fix max actuator speeds
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
CommitLineData
df27a6a3 1/*
aab6cbba 2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
4cff3ded
AW
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
df27a6a3 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
5673fe39 10
c3df978d
JM
11#include "mbed.h" // for us_ticker_read()
12
5673fe39 13#include <math.h>
4cff3ded
AW
14#include <string>
15using std::string;
5673fe39 16
4cff3ded 17#include "Planner.h"
3fceb8eb 18#include "Conveyor.h"
4cff3ded 19#include "Robot.h"
5673fe39
MM
20#include "nuts_bolts.h"
21#include "Pin.h"
22#include "StepperMotor.h"
23#include "Gcode.h"
5647f709 24#include "PublicDataRequest.h"
928467c0 25#include "PublicData.h"
66383b80 26#include "RobotPublicAccess.h"
4cff3ded
AW
27#include "arm_solutions/BaseSolution.h"
28#include "arm_solutions/CartesianSolution.h"
c41d6d95 29#include "arm_solutions/RotatableCartesianSolution.h"
2a06c415 30#include "arm_solutions/LinearDeltaSolution.h"
c52b8675 31#include "arm_solutions/RotatableDeltaSolution.h"
bdaaa75d 32#include "arm_solutions/HBotSolution.h"
1217e470 33#include "arm_solutions/MorganSCARASolution.h"
61134a65 34#include "StepTicker.h"
7af0714f
JM
35#include "checksumm.h"
36#include "utils.h"
8d54c34c 37#include "ConfigValue.h"
5966b7d0 38#include "libs/StreamOutput.h"
dd0a7cfa 39#include "StreamOutputPool.h"
928467c0 40#include "ExtruderPublicAccess.h"
38bf9a1c 41
78d0e16a
MM
42#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
43#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
44#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
45#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
46#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
47#define arc_correction_checksum CHECKSUM("arc_correction")
48#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
49#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
50#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
43424972
JM
51
52// arm solutions
78d0e16a
MM
53#define arm_solution_checksum CHECKSUM("arm_solution")
54#define cartesian_checksum CHECKSUM("cartesian")
55#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
56#define rostock_checksum CHECKSUM("rostock")
2a06c415 57#define linear_delta_checksum CHECKSUM("linear_delta")
c52b8675 58#define rotatable_delta_checksum CHECKSUM("rotatable_delta")
78d0e16a
MM
59#define delta_checksum CHECKSUM("delta")
60#define hbot_checksum CHECKSUM("hbot")
61#define corexy_checksum CHECKSUM("corexy")
62#define kossel_checksum CHECKSUM("kossel")
1217e470 63#define morgan_checksum CHECKSUM("morgan")
78d0e16a
MM
64
65// stepper motor stuff
66#define alpha_step_pin_checksum CHECKSUM("alpha_step_pin")
67#define beta_step_pin_checksum CHECKSUM("beta_step_pin")
68#define gamma_step_pin_checksum CHECKSUM("gamma_step_pin")
69#define alpha_dir_pin_checksum CHECKSUM("alpha_dir_pin")
70#define beta_dir_pin_checksum CHECKSUM("beta_dir_pin")
71#define gamma_dir_pin_checksum CHECKSUM("gamma_dir_pin")
72#define alpha_en_pin_checksum CHECKSUM("alpha_en_pin")
73#define beta_en_pin_checksum CHECKSUM("beta_en_pin")
74#define gamma_en_pin_checksum CHECKSUM("gamma_en_pin")
a84f0186 75
78d0e16a
MM
76#define alpha_steps_per_mm_checksum CHECKSUM("alpha_steps_per_mm")
77#define beta_steps_per_mm_checksum CHECKSUM("beta_steps_per_mm")
78#define gamma_steps_per_mm_checksum CHECKSUM("gamma_steps_per_mm")
79
df6a30f2
MM
80#define alpha_max_rate_checksum CHECKSUM("alpha_max_rate")
81#define beta_max_rate_checksum CHECKSUM("beta_max_rate")
82#define gamma_max_rate_checksum CHECKSUM("gamma_max_rate")
83
84
78d0e16a
MM
85// new-style actuator stuff
86#define actuator_checksum CHEKCSUM("actuator")
87
88#define step_pin_checksum CHECKSUM("step_pin")
89#define dir_pin_checksum CHEKCSUM("dir_pin")
90#define en_pin_checksum CHECKSUM("en_pin")
91
92#define steps_per_mm_checksum CHECKSUM("steps_per_mm")
df6a30f2 93#define max_rate_checksum CHECKSUM("max_rate")
78d0e16a
MM
94
95#define alpha_checksum CHECKSUM("alpha")
96#define beta_checksum CHECKSUM("beta")
97#define gamma_checksum CHECKSUM("gamma")
98
38bf9a1c
JM
99#define NEXT_ACTION_DEFAULT 0
100#define NEXT_ACTION_DWELL 1
101#define NEXT_ACTION_GO_HOME 2
102
103#define MOTION_MODE_SEEK 0 // G0
104#define MOTION_MODE_LINEAR 1 // G1
105#define MOTION_MODE_CW_ARC 2 // G2
106#define MOTION_MODE_CCW_ARC 3 // G3
107#define MOTION_MODE_CANCEL 4 // G80
108
109#define PATH_CONTROL_MODE_EXACT_PATH 0
110#define PATH_CONTROL_MODE_EXACT_STOP 1
111#define PATH_CONTROL_MODE_CONTINOUS 2
112
113#define PROGRAM_FLOW_RUNNING 0
114#define PROGRAM_FLOW_PAUSED 1
115#define PROGRAM_FLOW_COMPLETED 2
116
117#define SPINDLE_DIRECTION_CW 0
118#define SPINDLE_DIRECTION_CCW 1
119
5fa0c173
PA
120#define ARC_ANGULAR_TRAVEL_EPSILON 5E-7 // Float (radians)
121
edac9072
AW
122// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
123// It takes care of cutting arcs into segments, same thing for line that are too long
124
4710532a
JM
125Robot::Robot()
126{
a1b7e9f0 127 this->inch_mode = false;
0e8b102e 128 this->absolute_mode = true;
df27a6a3 129 this->motion_mode = MOTION_MODE_SEEK;
4cff3ded 130 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
df27a6a3 131 clear_vector(this->last_milestone);
3632a517 132 clear_vector(this->transformed_last_milestone);
0b804a41 133 this->arm_solution = NULL;
da947c62 134 seconds_per_minute = 60.0F;
fae93525 135 this->clearToolOffset();
3632a517 136 this->compensationTransform= nullptr;
728477c4 137 this->halted= false;
4cff3ded
AW
138}
139
140//Called when the module has just been loaded
4710532a
JM
141void Robot::on_module_loaded()
142{
4cff3ded 143 this->register_for_event(ON_GCODE_RECEIVED);
b55cfff1
JM
144 this->register_for_event(ON_GET_PUBLIC_DATA);
145 this->register_for_event(ON_SET_PUBLIC_DATA);
728477c4 146 this->register_for_event(ON_HALT);
4cff3ded
AW
147
148 // Configuration
da24d6ae
AW
149 this->on_config_reload(this);
150}
151
4710532a
JM
152void Robot::on_config_reload(void *argument)
153{
5984acdf 154
edac9072
AW
155 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
156 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
157 // To make adding those solution easier, they have their own, separate object.
5984acdf 158 // Here we read the config to find out which arm solution to use
0b804a41 159 if (this->arm_solution) delete this->arm_solution;
eda9facc 160 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
d149c730 161 // Note checksums are not const expressions when in debug mode, so don't use switch
98761c28 162 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
314ab8f7 163 this->arm_solution = new HBotSolution(THEKERNEL->config);
bdaaa75d 164
2a06c415
JM
165 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
166 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
73a4e3c0 167
4710532a 168 } else if(solution_checksum == rotatable_cartesian_checksum) {
314ab8f7 169 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
b73a756d 170
c52b8675
DP
171 } else if(solution_checksum == rotatable_delta_checksum) {
172 this->arm_solution = new RotatableDeltaSolution(THEKERNEL->config);
173
174
1217e470
QH
175 } else if(solution_checksum == morgan_checksum) {
176 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
177
4710532a 178 } else if(solution_checksum == cartesian_checksum) {
314ab8f7 179 this->arm_solution = new CartesianSolution(THEKERNEL->config);
73a4e3c0 180
4710532a 181 } else {
314ab8f7 182 this->arm_solution = new CartesianSolution(THEKERNEL->config);
d149c730 183 }
73a4e3c0 184
0b804a41 185
6b661ab3
DP
186 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
187 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
188 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
189 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
190 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.5f)->as_number();
191 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
78d0e16a 192
6b661ab3
DP
193 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
194 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
195 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
feb204be 196
78d0e16a
MM
197 Pin alpha_step_pin;
198 Pin alpha_dir_pin;
199 Pin alpha_en_pin;
200 Pin beta_step_pin;
201 Pin beta_dir_pin;
202 Pin beta_en_pin;
203 Pin gamma_step_pin;
204 Pin gamma_dir_pin;
205 Pin gamma_en_pin;
206
eda9facc
DP
207 alpha_step_pin.from_string( THEKERNEL->config->value(alpha_step_pin_checksum )->by_default("2.0" )->as_string())->as_output();
208 alpha_dir_pin.from_string( THEKERNEL->config->value(alpha_dir_pin_checksum )->by_default("0.5" )->as_string())->as_output();
209 alpha_en_pin.from_string( THEKERNEL->config->value(alpha_en_pin_checksum )->by_default("0.4" )->as_string())->as_output();
210 beta_step_pin.from_string( THEKERNEL->config->value(beta_step_pin_checksum )->by_default("2.1" )->as_string())->as_output();
211 beta_dir_pin.from_string( THEKERNEL->config->value(beta_dir_pin_checksum )->by_default("0.11" )->as_string())->as_output();
212 beta_en_pin.from_string( THEKERNEL->config->value(beta_en_pin_checksum )->by_default("0.10" )->as_string())->as_output();
213 gamma_step_pin.from_string( THEKERNEL->config->value(gamma_step_pin_checksum )->by_default("2.2" )->as_string())->as_output();
214 gamma_dir_pin.from_string( THEKERNEL->config->value(gamma_dir_pin_checksum )->by_default("0.20" )->as_string())->as_output();
215 gamma_en_pin.from_string( THEKERNEL->config->value(gamma_en_pin_checksum )->by_default("0.19" )->as_string())->as_output();
78d0e16a 216
a84f0186 217 float steps_per_mm[3] = {
eda9facc
DP
218 THEKERNEL->config->value(alpha_steps_per_mm_checksum)->by_default( 80.0F)->as_number(),
219 THEKERNEL->config->value(beta_steps_per_mm_checksum )->by_default( 80.0F)->as_number(),
220 THEKERNEL->config->value(gamma_steps_per_mm_checksum)->by_default(2560.0F)->as_number(),
a84f0186
MM
221 };
222
78d0e16a
MM
223 // TODO: delete or detect old steppermotors
224 // Make our 3 StepperMotors
c9cc5e06
JM
225 this->alpha_stepper_motor = new StepperMotor(alpha_step_pin, alpha_dir_pin, alpha_en_pin);
226 this->beta_stepper_motor = new StepperMotor(beta_step_pin, beta_dir_pin, beta_en_pin );
227 this->gamma_stepper_motor = new StepperMotor(gamma_step_pin, gamma_dir_pin, gamma_en_pin);
78d0e16a 228
a84f0186
MM
229 alpha_stepper_motor->change_steps_per_mm(steps_per_mm[0]);
230 beta_stepper_motor->change_steps_per_mm(steps_per_mm[1]);
231 gamma_stepper_motor->change_steps_per_mm(steps_per_mm[2]);
232
eda9facc
DP
233 alpha_stepper_motor->set_max_rate(THEKERNEL->config->value(alpha_max_rate_checksum)->by_default(30000.0F)->as_number() / 60.0F);
234 beta_stepper_motor->set_max_rate(THEKERNEL->config->value(beta_max_rate_checksum )->by_default(30000.0F)->as_number() / 60.0F);
235 gamma_stepper_motor->set_max_rate(THEKERNEL->config->value(gamma_max_rate_checksum)->by_default(30000.0F)->as_number() / 60.0F);
dd0a7cfa 236 check_max_actuator_speeds(); // check the configs are sane
df6a30f2 237
78d0e16a
MM
238 actuators.clear();
239 actuators.push_back(alpha_stepper_motor);
240 actuators.push_back(beta_stepper_motor);
241 actuators.push_back(gamma_stepper_motor);
975469ad 242
dd0a7cfa 243
975469ad
MM
244 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
245 // so the first move can be correct if homing is not performed
246 float actuator_pos[3];
247 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
248 for (int i = 0; i < 3; i++)
249 actuators[i]->change_last_milestone(actuator_pos[i]);
5966b7d0
AT
250
251 //this->clearToolOffset();
4cff3ded
AW
252}
253
dd0a7cfa
JM
254// this does a sanity check that actuator speeds do not exceed steps rate capability
255// we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
256void Robot::check_max_actuator_speeds()
257{
3494f3d0 258 float step_freq= alpha_stepper_motor->get_max_rate() * alpha_stepper_motor->get_steps_per_mm();
dd0a7cfa 259 if(step_freq > THEKERNEL->base_stepping_frequency) {
3494f3d0 260 alpha_stepper_motor->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / alpha_stepper_motor->get_steps_per_mm()));
dd0a7cfa
JM
261 THEKERNEL->streams->printf("WARNING: alpha_max_rate exceeds base_stepping_frequency * alpha_steps_per_mm: %f, setting to %f\n", step_freq, alpha_stepper_motor->max_rate);
262 }
263
3494f3d0 264 step_freq= beta_stepper_motor->get_max_rate() * beta_stepper_motor->get_steps_per_mm();
dd0a7cfa 265 if(step_freq > THEKERNEL->base_stepping_frequency) {
3494f3d0 266 beta_stepper_motor->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / beta_stepper_motor->get_steps_per_mm()));
dd0a7cfa
JM
267 THEKERNEL->streams->printf("WARNING: beta_max_rate exceeds base_stepping_frequency * beta_steps_per_mm: %f, setting to %f\n", step_freq, beta_stepper_motor->max_rate);
268 }
269
3494f3d0 270 step_freq= gamma_stepper_motor->get_max_rate() * gamma_stepper_motor->get_steps_per_mm();
dd0a7cfa 271 if(step_freq > THEKERNEL->base_stepping_frequency) {
3494f3d0 272 gamma_stepper_motor->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / gamma_stepper_motor->get_steps_per_mm()));
dd0a7cfa
JM
273 THEKERNEL->streams->printf("WARNING: gamma_max_rate exceeds base_stepping_frequency * gamma_steps_per_mm: %f, setting to %f\n", step_freq, gamma_stepper_motor->max_rate);
274 }
275}
276
728477c4
JM
277void Robot::on_halt(void *arg)
278{
279 halted= (arg == nullptr);
280}
281
4710532a
JM
282void Robot::on_get_public_data(void *argument)
283{
284 PublicDataRequest *pdr = static_cast<PublicDataRequest *>(argument);
b55cfff1
JM
285
286 if(!pdr->starts_with(robot_checksum)) return;
287
288 if(pdr->second_element_is(speed_override_percent_checksum)) {
1ad23cd3 289 static float return_data;
da947c62 290 return_data = 100.0F * 60.0F / seconds_per_minute;
b55cfff1
JM
291 pdr->set_data_ptr(&return_data);
292 pdr->set_taken();
98761c28 293
4710532a 294 } else if(pdr->second_element_is(current_position_checksum)) {
1ad23cd3 295 static float return_data[3];
4710532a
JM
296 return_data[0] = from_millimeters(this->last_milestone[0]);
297 return_data[1] = from_millimeters(this->last_milestone[1]);
298 return_data[2] = from_millimeters(this->last_milestone[2]);
b55cfff1
JM
299
300 pdr->set_data_ptr(&return_data);
98761c28 301 pdr->set_taken();
b55cfff1 302 }
5647f709
JM
303}
304
4710532a
JM
305void Robot::on_set_public_data(void *argument)
306{
307 PublicDataRequest *pdr = static_cast<PublicDataRequest *>(argument);
5647f709 308
b55cfff1 309 if(!pdr->starts_with(robot_checksum)) return;
5647f709 310
b55cfff1 311 if(pdr->second_element_is(speed_override_percent_checksum)) {
7a522ccc 312 // NOTE do not use this while printing!
4710532a 313 float t = *static_cast<float *>(pdr->get_data_ptr());
98761c28 314 // enforce minimum 10% speed
4710532a 315 if (t < 10.0F) t = 10.0F;
98761c28 316
da947c62 317 this->seconds_per_minute = t / 0.6F; // t * 60 / 100
b55cfff1 318 pdr->set_taken();
4710532a
JM
319 } else if(pdr->second_element_is(current_position_checksum)) {
320 float *t = static_cast<float *>(pdr->get_data_ptr());
321 for (int i = 0; i < 3; i++) {
8adf2390
L
322 this->last_milestone[i] = this->to_millimeters(t[i]);
323 }
324
325 float actuator_pos[3];
326 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
327 for (int i = 0; i < 3; i++)
328 actuators[i]->change_last_milestone(actuator_pos[i]);
329
330 pdr->set_taken();
331 }
5647f709
JM
332}
333
4cff3ded 334//A GCode has been received
edac9072 335//See if the current Gcode line has some orders for us
4710532a
JM
336void Robot::on_gcode_received(void *argument)
337{
338 Gcode *gcode = static_cast<Gcode *>(argument);
6bc4a00a 339
23c90ba6 340 this->motion_mode = -1;
4cff3ded 341
4710532a
JM
342 //G-letter Gcodes are mostly what the Robot module is interrested in, other modules also catch the gcode event and do stuff accordingly
343 if( gcode->has_g) {
344 switch( gcode->g ) {
6e92ab91
JM
345 case 0: this->motion_mode = MOTION_MODE_SEEK; break;
346 case 1: this->motion_mode = MOTION_MODE_LINEAR; break;
347 case 2: this->motion_mode = MOTION_MODE_CW_ARC; break;
348 case 3: this->motion_mode = MOTION_MODE_CCW_ARC; break;
c3df978d
JM
349 case 4: {
350 uint32_t delay_ms= 0;
351 if (gcode->has_letter('P')) {
352 delay_ms= gcode->get_int('P');
353 }
354 if (gcode->has_letter('S')) {
355 delay_ms += gcode->get_int('S') * 1000;
356 }
357 if (delay_ms > 0){
c3df978d
JM
358 // drain queue
359 THEKERNEL->conveyor->wait_for_empty_queue();
360 // wait for specified time
6ac0b51c 361 uint32_t start= us_ticker_read(); // mbed call
c3df978d
JM
362 while ((us_ticker_read() - start) < delay_ms*1000) {
363 THEKERNEL->call_event(ON_IDLE, this);
364 }
365 }
adba2978 366 }
6b661ab3 367 break;
6e92ab91
JM
368 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
369 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
370 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
371 case 20: this->inch_mode = true; break;
372 case 21: this->inch_mode = false; break;
373 case 90: this->absolute_mode = true; break;
374 case 91: this->absolute_mode = false; break;
0b804a41 375 case 92: {
4710532a 376 if(gcode->get_num_args() == 0) {
cef9acea
JM
377 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
378 reset_axis_position(0, i);
379 }
380
4710532a
JM
381 } else {
382 for (char letter = 'X'; letter <= 'Z'; letter++) {
cef9acea
JM
383 if ( gcode->has_letter(letter) ) {
384 reset_axis_position(this->to_millimeters(gcode->get_value(letter)), letter - 'X');
385 }
eaf8a8a8 386 }
6bc4a00a 387 }
78d0e16a 388 return;
4710532a
JM
389 }
390 }
391 } else if( gcode->has_m) {
392 switch( gcode->m ) {
0fb5b438 393 case 92: // M92 - set steps per mm
0fb5b438 394 if (gcode->has_letter('X'))
78d0e16a 395 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
0fb5b438 396 if (gcode->has_letter('Y'))
78d0e16a 397 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
0fb5b438 398 if (gcode->has_letter('Z'))
78d0e16a 399 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
7369629d
MM
400 if (gcode->has_letter('F'))
401 seconds_per_minute = gcode->get_value('F');
78d0e16a
MM
402
403 gcode->stream->printf("X:%g Y:%g Z:%g F:%g ", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm, seconds_per_minute);
0fb5b438 404 gcode->add_nl = true;
dd0a7cfa 405 check_max_actuator_speeds();
0fb5b438 406 return;
562db364 407
4710532a 408 case 114: {
58c32991
JM
409 char buf[64];
410 int n = snprintf(buf, sizeof(buf), "C: X:%1.3f Y:%1.3f Z:%1.3f A:%1.3f B:%1.3f C:%1.3f ",
4710532a
JM
411 from_millimeters(this->last_milestone[0]),
412 from_millimeters(this->last_milestone[1]),
58c32991
JM
413 from_millimeters(this->last_milestone[2]),
414 actuators[X_AXIS]->get_current_position(),
415 actuators[Y_AXIS]->get_current_position(),
416 actuators[Z_AXIS]->get_current_position() );
4710532a 417 gcode->txt_after_ok.append(buf, n);
4710532a
JM
418 }
419 return;
33e4cc02 420
562db364 421 case 120: { // push state
562db364
JM
422 bool b= this->absolute_mode;
423 saved_state_t s(this->feed_rate, this->seek_rate, b);
424 state_stack.push(s);
425 }
426 break;
427
428 case 121: // pop state
562db364
JM
429 if(!state_stack.empty()) {
430 auto s= state_stack.top();
431 state_stack.pop();
432 this->feed_rate= std::get<0>(s);
433 this->seek_rate= std::get<1>(s);
434 this->absolute_mode= std::get<2>(s);
435 }
436 break;
437
83488642
JM
438 case 203: // M203 Set maximum feedrates in mm/sec
439 if (gcode->has_letter('X'))
4710532a 440 this->max_speeds[X_AXIS] = gcode->get_value('X');
83488642 441 if (gcode->has_letter('Y'))
4710532a 442 this->max_speeds[Y_AXIS] = gcode->get_value('Y');
83488642 443 if (gcode->has_letter('Z'))
4710532a 444 this->max_speeds[Z_AXIS] = gcode->get_value('Z');
83488642 445 if (gcode->has_letter('A'))
3494f3d0 446 alpha_stepper_motor->set_max_rate(gcode->get_value('A'));
83488642 447 if (gcode->has_letter('B'))
3494f3d0 448 beta_stepper_motor->set_max_rate(gcode->get_value('B'));
83488642 449 if (gcode->has_letter('C'))
3494f3d0 450 gamma_stepper_motor->set_max_rate(gcode->get_value('C'));
83488642 451
dd0a7cfa
JM
452 check_max_actuator_speeds();
453
928467c0
JM
454 if(gcode->get_num_args() == 0) {
455 gcode->stream->printf("X:%g Y:%g Z:%g A:%g B:%g C:%g ",
456 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
457 alpha_stepper_motor->get_max_rate(), beta_stepper_motor->get_max_rate(), gamma_stepper_motor->get_max_rate());
458 gcode->add_nl = true;
459 }
6e92ab91 460
83488642
JM
461 break;
462
c5fe1787 463 case 204: // M204 Snnn - set acceleration to nnn, Znnn sets z acceleration
4710532a 464 if (gcode->has_letter('S')) {
4710532a 465 float acc = gcode->get_value('S'); // mm/s^2
d4ee6ee2 466 // enforce minimum
da947c62
MM
467 if (acc < 1.0F)
468 acc = 1.0F;
4710532a 469 THEKERNEL->planner->acceleration = acc;
d4ee6ee2 470 }
c5fe1787 471 if (gcode->has_letter('Z')) {
c5fe1787
JM
472 float acc = gcode->get_value('Z'); // mm/s^2
473 // enforce positive
474 if (acc < 0.0F)
475 acc = 0.0F;
476 THEKERNEL->planner->z_acceleration = acc;
477 }
d4ee6ee2
JM
478 break;
479
9502f9d5 480 case 205: // M205 Xnnn - set junction deviation, Z - set Z junction deviation, Snnn - Set minimum planner speed, Ynnn - set minimum step rate
4710532a
JM
481 if (gcode->has_letter('X')) {
482 float jd = gcode->get_value('X');
d4ee6ee2 483 // enforce minimum
8b69c90d
JM
484 if (jd < 0.0F)
485 jd = 0.0F;
4710532a 486 THEKERNEL->planner->junction_deviation = jd;
d4ee6ee2 487 }
107df03f
JM
488 if (gcode->has_letter('Z')) {
489 float jd = gcode->get_value('Z');
490 // enforce minimum, -1 disables it and uses regular junction deviation
491 if (jd < -1.0F)
492 jd = -1.0F;
493 THEKERNEL->planner->z_junction_deviation = jd;
494 }
4710532a
JM
495 if (gcode->has_letter('S')) {
496 float mps = gcode->get_value('S');
8b69c90d
JM
497 // enforce minimum
498 if (mps < 0.0F)
499 mps = 0.0F;
4710532a 500 THEKERNEL->planner->minimum_planner_speed = mps;
8b69c90d 501 }
9502f9d5
JM
502 if (gcode->has_letter('Y')) {
503 alpha_stepper_motor->default_minimum_actuator_rate = gcode->get_value('Y');
504 }
d4ee6ee2 505 break;
98761c28 506
7369629d 507 case 220: // M220 - speed override percentage
4710532a 508 if (gcode->has_letter('S')) {
1ad23cd3 509 float factor = gcode->get_value('S');
98761c28 510 // enforce minimum 10% speed
da947c62
MM
511 if (factor < 10.0F)
512 factor = 10.0F;
513 // enforce maximum 10x speed
514 if (factor > 1000.0F)
515 factor = 1000.0F;
516
517 seconds_per_minute = 6000.0F / factor;
adba2978 518 }else{
9ef9f45b 519 gcode->stream->printf("Speed factor at %6.2f %%\n", 6000.0F / seconds_per_minute);
7369629d 520 }
b4f56013 521 break;
ec4773e5 522
494dc541 523 case 400: // wait until all moves are done up to this point
314ab8f7 524 THEKERNEL->conveyor->wait_for_empty_queue();
494dc541
JM
525 break;
526
33e4cc02 527 case 500: // M500 saves some volatile settings to config override file
b7cd847e 528 case 503: { // M503 just prints the settings
78d0e16a 529 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm);
c5fe1787 530 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f Z%1.5f\n", THEKERNEL->planner->acceleration, THEKERNEL->planner->z_acceleration);
c9cc5e06 531 gcode->stream->printf(";X- Junction Deviation, Z- Z junction deviation, S - Minimum Planner speed mm/sec:\nM205 X%1.5f Z%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->z_junction_deviation, THEKERNEL->planner->minimum_planner_speed);
83488642 532 gcode->stream->printf(";Max feedrates in mm/sec, XYZ cartesian, ABC actuator:\nM203 X%1.5f Y%1.5f Z%1.5f A%1.5f B%1.5f C%1.5f\n",
4710532a 533 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
3494f3d0 534 alpha_stepper_motor->get_max_rate(), beta_stepper_motor->get_max_rate(), gamma_stepper_motor->get_max_rate());
b7cd847e
JM
535
536 // get or save any arm solution specific optional values
537 BaseSolution::arm_options_t options;
538 if(arm_solution->get_optional(options) && !options.empty()) {
539 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
4710532a 540 for(auto &i : options) {
b7cd847e
JM
541 gcode->stream->printf(" %c%1.4f", i.first, i.second);
542 }
543 gcode->stream->printf("\n");
544 }
6e92ab91 545
33e4cc02 546 break;
b7cd847e 547 }
33e4cc02 548
b7cd847e 549 case 665: { // M665 set optional arm solution variables based on arm solution.
ebc75fc6
JM
550 // the parameter args could be any letter each arm solution only accepts certain ones
551 BaseSolution::arm_options_t options= gcode->get_args();
552 options.erase('S'); // don't include the S
553 options.erase('U'); // don't include the U
554 if(options.size() > 0) {
555 // set the specified options
556 arm_solution->set_optional(options);
557 }
558 options.clear();
b7cd847e 559 if(arm_solution->get_optional(options)) {
ebc75fc6 560 // foreach optional value
4710532a 561 for(auto &i : options) {
b7cd847e
JM
562 // print all current values of supported options
563 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
5523c05d 564 gcode->add_nl = true;
ec4773e5
JM
565 }
566 }
ec4773e5 567
4a839bea 568 if(gcode->has_letter('S')) { // set delta segments per second, not saved by M500
4710532a 569 this->delta_segments_per_second = gcode->get_value('S');
4a839bea
JM
570 gcode->stream->printf("Delta segments set to %8.4f segs/sec\n", this->delta_segments_per_second);
571
572 }else if(gcode->has_letter('U')) { // or set mm_per_line_segment, not saved by M500
573 this->mm_per_line_segment = gcode->get_value('U');
574 this->delta_segments_per_second = 0;
575 gcode->stream->printf("mm per line segment set to %8.4f\n", this->mm_per_line_segment);
ec29d378 576 }
4a839bea 577
ec4773e5 578 break;
b7cd847e 579 }
6989211c 580 }
494dc541
JM
581 }
582
c83887ea
MM
583 if( this->motion_mode < 0)
584 return;
6bc4a00a 585
4710532a 586 //Get parameters
1ad23cd3 587 float target[3], offset[3];
c2885de8 588 clear_vector(offset);
6bc4a00a 589
2ba859c9 590 memcpy(target, this->last_milestone, sizeof(target)); //default to last target
6bc4a00a 591
4710532a
JM
592 for(char letter = 'I'; letter <= 'K'; letter++) {
593 if( gcode->has_letter(letter) ) {
594 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
c2885de8
JM
595 }
596 }
4710532a
JM
597 for(char letter = 'X'; letter <= 'Z'; letter++) {
598 if( gcode->has_letter(letter) ) {
c7689006 599 target[letter - 'X'] = this->to_millimeters(gcode->get_value(letter)) + (this->absolute_mode ? this->toolOffset[letter - 'X'] : target[letter - 'X']);
c2885de8
JM
600 }
601 }
6bc4a00a 602
4710532a 603 if( gcode->has_letter('F') ) {
7369629d 604 if( this->motion_mode == MOTION_MODE_SEEK )
da947c62 605 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 606 else
da947c62 607 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 608 }
6bc4a00a 609
4cff3ded 610 //Perform any physical actions
fae93525
JM
611 switch(this->motion_mode) {
612 case MOTION_MODE_CANCEL: break;
613 case MOTION_MODE_SEEK : this->append_line(gcode, target, this->seek_rate / seconds_per_minute ); break;
614 case MOTION_MODE_LINEAR: this->append_line(gcode, target, this->feed_rate / seconds_per_minute ); break;
615 case MOTION_MODE_CW_ARC:
616 case MOTION_MODE_CCW_ARC: this->compute_arc(gcode, offset, target ); break;
4cff3ded 617 }
13e4a3f9 618
fae93525 619 // last_milestone was set to target in append_milestone, no need to do it again
4cff3ded 620
edac9072
AW
621}
622
5984acdf 623// We received a new gcode, and one of the functions
edac9072
AW
624// determined the distance for that given gcode. So now we can attach this gcode to the right block
625// and continue
4710532a
JM
626void Robot::distance_in_gcode_is_known(Gcode *gcode)
627{
edac9072 628 //If the queue is empty, execute immediatly, otherwise attach to the last added block
e0ee24ed 629 THEKERNEL->conveyor->append_gcode(gcode);
edac9072
AW
630}
631
cef9acea
JM
632// reset the position for all axis (used in homing for delta as last_milestone may be bogus)
633void Robot::reset_axis_position(float x, float y, float z)
634{
635 this->last_milestone[X_AXIS] = x;
636 this->last_milestone[Y_AXIS] = y;
637 this->last_milestone[Z_AXIS] = z;
3632a517
JM
638 this->transformed_last_milestone[X_AXIS] = x;
639 this->transformed_last_milestone[Y_AXIS] = y;
640 this->transformed_last_milestone[Z_AXIS] = z;
cef9acea
JM
641
642 float actuator_pos[3];
643 arm_solution->cartesian_to_actuator(this->last_milestone, actuator_pos);
644 for (int i = 0; i < 3; i++)
645 actuators[i]->change_last_milestone(actuator_pos[i]);
646}
647
648// Reset the position for an axis (used in homing and G92)
4710532a
JM
649void Robot::reset_axis_position(float position, int axis)
650{
2ba859c9 651 this->last_milestone[axis] = position;
3632a517 652 this->transformed_last_milestone[axis] = position;
29c28822
MM
653
654 float actuator_pos[3];
cef9acea 655 arm_solution->cartesian_to_actuator(this->last_milestone, actuator_pos);
29c28822
MM
656
657 for (int i = 0; i < 3; i++)
658 actuators[i]->change_last_milestone(actuator_pos[i]);
4cff3ded
AW
659}
660
728477c4 661// Use FK to find out where actuator is and reset lastmilestone to match
728477c4
JM
662void Robot::reset_position_from_current_actuator_position()
663{
58c32991
JM
664 float actuator_pos[]= {actuators[X_AXIS]->get_current_position(), actuators[Y_AXIS]->get_current_position(), actuators[Z_AXIS]->get_current_position()};
665 arm_solution->actuator_to_cartesian(actuator_pos, this->last_milestone);
4befe777 666 memcpy(this->transformed_last_milestone, this->last_milestone, sizeof(this->transformed_last_milestone));
cf91d4f3
JM
667
668 // now reset actuator correctly, NOTE this may lose a little precision
669 arm_solution->cartesian_to_actuator(this->last_milestone, actuator_pos);
670 for (int i = 0; i < 3; i++)
671 actuators[i]->change_last_milestone(actuator_pos[i]);
728477c4 672}
edac9072 673
4cff3ded 674// Convert target from millimeters to steps, and append this to the planner
928467c0 675void Robot::append_milestone(Gcode *gcode, float target[], float rate_mm_s )
df6a30f2 676{
1ad23cd3 677 float deltas[3];
df6a30f2
MM
678 float unit_vec[3];
679 float actuator_pos[3];
3632a517 680 float transformed_target[3]; // adjust target for bed compensation
df6a30f2
MM
681 float millimeters_of_travel;
682
3632a517
JM
683 // unity transform by default
684 memcpy(transformed_target, target, sizeof(transformed_target));
5e45206a 685
3632a517
JM
686 // check function pointer and call if set to transform the target to compensate for bed
687 if(compensationTransform) {
688 // some compensation strategies can transform XYZ, some just change Z
689 compensationTransform(transformed_target);
33742399 690 }
ff7e9858 691
3632a517
JM
692 // find distance moved by each axis, use transformed target from last_transformed_target
693 for (int axis = X_AXIS; axis <= Z_AXIS; axis++){
694 deltas[axis] = transformed_target[axis] - transformed_last_milestone[axis];
695 }
696 // store last transformed
697 memcpy(this->transformed_last_milestone, transformed_target, sizeof(this->transformed_last_milestone));
aab6cbba 698
edac9072 699 // Compute how long this move moves, so we can attach it to the block for later use
869acfb8 700 millimeters_of_travel = sqrtf( powf( deltas[X_AXIS], 2 ) + powf( deltas[Y_AXIS], 2 ) + powf( deltas[Z_AXIS], 2 ) );
df6a30f2
MM
701
702 // find distance unit vector
703 for (int i = 0; i < 3; i++)
704 unit_vec[i] = deltas[i] / millimeters_of_travel;
705
706 // Do not move faster than the configured cartesian limits
4710532a
JM
707 for (int axis = X_AXIS; axis <= Z_AXIS; axis++) {
708 if ( max_speeds[axis] > 0 ) {
da947c62 709 float axis_speed = fabs(unit_vec[axis] * rate_mm_s);
df6a30f2
MM
710
711 if (axis_speed > max_speeds[axis])
da947c62 712 rate_mm_s *= ( max_speeds[axis] / axis_speed );
7b470506
AW
713 }
714 }
4cff3ded 715
5e45206a 716 // find actuator position given cartesian position, use actual adjusted target
3632a517 717 arm_solution->cartesian_to_actuator( transformed_target, actuator_pos );
df6a30f2 718
928467c0 719 float isecs= rate_mm_s / millimeters_of_travel;
df6a30f2 720 // check per-actuator speed limits
4710532a 721 for (int actuator = 0; actuator <= 2; actuator++) {
928467c0
JM
722 float actuator_rate = fabsf(actuator_pos[actuator] - actuators[actuator]->last_milestone_mm) * isecs;
723 if (actuator_rate > actuators[actuator]->get_max_rate()){
3494f3d0 724 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
4caeff22 725 isecs= rate_mm_s / millimeters_of_travel;
928467c0
JM
726 }
727 }
728
729 // if we have volumetric limits enabled we calculate the volume for this move and limit the rate if it exceeds the stated limit
730 // Note we need to be using volumetric extrusion for this to work as Ennn is in mm³ not mm
fe484657
JM
731 // We also check we are not exceeding the E max_speed for the current extruder
732 // We ask Extruder to do all the work, but as Extruder won't even see this gcode until after it has been planned
733 // we need to ask it now passing in the relevant data.
928467c0
JM
734 if(gcode->has_letter('E')) {
735 float data[2];
736 data[0]= gcode->get_value('E'); // E target (maybe absolute or relative)
fe484657 737 data[1]= isecs; // inverted seconds for the move
928467c0
JM
738 if(PublicData::set_value(extruder_checksum, target_checksum, data)) {
739 rate_mm_s *= data[1];
fe484657 740 //THEKERNEL->streams->printf("Extruder has changed the rate by %f to %f\n", data[1], rate_mm_s);
928467c0 741 }
df6a30f2
MM
742 }
743
edac9072 744 // Append the block to the planner
da947c62 745 THEKERNEL->planner->append_block( actuator_pos, rate_mm_s, millimeters_of_travel, unit_vec );
4cff3ded 746
5e45206a 747 // Update the last_milestone to the current target for the next time we use last_milestone, use the requested target not the adjusted one
c2885de8 748 memcpy(this->last_milestone, target, sizeof(this->last_milestone)); // this->last_milestone[] = target[];
4cff3ded
AW
749
750}
751
edac9072 752// Append a move to the queue ( cutting it into segments if needed )
4710532a
JM
753void Robot::append_line(Gcode *gcode, float target[], float rate_mm_s )
754{
edac9072 755 // Find out the distance for this gcode
a9d299ab 756 // NOTE we need to do sqrt here as this setting of millimeters_of_travel is used by extruder and other modules even if there is no XYZ move
3b4b05b8 757 gcode->millimeters_of_travel = sqrtf(powf( target[X_AXIS] - this->last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - this->last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - this->last_milestone[Z_AXIS], 2 ));
4cff3ded 758
3b4b05b8
JM
759 // We ignore non- XYZ moves ( for example, extruder moves are not XYZ moves )
760 if( gcode->millimeters_of_travel < 0.00001F ) {
95b4885b
JM
761 return;
762 }
436a2cd1 763
edac9072 764 // Mark the gcode as having a known distance
5dcb2ff3 765 this->distance_in_gcode_is_known( gcode );
436a2cd1 766
4a0c8e14
JM
767 // We cut the line into smaller segments. This is not usefull in a cartesian robot, but necessary for robots with rotational axes.
768 // In cartesian robot, a high "mm_per_line_segment" setting will prevent waste.
3b4b05b8
JM
769 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second
770 // The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
4a0c8e14 771 uint16_t segments;
5984acdf 772
c2885de8 773 if(this->delta_segments_per_second > 1.0F) {
4a0c8e14
JM
774 // enabled if set to something > 1, it is set to 0.0 by default
775 // segment based on current speed and requested segments per second
776 // the faster the travel speed the fewer segments needed
777 // NOTE rate is mm/sec and we take into account any speed override
da947c62 778 float seconds = gcode->millimeters_of_travel / rate_mm_s;
9502f9d5 779 segments = max(1.0F, ceilf(this->delta_segments_per_second * seconds));
4a0c8e14 780 // TODO if we are only moving in Z on a delta we don't really need to segment at all
5984acdf 781
4710532a
JM
782 } else {
783 if(this->mm_per_line_segment == 0.0F) {
784 segments = 1; // don't split it up
785 } else {
9502f9d5 786 segments = ceilf( gcode->millimeters_of_travel / this->mm_per_line_segment);
4a0c8e14
JM
787 }
788 }
5984acdf 789
4710532a 790 if (segments > 1) {
2ba859c9
MM
791 // A vector to keep track of the endpoint of each segment
792 float segment_delta[3];
793 float segment_end[3];
794
795 // How far do we move each segment?
9fff6045 796 for (int i = X_AXIS; i <= Z_AXIS; i++)
2ba859c9 797 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
4cff3ded 798
c8e0fb15
MM
799 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
800 // We always add another point after this loop so we stop at segments-1, ie i < segments
4710532a 801 for (int i = 1; i < segments; i++) {
1da77df4 802 if(halted) return; // don't queue any more segments
4710532a 803 for(int axis = X_AXIS; axis <= Z_AXIS; axis++ )
2ba859c9
MM
804 segment_end[axis] = last_milestone[axis] + segment_delta[axis];
805
806 // Append the end of this segment to the queue
928467c0 807 this->append_milestone(gcode, segment_end, rate_mm_s);
2ba859c9 808 }
4cff3ded 809 }
5984acdf
MM
810
811 // Append the end of this full move to the queue
928467c0 812 this->append_milestone(gcode, target, rate_mm_s);
2134bcf2
MM
813
814 // if adding these blocks didn't start executing, do that now
815 THEKERNEL->conveyor->ensure_running();
4cff3ded
AW
816}
817
4cff3ded 818
edac9072 819// Append an arc to the queue ( cutting it into segments as needed )
4710532a
JM
820void Robot::append_arc(Gcode *gcode, float target[], float offset[], float radius, bool is_clockwise )
821{
aab6cbba 822
edac9072 823 // Scary math
2ba859c9
MM
824 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
825 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
826 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1ad23cd3
MM
827 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
828 float r_axis1 = -offset[this->plane_axis_1];
829 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
830 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
aab6cbba 831
51871fb8 832 // Patch from GRBL Firmware - Christoph Baumann 04072015
aab6cbba 833 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
5fa0c173
PA
834 float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
835 if (is_clockwise) { // Correct atan2 output per direction
836 if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel -= 2*M_PI; }
837 } else {
838 if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel += 2*M_PI; }
4710532a 839 }
aab6cbba 840
edac9072 841 // Find the distance for this gcode
4710532a 842 gcode->millimeters_of_travel = hypotf(angular_travel * radius, fabs(linear_travel));
436a2cd1 843
edac9072 844 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
3b4b05b8 845 if( gcode->millimeters_of_travel < 0.00001F ) {
4710532a
JM
846 return;
847 }
5dcb2ff3 848
edac9072 849 // Mark the gcode as having a known distance
d149c730 850 this->distance_in_gcode_is_known( gcode );
5984acdf
MM
851
852 // Figure out how many segments for this gcode
c8f4ee77 853 uint16_t segments = floorf(gcode->millimeters_of_travel / this->mm_per_arc_segment);
aab6cbba 854
4710532a
JM
855 float theta_per_segment = angular_travel / segments;
856 float linear_per_segment = linear_travel / segments;
aab6cbba
AW
857
858 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
859 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
860 r_T = [cos(phi) -sin(phi);
861 sin(phi) cos(phi] * r ;
862 For arc generation, the center of the circle is the axis of rotation and the radius vector is
863 defined from the circle center to the initial position. Each line segment is formed by successive
864 vector rotations. This requires only two cos() and sin() computations to form the rotation
865 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1ad23cd3 866 all float numbers are single precision on the Arduino. (True float precision will not have
aab6cbba
AW
867 round off issues for CNC applications.) Single precision error can accumulate to be greater than
868 tool precision in some cases. Therefore, arc path correction is implemented.
869
870 Small angle approximation may be used to reduce computation overhead further. This approximation
871 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
872 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
873 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
874 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
875 issue for CNC machines with the single precision Arduino calculations.
876 This approximation also allows mc_arc to immediately insert a line segment into the planner
877 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
878 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
879 This is important when there are successive arc motions.
880 */
881 // Vector rotation matrix values
4710532a 882 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1ad23cd3 883 float sin_T = theta_per_segment;
aab6cbba 884
1ad23cd3
MM
885 float arc_target[3];
886 float sin_Ti;
887 float cos_Ti;
888 float r_axisi;
aab6cbba
AW
889 uint16_t i;
890 int8_t count = 0;
891
892 // Initialize the linear axis
2ba859c9 893 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
aab6cbba 894
4710532a 895 for (i = 1; i < segments; i++) { // Increment (segments-1)
728477c4 896 if(halted) return; // don't queue any more segments
aab6cbba 897
b66fb830 898 if (count < this->arc_correction ) {
4710532a
JM
899 // Apply vector rotation matrix
900 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
901 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
902 r_axis1 = r_axisi;
903 count++;
aab6cbba 904 } else {
4710532a
JM
905 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
906 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
907 cos_Ti = cosf(i * theta_per_segment);
908 sin_Ti = sinf(i * theta_per_segment);
909 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
910 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
911 count = 0;
aab6cbba
AW
912 }
913
914 // Update arc_target location
915 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
916 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
917 arc_target[this->plane_axis_2] += linear_per_segment;
edac9072
AW
918
919 // Append this segment to the queue
928467c0 920 this->append_milestone(gcode, arc_target, this->feed_rate / seconds_per_minute);
aab6cbba
AW
921
922 }
edac9072 923
aab6cbba 924 // Ensure last segment arrives at target location.
928467c0 925 this->append_milestone(gcode, target, this->feed_rate / seconds_per_minute);
aab6cbba
AW
926}
927
edac9072 928// Do the math for an arc and add it to the queue
4710532a
JM
929void Robot::compute_arc(Gcode *gcode, float offset[], float target[])
930{
aab6cbba
AW
931
932 // Find the radius
13addf09 933 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
aab6cbba
AW
934
935 // Set clockwise/counter-clockwise sign for mc_arc computations
936 bool is_clockwise = false;
4710532a
JM
937 if( this->motion_mode == MOTION_MODE_CW_ARC ) {
938 is_clockwise = true;
939 }
aab6cbba
AW
940
941 // Append arc
436a2cd1 942 this->append_arc(gcode, target, offset, radius, is_clockwise );
aab6cbba
AW
943
944}
945
946
4710532a
JM
947float Robot::theta(float x, float y)
948{
949 float t = atanf(x / fabs(y));
950 if (y > 0) {
951 return(t);
952 } else {
953 if (t > 0) {
954 return(M_PI - t);
955 } else {
956 return(-M_PI - t);
957 }
958 }
4cff3ded
AW
959}
960
4710532a
JM
961void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
962{
4cff3ded
AW
963 this->plane_axis_0 = axis_0;
964 this->plane_axis_1 = axis_1;
965 this->plane_axis_2 = axis_2;
966}
967
fae93525 968void Robot::clearToolOffset()
4710532a 969{
fae93525
JM
970 memset(this->toolOffset, 0, sizeof(this->toolOffset));
971}
972
973void Robot::setToolOffset(const float offset[3])
974{
fae93525 975 memcpy(this->toolOffset, offset, sizeof(this->toolOffset));
5966b7d0
AT
976}
977