCONS (obj, p);
4550 break;
177c0ea7 4551
ece93c02
GM
4552 case MEM_TYPE_STRING:
4553 if (live_string_p (m, p)
4554 && !STRING_MARKED_P ((struct Lisp_String *) p))
4555 XSETSTRING (obj, p);
4556 break;
4557
4558 case MEM_TYPE_MISC:
2336fe58
SM
4559 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4560 XSETMISC (obj, p);
ece93c02 4561 break;
177c0ea7 4562
ece93c02 4563 case MEM_TYPE_SYMBOL:
2336fe58 4564 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4565 XSETSYMBOL (obj, p);
4566 break;
177c0ea7 4567
ece93c02 4568 case MEM_TYPE_FLOAT:
ab6780cd 4569 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4570 XSETFLOAT (obj, p);
4571 break;
177c0ea7 4572
9c545a55 4573 case MEM_TYPE_VECTORLIKE:
f3372c87 4574 case MEM_TYPE_VECTOR_BLOCK:
ece93c02
GM
4575 if (live_vector_p (m, p))
4576 {
4577 Lisp_Object tem;
4578 XSETVECTOR (tem, p);
8e50cc2d 4579 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4580 obj = tem;
4581 }
4582 break;
4583
4584 default:
4585 abort ();
4586 }
4587
8e50cc2d 4588 if (!NILP (obj))
49723c04 4589 mark_object (obj);
ece93c02
GM
4590 }
4591}
4592
4593
e3fb2efb
PE
4594/* Alignment of pointer values. Use offsetof, as it sometimes returns
4595 a smaller alignment than GCC's __alignof__ and mark_memory might
4596 miss objects if __alignof__ were used. */
3164aeac
PE
4597#define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4598
e3fb2efb
PE
4599/* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4600 not suffice, which is the typical case. A host where a Lisp_Object is
4601 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4602 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4603 suffice to widen it to to a Lisp_Object and check it that way. */
bfe3e0a2
PE
4604#if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4605# if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
e3fb2efb
PE
4606 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4607 nor mark_maybe_object can follow the pointers. This should not occur on
4608 any practical porting target. */
4609# error "MSB type bits straddle pointer-word boundaries"
4610# endif
4611 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4612 pointer words that hold pointers ORed with type bits. */
4613# define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4614#else
4615 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4616 words that hold unmodified pointers. */
4617# define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4618#endif
4619
55a314a5
YM
4620/* Mark Lisp objects referenced from the address range START+OFFSET..END
4621 or END+OFFSET..START. */
34400008 4622
177c0ea7 4623static void
3164aeac 4624mark_memory (void *start, void *end)
34400008 4625{
ece93c02 4626 void **pp;
3164aeac 4627 int i;
34400008
GM
4628
4629#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4630 nzombies = 0;
4631#endif
4632
4633 /* Make START the pointer to the start of the memory region,
4634 if it isn't already. */
4635 if (end < start)
4636 {
4637 void *tem = start;
4638 start = end;
4639 end = tem;
4640 }
ece93c02 4641
ece93c02
GM
4642 /* Mark Lisp data pointed to. This is necessary because, in some
4643 situations, the C compiler optimizes Lisp objects away, so that
4644 only a pointer to them remains. Example:
4645
4646 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4647 ()
ece93c02
GM
4648 {
4649 Lisp_Object obj = build_string ("test");
4650 struct Lisp_String *s = XSTRING (obj);
4651 Fgarbage_collect ();
4652 fprintf (stderr, "test `%s'\n", s->data);
4653 return Qnil;
4654 }
4655
4656 Here, `obj' isn't really used, and the compiler optimizes it
4657 away. The only reference to the life string is through the
4658 pointer `s'. */
177c0ea7 4659
3164aeac
PE
4660 for (pp = start; (void *) pp < end; pp++)
4661 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
27f3c637 4662 {
e3fb2efb
PE
4663 void *p = *(void **) ((char *) pp + i);
4664 mark_maybe_pointer (p);
4665 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
646b5f55 4666 mark_maybe_object (XIL ((intptr_t) p));
27f3c637 4667 }
182ff242
GM
4668}
4669
30f637f8
DL
4670/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4671 the GCC system configuration. In gcc 3.2, the only systems for
4672 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4673 by others?) and ns32k-pc532-min. */
182ff242
GM
4674
4675#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4676
4677static int setjmp_tested_p, longjmps_done;
4678
4679#define SETJMP_WILL_LIKELY_WORK "\
4680\n\
4681Emacs garbage collector has been changed to use conservative stack\n\
4682marking. Emacs has determined that the method it uses to do the\n\
4683marking will likely work on your system, but this isn't sure.\n\
4684\n\
4685If you are a system-programmer, or can get the help of a local wizard\n\
4686who is, please take a look at the function mark_stack in alloc.c, and\n\
4687verify that the methods used are appropriate for your system.\n\
4688\n\
d191623b 4689Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4690"
4691
4692#define SETJMP_WILL_NOT_WORK "\
4693\n\
4694Emacs garbage collector has been changed to use conservative stack\n\
4695marking. Emacs has determined that the default method it uses to do the\n\
4696marking will not work on your system. We will need a system-dependent\n\
4697solution for your system.\n\
4698\n\
4699Please take a look at the function mark_stack in alloc.c, and\n\
4700try to find a way to make it work on your system.\n\
30f637f8
DL
4701\n\
4702Note that you may get false negatives, depending on the compiler.\n\
4703In particular, you need to use -O with GCC for this test.\n\
4704\n\
d191623b 4705Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4706"
4707
4708
4709/* Perform a quick check if it looks like setjmp saves registers in a
4710 jmp_buf. Print a message to stderr saying so. When this test
4711 succeeds, this is _not_ a proof that setjmp is sufficient for
4712 conservative stack marking. Only the sources or a disassembly
4713 can prove that. */
4714
4715static void
2018939f 4716test_setjmp (void)
182ff242
GM
4717{
4718 char buf[10];
4719 register int x;
4720 jmp_buf jbuf;
4721 int result = 0;
4722
4723 /* Arrange for X to be put in a register. */
4724 sprintf (buf, "1");
4725 x = strlen (buf);
4726 x = 2 * x - 1;
4727
4728 setjmp (jbuf);
4729 if (longjmps_done == 1)
34400008 4730 {
182ff242 4731 /* Came here after the longjmp at the end of the function.
34400008 4732
182ff242
GM
4733 If x == 1, the longjmp has restored the register to its
4734 value before the setjmp, and we can hope that setjmp
4735 saves all such registers in the jmp_buf, although that
4736 isn't sure.
34400008 4737
182ff242
GM
4738 For other values of X, either something really strange is
4739 taking place, or the setjmp just didn't save the register. */
4740
4741 if (x == 1)
4742 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4743 else
4744 {
4745 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4746 exit (1);
34400008
GM
4747 }
4748 }
182ff242
GM
4749
4750 ++longjmps_done;
4751 x = 2;
4752 if (longjmps_done == 1)
4753 longjmp (jbuf, 1);
34400008
GM
4754}
4755
182ff242
GM
4756#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4757
34400008
GM
4758
4759#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4760
4761/* Abort if anything GCPRO'd doesn't survive the GC. */
4762
4763static void
2018939f 4764check_gcpros (void)
34400008
GM
4765{
4766 struct gcpro *p;
f66c7cf8 4767 ptrdiff_t i;
34400008
GM
4768
4769 for (p = gcprolist; p; p = p->next)
4770 for (i = 0; i < p->nvars; ++i)
4771 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4772 /* FIXME: It's not necessarily a bug. It might just be that the
4773 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4774 abort ();
4775}
4776
4777#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4778
4779static void
2018939f 4780dump_zombies (void)
34400008
GM
4781{
4782 int i;
4783
6e4b3fbe 4784 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
34400008
GM
4785 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4786 {
4787 fprintf (stderr, " %d = ", i);
4788 debug_print (zombies[i]);
4789 }
4790}
4791
4792#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4793
4794
182ff242
GM
4795/* Mark live Lisp objects on the C stack.
4796
4797 There are several system-dependent problems to consider when
4798 porting this to new architectures:
4799
4800 Processor Registers
4801
4802 We have to mark Lisp objects in CPU registers that can hold local
4803 variables or are used to pass parameters.
4804
4805 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4806 something that either saves relevant registers on the stack, or
4807 calls mark_maybe_object passing it each register's contents.
4808
4809 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4810 implementation assumes that calling setjmp saves registers we need
4811 to see in a jmp_buf which itself lies on the stack. This doesn't
4812 have to be true! It must be verified for each system, possibly
4813 by taking a look at the source code of setjmp.
4814
2018939f
AS
4815 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4816 can use it as a machine independent method to store all registers
4817 to the stack. In this case the macros described in the previous
4818 two paragraphs are not used.
4819
182ff242
GM
4820 Stack Layout
4821
4822 Architectures differ in the way their processor stack is organized.
4823 For example, the stack might look like this
4824
4825 +----------------+
4826 | Lisp_Object | size = 4
4827 +----------------+
4828 | something else | size = 2
4829 +----------------+
4830 | Lisp_Object | size = 4
4831 +----------------+
4832 | ... |
4833
4834 In such a case, not every Lisp_Object will be aligned equally. To
4835 find all Lisp_Object on the stack it won't be sufficient to walk
4836 the stack in steps of 4 bytes. Instead, two passes will be
4837 necessary, one starting at the start of the stack, and a second
4838 pass starting at the start of the stack + 2. Likewise, if the
4839 minimal alignment of Lisp_Objects on the stack is 1, four passes
4840 would be necessary, each one starting with one byte more offset
c9af454e 4841 from the stack start. */
34400008
GM
4842
4843static void
971de7fb 4844mark_stack (void)
34400008 4845{
34400008
GM
4846 void *end;
4847
2018939f
AS
4848#ifdef HAVE___BUILTIN_UNWIND_INIT
4849 /* Force callee-saved registers and register windows onto the stack.
4850 This is the preferred method if available, obviating the need for
4851 machine dependent methods. */
4852 __builtin_unwind_init ();
4853 end = &end;
4854#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4855#ifndef GC_SAVE_REGISTERS_ON_STACK
4856 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4857 union aligned_jmpbuf {
4858 Lisp_Object o;
4859 jmp_buf j;
4860 } j;
4861 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4862#endif
34400008
GM
4863 /* This trick flushes the register windows so that all the state of
4864 the process is contained in the stack. */
ab6780cd 4865 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4866 needed on ia64 too. See mach_dep.c, where it also says inline
4867 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4868#ifdef __sparc__
4d18a7a2
DN
4869#if defined (__sparc64__) && defined (__FreeBSD__)
4870 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4871 asm ("flushw");
4872#else
34400008 4873 asm ("ta 3");
4c1616be 4874#endif
34400008 4875#endif
177c0ea7 4876
34400008
GM
4877 /* Save registers that we need to see on the stack. We need to see
4878 registers used to hold register variables and registers used to
4879 pass parameters. */
4880#ifdef GC_SAVE_REGISTERS_ON_STACK
4881 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4882#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4883
182ff242
GM
4884#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4885 setjmp will definitely work, test it
4886 and print a message with the result
4887 of the test. */
4888 if (!setjmp_tested_p)
4889 {
4890 setjmp_tested_p = 1;
4891 test_setjmp ();
4892 }
4893#endif /* GC_SETJMP_WORKS */
177c0ea7 4894
55a314a5 4895 setjmp (j.j);
34400008 4896 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4897#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4898#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4899
4900 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4901 that's not the case, something has to be done here to iterate
4902 over the stack segments. */
3164aeac
PE
4903 mark_memory (stack_base, end);
4904
4dec23ff
AS
4905 /* Allow for marking a secondary stack, like the register stack on the
4906 ia64. */
4907#ifdef GC_MARK_SECONDARY_STACK
4908 GC_MARK_SECONDARY_STACK ();
4909#endif
34400008
GM
4910
4911#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4912 check_gcpros ();
4913#endif
4914}
4915
34400008
GM
4916#endif /* GC_MARK_STACK != 0 */
4917
4918
7ffb6955 4919/* Determine whether it is safe to access memory at address P. */
d3d47262 4920static int
971de7fb 4921valid_pointer_p (void *p)
7ffb6955 4922{
f892cf9c
EZ
4923#ifdef WINDOWSNT
4924 return w32_valid_pointer_p (p, 16);
4925#else
41bed37d 4926 int fd[2];
7ffb6955
KS
4927
4928 /* Obviously, we cannot just access it (we would SEGV trying), so we
4929 trick the o/s to tell us whether p is a valid pointer.
4930 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4931 not validate p in that case. */
4932
41bed37d 4933 if (pipe (fd) == 0)
7ffb6955 4934 {
41bed37d
PE
4935 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4936 emacs_close (fd[1]);
4937 emacs_close (fd[0]);
7ffb6955
KS
4938 return valid;
4939 }
4940
4941 return -1;
f892cf9c 4942#endif
7ffb6955 4943}
3cd55735
KS
4944
4945/* Return 1 if OBJ is a valid lisp object.
4946 Return 0 if OBJ is NOT a valid lisp object.
4947 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4948 This function can be quite slow,
4949 so it should only be used in code for manual debugging. */
3cd55735
KS
4950
4951int
971de7fb 4952valid_lisp_object_p (Lisp_Object obj)
3cd55735 4953{
de7124a7 4954 void *p;
7ffb6955 4955#if GC_MARK_STACK
3cd55735 4956 struct mem_node *m;
de7124a7 4957#endif
3cd55735
KS
4958
4959 if (INTEGERP (obj))
4960 return 1;
4961
4962 p = (void *) XPNTR (obj);
3cd55735
KS
4963 if (PURE_POINTER_P (p))
4964 return 1;
4965
de7124a7 4966#if !GC_MARK_STACK
7ffb6955 4967 return valid_pointer_p (p);
de7124a7
KS
4968#else
4969
3cd55735
KS
4970 m = mem_find (p);
4971
4972 if (m == MEM_NIL)
7ffb6955
KS
4973 {
4974 int valid = valid_pointer_p (p);
4975 if (valid <= 0)
4976 return valid;
4977
4978 if (SUBRP (obj))
4979 return 1;
4980
4981 return 0;
4982 }
3cd55735
KS
4983
4984 switch (m->type)
4985 {
4986 case MEM_TYPE_NON_LISP:
4987 return 0;
4988
4989 case MEM_TYPE_BUFFER:
4990 return live_buffer_p (m, p);
4991
4992 case MEM_TYPE_CONS:
4993 return live_cons_p (m, p);
4994
4995 case MEM_TYPE_STRING:
4996 return live_string_p (m, p);
4997
4998 case MEM_TYPE_MISC:
4999 return live_misc_p (m, p);
5000
5001 case MEM_TYPE_SYMBOL:
5002 return live_symbol_p (m, p);
5003
5004 case MEM_TYPE_FLOAT:
5005 return live_float_p (m, p);
5006
9c545a55 5007 case MEM_TYPE_VECTORLIKE:
f3372c87 5008 case MEM_TYPE_VECTOR_BLOCK:
3cd55735
KS
5009 return live_vector_p (m, p);
5010
5011 default:
5012 break;
5013 }
5014
5015 return 0;
5016#endif
5017}
5018
5019
5020
34400008 5021\f
2e471eb5
GM
5022/***********************************************************************
5023 Pure Storage Management
5024 ***********************************************************************/
5025
1f0b3fd2
GM
5026/* Allocate room for SIZE bytes from pure Lisp storage and return a
5027 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 5028 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2 5029
261cb4bb 5030static void *
971de7fb 5031pure_alloc (size_t size, int type)
1f0b3fd2 5032{
261cb4bb 5033 void *result;
bfe3e0a2 5034#if USE_LSB_TAG
6b61353c
KH
5035 size_t alignment = (1 << GCTYPEBITS);
5036#else
44117420 5037 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
5038
5039 /* Give Lisp_Floats an extra alignment. */
5040 if (type == Lisp_Float)
5041 {
1f0b3fd2
GM
5042#if defined __GNUC__ && __GNUC__ >= 2
5043 alignment = __alignof (struct Lisp_Float);
5044#else
5045 alignment = sizeof (struct Lisp_Float);
5046#endif
9e713715 5047 }
6b61353c 5048#endif
1f0b3fd2 5049
44117420 5050 again:
e5bc14d4
YM
5051 if (type >= 0)
5052 {
5053 /* Allocate space for a Lisp object from the beginning of the free
5054 space with taking account of alignment. */
5055 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5056 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5057 }
5058 else
5059 {
5060 /* Allocate space for a non-Lisp object from the end of the free
5061 space. */
5062 pure_bytes_used_non_lisp += size;
5063 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5064 }
5065 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
5066
5067 if (pure_bytes_used <= pure_size)
5068 return result;
5069
5070 /* Don't allocate a large amount here,
5071 because it might get mmap'd and then its address
5072 might not be usable. */
5073 purebeg = (char *) xmalloc (10000);
5074 pure_size = 10000;
5075 pure_bytes_used_before_overflow += pure_bytes_used - size;
5076 pure_bytes_used = 0;
e5bc14d4 5077 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 5078 goto again;
1f0b3fd2
GM
5079}
5080
5081
852f8cdc 5082/* Print a warning if PURESIZE is too small. */
9e713715
GM
5083
5084void
971de7fb 5085check_pure_size (void)
9e713715
GM
5086{
5087 if (pure_bytes_used_before_overflow)
c2982e87
PE
5088 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5089 " bytes needed)"),
5090 pure_bytes_used + pure_bytes_used_before_overflow);
9e713715
GM
5091}
5092
5093
79fd0489
YM
5094/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5095 the non-Lisp data pool of the pure storage, and return its start
5096 address. Return NULL if not found. */
5097
5098static char *
d311d28c 5099find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
79fd0489 5100{
14162469 5101 int i;
d311d28c 5102 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 5103 const unsigned char *p;
79fd0489
YM
5104 char *non_lisp_beg;
5105
d311d28c 5106 if (pure_bytes_used_non_lisp <= nbytes)
79fd0489
YM
5107 return NULL;
5108
5109 /* Set up the Boyer-Moore table. */
5110 skip = nbytes + 1;
5111 for (i = 0; i < 256; i++)
5112 bm_skip[i] = skip;
5113
2aff7c53 5114 p = (const unsigned char *) data;
79fd0489
YM
5115 while (--skip > 0)
5116 bm_skip[*p++] = skip;
5117
5118 last_char_skip = bm_skip['\0'];
5119
5120 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5121 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5122
5123 /* See the comments in the function `boyer_moore' (search.c) for the
5124 use of `infinity'. */
5125 infinity = pure_bytes_used_non_lisp + 1;
5126 bm_skip['\0'] = infinity;
5127
2aff7c53 5128 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
5129 start = 0;
5130 do
5131 {
5132 /* Check the last character (== '\0'). */
5133 do
5134 {
5135 start += bm_skip[*(p + start)];
5136 }
5137 while (start <= start_max);
5138
5139 if (start < infinity)
5140 /* Couldn't find the last character. */
5141 return NULL;
5142
5143 /* No less than `infinity' means we could find the last
5144 character at `p[start - infinity]'. */
5145 start -= infinity;
5146
5147 /* Check the remaining characters. */
5148 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5149 /* Found. */
5150 return non_lisp_beg + start;
5151
5152 start += last_char_skip;
5153 }
5154 while (start <= start_max);
5155
5156 return NULL;
5157}
5158
5159
2e471eb5
GM
5160/* Return a string allocated in pure space. DATA is a buffer holding
5161 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5162 non-zero means make the result string multibyte.
1a4f1e2c 5163
2e471eb5
GM
5164 Must get an error if pure storage is full, since if it cannot hold
5165 a large string it may be able to hold conses that point to that
5166 string; then the string is not protected from gc. */
7146af97
JB
5167
5168Lisp_Object
14162469 5169make_pure_string (const char *data,
d311d28c 5170 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
7146af97 5171{
2e471eb5
GM
5172 Lisp_Object string;
5173 struct Lisp_String *s;
c0696668 5174
1f0b3fd2 5175 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
90256841 5176 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
5177 if (s->data == NULL)
5178 {
5179 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
72af86bd 5180 memcpy (s->data, data, nbytes);
79fd0489
YM
5181 s->data[nbytes] = '\0';
5182 }
2e471eb5
GM
5183 s->size = nchars;
5184 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 5185 s->intervals = NULL_INTERVAL;
2e471eb5
GM
5186 XSETSTRING (string, s);
5187 return string;
7146af97
JB
5188}
5189
a56eaaef
DN
5190/* Return a string a string allocated in pure space. Do not allocate
5191 the string data, just point to DATA. */
5192
5193Lisp_Object
5194make_pure_c_string (const char *data)
5195{
5196 Lisp_Object string;
5197 struct Lisp_String *s;
d311d28c 5198 ptrdiff_t nchars = strlen (data);
a56eaaef
DN
5199
5200 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5201 s->size = nchars;
5202 s->size_byte = -1;
323637a2 5203 s->data = (unsigned char *) data;
a56eaaef
DN
5204 s->intervals = NULL_INTERVAL;
5205 XSETSTRING (string, s);
5206 return string;
5207}
2e471eb5 5208
34400008
GM
5209/* Return a cons allocated from pure space. Give it pure copies
5210 of CAR as car and CDR as cdr. */
5211
7146af97 5212Lisp_Object
971de7fb 5213pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97
JB
5214{
5215 register Lisp_Object new;
1f0b3fd2 5216 struct Lisp_Cons *p;
7146af97 5217
1f0b3fd2
GM
5218 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5219 XSETCONS (new, p);
f3fbd155
KR
5220 XSETCAR (new, Fpurecopy (car));
5221 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
5222 return new;
5223}
5224
7146af97 5225
34400008
GM
5226/* Value is a float object with value NUM allocated from pure space. */
5227
d3d47262 5228static Lisp_Object
971de7fb 5229make_pure_float (double num)
7146af97
JB
5230{
5231 register Lisp_Object new;
1f0b3fd2 5232 struct Lisp_Float *p;
7146af97 5233
1f0b3fd2
GM
5234 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5235 XSETFLOAT (new, p);
f601cdf3 5236 XFLOAT_INIT (new, num);
7146af97
JB
5237 return new;
5238}
5239
34400008
GM
5240
5241/* Return a vector with room for LEN Lisp_Objects allocated from
5242 pure space. */
5243
72cb32cf 5244static Lisp_Object
d311d28c 5245make_pure_vector (ptrdiff_t len)
7146af97 5246{
1f0b3fd2
GM
5247 Lisp_Object new;
5248 struct Lisp_Vector *p;
36372bf9
PE
5249 size_t size = (offsetof (struct Lisp_Vector, contents)
5250 + len * sizeof (Lisp_Object));
7146af97 5251
1f0b3fd2
GM
5252 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5253 XSETVECTOR (new, p);
eab3844f 5254 XVECTOR (new)->header.size = len;
7146af97
JB
5255 return new;
5256}
5257
34400008 5258
a7ca3326 5259DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 5260 doc: /* Make a copy of object OBJ in pure storage.
228299fa 5261Recursively copies contents of vectors and cons cells.
7ee72033 5262Does not copy symbols. Copies strings without text properties. */)
5842a27b 5263 (register Lisp_Object obj)
7146af97 5264{
265a9e55 5265 if (NILP (Vpurify_flag))
7146af97
JB
5266 return obj;
5267
1f0b3fd2 5268 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5269 return obj;
5270
e9515805
SM
5271 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5272 {
5273 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5274 if (!NILP (tmp))
5275 return tmp;
5276 }
5277
d6dd74bb 5278 if (CONSP (obj))
e9515805 5279 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 5280 else if (FLOATP (obj))
e9515805 5281 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 5282 else if (STRINGP (obj))
42a5b22f 5283 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
5284 SBYTES (obj),
5285 STRING_MULTIBYTE (obj));
876c194c 5286 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
5287 {
5288 register struct Lisp_Vector *vec;
d311d28c
PE
5289 register ptrdiff_t i;
5290 ptrdiff_t size;
d6dd74bb 5291
77b37c05 5292 size = ASIZE (obj);
7d535c68
KH
5293 if (size & PSEUDOVECTOR_FLAG)
5294 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 5295 vec = XVECTOR (make_pure_vector (size));
d6dd74bb 5296 for (i = 0; i < size; i++)
28be1ada 5297 vec->contents[i] = Fpurecopy (AREF (obj, i));
876c194c 5298 if (COMPILEDP (obj))
985773c9 5299 {
876c194c
SM
5300 XSETPVECTYPE (vec, PVEC_COMPILED);
5301 XSETCOMPILED (obj, vec);
985773c9 5302 }
d6dd74bb
KH
5303 else
5304 XSETVECTOR (obj, vec);
7146af97 5305 }
d6dd74bb
KH
5306 else if (MARKERP (obj))
5307 error ("Attempt to copy a marker to pure storage");
e9515805
SM
5308 else
5309 /* Not purified, don't hash-cons. */
5310 return obj;
5311
5312 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5313 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
5314
5315 return obj;
7146af97 5316}
2e471eb5 5317
34400008 5318
7146af97 5319\f
34400008
GM
5320/***********************************************************************
5321 Protection from GC
5322 ***********************************************************************/
5323
2e471eb5
GM
5324/* Put an entry in staticvec, pointing at the variable with address
5325 VARADDRESS. */
7146af97
JB
5326
5327void
971de7fb 5328staticpro (Lisp_Object *varaddress)
7146af97
JB
5329{
5330 staticvec[staticidx++] = varaddress;
5331 if (staticidx >= NSTATICS)
5332 abort ();
5333}
5334
7146af97 5335\f
34400008
GM
5336/***********************************************************************
5337 Protection from GC
5338 ***********************************************************************/
1a4f1e2c 5339
e8197642
RS
5340/* Temporarily prevent garbage collection. */
5341
d311d28c 5342ptrdiff_t
971de7fb 5343inhibit_garbage_collection (void)
e8197642 5344{
d311d28c 5345 ptrdiff_t count = SPECPDL_INDEX ();
54defd0d 5346
6349ae4d 5347 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
e8197642
RS
5348 return count;
5349}
5350
34400008 5351
a7ca3326 5352DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 5353 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
5354Garbage collection happens automatically if you cons more than
5355`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5356`garbage-collect' normally returns a list with info on amount of space in use:
228299fa 5357 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
999dd333 5358 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
228299fa
GM
5359 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5360 (USED-STRINGS . FREE-STRINGS))
e1e37596 5361However, if there was overflow in pure space, `garbage-collect'
999dd333
GM
5362returns nil, because real GC can't be done.
5363See Info node `(elisp)Garbage Collection'. */)
5842a27b 5364 (void)
7146af97 5365{
7146af97 5366 register struct specbinding *bind;
7146af97 5367 char stack_top_variable;
f66c7cf8 5368 ptrdiff_t i;
6efc7df7 5369 int message_p;
96117bc7 5370 Lisp_Object total[8];
d311d28c 5371 ptrdiff_t count = SPECPDL_INDEX ();
2c5bd608
DL
5372 EMACS_TIME t1, t2, t3;
5373
3de0effb
RS
5374 if (abort_on_gc)
5375 abort ();
5376
9e713715
GM
5377 /* Can't GC if pure storage overflowed because we can't determine
5378 if something is a pure object or not. */
5379 if (pure_bytes_used_before_overflow)
5380 return Qnil;
5381
bbc012e0
KS
5382 CHECK_CONS_LIST ();
5383
3c7e66a8
RS
5384 /* Don't keep undo information around forever.
5385 Do this early on, so it is no problem if the user quits. */
5386 {
5387 register struct buffer *nextb = all_buffers;
5388
5389 while (nextb)
5390 {
5391 /* If a buffer's undo list is Qt, that means that undo is
5392 turned off in that buffer. Calling truncate_undo_list on
5393 Qt tends to return NULL, which effectively turns undo back on.
5394 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5395 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
3c7e66a8
RS
5396 truncate_undo_list (nextb);
5397
5398 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5d8ea120 5399 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
dc7b4525 5400 && ! nextb->text->inhibit_shrinking)
3c7e66a8
RS
5401 {
5402 /* If a buffer's gap size is more than 10% of the buffer
5403 size, or larger than 2000 bytes, then shrink it
5404 accordingly. Keep a minimum size of 20 bytes. */
5405 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5406
5407 if (nextb->text->gap_size > size)
5408 {
5409 struct buffer *save_current = current_buffer;
5410 current_buffer = nextb;
5411 make_gap (-(nextb->text->gap_size - size));
5412 current_buffer = save_current;
5413 }
5414 }
5415
eab3844f 5416 nextb = nextb->header.next.buffer;
3c7e66a8
RS
5417 }
5418 }
5419
5420 EMACS_GET_TIME (t1);
5421
58595309
KH
5422 /* In case user calls debug_print during GC,
5423 don't let that cause a recursive GC. */
5424 consing_since_gc = 0;
5425
6efc7df7
GM
5426 /* Save what's currently displayed in the echo area. */
5427 message_p = push_message ();
c55b0da6 5428 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 5429
7146af97
JB
5430 /* Save a copy of the contents of the stack, for debugging. */
5431#if MAX_SAVE_STACK > 0
265a9e55 5432 if (NILP (Vpurify_flag))
7146af97 5433 {
dd3f25f7 5434 char *stack;
903fe15d 5435 ptrdiff_t stack_size;
dd3f25f7 5436 if (&stack_top_variable < stack_bottom)
7146af97 5437 {
dd3f25f7
PE
5438 stack = &stack_top_variable;
5439 stack_size = stack_bottom - &stack_top_variable;
5440 }
5441 else
5442 {
5443 stack = stack_bottom;
5444 stack_size = &stack_top_variable - stack_bottom;
5445 }
5446 if (stack_size <= MAX_SAVE_STACK)
7146af97 5447 {
dd3f25f7 5448 if (stack_copy_size < stack_size)
7146af97 5449 {
dd3f25f7
PE
5450 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5451 stack_copy_size = stack_size;
7146af97 5452 }
dd3f25f7 5453 memcpy (stack_copy, stack, stack_size);
7146af97
JB
5454 }
5455 }
5456#endif /* MAX_SAVE_STACK > 0 */
5457
299585ee 5458 if (garbage_collection_messages)
691c4285 5459 message1_nolog ("Garbage collecting...");
7146af97 5460
6e0fca1d
RS
5461 BLOCK_INPUT;
5462
eec7b73d
RS
5463 shrink_regexp_cache ();
5464
7146af97
JB
5465 gc_in_progress = 1;
5466
c23baf9f 5467 /* clear_marks (); */
7146af97 5468
005ca5c7 5469 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
5470
5471 for (i = 0; i < staticidx; i++)
49723c04 5472 mark_object (*staticvec[i]);
34400008 5473
126f9c02
SM
5474 for (bind = specpdl; bind != specpdl_ptr; bind++)
5475 {
5476 mark_object (bind->symbol);
5477 mark_object (bind->old_value);
5478 }
6ed8eeff 5479 mark_terminals ();
126f9c02 5480 mark_kboards ();
98a92e2d 5481 mark_ttys ();
126f9c02
SM
5482
5483#ifdef USE_GTK
5484 {
dd4c5104 5485 extern void xg_mark_data (void);
126f9c02
SM
5486 xg_mark_data ();
5487 }
5488#endif
5489
34400008
GM
5490#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5491 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5492 mark_stack ();
5493#else
acf5f7d3
SM
5494 {
5495 register struct gcpro *tail;
5496 for (tail = gcprolist; tail; tail = tail->next)
5497 for (i = 0; i < tail->nvars; i++)
005ca5c7 5498 mark_object (tail->var[i]);
acf5f7d3 5499 }
3e21b6a7 5500 mark_byte_stack ();
b286858c
SM
5501 {
5502 struct catchtag *catch;
5503 struct handler *handler;
177c0ea7 5504
7146af97
JB
5505 for (catch = catchlist; catch; catch = catch->next)
5506 {
49723c04
SM
5507 mark_object (catch->tag);
5508 mark_object (catch->val);
177c0ea7 5509 }
7146af97
JB
5510 for (handler = handlerlist; handler; handler = handler->next)
5511 {
49723c04
SM
5512 mark_object (handler->handler);
5513 mark_object (handler->var);
177c0ea7 5514 }
b286858c 5515 }
b40ea20a 5516 mark_backtrace ();
b286858c 5517#endif
7146af97 5518
454d7973
KS
5519#ifdef HAVE_WINDOW_SYSTEM
5520 mark_fringe_data ();
5521#endif
5522
74c35a48
SM
5523#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5524 mark_stack ();
5525#endif
5526
c37adf23
SM
5527 /* Everything is now marked, except for the things that require special
5528 finalization, i.e. the undo_list.
5529 Look thru every buffer's undo list
4c315bda
RS
5530 for elements that update markers that were not marked,
5531 and delete them. */
5532 {
5533 register struct buffer *nextb = all_buffers;
5534
5535 while (nextb)
5536 {
5537 /* If a buffer's undo list is Qt, that means that undo is
5538 turned off in that buffer. Calling truncate_undo_list on
5539 Qt tends to return NULL, which effectively turns undo back on.
5540 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5541 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4c315bda
RS
5542 {
5543 Lisp_Object tail, prev;
5d8ea120 5544 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
4c315bda
RS
5545 prev = Qnil;
5546 while (CONSP (tail))
5547 {
8e50cc2d
SM
5548 if (CONSP (XCAR (tail))
5549 && MARKERP (XCAR (XCAR (tail)))
2336fe58 5550 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5551 {
5552 if (NILP (prev))
5d8ea120 5553 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
4c315bda 5554 else
f3fbd155
KR
5555 {
5556 tail = XCDR (tail);
5557 XSETCDR (prev, tail);
5558 }
4c315bda
RS
5559 }
5560 else
5561 {
5562 prev = tail;
70949dac 5563 tail = XCDR (tail);
4c315bda
RS
5564 }
5565 }
5566 }
c37adf23
SM
5567 /* Now that we have stripped the elements that need not be in the
5568 undo_list any more, we can finally mark the list. */
5d8ea120 5569 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
4c315bda 5570
eab3844f 5571 nextb = nextb->header.next.buffer;
4c315bda
RS
5572 }
5573 }
5574
7146af97
JB
5575 gc_sweep ();
5576
5577 /* Clear the mark bits that we set in certain root slots. */
5578
033a5fa3 5579 unmark_byte_stack ();
3ef06d12
SM
5580 VECTOR_UNMARK (&buffer_defaults);
5581 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5582
34400008
GM
5583#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5584 dump_zombies ();
5585#endif
5586
6e0fca1d
RS
5587 UNBLOCK_INPUT;
5588
bbc012e0
KS
5589 CHECK_CONS_LIST ();
5590
c23baf9f 5591 /* clear_marks (); */
7146af97
JB
5592 gc_in_progress = 0;
5593
5594 consing_since_gc = 0;
5595 if (gc_cons_threshold < 10000)
5596 gc_cons_threshold = 10000;
5597
c0c5c8ae 5598 gc_relative_threshold = 0;
96f077ad
SM
5599 if (FLOATP (Vgc_cons_percentage))
5600 { /* Set gc_cons_combined_threshold. */
c0c5c8ae 5601 double tot = 0;
ae35e756
PE
5602
5603 tot += total_conses * sizeof (struct Lisp_Cons);
5604 tot += total_symbols * sizeof (struct Lisp_Symbol);
5605 tot += total_markers * sizeof (union Lisp_Misc);
5606 tot += total_string_size;
5607 tot += total_vector_size * sizeof (Lisp_Object);
5608 tot += total_floats * sizeof (struct Lisp_Float);
5609 tot += total_intervals * sizeof (struct interval);
5610 tot += total_strings * sizeof (struct Lisp_String);
5611
c0c5c8ae
PE
5612 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5613 if (0 < tot)
5614 {
5615 if (tot < TYPE_MAXIMUM (EMACS_INT))
5616 gc_relative_threshold = tot;
5617 else
5618 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5619 }
96f077ad
SM
5620 }
5621
299585ee
RS
5622 if (garbage_collection_messages)
5623 {
6efc7df7
GM
5624 if (message_p || minibuf_level > 0)
5625 restore_message ();
299585ee
RS
5626 else
5627 message1_nolog ("Garbage collecting...done");
5628 }
7146af97 5629
98edb5ff 5630 unbind_to (count, Qnil);
2e471eb5
GM
5631
5632 total[0] = Fcons (make_number (total_conses),
5633 make_number (total_free_conses));
5634 total[1] = Fcons (make_number (total_symbols),
5635 make_number (total_free_symbols));
5636 total[2] = Fcons (make_number (total_markers),
5637 make_number (total_free_markers));
96117bc7
GM
5638 total[3] = make_number (total_string_size);
5639 total[4] = make_number (total_vector_size);
5640 total[5] = Fcons (make_number (total_floats),
2e471eb5 5641 make_number (total_free_floats));
96117bc7 5642 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5643 make_number (total_free_intervals));
96117bc7 5644 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5645 make_number (total_free_strings));
5646
34400008 5647#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5648 {
34400008
GM
5649 /* Compute average percentage of zombies. */
5650 double nlive = 0;
177c0ea7 5651
34400008 5652 for (i = 0; i < 7; ++i)
83fc9c63
DL
5653 if (CONSP (total[i]))
5654 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5655
5656 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5657 max_live = max (nlive, max_live);
5658 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5659 max_zombies = max (nzombies, max_zombies);
5660 ++ngcs;
5661 }
5662#endif
7146af97 5663
9e713715
GM
5664 if (!NILP (Vpost_gc_hook))
5665 {
d311d28c 5666 ptrdiff_t gc_count = inhibit_garbage_collection ();
9e713715 5667 safe_run_hooks (Qpost_gc_hook);
ae35e756 5668 unbind_to (gc_count, Qnil);
9e713715 5669 }
2c5bd608
DL
5670
5671 /* Accumulate statistics. */
5672 EMACS_GET_TIME (t2);
5673 EMACS_SUB_TIME (t3, t2, t1);
5674 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
5675 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5676 EMACS_SECS (t3) +
5677 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
5678 gcs_done++;
5679
96117bc7 5680 return Flist (sizeof total / sizeof *total, total);
7146af97 5681}
34400008 5682
41c28a37 5683
3770920e
GM
5684/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5685 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5686
5687static void
971de7fb 5688mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5689{
5690 struct glyph_row *row = matrix->rows;
5691 struct glyph_row *end = row + matrix->nrows;
5692
2e471eb5
GM
5693 for (; row < end; ++row)
5694 if (row->enabled_p)
5695 {
5696 int area;
5697 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5698 {
5699 struct glyph *glyph = row->glyphs[area];
5700 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5701
2e471eb5 5702 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5703 if (STRINGP (glyph->object)
2e471eb5 5704 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5705 mark_object (glyph->object);
2e471eb5
GM
5706 }
5707 }
41c28a37
GM
5708}
5709
34400008 5710
41c28a37
GM
5711/* Mark Lisp faces in the face cache C. */
5712
5713static void
971de7fb 5714mark_face_cache (struct face_cache *c)
41c28a37
GM
5715{
5716 if (c)
5717 {
5718 int i, j;
5719 for (i = 0; i < c->used; ++i)
5720 {
5721 struct face *face = FACE_FROM_ID (c->f, i);
5722
5723 if (face)
5724 {
5725 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5726 mark_object (face->lface[j]);
41c28a37
GM
5727 }
5728 }
5729 }
5730}
5731
5732
7146af97 5733\f
1a4f1e2c 5734/* Mark reference to a Lisp_Object.
2e471eb5
GM
5735 If the object referred to has not been seen yet, recursively mark
5736 all the references contained in it. */
7146af97 5737
785cd37f 5738#define LAST_MARKED_SIZE 500
d3d47262 5739static Lisp_Object last_marked[LAST_MARKED_SIZE];
244ed907 5740static int last_marked_index;
785cd37f 5741
1342fc6f
RS
5742/* For debugging--call abort when we cdr down this many
5743 links of a list, in mark_object. In debugging,
5744 the call to abort will hit a breakpoint.
5745 Normally this is zero and the check never goes off. */
903fe15d 5746ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
1342fc6f 5747
8f11f7ec 5748static void
971de7fb 5749mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5750{
d311d28c
PE
5751 ptrdiff_t size = ptr->header.size;
5752 ptrdiff_t i;
d2029e5b 5753
8f11f7ec 5754 eassert (!VECTOR_MARKED_P (ptr));
d2029e5b
SM
5755 VECTOR_MARK (ptr); /* Else mark it */
5756 if (size & PSEUDOVECTOR_FLAG)
5757 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5758
d2029e5b
SM
5759 /* Note that this size is not the memory-footprint size, but only
5760 the number of Lisp_Object fields that we should trace.
5761 The distinction is used e.g. by Lisp_Process which places extra
5762 non-Lisp_Object fields at the end of the structure. */
5763 for (i = 0; i < size; i++) /* and then mark its elements */
5764 mark_object (ptr->contents[i]);
d2029e5b
SM
5765}
5766
58026347
KH
5767/* Like mark_vectorlike but optimized for char-tables (and
5768 sub-char-tables) assuming that the contents are mostly integers or
5769 symbols. */
5770
5771static void
971de7fb 5772mark_char_table (struct Lisp_Vector *ptr)
58026347 5773{
b6439961
PE
5774 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5775 int i;
58026347 5776
8f11f7ec 5777 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5778 VECTOR_MARK (ptr);
5779 for (i = 0; i < size; i++)
5780 {
5781 Lisp_Object val = ptr->contents[i];
5782
ef1b0ba7 5783 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5784 continue;
5785 if (SUB_CHAR_TABLE_P (val))
5786 {
5787 if (! VECTOR_MARKED_P (XVECTOR (val)))
5788 mark_char_table (XVECTOR (val));
5789 }
5790 else
5791 mark_object (val);
5792 }
5793}
5794
41c28a37 5795void
971de7fb 5796mark_object (Lisp_Object arg)
7146af97 5797{
49723c04 5798 register Lisp_Object obj = arg;
4f5c1376
GM
5799#ifdef GC_CHECK_MARKED_OBJECTS
5800 void *po;
5801 struct mem_node *m;
5802#endif
903fe15d 5803 ptrdiff_t cdr_count = 0;
7146af97 5804
9149e743 5805 loop:
7146af97 5806
1f0b3fd2 5807 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5808 return;
5809
49723c04 5810 last_marked[last_marked_index++] = obj;
785cd37f
RS
5811 if (last_marked_index == LAST_MARKED_SIZE)
5812 last_marked_index = 0;
5813
4f5c1376
GM
5814 /* Perform some sanity checks on the objects marked here. Abort if
5815 we encounter an object we know is bogus. This increases GC time
5816 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5817#ifdef GC_CHECK_MARKED_OBJECTS
5818
5819 po = (void *) XPNTR (obj);
5820
5821 /* Check that the object pointed to by PO is known to be a Lisp
5822 structure allocated from the heap. */
5823#define CHECK_ALLOCATED() \
5824 do { \
5825 m = mem_find (po); \
5826 if (m == MEM_NIL) \
5827 abort (); \
5828 } while (0)
5829
5830 /* Check that the object pointed to by PO is live, using predicate
5831 function LIVEP. */
5832#define CHECK_LIVE(LIVEP) \
5833 do { \
5834 if (!LIVEP (m, po)) \
5835 abort (); \
5836 } while (0)
5837
5838 /* Check both of the above conditions. */
5839#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5840 do { \
5841 CHECK_ALLOCATED (); \
5842 CHECK_LIVE (LIVEP); \
5843 } while (0) \
177c0ea7 5844
4f5c1376 5845#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5846
4f5c1376
GM
5847#define CHECK_LIVE(LIVEP) (void) 0
5848#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5849
4f5c1376
GM
5850#endif /* not GC_CHECK_MARKED_OBJECTS */
5851
8e50cc2d 5852 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5853 {
5854 case Lisp_String:
5855 {
5856 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5857 if (STRING_MARKED_P (ptr))
5858 break;
4f5c1376 5859 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5860 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5861 MARK_STRING (ptr);
361b097f 5862#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5863 /* Check that the string size recorded in the string is the
5864 same as the one recorded in the sdata structure. */
5865 CHECK_STRING_BYTES (ptr);
361b097f 5866#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5867 }
5868 break;
5869
76437631 5870 case Lisp_Vectorlike:
8f11f7ec
SM
5871 if (VECTOR_MARKED_P (XVECTOR (obj)))
5872 break;
4f5c1376
GM
5873#ifdef GC_CHECK_MARKED_OBJECTS
5874 m = mem_find (po);
8e50cc2d 5875 if (m == MEM_NIL && !SUBRP (obj)
4f5c1376
GM
5876 && po != &buffer_defaults
5877 && po != &buffer_local_symbols)
5878 abort ();
5879#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5880
8e50cc2d 5881 if (BUFFERP (obj))
6b552283 5882 {
4f5c1376 5883#ifdef GC_CHECK_MARKED_OBJECTS
8f11f7ec
SM
5884 if (po != &buffer_defaults && po != &buffer_local_symbols)
5885 {
5886 struct buffer *b;
179dade4 5887 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
8f11f7ec
SM
5888 ;
5889 if (b == NULL)
5890 abort ();
4f5c1376 5891 }
8f11f7ec
SM
5892#endif /* GC_CHECK_MARKED_OBJECTS */
5893 mark_buffer (obj);
6b552283 5894 }
8e50cc2d 5895 else if (SUBRP (obj))
169ee243 5896 break;
876c194c 5897 else if (COMPILEDP (obj))
2e471eb5
GM
5898 /* We could treat this just like a vector, but it is better to
5899 save the COMPILED_CONSTANTS element for last and avoid
5900 recursion there. */
169ee243
RS
5901 {
5902 register struct Lisp_Vector *ptr = XVECTOR (obj);
b6439961
PE
5903 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5904 int i;
169ee243 5905
4f5c1376 5906 CHECK_LIVE (live_vector_p);
3ef06d12 5907 VECTOR_MARK (ptr); /* Else mark it */
169ee243
RS
5908 for (i = 0; i < size; i++) /* and then mark its elements */
5909 {
5910 if (i != COMPILED_CONSTANTS)
49723c04 5911 mark_object (ptr->contents[i]);
169ee243 5912 }
49723c04 5913 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5914 goto loop;
5915 }
8e50cc2d 5916 else if (FRAMEP (obj))
169ee243 5917 {
c70bbf06 5918 register struct frame *ptr = XFRAME (obj);
8f11f7ec
SM
5919 mark_vectorlike (XVECTOR (obj));
5920 mark_face_cache (ptr->face_cache);
707788bd 5921 }
8e50cc2d 5922 else if (WINDOWP (obj))
41c28a37
GM
5923 {
5924 register struct Lisp_Vector *ptr = XVECTOR (obj);
5925 struct window *w = XWINDOW (obj);
8f11f7ec
SM
5926 mark_vectorlike (ptr);
5927 /* Mark glyphs for leaf windows. Marking window matrices is
5928 sufficient because frame matrices use the same glyph
5929 memory. */
5930 if (NILP (w->hchild)
5931 && NILP (w->vchild)
5932 && w->current_matrix)
41c28a37 5933 {
8f11f7ec
SM
5934 mark_glyph_matrix (w->current_matrix);
5935 mark_glyph_matrix (w->desired_matrix);
41c28a37
GM
5936 }
5937 }
8e50cc2d 5938 else if (HASH_TABLE_P (obj))
41c28a37
GM
5939 {
5940 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
8f11f7ec
SM
5941 mark_vectorlike ((struct Lisp_Vector *)h);
5942 /* If hash table is not weak, mark all keys and values.
5943 For weak tables, mark only the vector. */
5944 if (NILP (h->weak))
5945 mark_object (h->key_and_value);
5946 else
5947 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5948 }
58026347 5949 else if (CHAR_TABLE_P (obj))
8f11f7ec 5950 mark_char_table (XVECTOR (obj));
04ff9756 5951 else
d2029e5b 5952 mark_vectorlike (XVECTOR (obj));
169ee243 5953 break;
7146af97 5954
7146af97
JB
5955 case Lisp_Symbol:
5956 {
c70bbf06 5957 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5958 struct Lisp_Symbol *ptrx;
5959
8f11f7ec
SM
5960 if (ptr->gcmarkbit)
5961 break;
4f5c1376 5962 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5963 ptr->gcmarkbit = 1;
49723c04
SM
5964 mark_object (ptr->function);
5965 mark_object (ptr->plist);
ce5b453a
SM
5966 switch (ptr->redirect)
5967 {
5968 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5969 case SYMBOL_VARALIAS:
5970 {
5971 Lisp_Object tem;
5972 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5973 mark_object (tem);
5974 break;
5975 }
5976 case SYMBOL_LOCALIZED:
5977 {
5978 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5979 /* If the value is forwarded to a buffer or keyboard field,
5980 these are marked when we see the corresponding object.
5981 And if it's forwarded to a C variable, either it's not
5982 a Lisp_Object var, or it's staticpro'd already. */
5983 mark_object (blv->where);
5984 mark_object (blv->valcell);
5985 mark_object (blv->defcell);
5986 break;
5987 }
5988 case SYMBOL_FORWARDED:
5989 /* If the value is forwarded to a buffer or keyboard field,
5990 these are marked when we see the corresponding object.
5991 And if it's forwarded to a C variable, either it's not
5992 a Lisp_Object var, or it's staticpro'd already. */
5993 break;
5994 default: abort ();
5995 }
8fe5665d
KR
5996 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5997 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5998 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5999
7146af97
JB
6000 ptr = ptr->next;
6001 if (ptr)
6002 {
b0846f52 6003 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 6004 XSETSYMBOL (obj, ptrx);
49723c04 6005 goto loop;
7146af97
JB
6006 }
6007 }
6008 break;
6009
a0a38eb7 6010 case Lisp_Misc:
4f5c1376 6011 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
67ee9f6e 6012 if (XMISCANY (obj)->gcmarkbit)
2336fe58 6013 break;
67ee9f6e 6014 XMISCANY (obj)->gcmarkbit = 1;
b766f870 6015
a5da44fe 6016 switch (XMISCTYPE (obj))
a0a38eb7 6017 {
465edf35 6018
2336fe58
SM
6019 case Lisp_Misc_Marker:
6020 /* DO NOT mark thru the marker's chain.
6021 The buffer's markers chain does not preserve markers from gc;
6022 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
6023 break;
6024
8f924df7 6025 case Lisp_Misc_Save_Value:
9ea306d1 6026#if GC_MARK_STACK
b766f870
KS
6027 {
6028 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6029 /* If DOGC is set, POINTER is the address of a memory
6030 area containing INTEGER potential Lisp_Objects. */
6031 if (ptr->dogc)
6032 {
6033 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
9c4c5f81 6034 ptrdiff_t nelt;
b766f870
KS
6035 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6036 mark_maybe_object (*p);
6037 }
6038 }
9ea306d1 6039#endif
c8616056
KH
6040 break;
6041
e202fa34
KH
6042 case Lisp_Misc_Overlay:
6043 {
6044 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
6045 mark_object (ptr->start);
6046 mark_object (ptr->end);
f54253ec
SM
6047 mark_object (ptr->plist);
6048 if (ptr->next)
6049 {
6050 XSETMISC (obj, ptr->next);
6051 goto loop;
6052 }
e202fa34
KH
6053 }
6054 break;
6055
a0a38eb7
KH
6056 default:
6057 abort ();
6058 }
7146af97
JB
6059 break;
6060
6061 case Lisp_Cons:
7146af97
JB
6062 {
6063 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
6064 if (CONS_MARKED_P (ptr))
6065 break;
4f5c1376 6066 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 6067 CONS_MARK (ptr);
c54ca951 6068 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 6069 if (EQ (ptr->u.cdr, Qnil))
c54ca951 6070 {
49723c04 6071 obj = ptr->car;
1342fc6f 6072 cdr_count = 0;
c54ca951
RS
6073 goto loop;
6074 }
49723c04 6075 mark_object (ptr->car);
28a099a4 6076 obj = ptr->u.cdr;
1342fc6f
RS
6077 cdr_count++;
6078 if (cdr_count == mark_object_loop_halt)
6079 abort ();
7146af97
JB
6080 goto loop;
6081 }
6082
7146af97 6083 case Lisp_Float:
4f5c1376 6084 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 6085 FLOAT_MARK (XFLOAT (obj));
7146af97 6086 break;
7146af97 6087
2de9f71c 6088 case_Lisp_Int:
7146af97
JB
6089 break;
6090
6091 default:
6092 abort ();
6093 }
4f5c1376
GM
6094
6095#undef CHECK_LIVE
6096#undef CHECK_ALLOCATED
6097#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
6098}
6099
6100/* Mark the pointers in a buffer structure. */
6101
6102static void
971de7fb 6103mark_buffer (Lisp_Object buf)
7146af97 6104{
7146af97 6105 register struct buffer *buffer = XBUFFER (buf);
f54253ec 6106 register Lisp_Object *ptr, tmp;
30e3190a 6107 Lisp_Object base_buffer;
7146af97 6108
8f11f7ec 6109 eassert (!VECTOR_MARKED_P (buffer));
3ef06d12 6110 VECTOR_MARK (buffer);
7146af97 6111
30e3190a 6112 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 6113
c37adf23
SM
6114 /* For now, we just don't mark the undo_list. It's done later in
6115 a special way just before the sweep phase, and after stripping
6116 some of its elements that are not needed any more. */
4c315bda 6117
f54253ec
SM
6118 if (buffer->overlays_before)
6119 {
6120 XSETMISC (tmp, buffer->overlays_before);
6121 mark_object (tmp);
6122 }
6123 if (buffer->overlays_after)
6124 {
6125 XSETMISC (tmp, buffer->overlays_after);
6126 mark_object (tmp);
6127 }
6128
9ce376f9
SM
6129 /* buffer-local Lisp variables start at `undo_list',
6130 tho only the ones from `name' on are GC'd normally. */
5d8ea120 6131 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
8a5c77bb
PE
6132 ptr <= &PER_BUFFER_VALUE (buffer,
6133 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
7146af97 6134 ptr++)
49723c04 6135 mark_object (*ptr);
30e3190a
RS
6136
6137 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 6138 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 6139 {
177c0ea7 6140 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
6141 mark_buffer (base_buffer);
6142 }
7146af97 6143}
084b1a0c 6144
4a729fd8 6145/* Mark the Lisp pointers in the terminal objects.
0ba2624f 6146 Called by Fgarbage_collect. */
4a729fd8 6147
4a729fd8
SM
6148static void
6149mark_terminals (void)
6150{
6151 struct terminal *t;
6152 for (t = terminal_list; t; t = t->next_terminal)
6153 {
6154 eassert (t->name != NULL);
354884c4 6155#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
6156 /* If a terminal object is reachable from a stacpro'ed object,
6157 it might have been marked already. Make sure the image cache
6158 gets marked. */
6159 mark_image_cache (t->image_cache);
354884c4 6160#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
6161 if (!VECTOR_MARKED_P (t))
6162 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
6163 }
6164}
6165
6166
084b1a0c 6167
41c28a37
GM
6168/* Value is non-zero if OBJ will survive the current GC because it's
6169 either marked or does not need to be marked to survive. */
6170
6171int
971de7fb 6172survives_gc_p (Lisp_Object obj)
41c28a37
GM
6173{
6174 int survives_p;
177c0ea7 6175
8e50cc2d 6176 switch (XTYPE (obj))
41c28a37 6177 {
2de9f71c 6178 case_Lisp_Int:
41c28a37
GM
6179 survives_p = 1;
6180 break;
6181
6182 case Lisp_Symbol:
2336fe58 6183 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
6184 break;
6185
6186 case Lisp_Misc:
67ee9f6e 6187 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
6188 break;
6189
6190 case Lisp_String:
08b7c2cb 6191 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
6192 break;
6193
6194 case Lisp_Vectorlike:
8e50cc2d 6195 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
6196 break;
6197
6198 case Lisp_Cons:
08b7c2cb 6199 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
6200 break;
6201
41c28a37 6202 case Lisp_Float:
ab6780cd 6203 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 6204 break;
41c28a37
GM
6205
6206 default:
6207 abort ();
6208 }
6209
34400008 6210 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
6211}
6212
6213
7146af97 6214\f
1a4f1e2c 6215/* Sweep: find all structures not marked, and free them. */
7146af97
JB
6216
6217static void
971de7fb 6218gc_sweep (void)
7146af97 6219{
41c28a37
GM
6220 /* Remove or mark entries in weak hash tables.
6221 This must be done before any object is unmarked. */
6222 sweep_weak_hash_tables ();
6223
2e471eb5 6224 sweep_strings ();
676a7251
GM
6225#ifdef GC_CHECK_STRING_BYTES
6226 if (!noninteractive)
6227 check_string_bytes (1);
6228#endif
7146af97
JB
6229
6230 /* Put all unmarked conses on free list */
6231 {
6232 register struct cons_block *cblk;
6ca94ac9 6233 struct cons_block **cprev = &cons_block;
7146af97 6234 register int lim = cons_block_index;
c0c5c8ae 6235 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6236
6237 cons_free_list = 0;
177c0ea7 6238
6ca94ac9 6239 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 6240 {
3ae2e3a3 6241 register int i = 0;
6ca94ac9 6242 int this_free = 0;
3ae2e3a3
RS
6243 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6244
6245 /* Scan the mark bits an int at a time. */
47ea7f44 6246 for (i = 0; i < ilim; i++)
3ae2e3a3
RS
6247 {
6248 if (cblk->gcmarkbits[i] == -1)
6249 {
6250 /* Fast path - all cons cells for this int are marked. */
6251 cblk->gcmarkbits[i] = 0;
6252 num_used += BITS_PER_INT;
6253 }
6254 else
6255 {
6256 /* Some cons cells for this int are not marked.
6257 Find which ones, and free them. */
6258 int start, pos, stop;
6259
6260 start = i * BITS_PER_INT;
6261 stop = lim - start;
6262 if (stop > BITS_PER_INT)
6263 stop = BITS_PER_INT;
6264 stop += start;
6265
6266 for (pos = start; pos < stop; pos++)
6267 {
6268 if (!CONS_MARKED_P (&cblk->conses[pos]))
6269 {
6270 this_free++;
6271 cblk->conses[pos].u.chain = cons_free_list;
6272 cons_free_list = &cblk->conses[pos];
34400008 6273#if GC_MARK_STACK
3ae2e3a3 6274 cons_free_list->car = Vdead;
34400008 6275#endif
3ae2e3a3
RS
6276 }
6277 else
6278 {
6279 num_used++;
6280 CONS_UNMARK (&cblk->conses[pos]);
6281 }
6282 }
6283 }
6284 }
6285
7146af97 6286 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
6287 /* If this block contains only free conses and we have already
6288 seen more than two blocks worth of free conses then deallocate
6289 this block. */
6feef451 6290 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 6291 {
6ca94ac9
KH
6292 *cprev = cblk->next;
6293 /* Unhook from the free list. */
28a099a4 6294 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 6295 lisp_align_free (cblk);
6ca94ac9
KH
6296 }
6297 else
6feef451
AS
6298 {
6299 num_free += this_free;
6300 cprev = &cblk->next;
6301 }
7146af97
JB
6302 }
6303 total_conses = num_used;
6304 total_free_conses = num_free;
6305 }
6306
7146af97
JB
6307 /* Put all unmarked floats on free list */
6308 {
6309 register struct float_block *fblk;
6ca94ac9 6310 struct float_block **fprev = &float_block;
7146af97 6311 register int lim = float_block_index;
c0c5c8ae 6312 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6313
6314 float_free_list = 0;
177c0ea7 6315
6ca94ac9 6316 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
6317 {
6318 register int i;
6ca94ac9 6319 int this_free = 0;
7146af97 6320 for (i = 0; i < lim; i++)
ab6780cd 6321 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 6322 {
6ca94ac9 6323 this_free++;
28a099a4 6324 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
6325 float_free_list = &fblk->floats[i];
6326 }
6327 else
6328 {
6329 num_used++;
ab6780cd 6330 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
6331 }
6332 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
6333 /* If this block contains only free floats and we have already
6334 seen more than two blocks worth of free floats then deallocate
6335 this block. */
6feef451 6336 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 6337 {
6ca94ac9
KH
6338 *fprev = fblk->next;
6339 /* Unhook from the free list. */
28a099a4 6340 float_free_list = fblk->floats[0].u.chain;
ab6780cd 6341 lisp_align_free (fblk);
6ca94ac9
KH
6342 }
6343 else
6feef451
AS
6344 {
6345 num_free += this_free;
6346 fprev = &fblk->next;
6347 }
7146af97
JB
6348 }
6349 total_floats = num_used;
6350 total_free_floats = num_free;
6351 }
7146af97 6352
d5e35230
JA
6353 /* Put all unmarked intervals on free list */
6354 {
6355 register struct interval_block *iblk;
6ca94ac9 6356 struct interval_block **iprev = &interval_block;
d5e35230 6357 register int lim = interval_block_index;
c0c5c8ae 6358 EMACS_INT num_free = 0, num_used = 0;
d5e35230
JA
6359
6360 interval_free_list = 0;
6361
6ca94ac9 6362 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
6363 {
6364 register int i;
6ca94ac9 6365 int this_free = 0;
d5e35230
JA
6366
6367 for (i = 0; i < lim; i++)
6368 {
2336fe58 6369 if (!iblk->intervals[i].gcmarkbit)
d5e35230 6370 {
439d5cb4 6371 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 6372 interval_free_list = &iblk->intervals[i];
6ca94ac9 6373 this_free++;
d5e35230
JA
6374 }
6375 else
6376 {
6377 num_used++;
2336fe58 6378 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
6379 }
6380 }
6381 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
6382 /* If this block contains only free intervals and we have already
6383 seen more than two blocks worth of free intervals then
6384 deallocate this block. */
6feef451 6385 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 6386 {
6ca94ac9
KH
6387 *iprev = iblk->next;
6388 /* Unhook from the free list. */
439d5cb4 6389 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634 6390 lisp_free (iblk);
6ca94ac9
KH
6391 }
6392 else
6feef451
AS
6393 {
6394 num_free += this_free;
6395 iprev = &iblk->next;
6396 }
d5e35230
JA
6397 }
6398 total_intervals = num_used;
6399 total_free_intervals = num_free;
6400 }
d5e35230 6401
7146af97
JB
6402 /* Put all unmarked symbols on free list */
6403 {
6404 register struct symbol_block *sblk;
6ca94ac9 6405 struct symbol_block **sprev = &symbol_block;
7146af97 6406 register int lim = symbol_block_index;
c0c5c8ae 6407 EMACS_INT num_free = 0, num_used = 0;
7146af97 6408
d285b373 6409 symbol_free_list = NULL;
177c0ea7 6410
6ca94ac9 6411 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 6412 {
6ca94ac9 6413 int this_free = 0;
d55c12ed
AS
6414 union aligned_Lisp_Symbol *sym = sblk->symbols;
6415 union aligned_Lisp_Symbol *end = sym + lim;
d285b373
GM
6416
6417 for (; sym < end; ++sym)
6418 {
20035321
SM
6419 /* Check if the symbol was created during loadup. In such a case
6420 it might be pointed to by pure bytecode which we don't trace,
6421 so we conservatively assume that it is live. */
d55c12ed 6422 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
177c0ea7 6423
d55c12ed 6424 if (!sym->s.gcmarkbit && !pure_p)
d285b373 6425 {
d55c12ed
AS
6426 if (sym->s.redirect == SYMBOL_LOCALIZED)
6427 xfree (SYMBOL_BLV (&sym->s));
6428 sym->s.next = symbol_free_list;
6429 symbol_free_list = &sym->s;
34400008 6430#if GC_MARK_STACK
d285b373 6431 symbol_free_list->function = Vdead;
34400008 6432#endif
d285b373
GM
6433 ++this_free;
6434 }
6435 else
6436 {
6437 ++num_used;
6438 if (!pure_p)
d55c12ed
AS
6439 UNMARK_STRING (XSTRING (sym->s.xname));
6440 sym->s.gcmarkbit = 0;
d285b373
GM
6441 }
6442 }
177c0ea7 6443
7146af97 6444 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6445 /* If this block contains only free symbols and we have already
6446 seen more than two blocks worth of free symbols then deallocate
6447 this block. */
6feef451 6448 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6449 {
6ca94ac9
KH
6450 *sprev = sblk->next;
6451 /* Unhook from the free list. */
d55c12ed 6452 symbol_free_list = sblk->symbols[0].s.next;
c8099634 6453 lisp_free (sblk);
6ca94ac9
KH
6454 }
6455 else
6feef451
AS
6456 {
6457 num_free += this_free;
6458 sprev = &sblk->next;
6459 }
7146af97
JB
6460 }
6461 total_symbols = num_used;
6462 total_free_symbols = num_free;
6463 }
6464
a9faeabe
RS
6465 /* Put all unmarked misc's on free list.
6466 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6467 {
6468 register struct marker_block *mblk;
6ca94ac9 6469 struct marker_block **mprev = &marker_block;
7146af97 6470 register int lim = marker_block_index;
c0c5c8ae 6471 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6472
6473 marker_free_list = 0;
177c0ea7 6474
6ca94ac9 6475 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6476 {
6477 register int i;
6ca94ac9 6478 int this_free = 0;
fa05e253 6479
7146af97 6480 for (i = 0; i < lim; i++)
465edf35 6481 {
d55c12ed 6482 if (!mblk->markers[i].m.u_any.gcmarkbit)
465edf35 6483 {
d55c12ed
AS
6484 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6485 unchain_marker (&mblk->markers[i].m.u_marker);
fa05e253
RS
6486 /* Set the type of the freed object to Lisp_Misc_Free.
6487 We could leave the type alone, since nobody checks it,
465edf35 6488 but this might catch bugs faster. */
d55c12ed
AS
6489 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6490 mblk->markers[i].m.u_free.chain = marker_free_list;
6491 marker_free_list = &mblk->markers[i].m;
6ca94ac9 6492 this_free++;
465edf35
KH
6493 }
6494 else
6495 {
6496 num_used++;
d55c12ed 6497 mblk->markers[i].m.u_any.gcmarkbit = 0;
465edf35
KH
6498 }
6499 }
7146af97 6500 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6501 /* If this block contains only free markers and we have already
6502 seen more than two blocks worth of free markers then deallocate
6503 this block. */
6feef451 6504 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6505 {
6ca94ac9
KH
6506 *mprev = mblk->next;
6507 /* Unhook from the free list. */
d55c12ed 6508 marker_free_list = mblk->markers[0].m.u_free.chain;
c8099634 6509 lisp_free (mblk);
6ca94ac9
KH
6510 }
6511 else
6feef451
AS
6512 {
6513 num_free += this_free;
6514 mprev = &mblk->next;
6515 }
7146af97
JB
6516 }
6517
6518 total_markers = num_used;
6519 total_free_markers = num_free;
6520 }
6521
6522 /* Free all unmarked buffers */
6523 {
6524 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6525
6526 while (buffer)
3ef06d12 6527 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6528 {
6529 if (prev)
eab3844f 6530 prev->header.next = buffer->header.next;
7146af97 6531 else
eab3844f
PE
6532 all_buffers = buffer->header.next.buffer;
6533 next = buffer->header.next.buffer;
34400008 6534 lisp_free (buffer);
7146af97
JB
6535 buffer = next;
6536 }
6537 else
6538 {
3ef06d12 6539 VECTOR_UNMARK (buffer);
30e3190a 6540 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
eab3844f 6541 prev = buffer, buffer = buffer->header.next.buffer;
7146af97
JB
6542 }
6543 }
6544
f3372c87 6545 sweep_vectors ();
177c0ea7 6546
676a7251
GM
6547#ifdef GC_CHECK_STRING_BYTES
6548 if (!noninteractive)
6549 check_string_bytes (1);
6550#endif
7146af97 6551}
7146af97 6552
7146af97 6553
7146af97 6554
7146af97 6555\f
20d24714
JB
6556/* Debugging aids. */
6557
31ce1c91 6558DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6559 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6560This may be helpful in debugging Emacs's memory usage.
7ee72033 6561We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6562 (void)
20d24714
JB
6563{
6564 Lisp_Object end;
6565
d01a7826 6566 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
20d24714
JB
6567
6568 return end;
6569}
6570
310ea200 6571DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6572 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6573Each of these counters increments for a certain kind of object.
6574The counters wrap around from the largest positive integer to zero.
6575Garbage collection does not decrease them.
6576The elements of the value are as follows:
6577 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6578All are in units of 1 = one object consed
6579except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6580objects consed.
6581MISCS include overlays, markers, and some internal types.
6582Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6583 (but the contents of a buffer's text do not count here). */)
5842a27b 6584 (void)
310ea200 6585{
2e471eb5 6586 Lisp_Object consed[8];
310ea200 6587
78e985eb
GM
6588 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6589 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6590 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6591 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6592 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6593 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6594 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6595 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6596
2e471eb5 6597 return Flist (8, consed);
310ea200 6598}
e0b8c689 6599
8b058d44
EZ
6600/* Find at most FIND_MAX symbols which have OBJ as their value or
6601 function. This is used in gdbinit's `xwhichsymbols' command. */
6602
6603Lisp_Object
196e41e4 6604which_symbols (Lisp_Object obj, EMACS_INT find_max)
8b058d44
EZ
6605{
6606 struct symbol_block *sblk;
8d0eb4c2 6607 ptrdiff_t gc_count = inhibit_garbage_collection ();
8b058d44
EZ
6608 Lisp_Object found = Qnil;
6609
ca78dc43 6610 if (! DEADP (obj))
8b058d44
EZ
6611 {
6612 for (sblk = symbol_block; sblk; sblk = sblk->next)
6613 {
9426aba4 6614 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
8b058d44
EZ
6615 int bn;
6616
9426aba4 6617 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
8b058d44 6618 {
9426aba4 6619 struct Lisp_Symbol *sym = &aligned_sym->s;
8b058d44
EZ
6620 Lisp_Object val;
6621 Lisp_Object tem;
6622
6623 if (sblk == symbol_block && bn >= symbol_block_index)
6624 break;
6625
6626 XSETSYMBOL (tem, sym);
6627 val = find_symbol_value (tem);
6628 if (EQ (val, obj)
6629 || EQ (sym->function, obj)
6630 || (!NILP (sym->function)
6631 && COMPILEDP (sym->function)
6632 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6633 || (!NILP (val)
6634 && COMPILEDP (val)
6635 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6636 {
6637 found = Fcons (tem, found);
6638 if (--find_max == 0)
6639 goto out;
6640 }
6641 }
6642 }
6643 }
6644
6645 out:
6646 unbind_to (gc_count, Qnil);
6647 return found;
6648}
6649
244ed907 6650#ifdef ENABLE_CHECKING
e0b8c689 6651int suppress_checking;
d3d47262 6652
e0b8c689 6653void
971de7fb 6654die (const char *msg, const char *file, int line)
e0b8c689 6655{
67ee9f6e 6656 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6657 file, line, msg);
6658 abort ();
6659}
244ed907 6660#endif
20d24714 6661\f
7146af97
JB
6662/* Initialization */
6663
dfcf069d 6664void
971de7fb 6665init_alloc_once (void)
7146af97
JB
6666{
6667 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6668 purebeg = PUREBEG;
6669 pure_size = PURESIZE;
1f0b3fd2 6670 pure_bytes_used = 0;
e5bc14d4 6671 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
9e713715
GM
6672 pure_bytes_used_before_overflow = 0;
6673
ab6780cd
SM
6674 /* Initialize the list of free aligned blocks. */
6675 free_ablock = NULL;
6676
877935b1 6677#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6678 mem_init ();
6679 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6680#endif
9e713715 6681
7146af97 6682 ignore_warnings = 1;
d1658221
RS
6683#ifdef DOUG_LEA_MALLOC
6684 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6685 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6686 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6687#endif
7146af97
JB
6688 init_strings ();
6689 init_cons ();
6690 init_symbol ();
6691 init_marker ();
7146af97 6692 init_float ();
34400008 6693 init_intervals ();
f3372c87 6694 init_vectors ();
5ac58e4c 6695 init_weak_hash_tables ();
d5e35230 6696
276cbe5a
RS
6697#ifdef REL_ALLOC
6698 malloc_hysteresis = 32;
6699#else
6700 malloc_hysteresis = 0;
6701#endif
6702
24d8a105 6703 refill_memory_reserve ();
276cbe5a 6704
7146af97
JB
6705 ignore_warnings = 0;
6706 gcprolist = 0;
630686c8 6707 byte_stack_list = 0;
7146af97
JB
6708 staticidx = 0;
6709 consing_since_gc = 0;
7d179cea 6710 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61 6711 gc_relative_threshold = 0;
7146af97
JB
6712}
6713
dfcf069d 6714void
971de7fb 6715init_alloc (void)
7146af97
JB
6716{
6717 gcprolist = 0;
630686c8 6718 byte_stack_list = 0;
182ff242
GM
6719#if GC_MARK_STACK
6720#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6721 setjmp_tested_p = longjmps_done = 0;
6722#endif
6723#endif
2c5bd608
DL
6724 Vgc_elapsed = make_float (0.0);
6725 gcs_done = 0;
7146af97
JB
6726}
6727
6728void
971de7fb 6729syms_of_alloc (void)
7146af97 6730{
29208e82 6731 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
fb7ada5f 6732 doc: /* Number of bytes of consing between garbage collections.
228299fa
GM
6733Garbage collection can happen automatically once this many bytes have been
6734allocated since the last garbage collection. All data types count.
7146af97 6735
228299fa 6736Garbage collection happens automatically only when `eval' is called.
7146af97 6737
228299fa 6738By binding this temporarily to a large number, you can effectively
96f077ad
SM
6739prevent garbage collection during a part of the program.
6740See also `gc-cons-percentage'. */);
6741
29208e82 6742 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
fb7ada5f 6743 doc: /* Portion of the heap used for allocation.
96f077ad
SM
6744Garbage collection can happen automatically once this portion of the heap
6745has been allocated since the last garbage collection.
6746If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6747 Vgc_cons_percentage = make_float (0.1);
0819585c 6748
29208e82 6749 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
333f9019 6750 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
0819585c 6751
29208e82 6752 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6753 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6754
29208e82 6755 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6756 doc: /* Number of floats that have been consed so far. */);
0819585c 6757
29208e82 6758 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6759 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6760
29208e82 6761 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6762 doc: /* Number of symbols that have been consed so far. */);
0819585c 6763
29208e82 6764 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6765 doc: /* Number of string characters that have been consed so far. */);
0819585c 6766
29208e82 6767 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
01a6dcc8
GM
6768 doc: /* Number of miscellaneous objects that have been consed so far.
6769These include markers and overlays, plus certain objects not visible
6770to users. */);
2e471eb5 6771
29208e82 6772 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6773 doc: /* Number of intervals that have been consed so far. */);
7146af97 6774
29208e82 6775 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6776 doc: /* Number of strings that have been consed so far. */);
228299fa 6777
29208e82 6778 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6779 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6780This means that certain objects should be allocated in shared (pure) space.
6781It can also be set to a hash-table, in which case this table is used to
6782do hash-consing of the objects allocated to pure space. */);
228299fa 6783
29208e82 6784 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6785 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6786 garbage_collection_messages = 0;
6787
29208e82 6788 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6789 doc: /* Hook run after garbage collection has finished. */);
9e713715 6790 Vpost_gc_hook = Qnil;
cd3520a4 6791 DEFSYM (Qpost_gc_hook, "post-gc-hook");
9e713715 6792
29208e82 6793 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6794 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6795 /* We build this in advance because if we wait until we need it, we might
6796 not be able to allocate the memory to hold it. */
74a54b04 6797 Vmemory_signal_data
f4265f6c
DN
6798 = pure_cons (Qerror,
6799 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
74a54b04 6800
29208e82 6801 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6802 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6803 Vmemory_full = Qnil;
bcb61d60 6804
cd3520a4
JB
6805 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6806 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
a59de17b 6807
29208e82 6808 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6809 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6810The time is in seconds as a floating point value. */);
29208e82 6811 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6812 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6813
7146af97
JB
6814 defsubr (&Scons);
6815 defsubr (&Slist);
6816 defsubr (&Svector);
6817 defsubr (&Smake_byte_code);
6818 defsubr (&Smake_list);
6819 defsubr (&Smake_vector);
6820 defsubr (&Smake_string);
7b07587b 6821 defsubr (&Smake_bool_vector);
7146af97
JB
6822 defsubr (&Smake_symbol);
6823 defsubr (&Smake_marker);
6824 defsubr (&Spurecopy);
6825 defsubr (&Sgarbage_collect);
20d24714 6826 defsubr (&Smemory_limit);
310ea200 6827 defsubr (&Smemory_use_counts);
34400008
GM
6828
6829#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6830 defsubr (&Sgc_status);
6831#endif
7146af97 6832}