Merge pull request #381 from wolfmanjm/upstreamedge
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
CommitLineData
df27a6a3 1/*
aab6cbba 2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
4cff3ded
AW
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
df27a6a3 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
5673fe39
MM
10
11#include <math.h>
4cff3ded
AW
12#include <string>
13using std::string;
5673fe39 14
4cff3ded 15#include "Planner.h"
3fceb8eb 16#include "Conveyor.h"
4cff3ded 17#include "Robot.h"
5673fe39
MM
18#include "nuts_bolts.h"
19#include "Pin.h"
20#include "StepperMotor.h"
21#include "Gcode.h"
5647f709 22#include "PublicDataRequest.h"
66383b80 23#include "RobotPublicAccess.h"
4cff3ded
AW
24#include "arm_solutions/BaseSolution.h"
25#include "arm_solutions/CartesianSolution.h"
c41d6d95 26#include "arm_solutions/RotatableCartesianSolution.h"
4e04bcd3 27#include "arm_solutions/RostockSolution.h"
2c7ab192 28#include "arm_solutions/JohannKosselSolution.h"
bdaaa75d 29#include "arm_solutions/HBotSolution.h"
61134a65 30#include "StepTicker.h"
7af0714f
JM
31#include "checksumm.h"
32#include "utils.h"
8d54c34c 33#include "ConfigValue.h"
4cff3ded 34
78d0e16a
MM
35#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
36#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
37#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
38#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
39#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
40#define arc_correction_checksum CHECKSUM("arc_correction")
41#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
42#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
43#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
43424972
JM
44
45// arm solutions
78d0e16a
MM
46#define arm_solution_checksum CHECKSUM("arm_solution")
47#define cartesian_checksum CHECKSUM("cartesian")
48#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
49#define rostock_checksum CHECKSUM("rostock")
50#define delta_checksum CHECKSUM("delta")
51#define hbot_checksum CHECKSUM("hbot")
52#define corexy_checksum CHECKSUM("corexy")
53#define kossel_checksum CHECKSUM("kossel")
54
55// stepper motor stuff
56#define alpha_step_pin_checksum CHECKSUM("alpha_step_pin")
57#define beta_step_pin_checksum CHECKSUM("beta_step_pin")
58#define gamma_step_pin_checksum CHECKSUM("gamma_step_pin")
59#define alpha_dir_pin_checksum CHECKSUM("alpha_dir_pin")
60#define beta_dir_pin_checksum CHECKSUM("beta_dir_pin")
61#define gamma_dir_pin_checksum CHECKSUM("gamma_dir_pin")
62#define alpha_en_pin_checksum CHECKSUM("alpha_en_pin")
63#define beta_en_pin_checksum CHECKSUM("beta_en_pin")
64#define gamma_en_pin_checksum CHECKSUM("gamma_en_pin")
a84f0186 65
78d0e16a
MM
66#define alpha_steps_per_mm_checksum CHECKSUM("alpha_steps_per_mm")
67#define beta_steps_per_mm_checksum CHECKSUM("beta_steps_per_mm")
68#define gamma_steps_per_mm_checksum CHECKSUM("gamma_steps_per_mm")
69
df6a30f2
MM
70#define alpha_max_rate_checksum CHECKSUM("alpha_max_rate")
71#define beta_max_rate_checksum CHECKSUM("beta_max_rate")
72#define gamma_max_rate_checksum CHECKSUM("gamma_max_rate")
73
74
78d0e16a
MM
75// new-style actuator stuff
76#define actuator_checksum CHEKCSUM("actuator")
77
78#define step_pin_checksum CHECKSUM("step_pin")
79#define dir_pin_checksum CHEKCSUM("dir_pin")
80#define en_pin_checksum CHECKSUM("en_pin")
81
82#define steps_per_mm_checksum CHECKSUM("steps_per_mm")
df6a30f2 83#define max_rate_checksum CHECKSUM("max_rate")
78d0e16a
MM
84
85#define alpha_checksum CHECKSUM("alpha")
86#define beta_checksum CHECKSUM("beta")
87#define gamma_checksum CHECKSUM("gamma")
88
43424972 89
edac9072
AW
90// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
91// It takes care of cutting arcs into segments, same thing for line that are too long
41fd89e0 92#define max(a,b) (((a) > (b)) ? (a) : (b))
edac9072 93
4cff3ded 94Robot::Robot(){
a1b7e9f0 95 this->inch_mode = false;
0e8b102e 96 this->absolute_mode = true;
df27a6a3 97 this->motion_mode = MOTION_MODE_SEEK;
4cff3ded 98 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
df27a6a3 99 clear_vector(this->last_milestone);
0b804a41 100 this->arm_solution = NULL;
da947c62 101 seconds_per_minute = 60.0F;
4cff3ded
AW
102}
103
104//Called when the module has just been loaded
105void Robot::on_module_loaded() {
476dcb96 106 register_for_event(ON_CONFIG_RELOAD);
4cff3ded 107 this->register_for_event(ON_GCODE_RECEIVED);
b55cfff1
JM
108 this->register_for_event(ON_GET_PUBLIC_DATA);
109 this->register_for_event(ON_SET_PUBLIC_DATA);
4cff3ded
AW
110
111 // Configuration
da24d6ae
AW
112 this->on_config_reload(this);
113}
114
115void Robot::on_config_reload(void* argument){
5984acdf 116
edac9072
AW
117 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
118 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
119 // To make adding those solution easier, they have their own, separate object.
5984acdf 120 // Here we read the config to find out which arm solution to use
0b804a41 121 if (this->arm_solution) delete this->arm_solution;
314ab8f7 122 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
d149c730 123 // Note checksums are not const expressions when in debug mode, so don't use switch
98761c28 124 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
314ab8f7 125 this->arm_solution = new HBotSolution(THEKERNEL->config);
bdaaa75d
L
126
127 }else if(solution_checksum == rostock_checksum) {
314ab8f7 128 this->arm_solution = new RostockSolution(THEKERNEL->config);
73a4e3c0 129
2c7ab192 130 }else if(solution_checksum == kossel_checksum) {
314ab8f7 131 this->arm_solution = new JohannKosselSolution(THEKERNEL->config);
2c7ab192 132
d149c730 133 }else if(solution_checksum == delta_checksum) {
4a0c8e14 134 // place holder for now
314ab8f7 135 this->arm_solution = new RostockSolution(THEKERNEL->config);
73a4e3c0 136
b73a756d 137 }else if(solution_checksum == rotatable_cartesian_checksum) {
314ab8f7 138 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
b73a756d 139
d149c730 140 }else if(solution_checksum == cartesian_checksum) {
314ab8f7 141 this->arm_solution = new CartesianSolution(THEKERNEL->config);
73a4e3c0 142
d149c730 143 }else{
314ab8f7 144 this->arm_solution = new CartesianSolution(THEKERNEL->config);
d149c730 145 }
73a4e3c0 146
0b804a41 147
da947c62
MM
148 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
149 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
150 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
1ad23cd3 151 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
da947c62
MM
152 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.5f)->as_number();
153 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
78d0e16a 154
c9ed779d
MM
155 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
156 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
157 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
feb204be 158
78d0e16a
MM
159 Pin alpha_step_pin;
160 Pin alpha_dir_pin;
161 Pin alpha_en_pin;
162 Pin beta_step_pin;
163 Pin beta_dir_pin;
164 Pin beta_en_pin;
165 Pin gamma_step_pin;
166 Pin gamma_dir_pin;
167 Pin gamma_en_pin;
168
169 alpha_step_pin.from_string( THEKERNEL->config->value(alpha_step_pin_checksum )->by_default("2.0" )->as_string())->as_output();
170 alpha_dir_pin.from_string( THEKERNEL->config->value(alpha_dir_pin_checksum )->by_default("0.5" )->as_string())->as_output();
171 alpha_en_pin.from_string( THEKERNEL->config->value(alpha_en_pin_checksum )->by_default("0.4" )->as_string())->as_output();
172 beta_step_pin.from_string( THEKERNEL->config->value(beta_step_pin_checksum )->by_default("2.1" )->as_string())->as_output();
9c5fa39a
MM
173 beta_dir_pin.from_string( THEKERNEL->config->value(beta_dir_pin_checksum )->by_default("0.11" )->as_string())->as_output();
174 beta_en_pin.from_string( THEKERNEL->config->value(beta_en_pin_checksum )->by_default("0.10" )->as_string())->as_output();
78d0e16a
MM
175 gamma_step_pin.from_string( THEKERNEL->config->value(gamma_step_pin_checksum )->by_default("2.2" )->as_string())->as_output();
176 gamma_dir_pin.from_string( THEKERNEL->config->value(gamma_dir_pin_checksum )->by_default("0.20" )->as_string())->as_output();
177 gamma_en_pin.from_string( THEKERNEL->config->value(gamma_en_pin_checksum )->by_default("0.19" )->as_string())->as_output();
78d0e16a 178
a84f0186
MM
179 float steps_per_mm[3] = {
180 THEKERNEL->config->value(alpha_steps_per_mm_checksum)->by_default( 80.0F)->as_number(),
181 THEKERNEL->config->value(beta_steps_per_mm_checksum )->by_default( 80.0F)->as_number(),
182 THEKERNEL->config->value(gamma_steps_per_mm_checksum)->by_default(2560.0F)->as_number(),
183 };
184
78d0e16a
MM
185 // TODO: delete or detect old steppermotors
186 // Make our 3 StepperMotors
9c5fa39a
MM
187 this->alpha_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(alpha_step_pin, alpha_dir_pin, alpha_en_pin) );
188 this->beta_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(beta_step_pin, beta_dir_pin, beta_en_pin ) );
189 this->gamma_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(gamma_step_pin, gamma_dir_pin, gamma_en_pin) );
78d0e16a 190
a84f0186
MM
191 alpha_stepper_motor->change_steps_per_mm(steps_per_mm[0]);
192 beta_stepper_motor->change_steps_per_mm(steps_per_mm[1]);
193 gamma_stepper_motor->change_steps_per_mm(steps_per_mm[2]);
194
df6a30f2
MM
195 alpha_stepper_motor->max_rate = THEKERNEL->config->value(alpha_max_rate_checksum)->by_default(30000.0F)->as_number() / 60.0F;
196 beta_stepper_motor->max_rate = THEKERNEL->config->value(beta_max_rate_checksum )->by_default(30000.0F)->as_number() / 60.0F;
197 gamma_stepper_motor->max_rate = THEKERNEL->config->value(gamma_max_rate_checksum)->by_default(30000.0F)->as_number() / 60.0F;
198
78d0e16a
MM
199 actuators.clear();
200 actuators.push_back(alpha_stepper_motor);
201 actuators.push_back(beta_stepper_motor);
202 actuators.push_back(gamma_stepper_motor);
975469ad
MM
203
204 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
205 // so the first move can be correct if homing is not performed
206 float actuator_pos[3];
207 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
208 for (int i = 0; i < 3; i++)
209 actuators[i]->change_last_milestone(actuator_pos[i]);
4cff3ded
AW
210}
211
5647f709 212void Robot::on_get_public_data(void* argument){
b55cfff1
JM
213 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
214
215 if(!pdr->starts_with(robot_checksum)) return;
216
217 if(pdr->second_element_is(speed_override_percent_checksum)) {
1ad23cd3 218 static float return_data;
da947c62 219 return_data = 100.0F * 60.0F / seconds_per_minute;
b55cfff1
JM
220 pdr->set_data_ptr(&return_data);
221 pdr->set_taken();
98761c28 222
b55cfff1 223 }else if(pdr->second_element_is(current_position_checksum)) {
1ad23cd3 224 static float return_data[3];
2ba859c9
MM
225 return_data[0]= from_millimeters(this->last_milestone[0]);
226 return_data[1]= from_millimeters(this->last_milestone[1]);
227 return_data[2]= from_millimeters(this->last_milestone[2]);
b55cfff1
JM
228
229 pdr->set_data_ptr(&return_data);
98761c28 230 pdr->set_taken();
b55cfff1 231 }
5647f709
JM
232}
233
234void Robot::on_set_public_data(void* argument){
b55cfff1 235 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
5647f709 236
b55cfff1 237 if(!pdr->starts_with(robot_checksum)) return;
5647f709 238
b55cfff1 239 if(pdr->second_element_is(speed_override_percent_checksum)) {
7a522ccc 240 // NOTE do not use this while printing!
1ad23cd3 241 float t= *static_cast<float*>(pdr->get_data_ptr());
98761c28 242 // enforce minimum 10% speed
da947c62 243 if (t < 10.0F) t= 10.0F;
98761c28 244
da947c62 245 this->seconds_per_minute = t / 0.6F; // t * 60 / 100
b55cfff1
JM
246 pdr->set_taken();
247 }
5647f709
JM
248}
249
4cff3ded 250//A GCode has been received
edac9072 251//See if the current Gcode line has some orders for us
4cff3ded
AW
252void Robot::on_gcode_received(void * argument){
253 Gcode* gcode = static_cast<Gcode*>(argument);
6bc4a00a 254
4cff3ded
AW
255 //Temp variables, constant properties are stored in the object
256 uint8_t next_action = NEXT_ACTION_DEFAULT;
23c90ba6 257 this->motion_mode = -1;
4cff3ded
AW
258
259 //G-letter Gcodes are mostly what the Robot module is interrested in, other modules also catch the gcode event and do stuff accordingly
3c4f2dd8
AW
260 if( gcode->has_g){
261 switch( gcode->g ){
74b6303c
DD
262 case 0: this->motion_mode = MOTION_MODE_SEEK; gcode->mark_as_taken(); break;
263 case 1: this->motion_mode = MOTION_MODE_LINEAR; gcode->mark_as_taken(); break;
264 case 2: this->motion_mode = MOTION_MODE_CW_ARC; gcode->mark_as_taken(); break;
265 case 3: this->motion_mode = MOTION_MODE_CCW_ARC; gcode->mark_as_taken(); break;
266 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); gcode->mark_as_taken(); break;
267 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); gcode->mark_as_taken(); break;
268 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); gcode->mark_as_taken(); break;
269 case 20: this->inch_mode = true; gcode->mark_as_taken(); break;
270 case 21: this->inch_mode = false; gcode->mark_as_taken(); break;
271 case 90: this->absolute_mode = true; gcode->mark_as_taken(); break;
272 case 91: this->absolute_mode = false; gcode->mark_as_taken(); break;
0b804a41 273 case 92: {
6bc4a00a 274 if(gcode->get_num_args() == 0){
8a23b271 275 clear_vector(this->last_milestone);
6bc4a00a 276 }else{
eaf8a8a8
BG
277 for (char letter = 'X'; letter <= 'Z'; letter++){
278 if ( gcode->has_letter(letter) )
6bc4a00a 279 this->last_milestone[letter-'X'] = this->to_millimeters(gcode->get_value(letter));
eaf8a8a8 280 }
6bc4a00a 281 }
78d0e16a
MM
282
283 // TODO: handle any number of actuators
284 float actuator_pos[3];
2ba859c9 285 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
78d0e16a
MM
286
287 for (int i = 0; i < 3; i++)
288 actuators[i]->change_last_milestone(actuator_pos[i]);
289
74b6303c 290 gcode->mark_as_taken();
78d0e16a 291 return;
6bc4a00a
MM
292 }
293 }
3c4f2dd8 294 }else if( gcode->has_m){
33e4cc02 295 switch( gcode->m ){
0fb5b438 296 case 92: // M92 - set steps per mm
0fb5b438 297 if (gcode->has_letter('X'))
78d0e16a 298 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
0fb5b438 299 if (gcode->has_letter('Y'))
78d0e16a 300 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
0fb5b438 301 if (gcode->has_letter('Z'))
78d0e16a 302 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
7369629d
MM
303 if (gcode->has_letter('F'))
304 seconds_per_minute = gcode->get_value('F');
78d0e16a
MM
305
306 gcode->stream->printf("X:%g Y:%g Z:%g F:%g ", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm, seconds_per_minute);
0fb5b438 307 gcode->add_nl = true;
74b6303c 308 gcode->mark_as_taken();
0fb5b438 309 return;
4d9f562f
JM
310 case 114:
311 {
312 char buf[32];
313 int n= snprintf(buf, sizeof(buf), "C: X:%1.3f Y:%1.3f Z:%1.3f",
314 from_millimeters(this->last_milestone[0]),
315 from_millimeters(this->last_milestone[1]),
316 from_millimeters(this->last_milestone[2]));
317 gcode->txt_after_ok.append(buf, n);
318 gcode->mark_as_taken();
319 }
6989211c 320 return;
33e4cc02 321
83488642
JM
322 case 203: // M203 Set maximum feedrates in mm/sec
323 if (gcode->has_letter('X'))
324 this->max_speeds[X_AXIS]= gcode->get_value('X');
325 if (gcode->has_letter('Y'))
326 this->max_speeds[Y_AXIS]= gcode->get_value('Y');
327 if (gcode->has_letter('Z'))
328 this->max_speeds[Z_AXIS]= gcode->get_value('Z');
329 if (gcode->has_letter('A'))
330 alpha_stepper_motor->max_rate= gcode->get_value('A');
331 if (gcode->has_letter('B'))
332 beta_stepper_motor->max_rate= gcode->get_value('B');
333 if (gcode->has_letter('C'))
334 gamma_stepper_motor->max_rate= gcode->get_value('C');
335
336 gcode->stream->printf("X:%g Y:%g Z:%g A:%g B:%g C:%g ",
337 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
338 alpha_stepper_motor->max_rate, beta_stepper_motor->max_rate, gamma_stepper_motor->max_rate);
339 gcode->add_nl = true;
340 gcode->mark_as_taken();
341 break;
342
d4ee6ee2
JM
343 case 204: // M204 Snnn - set acceleration to nnn, NB only Snnn is currently supported
344 gcode->mark_as_taken();
83488642 345
d4ee6ee2
JM
346 if (gcode->has_letter('S'))
347 {
83488642
JM
348 // TODO for safety so it applies only to following gcodes, maybe a better way to do this?
349 THEKERNEL->conveyor->wait_for_empty_queue();
da947c62 350 float acc= gcode->get_value('S'); // mm/s^2
d4ee6ee2 351 // enforce minimum
da947c62
MM
352 if (acc < 1.0F)
353 acc = 1.0F;
314ab8f7 354 THEKERNEL->planner->acceleration= acc;
d4ee6ee2
JM
355 }
356 break;
357
8b69c90d 358 case 205: // M205 Xnnn - set junction deviation Snnn - Set minimum planner speed
d4ee6ee2
JM
359 gcode->mark_as_taken();
360 if (gcode->has_letter('X'))
361 {
1ad23cd3 362 float jd= gcode->get_value('X');
d4ee6ee2 363 // enforce minimum
8b69c90d
JM
364 if (jd < 0.0F)
365 jd = 0.0F;
314ab8f7 366 THEKERNEL->planner->junction_deviation= jd;
d4ee6ee2 367 }
8b69c90d
JM
368 if (gcode->has_letter('S'))
369 {
370 float mps= gcode->get_value('S');
371 // enforce minimum
372 if (mps < 0.0F)
373 mps = 0.0F;
374 THEKERNEL->planner->minimum_planner_speed= mps;
375 }
d4ee6ee2 376 break;
98761c28 377
7369629d 378 case 220: // M220 - speed override percentage
74b6303c 379 gcode->mark_as_taken();
7369629d
MM
380 if (gcode->has_letter('S'))
381 {
1ad23cd3 382 float factor = gcode->get_value('S');
98761c28 383 // enforce minimum 10% speed
da947c62
MM
384 if (factor < 10.0F)
385 factor = 10.0F;
386 // enforce maximum 10x speed
387 if (factor > 1000.0F)
388 factor = 1000.0F;
389
390 seconds_per_minute = 6000.0F / factor;
7369629d 391 }
b4f56013 392 break;
ec4773e5 393
494dc541
JM
394 case 400: // wait until all moves are done up to this point
395 gcode->mark_as_taken();
314ab8f7 396 THEKERNEL->conveyor->wait_for_empty_queue();
494dc541
JM
397 break;
398
33e4cc02
JM
399 case 500: // M500 saves some volatile settings to config override file
400 case 503: // M503 just prints the settings
78d0e16a 401 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm);
da947c62 402 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f\n", THEKERNEL->planner->acceleration);
8b69c90d 403 gcode->stream->printf(";X- Junction Deviation, S - Minimum Planner speed:\nM205 X%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->minimum_planner_speed);
83488642
JM
404 gcode->stream->printf(";Max feedrates in mm/sec, XYZ cartesian, ABC actuator:\nM203 X%1.5f Y%1.5f Z%1.5f A%1.5f B%1.5f C%1.5f\n",
405 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
406 alpha_stepper_motor->max_rate, beta_stepper_motor->max_rate, gamma_stepper_motor->max_rate);
33e4cc02
JM
407 gcode->mark_as_taken();
408 break;
409
ec29d378 410 case 665: // M665 set optional arm solution variables based on arm solution. NOTE these are not saved with M500
ec4773e5 411 gcode->mark_as_taken();
ec29d378 412 // the parameter args could be any letter except S so try each one
ec4773e5 413 for(char c='A';c<='Z';c++) {
ec29d378 414 if(c == 'S') continue; // used for segments per second
1ad23cd3 415 float v;
ec4773e5
JM
416 bool supported= arm_solution->get_optional(c, &v); // retrieve current value if supported
417
418 if(supported && gcode->has_letter(c)) { // set new value if supported
419 v= gcode->get_value(c);
420 arm_solution->set_optional(c, v);
421 }
422 if(supported) { // print all current values of supported options
5523c05d
JM
423 gcode->stream->printf("%c %8.3f ", c, v);
424 gcode->add_nl = true;
ec4773e5
JM
425 }
426 }
ec29d378
JM
427 // set delta segments per second
428 if(gcode->has_letter('S')) {
429 this->delta_segments_per_second= gcode->get_value('S');
430 }
ec4773e5 431 break;
6989211c 432 }
494dc541
JM
433 }
434
c83887ea
MM
435 if( this->motion_mode < 0)
436 return;
6bc4a00a 437
4cff3ded 438 //Get parameters
1ad23cd3 439 float target[3], offset[3];
c2885de8 440 clear_vector(offset);
6bc4a00a 441
2ba859c9 442 memcpy(target, this->last_milestone, sizeof(target)); //default to last target
6bc4a00a 443
c2885de8
JM
444 for(char letter = 'I'; letter <= 'K'; letter++){
445 if( gcode->has_letter(letter) ){
446 offset[letter-'I'] = this->to_millimeters(gcode->get_value(letter));
447 }
448 }
449 for(char letter = 'X'; letter <= 'Z'; letter++){
450 if( gcode->has_letter(letter) ){
451 target[letter-'X'] = this->to_millimeters(gcode->get_value(letter)) + ( this->absolute_mode ? 0 : target[letter-'X']);
452 }
453 }
6bc4a00a 454
7369629d
MM
455 if( gcode->has_letter('F') )
456 {
457 if( this->motion_mode == MOTION_MODE_SEEK )
da947c62 458 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 459 else
da947c62 460 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 461 }
6bc4a00a 462
4cff3ded
AW
463 //Perform any physical actions
464 switch( next_action ){
465 case NEXT_ACTION_DEFAULT:
466 switch(this->motion_mode){
467 case MOTION_MODE_CANCEL: break;
da947c62
MM
468 case MOTION_MODE_SEEK : this->append_line(gcode, target, this->seek_rate / seconds_per_minute ); break;
469 case MOTION_MODE_LINEAR: this->append_line(gcode, target, this->feed_rate / seconds_per_minute ); break;
df27a6a3 470 case MOTION_MODE_CW_ARC: case MOTION_MODE_CCW_ARC: this->compute_arc(gcode, offset, target ); break;
4cff3ded
AW
471 }
472 break;
473 }
13e4a3f9 474
4cff3ded
AW
475 // As far as the parser is concerned, the position is now == target. In reality the
476 // motion control system might still be processing the action and the real tool position
477 // in any intermediate location.
2ba859c9 478 memcpy(this->last_milestone, target, sizeof(this->last_milestone)); // this->position[] = target[];
4cff3ded 479
edac9072
AW
480}
481
5984acdf 482// We received a new gcode, and one of the functions
edac9072
AW
483// determined the distance for that given gcode. So now we can attach this gcode to the right block
484// and continue
485void Robot::distance_in_gcode_is_known(Gcode* gcode){
486
487 //If the queue is empty, execute immediatly, otherwise attach to the last added block
e0ee24ed 488 THEKERNEL->conveyor->append_gcode(gcode);
edac9072
AW
489}
490
491// Reset the position for all axes ( used in homing and G92 stuff )
1ad23cd3 492void Robot::reset_axis_position(float position, int axis) {
2ba859c9 493 this->last_milestone[axis] = position;
29c28822
MM
494
495 float actuator_pos[3];
496 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
497
498 for (int i = 0; i < 3; i++)
499 actuators[i]->change_last_milestone(actuator_pos[i]);
4cff3ded
AW
500}
501
edac9072 502
4cff3ded 503// Convert target from millimeters to steps, and append this to the planner
da947c62 504void Robot::append_milestone( float target[], float rate_mm_s )
df6a30f2 505{
1ad23cd3 506 float deltas[3];
df6a30f2
MM
507 float unit_vec[3];
508 float actuator_pos[3];
509 float millimeters_of_travel;
510
511 // find distance moved by each axis
512 for (int axis = X_AXIS; axis <= Z_AXIS; axis++)
513 deltas[axis] = target[axis] - last_milestone[axis];
aab6cbba 514
edac9072 515 // Compute how long this move moves, so we can attach it to the block for later use
df6a30f2
MM
516 millimeters_of_travel = sqrtf( pow( deltas[X_AXIS], 2 ) + pow( deltas[Y_AXIS], 2 ) + pow( deltas[Z_AXIS], 2 ) );
517
518 // find distance unit vector
519 for (int i = 0; i < 3; i++)
520 unit_vec[i] = deltas[i] / millimeters_of_travel;
521
522 // Do not move faster than the configured cartesian limits
523 for (int axis = X_AXIS; axis <= Z_AXIS; axis++)
524 {
525 if ( max_speeds[axis] > 0 )
526 {
da947c62 527 float axis_speed = fabs(unit_vec[axis] * rate_mm_s);
df6a30f2
MM
528
529 if (axis_speed > max_speeds[axis])
da947c62 530 rate_mm_s *= ( max_speeds[axis] / axis_speed );
7b470506
AW
531 }
532 }
4cff3ded 533
df6a30f2
MM
534 // find actuator position given cartesian position
535 arm_solution->cartesian_to_actuator( target, actuator_pos );
536
537 // check per-actuator speed limits
538 for (int actuator = 0; actuator <= 2; actuator++)
539 {
da947c62 540 float actuator_rate = fabs(actuator_pos[actuator] - actuators[actuator]->last_milestone_mm) * rate_mm_s / millimeters_of_travel;
df6a30f2
MM
541
542 if (actuator_rate > actuators[actuator]->max_rate)
da947c62 543 rate_mm_s *= (actuators[actuator]->max_rate / actuator_rate);
df6a30f2
MM
544 }
545
edac9072 546 // Append the block to the planner
da947c62 547 THEKERNEL->planner->append_block( actuator_pos, rate_mm_s, millimeters_of_travel, unit_vec );
4cff3ded 548
edac9072 549 // Update the last_milestone to the current target for the next time we use last_milestone
c2885de8 550 memcpy(this->last_milestone, target, sizeof(this->last_milestone)); // this->last_milestone[] = target[];
4cff3ded
AW
551
552}
553
edac9072 554// Append a move to the queue ( cutting it into segments if needed )
da947c62 555void Robot::append_line(Gcode* gcode, float target[], float rate_mm_s ){
4cff3ded 556
edac9072 557 // Find out the distance for this gcode
2ba859c9 558 gcode->millimeters_of_travel = pow( target[X_AXIS]-this->last_milestone[X_AXIS], 2 ) + pow( target[Y_AXIS]-this->last_milestone[Y_AXIS], 2 ) + pow( target[Z_AXIS]-this->last_milestone[Z_AXIS], 2 );
4cff3ded 559
edac9072 560 // We ignore non-moves ( for example, extruder moves are not XYZ moves )
70d29afd 561 if( gcode->millimeters_of_travel < 1e-8F ){
95b4885b
JM
562 return;
563 }
436a2cd1 564
2ba859c9
MM
565 gcode->millimeters_of_travel = sqrtf(gcode->millimeters_of_travel);
566
edac9072 567 // Mark the gcode as having a known distance
5dcb2ff3 568 this->distance_in_gcode_is_known( gcode );
436a2cd1 569
4a0c8e14
JM
570 // We cut the line into smaller segments. This is not usefull in a cartesian robot, but necessary for robots with rotational axes.
571 // In cartesian robot, a high "mm_per_line_segment" setting will prevent waste.
572 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
4a0c8e14 573 uint16_t segments;
5984acdf 574
c2885de8 575 if(this->delta_segments_per_second > 1.0F) {
4a0c8e14
JM
576 // enabled if set to something > 1, it is set to 0.0 by default
577 // segment based on current speed and requested segments per second
578 // the faster the travel speed the fewer segments needed
579 // NOTE rate is mm/sec and we take into account any speed override
da947c62 580 float seconds = gcode->millimeters_of_travel / rate_mm_s;
4a0c8e14
JM
581 segments= max(1, ceil(this->delta_segments_per_second * seconds));
582 // TODO if we are only moving in Z on a delta we don't really need to segment at all
5984acdf 583
4a0c8e14 584 }else{
c2885de8 585 if(this->mm_per_line_segment == 0.0F){
4a0c8e14
JM
586 segments= 1; // don't split it up
587 }else{
588 segments = ceil( gcode->millimeters_of_travel/ this->mm_per_line_segment);
589 }
590 }
5984acdf 591
2ba859c9
MM
592 if (segments > 1)
593 {
594 // A vector to keep track of the endpoint of each segment
595 float segment_delta[3];
596 float segment_end[3];
597
598 // How far do we move each segment?
9fff6045 599 for (int i = X_AXIS; i <= Z_AXIS; i++)
2ba859c9 600 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
4cff3ded 601
c8e0fb15
MM
602 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
603 // We always add another point after this loop so we stop at segments-1, ie i < segments
2ba859c9
MM
604 for (int i = 1; i < segments; i++)
605 {
606 for(int axis=X_AXIS; axis <= Z_AXIS; axis++ )
607 segment_end[axis] = last_milestone[axis] + segment_delta[axis];
608
609 // Append the end of this segment to the queue
610 this->append_milestone(segment_end, rate_mm_s);
611 }
4cff3ded 612 }
5984acdf
MM
613
614 // Append the end of this full move to the queue
da947c62 615 this->append_milestone(target, rate_mm_s);
2134bcf2
MM
616
617 // if adding these blocks didn't start executing, do that now
618 THEKERNEL->conveyor->ensure_running();
4cff3ded
AW
619}
620
4cff3ded 621
edac9072 622// Append an arc to the queue ( cutting it into segments as needed )
1ad23cd3 623void Robot::append_arc(Gcode* gcode, float target[], float offset[], float radius, bool is_clockwise ){
aab6cbba 624
edac9072 625 // Scary math
2ba859c9
MM
626 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
627 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
628 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1ad23cd3
MM
629 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
630 float r_axis1 = -offset[this->plane_axis_1];
631 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
632 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
aab6cbba
AW
633
634 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
1ad23cd3 635 float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
aab6cbba
AW
636 if (angular_travel < 0) { angular_travel += 2*M_PI; }
637 if (is_clockwise) { angular_travel -= 2*M_PI; }
638
edac9072 639 // Find the distance for this gcode
13addf09 640 gcode->millimeters_of_travel = hypotf(angular_travel*radius, fabs(linear_travel));
436a2cd1 641
edac9072 642 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
c2885de8 643 if( gcode->millimeters_of_travel < 0.0001F ){ return; }
5dcb2ff3 644
edac9072 645 // Mark the gcode as having a known distance
d149c730 646 this->distance_in_gcode_is_known( gcode );
5984acdf
MM
647
648 // Figure out how many segments for this gcode
436a2cd1 649 uint16_t segments = floor(gcode->millimeters_of_travel/this->mm_per_arc_segment);
aab6cbba 650
1ad23cd3
MM
651 float theta_per_segment = angular_travel/segments;
652 float linear_per_segment = linear_travel/segments;
aab6cbba
AW
653
654 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
655 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
656 r_T = [cos(phi) -sin(phi);
657 sin(phi) cos(phi] * r ;
658 For arc generation, the center of the circle is the axis of rotation and the radius vector is
659 defined from the circle center to the initial position. Each line segment is formed by successive
660 vector rotations. This requires only two cos() and sin() computations to form the rotation
661 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1ad23cd3 662 all float numbers are single precision on the Arduino. (True float precision will not have
aab6cbba
AW
663 round off issues for CNC applications.) Single precision error can accumulate to be greater than
664 tool precision in some cases. Therefore, arc path correction is implemented.
665
666 Small angle approximation may be used to reduce computation overhead further. This approximation
667 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
668 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
669 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
670 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
671 issue for CNC machines with the single precision Arduino calculations.
672 This approximation also allows mc_arc to immediately insert a line segment into the planner
673 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
674 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
675 This is important when there are successive arc motions.
676 */
677 // Vector rotation matrix values
c2885de8 678 float cos_T = 1-0.5F*theta_per_segment*theta_per_segment; // Small angle approximation
1ad23cd3 679 float sin_T = theta_per_segment;
aab6cbba 680
1ad23cd3
MM
681 float arc_target[3];
682 float sin_Ti;
683 float cos_Ti;
684 float r_axisi;
aab6cbba
AW
685 uint16_t i;
686 int8_t count = 0;
687
688 // Initialize the linear axis
2ba859c9 689 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
aab6cbba
AW
690
691 for (i = 1; i<segments; i++) { // Increment (segments-1)
692
b66fb830 693 if (count < this->arc_correction ) {
aab6cbba
AW
694 // Apply vector rotation matrix
695 r_axisi = r_axis0*sin_T + r_axis1*cos_T;
696 r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
697 r_axis1 = r_axisi;
698 count++;
699 } else {
700 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
701 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
13addf09
MM
702 cos_Ti = cosf(i*theta_per_segment);
703 sin_Ti = sinf(i*theta_per_segment);
aab6cbba
AW
704 r_axis0 = -offset[this->plane_axis_0]*cos_Ti + offset[this->plane_axis_1]*sin_Ti;
705 r_axis1 = -offset[this->plane_axis_0]*sin_Ti - offset[this->plane_axis_1]*cos_Ti;
706 count = 0;
707 }
708
709 // Update arc_target location
710 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
711 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
712 arc_target[this->plane_axis_2] += linear_per_segment;
edac9072
AW
713
714 // Append this segment to the queue
da947c62 715 this->append_milestone(arc_target, this->feed_rate / seconds_per_minute);
aab6cbba
AW
716
717 }
edac9072 718
aab6cbba 719 // Ensure last segment arrives at target location.
da947c62 720 this->append_milestone(target, this->feed_rate / seconds_per_minute);
aab6cbba
AW
721}
722
edac9072 723// Do the math for an arc and add it to the queue
1ad23cd3 724void Robot::compute_arc(Gcode* gcode, float offset[], float target[]){
aab6cbba
AW
725
726 // Find the radius
13addf09 727 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
aab6cbba
AW
728
729 // Set clockwise/counter-clockwise sign for mc_arc computations
730 bool is_clockwise = false;
df27a6a3 731 if( this->motion_mode == MOTION_MODE_CW_ARC ){ is_clockwise = true; }
aab6cbba
AW
732
733 // Append arc
436a2cd1 734 this->append_arc(gcode, target, offset, radius, is_clockwise );
aab6cbba
AW
735
736}
737
738
1ad23cd3 739float Robot::theta(float x, float y){
71c21c73 740 float t = atanf(x/fabs(y));
4cff3ded
AW
741 if (y>0) {return(t);} else {if (t>0){return(M_PI-t);} else {return(-M_PI-t);}}
742}
743
744void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2){
745 this->plane_axis_0 = axis_0;
746 this->plane_axis_1 = axis_1;
747 this->plane_axis_2 = axis_2;
748}
749
750