patched arc from grbl project - sometimes arcs did not work correctly
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
CommitLineData
df27a6a3 1/*
aab6cbba 2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
4cff3ded
AW
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
df27a6a3 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
5673fe39 10
c3df978d
JM
11#include "mbed.h" // for us_ticker_read()
12
5673fe39 13#include <math.h>
4cff3ded
AW
14#include <string>
15using std::string;
5673fe39 16
4cff3ded 17#include "Planner.h"
3fceb8eb 18#include "Conveyor.h"
4cff3ded 19#include "Robot.h"
5673fe39
MM
20#include "nuts_bolts.h"
21#include "Pin.h"
22#include "StepperMotor.h"
23#include "Gcode.h"
5647f709 24#include "PublicDataRequest.h"
66383b80 25#include "RobotPublicAccess.h"
4cff3ded
AW
26#include "arm_solutions/BaseSolution.h"
27#include "arm_solutions/CartesianSolution.h"
c41d6d95 28#include "arm_solutions/RotatableCartesianSolution.h"
2a06c415 29#include "arm_solutions/LinearDeltaSolution.h"
c52b8675 30#include "arm_solutions/RotatableDeltaSolution.h"
bdaaa75d 31#include "arm_solutions/HBotSolution.h"
1217e470 32#include "arm_solutions/MorganSCARASolution.h"
61134a65 33#include "StepTicker.h"
7af0714f
JM
34#include "checksumm.h"
35#include "utils.h"
8d54c34c 36#include "ConfigValue.h"
5966b7d0 37#include "libs/StreamOutput.h"
dd0a7cfa 38#include "StreamOutputPool.h"
38bf9a1c 39
78d0e16a
MM
40#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
41#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
42#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
43#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
44#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
45#define arc_correction_checksum CHECKSUM("arc_correction")
46#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
47#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
48#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
43424972
JM
49
50// arm solutions
78d0e16a
MM
51#define arm_solution_checksum CHECKSUM("arm_solution")
52#define cartesian_checksum CHECKSUM("cartesian")
53#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
54#define rostock_checksum CHECKSUM("rostock")
2a06c415 55#define linear_delta_checksum CHECKSUM("linear_delta")
c52b8675 56#define rotatable_delta_checksum CHECKSUM("rotatable_delta")
78d0e16a
MM
57#define delta_checksum CHECKSUM("delta")
58#define hbot_checksum CHECKSUM("hbot")
59#define corexy_checksum CHECKSUM("corexy")
60#define kossel_checksum CHECKSUM("kossel")
1217e470 61#define morgan_checksum CHECKSUM("morgan")
78d0e16a
MM
62
63// stepper motor stuff
64#define alpha_step_pin_checksum CHECKSUM("alpha_step_pin")
65#define beta_step_pin_checksum CHECKSUM("beta_step_pin")
66#define gamma_step_pin_checksum CHECKSUM("gamma_step_pin")
67#define alpha_dir_pin_checksum CHECKSUM("alpha_dir_pin")
68#define beta_dir_pin_checksum CHECKSUM("beta_dir_pin")
69#define gamma_dir_pin_checksum CHECKSUM("gamma_dir_pin")
70#define alpha_en_pin_checksum CHECKSUM("alpha_en_pin")
71#define beta_en_pin_checksum CHECKSUM("beta_en_pin")
72#define gamma_en_pin_checksum CHECKSUM("gamma_en_pin")
a84f0186 73
78d0e16a
MM
74#define alpha_steps_per_mm_checksum CHECKSUM("alpha_steps_per_mm")
75#define beta_steps_per_mm_checksum CHECKSUM("beta_steps_per_mm")
76#define gamma_steps_per_mm_checksum CHECKSUM("gamma_steps_per_mm")
77
df6a30f2
MM
78#define alpha_max_rate_checksum CHECKSUM("alpha_max_rate")
79#define beta_max_rate_checksum CHECKSUM("beta_max_rate")
80#define gamma_max_rate_checksum CHECKSUM("gamma_max_rate")
81
82
78d0e16a
MM
83// new-style actuator stuff
84#define actuator_checksum CHEKCSUM("actuator")
85
86#define step_pin_checksum CHECKSUM("step_pin")
87#define dir_pin_checksum CHEKCSUM("dir_pin")
88#define en_pin_checksum CHECKSUM("en_pin")
89
90#define steps_per_mm_checksum CHECKSUM("steps_per_mm")
df6a30f2 91#define max_rate_checksum CHECKSUM("max_rate")
78d0e16a
MM
92
93#define alpha_checksum CHECKSUM("alpha")
94#define beta_checksum CHECKSUM("beta")
95#define gamma_checksum CHECKSUM("gamma")
96
43424972 97
38bf9a1c
JM
98#define NEXT_ACTION_DEFAULT 0
99#define NEXT_ACTION_DWELL 1
100#define NEXT_ACTION_GO_HOME 2
101
102#define MOTION_MODE_SEEK 0 // G0
103#define MOTION_MODE_LINEAR 1 // G1
104#define MOTION_MODE_CW_ARC 2 // G2
105#define MOTION_MODE_CCW_ARC 3 // G3
106#define MOTION_MODE_CANCEL 4 // G80
107
108#define PATH_CONTROL_MODE_EXACT_PATH 0
109#define PATH_CONTROL_MODE_EXACT_STOP 1
110#define PATH_CONTROL_MODE_CONTINOUS 2
111
112#define PROGRAM_FLOW_RUNNING 0
113#define PROGRAM_FLOW_PAUSED 1
114#define PROGRAM_FLOW_COMPLETED 2
115
116#define SPINDLE_DIRECTION_CW 0
117#define SPINDLE_DIRECTION_CCW 1
118
5fa0c173
PA
119#define ARC_ANGULAR_TRAVEL_EPSILON 5E-7 // Float (radians)
120
edac9072
AW
121// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
122// It takes care of cutting arcs into segments, same thing for line that are too long
123
4710532a
JM
124Robot::Robot()
125{
a1b7e9f0 126 this->inch_mode = false;
0e8b102e 127 this->absolute_mode = true;
df27a6a3 128 this->motion_mode = MOTION_MODE_SEEK;
4cff3ded 129 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
df27a6a3 130 clear_vector(this->last_milestone);
3632a517 131 clear_vector(this->transformed_last_milestone);
0b804a41 132 this->arm_solution = NULL;
da947c62 133 seconds_per_minute = 60.0F;
fae93525 134 this->clearToolOffset();
3632a517 135 this->compensationTransform= nullptr;
728477c4 136 this->halted= false;
4cff3ded
AW
137}
138
139//Called when the module has just been loaded
4710532a
JM
140void Robot::on_module_loaded()
141{
4cff3ded 142 this->register_for_event(ON_GCODE_RECEIVED);
b55cfff1
JM
143 this->register_for_event(ON_GET_PUBLIC_DATA);
144 this->register_for_event(ON_SET_PUBLIC_DATA);
728477c4 145 this->register_for_event(ON_HALT);
4cff3ded
AW
146
147 // Configuration
da24d6ae
AW
148 this->on_config_reload(this);
149}
150
4710532a
JM
151void Robot::on_config_reload(void *argument)
152{
5984acdf 153
edac9072
AW
154 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
155 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
156 // To make adding those solution easier, they have their own, separate object.
5984acdf 157 // Here we read the config to find out which arm solution to use
0b804a41 158 if (this->arm_solution) delete this->arm_solution;
eda9facc 159 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
d149c730 160 // Note checksums are not const expressions when in debug mode, so don't use switch
98761c28 161 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
314ab8f7 162 this->arm_solution = new HBotSolution(THEKERNEL->config);
bdaaa75d 163
2a06c415
JM
164 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
165 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
73a4e3c0 166
4710532a 167 } else if(solution_checksum == rotatable_cartesian_checksum) {
314ab8f7 168 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
b73a756d 169
c52b8675
DP
170 } else if(solution_checksum == rotatable_delta_checksum) {
171 this->arm_solution = new RotatableDeltaSolution(THEKERNEL->config);
172
173
1217e470
QH
174 } else if(solution_checksum == morgan_checksum) {
175 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
176
4710532a 177 } else if(solution_checksum == cartesian_checksum) {
314ab8f7 178 this->arm_solution = new CartesianSolution(THEKERNEL->config);
73a4e3c0 179
4710532a 180 } else {
314ab8f7 181 this->arm_solution = new CartesianSolution(THEKERNEL->config);
d149c730 182 }
73a4e3c0 183
0b804a41 184
6b661ab3
DP
185 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
186 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
187 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
188 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
189 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.5f)->as_number();
190 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
78d0e16a 191
6b661ab3
DP
192 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
193 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
194 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
feb204be 195
78d0e16a
MM
196 Pin alpha_step_pin;
197 Pin alpha_dir_pin;
198 Pin alpha_en_pin;
199 Pin beta_step_pin;
200 Pin beta_dir_pin;
201 Pin beta_en_pin;
202 Pin gamma_step_pin;
203 Pin gamma_dir_pin;
204 Pin gamma_en_pin;
205
eda9facc
DP
206 alpha_step_pin.from_string( THEKERNEL->config->value(alpha_step_pin_checksum )->by_default("2.0" )->as_string())->as_output();
207 alpha_dir_pin.from_string( THEKERNEL->config->value(alpha_dir_pin_checksum )->by_default("0.5" )->as_string())->as_output();
208 alpha_en_pin.from_string( THEKERNEL->config->value(alpha_en_pin_checksum )->by_default("0.4" )->as_string())->as_output();
209 beta_step_pin.from_string( THEKERNEL->config->value(beta_step_pin_checksum )->by_default("2.1" )->as_string())->as_output();
210 beta_dir_pin.from_string( THEKERNEL->config->value(beta_dir_pin_checksum )->by_default("0.11" )->as_string())->as_output();
211 beta_en_pin.from_string( THEKERNEL->config->value(beta_en_pin_checksum )->by_default("0.10" )->as_string())->as_output();
212 gamma_step_pin.from_string( THEKERNEL->config->value(gamma_step_pin_checksum )->by_default("2.2" )->as_string())->as_output();
213 gamma_dir_pin.from_string( THEKERNEL->config->value(gamma_dir_pin_checksum )->by_default("0.20" )->as_string())->as_output();
214 gamma_en_pin.from_string( THEKERNEL->config->value(gamma_en_pin_checksum )->by_default("0.19" )->as_string())->as_output();
78d0e16a 215
a84f0186 216 float steps_per_mm[3] = {
eda9facc
DP
217 THEKERNEL->config->value(alpha_steps_per_mm_checksum)->by_default( 80.0F)->as_number(),
218 THEKERNEL->config->value(beta_steps_per_mm_checksum )->by_default( 80.0F)->as_number(),
219 THEKERNEL->config->value(gamma_steps_per_mm_checksum)->by_default(2560.0F)->as_number(),
a84f0186
MM
220 };
221
78d0e16a
MM
222 // TODO: delete or detect old steppermotors
223 // Make our 3 StepperMotors
c9cc5e06
JM
224 this->alpha_stepper_motor = new StepperMotor(alpha_step_pin, alpha_dir_pin, alpha_en_pin);
225 this->beta_stepper_motor = new StepperMotor(beta_step_pin, beta_dir_pin, beta_en_pin );
226 this->gamma_stepper_motor = new StepperMotor(gamma_step_pin, gamma_dir_pin, gamma_en_pin);
78d0e16a 227
a84f0186
MM
228 alpha_stepper_motor->change_steps_per_mm(steps_per_mm[0]);
229 beta_stepper_motor->change_steps_per_mm(steps_per_mm[1]);
230 gamma_stepper_motor->change_steps_per_mm(steps_per_mm[2]);
231
eda9facc
DP
232 alpha_stepper_motor->set_max_rate(THEKERNEL->config->value(alpha_max_rate_checksum)->by_default(30000.0F)->as_number() / 60.0F);
233 beta_stepper_motor->set_max_rate(THEKERNEL->config->value(beta_max_rate_checksum )->by_default(30000.0F)->as_number() / 60.0F);
234 gamma_stepper_motor->set_max_rate(THEKERNEL->config->value(gamma_max_rate_checksum)->by_default(30000.0F)->as_number() / 60.0F);
dd0a7cfa 235 check_max_actuator_speeds(); // check the configs are sane
df6a30f2 236
78d0e16a
MM
237 actuators.clear();
238 actuators.push_back(alpha_stepper_motor);
239 actuators.push_back(beta_stepper_motor);
240 actuators.push_back(gamma_stepper_motor);
975469ad 241
dd0a7cfa 242
975469ad
MM
243 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
244 // so the first move can be correct if homing is not performed
245 float actuator_pos[3];
246 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
247 for (int i = 0; i < 3; i++)
248 actuators[i]->change_last_milestone(actuator_pos[i]);
5966b7d0
AT
249
250 //this->clearToolOffset();
4cff3ded
AW
251}
252
dd0a7cfa
JM
253// this does a sanity check that actuator speeds do not exceed steps rate capability
254// we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
255void Robot::check_max_actuator_speeds()
256{
3494f3d0 257 float step_freq= alpha_stepper_motor->get_max_rate() * alpha_stepper_motor->get_steps_per_mm();
dd0a7cfa 258 if(step_freq > THEKERNEL->base_stepping_frequency) {
3494f3d0 259 alpha_stepper_motor->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / alpha_stepper_motor->get_steps_per_mm()));
dd0a7cfa
JM
260 THEKERNEL->streams->printf("WARNING: alpha_max_rate exceeds base_stepping_frequency * alpha_steps_per_mm: %f, setting to %f\n", step_freq, alpha_stepper_motor->max_rate);
261 }
262
3494f3d0 263 step_freq= beta_stepper_motor->get_max_rate() * beta_stepper_motor->get_steps_per_mm();
dd0a7cfa 264 if(step_freq > THEKERNEL->base_stepping_frequency) {
3494f3d0 265 beta_stepper_motor->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / beta_stepper_motor->get_steps_per_mm()));
dd0a7cfa
JM
266 THEKERNEL->streams->printf("WARNING: beta_max_rate exceeds base_stepping_frequency * beta_steps_per_mm: %f, setting to %f\n", step_freq, beta_stepper_motor->max_rate);
267 }
268
3494f3d0 269 step_freq= gamma_stepper_motor->get_max_rate() * gamma_stepper_motor->get_steps_per_mm();
dd0a7cfa 270 if(step_freq > THEKERNEL->base_stepping_frequency) {
3494f3d0 271 gamma_stepper_motor->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / gamma_stepper_motor->get_steps_per_mm()));
dd0a7cfa
JM
272 THEKERNEL->streams->printf("WARNING: gamma_max_rate exceeds base_stepping_frequency * gamma_steps_per_mm: %f, setting to %f\n", step_freq, gamma_stepper_motor->max_rate);
273 }
274}
275
728477c4
JM
276void Robot::on_halt(void *arg)
277{
278 halted= (arg == nullptr);
279}
280
4710532a
JM
281void Robot::on_get_public_data(void *argument)
282{
283 PublicDataRequest *pdr = static_cast<PublicDataRequest *>(argument);
b55cfff1
JM
284
285 if(!pdr->starts_with(robot_checksum)) return;
286
287 if(pdr->second_element_is(speed_override_percent_checksum)) {
1ad23cd3 288 static float return_data;
da947c62 289 return_data = 100.0F * 60.0F / seconds_per_minute;
b55cfff1
JM
290 pdr->set_data_ptr(&return_data);
291 pdr->set_taken();
98761c28 292
4710532a 293 } else if(pdr->second_element_is(current_position_checksum)) {
1ad23cd3 294 static float return_data[3];
4710532a
JM
295 return_data[0] = from_millimeters(this->last_milestone[0]);
296 return_data[1] = from_millimeters(this->last_milestone[1]);
297 return_data[2] = from_millimeters(this->last_milestone[2]);
b55cfff1
JM
298
299 pdr->set_data_ptr(&return_data);
98761c28 300 pdr->set_taken();
b55cfff1 301 }
5647f709
JM
302}
303
4710532a
JM
304void Robot::on_set_public_data(void *argument)
305{
306 PublicDataRequest *pdr = static_cast<PublicDataRequest *>(argument);
5647f709 307
b55cfff1 308 if(!pdr->starts_with(robot_checksum)) return;
5647f709 309
b55cfff1 310 if(pdr->second_element_is(speed_override_percent_checksum)) {
7a522ccc 311 // NOTE do not use this while printing!
4710532a 312 float t = *static_cast<float *>(pdr->get_data_ptr());
98761c28 313 // enforce minimum 10% speed
4710532a 314 if (t < 10.0F) t = 10.0F;
98761c28 315
da947c62 316 this->seconds_per_minute = t / 0.6F; // t * 60 / 100
b55cfff1 317 pdr->set_taken();
4710532a
JM
318 } else if(pdr->second_element_is(current_position_checksum)) {
319 float *t = static_cast<float *>(pdr->get_data_ptr());
320 for (int i = 0; i < 3; i++) {
8adf2390
L
321 this->last_milestone[i] = this->to_millimeters(t[i]);
322 }
323
324 float actuator_pos[3];
325 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
326 for (int i = 0; i < 3; i++)
327 actuators[i]->change_last_milestone(actuator_pos[i]);
328
329 pdr->set_taken();
330 }
5647f709
JM
331}
332
4cff3ded 333//A GCode has been received
edac9072 334//See if the current Gcode line has some orders for us
4710532a
JM
335void Robot::on_gcode_received(void *argument)
336{
337 Gcode *gcode = static_cast<Gcode *>(argument);
6bc4a00a 338
23c90ba6 339 this->motion_mode = -1;
4cff3ded 340
4710532a
JM
341 //G-letter Gcodes are mostly what the Robot module is interrested in, other modules also catch the gcode event and do stuff accordingly
342 if( gcode->has_g) {
343 switch( gcode->g ) {
74b6303c
DD
344 case 0: this->motion_mode = MOTION_MODE_SEEK; gcode->mark_as_taken(); break;
345 case 1: this->motion_mode = MOTION_MODE_LINEAR; gcode->mark_as_taken(); break;
346 case 2: this->motion_mode = MOTION_MODE_CW_ARC; gcode->mark_as_taken(); break;
347 case 3: this->motion_mode = MOTION_MODE_CCW_ARC; gcode->mark_as_taken(); break;
c3df978d
JM
348 case 4: {
349 uint32_t delay_ms= 0;
350 if (gcode->has_letter('P')) {
351 delay_ms= gcode->get_int('P');
352 }
353 if (gcode->has_letter('S')) {
354 delay_ms += gcode->get_int('S') * 1000;
355 }
356 if (delay_ms > 0){
c3df978d
JM
357 // drain queue
358 THEKERNEL->conveyor->wait_for_empty_queue();
359 // wait for specified time
6ac0b51c 360 uint32_t start= us_ticker_read(); // mbed call
c3df978d
JM
361 while ((us_ticker_read() - start) < delay_ms*1000) {
362 THEKERNEL->call_event(ON_IDLE, this);
363 }
364 }
365 gcode->mark_as_taken();
6b661ab3
DP
366 }
367 break;
74b6303c
DD
368 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); gcode->mark_as_taken(); break;
369 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); gcode->mark_as_taken(); break;
370 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); gcode->mark_as_taken(); break;
371 case 20: this->inch_mode = true; gcode->mark_as_taken(); break;
372 case 21: this->inch_mode = false; gcode->mark_as_taken(); break;
373 case 90: this->absolute_mode = true; gcode->mark_as_taken(); break;
374 case 91: this->absolute_mode = false; gcode->mark_as_taken(); break;
0b804a41 375 case 92: {
4710532a 376 if(gcode->get_num_args() == 0) {
cef9acea
JM
377 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
378 reset_axis_position(0, i);
379 }
380
4710532a
JM
381 } else {
382 for (char letter = 'X'; letter <= 'Z'; letter++) {
cef9acea
JM
383 if ( gcode->has_letter(letter) ) {
384 reset_axis_position(this->to_millimeters(gcode->get_value(letter)), letter - 'X');
385 }
eaf8a8a8 386 }
6bc4a00a 387 }
78d0e16a 388
74b6303c 389 gcode->mark_as_taken();
78d0e16a 390 return;
4710532a
JM
391 }
392 }
393 } else if( gcode->has_m) {
394 switch( gcode->m ) {
0fb5b438 395 case 92: // M92 - set steps per mm
0fb5b438 396 if (gcode->has_letter('X'))
78d0e16a 397 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
0fb5b438 398 if (gcode->has_letter('Y'))
78d0e16a 399 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
0fb5b438 400 if (gcode->has_letter('Z'))
78d0e16a 401 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
7369629d
MM
402 if (gcode->has_letter('F'))
403 seconds_per_minute = gcode->get_value('F');
78d0e16a
MM
404
405 gcode->stream->printf("X:%g Y:%g Z:%g F:%g ", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm, seconds_per_minute);
0fb5b438 406 gcode->add_nl = true;
74b6303c 407 gcode->mark_as_taken();
dd0a7cfa 408 check_max_actuator_speeds();
0fb5b438 409 return;
562db364 410
4710532a 411 case 114: {
58c32991
JM
412 char buf[64];
413 int n = snprintf(buf, sizeof(buf), "C: X:%1.3f Y:%1.3f Z:%1.3f A:%1.3f B:%1.3f C:%1.3f ",
4710532a
JM
414 from_millimeters(this->last_milestone[0]),
415 from_millimeters(this->last_milestone[1]),
58c32991
JM
416 from_millimeters(this->last_milestone[2]),
417 actuators[X_AXIS]->get_current_position(),
418 actuators[Y_AXIS]->get_current_position(),
419 actuators[Z_AXIS]->get_current_position() );
4710532a
JM
420 gcode->txt_after_ok.append(buf, n);
421 gcode->mark_as_taken();
422 }
423 return;
33e4cc02 424
562db364
JM
425 case 120: { // push state
426 gcode->mark_as_taken();
427 bool b= this->absolute_mode;
428 saved_state_t s(this->feed_rate, this->seek_rate, b);
429 state_stack.push(s);
430 }
431 break;
432
433 case 121: // pop state
434 gcode->mark_as_taken();
435 if(!state_stack.empty()) {
436 auto s= state_stack.top();
437 state_stack.pop();
438 this->feed_rate= std::get<0>(s);
439 this->seek_rate= std::get<1>(s);
440 this->absolute_mode= std::get<2>(s);
441 }
442 break;
443
83488642
JM
444 case 203: // M203 Set maximum feedrates in mm/sec
445 if (gcode->has_letter('X'))
4710532a 446 this->max_speeds[X_AXIS] = gcode->get_value('X');
83488642 447 if (gcode->has_letter('Y'))
4710532a 448 this->max_speeds[Y_AXIS] = gcode->get_value('Y');
83488642 449 if (gcode->has_letter('Z'))
4710532a 450 this->max_speeds[Z_AXIS] = gcode->get_value('Z');
83488642 451 if (gcode->has_letter('A'))
3494f3d0 452 alpha_stepper_motor->set_max_rate(gcode->get_value('A'));
83488642 453 if (gcode->has_letter('B'))
3494f3d0 454 beta_stepper_motor->set_max_rate(gcode->get_value('B'));
83488642 455 if (gcode->has_letter('C'))
3494f3d0 456 gamma_stepper_motor->set_max_rate(gcode->get_value('C'));
83488642 457
dd0a7cfa
JM
458 check_max_actuator_speeds();
459
83488642 460 gcode->stream->printf("X:%g Y:%g Z:%g A:%g B:%g C:%g ",
4710532a 461 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
3494f3d0 462 alpha_stepper_motor->get_max_rate(), beta_stepper_motor->get_max_rate(), gamma_stepper_motor->get_max_rate());
83488642
JM
463 gcode->add_nl = true;
464 gcode->mark_as_taken();
465 break;
466
c5fe1787 467 case 204: // M204 Snnn - set acceleration to nnn, Znnn sets z acceleration
d4ee6ee2 468 gcode->mark_as_taken();
83488642 469
4710532a 470 if (gcode->has_letter('S')) {
4710532a 471 float acc = gcode->get_value('S'); // mm/s^2
d4ee6ee2 472 // enforce minimum
da947c62
MM
473 if (acc < 1.0F)
474 acc = 1.0F;
4710532a 475 THEKERNEL->planner->acceleration = acc;
d4ee6ee2 476 }
c5fe1787 477 if (gcode->has_letter('Z')) {
c5fe1787
JM
478 float acc = gcode->get_value('Z'); // mm/s^2
479 // enforce positive
480 if (acc < 0.0F)
481 acc = 0.0F;
482 THEKERNEL->planner->z_acceleration = acc;
483 }
d4ee6ee2
JM
484 break;
485
9502f9d5 486 case 205: // M205 Xnnn - set junction deviation, Z - set Z junction deviation, Snnn - Set minimum planner speed, Ynnn - set minimum step rate
d4ee6ee2 487 gcode->mark_as_taken();
4710532a
JM
488 if (gcode->has_letter('X')) {
489 float jd = gcode->get_value('X');
d4ee6ee2 490 // enforce minimum
8b69c90d
JM
491 if (jd < 0.0F)
492 jd = 0.0F;
4710532a 493 THEKERNEL->planner->junction_deviation = jd;
d4ee6ee2 494 }
107df03f
JM
495 if (gcode->has_letter('Z')) {
496 float jd = gcode->get_value('Z');
497 // enforce minimum, -1 disables it and uses regular junction deviation
498 if (jd < -1.0F)
499 jd = -1.0F;
500 THEKERNEL->planner->z_junction_deviation = jd;
501 }
4710532a
JM
502 if (gcode->has_letter('S')) {
503 float mps = gcode->get_value('S');
8b69c90d
JM
504 // enforce minimum
505 if (mps < 0.0F)
506 mps = 0.0F;
4710532a 507 THEKERNEL->planner->minimum_planner_speed = mps;
8b69c90d 508 }
9502f9d5
JM
509 if (gcode->has_letter('Y')) {
510 alpha_stepper_motor->default_minimum_actuator_rate = gcode->get_value('Y');
511 }
d4ee6ee2 512 break;
98761c28 513
7369629d 514 case 220: // M220 - speed override percentage
74b6303c 515 gcode->mark_as_taken();
4710532a 516 if (gcode->has_letter('S')) {
1ad23cd3 517 float factor = gcode->get_value('S');
98761c28 518 // enforce minimum 10% speed
da947c62
MM
519 if (factor < 10.0F)
520 factor = 10.0F;
521 // enforce maximum 10x speed
522 if (factor > 1000.0F)
523 factor = 1000.0F;
524
525 seconds_per_minute = 6000.0F / factor;
7369629d 526 }
b4f56013 527 break;
ec4773e5 528
494dc541
JM
529 case 400: // wait until all moves are done up to this point
530 gcode->mark_as_taken();
314ab8f7 531 THEKERNEL->conveyor->wait_for_empty_queue();
494dc541
JM
532 break;
533
33e4cc02 534 case 500: // M500 saves some volatile settings to config override file
b7cd847e 535 case 503: { // M503 just prints the settings
78d0e16a 536 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm);
c5fe1787 537 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f Z%1.5f\n", THEKERNEL->planner->acceleration, THEKERNEL->planner->z_acceleration);
c9cc5e06 538 gcode->stream->printf(";X- Junction Deviation, Z- Z junction deviation, S - Minimum Planner speed mm/sec:\nM205 X%1.5f Z%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->z_junction_deviation, THEKERNEL->planner->minimum_planner_speed);
83488642 539 gcode->stream->printf(";Max feedrates in mm/sec, XYZ cartesian, ABC actuator:\nM203 X%1.5f Y%1.5f Z%1.5f A%1.5f B%1.5f C%1.5f\n",
4710532a 540 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
3494f3d0 541 alpha_stepper_motor->get_max_rate(), beta_stepper_motor->get_max_rate(), gamma_stepper_motor->get_max_rate());
b7cd847e
JM
542
543 // get or save any arm solution specific optional values
544 BaseSolution::arm_options_t options;
545 if(arm_solution->get_optional(options) && !options.empty()) {
546 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
4710532a 547 for(auto &i : options) {
b7cd847e
JM
548 gcode->stream->printf(" %c%1.4f", i.first, i.second);
549 }
550 gcode->stream->printf("\n");
551 }
33e4cc02
JM
552 gcode->mark_as_taken();
553 break;
b7cd847e 554 }
33e4cc02 555
b7cd847e 556 case 665: { // M665 set optional arm solution variables based on arm solution.
ec4773e5 557 gcode->mark_as_taken();
ebc75fc6
JM
558 // the parameter args could be any letter each arm solution only accepts certain ones
559 BaseSolution::arm_options_t options= gcode->get_args();
560 options.erase('S'); // don't include the S
561 options.erase('U'); // don't include the U
562 if(options.size() > 0) {
563 // set the specified options
564 arm_solution->set_optional(options);
565 }
566 options.clear();
b7cd847e 567 if(arm_solution->get_optional(options)) {
ebc75fc6 568 // foreach optional value
4710532a 569 for(auto &i : options) {
b7cd847e
JM
570 // print all current values of supported options
571 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
5523c05d 572 gcode->add_nl = true;
ec4773e5
JM
573 }
574 }
ec4773e5 575
4a839bea 576 if(gcode->has_letter('S')) { // set delta segments per second, not saved by M500
4710532a 577 this->delta_segments_per_second = gcode->get_value('S');
4a839bea
JM
578 gcode->stream->printf("Delta segments set to %8.4f segs/sec\n", this->delta_segments_per_second);
579
580 }else if(gcode->has_letter('U')) { // or set mm_per_line_segment, not saved by M500
581 this->mm_per_line_segment = gcode->get_value('U');
582 this->delta_segments_per_second = 0;
583 gcode->stream->printf("mm per line segment set to %8.4f\n", this->mm_per_line_segment);
ec29d378 584 }
4a839bea 585
ec4773e5 586 break;
b7cd847e 587 }
6989211c 588 }
494dc541
JM
589 }
590
c83887ea
MM
591 if( this->motion_mode < 0)
592 return;
6bc4a00a 593
4710532a 594 //Get parameters
1ad23cd3 595 float target[3], offset[3];
c2885de8 596 clear_vector(offset);
6bc4a00a 597
2ba859c9 598 memcpy(target, this->last_milestone, sizeof(target)); //default to last target
6bc4a00a 599
4710532a
JM
600 for(char letter = 'I'; letter <= 'K'; letter++) {
601 if( gcode->has_letter(letter) ) {
602 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
c2885de8
JM
603 }
604 }
4710532a
JM
605 for(char letter = 'X'; letter <= 'Z'; letter++) {
606 if( gcode->has_letter(letter) ) {
c7689006 607 target[letter - 'X'] = this->to_millimeters(gcode->get_value(letter)) + (this->absolute_mode ? this->toolOffset[letter - 'X'] : target[letter - 'X']);
c2885de8
JM
608 }
609 }
6bc4a00a 610
4710532a 611 if( gcode->has_letter('F') ) {
7369629d 612 if( this->motion_mode == MOTION_MODE_SEEK )
da947c62 613 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 614 else
da947c62 615 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 616 }
6bc4a00a 617
4cff3ded 618 //Perform any physical actions
fae93525
JM
619 switch(this->motion_mode) {
620 case MOTION_MODE_CANCEL: break;
621 case MOTION_MODE_SEEK : this->append_line(gcode, target, this->seek_rate / seconds_per_minute ); break;
622 case MOTION_MODE_LINEAR: this->append_line(gcode, target, this->feed_rate / seconds_per_minute ); break;
623 case MOTION_MODE_CW_ARC:
624 case MOTION_MODE_CCW_ARC: this->compute_arc(gcode, offset, target ); break;
4cff3ded 625 }
13e4a3f9 626
fae93525 627 // last_milestone was set to target in append_milestone, no need to do it again
4cff3ded 628
edac9072
AW
629}
630
5984acdf 631// We received a new gcode, and one of the functions
edac9072
AW
632// determined the distance for that given gcode. So now we can attach this gcode to the right block
633// and continue
4710532a
JM
634void Robot::distance_in_gcode_is_known(Gcode *gcode)
635{
edac9072 636 //If the queue is empty, execute immediatly, otherwise attach to the last added block
e0ee24ed 637 THEKERNEL->conveyor->append_gcode(gcode);
edac9072
AW
638}
639
cef9acea
JM
640// reset the position for all axis (used in homing for delta as last_milestone may be bogus)
641void Robot::reset_axis_position(float x, float y, float z)
642{
643 this->last_milestone[X_AXIS] = x;
644 this->last_milestone[Y_AXIS] = y;
645 this->last_milestone[Z_AXIS] = z;
3632a517
JM
646 this->transformed_last_milestone[X_AXIS] = x;
647 this->transformed_last_milestone[Y_AXIS] = y;
648 this->transformed_last_milestone[Z_AXIS] = z;
cef9acea
JM
649
650 float actuator_pos[3];
651 arm_solution->cartesian_to_actuator(this->last_milestone, actuator_pos);
652 for (int i = 0; i < 3; i++)
653 actuators[i]->change_last_milestone(actuator_pos[i]);
654}
655
656// Reset the position for an axis (used in homing and G92)
4710532a
JM
657void Robot::reset_axis_position(float position, int axis)
658{
2ba859c9 659 this->last_milestone[axis] = position;
3632a517 660 this->transformed_last_milestone[axis] = position;
29c28822
MM
661
662 float actuator_pos[3];
cef9acea 663 arm_solution->cartesian_to_actuator(this->last_milestone, actuator_pos);
29c28822
MM
664
665 for (int i = 0; i < 3; i++)
666 actuators[i]->change_last_milestone(actuator_pos[i]);
4cff3ded
AW
667}
668
728477c4 669// Use FK to find out where actuator is and reset lastmilestone to match
728477c4
JM
670void Robot::reset_position_from_current_actuator_position()
671{
58c32991
JM
672 float actuator_pos[]= {actuators[X_AXIS]->get_current_position(), actuators[Y_AXIS]->get_current_position(), actuators[Z_AXIS]->get_current_position()};
673 arm_solution->actuator_to_cartesian(actuator_pos, this->last_milestone);
4befe777 674 memcpy(this->transformed_last_milestone, this->last_milestone, sizeof(this->transformed_last_milestone));
cf91d4f3
JM
675
676 // now reset actuator correctly, NOTE this may lose a little precision
677 arm_solution->cartesian_to_actuator(this->last_milestone, actuator_pos);
678 for (int i = 0; i < 3; i++)
679 actuators[i]->change_last_milestone(actuator_pos[i]);
728477c4 680}
edac9072 681
4cff3ded 682// Convert target from millimeters to steps, and append this to the planner
da947c62 683void Robot::append_milestone( float target[], float rate_mm_s )
df6a30f2 684{
1ad23cd3 685 float deltas[3];
df6a30f2
MM
686 float unit_vec[3];
687 float actuator_pos[3];
3632a517 688 float transformed_target[3]; // adjust target for bed compensation
df6a30f2
MM
689 float millimeters_of_travel;
690
3632a517
JM
691 // unity transform by default
692 memcpy(transformed_target, target, sizeof(transformed_target));
5e45206a 693
3632a517
JM
694 // check function pointer and call if set to transform the target to compensate for bed
695 if(compensationTransform) {
696 // some compensation strategies can transform XYZ, some just change Z
697 compensationTransform(transformed_target);
33742399 698 }
ff7e9858 699
3632a517
JM
700 // find distance moved by each axis, use transformed target from last_transformed_target
701 for (int axis = X_AXIS; axis <= Z_AXIS; axis++){
702 deltas[axis] = transformed_target[axis] - transformed_last_milestone[axis];
703 }
704 // store last transformed
705 memcpy(this->transformed_last_milestone, transformed_target, sizeof(this->transformed_last_milestone));
aab6cbba 706
edac9072 707 // Compute how long this move moves, so we can attach it to the block for later use
869acfb8 708 millimeters_of_travel = sqrtf( powf( deltas[X_AXIS], 2 ) + powf( deltas[Y_AXIS], 2 ) + powf( deltas[Z_AXIS], 2 ) );
df6a30f2
MM
709
710 // find distance unit vector
711 for (int i = 0; i < 3; i++)
712 unit_vec[i] = deltas[i] / millimeters_of_travel;
713
714 // Do not move faster than the configured cartesian limits
4710532a
JM
715 for (int axis = X_AXIS; axis <= Z_AXIS; axis++) {
716 if ( max_speeds[axis] > 0 ) {
da947c62 717 float axis_speed = fabs(unit_vec[axis] * rate_mm_s);
df6a30f2
MM
718
719 if (axis_speed > max_speeds[axis])
da947c62 720 rate_mm_s *= ( max_speeds[axis] / axis_speed );
7b470506
AW
721 }
722 }
4cff3ded 723
5e45206a 724 // find actuator position given cartesian position, use actual adjusted target
3632a517 725 arm_solution->cartesian_to_actuator( transformed_target, actuator_pos );
df6a30f2
MM
726
727 // check per-actuator speed limits
4710532a 728 for (int actuator = 0; actuator <= 2; actuator++) {
da947c62 729 float actuator_rate = fabs(actuator_pos[actuator] - actuators[actuator]->last_milestone_mm) * rate_mm_s / millimeters_of_travel;
df6a30f2 730
3494f3d0
JM
731 if (actuator_rate > actuators[actuator]->get_max_rate())
732 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
df6a30f2
MM
733 }
734
edac9072 735 // Append the block to the planner
da947c62 736 THEKERNEL->planner->append_block( actuator_pos, rate_mm_s, millimeters_of_travel, unit_vec );
4cff3ded 737
5e45206a 738 // Update the last_milestone to the current target for the next time we use last_milestone, use the requested target not the adjusted one
c2885de8 739 memcpy(this->last_milestone, target, sizeof(this->last_milestone)); // this->last_milestone[] = target[];
4cff3ded
AW
740
741}
742
edac9072 743// Append a move to the queue ( cutting it into segments if needed )
4710532a
JM
744void Robot::append_line(Gcode *gcode, float target[], float rate_mm_s )
745{
edac9072 746 // Find out the distance for this gcode
a9d299ab 747 // NOTE we need to do sqrt here as this setting of millimeters_of_travel is used by extruder and other modules even if there is no XYZ move
3b4b05b8 748 gcode->millimeters_of_travel = sqrtf(powf( target[X_AXIS] - this->last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - this->last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - this->last_milestone[Z_AXIS], 2 ));
4cff3ded 749
3b4b05b8
JM
750 // We ignore non- XYZ moves ( for example, extruder moves are not XYZ moves )
751 if( gcode->millimeters_of_travel < 0.00001F ) {
95b4885b
JM
752 return;
753 }
436a2cd1 754
edac9072 755 // Mark the gcode as having a known distance
5dcb2ff3 756 this->distance_in_gcode_is_known( gcode );
436a2cd1 757
4a0c8e14
JM
758 // We cut the line into smaller segments. This is not usefull in a cartesian robot, but necessary for robots with rotational axes.
759 // In cartesian robot, a high "mm_per_line_segment" setting will prevent waste.
3b4b05b8
JM
760 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second
761 // The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
4a0c8e14 762 uint16_t segments;
5984acdf 763
c2885de8 764 if(this->delta_segments_per_second > 1.0F) {
4a0c8e14
JM
765 // enabled if set to something > 1, it is set to 0.0 by default
766 // segment based on current speed and requested segments per second
767 // the faster the travel speed the fewer segments needed
768 // NOTE rate is mm/sec and we take into account any speed override
da947c62 769 float seconds = gcode->millimeters_of_travel / rate_mm_s;
9502f9d5 770 segments = max(1.0F, ceilf(this->delta_segments_per_second * seconds));
4a0c8e14 771 // TODO if we are only moving in Z on a delta we don't really need to segment at all
5984acdf 772
4710532a
JM
773 } else {
774 if(this->mm_per_line_segment == 0.0F) {
775 segments = 1; // don't split it up
776 } else {
9502f9d5 777 segments = ceilf( gcode->millimeters_of_travel / this->mm_per_line_segment);
4a0c8e14
JM
778 }
779 }
5984acdf 780
4710532a 781 if (segments > 1) {
2ba859c9
MM
782 // A vector to keep track of the endpoint of each segment
783 float segment_delta[3];
784 float segment_end[3];
785
786 // How far do we move each segment?
9fff6045 787 for (int i = X_AXIS; i <= Z_AXIS; i++)
2ba859c9 788 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
4cff3ded 789
c8e0fb15
MM
790 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
791 // We always add another point after this loop so we stop at segments-1, ie i < segments
4710532a 792 for (int i = 1; i < segments; i++) {
1da77df4 793 if(halted) return; // don't queue any more segments
4710532a 794 for(int axis = X_AXIS; axis <= Z_AXIS; axis++ )
2ba859c9
MM
795 segment_end[axis] = last_milestone[axis] + segment_delta[axis];
796
797 // Append the end of this segment to the queue
798 this->append_milestone(segment_end, rate_mm_s);
799 }
4cff3ded 800 }
5984acdf
MM
801
802 // Append the end of this full move to the queue
da947c62 803 this->append_milestone(target, rate_mm_s);
2134bcf2
MM
804
805 // if adding these blocks didn't start executing, do that now
806 THEKERNEL->conveyor->ensure_running();
4cff3ded
AW
807}
808
4cff3ded 809
edac9072 810// Append an arc to the queue ( cutting it into segments as needed )
4710532a
JM
811void Robot::append_arc(Gcode *gcode, float target[], float offset[], float radius, bool is_clockwise )
812{
aab6cbba 813
edac9072 814 // Scary math
2ba859c9
MM
815 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
816 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
817 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1ad23cd3
MM
818 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
819 float r_axis1 = -offset[this->plane_axis_1];
820 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
821 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
aab6cbba 822
5fa0c173 823 // Patch from GRBL Firmware - bauc 04072015
aab6cbba 824 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
5fa0c173
PA
825 float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
826 if (is_clockwise) { // Correct atan2 output per direction
827 if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel -= 2*M_PI; }
828 } else {
829 if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel += 2*M_PI; }
4710532a 830 }
aab6cbba 831
edac9072 832 // Find the distance for this gcode
4710532a 833 gcode->millimeters_of_travel = hypotf(angular_travel * radius, fabs(linear_travel));
436a2cd1 834
edac9072 835 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
3b4b05b8 836 if( gcode->millimeters_of_travel < 0.00001F ) {
4710532a
JM
837 return;
838 }
5dcb2ff3 839
edac9072 840 // Mark the gcode as having a known distance
d149c730 841 this->distance_in_gcode_is_known( gcode );
5984acdf
MM
842
843 // Figure out how many segments for this gcode
c8f4ee77 844 uint16_t segments = floorf(gcode->millimeters_of_travel / this->mm_per_arc_segment);
aab6cbba 845
4710532a
JM
846 float theta_per_segment = angular_travel / segments;
847 float linear_per_segment = linear_travel / segments;
aab6cbba
AW
848
849 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
850 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
851 r_T = [cos(phi) -sin(phi);
852 sin(phi) cos(phi] * r ;
853 For arc generation, the center of the circle is the axis of rotation and the radius vector is
854 defined from the circle center to the initial position. Each line segment is formed by successive
855 vector rotations. This requires only two cos() and sin() computations to form the rotation
856 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1ad23cd3 857 all float numbers are single precision on the Arduino. (True float precision will not have
aab6cbba
AW
858 round off issues for CNC applications.) Single precision error can accumulate to be greater than
859 tool precision in some cases. Therefore, arc path correction is implemented.
860
861 Small angle approximation may be used to reduce computation overhead further. This approximation
862 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
863 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
864 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
865 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
866 issue for CNC machines with the single precision Arduino calculations.
867 This approximation also allows mc_arc to immediately insert a line segment into the planner
868 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
869 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
870 This is important when there are successive arc motions.
871 */
872 // Vector rotation matrix values
4710532a 873 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1ad23cd3 874 float sin_T = theta_per_segment;
aab6cbba 875
1ad23cd3
MM
876 float arc_target[3];
877 float sin_Ti;
878 float cos_Ti;
879 float r_axisi;
aab6cbba
AW
880 uint16_t i;
881 int8_t count = 0;
882
883 // Initialize the linear axis
2ba859c9 884 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
aab6cbba 885
4710532a 886 for (i = 1; i < segments; i++) { // Increment (segments-1)
728477c4 887 if(halted) return; // don't queue any more segments
aab6cbba 888
b66fb830 889 if (count < this->arc_correction ) {
4710532a
JM
890 // Apply vector rotation matrix
891 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
892 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
893 r_axis1 = r_axisi;
894 count++;
aab6cbba 895 } else {
4710532a
JM
896 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
897 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
898 cos_Ti = cosf(i * theta_per_segment);
899 sin_Ti = sinf(i * theta_per_segment);
900 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
901 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
902 count = 0;
aab6cbba
AW
903 }
904
905 // Update arc_target location
906 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
907 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
908 arc_target[this->plane_axis_2] += linear_per_segment;
edac9072
AW
909
910 // Append this segment to the queue
da947c62 911 this->append_milestone(arc_target, this->feed_rate / seconds_per_minute);
aab6cbba
AW
912
913 }
edac9072 914
aab6cbba 915 // Ensure last segment arrives at target location.
da947c62 916 this->append_milestone(target, this->feed_rate / seconds_per_minute);
aab6cbba
AW
917}
918
edac9072 919// Do the math for an arc and add it to the queue
4710532a
JM
920void Robot::compute_arc(Gcode *gcode, float offset[], float target[])
921{
aab6cbba
AW
922
923 // Find the radius
13addf09 924 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
aab6cbba
AW
925
926 // Set clockwise/counter-clockwise sign for mc_arc computations
927 bool is_clockwise = false;
4710532a
JM
928 if( this->motion_mode == MOTION_MODE_CW_ARC ) {
929 is_clockwise = true;
930 }
aab6cbba
AW
931
932 // Append arc
436a2cd1 933 this->append_arc(gcode, target, offset, radius, is_clockwise );
aab6cbba
AW
934
935}
936
937
4710532a
JM
938float Robot::theta(float x, float y)
939{
940 float t = atanf(x / fabs(y));
941 if (y > 0) {
942 return(t);
943 } else {
944 if (t > 0) {
945 return(M_PI - t);
946 } else {
947 return(-M_PI - t);
948 }
949 }
4cff3ded
AW
950}
951
4710532a
JM
952void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
953{
4cff3ded
AW
954 this->plane_axis_0 = axis_0;
955 this->plane_axis_1 = axis_1;
956 this->plane_axis_2 = axis_2;
957}
958
fae93525 959void Robot::clearToolOffset()
4710532a 960{
fae93525
JM
961 memset(this->toolOffset, 0, sizeof(this->toolOffset));
962}
963
964void Robot::setToolOffset(const float offset[3])
965{
fae93525 966 memcpy(this->toolOffset, offset, sizeof(this->toolOffset));
5966b7d0
AT
967}
968