*** empty log message ***
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
0b5538bd 5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4e6835db 6 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
bc78d348 7
fa9a63c5
RM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
7814e705 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
4fc5845f 20 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
7814e705 21 USA. */
fa9a63c5 22
6df42991 23/* TODO:
505bde11 24 - structure the opcode space into opcode+flag.
dc1e502d 25 - merge with glibc's regex.[ch].
01618498 26 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
27 need to modify the compiled regexp so that re_match can be reentrant.
28 - get rid of on_failure_jump_smart by doing the optimization in re_comp
29 rather than at run-time, so that re_match can be reentrant.
01618498 30*/
505bde11 31
fa9a63c5 32/* AIX requires this to be the first thing in the file. */
0b32bf0e 33#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
34 #pragma alloca
35#endif
36
fa9a63c5 37#ifdef HAVE_CONFIG_H
0b32bf0e 38# include <config.h>
fa9a63c5
RM
39#endif
40
4bb91c68
SM
41#if defined STDC_HEADERS && !defined emacs
42# include <stddef.h>
43#else
44/* We need this for `regex.h', and perhaps for the Emacs include files. */
45# include <sys/types.h>
46#endif
fa9a63c5 47
14473664
SM
48/* Whether to use ISO C Amendment 1 wide char functions.
49 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
50#if defined _LIBC
51#define WIDE_CHAR_SUPPORT 1
52#else
14473664 53#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
54 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
55#endif
14473664
SM
56
57/* For platform which support the ISO C amendement 1 functionality we
58 support user defined character classes. */
a0ad02f7 59#if WIDE_CHAR_SUPPORT
14473664
SM
60/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
61# include <wchar.h>
62# include <wctype.h>
63#endif
64
c0f9ea08
SM
65#ifdef _LIBC
66/* We have to keep the namespace clean. */
67# define regfree(preg) __regfree (preg)
68# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
69# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
ec869672
JR
70# define regerror(err_code, preg, errbuf, errbuf_size) \
71 __regerror(err_code, preg, errbuf, errbuf_size)
c0f9ea08
SM
72# define re_set_registers(bu, re, nu, st, en) \
73 __re_set_registers (bu, re, nu, st, en)
74# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
75 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
76# define re_match(bufp, string, size, pos, regs) \
77 __re_match (bufp, string, size, pos, regs)
78# define re_search(bufp, string, size, startpos, range, regs) \
79 __re_search (bufp, string, size, startpos, range, regs)
80# define re_compile_pattern(pattern, length, bufp) \
81 __re_compile_pattern (pattern, length, bufp)
82# define re_set_syntax(syntax) __re_set_syntax (syntax)
83# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
84 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
85# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86
14473664
SM
87/* Make sure we call libc's function even if the user overrides them. */
88# define btowc __btowc
89# define iswctype __iswctype
90# define wctype __wctype
91
c0f9ea08
SM
92# define WEAK_ALIAS(a,b) weak_alias (a, b)
93
94/* We are also using some library internals. */
95# include <locale/localeinfo.h>
96# include <locale/elem-hash.h>
97# include <langinfo.h>
98#else
99# define WEAK_ALIAS(a,b)
100#endif
101
4bb91c68 102/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 103#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
104# include <libintl.h>
105#else
106# define gettext(msgid) (msgid)
107#endif
108
5e69f11e
RM
109#ifndef gettext_noop
110/* This define is so xgettext can find the internationalizable
111 strings. */
0b32bf0e 112# define gettext_noop(String) String
5e69f11e
RM
113#endif
114
fa9a63c5
RM
115/* The `emacs' switch turns on certain matching commands
116 that make sense only in Emacs. */
117#ifdef emacs
118
0b32bf0e
SM
119# include "lisp.h"
120# include "buffer.h"
b18215fc
RS
121
122/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 123# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 124
0b32bf0e 125# include "syntax.h"
9117d724 126# include "character.h"
0b32bf0e 127# include "category.h"
fa9a63c5 128
7689ef0b
EZ
129# ifdef malloc
130# undef malloc
131# endif
0b32bf0e 132# define malloc xmalloc
7689ef0b
EZ
133# ifdef realloc
134# undef realloc
135# endif
0b32bf0e 136# define realloc xrealloc
7689ef0b
EZ
137# ifdef free
138# undef free
139# endif
0b32bf0e 140# define free xfree
9abbd165 141
7814e705 142/* Converts the pointer to the char to BEG-based offset from the start. */
0b32bf0e
SM
143# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
144# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
145
146# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
bf216479 147# define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
0b32bf0e 148# define RE_STRING_CHAR(p, s) \
4e8a9132 149 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
0b32bf0e 150# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
2d1675e4
SM
151 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
152
6fdd04b0
KH
153/* Set C a (possibly converted to multibyte) character before P. P
154 points into a string which is the virtual concatenation of STR1
155 (which ends at END1) or STR2 (which ends at END2). */
bf216479
KH
156# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
157 do { \
6fdd04b0 158 if (multibyte) \
bf216479
KH
159 { \
160 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
161 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
162 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
163 c = STRING_CHAR (dtemp, (p) - dtemp); \
164 } \
165 else \
166 { \
167 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
6fdd04b0 168 MAKE_CHAR_MULTIBYTE (c); \
bf216479 169 } \
2d1675e4
SM
170 } while (0)
171
6fdd04b0
KH
172/* Set C a (possibly converted to multibyte) character at P, and set
173 LEN to the byte length of that character. */
174# define GET_CHAR_AFTER(c, p, len) \
175 do { \
176 if (multibyte) \
177 c = STRING_CHAR_AND_LENGTH (p, 0, len); \
178 else \
179 { \
180 c = *p; \
181 len = 1; \
182 MAKE_CHAR_MULTIBYTE (c); \
183 } \
8f924df7 184 } while (0)
4e8a9132 185
fa9a63c5
RM
186#else /* not emacs */
187
188/* If we are not linking with Emacs proper,
189 we can't use the relocating allocator
190 even if config.h says that we can. */
0b32bf0e 191# undef REL_ALLOC
fa9a63c5 192
0b32bf0e
SM
193# if defined STDC_HEADERS || defined _LIBC
194# include <stdlib.h>
195# else
fa9a63c5
RM
196char *malloc ();
197char *realloc ();
0b32bf0e 198# endif
fa9a63c5 199
a77f947b
CY
200/* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
201
202void *
203xmalloc (size)
204 size_t size;
205{
206 register void *val;
207 val = (void *) malloc (size);
208 if (!val && size)
209 {
210 write (2, "virtual memory exhausted\n", 25);
211 exit (1);
212 }
213 return val;
214}
215
216void *
217xrealloc (block, size)
218 void *block;
219 size_t size;
220{
221 register void *val;
222 /* We must call malloc explicitly when BLOCK is 0, since some
223 reallocs don't do this. */
224 if (! block)
225 val = (void *) malloc (size);
226 else
227 val = (void *) realloc (block, size);
228 if (!val && size)
229 {
230 write (2, "virtual memory exhausted\n", 25);
231 exit (1);
232 }
233 return val;
234}
235
a073faa6
CY
236# ifdef malloc
237# undef malloc
238# endif
239# define malloc xmalloc
240# ifdef realloc
241# undef realloc
242# endif
243# define realloc xrealloc
244
9e4ecb26 245/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 246 If nothing else has been done, use the method below. */
0b32bf0e
SM
247# ifdef INHIBIT_STRING_HEADER
248# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
249# if !defined bzero && !defined bcopy
250# undef INHIBIT_STRING_HEADER
251# endif
252# endif
253# endif
9e4ecb26 254
4bb91c68 255/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
256 This is used in most programs--a few other programs avoid this
257 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
258# ifndef INHIBIT_STRING_HEADER
259# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
260# include <string.h>
0b32bf0e 261# ifndef bzero
4bb91c68
SM
262# ifndef _LIBC
263# define bzero(s, n) (memset (s, '\0', n), (s))
264# else
265# define bzero(s, n) __bzero (s, n)
266# endif
0b32bf0e
SM
267# endif
268# else
269# include <strings.h>
4bb91c68
SM
270# ifndef memcmp
271# define memcmp(s1, s2, n) bcmp (s1, s2, n)
272# endif
273# ifndef memcpy
274# define memcpy(d, s, n) (bcopy (s, d, n), (d))
275# endif
0b32bf0e
SM
276# endif
277# endif
fa9a63c5
RM
278
279/* Define the syntax stuff for \<, \>, etc. */
280
990b2375 281/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 282enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 283
0b32bf0e
SM
284# ifdef SWITCH_ENUM_BUG
285# define SWITCH_ENUM_CAST(x) ((int)(x))
286# else
287# define SWITCH_ENUM_CAST(x) (x)
288# endif
fa9a63c5 289
e934739e 290/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
291# define BASE_LEADING_CODE_P(c) (0)
292# define CHAR_CHARSET(c) 0
293# define CHARSET_LEADING_CODE_BASE(c) 0
294# define MAX_MULTIBYTE_LENGTH 1
295# define RE_MULTIBYTE_P(x) 0
bf216479 296# define RE_TARGET_MULTIBYTE_P(x) 0
0b32bf0e
SM
297# define WORD_BOUNDARY_P(c1, c2) (0)
298# define CHAR_HEAD_P(p) (1)
299# define SINGLE_BYTE_CHAR_P(c) (1)
300# define SAME_CHARSET_P(c1, c2) (1)
301# define MULTIBYTE_FORM_LENGTH(p, s) (1)
70806df6 302# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
0b32bf0e
SM
303# define STRING_CHAR(p, s) (*(p))
304# define RE_STRING_CHAR STRING_CHAR
305# define CHAR_STRING(c, s) (*(s) = (c), 1)
306# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
307# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
308# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 309 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
6fdd04b0
KH
310# define GET_CHAR_AFTER(c, p, len) \
311 (c = *p, len = 1)
0b32bf0e 312# define MAKE_CHAR(charset, c1, c2) (c1)
9117d724
KH
313# define BYTE8_TO_CHAR(c) (c)
314# define CHAR_BYTE8_P(c) (0)
6fdd04b0
KH
315# define MAKE_CHAR_MULTIBYTE(c) (c)
316# define MAKE_CHAR_UNIBYTE(c) (c)
bf216479 317# define CHAR_LEADING_CODE(c) (c)
8f924df7 318
fa9a63c5 319#endif /* not emacs */
4e8a9132
SM
320
321#ifndef RE_TRANSLATE
0b32bf0e
SM
322# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
323# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 324#endif
fa9a63c5
RM
325\f
326/* Get the interface, including the syntax bits. */
327#include "regex.h"
328
f71b19b6
DL
329/* isalpha etc. are used for the character classes. */
330#include <ctype.h>
fa9a63c5 331
f71b19b6 332#ifdef emacs
fa9a63c5 333
f71b19b6 334/* 1 if C is an ASCII character. */
0b32bf0e 335# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 336
f71b19b6 337/* 1 if C is a unibyte character. */
0b32bf0e 338# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 339
f71b19b6 340/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 341
f71b19b6 342/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
343# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
344# define ISCNTRL(c) ((c) < ' ')
345# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
346 || ((c) >= 'a' && (c) <= 'f') \
347 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
348
349/* This is only used for single-byte characters. */
0b32bf0e 350# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
351
352/* The rest must handle multibyte characters. */
353
0b32bf0e 354# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 355 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
356 : 1)
357
14473664 358# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 359 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
360 : 1)
361
0b32bf0e 362# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
363 ? (((c) >= 'a' && (c) <= 'z') \
364 || ((c) >= 'A' && (c) <= 'Z') \
365 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
366 : SYNTAX (c) == Sword)
367
0b32bf0e 368# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
369 ? (((c) >= 'a' && (c) <= 'z') \
370 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
371 : SYNTAX (c) == Sword)
372
0b32bf0e 373# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 374
0b32bf0e 375# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
376 ? ((c) > ' ' && (c) < 0177 \
377 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
378 || ((c) >= 'A' && (c) <= 'Z') \
379 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
380 : SYNTAX (c) != Sword)
381
0b32bf0e 382# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 383
0b32bf0e 384# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 385
0b32bf0e 386# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
387
388#else /* not emacs */
389
f71b19b6
DL
390/* Jim Meyering writes:
391
392 "... Some ctype macros are valid only for character codes that
393 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
394 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 395 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
396 STDC_HEADERS is defined, then autoconf has verified that the ctype
397 macros don't need to be guarded with references to isascii. ...
398 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
399 eliminate the && through constant folding."
400 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 401
4bb91c68 402# undef ISASCII
0b32bf0e
SM
403# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
404# define ISASCII(c) 1
405# else
406# define ISASCII(c) isascii(c)
407# endif
f71b19b6
DL
408
409/* 1 if C is an ASCII character. */
0b32bf0e 410# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
411
412/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
413# define ISUNIBYTE(c) 1
414
415# ifdef isblank
416# define ISBLANK(c) (ISASCII (c) && isblank (c))
417# else
418# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
419# endif
420# ifdef isgraph
421# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
422# else
423# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
424# endif
425
4bb91c68 426# undef ISPRINT
0b32bf0e
SM
427# define ISPRINT(c) (ISASCII (c) && isprint (c))
428# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
429# define ISALNUM(c) (ISASCII (c) && isalnum (c))
430# define ISALPHA(c) (ISASCII (c) && isalpha (c))
431# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
432# define ISLOWER(c) (ISASCII (c) && islower (c))
433# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
434# define ISSPACE(c) (ISASCII (c) && isspace (c))
435# define ISUPPER(c) (ISASCII (c) && isupper (c))
436# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
437
438# define ISWORD(c) ISALPHA(c)
439
4bb91c68
SM
440# ifdef _tolower
441# define TOLOWER(c) _tolower(c)
442# else
443# define TOLOWER(c) tolower(c)
444# endif
445
446/* How many characters in the character set. */
447# define CHAR_SET_SIZE 256
448
0b32bf0e 449# ifdef SYNTAX_TABLE
f71b19b6 450
0b32bf0e 451extern char *re_syntax_table;
f71b19b6 452
0b32bf0e
SM
453# else /* not SYNTAX_TABLE */
454
0b32bf0e
SM
455static char re_syntax_table[CHAR_SET_SIZE];
456
457static void
458init_syntax_once ()
459{
460 register int c;
461 static int done = 0;
462
463 if (done)
464 return;
465
466 bzero (re_syntax_table, sizeof re_syntax_table);
467
4bb91c68
SM
468 for (c = 0; c < CHAR_SET_SIZE; ++c)
469 if (ISALNUM (c))
470 re_syntax_table[c] = Sword;
fa9a63c5 471
669fa600 472 re_syntax_table['_'] = Ssymbol;
fa9a63c5 473
0b32bf0e
SM
474 done = 1;
475}
476
477# endif /* not SYNTAX_TABLE */
96cc36cc 478
4bb91c68
SM
479# define SYNTAX(c) re_syntax_table[(c)]
480
96cc36cc
RS
481#endif /* not emacs */
482\f
fa9a63c5 483#ifndef NULL
0b32bf0e 484# define NULL (void *)0
fa9a63c5
RM
485#endif
486
487/* We remove any previous definition of `SIGN_EXTEND_CHAR',
488 since ours (we hope) works properly with all combinations of
489 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 490 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
491#undef SIGN_EXTEND_CHAR
492#if __STDC__
0b32bf0e 493# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
494#else /* not __STDC__ */
495/* As in Harbison and Steele. */
0b32bf0e 496# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
497#endif
498\f
499/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
500 use `alloca' instead of `malloc'. This is because using malloc in
501 re_search* or re_match* could cause memory leaks when C-g is used in
502 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
503 the other hand, malloc is more portable, and easier to debug.
504
fa9a63c5
RM
505 Because we sometimes use alloca, some routines have to be macros,
506 not functions -- `alloca'-allocated space disappears at the end of the
507 function it is called in. */
508
509#ifdef REGEX_MALLOC
510
0b32bf0e
SM
511# define REGEX_ALLOCATE malloc
512# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
513# define REGEX_FREE free
fa9a63c5
RM
514
515#else /* not REGEX_MALLOC */
516
517/* Emacs already defines alloca, sometimes. */
0b32bf0e 518# ifndef alloca
fa9a63c5
RM
519
520/* Make alloca work the best possible way. */
0b32bf0e
SM
521# ifdef __GNUC__
522# define alloca __builtin_alloca
523# else /* not __GNUC__ */
7f585e7a 524# ifdef HAVE_ALLOCA_H
0b32bf0e
SM
525# include <alloca.h>
526# endif /* HAVE_ALLOCA_H */
527# endif /* not __GNUC__ */
fa9a63c5 528
0b32bf0e 529# endif /* not alloca */
fa9a63c5 530
0b32bf0e 531# define REGEX_ALLOCATE alloca
fa9a63c5
RM
532
533/* Assumes a `char *destination' variable. */
0b32bf0e 534# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 535 (destination = (char *) alloca (nsize), \
4bb91c68 536 memcpy (destination, source, osize))
fa9a63c5
RM
537
538/* No need to do anything to free, after alloca. */
0b32bf0e 539# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
540
541#endif /* not REGEX_MALLOC */
542
543/* Define how to allocate the failure stack. */
544
0b32bf0e 545#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 546
0b32bf0e 547# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 548 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 549# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 550 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 551# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
552 r_alloc_free (&failure_stack_ptr)
553
4297555e 554#else /* not using relocating allocator */
fa9a63c5 555
0b32bf0e 556# ifdef REGEX_MALLOC
fa9a63c5 557
0b32bf0e
SM
558# define REGEX_ALLOCATE_STACK malloc
559# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
560# define REGEX_FREE_STACK free
fa9a63c5 561
0b32bf0e 562# else /* not REGEX_MALLOC */
fa9a63c5 563
0b32bf0e 564# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 565
0b32bf0e 566# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 567 REGEX_REALLOCATE (source, osize, nsize)
7814e705 568/* No need to explicitly free anything. */
0b32bf0e 569# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 570
0b32bf0e 571# endif /* not REGEX_MALLOC */
4297555e 572#endif /* not using relocating allocator */
fa9a63c5
RM
573
574
575/* True if `size1' is non-NULL and PTR is pointing anywhere inside
576 `string1' or just past its end. This works if PTR is NULL, which is
577 a good thing. */
25fe55af 578#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
579 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
580
581/* (Re)Allocate N items of type T using malloc, or fail. */
582#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
583#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
584#define RETALLOC_IF(addr, n, t) \
585 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
586#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
587
4bb91c68 588#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
589
590#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
591
592#undef MAX
593#undef MIN
594#define MAX(a, b) ((a) > (b) ? (a) : (b))
595#define MIN(a, b) ((a) < (b) ? (a) : (b))
596
66f0296e
SM
597/* Type of source-pattern and string chars. */
598typedef const unsigned char re_char;
599
fa9a63c5
RM
600typedef char boolean;
601#define false 0
602#define true 1
603
4bb91c68
SM
604static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
605 re_char *string1, int size1,
606 re_char *string2, int size2,
607 int pos,
608 struct re_registers *regs,
609 int stop));
fa9a63c5
RM
610\f
611/* These are the command codes that appear in compiled regular
4bb91c68 612 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
613 command code can specify any interpretation whatsoever for its
614 arguments. Zero bytes may appear in the compiled regular expression. */
615
616typedef enum
617{
618 no_op = 0,
619
4bb91c68 620 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
621 succeed,
622
25fe55af 623 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
624 exactn,
625
25fe55af 626 /* Matches any (more or less) character. */
fa9a63c5
RM
627 anychar,
628
25fe55af
RS
629 /* Matches any one char belonging to specified set. First
630 following byte is number of bitmap bytes. Then come bytes
631 for a bitmap saying which chars are in. Bits in each byte
632 are ordered low-bit-first. A character is in the set if its
633 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
634 automatically not in the set.
635
636 If the length byte has the 0x80 bit set, then that stuff
637 is followed by a range table:
638 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 639 See RANGE_TABLE_WORK_BITS below.
01618498 640 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 641 pairs, each 2 multibyte characters,
0b32bf0e 642 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
643 charset,
644
25fe55af 645 /* Same parameters as charset, but match any character that is
4bb91c68 646 not one of those specified. */
fa9a63c5
RM
647 charset_not,
648
25fe55af
RS
649 /* Start remembering the text that is matched, for storing in a
650 register. Followed by one byte with the register number, in
651 the range 0 to one less than the pattern buffer's re_nsub
505bde11 652 field. */
fa9a63c5
RM
653 start_memory,
654
25fe55af
RS
655 /* Stop remembering the text that is matched and store it in a
656 memory register. Followed by one byte with the register
657 number, in the range 0 to one less than `re_nsub' in the
505bde11 658 pattern buffer. */
fa9a63c5
RM
659 stop_memory,
660
25fe55af 661 /* Match a duplicate of something remembered. Followed by one
4bb91c68 662 byte containing the register number. */
fa9a63c5
RM
663 duplicate,
664
25fe55af 665 /* Fail unless at beginning of line. */
fa9a63c5
RM
666 begline,
667
4bb91c68 668 /* Fail unless at end of line. */
fa9a63c5
RM
669 endline,
670
25fe55af
RS
671 /* Succeeds if at beginning of buffer (if emacs) or at beginning
672 of string to be matched (if not). */
fa9a63c5
RM
673 begbuf,
674
25fe55af 675 /* Analogously, for end of buffer/string. */
fa9a63c5 676 endbuf,
5e69f11e 677
25fe55af 678 /* Followed by two byte relative address to which to jump. */
5e69f11e 679 jump,
fa9a63c5 680
25fe55af 681 /* Followed by two-byte relative address of place to resume at
7814e705 682 in case of failure. */
fa9a63c5 683 on_failure_jump,
5e69f11e 684
25fe55af
RS
685 /* Like on_failure_jump, but pushes a placeholder instead of the
686 current string position when executed. */
fa9a63c5 687 on_failure_keep_string_jump,
5e69f11e 688
505bde11
SM
689 /* Just like `on_failure_jump', except that it checks that we
690 don't get stuck in an infinite loop (matching an empty string
691 indefinitely). */
692 on_failure_jump_loop,
693
0683b6fa
SM
694 /* Just like `on_failure_jump_loop', except that it checks for
695 a different kind of loop (the kind that shows up with non-greedy
696 operators). This operation has to be immediately preceded
697 by a `no_op'. */
698 on_failure_jump_nastyloop,
699
0b32bf0e 700 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
701 It analyses the loop before which it is put and if the
702 loop does not require backtracking, it changes itself to
4e8a9132
SM
703 `on_failure_keep_string_jump' and short-circuits the loop,
704 else it just defaults to changing itself into `on_failure_jump'.
705 It assumes that it is pointing to just past a `jump'. */
505bde11 706 on_failure_jump_smart,
fa9a63c5 707
25fe55af 708 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
709 After matching N times, jump to the address upon failure.
710 Does not work if N starts at 0: use on_failure_jump_loop
711 instead. */
fa9a63c5
RM
712 succeed_n,
713
25fe55af
RS
714 /* Followed by two-byte relative address, and two-byte number n.
715 Jump to the address N times, then fail. */
fa9a63c5
RM
716 jump_n,
717
25fe55af 718 /* Set the following two-byte relative address to the
7814e705 719 subsequent two-byte number. The address *includes* the two
25fe55af 720 bytes of number. */
fa9a63c5
RM
721 set_number_at,
722
fa9a63c5
RM
723 wordbeg, /* Succeeds if at word beginning. */
724 wordend, /* Succeeds if at word end. */
725
726 wordbound, /* Succeeds if at a word boundary. */
7814e705 727 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 728
669fa600
SM
729 symbeg, /* Succeeds if at symbol beginning. */
730 symend, /* Succeeds if at symbol end. */
731
fa9a63c5 732 /* Matches any character whose syntax is specified. Followed by
25fe55af 733 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
734 syntaxspec,
735
736 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
737 notsyntaxspec
738
739#ifdef emacs
740 ,before_dot, /* Succeeds if before point. */
741 at_dot, /* Succeeds if at point. */
742 after_dot, /* Succeeds if after point. */
b18215fc
RS
743
744 /* Matches any character whose category-set contains the specified
7814e705
JB
745 category. The operator is followed by a byte which contains a
746 category code (mnemonic ASCII character). */
b18215fc
RS
747 categoryspec,
748
749 /* Matches any character whose category-set does not contain the
750 specified category. The operator is followed by a byte which
751 contains the category code (mnemonic ASCII character). */
752 notcategoryspec
fa9a63c5
RM
753#endif /* emacs */
754} re_opcode_t;
755\f
756/* Common operations on the compiled pattern. */
757
758/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
759
760#define STORE_NUMBER(destination, number) \
761 do { \
762 (destination)[0] = (number) & 0377; \
763 (destination)[1] = (number) >> 8; \
764 } while (0)
765
766/* Same as STORE_NUMBER, except increment DESTINATION to
767 the byte after where the number is stored. Therefore, DESTINATION
768 must be an lvalue. */
769
770#define STORE_NUMBER_AND_INCR(destination, number) \
771 do { \
772 STORE_NUMBER (destination, number); \
773 (destination) += 2; \
774 } while (0)
775
776/* Put into DESTINATION a number stored in two contiguous bytes starting
777 at SOURCE. */
778
779#define EXTRACT_NUMBER(destination, source) \
780 do { \
781 (destination) = *(source) & 0377; \
782 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
783 } while (0)
784
785#ifdef DEBUG
4bb91c68 786static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
787static void
788extract_number (dest, source)
789 int *dest;
01618498 790 re_char *source;
fa9a63c5 791{
5e69f11e 792 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
793 *dest = *source & 0377;
794 *dest += temp << 8;
795}
796
4bb91c68 797# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
798# undef EXTRACT_NUMBER
799# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
800# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
801
802#endif /* DEBUG */
803
804/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
805 SOURCE must be an lvalue. */
806
807#define EXTRACT_NUMBER_AND_INCR(destination, source) \
808 do { \
809 EXTRACT_NUMBER (destination, source); \
25fe55af 810 (source) += 2; \
fa9a63c5
RM
811 } while (0)
812
813#ifdef DEBUG
4bb91c68
SM
814static void extract_number_and_incr _RE_ARGS ((int *destination,
815 re_char **source));
fa9a63c5
RM
816static void
817extract_number_and_incr (destination, source)
818 int *destination;
01618498 819 re_char **source;
5e69f11e 820{
fa9a63c5
RM
821 extract_number (destination, *source);
822 *source += 2;
823}
824
0b32bf0e
SM
825# ifndef EXTRACT_MACROS
826# undef EXTRACT_NUMBER_AND_INCR
827# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 828 extract_number_and_incr (&dest, &src)
0b32bf0e 829# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
830
831#endif /* DEBUG */
832\f
b18215fc
RS
833/* Store a multibyte character in three contiguous bytes starting
834 DESTINATION, and increment DESTINATION to the byte after where the
7814e705 835 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
836
837#define STORE_CHARACTER_AND_INCR(destination, character) \
838 do { \
839 (destination)[0] = (character) & 0377; \
840 (destination)[1] = ((character) >> 8) & 0377; \
841 (destination)[2] = (character) >> 16; \
842 (destination) += 3; \
843 } while (0)
844
845/* Put into DESTINATION a character stored in three contiguous bytes
7814e705 846 starting at SOURCE. */
b18215fc
RS
847
848#define EXTRACT_CHARACTER(destination, source) \
849 do { \
850 (destination) = ((source)[0] \
851 | ((source)[1] << 8) \
852 | ((source)[2] << 16)); \
853 } while (0)
854
855
856/* Macros for charset. */
857
858/* Size of bitmap of charset P in bytes. P is a start of charset,
859 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
860#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
861
862/* Nonzero if charset P has range table. */
25fe55af 863#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
864
865/* Return the address of range table of charset P. But not the start
866 of table itself, but the before where the number of ranges is
96cc36cc
RS
867 stored. `2 +' means to skip re_opcode_t and size of bitmap,
868 and the 2 bytes of flags at the start of the range table. */
869#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
870
871/* Extract the bit flags that start a range table. */
872#define CHARSET_RANGE_TABLE_BITS(p) \
873 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
874 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
875
876/* Test if C is listed in the bitmap of charset P. */
877#define CHARSET_LOOKUP_BITMAP(p, c) \
878 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
879 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
880
881/* Return the address of end of RANGE_TABLE. COUNT is number of
7814e705
JB
882 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
883 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
884 and end. */
885#define CHARSET_RANGE_TABLE_END(range_table, count) \
886 ((range_table) + (count) * 2 * 3)
887
7814e705 888/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
889 COUNT is number of ranges in RANGE_TABLE. */
890#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
891 do \
892 { \
01618498
SM
893 re_wchar_t range_start, range_end; \
894 re_char *p; \
895 re_char *range_table_end \
b18215fc
RS
896 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
897 \
898 for (p = (range_table); p < range_table_end; p += 2 * 3) \
899 { \
900 EXTRACT_CHARACTER (range_start, p); \
901 EXTRACT_CHARACTER (range_end, p + 3); \
902 \
903 if (range_start <= (c) && (c) <= range_end) \
904 { \
905 (not) = !(not); \
906 break; \
907 } \
908 } \
909 } \
910 while (0)
911
912/* Test if C is in range table of CHARSET. The flag NOT is negated if
913 C is listed in it. */
914#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
915 do \
916 { \
917 /* Number of ranges in range table. */ \
918 int count; \
01618498
SM
919 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
920 \
b18215fc
RS
921 EXTRACT_NUMBER_AND_INCR (count, range_table); \
922 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
923 } \
924 while (0)
925\f
fa9a63c5
RM
926/* If DEBUG is defined, Regex prints many voluminous messages about what
927 it is doing (if the variable `debug' is nonzero). If linked with the
928 main program in `iregex.c', you can enter patterns and strings
929 interactively. And if linked with the main program in `main.c' and
4bb91c68 930 the other test files, you can run the already-written tests. */
fa9a63c5
RM
931
932#ifdef DEBUG
933
934/* We use standard I/O for debugging. */
0b32bf0e 935# include <stdio.h>
fa9a63c5
RM
936
937/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 938# include <assert.h>
fa9a63c5 939
99633e97 940static int debug = -100000;
fa9a63c5 941
0b32bf0e
SM
942# define DEBUG_STATEMENT(e) e
943# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
944# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
945# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
946# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
947# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 948 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 949# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 950 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
951
952
953/* Print the fastmap in human-readable form. */
954
955void
956print_fastmap (fastmap)
957 char *fastmap;
958{
959 unsigned was_a_range = 0;
5e69f11e
RM
960 unsigned i = 0;
961
fa9a63c5
RM
962 while (i < (1 << BYTEWIDTH))
963 {
964 if (fastmap[i++])
965 {
966 was_a_range = 0;
25fe55af
RS
967 putchar (i - 1);
968 while (i < (1 << BYTEWIDTH) && fastmap[i])
969 {
970 was_a_range = 1;
971 i++;
972 }
fa9a63c5 973 if (was_a_range)
25fe55af
RS
974 {
975 printf ("-");
976 putchar (i - 1);
977 }
978 }
fa9a63c5 979 }
5e69f11e 980 putchar ('\n');
fa9a63c5
RM
981}
982
983
984/* Print a compiled pattern string in human-readable form, starting at
985 the START pointer into it and ending just before the pointer END. */
986
987void
988print_partial_compiled_pattern (start, end)
01618498
SM
989 re_char *start;
990 re_char *end;
fa9a63c5
RM
991{
992 int mcnt, mcnt2;
01618498
SM
993 re_char *p = start;
994 re_char *pend = end;
fa9a63c5
RM
995
996 if (start == NULL)
997 {
a1a052df 998 fprintf (stderr, "(null)\n");
fa9a63c5
RM
999 return;
1000 }
5e69f11e 1001
fa9a63c5
RM
1002 /* Loop over pattern commands. */
1003 while (p < pend)
1004 {
a1a052df 1005 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
1006
1007 switch ((re_opcode_t) *p++)
1008 {
25fe55af 1009 case no_op:
a1a052df 1010 fprintf (stderr, "/no_op");
25fe55af 1011 break;
fa9a63c5 1012
99633e97 1013 case succeed:
a1a052df 1014 fprintf (stderr, "/succeed");
99633e97
SM
1015 break;
1016
fa9a63c5
RM
1017 case exactn:
1018 mcnt = *p++;
a1a052df 1019 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 1020 do
fa9a63c5 1021 {
a1a052df 1022 fprintf (stderr, "/%c", *p++);
25fe55af
RS
1023 }
1024 while (--mcnt);
1025 break;
fa9a63c5
RM
1026
1027 case start_memory:
a1a052df 1028 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 1029 break;
fa9a63c5
RM
1030
1031 case stop_memory:
a1a052df 1032 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 1033 break;
fa9a63c5
RM
1034
1035 case duplicate:
a1a052df 1036 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
1037 break;
1038
1039 case anychar:
a1a052df 1040 fprintf (stderr, "/anychar");
fa9a63c5
RM
1041 break;
1042
1043 case charset:
25fe55af
RS
1044 case charset_not:
1045 {
1046 register int c, last = -100;
fa9a63c5 1047 register int in_range = 0;
99633e97
SM
1048 int length = CHARSET_BITMAP_SIZE (p - 1);
1049 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 1050
a1a052df 1051 fprintf (stderr, "/charset [%s",
839966f3 1052 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 1053
839966f3
KH
1054 if (p + *p >= pend)
1055 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 1056
25fe55af 1057 for (c = 0; c < 256; c++)
96cc36cc 1058 if (c / 8 < length
fa9a63c5
RM
1059 && (p[1 + (c/8)] & (1 << (c % 8))))
1060 {
1061 /* Are we starting a range? */
1062 if (last + 1 == c && ! in_range)
1063 {
a1a052df 1064 fprintf (stderr, "-");
fa9a63c5
RM
1065 in_range = 1;
1066 }
1067 /* Have we broken a range? */
1068 else if (last + 1 != c && in_range)
96cc36cc 1069 {
a1a052df 1070 fprintf (stderr, "%c", last);
fa9a63c5
RM
1071 in_range = 0;
1072 }
5e69f11e 1073
fa9a63c5 1074 if (! in_range)
a1a052df 1075 fprintf (stderr, "%c", c);
fa9a63c5
RM
1076
1077 last = c;
25fe55af 1078 }
fa9a63c5
RM
1079
1080 if (in_range)
a1a052df 1081 fprintf (stderr, "%c", last);
fa9a63c5 1082
a1a052df 1083 fprintf (stderr, "]");
fa9a63c5 1084
99633e97 1085 p += 1 + length;
96cc36cc 1086
96cc36cc 1087 if (has_range_table)
99633e97
SM
1088 {
1089 int count;
a1a052df 1090 fprintf (stderr, "has-range-table");
99633e97
SM
1091
1092 /* ??? Should print the range table; for now, just skip it. */
1093 p += 2; /* skip range table bits */
1094 EXTRACT_NUMBER_AND_INCR (count, p);
1095 p = CHARSET_RANGE_TABLE_END (p, count);
1096 }
fa9a63c5
RM
1097 }
1098 break;
1099
1100 case begline:
a1a052df 1101 fprintf (stderr, "/begline");
25fe55af 1102 break;
fa9a63c5
RM
1103
1104 case endline:
a1a052df 1105 fprintf (stderr, "/endline");
25fe55af 1106 break;
fa9a63c5
RM
1107
1108 case on_failure_jump:
25fe55af 1109 extract_number_and_incr (&mcnt, &p);
a1a052df 1110 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1111 break;
fa9a63c5
RM
1112
1113 case on_failure_keep_string_jump:
25fe55af 1114 extract_number_and_incr (&mcnt, &p);
a1a052df 1115 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1116 break;
fa9a63c5 1117
0683b6fa
SM
1118 case on_failure_jump_nastyloop:
1119 extract_number_and_incr (&mcnt, &p);
a1a052df 1120 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1121 break;
1122
505bde11 1123 case on_failure_jump_loop:
fa9a63c5 1124 extract_number_and_incr (&mcnt, &p);
a1a052df 1125 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1126 break;
1127
505bde11 1128 case on_failure_jump_smart:
fa9a63c5 1129 extract_number_and_incr (&mcnt, &p);
a1a052df 1130 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1131 break;
1132
25fe55af 1133 case jump:
fa9a63c5 1134 extract_number_and_incr (&mcnt, &p);
a1a052df 1135 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1136 break;
1137
25fe55af
RS
1138 case succeed_n:
1139 extract_number_and_incr (&mcnt, &p);
1140 extract_number_and_incr (&mcnt2, &p);
a1a052df 1141 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1142 break;
5e69f11e 1143
25fe55af
RS
1144 case jump_n:
1145 extract_number_and_incr (&mcnt, &p);
1146 extract_number_and_incr (&mcnt2, &p);
a1a052df 1147 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1148 break;
5e69f11e 1149
25fe55af
RS
1150 case set_number_at:
1151 extract_number_and_incr (&mcnt, &p);
1152 extract_number_and_incr (&mcnt2, &p);
a1a052df 1153 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1154 break;
5e69f11e 1155
25fe55af 1156 case wordbound:
a1a052df 1157 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1158 break;
1159
1160 case notwordbound:
a1a052df 1161 fprintf (stderr, "/notwordbound");
25fe55af 1162 break;
fa9a63c5
RM
1163
1164 case wordbeg:
a1a052df 1165 fprintf (stderr, "/wordbeg");
fa9a63c5 1166 break;
5e69f11e 1167
fa9a63c5 1168 case wordend:
a1a052df 1169 fprintf (stderr, "/wordend");
e2543b02 1170 break;
5e69f11e 1171
669fa600 1172 case symbeg:
e2543b02 1173 fprintf (stderr, "/symbeg");
669fa600
SM
1174 break;
1175
1176 case symend:
e2543b02 1177 fprintf (stderr, "/symend");
669fa600 1178 break;
5e69f11e 1179
1fb352e0 1180 case syntaxspec:
a1a052df 1181 fprintf (stderr, "/syntaxspec");
1fb352e0 1182 mcnt = *p++;
a1a052df 1183 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1184 break;
1185
1186 case notsyntaxspec:
a1a052df 1187 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1188 mcnt = *p++;
a1a052df 1189 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1190 break;
1191
0b32bf0e 1192# ifdef emacs
fa9a63c5 1193 case before_dot:
a1a052df 1194 fprintf (stderr, "/before_dot");
25fe55af 1195 break;
fa9a63c5
RM
1196
1197 case at_dot:
a1a052df 1198 fprintf (stderr, "/at_dot");
25fe55af 1199 break;
fa9a63c5
RM
1200
1201 case after_dot:
a1a052df 1202 fprintf (stderr, "/after_dot");
25fe55af 1203 break;
fa9a63c5 1204
1fb352e0 1205 case categoryspec:
a1a052df 1206 fprintf (stderr, "/categoryspec");
fa9a63c5 1207 mcnt = *p++;
a1a052df 1208 fprintf (stderr, "/%d", mcnt);
25fe55af 1209 break;
5e69f11e 1210
1fb352e0 1211 case notcategoryspec:
a1a052df 1212 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1213 mcnt = *p++;
a1a052df 1214 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1215 break;
0b32bf0e 1216# endif /* emacs */
fa9a63c5 1217
fa9a63c5 1218 case begbuf:
a1a052df 1219 fprintf (stderr, "/begbuf");
25fe55af 1220 break;
fa9a63c5
RM
1221
1222 case endbuf:
a1a052df 1223 fprintf (stderr, "/endbuf");
25fe55af 1224 break;
fa9a63c5 1225
25fe55af 1226 default:
a1a052df 1227 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1228 }
1229
a1a052df 1230 fprintf (stderr, "\n");
fa9a63c5
RM
1231 }
1232
a1a052df 1233 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1234}
1235
1236
1237void
1238print_compiled_pattern (bufp)
1239 struct re_pattern_buffer *bufp;
1240{
01618498 1241 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1242
1243 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1244 printf ("%ld bytes used/%ld bytes allocated.\n",
1245 bufp->used, bufp->allocated);
fa9a63c5
RM
1246
1247 if (bufp->fastmap_accurate && bufp->fastmap)
1248 {
1249 printf ("fastmap: ");
1250 print_fastmap (bufp->fastmap);
1251 }
1252
1253 printf ("re_nsub: %d\t", bufp->re_nsub);
1254 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1255 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1256 printf ("no_sub: %d\t", bufp->no_sub);
1257 printf ("not_bol: %d\t", bufp->not_bol);
1258 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1259 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1260 fflush (stdout);
fa9a63c5
RM
1261 /* Perhaps we should print the translate table? */
1262}
1263
1264
1265void
1266print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1267 re_char *where;
1268 re_char *string1;
1269 re_char *string2;
fa9a63c5
RM
1270 int size1;
1271 int size2;
1272{
4bb91c68 1273 int this_char;
5e69f11e 1274
fa9a63c5
RM
1275 if (where == NULL)
1276 printf ("(null)");
1277 else
1278 {
1279 if (FIRST_STRING_P (where))
25fe55af
RS
1280 {
1281 for (this_char = where - string1; this_char < size1; this_char++)
1282 putchar (string1[this_char]);
fa9a63c5 1283
25fe55af
RS
1284 where = string2;
1285 }
fa9a63c5
RM
1286
1287 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1288 putchar (string2[this_char]);
fa9a63c5
RM
1289 }
1290}
1291
1292#else /* not DEBUG */
1293
0b32bf0e
SM
1294# undef assert
1295# define assert(e)
fa9a63c5 1296
0b32bf0e
SM
1297# define DEBUG_STATEMENT(e)
1298# define DEBUG_PRINT1(x)
1299# define DEBUG_PRINT2(x1, x2)
1300# define DEBUG_PRINT3(x1, x2, x3)
1301# define DEBUG_PRINT4(x1, x2, x3, x4)
1302# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1303# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1304
1305#endif /* not DEBUG */
1306\f
1307/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1308 also be assigned to arbitrarily: each pattern buffer stores its own
1309 syntax, so it can be changed between regex compilations. */
1310/* This has no initializer because initialized variables in Emacs
1311 become read-only after dumping. */
1312reg_syntax_t re_syntax_options;
1313
1314
1315/* Specify the precise syntax of regexps for compilation. This provides
1316 for compatibility for various utilities which historically have
1317 different, incompatible syntaxes.
1318
1319 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1320 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1321
1322reg_syntax_t
1323re_set_syntax (syntax)
f9b0fd99 1324 reg_syntax_t syntax;
fa9a63c5
RM
1325{
1326 reg_syntax_t ret = re_syntax_options;
5e69f11e 1327
fa9a63c5
RM
1328 re_syntax_options = syntax;
1329 return ret;
1330}
c0f9ea08 1331WEAK_ALIAS (__re_set_syntax, re_set_syntax)
f9b0fd99
RS
1332
1333/* Regexp to use to replace spaces, or NULL meaning don't. */
1334static re_char *whitespace_regexp;
1335
1336void
1337re_set_whitespace_regexp (regexp)
6470ea05 1338 const char *regexp;
f9b0fd99 1339{
6470ea05 1340 whitespace_regexp = (re_char *) regexp;
f9b0fd99
RS
1341}
1342WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1343\f
1344/* This table gives an error message for each of the error codes listed
4bb91c68 1345 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1346 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1347 but why not be nice? */
fa9a63c5
RM
1348
1349static const char *re_error_msgid[] =
5e69f11e
RM
1350 {
1351 gettext_noop ("Success"), /* REG_NOERROR */
1352 gettext_noop ("No match"), /* REG_NOMATCH */
1353 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1354 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1355 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1356 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1357 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1358 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1359 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1360 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1361 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1362 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1363 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1364 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1365 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1366 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1367 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
b3e4c897 1368 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
fa9a63c5
RM
1369 };
1370\f
4bb91c68 1371/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1372
1373/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1374 searching and matching functions should not call alloca. On some
1375 systems, alloca is implemented in terms of malloc, and if we're
1376 using the relocating allocator routines, then malloc could cause a
1377 relocation, which might (if the strings being searched are in the
1378 ralloc heap) shift the data out from underneath the regexp
1379 routines.
1380
5e69f11e 1381 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1382 processes input from X in a signal handler; processing X input may
1383 call malloc; if input arrives while a matching routine is calling
1384 malloc, then we're scrod. But Emacs can't just block input while
1385 calling matching routines; then we don't notice interrupts when
1386 they come in. So, Emacs blocks input around all regexp calls
1387 except the matching calls, which it leaves unprotected, in the
1388 faith that they will not malloc. */
1389
1390/* Normally, this is fine. */
1391#define MATCH_MAY_ALLOCATE
1392
1393/* When using GNU C, we are not REALLY using the C alloca, no matter
1394 what config.h may say. So don't take precautions for it. */
1395#ifdef __GNUC__
0b32bf0e 1396# undef C_ALLOCA
fa9a63c5
RM
1397#endif
1398
1399/* The match routines may not allocate if (1) they would do it with malloc
1400 and (2) it's not safe for them to use malloc.
1401 Note that if REL_ALLOC is defined, matching would not use malloc for the
1402 failure stack, but we would still use it for the register vectors;
4bb91c68 1403 so REL_ALLOC should not affect this. */
0b32bf0e
SM
1404#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1405# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1406#endif
1407
1408\f
1409/* Failure stack declarations and macros; both re_compile_fastmap and
1410 re_match_2 use a failure stack. These have to be macros because of
1411 REGEX_ALLOCATE_STACK. */
5e69f11e 1412
fa9a63c5 1413
320a2a73 1414/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1415 when matching. If this number is exceeded, we allocate more
1416 space, so it is not a hard limit. */
1417#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1418# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1419#endif
1420
1421/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1422 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1423 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1424 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1425 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1426# if defined MATCH_MAY_ALLOCATE
1427/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1428 whose default stack limit is 2mb. In order for a larger
1429 value to work reliably, you have to try to make it accord
1430 with the process stack limit. */
c0f9ea08
SM
1431size_t re_max_failures = 40000;
1432# else
1433size_t re_max_failures = 4000;
1434# endif
fa9a63c5
RM
1435
1436union fail_stack_elt
1437{
01618498 1438 re_char *pointer;
c0f9ea08
SM
1439 /* This should be the biggest `int' that's no bigger than a pointer. */
1440 long integer;
fa9a63c5
RM
1441};
1442
1443typedef union fail_stack_elt fail_stack_elt_t;
1444
1445typedef struct
1446{
1447 fail_stack_elt_t *stack;
c0f9ea08
SM
1448 size_t size;
1449 size_t avail; /* Offset of next open position. */
1450 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1451} fail_stack_type;
1452
505bde11 1453#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1454#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1455
1456
1457/* Define macros to initialize and free the failure stack.
1458 Do `return -2' if the alloc fails. */
1459
1460#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1461# define INIT_FAIL_STACK() \
fa9a63c5
RM
1462 do { \
1463 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1464 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1465 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1466 \
1467 if (fail_stack.stack == NULL) \
1468 return -2; \
1469 \
1470 fail_stack.size = INIT_FAILURE_ALLOC; \
1471 fail_stack.avail = 0; \
505bde11 1472 fail_stack.frame = 0; \
fa9a63c5
RM
1473 } while (0)
1474
0b32bf0e 1475# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1476#else
0b32bf0e 1477# define INIT_FAIL_STACK() \
fa9a63c5
RM
1478 do { \
1479 fail_stack.avail = 0; \
505bde11 1480 fail_stack.frame = 0; \
fa9a63c5
RM
1481 } while (0)
1482
0b32bf0e 1483# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1484#endif
1485
1486
320a2a73
KH
1487/* Double the size of FAIL_STACK, up to a limit
1488 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1489
1490 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1491 allocating space for it or it was already too large.
1492
4bb91c68 1493 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1494
320a2a73
KH
1495/* Factor to increase the failure stack size by
1496 when we increase it.
1497 This used to be 2, but 2 was too wasteful
1498 because the old discarded stacks added up to as much space
1499 were as ultimate, maximum-size stack. */
1500#define FAIL_STACK_GROWTH_FACTOR 4
1501
1502#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1503 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1504 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1505 ? 0 \
320a2a73
KH
1506 : ((fail_stack).stack \
1507 = (fail_stack_elt_t *) \
25fe55af
RS
1508 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1509 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1510 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1511 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1512 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1513 \
1514 (fail_stack).stack == NULL \
1515 ? 0 \
6453db45
KH
1516 : ((fail_stack).size \
1517 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1518 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1519 * FAIL_STACK_GROWTH_FACTOR)) \
1520 / sizeof (fail_stack_elt_t)), \
25fe55af 1521 1)))
fa9a63c5
RM
1522
1523
fa9a63c5
RM
1524/* Push a pointer value onto the failure stack.
1525 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1526 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1527#define PUSH_FAILURE_POINTER(item) \
01618498 1528 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1529
1530/* This pushes an integer-valued item onto the failure stack.
1531 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1532 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1533#define PUSH_FAILURE_INT(item) \
1534 fail_stack.stack[fail_stack.avail++].integer = (item)
1535
1536/* Push a fail_stack_elt_t value onto the failure stack.
1537 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1538 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1539#define PUSH_FAILURE_ELT(item) \
1540 fail_stack.stack[fail_stack.avail++] = (item)
1541
1542/* These three POP... operations complement the three PUSH... operations.
1543 All assume that `fail_stack' is nonempty. */
1544#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1545#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1546#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1547
505bde11
SM
1548/* Individual items aside from the registers. */
1549#define NUM_NONREG_ITEMS 3
1550
1551/* Used to examine the stack (to detect infinite loops). */
1552#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1553#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1554#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1555#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1556
1557
505bde11
SM
1558#define ENSURE_FAIL_STACK(space) \
1559while (REMAINING_AVAIL_SLOTS <= space) { \
1560 if (!GROW_FAIL_STACK (fail_stack)) \
1561 return -2; \
1562 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1563 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1564}
1565
1566/* Push register NUM onto the stack. */
1567#define PUSH_FAILURE_REG(num) \
1568do { \
1569 char *destination; \
1570 ENSURE_FAIL_STACK(3); \
1571 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1572 num, regstart[num], regend[num]); \
1573 PUSH_FAILURE_POINTER (regstart[num]); \
1574 PUSH_FAILURE_POINTER (regend[num]); \
1575 PUSH_FAILURE_INT (num); \
1576} while (0)
1577
01618498
SM
1578/* Change the counter's value to VAL, but make sure that it will
1579 be reset when backtracking. */
1580#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1581do { \
1582 char *destination; \
1583 int c; \
1584 ENSURE_FAIL_STACK(3); \
1585 EXTRACT_NUMBER (c, ptr); \
01618498 1586 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1587 PUSH_FAILURE_INT (c); \
1588 PUSH_FAILURE_POINTER (ptr); \
1589 PUSH_FAILURE_INT (-1); \
01618498 1590 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1591} while (0)
1592
505bde11 1593/* Pop a saved register off the stack. */
dc1e502d 1594#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1595do { \
1596 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1597 if (reg == -1) \
1598 { \
1599 /* It's a counter. */ \
6dcf2d0e
SM
1600 /* Here, we discard `const', making re_match non-reentrant. */ \
1601 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1602 reg = POP_FAILURE_INT (); \
1603 STORE_NUMBER (ptr, reg); \
1604 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1605 } \
1606 else \
1607 { \
1608 regend[reg] = POP_FAILURE_POINTER (); \
1609 regstart[reg] = POP_FAILURE_POINTER (); \
1610 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1611 reg, regstart[reg], regend[reg]); \
1612 } \
505bde11
SM
1613} while (0)
1614
1615/* Check that we are not stuck in an infinite loop. */
1616#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1617do { \
f6df485f 1618 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1619 /* Check for infinite matching loops */ \
f6df485f
RS
1620 while (failure > 0 \
1621 && (FAILURE_STR (failure) == string_place \
1622 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1623 { \
1624 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1625 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1626 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1627 { \
6df42991
SM
1628 cycle = 1; \
1629 break; \
f6df485f 1630 } \
66f0296e 1631 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1632 failure = NEXT_FAILURE_HANDLE(failure); \
1633 } \
1634 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1635} while (0)
6df42991 1636
fa9a63c5 1637/* Push the information about the state we will need
5e69f11e
RM
1638 if we ever fail back to it.
1639
505bde11 1640 Requires variables fail_stack, regstart, regend and
320a2a73 1641 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1642 declared.
5e69f11e 1643
fa9a63c5
RM
1644 Does `return FAILURE_CODE' if runs out of memory. */
1645
505bde11
SM
1646#define PUSH_FAILURE_POINT(pattern, string_place) \
1647do { \
1648 char *destination; \
1649 /* Must be int, so when we don't save any registers, the arithmetic \
1650 of 0 + -1 isn't done as unsigned. */ \
1651 \
505bde11 1652 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1653 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1654 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1655 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1656 \
1657 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1658 \
1659 DEBUG_PRINT1 ("\n"); \
1660 \
1661 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1662 PUSH_FAILURE_INT (fail_stack.frame); \
1663 \
1664 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1665 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1666 DEBUG_PRINT1 ("'\n"); \
1667 PUSH_FAILURE_POINTER (string_place); \
1668 \
1669 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1670 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1671 PUSH_FAILURE_POINTER (pattern); \
1672 \
1673 /* Close the frame by moving the frame pointer past it. */ \
1674 fail_stack.frame = fail_stack.avail; \
1675} while (0)
fa9a63c5 1676
320a2a73
KH
1677/* Estimate the size of data pushed by a typical failure stack entry.
1678 An estimate is all we need, because all we use this for
1679 is to choose a limit for how big to make the failure stack. */
ada30c0e 1680/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1681#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1682
fa9a63c5
RM
1683/* How many items can still be added to the stack without overflowing it. */
1684#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1685
1686
1687/* Pops what PUSH_FAIL_STACK pushes.
1688
1689 We restore into the parameters, all of which should be lvalues:
1690 STR -- the saved data position.
1691 PAT -- the saved pattern position.
fa9a63c5 1692 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1693
fa9a63c5 1694 Also assumes the variables `fail_stack' and (if debugging), `bufp',
7814e705 1695 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1696
505bde11
SM
1697#define POP_FAILURE_POINT(str, pat) \
1698do { \
fa9a63c5
RM
1699 assert (!FAIL_STACK_EMPTY ()); \
1700 \
1701 /* Remove failure points and point to how many regs pushed. */ \
1702 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1703 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1704 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1705 \
505bde11
SM
1706 /* Pop the saved registers. */ \
1707 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1708 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1709 \
01618498 1710 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1711 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1712 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1713 \
1714 /* If the saved string location is NULL, it came from an \
1715 on_failure_keep_string_jump opcode, and we want to throw away the \
1716 saved NULL, thus retaining our current position in the string. */ \
01618498 1717 str = POP_FAILURE_POINTER (); \
505bde11 1718 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1719 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1720 DEBUG_PRINT1 ("'\n"); \
1721 \
505bde11
SM
1722 fail_stack.frame = POP_FAILURE_INT (); \
1723 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1724 \
505bde11
SM
1725 assert (fail_stack.avail >= 0); \
1726 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1727 \
fa9a63c5 1728 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1729} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1730
1731
1732\f
fa9a63c5 1733/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1734#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1735\f
1736/* Subroutine declarations and macros for regex_compile. */
1737
4bb91c68
SM
1738static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1739 reg_syntax_t syntax,
1740 struct re_pattern_buffer *bufp));
1741static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1742static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1743 int arg1, int arg2));
1744static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1745 int arg, unsigned char *end));
1746static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1747 int arg1, int arg2, unsigned char *end));
01618498
SM
1748static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1749 re_char *p,
4bb91c68 1750 reg_syntax_t syntax));
01618498
SM
1751static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1752 re_char *pend,
4bb91c68 1753 reg_syntax_t syntax));
01618498
SM
1754static re_char *skip_one_char _RE_ARGS ((re_char *p));
1755static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1756 char *fastmap, const int multibyte));
fa9a63c5 1757
fa9a63c5 1758/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1759 translation. */
36595814 1760#define PATFETCH(c) \
2d1675e4
SM
1761 do { \
1762 int len; \
1763 if (p == pend) return REG_EEND; \
1764 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1765 p += len; \
fa9a63c5
RM
1766 } while (0)
1767
fa9a63c5
RM
1768
1769/* If `translate' is non-null, return translate[D], else just D. We
1770 cast the subscript to translate because some data is declared as
1771 `char *', to avoid warnings when a string constant is passed. But
1772 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1773#ifndef TRANSLATE
0b32bf0e 1774# define TRANSLATE(d) \
66f0296e 1775 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1776#endif
fa9a63c5
RM
1777
1778
1779/* Macros for outputting the compiled pattern into `buffer'. */
1780
1781/* If the buffer isn't allocated when it comes in, use this. */
1782#define INIT_BUF_SIZE 32
1783
4bb91c68 1784/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1785#define GET_BUFFER_SPACE(n) \
01618498 1786 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1787 EXTEND_BUFFER ()
1788
1789/* Make sure we have one more byte of buffer space and then add C to it. */
1790#define BUF_PUSH(c) \
1791 do { \
1792 GET_BUFFER_SPACE (1); \
1793 *b++ = (unsigned char) (c); \
1794 } while (0)
1795
1796
1797/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1798#define BUF_PUSH_2(c1, c2) \
1799 do { \
1800 GET_BUFFER_SPACE (2); \
1801 *b++ = (unsigned char) (c1); \
1802 *b++ = (unsigned char) (c2); \
1803 } while (0)
1804
1805
4bb91c68 1806/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1807#define BUF_PUSH_3(c1, c2, c3) \
1808 do { \
1809 GET_BUFFER_SPACE (3); \
1810 *b++ = (unsigned char) (c1); \
1811 *b++ = (unsigned char) (c2); \
1812 *b++ = (unsigned char) (c3); \
1813 } while (0)
1814
1815
1816/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1817 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1818#define STORE_JUMP(op, loc, to) \
1819 store_op1 (op, loc, (to) - (loc) - 3)
1820
1821/* Likewise, for a two-argument jump. */
1822#define STORE_JUMP2(op, loc, to, arg) \
1823 store_op2 (op, loc, (to) - (loc) - 3, arg)
1824
4bb91c68 1825/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1826#define INSERT_JUMP(op, loc, to) \
1827 insert_op1 (op, loc, (to) - (loc) - 3, b)
1828
1829/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1830#define INSERT_JUMP2(op, loc, to, arg) \
1831 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1832
1833
1834/* This is not an arbitrary limit: the arguments which represent offsets
839966f3 1835 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1836 be too small, many things would have to change. */
839966f3
KH
1837# define MAX_BUF_SIZE (1L << 15)
1838
1839#if 0 /* This is when we thought it could be 2^16 bytes. */
4bb91c68
SM
1840/* Any other compiler which, like MSC, has allocation limit below 2^16
1841 bytes will have to use approach similar to what was done below for
1842 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1843 reallocating to 0 bytes. Such thing is not going to work too well.
1844 You have been warned!! */
1845#if defined _MSC_VER && !defined WIN32
1846/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1847# define MAX_BUF_SIZE 65500L
1848#else
1849# define MAX_BUF_SIZE (1L << 16)
1850#endif
839966f3 1851#endif /* 0 */
fa9a63c5
RM
1852
1853/* Extend the buffer by twice its current size via realloc and
1854 reset the pointers that pointed into the old block to point to the
1855 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1856 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1857#if __BOUNDED_POINTERS__
1858# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1859# define MOVE_BUFFER_POINTER(P) \
1860 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1861# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1862 else \
1863 { \
1864 SET_HIGH_BOUND (b); \
1865 SET_HIGH_BOUND (begalt); \
1866 if (fixup_alt_jump) \
1867 SET_HIGH_BOUND (fixup_alt_jump); \
1868 if (laststart) \
1869 SET_HIGH_BOUND (laststart); \
1870 if (pending_exact) \
1871 SET_HIGH_BOUND (pending_exact); \
1872 }
1873#else
1874# define MOVE_BUFFER_POINTER(P) (P) += incr
1875# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1876#endif
fa9a63c5 1877#define EXTEND_BUFFER() \
25fe55af 1878 do { \
01618498 1879 re_char *old_buffer = bufp->buffer; \
25fe55af 1880 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1881 return REG_ESIZE; \
1882 bufp->allocated <<= 1; \
1883 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1884 bufp->allocated = MAX_BUF_SIZE; \
01618498 1885 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1886 if (bufp->buffer == NULL) \
1887 return REG_ESPACE; \
1888 /* If the buffer moved, move all the pointers into it. */ \
1889 if (old_buffer != bufp->buffer) \
1890 { \
4bb91c68
SM
1891 int incr = bufp->buffer - old_buffer; \
1892 MOVE_BUFFER_POINTER (b); \
1893 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1894 if (fixup_alt_jump) \
4bb91c68 1895 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1896 if (laststart) \
4bb91c68 1897 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1898 if (pending_exact) \
4bb91c68 1899 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1900 } \
4bb91c68 1901 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1902 } while (0)
1903
1904
1905/* Since we have one byte reserved for the register number argument to
1906 {start,stop}_memory, the maximum number of groups we can report
1907 things about is what fits in that byte. */
1908#define MAX_REGNUM 255
1909
1910/* But patterns can have more than `MAX_REGNUM' registers. We just
1911 ignore the excess. */
098d42af 1912typedef int regnum_t;
fa9a63c5
RM
1913
1914
1915/* Macros for the compile stack. */
1916
1917/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1918 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1919/* int may be not enough when sizeof(int) == 2. */
1920typedef long pattern_offset_t;
fa9a63c5
RM
1921
1922typedef struct
1923{
1924 pattern_offset_t begalt_offset;
1925 pattern_offset_t fixup_alt_jump;
5e69f11e 1926 pattern_offset_t laststart_offset;
fa9a63c5
RM
1927 regnum_t regnum;
1928} compile_stack_elt_t;
1929
1930
1931typedef struct
1932{
1933 compile_stack_elt_t *stack;
1934 unsigned size;
1935 unsigned avail; /* Offset of next open position. */
1936} compile_stack_type;
1937
1938
1939#define INIT_COMPILE_STACK_SIZE 32
1940
1941#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1942#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1943
4bb91c68 1944/* The next available element. */
fa9a63c5
RM
1945#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1946
1cee1e27
SM
1947/* Explicit quit checking is only used on NTemacs and whenever we
1948 use polling to process input events. */
1949#if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
77d11aec
RS
1950extern int immediate_quit;
1951# define IMMEDIATE_QUIT_CHECK \
1952 do { \
1953 if (immediate_quit) QUIT; \
1954 } while (0)
1955#else
1956# define IMMEDIATE_QUIT_CHECK ((void)0)
1957#endif
1958\f
b18215fc
RS
1959/* Structure to manage work area for range table. */
1960struct range_table_work_area
1961{
1962 int *table; /* actual work area. */
1963 int allocated; /* allocated size for work area in bytes. */
7814e705 1964 int used; /* actually used size in words. */
96cc36cc 1965 int bits; /* flag to record character classes */
b18215fc
RS
1966};
1967
77d11aec
RS
1968/* Make sure that WORK_AREA can hold more N multibyte characters.
1969 This is used only in set_image_of_range and set_image_of_range_1.
1970 It expects WORK_AREA to be a pointer.
1971 If it can't get the space, it returns from the surrounding function. */
1972
1973#define EXTEND_RANGE_TABLE(work_area, n) \
1974 do { \
8f924df7 1975 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
77d11aec 1976 { \
8f924df7
KH
1977 extend_range_table_work_area (&work_area); \
1978 if ((work_area).table == 0) \
77d11aec
RS
1979 return (REG_ESPACE); \
1980 } \
b18215fc
RS
1981 } while (0)
1982
96cc36cc
RS
1983#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1984 (work_area).bits |= (bit)
1985
14473664
SM
1986/* Bits used to implement the multibyte-part of the various character classes
1987 such as [:alnum:] in a charset's range table. */
1988#define BIT_WORD 0x1
1989#define BIT_LOWER 0x2
1990#define BIT_PUNCT 0x4
1991#define BIT_SPACE 0x8
1992#define BIT_UPPER 0x10
1993#define BIT_MULTIBYTE 0x20
96cc36cc 1994
b18215fc
RS
1995/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1996#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
77d11aec 1997 do { \
8f924df7 1998 EXTEND_RANGE_TABLE ((work_area), 2); \
b18215fc
RS
1999 (work_area).table[(work_area).used++] = (range_start); \
2000 (work_area).table[(work_area).used++] = (range_end); \
2001 } while (0)
2002
7814e705 2003/* Free allocated memory for WORK_AREA. */
b18215fc
RS
2004#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
2005 do { \
2006 if ((work_area).table) \
2007 free ((work_area).table); \
2008 } while (0)
2009
96cc36cc 2010#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 2011#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 2012#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 2013#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 2014\f
b18215fc 2015
fa9a63c5 2016/* Set the bit for character C in a list. */
01618498 2017#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
2018
2019
bf216479
KH
2020#ifdef emacs
2021
8f924df7
KH
2022/* Store characters in the rage range C0 to C1 in WORK_AREA while
2023 translating them and paying attention to the continuity of
2024 translated characters.
2025
2026 Implementation note: It is better to implement this fairly big
2027 macro by a function, but it's not that easy because macros called
2028 in this macro assume various local variables already declared. */
bf216479 2029
6fdd04b0
KH
2030#define SETUP_MULTIBYTE_RANGE(work_area, c0, c1) \
2031 do { \
2032 re_wchar_t c, t, t_last; \
2033 int n; \
2034 \
2035 c = (c0); \
2036 t_last = multibyte ? TRANSLATE (c) : TRANSLATE (MAKE_CHAR_MULTIBYTE (c)); \
2037 for (c++, n = 1; c <= (c1); c++, n++) \
2038 { \
2039 t = multibyte ? TRANSLATE (c) : TRANSLATE (MAKE_CHAR_MULTIBYTE (c)); \
2040 if (t_last + n == t) \
2041 continue; \
2042 SET_RANGE_TABLE_WORK_AREA ((work_area), t_last, t_last + n - 1); \
2043 t_last = t; \
8f924df7 2044 n = 0; \
6fdd04b0
KH
2045 } \
2046 if (n > 0) \
2047 SET_RANGE_TABLE_WORK_AREA ((work_area), t_last, t_last + n - 1); \
bf216479
KH
2048 } while (0)
2049
2050#endif /* emacs */
2051
fa9a63c5 2052/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 2053#define GET_UNSIGNED_NUMBER(num) \
c72b0edd
SM
2054 do { \
2055 if (p == pend) \
2056 FREE_STACK_RETURN (REG_EBRACE); \
2057 else \
2058 { \
2059 PATFETCH (c); \
2060 while ('0' <= c && c <= '9') \
2061 { \
2062 int prev; \
2063 if (num < 0) \
2064 num = 0; \
2065 prev = num; \
2066 num = num * 10 + c - '0'; \
2067 if (num / 10 != prev) \
2068 FREE_STACK_RETURN (REG_BADBR); \
2069 if (p == pend) \
2070 FREE_STACK_RETURN (REG_EBRACE); \
2071 PATFETCH (c); \
2072 } \
2073 } \
2074 } while (0)
77d11aec 2075\f
1fdab503 2076#if ! WIDE_CHAR_SUPPORT
01618498 2077
14473664 2078/* Map a string to the char class it names (if any). */
1fdab503 2079re_wctype_t
ada30c0e
SM
2080re_wctype (str)
2081 re_char *str;
14473664 2082{
ada30c0e 2083 const char *string = str;
14473664
SM
2084 if (STREQ (string, "alnum")) return RECC_ALNUM;
2085 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2086 else if (STREQ (string, "word")) return RECC_WORD;
2087 else if (STREQ (string, "ascii")) return RECC_ASCII;
2088 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2089 else if (STREQ (string, "graph")) return RECC_GRAPH;
2090 else if (STREQ (string, "lower")) return RECC_LOWER;
2091 else if (STREQ (string, "print")) return RECC_PRINT;
2092 else if (STREQ (string, "punct")) return RECC_PUNCT;
2093 else if (STREQ (string, "space")) return RECC_SPACE;
2094 else if (STREQ (string, "upper")) return RECC_UPPER;
2095 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2096 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2097 else if (STREQ (string, "digit")) return RECC_DIGIT;
2098 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2099 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2100 else if (STREQ (string, "blank")) return RECC_BLANK;
2101 else return 0;
2102}
2103
2104/* True iff CH is in the char class CC. */
1fdab503 2105boolean
14473664
SM
2106re_iswctype (ch, cc)
2107 int ch;
2108 re_wctype_t cc;
2109{
2110 switch (cc)
2111 {
0cdd06f8
SM
2112 case RECC_ALNUM: return ISALNUM (ch);
2113 case RECC_ALPHA: return ISALPHA (ch);
2114 case RECC_BLANK: return ISBLANK (ch);
2115 case RECC_CNTRL: return ISCNTRL (ch);
2116 case RECC_DIGIT: return ISDIGIT (ch);
2117 case RECC_GRAPH: return ISGRAPH (ch);
2118 case RECC_LOWER: return ISLOWER (ch);
2119 case RECC_PRINT: return ISPRINT (ch);
2120 case RECC_PUNCT: return ISPUNCT (ch);
2121 case RECC_SPACE: return ISSPACE (ch);
2122 case RECC_UPPER: return ISUPPER (ch);
2123 case RECC_XDIGIT: return ISXDIGIT (ch);
2124 case RECC_ASCII: return IS_REAL_ASCII (ch);
2125 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2126 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2127 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2128 case RECC_WORD: return ISWORD (ch);
2129 case RECC_ERROR: return false;
2130 default:
2131 abort();
14473664
SM
2132 }
2133}
fa9a63c5 2134
14473664
SM
2135/* Return a bit-pattern to use in the range-table bits to match multibyte
2136 chars of class CC. */
2137static int
2138re_wctype_to_bit (cc)
2139 re_wctype_t cc;
2140{
2141 switch (cc)
2142 {
2143 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2144 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2145 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2146 case RECC_LOWER: return BIT_LOWER;
2147 case RECC_UPPER: return BIT_UPPER;
2148 case RECC_PUNCT: return BIT_PUNCT;
2149 case RECC_SPACE: return BIT_SPACE;
14473664 2150 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2151 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2152 default:
2153 abort();
14473664
SM
2154 }
2155}
2156#endif
77d11aec
RS
2157\f
2158/* Filling in the work area of a range. */
2159
2160/* Actually extend the space in WORK_AREA. */
2161
2162static void
2163extend_range_table_work_area (work_area)
2164 struct range_table_work_area *work_area;
177c0ea7 2165{
77d11aec
RS
2166 work_area->allocated += 16 * sizeof (int);
2167 if (work_area->table)
2168 work_area->table
2169 = (int *) realloc (work_area->table, work_area->allocated);
2170 else
2171 work_area->table
2172 = (int *) malloc (work_area->allocated);
2173}
2174
8f924df7 2175#if 0
77d11aec
RS
2176#ifdef emacs
2177
2178/* Carefully find the ranges of codes that are equivalent
2179 under case conversion to the range start..end when passed through
2180 TRANSLATE. Handle the case where non-letters can come in between
2181 two upper-case letters (which happens in Latin-1).
2182 Also handle the case of groups of more than 2 case-equivalent chars.
2183
2184 The basic method is to look at consecutive characters and see
2185 if they can form a run that can be handled as one.
2186
2187 Returns -1 if successful, REG_ESPACE if ran out of space. */
2188
2189static int
2190set_image_of_range_1 (work_area, start, end, translate)
2191 RE_TRANSLATE_TYPE translate;
2192 struct range_table_work_area *work_area;
2193 re_wchar_t start, end;
2194{
2195 /* `one_case' indicates a character, or a run of characters,
2196 each of which is an isolate (no case-equivalents).
2197 This includes all ASCII non-letters.
2198
2199 `two_case' indicates a character, or a run of characters,
2200 each of which has two case-equivalent forms.
2201 This includes all ASCII letters.
2202
2203 `strange' indicates a character that has more than one
2204 case-equivalent. */
177c0ea7 2205
77d11aec
RS
2206 enum case_type {one_case, two_case, strange};
2207
2208 /* Describe the run that is in progress,
2209 which the next character can try to extend.
2210 If run_type is strange, that means there really is no run.
2211 If run_type is one_case, then run_start...run_end is the run.
2212 If run_type is two_case, then the run is run_start...run_end,
2213 and the case-equivalents end at run_eqv_end. */
2214
2215 enum case_type run_type = strange;
2216 int run_start, run_end, run_eqv_end;
2217
2218 Lisp_Object eqv_table;
2219
2220 if (!RE_TRANSLATE_P (translate))
2221 {
b7c12565 2222 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2223 work_area->table[work_area->used++] = (start);
2224 work_area->table[work_area->used++] = (end);
b7c12565 2225 return -1;
77d11aec
RS
2226 }
2227
2228 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2229
77d11aec
RS
2230 for (; start <= end; start++)
2231 {
2232 enum case_type this_type;
2233 int eqv = RE_TRANSLATE (eqv_table, start);
2234 int minchar, maxchar;
2235
2236 /* Classify this character */
2237 if (eqv == start)
2238 this_type = one_case;
2239 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2240 this_type = two_case;
2241 else
2242 this_type = strange;
2243
2244 if (start < eqv)
2245 minchar = start, maxchar = eqv;
2246 else
2247 minchar = eqv, maxchar = start;
2248
2249 /* Can this character extend the run in progress? */
2250 if (this_type == strange || this_type != run_type
2251 || !(minchar == run_end + 1
2252 && (run_type == two_case
2253 ? maxchar == run_eqv_end + 1 : 1)))
2254 {
2255 /* No, end the run.
2256 Record each of its equivalent ranges. */
2257 if (run_type == one_case)
2258 {
2259 EXTEND_RANGE_TABLE (work_area, 2);
2260 work_area->table[work_area->used++] = run_start;
2261 work_area->table[work_area->used++] = run_end;
2262 }
2263 else if (run_type == two_case)
2264 {
2265 EXTEND_RANGE_TABLE (work_area, 4);
2266 work_area->table[work_area->used++] = run_start;
2267 work_area->table[work_area->used++] = run_end;
2268 work_area->table[work_area->used++]
2269 = RE_TRANSLATE (eqv_table, run_start);
2270 work_area->table[work_area->used++]
2271 = RE_TRANSLATE (eqv_table, run_end);
2272 }
2273 run_type = strange;
2274 }
177c0ea7 2275
77d11aec
RS
2276 if (this_type == strange)
2277 {
2278 /* For a strange character, add each of its equivalents, one
2279 by one. Don't start a range. */
2280 do
2281 {
2282 EXTEND_RANGE_TABLE (work_area, 2);
2283 work_area->table[work_area->used++] = eqv;
2284 work_area->table[work_area->used++] = eqv;
2285 eqv = RE_TRANSLATE (eqv_table, eqv);
2286 }
2287 while (eqv != start);
2288 }
2289
2290 /* Add this char to the run, or start a new run. */
2291 else if (run_type == strange)
2292 {
2293 /* Initialize a new range. */
2294 run_type = this_type;
2295 run_start = start;
2296 run_end = start;
2297 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2298 }
2299 else
2300 {
2301 /* Extend a running range. */
2302 run_end = minchar;
2303 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2304 }
2305 }
2306
2307 /* If a run is still in progress at the end, finish it now
2308 by recording its equivalent ranges. */
2309 if (run_type == one_case)
2310 {
2311 EXTEND_RANGE_TABLE (work_area, 2);
2312 work_area->table[work_area->used++] = run_start;
2313 work_area->table[work_area->used++] = run_end;
2314 }
2315 else if (run_type == two_case)
2316 {
2317 EXTEND_RANGE_TABLE (work_area, 4);
2318 work_area->table[work_area->used++] = run_start;
2319 work_area->table[work_area->used++] = run_end;
2320 work_area->table[work_area->used++]
2321 = RE_TRANSLATE (eqv_table, run_start);
2322 work_area->table[work_area->used++]
2323 = RE_TRANSLATE (eqv_table, run_end);
2324 }
2325
2326 return -1;
2327}
36595814 2328
77d11aec 2329#endif /* emacs */
36595814 2330
b7c12565 2331/* Record the the image of the range start..end when passed through
36595814
SM
2332 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2333 and is not even necessarily contiguous.
b7c12565
RS
2334 Normally we approximate it with the smallest contiguous range that contains
2335 all the chars we need. However, for Latin-1 we go to extra effort
2336 to do a better job.
2337
2338 This function is not called for ASCII ranges.
77d11aec
RS
2339
2340 Returns -1 if successful, REG_ESPACE if ran out of space. */
2341
2342static int
36595814
SM
2343set_image_of_range (work_area, start, end, translate)
2344 RE_TRANSLATE_TYPE translate;
2345 struct range_table_work_area *work_area;
2346 re_wchar_t start, end;
2347{
77d11aec
RS
2348 re_wchar_t cmin, cmax;
2349
2350#ifdef emacs
2351 /* For Latin-1 ranges, use set_image_of_range_1
2352 to get proper handling of ranges that include letters and nonletters.
b7c12565 2353 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2354 For other character sets, we don't bother to get this right. */
b7c12565
RS
2355 if (RE_TRANSLATE_P (translate) && start < 04400
2356 && !(start < 04200 && end >= 04377))
77d11aec 2357 {
b7c12565 2358 int newend;
77d11aec 2359 int tem;
b7c12565
RS
2360 newend = end;
2361 if (newend > 04377)
2362 newend = 04377;
2363 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2364 if (tem > 0)
2365 return tem;
2366
2367 start = 04400;
2368 if (end < 04400)
2369 return -1;
2370 }
2371#endif
2372
b7c12565
RS
2373 EXTEND_RANGE_TABLE (work_area, 2);
2374 work_area->table[work_area->used++] = (start);
2375 work_area->table[work_area->used++] = (end);
2376
2377 cmin = -1, cmax = -1;
77d11aec 2378
36595814 2379 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2380 {
2381 int ch;
77d11aec 2382
b7c12565
RS
2383 for (ch = start; ch <= end; ch++)
2384 {
2385 re_wchar_t c = TRANSLATE (ch);
2386 if (! (start <= c && c <= end))
2387 {
2388 if (cmin == -1)
2389 cmin = c, cmax = c;
2390 else
2391 {
2392 cmin = MIN (cmin, c);
2393 cmax = MAX (cmax, c);
2394 }
2395 }
2396 }
2397
2398 if (cmin != -1)
2399 {
2400 EXTEND_RANGE_TABLE (work_area, 2);
2401 work_area->table[work_area->used++] = (cmin);
2402 work_area->table[work_area->used++] = (cmax);
2403 }
2404 }
36595814 2405
77d11aec
RS
2406 return -1;
2407}
8f924df7 2408#endif /* 0 */
fa9a63c5
RM
2409\f
2410#ifndef MATCH_MAY_ALLOCATE
2411
2412/* If we cannot allocate large objects within re_match_2_internal,
2413 we make the fail stack and register vectors global.
2414 The fail stack, we grow to the maximum size when a regexp
2415 is compiled.
2416 The register vectors, we adjust in size each time we
2417 compile a regexp, according to the number of registers it needs. */
2418
2419static fail_stack_type fail_stack;
2420
2421/* Size with which the following vectors are currently allocated.
2422 That is so we can make them bigger as needed,
4bb91c68 2423 but never make them smaller. */
fa9a63c5
RM
2424static int regs_allocated_size;
2425
66f0296e
SM
2426static re_char ** regstart, ** regend;
2427static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2428
2429/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2430 but don't make them smaller. */
fa9a63c5
RM
2431
2432static
2433regex_grow_registers (num_regs)
2434 int num_regs;
2435{
2436 if (num_regs > regs_allocated_size)
2437 {
66f0296e
SM
2438 RETALLOC_IF (regstart, num_regs, re_char *);
2439 RETALLOC_IF (regend, num_regs, re_char *);
2440 RETALLOC_IF (best_regstart, num_regs, re_char *);
2441 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2442
2443 regs_allocated_size = num_regs;
2444 }
2445}
2446
2447#endif /* not MATCH_MAY_ALLOCATE */
2448\f
99633e97
SM
2449static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2450 compile_stack,
2451 regnum_t regnum));
2452
fa9a63c5
RM
2453/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2454 Returns one of error codes defined in `regex.h', or zero for success.
2455
2456 Assumes the `allocated' (and perhaps `buffer') and `translate'
2457 fields are set in BUFP on entry.
2458
2459 If it succeeds, results are put in BUFP (if it returns an error, the
2460 contents of BUFP are undefined):
2461 `buffer' is the compiled pattern;
2462 `syntax' is set to SYNTAX;
2463 `used' is set to the length of the compiled pattern;
2464 `fastmap_accurate' is zero;
2465 `re_nsub' is the number of subexpressions in PATTERN;
2466 `not_bol' and `not_eol' are zero;
5e69f11e 2467
c0f9ea08 2468 The `fastmap' field is neither examined nor set. */
fa9a63c5 2469
505bde11
SM
2470/* Insert the `jump' from the end of last alternative to "here".
2471 The space for the jump has already been allocated. */
2472#define FIXUP_ALT_JUMP() \
2473do { \
2474 if (fixup_alt_jump) \
2475 STORE_JUMP (jump, fixup_alt_jump, b); \
2476} while (0)
2477
2478
fa9a63c5
RM
2479/* Return, freeing storage we allocated. */
2480#define FREE_STACK_RETURN(value) \
b18215fc
RS
2481 do { \
2482 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2483 free (compile_stack.stack); \
2484 return value; \
2485 } while (0)
fa9a63c5
RM
2486
2487static reg_errcode_t
2488regex_compile (pattern, size, syntax, bufp)
66f0296e 2489 re_char *pattern;
4bb91c68 2490 size_t size;
fa9a63c5
RM
2491 reg_syntax_t syntax;
2492 struct re_pattern_buffer *bufp;
2493{
01618498
SM
2494 /* We fetch characters from PATTERN here. */
2495 register re_wchar_t c, c1;
5e69f11e 2496
fa9a63c5 2497 /* A random temporary spot in PATTERN. */
66f0296e 2498 re_char *p1;
fa9a63c5
RM
2499
2500 /* Points to the end of the buffer, where we should append. */
2501 register unsigned char *b;
5e69f11e 2502
fa9a63c5
RM
2503 /* Keeps track of unclosed groups. */
2504 compile_stack_type compile_stack;
2505
2506 /* Points to the current (ending) position in the pattern. */
22336245
RS
2507#ifdef AIX
2508 /* `const' makes AIX compiler fail. */
66f0296e 2509 unsigned char *p = pattern;
22336245 2510#else
66f0296e 2511 re_char *p = pattern;
22336245 2512#endif
66f0296e 2513 re_char *pend = pattern + size;
5e69f11e 2514
fa9a63c5 2515 /* How to translate the characters in the pattern. */
6676cb1c 2516 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2517
2518 /* Address of the count-byte of the most recently inserted `exactn'
2519 command. This makes it possible to tell if a new exact-match
2520 character can be added to that command or if the character requires
2521 a new `exactn' command. */
2522 unsigned char *pending_exact = 0;
2523
2524 /* Address of start of the most recently finished expression.
2525 This tells, e.g., postfix * where to find the start of its
2526 operand. Reset at the beginning of groups and alternatives. */
2527 unsigned char *laststart = 0;
2528
2529 /* Address of beginning of regexp, or inside of last group. */
2530 unsigned char *begalt;
2531
2532 /* Place in the uncompiled pattern (i.e., the {) to
2533 which to go back if the interval is invalid. */
66f0296e 2534 re_char *beg_interval;
5e69f11e 2535
fa9a63c5 2536 /* Address of the place where a forward jump should go to the end of
7814e705 2537 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2538 last -- ends with a forward jump of this sort. */
2539 unsigned char *fixup_alt_jump = 0;
2540
2541 /* Counts open-groups as they are encountered. Remembered for the
2542 matching close-group on the compile stack, so the same register
2543 number is put in the stop_memory as the start_memory. */
2544 regnum_t regnum = 0;
2545
b18215fc
RS
2546 /* Work area for range table of charset. */
2547 struct range_table_work_area range_table_work;
2548
2d1675e4
SM
2549 /* If the object matched can contain multibyte characters. */
2550 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2551
8f924df7 2552 /* If a target of matching can contain multibyte characters. */
6fdd04b0
KH
2553 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
2554
f9b0fd99
RS
2555 /* Nonzero if we have pushed down into a subpattern. */
2556 int in_subpattern = 0;
2557
2558 /* These hold the values of p, pattern, and pend from the main
2559 pattern when we have pushed into a subpattern. */
2560 re_char *main_p;
2561 re_char *main_pattern;
2562 re_char *main_pend;
2563
fa9a63c5 2564#ifdef DEBUG
99633e97 2565 debug++;
fa9a63c5 2566 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2567 if (debug > 0)
fa9a63c5
RM
2568 {
2569 unsigned debug_count;
5e69f11e 2570
fa9a63c5 2571 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2572 putchar (pattern[debug_count]);
fa9a63c5
RM
2573 putchar ('\n');
2574 }
2575#endif /* DEBUG */
2576
2577 /* Initialize the compile stack. */
2578 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2579 if (compile_stack.stack == NULL)
2580 return REG_ESPACE;
2581
2582 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2583 compile_stack.avail = 0;
2584
b18215fc
RS
2585 range_table_work.table = 0;
2586 range_table_work.allocated = 0;
2587
fa9a63c5
RM
2588 /* Initialize the pattern buffer. */
2589 bufp->syntax = syntax;
2590 bufp->fastmap_accurate = 0;
2591 bufp->not_bol = bufp->not_eol = 0;
6224b623 2592 bufp->used_syntax = 0;
fa9a63c5
RM
2593
2594 /* Set `used' to zero, so that if we return an error, the pattern
2595 printer (for debugging) will think there's no pattern. We reset it
2596 at the end. */
2597 bufp->used = 0;
5e69f11e 2598
fa9a63c5 2599 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2600 bufp->re_nsub = 0;
fa9a63c5 2601
0b32bf0e 2602#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2603 /* Initialize the syntax table. */
2604 init_syntax_once ();
2605#endif
2606
2607 if (bufp->allocated == 0)
2608 {
2609 if (bufp->buffer)
2610 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af 2611 enough space. This loses if buffer's address is bogus, but
7814e705 2612 that is the user's responsibility. */
25fe55af
RS
2613 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2614 }
fa9a63c5 2615 else
7814e705 2616 { /* Caller did not allocate a buffer. Do it for them. */
25fe55af
RS
2617 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2618 }
fa9a63c5
RM
2619 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2620
2621 bufp->allocated = INIT_BUF_SIZE;
2622 }
2623
2624 begalt = b = bufp->buffer;
2625
2626 /* Loop through the uncompiled pattern until we're at the end. */
f9b0fd99 2627 while (1)
fa9a63c5 2628 {
f9b0fd99
RS
2629 if (p == pend)
2630 {
2631 /* If this is the end of an included regexp,
2632 pop back to the main regexp and try again. */
2633 if (in_subpattern)
2634 {
2635 in_subpattern = 0;
2636 pattern = main_pattern;
2637 p = main_p;
2638 pend = main_pend;
2639 continue;
2640 }
2641 /* If this is the end of the main regexp, we are done. */
2642 break;
2643 }
2644
fa9a63c5
RM
2645 PATFETCH (c);
2646
2647 switch (c)
25fe55af 2648 {
f9b0fd99
RS
2649 case ' ':
2650 {
2651 re_char *p1 = p;
2652
2653 /* If there's no special whitespace regexp, treat
4fb680cd
RS
2654 spaces normally. And don't try to do this recursively. */
2655 if (!whitespace_regexp || in_subpattern)
f9b0fd99
RS
2656 goto normal_char;
2657
2658 /* Peek past following spaces. */
2659 while (p1 != pend)
2660 {
2661 if (*p1 != ' ')
2662 break;
2663 p1++;
2664 }
2665 /* If the spaces are followed by a repetition op,
2666 treat them normally. */
c721eee5
RS
2667 if (p1 != pend
2668 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
f9b0fd99
RS
2669 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2670 goto normal_char;
2671
2672 /* Replace the spaces with the whitespace regexp. */
2673 in_subpattern = 1;
2674 main_p = p1;
2675 main_pend = pend;
2676 main_pattern = pattern;
2677 p = pattern = whitespace_regexp;
2678 pend = p + strlen (p);
2679 break;
7814e705 2680 }
f9b0fd99 2681
25fe55af
RS
2682 case '^':
2683 {
7814e705 2684 if ( /* If at start of pattern, it's an operator. */
25fe55af 2685 p == pattern + 1
7814e705 2686 /* If context independent, it's an operator. */
25fe55af 2687 || syntax & RE_CONTEXT_INDEP_ANCHORS
7814e705 2688 /* Otherwise, depends on what's come before. */
25fe55af 2689 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2690 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2691 else
2692 goto normal_char;
2693 }
2694 break;
2695
2696
2697 case '$':
2698 {
2699 if ( /* If at end of pattern, it's an operator. */
2700 p == pend
7814e705 2701 /* If context independent, it's an operator. */
25fe55af
RS
2702 || syntax & RE_CONTEXT_INDEP_ANCHORS
2703 /* Otherwise, depends on what's next. */
2704 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2705 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2706 else
2707 goto normal_char;
2708 }
2709 break;
fa9a63c5
RM
2710
2711
2712 case '+':
25fe55af
RS
2713 case '?':
2714 if ((syntax & RE_BK_PLUS_QM)
2715 || (syntax & RE_LIMITED_OPS))
2716 goto normal_char;
2717 handle_plus:
2718 case '*':
2719 /* If there is no previous pattern... */
2720 if (!laststart)
2721 {
2722 if (syntax & RE_CONTEXT_INVALID_OPS)
2723 FREE_STACK_RETURN (REG_BADRPT);
2724 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2725 goto normal_char;
2726 }
2727
2728 {
7814e705 2729 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2730 boolean zero_times_ok = 0, many_times_ok = 0;
2731 boolean greedy = 1;
25fe55af
RS
2732
2733 /* If there is a sequence of repetition chars, collapse it
2734 down to just one (the right one). We can't combine
2735 interval operators with these because of, e.g., `a{2}*',
7814e705 2736 which should only match an even number of `a's. */
25fe55af
RS
2737
2738 for (;;)
2739 {
0b32bf0e 2740 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2741 && c == '?' && (zero_times_ok || many_times_ok))
2742 greedy = 0;
2743 else
2744 {
2745 zero_times_ok |= c != '+';
2746 many_times_ok |= c != '?';
2747 }
25fe55af
RS
2748
2749 if (p == pend)
2750 break;
ed0767d8
SM
2751 else if (*p == '*'
2752 || (!(syntax & RE_BK_PLUS_QM)
2753 && (*p == '+' || *p == '?')))
25fe55af 2754 ;
ed0767d8 2755 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2756 {
ed0767d8
SM
2757 if (p+1 == pend)
2758 FREE_STACK_RETURN (REG_EESCAPE);
2759 if (p[1] == '+' || p[1] == '?')
2760 PATFETCH (c); /* Gobble up the backslash. */
2761 else
2762 break;
25fe55af
RS
2763 }
2764 else
ed0767d8 2765 break;
25fe55af 2766 /* If we get here, we found another repeat character. */
ed0767d8
SM
2767 PATFETCH (c);
2768 }
25fe55af
RS
2769
2770 /* Star, etc. applied to an empty pattern is equivalent
2771 to an empty pattern. */
4e8a9132 2772 if (!laststart || laststart == b)
25fe55af
RS
2773 break;
2774
2775 /* Now we know whether or not zero matches is allowed
7814e705 2776 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2777 if (greedy)
2778 {
99633e97 2779 if (many_times_ok)
4e8a9132
SM
2780 {
2781 boolean simple = skip_one_char (laststart) == b;
2782 unsigned int startoffset = 0;
f6a3f532 2783 re_opcode_t ofj =
01618498 2784 /* Check if the loop can match the empty string. */
6df42991
SM
2785 (simple || !analyse_first (laststart, b, NULL, 0))
2786 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2787 assert (skip_one_char (laststart) <= b);
177c0ea7 2788
4e8a9132
SM
2789 if (!zero_times_ok && simple)
2790 { /* Since simple * loops can be made faster by using
2791 on_failure_keep_string_jump, we turn simple P+
2792 into PP* if P is simple. */
2793 unsigned char *p1, *p2;
2794 startoffset = b - laststart;
2795 GET_BUFFER_SPACE (startoffset);
2796 p1 = b; p2 = laststart;
2797 while (p2 < p1)
2798 *b++ = *p2++;
2799 zero_times_ok = 1;
99633e97 2800 }
4e8a9132
SM
2801
2802 GET_BUFFER_SPACE (6);
2803 if (!zero_times_ok)
2804 /* A + loop. */
f6a3f532 2805 STORE_JUMP (ofj, b, b + 6);
99633e97 2806 else
4e8a9132
SM
2807 /* Simple * loops can use on_failure_keep_string_jump
2808 depending on what follows. But since we don't know
2809 that yet, we leave the decision up to
2810 on_failure_jump_smart. */
f6a3f532 2811 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2812 laststart + startoffset, b + 6);
99633e97 2813 b += 3;
4e8a9132 2814 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2815 b += 3;
2816 }
2817 else
2818 {
4e8a9132
SM
2819 /* A simple ? pattern. */
2820 assert (zero_times_ok);
2821 GET_BUFFER_SPACE (3);
2822 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2823 b += 3;
2824 }
1c8c6d39
DL
2825 }
2826 else /* not greedy */
2827 { /* I wish the greedy and non-greedy cases could be merged. */
2828
0683b6fa 2829 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2830 if (many_times_ok)
2831 {
f6a3f532
SM
2832 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2833
6df42991
SM
2834 /* The non-greedy multiple match looks like
2835 a repeat..until: we only need a conditional jump
2836 at the end of the loop. */
f6a3f532
SM
2837 if (emptyp) BUF_PUSH (no_op);
2838 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2839 : on_failure_jump, b, laststart);
1c8c6d39
DL
2840 b += 3;
2841 if (zero_times_ok)
2842 {
2843 /* The repeat...until naturally matches one or more.
2844 To also match zero times, we need to first jump to
6df42991 2845 the end of the loop (its conditional jump). */
1c8c6d39
DL
2846 INSERT_JUMP (jump, laststart, b);
2847 b += 3;
2848 }
2849 }
2850 else
2851 {
2852 /* non-greedy a?? */
1c8c6d39
DL
2853 INSERT_JUMP (jump, laststart, b + 3);
2854 b += 3;
2855 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2856 b += 3;
2857 }
2858 }
2859 }
4e8a9132 2860 pending_exact = 0;
fa9a63c5
RM
2861 break;
2862
2863
2864 case '.':
25fe55af
RS
2865 laststart = b;
2866 BUF_PUSH (anychar);
2867 break;
fa9a63c5
RM
2868
2869
25fe55af
RS
2870 case '[':
2871 {
b18215fc 2872 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2873
25fe55af 2874 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2875
25fe55af
RS
2876 /* Ensure that we have enough space to push a charset: the
2877 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2878 GET_BUFFER_SPACE (34);
2879
25fe55af 2880 laststart = b;
e318085a 2881
25fe55af 2882 /* We test `*p == '^' twice, instead of using an if
7814e705 2883 statement, so we only need one BUF_PUSH. */
25fe55af
RS
2884 BUF_PUSH (*p == '^' ? charset_not : charset);
2885 if (*p == '^')
2886 p++;
e318085a 2887
25fe55af
RS
2888 /* Remember the first position in the bracket expression. */
2889 p1 = p;
e318085a 2890
7814e705 2891 /* Push the number of bytes in the bitmap. */
25fe55af 2892 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2893
25fe55af
RS
2894 /* Clear the whole map. */
2895 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2896
25fe55af
RS
2897 /* charset_not matches newline according to a syntax bit. */
2898 if ((re_opcode_t) b[-2] == charset_not
2899 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2900 SET_LIST_BIT ('\n');
fa9a63c5 2901
7814e705 2902 /* Read in characters and ranges, setting map bits. */
25fe55af
RS
2903 for (;;)
2904 {
b18215fc 2905 boolean escaped_char = false;
2d1675e4 2906 const unsigned char *p2 = p;
e318085a 2907
25fe55af 2908 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2909
36595814
SM
2910 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2911 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2912 So the translation is done later in a loop. Example:
2913 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2914 PATFETCH (c);
e318085a 2915
25fe55af
RS
2916 /* \ might escape characters inside [...] and [^...]. */
2917 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2918 {
2919 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2920
2921 PATFETCH (c);
b18215fc 2922 escaped_char = true;
25fe55af 2923 }
b18215fc
RS
2924 else
2925 {
7814e705 2926 /* Could be the end of the bracket expression. If it's
657fcfbd
RS
2927 not (i.e., when the bracket expression is `[]' so
2928 far), the ']' character bit gets set way below. */
2d1675e4 2929 if (c == ']' && p2 != p1)
657fcfbd 2930 break;
25fe55af 2931 }
b18215fc 2932
25fe55af
RS
2933 /* See if we're at the beginning of a possible character
2934 class. */
b18215fc 2935
2d1675e4
SM
2936 if (!escaped_char &&
2937 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd 2938 {
7814e705 2939 /* Leave room for the null. */
14473664 2940 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2941 const unsigned char *class_beg;
b18215fc 2942
25fe55af
RS
2943 PATFETCH (c);
2944 c1 = 0;
ed0767d8 2945 class_beg = p;
b18215fc 2946
25fe55af
RS
2947 /* If pattern is `[[:'. */
2948 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2949
25fe55af
RS
2950 for (;;)
2951 {
14473664
SM
2952 PATFETCH (c);
2953 if ((c == ':' && *p == ']') || p == pend)
2954 break;
2955 if (c1 < CHAR_CLASS_MAX_LENGTH)
2956 str[c1++] = c;
2957 else
2958 /* This is in any case an invalid class name. */
2959 str[0] = '\0';
25fe55af
RS
2960 }
2961 str[c1] = '\0';
b18215fc
RS
2962
2963 /* If isn't a word bracketed by `[:' and `:]':
2964 undo the ending character, the letters, and
2965 leave the leading `:' and `[' (but set bits for
2966 them). */
25fe55af
RS
2967 if (c == ':' && *p == ']')
2968 {
36595814 2969 re_wchar_t ch;
14473664 2970 re_wctype_t cc;
8f924df7 2971 int limit;
14473664
SM
2972
2973 cc = re_wctype (str);
2974
2975 if (cc == 0)
fa9a63c5
RM
2976 FREE_STACK_RETURN (REG_ECTYPE);
2977
14473664
SM
2978 /* Throw away the ] at the end of the character
2979 class. */
2980 PATFETCH (c);
fa9a63c5 2981
14473664 2982 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2983
96cc36cc
RS
2984 /* Most character classes in a multibyte match
2985 just set a flag. Exceptions are is_blank,
2986 is_digit, is_cntrl, and is_xdigit, since
2987 they can only match ASCII characters. We
14473664
SM
2988 don't need to handle them for multibyte.
2989 They are distinguished by a negative wctype. */
96cc36cc 2990
8f924df7
KH
2991 for (ch = 0; ch < 128; ++ch)
2992 if (re_iswctype (btowc (ch), cc))
2993 {
2994 c = TRANSLATE (ch);
ed00c2ac
KH
2995 if (c < (1 << BYTEWIDTH))
2996 SET_LIST_BIT (c);
8f924df7 2997 }
96cc36cc 2998
8f924df7 2999 if (target_multibyte)
25fe55af 3000 {
8f924df7
KH
3001 SET_RANGE_TABLE_WORK_AREA_BIT
3002 (range_table_work, re_wctype_to_bit (cc));
3003 }
3004 else
25fe55af 3005 {
8f924df7
KH
3006 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
3007 {
3008 c = ch;
3009 MAKE_CHAR_MULTIBYTE (c);
3010 if (re_iswctype (btowc (c), cc))
3011 {
3012 c = TRANSLATE (c);
3013 MAKE_CHAR_UNIBYTE (c);
3014 SET_LIST_BIT (c);
3015 }
3016 }
25fe55af 3017 }
b18215fc 3018
6224b623
SM
3019 /* In most cases the matching rule for char classes
3020 only uses the syntax table for multibyte chars,
3021 so that the content of the syntax-table it is not
3022 hardcoded in the range_table. SPACE and WORD are
3023 the two exceptions. */
3024 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
3025 bufp->used_syntax = 1;
3026
b18215fc
RS
3027 /* Repeat the loop. */
3028 continue;
25fe55af
RS
3029 }
3030 else
3031 {
ed0767d8
SM
3032 /* Go back to right after the "[:". */
3033 p = class_beg;
25fe55af 3034 SET_LIST_BIT ('[');
b18215fc
RS
3035
3036 /* Because the `:' may starts the range, we
3037 can't simply set bit and repeat the loop.
7814e705 3038 Instead, just set it to C and handle below. */
b18215fc 3039 c = ':';
25fe55af
RS
3040 }
3041 }
b18215fc
RS
3042
3043 if (p < pend && p[0] == '-' && p[1] != ']')
3044 {
3045
3046 /* Discard the `-'. */
3047 PATFETCH (c1);
3048
3049 /* Fetch the character which ends the range. */
3050 PATFETCH (c1);
6fdd04b0 3051 if (c > c1)
e934739e 3052 {
6fdd04b0 3053 if (syntax & RE_NO_EMPTY_RANGES)
e0da2cdd 3054 FREE_STACK_RETURN (REG_ERANGEX);
6fdd04b0 3055 /* Else, repeat the loop. */
e934739e 3056 }
e318085a 3057 }
25fe55af 3058 else
b18215fc
RS
3059 /* Range from C to C. */
3060 c1 = c;
3061
6fdd04b0
KH
3062#ifndef emacs
3063 c = TRANSLATE (c);
3064 c1 = TRANSLATE (c1);
8f924df7
KH
3065 /* Set the range into bitmap */
3066 for (; c <= c1; c++)
3067 SET_LIST_BIT (TRANSLATE (c));
6fdd04b0
KH
3068#else /* not emacs */
3069 if (target_multibyte)
25fe55af 3070 {
8f924df7 3071 if (c1 >= 128)
b18215fc 3072 {
6fdd04b0
KH
3073 re_wchar_t c0 = MAX (c, 128);
3074
3075 SETUP_MULTIBYTE_RANGE (range_table_work, c0, c1);
8f924df7 3076 c1 = 127;
b18215fc 3077 }
8f924df7
KH
3078 for (; c <= c1; c++)
3079 SET_LIST_BIT (TRANSLATE (c));
bf216479 3080 }
6fdd04b0 3081 else
25fe55af 3082 {
8f924df7
KH
3083 re_wchar_t c0;
3084
3085 for (; c <= c1; c++)
b18215fc 3086 {
8f924df7
KH
3087 c0 = c;
3088 if (! multibyte)
3089 MAKE_CHAR_MULTIBYTE (c0);
3090 c0 = TRANSLATE (c0);
3091 MAKE_CHAR_UNIBYTE (c0);
3092 SET_LIST_BIT (c0);
e934739e 3093 }
25fe55af 3094 }
6fdd04b0 3095#endif /* not emacs */
e318085a
RS
3096 }
3097
25fe55af 3098 /* Discard any (non)matching list bytes that are all 0 at the
7814e705 3099 end of the map. Decrease the map-length byte too. */
25fe55af
RS
3100 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3101 b[-1]--;
3102 b += b[-1];
fa9a63c5 3103
96cc36cc
RS
3104 /* Build real range table from work area. */
3105 if (RANGE_TABLE_WORK_USED (range_table_work)
3106 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
3107 {
3108 int i;
3109 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 3110
b18215fc 3111 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
3112 bytes for flags, two for COUNT, and three bytes for
3113 each character. */
3114 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 3115
b18215fc
RS
3116 /* Indicate the existence of range table. */
3117 laststart[1] |= 0x80;
fa9a63c5 3118
96cc36cc
RS
3119 /* Store the character class flag bits into the range table.
3120 If not in emacs, these flag bits are always 0. */
3121 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3122 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3123
b18215fc
RS
3124 STORE_NUMBER_AND_INCR (b, used / 2);
3125 for (i = 0; i < used; i++)
3126 STORE_CHARACTER_AND_INCR
3127 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3128 }
25fe55af
RS
3129 }
3130 break;
fa9a63c5
RM
3131
3132
b18215fc 3133 case '(':
25fe55af
RS
3134 if (syntax & RE_NO_BK_PARENS)
3135 goto handle_open;
3136 else
3137 goto normal_char;
fa9a63c5
RM
3138
3139
25fe55af
RS
3140 case ')':
3141 if (syntax & RE_NO_BK_PARENS)
3142 goto handle_close;
3143 else
3144 goto normal_char;
e318085a
RS
3145
3146
25fe55af
RS
3147 case '\n':
3148 if (syntax & RE_NEWLINE_ALT)
3149 goto handle_alt;
3150 else
3151 goto normal_char;
e318085a
RS
3152
3153
b18215fc 3154 case '|':
25fe55af
RS
3155 if (syntax & RE_NO_BK_VBAR)
3156 goto handle_alt;
3157 else
3158 goto normal_char;
3159
3160
3161 case '{':
3162 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3163 goto handle_interval;
3164 else
3165 goto normal_char;
3166
3167
3168 case '\\':
3169 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3170
3171 /* Do not translate the character after the \, so that we can
3172 distinguish, e.g., \B from \b, even if we normally would
3173 translate, e.g., B to b. */
36595814 3174 PATFETCH (c);
25fe55af
RS
3175
3176 switch (c)
3177 {
3178 case '(':
3179 if (syntax & RE_NO_BK_PARENS)
3180 goto normal_backslash;
3181
3182 handle_open:
505bde11
SM
3183 {
3184 int shy = 0;
3185 if (p+1 < pend)
3186 {
3187 /* Look for a special (?...) construct */
ed0767d8 3188 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3189 {
ed0767d8 3190 PATFETCH (c); /* Gobble up the '?'. */
505bde11
SM
3191 PATFETCH (c);
3192 switch (c)
3193 {
3194 case ':': shy = 1; break;
3195 default:
3196 /* Only (?:...) is supported right now. */
3197 FREE_STACK_RETURN (REG_BADPAT);
3198 }
3199 }
505bde11
SM
3200 }
3201
3202 if (!shy)
3203 {
3204 bufp->re_nsub++;
3205 regnum++;
3206 }
25fe55af 3207
99633e97
SM
3208 if (COMPILE_STACK_FULL)
3209 {
3210 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3211 compile_stack_elt_t);
3212 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3213
99633e97
SM
3214 compile_stack.size <<= 1;
3215 }
25fe55af 3216
99633e97 3217 /* These are the values to restore when we hit end of this
7814e705 3218 group. They are all relative offsets, so that if the
99633e97
SM
3219 whole pattern moves because of realloc, they will still
3220 be valid. */
3221 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3222 COMPILE_STACK_TOP.fixup_alt_jump
3223 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3224 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3225 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3226
3227 /* Do not push a
3228 start_memory for groups beyond the last one we can
3229 represent in the compiled pattern. */
3230 if (regnum <= MAX_REGNUM && !shy)
3231 BUF_PUSH_2 (start_memory, regnum);
3232
3233 compile_stack.avail++;
3234
3235 fixup_alt_jump = 0;
3236 laststart = 0;
3237 begalt = b;
3238 /* If we've reached MAX_REGNUM groups, then this open
3239 won't actually generate any code, so we'll have to
3240 clear pending_exact explicitly. */
3241 pending_exact = 0;
3242 break;
505bde11 3243 }
25fe55af
RS
3244
3245 case ')':
3246 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3247
3248 if (COMPILE_STACK_EMPTY)
505bde11
SM
3249 {
3250 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3251 goto normal_backslash;
3252 else
3253 FREE_STACK_RETURN (REG_ERPAREN);
3254 }
25fe55af
RS
3255
3256 handle_close:
505bde11 3257 FIXUP_ALT_JUMP ();
25fe55af
RS
3258
3259 /* See similar code for backslashed left paren above. */
3260 if (COMPILE_STACK_EMPTY)
505bde11
SM
3261 {
3262 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3263 goto normal_char;
3264 else
3265 FREE_STACK_RETURN (REG_ERPAREN);
3266 }
25fe55af
RS
3267
3268 /* Since we just checked for an empty stack above, this
3269 ``can't happen''. */
3270 assert (compile_stack.avail != 0);
3271 {
3272 /* We don't just want to restore into `regnum', because
3273 later groups should continue to be numbered higher,
7814e705 3274 as in `(ab)c(de)' -- the second group is #2. */
25fe55af
RS
3275 regnum_t this_group_regnum;
3276
3277 compile_stack.avail--;
3278 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3279 fixup_alt_jump
3280 = COMPILE_STACK_TOP.fixup_alt_jump
3281 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3282 : 0;
3283 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3284 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3285 /* If we've reached MAX_REGNUM groups, then this open
3286 won't actually generate any code, so we'll have to
3287 clear pending_exact explicitly. */
3288 pending_exact = 0;
e318085a 3289
25fe55af 3290 /* We're at the end of the group, so now we know how many
7814e705 3291 groups were inside this one. */
505bde11
SM
3292 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3293 BUF_PUSH_2 (stop_memory, this_group_regnum);
25fe55af
RS
3294 }
3295 break;
3296
3297
3298 case '|': /* `\|'. */
3299 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3300 goto normal_backslash;
3301 handle_alt:
3302 if (syntax & RE_LIMITED_OPS)
3303 goto normal_char;
3304
3305 /* Insert before the previous alternative a jump which
7814e705 3306 jumps to this alternative if the former fails. */
25fe55af
RS
3307 GET_BUFFER_SPACE (3);
3308 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3309 pending_exact = 0;
3310 b += 3;
3311
3312 /* The alternative before this one has a jump after it
3313 which gets executed if it gets matched. Adjust that
3314 jump so it will jump to this alternative's analogous
3315 jump (put in below, which in turn will jump to the next
3316 (if any) alternative's such jump, etc.). The last such
3317 jump jumps to the correct final destination. A picture:
3318 _____ _____
3319 | | | |
3320 | v | v
3321 a | b | c
3322
3323 If we are at `b', then fixup_alt_jump right now points to a
3324 three-byte space after `a'. We'll put in the jump, set
3325 fixup_alt_jump to right after `b', and leave behind three
3326 bytes which we'll fill in when we get to after `c'. */
3327
505bde11 3328 FIXUP_ALT_JUMP ();
25fe55af
RS
3329
3330 /* Mark and leave space for a jump after this alternative,
3331 to be filled in later either by next alternative or
3332 when know we're at the end of a series of alternatives. */
3333 fixup_alt_jump = b;
3334 GET_BUFFER_SPACE (3);
3335 b += 3;
3336
3337 laststart = 0;
3338 begalt = b;
3339 break;
3340
3341
3342 case '{':
3343 /* If \{ is a literal. */
3344 if (!(syntax & RE_INTERVALS)
3345 /* If we're at `\{' and it's not the open-interval
3346 operator. */
4bb91c68 3347 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3348 goto normal_backslash;
3349
3350 handle_interval:
3351 {
3352 /* If got here, then the syntax allows intervals. */
3353
3354 /* At least (most) this many matches must be made. */
99633e97 3355 int lower_bound = 0, upper_bound = -1;
25fe55af 3356
ed0767d8 3357 beg_interval = p;
25fe55af 3358
25fe55af
RS
3359 GET_UNSIGNED_NUMBER (lower_bound);
3360
3361 if (c == ',')
ed0767d8 3362 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3363 else
3364 /* Interval such as `{1}' => match exactly once. */
3365 upper_bound = lower_bound;
3366
3367 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3368 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3369 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3370
3371 if (!(syntax & RE_NO_BK_BRACES))
3372 {
4bb91c68
SM
3373 if (c != '\\')
3374 FREE_STACK_RETURN (REG_BADBR);
c72b0edd
SM
3375 if (p == pend)
3376 FREE_STACK_RETURN (REG_EESCAPE);
25fe55af
RS
3377 PATFETCH (c);
3378 }
3379
3380 if (c != '}')
4bb91c68 3381 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3382
3383 /* We just parsed a valid interval. */
3384
3385 /* If it's invalid to have no preceding re. */
3386 if (!laststart)
3387 {
3388 if (syntax & RE_CONTEXT_INVALID_OPS)
3389 FREE_STACK_RETURN (REG_BADRPT);
3390 else if (syntax & RE_CONTEXT_INDEP_OPS)
3391 laststart = b;
3392 else
3393 goto unfetch_interval;
3394 }
3395
6df42991
SM
3396 if (upper_bound == 0)
3397 /* If the upper bound is zero, just drop the sub pattern
3398 altogether. */
3399 b = laststart;
3400 else if (lower_bound == 1 && upper_bound == 1)
3401 /* Just match it once: nothing to do here. */
3402 ;
3403
3404 /* Otherwise, we have a nontrivial interval. When
3405 we're all done, the pattern will look like:
3406 set_number_at <jump count> <upper bound>
3407 set_number_at <succeed_n count> <lower bound>
3408 succeed_n <after jump addr> <succeed_n count>
3409 <body of loop>
3410 jump_n <succeed_n addr> <jump count>
3411 (The upper bound and `jump_n' are omitted if
3412 `upper_bound' is 1, though.) */
3413 else
3414 { /* If the upper bound is > 1, we need to insert
3415 more at the end of the loop. */
3416 unsigned int nbytes = (upper_bound < 0 ? 3
3417 : upper_bound > 1 ? 5 : 0);
3418 unsigned int startoffset = 0;
3419
3420 GET_BUFFER_SPACE (20); /* We might use less. */
3421
3422 if (lower_bound == 0)
3423 {
3424 /* A succeed_n that starts with 0 is really a
3425 a simple on_failure_jump_loop. */
3426 INSERT_JUMP (on_failure_jump_loop, laststart,
3427 b + 3 + nbytes);
3428 b += 3;
3429 }
3430 else
3431 {
3432 /* Initialize lower bound of the `succeed_n', even
3433 though it will be set during matching by its
3434 attendant `set_number_at' (inserted next),
3435 because `re_compile_fastmap' needs to know.
3436 Jump to the `jump_n' we might insert below. */
3437 INSERT_JUMP2 (succeed_n, laststart,
3438 b + 5 + nbytes,
3439 lower_bound);
3440 b += 5;
3441
3442 /* Code to initialize the lower bound. Insert
7814e705 3443 before the `succeed_n'. The `5' is the last two
6df42991
SM
3444 bytes of this `set_number_at', plus 3 bytes of
3445 the following `succeed_n'. */
3446 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3447 b += 5;
3448 startoffset += 5;
3449 }
3450
3451 if (upper_bound < 0)
3452 {
3453 /* A negative upper bound stands for infinity,
3454 in which case it degenerates to a plain jump. */
3455 STORE_JUMP (jump, b, laststart + startoffset);
3456 b += 3;
3457 }
3458 else if (upper_bound > 1)
3459 { /* More than one repetition is allowed, so
3460 append a backward jump to the `succeed_n'
3461 that starts this interval.
3462
3463 When we've reached this during matching,
3464 we'll have matched the interval once, so
3465 jump back only `upper_bound - 1' times. */
3466 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3467 upper_bound - 1);
3468 b += 5;
3469
3470 /* The location we want to set is the second
3471 parameter of the `jump_n'; that is `b-2' as
3472 an absolute address. `laststart' will be
3473 the `set_number_at' we're about to insert;
3474 `laststart+3' the number to set, the source
3475 for the relative address. But we are
3476 inserting into the middle of the pattern --
3477 so everything is getting moved up by 5.
3478 Conclusion: (b - 2) - (laststart + 3) + 5,
3479 i.e., b - laststart.
3480
3481 We insert this at the beginning of the loop
3482 so that if we fail during matching, we'll
3483 reinitialize the bounds. */
3484 insert_op2 (set_number_at, laststart, b - laststart,
3485 upper_bound - 1, b);
3486 b += 5;
3487 }
3488 }
25fe55af
RS
3489 pending_exact = 0;
3490 beg_interval = NULL;
3491 }
3492 break;
3493
3494 unfetch_interval:
3495 /* If an invalid interval, match the characters as literals. */
3496 assert (beg_interval);
3497 p = beg_interval;
3498 beg_interval = NULL;
3499
3500 /* normal_char and normal_backslash need `c'. */
ed0767d8 3501 c = '{';
25fe55af
RS
3502
3503 if (!(syntax & RE_NO_BK_BRACES))
3504 {
ed0767d8
SM
3505 assert (p > pattern && p[-1] == '\\');
3506 goto normal_backslash;
25fe55af 3507 }
ed0767d8
SM
3508 else
3509 goto normal_char;
e318085a 3510
b18215fc 3511#ifdef emacs
25fe55af 3512 /* There is no way to specify the before_dot and after_dot
7814e705 3513 operators. rms says this is ok. --karl */
25fe55af
RS
3514 case '=':
3515 BUF_PUSH (at_dot);
3516 break;
3517
3518 case 's':
3519 laststart = b;
3520 PATFETCH (c);
3521 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3522 break;
3523
3524 case 'S':
3525 laststart = b;
3526 PATFETCH (c);
3527 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3528 break;
b18215fc
RS
3529
3530 case 'c':
3531 laststart = b;
36595814 3532 PATFETCH (c);
b18215fc
RS
3533 BUF_PUSH_2 (categoryspec, c);
3534 break;
e318085a 3535
b18215fc
RS
3536 case 'C':
3537 laststart = b;
36595814 3538 PATFETCH (c);
b18215fc
RS
3539 BUF_PUSH_2 (notcategoryspec, c);
3540 break;
3541#endif /* emacs */
e318085a 3542
e318085a 3543
25fe55af 3544 case 'w':
4bb91c68
SM
3545 if (syntax & RE_NO_GNU_OPS)
3546 goto normal_char;
25fe55af 3547 laststart = b;
1fb352e0 3548 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3549 break;
e318085a 3550
e318085a 3551
25fe55af 3552 case 'W':
4bb91c68
SM
3553 if (syntax & RE_NO_GNU_OPS)
3554 goto normal_char;
25fe55af 3555 laststart = b;
1fb352e0 3556 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3557 break;
e318085a
RS
3558
3559
25fe55af 3560 case '<':
4bb91c68
SM
3561 if (syntax & RE_NO_GNU_OPS)
3562 goto normal_char;
25fe55af
RS
3563 BUF_PUSH (wordbeg);
3564 break;
e318085a 3565
25fe55af 3566 case '>':
4bb91c68
SM
3567 if (syntax & RE_NO_GNU_OPS)
3568 goto normal_char;
25fe55af
RS
3569 BUF_PUSH (wordend);
3570 break;
e318085a 3571
669fa600
SM
3572 case '_':
3573 if (syntax & RE_NO_GNU_OPS)
3574 goto normal_char;
3575 laststart = b;
3576 PATFETCH (c);
3577 if (c == '<')
3578 BUF_PUSH (symbeg);
3579 else if (c == '>')
3580 BUF_PUSH (symend);
3581 else
3582 FREE_STACK_RETURN (REG_BADPAT);
3583 break;
3584
25fe55af 3585 case 'b':
4bb91c68
SM
3586 if (syntax & RE_NO_GNU_OPS)
3587 goto normal_char;
25fe55af
RS
3588 BUF_PUSH (wordbound);
3589 break;
e318085a 3590
25fe55af 3591 case 'B':
4bb91c68
SM
3592 if (syntax & RE_NO_GNU_OPS)
3593 goto normal_char;
25fe55af
RS
3594 BUF_PUSH (notwordbound);
3595 break;
fa9a63c5 3596
25fe55af 3597 case '`':
4bb91c68
SM
3598 if (syntax & RE_NO_GNU_OPS)
3599 goto normal_char;
25fe55af
RS
3600 BUF_PUSH (begbuf);
3601 break;
e318085a 3602
25fe55af 3603 case '\'':
4bb91c68
SM
3604 if (syntax & RE_NO_GNU_OPS)
3605 goto normal_char;
25fe55af
RS
3606 BUF_PUSH (endbuf);
3607 break;
e318085a 3608
25fe55af
RS
3609 case '1': case '2': case '3': case '4': case '5':
3610 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3611 {
3612 regnum_t reg;
e318085a 3613
0cdd06f8
SM
3614 if (syntax & RE_NO_BK_REFS)
3615 goto normal_backslash;
e318085a 3616
0cdd06f8 3617 reg = c - '0';
e318085a 3618
0cdd06f8
SM
3619 /* Can't back reference to a subexpression before its end. */
3620 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3621 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3622
0cdd06f8
SM
3623 laststart = b;
3624 BUF_PUSH_2 (duplicate, reg);
3625 }
25fe55af 3626 break;
e318085a 3627
e318085a 3628
25fe55af
RS
3629 case '+':
3630 case '?':
3631 if (syntax & RE_BK_PLUS_QM)
3632 goto handle_plus;
3633 else
3634 goto normal_backslash;
3635
3636 default:
3637 normal_backslash:
3638 /* You might think it would be useful for \ to mean
3639 not to translate; but if we don't translate it
4bb91c68 3640 it will never match anything. */
25fe55af
RS
3641 goto normal_char;
3642 }
3643 break;
fa9a63c5
RM
3644
3645
3646 default:
25fe55af 3647 /* Expects the character in `c'. */
fa9a63c5 3648 normal_char:
36595814 3649 /* If no exactn currently being built. */
25fe55af 3650 if (!pending_exact
fa9a63c5 3651
25fe55af
RS
3652 /* If last exactn not at current position. */
3653 || pending_exact + *pending_exact + 1 != b
5e69f11e 3654
25fe55af 3655 /* We have only one byte following the exactn for the count. */
2d1675e4 3656 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3657
7814e705 3658 /* If followed by a repetition operator. */
9d99031f 3659 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3660 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3661 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3662 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3663 || ((syntax & RE_INTERVALS)
25fe55af 3664 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3665 ? p != pend && *p == '{'
3666 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3667 {
3668 /* Start building a new exactn. */
5e69f11e 3669
25fe55af 3670 laststart = b;
fa9a63c5
RM
3671
3672 BUF_PUSH_2 (exactn, 0);
3673 pending_exact = b - 1;
25fe55af 3674 }
5e69f11e 3675
2d1675e4
SM
3676 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3677 {
e0277a47
KH
3678 int len;
3679
bf216479
KH
3680 if (! multibyte)
3681 MAKE_CHAR_MULTIBYTE (c);
36595814 3682 c = TRANSLATE (c);
6fdd04b0
KH
3683 if (target_multibyte)
3684 {
3685 len = CHAR_STRING (c, b);
3686 b += len;
3687 }
e0277a47 3688 else
6fdd04b0
KH
3689 {
3690 MAKE_CHAR_UNIBYTE (c);
3691 *b++ = c;
3692 len = 1;
3693 }
2d1675e4
SM
3694 (*pending_exact) += len;
3695 }
3696
fa9a63c5 3697 break;
25fe55af 3698 } /* switch (c) */
fa9a63c5
RM
3699 } /* while p != pend */
3700
5e69f11e 3701
fa9a63c5 3702 /* Through the pattern now. */
5e69f11e 3703
505bde11 3704 FIXUP_ALT_JUMP ();
fa9a63c5 3705
5e69f11e 3706 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3707 FREE_STACK_RETURN (REG_EPAREN);
3708
3709 /* If we don't want backtracking, force success
3710 the first time we reach the end of the compiled pattern. */
3711 if (syntax & RE_NO_POSIX_BACKTRACKING)
3712 BUF_PUSH (succeed);
3713
fa9a63c5
RM
3714 /* We have succeeded; set the length of the buffer. */
3715 bufp->used = b - bufp->buffer;
3716
6fdd04b0
KH
3717#ifdef emacs
3718 /* Now the buffer is adjusted for the multibyteness of a target. */
3719 bufp->multibyte = bufp->target_multibyte;
3720#endif
3721
fa9a63c5 3722#ifdef DEBUG
99633e97 3723 if (debug > 0)
fa9a63c5 3724 {
505bde11 3725 re_compile_fastmap (bufp);
fa9a63c5
RM
3726 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3727 print_compiled_pattern (bufp);
3728 }
99633e97 3729 debug--;
fa9a63c5
RM
3730#endif /* DEBUG */
3731
3732#ifndef MATCH_MAY_ALLOCATE
3733 /* Initialize the failure stack to the largest possible stack. This
3734 isn't necessary unless we're trying to avoid calling alloca in
3735 the search and match routines. */
3736 {
3737 int num_regs = bufp->re_nsub + 1;
3738
320a2a73 3739 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3740 {
a26f4ccd 3741 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3742
fa9a63c5
RM
3743 if (! fail_stack.stack)
3744 fail_stack.stack
5e69f11e 3745 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3746 * sizeof (fail_stack_elt_t));
3747 else
3748 fail_stack.stack
3749 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3750 (fail_stack.size
3751 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3752 }
3753
3754 regex_grow_registers (num_regs);
3755 }
3756#endif /* not MATCH_MAY_ALLOCATE */
3757
839966f3 3758 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3759} /* regex_compile */
3760\f
3761/* Subroutines for `regex_compile'. */
3762
7814e705 3763/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3764
3765static void
3766store_op1 (op, loc, arg)
3767 re_opcode_t op;
3768 unsigned char *loc;
3769 int arg;
3770{
3771 *loc = (unsigned char) op;
3772 STORE_NUMBER (loc + 1, arg);
3773}
3774
3775
3776/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3777
3778static void
3779store_op2 (op, loc, arg1, arg2)
3780 re_opcode_t op;
3781 unsigned char *loc;
3782 int arg1, arg2;
3783{
3784 *loc = (unsigned char) op;
3785 STORE_NUMBER (loc + 1, arg1);
3786 STORE_NUMBER (loc + 3, arg2);
3787}
3788
3789
3790/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3791 for OP followed by two-byte integer parameter ARG. */
3792
3793static void
3794insert_op1 (op, loc, arg, end)
3795 re_opcode_t op;
3796 unsigned char *loc;
3797 int arg;
5e69f11e 3798 unsigned char *end;
fa9a63c5
RM
3799{
3800 register unsigned char *pfrom = end;
3801 register unsigned char *pto = end + 3;
3802
3803 while (pfrom != loc)
3804 *--pto = *--pfrom;
5e69f11e 3805
fa9a63c5
RM
3806 store_op1 (op, loc, arg);
3807}
3808
3809
3810/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3811
3812static void
3813insert_op2 (op, loc, arg1, arg2, end)
3814 re_opcode_t op;
3815 unsigned char *loc;
3816 int arg1, arg2;
5e69f11e 3817 unsigned char *end;
fa9a63c5
RM
3818{
3819 register unsigned char *pfrom = end;
3820 register unsigned char *pto = end + 5;
3821
3822 while (pfrom != loc)
3823 *--pto = *--pfrom;
5e69f11e 3824
fa9a63c5
RM
3825 store_op2 (op, loc, arg1, arg2);
3826}
3827
3828
3829/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3830 after an alternative or a begin-subexpression. We assume there is at
3831 least one character before the ^. */
3832
3833static boolean
3834at_begline_loc_p (pattern, p, syntax)
01618498 3835 re_char *pattern, *p;
fa9a63c5
RM
3836 reg_syntax_t syntax;
3837{
01618498 3838 re_char *prev = p - 2;
fa9a63c5 3839 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3840
fa9a63c5
RM
3841 return
3842 /* After a subexpression? */
3843 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3844 /* After an alternative? */
d2af47df
SM
3845 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3846 /* After a shy subexpression? */
3847 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3848 && prev[-1] == '?' && prev[-2] == '('
3849 && (syntax & RE_NO_BK_PARENS
3850 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3851}
3852
3853
3854/* The dual of at_begline_loc_p. This one is for $. We assume there is
3855 at least one character after the $, i.e., `P < PEND'. */
3856
3857static boolean
3858at_endline_loc_p (p, pend, syntax)
01618498 3859 re_char *p, *pend;
99633e97 3860 reg_syntax_t syntax;
fa9a63c5 3861{
01618498 3862 re_char *next = p;
fa9a63c5 3863 boolean next_backslash = *next == '\\';
01618498 3864 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3865
fa9a63c5
RM
3866 return
3867 /* Before a subexpression? */
3868 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3869 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3870 /* Before an alternative? */
3871 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3872 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3873}
3874
3875
5e69f11e 3876/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3877 false if it's not. */
3878
3879static boolean
3880group_in_compile_stack (compile_stack, regnum)
3881 compile_stack_type compile_stack;
3882 regnum_t regnum;
3883{
3884 int this_element;
3885
5e69f11e
RM
3886 for (this_element = compile_stack.avail - 1;
3887 this_element >= 0;
fa9a63c5
RM
3888 this_element--)
3889 if (compile_stack.stack[this_element].regnum == regnum)
3890 return true;
3891
3892 return false;
3893}
fa9a63c5 3894\f
f6a3f532
SM
3895/* analyse_first.
3896 If fastmap is non-NULL, go through the pattern and fill fastmap
3897 with all the possible leading chars. If fastmap is NULL, don't
3898 bother filling it up (obviously) and only return whether the
3899 pattern could potentially match the empty string.
3900
3901 Return 1 if p..pend might match the empty string.
3902 Return 0 if p..pend matches at least one char.
01618498 3903 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3904
3905static int
3906analyse_first (p, pend, fastmap, multibyte)
01618498 3907 re_char *p, *pend;
f6a3f532
SM
3908 char *fastmap;
3909 const int multibyte;
fa9a63c5 3910{
505bde11 3911 int j, k;
1fb352e0 3912 boolean not;
fa9a63c5 3913
b18215fc 3914 /* If all elements for base leading-codes in fastmap is set, this
7814e705 3915 flag is set true. */
b18215fc
RS
3916 boolean match_any_multibyte_characters = false;
3917
f6a3f532 3918 assert (p);
5e69f11e 3919
505bde11
SM
3920 /* The loop below works as follows:
3921 - It has a working-list kept in the PATTERN_STACK and which basically
3922 starts by only containing a pointer to the first operation.
3923 - If the opcode we're looking at is a match against some set of
3924 chars, then we add those chars to the fastmap and go on to the
3925 next work element from the worklist (done via `break').
3926 - If the opcode is a control operator on the other hand, we either
3927 ignore it (if it's meaningless at this point, such as `start_memory')
3928 or execute it (if it's a jump). If the jump has several destinations
3929 (i.e. `on_failure_jump'), then we push the other destination onto the
3930 worklist.
3931 We guarantee termination by ignoring backward jumps (more or less),
3932 so that `p' is monotonically increasing. More to the point, we
3933 never set `p' (or push) anything `<= p1'. */
3934
01618498 3935 while (p < pend)
fa9a63c5 3936 {
505bde11
SM
3937 /* `p1' is used as a marker of how far back a `on_failure_jump'
3938 can go without being ignored. It is normally equal to `p'
3939 (which prevents any backward `on_failure_jump') except right
3940 after a plain `jump', to allow patterns such as:
3941 0: jump 10
3942 3..9: <body>
3943 10: on_failure_jump 3
3944 as used for the *? operator. */
01618498 3945 re_char *p1 = p;
5e69f11e 3946
fa9a63c5
RM
3947 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3948 {
f6a3f532 3949 case succeed:
01618498 3950 return 1;
f6a3f532 3951 continue;
fa9a63c5 3952
fa9a63c5 3953 case duplicate:
505bde11
SM
3954 /* If the first character has to match a backreference, that means
3955 that the group was empty (since it already matched). Since this
3956 is the only case that interests us here, we can assume that the
3957 backreference must match the empty string. */
3958 p++;
3959 continue;
fa9a63c5
RM
3960
3961
3962 /* Following are the cases which match a character. These end
7814e705 3963 with `break'. */
fa9a63c5
RM
3964
3965 case exactn:
e0277a47 3966 if (fastmap)
bf216479
KH
3967 /* If multibyte is nonzero, the first byte of each
3968 character is an ASCII or a leading code. Otherwise,
3969 each byte is a character. Thus, this works in both
3970 cases. */
3971 fastmap[p[1]] = 1;
fa9a63c5
RM
3972 break;
3973
3974
1fb352e0
SM
3975 case anychar:
3976 /* We could put all the chars except for \n (and maybe \0)
3977 but we don't bother since it is generally not worth it. */
f6a3f532 3978 if (!fastmap) break;
01618498 3979 return -1;
fa9a63c5
RM
3980
3981
b18215fc 3982 case charset_not:
1fb352e0 3983 if (!fastmap) break;
bf216479
KH
3984 {
3985 /* Chars beyond end of bitmap are possible matches. */
6fdd04b0
KH
3986 /* In a multibyte case, the bitmap is used only for ASCII
3987 characters. */
bf216479
KH
3988 int limit = multibyte ? 128 : (1 << BYTEWIDTH);
3989
3990 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3991 j < limit; j++)
3992 fastmap[j] = 1;
3993 }
3994
1fb352e0
SM
3995 /* Fallthrough */
3996 case charset:
3997 if (!fastmap) break;
3998 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3999 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
4000 j >= 0; j--)
1fb352e0 4001 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
49da453b 4002 fastmap[j] = 1;
b18215fc 4003
1fb352e0 4004 if ((not && multibyte)
bf216479 4005 /* Any leading code can possibly start a character
1fb352e0
SM
4006 which doesn't match the specified set of characters. */
4007 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4008 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
4009 /* If we can match a character class, we can match
6fdd04b0 4010 any multibyte characters. */
b18215fc 4011 {
b18215fc
RS
4012 if (match_any_multibyte_characters == false)
4013 {
6fdd04b0
KH
4014 for (j = 0x80; j < (1 << BYTEWIDTH); j++)
4015 fastmap[j] = 1;
b18215fc
RS
4016 match_any_multibyte_characters = true;
4017 }
4018 }
b18215fc 4019
1fb352e0
SM
4020 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4021 && match_any_multibyte_characters == false)
4022 {
bf216479 4023 /* Set fastmap[I] to 1 where I is a leading code of each
9117d724 4024 multibyte characer in the range table. */
1fb352e0 4025 int c, count;
bf216479 4026 unsigned char lc1, lc2;
b18215fc 4027
1fb352e0 4028 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 4029 bits for a character class. */
1fb352e0 4030 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 4031
1fb352e0
SM
4032 /* Extract the number of ranges in range table into COUNT. */
4033 EXTRACT_NUMBER_AND_INCR (count, p);
4034 for (; count > 0; count--, p += 2 * 3) /* XXX */
4035 {
9117d724
KH
4036 /* Extract the start and end of each range. */
4037 EXTRACT_CHARACTER (c, p);
bf216479 4038 lc1 = CHAR_LEADING_CODE (c);
9117d724 4039 p += 3;
1fb352e0 4040 EXTRACT_CHARACTER (c, p);
bf216479
KH
4041 lc2 = CHAR_LEADING_CODE (c);
4042 for (j = lc1; j <= lc2; j++)
9117d724 4043 fastmap[j] = 1;
1fb352e0
SM
4044 }
4045 }
b18215fc
RS
4046 break;
4047
1fb352e0
SM
4048 case syntaxspec:
4049 case notsyntaxspec:
4050 if (!fastmap) break;
4051#ifndef emacs
4052 not = (re_opcode_t)p[-1] == notsyntaxspec;
4053 k = *p++;
4054 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 4055 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 4056 fastmap[j] = 1;
b18215fc 4057 break;
1fb352e0 4058#else /* emacs */
b18215fc
RS
4059 /* This match depends on text properties. These end with
4060 aborting optimizations. */
01618498 4061 return -1;
b18215fc
RS
4062
4063 case categoryspec:
b18215fc 4064 case notcategoryspec:
1fb352e0
SM
4065 if (!fastmap) break;
4066 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 4067 k = *p++;
bf216479 4068 for (j = (multibyte ? 127 : (1 << BYTEWIDTH)); j >= 0; j--)
1fb352e0 4069 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
4070 fastmap[j] = 1;
4071
1fb352e0 4072 if (multibyte)
6fdd04b0
KH
4073 {
4074 /* Any character set can possibly contain a character
4075 whose category is K (or not). */
4076 if (match_any_multibyte_characters == false)
4077 {
4078 for (j = 0x80; j < (1 << BYTEWIDTH); j++)
4079 fastmap[j] = 1;
4080 match_any_multibyte_characters = true;
4081 }
4082 }
b18215fc
RS
4083 break;
4084
fa9a63c5 4085 /* All cases after this match the empty string. These end with
25fe55af 4086 `continue'. */
fa9a63c5 4087
fa9a63c5
RM
4088 case before_dot:
4089 case at_dot:
4090 case after_dot:
1fb352e0 4091#endif /* !emacs */
25fe55af
RS
4092 case no_op:
4093 case begline:
4094 case endline:
fa9a63c5
RM
4095 case begbuf:
4096 case endbuf:
4097 case wordbound:
4098 case notwordbound:
4099 case wordbeg:
4100 case wordend:
669fa600
SM
4101 case symbeg:
4102 case symend:
25fe55af 4103 continue;
fa9a63c5
RM
4104
4105
fa9a63c5 4106 case jump:
25fe55af 4107 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
4108 if (j < 0)
4109 /* Backward jumps can only go back to code that we've already
4110 visited. `re_compile' should make sure this is true. */
4111 break;
25fe55af 4112 p += j;
505bde11
SM
4113 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4114 {
4115 case on_failure_jump:
4116 case on_failure_keep_string_jump:
505bde11 4117 case on_failure_jump_loop:
0683b6fa 4118 case on_failure_jump_nastyloop:
505bde11
SM
4119 case on_failure_jump_smart:
4120 p++;
4121 break;
4122 default:
4123 continue;
4124 };
4125 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4126 to jump back to "just after here". */
4127 /* Fallthrough */
fa9a63c5 4128
25fe55af
RS
4129 case on_failure_jump:
4130 case on_failure_keep_string_jump:
0683b6fa 4131 case on_failure_jump_nastyloop:
505bde11
SM
4132 case on_failure_jump_loop:
4133 case on_failure_jump_smart:
25fe55af 4134 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 4135 if (p + j <= p1)
ed0767d8 4136 ; /* Backward jump to be ignored. */
01618498
SM
4137 else
4138 { /* We have to look down both arms.
4139 We first go down the "straight" path so as to minimize
4140 stack usage when going through alternatives. */
4141 int r = analyse_first (p, pend, fastmap, multibyte);
4142 if (r) return r;
4143 p += j;
4144 }
25fe55af 4145 continue;
fa9a63c5
RM
4146
4147
ed0767d8
SM
4148 case jump_n:
4149 /* This code simply does not properly handle forward jump_n. */
4150 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4151 p += 4;
4152 /* jump_n can either jump or fall through. The (backward) jump
4153 case has already been handled, so we only need to look at the
4154 fallthrough case. */
4155 continue;
177c0ea7 4156
fa9a63c5 4157 case succeed_n:
ed0767d8
SM
4158 /* If N == 0, it should be an on_failure_jump_loop instead. */
4159 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4160 p += 4;
4161 /* We only care about one iteration of the loop, so we don't
4162 need to consider the case where this behaves like an
4163 on_failure_jump. */
25fe55af 4164 continue;
fa9a63c5
RM
4165
4166
4167 case set_number_at:
25fe55af
RS
4168 p += 4;
4169 continue;
fa9a63c5
RM
4170
4171
4172 case start_memory:
25fe55af 4173 case stop_memory:
505bde11 4174 p += 1;
fa9a63c5
RM
4175 continue;
4176
4177
4178 default:
25fe55af
RS
4179 abort (); /* We have listed all the cases. */
4180 } /* switch *p++ */
fa9a63c5
RM
4181
4182 /* Getting here means we have found the possible starting
25fe55af 4183 characters for one path of the pattern -- and that the empty
7814e705 4184 string does not match. We need not follow this path further. */
01618498 4185 return 0;
fa9a63c5
RM
4186 } /* while p */
4187
01618498
SM
4188 /* We reached the end without matching anything. */
4189 return 1;
4190
f6a3f532
SM
4191} /* analyse_first */
4192\f
4193/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4194 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4195 characters can start a string that matches the pattern. This fastmap
4196 is used by re_search to skip quickly over impossible starting points.
4197
4198 Character codes above (1 << BYTEWIDTH) are not represented in the
4199 fastmap, but the leading codes are represented. Thus, the fastmap
4200 indicates which character sets could start a match.
4201
4202 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4203 area as BUFP->fastmap.
4204
4205 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4206 the pattern buffer.
4207
4208 Returns 0 if we succeed, -2 if an internal error. */
4209
4210int
4211re_compile_fastmap (bufp)
4212 struct re_pattern_buffer *bufp;
4213{
4214 char *fastmap = bufp->fastmap;
4215 int analysis;
4216
4217 assert (fastmap && bufp->buffer);
4218
7814e705 4219 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
f6a3f532
SM
4220 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4221
4222 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4223 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4224 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4225 return 0;
4226} /* re_compile_fastmap */
4227\f
4228/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4229 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4230 this memory for recording register information. STARTS and ENDS
4231 must be allocated using the malloc library routine, and must each
4232 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4233
4234 If NUM_REGS == 0, then subsequent matches should allocate their own
4235 register data.
4236
4237 Unless this function is called, the first search or match using
4238 PATTERN_BUFFER will allocate its own register data, without
4239 freeing the old data. */
4240
4241void
4242re_set_registers (bufp, regs, num_regs, starts, ends)
4243 struct re_pattern_buffer *bufp;
4244 struct re_registers *regs;
4245 unsigned num_regs;
4246 regoff_t *starts, *ends;
4247{
4248 if (num_regs)
4249 {
4250 bufp->regs_allocated = REGS_REALLOCATE;
4251 regs->num_regs = num_regs;
4252 regs->start = starts;
4253 regs->end = ends;
4254 }
4255 else
4256 {
4257 bufp->regs_allocated = REGS_UNALLOCATED;
4258 regs->num_regs = 0;
4259 regs->start = regs->end = (regoff_t *) 0;
4260 }
4261}
c0f9ea08 4262WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4263\f
7814e705 4264/* Searching routines. */
fa9a63c5
RM
4265
4266/* Like re_search_2, below, but only one string is specified, and
4267 doesn't let you say where to stop matching. */
4268
4269int
4270re_search (bufp, string, size, startpos, range, regs)
4271 struct re_pattern_buffer *bufp;
4272 const char *string;
4273 int size, startpos, range;
4274 struct re_registers *regs;
4275{
5e69f11e 4276 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4277 regs, size);
4278}
c0f9ea08 4279WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4280
70806df6
KH
4281/* Head address of virtual concatenation of string. */
4282#define HEAD_ADDR_VSTRING(P) \
4283 (((P) >= size1 ? string2 : string1))
4284
b18215fc
RS
4285/* End address of virtual concatenation of string. */
4286#define STOP_ADDR_VSTRING(P) \
4287 (((P) >= size1 ? string2 + size2 : string1 + size1))
4288
4289/* Address of POS in the concatenation of virtual string. */
4290#define POS_ADDR_VSTRING(POS) \
4291 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4292
4293/* Using the compiled pattern in BUFP->buffer, first tries to match the
4294 virtual concatenation of STRING1 and STRING2, starting first at index
4295 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4296
fa9a63c5 4297 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4298
fa9a63c5
RM
4299 RANGE is how far to scan while trying to match. RANGE = 0 means try
4300 only at STARTPOS; in general, the last start tried is STARTPOS +
4301 RANGE.
5e69f11e 4302
fa9a63c5
RM
4303 In REGS, return the indices of the virtual concatenation of STRING1
4304 and STRING2 that matched the entire BUFP->buffer and its contained
4305 subexpressions.
5e69f11e 4306
fa9a63c5
RM
4307 Do not consider matching one past the index STOP in the virtual
4308 concatenation of STRING1 and STRING2.
4309
4310 We return either the position in the strings at which the match was
4311 found, -1 if no match, or -2 if error (such as failure
4312 stack overflow). */
4313
4314int
66f0296e 4315re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4316 struct re_pattern_buffer *bufp;
66f0296e 4317 const char *str1, *str2;
fa9a63c5
RM
4318 int size1, size2;
4319 int startpos;
4320 int range;
4321 struct re_registers *regs;
4322 int stop;
4323{
4324 int val;
66f0296e
SM
4325 re_char *string1 = (re_char*) str1;
4326 re_char *string2 = (re_char*) str2;
fa9a63c5 4327 register char *fastmap = bufp->fastmap;
6676cb1c 4328 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4329 int total_size = size1 + size2;
4330 int endpos = startpos + range;
c0f9ea08 4331 boolean anchored_start;
6fdd04b0
KH
4332 /* Nonzero if BUFP is setup for multibyte characters. We are sure
4333 that it is the same as RE_TARGET_MULTIBYTE_P (bufp). */
2d1675e4 4334 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4335
fa9a63c5
RM
4336 /* Check for out-of-range STARTPOS. */
4337 if (startpos < 0 || startpos > total_size)
4338 return -1;
5e69f11e 4339
fa9a63c5 4340 /* Fix up RANGE if it might eventually take us outside
34597fa9 4341 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4342 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4343 if (endpos < 0)
4344 range = 0 - startpos;
fa9a63c5
RM
4345 else if (endpos > total_size)
4346 range = total_size - startpos;
4347
4348 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4349 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4350 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4351 {
4352 if (startpos > 0)
4353 return -1;
4354 else
7b140fd7 4355 range = 0;
fa9a63c5
RM
4356 }
4357
ae4788a8
RS
4358#ifdef emacs
4359 /* In a forward search for something that starts with \=.
4360 don't keep searching past point. */
4361 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4362 {
7b140fd7
RS
4363 range = PT_BYTE - BEGV_BYTE - startpos;
4364 if (range < 0)
ae4788a8
RS
4365 return -1;
4366 }
4367#endif /* emacs */
4368
fa9a63c5
RM
4369 /* Update the fastmap now if not correct already. */
4370 if (fastmap && !bufp->fastmap_accurate)
01618498 4371 re_compile_fastmap (bufp);
5e69f11e 4372
c8499ba5 4373 /* See whether the pattern is anchored. */
c0f9ea08 4374 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4375
b18215fc 4376#ifdef emacs
cc9b4df2
KH
4377 gl_state.object = re_match_object;
4378 {
99633e97 4379 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4380
4381 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4382 }
b18215fc
RS
4383#endif
4384
fa9a63c5
RM
4385 /* Loop through the string, looking for a place to start matching. */
4386 for (;;)
5e69f11e 4387 {
c8499ba5
RS
4388 /* If the pattern is anchored,
4389 skip quickly past places we cannot match.
4390 We don't bother to treat startpos == 0 specially
4391 because that case doesn't repeat. */
4392 if (anchored_start && startpos > 0)
4393 {
c0f9ea08
SM
4394 if (! ((startpos <= size1 ? string1[startpos - 1]
4395 : string2[startpos - size1 - 1])
4396 == '\n'))
c8499ba5
RS
4397 goto advance;
4398 }
4399
fa9a63c5 4400 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4401 cannot be the start of a match. If the pattern can match the
4402 null string, however, we don't need to skip characters; we want
7814e705 4403 the first null string. */
fa9a63c5
RM
4404 if (fastmap && startpos < total_size && !bufp->can_be_null)
4405 {
66f0296e 4406 register re_char *d;
01618498 4407 register re_wchar_t buf_ch;
e934739e
RS
4408
4409 d = POS_ADDR_VSTRING (startpos);
4410
7814e705 4411 if (range > 0) /* Searching forwards. */
fa9a63c5 4412 {
fa9a63c5
RM
4413 register int lim = 0;
4414 int irange = range;
4415
25fe55af
RS
4416 if (startpos < size1 && startpos + range >= size1)
4417 lim = range - (size1 - startpos);
fa9a63c5 4418
25fe55af
RS
4419 /* Written out as an if-else to avoid testing `translate'
4420 inside the loop. */
28ae27ae
AS
4421 if (RE_TRANSLATE_P (translate))
4422 {
e934739e
RS
4423 if (multibyte)
4424 while (range > lim)
4425 {
4426 int buf_charlen;
4427
4428 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4429 buf_charlen);
e934739e 4430 buf_ch = RE_TRANSLATE (translate, buf_ch);
bf216479 4431 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
e934739e
RS
4432 break;
4433
4434 range -= buf_charlen;
4435 d += buf_charlen;
4436 }
4437 else
bf216479 4438 while (range > lim)
33c46939 4439 {
bf216479
KH
4440 buf_ch = *d;
4441 MAKE_CHAR_MULTIBYTE (buf_ch);
b884eb4d 4442 buf_ch = RE_TRANSLATE (translate, buf_ch);
6fdd04b0 4443 MAKE_CHAR_UNIBYTE (buf_ch);
6fdd04b0 4444 if (fastmap[buf_ch])
bf216479 4445 break;
33c46939
RS
4446 d++;
4447 range--;
4448 }
e934739e 4449 }
fa9a63c5 4450 else
6fdd04b0
KH
4451 {
4452 if (multibyte)
4453 while (range > lim)
4454 {
4455 int buf_charlen;
fa9a63c5 4456
6fdd04b0
KH
4457 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4458 buf_charlen);
4459 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4460 break;
4461 range -= buf_charlen;
4462 d += buf_charlen;
4463 }
e934739e 4464 else
6fdd04b0 4465 while (range > lim && !fastmap[*d])
33c46939
RS
4466 {
4467 d++;
4468 range--;
4469 }
e934739e 4470 }
fa9a63c5
RM
4471 startpos += irange - range;
4472 }
7814e705 4473 else /* Searching backwards. */
fa9a63c5 4474 {
2d1675e4
SM
4475 int room = (startpos >= size1
4476 ? size2 + size1 - startpos
4477 : size1 - startpos);
ba5e343c
KH
4478 if (multibyte)
4479 {
6fdd04b0 4480 buf_ch = STRING_CHAR (d, room);
ba5e343c
KH
4481 buf_ch = TRANSLATE (buf_ch);
4482 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4483 goto advance;
4484 }
4485 else
4486 {
4487 if (! fastmap[TRANSLATE (*d)])
4488 goto advance;
4489 }
fa9a63c5
RM
4490 }
4491 }
4492
4493 /* If can't match the null string, and that's all we have left, fail. */
4494 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4495 && !bufp->can_be_null)
fa9a63c5
RM
4496 return -1;
4497
4498 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4499 startpos, regs, stop);
4500#ifndef REGEX_MALLOC
0b32bf0e 4501# ifdef C_ALLOCA
fa9a63c5 4502 alloca (0);
0b32bf0e 4503# endif
fa9a63c5
RM
4504#endif
4505
4506 if (val >= 0)
4507 return startpos;
5e69f11e 4508
fa9a63c5
RM
4509 if (val == -2)
4510 return -2;
4511
4512 advance:
5e69f11e 4513 if (!range)
25fe55af 4514 break;
5e69f11e 4515 else if (range > 0)
25fe55af 4516 {
b18215fc
RS
4517 /* Update STARTPOS to the next character boundary. */
4518 if (multibyte)
4519 {
66f0296e
SM
4520 re_char *p = POS_ADDR_VSTRING (startpos);
4521 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4522 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4523
4524 range -= len;
4525 if (range < 0)
4526 break;
4527 startpos += len;
4528 }
4529 else
4530 {
b560c397
RS
4531 range--;
4532 startpos++;
4533 }
e318085a 4534 }
fa9a63c5 4535 else
25fe55af
RS
4536 {
4537 range++;
4538 startpos--;
b18215fc
RS
4539
4540 /* Update STARTPOS to the previous character boundary. */
4541 if (multibyte)
4542 {
70806df6
KH
4543 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4544 re_char *p0 = p;
4545 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4546
4547 /* Find the head of multibyte form. */
70806df6
KH
4548 PREV_CHAR_BOUNDARY (p, phead);
4549 range += p0 - 1 - p;
4550 if (range > 0)
4551 break;
b18215fc 4552
70806df6 4553 startpos -= p0 - 1 - p;
b18215fc 4554 }
25fe55af 4555 }
fa9a63c5
RM
4556 }
4557 return -1;
4558} /* re_search_2 */
c0f9ea08 4559WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4560\f
4561/* Declarations and macros for re_match_2. */
4562
2d1675e4
SM
4563static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4564 register int len,
4565 RE_TRANSLATE_TYPE translate,
4566 const int multibyte));
fa9a63c5
RM
4567
4568/* This converts PTR, a pointer into one of the search strings `string1'
4569 and `string2' into an offset from the beginning of that string. */
4570#define POINTER_TO_OFFSET(ptr) \
4571 (FIRST_STRING_P (ptr) \
4572 ? ((regoff_t) ((ptr) - string1)) \
4573 : ((regoff_t) ((ptr) - string2 + size1)))
4574
fa9a63c5 4575/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4576 string2 if necessary.
4577 Check re_match_2_internal for a discussion of why end_match_2 might
4578 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4579#define PREFETCH() \
25fe55af 4580 while (d == dend) \
fa9a63c5
RM
4581 { \
4582 /* End of string2 => fail. */ \
25fe55af
RS
4583 if (dend == end_match_2) \
4584 goto fail; \
4bb91c68 4585 /* End of string1 => advance to string2. */ \
25fe55af 4586 d = string2; \
fa9a63c5
RM
4587 dend = end_match_2; \
4588 }
4589
f1ad044f
SM
4590/* Call before fetching a char with *d if you already checked other limits.
4591 This is meant for use in lookahead operations like wordend, etc..
4592 where we might need to look at parts of the string that might be
4593 outside of the LIMITs (i.e past `stop'). */
4594#define PREFETCH_NOLIMIT() \
4595 if (d == end1) \
4596 { \
4597 d = string2; \
4598 dend = end_match_2; \
4599 } \
fa9a63c5
RM
4600
4601/* Test if at very beginning or at very end of the virtual concatenation
7814e705 4602 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4603#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4604#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4605
4606
4607/* Test if D points to a character which is word-constituent. We have
4608 two special cases to check for: if past the end of string1, look at
4609 the first character in string2; and if before the beginning of
4610 string2, look at the last character in string1. */
4611#define WORDCHAR_P(d) \
4612 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4613 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4614 == Sword)
4615
9121ca40 4616/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4617
4618/* The comment at case wordbound is following one, but we don't use
4619 AT_WORD_BOUNDARY anymore to support multibyte form.
4620
4621 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af 4622 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7814e705 4623 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4624 macro and introducing temporary variables works around the bug. */
4625
9121ca40 4626#if 0
fa9a63c5
RM
4627/* Test if the character before D and the one at D differ with respect
4628 to being word-constituent. */
4629#define AT_WORD_BOUNDARY(d) \
4630 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4631 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4632#endif
fa9a63c5
RM
4633
4634/* Free everything we malloc. */
4635#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4636# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4637# define FREE_VARIABLES() \
fa9a63c5
RM
4638 do { \
4639 REGEX_FREE_STACK (fail_stack.stack); \
4640 FREE_VAR (regstart); \
4641 FREE_VAR (regend); \
fa9a63c5
RM
4642 FREE_VAR (best_regstart); \
4643 FREE_VAR (best_regend); \
fa9a63c5
RM
4644 } while (0)
4645#else
0b32bf0e 4646# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4647#endif /* not MATCH_MAY_ALLOCATE */
4648
505bde11
SM
4649\f
4650/* Optimization routines. */
4651
4e8a9132
SM
4652/* If the operation is a match against one or more chars,
4653 return a pointer to the next operation, else return NULL. */
01618498 4654static re_char *
4e8a9132 4655skip_one_char (p)
01618498 4656 re_char *p;
4e8a9132
SM
4657{
4658 switch (SWITCH_ENUM_CAST (*p++))
4659 {
4660 case anychar:
4661 break;
177c0ea7 4662
4e8a9132
SM
4663 case exactn:
4664 p += *p + 1;
4665 break;
4666
4667 case charset_not:
4668 case charset:
4669 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4670 {
4671 int mcnt;
4672 p = CHARSET_RANGE_TABLE (p - 1);
4673 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4674 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4675 }
4676 else
4677 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4678 break;
177c0ea7 4679
4e8a9132
SM
4680 case syntaxspec:
4681 case notsyntaxspec:
1fb352e0 4682#ifdef emacs
4e8a9132
SM
4683 case categoryspec:
4684 case notcategoryspec:
4685#endif /* emacs */
4686 p++;
4687 break;
4688
4689 default:
4690 p = NULL;
4691 }
4692 return p;
4693}
4694
4695
505bde11 4696/* Jump over non-matching operations. */
839966f3 4697static re_char *
4e8a9132 4698skip_noops (p, pend)
839966f3 4699 re_char *p, *pend;
505bde11
SM
4700{
4701 int mcnt;
4702 while (p < pend)
4703 {
4704 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4705 {
4706 case start_memory:
505bde11
SM
4707 case stop_memory:
4708 p += 2; break;
4709 case no_op:
4710 p += 1; break;
4711 case jump:
4712 p += 1;
4713 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4714 p += mcnt;
4715 break;
4716 default:
4717 return p;
4718 }
4719 }
4720 assert (p == pend);
4721 return p;
4722}
4723
4724/* Non-zero if "p1 matches something" implies "p2 fails". */
4725static int
4726mutually_exclusive_p (bufp, p1, p2)
4727 struct re_pattern_buffer *bufp;
839966f3 4728 re_char *p1, *p2;
505bde11 4729{
4e8a9132 4730 re_opcode_t op2;
2d1675e4 4731 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4732 unsigned char *pend = bufp->buffer + bufp->used;
4733
4e8a9132 4734 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4735 && p2 >= bufp->buffer && p2 <= pend);
4736
4737 /* Skip over open/close-group commands.
4738 If what follows this loop is a ...+ construct,
4739 look at what begins its body, since we will have to
4740 match at least one of that. */
4e8a9132
SM
4741 p2 = skip_noops (p2, pend);
4742 /* The same skip can be done for p1, except that this function
4743 is only used in the case where p1 is a simple match operator. */
4744 /* p1 = skip_noops (p1, pend); */
4745
4746 assert (p1 >= bufp->buffer && p1 < pend
4747 && p2 >= bufp->buffer && p2 <= pend);
4748
4749 op2 = p2 == pend ? succeed : *p2;
4750
4751 switch (SWITCH_ENUM_CAST (op2))
505bde11 4752 {
4e8a9132
SM
4753 case succeed:
4754 case endbuf:
4755 /* If we're at the end of the pattern, we can change. */
4756 if (skip_one_char (p1))
505bde11 4757 {
505bde11
SM
4758 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4759 return 1;
505bde11 4760 }
4e8a9132 4761 break;
177c0ea7 4762
4e8a9132 4763 case endline:
4e8a9132
SM
4764 case exactn:
4765 {
01618498 4766 register re_wchar_t c
4e8a9132 4767 = (re_opcode_t) *p2 == endline ? '\n'
411e4203 4768 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
505bde11 4769
4e8a9132
SM
4770 if ((re_opcode_t) *p1 == exactn)
4771 {
4772 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4773 {
4774 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4775 return 1;
4776 }
4777 }
505bde11 4778
4e8a9132
SM
4779 else if ((re_opcode_t) *p1 == charset
4780 || (re_opcode_t) *p1 == charset_not)
4781 {
4782 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4783
4e8a9132
SM
4784 /* Test if C is listed in charset (or charset_not)
4785 at `p1'. */
6fdd04b0 4786 if (! multibyte || IS_REAL_ASCII (c))
4e8a9132
SM
4787 {
4788 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4789 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4790 not = !not;
4791 }
4792 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4793 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4794
4e8a9132
SM
4795 /* `not' is equal to 1 if c would match, which means
4796 that we can't change to pop_failure_jump. */
4797 if (!not)
4798 {
4799 DEBUG_PRINT1 (" No match => fast loop.\n");
4800 return 1;
4801 }
4802 }
4803 else if ((re_opcode_t) *p1 == anychar
4804 && c == '\n')
4805 {
4806 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4807 return 1;
4808 }
4809 }
4810 break;
505bde11 4811
4e8a9132 4812 case charset:
4e8a9132
SM
4813 {
4814 if ((re_opcode_t) *p1 == exactn)
4815 /* Reuse the code above. */
4816 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4817
505bde11
SM
4818 /* It is hard to list up all the character in charset
4819 P2 if it includes multibyte character. Give up in
4820 such case. */
4821 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4822 {
4823 /* Now, we are sure that P2 has no range table.
4824 So, for the size of bitmap in P2, `p2[1]' is
7814e705 4825 enough. But P1 may have range table, so the
505bde11
SM
4826 size of bitmap table of P1 is extracted by
4827 using macro `CHARSET_BITMAP_SIZE'.
4828
6fdd04b0
KH
4829 In a multibyte case, we know that all the character
4830 listed in P2 is ASCII. In a unibyte case, P1 has only a
4831 bitmap table. So, in both cases, it is enough to test
4832 only the bitmap table of P1. */
505bde11 4833
411e4203 4834 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4835 {
4836 int idx;
4837 /* We win if the charset inside the loop
4838 has no overlap with the one after the loop. */
4839 for (idx = 0;
4840 (idx < (int) p2[1]
4841 && idx < CHARSET_BITMAP_SIZE (p1));
4842 idx++)
4843 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4844 break;
4845
4846 if (idx == p2[1]
4847 || idx == CHARSET_BITMAP_SIZE (p1))
4848 {
4849 DEBUG_PRINT1 (" No match => fast loop.\n");
4850 return 1;
4851 }
4852 }
411e4203 4853 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4854 {
4855 int idx;
4856 /* We win if the charset_not inside the loop lists
7814e705 4857 every character listed in the charset after. */
505bde11
SM
4858 for (idx = 0; idx < (int) p2[1]; idx++)
4859 if (! (p2[2 + idx] == 0
4860 || (idx < CHARSET_BITMAP_SIZE (p1)
4861 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4862 break;
4863
4e8a9132
SM
4864 if (idx == p2[1])
4865 {
4866 DEBUG_PRINT1 (" No match => fast loop.\n");
4867 return 1;
4868 }
4869 }
4870 }
4871 }
609b757a 4872 break;
177c0ea7 4873
411e4203
SM
4874 case charset_not:
4875 switch (SWITCH_ENUM_CAST (*p1))
4876 {
4877 case exactn:
4878 case charset:
4879 /* Reuse the code above. */
4880 return mutually_exclusive_p (bufp, p2, p1);
4881 case charset_not:
4882 /* When we have two charset_not, it's very unlikely that
4883 they don't overlap. The union of the two sets of excluded
4884 chars should cover all possible chars, which, as a matter of
4885 fact, is virtually impossible in multibyte buffers. */
36595814 4886 break;
411e4203
SM
4887 }
4888 break;
4889
4e8a9132 4890 case wordend:
669fa600
SM
4891 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4892 case symend:
4e8a9132 4893 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
4894 && (p1[1] == Ssymbol || p1[1] == Sword));
4895 case notsyntaxspec:
4896 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4897
4898 case wordbeg:
669fa600
SM
4899 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4900 case symbeg:
4e8a9132 4901 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
4902 && (p1[1] == Ssymbol || p1[1] == Sword));
4903 case syntaxspec:
4904 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4905
4906 case wordbound:
4907 return (((re_opcode_t) *p1 == notsyntaxspec
4908 || (re_opcode_t) *p1 == syntaxspec)
4909 && p1[1] == Sword);
4910
1fb352e0 4911#ifdef emacs
4e8a9132
SM
4912 case categoryspec:
4913 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4914 case notcategoryspec:
4915 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4916#endif /* emacs */
4917
4918 default:
4919 ;
505bde11
SM
4920 }
4921
4922 /* Safe default. */
4923 return 0;
4924}
4925
fa9a63c5
RM
4926\f
4927/* Matching routines. */
4928
25fe55af 4929#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4930/* re_match is like re_match_2 except it takes only a single string. */
4931
4932int
4933re_match (bufp, string, size, pos, regs)
4934 struct re_pattern_buffer *bufp;
4935 const char *string;
4936 int size, pos;
4937 struct re_registers *regs;
4938{
4bb91c68 4939 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 4940 pos, regs, size);
0b32bf0e 4941# if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4942 alloca (0);
0b32bf0e 4943# endif
fa9a63c5
RM
4944 return result;
4945}
c0f9ea08 4946WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4947#endif /* not emacs */
4948
b18215fc
RS
4949#ifdef emacs
4950/* In Emacs, this is the string or buffer in which we
7814e705 4951 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4952Lisp_Object re_match_object;
4953#endif
fa9a63c5
RM
4954
4955/* re_match_2 matches the compiled pattern in BUFP against the
4956 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4957 and SIZE2, respectively). We start matching at POS, and stop
4958 matching at STOP.
5e69f11e 4959
fa9a63c5 4960 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
7814e705 4961 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4962 documentation for exactly how many groups we fill.
4963
4964 We return -1 if no match, -2 if an internal error (such as the
7814e705 4965 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4966 matched substring. */
4967
4968int
4969re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4970 struct re_pattern_buffer *bufp;
4971 const char *string1, *string2;
4972 int size1, size2;
4973 int pos;
4974 struct re_registers *regs;
4975 int stop;
4976{
b18215fc 4977 int result;
25fe55af 4978
b18215fc 4979#ifdef emacs
cc9b4df2
KH
4980 int charpos;
4981 gl_state.object = re_match_object;
99633e97 4982 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4983 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4984#endif
4985
4bb91c68
SM
4986 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4987 (re_char*) string2, size2,
cc9b4df2 4988 pos, regs, stop);
0b32bf0e 4989#if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4990 alloca (0);
a60198e5 4991#endif
fa9a63c5
RM
4992 return result;
4993}
c0f9ea08 4994WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5 4995
bf216479 4996#ifdef emacs
6fdd04b0
KH
4997#define TRANSLATE_VIA_MULTIBYTE(c) \
4998 do { \
4999 if (multibyte) \
5000 (c) = TRANSLATE (c); \
5001 else \
5002 { \
5003 MAKE_CHAR_MULTIBYTE (c); \
5004 (c) = TRANSLATE (c); \
5005 MAKE_CHAR_UNIBYTE (c); \
5006 } \
5007 } while (0)
5008
bf216479 5009#else
6fdd04b0 5010#define TRANSLATE_VIA_MULTIBYTE(c) ((c) = TRANSLATE (c))
bf216479
KH
5011#endif
5012
5013
fa9a63c5 5014/* This is a separate function so that we can force an alloca cleanup
7814e705 5015 afterwards. */
fa9a63c5
RM
5016static int
5017re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
5018 struct re_pattern_buffer *bufp;
66f0296e 5019 re_char *string1, *string2;
fa9a63c5
RM
5020 int size1, size2;
5021 int pos;
5022 struct re_registers *regs;
5023 int stop;
5024{
5025 /* General temporaries. */
5026 int mcnt;
01618498 5027 size_t reg;
66f0296e 5028 boolean not;
fa9a63c5
RM
5029
5030 /* Just past the end of the corresponding string. */
66f0296e 5031 re_char *end1, *end2;
fa9a63c5
RM
5032
5033 /* Pointers into string1 and string2, just past the last characters in
7814e705 5034 each to consider matching. */
66f0296e 5035 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
5036
5037 /* Where we are in the data, and the end of the current string. */
66f0296e 5038 re_char *d, *dend;
5e69f11e 5039
99633e97
SM
5040 /* Used sometimes to remember where we were before starting matching
5041 an operator so that we can go back in case of failure. This "atomic"
5042 behavior of matching opcodes is indispensable to the correctness
5043 of the on_failure_keep_string_jump optimization. */
5044 re_char *dfail;
5045
fa9a63c5 5046 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
5047 re_char *p = bufp->buffer;
5048 re_char *pend = p + bufp->used;
fa9a63c5 5049
25fe55af 5050 /* We use this to map every character in the string. */
6676cb1c 5051 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 5052
6fdd04b0
KH
5053 /* Nonzero if BUFP is setup for multibyte characters. We are sure
5054 that it is the same as RE_TARGET_MULTIBYTE_P (bufp). */
2d1675e4 5055 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 5056
fa9a63c5
RM
5057 /* Failure point stack. Each place that can handle a failure further
5058 down the line pushes a failure point on this stack. It consists of
505bde11 5059 regstart, and regend for all registers corresponding to
fa9a63c5
RM
5060 the subexpressions we're currently inside, plus the number of such
5061 registers, and, finally, two char *'s. The first char * is where
5062 to resume scanning the pattern; the second one is where to resume
7814e705
JB
5063 scanning the strings. */
5064#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
5065 fail_stack_type fail_stack;
5066#endif
5067#ifdef DEBUG
fa9a63c5
RM
5068 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5069#endif
5070
0b32bf0e 5071#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
5072 /* This holds the pointer to the failure stack, when
5073 it is allocated relocatably. */
5074 fail_stack_elt_t *failure_stack_ptr;
99633e97 5075#endif
fa9a63c5
RM
5076
5077 /* We fill all the registers internally, independent of what we
7814e705 5078 return, for use in backreferences. The number here includes
fa9a63c5 5079 an element for register zero. */
4bb91c68 5080 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 5081
fa9a63c5
RM
5082 /* Information on the contents of registers. These are pointers into
5083 the input strings; they record just what was matched (on this
5084 attempt) by a subexpression part of the pattern, that is, the
5085 regnum-th regstart pointer points to where in the pattern we began
5086 matching and the regnum-th regend points to right after where we
5087 stopped matching the regnum-th subexpression. (The zeroth register
5088 keeps track of what the whole pattern matches.) */
5089#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5090 re_char **regstart, **regend;
fa9a63c5
RM
5091#endif
5092
fa9a63c5 5093 /* The following record the register info as found in the above
5e69f11e 5094 variables when we find a match better than any we've seen before.
fa9a63c5
RM
5095 This happens as we backtrack through the failure points, which in
5096 turn happens only if we have not yet matched the entire string. */
5097 unsigned best_regs_set = false;
5098#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5099 re_char **best_regstart, **best_regend;
fa9a63c5 5100#endif
5e69f11e 5101
fa9a63c5
RM
5102 /* Logically, this is `best_regend[0]'. But we don't want to have to
5103 allocate space for that if we're not allocating space for anything
7814e705 5104 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
5105 any of the other register vectors, and it seems rather a kludge to
5106 treat `best_regend' differently than the rest. So we keep track of
5107 the end of the best match so far in a separate variable. We
5108 initialize this to NULL so that when we backtrack the first time
5109 and need to test it, it's not garbage. */
66f0296e 5110 re_char *match_end = NULL;
fa9a63c5 5111
fa9a63c5
RM
5112#ifdef DEBUG
5113 /* Counts the total number of registers pushed. */
5e69f11e 5114 unsigned num_regs_pushed = 0;
fa9a63c5
RM
5115#endif
5116
5117 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 5118
fa9a63c5 5119 INIT_FAIL_STACK ();
5e69f11e 5120
fa9a63c5
RM
5121#ifdef MATCH_MAY_ALLOCATE
5122 /* Do not bother to initialize all the register variables if there are
5123 no groups in the pattern, as it takes a fair amount of time. If
5124 there are groups, we include space for register 0 (the whole
5125 pattern), even though we never use it, since it simplifies the
5126 array indexing. We should fix this. */
5127 if (bufp->re_nsub)
5128 {
66f0296e
SM
5129 regstart = REGEX_TALLOC (num_regs, re_char *);
5130 regend = REGEX_TALLOC (num_regs, re_char *);
5131 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5132 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 5133
505bde11 5134 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
5135 {
5136 FREE_VARIABLES ();
5137 return -2;
5138 }
fa9a63c5
RM
5139 }
5140 else
5141 {
5142 /* We must initialize all our variables to NULL, so that
25fe55af 5143 `FREE_VARIABLES' doesn't try to free them. */
505bde11 5144 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
5145 }
5146#endif /* MATCH_MAY_ALLOCATE */
5147
5148 /* The starting position is bogus. */
5149 if (pos < 0 || pos > size1 + size2)
5150 {
5151 FREE_VARIABLES ();
5152 return -1;
5153 }
5e69f11e 5154
fa9a63c5
RM
5155 /* Initialize subexpression text positions to -1 to mark ones that no
5156 start_memory/stop_memory has been seen for. Also initialize the
5157 register information struct. */
01618498
SM
5158 for (reg = 1; reg < num_regs; reg++)
5159 regstart[reg] = regend[reg] = NULL;
99633e97 5160
fa9a63c5 5161 /* We move `string1' into `string2' if the latter's empty -- but not if
7814e705 5162 `string1' is null. */
fa9a63c5
RM
5163 if (size2 == 0 && string1 != NULL)
5164 {
5165 string2 = string1;
5166 size2 = size1;
5167 string1 = 0;
5168 size1 = 0;
5169 }
5170 end1 = string1 + size1;
5171 end2 = string2 + size2;
5172
5e69f11e 5173 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
5174 `dend' is the end of the input string that `d' points within. `d'
5175 is advanced into the following input string whenever necessary, but
5176 this happens before fetching; therefore, at the beginning of the
5177 loop, `d' can be pointing at the end of a string, but it cannot
5178 equal `string2'. */
419d1c74 5179 if (pos >= size1)
fa9a63c5 5180 {
419d1c74
SM
5181 /* Only match within string2. */
5182 d = string2 + pos - size1;
5183 dend = end_match_2 = string2 + stop - size1;
5184 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
5185 }
5186 else
5187 {
f1ad044f 5188 if (stop < size1)
419d1c74
SM
5189 {
5190 /* Only match within string1. */
5191 end_match_1 = string1 + stop;
5192 /* BEWARE!
5193 When we reach end_match_1, PREFETCH normally switches to string2.
5194 But in the present case, this means that just doing a PREFETCH
5195 makes us jump from `stop' to `gap' within the string.
5196 What we really want here is for the search to stop as
5197 soon as we hit end_match_1. That's why we set end_match_2
5198 to end_match_1 (since PREFETCH fails as soon as we hit
5199 end_match_2). */
5200 end_match_2 = end_match_1;
5201 }
5202 else
f1ad044f
SM
5203 { /* It's important to use this code when stop == size so that
5204 moving `d' from end1 to string2 will not prevent the d == dend
5205 check from catching the end of string. */
419d1c74
SM
5206 end_match_1 = end1;
5207 end_match_2 = string2 + stop - size1;
5208 }
5209 d = string1 + pos;
5210 dend = end_match_1;
fa9a63c5
RM
5211 }
5212
5213 DEBUG_PRINT1 ("The compiled pattern is: ");
5214 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5215 DEBUG_PRINT1 ("The string to match is: `");
5216 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5217 DEBUG_PRINT1 ("'\n");
5e69f11e 5218
7814e705 5219 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
5220 function if the match is complete, or it drops through if the match
5221 fails at this starting point in the input data. */
5222 for (;;)
5223 {
505bde11 5224 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
5225
5226 if (p == pend)
5227 { /* End of pattern means we might have succeeded. */
25fe55af 5228 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 5229
fa9a63c5 5230 /* If we haven't matched the entire string, and we want the
25fe55af
RS
5231 longest match, try backtracking. */
5232 if (d != end_match_2)
fa9a63c5
RM
5233 {
5234 /* 1 if this match ends in the same string (string1 or string2)
5235 as the best previous match. */
5e69f11e 5236 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 5237 == FIRST_STRING_P (d));
fa9a63c5
RM
5238 /* 1 if this match is the best seen so far. */
5239 boolean best_match_p;
5240
5241 /* AIX compiler got confused when this was combined
7814e705 5242 with the previous declaration. */
fa9a63c5
RM
5243 if (same_str_p)
5244 best_match_p = d > match_end;
5245 else
99633e97 5246 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 5247
25fe55af
RS
5248 DEBUG_PRINT1 ("backtracking.\n");
5249
5250 if (!FAIL_STACK_EMPTY ())
5251 { /* More failure points to try. */
5252
5253 /* If exceeds best match so far, save it. */
5254 if (!best_regs_set || best_match_p)
5255 {
5256 best_regs_set = true;
5257 match_end = d;
5258
5259 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5260
01618498 5261 for (reg = 1; reg < num_regs; reg++)
25fe55af 5262 {
01618498
SM
5263 best_regstart[reg] = regstart[reg];
5264 best_regend[reg] = regend[reg];
25fe55af
RS
5265 }
5266 }
5267 goto fail;
5268 }
5269
5270 /* If no failure points, don't restore garbage. And if
5271 last match is real best match, don't restore second
5272 best one. */
5273 else if (best_regs_set && !best_match_p)
5274 {
5275 restore_best_regs:
5276 /* Restore best match. It may happen that `dend ==
5277 end_match_1' while the restored d is in string2.
5278 For example, the pattern `x.*y.*z' against the
5279 strings `x-' and `y-z-', if the two strings are
7814e705 5280 not consecutive in memory. */
25fe55af
RS
5281 DEBUG_PRINT1 ("Restoring best registers.\n");
5282
5283 d = match_end;
5284 dend = ((d >= string1 && d <= end1)
5285 ? end_match_1 : end_match_2);
fa9a63c5 5286
01618498 5287 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5288 {
01618498
SM
5289 regstart[reg] = best_regstart[reg];
5290 regend[reg] = best_regend[reg];
fa9a63c5 5291 }
25fe55af
RS
5292 }
5293 } /* d != end_match_2 */
fa9a63c5
RM
5294
5295 succeed_label:
25fe55af 5296 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5297
25fe55af
RS
5298 /* If caller wants register contents data back, do it. */
5299 if (regs && !bufp->no_sub)
fa9a63c5 5300 {
25fe55af
RS
5301 /* Have the register data arrays been allocated? */
5302 if (bufp->regs_allocated == REGS_UNALLOCATED)
7814e705 5303 { /* No. So allocate them with malloc. We need one
25fe55af
RS
5304 extra element beyond `num_regs' for the `-1' marker
5305 GNU code uses. */
5306 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5307 regs->start = TALLOC (regs->num_regs, regoff_t);
5308 regs->end = TALLOC (regs->num_regs, regoff_t);
5309 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5310 {
5311 FREE_VARIABLES ();
5312 return -2;
5313 }
25fe55af
RS
5314 bufp->regs_allocated = REGS_REALLOCATE;
5315 }
5316 else if (bufp->regs_allocated == REGS_REALLOCATE)
5317 { /* Yes. If we need more elements than were already
5318 allocated, reallocate them. If we need fewer, just
5319 leave it alone. */
5320 if (regs->num_regs < num_regs + 1)
5321 {
5322 regs->num_regs = num_regs + 1;
5323 RETALLOC (regs->start, regs->num_regs, regoff_t);
5324 RETALLOC (regs->end, regs->num_regs, regoff_t);
5325 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5326 {
5327 FREE_VARIABLES ();
5328 return -2;
5329 }
25fe55af
RS
5330 }
5331 }
5332 else
fa9a63c5
RM
5333 {
5334 /* These braces fend off a "empty body in an else-statement"
7814e705 5335 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5336 assert (bufp->regs_allocated == REGS_FIXED);
5337 }
5338
25fe55af
RS
5339 /* Convert the pointer data in `regstart' and `regend' to
5340 indices. Register zero has to be set differently,
5341 since we haven't kept track of any info for it. */
5342 if (regs->num_regs > 0)
5343 {
5344 regs->start[0] = pos;
99633e97 5345 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5346 }
5e69f11e 5347
25fe55af
RS
5348 /* Go through the first `min (num_regs, regs->num_regs)'
5349 registers, since that is all we initialized. */
01618498 5350 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5351 {
01618498
SM
5352 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5353 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5354 else
5355 {
01618498
SM
5356 regs->start[reg]
5357 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5358 regs->end[reg]
5359 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5360 }
fa9a63c5 5361 }
5e69f11e 5362
25fe55af
RS
5363 /* If the regs structure we return has more elements than
5364 were in the pattern, set the extra elements to -1. If
5365 we (re)allocated the registers, this is the case,
5366 because we always allocate enough to have at least one
7814e705 5367 -1 at the end. */
01618498
SM
5368 for (reg = num_regs; reg < regs->num_regs; reg++)
5369 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5370 } /* regs && !bufp->no_sub */
5371
25fe55af
RS
5372 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5373 nfailure_points_pushed, nfailure_points_popped,
5374 nfailure_points_pushed - nfailure_points_popped);
5375 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5376
99633e97 5377 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5378
25fe55af 5379 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5380
25fe55af
RS
5381 FREE_VARIABLES ();
5382 return mcnt;
5383 }
fa9a63c5 5384
7814e705 5385 /* Otherwise match next pattern command. */
fa9a63c5
RM
5386 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5387 {
25fe55af
RS
5388 /* Ignore these. Used to ignore the n of succeed_n's which
5389 currently have n == 0. */
5390 case no_op:
5391 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5392 break;
fa9a63c5
RM
5393
5394 case succeed:
25fe55af 5395 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5396 goto succeed_label;
5397
7814e705 5398 /* Match the next n pattern characters exactly. The following
25fe55af 5399 byte in the pattern defines n, and the n bytes after that
7814e705 5400 are the characters to match. */
fa9a63c5
RM
5401 case exactn:
5402 mcnt = *p++;
25fe55af 5403 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5404
99633e97
SM
5405 /* Remember the start point to rollback upon failure. */
5406 dfail = d;
5407
6fdd04b0 5408#ifndef emacs
25fe55af
RS
5409 /* This is written out as an if-else so we don't waste time
5410 testing `translate' inside the loop. */
28703c16 5411 if (RE_TRANSLATE_P (translate))
6fdd04b0
KH
5412 do
5413 {
5414 PREFETCH ();
5415 if (RE_TRANSLATE (translate, *d) != *p++)
e934739e 5416 {
6fdd04b0
KH
5417 d = dfail;
5418 goto fail;
e934739e 5419 }
6fdd04b0
KH
5420 d++;
5421 }
5422 while (--mcnt);
fa9a63c5 5423 else
6fdd04b0
KH
5424 do
5425 {
5426 PREFETCH ();
5427 if (*d++ != *p++)
bf216479 5428 {
6fdd04b0
KH
5429 d = dfail;
5430 goto fail;
bf216479 5431 }
6fdd04b0
KH
5432 }
5433 while (--mcnt);
5434#else /* emacs */
5435 /* The cost of testing `translate' is comparatively small. */
5436 if (multibyte)
5437 do
5438 {
5439 int pat_charlen, buf_charlen;
5440 unsigned int pat_ch, buf_ch;
e934739e 5441
6fdd04b0
KH
5442 PREFETCH ();
5443 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5444 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e 5445
6fdd04b0 5446 if (TRANSLATE (buf_ch) != pat_ch)
e934739e 5447 {
6fdd04b0
KH
5448 d = dfail;
5449 goto fail;
e934739e 5450 }
bf216479 5451
6fdd04b0
KH
5452 p += pat_charlen;
5453 d += buf_charlen;
5454 mcnt -= pat_charlen;
5455 }
5456 while (mcnt > 0);
fa9a63c5 5457 else
6fdd04b0
KH
5458 do
5459 {
5460 unsigned int buf_ch;
bf216479 5461
6fdd04b0
KH
5462 PREFETCH ();
5463 buf_ch = *d++;
5464 TRANSLATE_VIA_MULTIBYTE (buf_ch);
5465 if (buf_ch != *p++)
5466 {
5467 d = dfail;
5468 goto fail;
bf216479 5469 }
6fdd04b0
KH
5470 }
5471 while (--mcnt);
5472#endif
25fe55af 5473 break;
fa9a63c5
RM
5474
5475
25fe55af 5476 /* Match any character except possibly a newline or a null. */
fa9a63c5 5477 case anychar:
e934739e
RS
5478 {
5479 int buf_charlen;
01618498 5480 re_wchar_t buf_ch;
fa9a63c5 5481
e934739e 5482 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5483
e934739e 5484 PREFETCH ();
2d1675e4 5485 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
5486 buf_ch = TRANSLATE (buf_ch);
5487
5488 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5489 && buf_ch == '\n')
5490 || ((bufp->syntax & RE_DOT_NOT_NULL)
5491 && buf_ch == '\000'))
5492 goto fail;
5493
e934739e
RS
5494 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5495 d += buf_charlen;
5496 }
fa9a63c5
RM
5497 break;
5498
5499
5500 case charset:
5501 case charset_not:
5502 {
b18215fc 5503 register unsigned int c;
fa9a63c5 5504 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5505 int len;
5506
5507 /* Start of actual range_table, or end of bitmap if there is no
5508 range table. */
01618498 5509 re_char *range_table;
b18215fc 5510
96cc36cc 5511 /* Nonzero if there is a range table. */
b18215fc
RS
5512 int range_table_exists;
5513
96cc36cc
RS
5514 /* Number of ranges of range table. This is not included
5515 in the initial byte-length of the command. */
5516 int count = 0;
fa9a63c5 5517
25fe55af 5518 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5519
b18215fc 5520 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5521
b18215fc 5522 if (range_table_exists)
96cc36cc
RS
5523 {
5524 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5525 EXTRACT_NUMBER_AND_INCR (count, range_table);
5526 }
b18215fc 5527
2d1675e4
SM
5528 PREFETCH ();
5529 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6fdd04b0 5530 TRANSLATE_VIA_MULTIBYTE (c); /* The character to match. */
b18215fc 5531
bf216479 5532 if (! multibyte || IS_REAL_ASCII (c))
b18215fc 5533 { /* Lookup bitmap. */
b18215fc
RS
5534 /* Cast to `unsigned' instead of `unsigned char' in
5535 case the bit list is a full 32 bytes long. */
5536 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5537 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5538 not = !not;
b18215fc 5539 }
96cc36cc 5540#ifdef emacs
b18215fc 5541 else if (range_table_exists)
96cc36cc
RS
5542 {
5543 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5544
14473664
SM
5545 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5546 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5547 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5548 | (class_bits & BIT_SPACE && ISSPACE (c))
5549 | (class_bits & BIT_UPPER && ISUPPER (c))
5550 | (class_bits & BIT_WORD && ISWORD (c)))
5551 not = !not;
5552 else
5553 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5554 }
5555#endif /* emacs */
fa9a63c5 5556
96cc36cc
RS
5557 if (range_table_exists)
5558 p = CHARSET_RANGE_TABLE_END (range_table, count);
5559 else
5560 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5561
5562 if (!not) goto fail;
5e69f11e 5563
b18215fc 5564 d += len;
fa9a63c5
RM
5565 break;
5566 }
5567
5568
25fe55af 5569 /* The beginning of a group is represented by start_memory.
505bde11 5570 The argument is the register number. The text
25fe55af 5571 matched within the group is recorded (in the internal
7814e705 5572 registers data structure) under the register number. */
25fe55af 5573 case start_memory:
505bde11
SM
5574 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5575
5576 /* In case we need to undo this operation (via backtracking). */
5577 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5578
25fe55af 5579 regstart[*p] = d;
4bb91c68 5580 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5581 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5582
25fe55af 5583 /* Move past the register number and inner group count. */
505bde11 5584 p += 1;
25fe55af 5585 break;
fa9a63c5
RM
5586
5587
25fe55af 5588 /* The stop_memory opcode represents the end of a group. Its
505bde11 5589 argument is the same as start_memory's: the register number. */
fa9a63c5 5590 case stop_memory:
505bde11
SM
5591 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5592
5593 assert (!REG_UNSET (regstart[*p]));
5594 /* Strictly speaking, there should be code such as:
177c0ea7 5595
0b32bf0e 5596 assert (REG_UNSET (regend[*p]));
505bde11
SM
5597 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5598
5599 But the only info to be pushed is regend[*p] and it is known to
5600 be UNSET, so there really isn't anything to push.
5601 Not pushing anything, on the other hand deprives us from the
5602 guarantee that regend[*p] is UNSET since undoing this operation
5603 will not reset its value properly. This is not important since
5604 the value will only be read on the next start_memory or at
5605 the very end and both events can only happen if this stop_memory
5606 is *not* undone. */
fa9a63c5 5607
25fe55af 5608 regend[*p] = d;
fa9a63c5
RM
5609 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5610
25fe55af 5611 /* Move past the register number and the inner group count. */
505bde11 5612 p += 1;
25fe55af 5613 break;
fa9a63c5
RM
5614
5615
5616 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5617 followed by the numeric value of <digit> as the register number. */
5618 case duplicate:
fa9a63c5 5619 {
66f0296e 5620 register re_char *d2, *dend2;
7814e705 5621 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5622 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5623
7814e705 5624 /* Can't back reference a group which we've never matched. */
25fe55af
RS
5625 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5626 goto fail;
5e69f11e 5627
7814e705 5628 /* Where in input to try to start matching. */
25fe55af 5629 d2 = regstart[regno];
5e69f11e 5630
99633e97
SM
5631 /* Remember the start point to rollback upon failure. */
5632 dfail = d;
5633
25fe55af
RS
5634 /* Where to stop matching; if both the place to start and
5635 the place to stop matching are in the same string, then
5636 set to the place to stop, otherwise, for now have to use
5637 the end of the first string. */
fa9a63c5 5638
25fe55af 5639 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5640 == FIRST_STRING_P (regend[regno]))
5641 ? regend[regno] : end_match_1);
5642 for (;;)
5643 {
5644 /* If necessary, advance to next segment in register
25fe55af 5645 contents. */
fa9a63c5
RM
5646 while (d2 == dend2)
5647 {
5648 if (dend2 == end_match_2) break;
5649 if (dend2 == regend[regno]) break;
5650
25fe55af
RS
5651 /* End of string1 => advance to string2. */
5652 d2 = string2;
5653 dend2 = regend[regno];
fa9a63c5
RM
5654 }
5655 /* At end of register contents => success */
5656 if (d2 == dend2) break;
5657
5658 /* If necessary, advance to next segment in data. */
5659 PREFETCH ();
5660
5661 /* How many characters left in this segment to match. */
5662 mcnt = dend - d;
5e69f11e 5663
fa9a63c5 5664 /* Want how many consecutive characters we can match in
25fe55af
RS
5665 one shot, so, if necessary, adjust the count. */
5666 if (mcnt > dend2 - d2)
fa9a63c5 5667 mcnt = dend2 - d2;
5e69f11e 5668
fa9a63c5 5669 /* Compare that many; failure if mismatch, else move
25fe55af 5670 past them. */
28703c16 5671 if (RE_TRANSLATE_P (translate)
2d1675e4 5672 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4bb91c68 5673 : memcmp (d, d2, mcnt))
99633e97
SM
5674 {
5675 d = dfail;
5676 goto fail;
5677 }
fa9a63c5 5678 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5679 }
5680 }
5681 break;
5682
5683
25fe55af 5684 /* begline matches the empty string at the beginning of the string
c0f9ea08 5685 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5686 case begline:
25fe55af 5687 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5688
25fe55af
RS
5689 if (AT_STRINGS_BEG (d))
5690 {
5691 if (!bufp->not_bol) break;
5692 }
419d1c74 5693 else
25fe55af 5694 {
bf216479 5695 unsigned c;
419d1c74 5696 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5697 if (c == '\n')
419d1c74 5698 break;
25fe55af
RS
5699 }
5700 /* In all other cases, we fail. */
5701 goto fail;
fa9a63c5
RM
5702
5703
25fe55af 5704 /* endline is the dual of begline. */
fa9a63c5 5705 case endline:
25fe55af 5706 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5707
25fe55af
RS
5708 if (AT_STRINGS_END (d))
5709 {
5710 if (!bufp->not_eol) break;
5711 }
f1ad044f 5712 else
25fe55af 5713 {
f1ad044f 5714 PREFETCH_NOLIMIT ();
c0f9ea08 5715 if (*d == '\n')
f1ad044f 5716 break;
25fe55af
RS
5717 }
5718 goto fail;
fa9a63c5
RM
5719
5720
5721 /* Match at the very beginning of the data. */
25fe55af
RS
5722 case begbuf:
5723 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5724 if (AT_STRINGS_BEG (d))
5725 break;
5726 goto fail;
fa9a63c5
RM
5727
5728
5729 /* Match at the very end of the data. */
25fe55af
RS
5730 case endbuf:
5731 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5732 if (AT_STRINGS_END (d))
5733 break;
25fe55af 5734 goto fail;
5e69f11e 5735
5e69f11e 5736
25fe55af
RS
5737 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5738 pushes NULL as the value for the string on the stack. Then
505bde11 5739 `POP_FAILURE_POINT' will keep the current value for the
25fe55af 5740 string, instead of restoring it. To see why, consider
7814e705 5741 matching `foo\nbar' against `.*\n'. The .* matches the foo;
25fe55af
RS
5742 then the . fails against the \n. But the next thing we want
5743 to do is match the \n against the \n; if we restored the
5744 string value, we would be back at the foo.
5745
5746 Because this is used only in specific cases, we don't need to
5747 check all the things that `on_failure_jump' does, to make
5748 sure the right things get saved on the stack. Hence we don't
5749 share its code. The only reason to push anything on the
5750 stack at all is that otherwise we would have to change
5751 `anychar's code to do something besides goto fail in this
5752 case; that seems worse than this. */
5753 case on_failure_keep_string_jump:
505bde11
SM
5754 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5755 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5756 mcnt, p + mcnt);
fa9a63c5 5757
505bde11
SM
5758 PUSH_FAILURE_POINT (p - 3, NULL);
5759 break;
5760
0683b6fa
SM
5761 /* A nasty loop is introduced by the non-greedy *? and +?.
5762 With such loops, the stack only ever contains one failure point
5763 at a time, so that a plain on_failure_jump_loop kind of
5764 cycle detection cannot work. Worse yet, such a detection
5765 can not only fail to detect a cycle, but it can also wrongly
5766 detect a cycle (between different instantiations of the same
6df42991 5767 loop).
0683b6fa
SM
5768 So the method used for those nasty loops is a little different:
5769 We use a special cycle-detection-stack-frame which is pushed
5770 when the on_failure_jump_nastyloop failure-point is *popped*.
5771 This special frame thus marks the beginning of one iteration
5772 through the loop and we can hence easily check right here
5773 whether something matched between the beginning and the end of
5774 the loop. */
5775 case on_failure_jump_nastyloop:
5776 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5777 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5778 mcnt, p + mcnt);
5779
5780 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5781 {
5782 int cycle = 0;
5783 CHECK_INFINITE_LOOP (p - 4, d);
5784 if (!cycle)
5785 /* If there's a cycle, just continue without pushing
5786 this failure point. The failure point is the "try again"
5787 option, which shouldn't be tried.
5788 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5789 PUSH_FAILURE_POINT (p - 3, d);
5790 }
0683b6fa
SM
5791 break;
5792
4e8a9132
SM
5793 /* Simple loop detecting on_failure_jump: just check on the
5794 failure stack if the same spot was already hit earlier. */
505bde11
SM
5795 case on_failure_jump_loop:
5796 on_failure:
5797 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5798 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5799 mcnt, p + mcnt);
6df42991
SM
5800 {
5801 int cycle = 0;
5802 CHECK_INFINITE_LOOP (p - 3, d);
5803 if (cycle)
5804 /* If there's a cycle, get out of the loop, as if the matching
5805 had failed. We used to just `goto fail' here, but that was
5806 aborting the search a bit too early: we want to keep the
5807 empty-loop-match and keep matching after the loop.
5808 We want (x?)*y\1z to match both xxyz and xxyxz. */
5809 p += mcnt;
5810 else
5811 PUSH_FAILURE_POINT (p - 3, d);
5812 }
25fe55af 5813 break;
fa9a63c5
RM
5814
5815
5816 /* Uses of on_failure_jump:
5e69f11e 5817
25fe55af
RS
5818 Each alternative starts with an on_failure_jump that points
5819 to the beginning of the next alternative. Each alternative
5820 except the last ends with a jump that in effect jumps past
5821 the rest of the alternatives. (They really jump to the
5822 ending jump of the following alternative, because tensioning
5823 these jumps is a hassle.)
fa9a63c5 5824
25fe55af
RS
5825 Repeats start with an on_failure_jump that points past both
5826 the repetition text and either the following jump or
5827 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5828 case on_failure_jump:
25fe55af 5829 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5830 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5831 mcnt, p + mcnt);
25fe55af 5832
505bde11 5833 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5834 break;
5835
4e8a9132 5836 /* This operation is used for greedy *.
505bde11
SM
5837 Compare the beginning of the repeat with what in the
5838 pattern follows its end. If we can establish that there
5839 is nothing that they would both match, i.e., that we
5840 would have to backtrack because of (as in, e.g., `a*a')
5841 then we can use a non-backtracking loop based on
4e8a9132 5842 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5843 case on_failure_jump_smart:
25fe55af 5844 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5845 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5846 mcnt, p + mcnt);
25fe55af 5847 {
01618498 5848 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5849 /* Here, we discard `const', making re_match non-reentrant. */
5850 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5851 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5852
505bde11
SM
5853 p -= 3; /* Reset so that we will re-execute the
5854 instruction once it's been changed. */
fa9a63c5 5855
4e8a9132
SM
5856 EXTRACT_NUMBER (mcnt, p2 - 2);
5857
5858 /* Ensure this is a indeed the trivial kind of loop
5859 we are expecting. */
5860 assert (skip_one_char (p1) == p2 - 3);
5861 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5862 DEBUG_STATEMENT (debug += 2);
505bde11 5863 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5864 {
505bde11 5865 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5866 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5867 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5868 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5869 }
505bde11 5870 else
fa9a63c5 5871 {
505bde11
SM
5872 /* Default to a safe `on_failure_jump' loop. */
5873 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5874 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5875 }
99633e97 5876 DEBUG_STATEMENT (debug -= 2);
25fe55af 5877 }
505bde11 5878 break;
25fe55af
RS
5879
5880 /* Unconditionally jump (without popping any failure points). */
5881 case jump:
fa9a63c5 5882 unconditional_jump:
5b370c2b 5883 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5884 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af 5885 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7814e705 5886 p += mcnt; /* Do the jump. */
505bde11 5887 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5888 break;
5889
5890
25fe55af
RS
5891 /* Have to succeed matching what follows at least n times.
5892 After that, handle like `on_failure_jump'. */
5893 case succeed_n:
01618498 5894 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5895 EXTRACT_NUMBER (mcnt, p + 2);
5896 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5897
dc1e502d
SM
5898 /* Originally, mcnt is how many times we HAVE to succeed. */
5899 if (mcnt != 0)
25fe55af 5900 {
6dcf2d0e
SM
5901 /* Here, we discard `const', making re_match non-reentrant. */
5902 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5903 mcnt--;
01618498
SM
5904 p += 4;
5905 PUSH_NUMBER (p2, mcnt);
25fe55af 5906 }
dc1e502d
SM
5907 else
5908 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5909 goto on_failure;
25fe55af
RS
5910 break;
5911
5912 case jump_n:
01618498 5913 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5914 EXTRACT_NUMBER (mcnt, p + 2);
5915 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5916
5917 /* Originally, this is how many times we CAN jump. */
dc1e502d 5918 if (mcnt != 0)
25fe55af 5919 {
6dcf2d0e
SM
5920 /* Here, we discard `const', making re_match non-reentrant. */
5921 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5922 mcnt--;
01618498 5923 PUSH_NUMBER (p2, mcnt);
dc1e502d 5924 goto unconditional_jump;
25fe55af
RS
5925 }
5926 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5927 else
5928 p += 4;
25fe55af 5929 break;
5e69f11e 5930
fa9a63c5
RM
5931 case set_number_at:
5932 {
01618498 5933 unsigned char *p2; /* Location of the counter. */
25fe55af 5934 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5935
25fe55af 5936 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5937 /* Here, we discard `const', making re_match non-reentrant. */
5938 p2 = (unsigned char*) p + mcnt;
01618498 5939 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5940 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5941 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5942 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5943 break;
5944 }
9121ca40
KH
5945
5946 case wordbound:
66f0296e
SM
5947 case notwordbound:
5948 not = (re_opcode_t) *(p - 1) == notwordbound;
5949 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5950
99633e97 5951 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5952
b18215fc 5953 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5954 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5955 not = !not;
b18215fc
RS
5956 else
5957 {
5958 /* C1 is the character before D, S1 is the syntax of C1, C2
5959 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5960 re_wchar_t c1, c2;
5961 int s1, s2;
bf216479 5962 int dummy;
b18215fc 5963#ifdef emacs
2d1675e4
SM
5964 int offset = PTR_TO_OFFSET (d - 1);
5965 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5966 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5967#endif
66f0296e 5968 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5969 s1 = SYNTAX (c1);
5970#ifdef emacs
5d967c7a 5971 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5972#endif
f1ad044f 5973 PREFETCH_NOLIMIT ();
6fdd04b0 5974 GET_CHAR_AFTER (c2, d, dummy);
b18215fc
RS
5975 s2 = SYNTAX (c2);
5976
5977 if (/* Case 2: Only one of S1 and S2 is Sword. */
5978 ((s1 == Sword) != (s2 == Sword))
5979 /* Case 3: Both of S1 and S2 are Sword, and macro
7814e705 5980 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5981 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5982 not = !not;
5983 }
5984 if (not)
9121ca40 5985 break;
b18215fc 5986 else
9121ca40 5987 goto fail;
fa9a63c5
RM
5988
5989 case wordbeg:
25fe55af 5990 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5991
b18215fc
RS
5992 /* We FAIL in one of the following cases: */
5993
7814e705 5994 /* Case 1: D is at the end of string. */
b18215fc 5995 if (AT_STRINGS_END (d))
99633e97 5996 goto fail;
b18215fc
RS
5997 else
5998 {
5999 /* C1 is the character before D, S1 is the syntax of C1, C2
6000 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6001 re_wchar_t c1, c2;
6002 int s1, s2;
bf216479 6003 int dummy;
fa9a63c5 6004#ifdef emacs
2d1675e4
SM
6005 int offset = PTR_TO_OFFSET (d);
6006 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6007 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 6008#endif
99633e97 6009 PREFETCH ();
6fdd04b0 6010 GET_CHAR_AFTER (c2, d, dummy);
b18215fc 6011 s2 = SYNTAX (c2);
177c0ea7 6012
b18215fc
RS
6013 /* Case 2: S2 is not Sword. */
6014 if (s2 != Sword)
6015 goto fail;
6016
6017 /* Case 3: D is not at the beginning of string ... */
6018 if (!AT_STRINGS_BEG (d))
6019 {
6020 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6021#ifdef emacs
5d967c7a 6022 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 6023#endif
b18215fc
RS
6024 s1 = SYNTAX (c1);
6025
6026 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6027 returns 0. */
b18215fc
RS
6028 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6029 goto fail;
6030 }
6031 }
e318085a
RS
6032 break;
6033
b18215fc 6034 case wordend:
25fe55af 6035 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
6036
6037 /* We FAIL in one of the following cases: */
6038
6039 /* Case 1: D is at the beginning of string. */
6040 if (AT_STRINGS_BEG (d))
e318085a 6041 goto fail;
b18215fc
RS
6042 else
6043 {
6044 /* C1 is the character before D, S1 is the syntax of C1, C2
6045 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6046 re_wchar_t c1, c2;
6047 int s1, s2;
bf216479 6048 int dummy;
5d967c7a 6049#ifdef emacs
2d1675e4
SM
6050 int offset = PTR_TO_OFFSET (d) - 1;
6051 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6052 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 6053#endif
99633e97 6054 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
6055 s1 = SYNTAX (c1);
6056
6057 /* Case 2: S1 is not Sword. */
6058 if (s1 != Sword)
6059 goto fail;
6060
6061 /* Case 3: D is not at the end of string ... */
6062 if (!AT_STRINGS_END (d))
6063 {
f1ad044f 6064 PREFETCH_NOLIMIT ();
6fdd04b0 6065 GET_CHAR_AFTER (c2, d, dummy);
5d967c7a
RS
6066#ifdef emacs
6067 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
6068#endif
b18215fc
RS
6069 s2 = SYNTAX (c2);
6070
6071 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6072 returns 0. */
b18215fc 6073 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 6074 goto fail;
b18215fc
RS
6075 }
6076 }
e318085a
RS
6077 break;
6078
669fa600
SM
6079 case symbeg:
6080 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6081
6082 /* We FAIL in one of the following cases: */
6083
7814e705 6084 /* Case 1: D is at the end of string. */
669fa600
SM
6085 if (AT_STRINGS_END (d))
6086 goto fail;
6087 else
6088 {
6089 /* C1 is the character before D, S1 is the syntax of C1, C2
6090 is the character at D, and S2 is the syntax of C2. */
6091 re_wchar_t c1, c2;
6092 int s1, s2;
6093#ifdef emacs
6094 int offset = PTR_TO_OFFSET (d);
6095 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6096 UPDATE_SYNTAX_TABLE (charpos);
6097#endif
6098 PREFETCH ();
6099 c2 = RE_STRING_CHAR (d, dend - d);
6100 s2 = SYNTAX (c2);
7814e705 6101
669fa600
SM
6102 /* Case 2: S2 is neither Sword nor Ssymbol. */
6103 if (s2 != Sword && s2 != Ssymbol)
6104 goto fail;
6105
6106 /* Case 3: D is not at the beginning of string ... */
6107 if (!AT_STRINGS_BEG (d))
6108 {
6109 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6110#ifdef emacs
6111 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6112#endif
6113 s1 = SYNTAX (c1);
6114
6115 /* ... and S1 is Sword or Ssymbol. */
6116 if (s1 == Sword || s1 == Ssymbol)
6117 goto fail;
6118 }
6119 }
6120 break;
6121
6122 case symend:
6123 DEBUG_PRINT1 ("EXECUTING symend.\n");
6124
6125 /* We FAIL in one of the following cases: */
6126
6127 /* Case 1: D is at the beginning of string. */
6128 if (AT_STRINGS_BEG (d))
6129 goto fail;
6130 else
6131 {
6132 /* C1 is the character before D, S1 is the syntax of C1, C2
6133 is the character at D, and S2 is the syntax of C2. */
6134 re_wchar_t c1, c2;
6135 int s1, s2;
6136#ifdef emacs
6137 int offset = PTR_TO_OFFSET (d) - 1;
6138 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6139 UPDATE_SYNTAX_TABLE (charpos);
6140#endif
6141 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6142 s1 = SYNTAX (c1);
6143
6144 /* Case 2: S1 is neither Ssymbol nor Sword. */
6145 if (s1 != Sword && s1 != Ssymbol)
6146 goto fail;
6147
6148 /* Case 3: D is not at the end of string ... */
6149 if (!AT_STRINGS_END (d))
6150 {
6151 PREFETCH_NOLIMIT ();
6152 c2 = RE_STRING_CHAR (d, dend - d);
6153#ifdef emacs
134579f2 6154 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
669fa600
SM
6155#endif
6156 s2 = SYNTAX (c2);
6157
6158 /* ... and S2 is Sword or Ssymbol. */
6159 if (s2 == Sword || s2 == Ssymbol)
6160 goto fail;
b18215fc
RS
6161 }
6162 }
e318085a
RS
6163 break;
6164
fa9a63c5 6165 case syntaxspec:
1fb352e0
SM
6166 case notsyntaxspec:
6167 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 6168 mcnt = *p++;
1fb352e0 6169 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 6170 PREFETCH ();
b18215fc
RS
6171#ifdef emacs
6172 {
2d1675e4
SM
6173 int offset = PTR_TO_OFFSET (d);
6174 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
6175 UPDATE_SYNTAX_TABLE (pos1);
6176 }
25fe55af 6177#endif
b18215fc 6178 {
01618498
SM
6179 int len;
6180 re_wchar_t c;
b18215fc 6181
6fdd04b0 6182 GET_CHAR_AFTER (c, d, len);
990b2375 6183 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 6184 goto fail;
b18215fc
RS
6185 d += len;
6186 }
fa9a63c5
RM
6187 break;
6188
b18215fc 6189#ifdef emacs
1fb352e0
SM
6190 case before_dot:
6191 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6192 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 6193 goto fail;
b18215fc
RS
6194 break;
6195
1fb352e0
SM
6196 case at_dot:
6197 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6198 if (PTR_BYTE_POS (d) != PT_BYTE)
6199 goto fail;
6200 break;
b18215fc 6201
1fb352e0
SM
6202 case after_dot:
6203 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6204 if (PTR_BYTE_POS (d) <= PT_BYTE)
6205 goto fail;
e318085a 6206 break;
fa9a63c5 6207
1fb352e0 6208 case categoryspec:
b18215fc 6209 case notcategoryspec:
1fb352e0 6210 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 6211 mcnt = *p++;
1fb352e0 6212 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
6213 PREFETCH ();
6214 {
01618498
SM
6215 int len;
6216 re_wchar_t c;
6217
6fdd04b0 6218 GET_CHAR_AFTER (c, d, len);
1fb352e0 6219 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
6220 goto fail;
6221 d += len;
6222 }
fa9a63c5 6223 break;
5e69f11e 6224
1fb352e0 6225#endif /* emacs */
5e69f11e 6226
0b32bf0e
SM
6227 default:
6228 abort ();
fa9a63c5 6229 }
b18215fc 6230 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
6231
6232
6233 /* We goto here if a matching operation fails. */
6234 fail:
5b370c2b 6235 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6236 if (!FAIL_STACK_EMPTY ())
505bde11 6237 {
01618498 6238 re_char *str, *pat;
505bde11 6239 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
6240 DEBUG_PRINT1 ("\nFAIL:\n");
6241 POP_FAILURE_POINT (str, pat);
505bde11
SM
6242 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6243 {
6244 case on_failure_keep_string_jump:
6245 assert (str == NULL);
6246 goto continue_failure_jump;
6247
0683b6fa
SM
6248 case on_failure_jump_nastyloop:
6249 assert ((re_opcode_t)pat[-2] == no_op);
6250 PUSH_FAILURE_POINT (pat - 2, str);
6251 /* Fallthrough */
6252
505bde11
SM
6253 case on_failure_jump_loop:
6254 case on_failure_jump:
6255 case succeed_n:
6256 d = str;
6257 continue_failure_jump:
6258 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6259 p = pat + mcnt;
6260 break;
b18215fc 6261
0683b6fa
SM
6262 case no_op:
6263 /* A special frame used for nastyloops. */
6264 goto fail;
6265
505bde11
SM
6266 default:
6267 abort();
6268 }
fa9a63c5 6269
505bde11 6270 assert (p >= bufp->buffer && p <= pend);
b18215fc 6271
0b32bf0e 6272 if (d >= string1 && d <= end1)
fa9a63c5 6273 dend = end_match_1;
0b32bf0e 6274 }
fa9a63c5 6275 else
0b32bf0e 6276 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6277 } /* for (;;) */
6278
6279 if (best_regs_set)
6280 goto restore_best_regs;
6281
6282 FREE_VARIABLES ();
6283
b18215fc 6284 return -1; /* Failure to match. */
fa9a63c5
RM
6285} /* re_match_2 */
6286\f
6287/* Subroutine definitions for re_match_2. */
6288
fa9a63c5
RM
6289/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6290 bytes; nonzero otherwise. */
5e69f11e 6291
fa9a63c5 6292static int
2d1675e4
SM
6293bcmp_translate (s1, s2, len, translate, multibyte)
6294 re_char *s1, *s2;
fa9a63c5 6295 register int len;
6676cb1c 6296 RE_TRANSLATE_TYPE translate;
2d1675e4 6297 const int multibyte;
fa9a63c5 6298{
2d1675e4
SM
6299 register re_char *p1 = s1, *p2 = s2;
6300 re_char *p1_end = s1 + len;
6301 re_char *p2_end = s2 + len;
e934739e 6302
4bb91c68
SM
6303 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6304 different lengths, but relying on a single `len' would break this. -sm */
6305 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6306 {
e934739e 6307 int p1_charlen, p2_charlen;
01618498 6308 re_wchar_t p1_ch, p2_ch;
e934739e 6309
6fdd04b0
KH
6310 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6311 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
e934739e
RS
6312
6313 if (RE_TRANSLATE (translate, p1_ch)
6314 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6315 return 1;
e934739e
RS
6316
6317 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6318 }
e934739e
RS
6319
6320 if (p1 != p1_end || p2 != p2_end)
6321 return 1;
6322
fa9a63c5
RM
6323 return 0;
6324}
6325\f
6326/* Entry points for GNU code. */
6327
6328/* re_compile_pattern is the GNU regular expression compiler: it
6329 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6330 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6331
fa9a63c5
RM
6332 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6333 are set in BUFP on entry.
5e69f11e 6334
b18215fc 6335 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6336
6337const char *
6338re_compile_pattern (pattern, length, bufp)
6339 const char *pattern;
0b32bf0e 6340 size_t length;
fa9a63c5
RM
6341 struct re_pattern_buffer *bufp;
6342{
6343 reg_errcode_t ret;
5e69f11e 6344
1208f11a
RS
6345#ifdef emacs
6346 gl_state.current_syntax_table = current_buffer->syntax_table;
6347#endif
6348
fa9a63c5
RM
6349 /* GNU code is written to assume at least RE_NREGS registers will be set
6350 (and at least one extra will be -1). */
6351 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6352
fa9a63c5
RM
6353 /* And GNU code determines whether or not to get register information
6354 by passing null for the REGS argument to re_match, etc., not by
6355 setting no_sub. */
6356 bufp->no_sub = 0;
5e69f11e 6357
4bb91c68 6358 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6359
6360 if (!ret)
6361 return NULL;
6362 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6363}
c0f9ea08 6364WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6365\f
b18215fc
RS
6366/* Entry points compatible with 4.2 BSD regex library. We don't define
6367 them unless specifically requested. */
fa9a63c5 6368
0b32bf0e 6369#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6370
6371/* BSD has one and only one pattern buffer. */
6372static struct re_pattern_buffer re_comp_buf;
6373
6374char *
0b32bf0e 6375# ifdef _LIBC
48afdd44
RM
6376/* Make these definitions weak in libc, so POSIX programs can redefine
6377 these names if they don't use our functions, and still use
6378 regcomp/regexec below without link errors. */
6379weak_function
0b32bf0e 6380# endif
fa9a63c5
RM
6381re_comp (s)
6382 const char *s;
6383{
6384 reg_errcode_t ret;
5e69f11e 6385
fa9a63c5
RM
6386 if (!s)
6387 {
6388 if (!re_comp_buf.buffer)
0b32bf0e 6389 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6390 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6391 return 0;
6392 }
6393
6394 if (!re_comp_buf.buffer)
6395 {
6396 re_comp_buf.buffer = (unsigned char *) malloc (200);
6397 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6398 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6399 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6400 re_comp_buf.allocated = 200;
6401
6402 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6403 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6404 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6405 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6406 }
6407
6408 /* Since `re_exec' always passes NULL for the `regs' argument, we
6409 don't need to initialize the pattern buffer fields which affect it. */
6410
fa9a63c5 6411 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6412
fa9a63c5
RM
6413 if (!ret)
6414 return NULL;
6415
6416 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6417 return (char *) gettext (re_error_msgid[(int) ret]);
6418}
6419
6420
6421int
0b32bf0e 6422# ifdef _LIBC
48afdd44 6423weak_function
0b32bf0e 6424# endif
fa9a63c5
RM
6425re_exec (s)
6426 const char *s;
6427{
6428 const int len = strlen (s);
6429 return
6430 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6431}
6432#endif /* _REGEX_RE_COMP */
6433\f
6434/* POSIX.2 functions. Don't define these for Emacs. */
6435
6436#ifndef emacs
6437
6438/* regcomp takes a regular expression as a string and compiles it.
6439
b18215fc 6440 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6441 since POSIX says we shouldn't. Thus, we set
6442
6443 `buffer' to the compiled pattern;
6444 `used' to the length of the compiled pattern;
6445 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6446 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6447 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6448 `fastmap' to an allocated space for the fastmap;
6449 `fastmap_accurate' to zero;
fa9a63c5
RM
6450 `re_nsub' to the number of subexpressions in PATTERN.
6451
6452 PATTERN is the address of the pattern string.
6453
6454 CFLAGS is a series of bits which affect compilation.
6455
6456 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6457 use POSIX basic syntax.
6458
6459 If REG_NEWLINE is set, then . and [^...] don't match newline.
6460 Also, regexec will try a match beginning after every newline.
6461
6462 If REG_ICASE is set, then we considers upper- and lowercase
6463 versions of letters to be equivalent when matching.
6464
6465 If REG_NOSUB is set, then when PREG is passed to regexec, that
6466 routine will report only success or failure, and nothing about the
6467 registers.
6468
b18215fc 6469 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6470 the return codes and their meanings.) */
6471
6472int
6473regcomp (preg, pattern, cflags)
ada30c0e
SM
6474 regex_t *__restrict preg;
6475 const char *__restrict pattern;
fa9a63c5
RM
6476 int cflags;
6477{
6478 reg_errcode_t ret;
4bb91c68 6479 reg_syntax_t syntax
fa9a63c5
RM
6480 = (cflags & REG_EXTENDED) ?
6481 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6482
6483 /* regex_compile will allocate the space for the compiled pattern. */
6484 preg->buffer = 0;
6485 preg->allocated = 0;
6486 preg->used = 0;
5e69f11e 6487
c0f9ea08
SM
6488 /* Try to allocate space for the fastmap. */
6489 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6490
fa9a63c5
RM
6491 if (cflags & REG_ICASE)
6492 {
6493 unsigned i;
5e69f11e 6494
6676cb1c
RS
6495 preg->translate
6496 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6497 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6498 if (preg->translate == NULL)
0b32bf0e 6499 return (int) REG_ESPACE;
fa9a63c5
RM
6500
6501 /* Map uppercase characters to corresponding lowercase ones. */
6502 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6503 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6504 }
6505 else
6506 preg->translate = NULL;
6507
6508 /* If REG_NEWLINE is set, newlines are treated differently. */
6509 if (cflags & REG_NEWLINE)
6510 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6511 syntax &= ~RE_DOT_NEWLINE;
6512 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6513 }
6514 else
c0f9ea08 6515 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6516
6517 preg->no_sub = !!(cflags & REG_NOSUB);
6518
5e69f11e 6519 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6520 can use strlen here in compiling the pattern. */
4bb91c68 6521 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6522
fa9a63c5
RM
6523 /* POSIX doesn't distinguish between an unmatched open-group and an
6524 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6525 if (ret == REG_ERPAREN)
6526 ret = REG_EPAREN;
6527
6528 if (ret == REG_NOERROR && preg->fastmap)
6529 { /* Compute the fastmap now, since regexec cannot modify the pattern
6530 buffer. */
6531 re_compile_fastmap (preg);
6532 if (preg->can_be_null)
6533 { /* The fastmap can't be used anyway. */
6534 free (preg->fastmap);
6535 preg->fastmap = NULL;
6536 }
6537 }
fa9a63c5
RM
6538 return (int) ret;
6539}
c0f9ea08 6540WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6541
6542
6543/* regexec searches for a given pattern, specified by PREG, in the
6544 string STRING.
5e69f11e 6545
fa9a63c5 6546 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6547 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6548 least NMATCH elements, and we set them to the offsets of the
6549 corresponding matched substrings.
5e69f11e 6550
fa9a63c5
RM
6551 EFLAGS specifies `execution flags' which affect matching: if
6552 REG_NOTBOL is set, then ^ does not match at the beginning of the
6553 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6554
fa9a63c5
RM
6555 We return 0 if we find a match and REG_NOMATCH if not. */
6556
6557int
6558regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6559 const regex_t *__restrict preg;
6560 const char *__restrict string;
5e69f11e 6561 size_t nmatch;
9f2dbe01 6562 regmatch_t pmatch[__restrict_arr];
fa9a63c5
RM
6563 int eflags;
6564{
6565 int ret;
6566 struct re_registers regs;
6567 regex_t private_preg;
6568 int len = strlen (string);
c0f9ea08 6569 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6570
6571 private_preg = *preg;
5e69f11e 6572
fa9a63c5
RM
6573 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6574 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6575
fa9a63c5
RM
6576 /* The user has told us exactly how many registers to return
6577 information about, via `nmatch'. We have to pass that on to the
b18215fc 6578 matching routines. */
fa9a63c5 6579 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6580
fa9a63c5
RM
6581 if (want_reg_info)
6582 {
6583 regs.num_regs = nmatch;
4bb91c68
SM
6584 regs.start = TALLOC (nmatch * 2, regoff_t);
6585 if (regs.start == NULL)
0b32bf0e 6586 return (int) REG_NOMATCH;
4bb91c68 6587 regs.end = regs.start + nmatch;
fa9a63c5
RM
6588 }
6589
c0f9ea08
SM
6590 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6591 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6592 was a little bit longer but still only matching the real part.
6593 This works because the `endline' will check for a '\n' and will find a
6594 '\0', correctly deciding that this is not the end of a line.
6595 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6596 a convenient '\0' there. For all we know, the string could be preceded
6597 by '\n' which would throw things off. */
6598
fa9a63c5
RM
6599 /* Perform the searching operation. */
6600 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6601 /* start: */ 0, /* range: */ len,
6602 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6603
fa9a63c5
RM
6604 /* Copy the register information to the POSIX structure. */
6605 if (want_reg_info)
6606 {
6607 if (ret >= 0)
0b32bf0e
SM
6608 {
6609 unsigned r;
fa9a63c5 6610
0b32bf0e
SM
6611 for (r = 0; r < nmatch; r++)
6612 {
6613 pmatch[r].rm_so = regs.start[r];
6614 pmatch[r].rm_eo = regs.end[r];
6615 }
6616 }
fa9a63c5 6617
b18215fc 6618 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6619 free (regs.start);
fa9a63c5
RM
6620 }
6621
6622 /* We want zero return to mean success, unlike `re_search'. */
6623 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6624}
c0f9ea08 6625WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6626
6627
ec869672
JR
6628/* Returns a message corresponding to an error code, ERR_CODE, returned
6629 from either regcomp or regexec. We don't use PREG here.
6630
6631 ERR_CODE was previously called ERRCODE, but that name causes an
6632 error with msvc8 compiler. */
fa9a63c5
RM
6633
6634size_t
ec869672
JR
6635regerror (err_code, preg, errbuf, errbuf_size)
6636 int err_code;
fa9a63c5
RM
6637 const regex_t *preg;
6638 char *errbuf;
6639 size_t errbuf_size;
6640{
6641 const char *msg;
6642 size_t msg_size;
6643
ec869672
JR
6644 if (err_code < 0
6645 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6646 /* Only error codes returned by the rest of the code should be passed
b18215fc 6647 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6648 code generates an invalid error code, then the program has a bug.
6649 Dump core so we can fix it. */
6650 abort ();
6651
ec869672 6652 msg = gettext (re_error_msgid[err_code]);
fa9a63c5
RM
6653
6654 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6655
fa9a63c5
RM
6656 if (errbuf_size != 0)
6657 {
6658 if (msg_size > errbuf_size)
0b32bf0e
SM
6659 {
6660 strncpy (errbuf, msg, errbuf_size - 1);
6661 errbuf[errbuf_size - 1] = 0;
6662 }
fa9a63c5 6663 else
0b32bf0e 6664 strcpy (errbuf, msg);
fa9a63c5
RM
6665 }
6666
6667 return msg_size;
6668}
c0f9ea08 6669WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6670
6671
6672/* Free dynamically allocated space used by PREG. */
6673
6674void
6675regfree (preg)
6676 regex_t *preg;
6677{
6678 if (preg->buffer != NULL)
6679 free (preg->buffer);
6680 preg->buffer = NULL;
5e69f11e 6681
fa9a63c5
RM
6682 preg->allocated = 0;
6683 preg->used = 0;
6684
6685 if (preg->fastmap != NULL)
6686 free (preg->fastmap);
6687 preg->fastmap = NULL;
6688 preg->fastmap_accurate = 0;
6689
6690 if (preg->translate != NULL)
6691 free (preg->translate);
6692 preg->translate = NULL;
6693}
c0f9ea08 6694WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6695
6696#endif /* not emacs */
839966f3
KH
6697
6698/* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6699 (do not change this comment) */