Merge pull request #471 from wolfmanjm/feature/three-point-bed-levelling-strategy
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
CommitLineData
df27a6a3 1/*
aab6cbba 2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
4cff3ded
AW
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
df27a6a3 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
5673fe39
MM
10
11#include <math.h>
4cff3ded
AW
12#include <string>
13using std::string;
5673fe39 14
4cff3ded 15#include "Planner.h"
3fceb8eb 16#include "Conveyor.h"
4cff3ded 17#include "Robot.h"
5673fe39
MM
18#include "nuts_bolts.h"
19#include "Pin.h"
20#include "StepperMotor.h"
21#include "Gcode.h"
5647f709 22#include "PublicDataRequest.h"
66383b80 23#include "RobotPublicAccess.h"
4cff3ded
AW
24#include "arm_solutions/BaseSolution.h"
25#include "arm_solutions/CartesianSolution.h"
c41d6d95 26#include "arm_solutions/RotatableCartesianSolution.h"
2a06c415 27#include "arm_solutions/LinearDeltaSolution.h"
bdaaa75d 28#include "arm_solutions/HBotSolution.h"
1217e470 29#include "arm_solutions/MorganSCARASolution.h"
61134a65 30#include "StepTicker.h"
7af0714f
JM
31#include "checksumm.h"
32#include "utils.h"
8d54c34c 33#include "ConfigValue.h"
5966b7d0 34#include "libs/StreamOutput.h"
dd0a7cfa 35#include "StreamOutputPool.h"
38bf9a1c 36
78d0e16a
MM
37#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
38#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
39#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
40#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
41#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
42#define arc_correction_checksum CHECKSUM("arc_correction")
43#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
44#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
45#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
43424972
JM
46
47// arm solutions
78d0e16a
MM
48#define arm_solution_checksum CHECKSUM("arm_solution")
49#define cartesian_checksum CHECKSUM("cartesian")
50#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
51#define rostock_checksum CHECKSUM("rostock")
2a06c415 52#define linear_delta_checksum CHECKSUM("linear_delta")
78d0e16a
MM
53#define delta_checksum CHECKSUM("delta")
54#define hbot_checksum CHECKSUM("hbot")
55#define corexy_checksum CHECKSUM("corexy")
56#define kossel_checksum CHECKSUM("kossel")
1217e470 57#define morgan_checksum CHECKSUM("morgan")
78d0e16a
MM
58
59// stepper motor stuff
60#define alpha_step_pin_checksum CHECKSUM("alpha_step_pin")
61#define beta_step_pin_checksum CHECKSUM("beta_step_pin")
62#define gamma_step_pin_checksum CHECKSUM("gamma_step_pin")
63#define alpha_dir_pin_checksum CHECKSUM("alpha_dir_pin")
64#define beta_dir_pin_checksum CHECKSUM("beta_dir_pin")
65#define gamma_dir_pin_checksum CHECKSUM("gamma_dir_pin")
66#define alpha_en_pin_checksum CHECKSUM("alpha_en_pin")
67#define beta_en_pin_checksum CHECKSUM("beta_en_pin")
68#define gamma_en_pin_checksum CHECKSUM("gamma_en_pin")
a84f0186 69
78d0e16a
MM
70#define alpha_steps_per_mm_checksum CHECKSUM("alpha_steps_per_mm")
71#define beta_steps_per_mm_checksum CHECKSUM("beta_steps_per_mm")
72#define gamma_steps_per_mm_checksum CHECKSUM("gamma_steps_per_mm")
73
df6a30f2
MM
74#define alpha_max_rate_checksum CHECKSUM("alpha_max_rate")
75#define beta_max_rate_checksum CHECKSUM("beta_max_rate")
76#define gamma_max_rate_checksum CHECKSUM("gamma_max_rate")
77
78
78d0e16a
MM
79// new-style actuator stuff
80#define actuator_checksum CHEKCSUM("actuator")
81
82#define step_pin_checksum CHECKSUM("step_pin")
83#define dir_pin_checksum CHEKCSUM("dir_pin")
84#define en_pin_checksum CHECKSUM("en_pin")
85
86#define steps_per_mm_checksum CHECKSUM("steps_per_mm")
df6a30f2 87#define max_rate_checksum CHECKSUM("max_rate")
78d0e16a
MM
88
89#define alpha_checksum CHECKSUM("alpha")
90#define beta_checksum CHECKSUM("beta")
91#define gamma_checksum CHECKSUM("gamma")
92
43424972 93
38bf9a1c
JM
94#define NEXT_ACTION_DEFAULT 0
95#define NEXT_ACTION_DWELL 1
96#define NEXT_ACTION_GO_HOME 2
97
98#define MOTION_MODE_SEEK 0 // G0
99#define MOTION_MODE_LINEAR 1 // G1
100#define MOTION_MODE_CW_ARC 2 // G2
101#define MOTION_MODE_CCW_ARC 3 // G3
102#define MOTION_MODE_CANCEL 4 // G80
103
104#define PATH_CONTROL_MODE_EXACT_PATH 0
105#define PATH_CONTROL_MODE_EXACT_STOP 1
106#define PATH_CONTROL_MODE_CONTINOUS 2
107
108#define PROGRAM_FLOW_RUNNING 0
109#define PROGRAM_FLOW_PAUSED 1
110#define PROGRAM_FLOW_COMPLETED 2
111
112#define SPINDLE_DIRECTION_CW 0
113#define SPINDLE_DIRECTION_CCW 1
114
edac9072
AW
115// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
116// It takes care of cutting arcs into segments, same thing for line that are too long
41fd89e0 117#define max(a,b) (((a) > (b)) ? (a) : (b))
edac9072 118
4710532a
JM
119Robot::Robot()
120{
a1b7e9f0 121 this->inch_mode = false;
0e8b102e 122 this->absolute_mode = true;
df27a6a3 123 this->motion_mode = MOTION_MODE_SEEK;
4cff3ded 124 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
df27a6a3 125 clear_vector(this->last_milestone);
0b804a41 126 this->arm_solution = NULL;
da947c62 127 seconds_per_minute = 60.0F;
fae93525 128 this->clearToolOffset();
33742399 129 this->adjustZfnc= nullptr;
4cff3ded
AW
130}
131
132//Called when the module has just been loaded
4710532a
JM
133void Robot::on_module_loaded()
134{
4cff3ded 135 this->register_for_event(ON_GCODE_RECEIVED);
b55cfff1
JM
136 this->register_for_event(ON_GET_PUBLIC_DATA);
137 this->register_for_event(ON_SET_PUBLIC_DATA);
4cff3ded
AW
138
139 // Configuration
da24d6ae
AW
140 this->on_config_reload(this);
141}
142
4710532a
JM
143void Robot::on_config_reload(void *argument)
144{
5984acdf 145
edac9072
AW
146 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
147 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
148 // To make adding those solution easier, they have their own, separate object.
5984acdf 149 // Here we read the config to find out which arm solution to use
0b804a41 150 if (this->arm_solution) delete this->arm_solution;
314ab8f7 151 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
d149c730 152 // Note checksums are not const expressions when in debug mode, so don't use switch
98761c28 153 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
314ab8f7 154 this->arm_solution = new HBotSolution(THEKERNEL->config);
bdaaa75d 155
2a06c415
JM
156 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
157 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
73a4e3c0 158
4710532a 159 } else if(solution_checksum == rotatable_cartesian_checksum) {
314ab8f7 160 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
b73a756d 161
1217e470
QH
162 } else if(solution_checksum == morgan_checksum) {
163 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
164
4710532a 165 } else if(solution_checksum == cartesian_checksum) {
314ab8f7 166 this->arm_solution = new CartesianSolution(THEKERNEL->config);
73a4e3c0 167
4710532a 168 } else {
314ab8f7 169 this->arm_solution = new CartesianSolution(THEKERNEL->config);
d149c730 170 }
73a4e3c0 171
0b804a41 172
da947c62
MM
173 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
174 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
175 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
1ad23cd3 176 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
da947c62
MM
177 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.5f)->as_number();
178 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
78d0e16a 179
c9ed779d
MM
180 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
181 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
182 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
feb204be 183
78d0e16a
MM
184 Pin alpha_step_pin;
185 Pin alpha_dir_pin;
186 Pin alpha_en_pin;
187 Pin beta_step_pin;
188 Pin beta_dir_pin;
189 Pin beta_en_pin;
190 Pin gamma_step_pin;
191 Pin gamma_dir_pin;
192 Pin gamma_en_pin;
193
194 alpha_step_pin.from_string( THEKERNEL->config->value(alpha_step_pin_checksum )->by_default("2.0" )->as_string())->as_output();
195 alpha_dir_pin.from_string( THEKERNEL->config->value(alpha_dir_pin_checksum )->by_default("0.5" )->as_string())->as_output();
196 alpha_en_pin.from_string( THEKERNEL->config->value(alpha_en_pin_checksum )->by_default("0.4" )->as_string())->as_output();
197 beta_step_pin.from_string( THEKERNEL->config->value(beta_step_pin_checksum )->by_default("2.1" )->as_string())->as_output();
9c5fa39a
MM
198 beta_dir_pin.from_string( THEKERNEL->config->value(beta_dir_pin_checksum )->by_default("0.11" )->as_string())->as_output();
199 beta_en_pin.from_string( THEKERNEL->config->value(beta_en_pin_checksum )->by_default("0.10" )->as_string())->as_output();
78d0e16a
MM
200 gamma_step_pin.from_string( THEKERNEL->config->value(gamma_step_pin_checksum )->by_default("2.2" )->as_string())->as_output();
201 gamma_dir_pin.from_string( THEKERNEL->config->value(gamma_dir_pin_checksum )->by_default("0.20" )->as_string())->as_output();
202 gamma_en_pin.from_string( THEKERNEL->config->value(gamma_en_pin_checksum )->by_default("0.19" )->as_string())->as_output();
78d0e16a 203
a84f0186
MM
204 float steps_per_mm[3] = {
205 THEKERNEL->config->value(alpha_steps_per_mm_checksum)->by_default( 80.0F)->as_number(),
206 THEKERNEL->config->value(beta_steps_per_mm_checksum )->by_default( 80.0F)->as_number(),
207 THEKERNEL->config->value(gamma_steps_per_mm_checksum)->by_default(2560.0F)->as_number(),
208 };
209
78d0e16a
MM
210 // TODO: delete or detect old steppermotors
211 // Make our 3 StepperMotors
9c5fa39a
MM
212 this->alpha_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(alpha_step_pin, alpha_dir_pin, alpha_en_pin) );
213 this->beta_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(beta_step_pin, beta_dir_pin, beta_en_pin ) );
214 this->gamma_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(gamma_step_pin, gamma_dir_pin, gamma_en_pin) );
78d0e16a 215
a84f0186
MM
216 alpha_stepper_motor->change_steps_per_mm(steps_per_mm[0]);
217 beta_stepper_motor->change_steps_per_mm(steps_per_mm[1]);
218 gamma_stepper_motor->change_steps_per_mm(steps_per_mm[2]);
219
df6a30f2
MM
220 alpha_stepper_motor->max_rate = THEKERNEL->config->value(alpha_max_rate_checksum)->by_default(30000.0F)->as_number() / 60.0F;
221 beta_stepper_motor->max_rate = THEKERNEL->config->value(beta_max_rate_checksum )->by_default(30000.0F)->as_number() / 60.0F;
222 gamma_stepper_motor->max_rate = THEKERNEL->config->value(gamma_max_rate_checksum)->by_default(30000.0F)->as_number() / 60.0F;
dd0a7cfa 223 check_max_actuator_speeds(); // check the configs are sane
df6a30f2 224
78d0e16a
MM
225 actuators.clear();
226 actuators.push_back(alpha_stepper_motor);
227 actuators.push_back(beta_stepper_motor);
228 actuators.push_back(gamma_stepper_motor);
975469ad 229
dd0a7cfa 230
975469ad
MM
231 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
232 // so the first move can be correct if homing is not performed
233 float actuator_pos[3];
234 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
235 for (int i = 0; i < 3; i++)
236 actuators[i]->change_last_milestone(actuator_pos[i]);
5966b7d0
AT
237
238 //this->clearToolOffset();
4cff3ded
AW
239}
240
dd0a7cfa
JM
241// this does a sanity check that actuator speeds do not exceed steps rate capability
242// we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
243void Robot::check_max_actuator_speeds()
244{
245 float step_freq= alpha_stepper_motor->max_rate * alpha_stepper_motor->get_steps_per_mm();
246 if(step_freq > THEKERNEL->base_stepping_frequency) {
247 alpha_stepper_motor->max_rate= floorf(THEKERNEL->base_stepping_frequency / alpha_stepper_motor->get_steps_per_mm());
248 THEKERNEL->streams->printf("WARNING: alpha_max_rate exceeds base_stepping_frequency * alpha_steps_per_mm: %f, setting to %f\n", step_freq, alpha_stepper_motor->max_rate);
249 }
250
251 step_freq= beta_stepper_motor->max_rate * beta_stepper_motor->get_steps_per_mm();
252 if(step_freq > THEKERNEL->base_stepping_frequency) {
253 beta_stepper_motor->max_rate= floorf(THEKERNEL->base_stepping_frequency / beta_stepper_motor->get_steps_per_mm());
254 THEKERNEL->streams->printf("WARNING: beta_max_rate exceeds base_stepping_frequency * beta_steps_per_mm: %f, setting to %f\n", step_freq, beta_stepper_motor->max_rate);
255 }
256
257 step_freq= gamma_stepper_motor->max_rate * gamma_stepper_motor->get_steps_per_mm();
258 if(step_freq > THEKERNEL->base_stepping_frequency) {
259 gamma_stepper_motor->max_rate= floorf(THEKERNEL->base_stepping_frequency / gamma_stepper_motor->get_steps_per_mm());
260 THEKERNEL->streams->printf("WARNING: gamma_max_rate exceeds base_stepping_frequency * gamma_steps_per_mm: %f, setting to %f\n", step_freq, gamma_stepper_motor->max_rate);
261 }
262}
263
4710532a
JM
264void Robot::on_get_public_data(void *argument)
265{
266 PublicDataRequest *pdr = static_cast<PublicDataRequest *>(argument);
b55cfff1
JM
267
268 if(!pdr->starts_with(robot_checksum)) return;
269
270 if(pdr->second_element_is(speed_override_percent_checksum)) {
1ad23cd3 271 static float return_data;
da947c62 272 return_data = 100.0F * 60.0F / seconds_per_minute;
b55cfff1
JM
273 pdr->set_data_ptr(&return_data);
274 pdr->set_taken();
98761c28 275
4710532a 276 } else if(pdr->second_element_is(current_position_checksum)) {
1ad23cd3 277 static float return_data[3];
4710532a
JM
278 return_data[0] = from_millimeters(this->last_milestone[0]);
279 return_data[1] = from_millimeters(this->last_milestone[1]);
280 return_data[2] = from_millimeters(this->last_milestone[2]);
b55cfff1
JM
281
282 pdr->set_data_ptr(&return_data);
98761c28 283 pdr->set_taken();
b55cfff1 284 }
5647f709
JM
285}
286
4710532a
JM
287void Robot::on_set_public_data(void *argument)
288{
289 PublicDataRequest *pdr = static_cast<PublicDataRequest *>(argument);
5647f709 290
b55cfff1 291 if(!pdr->starts_with(robot_checksum)) return;
5647f709 292
b55cfff1 293 if(pdr->second_element_is(speed_override_percent_checksum)) {
7a522ccc 294 // NOTE do not use this while printing!
4710532a 295 float t = *static_cast<float *>(pdr->get_data_ptr());
98761c28 296 // enforce minimum 10% speed
4710532a 297 if (t < 10.0F) t = 10.0F;
98761c28 298
da947c62 299 this->seconds_per_minute = t / 0.6F; // t * 60 / 100
b55cfff1 300 pdr->set_taken();
4710532a
JM
301 } else if(pdr->second_element_is(current_position_checksum)) {
302 float *t = static_cast<float *>(pdr->get_data_ptr());
303 for (int i = 0; i < 3; i++) {
8adf2390
L
304 this->last_milestone[i] = this->to_millimeters(t[i]);
305 }
306
307 float actuator_pos[3];
308 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
309 for (int i = 0; i < 3; i++)
310 actuators[i]->change_last_milestone(actuator_pos[i]);
311
312 pdr->set_taken();
313 }
5647f709
JM
314}
315
4cff3ded 316//A GCode has been received
edac9072 317//See if the current Gcode line has some orders for us
4710532a
JM
318void Robot::on_gcode_received(void *argument)
319{
320 Gcode *gcode = static_cast<Gcode *>(argument);
6bc4a00a 321
23c90ba6 322 this->motion_mode = -1;
4cff3ded 323
4710532a
JM
324 //G-letter Gcodes are mostly what the Robot module is interrested in, other modules also catch the gcode event and do stuff accordingly
325 if( gcode->has_g) {
326 switch( gcode->g ) {
74b6303c
DD
327 case 0: this->motion_mode = MOTION_MODE_SEEK; gcode->mark_as_taken(); break;
328 case 1: this->motion_mode = MOTION_MODE_LINEAR; gcode->mark_as_taken(); break;
329 case 2: this->motion_mode = MOTION_MODE_CW_ARC; gcode->mark_as_taken(); break;
330 case 3: this->motion_mode = MOTION_MODE_CCW_ARC; gcode->mark_as_taken(); break;
331 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); gcode->mark_as_taken(); break;
332 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); gcode->mark_as_taken(); break;
333 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); gcode->mark_as_taken(); break;
334 case 20: this->inch_mode = true; gcode->mark_as_taken(); break;
335 case 21: this->inch_mode = false; gcode->mark_as_taken(); break;
336 case 90: this->absolute_mode = true; gcode->mark_as_taken(); break;
337 case 91: this->absolute_mode = false; gcode->mark_as_taken(); break;
0b804a41 338 case 92: {
4710532a 339 if(gcode->get_num_args() == 0) {
cef9acea
JM
340 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
341 reset_axis_position(0, i);
342 }
343
4710532a
JM
344 } else {
345 for (char letter = 'X'; letter <= 'Z'; letter++) {
cef9acea
JM
346 if ( gcode->has_letter(letter) ) {
347 reset_axis_position(this->to_millimeters(gcode->get_value(letter)), letter - 'X');
348 }
eaf8a8a8 349 }
6bc4a00a 350 }
78d0e16a 351
74b6303c 352 gcode->mark_as_taken();
78d0e16a 353 return;
4710532a
JM
354 }
355 }
356 } else if( gcode->has_m) {
357 switch( gcode->m ) {
0fb5b438 358 case 92: // M92 - set steps per mm
0fb5b438 359 if (gcode->has_letter('X'))
78d0e16a 360 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
0fb5b438 361 if (gcode->has_letter('Y'))
78d0e16a 362 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
0fb5b438 363 if (gcode->has_letter('Z'))
78d0e16a 364 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
7369629d
MM
365 if (gcode->has_letter('F'))
366 seconds_per_minute = gcode->get_value('F');
78d0e16a
MM
367
368 gcode->stream->printf("X:%g Y:%g Z:%g F:%g ", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm, seconds_per_minute);
0fb5b438 369 gcode->add_nl = true;
74b6303c 370 gcode->mark_as_taken();
dd0a7cfa 371 check_max_actuator_speeds();
0fb5b438 372 return;
4710532a
JM
373 case 114: {
374 char buf[32];
375 int n = snprintf(buf, sizeof(buf), "C: X:%1.3f Y:%1.3f Z:%1.3f",
376 from_millimeters(this->last_milestone[0]),
377 from_millimeters(this->last_milestone[1]),
378 from_millimeters(this->last_milestone[2]));
379 gcode->txt_after_ok.append(buf, n);
380 gcode->mark_as_taken();
381 }
382 return;
33e4cc02 383
83488642
JM
384 case 203: // M203 Set maximum feedrates in mm/sec
385 if (gcode->has_letter('X'))
4710532a 386 this->max_speeds[X_AXIS] = gcode->get_value('X');
83488642 387 if (gcode->has_letter('Y'))
4710532a 388 this->max_speeds[Y_AXIS] = gcode->get_value('Y');
83488642 389 if (gcode->has_letter('Z'))
4710532a 390 this->max_speeds[Z_AXIS] = gcode->get_value('Z');
83488642 391 if (gcode->has_letter('A'))
4710532a 392 alpha_stepper_motor->max_rate = gcode->get_value('A');
83488642 393 if (gcode->has_letter('B'))
4710532a 394 beta_stepper_motor->max_rate = gcode->get_value('B');
83488642 395 if (gcode->has_letter('C'))
4710532a 396 gamma_stepper_motor->max_rate = gcode->get_value('C');
83488642 397
dd0a7cfa
JM
398 check_max_actuator_speeds();
399
83488642 400 gcode->stream->printf("X:%g Y:%g Z:%g A:%g B:%g C:%g ",
4710532a
JM
401 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
402 alpha_stepper_motor->max_rate, beta_stepper_motor->max_rate, gamma_stepper_motor->max_rate);
83488642
JM
403 gcode->add_nl = true;
404 gcode->mark_as_taken();
405 break;
406
d4ee6ee2
JM
407 case 204: // M204 Snnn - set acceleration to nnn, NB only Snnn is currently supported
408 gcode->mark_as_taken();
83488642 409
4710532a 410 if (gcode->has_letter('S')) {
83488642
JM
411 // TODO for safety so it applies only to following gcodes, maybe a better way to do this?
412 THEKERNEL->conveyor->wait_for_empty_queue();
4710532a 413 float acc = gcode->get_value('S'); // mm/s^2
d4ee6ee2 414 // enforce minimum
da947c62
MM
415 if (acc < 1.0F)
416 acc = 1.0F;
4710532a 417 THEKERNEL->planner->acceleration = acc;
d4ee6ee2
JM
418 }
419 break;
420
8b69c90d 421 case 205: // M205 Xnnn - set junction deviation Snnn - Set minimum planner speed
d4ee6ee2 422 gcode->mark_as_taken();
4710532a
JM
423 if (gcode->has_letter('X')) {
424 float jd = gcode->get_value('X');
d4ee6ee2 425 // enforce minimum
8b69c90d
JM
426 if (jd < 0.0F)
427 jd = 0.0F;
4710532a 428 THEKERNEL->planner->junction_deviation = jd;
d4ee6ee2 429 }
4710532a
JM
430 if (gcode->has_letter('S')) {
431 float mps = gcode->get_value('S');
8b69c90d
JM
432 // enforce minimum
433 if (mps < 0.0F)
434 mps = 0.0F;
4710532a 435 THEKERNEL->planner->minimum_planner_speed = mps;
8b69c90d 436 }
d4ee6ee2 437 break;
98761c28 438
7369629d 439 case 220: // M220 - speed override percentage
74b6303c 440 gcode->mark_as_taken();
4710532a 441 if (gcode->has_letter('S')) {
1ad23cd3 442 float factor = gcode->get_value('S');
98761c28 443 // enforce minimum 10% speed
da947c62
MM
444 if (factor < 10.0F)
445 factor = 10.0F;
446 // enforce maximum 10x speed
447 if (factor > 1000.0F)
448 factor = 1000.0F;
449
450 seconds_per_minute = 6000.0F / factor;
7369629d 451 }
b4f56013 452 break;
ec4773e5 453
494dc541
JM
454 case 400: // wait until all moves are done up to this point
455 gcode->mark_as_taken();
314ab8f7 456 THEKERNEL->conveyor->wait_for_empty_queue();
494dc541
JM
457 break;
458
33e4cc02 459 case 500: // M500 saves some volatile settings to config override file
b7cd847e 460 case 503: { // M503 just prints the settings
78d0e16a 461 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm);
da947c62 462 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f\n", THEKERNEL->planner->acceleration);
8b69c90d 463 gcode->stream->printf(";X- Junction Deviation, S - Minimum Planner speed:\nM205 X%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->minimum_planner_speed);
83488642 464 gcode->stream->printf(";Max feedrates in mm/sec, XYZ cartesian, ABC actuator:\nM203 X%1.5f Y%1.5f Z%1.5f A%1.5f B%1.5f C%1.5f\n",
4710532a
JM
465 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
466 alpha_stepper_motor->max_rate, beta_stepper_motor->max_rate, gamma_stepper_motor->max_rate);
b7cd847e
JM
467
468 // get or save any arm solution specific optional values
469 BaseSolution::arm_options_t options;
470 if(arm_solution->get_optional(options) && !options.empty()) {
471 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
4710532a 472 for(auto &i : options) {
b7cd847e
JM
473 gcode->stream->printf(" %c%1.4f", i.first, i.second);
474 }
475 gcode->stream->printf("\n");
476 }
33e4cc02
JM
477 gcode->mark_as_taken();
478 break;
b7cd847e 479 }
33e4cc02 480
b7cd847e 481 case 665: { // M665 set optional arm solution variables based on arm solution.
ec4773e5 482 gcode->mark_as_taken();
b7cd847e
JM
483 // the parameter args could be any letter except S so ask solution what options it supports
484 BaseSolution::arm_options_t options;
485 if(arm_solution->get_optional(options)) {
4710532a 486 for(auto &i : options) {
b7cd847e 487 // foreach optional value
4710532a 488 char c = i.first;
b7cd847e 489 if(gcode->has_letter(c)) { // set new value
4710532a 490 i.second = gcode->get_value(c);
b7cd847e
JM
491 }
492 // print all current values of supported options
493 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
5523c05d 494 gcode->add_nl = true;
ec4773e5 495 }
b7cd847e
JM
496 // set the new options
497 arm_solution->set_optional(options);
ec4773e5 498 }
ec4773e5 499
b7cd847e 500 // set delta segments per second, not saved by M500
ec29d378 501 if(gcode->has_letter('S')) {
4710532a 502 this->delta_segments_per_second = gcode->get_value('S');
ec29d378 503 }
ec4773e5 504 break;
b7cd847e 505 }
6989211c 506 }
494dc541
JM
507 }
508
c83887ea
MM
509 if( this->motion_mode < 0)
510 return;
6bc4a00a 511
4710532a 512 //Get parameters
1ad23cd3 513 float target[3], offset[3];
c2885de8 514 clear_vector(offset);
6bc4a00a 515
2ba859c9 516 memcpy(target, this->last_milestone, sizeof(target)); //default to last target
6bc4a00a 517
4710532a
JM
518 for(char letter = 'I'; letter <= 'K'; letter++) {
519 if( gcode->has_letter(letter) ) {
520 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
c2885de8
JM
521 }
522 }
4710532a
JM
523 for(char letter = 'X'; letter <= 'Z'; letter++) {
524 if( gcode->has_letter(letter) ) {
c7689006 525 target[letter - 'X'] = this->to_millimeters(gcode->get_value(letter)) + (this->absolute_mode ? this->toolOffset[letter - 'X'] : target[letter - 'X']);
c2885de8
JM
526 }
527 }
6bc4a00a 528
4710532a 529 if( gcode->has_letter('F') ) {
7369629d 530 if( this->motion_mode == MOTION_MODE_SEEK )
da947c62 531 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 532 else
da947c62 533 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 534 }
6bc4a00a 535
4cff3ded 536 //Perform any physical actions
fae93525
JM
537 switch(this->motion_mode) {
538 case MOTION_MODE_CANCEL: break;
539 case MOTION_MODE_SEEK : this->append_line(gcode, target, this->seek_rate / seconds_per_minute ); break;
540 case MOTION_MODE_LINEAR: this->append_line(gcode, target, this->feed_rate / seconds_per_minute ); break;
541 case MOTION_MODE_CW_ARC:
542 case MOTION_MODE_CCW_ARC: this->compute_arc(gcode, offset, target ); break;
4cff3ded 543 }
13e4a3f9 544
fae93525 545 // last_milestone was set to target in append_milestone, no need to do it again
4cff3ded 546
edac9072
AW
547}
548
5984acdf 549// We received a new gcode, and one of the functions
edac9072
AW
550// determined the distance for that given gcode. So now we can attach this gcode to the right block
551// and continue
4710532a
JM
552void Robot::distance_in_gcode_is_known(Gcode *gcode)
553{
edac9072
AW
554
555 //If the queue is empty, execute immediatly, otherwise attach to the last added block
e0ee24ed 556 THEKERNEL->conveyor->append_gcode(gcode);
edac9072
AW
557}
558
cef9acea
JM
559// reset the position for all axis (used in homing for delta as last_milestone may be bogus)
560void Robot::reset_axis_position(float x, float y, float z)
561{
562 this->last_milestone[X_AXIS] = x;
563 this->last_milestone[Y_AXIS] = y;
564 this->last_milestone[Z_AXIS] = z;
565
566 float actuator_pos[3];
567 arm_solution->cartesian_to_actuator(this->last_milestone, actuator_pos);
568 for (int i = 0; i < 3; i++)
569 actuators[i]->change_last_milestone(actuator_pos[i]);
570}
571
572// Reset the position for an axis (used in homing and G92)
4710532a
JM
573void Robot::reset_axis_position(float position, int axis)
574{
2ba859c9 575 this->last_milestone[axis] = position;
29c28822
MM
576
577 float actuator_pos[3];
cef9acea 578 arm_solution->cartesian_to_actuator(this->last_milestone, actuator_pos);
29c28822
MM
579
580 for (int i = 0; i < 3; i++)
581 actuators[i]->change_last_milestone(actuator_pos[i]);
4cff3ded
AW
582}
583
edac9072 584
4cff3ded 585// Convert target from millimeters to steps, and append this to the planner
da947c62 586void Robot::append_milestone( float target[], float rate_mm_s )
df6a30f2 587{
1ad23cd3 588 float deltas[3];
df6a30f2
MM
589 float unit_vec[3];
590 float actuator_pos[3];
5e45206a 591 float adj_target[3]; // adjust target for bed leveling
df6a30f2
MM
592 float millimeters_of_travel;
593
5e45206a
JM
594 memcpy(adj_target, target, sizeof(adj_target));
595
33742399
JM
596 // check function pointer and call if set to adjust Z for bed leveling
597 if(adjustZfnc) {
5e45206a 598 adj_target[Z_AXIS] += adjustZfnc(target[X_AXIS], target[Y_AXIS]);
33742399 599 }
ff7e9858 600
5e45206a 601 // find distance moved by each axis, use actual adjusted target
df6a30f2 602 for (int axis = X_AXIS; axis <= Z_AXIS; axis++)
5e45206a 603 deltas[axis] = adj_target[axis] - last_milestone[axis];
aab6cbba 604
edac9072 605 // Compute how long this move moves, so we can attach it to the block for later use
869acfb8 606 millimeters_of_travel = sqrtf( powf( deltas[X_AXIS], 2 ) + powf( deltas[Y_AXIS], 2 ) + powf( deltas[Z_AXIS], 2 ) );
df6a30f2
MM
607
608 // find distance unit vector
609 for (int i = 0; i < 3; i++)
610 unit_vec[i] = deltas[i] / millimeters_of_travel;
611
612 // Do not move faster than the configured cartesian limits
4710532a
JM
613 for (int axis = X_AXIS; axis <= Z_AXIS; axis++) {
614 if ( max_speeds[axis] > 0 ) {
da947c62 615 float axis_speed = fabs(unit_vec[axis] * rate_mm_s);
df6a30f2
MM
616
617 if (axis_speed > max_speeds[axis])
da947c62 618 rate_mm_s *= ( max_speeds[axis] / axis_speed );
7b470506
AW
619 }
620 }
4cff3ded 621
5e45206a
JM
622 // find actuator position given cartesian position, use actual adjusted target
623 arm_solution->cartesian_to_actuator( adj_target, actuator_pos );
df6a30f2
MM
624
625 // check per-actuator speed limits
4710532a 626 for (int actuator = 0; actuator <= 2; actuator++) {
da947c62 627 float actuator_rate = fabs(actuator_pos[actuator] - actuators[actuator]->last_milestone_mm) * rate_mm_s / millimeters_of_travel;
df6a30f2
MM
628
629 if (actuator_rate > actuators[actuator]->max_rate)
da947c62 630 rate_mm_s *= (actuators[actuator]->max_rate / actuator_rate);
df6a30f2
MM
631 }
632
edac9072 633 // Append the block to the planner
da947c62 634 THEKERNEL->planner->append_block( actuator_pos, rate_mm_s, millimeters_of_travel, unit_vec );
4cff3ded 635
5e45206a 636 // Update the last_milestone to the current target for the next time we use last_milestone, use the requested target not the adjusted one
c2885de8 637 memcpy(this->last_milestone, target, sizeof(this->last_milestone)); // this->last_milestone[] = target[];
4cff3ded
AW
638
639}
640
edac9072 641// Append a move to the queue ( cutting it into segments if needed )
4710532a
JM
642void Robot::append_line(Gcode *gcode, float target[], float rate_mm_s )
643{
4cff3ded 644
edac9072 645 // Find out the distance for this gcode
869acfb8 646 gcode->millimeters_of_travel = powf( target[X_AXIS] - this->last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - this->last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - this->last_milestone[Z_AXIS], 2 );
4cff3ded 647
edac9072 648 // We ignore non-moves ( for example, extruder moves are not XYZ moves )
4710532a 649 if( gcode->millimeters_of_travel < 1e-8F ) {
95b4885b
JM
650 return;
651 }
436a2cd1 652
2ba859c9
MM
653 gcode->millimeters_of_travel = sqrtf(gcode->millimeters_of_travel);
654
edac9072 655 // Mark the gcode as having a known distance
5dcb2ff3 656 this->distance_in_gcode_is_known( gcode );
436a2cd1 657
4a0c8e14
JM
658 // We cut the line into smaller segments. This is not usefull in a cartesian robot, but necessary for robots with rotational axes.
659 // In cartesian robot, a high "mm_per_line_segment" setting will prevent waste.
660 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
4a0c8e14 661 uint16_t segments;
5984acdf 662
c2885de8 663 if(this->delta_segments_per_second > 1.0F) {
4a0c8e14
JM
664 // enabled if set to something > 1, it is set to 0.0 by default
665 // segment based on current speed and requested segments per second
666 // the faster the travel speed the fewer segments needed
667 // NOTE rate is mm/sec and we take into account any speed override
da947c62 668 float seconds = gcode->millimeters_of_travel / rate_mm_s;
4710532a 669 segments = max(1, ceil(this->delta_segments_per_second * seconds));
4a0c8e14 670 // TODO if we are only moving in Z on a delta we don't really need to segment at all
5984acdf 671
4710532a
JM
672 } else {
673 if(this->mm_per_line_segment == 0.0F) {
674 segments = 1; // don't split it up
675 } else {
676 segments = ceil( gcode->millimeters_of_travel / this->mm_per_line_segment);
4a0c8e14
JM
677 }
678 }
5984acdf 679
4710532a 680 if (segments > 1) {
2ba859c9
MM
681 // A vector to keep track of the endpoint of each segment
682 float segment_delta[3];
683 float segment_end[3];
684
685 // How far do we move each segment?
9fff6045 686 for (int i = X_AXIS; i <= Z_AXIS; i++)
2ba859c9 687 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
4cff3ded 688
c8e0fb15
MM
689 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
690 // We always add another point after this loop so we stop at segments-1, ie i < segments
4710532a
JM
691 for (int i = 1; i < segments; i++) {
692 for(int axis = X_AXIS; axis <= Z_AXIS; axis++ )
2ba859c9
MM
693 segment_end[axis] = last_milestone[axis] + segment_delta[axis];
694
695 // Append the end of this segment to the queue
696 this->append_milestone(segment_end, rate_mm_s);
697 }
4cff3ded 698 }
5984acdf
MM
699
700 // Append the end of this full move to the queue
da947c62 701 this->append_milestone(target, rate_mm_s);
2134bcf2
MM
702
703 // if adding these blocks didn't start executing, do that now
704 THEKERNEL->conveyor->ensure_running();
4cff3ded
AW
705}
706
4cff3ded 707
edac9072 708// Append an arc to the queue ( cutting it into segments as needed )
4710532a
JM
709void Robot::append_arc(Gcode *gcode, float target[], float offset[], float radius, bool is_clockwise )
710{
aab6cbba 711
edac9072 712 // Scary math
2ba859c9
MM
713 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
714 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
715 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1ad23cd3
MM
716 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
717 float r_axis1 = -offset[this->plane_axis_1];
718 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
719 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
aab6cbba
AW
720
721 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
4710532a
JM
722 float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
723 if (angular_travel < 0) {
724 angular_travel += 2 * M_PI;
725 }
726 if (is_clockwise) {
727 angular_travel -= 2 * M_PI;
728 }
aab6cbba 729
edac9072 730 // Find the distance for this gcode
4710532a 731 gcode->millimeters_of_travel = hypotf(angular_travel * radius, fabs(linear_travel));
436a2cd1 732
edac9072 733 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
4710532a
JM
734 if( gcode->millimeters_of_travel < 0.0001F ) {
735 return;
736 }
5dcb2ff3 737
edac9072 738 // Mark the gcode as having a known distance
d149c730 739 this->distance_in_gcode_is_known( gcode );
5984acdf
MM
740
741 // Figure out how many segments for this gcode
4710532a 742 uint16_t segments = floor(gcode->millimeters_of_travel / this->mm_per_arc_segment);
aab6cbba 743
4710532a
JM
744 float theta_per_segment = angular_travel / segments;
745 float linear_per_segment = linear_travel / segments;
aab6cbba
AW
746
747 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
748 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
749 r_T = [cos(phi) -sin(phi);
750 sin(phi) cos(phi] * r ;
751 For arc generation, the center of the circle is the axis of rotation and the radius vector is
752 defined from the circle center to the initial position. Each line segment is formed by successive
753 vector rotations. This requires only two cos() and sin() computations to form the rotation
754 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1ad23cd3 755 all float numbers are single precision on the Arduino. (True float precision will not have
aab6cbba
AW
756 round off issues for CNC applications.) Single precision error can accumulate to be greater than
757 tool precision in some cases. Therefore, arc path correction is implemented.
758
759 Small angle approximation may be used to reduce computation overhead further. This approximation
760 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
761 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
762 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
763 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
764 issue for CNC machines with the single precision Arduino calculations.
765 This approximation also allows mc_arc to immediately insert a line segment into the planner
766 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
767 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
768 This is important when there are successive arc motions.
769 */
770 // Vector rotation matrix values
4710532a 771 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1ad23cd3 772 float sin_T = theta_per_segment;
aab6cbba 773
1ad23cd3
MM
774 float arc_target[3];
775 float sin_Ti;
776 float cos_Ti;
777 float r_axisi;
aab6cbba
AW
778 uint16_t i;
779 int8_t count = 0;
780
781 // Initialize the linear axis
2ba859c9 782 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
aab6cbba 783
4710532a 784 for (i = 1; i < segments; i++) { // Increment (segments-1)
aab6cbba 785
b66fb830 786 if (count < this->arc_correction ) {
4710532a
JM
787 // Apply vector rotation matrix
788 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
789 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
790 r_axis1 = r_axisi;
791 count++;
aab6cbba 792 } else {
4710532a
JM
793 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
794 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
795 cos_Ti = cosf(i * theta_per_segment);
796 sin_Ti = sinf(i * theta_per_segment);
797 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
798 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
799 count = 0;
aab6cbba
AW
800 }
801
802 // Update arc_target location
803 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
804 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
805 arc_target[this->plane_axis_2] += linear_per_segment;
edac9072
AW
806
807 // Append this segment to the queue
da947c62 808 this->append_milestone(arc_target, this->feed_rate / seconds_per_minute);
aab6cbba
AW
809
810 }
edac9072 811
aab6cbba 812 // Ensure last segment arrives at target location.
da947c62 813 this->append_milestone(target, this->feed_rate / seconds_per_minute);
aab6cbba
AW
814}
815
edac9072 816// Do the math for an arc and add it to the queue
4710532a
JM
817void Robot::compute_arc(Gcode *gcode, float offset[], float target[])
818{
aab6cbba
AW
819
820 // Find the radius
13addf09 821 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
aab6cbba
AW
822
823 // Set clockwise/counter-clockwise sign for mc_arc computations
824 bool is_clockwise = false;
4710532a
JM
825 if( this->motion_mode == MOTION_MODE_CW_ARC ) {
826 is_clockwise = true;
827 }
aab6cbba
AW
828
829 // Append arc
436a2cd1 830 this->append_arc(gcode, target, offset, radius, is_clockwise );
aab6cbba
AW
831
832}
833
834
4710532a
JM
835float Robot::theta(float x, float y)
836{
837 float t = atanf(x / fabs(y));
838 if (y > 0) {
839 return(t);
840 } else {
841 if (t > 0) {
842 return(M_PI - t);
843 } else {
844 return(-M_PI - t);
845 }
846 }
4cff3ded
AW
847}
848
4710532a
JM
849void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
850{
4cff3ded
AW
851 this->plane_axis_0 = axis_0;
852 this->plane_axis_1 = axis_1;
853 this->plane_axis_2 = axis_2;
854}
855
fae93525 856void Robot::clearToolOffset()
4710532a 857{
fae93525
JM
858 memset(this->toolOffset, 0, sizeof(this->toolOffset));
859}
860
861void Robot::setToolOffset(const float offset[3])
862{
fae93525 863 memcpy(this->toolOffset, offset, sizeof(this->toolOffset));
5966b7d0
AT
864}
865