(auto-mode-alist): Add .am as makefile-mode.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a
RS
1/* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
bc78d348
KB
3 internationalization features.)
4
b18215fc 5 Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5
RM
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
68d96f02 27#undef _GNU_SOURCE
fa9a63c5
RM
28#define _GNU_SOURCE
29
25fe55af
RS
30/* Converts the pointer to the char to BEG-based offset from the start. */
31#define PTR_TO_OFFSET(d) \
b18215fc
RS
32 POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING \
33 ? (d) - string1 : (d) - (string2 - size1))
34#define POS_AS_IN_BUFFER(p) ((p) + 1)
35
fa9a63c5
RM
36#ifdef HAVE_CONFIG_H
37#include <config.h>
38#endif
39
25fe55af 40/* We need this for `regex.h', and perhaps for the Emacs include files. */
fa9a63c5
RM
41#include <sys/types.h>
42
25fe55af 43/* This is for other GNU distributions with internationalized messages. */
fa9a63c5
RM
44#if HAVE_LIBINTL_H || defined (_LIBC)
45# include <libintl.h>
46#else
47# define gettext(msgid) (msgid)
48#endif
49
5e69f11e
RM
50#ifndef gettext_noop
51/* This define is so xgettext can find the internationalizable
52 strings. */
53#define gettext_noop(String) String
54#endif
55
fa9a63c5
RM
56/* The `emacs' switch turns on certain matching commands
57 that make sense only in Emacs. */
58#ifdef emacs
59
60#include "lisp.h"
61#include "buffer.h"
b18215fc
RS
62
63/* Make syntax table lookup grant data in gl_state. */
64#define SYNTAX_ENTRY_VIA_PROPERTY
65
fa9a63c5 66#include "syntax.h"
b18215fc
RS
67#include "charset.h"
68#include "category.h"
fa9a63c5 69
9abbd165
RS
70#define malloc xmalloc
71#define free xfree
72
fa9a63c5
RM
73#else /* not emacs */
74
75/* If we are not linking with Emacs proper,
76 we can't use the relocating allocator
77 even if config.h says that we can. */
78#undef REL_ALLOC
79
80#if defined (STDC_HEADERS) || defined (_LIBC)
81#include <stdlib.h>
82#else
83char *malloc ();
84char *realloc ();
85#endif
86
9e4ecb26 87/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
25fe55af 88 If nothing else has been done, use the method below. */
9e4ecb26
KH
89#ifdef INHIBIT_STRING_HEADER
90#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
91#if !defined (bzero) && !defined (bcopy)
92#undef INHIBIT_STRING_HEADER
93#endif
94#endif
95#endif
96
97/* This is the normal way of making sure we have a bcopy and a bzero.
98 This is used in most programs--a few other programs avoid this
99 by defining INHIBIT_STRING_HEADER. */
fa9a63c5 100#ifndef INHIBIT_STRING_HEADER
7f998252 101#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
fa9a63c5
RM
102#include <string.h>
103#ifndef bcmp
104#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
105#endif
106#ifndef bcopy
107#define bcopy(s, d, n) memcpy ((d), (s), (n))
108#endif
109#ifndef bzero
110#define bzero(s, n) memset ((s), 0, (n))
111#endif
112#else
113#include <strings.h>
114#endif
115#endif
116
117/* Define the syntax stuff for \<, \>, etc. */
118
119/* This must be nonzero for the wordchar and notwordchar pattern
120 commands in re_match_2. */
5e69f11e 121#ifndef Sword
fa9a63c5
RM
122#define Sword 1
123#endif
124
125#ifdef SWITCH_ENUM_BUG
126#define SWITCH_ENUM_CAST(x) ((int)(x))
127#else
128#define SWITCH_ENUM_CAST(x) (x)
129#endif
130
131#ifdef SYNTAX_TABLE
132
133extern char *re_syntax_table;
134
135#else /* not SYNTAX_TABLE */
136
137/* How many characters in the character set. */
138#define CHAR_SET_SIZE 256
139
140static char re_syntax_table[CHAR_SET_SIZE];
141
142static void
143init_syntax_once ()
144{
145 register int c;
146 static int done = 0;
147
148 if (done)
149 return;
150
151 bzero (re_syntax_table, sizeof re_syntax_table);
152
153 for (c = 'a'; c <= 'z'; c++)
154 re_syntax_table[c] = Sword;
155
156 for (c = 'A'; c <= 'Z'; c++)
157 re_syntax_table[c] = Sword;
158
159 for (c = '0'; c <= '9'; c++)
160 re_syntax_table[c] = Sword;
161
162 re_syntax_table['_'] = Sword;
163
164 done = 1;
165}
166
167#endif /* not SYNTAX_TABLE */
168
169#define SYNTAX(c) re_syntax_table[c]
170
b18215fc
RS
171/* Dummy macro for non emacs environments. */
172#define BASE_LEADING_CODE_P(c) (0)
173#define WORD_BOUNDARY_P(c1, c2) (0)
174#define CHAR_HEAD_P(p) (1)
175#define SINGLE_BYTE_CHAR_P(c) (1)
176#define SAME_CHARSET_P(c1, c2) (1)
177#define MULTIBYTE_FORM_LENGTH(p, s) (1)
178#define STRING_CHAR(p, s) (*(p))
179#define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
180#define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \
181 (c = ((p) == (end1) ? *(str2) : *(p)))
182#define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
183 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
fa9a63c5
RM
184#endif /* not emacs */
185\f
186/* Get the interface, including the syntax bits. */
187#include "regex.h"
188
189/* isalpha etc. are used for the character classes. */
190#include <ctype.h>
191
192/* Jim Meyering writes:
193
194 "... Some ctype macros are valid only for character codes that
195 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
196 using /bin/cc or gcc but without giving an ansi option). So, all
25fe55af 197 ctype uses should be through macros like ISPRINT... If
fa9a63c5
RM
198 STDC_HEADERS is defined, then autoconf has verified that the ctype
199 macros don't need to be guarded with references to isascii. ...
200 Defining isascii to 1 should let any compiler worth its salt
25fe55af 201 eliminate the && through constant folding." */
fa9a63c5
RM
202
203#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
204#define ISASCII(c) 1
205#else
206#define ISASCII(c) isascii(c)
207#endif
208
209#ifdef isblank
210#define ISBLANK(c) (ISASCII (c) && isblank (c))
211#else
212#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
213#endif
214#ifdef isgraph
215#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
216#else
217#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
218#endif
219
220#define ISPRINT(c) (ISASCII (c) && isprint (c))
221#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
222#define ISALNUM(c) (ISASCII (c) && isalnum (c))
223#define ISALPHA(c) (ISASCII (c) && isalpha (c))
224#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
225#define ISLOWER(c) (ISASCII (c) && islower (c))
226#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
227#define ISSPACE(c) (ISASCII (c) && isspace (c))
228#define ISUPPER(c) (ISASCII (c) && isupper (c))
229#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
230
231#ifndef NULL
075f06ec 232#define NULL (void *)0
fa9a63c5
RM
233#endif
234
235/* We remove any previous definition of `SIGN_EXTEND_CHAR',
236 since ours (we hope) works properly with all combinations of
237 machines, compilers, `char' and `unsigned char' argument types.
25fe55af 238 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
239#undef SIGN_EXTEND_CHAR
240#if __STDC__
241#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
242#else /* not __STDC__ */
243/* As in Harbison and Steele. */
244#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
245#endif
246\f
247/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
248 use `alloca' instead of `malloc'. This is because using malloc in
249 re_search* or re_match* could cause memory leaks when C-g is used in
250 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
251 the other hand, malloc is more portable, and easier to debug.
252
fa9a63c5
RM
253 Because we sometimes use alloca, some routines have to be macros,
254 not functions -- `alloca'-allocated space disappears at the end of the
255 function it is called in. */
256
257#ifdef REGEX_MALLOC
258
259#define REGEX_ALLOCATE malloc
260#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
261#define REGEX_FREE free
262
263#else /* not REGEX_MALLOC */
264
265/* Emacs already defines alloca, sometimes. */
266#ifndef alloca
267
268/* Make alloca work the best possible way. */
269#ifdef __GNUC__
270#define alloca __builtin_alloca
271#else /* not __GNUC__ */
272#if HAVE_ALLOCA_H
273#include <alloca.h>
274#else /* not __GNUC__ or HAVE_ALLOCA_H */
f3c4387f 275#if 0 /* It is a bad idea to declare alloca. We always cast the result. */
25fe55af 276#ifndef _AIX /* Already did AIX, up at the top. */
fa9a63c5
RM
277char *alloca ();
278#endif /* not _AIX */
f3c4387f 279#endif
5e69f11e 280#endif /* not HAVE_ALLOCA_H */
fa9a63c5
RM
281#endif /* not __GNUC__ */
282
283#endif /* not alloca */
284
285#define REGEX_ALLOCATE alloca
286
287/* Assumes a `char *destination' variable. */
288#define REGEX_REALLOCATE(source, osize, nsize) \
289 (destination = (char *) alloca (nsize), \
290 bcopy (source, destination, osize), \
291 destination)
292
293/* No need to do anything to free, after alloca. */
c2e1680a 294#define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
295
296#endif /* not REGEX_MALLOC */
297
298/* Define how to allocate the failure stack. */
299
33487cc8 300#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
4297555e 301
fa9a63c5
RM
302#define REGEX_ALLOCATE_STACK(size) \
303 r_alloc (&failure_stack_ptr, (size))
304#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
305 r_re_alloc (&failure_stack_ptr, (nsize))
306#define REGEX_FREE_STACK(ptr) \
307 r_alloc_free (&failure_stack_ptr)
308
4297555e 309#else /* not using relocating allocator */
fa9a63c5
RM
310
311#ifdef REGEX_MALLOC
312
313#define REGEX_ALLOCATE_STACK malloc
314#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
315#define REGEX_FREE_STACK free
316
317#else /* not REGEX_MALLOC */
318
319#define REGEX_ALLOCATE_STACK alloca
320
321#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
322 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 323/* No need to explicitly free anything. */
fa9a63c5
RM
324#define REGEX_FREE_STACK(arg)
325
326#endif /* not REGEX_MALLOC */
4297555e 327#endif /* not using relocating allocator */
fa9a63c5
RM
328
329
330/* True if `size1' is non-NULL and PTR is pointing anywhere inside
331 `string1' or just past its end. This works if PTR is NULL, which is
332 a good thing. */
25fe55af 333#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
334 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
335
336/* (Re)Allocate N items of type T using malloc, or fail. */
337#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
338#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
339#define RETALLOC_IF(addr, n, t) \
340 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
341#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
342
25fe55af 343#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
344
345#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
346
347#undef MAX
348#undef MIN
349#define MAX(a, b) ((a) > (b) ? (a) : (b))
350#define MIN(a, b) ((a) < (b) ? (a) : (b))
351
352typedef char boolean;
353#define false 0
354#define true 1
355
356static int re_match_2_internal ();
357\f
358/* These are the command codes that appear in compiled regular
25fe55af 359 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
360 command code can specify any interpretation whatsoever for its
361 arguments. Zero bytes may appear in the compiled regular expression. */
362
363typedef enum
364{
365 no_op = 0,
366
25fe55af 367 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
368 succeed,
369
25fe55af 370 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
371 exactn,
372
25fe55af 373 /* Matches any (more or less) character. */
fa9a63c5
RM
374 anychar,
375
25fe55af
RS
376 /* Matches any one char belonging to specified set. First
377 following byte is number of bitmap bytes. Then come bytes
378 for a bitmap saying which chars are in. Bits in each byte
379 are ordered low-bit-first. A character is in the set if its
380 bit is 1. A character too large to have a bit in the map is
381 automatically not in the set. */
fa9a63c5
RM
382 charset,
383
25fe55af
RS
384 /* Same parameters as charset, but match any character that is
385 not one of those specified. */
fa9a63c5
RM
386 charset_not,
387
25fe55af
RS
388 /* Start remembering the text that is matched, for storing in a
389 register. Followed by one byte with the register number, in
390 the range 0 to one less than the pattern buffer's re_nsub
391 field. Then followed by one byte with the number of groups
392 inner to this one. (This last has to be part of the
393 start_memory only because we need it in the on_failure_jump
394 of re_match_2.) */
fa9a63c5
RM
395 start_memory,
396
25fe55af
RS
397 /* Stop remembering the text that is matched and store it in a
398 memory register. Followed by one byte with the register
399 number, in the range 0 to one less than `re_nsub' in the
400 pattern buffer, and one byte with the number of inner groups,
401 just like `start_memory'. (We need the number of inner
402 groups here because we don't have any easy way of finding the
403 corresponding start_memory when we're at a stop_memory.) */
fa9a63c5
RM
404 stop_memory,
405
25fe55af
RS
406 /* Match a duplicate of something remembered. Followed by one
407 byte containing the register number. */
fa9a63c5
RM
408 duplicate,
409
25fe55af 410 /* Fail unless at beginning of line. */
fa9a63c5
RM
411 begline,
412
25fe55af 413 /* Fail unless at end of line. */
fa9a63c5
RM
414 endline,
415
25fe55af
RS
416 /* Succeeds if at beginning of buffer (if emacs) or at beginning
417 of string to be matched (if not). */
fa9a63c5
RM
418 begbuf,
419
25fe55af 420 /* Analogously, for end of buffer/string. */
fa9a63c5 421 endbuf,
5e69f11e 422
25fe55af 423 /* Followed by two byte relative address to which to jump. */
5e69f11e 424 jump,
fa9a63c5
RM
425
426 /* Same as jump, but marks the end of an alternative. */
427 jump_past_alt,
428
25fe55af
RS
429 /* Followed by two-byte relative address of place to resume at
430 in case of failure. */
fa9a63c5 431 on_failure_jump,
5e69f11e 432
25fe55af
RS
433 /* Like on_failure_jump, but pushes a placeholder instead of the
434 current string position when executed. */
fa9a63c5 435 on_failure_keep_string_jump,
5e69f11e 436
25fe55af
RS
437 /* Throw away latest failure point and then jump to following
438 two-byte relative address. */
fa9a63c5
RM
439 pop_failure_jump,
440
25fe55af
RS
441 /* Change to pop_failure_jump if know won't have to backtrack to
442 match; otherwise change to jump. This is used to jump
443 back to the beginning of a repeat. If what follows this jump
444 clearly won't match what the repeat does, such that we can be
445 sure that there is no use backtracking out of repetitions
446 already matched, then we change it to a pop_failure_jump.
447 Followed by two-byte address. */
fa9a63c5
RM
448 maybe_pop_jump,
449
25fe55af
RS
450 /* Jump to following two-byte address, and push a dummy failure
451 point. This failure point will be thrown away if an attempt
452 is made to use it for a failure. A `+' construct makes this
453 before the first repeat. Also used as an intermediary kind
454 of jump when compiling an alternative. */
fa9a63c5
RM
455 dummy_failure_jump,
456
457 /* Push a dummy failure point and continue. Used at the end of
458 alternatives. */
459 push_dummy_failure,
460
25fe55af
RS
461 /* Followed by two-byte relative address and two-byte number n.
462 After matching N times, jump to the address upon failure. */
fa9a63c5
RM
463 succeed_n,
464
25fe55af
RS
465 /* Followed by two-byte relative address, and two-byte number n.
466 Jump to the address N times, then fail. */
fa9a63c5
RM
467 jump_n,
468
25fe55af
RS
469 /* Set the following two-byte relative address to the
470 subsequent two-byte number. The address *includes* the two
471 bytes of number. */
fa9a63c5
RM
472 set_number_at,
473
474 wordchar, /* Matches any word-constituent character. */
475 notwordchar, /* Matches any char that is not a word-constituent. */
476
477 wordbeg, /* Succeeds if at word beginning. */
478 wordend, /* Succeeds if at word end. */
479
480 wordbound, /* Succeeds if at a word boundary. */
25fe55af 481 notwordbound /* Succeeds if not at a word boundary. */
fa9a63c5
RM
482
483#ifdef emacs
484 ,before_dot, /* Succeeds if before point. */
485 at_dot, /* Succeeds if at point. */
486 after_dot, /* Succeeds if after point. */
487
488 /* Matches any character whose syntax is specified. Followed by
25fe55af 489 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
490 syntaxspec,
491
492 /* Matches any character whose syntax is not that specified. */
b18215fc
RS
493 notsyntaxspec,
494
495 /* Matches any character whose category-set contains the specified
25fe55af
RS
496 category. The operator is followed by a byte which contains a
497 category code (mnemonic ASCII character). */
b18215fc
RS
498 categoryspec,
499
500 /* Matches any character whose category-set does not contain the
501 specified category. The operator is followed by a byte which
502 contains the category code (mnemonic ASCII character). */
503 notcategoryspec
fa9a63c5
RM
504#endif /* emacs */
505} re_opcode_t;
506\f
507/* Common operations on the compiled pattern. */
508
509/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
510
511#define STORE_NUMBER(destination, number) \
512 do { \
513 (destination)[0] = (number) & 0377; \
514 (destination)[1] = (number) >> 8; \
515 } while (0)
516
517/* Same as STORE_NUMBER, except increment DESTINATION to
518 the byte after where the number is stored. Therefore, DESTINATION
519 must be an lvalue. */
520
521#define STORE_NUMBER_AND_INCR(destination, number) \
522 do { \
523 STORE_NUMBER (destination, number); \
524 (destination) += 2; \
525 } while (0)
526
527/* Put into DESTINATION a number stored in two contiguous bytes starting
528 at SOURCE. */
529
530#define EXTRACT_NUMBER(destination, source) \
531 do { \
532 (destination) = *(source) & 0377; \
533 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
534 } while (0)
535
536#ifdef DEBUG
537static void
538extract_number (dest, source)
539 int *dest;
540 unsigned char *source;
541{
5e69f11e 542 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
543 *dest = *source & 0377;
544 *dest += temp << 8;
545}
546
25fe55af 547#ifndef EXTRACT_MACROS /* To debug the macros. */
fa9a63c5
RM
548#undef EXTRACT_NUMBER
549#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
550#endif /* not EXTRACT_MACROS */
551
552#endif /* DEBUG */
553
554/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
555 SOURCE must be an lvalue. */
556
557#define EXTRACT_NUMBER_AND_INCR(destination, source) \
558 do { \
559 EXTRACT_NUMBER (destination, source); \
25fe55af 560 (source) += 2; \
fa9a63c5
RM
561 } while (0)
562
563#ifdef DEBUG
564static void
565extract_number_and_incr (destination, source)
566 int *destination;
567 unsigned char **source;
5e69f11e 568{
fa9a63c5
RM
569 extract_number (destination, *source);
570 *source += 2;
571}
572
573#ifndef EXTRACT_MACROS
574#undef EXTRACT_NUMBER_AND_INCR
575#define EXTRACT_NUMBER_AND_INCR(dest, src) \
576 extract_number_and_incr (&dest, &src)
577#endif /* not EXTRACT_MACROS */
578
579#endif /* DEBUG */
580\f
b18215fc
RS
581/* Store a multibyte character in three contiguous bytes starting
582 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 583 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
584
585#define STORE_CHARACTER_AND_INCR(destination, character) \
586 do { \
587 (destination)[0] = (character) & 0377; \
588 (destination)[1] = ((character) >> 8) & 0377; \
589 (destination)[2] = (character) >> 16; \
590 (destination) += 3; \
591 } while (0)
592
593/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 594 starting at SOURCE. */
b18215fc
RS
595
596#define EXTRACT_CHARACTER(destination, source) \
597 do { \
598 (destination) = ((source)[0] \
599 | ((source)[1] << 8) \
600 | ((source)[2] << 16)); \
601 } while (0)
602
603
604/* Macros for charset. */
605
606/* Size of bitmap of charset P in bytes. P is a start of charset,
607 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
608#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
609
610/* Nonzero if charset P has range table. */
25fe55af 611#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
612
613/* Return the address of range table of charset P. But not the start
614 of table itself, but the before where the number of ranges is
25fe55af 615 stored. `2 +' means to skip re_opcode_t and size of bitmap. */
b18215fc
RS
616#define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)])
617
618/* Test if C is listed in the bitmap of charset P. */
619#define CHARSET_LOOKUP_BITMAP(p, c) \
620 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
621 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
622
623/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
624 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
625 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
626 and end. */
627#define CHARSET_RANGE_TABLE_END(range_table, count) \
628 ((range_table) + (count) * 2 * 3)
629
25fe55af 630/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
631 COUNT is number of ranges in RANGE_TABLE. */
632#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
633 do \
634 { \
635 int range_start, range_end; \
636 unsigned char *p; \
637 unsigned char *range_table_end \
638 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
639 \
640 for (p = (range_table); p < range_table_end; p += 2 * 3) \
641 { \
642 EXTRACT_CHARACTER (range_start, p); \
643 EXTRACT_CHARACTER (range_end, p + 3); \
644 \
645 if (range_start <= (c) && (c) <= range_end) \
646 { \
647 (not) = !(not); \
648 break; \
649 } \
650 } \
651 } \
652 while (0)
653
654/* Test if C is in range table of CHARSET. The flag NOT is negated if
655 C is listed in it. */
656#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
657 do \
658 { \
659 /* Number of ranges in range table. */ \
660 int count; \
661 unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \
662 \
663 EXTRACT_NUMBER_AND_INCR (count, range_table); \
664 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
665 } \
666 while (0)
667\f
fa9a63c5
RM
668/* If DEBUG is defined, Regex prints many voluminous messages about what
669 it is doing (if the variable `debug' is nonzero). If linked with the
670 main program in `iregex.c', you can enter patterns and strings
671 interactively. And if linked with the main program in `main.c' and
25fe55af 672 the other test files, you can run the already-written tests. */
fa9a63c5
RM
673
674#ifdef DEBUG
675
676/* We use standard I/O for debugging. */
677#include <stdio.h>
678
679/* It is useful to test things that ``must'' be true when debugging. */
680#include <assert.h>
681
682static int debug = 0;
683
684#define DEBUG_STATEMENT(e) e
685#define DEBUG_PRINT1(x) if (debug) printf (x)
686#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
687#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
688#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
25fe55af 689#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
fa9a63c5
RM
690 if (debug) print_partial_compiled_pattern (s, e)
691#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
692 if (debug) print_double_string (w, s1, sz1, s2, sz2)
693
694
695/* Print the fastmap in human-readable form. */
696
697void
698print_fastmap (fastmap)
699 char *fastmap;
700{
701 unsigned was_a_range = 0;
5e69f11e
RM
702 unsigned i = 0;
703
fa9a63c5
RM
704 while (i < (1 << BYTEWIDTH))
705 {
706 if (fastmap[i++])
707 {
708 was_a_range = 0;
25fe55af
RS
709 putchar (i - 1);
710 while (i < (1 << BYTEWIDTH) && fastmap[i])
711 {
712 was_a_range = 1;
713 i++;
714 }
fa9a63c5 715 if (was_a_range)
25fe55af
RS
716 {
717 printf ("-");
718 putchar (i - 1);
719 }
720 }
fa9a63c5 721 }
5e69f11e 722 putchar ('\n');
fa9a63c5
RM
723}
724
725
726/* Print a compiled pattern string in human-readable form, starting at
727 the START pointer into it and ending just before the pointer END. */
728
729void
730print_partial_compiled_pattern (start, end)
731 unsigned char *start;
732 unsigned char *end;
733{
734 int mcnt, mcnt2;
735 unsigned char *p = start;
736 unsigned char *pend = end;
737
738 if (start == NULL)
739 {
740 printf ("(null)\n");
741 return;
742 }
5e69f11e 743
fa9a63c5
RM
744 /* Loop over pattern commands. */
745 while (p < pend)
746 {
747 printf ("%d:\t", p - start);
748
749 switch ((re_opcode_t) *p++)
750 {
25fe55af
RS
751 case no_op:
752 printf ("/no_op");
753 break;
fa9a63c5
RM
754
755 case exactn:
756 mcnt = *p++;
25fe55af
RS
757 printf ("/exactn/%d", mcnt);
758 do
fa9a63c5 759 {
25fe55af 760 putchar ('/');
fa9a63c5 761 putchar (*p++);
25fe55af
RS
762 }
763 while (--mcnt);
764 break;
fa9a63c5
RM
765
766 case start_memory:
25fe55af
RS
767 mcnt = *p++;
768 printf ("/start_memory/%d/%d", mcnt, *p++);
769 break;
fa9a63c5
RM
770
771 case stop_memory:
25fe55af 772 mcnt = *p++;
fa9a63c5 773 printf ("/stop_memory/%d/%d", mcnt, *p++);
25fe55af 774 break;
fa9a63c5
RM
775
776 case duplicate:
777 printf ("/duplicate/%d", *p++);
778 break;
779
780 case anychar:
781 printf ("/anychar");
782 break;
783
784 case charset:
25fe55af
RS
785 case charset_not:
786 {
787 register int c, last = -100;
fa9a63c5
RM
788 register int in_range = 0;
789
790 printf ("/charset [%s",
25fe55af 791 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 792
25fe55af 793 assert (p + *p < pend);
fa9a63c5 794
25fe55af 795 for (c = 0; c < 256; c++)
fa9a63c5
RM
796 if (c / 8 < *p
797 && (p[1 + (c/8)] & (1 << (c % 8))))
798 {
799 /* Are we starting a range? */
800 if (last + 1 == c && ! in_range)
801 {
802 putchar ('-');
803 in_range = 1;
804 }
805 /* Have we broken a range? */
806 else if (last + 1 != c && in_range)
25fe55af 807 {
fa9a63c5
RM
808 putchar (last);
809 in_range = 0;
810 }
5e69f11e 811
fa9a63c5
RM
812 if (! in_range)
813 putchar (c);
814
815 last = c;
25fe55af 816 }
fa9a63c5
RM
817
818 if (in_range)
819 putchar (last);
820
821 putchar (']');
822
823 p += 1 + *p;
824 }
825 break;
826
827 case begline:
828 printf ("/begline");
25fe55af 829 break;
fa9a63c5
RM
830
831 case endline:
25fe55af
RS
832 printf ("/endline");
833 break;
fa9a63c5
RM
834
835 case on_failure_jump:
25fe55af
RS
836 extract_number_and_incr (&mcnt, &p);
837 printf ("/on_failure_jump to %d", p + mcnt - start);
838 break;
fa9a63c5
RM
839
840 case on_failure_keep_string_jump:
25fe55af
RS
841 extract_number_and_incr (&mcnt, &p);
842 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
843 break;
fa9a63c5
RM
844
845 case dummy_failure_jump:
25fe55af
RS
846 extract_number_and_incr (&mcnt, &p);
847 printf ("/dummy_failure_jump to %d", p + mcnt - start);
848 break;
fa9a63c5
RM
849
850 case push_dummy_failure:
25fe55af
RS
851 printf ("/push_dummy_failure");
852 break;
5e69f11e 853
25fe55af
RS
854 case maybe_pop_jump:
855 extract_number_and_incr (&mcnt, &p);
856 printf ("/maybe_pop_jump to %d", p + mcnt - start);
fa9a63c5
RM
857 break;
858
25fe55af 859 case pop_failure_jump:
fa9a63c5 860 extract_number_and_incr (&mcnt, &p);
25fe55af 861 printf ("/pop_failure_jump to %d", p + mcnt - start);
5e69f11e
RM
862 break;
863
25fe55af 864 case jump_past_alt:
fa9a63c5 865 extract_number_and_incr (&mcnt, &p);
25fe55af 866 printf ("/jump_past_alt to %d", p + mcnt - start);
5e69f11e
RM
867 break;
868
25fe55af 869 case jump:
fa9a63c5 870 extract_number_and_incr (&mcnt, &p);
25fe55af 871 printf ("/jump to %d", p + mcnt - start);
fa9a63c5
RM
872 break;
873
25fe55af
RS
874 case succeed_n:
875 extract_number_and_incr (&mcnt, &p);
876 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 877 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
25fe55af 878 break;
5e69f11e 879
25fe55af
RS
880 case jump_n:
881 extract_number_and_incr (&mcnt, &p);
882 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 883 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
25fe55af 884 break;
5e69f11e 885
25fe55af
RS
886 case set_number_at:
887 extract_number_and_incr (&mcnt, &p);
888 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 889 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
25fe55af 890 break;
5e69f11e 891
25fe55af 892 case wordbound:
fa9a63c5
RM
893 printf ("/wordbound");
894 break;
895
896 case notwordbound:
897 printf ("/notwordbound");
25fe55af 898 break;
fa9a63c5
RM
899
900 case wordbeg:
901 printf ("/wordbeg");
902 break;
5e69f11e 903
fa9a63c5
RM
904 case wordend:
905 printf ("/wordend");
5e69f11e 906
fa9a63c5
RM
907#ifdef emacs
908 case before_dot:
909 printf ("/before_dot");
25fe55af 910 break;
fa9a63c5
RM
911
912 case at_dot:
913 printf ("/at_dot");
25fe55af 914 break;
fa9a63c5
RM
915
916 case after_dot:
917 printf ("/after_dot");
25fe55af 918 break;
fa9a63c5
RM
919
920 case syntaxspec:
25fe55af 921 printf ("/syntaxspec");
fa9a63c5
RM
922 mcnt = *p++;
923 printf ("/%d", mcnt);
25fe55af 924 break;
5e69f11e 925
fa9a63c5 926 case notsyntaxspec:
25fe55af 927 printf ("/notsyntaxspec");
fa9a63c5
RM
928 mcnt = *p++;
929 printf ("/%d", mcnt);
930 break;
931#endif /* emacs */
932
933 case wordchar:
934 printf ("/wordchar");
25fe55af 935 break;
5e69f11e 936
fa9a63c5
RM
937 case notwordchar:
938 printf ("/notwordchar");
25fe55af 939 break;
fa9a63c5
RM
940
941 case begbuf:
942 printf ("/begbuf");
25fe55af 943 break;
fa9a63c5
RM
944
945 case endbuf:
946 printf ("/endbuf");
25fe55af 947 break;
fa9a63c5 948
25fe55af
RS
949 default:
950 printf ("?%d", *(p-1));
fa9a63c5
RM
951 }
952
953 putchar ('\n');
954 }
955
956 printf ("%d:\tend of pattern.\n", p - start);
957}
958
959
960void
961print_compiled_pattern (bufp)
962 struct re_pattern_buffer *bufp;
963{
964 unsigned char *buffer = bufp->buffer;
965
966 print_partial_compiled_pattern (buffer, buffer + bufp->used);
967 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
968
969 if (bufp->fastmap_accurate && bufp->fastmap)
970 {
971 printf ("fastmap: ");
972 print_fastmap (bufp->fastmap);
973 }
974
975 printf ("re_nsub: %d\t", bufp->re_nsub);
976 printf ("regs_alloc: %d\t", bufp->regs_allocated);
977 printf ("can_be_null: %d\t", bufp->can_be_null);
978 printf ("newline_anchor: %d\n", bufp->newline_anchor);
979 printf ("no_sub: %d\t", bufp->no_sub);
980 printf ("not_bol: %d\t", bufp->not_bol);
981 printf ("not_eol: %d\t", bufp->not_eol);
982 printf ("syntax: %d\n", bufp->syntax);
983 /* Perhaps we should print the translate table? */
984}
985
986
987void
988print_double_string (where, string1, size1, string2, size2)
989 const char *where;
990 const char *string1;
991 const char *string2;
992 int size1;
993 int size2;
994{
995 unsigned this_char;
5e69f11e 996
fa9a63c5
RM
997 if (where == NULL)
998 printf ("(null)");
999 else
1000 {
1001 if (FIRST_STRING_P (where))
25fe55af
RS
1002 {
1003 for (this_char = where - string1; this_char < size1; this_char++)
1004 putchar (string1[this_char]);
fa9a63c5 1005
25fe55af
RS
1006 where = string2;
1007 }
fa9a63c5
RM
1008
1009 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1010 putchar (string2[this_char]);
fa9a63c5
RM
1011 }
1012}
1013
1014#else /* not DEBUG */
1015
1016#undef assert
1017#define assert(e)
1018
1019#define DEBUG_STATEMENT(e)
1020#define DEBUG_PRINT1(x)
1021#define DEBUG_PRINT2(x1, x2)
1022#define DEBUG_PRINT3(x1, x2, x3)
1023#define DEBUG_PRINT4(x1, x2, x3, x4)
1024#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1025#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1026
1027#endif /* not DEBUG */
1028\f
1029/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1030 also be assigned to arbitrarily: each pattern buffer stores its own
1031 syntax, so it can be changed between regex compilations. */
1032/* This has no initializer because initialized variables in Emacs
1033 become read-only after dumping. */
1034reg_syntax_t re_syntax_options;
1035
1036
1037/* Specify the precise syntax of regexps for compilation. This provides
1038 for compatibility for various utilities which historically have
1039 different, incompatible syntaxes.
1040
1041 The argument SYNTAX is a bit mask comprised of the various bits
25fe55af 1042 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1043
1044reg_syntax_t
1045re_set_syntax (syntax)
1046 reg_syntax_t syntax;
1047{
1048 reg_syntax_t ret = re_syntax_options;
5e69f11e 1049
fa9a63c5
RM
1050 re_syntax_options = syntax;
1051 return ret;
1052}
1053\f
1054/* This table gives an error message for each of the error codes listed
25fe55af 1055 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1056 POSIX doesn't require that we do anything for REG_NOERROR,
25fe55af 1057 but why not be nice? */
fa9a63c5
RM
1058
1059static const char *re_error_msgid[] =
5e69f11e
RM
1060 {
1061 gettext_noop ("Success"), /* REG_NOERROR */
1062 gettext_noop ("No match"), /* REG_NOMATCH */
1063 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1064 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1065 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1066 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1067 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1068 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1069 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1070 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1071 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1072 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1073 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1074 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1075 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1076 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1077 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
1078 };
1079\f
25fe55af 1080/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1081
1082/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1083 searching and matching functions should not call alloca. On some
1084 systems, alloca is implemented in terms of malloc, and if we're
1085 using the relocating allocator routines, then malloc could cause a
1086 relocation, which might (if the strings being searched are in the
1087 ralloc heap) shift the data out from underneath the regexp
1088 routines.
1089
5e69f11e 1090 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1091 processes input from X in a signal handler; processing X input may
1092 call malloc; if input arrives while a matching routine is calling
1093 malloc, then we're scrod. But Emacs can't just block input while
1094 calling matching routines; then we don't notice interrupts when
1095 they come in. So, Emacs blocks input around all regexp calls
1096 except the matching calls, which it leaves unprotected, in the
1097 faith that they will not malloc. */
1098
1099/* Normally, this is fine. */
1100#define MATCH_MAY_ALLOCATE
1101
1102/* When using GNU C, we are not REALLY using the C alloca, no matter
1103 what config.h may say. So don't take precautions for it. */
1104#ifdef __GNUC__
1105#undef C_ALLOCA
1106#endif
1107
1108/* The match routines may not allocate if (1) they would do it with malloc
1109 and (2) it's not safe for them to use malloc.
1110 Note that if REL_ALLOC is defined, matching would not use malloc for the
1111 failure stack, but we would still use it for the register vectors;
25fe55af 1112 so REL_ALLOC should not affect this. */
fa9a63c5
RM
1113#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1114#undef MATCH_MAY_ALLOCATE
1115#endif
1116
1117\f
1118/* Failure stack declarations and macros; both re_compile_fastmap and
1119 re_match_2 use a failure stack. These have to be macros because of
1120 REGEX_ALLOCATE_STACK. */
5e69f11e 1121
fa9a63c5 1122
320a2a73 1123/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1124 when matching. If this number is exceeded, we allocate more
1125 space, so it is not a hard limit. */
1126#ifndef INIT_FAILURE_ALLOC
320a2a73 1127#define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1128#endif
1129
1130/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1131 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1132 This is a variable only so users of regex can assign to it; we never
25fe55af 1133 change it ourselves. */
fa9a63c5 1134#if defined (MATCH_MAY_ALLOCATE)
320a2a73
KH
1135/* Note that 4400 is enough to cause a crash on Alpha OSF/1,
1136 whose default stack limit is 2mb. In order for a larger
1137 value to work reliably, you have to try to make it accord
1138 with the process stack limit. */
1139int re_max_failures = 40000;
fa9a63c5 1140#else
320a2a73 1141int re_max_failures = 4000;
fa9a63c5
RM
1142#endif
1143
1144union fail_stack_elt
1145{
1146 unsigned char *pointer;
1147 int integer;
1148};
1149
1150typedef union fail_stack_elt fail_stack_elt_t;
1151
1152typedef struct
1153{
1154 fail_stack_elt_t *stack;
1155 unsigned size;
1156 unsigned avail; /* Offset of next open position. */
1157} fail_stack_type;
1158
1159#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1160#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1161#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1162
1163
1164/* Define macros to initialize and free the failure stack.
1165 Do `return -2' if the alloc fails. */
1166
1167#ifdef MATCH_MAY_ALLOCATE
1168#define INIT_FAIL_STACK() \
1169 do { \
1170 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1171 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1172 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1173 \
1174 if (fail_stack.stack == NULL) \
1175 return -2; \
1176 \
1177 fail_stack.size = INIT_FAILURE_ALLOC; \
1178 fail_stack.avail = 0; \
1179 } while (0)
1180
1181#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1182#else
1183#define INIT_FAIL_STACK() \
1184 do { \
1185 fail_stack.avail = 0; \
1186 } while (0)
1187
1188#define RESET_FAIL_STACK()
1189#endif
1190
1191
320a2a73
KH
1192/* Double the size of FAIL_STACK, up to a limit
1193 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1194
1195 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1196 allocating space for it or it was already too large.
1197
25fe55af 1198 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1199
320a2a73
KH
1200/* Factor to increase the failure stack size by
1201 when we increase it.
1202 This used to be 2, but 2 was too wasteful
1203 because the old discarded stacks added up to as much space
1204 were as ultimate, maximum-size stack. */
1205#define FAIL_STACK_GROWTH_FACTOR 4
1206
1207#define GROW_FAIL_STACK(fail_stack) \
1208 ((fail_stack).size >= re_max_failures * TYPICAL_FAILURE_SIZE \
fa9a63c5 1209 ? 0 \
320a2a73
KH
1210 : ((fail_stack).stack \
1211 = (fail_stack_elt_t *) \
25fe55af
RS
1212 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1213 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1214 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1215 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1216 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1217 \
1218 (fail_stack).stack == NULL \
1219 ? 0 \
6453db45
KH
1220 : ((fail_stack).size \
1221 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1222 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1223 * FAIL_STACK_GROWTH_FACTOR)) \
1224 / sizeof (fail_stack_elt_t)), \
25fe55af 1225 1)))
fa9a63c5
RM
1226
1227
5e69f11e 1228/* Push pointer POINTER on FAIL_STACK.
fa9a63c5
RM
1229 Return 1 if was able to do so and 0 if ran out of memory allocating
1230 space to do so. */
1231#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1232 ((FAIL_STACK_FULL () \
320a2a73 1233 && !GROW_FAIL_STACK (FAIL_STACK)) \
fa9a63c5
RM
1234 ? 0 \
1235 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1236 1))
1237
1238/* Push a pointer value onto the failure stack.
1239 Assumes the variable `fail_stack'. Probably should only
25fe55af 1240 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1241#define PUSH_FAILURE_POINTER(item) \
1242 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1243
1244/* This pushes an integer-valued item onto the failure stack.
1245 Assumes the variable `fail_stack'. Probably should only
25fe55af 1246 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1247#define PUSH_FAILURE_INT(item) \
1248 fail_stack.stack[fail_stack.avail++].integer = (item)
1249
1250/* Push a fail_stack_elt_t value onto the failure stack.
1251 Assumes the variable `fail_stack'. Probably should only
25fe55af 1252 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1253#define PUSH_FAILURE_ELT(item) \
1254 fail_stack.stack[fail_stack.avail++] = (item)
1255
1256/* These three POP... operations complement the three PUSH... operations.
1257 All assume that `fail_stack' is nonempty. */
1258#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1259#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1260#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1261
1262/* Used to omit pushing failure point id's when we're not debugging. */
1263#ifdef DEBUG
1264#define DEBUG_PUSH PUSH_FAILURE_INT
1265#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1266#else
1267#define DEBUG_PUSH(item)
1268#define DEBUG_POP(item_addr)
1269#endif
1270
1271
1272/* Push the information about the state we will need
5e69f11e
RM
1273 if we ever fail back to it.
1274
fa9a63c5 1275 Requires variables fail_stack, regstart, regend, reg_info, and
320a2a73 1276 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1277 declared.
5e69f11e 1278
fa9a63c5
RM
1279 Does `return FAILURE_CODE' if runs out of memory. */
1280
1281#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1282 do { \
1283 char *destination; \
1284 /* Must be int, so when we don't save any registers, the arithmetic \
1285 of 0 + -1 isn't done as unsigned. */ \
1286 int this_reg; \
25fe55af 1287 \
fa9a63c5
RM
1288 DEBUG_STATEMENT (failure_id++); \
1289 DEBUG_STATEMENT (nfailure_points_pushed++); \
1290 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1291 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
25fe55af 1292 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
fa9a63c5
RM
1293 \
1294 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
25fe55af 1295 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
fa9a63c5
RM
1296 \
1297 /* Ensure we have enough space allocated for what we will push. */ \
1298 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1299 { \
320a2a73 1300 if (!GROW_FAIL_STACK (fail_stack)) \
25fe55af 1301 return failure_code; \
fa9a63c5 1302 \
25fe55af 1303 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
fa9a63c5 1304 (fail_stack).size); \
25fe55af 1305 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
fa9a63c5
RM
1306 } \
1307 \
1308 /* Push the info, starting with the registers. */ \
1309 DEBUG_PRINT1 ("\n"); \
1310 \
68d96f02 1311 if (1) \
faec11db
RS
1312 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1313 this_reg++) \
1314 { \
1315 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1316 DEBUG_STATEMENT (num_regs_pushed++); \
fa9a63c5 1317 \
faec11db
RS
1318 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1319 PUSH_FAILURE_POINTER (regstart[this_reg]); \
fa9a63c5 1320 \
faec11db
RS
1321 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1322 PUSH_FAILURE_POINTER (regend[this_reg]); \
1323 \
1324 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1325 DEBUG_PRINT2 (" match_null=%d", \
1326 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1327 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1328 DEBUG_PRINT2 (" matched_something=%d", \
1329 MATCHED_SOMETHING (reg_info[this_reg])); \
1330 DEBUG_PRINT2 (" ever_matched=%d", \
1331 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1332 DEBUG_PRINT1 ("\n"); \
1333 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1334 } \
fa9a63c5
RM
1335 \
1336 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1337 PUSH_FAILURE_INT (lowest_active_reg); \
1338 \
1339 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1340 PUSH_FAILURE_INT (highest_active_reg); \
1341 \
1342 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1343 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1344 PUSH_FAILURE_POINTER (pattern_place); \
1345 \
1346 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
25fe55af 1347 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
fa9a63c5
RM
1348 size2); \
1349 DEBUG_PRINT1 ("'\n"); \
1350 PUSH_FAILURE_POINTER (string_place); \
1351 \
1352 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1353 DEBUG_PUSH (failure_id); \
1354 } while (0)
1355
1356/* This is the number of items that are pushed and popped on the stack
1357 for each register. */
1358#define NUM_REG_ITEMS 3
1359
1360/* Individual items aside from the registers. */
1361#ifdef DEBUG
1362#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1363#else
1364#define NUM_NONREG_ITEMS 4
1365#endif
1366
320a2a73
KH
1367/* Estimate the size of data pushed by a typical failure stack entry.
1368 An estimate is all we need, because all we use this for
1369 is to choose a limit for how big to make the failure stack. */
1370
1371#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1372
320a2a73
KH
1373/* This is how many items we actually use for a failure point.
1374 It depends on the regexp. */
faec11db 1375#define NUM_FAILURE_ITEMS \
68d96f02 1376 (((0 \
faec11db
RS
1377 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1378 * NUM_REG_ITEMS) \
1379 + NUM_NONREG_ITEMS)
fa9a63c5
RM
1380
1381/* How many items can still be added to the stack without overflowing it. */
1382#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1383
1384
1385/* Pops what PUSH_FAIL_STACK pushes.
1386
1387 We restore into the parameters, all of which should be lvalues:
1388 STR -- the saved data position.
1389 PAT -- the saved pattern position.
1390 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1391 REGSTART, REGEND -- arrays of string positions.
1392 REG_INFO -- array of information about each subexpression.
5e69f11e 1393
fa9a63c5 1394 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1395 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5
RM
1396
1397#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1398{ \
1399 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1400 int this_reg; \
1401 const unsigned char *string_temp; \
1402 \
1403 assert (!FAIL_STACK_EMPTY ()); \
1404 \
1405 /* Remove failure points and point to how many regs pushed. */ \
1406 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1407 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1408 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5
RM
1409 \
1410 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1411 \
1412 DEBUG_POP (&failure_id); \
1413 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1414 \
1415 /* If the saved string location is NULL, it came from an \
1416 on_failure_keep_string_jump opcode, and we want to throw away the \
1417 saved NULL, thus retaining our current position in the string. */ \
1418 string_temp = POP_FAILURE_POINTER (); \
1419 if (string_temp != NULL) \
1420 str = (const char *) string_temp; \
1421 \
1422 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1423 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1424 DEBUG_PRINT1 ("'\n"); \
1425 \
1426 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1427 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1428 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1429 \
1430 /* Restore register info. */ \
1431 high_reg = (unsigned) POP_FAILURE_INT (); \
1432 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1433 \
1434 low_reg = (unsigned) POP_FAILURE_INT (); \
1435 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1436 \
68d96f02 1437 if (1) \
faec11db
RS
1438 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1439 { \
25fe55af 1440 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
fa9a63c5 1441 \
faec11db 1442 reg_info[this_reg].word = POP_FAILURE_ELT (); \
25fe55af 1443 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
fa9a63c5 1444 \
faec11db 1445 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
25fe55af 1446 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
fa9a63c5 1447 \
faec11db 1448 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
25fe55af 1449 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
faec11db 1450 } \
6676cb1c
RS
1451 else \
1452 { \
1453 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1454 { \
4fcecab1 1455 reg_info[this_reg].word.integer = 0; \
6676cb1c
RS
1456 regend[this_reg] = 0; \
1457 regstart[this_reg] = 0; \
1458 } \
1459 highest_active_reg = high_reg; \
1460 } \
fa9a63c5
RM
1461 \
1462 set_regs_matched_done = 0; \
1463 DEBUG_STATEMENT (nfailure_points_popped++); \
1464} /* POP_FAILURE_POINT */
1465
1466
1467\f
1468/* Structure for per-register (a.k.a. per-group) information.
1469 Other register information, such as the
1470 starting and ending positions (which are addresses), and the list of
1471 inner groups (which is a bits list) are maintained in separate
5e69f11e
RM
1472 variables.
1473
fa9a63c5
RM
1474 We are making a (strictly speaking) nonportable assumption here: that
1475 the compiler will pack our bit fields into something that fits into
1476 the type of `word', i.e., is something that fits into one item on the
1477 failure stack. */
1478
1479typedef union
1480{
1481 fail_stack_elt_t word;
1482 struct
1483 {
1484 /* This field is one if this group can match the empty string,
25fe55af 1485 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
fa9a63c5
RM
1486#define MATCH_NULL_UNSET_VALUE 3
1487 unsigned match_null_string_p : 2;
1488 unsigned is_active : 1;
1489 unsigned matched_something : 1;
1490 unsigned ever_matched_something : 1;
1491 } bits;
1492} register_info_type;
1493
1494#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1495#define IS_ACTIVE(R) ((R).bits.is_active)
1496#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1497#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1498
1499
1500/* Call this when have matched a real character; it sets `matched' flags
1501 for the subexpressions which we are currently inside. Also records
1502 that those subexprs have matched. */
1503#define SET_REGS_MATCHED() \
1504 do \
1505 { \
1506 if (!set_regs_matched_done) \
1507 { \
1508 unsigned r; \
1509 set_regs_matched_done = 1; \
1510 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1511 { \
1512 MATCHED_SOMETHING (reg_info[r]) \
1513 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1514 = 1; \
1515 } \
1516 } \
1517 } \
1518 while (0)
1519
1520/* Registers are set to a sentinel when they haven't yet matched. */
1521static char reg_unset_dummy;
1522#define REG_UNSET_VALUE (&reg_unset_dummy)
1523#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1524\f
1525/* Subroutine declarations and macros for regex_compile. */
1526
1527static void store_op1 (), store_op2 ();
1528static void insert_op1 (), insert_op2 ();
1529static boolean at_begline_loc_p (), at_endline_loc_p ();
1530static boolean group_in_compile_stack ();
1531static reg_errcode_t compile_range ();
1532
5e69f11e 1533/* Fetch the next character in the uncompiled pattern---translating it
fa9a63c5
RM
1534 if necessary. Also cast from a signed character in the constant
1535 string passed to us by the user to an unsigned char that we can use
1536 as an array index (in, e.g., `translate'). */
6676cb1c 1537#ifndef PATFETCH
fa9a63c5
RM
1538#define PATFETCH(c) \
1539 do {if (p == pend) return REG_EEND; \
1540 c = (unsigned char) *p++; \
6676cb1c 1541 if (translate) c = (unsigned char) translate[c]; \
fa9a63c5 1542 } while (0)
6676cb1c 1543#endif
fa9a63c5
RM
1544
1545/* Fetch the next character in the uncompiled pattern, with no
25fe55af 1546 translation. */
fa9a63c5
RM
1547#define PATFETCH_RAW(c) \
1548 do {if (p == pend) return REG_EEND; \
25fe55af 1549 c = (unsigned char) *p++; \
fa9a63c5
RM
1550 } while (0)
1551
1552/* Go backwards one character in the pattern. */
1553#define PATUNFETCH p--
1554
1555
1556/* If `translate' is non-null, return translate[D], else just D. We
1557 cast the subscript to translate because some data is declared as
1558 `char *', to avoid warnings when a string constant is passed. But
1559 when we use a character as a subscript we must make it unsigned. */
6676cb1c
RS
1560#ifndef TRANSLATE
1561#define TRANSLATE(d) \
bc192b5b 1562 (translate ? (unsigned char) RE_TRANSLATE (translate, (unsigned char) (d)) : (d))
6676cb1c 1563#endif
fa9a63c5
RM
1564
1565
1566/* Macros for outputting the compiled pattern into `buffer'. */
1567
1568/* If the buffer isn't allocated when it comes in, use this. */
1569#define INIT_BUF_SIZE 32
1570
25fe55af 1571/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5
RM
1572#define GET_BUFFER_SPACE(n) \
1573 while (b - bufp->buffer + (n) > bufp->allocated) \
1574 EXTEND_BUFFER ()
1575
1576/* Make sure we have one more byte of buffer space and then add C to it. */
1577#define BUF_PUSH(c) \
1578 do { \
1579 GET_BUFFER_SPACE (1); \
1580 *b++ = (unsigned char) (c); \
1581 } while (0)
1582
1583
1584/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1585#define BUF_PUSH_2(c1, c2) \
1586 do { \
1587 GET_BUFFER_SPACE (2); \
1588 *b++ = (unsigned char) (c1); \
1589 *b++ = (unsigned char) (c2); \
1590 } while (0)
1591
1592
25fe55af 1593/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1594#define BUF_PUSH_3(c1, c2, c3) \
1595 do { \
1596 GET_BUFFER_SPACE (3); \
1597 *b++ = (unsigned char) (c1); \
1598 *b++ = (unsigned char) (c2); \
1599 *b++ = (unsigned char) (c3); \
1600 } while (0)
1601
1602
1603/* Store a jump with opcode OP at LOC to location TO. We store a
25fe55af 1604 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1605#define STORE_JUMP(op, loc, to) \
1606 store_op1 (op, loc, (to) - (loc) - 3)
1607
1608/* Likewise, for a two-argument jump. */
1609#define STORE_JUMP2(op, loc, to, arg) \
1610 store_op2 (op, loc, (to) - (loc) - 3, arg)
1611
25fe55af 1612/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1613#define INSERT_JUMP(op, loc, to) \
1614 insert_op1 (op, loc, (to) - (loc) - 3, b)
1615
1616/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1617#define INSERT_JUMP2(op, loc, to, arg) \
1618 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1619
1620
1621/* This is not an arbitrary limit: the arguments which represent offsets
25fe55af 1622 into the pattern are two bytes long. So if 2^16 bytes turns out to
fa9a63c5
RM
1623 be too small, many things would have to change. */
1624#define MAX_BUF_SIZE (1L << 16)
1625
1626
1627/* Extend the buffer by twice its current size via realloc and
1628 reset the pointers that pointed into the old block to point to the
1629 correct places in the new one. If extending the buffer results in it
25fe55af 1630 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
fa9a63c5 1631#define EXTEND_BUFFER() \
25fe55af 1632 do { \
fa9a63c5 1633 unsigned char *old_buffer = bufp->buffer; \
25fe55af 1634 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1635 return REG_ESIZE; \
1636 bufp->allocated <<= 1; \
1637 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1638 bufp->allocated = MAX_BUF_SIZE; \
fa9a63c5
RM
1639 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1640 if (bufp->buffer == NULL) \
1641 return REG_ESPACE; \
1642 /* If the buffer moved, move all the pointers into it. */ \
1643 if (old_buffer != bufp->buffer) \
1644 { \
25fe55af
RS
1645 b = (b - old_buffer) + bufp->buffer; \
1646 begalt = (begalt - old_buffer) + bufp->buffer; \
1647 if (fixup_alt_jump) \
1648 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1649 if (laststart) \
1650 laststart = (laststart - old_buffer) + bufp->buffer; \
1651 if (pending_exact) \
1652 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
fa9a63c5
RM
1653 } \
1654 } while (0)
1655
1656
1657/* Since we have one byte reserved for the register number argument to
1658 {start,stop}_memory, the maximum number of groups we can report
1659 things about is what fits in that byte. */
1660#define MAX_REGNUM 255
1661
1662/* But patterns can have more than `MAX_REGNUM' registers. We just
1663 ignore the excess. */
1664typedef unsigned regnum_t;
1665
1666
1667/* Macros for the compile stack. */
1668
1669/* Since offsets can go either forwards or backwards, this type needs to
25fe55af 1670 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
fa9a63c5
RM
1671typedef int pattern_offset_t;
1672
1673typedef struct
1674{
1675 pattern_offset_t begalt_offset;
1676 pattern_offset_t fixup_alt_jump;
1677 pattern_offset_t inner_group_offset;
5e69f11e 1678 pattern_offset_t laststart_offset;
fa9a63c5
RM
1679 regnum_t regnum;
1680} compile_stack_elt_t;
1681
1682
1683typedef struct
1684{
1685 compile_stack_elt_t *stack;
1686 unsigned size;
1687 unsigned avail; /* Offset of next open position. */
1688} compile_stack_type;
1689
1690
1691#define INIT_COMPILE_STACK_SIZE 32
1692
1693#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1694#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1695
25fe55af 1696/* The next available element. */
fa9a63c5
RM
1697#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1698
1699
b18215fc
RS
1700/* Structure to manage work area for range table. */
1701struct range_table_work_area
1702{
1703 int *table; /* actual work area. */
1704 int allocated; /* allocated size for work area in bytes. */
25fe55af 1705 int used; /* actually used size in words. */
b18215fc
RS
1706};
1707
1708/* Make sure that WORK_AREA can hold more N multibyte characters. */
1709#define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1710 do { \
1711 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1712 { \
1713 (work_area).allocated += 16 * sizeof (int); \
1714 if ((work_area).table) \
1715 (work_area).table \
1716 = (int *) realloc ((work_area).table, (work_area).allocated); \
1717 else \
1718 (work_area).table \
1719 = (int *) malloc ((work_area).allocated); \
1720 if ((work_area).table == 0) \
1721 FREE_STACK_RETURN (REG_ESPACE); \
1722 } \
1723 } while (0)
1724
1725/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1726#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1727 do { \
1728 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1729 (work_area).table[(work_area).used++] = (range_start); \
1730 (work_area).table[(work_area).used++] = (range_end); \
1731 } while (0)
1732
25fe55af 1733/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1734#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1735 do { \
1736 if ((work_area).table) \
1737 free ((work_area).table); \
1738 } while (0)
1739
1740#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0)
1741#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1742#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1743
1744
fa9a63c5 1745/* Set the bit for character C in a list. */
25fe55af
RS
1746#define SET_LIST_BIT(c) \
1747 (b[((unsigned char) (c)) / BYTEWIDTH] \
fa9a63c5
RM
1748 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1749
1750
1751/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1752#define GET_UNSIGNED_NUMBER(num) \
fa9a63c5
RM
1753 { if (p != pend) \
1754 { \
25fe55af
RS
1755 PATFETCH (c); \
1756 while (ISDIGIT (c)) \
1757 { \
1758 if (num < 0) \
1759 num = 0; \
1760 num = num * 10 + c - '0'; \
1761 if (p == pend) \
1762 break; \
1763 PATFETCH (c); \
1764 } \
1765 } \
5e69f11e 1766 }
fa9a63c5
RM
1767
1768#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1769
1770#define IS_CHAR_CLASS(string) \
1771 (STREQ (string, "alpha") || STREQ (string, "upper") \
1772 || STREQ (string, "lower") || STREQ (string, "digit") \
1773 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1774 || STREQ (string, "space") || STREQ (string, "print") \
1775 || STREQ (string, "punct") || STREQ (string, "graph") \
1776 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1777\f
1778#ifndef MATCH_MAY_ALLOCATE
1779
1780/* If we cannot allocate large objects within re_match_2_internal,
1781 we make the fail stack and register vectors global.
1782 The fail stack, we grow to the maximum size when a regexp
1783 is compiled.
1784 The register vectors, we adjust in size each time we
1785 compile a regexp, according to the number of registers it needs. */
1786
1787static fail_stack_type fail_stack;
1788
1789/* Size with which the following vectors are currently allocated.
1790 That is so we can make them bigger as needed,
25fe55af 1791 but never make them smaller. */
fa9a63c5
RM
1792static int regs_allocated_size;
1793
25fe55af 1794static const char ** regstart, ** regend;
fa9a63c5
RM
1795static const char ** old_regstart, ** old_regend;
1796static const char **best_regstart, **best_regend;
5e69f11e 1797static register_info_type *reg_info;
fa9a63c5
RM
1798static const char **reg_dummy;
1799static register_info_type *reg_info_dummy;
1800
1801/* Make the register vectors big enough for NUM_REGS registers,
25fe55af 1802 but don't make them smaller. */
fa9a63c5
RM
1803
1804static
1805regex_grow_registers (num_regs)
1806 int num_regs;
1807{
1808 if (num_regs > regs_allocated_size)
1809 {
1810 RETALLOC_IF (regstart, num_regs, const char *);
1811 RETALLOC_IF (regend, num_regs, const char *);
1812 RETALLOC_IF (old_regstart, num_regs, const char *);
1813 RETALLOC_IF (old_regend, num_regs, const char *);
1814 RETALLOC_IF (best_regstart, num_regs, const char *);
1815 RETALLOC_IF (best_regend, num_regs, const char *);
1816 RETALLOC_IF (reg_info, num_regs, register_info_type);
1817 RETALLOC_IF (reg_dummy, num_regs, const char *);
1818 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1819
1820 regs_allocated_size = num_regs;
1821 }
1822}
1823
1824#endif /* not MATCH_MAY_ALLOCATE */
1825\f
1826/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1827 Returns one of error codes defined in `regex.h', or zero for success.
1828
1829 Assumes the `allocated' (and perhaps `buffer') and `translate'
1830 fields are set in BUFP on entry.
1831
1832 If it succeeds, results are put in BUFP (if it returns an error, the
1833 contents of BUFP are undefined):
1834 `buffer' is the compiled pattern;
1835 `syntax' is set to SYNTAX;
1836 `used' is set to the length of the compiled pattern;
1837 `fastmap_accurate' is zero;
1838 `re_nsub' is the number of subexpressions in PATTERN;
1839 `not_bol' and `not_eol' are zero;
5e69f11e 1840
fa9a63c5
RM
1841 The `fastmap' and `newline_anchor' fields are neither
1842 examined nor set. */
1843
1844/* Return, freeing storage we allocated. */
1845#define FREE_STACK_RETURN(value) \
b18215fc
RS
1846 do { \
1847 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
1848 free (compile_stack.stack); \
1849 return value; \
1850 } while (0)
fa9a63c5
RM
1851
1852static reg_errcode_t
1853regex_compile (pattern, size, syntax, bufp)
1854 const char *pattern;
1855 int size;
1856 reg_syntax_t syntax;
1857 struct re_pattern_buffer *bufp;
1858{
1859 /* We fetch characters from PATTERN here. Even though PATTERN is
1860 `char *' (i.e., signed), we declare these variables as unsigned, so
1861 they can be reliably used as array indices. */
b18215fc 1862 register unsigned int c, c1;
5e69f11e 1863
fa9a63c5
RM
1864 /* A random temporary spot in PATTERN. */
1865 const char *p1;
1866
1867 /* Points to the end of the buffer, where we should append. */
1868 register unsigned char *b;
5e69f11e 1869
fa9a63c5
RM
1870 /* Keeps track of unclosed groups. */
1871 compile_stack_type compile_stack;
1872
1873 /* Points to the current (ending) position in the pattern. */
1874 const char *p = pattern;
1875 const char *pend = pattern + size;
5e69f11e 1876
fa9a63c5 1877 /* How to translate the characters in the pattern. */
6676cb1c 1878 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
1879
1880 /* Address of the count-byte of the most recently inserted `exactn'
1881 command. This makes it possible to tell if a new exact-match
1882 character can be added to that command or if the character requires
1883 a new `exactn' command. */
1884 unsigned char *pending_exact = 0;
1885
1886 /* Address of start of the most recently finished expression.
1887 This tells, e.g., postfix * where to find the start of its
1888 operand. Reset at the beginning of groups and alternatives. */
1889 unsigned char *laststart = 0;
1890
1891 /* Address of beginning of regexp, or inside of last group. */
1892 unsigned char *begalt;
1893
1894 /* Place in the uncompiled pattern (i.e., the {) to
1895 which to go back if the interval is invalid. */
1896 const char *beg_interval;
5e69f11e 1897
fa9a63c5 1898 /* Address of the place where a forward jump should go to the end of
25fe55af 1899 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
1900 last -- ends with a forward jump of this sort. */
1901 unsigned char *fixup_alt_jump = 0;
1902
1903 /* Counts open-groups as they are encountered. Remembered for the
1904 matching close-group on the compile stack, so the same register
1905 number is put in the stop_memory as the start_memory. */
1906 regnum_t regnum = 0;
1907
b18215fc
RS
1908 /* Work area for range table of charset. */
1909 struct range_table_work_area range_table_work;
1910
fa9a63c5
RM
1911#ifdef DEBUG
1912 DEBUG_PRINT1 ("\nCompiling pattern: ");
1913 if (debug)
1914 {
1915 unsigned debug_count;
5e69f11e 1916
fa9a63c5 1917 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 1918 putchar (pattern[debug_count]);
fa9a63c5
RM
1919 putchar ('\n');
1920 }
1921#endif /* DEBUG */
1922
1923 /* Initialize the compile stack. */
1924 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1925 if (compile_stack.stack == NULL)
1926 return REG_ESPACE;
1927
1928 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1929 compile_stack.avail = 0;
1930
b18215fc
RS
1931 range_table_work.table = 0;
1932 range_table_work.allocated = 0;
1933
fa9a63c5
RM
1934 /* Initialize the pattern buffer. */
1935 bufp->syntax = syntax;
1936 bufp->fastmap_accurate = 0;
1937 bufp->not_bol = bufp->not_eol = 0;
1938
1939 /* Set `used' to zero, so that if we return an error, the pattern
1940 printer (for debugging) will think there's no pattern. We reset it
1941 at the end. */
1942 bufp->used = 0;
5e69f11e 1943
fa9a63c5 1944 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 1945 bufp->re_nsub = 0;
fa9a63c5 1946
b18215fc
RS
1947#ifdef emacs
1948 /* bufp->multibyte is set before regex_compile is called, so don't alter
1949 it. */
1950#else /* not emacs */
1951 /* Nothing is recognized as a multibyte character. */
1952 bufp->multibyte = 0;
1953#endif
1954
fa9a63c5
RM
1955#if !defined (emacs) && !defined (SYNTAX_TABLE)
1956 /* Initialize the syntax table. */
1957 init_syntax_once ();
1958#endif
1959
1960 if (bufp->allocated == 0)
1961 {
1962 if (bufp->buffer)
1963 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
1964 enough space. This loses if buffer's address is bogus, but
1965 that is the user's responsibility. */
1966 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1967 }
fa9a63c5 1968 else
25fe55af
RS
1969 { /* Caller did not allocate a buffer. Do it for them. */
1970 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1971 }
fa9a63c5
RM
1972 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1973
1974 bufp->allocated = INIT_BUF_SIZE;
1975 }
1976
1977 begalt = b = bufp->buffer;
1978
1979 /* Loop through the uncompiled pattern until we're at the end. */
1980 while (p != pend)
1981 {
1982 PATFETCH (c);
1983
1984 switch (c)
25fe55af
RS
1985 {
1986 case '^':
1987 {
1988 if ( /* If at start of pattern, it's an operator. */
1989 p == pattern + 1
1990 /* If context independent, it's an operator. */
1991 || syntax & RE_CONTEXT_INDEP_ANCHORS
1992 /* Otherwise, depends on what's come before. */
1993 || at_begline_loc_p (pattern, p, syntax))
1994 BUF_PUSH (begline);
1995 else
1996 goto normal_char;
1997 }
1998 break;
1999
2000
2001 case '$':
2002 {
2003 if ( /* If at end of pattern, it's an operator. */
2004 p == pend
2005 /* If context independent, it's an operator. */
2006 || syntax & RE_CONTEXT_INDEP_ANCHORS
2007 /* Otherwise, depends on what's next. */
2008 || at_endline_loc_p (p, pend, syntax))
2009 BUF_PUSH (endline);
2010 else
2011 goto normal_char;
2012 }
2013 break;
fa9a63c5
RM
2014
2015
2016 case '+':
25fe55af
RS
2017 case '?':
2018 if ((syntax & RE_BK_PLUS_QM)
2019 || (syntax & RE_LIMITED_OPS))
2020 goto normal_char;
2021 handle_plus:
2022 case '*':
2023 /* If there is no previous pattern... */
2024 if (!laststart)
2025 {
2026 if (syntax & RE_CONTEXT_INVALID_OPS)
2027 FREE_STACK_RETURN (REG_BADRPT);
2028 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2029 goto normal_char;
2030 }
2031
2032 {
2033 /* Are we optimizing this jump? */
2034 boolean keep_string_p = false;
2035
2036 /* 1 means zero (many) matches is allowed. */
2037 char zero_times_ok = 0, many_times_ok = 0;
2038
2039 /* If there is a sequence of repetition chars, collapse it
2040 down to just one (the right one). We can't combine
2041 interval operators with these because of, e.g., `a{2}*',
2042 which should only match an even number of `a's. */
2043
2044 for (;;)
2045 {
2046 zero_times_ok |= c != '+';
2047 many_times_ok |= c != '?';
2048
2049 if (p == pend)
2050 break;
2051
2052 PATFETCH (c);
2053
2054 if (c == '*'
2055 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2056 ;
2057
2058 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2059 {
2060 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2061
2062 PATFETCH (c1);
2063 if (!(c1 == '+' || c1 == '?'))
2064 {
2065 PATUNFETCH;
2066 PATUNFETCH;
2067 break;
2068 }
2069
2070 c = c1;
2071 }
2072 else
2073 {
2074 PATUNFETCH;
2075 break;
2076 }
2077
2078 /* If we get here, we found another repeat character. */
2079 }
2080
2081 /* Star, etc. applied to an empty pattern is equivalent
2082 to an empty pattern. */
2083 if (!laststart)
2084 break;
2085
2086 /* Now we know whether or not zero matches is allowed
2087 and also whether or not two or more matches is allowed. */
2088 if (many_times_ok)
2089 { /* More than one repetition is allowed, so put in at the
2090 end a backward relative jump from `b' to before the next
2091 jump we're going to put in below (which jumps from
2092 laststart to after this jump).
2093
2094 But if we are at the `*' in the exact sequence `.*\n',
2095 insert an unconditional jump backwards to the .,
2096 instead of the beginning of the loop. This way we only
2097 push a failure point once, instead of every time
2098 through the loop. */
2099 assert (p - 1 > pattern);
2100
2101 /* Allocate the space for the jump. */
2102 GET_BUFFER_SPACE (3);
2103
2104 /* We know we are not at the first character of the pattern,
2105 because laststart was nonzero. And we've already
2106 incremented `p', by the way, to be the character after
2107 the `*'. Do we have to do something analogous here
2108 for null bytes, because of RE_DOT_NOT_NULL? */
2109 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
fa9a63c5 2110 && zero_times_ok
25fe55af
RS
2111 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2112 && !(syntax & RE_DOT_NEWLINE))
2113 { /* We have .*\n. */
2114 STORE_JUMP (jump, b, laststart);
2115 keep_string_p = true;
2116 }
2117 else
2118 /* Anything else. */
2119 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2120
2121 /* We've added more stuff to the buffer. */
2122 b += 3;
2123 }
2124
2125 /* On failure, jump from laststart to b + 3, which will be the
2126 end of the buffer after this jump is inserted. */
2127 GET_BUFFER_SPACE (3);
2128 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2129 : on_failure_jump,
2130 laststart, b + 3);
2131 pending_exact = 0;
2132 b += 3;
2133
2134 if (!zero_times_ok)
2135 {
2136 /* At least one repetition is required, so insert a
2137 `dummy_failure_jump' before the initial
2138 `on_failure_jump' instruction of the loop. This
2139 effects a skip over that instruction the first time
2140 we hit that loop. */
2141 GET_BUFFER_SPACE (3);
2142 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2143 b += 3;
2144 }
2145 }
fa9a63c5
RM
2146 break;
2147
2148
2149 case '.':
25fe55af
RS
2150 laststart = b;
2151 BUF_PUSH (anychar);
2152 break;
fa9a63c5
RM
2153
2154
25fe55af
RS
2155 case '[':
2156 {
b18215fc 2157 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2158
25fe55af 2159 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2160
25fe55af
RS
2161 /* Ensure that we have enough space to push a charset: the
2162 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2163 GET_BUFFER_SPACE (34);
2164
25fe55af 2165 laststart = b;
e318085a 2166
25fe55af
RS
2167 /* We test `*p == '^' twice, instead of using an if
2168 statement, so we only need one BUF_PUSH. */
2169 BUF_PUSH (*p == '^' ? charset_not : charset);
2170 if (*p == '^')
2171 p++;
e318085a 2172
25fe55af
RS
2173 /* Remember the first position in the bracket expression. */
2174 p1 = p;
e318085a 2175
25fe55af
RS
2176 /* Push the number of bytes in the bitmap. */
2177 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2178
25fe55af
RS
2179 /* Clear the whole map. */
2180 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2181
25fe55af
RS
2182 /* charset_not matches newline according to a syntax bit. */
2183 if ((re_opcode_t) b[-2] == charset_not
2184 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2185 SET_LIST_BIT ('\n');
fa9a63c5 2186
25fe55af
RS
2187 /* Read in characters and ranges, setting map bits. */
2188 for (;;)
2189 {
b18215fc
RS
2190 int len;
2191 boolean escaped_char = false;
e318085a 2192
25fe55af 2193 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2194
25fe55af 2195 PATFETCH (c);
e318085a 2196
25fe55af
RS
2197 /* \ might escape characters inside [...] and [^...]. */
2198 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2199 {
2200 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2201
2202 PATFETCH (c);
b18215fc 2203 escaped_char = true;
25fe55af 2204 }
b18215fc
RS
2205 else
2206 {
657fcfbd
RS
2207 /* Could be the end of the bracket expression. If it's
2208 not (i.e., when the bracket expression is `[]' so
2209 far), the ']' character bit gets set way below. */
2210 if (c == ']' && p != p1 + 1)
2211 break;
25fe55af 2212 }
b18215fc
RS
2213
2214 /* If C indicates start of multibyte char, get the
2215 actual character code in C, and set the pattern
2216 pointer P to the next character boundary. */
2217 if (bufp->multibyte && BASE_LEADING_CODE_P (c))
2218 {
2219 PATUNFETCH;
2220 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2221 p += len;
25fe55af 2222 }
b18215fc
RS
2223 /* What should we do for the character which is
2224 greater than 0x7F, but not BASE_LEADING_CODE_P?
2225 XXX */
2226
25fe55af
RS
2227 /* See if we're at the beginning of a possible character
2228 class. */
b18215fc
RS
2229
2230 else if (!escaped_char &&
2231 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2232 {
2233 /* Leave room for the null. */
25fe55af 2234 char str[CHAR_CLASS_MAX_LENGTH + 1];
b18215fc 2235
25fe55af
RS
2236 PATFETCH (c);
2237 c1 = 0;
b18215fc 2238
25fe55af
RS
2239 /* If pattern is `[[:'. */
2240 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2241
25fe55af
RS
2242 for (;;)
2243 {
2244 PATFETCH (c);
2245 if (c == ':' || c == ']' || p == pend
2246 || c1 == CHAR_CLASS_MAX_LENGTH)
2247 break;
2248 str[c1++] = c;
2249 }
2250 str[c1] = '\0';
b18215fc
RS
2251
2252 /* If isn't a word bracketed by `[:' and `:]':
2253 undo the ending character, the letters, and
2254 leave the leading `:' and `[' (but set bits for
2255 them). */
25fe55af
RS
2256 if (c == ':' && *p == ']')
2257 {
2258 int ch;
2259 boolean is_alnum = STREQ (str, "alnum");
2260 boolean is_alpha = STREQ (str, "alpha");
2261 boolean is_blank = STREQ (str, "blank");
2262 boolean is_cntrl = STREQ (str, "cntrl");
2263 boolean is_digit = STREQ (str, "digit");
2264 boolean is_graph = STREQ (str, "graph");
2265 boolean is_lower = STREQ (str, "lower");
2266 boolean is_print = STREQ (str, "print");
2267 boolean is_punct = STREQ (str, "punct");
2268 boolean is_space = STREQ (str, "space");
2269 boolean is_upper = STREQ (str, "upper");
2270 boolean is_xdigit = STREQ (str, "xdigit");
2271
2272 if (!IS_CHAR_CLASS (str))
fa9a63c5
RM
2273 FREE_STACK_RETURN (REG_ECTYPE);
2274
25fe55af
RS
2275 /* Throw away the ] at the end of the character
2276 class. */
2277 PATFETCH (c);
fa9a63c5 2278
25fe55af 2279 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2280
25fe55af
RS
2281 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2282 {
7ae68633 2283 int translated = TRANSLATE (ch);
fa9a63c5
RM
2284 /* This was split into 3 if's to
2285 avoid an arbitrary limit in some compiler. */
25fe55af
RS
2286 if ( (is_alnum && ISALNUM (ch))
2287 || (is_alpha && ISALPHA (ch))
2288 || (is_blank && ISBLANK (ch))
2289 || (is_cntrl && ISCNTRL (ch)))
7ae68633 2290 SET_LIST_BIT (translated);
fa9a63c5 2291 if ( (is_digit && ISDIGIT (ch))
25fe55af
RS
2292 || (is_graph && ISGRAPH (ch))
2293 || (is_lower && ISLOWER (ch))
2294 || (is_print && ISPRINT (ch)))
7ae68633 2295 SET_LIST_BIT (translated);
fa9a63c5 2296 if ( (is_punct && ISPUNCT (ch))
25fe55af
RS
2297 || (is_space && ISSPACE (ch))
2298 || (is_upper && ISUPPER (ch))
2299 || (is_xdigit && ISXDIGIT (ch)))
7ae68633 2300 SET_LIST_BIT (translated);
25fe55af 2301 }
b18215fc
RS
2302
2303 /* Repeat the loop. */
2304 continue;
25fe55af
RS
2305 }
2306 else
2307 {
2308 c1++;
2309 while (c1--)
2310 PATUNFETCH;
2311 SET_LIST_BIT ('[');
b18215fc
RS
2312
2313 /* Because the `:' may starts the range, we
2314 can't simply set bit and repeat the loop.
25fe55af 2315 Instead, just set it to C and handle below. */
b18215fc 2316 c = ':';
25fe55af
RS
2317 }
2318 }
b18215fc
RS
2319
2320 if (p < pend && p[0] == '-' && p[1] != ']')
2321 {
2322
2323 /* Discard the `-'. */
2324 PATFETCH (c1);
2325
2326 /* Fetch the character which ends the range. */
2327 PATFETCH (c1);
2328 if (bufp->multibyte && BASE_LEADING_CODE_P (c1))
e318085a 2329 {
b18215fc
RS
2330 PATUNFETCH;
2331 c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2332 p += len;
e318085a 2333 }
b18215fc
RS
2334
2335 if (!SAME_CHARSET_P (c, c1))
2336 FREE_STACK_RETURN (REG_ERANGE);
e318085a 2337 }
25fe55af 2338 else
b18215fc
RS
2339 /* Range from C to C. */
2340 c1 = c;
2341
2342 /* Set the range ... */
2343 if (SINGLE_BYTE_CHAR_P (c))
2344 /* ... into bitmap. */
25fe55af 2345 {
b18215fc
RS
2346 unsigned this_char;
2347 int range_start = c, range_end = c1;
2348
2349 /* If the start is after the end, the range is empty. */
2350 if (range_start > range_end)
2351 {
2352 if (syntax & RE_NO_EMPTY_RANGES)
2353 FREE_STACK_RETURN (REG_ERANGE);
2354 /* Else, repeat the loop. */
2355 }
2356 else
2357 {
2358 for (this_char = range_start; this_char <= range_end;
2359 this_char++)
2360 SET_LIST_BIT (TRANSLATE (this_char));
25fe55af
RS
2361 }
2362 }
e318085a 2363 else
b18215fc
RS
2364 /* ... into range table. */
2365 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2366 }
2367
25fe55af
RS
2368 /* Discard any (non)matching list bytes that are all 0 at the
2369 end of the map. Decrease the map-length byte too. */
2370 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2371 b[-1]--;
2372 b += b[-1];
fa9a63c5 2373
b18215fc
RS
2374 /* Build real range table from work area. */
2375 if (RANGE_TABLE_WORK_USED (range_table_work))
2376 {
2377 int i;
2378 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2379
b18215fc 2380 /* Allocate space for COUNT + RANGE_TABLE. Needs two
25fe55af 2381 bytes for COUNT and three bytes for each character. */
b18215fc 2382 GET_BUFFER_SPACE (2 + used * 3);
fa9a63c5 2383
b18215fc
RS
2384 /* Indicate the existence of range table. */
2385 laststart[1] |= 0x80;
fa9a63c5 2386
b18215fc
RS
2387 STORE_NUMBER_AND_INCR (b, used / 2);
2388 for (i = 0; i < used; i++)
2389 STORE_CHARACTER_AND_INCR
2390 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2391 }
25fe55af
RS
2392 }
2393 break;
fa9a63c5
RM
2394
2395
b18215fc 2396 case '(':
25fe55af
RS
2397 if (syntax & RE_NO_BK_PARENS)
2398 goto handle_open;
2399 else
2400 goto normal_char;
fa9a63c5
RM
2401
2402
25fe55af
RS
2403 case ')':
2404 if (syntax & RE_NO_BK_PARENS)
2405 goto handle_close;
2406 else
2407 goto normal_char;
e318085a
RS
2408
2409
25fe55af
RS
2410 case '\n':
2411 if (syntax & RE_NEWLINE_ALT)
2412 goto handle_alt;
2413 else
2414 goto normal_char;
e318085a
RS
2415
2416
b18215fc 2417 case '|':
25fe55af
RS
2418 if (syntax & RE_NO_BK_VBAR)
2419 goto handle_alt;
2420 else
2421 goto normal_char;
2422
2423
2424 case '{':
2425 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2426 goto handle_interval;
2427 else
2428 goto normal_char;
2429
2430
2431 case '\\':
2432 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2433
2434 /* Do not translate the character after the \, so that we can
2435 distinguish, e.g., \B from \b, even if we normally would
2436 translate, e.g., B to b. */
2437 PATFETCH_RAW (c);
2438
2439 switch (c)
2440 {
2441 case '(':
2442 if (syntax & RE_NO_BK_PARENS)
2443 goto normal_backslash;
2444
2445 handle_open:
2446 bufp->re_nsub++;
2447 regnum++;
2448
2449 if (COMPILE_STACK_FULL)
2450 {
2451 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2452 compile_stack_elt_t);
2453 if (compile_stack.stack == NULL) return REG_ESPACE;
2454
2455 compile_stack.size <<= 1;
2456 }
2457
2458 /* These are the values to restore when we hit end of this
2459 group. They are all relative offsets, so that if the
2460 whole pattern moves because of realloc, they will still
2461 be valid. */
2462 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2463 COMPILE_STACK_TOP.fixup_alt_jump
2464 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2465 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2466 COMPILE_STACK_TOP.regnum = regnum;
2467
2468 /* We will eventually replace the 0 with the number of
2469 groups inner to this one. But do not push a
2470 start_memory for groups beyond the last one we can
2471 represent in the compiled pattern. */
2472 if (regnum <= MAX_REGNUM)
2473 {
2474 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2475 BUF_PUSH_3 (start_memory, regnum, 0);
2476 }
2477
2478 compile_stack.avail++;
2479
2480 fixup_alt_jump = 0;
2481 laststart = 0;
2482 begalt = b;
b18215fc
RS
2483 /* If we've reached MAX_REGNUM groups, then this open
2484 won't actually generate any code, so we'll have to
2485 clear pending_exact explicitly. */
2486 pending_exact = 0;
25fe55af
RS
2487 break;
2488
2489
2490 case ')':
2491 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2492
2493 if (COMPILE_STACK_EMPTY)
2494 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2495 goto normal_backslash;
2496 else
2497 FREE_STACK_RETURN (REG_ERPAREN);
2498
2499 handle_close:
2500 if (fixup_alt_jump)
2501 { /* Push a dummy failure point at the end of the
2502 alternative for a possible future
2503 `pop_failure_jump' to pop. See comments at
2504 `push_dummy_failure' in `re_match_2'. */
2505 BUF_PUSH (push_dummy_failure);
2506
2507 /* We allocated space for this jump when we assigned
2508 to `fixup_alt_jump', in the `handle_alt' case below. */
2509 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2510 }
2511
2512 /* See similar code for backslashed left paren above. */
2513 if (COMPILE_STACK_EMPTY)
2514 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2515 goto normal_char;
2516 else
2517 FREE_STACK_RETURN (REG_ERPAREN);
2518
2519 /* Since we just checked for an empty stack above, this
2520 ``can't happen''. */
2521 assert (compile_stack.avail != 0);
2522 {
2523 /* We don't just want to restore into `regnum', because
2524 later groups should continue to be numbered higher,
2525 as in `(ab)c(de)' -- the second group is #2. */
2526 regnum_t this_group_regnum;
2527
2528 compile_stack.avail--;
2529 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2530 fixup_alt_jump
2531 = COMPILE_STACK_TOP.fixup_alt_jump
2532 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2533 : 0;
2534 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2535 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
2536 /* If we've reached MAX_REGNUM groups, then this open
2537 won't actually generate any code, so we'll have to
2538 clear pending_exact explicitly. */
2539 pending_exact = 0;
e318085a 2540
25fe55af
RS
2541 /* We're at the end of the group, so now we know how many
2542 groups were inside this one. */
2543 if (this_group_regnum <= MAX_REGNUM)
2544 {
2545 unsigned char *inner_group_loc
2546 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2547
2548 *inner_group_loc = regnum - this_group_regnum;
2549 BUF_PUSH_3 (stop_memory, this_group_regnum,
2550 regnum - this_group_regnum);
2551 }
2552 }
2553 break;
2554
2555
2556 case '|': /* `\|'. */
2557 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2558 goto normal_backslash;
2559 handle_alt:
2560 if (syntax & RE_LIMITED_OPS)
2561 goto normal_char;
2562
2563 /* Insert before the previous alternative a jump which
2564 jumps to this alternative if the former fails. */
2565 GET_BUFFER_SPACE (3);
2566 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2567 pending_exact = 0;
2568 b += 3;
2569
2570 /* The alternative before this one has a jump after it
2571 which gets executed if it gets matched. Adjust that
2572 jump so it will jump to this alternative's analogous
2573 jump (put in below, which in turn will jump to the next
2574 (if any) alternative's such jump, etc.). The last such
2575 jump jumps to the correct final destination. A picture:
2576 _____ _____
2577 | | | |
2578 | v | v
2579 a | b | c
2580
2581 If we are at `b', then fixup_alt_jump right now points to a
2582 three-byte space after `a'. We'll put in the jump, set
2583 fixup_alt_jump to right after `b', and leave behind three
2584 bytes which we'll fill in when we get to after `c'. */
2585
2586 if (fixup_alt_jump)
2587 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2588
2589 /* Mark and leave space for a jump after this alternative,
2590 to be filled in later either by next alternative or
2591 when know we're at the end of a series of alternatives. */
2592 fixup_alt_jump = b;
2593 GET_BUFFER_SPACE (3);
2594 b += 3;
2595
2596 laststart = 0;
2597 begalt = b;
2598 break;
2599
2600
2601 case '{':
2602 /* If \{ is a literal. */
2603 if (!(syntax & RE_INTERVALS)
2604 /* If we're at `\{' and it's not the open-interval
2605 operator. */
2606 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2607 || (p - 2 == pattern && p == pend))
2608 goto normal_backslash;
2609
2610 handle_interval:
2611 {
2612 /* If got here, then the syntax allows intervals. */
2613
2614 /* At least (most) this many matches must be made. */
2615 int lower_bound = -1, upper_bound = -1;
2616
2617 beg_interval = p - 1;
2618
2619 if (p == pend)
2620 {
2621 if (syntax & RE_NO_BK_BRACES)
2622 goto unfetch_interval;
2623 else
2624 FREE_STACK_RETURN (REG_EBRACE);
2625 }
2626
2627 GET_UNSIGNED_NUMBER (lower_bound);
2628
2629 if (c == ',')
2630 {
2631 GET_UNSIGNED_NUMBER (upper_bound);
2632 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2633 }
2634 else
2635 /* Interval such as `{1}' => match exactly once. */
2636 upper_bound = lower_bound;
2637
2638 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2639 || lower_bound > upper_bound)
2640 {
2641 if (syntax & RE_NO_BK_BRACES)
2642 goto unfetch_interval;
2643 else
2644 FREE_STACK_RETURN (REG_BADBR);
2645 }
2646
2647 if (!(syntax & RE_NO_BK_BRACES))
2648 {
2649 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2650
2651 PATFETCH (c);
2652 }
2653
2654 if (c != '}')
2655 {
2656 if (syntax & RE_NO_BK_BRACES)
2657 goto unfetch_interval;
2658 else
2659 FREE_STACK_RETURN (REG_BADBR);
2660 }
2661
2662 /* We just parsed a valid interval. */
2663
2664 /* If it's invalid to have no preceding re. */
2665 if (!laststart)
2666 {
2667 if (syntax & RE_CONTEXT_INVALID_OPS)
2668 FREE_STACK_RETURN (REG_BADRPT);
2669 else if (syntax & RE_CONTEXT_INDEP_OPS)
2670 laststart = b;
2671 else
2672 goto unfetch_interval;
2673 }
2674
2675 /* If the upper bound is zero, don't want to succeed at
2676 all; jump from `laststart' to `b + 3', which will be
2677 the end of the buffer after we insert the jump. */
2678 if (upper_bound == 0)
2679 {
2680 GET_BUFFER_SPACE (3);
2681 INSERT_JUMP (jump, laststart, b + 3);
2682 b += 3;
2683 }
2684
2685 /* Otherwise, we have a nontrivial interval. When
2686 we're all done, the pattern will look like:
2687 set_number_at <jump count> <upper bound>
2688 set_number_at <succeed_n count> <lower bound>
2689 succeed_n <after jump addr> <succeed_n count>
2690 <body of loop>
2691 jump_n <succeed_n addr> <jump count>
2692 (The upper bound and `jump_n' are omitted if
2693 `upper_bound' is 1, though.) */
2694 else
2695 { /* If the upper bound is > 1, we need to insert
2696 more at the end of the loop. */
2697 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2698
2699 GET_BUFFER_SPACE (nbytes);
2700
2701 /* Initialize lower bound of the `succeed_n', even
2702 though it will be set during matching by its
2703 attendant `set_number_at' (inserted next),
2704 because `re_compile_fastmap' needs to know.
2705 Jump to the `jump_n' we might insert below. */
2706 INSERT_JUMP2 (succeed_n, laststart,
2707 b + 5 + (upper_bound > 1) * 5,
2708 lower_bound);
2709 b += 5;
2710
2711 /* Code to initialize the lower bound. Insert
2712 before the `succeed_n'. The `5' is the last two
2713 bytes of this `set_number_at', plus 3 bytes of
2714 the following `succeed_n'. */
2715 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2716 b += 5;
2717
2718 if (upper_bound > 1)
2719 { /* More than one repetition is allowed, so
2720 append a backward jump to the `succeed_n'
2721 that starts this interval.
2722
2723 When we've reached this during matching,
2724 we'll have matched the interval once, so
2725 jump back only `upper_bound - 1' times. */
2726 STORE_JUMP2 (jump_n, b, laststart + 5,
2727 upper_bound - 1);
2728 b += 5;
2729
2730 /* The location we want to set is the second
2731 parameter of the `jump_n'; that is `b-2' as
2732 an absolute address. `laststart' will be
2733 the `set_number_at' we're about to insert;
2734 `laststart+3' the number to set, the source
2735 for the relative address. But we are
2736 inserting into the middle of the pattern --
2737 so everything is getting moved up by 5.
2738 Conclusion: (b - 2) - (laststart + 3) + 5,
2739 i.e., b - laststart.
2740
2741 We insert this at the beginning of the loop
2742 so that if we fail during matching, we'll
2743 reinitialize the bounds. */
2744 insert_op2 (set_number_at, laststart, b - laststart,
2745 upper_bound - 1, b);
2746 b += 5;
2747 }
2748 }
2749 pending_exact = 0;
2750 beg_interval = NULL;
2751 }
2752 break;
2753
2754 unfetch_interval:
2755 /* If an invalid interval, match the characters as literals. */
2756 assert (beg_interval);
2757 p = beg_interval;
2758 beg_interval = NULL;
2759
2760 /* normal_char and normal_backslash need `c'. */
2761 PATFETCH (c);
2762
2763 if (!(syntax & RE_NO_BK_BRACES))
2764 {
2765 if (p > pattern && p[-1] == '\\')
2766 goto normal_backslash;
2767 }
2768 goto normal_char;
e318085a 2769
b18215fc 2770#ifdef emacs
25fe55af
RS
2771 /* There is no way to specify the before_dot and after_dot
2772 operators. rms says this is ok. --karl */
2773 case '=':
2774 BUF_PUSH (at_dot);
2775 break;
2776
2777 case 's':
2778 laststart = b;
2779 PATFETCH (c);
2780 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2781 break;
2782
2783 case 'S':
2784 laststart = b;
2785 PATFETCH (c);
2786 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2787 break;
b18215fc
RS
2788
2789 case 'c':
2790 laststart = b;
2791 PATFETCH_RAW (c);
2792 BUF_PUSH_2 (categoryspec, c);
2793 break;
e318085a 2794
b18215fc
RS
2795 case 'C':
2796 laststart = b;
2797 PATFETCH_RAW (c);
2798 BUF_PUSH_2 (notcategoryspec, c);
2799 break;
2800#endif /* emacs */
e318085a 2801
e318085a 2802
25fe55af
RS
2803 case 'w':
2804 laststart = b;
2805 BUF_PUSH (wordchar);
2806 break;
e318085a 2807
e318085a 2808
25fe55af
RS
2809 case 'W':
2810 laststart = b;
2811 BUF_PUSH (notwordchar);
2812 break;
e318085a
RS
2813
2814
25fe55af
RS
2815 case '<':
2816 BUF_PUSH (wordbeg);
2817 break;
e318085a 2818
25fe55af
RS
2819 case '>':
2820 BUF_PUSH (wordend);
2821 break;
e318085a 2822
25fe55af
RS
2823 case 'b':
2824 BUF_PUSH (wordbound);
2825 break;
e318085a 2826
25fe55af
RS
2827 case 'B':
2828 BUF_PUSH (notwordbound);
2829 break;
fa9a63c5 2830
25fe55af
RS
2831 case '`':
2832 BUF_PUSH (begbuf);
2833 break;
e318085a 2834
25fe55af
RS
2835 case '\'':
2836 BUF_PUSH (endbuf);
2837 break;
e318085a 2838
25fe55af
RS
2839 case '1': case '2': case '3': case '4': case '5':
2840 case '6': case '7': case '8': case '9':
2841 if (syntax & RE_NO_BK_REFS)
2842 goto normal_char;
e318085a 2843
25fe55af 2844 c1 = c - '0';
e318085a 2845
25fe55af
RS
2846 if (c1 > regnum)
2847 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 2848
25fe55af
RS
2849 /* Can't back reference to a subexpression if inside of it. */
2850 if (group_in_compile_stack (compile_stack, c1))
2851 goto normal_char;
e318085a 2852
25fe55af
RS
2853 laststart = b;
2854 BUF_PUSH_2 (duplicate, c1);
2855 break;
e318085a 2856
e318085a 2857
25fe55af
RS
2858 case '+':
2859 case '?':
2860 if (syntax & RE_BK_PLUS_QM)
2861 goto handle_plus;
2862 else
2863 goto normal_backslash;
2864
2865 default:
2866 normal_backslash:
2867 /* You might think it would be useful for \ to mean
2868 not to translate; but if we don't translate it
2869 it will never match anything. */
2870 c = TRANSLATE (c);
2871 goto normal_char;
2872 }
2873 break;
fa9a63c5
RM
2874
2875
2876 default:
25fe55af 2877 /* Expects the character in `c'. */
fa9a63c5 2878 normal_char:
b18215fc
RS
2879 p1 = p - 1; /* P1 points the head of C. */
2880#ifdef emacs
2881 if (bufp->multibyte)
2882 /* Set P to the next character boundary. */
2883 p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1;
2884#endif
fa9a63c5 2885 /* If no exactn currently being built. */
25fe55af 2886 if (!pending_exact
fa9a63c5 2887
25fe55af
RS
2888 /* If last exactn not at current position. */
2889 || pending_exact + *pending_exact + 1 != b
5e69f11e 2890
25fe55af 2891 /* We have only one byte following the exactn for the count. */
b18215fc 2892 || *pending_exact >= (1 << BYTEWIDTH) - (p - p1)
fa9a63c5 2893
25fe55af
RS
2894 /* If followed by a repetition operator. */
2895 || *p == '*' || *p == '^'
fa9a63c5
RM
2896 || ((syntax & RE_BK_PLUS_QM)
2897 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2898 : (*p == '+' || *p == '?'))
2899 || ((syntax & RE_INTERVALS)
25fe55af 2900 && ((syntax & RE_NO_BK_BRACES)
fa9a63c5 2901 ? *p == '{'
25fe55af 2902 : (p[0] == '\\' && p[1] == '{'))))
fa9a63c5
RM
2903 {
2904 /* Start building a new exactn. */
5e69f11e 2905
25fe55af 2906 laststart = b;
fa9a63c5
RM
2907
2908 BUF_PUSH_2 (exactn, 0);
2909 pending_exact = b - 1;
25fe55af 2910 }
5e69f11e 2911
b18215fc
RS
2912 /* Here, C may translated, therefore C may not equal to *P1. */
2913 while (1)
2914 {
fa9a63c5 2915 BUF_PUSH (c);
25fe55af 2916 (*pending_exact)++;
b18215fc
RS
2917 if (++p1 == p)
2918 break;
2919
2920 /* Rest of multibyte form should be copied literally. */
2921 c = *(unsigned char *)p1;
2922 }
fa9a63c5 2923 break;
25fe55af 2924 } /* switch (c) */
fa9a63c5
RM
2925 } /* while p != pend */
2926
5e69f11e 2927
fa9a63c5 2928 /* Through the pattern now. */
5e69f11e 2929
fa9a63c5
RM
2930 if (fixup_alt_jump)
2931 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2932
5e69f11e 2933 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
2934 FREE_STACK_RETURN (REG_EPAREN);
2935
2936 /* If we don't want backtracking, force success
2937 the first time we reach the end of the compiled pattern. */
2938 if (syntax & RE_NO_POSIX_BACKTRACKING)
2939 BUF_PUSH (succeed);
2940
2941 free (compile_stack.stack);
2942
2943 /* We have succeeded; set the length of the buffer. */
2944 bufp->used = b - bufp->buffer;
2945
2946#ifdef DEBUG
2947 if (debug)
2948 {
2949 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2950 print_compiled_pattern (bufp);
2951 }
2952#endif /* DEBUG */
2953
2954#ifndef MATCH_MAY_ALLOCATE
2955 /* Initialize the failure stack to the largest possible stack. This
2956 isn't necessary unless we're trying to avoid calling alloca in
2957 the search and match routines. */
2958 {
2959 int num_regs = bufp->re_nsub + 1;
2960
320a2a73 2961 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 2962 {
320a2a73 2963 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE);
fa9a63c5
RM
2964
2965#ifdef emacs
2966 if (! fail_stack.stack)
2967 fail_stack.stack
5e69f11e 2968 = (fail_stack_elt_t *) xmalloc (fail_stack.size
fa9a63c5
RM
2969 * sizeof (fail_stack_elt_t));
2970 else
2971 fail_stack.stack
2972 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2973 (fail_stack.size
2974 * sizeof (fail_stack_elt_t)));
2975#else /* not emacs */
2976 if (! fail_stack.stack)
2977 fail_stack.stack
5e69f11e 2978 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
2979 * sizeof (fail_stack_elt_t));
2980 else
2981 fail_stack.stack
2982 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2983 (fail_stack.size
2984 * sizeof (fail_stack_elt_t)));
2985#endif /* not emacs */
2986 }
2987
2988 regex_grow_registers (num_regs);
2989 }
2990#endif /* not MATCH_MAY_ALLOCATE */
2991
2992 return REG_NOERROR;
2993} /* regex_compile */
2994\f
2995/* Subroutines for `regex_compile'. */
2996
25fe55af 2997/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
2998
2999static void
3000store_op1 (op, loc, arg)
3001 re_opcode_t op;
3002 unsigned char *loc;
3003 int arg;
3004{
3005 *loc = (unsigned char) op;
3006 STORE_NUMBER (loc + 1, arg);
3007}
3008
3009
3010/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3011
3012static void
3013store_op2 (op, loc, arg1, arg2)
3014 re_opcode_t op;
3015 unsigned char *loc;
3016 int arg1, arg2;
3017{
3018 *loc = (unsigned char) op;
3019 STORE_NUMBER (loc + 1, arg1);
3020 STORE_NUMBER (loc + 3, arg2);
3021}
3022
3023
3024/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3025 for OP followed by two-byte integer parameter ARG. */
3026
3027static void
3028insert_op1 (op, loc, arg, end)
3029 re_opcode_t op;
3030 unsigned char *loc;
3031 int arg;
5e69f11e 3032 unsigned char *end;
fa9a63c5
RM
3033{
3034 register unsigned char *pfrom = end;
3035 register unsigned char *pto = end + 3;
3036
3037 while (pfrom != loc)
3038 *--pto = *--pfrom;
5e69f11e 3039
fa9a63c5
RM
3040 store_op1 (op, loc, arg);
3041}
3042
3043
3044/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3045
3046static void
3047insert_op2 (op, loc, arg1, arg2, end)
3048 re_opcode_t op;
3049 unsigned char *loc;
3050 int arg1, arg2;
5e69f11e 3051 unsigned char *end;
fa9a63c5
RM
3052{
3053 register unsigned char *pfrom = end;
3054 register unsigned char *pto = end + 5;
3055
3056 while (pfrom != loc)
3057 *--pto = *--pfrom;
5e69f11e 3058
fa9a63c5
RM
3059 store_op2 (op, loc, arg1, arg2);
3060}
3061
3062
3063/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3064 after an alternative or a begin-subexpression. We assume there is at
3065 least one character before the ^. */
3066
3067static boolean
3068at_begline_loc_p (pattern, p, syntax)
3069 const char *pattern, *p;
3070 reg_syntax_t syntax;
3071{
3072 const char *prev = p - 2;
3073 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3074
fa9a63c5
RM
3075 return
3076 /* After a subexpression? */
3077 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3078 /* After an alternative? */
fa9a63c5
RM
3079 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3080}
3081
3082
3083/* The dual of at_begline_loc_p. This one is for $. We assume there is
3084 at least one character after the $, i.e., `P < PEND'. */
3085
3086static boolean
3087at_endline_loc_p (p, pend, syntax)
3088 const char *p, *pend;
3089 int syntax;
3090{
3091 const char *next = p;
3092 boolean next_backslash = *next == '\\';
5bb52971 3093 const char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3094
fa9a63c5
RM
3095 return
3096 /* Before a subexpression? */
3097 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3098 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3099 /* Before an alternative? */
3100 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3101 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3102}
3103
3104
5e69f11e 3105/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3106 false if it's not. */
3107
3108static boolean
3109group_in_compile_stack (compile_stack, regnum)
3110 compile_stack_type compile_stack;
3111 regnum_t regnum;
3112{
3113 int this_element;
3114
5e69f11e
RM
3115 for (this_element = compile_stack.avail - 1;
3116 this_element >= 0;
fa9a63c5
RM
3117 this_element--)
3118 if (compile_stack.stack[this_element].regnum == regnum)
3119 return true;
3120
3121 return false;
3122}
3123
3124
3125/* Read the ending character of a range (in a bracket expression) from the
3126 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3127 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3128 Then we set the translation of all bits between the starting and
3129 ending characters (inclusive) in the compiled pattern B.
5e69f11e 3130
fa9a63c5 3131 Return an error code.
5e69f11e 3132
fa9a63c5
RM
3133 We use these short variable names so we can use the same macros as
3134 `regex_compile' itself. */
3135
3136static reg_errcode_t
3137compile_range (p_ptr, pend, translate, syntax, b)
3138 const char **p_ptr, *pend;
6676cb1c 3139 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
3140 reg_syntax_t syntax;
3141 unsigned char *b;
3142{
3143 unsigned this_char;
3144
3145 const char *p = *p_ptr;
3146 int range_start, range_end;
5e69f11e 3147
fa9a63c5
RM
3148 if (p == pend)
3149 return REG_ERANGE;
3150
3151 /* Even though the pattern is a signed `char *', we need to fetch
3152 with unsigned char *'s; if the high bit of the pattern character
3153 is set, the range endpoints will be negative if we fetch using a
3154 signed char *.
3155
5e69f11e 3156 We also want to fetch the endpoints without translating them; the
fa9a63c5
RM
3157 appropriate translation is done in the bit-setting loop below. */
3158 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3159 range_start = ((const unsigned char *) p)[-2];
3160 range_end = ((const unsigned char *) p)[0];
3161
3162 /* Have to increment the pointer into the pattern string, so the
3163 caller isn't still at the ending character. */
3164 (*p_ptr)++;
3165
25fe55af 3166 /* If the start is after the end, the range is empty. */
fa9a63c5
RM
3167 if (range_start > range_end)
3168 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3169
3170 /* Here we see why `this_char' has to be larger than an `unsigned
3171 char' -- the range is inclusive, so if `range_end' == 0xff
3172 (assuming 8-bit characters), we would otherwise go into an infinite
3173 loop, since all characters <= 0xff. */
3174 for (this_char = range_start; this_char <= range_end; this_char++)
3175 {
3176 SET_LIST_BIT (TRANSLATE (this_char));
3177 }
5e69f11e 3178
fa9a63c5
RM
3179 return REG_NOERROR;
3180}
3181\f
3182/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3183 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3184 characters can start a string that matches the pattern. This fastmap
3185 is used by re_search to skip quickly over impossible starting points.
3186
3187 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3188 area as BUFP->fastmap.
5e69f11e 3189
fa9a63c5
RM
3190 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3191 the pattern buffer.
3192
3193 Returns 0 if we succeed, -2 if an internal error. */
3194
3195int
3196re_compile_fastmap (bufp)
3197 struct re_pattern_buffer *bufp;
3198{
b18215fc 3199 int i, j, k;
fa9a63c5
RM
3200#ifdef MATCH_MAY_ALLOCATE
3201 fail_stack_type fail_stack;
3202#endif
3203#ifndef REGEX_MALLOC
3204 char *destination;
3205#endif
3206 /* We don't push any register information onto the failure stack. */
3207 unsigned num_regs = 0;
5e69f11e 3208
fa9a63c5
RM
3209 register char *fastmap = bufp->fastmap;
3210 unsigned char *pattern = bufp->buffer;
3211 unsigned long size = bufp->used;
3212 unsigned char *p = pattern;
3213 register unsigned char *pend = pattern + size;
3214
3215 /* This holds the pointer to the failure stack, when
3216 it is allocated relocatably. */
3217 fail_stack_elt_t *failure_stack_ptr;
3218
3219 /* Assume that each path through the pattern can be null until
25fe55af 3220 proven otherwise. We set this false at the bottom of switch
fa9a63c5
RM
3221 statement, to which we get only if a particular path doesn't
3222 match the empty string. */
3223 boolean path_can_be_null = true;
3224
3225 /* We aren't doing a `succeed_n' to begin with. */
3226 boolean succeed_n_p = false;
3227
b18215fc 3228 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3229 flag is set true. */
b18215fc
RS
3230 boolean match_any_multibyte_characters = false;
3231
3232 /* Maximum code of simple (single byte) character. */
3233 int simple_char_max;
3234
fa9a63c5 3235 assert (fastmap != NULL && p != NULL);
5e69f11e 3236
fa9a63c5 3237 INIT_FAIL_STACK ();
25fe55af 3238 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
fa9a63c5
RM
3239 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3240 bufp->can_be_null = 0;
5e69f11e 3241
fa9a63c5
RM
3242 while (1)
3243 {
3244 if (p == pend || *p == succeed)
3245 {
3246 /* We have reached the (effective) end of pattern. */
3247 if (!FAIL_STACK_EMPTY ())
3248 {
3249 bufp->can_be_null |= path_can_be_null;
3250
3251 /* Reset for next path. */
3252 path_can_be_null = true;
3253
3254 p = fail_stack.stack[--fail_stack.avail].pointer;
3255
3256 continue;
3257 }
3258 else
3259 break;
3260 }
3261
25fe55af 3262 /* We should never be about to go beyond the end of the pattern. */
fa9a63c5 3263 assert (p < pend);
5e69f11e 3264
fa9a63c5
RM
3265 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3266 {
3267
25fe55af
RS
3268 /* I guess the idea here is to simply not bother with a fastmap
3269 if a backreference is used, since it's too hard to figure out
3270 the fastmap for the corresponding group. Setting
3271 `can_be_null' stops `re_search_2' from using the fastmap, so
3272 that is all we do. */
fa9a63c5
RM
3273 case duplicate:
3274 bufp->can_be_null = 1;
25fe55af 3275 goto done;
fa9a63c5
RM
3276
3277
3278 /* Following are the cases which match a character. These end
25fe55af 3279 with `break'. */
fa9a63c5
RM
3280
3281 case exactn:
25fe55af 3282 fastmap[p[1]] = 1;
fa9a63c5
RM
3283 break;
3284
3285
b18215fc 3286#ifndef emacs
25fe55af
RS
3287 case charset:
3288 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
fa9a63c5 3289 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
25fe55af 3290 fastmap[j] = 1;
fa9a63c5
RM
3291 break;
3292
3293
3294 case charset_not:
3295 /* Chars beyond end of map must be allowed. */
3296 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
25fe55af 3297 fastmap[j] = 1;
fa9a63c5
RM
3298
3299 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3300 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
25fe55af
RS
3301 fastmap[j] = 1;
3302 break;
fa9a63c5
RM
3303
3304
3305 case wordchar:
3306 for (j = 0; j < (1 << BYTEWIDTH); j++)
3307 if (SYNTAX (j) == Sword)
3308 fastmap[j] = 1;
3309 break;
3310
3311
3312 case notwordchar:
3313 for (j = 0; j < (1 << BYTEWIDTH); j++)
3314 if (SYNTAX (j) != Sword)
3315 fastmap[j] = 1;
3316 break;
b18215fc
RS
3317#else /* emacs */
3318 case charset:
3319 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3320 j >= 0; j--)
3321 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3322 fastmap[j] = 1;
3323
3324 if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3325 && match_any_multibyte_characters == false)
3326 {
3327 /* Set fastmap[I] 1 where I is a base leading code of each
3328 multibyte character in the range table. */
3329 int c, count;
3330
3331 /* Make P points the range table. */
3332 p += CHARSET_BITMAP_SIZE (&p[-2]);
3333
3334 /* Extract the number of ranges in range table into
25fe55af 3335 COUNT. */
b18215fc
RS
3336 EXTRACT_NUMBER_AND_INCR (count, p);
3337 for (; count > 0; count--, p += 2 * 3) /* XXX */
3338 {
3339 /* Extract the start of each range. */
3340 EXTRACT_CHARACTER (c, p);
3341 j = CHAR_CHARSET (c);
3342 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3343 }
3344 }
3345 break;
fa9a63c5
RM
3346
3347
b18215fc
RS
3348 case charset_not:
3349 /* Chars beyond end of map must be allowed. End of map is
3350 `127' if bufp->multibyte is nonzero. */
3351 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3352 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3353 j < simple_char_max; j++)
3354 fastmap[j] = 1;
3355
3356 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3357 j >= 0; j--)
3358 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3359 fastmap[j] = 1;
3360
3361 if (bufp->multibyte)
3362 /* Any character set can possibly contain a character
3363 which doesn't match the specified set of characters. */
3364 {
3365 set_fastmap_for_multibyte_characters:
3366 if (match_any_multibyte_characters == false)
3367 {
3368 for (j = 0x80; j < 0xA0; j++) /* XXX */
3369 if (BASE_LEADING_CODE_P (j))
3370 fastmap[j] = 1;
3371 match_any_multibyte_characters = true;
3372 }
3373 }
3374 break;
3375
3376
3377 case wordchar:
3378 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3379 for (j = 0; j < simple_char_max; j++)
3380 if (SYNTAX (j) == Sword)
3381 fastmap[j] = 1;
3382
3383 if (bufp->multibyte)
3384 /* Any character set can possibly contain a character
25fe55af 3385 whose syntax is `Sword'. */
b18215fc
RS
3386 goto set_fastmap_for_multibyte_characters;
3387 break;
3388
3389
3390 case notwordchar:
3391 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3392 for (j = 0; j < simple_char_max; j++)
3393 if (SYNTAX (j) != Sword)
3394 fastmap[j] = 1;
3395
3396 if (bufp->multibyte)
3397 /* Any character set can possibly contain a character
3398 whose syntax is not `Sword'. */
3399 goto set_fastmap_for_multibyte_characters;
3400 break;
3401#endif
3402
25fe55af 3403 case anychar:
fa9a63c5
RM
3404 {
3405 int fastmap_newline = fastmap['\n'];
3406
b18215fc
RS
3407 /* `.' matches anything (but if bufp->multibyte is
3408 nonzero, matches `\000' .. `\127' and possible multibyte
3409 character) ... */
3410 if (bufp->multibyte)
3411 {
3412 simple_char_max = 0x80;
3413
3414 for (j = 0x80; j < 0xA0; j++)
3415 if (BASE_LEADING_CODE_P (j))
3416 fastmap[j] = 1;
3417 match_any_multibyte_characters = true;
3418 }
3419 else
3420 simple_char_max = (1 << BYTEWIDTH);
3421
3422 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3423 fastmap[j] = 1;
3424
3425 /* ... except perhaps newline. */
3426 if (!(bufp->syntax & RE_DOT_NEWLINE))
3427 fastmap['\n'] = fastmap_newline;
3428
3429 /* Return if we have already set `can_be_null'; if we have,
25fe55af 3430 then the fastmap is irrelevant. Something's wrong here. */
fa9a63c5
RM
3431 else if (bufp->can_be_null)
3432 goto done;
3433
3434 /* Otherwise, have to check alternative paths. */
3435 break;
3436 }
3437
3438#ifdef emacs
b18215fc
RS
3439 case wordbound:
3440 case notwordbound:
3441 case wordbeg:
3442 case wordend:
3443 case notsyntaxspec:
25fe55af 3444 case syntaxspec:
b18215fc
RS
3445 /* This match depends on text properties. These end with
3446 aborting optimizations. */
3447 bufp->can_be_null = 1;
25fe55af 3448 goto done;
b18215fc 3449#if 0
fa9a63c5 3450 k = *p++;
b18215fc
RS
3451 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3452 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3453 if (SYNTAX (j) == (enum syntaxcode) k)
3454 fastmap[j] = 1;
fa9a63c5 3455
b18215fc
RS
3456 if (bufp->multibyte)
3457 /* Any character set can possibly contain a character
3458 whose syntax is K. */
3459 goto set_fastmap_for_multibyte_characters;
3460 break;
fa9a63c5
RM
3461
3462 case notsyntaxspec:
3463 k = *p++;
b18215fc
RS
3464 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3465 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3466 if (SYNTAX (j) != (enum syntaxcode) k)
3467 fastmap[j] = 1;
b18215fc
RS
3468
3469 if (bufp->multibyte)
3470 /* Any character set can possibly contain a character
3471 whose syntax is not K. */
3472 goto set_fastmap_for_multibyte_characters;
3473 break;
3474#endif
3475
3476
3477 case categoryspec:
3478 k = *p++;
3479 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3480 for (j = 0; j < simple_char_max; j++)
3481 if (CHAR_HAS_CATEGORY (j, k))
3482 fastmap[j] = 1;
3483
3484 if (bufp->multibyte)
3485 /* Any character set can possibly contain a character
3486 whose category is K. */
3487 goto set_fastmap_for_multibyte_characters;
fa9a63c5
RM
3488 break;
3489
3490
b18215fc
RS
3491 case notcategoryspec:
3492 k = *p++;
3493 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3494 for (j = 0; j < simple_char_max; j++)
3495 if (!CHAR_HAS_CATEGORY (j, k))
3496 fastmap[j] = 1;
3497
3498 if (bufp->multibyte)
3499 /* Any character set can possibly contain a character
25fe55af 3500 whose category is not K. */
b18215fc
RS
3501 goto set_fastmap_for_multibyte_characters;
3502 break;
3503
fa9a63c5 3504 /* All cases after this match the empty string. These end with
25fe55af 3505 `continue'. */
fa9a63c5
RM
3506
3507
3508 case before_dot:
3509 case at_dot:
3510 case after_dot:
25fe55af 3511 continue;
ae4788a8 3512#endif /* emacs */
fa9a63c5
RM
3513
3514
25fe55af
RS
3515 case no_op:
3516 case begline:
3517 case endline:
fa9a63c5
RM
3518 case begbuf:
3519 case endbuf:
b18215fc 3520#ifndef emacs
fa9a63c5
RM
3521 case wordbound:
3522 case notwordbound:
3523 case wordbeg:
3524 case wordend:
25fe55af
RS
3525#endif
3526 case push_dummy_failure:
3527 continue;
fa9a63c5
RM
3528
3529
3530 case jump_n:
25fe55af 3531 case pop_failure_jump:
fa9a63c5
RM
3532 case maybe_pop_jump:
3533 case jump:
25fe55af 3534 case jump_past_alt:
fa9a63c5 3535 case dummy_failure_jump:
25fe55af 3536 EXTRACT_NUMBER_AND_INCR (j, p);
5e69f11e 3537 p += j;
fa9a63c5
RM
3538 if (j > 0)
3539 continue;
5e69f11e 3540
25fe55af
RS
3541 /* Jump backward implies we just went through the body of a
3542 loop and matched nothing. Opcode jumped to should be
3543 `on_failure_jump' or `succeed_n'. Just treat it like an
3544 ordinary jump. For a * loop, it has pushed its failure
3545 point already; if so, discard that as redundant. */
3546 if ((re_opcode_t) *p != on_failure_jump
fa9a63c5
RM
3547 && (re_opcode_t) *p != succeed_n)
3548 continue;
3549
25fe55af
RS
3550 p++;
3551 EXTRACT_NUMBER_AND_INCR (j, p);
3552 p += j;
5e69f11e 3553
25fe55af
RS
3554 /* If what's on the stack is where we are now, pop it. */
3555 if (!FAIL_STACK_EMPTY ()
fa9a63c5 3556 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
25fe55af 3557 fail_stack.avail--;
fa9a63c5 3558
25fe55af 3559 continue;
fa9a63c5
RM
3560
3561
25fe55af
RS
3562 case on_failure_jump:
3563 case on_failure_keep_string_jump:
fa9a63c5 3564 handle_on_failure_jump:
25fe55af
RS
3565 EXTRACT_NUMBER_AND_INCR (j, p);
3566
3567 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3568 end of the pattern. We don't want to push such a point,
3569 since when we restore it above, entering the switch will
3570 increment `p' past the end of the pattern. We don't need
3571 to push such a point since we obviously won't find any more
3572 fastmap entries beyond `pend'. Such a pattern can match
3573 the null string, though. */
3574 if (p + j < pend)
3575 {
3576 if (!PUSH_PATTERN_OP (p + j, fail_stack))
fa9a63c5
RM
3577 {
3578 RESET_FAIL_STACK ();
3579 return -2;
3580 }
fa9a63c5 3581 }
25fe55af
RS
3582 else
3583 bufp->can_be_null = 1;
fa9a63c5 3584
25fe55af
RS
3585 if (succeed_n_p)
3586 {
3587 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3588 succeed_n_p = false;
3589 }
3590
3591 continue;
fa9a63c5
RM
3592
3593
3594 case succeed_n:
25fe55af
RS
3595 /* Get to the number of times to succeed. */
3596 p += 2;
fa9a63c5 3597
25fe55af
RS
3598 /* Increment p past the n for when k != 0. */
3599 EXTRACT_NUMBER_AND_INCR (k, p);
3600 if (k == 0)
fa9a63c5 3601 {
25fe55af
RS
3602 p -= 4;
3603 succeed_n_p = true; /* Spaghetti code alert. */
3604 goto handle_on_failure_jump;
3605 }
3606 continue;
fa9a63c5
RM
3607
3608
3609 case set_number_at:
25fe55af
RS
3610 p += 4;
3611 continue;
fa9a63c5
RM
3612
3613
3614 case start_memory:
25fe55af 3615 case stop_memory:
fa9a63c5
RM
3616 p += 2;
3617 continue;
3618
3619
3620 default:
25fe55af
RS
3621 abort (); /* We have listed all the cases. */
3622 } /* switch *p++ */
fa9a63c5
RM
3623
3624 /* Getting here means we have found the possible starting
25fe55af
RS
3625 characters for one path of the pattern -- and that the empty
3626 string does not match. We need not follow this path further.
3627 Instead, look at the next alternative (remembered on the
3628 stack), or quit if no more. The test at the top of the loop
3629 does these things. */
fa9a63c5
RM
3630 path_can_be_null = false;
3631 p = pend;
3632 } /* while p */
3633
3634 /* Set `can_be_null' for the last path (also the first path, if the
25fe55af 3635 pattern is empty). */
fa9a63c5
RM
3636 bufp->can_be_null |= path_can_be_null;
3637
3638 done:
3639 RESET_FAIL_STACK ();
3640 return 0;
3641} /* re_compile_fastmap */
3642\f
3643/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3644 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3645 this memory for recording register information. STARTS and ENDS
3646 must be allocated using the malloc library routine, and must each
3647 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3648
3649 If NUM_REGS == 0, then subsequent matches should allocate their own
3650 register data.
3651
3652 Unless this function is called, the first search or match using
3653 PATTERN_BUFFER will allocate its own register data, without
3654 freeing the old data. */
3655
3656void
3657re_set_registers (bufp, regs, num_regs, starts, ends)
3658 struct re_pattern_buffer *bufp;
3659 struct re_registers *regs;
3660 unsigned num_regs;
3661 regoff_t *starts, *ends;
3662{
3663 if (num_regs)
3664 {
3665 bufp->regs_allocated = REGS_REALLOCATE;
3666 regs->num_regs = num_regs;
3667 regs->start = starts;
3668 regs->end = ends;
3669 }
3670 else
3671 {
3672 bufp->regs_allocated = REGS_UNALLOCATED;
3673 regs->num_regs = 0;
3674 regs->start = regs->end = (regoff_t *) 0;
3675 }
3676}
3677\f
25fe55af 3678/* Searching routines. */
fa9a63c5
RM
3679
3680/* Like re_search_2, below, but only one string is specified, and
3681 doesn't let you say where to stop matching. */
3682
3683int
3684re_search (bufp, string, size, startpos, range, regs)
3685 struct re_pattern_buffer *bufp;
3686 const char *string;
3687 int size, startpos, range;
3688 struct re_registers *regs;
3689{
5e69f11e 3690 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
3691 regs, size);
3692}
3693
b18215fc
RS
3694/* End address of virtual concatenation of string. */
3695#define STOP_ADDR_VSTRING(P) \
3696 (((P) >= size1 ? string2 + size2 : string1 + size1))
3697
3698/* Address of POS in the concatenation of virtual string. */
3699#define POS_ADDR_VSTRING(POS) \
3700 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
3701
3702/* Using the compiled pattern in BUFP->buffer, first tries to match the
3703 virtual concatenation of STRING1 and STRING2, starting first at index
3704 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 3705
fa9a63c5 3706 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 3707
fa9a63c5
RM
3708 RANGE is how far to scan while trying to match. RANGE = 0 means try
3709 only at STARTPOS; in general, the last start tried is STARTPOS +
3710 RANGE.
5e69f11e 3711
fa9a63c5
RM
3712 In REGS, return the indices of the virtual concatenation of STRING1
3713 and STRING2 that matched the entire BUFP->buffer and its contained
3714 subexpressions.
5e69f11e 3715
fa9a63c5
RM
3716 Do not consider matching one past the index STOP in the virtual
3717 concatenation of STRING1 and STRING2.
3718
3719 We return either the position in the strings at which the match was
3720 found, -1 if no match, or -2 if error (such as failure
3721 stack overflow). */
3722
3723int
3724re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3725 struct re_pattern_buffer *bufp;
3726 const char *string1, *string2;
3727 int size1, size2;
3728 int startpos;
3729 int range;
3730 struct re_registers *regs;
3731 int stop;
3732{
3733 int val;
3734 register char *fastmap = bufp->fastmap;
6676cb1c 3735 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3736 int total_size = size1 + size2;
3737 int endpos = startpos + range;
c8499ba5 3738 int anchored_start = 0;
fa9a63c5 3739
25fe55af 3740 /* Nonzero if we have to concern multibyte character. */
b18215fc
RS
3741 int multibyte = bufp->multibyte;
3742
fa9a63c5
RM
3743 /* Check for out-of-range STARTPOS. */
3744 if (startpos < 0 || startpos > total_size)
3745 return -1;
5e69f11e 3746
fa9a63c5 3747 /* Fix up RANGE if it might eventually take us outside
34597fa9 3748 the virtual concatenation of STRING1 and STRING2.
5e69f11e 3749 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
3750 if (endpos < 0)
3751 range = 0 - startpos;
fa9a63c5
RM
3752 else if (endpos > total_size)
3753 range = total_size - startpos;
3754
3755 /* If the search isn't to be a backwards one, don't waste time in a
3756 search for a pattern that must be anchored. */
3757 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3758 {
3759 if (startpos > 0)
3760 return -1;
3761 else
3762 range = 1;
3763 }
3764
ae4788a8
RS
3765#ifdef emacs
3766 /* In a forward search for something that starts with \=.
3767 don't keep searching past point. */
3768 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3769 {
3770 range = PT - startpos;
3771 if (range <= 0)
3772 return -1;
3773 }
3774#endif /* emacs */
3775
fa9a63c5
RM
3776 /* Update the fastmap now if not correct already. */
3777 if (fastmap && !bufp->fastmap_accurate)
3778 if (re_compile_fastmap (bufp) == -2)
3779 return -2;
5e69f11e 3780
c8499ba5
RS
3781 /* See whether the pattern is anchored. */
3782 if (bufp->buffer[0] == begline)
3783 anchored_start = 1;
3784
b18215fc
RS
3785#ifdef emacs
3786 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
25fe55af 3787 POS_AS_IN_BUFFER (startpos > 0
b18215fc
RS
3788 ? startpos - 1 : startpos),
3789 1);
3790#endif
3791
fa9a63c5
RM
3792 /* Loop through the string, looking for a place to start matching. */
3793 for (;;)
5e69f11e 3794 {
c8499ba5
RS
3795 /* If the pattern is anchored,
3796 skip quickly past places we cannot match.
3797 We don't bother to treat startpos == 0 specially
3798 because that case doesn't repeat. */
3799 if (anchored_start && startpos > 0)
3800 {
3801 if (! (bufp->newline_anchor
3802 && ((startpos <= size1 ? string1[startpos - 1]
3803 : string2[startpos - size1 - 1])
3804 == '\n')))
3805 goto advance;
3806 }
3807
fa9a63c5 3808 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
3809 cannot be the start of a match. If the pattern can match the
3810 null string, however, we don't need to skip characters; we want
3811 the first null string. */
fa9a63c5
RM
3812 if (fastmap && startpos < total_size && !bufp->can_be_null)
3813 {
25fe55af 3814 if (range > 0) /* Searching forwards. */
fa9a63c5
RM
3815 {
3816 register const char *d;
3817 register int lim = 0;
3818 int irange = range;
3819
25fe55af
RS
3820 if (startpos < size1 && startpos + range >= size1)
3821 lim = range - (size1 - startpos);
fa9a63c5 3822
b18215fc 3823 d = POS_ADDR_VSTRING (startpos);
5e69f11e 3824
25fe55af
RS
3825 /* Written out as an if-else to avoid testing `translate'
3826 inside the loop. */
fa9a63c5 3827 if (translate)
25fe55af
RS
3828 while (range > lim
3829 && !fastmap[(unsigned char)
bc192b5b 3830 RE_TRANSLATE (translate, (unsigned char) *d++)])
25fe55af 3831 range--;
fa9a63c5 3832 else
25fe55af
RS
3833 while (range > lim && !fastmap[(unsigned char) *d++])
3834 range--;
fa9a63c5
RM
3835
3836 startpos += irange - range;
3837 }
25fe55af 3838 else /* Searching backwards. */
fa9a63c5
RM
3839 {
3840 register char c = (size1 == 0 || startpos >= size1
25fe55af
RS
3841 ? string2[startpos - size1]
3842 : string1[startpos]);
fa9a63c5
RM
3843
3844 if (!fastmap[(unsigned char) TRANSLATE (c)])
3845 goto advance;
3846 }
3847 }
3848
3849 /* If can't match the null string, and that's all we have left, fail. */
3850 if (range >= 0 && startpos == total_size && fastmap
25fe55af 3851 && !bufp->can_be_null)
fa9a63c5
RM
3852 return -1;
3853
3854 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3855 startpos, regs, stop);
3856#ifndef REGEX_MALLOC
3857#ifdef C_ALLOCA
3858 alloca (0);
3859#endif
3860#endif
3861
3862 if (val >= 0)
3863 return startpos;
5e69f11e 3864
fa9a63c5
RM
3865 if (val == -2)
3866 return -2;
3867
3868 advance:
5e69f11e 3869 if (!range)
25fe55af 3870 break;
5e69f11e 3871 else if (range > 0)
25fe55af 3872 {
b18215fc
RS
3873 /* Update STARTPOS to the next character boundary. */
3874 if (multibyte)
3875 {
b560c397
RS
3876 const unsigned char *p
3877 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
3878 const unsigned char *pend
3879 = (const unsigned char *) STOP_ADDR_VSTRING (startpos);
b18215fc
RS
3880 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
3881
3882 range -= len;
3883 if (range < 0)
3884 break;
3885 startpos += len;
3886 }
3887 else
3888 {
b560c397
RS
3889 range--;
3890 startpos++;
3891 }
e318085a 3892 }
fa9a63c5 3893 else
25fe55af
RS
3894 {
3895 range++;
3896 startpos--;
b18215fc
RS
3897
3898 /* Update STARTPOS to the previous character boundary. */
3899 if (multibyte)
3900 {
b560c397
RS
3901 const unsigned char *p
3902 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
b18215fc
RS
3903 int len = 0;
3904
3905 /* Find the head of multibyte form. */
3906 while (!CHAR_HEAD_P (p))
3907 p--, len++;
3908
3909 /* Adjust it. */
3910#if 0 /* XXX */
3911 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
3912 ;
3913 else
3914#endif
3915 {
3916 range += len;
3917 if (range > 0)
3918 break;
3919
3920 startpos -= len;
3921 }
3922 }
25fe55af 3923 }
fa9a63c5
RM
3924 }
3925 return -1;
3926} /* re_search_2 */
3927\f
3928/* Declarations and macros for re_match_2. */
3929
3930static int bcmp_translate ();
3931static boolean alt_match_null_string_p (),
25fe55af
RS
3932 common_op_match_null_string_p (),
3933 group_match_null_string_p ();
fa9a63c5
RM
3934
3935/* This converts PTR, a pointer into one of the search strings `string1'
3936 and `string2' into an offset from the beginning of that string. */
3937#define POINTER_TO_OFFSET(ptr) \
3938 (FIRST_STRING_P (ptr) \
3939 ? ((regoff_t) ((ptr) - string1)) \
3940 : ((regoff_t) ((ptr) - string2 + size1)))
3941
3942/* Macros for dealing with the split strings in re_match_2. */
3943
3944#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3945
3946/* Call before fetching a character with *d. This switches over to
3947 string2 if necessary. */
3948#define PREFETCH() \
25fe55af 3949 while (d == dend) \
fa9a63c5
RM
3950 { \
3951 /* End of string2 => fail. */ \
25fe55af
RS
3952 if (dend == end_match_2) \
3953 goto fail; \
3954 /* End of string1 => advance to string2. */ \
3955 d = string2; \
fa9a63c5
RM
3956 dend = end_match_2; \
3957 }
3958
3959
3960/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 3961 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 3962#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 3963#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
3964
3965
3966/* Test if D points to a character which is word-constituent. We have
3967 two special cases to check for: if past the end of string1, look at
3968 the first character in string2; and if before the beginning of
3969 string2, look at the last character in string1. */
3970#define WORDCHAR_P(d) \
3971 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 3972 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
3973 == Sword)
3974
9121ca40 3975/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
3976
3977/* The comment at case wordbound is following one, but we don't use
3978 AT_WORD_BOUNDARY anymore to support multibyte form.
3979
3980 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
3981 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
3982 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
3983 macro and introducing temporary variables works around the bug. */
3984
9121ca40 3985#if 0
fa9a63c5
RM
3986/* Test if the character before D and the one at D differ with respect
3987 to being word-constituent. */
3988#define AT_WORD_BOUNDARY(d) \
3989 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3990 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 3991#endif
fa9a63c5
RM
3992
3993/* Free everything we malloc. */
3994#ifdef MATCH_MAY_ALLOCATE
00049484 3995#define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
fa9a63c5
RM
3996#define FREE_VARIABLES() \
3997 do { \
3998 REGEX_FREE_STACK (fail_stack.stack); \
3999 FREE_VAR (regstart); \
4000 FREE_VAR (regend); \
4001 FREE_VAR (old_regstart); \
4002 FREE_VAR (old_regend); \
4003 FREE_VAR (best_regstart); \
4004 FREE_VAR (best_regend); \
4005 FREE_VAR (reg_info); \
4006 FREE_VAR (reg_dummy); \
4007 FREE_VAR (reg_info_dummy); \
4008 } while (0)
4009#else
4010#define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4011#endif /* not MATCH_MAY_ALLOCATE */
4012
25fe55af 4013/* These values must meet several constraints. They must not be valid
fa9a63c5
RM
4014 register values; since we have a limit of 255 registers (because
4015 we use only one byte in the pattern for the register number), we can
25fe55af 4016 use numbers larger than 255. They must differ by 1, because of
fa9a63c5
RM
4017 NUM_FAILURE_ITEMS above. And the value for the lowest register must
4018 be larger than the value for the highest register, so we do not try
25fe55af 4019 to actually save any registers when none are active. */
fa9a63c5
RM
4020#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
4021#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
4022\f
4023/* Matching routines. */
4024
25fe55af 4025#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4026/* re_match is like re_match_2 except it takes only a single string. */
4027
4028int
4029re_match (bufp, string, size, pos, regs)
4030 struct re_pattern_buffer *bufp;
4031 const char *string;
4032 int size, pos;
4033 struct re_registers *regs;
4034{
4035 int result = re_match_2_internal (bufp, NULL, 0, string, size,
4036 pos, regs, size);
4037 alloca (0);
4038 return result;
4039}
4040#endif /* not emacs */
4041
b18215fc
RS
4042#ifdef emacs
4043/* In Emacs, this is the string or buffer in which we
25fe55af 4044 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4045Lisp_Object re_match_object;
4046#endif
fa9a63c5
RM
4047
4048/* re_match_2 matches the compiled pattern in BUFP against the
4049 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4050 and SIZE2, respectively). We start matching at POS, and stop
4051 matching at STOP.
5e69f11e 4052
fa9a63c5 4053 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4054 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4055 documentation for exactly how many groups we fill.
4056
4057 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4058 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4059 matched substring. */
4060
4061int
4062re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4063 struct re_pattern_buffer *bufp;
4064 const char *string1, *string2;
4065 int size1, size2;
4066 int pos;
4067 struct re_registers *regs;
4068 int stop;
4069{
b18215fc 4070 int result;
25fe55af 4071
b18215fc 4072#ifdef emacs
25fe55af
RS
4073 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
4074 POS_AS_IN_BUFFER (pos > 0 ? pos - 1 : pos),
b18215fc
RS
4075 1);
4076#endif
4077
4078 result = re_match_2_internal (bufp, string1, size1, string2, size2,
fa9a63c5
RM
4079 pos, regs, stop);
4080 alloca (0);
4081 return result;
4082}
4083
4084/* This is a separate function so that we can force an alloca cleanup
25fe55af 4085 afterwards. */
fa9a63c5
RM
4086static int
4087re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4088 struct re_pattern_buffer *bufp;
4089 const char *string1, *string2;
4090 int size1, size2;
4091 int pos;
4092 struct re_registers *regs;
4093 int stop;
4094{
4095 /* General temporaries. */
4096 int mcnt;
4097 unsigned char *p1;
4098
4099 /* Just past the end of the corresponding string. */
4100 const char *end1, *end2;
4101
4102 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4103 each to consider matching. */
fa9a63c5
RM
4104 const char *end_match_1, *end_match_2;
4105
4106 /* Where we are in the data, and the end of the current string. */
4107 const char *d, *dend;
5e69f11e 4108
fa9a63c5
RM
4109 /* Where we are in the pattern, and the end of the pattern. */
4110 unsigned char *p = bufp->buffer;
4111 register unsigned char *pend = p + bufp->used;
4112
4113 /* Mark the opcode just after a start_memory, so we can test for an
4114 empty subpattern when we get to the stop_memory. */
4115 unsigned char *just_past_start_mem = 0;
4116
25fe55af 4117 /* We use this to map every character in the string. */
6676cb1c 4118 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4119
25fe55af 4120 /* Nonzero if we have to concern multibyte character. */
b18215fc
RS
4121 int multibyte = bufp->multibyte;
4122
fa9a63c5
RM
4123 /* Failure point stack. Each place that can handle a failure further
4124 down the line pushes a failure point on this stack. It consists of
4125 restart, regend, and reg_info for all registers corresponding to
4126 the subexpressions we're currently inside, plus the number of such
4127 registers, and, finally, two char *'s. The first char * is where
4128 to resume scanning the pattern; the second one is where to resume
4129 scanning the strings. If the latter is zero, the failure point is
4130 a ``dummy''; if a failure happens and the failure point is a dummy,
25fe55af
RS
4131 it gets discarded and the next next one is tried. */
4132#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4133 fail_stack_type fail_stack;
4134#endif
4135#ifdef DEBUG
4136 static unsigned failure_id = 0;
4137 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4138#endif
4139
4140 /* This holds the pointer to the failure stack, when
4141 it is allocated relocatably. */
4142 fail_stack_elt_t *failure_stack_ptr;
4143
4144 /* We fill all the registers internally, independent of what we
25fe55af 4145 return, for use in backreferences. The number here includes
fa9a63c5
RM
4146 an element for register zero. */
4147 unsigned num_regs = bufp->re_nsub + 1;
5e69f11e 4148
fa9a63c5
RM
4149 /* The currently active registers. */
4150 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4151 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4152
4153 /* Information on the contents of registers. These are pointers into
4154 the input strings; they record just what was matched (on this
4155 attempt) by a subexpression part of the pattern, that is, the
4156 regnum-th regstart pointer points to where in the pattern we began
4157 matching and the regnum-th regend points to right after where we
4158 stopped matching the regnum-th subexpression. (The zeroth register
4159 keeps track of what the whole pattern matches.) */
4160#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4161 const char **regstart, **regend;
4162#endif
4163
4164 /* If a group that's operated upon by a repetition operator fails to
4165 match anything, then the register for its start will need to be
4166 restored because it will have been set to wherever in the string we
4167 are when we last see its open-group operator. Similarly for a
4168 register's end. */
4169#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4170 const char **old_regstart, **old_regend;
4171#endif
4172
4173 /* The is_active field of reg_info helps us keep track of which (possibly
4174 nested) subexpressions we are currently in. The matched_something
4175 field of reg_info[reg_num] helps us tell whether or not we have
4176 matched any of the pattern so far this time through the reg_num-th
4177 subexpression. These two fields get reset each time through any
25fe55af
RS
4178 loop their register is in. */
4179#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5e69f11e 4180 register_info_type *reg_info;
fa9a63c5
RM
4181#endif
4182
4183 /* The following record the register info as found in the above
5e69f11e 4184 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4185 This happens as we backtrack through the failure points, which in
4186 turn happens only if we have not yet matched the entire string. */
4187 unsigned best_regs_set = false;
4188#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4189 const char **best_regstart, **best_regend;
4190#endif
5e69f11e 4191
fa9a63c5
RM
4192 /* Logically, this is `best_regend[0]'. But we don't want to have to
4193 allocate space for that if we're not allocating space for anything
25fe55af 4194 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4195 any of the other register vectors, and it seems rather a kludge to
4196 treat `best_regend' differently than the rest. So we keep track of
4197 the end of the best match so far in a separate variable. We
4198 initialize this to NULL so that when we backtrack the first time
4199 and need to test it, it's not garbage. */
4200 const char *match_end = NULL;
4201
4202 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
4203 int set_regs_matched_done = 0;
4204
4205 /* Used when we pop values we don't care about. */
4206#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4207 const char **reg_dummy;
4208 register_info_type *reg_info_dummy;
4209#endif
4210
4211#ifdef DEBUG
4212 /* Counts the total number of registers pushed. */
5e69f11e 4213 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4214#endif
4215
4216 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4217
fa9a63c5 4218 INIT_FAIL_STACK ();
5e69f11e 4219
fa9a63c5
RM
4220#ifdef MATCH_MAY_ALLOCATE
4221 /* Do not bother to initialize all the register variables if there are
4222 no groups in the pattern, as it takes a fair amount of time. If
4223 there are groups, we include space for register 0 (the whole
4224 pattern), even though we never use it, since it simplifies the
4225 array indexing. We should fix this. */
4226 if (bufp->re_nsub)
4227 {
4228 regstart = REGEX_TALLOC (num_regs, const char *);
4229 regend = REGEX_TALLOC (num_regs, const char *);
4230 old_regstart = REGEX_TALLOC (num_regs, const char *);
4231 old_regend = REGEX_TALLOC (num_regs, const char *);
4232 best_regstart = REGEX_TALLOC (num_regs, const char *);
4233 best_regend = REGEX_TALLOC (num_regs, const char *);
4234 reg_info = REGEX_TALLOC (num_regs, register_info_type);
4235 reg_dummy = REGEX_TALLOC (num_regs, const char *);
4236 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4237
5e69f11e 4238 if (!(regstart && regend && old_regstart && old_regend && reg_info
25fe55af
RS
4239 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4240 {
4241 FREE_VARIABLES ();
4242 return -2;
4243 }
fa9a63c5
RM
4244 }
4245 else
4246 {
4247 /* We must initialize all our variables to NULL, so that
25fe55af 4248 `FREE_VARIABLES' doesn't try to free them. */
fa9a63c5 4249 regstart = regend = old_regstart = old_regend = best_regstart
25fe55af 4250 = best_regend = reg_dummy = NULL;
fa9a63c5
RM
4251 reg_info = reg_info_dummy = (register_info_type *) NULL;
4252 }
4253#endif /* MATCH_MAY_ALLOCATE */
4254
4255 /* The starting position is bogus. */
4256 if (pos < 0 || pos > size1 + size2)
4257 {
4258 FREE_VARIABLES ();
4259 return -1;
4260 }
5e69f11e 4261
fa9a63c5
RM
4262 /* Initialize subexpression text positions to -1 to mark ones that no
4263 start_memory/stop_memory has been seen for. Also initialize the
4264 register information struct. */
4265 for (mcnt = 1; mcnt < num_regs; mcnt++)
4266 {
5e69f11e 4267 regstart[mcnt] = regend[mcnt]
25fe55af 4268 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5e69f11e 4269
fa9a63c5
RM
4270 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4271 IS_ACTIVE (reg_info[mcnt]) = 0;
4272 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4273 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4274 }
5e69f11e 4275
fa9a63c5 4276 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4277 `string1' is null. */
fa9a63c5
RM
4278 if (size2 == 0 && string1 != NULL)
4279 {
4280 string2 = string1;
4281 size2 = size1;
4282 string1 = 0;
4283 size1 = 0;
4284 }
4285 end1 = string1 + size1;
4286 end2 = string2 + size2;
4287
4288 /* Compute where to stop matching, within the two strings. */
4289 if (stop <= size1)
4290 {
4291 end_match_1 = string1 + stop;
4292 end_match_2 = string2;
4293 }
4294 else
4295 {
4296 end_match_1 = end1;
4297 end_match_2 = string2 + stop - size1;
4298 }
4299
5e69f11e 4300 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4301 `dend' is the end of the input string that `d' points within. `d'
4302 is advanced into the following input string whenever necessary, but
4303 this happens before fetching; therefore, at the beginning of the
4304 loop, `d' can be pointing at the end of a string, but it cannot
4305 equal `string2'. */
4306 if (size1 > 0 && pos <= size1)
4307 {
4308 d = string1 + pos;
4309 dend = end_match_1;
4310 }
4311 else
4312 {
4313 d = string2 + pos - size1;
4314 dend = end_match_2;
4315 }
4316
4317 DEBUG_PRINT1 ("The compiled pattern is: ");
4318 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4319 DEBUG_PRINT1 ("The string to match is: `");
4320 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4321 DEBUG_PRINT1 ("'\n");
5e69f11e 4322
25fe55af 4323 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
4324 function if the match is complete, or it drops through if the match
4325 fails at this starting point in the input data. */
4326 for (;;)
4327 {
4328 DEBUG_PRINT2 ("\n0x%x: ", p);
4329
4330 if (p == pend)
4331 { /* End of pattern means we might have succeeded. */
25fe55af 4332 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 4333
fa9a63c5 4334 /* If we haven't matched the entire string, and we want the
25fe55af
RS
4335 longest match, try backtracking. */
4336 if (d != end_match_2)
fa9a63c5
RM
4337 {
4338 /* 1 if this match ends in the same string (string1 or string2)
4339 as the best previous match. */
5e69f11e 4340 boolean same_str_p = (FIRST_STRING_P (match_end)
fa9a63c5
RM
4341 == MATCHING_IN_FIRST_STRING);
4342 /* 1 if this match is the best seen so far. */
4343 boolean best_match_p;
4344
4345 /* AIX compiler got confused when this was combined
25fe55af 4346 with the previous declaration. */
fa9a63c5
RM
4347 if (same_str_p)
4348 best_match_p = d > match_end;
4349 else
4350 best_match_p = !MATCHING_IN_FIRST_STRING;
4351
25fe55af
RS
4352 DEBUG_PRINT1 ("backtracking.\n");
4353
4354 if (!FAIL_STACK_EMPTY ())
4355 { /* More failure points to try. */
4356
4357 /* If exceeds best match so far, save it. */
4358 if (!best_regs_set || best_match_p)
4359 {
4360 best_regs_set = true;
4361 match_end = d;
4362
4363 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4364
4365 for (mcnt = 1; mcnt < num_regs; mcnt++)
4366 {
4367 best_regstart[mcnt] = regstart[mcnt];
4368 best_regend[mcnt] = regend[mcnt];
4369 }
4370 }
4371 goto fail;
4372 }
4373
4374 /* If no failure points, don't restore garbage. And if
4375 last match is real best match, don't restore second
4376 best one. */
4377 else if (best_regs_set && !best_match_p)
4378 {
4379 restore_best_regs:
4380 /* Restore best match. It may happen that `dend ==
4381 end_match_1' while the restored d is in string2.
4382 For example, the pattern `x.*y.*z' against the
4383 strings `x-' and `y-z-', if the two strings are
4384 not consecutive in memory. */
4385 DEBUG_PRINT1 ("Restoring best registers.\n");
4386
4387 d = match_end;
4388 dend = ((d >= string1 && d <= end1)
4389 ? end_match_1 : end_match_2);
fa9a63c5
RM
4390
4391 for (mcnt = 1; mcnt < num_regs; mcnt++)
4392 {
4393 regstart[mcnt] = best_regstart[mcnt];
4394 regend[mcnt] = best_regend[mcnt];
4395 }
25fe55af
RS
4396 }
4397 } /* d != end_match_2 */
fa9a63c5
RM
4398
4399 succeed_label:
25fe55af 4400 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 4401
25fe55af
RS
4402 /* If caller wants register contents data back, do it. */
4403 if (regs && !bufp->no_sub)
fa9a63c5 4404 {
25fe55af
RS
4405 /* Have the register data arrays been allocated? */
4406 if (bufp->regs_allocated == REGS_UNALLOCATED)
4407 { /* No. So allocate them with malloc. We need one
4408 extra element beyond `num_regs' for the `-1' marker
4409 GNU code uses. */
4410 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4411 regs->start = TALLOC (regs->num_regs, regoff_t);
4412 regs->end = TALLOC (regs->num_regs, regoff_t);
4413 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4414 {
4415 FREE_VARIABLES ();
4416 return -2;
4417 }
25fe55af
RS
4418 bufp->regs_allocated = REGS_REALLOCATE;
4419 }
4420 else if (bufp->regs_allocated == REGS_REALLOCATE)
4421 { /* Yes. If we need more elements than were already
4422 allocated, reallocate them. If we need fewer, just
4423 leave it alone. */
4424 if (regs->num_regs < num_regs + 1)
4425 {
4426 regs->num_regs = num_regs + 1;
4427 RETALLOC (regs->start, regs->num_regs, regoff_t);
4428 RETALLOC (regs->end, regs->num_regs, regoff_t);
4429 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4430 {
4431 FREE_VARIABLES ();
4432 return -2;
4433 }
25fe55af
RS
4434 }
4435 }
4436 else
fa9a63c5
RM
4437 {
4438 /* These braces fend off a "empty body in an else-statement"
25fe55af 4439 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
4440 assert (bufp->regs_allocated == REGS_FIXED);
4441 }
4442
25fe55af
RS
4443 /* Convert the pointer data in `regstart' and `regend' to
4444 indices. Register zero has to be set differently,
4445 since we haven't kept track of any info for it. */
4446 if (regs->num_regs > 0)
4447 {
4448 regs->start[0] = pos;
4449 regs->end[0] = (MATCHING_IN_FIRST_STRING
fa9a63c5 4450 ? ((regoff_t) (d - string1))
25fe55af
RS
4451 : ((regoff_t) (d - string2 + size1)));
4452 }
5e69f11e 4453
25fe55af
RS
4454 /* Go through the first `min (num_regs, regs->num_regs)'
4455 registers, since that is all we initialized. */
fa9a63c5
RM
4456 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
4457 {
25fe55af
RS
4458 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4459 regs->start[mcnt] = regs->end[mcnt] = -1;
4460 else
4461 {
fa9a63c5
RM
4462 regs->start[mcnt]
4463 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
25fe55af 4464 regs->end[mcnt]
fa9a63c5 4465 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
25fe55af 4466 }
fa9a63c5 4467 }
5e69f11e 4468
25fe55af
RS
4469 /* If the regs structure we return has more elements than
4470 were in the pattern, set the extra elements to -1. If
4471 we (re)allocated the registers, this is the case,
4472 because we always allocate enough to have at least one
4473 -1 at the end. */
4474 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
4475 regs->start[mcnt] = regs->end[mcnt] = -1;
fa9a63c5
RM
4476 } /* regs && !bufp->no_sub */
4477
25fe55af
RS
4478 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4479 nfailure_points_pushed, nfailure_points_popped,
4480 nfailure_points_pushed - nfailure_points_popped);
4481 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 4482
25fe55af 4483 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
5e69f11e 4484 ? string1
fa9a63c5
RM
4485 : string2 - size1);
4486
25fe55af 4487 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 4488
25fe55af
RS
4489 FREE_VARIABLES ();
4490 return mcnt;
4491 }
fa9a63c5 4492
25fe55af 4493 /* Otherwise match next pattern command. */
fa9a63c5
RM
4494 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4495 {
25fe55af
RS
4496 /* Ignore these. Used to ignore the n of succeed_n's which
4497 currently have n == 0. */
4498 case no_op:
4499 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4500 break;
fa9a63c5
RM
4501
4502 case succeed:
25fe55af 4503 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
4504 goto succeed_label;
4505
25fe55af
RS
4506 /* Match the next n pattern characters exactly. The following
4507 byte in the pattern defines n, and the n bytes after that
4508 are the characters to match. */
fa9a63c5
RM
4509 case exactn:
4510 mcnt = *p++;
25fe55af 4511 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 4512
25fe55af
RS
4513 /* This is written out as an if-else so we don't waste time
4514 testing `translate' inside the loop. */
4515 if (translate)
fa9a63c5
RM
4516 {
4517 do
4518 {
4519 PREFETCH ();
bc192b5b 4520 if ((unsigned char) RE_TRANSLATE (translate, (unsigned char) *d++)
6676cb1c 4521 != (unsigned char) *p++)
25fe55af 4522 goto fail;
fa9a63c5
RM
4523 }
4524 while (--mcnt);
4525 }
4526 else
4527 {
4528 do
4529 {
4530 PREFETCH ();
4531 if (*d++ != (char) *p++) goto fail;
4532 }
4533 while (--mcnt);
4534 }
4535 SET_REGS_MATCHED ();
25fe55af 4536 break;
fa9a63c5
RM
4537
4538
25fe55af 4539 /* Match any character except possibly a newline or a null. */
fa9a63c5 4540 case anychar:
25fe55af 4541 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 4542
25fe55af 4543 PREFETCH ();
fa9a63c5 4544
25fe55af
RS
4545 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4546 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
fa9a63c5
RM
4547 goto fail;
4548
25fe55af
RS
4549 SET_REGS_MATCHED ();
4550 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
b18215fc 4551 d += multibyte ? MULTIBYTE_FORM_LENGTH (d, dend - d) : 1;
fa9a63c5
RM
4552 break;
4553
4554
4555 case charset:
4556 case charset_not:
4557 {
b18215fc 4558 register unsigned int c;
fa9a63c5 4559 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
4560 int len;
4561
4562 /* Start of actual range_table, or end of bitmap if there is no
4563 range table. */
4564 unsigned char *range_table;
4565
25fe55af 4566 /* Nonzero if there is range table. */
b18215fc
RS
4567 int range_table_exists;
4568
25fe55af 4569 /* Number of ranges of range table. Not in bytes. */
b18215fc 4570 int count;
fa9a63c5 4571
25fe55af 4572 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5
RM
4573
4574 PREFETCH ();
b18215fc 4575 c = (unsigned char) *d;
fa9a63c5 4576
b18215fc
RS
4577 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
4578 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
4579 if (range_table_exists)
4580 EXTRACT_NUMBER_AND_INCR (count, range_table);
4581 else
4582 count = 0;
4583
4584 if (multibyte && BASE_LEADING_CODE_P (c))
4585 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
4586
4587 if (SINGLE_BYTE_CHAR_P (c))
4588 { /* Lookup bitmap. */
4589 c = TRANSLATE (c); /* The character to match. */
4590 len = 1;
4591
4592 /* Cast to `unsigned' instead of `unsigned char' in
4593 case the bit list is a full 32 bytes long. */
4594 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
fa9a63c5
RM
4595 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4596 not = !not;
b18215fc
RS
4597 }
4598 else if (range_table_exists)
4599 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
fa9a63c5 4600
b18215fc 4601 p = CHARSET_RANGE_TABLE_END (range_table, count);
fa9a63c5
RM
4602
4603 if (!not) goto fail;
5e69f11e 4604
fa9a63c5 4605 SET_REGS_MATCHED ();
b18215fc 4606 d += len;
fa9a63c5
RM
4607 break;
4608 }
4609
4610
25fe55af
RS
4611 /* The beginning of a group is represented by start_memory.
4612 The arguments are the register number in the next byte, and the
4613 number of groups inner to this one in the next. The text
4614 matched within the group is recorded (in the internal
4615 registers data structure) under the register number. */
4616 case start_memory:
fa9a63c5
RM
4617 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4618
25fe55af 4619 /* Find out if this group can match the empty string. */
fa9a63c5 4620 p1 = p; /* To send to group_match_null_string_p. */
5e69f11e 4621
25fe55af
RS
4622 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4623 REG_MATCH_NULL_STRING_P (reg_info[*p])
4624 = group_match_null_string_p (&p1, pend, reg_info);
4625
4626 /* Save the position in the string where we were the last time
4627 we were at this open-group operator in case the group is
4628 operated upon by a repetition operator, e.g., with `(a*)*b'
4629 against `ab'; then we want to ignore where we are now in
4630 the string in case this attempt to match fails. */
4631 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4632 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4633 : regstart[*p];
5e69f11e 4634 DEBUG_PRINT2 (" old_regstart: %d\n",
fa9a63c5
RM
4635 POINTER_TO_OFFSET (old_regstart[*p]));
4636
25fe55af 4637 regstart[*p] = d;
fa9a63c5
RM
4638 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4639
25fe55af
RS
4640 IS_ACTIVE (reg_info[*p]) = 1;
4641 MATCHED_SOMETHING (reg_info[*p]) = 0;
fa9a63c5
RM
4642
4643 /* Clear this whenever we change the register activity status. */
4644 set_regs_matched_done = 0;
5e69f11e 4645
25fe55af
RS
4646 /* This is the new highest active register. */
4647 highest_active_reg = *p;
5e69f11e 4648
25fe55af
RS
4649 /* If nothing was active before, this is the new lowest active
4650 register. */
4651 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4652 lowest_active_reg = *p;
fa9a63c5 4653
25fe55af
RS
4654 /* Move past the register number and inner group count. */
4655 p += 2;
fa9a63c5
RM
4656 just_past_start_mem = p;
4657
25fe55af 4658 break;
fa9a63c5
RM
4659
4660
25fe55af
RS
4661 /* The stop_memory opcode represents the end of a group. Its
4662 arguments are the same as start_memory's: the register
4663 number, and the number of inner groups. */
fa9a63c5
RM
4664 case stop_memory:
4665 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
5e69f11e 4666
25fe55af
RS
4667 /* We need to save the string position the last time we were at
4668 this close-group operator in case the group is operated
4669 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4670 against `aba'; then we want to ignore where we are now in
4671 the string in case this attempt to match fails. */
4672 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4673 ? REG_UNSET (regend[*p]) ? d : regend[*p]
fa9a63c5 4674 : regend[*p];
5e69f11e 4675 DEBUG_PRINT2 (" old_regend: %d\n",
fa9a63c5
RM
4676 POINTER_TO_OFFSET (old_regend[*p]));
4677
25fe55af 4678 regend[*p] = d;
fa9a63c5
RM
4679 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4680
25fe55af
RS
4681 /* This register isn't active anymore. */
4682 IS_ACTIVE (reg_info[*p]) = 0;
fa9a63c5
RM
4683
4684 /* Clear this whenever we change the register activity status. */
4685 set_regs_matched_done = 0;
4686
25fe55af
RS
4687 /* If this was the only register active, nothing is active
4688 anymore. */
4689 if (lowest_active_reg == highest_active_reg)
4690 {
4691 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4692 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4693 }
4694 else
4695 { /* We must scan for the new highest active register, since
4696 it isn't necessarily one less than now: consider
4697 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4698 new highest active register is 1. */
4699 unsigned char r = *p - 1;
4700 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4701 r--;
4702
4703 /* If we end up at register zero, that means that we saved
4704 the registers as the result of an `on_failure_jump', not
4705 a `start_memory', and we jumped to past the innermost
4706 `stop_memory'. For example, in ((.)*) we save
4707 registers 1 and 2 as a result of the *, but when we pop
4708 back to the second ), we are at the stop_memory 1.
4709 Thus, nothing is active. */
fa9a63c5 4710 if (r == 0)
25fe55af
RS
4711 {
4712 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4713 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4714 }
4715 else
4716 highest_active_reg = r;
4717 }
4718
4719 /* If just failed to match something this time around with a
4720 group that's operated on by a repetition operator, try to
4721 force exit from the ``loop'', and restore the register
4722 information for this group that we had before trying this
4723 last match. */
4724 if ((!MATCHED_SOMETHING (reg_info[*p])
4725 || just_past_start_mem == p - 1)
5e69f11e 4726 && (p + 2) < pend)
25fe55af
RS
4727 {
4728 boolean is_a_jump_n = false;
4729
4730 p1 = p + 2;
4731 mcnt = 0;
4732 switch ((re_opcode_t) *p1++)
4733 {
4734 case jump_n:
fa9a63c5 4735 is_a_jump_n = true;
25fe55af 4736 case pop_failure_jump:
fa9a63c5
RM
4737 case maybe_pop_jump:
4738 case jump:
4739 case dummy_failure_jump:
25fe55af 4740 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
fa9a63c5
RM
4741 if (is_a_jump_n)
4742 p1 += 2;
25fe55af 4743 break;
5e69f11e 4744
25fe55af
RS
4745 default:
4746 /* do nothing */ ;
4747 }
fa9a63c5 4748 p1 += mcnt;
5e69f11e 4749
25fe55af
RS
4750 /* If the next operation is a jump backwards in the pattern
4751 to an on_failure_jump right before the start_memory
4752 corresponding to this stop_memory, exit from the loop
4753 by forcing a failure after pushing on the stack the
4754 on_failure_jump's jump in the pattern, and d. */
4755 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4756 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
fa9a63c5 4757 {
25fe55af
RS
4758 /* If this group ever matched anything, then restore
4759 what its registers were before trying this last
4760 failed match, e.g., with `(a*)*b' against `ab' for
4761 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4762 against `aba' for regend[3].
5e69f11e 4763
25fe55af
RS
4764 Also restore the registers for inner groups for,
4765 e.g., `((a*)(b*))*' against `aba' (register 3 would
4766 otherwise get trashed). */
5e69f11e 4767
25fe55af 4768 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
fa9a63c5 4769 {
5e69f11e
RM
4770 unsigned r;
4771
25fe55af 4772 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
5e69f11e 4773
fa9a63c5 4774 /* Restore this and inner groups' (if any) registers. */
25fe55af
RS
4775 for (r = *p; r < *p + *(p + 1); r++)
4776 {
4777 regstart[r] = old_regstart[r];
4778
4779 /* xx why this test? */
4780 if (old_regend[r] >= regstart[r])
4781 regend[r] = old_regend[r];
4782 }
4783 }
fa9a63c5 4784 p1++;
25fe55af
RS
4785 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4786 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
fa9a63c5 4787
25fe55af
RS
4788 goto fail;
4789 }
4790 }
5e69f11e 4791
25fe55af
RS
4792 /* Move past the register number and the inner group count. */
4793 p += 2;
4794 break;
fa9a63c5
RM
4795
4796
4797 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
4798 followed by the numeric value of <digit> as the register number. */
4799 case duplicate:
fa9a63c5
RM
4800 {
4801 register const char *d2, *dend2;
25fe55af 4802 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
4803 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4804
25fe55af
RS
4805 /* Can't back reference a group which we've never matched. */
4806 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4807 goto fail;
5e69f11e 4808
25fe55af
RS
4809 /* Where in input to try to start matching. */
4810 d2 = regstart[regno];
5e69f11e 4811
25fe55af
RS
4812 /* Where to stop matching; if both the place to start and
4813 the place to stop matching are in the same string, then
4814 set to the place to stop, otherwise, for now have to use
4815 the end of the first string. */
fa9a63c5 4816
25fe55af 4817 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
4818 == FIRST_STRING_P (regend[regno]))
4819 ? regend[regno] : end_match_1);
4820 for (;;)
4821 {
4822 /* If necessary, advance to next segment in register
25fe55af 4823 contents. */
fa9a63c5
RM
4824 while (d2 == dend2)
4825 {
4826 if (dend2 == end_match_2) break;
4827 if (dend2 == regend[regno]) break;
4828
25fe55af
RS
4829 /* End of string1 => advance to string2. */
4830 d2 = string2;
4831 dend2 = regend[regno];
fa9a63c5
RM
4832 }
4833 /* At end of register contents => success */
4834 if (d2 == dend2) break;
4835
4836 /* If necessary, advance to next segment in data. */
4837 PREFETCH ();
4838
4839 /* How many characters left in this segment to match. */
4840 mcnt = dend - d;
5e69f11e 4841
fa9a63c5 4842 /* Want how many consecutive characters we can match in
25fe55af
RS
4843 one shot, so, if necessary, adjust the count. */
4844 if (mcnt > dend2 - d2)
fa9a63c5 4845 mcnt = dend2 - d2;
5e69f11e 4846
fa9a63c5 4847 /* Compare that many; failure if mismatch, else move
25fe55af 4848 past them. */
5e69f11e 4849 if (translate
25fe55af
RS
4850 ? bcmp_translate (d, d2, mcnt, translate)
4851 : bcmp (d, d2, mcnt))
fa9a63c5
RM
4852 goto fail;
4853 d += mcnt, d2 += mcnt;
4854
25fe55af 4855 /* Do this because we've match some characters. */
fa9a63c5
RM
4856 SET_REGS_MATCHED ();
4857 }
4858 }
4859 break;
4860
4861
25fe55af
RS
4862 /* begline matches the empty string at the beginning of the string
4863 (unless `not_bol' is set in `bufp'), and, if
4864 `newline_anchor' is set, after newlines. */
fa9a63c5 4865 case begline:
25fe55af 4866 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 4867
25fe55af
RS
4868 if (AT_STRINGS_BEG (d))
4869 {
4870 if (!bufp->not_bol) break;
4871 }
4872 else if (d[-1] == '\n' && bufp->newline_anchor)
4873 {
4874 break;
4875 }
4876 /* In all other cases, we fail. */
4877 goto fail;
fa9a63c5
RM
4878
4879
25fe55af 4880 /* endline is the dual of begline. */
fa9a63c5 4881 case endline:
25fe55af 4882 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 4883
25fe55af
RS
4884 if (AT_STRINGS_END (d))
4885 {
4886 if (!bufp->not_eol) break;
4887 }
5e69f11e 4888
25fe55af
RS
4889 /* We have to ``prefetch'' the next character. */
4890 else if ((d == end1 ? *string2 : *d) == '\n'
4891 && bufp->newline_anchor)
4892 {
4893 break;
4894 }
4895 goto fail;
fa9a63c5
RM
4896
4897
4898 /* Match at the very beginning of the data. */
25fe55af
RS
4899 case begbuf:
4900 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4901 if (AT_STRINGS_BEG (d))
4902 break;
4903 goto fail;
fa9a63c5
RM
4904
4905
4906 /* Match at the very end of the data. */
25fe55af
RS
4907 case endbuf:
4908 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
4909 if (AT_STRINGS_END (d))
4910 break;
25fe55af 4911 goto fail;
5e69f11e 4912
5e69f11e 4913
25fe55af
RS
4914 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4915 pushes NULL as the value for the string on the stack. Then
4916 `pop_failure_point' will keep the current value for the
4917 string, instead of restoring it. To see why, consider
4918 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4919 then the . fails against the \n. But the next thing we want
4920 to do is match the \n against the \n; if we restored the
4921 string value, we would be back at the foo.
4922
4923 Because this is used only in specific cases, we don't need to
4924 check all the things that `on_failure_jump' does, to make
4925 sure the right things get saved on the stack. Hence we don't
4926 share its code. The only reason to push anything on the
4927 stack at all is that otherwise we would have to change
4928 `anychar's code to do something besides goto fail in this
4929 case; that seems worse than this. */
4930 case on_failure_keep_string_jump:
4931 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
fa9a63c5 4932
25fe55af
RS
4933 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4934 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
b18215fc 4935
25fe55af
RS
4936 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4937 break;
fa9a63c5
RM
4938
4939
4940 /* Uses of on_failure_jump:
5e69f11e 4941
25fe55af
RS
4942 Each alternative starts with an on_failure_jump that points
4943 to the beginning of the next alternative. Each alternative
4944 except the last ends with a jump that in effect jumps past
4945 the rest of the alternatives. (They really jump to the
4946 ending jump of the following alternative, because tensioning
4947 these jumps is a hassle.)
fa9a63c5 4948
25fe55af
RS
4949 Repeats start with an on_failure_jump that points past both
4950 the repetition text and either the following jump or
4951 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 4952 case on_failure_jump:
25fe55af
RS
4953 on_failure:
4954 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4955
4956 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4957 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4958
4959 /* If this on_failure_jump comes right before a group (i.e.,
4960 the original * applied to a group), save the information
4961 for that group and all inner ones, so that if we fail back
4962 to this point, the group's information will be correct.
4963 For example, in \(a*\)*\1, we need the preceding group,
4964 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4965
4966 /* We can't use `p' to check ahead because we push
4967 a failure point to `p + mcnt' after we do this. */
4968 p1 = p;
4969
4970 /* We need to skip no_op's before we look for the
4971 start_memory in case this on_failure_jump is happening as
4972 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4973 against aba. */
4974 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4975 p1++;
4976
4977 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4978 {
4979 /* We have a new highest active register now. This will
4980 get reset at the start_memory we are about to get to,
4981 but we will have saved all the registers relevant to
4982 this repetition op, as described above. */
4983 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4984 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4985 lowest_active_reg = *(p1 + 1);
4986 }
4987
4988 DEBUG_PRINT1 (":\n");
4989 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4990 break;
4991
4992
4993 /* A smart repeat ends with `maybe_pop_jump'.
4994 We change it to either `pop_failure_jump' or `jump'. */
4995 case maybe_pop_jump:
4996 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4997 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4998 {
fa9a63c5
RM
4999 register unsigned char *p2 = p;
5000
25fe55af
RS
5001 /* Compare the beginning of the repeat with what in the
5002 pattern follows its end. If we can establish that there
5003 is nothing that they would both match, i.e., that we
5004 would have to backtrack because of (as in, e.g., `a*a')
5005 then we can change to pop_failure_jump, because we'll
5006 never have to backtrack.
5e69f11e 5007
25fe55af
RS
5008 This is not true in the case of alternatives: in
5009 `(a|ab)*' we do need to backtrack to the `ab' alternative
5010 (e.g., if the string was `ab'). But instead of trying to
5011 detect that here, the alternative has put on a dummy
5012 failure point which is what we will end up popping. */
fa9a63c5
RM
5013
5014 /* Skip over open/close-group commands.
5015 If what follows this loop is a ...+ construct,
5016 look at what begins its body, since we will have to
5017 match at least one of that. */
5018 while (1)
5019 {
5020 if (p2 + 2 < pend
5021 && ((re_opcode_t) *p2 == stop_memory
5022 || (re_opcode_t) *p2 == start_memory))
5023 p2 += 3;
5024 else if (p2 + 6 < pend
5025 && (re_opcode_t) *p2 == dummy_failure_jump)
5026 p2 += 6;
5027 else
5028 break;
5029 }
5030
5031 p1 = p + mcnt;
5032 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
5e69f11e 5033 to the `maybe_finalize_jump' of this case. Examine what
25fe55af 5034 follows. */
fa9a63c5 5035
25fe55af
RS
5036 /* If we're at the end of the pattern, we can change. */
5037 if (p2 == pend)
fa9a63c5
RM
5038 {
5039 /* Consider what happens when matching ":\(.*\)"
5040 against ":/". I don't really understand this code
25fe55af
RS
5041 yet. */
5042 p[-3] = (unsigned char) pop_failure_jump;
5043 DEBUG_PRINT1
5044 (" End of pattern: change to `pop_failure_jump'.\n");
5045 }
fa9a63c5 5046
25fe55af 5047 else if ((re_opcode_t) *p2 == exactn
fa9a63c5
RM
5048 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
5049 {
b18215fc 5050 register unsigned int c
25fe55af 5051 = *p2 == (unsigned char) endline ? '\n' : p2[2];
fa9a63c5 5052
b18215fc 5053 if ((re_opcode_t) p1[3] == exactn)
e318085a 5054 {
b18215fc
RS
5055 if (!(multibyte /* && (c != '\n') */
5056 && BASE_LEADING_CODE_P (c))
5057 ? c != p1[5]
5058 : (STRING_CHAR (&p2[2], pend - &p2[2])
5059 != STRING_CHAR (&p1[5], pend - &p1[5])))
25fe55af
RS
5060 {
5061 p[-3] = (unsigned char) pop_failure_jump;
5062 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
5063 c, p1[5]);
5064 }
e318085a 5065 }
5e69f11e 5066
fa9a63c5
RM
5067 else if ((re_opcode_t) p1[3] == charset
5068 || (re_opcode_t) p1[3] == charset_not)
5069 {
5070 int not = (re_opcode_t) p1[3] == charset_not;
5e69f11e 5071
b18215fc
RS
5072 if (multibyte /* && (c != '\n') */
5073 && BASE_LEADING_CODE_P (c))
5074 c = STRING_CHAR (&p2[2], pend - &p2[2]);
5075
5076 /* Test if C is listed in charset (or charset_not)
5077 at `&p1[3]'. */
5078 if (SINGLE_BYTE_CHAR_P (c))
5079 {
5080 if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH
fa9a63c5
RM
5081 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5082 not = !not;
b18215fc
RS
5083 }
5084 else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3]))
5085 CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]);
fa9a63c5 5086
25fe55af
RS
5087 /* `not' is equal to 1 if c would match, which means
5088 that we can't change to pop_failure_jump. */
fa9a63c5 5089 if (!not)
25fe55af
RS
5090 {
5091 p[-3] = (unsigned char) pop_failure_jump;
5092 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5093 }
fa9a63c5
RM
5094 }
5095 }
25fe55af 5096 else if ((re_opcode_t) *p2 == charset)
fa9a63c5 5097 {
b18215fc 5098 if ((re_opcode_t) p1[3] == exactn)
e318085a 5099 {
b18215fc
RS
5100 register unsigned int c = p1[5];
5101 int not = 0;
5102
5103 if (multibyte && BASE_LEADING_CODE_P (c))
5104 c = STRING_CHAR (&p1[5], pend - &p1[5]);
5105
25fe55af 5106 /* Test if C is listed in charset at `p2'. */
b18215fc
RS
5107 if (SINGLE_BYTE_CHAR_P (c))
5108 {
5109 if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH
5110 && (p2[2 + c / BYTEWIDTH]
5111 & (1 << (c % BYTEWIDTH))))
5112 not = !not;
5113 }
5114 else if (CHARSET_RANGE_TABLE_EXISTS_P (p2))
5115 CHARSET_LOOKUP_RANGE_TABLE (not, c, p2);
5116
5117 if (!not)
25fe55af
RS
5118 {
5119 p[-3] = (unsigned char) pop_failure_jump;
5120 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
b18215fc 5121 }
25fe55af 5122 }
5e69f11e 5123
b18215fc
RS
5124 /* It is hard to list up all the character in charset
5125 P2 if it includes multibyte character. Give up in
5126 such case. */
5127 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
5128 {
5129 /* Now, we are sure that P2 has no range table.
5130 So, for the size of bitmap in P2, `p2[1]' is
25fe55af 5131 enough. But P1 may have range table, so the
b18215fc
RS
5132 size of bitmap table of P1 is extracted by
5133 using macro `CHARSET_BITMAP_SIZE'.
5134
5135 Since we know that all the character listed in
5136 P2 is ASCII, it is enough to test only bitmap
5137 table of P1. */
25fe55af 5138
b18215fc 5139 if ((re_opcode_t) p1[3] == charset_not)
fa9a63c5
RM
5140 {
5141 int idx;
b18215fc 5142 /* We win if the charset_not inside the loop lists
25fe55af 5143 every character listed in the charset after. */
fa9a63c5
RM
5144 for (idx = 0; idx < (int) p2[1]; idx++)
5145 if (! (p2[2 + idx] == 0
b18215fc 5146 || (idx < CHARSET_BITMAP_SIZE (&p1[3])
fa9a63c5
RM
5147 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
5148 break;
5149
5150 if (idx == p2[1])
25fe55af
RS
5151 {
5152 p[-3] = (unsigned char) pop_failure_jump;
5153 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5154 }
fa9a63c5
RM
5155 }
5156 else if ((re_opcode_t) p1[3] == charset)
5157 {
5158 int idx;
5159 /* We win if the charset inside the loop
5160 has no overlap with the one after the loop. */
5161 for (idx = 0;
b18215fc
RS
5162 (idx < (int) p2[1]
5163 && idx < CHARSET_BITMAP_SIZE (&p1[3]));
fa9a63c5
RM
5164 idx++)
5165 if ((p2[2 + idx] & p1[5 + idx]) != 0)
5166 break;
5167
b18215fc
RS
5168 if (idx == p2[1]
5169 || idx == CHARSET_BITMAP_SIZE (&p1[3]))
25fe55af
RS
5170 {
5171 p[-3] = (unsigned char) pop_failure_jump;
5172 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5173 }
fa9a63c5
RM
5174 }
5175 }
5176 }
b18215fc 5177 }
fa9a63c5
RM
5178 p -= 2; /* Point at relative address again. */
5179 if ((re_opcode_t) p[-1] != pop_failure_jump)
5180 {
5181 p[-1] = (unsigned char) jump;
25fe55af 5182 DEBUG_PRINT1 (" Match => jump.\n");
fa9a63c5
RM
5183 goto unconditional_jump;
5184 }
25fe55af 5185 /* Note fall through. */
fa9a63c5
RM
5186
5187
5188 /* The end of a simple repeat has a pop_failure_jump back to
25fe55af
RS
5189 its matching on_failure_jump, where the latter will push a
5190 failure point. The pop_failure_jump takes off failure
5191 points put on by this pop_failure_jump's matching
5192 on_failure_jump; we got through the pattern to here from the
5193 matching on_failure_jump, so didn't fail. */
5194 case pop_failure_jump:
5195 {
5196 /* We need to pass separate storage for the lowest and
5197 highest registers, even though we don't care about the
5198 actual values. Otherwise, we will restore only one
5199 register from the stack, since lowest will == highest in
5200 `pop_failure_point'. */
5201 unsigned dummy_low_reg, dummy_high_reg;
5202 unsigned char *pdummy;
5203 const char *sdummy;
5204
5205 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
5206 POP_FAILURE_POINT (sdummy, pdummy,
5207 dummy_low_reg, dummy_high_reg,
5208 reg_dummy, reg_dummy, reg_info_dummy);
5209 }
5210 /* Note fall through. */
5211
5212
5213 /* Unconditionally jump (without popping any failure points). */
5214 case jump:
fa9a63c5
RM
5215 unconditional_jump:
5216 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5217 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5218 p += mcnt; /* Do the jump. */
5219 DEBUG_PRINT2 ("(to 0x%x).\n", p);
5220 break;
5221
5222
5223 /* We need this opcode so we can detect where alternatives end
5224 in `group_match_null_string_p' et al. */
5225 case jump_past_alt:
5226 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
5227 goto unconditional_jump;
5228
5229
5230 /* Normally, the on_failure_jump pushes a failure point, which
5231 then gets popped at pop_failure_jump. We will end up at
5232 pop_failure_jump, also, and with a pattern of, say, `a+', we
5233 are skipping over the on_failure_jump, so we have to push
5234 something meaningless for pop_failure_jump to pop. */
5235 case dummy_failure_jump:
5236 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
5237 /* It doesn't matter what we push for the string here. What
5238 the code at `fail' tests is the value for the pattern. */
5239 PUSH_FAILURE_POINT (0, 0, -2);
5240 goto unconditional_jump;
5241
5242
5243 /* At the end of an alternative, we need to push a dummy failure
5244 point in case we are followed by a `pop_failure_jump', because
5245 we don't want the failure point for the alternative to be
5246 popped. For example, matching `(a|ab)*' against `aab'
5247 requires that we match the `ab' alternative. */
5248 case push_dummy_failure:
5249 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
5250 /* See comments just above at `dummy_failure_jump' about the
5251 two zeroes. */
5252 PUSH_FAILURE_POINT (0, 0, -2);
fa9a63c5
RM
5253 break;
5254
25fe55af
RS
5255 /* Have to succeed matching what follows at least n times.
5256 After that, handle like `on_failure_jump'. */
5257 case succeed_n:
5258 EXTRACT_NUMBER (mcnt, p + 2);
5259 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5260
25fe55af
RS
5261 assert (mcnt >= 0);
5262 /* Originally, this is how many times we HAVE to succeed. */
5263 if (mcnt > 0)
5264 {
5265 mcnt--;
fa9a63c5 5266 p += 2;
25fe55af
RS
5267 STORE_NUMBER_AND_INCR (p, mcnt);
5268 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
5269 }
fa9a63c5 5270 else if (mcnt == 0)
25fe55af
RS
5271 {
5272 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
fa9a63c5 5273 p[2] = (unsigned char) no_op;
25fe55af
RS
5274 p[3] = (unsigned char) no_op;
5275 goto on_failure;
5276 }
5277 break;
5278
5279 case jump_n:
5280 EXTRACT_NUMBER (mcnt, p + 2);
5281 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5282
5283 /* Originally, this is how many times we CAN jump. */
5284 if (mcnt)
5285 {
5286 mcnt--;
5287 STORE_NUMBER (p + 2, mcnt);
5e69f11e 5288 goto unconditional_jump;
25fe55af
RS
5289 }
5290 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5291 else
5292 p += 4;
25fe55af 5293 break;
5e69f11e 5294
fa9a63c5
RM
5295 case set_number_at:
5296 {
25fe55af 5297 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5298
25fe55af
RS
5299 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5300 p1 = p + mcnt;
5301 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5302 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
fa9a63c5 5303 STORE_NUMBER (p1, mcnt);
25fe55af
RS
5304 break;
5305 }
9121ca40
KH
5306
5307 case wordbound:
5308 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
fa9a63c5 5309
b18215fc 5310 /* We SUCCEED in one of the following cases: */
9121ca40 5311
b18215fc 5312 /* Case 1: D is at the beginning or the end of string. */
9121ca40
KH
5313 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5314 break;
b18215fc
RS
5315 else
5316 {
5317 /* C1 is the character before D, S1 is the syntax of C1, C2
5318 is the character at D, and S2 is the syntax of C2. */
5319 int c1, c2, s1, s2;
5320 int pos1 = PTR_TO_OFFSET (d - 1);
9121ca40 5321
b18215fc
RS
5322 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5323 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5324#ifdef emacs
5325 UPDATE_SYNTAX_TABLE (pos1 ? pos1 : 1);
25fe55af 5326#endif
b18215fc
RS
5327 s1 = SYNTAX (c1);
5328#ifdef emacs
5329 UPDATE_SYNTAX_TABLE_FORWARD (pos1 + 1);
25fe55af 5330#endif
b18215fc
RS
5331 s2 = SYNTAX (c2);
5332
5333 if (/* Case 2: Only one of S1 and S2 is Sword. */
5334 ((s1 == Sword) != (s2 == Sword))
5335 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5336 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5337 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
9121ca40 5338 break;
9121ca40 5339 }
b18215fc 5340 goto fail;
9121ca40
KH
5341
5342 case notwordbound:
9121ca40 5343 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
b18215fc
RS
5344
5345 /* We FAIL in one of the following cases: */
5346
5347 /* Case 1: D is at the beginning or the end of string. */
9121ca40
KH
5348 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5349 goto fail;
b18215fc
RS
5350 else
5351 {
5352 /* C1 is the character before D, S1 is the syntax of C1, C2
5353 is the character at D, and S2 is the syntax of C2. */
5354 int c1, c2, s1, s2;
5355 int pos1 = PTR_TO_OFFSET (d - 1);
9121ca40 5356
b18215fc
RS
5357 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5358 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5359#ifdef emacs
5360 UPDATE_SYNTAX_TABLE (pos1);
25fe55af 5361#endif
b18215fc
RS
5362 s1 = SYNTAX (c1);
5363#ifdef emacs
5364 UPDATE_SYNTAX_TABLE_FORWARD (pos1 + 1);
25fe55af 5365#endif
b18215fc
RS
5366 s2 = SYNTAX (c2);
5367
5368 if (/* Case 2: Only one of S1 and S2 is Sword. */
5369 ((s1 == Sword) != (s2 == Sword))
5370 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5371 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5372 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
9121ca40 5373 goto fail;
9121ca40 5374 }
b18215fc 5375 break;
fa9a63c5
RM
5376
5377 case wordbeg:
25fe55af 5378 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5379
b18215fc
RS
5380 /* We FAIL in one of the following cases: */
5381
25fe55af 5382 /* Case 1: D is at the end of string. */
b18215fc 5383 if (AT_STRINGS_END (d))
25fe55af 5384 goto fail;
b18215fc
RS
5385 else
5386 {
5387 /* C1 is the character before D, S1 is the syntax of C1, C2
5388 is the character at D, and S2 is the syntax of C2. */
5389 int c1, c2, s1, s2;
5390 int pos1 = PTR_TO_OFFSET (d);
fa9a63c5 5391
b18215fc 5392 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
fa9a63c5 5393#ifdef emacs
b18215fc 5394 UPDATE_SYNTAX_TABLE (pos1);
25fe55af 5395#endif
b18215fc 5396 s2 = SYNTAX (c2);
25fe55af 5397
b18215fc
RS
5398 /* Case 2: S2 is not Sword. */
5399 if (s2 != Sword)
5400 goto fail;
5401
5402 /* Case 3: D is not at the beginning of string ... */
5403 if (!AT_STRINGS_BEG (d))
5404 {
5405 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5406#ifdef emacs
5407 UPDATE_SYNTAX_TABLE_BACKWARD (pos1 - 1);
25fe55af 5408#endif
b18215fc
RS
5409 s1 = SYNTAX (c1);
5410
5411 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5412 returns 0. */
b18215fc
RS
5413 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5414 goto fail;
5415 }
5416 }
e318085a
RS
5417 break;
5418
b18215fc 5419 case wordend:
25fe55af 5420 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5421
5422 /* We FAIL in one of the following cases: */
5423
5424 /* Case 1: D is at the beginning of string. */
5425 if (AT_STRINGS_BEG (d))
e318085a 5426 goto fail;
b18215fc
RS
5427 else
5428 {
5429 /* C1 is the character before D, S1 is the syntax of C1, C2
5430 is the character at D, and S2 is the syntax of C2. */
5431 int c1, c2, s1, s2;
5432
5433 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5434 s1 = SYNTAX (c1);
5435
5436 /* Case 2: S1 is not Sword. */
5437 if (s1 != Sword)
5438 goto fail;
5439
5440 /* Case 3: D is not at the end of string ... */
5441 if (!AT_STRINGS_END (d))
5442 {
5443 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5444 s2 = SYNTAX (c2);
5445
5446 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5447 returns 0. */
b18215fc 5448 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5449 goto fail;
b18215fc
RS
5450 }
5451 }
e318085a
RS
5452 break;
5453
b18215fc 5454#ifdef emacs
25fe55af
RS
5455 case before_dot:
5456 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
b18215fc 5457 if (PTR_CHAR_POS ((unsigned char *) d) >= PT)
25fe55af
RS
5458 goto fail;
5459 break;
b18215fc 5460
25fe55af
RS
5461 case at_dot:
5462 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
b18215fc 5463 if (PTR_CHAR_POS ((unsigned char *) d) != PT)
25fe55af
RS
5464 goto fail;
5465 break;
b18215fc 5466
25fe55af
RS
5467 case after_dot:
5468 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
ae93ce92 5469 if (PTR_CHAR_POS ((unsigned char *) d) <= PT)
25fe55af
RS
5470 goto fail;
5471 break;
fa9a63c5
RM
5472
5473 case syntaxspec:
25fe55af 5474 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
fa9a63c5
RM
5475 mcnt = *p++;
5476 goto matchsyntax;
5477
25fe55af
RS
5478 case wordchar:
5479 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
fa9a63c5 5480 mcnt = (int) Sword;
25fe55af 5481 matchsyntax:
fa9a63c5 5482 PREFETCH ();
b18215fc
RS
5483#ifdef emacs
5484 {
5485 int pos1 = PTR_TO_OFFSET (d);
5486 UPDATE_SYNTAX_TABLE (pos1);
5487 }
25fe55af 5488#endif
b18215fc
RS
5489 {
5490 int c, len;
5491
5492 if (multibyte)
5493 /* we must concern about multibyte form, ... */
5494 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5495 else
5496 /* everything should be handled as ASCII, even though it
5497 looks like multibyte form. */
5498 c = *d, len = 1;
5499
5500 if (SYNTAX (c) != (enum syntaxcode) mcnt)
fa9a63c5 5501 goto fail;
b18215fc
RS
5502 d += len;
5503 }
25fe55af 5504 SET_REGS_MATCHED ();
fa9a63c5
RM
5505 break;
5506
5507 case notsyntaxspec:
25fe55af 5508 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
fa9a63c5
RM
5509 mcnt = *p++;
5510 goto matchnotsyntax;
5511
25fe55af
RS
5512 case notwordchar:
5513 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
fa9a63c5 5514 mcnt = (int) Sword;
25fe55af 5515 matchnotsyntax:
fa9a63c5 5516 PREFETCH ();
b18215fc
RS
5517#ifdef emacs
5518 {
5519 int pos1 = PTR_TO_OFFSET (d);
5520 UPDATE_SYNTAX_TABLE (pos1);
5521 }
25fe55af 5522#endif
b18215fc
RS
5523 {
5524 int c, len;
5525
5526 if (multibyte)
5527 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5528 else
5529 c = *d, len = 1;
5530
5531 if (SYNTAX (c) == (enum syntaxcode) mcnt)
fa9a63c5 5532 goto fail;
b18215fc
RS
5533 d += len;
5534 }
5535 SET_REGS_MATCHED ();
5536 break;
5537
5538 case categoryspec:
5539 DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p);
5540 mcnt = *p++;
5541 PREFETCH ();
5542 {
5543 int c, len;
5544
5545 if (multibyte)
5546 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5547 else
5548 c = *d, len = 1;
5549
5550 if (!CHAR_HAS_CATEGORY (c, mcnt))
5551 goto fail;
5552 d += len;
5553 }
fa9a63c5 5554 SET_REGS_MATCHED ();
e318085a 5555 break;
fa9a63c5 5556
b18215fc
RS
5557 case notcategoryspec:
5558 DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p);
5559 mcnt = *p++;
5560 PREFETCH ();
5561 {
5562 int c, len;
5563
5564 if (multibyte)
5565 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5566 else
5567 c = *d, len = 1;
5568
5569 if (CHAR_HAS_CATEGORY (c, mcnt))
5570 goto fail;
5571 d += len;
5572 }
5573 SET_REGS_MATCHED ();
5574 break;
5575
fa9a63c5
RM
5576#else /* not emacs */
5577 case wordchar:
b18215fc 5578 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
fa9a63c5 5579 PREFETCH ();
b18215fc
RS
5580 if (!WORDCHAR_P (d))
5581 goto fail;
fa9a63c5 5582 SET_REGS_MATCHED ();
b18215fc 5583 d++;
fa9a63c5 5584 break;
5e69f11e 5585
fa9a63c5 5586 case notwordchar:
b18215fc 5587 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
fa9a63c5
RM
5588 PREFETCH ();
5589 if (WORDCHAR_P (d))
b18215fc
RS
5590 goto fail;
5591 SET_REGS_MATCHED ();
5592 d++;
fa9a63c5
RM
5593 break;
5594#endif /* not emacs */
5e69f11e 5595
b18215fc
RS
5596 default:
5597 abort ();
fa9a63c5 5598 }
b18215fc 5599 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
5600
5601
5602 /* We goto here if a matching operation fails. */
5603 fail:
5604 if (!FAIL_STACK_EMPTY ())
b18215fc
RS
5605 { /* A restart point is known. Restore to that state. */
5606 DEBUG_PRINT1 ("\nFAIL:\n");
5607 POP_FAILURE_POINT (d, p,
5608 lowest_active_reg, highest_active_reg,
5609 regstart, regend, reg_info);
5610
5611 /* If this failure point is a dummy, try the next one. */
5612 if (!p)
fa9a63c5
RM
5613 goto fail;
5614
b18215fc 5615 /* If we failed to the end of the pattern, don't examine *p. */
fa9a63c5 5616 assert (p <= pend);
b18215fc
RS
5617 if (p < pend)
5618 {
5619 boolean is_a_jump_n = false;
5620
5621 /* If failed to a backwards jump that's part of a repetition
5622 loop, need to pop this failure point and use the next one. */
5623 switch ((re_opcode_t) *p)
5624 {
5625 case jump_n:
5626 is_a_jump_n = true;
5627 case maybe_pop_jump:
5628 case pop_failure_jump:
5629 case jump:
5630 p1 = p + 1;
5631 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5632 p1 += mcnt;
5633
5634 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5635 || (!is_a_jump_n
5636 && (re_opcode_t) *p1 == on_failure_jump))
5637 goto fail;
5638 break;
5639 default:
5640 /* do nothing */ ;
5641 }
5642 }
5643
5644 if (d >= string1 && d <= end1)
fa9a63c5 5645 dend = end_match_1;
b18215fc 5646 }
fa9a63c5 5647 else
b18215fc 5648 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
5649 } /* for (;;) */
5650
5651 if (best_regs_set)
5652 goto restore_best_regs;
5653
5654 FREE_VARIABLES ();
5655
b18215fc 5656 return -1; /* Failure to match. */
fa9a63c5
RM
5657} /* re_match_2 */
5658\f
5659/* Subroutine definitions for re_match_2. */
5660
5661
5662/* We are passed P pointing to a register number after a start_memory.
5e69f11e 5663
fa9a63c5
RM
5664 Return true if the pattern up to the corresponding stop_memory can
5665 match the empty string, and false otherwise.
5e69f11e 5666
fa9a63c5
RM
5667 If we find the matching stop_memory, sets P to point to one past its number.
5668 Otherwise, sets P to an undefined byte less than or equal to END.
5669
5670 We don't handle duplicates properly (yet). */
5671
5672static boolean
5673group_match_null_string_p (p, end, reg_info)
5674 unsigned char **p, *end;
5675 register_info_type *reg_info;
5676{
5677 int mcnt;
5678 /* Point to after the args to the start_memory. */
5679 unsigned char *p1 = *p + 2;
5e69f11e 5680
fa9a63c5
RM
5681 while (p1 < end)
5682 {
5683 /* Skip over opcodes that can match nothing, and return true or
5684 false, as appropriate, when we get to one that can't, or to the
b18215fc 5685 matching stop_memory. */
5e69f11e 5686
fa9a63c5 5687 switch ((re_opcode_t) *p1)
b18215fc
RS
5688 {
5689 /* Could be either a loop or a series of alternatives. */
5690 case on_failure_jump:
5691 p1++;
5692 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5e69f11e 5693
b18215fc 5694 /* If the next operation is not a jump backwards in the
fa9a63c5
RM
5695 pattern. */
5696
5697 if (mcnt >= 0)
5698 {
b18215fc
RS
5699 /* Go through the on_failure_jumps of the alternatives,
5700 seeing if any of the alternatives cannot match nothing.
5701 The last alternative starts with only a jump,
5702 whereas the rest start with on_failure_jump and end
5703 with a jump, e.g., here is the pattern for `a|b|c':
fa9a63c5 5704
b18215fc
RS
5705 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5706 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5707 /exactn/1/c
fa9a63c5 5708
b18215fc
RS
5709 So, we have to first go through the first (n-1)
5710 alternatives and then deal with the last one separately. */
fa9a63c5
RM
5711
5712
b18215fc
RS
5713 /* Deal with the first (n-1) alternatives, which start
5714 with an on_failure_jump (see above) that jumps to right
5715 past a jump_past_alt. */
fa9a63c5 5716
b18215fc
RS
5717 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5718 {
5719 /* `mcnt' holds how many bytes long the alternative
5720 is, including the ending `jump_past_alt' and
5721 its number. */
fa9a63c5 5722
b18215fc
RS
5723 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5724 reg_info))
5725 return false;
fa9a63c5 5726
b18215fc 5727 /* Move to right after this alternative, including the
fa9a63c5 5728 jump_past_alt. */
b18215fc 5729 p1 += mcnt;
fa9a63c5 5730
b18215fc
RS
5731 /* Break if it's the beginning of an n-th alternative
5732 that doesn't begin with an on_failure_jump. */
5733 if ((re_opcode_t) *p1 != on_failure_jump)
5734 break;
5e69f11e 5735
fa9a63c5
RM
5736 /* Still have to check that it's not an n-th
5737 alternative that starts with an on_failure_jump. */
5738 p1++;
b18215fc
RS
5739 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5740 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5741 {
5742 /* Get to the beginning of the n-th alternative. */
5743 p1 -= 3;
5744 break;
5745 }
5746 }
fa9a63c5 5747
b18215fc
RS
5748 /* Deal with the last alternative: go back and get number
5749 of the `jump_past_alt' just before it. `mcnt' contains
5750 the length of the alternative. */
5751 EXTRACT_NUMBER (mcnt, p1 - 2);
fa9a63c5 5752
b18215fc
RS
5753 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5754 return false;
fa9a63c5 5755
b18215fc
RS
5756 p1 += mcnt; /* Get past the n-th alternative. */
5757 } /* if mcnt > 0 */
5758 break;
fa9a63c5 5759
5e69f11e 5760
b18215fc 5761 case stop_memory:
fa9a63c5 5762 assert (p1[1] == **p);
b18215fc
RS
5763 *p = p1 + 2;
5764 return true;
fa9a63c5 5765
5e69f11e 5766
b18215fc
RS
5767 default:
5768 if (!common_op_match_null_string_p (&p1, end, reg_info))
5769 return false;
5770 }
fa9a63c5
RM
5771 } /* while p1 < end */
5772
5773 return false;
5774} /* group_match_null_string_p */
5775
5776
5777/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5778 It expects P to be the first byte of a single alternative and END one
5779 byte past the last. The alternative can contain groups. */
5e69f11e 5780
fa9a63c5
RM
5781static boolean
5782alt_match_null_string_p (p, end, reg_info)
5783 unsigned char *p, *end;
5784 register_info_type *reg_info;
5785{
5786 int mcnt;
5787 unsigned char *p1 = p;
5e69f11e 5788
fa9a63c5
RM
5789 while (p1 < end)
5790 {
5e69f11e 5791 /* Skip over opcodes that can match nothing, and break when we get
b18215fc 5792 to one that can't. */
5e69f11e 5793
fa9a63c5 5794 switch ((re_opcode_t) *p1)
b18215fc
RS
5795 {
5796 /* It's a loop. */
5797 case on_failure_jump:
5798 p1++;
5799 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5800 p1 += mcnt;
5801 break;
5e69f11e
RM
5802
5803 default:
b18215fc
RS
5804 if (!common_op_match_null_string_p (&p1, end, reg_info))
5805 return false;
5806 }
fa9a63c5
RM
5807 } /* while p1 < end */
5808
5809 return true;
5810} /* alt_match_null_string_p */
5811
5812
5813/* Deals with the ops common to group_match_null_string_p and
5e69f11e
RM
5814 alt_match_null_string_p.
5815
fa9a63c5
RM
5816 Sets P to one after the op and its arguments, if any. */
5817
5818static boolean
5819common_op_match_null_string_p (p, end, reg_info)
5820 unsigned char **p, *end;
5821 register_info_type *reg_info;
5822{
5823 int mcnt;
5824 boolean ret;
5825 int reg_no;
5826 unsigned char *p1 = *p;
5827
5828 switch ((re_opcode_t) *p1++)
5829 {
5830 case no_op:
5831 case begline:
5832 case endline:
5833 case begbuf:
5834 case endbuf:
5835 case wordbeg:
5836 case wordend:
5837 case wordbound:
5838 case notwordbound:
5839#ifdef emacs
5840 case before_dot:
5841 case at_dot:
5842 case after_dot:
5843#endif
5844 break;
5845
5846 case start_memory:
5847 reg_no = *p1;
5848 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5849 ret = group_match_null_string_p (&p1, end, reg_info);
5e69f11e 5850
fa9a63c5 5851 /* Have to set this here in case we're checking a group which
b18215fc 5852 contains a group and a back reference to it. */
fa9a63c5
RM
5853
5854 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
b18215fc 5855 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
fa9a63c5
RM
5856
5857 if (!ret)
b18215fc 5858 return false;
fa9a63c5 5859 break;
5e69f11e 5860
b18215fc 5861 /* If this is an optimized succeed_n for zero times, make the jump. */
fa9a63c5
RM
5862 case jump:
5863 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5864 if (mcnt >= 0)
b18215fc 5865 p1 += mcnt;
fa9a63c5 5866 else
b18215fc 5867 return false;
fa9a63c5
RM
5868 break;
5869
5870 case succeed_n:
b18215fc 5871 /* Get to the number of times to succeed. */
5e69f11e 5872 p1 += 2;
fa9a63c5
RM
5873 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5874
5875 if (mcnt == 0)
b18215fc
RS
5876 {
5877 p1 -= 4;
5878 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5879 p1 += mcnt;
5880 }
fa9a63c5 5881 else
b18215fc 5882 return false;
fa9a63c5
RM
5883 break;
5884
5e69f11e 5885 case duplicate:
fa9a63c5 5886 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
b18215fc 5887 return false;
fa9a63c5
RM
5888 break;
5889
5890 case set_number_at:
5891 p1 += 4;
5892
5893 default:
5894 /* All other opcodes mean we cannot match the empty string. */
5895 return false;
5896 }
5897
5898 *p = p1;
5899 return true;
5900} /* common_op_match_null_string_p */
5901
5902
5903/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5904 bytes; nonzero otherwise. */
5e69f11e 5905
fa9a63c5
RM
5906static int
5907bcmp_translate (s1, s2, len, translate)
5908 unsigned char *s1, *s2;
5909 register int len;
6676cb1c 5910 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
5911{
5912 register unsigned char *p1 = s1, *p2 = s2;
5913 while (len)
5914 {
bc192b5b
RS
5915 if (RE_TRANSLATE (translate, *p1++) != RE_TRANSLATE (translate, *p2++))
5916 return 1;
fa9a63c5
RM
5917 len--;
5918 }
5919 return 0;
5920}
5921\f
5922/* Entry points for GNU code. */
5923
5924/* re_compile_pattern is the GNU regular expression compiler: it
5925 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5926 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 5927
fa9a63c5
RM
5928 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5929 are set in BUFP on entry.
5e69f11e 5930
b18215fc 5931 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
5932
5933const char *
5934re_compile_pattern (pattern, length, bufp)
5935 const char *pattern;
5936 int length;
5937 struct re_pattern_buffer *bufp;
5938{
5939 reg_errcode_t ret;
5e69f11e 5940
fa9a63c5
RM
5941 /* GNU code is written to assume at least RE_NREGS registers will be set
5942 (and at least one extra will be -1). */
5943 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 5944
fa9a63c5
RM
5945 /* And GNU code determines whether or not to get register information
5946 by passing null for the REGS argument to re_match, etc., not by
5947 setting no_sub. */
5948 bufp->no_sub = 0;
5e69f11e 5949
b18215fc 5950 /* Match anchors at newline. */
fa9a63c5 5951 bufp->newline_anchor = 1;
5e69f11e 5952
fa9a63c5
RM
5953 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5954
5955 if (!ret)
5956 return NULL;
5957 return gettext (re_error_msgid[(int) ret]);
5e69f11e 5958}
fa9a63c5 5959\f
b18215fc
RS
5960/* Entry points compatible with 4.2 BSD regex library. We don't define
5961 them unless specifically requested. */
fa9a63c5 5962
0c085854 5963#if defined (_REGEX_RE_COMP) || defined (_LIBC)
fa9a63c5
RM
5964
5965/* BSD has one and only one pattern buffer. */
5966static struct re_pattern_buffer re_comp_buf;
5967
5968char *
48afdd44
RM
5969#ifdef _LIBC
5970/* Make these definitions weak in libc, so POSIX programs can redefine
5971 these names if they don't use our functions, and still use
5972 regcomp/regexec below without link errors. */
5973weak_function
5974#endif
fa9a63c5
RM
5975re_comp (s)
5976 const char *s;
5977{
5978 reg_errcode_t ret;
5e69f11e 5979
fa9a63c5
RM
5980 if (!s)
5981 {
5982 if (!re_comp_buf.buffer)
5983 return gettext ("No previous regular expression");
5984 return 0;
5985 }
5986
5987 if (!re_comp_buf.buffer)
5988 {
5989 re_comp_buf.buffer = (unsigned char *) malloc (200);
5990 if (re_comp_buf.buffer == NULL)
b18215fc 5991 return gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
5992 re_comp_buf.allocated = 200;
5993
5994 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5995 if (re_comp_buf.fastmap == NULL)
5996 return gettext (re_error_msgid[(int) REG_ESPACE]);
5997 }
5998
5999 /* Since `re_exec' always passes NULL for the `regs' argument, we
6000 don't need to initialize the pattern buffer fields which affect it. */
6001
b18215fc 6002 /* Match anchors at newlines. */
fa9a63c5
RM
6003 re_comp_buf.newline_anchor = 1;
6004
6005 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6006
fa9a63c5
RM
6007 if (!ret)
6008 return NULL;
6009
6010 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6011 return (char *) gettext (re_error_msgid[(int) ret]);
6012}
6013
6014
6015int
48afdd44
RM
6016#ifdef _LIBC
6017weak_function
6018#endif
fa9a63c5
RM
6019re_exec (s)
6020 const char *s;
6021{
6022 const int len = strlen (s);
6023 return
6024 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6025}
6026#endif /* _REGEX_RE_COMP */
6027\f
6028/* POSIX.2 functions. Don't define these for Emacs. */
6029
6030#ifndef emacs
6031
6032/* regcomp takes a regular expression as a string and compiles it.
6033
b18215fc 6034 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6035 since POSIX says we shouldn't. Thus, we set
6036
6037 `buffer' to the compiled pattern;
6038 `used' to the length of the compiled pattern;
6039 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6040 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6041 RE_SYNTAX_POSIX_BASIC;
6042 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
6043 `fastmap' and `fastmap_accurate' to zero;
6044 `re_nsub' to the number of subexpressions in PATTERN.
6045
6046 PATTERN is the address of the pattern string.
6047
6048 CFLAGS is a series of bits which affect compilation.
6049
6050 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6051 use POSIX basic syntax.
6052
6053 If REG_NEWLINE is set, then . and [^...] don't match newline.
6054 Also, regexec will try a match beginning after every newline.
6055
6056 If REG_ICASE is set, then we considers upper- and lowercase
6057 versions of letters to be equivalent when matching.
6058
6059 If REG_NOSUB is set, then when PREG is passed to regexec, that
6060 routine will report only success or failure, and nothing about the
6061 registers.
6062
b18215fc 6063 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6064 the return codes and their meanings.) */
6065
6066int
6067regcomp (preg, pattern, cflags)
6068 regex_t *preg;
5e69f11e 6069 const char *pattern;
fa9a63c5
RM
6070 int cflags;
6071{
6072 reg_errcode_t ret;
6073 unsigned syntax
6074 = (cflags & REG_EXTENDED) ?
6075 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6076
6077 /* regex_compile will allocate the space for the compiled pattern. */
6078 preg->buffer = 0;
6079 preg->allocated = 0;
6080 preg->used = 0;
5e69f11e 6081
fa9a63c5
RM
6082 /* Don't bother to use a fastmap when searching. This simplifies the
6083 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
6084 characters after newlines into the fastmap. This way, we just try
6085 every character. */
6086 preg->fastmap = 0;
5e69f11e 6087
fa9a63c5
RM
6088 if (cflags & REG_ICASE)
6089 {
6090 unsigned i;
5e69f11e 6091
6676cb1c
RS
6092 preg->translate
6093 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6094 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6095 if (preg->translate == NULL)
b18215fc 6096 return (int) REG_ESPACE;
fa9a63c5
RM
6097
6098 /* Map uppercase characters to corresponding lowercase ones. */
6099 for (i = 0; i < CHAR_SET_SIZE; i++)
b18215fc 6100 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
fa9a63c5
RM
6101 }
6102 else
6103 preg->translate = NULL;
6104
6105 /* If REG_NEWLINE is set, newlines are treated differently. */
6106 if (cflags & REG_NEWLINE)
6107 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6108 syntax &= ~RE_DOT_NEWLINE;
6109 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
b18215fc 6110 /* It also changes the matching behavior. */
fa9a63c5
RM
6111 preg->newline_anchor = 1;
6112 }
6113 else
6114 preg->newline_anchor = 0;
6115
6116 preg->no_sub = !!(cflags & REG_NOSUB);
6117
5e69f11e 6118 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5
RM
6119 can use strlen here in compiling the pattern. */
6120 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5e69f11e 6121
fa9a63c5
RM
6122 /* POSIX doesn't distinguish between an unmatched open-group and an
6123 unmatched close-group: both are REG_EPAREN. */
6124 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5e69f11e 6125
fa9a63c5
RM
6126 return (int) ret;
6127}
6128
6129
6130/* regexec searches for a given pattern, specified by PREG, in the
6131 string STRING.
5e69f11e 6132
fa9a63c5 6133 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6134 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6135 least NMATCH elements, and we set them to the offsets of the
6136 corresponding matched substrings.
5e69f11e 6137
fa9a63c5
RM
6138 EFLAGS specifies `execution flags' which affect matching: if
6139 REG_NOTBOL is set, then ^ does not match at the beginning of the
6140 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6141
fa9a63c5
RM
6142 We return 0 if we find a match and REG_NOMATCH if not. */
6143
6144int
6145regexec (preg, string, nmatch, pmatch, eflags)
6146 const regex_t *preg;
5e69f11e
RM
6147 const char *string;
6148 size_t nmatch;
6149 regmatch_t pmatch[];
fa9a63c5
RM
6150 int eflags;
6151{
6152 int ret;
6153 struct re_registers regs;
6154 regex_t private_preg;
6155 int len = strlen (string);
6156 boolean want_reg_info = !preg->no_sub && nmatch > 0;
6157
6158 private_preg = *preg;
5e69f11e 6159
fa9a63c5
RM
6160 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6161 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6162
fa9a63c5
RM
6163 /* The user has told us exactly how many registers to return
6164 information about, via `nmatch'. We have to pass that on to the
b18215fc 6165 matching routines. */
fa9a63c5 6166 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6167
fa9a63c5
RM
6168 if (want_reg_info)
6169 {
6170 regs.num_regs = nmatch;
6171 regs.start = TALLOC (nmatch, regoff_t);
6172 regs.end = TALLOC (nmatch, regoff_t);
6173 if (regs.start == NULL || regs.end == NULL)
b18215fc 6174 return (int) REG_NOMATCH;
fa9a63c5
RM
6175 }
6176
6177 /* Perform the searching operation. */
6178 ret = re_search (&private_preg, string, len,
b18215fc
RS
6179 /* start: */ 0, /* range: */ len,
6180 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6181
fa9a63c5
RM
6182 /* Copy the register information to the POSIX structure. */
6183 if (want_reg_info)
6184 {
6185 if (ret >= 0)
b18215fc
RS
6186 {
6187 unsigned r;
fa9a63c5 6188
b18215fc
RS
6189 for (r = 0; r < nmatch; r++)
6190 {
6191 pmatch[r].rm_so = regs.start[r];
6192 pmatch[r].rm_eo = regs.end[r];
6193 }
6194 }
fa9a63c5 6195
b18215fc 6196 /* If we needed the temporary register info, free the space now. */
fa9a63c5
RM
6197 free (regs.start);
6198 free (regs.end);
6199 }
6200
6201 /* We want zero return to mean success, unlike `re_search'. */
6202 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6203}
6204
6205
6206/* Returns a message corresponding to an error code, ERRCODE, returned
6207 from either regcomp or regexec. We don't use PREG here. */
6208
6209size_t
6210regerror (errcode, preg, errbuf, errbuf_size)
6211 int errcode;
6212 const regex_t *preg;
6213 char *errbuf;
6214 size_t errbuf_size;
6215{
6216 const char *msg;
6217 size_t msg_size;
6218
6219 if (errcode < 0
6220 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6221 /* Only error codes returned by the rest of the code should be passed
b18215fc 6222 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6223 code generates an invalid error code, then the program has a bug.
6224 Dump core so we can fix it. */
6225 abort ();
6226
6227 msg = gettext (re_error_msgid[errcode]);
6228
6229 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6230
fa9a63c5
RM
6231 if (errbuf_size != 0)
6232 {
6233 if (msg_size > errbuf_size)
b18215fc
RS
6234 {
6235 strncpy (errbuf, msg, errbuf_size - 1);
6236 errbuf[errbuf_size - 1] = 0;
6237 }
fa9a63c5 6238 else
b18215fc 6239 strcpy (errbuf, msg);
fa9a63c5
RM
6240 }
6241
6242 return msg_size;
6243}
6244
6245
6246/* Free dynamically allocated space used by PREG. */
6247
6248void
6249regfree (preg)
6250 regex_t *preg;
6251{
6252 if (preg->buffer != NULL)
6253 free (preg->buffer);
6254 preg->buffer = NULL;
5e69f11e 6255
fa9a63c5
RM
6256 preg->allocated = 0;
6257 preg->used = 0;
6258
6259 if (preg->fastmap != NULL)
6260 free (preg->fastmap);
6261 preg->fastmap = NULL;
6262 preg->fastmap_accurate = 0;
6263
6264 if (preg->translate != NULL)
6265 free (preg->translate);
6266 preg->translate = NULL;
6267}
6268
6269#endif /* not emacs */