Fix resume so it uses G53 to restore position
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
CommitLineData
df27a6a3 1/*
aab6cbba 2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
4cff3ded
AW
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
df27a6a3 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
5673fe39 10
c3df978d
JM
11#include "mbed.h" // for us_ticker_read()
12
fb4c9d09 13#include <fastmath.h>
4cff3ded
AW
14#include <string>
15using std::string;
5673fe39 16
4cff3ded 17#include "Planner.h"
3fceb8eb 18#include "Conveyor.h"
4cff3ded 19#include "Robot.h"
5673fe39
MM
20#include "nuts_bolts.h"
21#include "Pin.h"
22#include "StepperMotor.h"
23#include "Gcode.h"
5647f709 24#include "PublicDataRequest.h"
928467c0 25#include "PublicData.h"
4cff3ded
AW
26#include "arm_solutions/BaseSolution.h"
27#include "arm_solutions/CartesianSolution.h"
c41d6d95 28#include "arm_solutions/RotatableCartesianSolution.h"
2a06c415 29#include "arm_solutions/LinearDeltaSolution.h"
11a39396 30#include "arm_solutions/RotaryDeltaSolution.h"
bdaaa75d 31#include "arm_solutions/HBotSolution.h"
fff1e42d 32#include "arm_solutions/CoreXZSolution.h"
1217e470 33#include "arm_solutions/MorganSCARASolution.h"
61134a65 34#include "StepTicker.h"
7af0714f
JM
35#include "checksumm.h"
36#include "utils.h"
8d54c34c 37#include "ConfigValue.h"
5966b7d0 38#include "libs/StreamOutput.h"
dd0a7cfa 39#include "StreamOutputPool.h"
928467c0 40#include "ExtruderPublicAccess.h"
0ec2f63a
JM
41#include "GcodeDispatch.h"
42
38bf9a1c 43
78d0e16a
MM
44#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
45#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
46#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
47#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
48#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
49#define arc_correction_checksum CHECKSUM("arc_correction")
50#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
51#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
52#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
a3e1326a 53#define segment_z_moves_checksum CHECKSUM("segment_z_moves")
3aad33c7 54#define save_g92_checksum CHECKSUM("save_g92")
43424972
JM
55
56// arm solutions
78d0e16a
MM
57#define arm_solution_checksum CHECKSUM("arm_solution")
58#define cartesian_checksum CHECKSUM("cartesian")
59#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
60#define rostock_checksum CHECKSUM("rostock")
2a06c415 61#define linear_delta_checksum CHECKSUM("linear_delta")
11a39396 62#define rotary_delta_checksum CHECKSUM("rotary_delta")
78d0e16a
MM
63#define delta_checksum CHECKSUM("delta")
64#define hbot_checksum CHECKSUM("hbot")
65#define corexy_checksum CHECKSUM("corexy")
fff1e42d 66#define corexz_checksum CHECKSUM("corexz")
78d0e16a 67#define kossel_checksum CHECKSUM("kossel")
1217e470 68#define morgan_checksum CHECKSUM("morgan")
78d0e16a 69
78d0e16a
MM
70// new-style actuator stuff
71#define actuator_checksum CHEKCSUM("actuator")
72
73#define step_pin_checksum CHECKSUM("step_pin")
74#define dir_pin_checksum CHEKCSUM("dir_pin")
75#define en_pin_checksum CHECKSUM("en_pin")
76
77#define steps_per_mm_checksum CHECKSUM("steps_per_mm")
df6a30f2 78#define max_rate_checksum CHECKSUM("max_rate")
78d0e16a
MM
79
80#define alpha_checksum CHECKSUM("alpha")
81#define beta_checksum CHECKSUM("beta")
82#define gamma_checksum CHECKSUM("gamma")
83
38bf9a1c
JM
84#define NEXT_ACTION_DEFAULT 0
85#define NEXT_ACTION_DWELL 1
86#define NEXT_ACTION_GO_HOME 2
87
88#define MOTION_MODE_SEEK 0 // G0
89#define MOTION_MODE_LINEAR 1 // G1
90#define MOTION_MODE_CW_ARC 2 // G2
91#define MOTION_MODE_CCW_ARC 3 // G3
92#define MOTION_MODE_CANCEL 4 // G80
93
94#define PATH_CONTROL_MODE_EXACT_PATH 0
95#define PATH_CONTROL_MODE_EXACT_STOP 1
96#define PATH_CONTROL_MODE_CONTINOUS 2
97
98#define PROGRAM_FLOW_RUNNING 0
99#define PROGRAM_FLOW_PAUSED 1
100#define PROGRAM_FLOW_COMPLETED 2
101
102#define SPINDLE_DIRECTION_CW 0
103#define SPINDLE_DIRECTION_CCW 1
104
5fa0c173
PA
105#define ARC_ANGULAR_TRAVEL_EPSILON 5E-7 // Float (radians)
106
edac9072
AW
107// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
108// It takes care of cutting arcs into segments, same thing for line that are too long
109
4710532a
JM
110Robot::Robot()
111{
a1b7e9f0 112 this->inch_mode = false;
0e8b102e 113 this->absolute_mode = true;
df27a6a3 114 this->motion_mode = MOTION_MODE_SEEK;
4cff3ded 115 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
df27a6a3 116 clear_vector(this->last_milestone);
c2f7c261 117 clear_vector(this->last_machine_position);
0b804a41 118 this->arm_solution = NULL;
da947c62 119 seconds_per_minute = 60.0F;
fae93525 120 this->clearToolOffset();
03b01bac
JM
121 this->compensationTransform = nullptr;
122 this->wcs_offsets.fill(wcs_t(0.0F, 0.0F, 0.0F));
123 this->g92_offset = wcs_t(0.0F, 0.0F, 0.0F);
a6bbe768 124 this->next_command_is_MCS = false;
778093ce 125 this->disable_segmentation= false;
4cff3ded
AW
126}
127
128//Called when the module has just been loaded
4710532a
JM
129void Robot::on_module_loaded()
130{
4cff3ded
AW
131 this->register_for_event(ON_GCODE_RECEIVED);
132
133 // Configuration
807b9b57 134 this->load_config();
da24d6ae
AW
135}
136
807b9b57
JM
137#define ACTUATOR_CHECKSUMS(X) { \
138 CHECKSUM(X "_step_pin"), \
139 CHECKSUM(X "_dir_pin"), \
140 CHECKSUM(X "_en_pin"), \
141 CHECKSUM(X "_steps_per_mm"), \
142 CHECKSUM(X "_max_rate") \
143}
5984acdf 144
807b9b57
JM
145void Robot::load_config()
146{
edac9072
AW
147 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
148 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
149 // To make adding those solution easier, they have their own, separate object.
5984acdf 150 // Here we read the config to find out which arm solution to use
0b804a41 151 if (this->arm_solution) delete this->arm_solution;
eda9facc 152 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
d149c730 153 // Note checksums are not const expressions when in debug mode, so don't use switch
98761c28 154 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
314ab8f7 155 this->arm_solution = new HBotSolution(THEKERNEL->config);
bdaaa75d 156
fff1e42d
JJ
157 } else if(solution_checksum == corexz_checksum) {
158 this->arm_solution = new CoreXZSolution(THEKERNEL->config);
159
2a06c415
JM
160 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
161 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
73a4e3c0 162
4710532a 163 } else if(solution_checksum == rotatable_cartesian_checksum) {
314ab8f7 164 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
b73a756d 165
11a39396
JM
166 } else if(solution_checksum == rotary_delta_checksum) {
167 this->arm_solution = new RotaryDeltaSolution(THEKERNEL->config);
c52b8675 168
1217e470
QH
169 } else if(solution_checksum == morgan_checksum) {
170 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
171
4710532a 172 } else if(solution_checksum == cartesian_checksum) {
314ab8f7 173 this->arm_solution = new CartesianSolution(THEKERNEL->config);
73a4e3c0 174
4710532a 175 } else {
314ab8f7 176 this->arm_solution = new CartesianSolution(THEKERNEL->config);
d149c730 177 }
73a4e3c0 178
6b661ab3
DP
179 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
180 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
181 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
182 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
183 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.5f)->as_number();
184 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
78d0e16a 185
6b661ab3
DP
186 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
187 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
188 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
feb204be 189
a3e1326a 190 this->segment_z_moves = THEKERNEL->config->value(segment_z_moves_checksum )->by_default(true)->as_bool();
3aad33c7 191 this->save_g92 = THEKERNEL->config->value(save_g92_checksum )->by_default(false)->as_bool();
a3e1326a 192
78d0e16a 193 // Make our 3 StepperMotors
807b9b57
JM
194 uint16_t const checksums[][5] = {
195 ACTUATOR_CHECKSUMS("alpha"),
196 ACTUATOR_CHECKSUMS("beta"),
197 ACTUATOR_CHECKSUMS("gamma"),
198#if MAX_ROBOT_ACTUATORS > 3
199 ACTUATOR_CHECKSUMS("delta"),
200 ACTUATOR_CHECKSUMS("epsilon"),
201 ACTUATOR_CHECKSUMS("zeta")
202#endif
203 };
03b01bac 204 constexpr size_t actuator_checksum_count = sizeof(checksums) / sizeof(checksums[0]);
807b9b57
JM
205 static_assert(actuator_checksum_count >= k_max_actuators, "Robot checksum array too small for k_max_actuators");
206
207 size_t motor_count = std::min(this->arm_solution->get_actuator_count(), k_max_actuators);
208 for (size_t a = 0; a < motor_count; a++) {
209 Pin pins[3]; //step, dir, enable
210 for (size_t i = 0; i < 3; i++) {
211 pins[i].from_string(THEKERNEL->config->value(checksums[a][i])->by_default("nc")->as_string())->as_output();
212 }
03b01bac 213 actuators[a] = new StepperMotor(pins[0], pins[1], pins[2]);
78d0e16a 214
03b01bac 215 actuators[a]->change_steps_per_mm(THEKERNEL->config->value(checksums[a][3])->by_default(a == 2 ? 2560.0F : 80.0F)->as_number());
3702f300 216 actuators[a]->set_max_rate(THEKERNEL->config->value(checksums[a][4])->by_default(30000.0F)->as_number()/60.0F); // it is in mm/min and converted to mm/sec
807b9b57 217 }
a84f0186 218
dd0a7cfa 219 check_max_actuator_speeds(); // check the configs are sane
df6a30f2 220
975469ad
MM
221 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
222 // so the first move can be correct if homing is not performed
807b9b57 223 ActuatorCoordinates actuator_pos;
975469ad 224 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
807b9b57 225 for (size_t i = 0; i < actuators.size(); i++)
975469ad 226 actuators[i]->change_last_milestone(actuator_pos[i]);
5966b7d0
AT
227
228 //this->clearToolOffset();
4cff3ded
AW
229}
230
212caccd
JM
231void Robot::push_state()
232{
03b01bac
JM
233 bool am = this->absolute_mode;
234 bool im = this->inch_mode;
a6bbe768 235 saved_state_t s(this->feed_rate, this->seek_rate, am, im, current_wcs);
212caccd
JM
236 state_stack.push(s);
237}
238
239void Robot::pop_state()
240{
03b01bac
JM
241 if(!state_stack.empty()) {
242 auto s = state_stack.top();
212caccd 243 state_stack.pop();
03b01bac
JM
244 this->feed_rate = std::get<0>(s);
245 this->seek_rate = std::get<1>(s);
246 this->absolute_mode = std::get<2>(s);
247 this->inch_mode = std::get<3>(s);
a6bbe768 248 this->current_wcs = std::get<4>(s);
212caccd
JM
249 }
250}
251
34210908
JM
252std::vector<Robot::wcs_t> Robot::get_wcs_state() const
253{
254 std::vector<wcs_t> v;
0b8b81b6 255 v.push_back(wcs_t(current_wcs, MAX_WCS, 0));
34210908
JM
256 for(auto& i : wcs_offsets) {
257 v.push_back(i);
258 }
259 v.push_back(g92_offset);
260 v.push_back(tool_offset);
261 return v;
262}
263
e03f2747 264int Robot::print_position(uint8_t subcode, char *buf, size_t bufsize) const
2791c829
JM
265{
266 // M114.1 is a new way to do this (similar to how GRBL does it).
267 // it returns the realtime position based on the current step position of the actuators.
268 // this does require a FK to get a machine position from the actuator position
269 // and then invert all the transforms to get a workspace position from machine position
a3be54e3 270 // M114 just does it the old way uses last_milestone and does inversse transforms to get the requested position
2791c829 271 int n = 0;
e03f2747 272 if(subcode == 0) { // M114 print WCS
2791c829 273 wcs_t pos= mcs2wcs(last_milestone);
31c6c2c2 274 n = snprintf(buf, bufsize, "C: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
2791c829 275
df4574e0 276 } else if(subcode == 4) { // M114.4 print last milestone (which should be the same as machine position if axis are not moving and no level compensation)
31c6c2c2 277 n = snprintf(buf, bufsize, "LMS: X:%1.4f Y:%1.4f Z:%1.4f", last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
2791c829 278
df4574e0 279 } else if(subcode == 5) { // M114.5 print last machine position (which should be the same as M114.1 if axis are not moving and no level compensation)
cf6b8fd1 280 n = snprintf(buf, bufsize, "LMP: X:%1.4f Y:%1.4f Z:%1.4f", last_machine_position[X_AXIS], last_machine_position[Y_AXIS], last_machine_position[Z_AXIS]);
2791c829
JM
281
282 } else {
283 // get real time positions
284 // current actuator position in mm
285 ActuatorCoordinates current_position{
286 actuators[X_AXIS]->get_current_position(),
287 actuators[Y_AXIS]->get_current_position(),
288 actuators[Z_AXIS]->get_current_position()
289 };
290
291 // get machine position from the actuator position using FK
292 float mpos[3];
293 arm_solution->actuator_to_cartesian(current_position, mpos);
294
e03f2747 295 if(subcode == 1) { // M114.1 print realtime WCS
2791c829
JM
296 // FIXME this currently includes the compensation transform which is incorrect so will be slightly off if it is in effect (but by very little)
297 wcs_t pos= mcs2wcs(mpos);
31c6c2c2 298 n = snprintf(buf, bufsize, "C: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
2791c829 299
df4574e0 300 } else if(subcode == 2) { // M114.2 print realtime Machine coordinate system
31c6c2c2 301 n = snprintf(buf, bufsize, "MPOS: X:%1.4f Y:%1.4f Z:%1.4f", mpos[X_AXIS], mpos[Y_AXIS], mpos[Z_AXIS]);
2791c829 302
df4574e0 303 } else if(subcode == 3) { // M114.3 print realtime actuator position
31c6c2c2 304 n = snprintf(buf, bufsize, "APOS: A:%1.4f B:%1.4f C:%1.4f", current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
2791c829
JM
305 }
306 }
e03f2747 307 return n;
2791c829
JM
308}
309
dc27139b 310// converts current last milestone (machine position without compensation transform) to work coordinate system (inverse transform)
31c6c2c2 311Robot::wcs_t Robot::mcs2wcs(const Robot::wcs_t& pos) const
dc27139b
JM
312{
313 return std::make_tuple(
31c6c2c2
JM
314 std::get<X_AXIS>(pos) - std::get<X_AXIS>(wcs_offsets[current_wcs]) + std::get<X_AXIS>(g92_offset) - std::get<X_AXIS>(tool_offset),
315 std::get<Y_AXIS>(pos) - std::get<Y_AXIS>(wcs_offsets[current_wcs]) + std::get<Y_AXIS>(g92_offset) - std::get<Y_AXIS>(tool_offset),
316 std::get<Z_AXIS>(pos) - std::get<Z_AXIS>(wcs_offsets[current_wcs]) + std::get<Z_AXIS>(g92_offset) - std::get<Z_AXIS>(tool_offset)
dc27139b
JM
317 );
318}
319
dd0a7cfa
JM
320// this does a sanity check that actuator speeds do not exceed steps rate capability
321// we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
322void Robot::check_max_actuator_speeds()
323{
807b9b57
JM
324 for (size_t i = 0; i < actuators.size(); i++) {
325 float step_freq = actuators[i]->get_max_rate() * actuators[i]->get_steps_per_mm();
326 if (step_freq > THEKERNEL->base_stepping_frequency) {
327 actuators[i]->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / actuators[i]->get_steps_per_mm()));
03b01bac 328 THEKERNEL->streams->printf("WARNING: actuator %c rate exceeds base_stepping_frequency * alpha_steps_per_mm: %f, setting to %f\n", 'A' + i, step_freq, actuators[i]->max_rate);
807b9b57 329 }
dd0a7cfa
JM
330 }
331}
332
4cff3ded 333//A GCode has been received
edac9072 334//See if the current Gcode line has some orders for us
4710532a
JM
335void Robot::on_gcode_received(void *argument)
336{
337 Gcode *gcode = static_cast<Gcode *>(argument);
6bc4a00a 338
23c90ba6 339 this->motion_mode = -1;
4cff3ded 340
4710532a
JM
341 if( gcode->has_g) {
342 switch( gcode->g ) {
c2f7c261
JM
343 case 0: this->motion_mode = MOTION_MODE_SEEK; break;
344 case 1: this->motion_mode = MOTION_MODE_LINEAR; break;
345 case 2: this->motion_mode = MOTION_MODE_CW_ARC; break;
346 case 3: this->motion_mode = MOTION_MODE_CCW_ARC; break;
347 case 4: { // G4 pause
03b01bac 348 uint32_t delay_ms = 0;
c3df978d 349 if (gcode->has_letter('P')) {
03b01bac 350 delay_ms = gcode->get_int('P');
c3df978d
JM
351 }
352 if (gcode->has_letter('S')) {
353 delay_ms += gcode->get_int('S') * 1000;
354 }
03b01bac 355 if (delay_ms > 0) {
c3df978d
JM
356 // drain queue
357 THEKERNEL->conveyor->wait_for_empty_queue();
358 // wait for specified time
03b01bac
JM
359 uint32_t start = us_ticker_read(); // mbed call
360 while ((us_ticker_read() - start) < delay_ms * 1000) {
c3df978d 361 THEKERNEL->call_event(ON_IDLE, this);
c2f7c261 362 if(THEKERNEL->is_halted()) return;
c3df978d
JM
363 }
364 }
adba2978 365 }
6b661ab3 366 break;
807b9b57 367
a6bbe768 368 case 10: // G10 L2 [L20] Pn Xn Yn Zn set WCS
00e607c7 369 if(gcode->has_letter('L') && (gcode->get_int('L') == 2 || gcode->get_int('L') == 20) && gcode->has_letter('P')) {
03b01bac
JM
370 size_t n = gcode->get_uint('P');
371 if(n == 0) n = current_wcs; // set current coordinate system
807b9b57 372 else --n;
0b8b81b6 373 if(n < MAX_WCS) {
807b9b57 374 float x, y, z;
03b01bac 375 std::tie(x, y, z) = wcs_offsets[n];
00e607c7 376 if(gcode->get_int('L') == 20) {
c2f7c261 377 // this makes the current machine position (less compensation transform) the offset
dc27139b
JM
378 // get current position in WCS
379 wcs_t pos= mcs2wcs(last_milestone);
380
381 if(gcode->has_letter('X')){
382 x -= to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
383 }
384
385 if(gcode->has_letter('Y')){
386 y -= to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
387 }
388 if(gcode->has_letter('Z')) {
389 z -= to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
390 }
391
a6bbe768 392 } else {
00e607c7
JM
393 // the value is the offset from machine zero
394 if(gcode->has_letter('X')) x = to_millimeters(gcode->get_value('X'));
395 if(gcode->has_letter('Y')) y = to_millimeters(gcode->get_value('Y'));
396 if(gcode->has_letter('Z')) z = to_millimeters(gcode->get_value('Z'));
397 }
03b01bac 398 wcs_offsets[n] = wcs_t(x, y, z);
807b9b57
JM
399 }
400 }
401 break;
402
6e92ab91
JM
403 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
404 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
405 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
406 case 20: this->inch_mode = true; break;
407 case 21: this->inch_mode = false; break;
807b9b57
JM
408
409 case 54: case 55: case 56: case 57: case 58: case 59:
410 // select WCS 0-8: G54..G59, G59.1, G59.2, G59.3
03b01bac 411 current_wcs = gcode->g - 54;
807b9b57
JM
412 if(gcode->g == 59 && gcode->subcode > 0) {
413 current_wcs += gcode->subcode;
0b8b81b6 414 if(current_wcs >= MAX_WCS) current_wcs = MAX_WCS - 1;
807b9b57
JM
415 }
416 break;
417
6e92ab91
JM
418 case 90: this->absolute_mode = true; break;
419 case 91: this->absolute_mode = false; break;
807b9b57 420
0b804a41 421 case 92: {
a9e8c04b 422 if(gcode->subcode == 1 || gcode->subcode == 2 || gcode->get_num_args() == 0) {
03b01bac
JM
423 // reset G92 offsets to 0
424 g92_offset = wcs_t(0, 0, 0);
425
cee8bc1d
JM
426 } else if(gcode->subcode == 3) {
427 // initialize G92 to the specified values, only used for saving it with M500
428 float x= 0, y= 0, z= 0;
429 if(gcode->has_letter('X')) x= gcode->get_value('X');
430 if(gcode->has_letter('Y')) y= gcode->get_value('Y');
431 if(gcode->has_letter('Z')) z= gcode->get_value('Z');
432 g92_offset = wcs_t(x, y, z);
433
4710532a 434 } else {
61a3fa99 435 // standard setting of the g92 offsets, making current WCS position whatever the coordinate arguments are
807b9b57 436 float x, y, z;
03b01bac 437 std::tie(x, y, z) = g92_offset;
61a3fa99
JM
438 // get current position in WCS
439 wcs_t pos= mcs2wcs(last_milestone);
440
441 // adjust g92 offset to make the current wpos == the value requested
442 if(gcode->has_letter('X')){
443 x += to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
444 }
dc27139b
JM
445 if(gcode->has_letter('Y')){
446 y += to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
447 }
448 if(gcode->has_letter('Z')) {
449 z += to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
450 }
03b01bac 451 g92_offset = wcs_t(x, y, z);
6bc4a00a 452 }
a6bbe768 453
78d0e16a 454 return;
4710532a
JM
455 }
456 }
67a649dd 457
4710532a
JM
458 } else if( gcode->has_m) {
459 switch( gcode->m ) {
20ed51b7
JM
460 // case 0: // M0 feed hold, (M0.1 is release feed hold, except we are in feed hold)
461 // if(THEKERNEL->is_grbl_mode()) THEKERNEL->set_feed_hold(gcode->subcode == 0);
462 // break;
01a8d21a
JM
463
464 case 30: // M30 end of program in grbl mode (otherwise it is delete sdcard file)
465 if(!THEKERNEL->is_grbl_mode()) break;
466 // fall through to M2
807b9b57 467 case 2: // M2 end of program
03b01bac
JM
468 current_wcs = 0;
469 absolute_mode = true;
807b9b57
JM
470 break;
471
0fb5b438 472 case 92: // M92 - set steps per mm
0fb5b438 473 if (gcode->has_letter('X'))
78d0e16a 474 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
0fb5b438 475 if (gcode->has_letter('Y'))
78d0e16a 476 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
0fb5b438 477 if (gcode->has_letter('Z'))
78d0e16a 478 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
78d0e16a 479
7f818fc8 480 gcode->stream->printf("X:%f Y:%f Z:%f ", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm);
0fb5b438 481 gcode->add_nl = true;
dd0a7cfa 482 check_max_actuator_speeds();
0fb5b438 483 return;
562db364 484
e03f2747
JM
485 case 114:{
486 char buf[64];
487 int n= print_position(gcode->subcode, buf, sizeof buf);
488 if(n > 0) gcode->txt_after_ok.append(buf, n);
2791c829 489 return;
e03f2747 490 }
33e4cc02 491
212caccd
JM
492 case 120: // push state
493 push_state();
494 break;
562db364
JM
495
496 case 121: // pop state
212caccd 497 pop_state();
562db364
JM
498 break;
499
83488642
JM
500 case 203: // M203 Set maximum feedrates in mm/sec
501 if (gcode->has_letter('X'))
4710532a 502 this->max_speeds[X_AXIS] = gcode->get_value('X');
83488642 503 if (gcode->has_letter('Y'))
4710532a 504 this->max_speeds[Y_AXIS] = gcode->get_value('Y');
83488642 505 if (gcode->has_letter('Z'))
4710532a 506 this->max_speeds[Z_AXIS] = gcode->get_value('Z');
807b9b57
JM
507 for (size_t i = 0; i < 3 && i < actuators.size(); i++) {
508 if (gcode->has_letter('A' + i))
509 actuators[i]->set_max_rate(gcode->get_value('A' + i));
510 }
dd0a7cfa
JM
511 check_max_actuator_speeds();
512
928467c0 513 if(gcode->get_num_args() == 0) {
807b9b57 514 gcode->stream->printf("X:%g Y:%g Z:%g",
03b01bac 515 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS]);
807b9b57
JM
516 for (size_t i = 0; i < 3 && i < actuators.size(); i++) {
517 gcode->stream->printf(" %c : %g", 'A' + i, actuators[i]->get_max_rate()); //xxx
518 }
928467c0
JM
519 gcode->add_nl = true;
520 }
83488642
JM
521 break;
522
c5fe1787 523 case 204: // M204 Snnn - set acceleration to nnn, Znnn sets z acceleration
4710532a 524 if (gcode->has_letter('S')) {
4710532a 525 float acc = gcode->get_value('S'); // mm/s^2
d4ee6ee2 526 // enforce minimum
da947c62
MM
527 if (acc < 1.0F)
528 acc = 1.0F;
4710532a 529 THEKERNEL->planner->acceleration = acc;
d4ee6ee2 530 }
c5fe1787 531 if (gcode->has_letter('Z')) {
c5fe1787
JM
532 float acc = gcode->get_value('Z'); // mm/s^2
533 // enforce positive
534 if (acc < 0.0F)
535 acc = 0.0F;
536 THEKERNEL->planner->z_acceleration = acc;
537 }
d4ee6ee2
JM
538 break;
539
9502f9d5 540 case 205: // M205 Xnnn - set junction deviation, Z - set Z junction deviation, Snnn - Set minimum planner speed, Ynnn - set minimum step rate
4710532a
JM
541 if (gcode->has_letter('X')) {
542 float jd = gcode->get_value('X');
d4ee6ee2 543 // enforce minimum
8b69c90d
JM
544 if (jd < 0.0F)
545 jd = 0.0F;
4710532a 546 THEKERNEL->planner->junction_deviation = jd;
d4ee6ee2 547 }
107df03f
JM
548 if (gcode->has_letter('Z')) {
549 float jd = gcode->get_value('Z');
550 // enforce minimum, -1 disables it and uses regular junction deviation
551 if (jd < -1.0F)
552 jd = -1.0F;
553 THEKERNEL->planner->z_junction_deviation = jd;
554 }
4710532a
JM
555 if (gcode->has_letter('S')) {
556 float mps = gcode->get_value('S');
8b69c90d
JM
557 // enforce minimum
558 if (mps < 0.0F)
559 mps = 0.0F;
4710532a 560 THEKERNEL->planner->minimum_planner_speed = mps;
8b69c90d 561 }
9502f9d5 562 if (gcode->has_letter('Y')) {
807b9b57 563 actuators[0]->default_minimum_actuator_rate = gcode->get_value('Y');
9502f9d5 564 }
d4ee6ee2 565 break;
98761c28 566
7369629d 567 case 220: // M220 - speed override percentage
4710532a 568 if (gcode->has_letter('S')) {
1ad23cd3 569 float factor = gcode->get_value('S');
98761c28 570 // enforce minimum 10% speed
da947c62
MM
571 if (factor < 10.0F)
572 factor = 10.0F;
573 // enforce maximum 10x speed
574 if (factor > 1000.0F)
575 factor = 1000.0F;
576
577 seconds_per_minute = 6000.0F / factor;
03b01bac 578 } else {
9ef9f45b 579 gcode->stream->printf("Speed factor at %6.2f %%\n", 6000.0F / seconds_per_minute);
7369629d 580 }
b4f56013 581 break;
ec4773e5 582
494dc541 583 case 400: // wait until all moves are done up to this point
314ab8f7 584 THEKERNEL->conveyor->wait_for_empty_queue();
494dc541
JM
585 break;
586
33e4cc02 587 case 500: // M500 saves some volatile settings to config override file
b7cd847e 588 case 503: { // M503 just prints the settings
78d0e16a 589 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm);
c5fe1787 590 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f Z%1.5f\n", THEKERNEL->planner->acceleration, THEKERNEL->planner->z_acceleration);
c9cc5e06 591 gcode->stream->printf(";X- Junction Deviation, Z- Z junction deviation, S - Minimum Planner speed mm/sec:\nM205 X%1.5f Z%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->z_junction_deviation, THEKERNEL->planner->minimum_planner_speed);
807b9b57
JM
592 gcode->stream->printf(";Max feedrates in mm/sec, XYZ cartesian, ABC actuator:\nM203 X%1.5f Y%1.5f Z%1.5f",
593 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS]);
03b01bac 594 for (size_t i = 0; i < 3 && i < actuators.size(); i++) {
807b9b57
JM
595 gcode->stream->printf(" %c%1.5f", 'A' + i, actuators[i]->get_max_rate());
596 }
597 gcode->stream->printf("\n");
b7cd847e
JM
598
599 // get or save any arm solution specific optional values
600 BaseSolution::arm_options_t options;
601 if(arm_solution->get_optional(options) && !options.empty()) {
602 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
4710532a 603 for(auto &i : options) {
b7cd847e
JM
604 gcode->stream->printf(" %c%1.4f", i.first, i.second);
605 }
606 gcode->stream->printf("\n");
607 }
6e92ab91 608
807b9b57
JM
609 // save wcs_offsets and current_wcs
610 // TODO this may need to be done whenever they change to be compliant
611 gcode->stream->printf(";WCS settings\n");
40fd5d98 612 gcode->stream->printf("%s\n", wcs2gcode(current_wcs).c_str());
03b01bac 613 int n = 1;
807b9b57 614 for(auto &i : wcs_offsets) {
2791c829 615 if(i != wcs_t(0, 0, 0)) {
807b9b57
JM
616 float x, y, z;
617 std::tie(x, y, z) = i;
40fd5d98 618 gcode->stream->printf("G10 L2 P%d X%f Y%f Z%f ; %s\n", n, x, y, z, wcs2gcode(n-1).c_str());
2791c829 619 }
807b9b57
JM
620 ++n;
621 }
3aad33c7
JM
622 if(save_g92) {
623 // linuxcnc saves G92, so we do too if configured, default is to not save to maintain backward compatibility
624 // also it needs to be used to set Z0 on rotary deltas as M206/306 can't be used, so saving it is necessary in that case
625 if(g92_offset != wcs_t(0, 0, 0)) {
626 float x, y, z;
627 std::tie(x, y, z) = g92_offset;
628 gcode->stream->printf("G92.3 X%f Y%f Z%f\n", x, y, z); // sets G92 to the specified values
629 }
67a649dd
JM
630 }
631 }
807b9b57 632 break;
33e4cc02 633
b7cd847e 634 case 665: { // M665 set optional arm solution variables based on arm solution.
ebc75fc6 635 // the parameter args could be any letter each arm solution only accepts certain ones
03b01bac 636 BaseSolution::arm_options_t options = gcode->get_args();
ebc75fc6
JM
637 options.erase('S'); // don't include the S
638 options.erase('U'); // don't include the U
639 if(options.size() > 0) {
640 // set the specified options
641 arm_solution->set_optional(options);
642 }
643 options.clear();
b7cd847e 644 if(arm_solution->get_optional(options)) {
ebc75fc6 645 // foreach optional value
4710532a 646 for(auto &i : options) {
b7cd847e
JM
647 // print all current values of supported options
648 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
5523c05d 649 gcode->add_nl = true;
ec4773e5
JM
650 }
651 }
ec4773e5 652
4a839bea 653 if(gcode->has_letter('S')) { // set delta segments per second, not saved by M500
4710532a 654 this->delta_segments_per_second = gcode->get_value('S');
4a839bea
JM
655 gcode->stream->printf("Delta segments set to %8.4f segs/sec\n", this->delta_segments_per_second);
656
03b01bac 657 } else if(gcode->has_letter('U')) { // or set mm_per_line_segment, not saved by M500
4a839bea
JM
658 this->mm_per_line_segment = gcode->get_value('U');
659 this->delta_segments_per_second = 0;
660 gcode->stream->printf("mm per line segment set to %8.4f\n", this->mm_per_line_segment);
ec29d378 661 }
4a839bea 662
ec4773e5 663 break;
b7cd847e 664 }
6989211c 665 }
494dc541
JM
666 }
667
c2f7c261
JM
668 if( this->motion_mode >= 0) {
669 process_move(gcode);
00e607c7 670 }
6bc4a00a 671
c2f7c261
JM
672 next_command_is_MCS = false; // must be on same line as G0 or G1
673}
350c8a60 674
5d2319a9 675// process a G0/G1/G2/G3
c2f7c261
JM
676void Robot::process_move(Gcode *gcode)
677{
2791c829 678 // we have a G0/G1/G2/G3 so extract parameters and apply offsets to get machine coordinate target
c2f7c261 679 float param[3]{NAN, NAN, NAN};
350c8a60
JM
680 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
681 char letter= 'X'+i;
682 if( gcode->has_letter(letter) ) {
683 param[i] = this->to_millimeters(gcode->get_value(letter));
350c8a60
JM
684 }
685 }
6bc4a00a 686
c2f7c261 687 float offset[3]{0,0,0};
4710532a
JM
688 for(char letter = 'I'; letter <= 'K'; letter++) {
689 if( gcode->has_letter(letter) ) {
690 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
c2885de8
JM
691 }
692 }
00e607c7 693
c2f7c261
JM
694 // calculate target in machine coordinates (less compensation transform which needs to be done after segmentation)
695 float target[3]{last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]};
350c8a60
JM
696 if(!next_command_is_MCS) {
697 if(this->absolute_mode) {
c2f7c261
JM
698 // apply wcs offsets and g92 offset and tool offset
699 if(!isnan(param[X_AXIS])) {
700 target[X_AXIS]= param[X_AXIS] + std::get<X_AXIS>(wcs_offsets[current_wcs]) - std::get<X_AXIS>(g92_offset) + std::get<X_AXIS>(tool_offset);
701 }
702
703 if(!isnan(param[Y_AXIS])) {
704 target[Y_AXIS]= param[Y_AXIS] + std::get<Y_AXIS>(wcs_offsets[current_wcs]) - std::get<Y_AXIS>(g92_offset) + std::get<Y_AXIS>(tool_offset);
705 }
706
707 if(!isnan(param[Z_AXIS])) {
708 target[Z_AXIS]= param[Z_AXIS] + std::get<Z_AXIS>(wcs_offsets[current_wcs]) - std::get<Z_AXIS>(g92_offset) + std::get<Z_AXIS>(tool_offset);
709 }
350c8a60
JM
710
711 }else{
712 // they are deltas from the last_milestone if specified
713 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
c2f7c261 714 if(!isnan(param[i])) target[i] = param[i] + last_milestone[i];
a6bbe768
JM
715 }
716 }
717
350c8a60 718 }else{
c2f7c261
JM
719 // already in machine coordinates, we do not add tool offset for that
720 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
721 if(!isnan(param[i])) target[i] = param[i];
722 }
c2885de8 723 }
6bc4a00a 724
4710532a 725 if( gcode->has_letter('F') ) {
7369629d 726 if( this->motion_mode == MOTION_MODE_SEEK )
da947c62 727 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 728 else
da947c62 729 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 730 }
6bc4a00a 731
350c8a60
JM
732 bool moved= false;
733 //Perform any physical actions
fae93525 734 switch(this->motion_mode) {
350c8a60
JM
735 case MOTION_MODE_CANCEL:
736 break;
737 case MOTION_MODE_SEEK:
738 moved= this->append_line(gcode, target, this->seek_rate / seconds_per_minute );
739 break;
740 case MOTION_MODE_LINEAR:
741 moved= this->append_line(gcode, target, this->feed_rate / seconds_per_minute );
742 break;
fae93525 743 case MOTION_MODE_CW_ARC:
350c8a60
JM
744 case MOTION_MODE_CCW_ARC:
745 moved= this->compute_arc(gcode, offset, target );
746 break;
4cff3ded 747 }
13e4a3f9 748
c2f7c261
JM
749 if(moved) {
750 // set last_milestone to the calculated target
751 memcpy(this->last_milestone, target, sizeof(this->last_milestone));
350c8a60 752 }
edac9072
AW
753}
754
5984acdf 755// We received a new gcode, and one of the functions
edac9072
AW
756// determined the distance for that given gcode. So now we can attach this gcode to the right block
757// and continue
03b01bac 758void Robot::distance_in_gcode_is_known(Gcode * gcode)
4710532a 759{
a3be54e3 760 //If the queue is empty, execute immediately, otherwise attach to the last added block
e0ee24ed 761 THEKERNEL->conveyor->append_gcode(gcode);
edac9072
AW
762}
763
a6bbe768 764// reset the machine position for all axis. Used for homing.
f6934849
JM
765// During homing compensation is turned off (actually not used as it drives steppers directly)
766// once homed and reset_axis called compensation is used for the move to origin and back off home if enabled,
767// so in those cases the final position is compensated.
cef9acea
JM
768void Robot::reset_axis_position(float x, float y, float z)
769{
f6934849 770 // these are set to the same as compensation was not used to get to the current position
c2f7c261
JM
771 last_machine_position[X_AXIS]= last_milestone[X_AXIS] = x;
772 last_machine_position[Y_AXIS]= last_milestone[Y_AXIS] = y;
773 last_machine_position[Z_AXIS]= last_milestone[Z_AXIS] = z;
cef9acea 774
a6bbe768 775 // now set the actuator positions to match
807b9b57 776 ActuatorCoordinates actuator_pos;
c2f7c261 777 arm_solution->cartesian_to_actuator(this->last_machine_position, actuator_pos);
807b9b57 778 for (size_t i = 0; i < actuators.size(); i++)
cef9acea
JM
779 actuators[i]->change_last_milestone(actuator_pos[i]);
780}
781
807b9b57 782// Reset the position for an axis (used in homing)
4710532a
JM
783void Robot::reset_axis_position(float position, int axis)
784{
c2f7c261
JM
785 last_milestone[axis] = position;
786 reset_axis_position(last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
4cff3ded
AW
787}
788
932a3995 789// similar to reset_axis_position but directly sets the actuator positions in actuators units (eg mm for cartesian, degrees for rotary delta)
93f20a8c
JM
790// then sets the axis positions to match. currently only called from Endstops.cpp
791void Robot::reset_actuator_position(const ActuatorCoordinates &ac)
586cc733 792{
93f20a8c
JM
793 for (size_t i = 0; i < actuators.size(); i++)
794 actuators[i]->change_last_milestone(ac[i]);
586cc733
JM
795
796 // now correct axis positions then recorrect actuator to account for rounding
797 reset_position_from_current_actuator_position();
798}
799
a6bbe768 800// Use FK to find out where actuator is and reset to match
728477c4
JM
801void Robot::reset_position_from_current_actuator_position()
802{
807b9b57
JM
803 ActuatorCoordinates actuator_pos;
804 for (size_t i = 0; i < actuators.size(); i++) {
58587001 805 // NOTE actuator::current_position is curently NOT the same as actuator::last_milestone after an abrupt abort
807b9b57
JM
806 actuator_pos[i] = actuators[i]->get_current_position();
807 }
58587001
JM
808
809 // discover machine position from where actuators actually are
c2f7c261
JM
810 arm_solution->actuator_to_cartesian(actuator_pos, last_machine_position);
811 // FIXME problem is this includes any compensation transform, and without an inverse compensation we cannot get a correct last_milestone
812 memcpy(last_milestone, last_machine_position, sizeof last_milestone);
cf91d4f3 813
58587001
JM
814 // now reset actuator::last_milestone, NOTE this may lose a little precision as FK is not always entirely accurate.
815 // NOTE This is required to sync the machine position with the actuator position, we do a somewhat redundant cartesian_to_actuator() call
932a3995 816 // to get everything in perfect sync.
7baae81a
JM
817 arm_solution->cartesian_to_actuator(last_machine_position, actuator_pos);
818 for (size_t i = 0; i < actuators.size(); i++)
819 actuators[i]->change_last_milestone(actuator_pos[i]);
728477c4 820}
edac9072 821
c2f7c261
JM
822// Convert target (in machine coordinates) from millimeters to steps, and append this to the planner
823// target is in machine coordinates without the compensation transform, however we save a last_machine_position that includes
824// all transforms and is what we actually convert to actuator positions
350c8a60 825bool Robot::append_milestone(Gcode * gcode, const float target[], float rate_mm_s)
df6a30f2 826{
1ad23cd3 827 float deltas[3];
df6a30f2 828 float unit_vec[3];
807b9b57 829 ActuatorCoordinates actuator_pos;
03b01bac 830 float transformed_target[3]; // adjust target for bed compensation and WCS offsets
df6a30f2
MM
831 float millimeters_of_travel;
832
166836be
JM
833 // catch negative or zero feed rates and return the same error as GRBL does
834 if(rate_mm_s <= 0.0F) {
835 gcode->is_error= true;
836 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
837 return false;
838 }
839
3632a517
JM
840 // unity transform by default
841 memcpy(transformed_target, target, sizeof(transformed_target));
5e45206a 842
350c8a60
JM
843 // check function pointer and call if set to transform the target to compensate for bed
844 if(compensationTransform) {
845 // some compensation strategies can transform XYZ, some just change Z
846 compensationTransform(transformed_target);
00e607c7 847 }
807b9b57 848
a6bbe768 849 // find distance moved by each axis, use transformed target from the current machine position
03b01bac 850 for (int axis = X_AXIS; axis <= Z_AXIS; axis++) {
c2f7c261 851 deltas[axis] = transformed_target[axis] - last_machine_position[axis];
3632a517 852 }
aab6cbba 853
edac9072 854 // Compute how long this move moves, so we can attach it to the block for later use
869acfb8 855 millimeters_of_travel = sqrtf( powf( deltas[X_AXIS], 2 ) + powf( deltas[Y_AXIS], 2 ) + powf( deltas[Z_AXIS], 2 ) );
df6a30f2 856
a6bbe768
JM
857 // it is unlikely but we need to protect against divide by zero, so ignore insanely small moves here
858 // as the last milestone won't be updated we do not actually lose any moves as they will be accounted for in the next move
350c8a60 859 if(millimeters_of_travel < 0.00001F) return false;
a6bbe768
JM
860
861 // this is the machine position
c2f7c261 862 memcpy(this->last_machine_position, transformed_target, sizeof(this->last_machine_position));
a6bbe768 863
df6a30f2
MM
864 // find distance unit vector
865 for (int i = 0; i < 3; i++)
866 unit_vec[i] = deltas[i] / millimeters_of_travel;
867
868 // Do not move faster than the configured cartesian limits
4710532a
JM
869 for (int axis = X_AXIS; axis <= Z_AXIS; axis++) {
870 if ( max_speeds[axis] > 0 ) {
da947c62 871 float axis_speed = fabs(unit_vec[axis] * rate_mm_s);
df6a30f2
MM
872
873 if (axis_speed > max_speeds[axis])
da947c62 874 rate_mm_s *= ( max_speeds[axis] / axis_speed );
7b470506
AW
875 }
876 }
4cff3ded 877
c2f7c261
JM
878 // find actuator position given the machine position, use actual adjusted target
879 arm_solution->cartesian_to_actuator( this->last_machine_position, actuator_pos );
df6a30f2 880
03b01bac 881 float isecs = rate_mm_s / millimeters_of_travel;
df6a30f2 882 // check per-actuator speed limits
807b9b57 883 for (size_t actuator = 0; actuator < actuators.size(); actuator++) {
928467c0 884 float actuator_rate = fabsf(actuator_pos[actuator] - actuators[actuator]->last_milestone_mm) * isecs;
03b01bac 885 if (actuator_rate > actuators[actuator]->get_max_rate()) {
3494f3d0 886 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
03b01bac 887 isecs = rate_mm_s / millimeters_of_travel;
928467c0
JM
888 }
889 }
890
edac9072 891 // Append the block to the planner
da947c62 892 THEKERNEL->planner->append_block( actuator_pos, rate_mm_s, millimeters_of_travel, unit_vec );
4cff3ded 893
350c8a60 894 return true;
4cff3ded
AW
895}
896
edac9072 897// Append a move to the queue ( cutting it into segments if needed )
c2f7c261 898bool Robot::append_line(Gcode *gcode, const float target[], float rate_mm_s )
4710532a 899{
c2f7c261 900 // Find out the distance for this move in MCS
a9d299ab 901 // NOTE we need to do sqrt here as this setting of millimeters_of_travel is used by extruder and other modules even if there is no XYZ move
2791c829 902 gcode->millimeters_of_travel = sqrtf(powf( target[X_AXIS] - last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - last_milestone[Z_AXIS], 2 ));
4cff3ded 903
3b4b05b8 904 // We ignore non- XYZ moves ( for example, extruder moves are not XYZ moves )
350c8a60 905 if( gcode->millimeters_of_travel < 0.00001F ) return false;
436a2cd1 906
edac9072 907 // Mark the gcode as having a known distance
5dcb2ff3 908 this->distance_in_gcode_is_known( gcode );
436a2cd1 909
d2adef5e
JM
910 // if we have volumetric limits enabled we calculate the volume for this move and limit the rate if it exceeds the stated limit
911 // Note we need to be using volumetric extrusion for this to work as Ennn is in mm³ not mm
912 // We also check we are not exceeding the E max_speed for the current extruder
913 // We ask Extruder to do all the work, but as Extruder won't even see this gcode until after it has been planned
914 // we need to ask it now passing in the relevant data.
915 // NOTE we need to do this before we segment the line (for deltas)
916 if(gcode->has_letter('E')) {
917 float data[2];
a3be54e3 918 data[0] = gcode->get_value('E'); // E target (may be absolute or relative)
03b01bac 919 data[1] = rate_mm_s / gcode->millimeters_of_travel; // inverted seconds for the move
d2adef5e
JM
920 if(PublicData::set_value(extruder_checksum, target_checksum, data)) {
921 rate_mm_s *= data[1];
922 //THEKERNEL->streams->printf("Extruder has changed the rate by %f to %f\n", data[1], rate_mm_s);
923 }
924 }
925
c2f7c261 926 // We cut the line into smaller segments. This is only needed on a cartesian robot for zgrid, but always necessary for robots with rotational axes like Deltas.
3b4b05b8
JM
927 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second
928 // The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
4a0c8e14 929 uint16_t segments;
5984acdf 930
a3e1326a 931 if(this->disable_segmentation || (!segment_z_moves && !gcode->has_letter('X') && !gcode->has_letter('Y'))) {
778093ce
JM
932 segments= 1;
933
934 } else if(this->delta_segments_per_second > 1.0F) {
4a0c8e14
JM
935 // enabled if set to something > 1, it is set to 0.0 by default
936 // segment based on current speed and requested segments per second
937 // the faster the travel speed the fewer segments needed
938 // NOTE rate is mm/sec and we take into account any speed override
da947c62 939 float seconds = gcode->millimeters_of_travel / rate_mm_s;
9502f9d5 940 segments = max(1.0F, ceilf(this->delta_segments_per_second * seconds));
4a0c8e14 941 // TODO if we are only moving in Z on a delta we don't really need to segment at all
5984acdf 942
4710532a
JM
943 } else {
944 if(this->mm_per_line_segment == 0.0F) {
945 segments = 1; // don't split it up
946 } else {
9502f9d5 947 segments = ceilf( gcode->millimeters_of_travel / this->mm_per_line_segment);
4a0c8e14
JM
948 }
949 }
5984acdf 950
350c8a60 951 bool moved= false;
4710532a 952 if (segments > 1) {
2ba859c9
MM
953 // A vector to keep track of the endpoint of each segment
954 float segment_delta[3];
1b5776bf 955 float segment_end[3]{last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]};
2ba859c9
MM
956
957 // How far do we move each segment?
9fff6045 958 for (int i = X_AXIS; i <= Z_AXIS; i++)
2791c829 959 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
4cff3ded 960
c8e0fb15
MM
961 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
962 // We always add another point after this loop so we stop at segments-1, ie i < segments
4710532a 963 for (int i = 1; i < segments; i++) {
350c8a60 964 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
4710532a 965 for(int axis = X_AXIS; axis <= Z_AXIS; axis++ )
1b5776bf 966 segment_end[axis] += segment_delta[axis];
2ba859c9
MM
967
968 // Append the end of this segment to the queue
350c8a60
JM
969 bool b= this->append_milestone(gcode, segment_end, rate_mm_s);
970 moved= moved || b;
2ba859c9 971 }
4cff3ded 972 }
5984acdf
MM
973
974 // Append the end of this full move to the queue
350c8a60 975 if(this->append_milestone(gcode, target, rate_mm_s)) moved= true;
2134bcf2 976
a6bbe768 977 this->next_command_is_MCS = false; // always reset this
00e607c7 978
350c8a60
JM
979 if(moved) {
980 // if adding these blocks didn't start executing, do that now
981 THEKERNEL->conveyor->ensure_running();
982 }
983
984 return moved;
4cff3ded
AW
985}
986
4cff3ded 987
edac9072 988// Append an arc to the queue ( cutting it into segments as needed )
350c8a60 989bool Robot::append_arc(Gcode * gcode, const float target[], const float offset[], float radius, bool is_clockwise )
4710532a 990{
aab6cbba 991
edac9072 992 // Scary math
2ba859c9
MM
993 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
994 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
995 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1ad23cd3
MM
996 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
997 float r_axis1 = -offset[this->plane_axis_1];
998 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
999 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
aab6cbba 1000
51871fb8 1001 // Patch from GRBL Firmware - Christoph Baumann 04072015
aab6cbba 1002 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
fb4c9d09 1003 float angular_travel = atan2f(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
5fa0c173 1004 if (is_clockwise) { // Correct atan2 output per direction
fb4c9d09 1005 if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel -= (2 * (float)M_PI); }
5fa0c173 1006 } else {
fb4c9d09 1007 if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel += (2 * (float)M_PI); }
4710532a 1008 }
aab6cbba 1009
edac9072 1010 // Find the distance for this gcode
fb4c9d09 1011 gcode->millimeters_of_travel = hypotf(angular_travel * radius, fabsf(linear_travel));
436a2cd1 1012
edac9072 1013 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
3b4b05b8 1014 if( gcode->millimeters_of_travel < 0.00001F ) {
350c8a60 1015 return false;
4710532a 1016 }
5dcb2ff3 1017
edac9072 1018 // Mark the gcode as having a known distance
d149c730 1019 this->distance_in_gcode_is_known( gcode );
5984acdf
MM
1020
1021 // Figure out how many segments for this gcode
c8f4ee77 1022 uint16_t segments = floorf(gcode->millimeters_of_travel / this->mm_per_arc_segment);
aab6cbba 1023
4710532a
JM
1024 float theta_per_segment = angular_travel / segments;
1025 float linear_per_segment = linear_travel / segments;
aab6cbba
AW
1026
1027 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
1028 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
1029 r_T = [cos(phi) -sin(phi);
1030 sin(phi) cos(phi] * r ;
1031 For arc generation, the center of the circle is the axis of rotation and the radius vector is
1032 defined from the circle center to the initial position. Each line segment is formed by successive
1033 vector rotations. This requires only two cos() and sin() computations to form the rotation
1034 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1ad23cd3 1035 all float numbers are single precision on the Arduino. (True float precision will not have
aab6cbba
AW
1036 round off issues for CNC applications.) Single precision error can accumulate to be greater than
1037 tool precision in some cases. Therefore, arc path correction is implemented.
1038
1039 Small angle approximation may be used to reduce computation overhead further. This approximation
1040 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
1041 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
1042 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
1043 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
1044 issue for CNC machines with the single precision Arduino calculations.
1045 This approximation also allows mc_arc to immediately insert a line segment into the planner
1046 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
1047 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
1048 This is important when there are successive arc motions.
1049 */
1050 // Vector rotation matrix values
4710532a 1051 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1ad23cd3 1052 float sin_T = theta_per_segment;
aab6cbba 1053
1ad23cd3
MM
1054 float arc_target[3];
1055 float sin_Ti;
1056 float cos_Ti;
1057 float r_axisi;
aab6cbba
AW
1058 uint16_t i;
1059 int8_t count = 0;
1060
1061 // Initialize the linear axis
2ba859c9 1062 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
aab6cbba 1063
350c8a60 1064 bool moved= false;
4710532a 1065 for (i = 1; i < segments; i++) { // Increment (segments-1)
350c8a60 1066 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
aab6cbba 1067
b66fb830 1068 if (count < this->arc_correction ) {
4710532a
JM
1069 // Apply vector rotation matrix
1070 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
1071 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
1072 r_axis1 = r_axisi;
1073 count++;
aab6cbba 1074 } else {
4710532a
JM
1075 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
1076 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
1077 cos_Ti = cosf(i * theta_per_segment);
1078 sin_Ti = sinf(i * theta_per_segment);
1079 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
1080 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
1081 count = 0;
aab6cbba
AW
1082 }
1083
1084 // Update arc_target location
1085 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
1086 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
1087 arc_target[this->plane_axis_2] += linear_per_segment;
edac9072
AW
1088
1089 // Append this segment to the queue
350c8a60
JM
1090 bool b= this->append_milestone(gcode, arc_target, this->feed_rate / seconds_per_minute);
1091 moved= moved || b;
aab6cbba 1092 }
edac9072 1093
aab6cbba 1094 // Ensure last segment arrives at target location.
350c8a60
JM
1095 if(this->append_milestone(gcode, target, this->feed_rate / seconds_per_minute)) moved= true;
1096
1097 return moved;
aab6cbba
AW
1098}
1099
edac9072 1100// Do the math for an arc and add it to the queue
350c8a60 1101bool Robot::compute_arc(Gcode * gcode, const float offset[], const float target[])
4710532a 1102{
aab6cbba
AW
1103
1104 // Find the radius
13addf09 1105 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
aab6cbba
AW
1106
1107 // Set clockwise/counter-clockwise sign for mc_arc computations
1108 bool is_clockwise = false;
4710532a
JM
1109 if( this->motion_mode == MOTION_MODE_CW_ARC ) {
1110 is_clockwise = true;
1111 }
aab6cbba
AW
1112
1113 // Append arc
350c8a60 1114 return this->append_arc(gcode, target, offset, radius, is_clockwise );
aab6cbba
AW
1115}
1116
1117
4710532a
JM
1118float Robot::theta(float x, float y)
1119{
1120 float t = atanf(x / fabs(y));
1121 if (y > 0) {
1122 return(t);
1123 } else {
1124 if (t > 0) {
1125 return(M_PI - t);
1126 } else {
1127 return(-M_PI - t);
1128 }
1129 }
4cff3ded
AW
1130}
1131
4710532a
JM
1132void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
1133{
4cff3ded
AW
1134 this->plane_axis_0 = axis_0;
1135 this->plane_axis_1 = axis_1;
1136 this->plane_axis_2 = axis_2;
1137}
1138
fae93525 1139void Robot::clearToolOffset()
4710532a 1140{
c2f7c261 1141 this->tool_offset= wcs_t(0,0,0);
fae93525
JM
1142}
1143
1144void Robot::setToolOffset(const float offset[3])
1145{
c2f7c261 1146 this->tool_offset= wcs_t(offset[0], offset[1], offset[2]);
5966b7d0
AT
1147}
1148
0ec2f63a
JM
1149float Robot::get_feed_rate() const
1150{
1151 return THEKERNEL->gcode_dispatch->get_modal_command() == 0 ? seek_rate : feed_rate;
1152}