fix G10 L20
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
CommitLineData
df27a6a3 1/*
aab6cbba 2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
4cff3ded
AW
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
df27a6a3 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
5673fe39 10
c3df978d
JM
11#include "mbed.h" // for us_ticker_read()
12
5673fe39 13#include <math.h>
4cff3ded
AW
14#include <string>
15using std::string;
5673fe39 16
4cff3ded 17#include "Planner.h"
3fceb8eb 18#include "Conveyor.h"
4cff3ded 19#include "Robot.h"
5673fe39
MM
20#include "nuts_bolts.h"
21#include "Pin.h"
22#include "StepperMotor.h"
23#include "Gcode.h"
5647f709 24#include "PublicDataRequest.h"
928467c0 25#include "PublicData.h"
4cff3ded
AW
26#include "arm_solutions/BaseSolution.h"
27#include "arm_solutions/CartesianSolution.h"
c41d6d95 28#include "arm_solutions/RotatableCartesianSolution.h"
2a06c415 29#include "arm_solutions/LinearDeltaSolution.h"
c52b8675 30#include "arm_solutions/RotatableDeltaSolution.h"
bdaaa75d 31#include "arm_solutions/HBotSolution.h"
fff1e42d 32#include "arm_solutions/CoreXZSolution.h"
1217e470 33#include "arm_solutions/MorganSCARASolution.h"
61134a65 34#include "StepTicker.h"
7af0714f
JM
35#include "checksumm.h"
36#include "utils.h"
8d54c34c 37#include "ConfigValue.h"
5966b7d0 38#include "libs/StreamOutput.h"
dd0a7cfa 39#include "StreamOutputPool.h"
928467c0 40#include "ExtruderPublicAccess.h"
38bf9a1c 41
78d0e16a
MM
42#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
43#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
44#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
45#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
46#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
47#define arc_correction_checksum CHECKSUM("arc_correction")
48#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
49#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
50#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
43424972
JM
51
52// arm solutions
78d0e16a
MM
53#define arm_solution_checksum CHECKSUM("arm_solution")
54#define cartesian_checksum CHECKSUM("cartesian")
55#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
56#define rostock_checksum CHECKSUM("rostock")
2a06c415 57#define linear_delta_checksum CHECKSUM("linear_delta")
c52b8675 58#define rotatable_delta_checksum CHECKSUM("rotatable_delta")
78d0e16a
MM
59#define delta_checksum CHECKSUM("delta")
60#define hbot_checksum CHECKSUM("hbot")
61#define corexy_checksum CHECKSUM("corexy")
fff1e42d 62#define corexz_checksum CHECKSUM("corexz")
78d0e16a 63#define kossel_checksum CHECKSUM("kossel")
1217e470 64#define morgan_checksum CHECKSUM("morgan")
78d0e16a 65
78d0e16a
MM
66// new-style actuator stuff
67#define actuator_checksum CHEKCSUM("actuator")
68
69#define step_pin_checksum CHECKSUM("step_pin")
70#define dir_pin_checksum CHEKCSUM("dir_pin")
71#define en_pin_checksum CHECKSUM("en_pin")
72
73#define steps_per_mm_checksum CHECKSUM("steps_per_mm")
df6a30f2 74#define max_rate_checksum CHECKSUM("max_rate")
78d0e16a
MM
75
76#define alpha_checksum CHECKSUM("alpha")
77#define beta_checksum CHECKSUM("beta")
78#define gamma_checksum CHECKSUM("gamma")
79
38bf9a1c
JM
80#define NEXT_ACTION_DEFAULT 0
81#define NEXT_ACTION_DWELL 1
82#define NEXT_ACTION_GO_HOME 2
83
84#define MOTION_MODE_SEEK 0 // G0
85#define MOTION_MODE_LINEAR 1 // G1
86#define MOTION_MODE_CW_ARC 2 // G2
87#define MOTION_MODE_CCW_ARC 3 // G3
88#define MOTION_MODE_CANCEL 4 // G80
89
90#define PATH_CONTROL_MODE_EXACT_PATH 0
91#define PATH_CONTROL_MODE_EXACT_STOP 1
92#define PATH_CONTROL_MODE_CONTINOUS 2
93
94#define PROGRAM_FLOW_RUNNING 0
95#define PROGRAM_FLOW_PAUSED 1
96#define PROGRAM_FLOW_COMPLETED 2
97
98#define SPINDLE_DIRECTION_CW 0
99#define SPINDLE_DIRECTION_CCW 1
100
5fa0c173
PA
101#define ARC_ANGULAR_TRAVEL_EPSILON 5E-7 // Float (radians)
102
edac9072
AW
103// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
104// It takes care of cutting arcs into segments, same thing for line that are too long
105
4710532a
JM
106Robot::Robot()
107{
a1b7e9f0 108 this->inch_mode = false;
0e8b102e 109 this->absolute_mode = true;
df27a6a3 110 this->motion_mode = MOTION_MODE_SEEK;
4cff3ded 111 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
df27a6a3 112 clear_vector(this->last_milestone);
c2f7c261 113 clear_vector(this->last_machine_position);
0b804a41 114 this->arm_solution = NULL;
da947c62 115 seconds_per_minute = 60.0F;
fae93525 116 this->clearToolOffset();
03b01bac
JM
117 this->compensationTransform = nullptr;
118 this->wcs_offsets.fill(wcs_t(0.0F, 0.0F, 0.0F));
119 this->g92_offset = wcs_t(0.0F, 0.0F, 0.0F);
a6bbe768 120 this->next_command_is_MCS = false;
4cff3ded
AW
121}
122
123//Called when the module has just been loaded
4710532a
JM
124void Robot::on_module_loaded()
125{
4cff3ded
AW
126 this->register_for_event(ON_GCODE_RECEIVED);
127
128 // Configuration
807b9b57 129 this->load_config();
da24d6ae
AW
130}
131
807b9b57
JM
132#define ACTUATOR_CHECKSUMS(X) { \
133 CHECKSUM(X "_step_pin"), \
134 CHECKSUM(X "_dir_pin"), \
135 CHECKSUM(X "_en_pin"), \
136 CHECKSUM(X "_steps_per_mm"), \
137 CHECKSUM(X "_max_rate") \
138}
5984acdf 139
807b9b57
JM
140void Robot::load_config()
141{
edac9072
AW
142 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
143 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
144 // To make adding those solution easier, they have their own, separate object.
5984acdf 145 // Here we read the config to find out which arm solution to use
0b804a41 146 if (this->arm_solution) delete this->arm_solution;
eda9facc 147 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
d149c730 148 // Note checksums are not const expressions when in debug mode, so don't use switch
98761c28 149 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
314ab8f7 150 this->arm_solution = new HBotSolution(THEKERNEL->config);
bdaaa75d 151
fff1e42d
JJ
152 } else if(solution_checksum == corexz_checksum) {
153 this->arm_solution = new CoreXZSolution(THEKERNEL->config);
154
2a06c415
JM
155 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
156 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
73a4e3c0 157
4710532a 158 } else if(solution_checksum == rotatable_cartesian_checksum) {
314ab8f7 159 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
b73a756d 160
c52b8675
DP
161 } else if(solution_checksum == rotatable_delta_checksum) {
162 this->arm_solution = new RotatableDeltaSolution(THEKERNEL->config);
163
1217e470
QH
164 } else if(solution_checksum == morgan_checksum) {
165 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
166
4710532a 167 } else if(solution_checksum == cartesian_checksum) {
314ab8f7 168 this->arm_solution = new CartesianSolution(THEKERNEL->config);
73a4e3c0 169
4710532a 170 } else {
314ab8f7 171 this->arm_solution = new CartesianSolution(THEKERNEL->config);
d149c730 172 }
73a4e3c0 173
6b661ab3
DP
174 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
175 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
176 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
177 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
178 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.5f)->as_number();
179 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
78d0e16a 180
6b661ab3
DP
181 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
182 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
183 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
feb204be 184
78d0e16a 185 // Make our 3 StepperMotors
807b9b57
JM
186 uint16_t const checksums[][5] = {
187 ACTUATOR_CHECKSUMS("alpha"),
188 ACTUATOR_CHECKSUMS("beta"),
189 ACTUATOR_CHECKSUMS("gamma"),
190#if MAX_ROBOT_ACTUATORS > 3
191 ACTUATOR_CHECKSUMS("delta"),
192 ACTUATOR_CHECKSUMS("epsilon"),
193 ACTUATOR_CHECKSUMS("zeta")
194#endif
195 };
03b01bac 196 constexpr size_t actuator_checksum_count = sizeof(checksums) / sizeof(checksums[0]);
807b9b57
JM
197 static_assert(actuator_checksum_count >= k_max_actuators, "Robot checksum array too small for k_max_actuators");
198
199 size_t motor_count = std::min(this->arm_solution->get_actuator_count(), k_max_actuators);
200 for (size_t a = 0; a < motor_count; a++) {
201 Pin pins[3]; //step, dir, enable
202 for (size_t i = 0; i < 3; i++) {
203 pins[i].from_string(THEKERNEL->config->value(checksums[a][i])->by_default("nc")->as_string())->as_output();
204 }
03b01bac 205 actuators[a] = new StepperMotor(pins[0], pins[1], pins[2]);
78d0e16a 206
03b01bac 207 actuators[a]->change_steps_per_mm(THEKERNEL->config->value(checksums[a][3])->by_default(a == 2 ? 2560.0F : 80.0F)->as_number());
807b9b57
JM
208 actuators[a]->set_max_rate(THEKERNEL->config->value(checksums[a][4])->by_default(30000.0F)->as_number());
209 }
a84f0186 210
dd0a7cfa 211 check_max_actuator_speeds(); // check the configs are sane
df6a30f2 212
975469ad
MM
213 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
214 // so the first move can be correct if homing is not performed
807b9b57 215 ActuatorCoordinates actuator_pos;
975469ad 216 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
807b9b57 217 for (size_t i = 0; i < actuators.size(); i++)
975469ad 218 actuators[i]->change_last_milestone(actuator_pos[i]);
5966b7d0
AT
219
220 //this->clearToolOffset();
4cff3ded
AW
221}
222
212caccd
JM
223void Robot::push_state()
224{
03b01bac
JM
225 bool am = this->absolute_mode;
226 bool im = this->inch_mode;
a6bbe768 227 saved_state_t s(this->feed_rate, this->seek_rate, am, im, current_wcs);
212caccd
JM
228 state_stack.push(s);
229}
230
231void Robot::pop_state()
232{
03b01bac
JM
233 if(!state_stack.empty()) {
234 auto s = state_stack.top();
212caccd 235 state_stack.pop();
03b01bac
JM
236 this->feed_rate = std::get<0>(s);
237 this->seek_rate = std::get<1>(s);
238 this->absolute_mode = std::get<2>(s);
239 this->inch_mode = std::get<3>(s);
a6bbe768 240 this->current_wcs = std::get<4>(s);
212caccd
JM
241 }
242}
243
34210908
JM
244std::vector<Robot::wcs_t> Robot::get_wcs_state() const
245{
246 std::vector<wcs_t> v;
247 v.push_back(wcs_t(current_wcs, k_max_wcs, 0));
248 for(auto& i : wcs_offsets) {
249 v.push_back(i);
250 }
251 v.push_back(g92_offset);
252 v.push_back(tool_offset);
253 return v;
254}
255
e03f2747 256int Robot::print_position(uint8_t subcode, char *buf, size_t bufsize) const
2791c829
JM
257{
258 // M114.1 is a new way to do this (similar to how GRBL does it).
259 // it returns the realtime position based on the current step position of the actuators.
260 // this does require a FK to get a machine position from the actuator position
261 // and then invert all the transforms to get a workspace position from machine position
262 // M114 just does it the old way uses last_milestone and does inversse tranfroms to get the requested position
2791c829 263 int n = 0;
e03f2747 264 if(subcode == 0) { // M114 print WCS
2791c829 265 wcs_t pos= mcs2wcs(last_milestone);
e03f2747 266 n = snprintf(buf, bufsize, "C: X:%1.3f Y:%1.3f Z:%1.3f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
2791c829 267
e03f2747
JM
268 } else if(subcode == 4) { // M114.3 print last milestone (which should be the same as machine position if axis are not moving and no level compensation)
269 n = snprintf(buf, bufsize, "LMS: X:%1.3f Y:%1.3f Z:%1.3f", last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
2791c829 270
e03f2747
JM
271 } else if(subcode == 5) { // M114.4 print last machine position (which should be the same as M114.1 if axis are not moving and no level compensation)
272 n = snprintf(buf, bufsize, "LMCS: X:%1.3f Y:%1.3f Z:%1.3f", last_machine_position[X_AXIS], last_machine_position[Y_AXIS], last_machine_position[Z_AXIS]);
2791c829
JM
273
274 } else {
275 // get real time positions
276 // current actuator position in mm
277 ActuatorCoordinates current_position{
278 actuators[X_AXIS]->get_current_position(),
279 actuators[Y_AXIS]->get_current_position(),
280 actuators[Z_AXIS]->get_current_position()
281 };
282
283 // get machine position from the actuator position using FK
284 float mpos[3];
285 arm_solution->actuator_to_cartesian(current_position, mpos);
286
e03f2747 287 if(subcode == 1) { // M114.1 print realtime WCS
2791c829
JM
288 // FIXME this currently includes the compensation transform which is incorrect so will be slightly off if it is in effect (but by very little)
289 wcs_t pos= mcs2wcs(mpos);
e03f2747 290 n = snprintf(buf, bufsize, "C: X:%1.3f Y:%1.3f Z:%1.3f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
2791c829 291
e03f2747
JM
292 } else if(subcode == 2) { // M114.1 print realtime Machine coordinate system
293 n = snprintf(buf, bufsize, "MPOS: X:%1.3f Y:%1.3f Z:%1.3f", mpos[X_AXIS], mpos[Y_AXIS], mpos[Z_AXIS]);
2791c829 294
e03f2747
JM
295 } else if(subcode == 3) { // M114.2 print realtime actuator position
296 n = snprintf(buf, bufsize, "APOS: A:%1.3f B:%1.3f C:%1.3f", current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
2791c829
JM
297 }
298 }
e03f2747 299 return n;
2791c829
JM
300}
301
dc27139b
JM
302// converts current last milestone (machine position without compensation transform) to work coordinate system (inverse transform)
303Robot::wcs_t Robot::mcs2wcs(const float *pos) const
304{
305 return std::make_tuple(
306 pos[X_AXIS] - std::get<X_AXIS>(wcs_offsets[current_wcs]) + std::get<X_AXIS>(g92_offset) - std::get<X_AXIS>(tool_offset),
307 pos[Y_AXIS] - std::get<Y_AXIS>(wcs_offsets[current_wcs]) + std::get<Y_AXIS>(g92_offset) - std::get<Y_AXIS>(tool_offset),
308 pos[Z_AXIS] - std::get<Z_AXIS>(wcs_offsets[current_wcs]) + std::get<Z_AXIS>(g92_offset) - std::get<Z_AXIS>(tool_offset)
309 );
310}
311
dd0a7cfa
JM
312// this does a sanity check that actuator speeds do not exceed steps rate capability
313// we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
314void Robot::check_max_actuator_speeds()
315{
807b9b57
JM
316 for (size_t i = 0; i < actuators.size(); i++) {
317 float step_freq = actuators[i]->get_max_rate() * actuators[i]->get_steps_per_mm();
318 if (step_freq > THEKERNEL->base_stepping_frequency) {
319 actuators[i]->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / actuators[i]->get_steps_per_mm()));
03b01bac 320 THEKERNEL->streams->printf("WARNING: actuator %c rate exceeds base_stepping_frequency * alpha_steps_per_mm: %f, setting to %f\n", 'A' + i, step_freq, actuators[i]->max_rate);
807b9b57 321 }
dd0a7cfa
JM
322 }
323}
324
4cff3ded 325//A GCode has been received
edac9072 326//See if the current Gcode line has some orders for us
4710532a
JM
327void Robot::on_gcode_received(void *argument)
328{
329 Gcode *gcode = static_cast<Gcode *>(argument);
6bc4a00a 330
23c90ba6 331 this->motion_mode = -1;
4cff3ded 332
4710532a
JM
333 if( gcode->has_g) {
334 switch( gcode->g ) {
c2f7c261
JM
335 case 0: this->motion_mode = MOTION_MODE_SEEK; break;
336 case 1: this->motion_mode = MOTION_MODE_LINEAR; break;
337 case 2: this->motion_mode = MOTION_MODE_CW_ARC; break;
338 case 3: this->motion_mode = MOTION_MODE_CCW_ARC; break;
339 case 4: { // G4 pause
03b01bac 340 uint32_t delay_ms = 0;
c3df978d 341 if (gcode->has_letter('P')) {
03b01bac 342 delay_ms = gcode->get_int('P');
c3df978d
JM
343 }
344 if (gcode->has_letter('S')) {
345 delay_ms += gcode->get_int('S') * 1000;
346 }
03b01bac 347 if (delay_ms > 0) {
c3df978d
JM
348 // drain queue
349 THEKERNEL->conveyor->wait_for_empty_queue();
350 // wait for specified time
03b01bac
JM
351 uint32_t start = us_ticker_read(); // mbed call
352 while ((us_ticker_read() - start) < delay_ms * 1000) {
c3df978d 353 THEKERNEL->call_event(ON_IDLE, this);
c2f7c261 354 if(THEKERNEL->is_halted()) return;
c3df978d
JM
355 }
356 }
adba2978 357 }
6b661ab3 358 break;
807b9b57 359
a6bbe768 360 case 10: // G10 L2 [L20] Pn Xn Yn Zn set WCS
00e607c7 361 if(gcode->has_letter('L') && (gcode->get_int('L') == 2 || gcode->get_int('L') == 20) && gcode->has_letter('P')) {
03b01bac
JM
362 size_t n = gcode->get_uint('P');
363 if(n == 0) n = current_wcs; // set current coordinate system
807b9b57
JM
364 else --n;
365 if(n < k_max_wcs) {
366 float x, y, z;
03b01bac 367 std::tie(x, y, z) = wcs_offsets[n];
00e607c7 368 if(gcode->get_int('L') == 20) {
c2f7c261 369 // this makes the current machine position (less compensation transform) the offset
dc27139b
JM
370 // get current position in WCS
371 wcs_t pos= mcs2wcs(last_milestone);
372
373 if(gcode->has_letter('X')){
374 x -= to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
375 }
376
377 if(gcode->has_letter('Y')){
378 y -= to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
379 }
380 if(gcode->has_letter('Z')) {
381 z -= to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
382 }
383
a6bbe768 384 } else {
00e607c7
JM
385 // the value is the offset from machine zero
386 if(gcode->has_letter('X')) x = to_millimeters(gcode->get_value('X'));
387 if(gcode->has_letter('Y')) y = to_millimeters(gcode->get_value('Y'));
388 if(gcode->has_letter('Z')) z = to_millimeters(gcode->get_value('Z'));
389 }
03b01bac 390 wcs_offsets[n] = wcs_t(x, y, z);
807b9b57
JM
391 }
392 }
393 break;
394
6e92ab91
JM
395 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
396 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
397 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
398 case 20: this->inch_mode = true; break;
399 case 21: this->inch_mode = false; break;
807b9b57
JM
400
401 case 54: case 55: case 56: case 57: case 58: case 59:
402 // select WCS 0-8: G54..G59, G59.1, G59.2, G59.3
03b01bac 403 current_wcs = gcode->g - 54;
807b9b57
JM
404 if(gcode->g == 59 && gcode->subcode > 0) {
405 current_wcs += gcode->subcode;
03b01bac 406 if(current_wcs >= k_max_wcs) current_wcs = k_max_wcs - 1;
807b9b57
JM
407 }
408 break;
409
6e92ab91
JM
410 case 90: this->absolute_mode = true; break;
411 case 91: this->absolute_mode = false; break;
807b9b57 412
0b804a41 413 case 92: {
c2f7c261 414 if(gcode->subcode == 1 || gcode->subcode == 2 || gcode->get_num_args() == 0) {
03b01bac
JM
415 // reset G92 offsets to 0
416 g92_offset = wcs_t(0, 0, 0);
417
4710532a 418 } else {
61a3fa99 419 // standard setting of the g92 offsets, making current WCS position whatever the coordinate arguments are
807b9b57 420 float x, y, z;
03b01bac 421 std::tie(x, y, z) = g92_offset;
61a3fa99
JM
422 // get current position in WCS
423 wcs_t pos= mcs2wcs(last_milestone);
424
425 // adjust g92 offset to make the current wpos == the value requested
426 if(gcode->has_letter('X')){
427 x += to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
428 }
429
dc27139b
JM
430 if(gcode->has_letter('Y')){
431 y += to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
432 }
433 if(gcode->has_letter('Z')) {
434 z += to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
435 }
03b01bac 436 g92_offset = wcs_t(x, y, z);
6bc4a00a 437 }
a6bbe768 438
78d0e16a 439 return;
4710532a
JM
440 }
441 }
67a649dd 442
4710532a
JM
443 } else if( gcode->has_m) {
444 switch( gcode->m ) {
807b9b57 445 case 2: // M2 end of program
03b01bac
JM
446 current_wcs = 0;
447 absolute_mode = true;
807b9b57
JM
448 break;
449
0fb5b438 450 case 92: // M92 - set steps per mm
0fb5b438 451 if (gcode->has_letter('X'))
78d0e16a 452 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
0fb5b438 453 if (gcode->has_letter('Y'))
78d0e16a 454 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
0fb5b438 455 if (gcode->has_letter('Z'))
78d0e16a 456 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
7369629d
MM
457 if (gcode->has_letter('F'))
458 seconds_per_minute = gcode->get_value('F');
78d0e16a
MM
459
460 gcode->stream->printf("X:%g Y:%g Z:%g F:%g ", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm, seconds_per_minute);
0fb5b438 461 gcode->add_nl = true;
dd0a7cfa 462 check_max_actuator_speeds();
0fb5b438 463 return;
562db364 464
e03f2747
JM
465 case 114:{
466 char buf[64];
467 int n= print_position(gcode->subcode, buf, sizeof buf);
468 if(n > 0) gcode->txt_after_ok.append(buf, n);
2791c829 469 return;
e03f2747 470 }
33e4cc02 471
212caccd
JM
472 case 120: // push state
473 push_state();
474 break;
562db364
JM
475
476 case 121: // pop state
212caccd 477 pop_state();
562db364
JM
478 break;
479
83488642
JM
480 case 203: // M203 Set maximum feedrates in mm/sec
481 if (gcode->has_letter('X'))
4710532a 482 this->max_speeds[X_AXIS] = gcode->get_value('X');
83488642 483 if (gcode->has_letter('Y'))
4710532a 484 this->max_speeds[Y_AXIS] = gcode->get_value('Y');
83488642 485 if (gcode->has_letter('Z'))
4710532a 486 this->max_speeds[Z_AXIS] = gcode->get_value('Z');
807b9b57
JM
487 for (size_t i = 0; i < 3 && i < actuators.size(); i++) {
488 if (gcode->has_letter('A' + i))
489 actuators[i]->set_max_rate(gcode->get_value('A' + i));
490 }
dd0a7cfa
JM
491 check_max_actuator_speeds();
492
928467c0 493 if(gcode->get_num_args() == 0) {
807b9b57 494 gcode->stream->printf("X:%g Y:%g Z:%g",
03b01bac 495 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS]);
807b9b57
JM
496 for (size_t i = 0; i < 3 && i < actuators.size(); i++) {
497 gcode->stream->printf(" %c : %g", 'A' + i, actuators[i]->get_max_rate()); //xxx
498 }
928467c0
JM
499 gcode->add_nl = true;
500 }
83488642
JM
501 break;
502
c5fe1787 503 case 204: // M204 Snnn - set acceleration to nnn, Znnn sets z acceleration
4710532a 504 if (gcode->has_letter('S')) {
4710532a 505 float acc = gcode->get_value('S'); // mm/s^2
d4ee6ee2 506 // enforce minimum
da947c62
MM
507 if (acc < 1.0F)
508 acc = 1.0F;
4710532a 509 THEKERNEL->planner->acceleration = acc;
d4ee6ee2 510 }
c5fe1787 511 if (gcode->has_letter('Z')) {
c5fe1787
JM
512 float acc = gcode->get_value('Z'); // mm/s^2
513 // enforce positive
514 if (acc < 0.0F)
515 acc = 0.0F;
516 THEKERNEL->planner->z_acceleration = acc;
517 }
d4ee6ee2
JM
518 break;
519
9502f9d5 520 case 205: // M205 Xnnn - set junction deviation, Z - set Z junction deviation, Snnn - Set minimum planner speed, Ynnn - set minimum step rate
4710532a
JM
521 if (gcode->has_letter('X')) {
522 float jd = gcode->get_value('X');
d4ee6ee2 523 // enforce minimum
8b69c90d
JM
524 if (jd < 0.0F)
525 jd = 0.0F;
4710532a 526 THEKERNEL->planner->junction_deviation = jd;
d4ee6ee2 527 }
107df03f
JM
528 if (gcode->has_letter('Z')) {
529 float jd = gcode->get_value('Z');
530 // enforce minimum, -1 disables it and uses regular junction deviation
531 if (jd < -1.0F)
532 jd = -1.0F;
533 THEKERNEL->planner->z_junction_deviation = jd;
534 }
4710532a
JM
535 if (gcode->has_letter('S')) {
536 float mps = gcode->get_value('S');
8b69c90d
JM
537 // enforce minimum
538 if (mps < 0.0F)
539 mps = 0.0F;
4710532a 540 THEKERNEL->planner->minimum_planner_speed = mps;
8b69c90d 541 }
9502f9d5 542 if (gcode->has_letter('Y')) {
807b9b57 543 actuators[0]->default_minimum_actuator_rate = gcode->get_value('Y');
9502f9d5 544 }
d4ee6ee2 545 break;
98761c28 546
7369629d 547 case 220: // M220 - speed override percentage
4710532a 548 if (gcode->has_letter('S')) {
1ad23cd3 549 float factor = gcode->get_value('S');
98761c28 550 // enforce minimum 10% speed
da947c62
MM
551 if (factor < 10.0F)
552 factor = 10.0F;
553 // enforce maximum 10x speed
554 if (factor > 1000.0F)
555 factor = 1000.0F;
556
557 seconds_per_minute = 6000.0F / factor;
03b01bac 558 } else {
9ef9f45b 559 gcode->stream->printf("Speed factor at %6.2f %%\n", 6000.0F / seconds_per_minute);
7369629d 560 }
b4f56013 561 break;
ec4773e5 562
494dc541 563 case 400: // wait until all moves are done up to this point
314ab8f7 564 THEKERNEL->conveyor->wait_for_empty_queue();
494dc541
JM
565 break;
566
33e4cc02 567 case 500: // M500 saves some volatile settings to config override file
b7cd847e 568 case 503: { // M503 just prints the settings
78d0e16a 569 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm);
c5fe1787 570 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f Z%1.5f\n", THEKERNEL->planner->acceleration, THEKERNEL->planner->z_acceleration);
c9cc5e06 571 gcode->stream->printf(";X- Junction Deviation, Z- Z junction deviation, S - Minimum Planner speed mm/sec:\nM205 X%1.5f Z%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->z_junction_deviation, THEKERNEL->planner->minimum_planner_speed);
807b9b57
JM
572 gcode->stream->printf(";Max feedrates in mm/sec, XYZ cartesian, ABC actuator:\nM203 X%1.5f Y%1.5f Z%1.5f",
573 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS]);
03b01bac 574 for (size_t i = 0; i < 3 && i < actuators.size(); i++) {
807b9b57
JM
575 gcode->stream->printf(" %c%1.5f", 'A' + i, actuators[i]->get_max_rate());
576 }
577 gcode->stream->printf("\n");
b7cd847e
JM
578
579 // get or save any arm solution specific optional values
580 BaseSolution::arm_options_t options;
581 if(arm_solution->get_optional(options) && !options.empty()) {
582 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
4710532a 583 for(auto &i : options) {
b7cd847e
JM
584 gcode->stream->printf(" %c%1.4f", i.first, i.second);
585 }
586 gcode->stream->printf("\n");
587 }
6e92ab91 588
807b9b57
JM
589 // save wcs_offsets and current_wcs
590 // TODO this may need to be done whenever they change to be compliant
591 gcode->stream->printf(";WCS settings\n");
350c8a60 592 gcode->stream->printf("G5%c", std::min(current_wcs, (uint8_t)5) + '4');
807b9b57 593 if(current_wcs >= 6) {
350c8a60 594 gcode->stream->printf(".%c\n", '1' + (current_wcs - 6));
03b01bac 595 } else {
807b9b57
JM
596 gcode->stream->printf("\n");
597 }
03b01bac 598 int n = 1;
807b9b57 599 for(auto &i : wcs_offsets) {
2791c829 600 if(i != wcs_t(0, 0, 0)) {
807b9b57
JM
601 float x, y, z;
602 std::tie(x, y, z) = i;
603 gcode->stream->printf("G10 L2 P%d X%f Y%f Z%f\n", n, x, y, z);
2791c829 604 }
807b9b57
JM
605 ++n;
606 }
b7cd847e 607 }
67a649dd
JM
608
609 if(gcode->m == 503) {
610 // just print the G92 setting as it is not saved
c2f7c261 611 // TODO linuxcnc does seem to save G92, so maybe we should here too
03b01bac 612 if(g92_offset != wcs_t(0, 0, 0)) {
67a649dd
JM
613 float x, y, z;
614 std::tie(x, y, z) = g92_offset;
615 gcode->stream->printf("G92 X%f Y%f Z%f ; NOT SAVED\n", x, y, z);
616 }
617 }
807b9b57 618 break;
33e4cc02 619
b7cd847e 620 case 665: { // M665 set optional arm solution variables based on arm solution.
ebc75fc6 621 // the parameter args could be any letter each arm solution only accepts certain ones
03b01bac 622 BaseSolution::arm_options_t options = gcode->get_args();
ebc75fc6
JM
623 options.erase('S'); // don't include the S
624 options.erase('U'); // don't include the U
625 if(options.size() > 0) {
626 // set the specified options
627 arm_solution->set_optional(options);
628 }
629 options.clear();
b7cd847e 630 if(arm_solution->get_optional(options)) {
ebc75fc6 631 // foreach optional value
4710532a 632 for(auto &i : options) {
b7cd847e
JM
633 // print all current values of supported options
634 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
5523c05d 635 gcode->add_nl = true;
ec4773e5
JM
636 }
637 }
ec4773e5 638
4a839bea 639 if(gcode->has_letter('S')) { // set delta segments per second, not saved by M500
4710532a 640 this->delta_segments_per_second = gcode->get_value('S');
4a839bea
JM
641 gcode->stream->printf("Delta segments set to %8.4f segs/sec\n", this->delta_segments_per_second);
642
03b01bac 643 } else if(gcode->has_letter('U')) { // or set mm_per_line_segment, not saved by M500
4a839bea
JM
644 this->mm_per_line_segment = gcode->get_value('U');
645 this->delta_segments_per_second = 0;
646 gcode->stream->printf("mm per line segment set to %8.4f\n", this->mm_per_line_segment);
ec29d378 647 }
4a839bea 648
ec4773e5 649 break;
b7cd847e 650 }
6989211c 651 }
494dc541
JM
652 }
653
c2f7c261
JM
654 if( this->motion_mode >= 0) {
655 process_move(gcode);
00e607c7 656 }
6bc4a00a 657
c2f7c261
JM
658 next_command_is_MCS = false; // must be on same line as G0 or G1
659}
350c8a60 660
5d2319a9 661// process a G0/G1/G2/G3
c2f7c261
JM
662void Robot::process_move(Gcode *gcode)
663{
2791c829 664 // we have a G0/G1/G2/G3 so extract parameters and apply offsets to get machine coordinate target
c2f7c261 665 float param[3]{NAN, NAN, NAN};
350c8a60
JM
666 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
667 char letter= 'X'+i;
668 if( gcode->has_letter(letter) ) {
669 param[i] = this->to_millimeters(gcode->get_value(letter));
350c8a60
JM
670 }
671 }
6bc4a00a 672
c2f7c261 673 float offset[3]{0,0,0};
4710532a
JM
674 for(char letter = 'I'; letter <= 'K'; letter++) {
675 if( gcode->has_letter(letter) ) {
676 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
c2885de8
JM
677 }
678 }
00e607c7 679
c2f7c261
JM
680 // calculate target in machine coordinates (less compensation transform which needs to be done after segmentation)
681 float target[3]{last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]};
350c8a60
JM
682 if(!next_command_is_MCS) {
683 if(this->absolute_mode) {
c2f7c261
JM
684 // apply wcs offsets and g92 offset and tool offset
685 if(!isnan(param[X_AXIS])) {
686 target[X_AXIS]= param[X_AXIS] + std::get<X_AXIS>(wcs_offsets[current_wcs]) - std::get<X_AXIS>(g92_offset) + std::get<X_AXIS>(tool_offset);
687 }
688
689 if(!isnan(param[Y_AXIS])) {
690 target[Y_AXIS]= param[Y_AXIS] + std::get<Y_AXIS>(wcs_offsets[current_wcs]) - std::get<Y_AXIS>(g92_offset) + std::get<Y_AXIS>(tool_offset);
691 }
692
693 if(!isnan(param[Z_AXIS])) {
694 target[Z_AXIS]= param[Z_AXIS] + std::get<Z_AXIS>(wcs_offsets[current_wcs]) - std::get<Z_AXIS>(g92_offset) + std::get<Z_AXIS>(tool_offset);
695 }
350c8a60
JM
696
697 }else{
698 // they are deltas from the last_milestone if specified
699 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
c2f7c261 700 if(!isnan(param[i])) target[i] = param[i] + last_milestone[i];
a6bbe768
JM
701 }
702 }
703
350c8a60 704 }else{
c2f7c261
JM
705 // already in machine coordinates, we do not add tool offset for that
706 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
707 if(!isnan(param[i])) target[i] = param[i];
708 }
c2885de8 709 }
6bc4a00a 710
4710532a 711 if( gcode->has_letter('F') ) {
7369629d 712 if( this->motion_mode == MOTION_MODE_SEEK )
da947c62 713 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 714 else
da947c62 715 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 716 }
6bc4a00a 717
350c8a60
JM
718 bool moved= false;
719 //Perform any physical actions
fae93525 720 switch(this->motion_mode) {
350c8a60
JM
721 case MOTION_MODE_CANCEL:
722 break;
723 case MOTION_MODE_SEEK:
724 moved= this->append_line(gcode, target, this->seek_rate / seconds_per_minute );
725 break;
726 case MOTION_MODE_LINEAR:
727 moved= this->append_line(gcode, target, this->feed_rate / seconds_per_minute );
728 break;
fae93525 729 case MOTION_MODE_CW_ARC:
350c8a60
JM
730 case MOTION_MODE_CCW_ARC:
731 moved= this->compute_arc(gcode, offset, target );
732 break;
4cff3ded 733 }
13e4a3f9 734
c2f7c261
JM
735 if(moved) {
736 // set last_milestone to the calculated target
737 memcpy(this->last_milestone, target, sizeof(this->last_milestone));
350c8a60 738 }
edac9072
AW
739}
740
5984acdf 741// We received a new gcode, and one of the functions
edac9072
AW
742// determined the distance for that given gcode. So now we can attach this gcode to the right block
743// and continue
03b01bac 744void Robot::distance_in_gcode_is_known(Gcode * gcode)
4710532a 745{
edac9072 746 //If the queue is empty, execute immediatly, otherwise attach to the last added block
e0ee24ed 747 THEKERNEL->conveyor->append_gcode(gcode);
edac9072
AW
748}
749
a6bbe768 750// reset the machine position for all axis. Used for homing.
f6934849
JM
751// During homing compensation is turned off (actually not used as it drives steppers directly)
752// once homed and reset_axis called compensation is used for the move to origin and back off home if enabled,
753// so in those cases the final position is compensated.
cef9acea
JM
754void Robot::reset_axis_position(float x, float y, float z)
755{
f6934849 756 // these are set to the same as compensation was not used to get to the current position
c2f7c261
JM
757 last_machine_position[X_AXIS]= last_milestone[X_AXIS] = x;
758 last_machine_position[Y_AXIS]= last_milestone[Y_AXIS] = y;
759 last_machine_position[Z_AXIS]= last_milestone[Z_AXIS] = z;
cef9acea 760
a6bbe768 761 // now set the actuator positions to match
807b9b57 762 ActuatorCoordinates actuator_pos;
c2f7c261 763 arm_solution->cartesian_to_actuator(this->last_machine_position, actuator_pos);
807b9b57 764 for (size_t i = 0; i < actuators.size(); i++)
cef9acea
JM
765 actuators[i]->change_last_milestone(actuator_pos[i]);
766}
767
807b9b57 768// Reset the position for an axis (used in homing)
4710532a
JM
769void Robot::reset_axis_position(float position, int axis)
770{
c2f7c261
JM
771 last_milestone[axis] = position;
772 reset_axis_position(last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
4cff3ded
AW
773}
774
a6bbe768 775// Use FK to find out where actuator is and reset to match
728477c4
JM
776void Robot::reset_position_from_current_actuator_position()
777{
807b9b57
JM
778 ActuatorCoordinates actuator_pos;
779 for (size_t i = 0; i < actuators.size(); i++) {
780 actuator_pos[i] = actuators[i]->get_current_position();
781 }
c2f7c261
JM
782 arm_solution->actuator_to_cartesian(actuator_pos, last_machine_position);
783 // FIXME problem is this includes any compensation transform, and without an inverse compensation we cannot get a correct last_milestone
784 memcpy(last_milestone, last_machine_position, sizeof last_milestone);
cf91d4f3
JM
785
786 // now reset actuator correctly, NOTE this may lose a little precision
a6bbe768 787 // NOTE I do not recall why this was necessary, maybe to correct for small errors in FK
c2f7c261 788 // arm_solution->cartesian_to_actuator(last_machine_position, actuator_pos);
a6bbe768
JM
789 // for (size_t i = 0; i < actuators.size(); i++)
790 // actuators[i]->change_last_milestone(actuator_pos[i]);
728477c4 791}
edac9072 792
c2f7c261
JM
793// Convert target (in machine coordinates) from millimeters to steps, and append this to the planner
794// target is in machine coordinates without the compensation transform, however we save a last_machine_position that includes
795// all transforms and is what we actually convert to actuator positions
350c8a60 796bool Robot::append_milestone(Gcode * gcode, const float target[], float rate_mm_s)
df6a30f2 797{
1ad23cd3 798 float deltas[3];
df6a30f2 799 float unit_vec[3];
807b9b57 800 ActuatorCoordinates actuator_pos;
03b01bac 801 float transformed_target[3]; // adjust target for bed compensation and WCS offsets
df6a30f2
MM
802 float millimeters_of_travel;
803
3632a517
JM
804 // unity transform by default
805 memcpy(transformed_target, target, sizeof(transformed_target));
5e45206a 806
350c8a60
JM
807 // check function pointer and call if set to transform the target to compensate for bed
808 if(compensationTransform) {
809 // some compensation strategies can transform XYZ, some just change Z
810 compensationTransform(transformed_target);
00e607c7 811 }
807b9b57 812
a6bbe768 813 // find distance moved by each axis, use transformed target from the current machine position
03b01bac 814 for (int axis = X_AXIS; axis <= Z_AXIS; axis++) {
c2f7c261 815 deltas[axis] = transformed_target[axis] - last_machine_position[axis];
3632a517 816 }
aab6cbba 817
edac9072 818 // Compute how long this move moves, so we can attach it to the block for later use
869acfb8 819 millimeters_of_travel = sqrtf( powf( deltas[X_AXIS], 2 ) + powf( deltas[Y_AXIS], 2 ) + powf( deltas[Z_AXIS], 2 ) );
df6a30f2 820
a6bbe768
JM
821 // it is unlikely but we need to protect against divide by zero, so ignore insanely small moves here
822 // as the last milestone won't be updated we do not actually lose any moves as they will be accounted for in the next move
350c8a60 823 if(millimeters_of_travel < 0.00001F) return false;
a6bbe768
JM
824
825 // this is the machine position
c2f7c261 826 memcpy(this->last_machine_position, transformed_target, sizeof(this->last_machine_position));
a6bbe768 827
df6a30f2
MM
828 // find distance unit vector
829 for (int i = 0; i < 3; i++)
830 unit_vec[i] = deltas[i] / millimeters_of_travel;
831
832 // Do not move faster than the configured cartesian limits
4710532a
JM
833 for (int axis = X_AXIS; axis <= Z_AXIS; axis++) {
834 if ( max_speeds[axis] > 0 ) {
da947c62 835 float axis_speed = fabs(unit_vec[axis] * rate_mm_s);
df6a30f2
MM
836
837 if (axis_speed > max_speeds[axis])
da947c62 838 rate_mm_s *= ( max_speeds[axis] / axis_speed );
7b470506
AW
839 }
840 }
4cff3ded 841
c2f7c261
JM
842 // find actuator position given the machine position, use actual adjusted target
843 arm_solution->cartesian_to_actuator( this->last_machine_position, actuator_pos );
df6a30f2 844
03b01bac 845 float isecs = rate_mm_s / millimeters_of_travel;
df6a30f2 846 // check per-actuator speed limits
807b9b57 847 for (size_t actuator = 0; actuator < actuators.size(); actuator++) {
928467c0 848 float actuator_rate = fabsf(actuator_pos[actuator] - actuators[actuator]->last_milestone_mm) * isecs;
03b01bac 849 if (actuator_rate > actuators[actuator]->get_max_rate()) {
3494f3d0 850 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
03b01bac 851 isecs = rate_mm_s / millimeters_of_travel;
928467c0
JM
852 }
853 }
854
edac9072 855 // Append the block to the planner
da947c62 856 THEKERNEL->planner->append_block( actuator_pos, rate_mm_s, millimeters_of_travel, unit_vec );
4cff3ded 857
350c8a60 858 return true;
4cff3ded
AW
859}
860
edac9072 861// Append a move to the queue ( cutting it into segments if needed )
c2f7c261 862bool Robot::append_line(Gcode *gcode, const float target[], float rate_mm_s )
4710532a 863{
c2f7c261 864 // Find out the distance for this move in MCS
a9d299ab 865 // NOTE we need to do sqrt here as this setting of millimeters_of_travel is used by extruder and other modules even if there is no XYZ move
2791c829 866 gcode->millimeters_of_travel = sqrtf(powf( target[X_AXIS] - last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - last_milestone[Z_AXIS], 2 ));
4cff3ded 867
3b4b05b8 868 // We ignore non- XYZ moves ( for example, extruder moves are not XYZ moves )
350c8a60 869 if( gcode->millimeters_of_travel < 0.00001F ) return false;
436a2cd1 870
edac9072 871 // Mark the gcode as having a known distance
5dcb2ff3 872 this->distance_in_gcode_is_known( gcode );
436a2cd1 873
d2adef5e
JM
874 // if we have volumetric limits enabled we calculate the volume for this move and limit the rate if it exceeds the stated limit
875 // Note we need to be using volumetric extrusion for this to work as Ennn is in mm³ not mm
876 // We also check we are not exceeding the E max_speed for the current extruder
877 // We ask Extruder to do all the work, but as Extruder won't even see this gcode until after it has been planned
878 // we need to ask it now passing in the relevant data.
879 // NOTE we need to do this before we segment the line (for deltas)
880 if(gcode->has_letter('E')) {
881 float data[2];
03b01bac
JM
882 data[0] = gcode->get_value('E'); // E target (maybe absolute or relative)
883 data[1] = rate_mm_s / gcode->millimeters_of_travel; // inverted seconds for the move
d2adef5e
JM
884 if(PublicData::set_value(extruder_checksum, target_checksum, data)) {
885 rate_mm_s *= data[1];
886 //THEKERNEL->streams->printf("Extruder has changed the rate by %f to %f\n", data[1], rate_mm_s);
887 }
888 }
889
c2f7c261 890 // We cut the line into smaller segments. This is only needed on a cartesian robot for zgrid, but always necessary for robots with rotational axes like Deltas.
3b4b05b8
JM
891 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second
892 // The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
4a0c8e14 893 uint16_t segments;
5984acdf 894
c2885de8 895 if(this->delta_segments_per_second > 1.0F) {
4a0c8e14
JM
896 // enabled if set to something > 1, it is set to 0.0 by default
897 // segment based on current speed and requested segments per second
898 // the faster the travel speed the fewer segments needed
899 // NOTE rate is mm/sec and we take into account any speed override
da947c62 900 float seconds = gcode->millimeters_of_travel / rate_mm_s;
9502f9d5 901 segments = max(1.0F, ceilf(this->delta_segments_per_second * seconds));
4a0c8e14 902 // TODO if we are only moving in Z on a delta we don't really need to segment at all
5984acdf 903
4710532a
JM
904 } else {
905 if(this->mm_per_line_segment == 0.0F) {
906 segments = 1; // don't split it up
907 } else {
9502f9d5 908 segments = ceilf( gcode->millimeters_of_travel / this->mm_per_line_segment);
4a0c8e14
JM
909 }
910 }
5984acdf 911
350c8a60 912 bool moved= false;
4710532a 913 if (segments > 1) {
2ba859c9
MM
914 // A vector to keep track of the endpoint of each segment
915 float segment_delta[3];
916 float segment_end[3];
917
918 // How far do we move each segment?
9fff6045 919 for (int i = X_AXIS; i <= Z_AXIS; i++)
2791c829 920 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
4cff3ded 921
c8e0fb15
MM
922 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
923 // We always add another point after this loop so we stop at segments-1, ie i < segments
4710532a 924 for (int i = 1; i < segments; i++) {
350c8a60 925 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
4710532a 926 for(int axis = X_AXIS; axis <= Z_AXIS; axis++ )
2791c829 927 segment_end[axis] = last_milestone[axis] + segment_delta[axis];
2ba859c9
MM
928
929 // Append the end of this segment to the queue
350c8a60
JM
930 bool b= this->append_milestone(gcode, segment_end, rate_mm_s);
931 moved= moved || b;
2ba859c9 932 }
4cff3ded 933 }
5984acdf
MM
934
935 // Append the end of this full move to the queue
350c8a60 936 if(this->append_milestone(gcode, target, rate_mm_s)) moved= true;
2134bcf2 937
a6bbe768 938 this->next_command_is_MCS = false; // always reset this
00e607c7 939
350c8a60
JM
940 if(moved) {
941 // if adding these blocks didn't start executing, do that now
942 THEKERNEL->conveyor->ensure_running();
943 }
944
945 return moved;
4cff3ded
AW
946}
947
4cff3ded 948
edac9072 949// Append an arc to the queue ( cutting it into segments as needed )
350c8a60 950bool Robot::append_arc(Gcode * gcode, const float target[], const float offset[], float radius, bool is_clockwise )
4710532a 951{
aab6cbba 952
edac9072 953 // Scary math
2ba859c9
MM
954 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
955 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
956 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1ad23cd3
MM
957 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
958 float r_axis1 = -offset[this->plane_axis_1];
959 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
960 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
aab6cbba 961
51871fb8 962 // Patch from GRBL Firmware - Christoph Baumann 04072015
aab6cbba 963 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
03b01bac 964 float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
5fa0c173 965 if (is_clockwise) { // Correct atan2 output per direction
03b01bac 966 if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel -= 2 * M_PI; }
5fa0c173 967 } else {
03b01bac 968 if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel += 2 * M_PI; }
4710532a 969 }
aab6cbba 970
edac9072 971 // Find the distance for this gcode
4710532a 972 gcode->millimeters_of_travel = hypotf(angular_travel * radius, fabs(linear_travel));
436a2cd1 973
edac9072 974 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
3b4b05b8 975 if( gcode->millimeters_of_travel < 0.00001F ) {
350c8a60 976 return false;
4710532a 977 }
5dcb2ff3 978
edac9072 979 // Mark the gcode as having a known distance
d149c730 980 this->distance_in_gcode_is_known( gcode );
5984acdf
MM
981
982 // Figure out how many segments for this gcode
c8f4ee77 983 uint16_t segments = floorf(gcode->millimeters_of_travel / this->mm_per_arc_segment);
aab6cbba 984
4710532a
JM
985 float theta_per_segment = angular_travel / segments;
986 float linear_per_segment = linear_travel / segments;
aab6cbba
AW
987
988 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
989 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
990 r_T = [cos(phi) -sin(phi);
991 sin(phi) cos(phi] * r ;
992 For arc generation, the center of the circle is the axis of rotation and the radius vector is
993 defined from the circle center to the initial position. Each line segment is formed by successive
994 vector rotations. This requires only two cos() and sin() computations to form the rotation
995 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1ad23cd3 996 all float numbers are single precision on the Arduino. (True float precision will not have
aab6cbba
AW
997 round off issues for CNC applications.) Single precision error can accumulate to be greater than
998 tool precision in some cases. Therefore, arc path correction is implemented.
999
1000 Small angle approximation may be used to reduce computation overhead further. This approximation
1001 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
1002 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
1003 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
1004 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
1005 issue for CNC machines with the single precision Arduino calculations.
1006 This approximation also allows mc_arc to immediately insert a line segment into the planner
1007 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
1008 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
1009 This is important when there are successive arc motions.
1010 */
1011 // Vector rotation matrix values
4710532a 1012 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1ad23cd3 1013 float sin_T = theta_per_segment;
aab6cbba 1014
1ad23cd3
MM
1015 float arc_target[3];
1016 float sin_Ti;
1017 float cos_Ti;
1018 float r_axisi;
aab6cbba
AW
1019 uint16_t i;
1020 int8_t count = 0;
1021
1022 // Initialize the linear axis
2ba859c9 1023 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
aab6cbba 1024
350c8a60 1025 bool moved= false;
4710532a 1026 for (i = 1; i < segments; i++) { // Increment (segments-1)
350c8a60 1027 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
aab6cbba 1028
b66fb830 1029 if (count < this->arc_correction ) {
4710532a
JM
1030 // Apply vector rotation matrix
1031 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
1032 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
1033 r_axis1 = r_axisi;
1034 count++;
aab6cbba 1035 } else {
4710532a
JM
1036 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
1037 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
1038 cos_Ti = cosf(i * theta_per_segment);
1039 sin_Ti = sinf(i * theta_per_segment);
1040 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
1041 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
1042 count = 0;
aab6cbba
AW
1043 }
1044
1045 // Update arc_target location
1046 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
1047 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
1048 arc_target[this->plane_axis_2] += linear_per_segment;
edac9072
AW
1049
1050 // Append this segment to the queue
350c8a60
JM
1051 bool b= this->append_milestone(gcode, arc_target, this->feed_rate / seconds_per_minute);
1052 moved= moved || b;
aab6cbba 1053 }
edac9072 1054
aab6cbba 1055 // Ensure last segment arrives at target location.
350c8a60
JM
1056 if(this->append_milestone(gcode, target, this->feed_rate / seconds_per_minute)) moved= true;
1057
1058 return moved;
aab6cbba
AW
1059}
1060
edac9072 1061// Do the math for an arc and add it to the queue
350c8a60 1062bool Robot::compute_arc(Gcode * gcode, const float offset[], const float target[])
4710532a 1063{
aab6cbba
AW
1064
1065 // Find the radius
13addf09 1066 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
aab6cbba
AW
1067
1068 // Set clockwise/counter-clockwise sign for mc_arc computations
1069 bool is_clockwise = false;
4710532a
JM
1070 if( this->motion_mode == MOTION_MODE_CW_ARC ) {
1071 is_clockwise = true;
1072 }
aab6cbba
AW
1073
1074 // Append arc
350c8a60 1075 return this->append_arc(gcode, target, offset, radius, is_clockwise );
aab6cbba
AW
1076}
1077
1078
4710532a
JM
1079float Robot::theta(float x, float y)
1080{
1081 float t = atanf(x / fabs(y));
1082 if (y > 0) {
1083 return(t);
1084 } else {
1085 if (t > 0) {
1086 return(M_PI - t);
1087 } else {
1088 return(-M_PI - t);
1089 }
1090 }
4cff3ded
AW
1091}
1092
4710532a
JM
1093void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
1094{
4cff3ded
AW
1095 this->plane_axis_0 = axis_0;
1096 this->plane_axis_1 = axis_1;
1097 this->plane_axis_2 = axis_2;
1098}
1099
fae93525 1100void Robot::clearToolOffset()
4710532a 1101{
c2f7c261 1102 this->tool_offset= wcs_t(0,0,0);
fae93525
JM
1103}
1104
1105void Robot::setToolOffset(const float offset[3])
1106{
c2f7c261 1107 this->tool_offset= wcs_t(offset[0], offset[1], offset[2]);
5966b7d0
AT
1108}
1109