(TYPICAL_FAILURE_SIZE): Renamed from MAX_FAILURE_ITEMS.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a
RS
1/* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
bc78d348
KB
3 internationalization features.)
4
b18215fc 5 Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5
RM
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
68d96f02 27#undef _GNU_SOURCE
fa9a63c5
RM
28#define _GNU_SOURCE
29
25fe55af
RS
30/* Converts the pointer to the char to BEG-based offset from the start. */
31#define PTR_TO_OFFSET(d) \
b18215fc
RS
32 POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING \
33 ? (d) - string1 : (d) - (string2 - size1))
34#define POS_AS_IN_BUFFER(p) ((p) + 1)
35
fa9a63c5
RM
36#ifdef HAVE_CONFIG_H
37#include <config.h>
38#endif
39
25fe55af 40/* We need this for `regex.h', and perhaps for the Emacs include files. */
fa9a63c5
RM
41#include <sys/types.h>
42
25fe55af 43/* This is for other GNU distributions with internationalized messages. */
fa9a63c5
RM
44#if HAVE_LIBINTL_H || defined (_LIBC)
45# include <libintl.h>
46#else
47# define gettext(msgid) (msgid)
48#endif
49
5e69f11e
RM
50#ifndef gettext_noop
51/* This define is so xgettext can find the internationalizable
52 strings. */
53#define gettext_noop(String) String
54#endif
55
fa9a63c5
RM
56/* The `emacs' switch turns on certain matching commands
57 that make sense only in Emacs. */
58#ifdef emacs
59
60#include "lisp.h"
61#include "buffer.h"
b18215fc
RS
62
63/* Make syntax table lookup grant data in gl_state. */
64#define SYNTAX_ENTRY_VIA_PROPERTY
65
fa9a63c5 66#include "syntax.h"
b18215fc
RS
67#include "charset.h"
68#include "category.h"
fa9a63c5 69
9abbd165
RS
70#define malloc xmalloc
71#define free xfree
72
fa9a63c5
RM
73#else /* not emacs */
74
75/* If we are not linking with Emacs proper,
76 we can't use the relocating allocator
77 even if config.h says that we can. */
78#undef REL_ALLOC
79
80#if defined (STDC_HEADERS) || defined (_LIBC)
81#include <stdlib.h>
82#else
83char *malloc ();
84char *realloc ();
85#endif
86
9e4ecb26 87/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
25fe55af 88 If nothing else has been done, use the method below. */
9e4ecb26
KH
89#ifdef INHIBIT_STRING_HEADER
90#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
91#if !defined (bzero) && !defined (bcopy)
92#undef INHIBIT_STRING_HEADER
93#endif
94#endif
95#endif
96
97/* This is the normal way of making sure we have a bcopy and a bzero.
98 This is used in most programs--a few other programs avoid this
99 by defining INHIBIT_STRING_HEADER. */
fa9a63c5 100#ifndef INHIBIT_STRING_HEADER
7f998252 101#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
fa9a63c5
RM
102#include <string.h>
103#ifndef bcmp
104#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
105#endif
106#ifndef bcopy
107#define bcopy(s, d, n) memcpy ((d), (s), (n))
108#endif
109#ifndef bzero
110#define bzero(s, n) memset ((s), 0, (n))
111#endif
112#else
113#include <strings.h>
114#endif
115#endif
116
117/* Define the syntax stuff for \<, \>, etc. */
118
119/* This must be nonzero for the wordchar and notwordchar pattern
120 commands in re_match_2. */
5e69f11e 121#ifndef Sword
fa9a63c5
RM
122#define Sword 1
123#endif
124
125#ifdef SWITCH_ENUM_BUG
126#define SWITCH_ENUM_CAST(x) ((int)(x))
127#else
128#define SWITCH_ENUM_CAST(x) (x)
129#endif
130
131#ifdef SYNTAX_TABLE
132
133extern char *re_syntax_table;
134
135#else /* not SYNTAX_TABLE */
136
137/* How many characters in the character set. */
138#define CHAR_SET_SIZE 256
139
140static char re_syntax_table[CHAR_SET_SIZE];
141
142static void
143init_syntax_once ()
144{
145 register int c;
146 static int done = 0;
147
148 if (done)
149 return;
150
151 bzero (re_syntax_table, sizeof re_syntax_table);
152
153 for (c = 'a'; c <= 'z'; c++)
154 re_syntax_table[c] = Sword;
155
156 for (c = 'A'; c <= 'Z'; c++)
157 re_syntax_table[c] = Sword;
158
159 for (c = '0'; c <= '9'; c++)
160 re_syntax_table[c] = Sword;
161
162 re_syntax_table['_'] = Sword;
163
164 done = 1;
165}
166
167#endif /* not SYNTAX_TABLE */
168
169#define SYNTAX(c) re_syntax_table[c]
170
b18215fc
RS
171/* Dummy macro for non emacs environments. */
172#define BASE_LEADING_CODE_P(c) (0)
173#define WORD_BOUNDARY_P(c1, c2) (0)
174#define CHAR_HEAD_P(p) (1)
175#define SINGLE_BYTE_CHAR_P(c) (1)
176#define SAME_CHARSET_P(c1, c2) (1)
177#define MULTIBYTE_FORM_LENGTH(p, s) (1)
178#define STRING_CHAR(p, s) (*(p))
179#define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
180#define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \
181 (c = ((p) == (end1) ? *(str2) : *(p)))
182#define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
183 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
fa9a63c5
RM
184#endif /* not emacs */
185\f
186/* Get the interface, including the syntax bits. */
187#include "regex.h"
188
189/* isalpha etc. are used for the character classes. */
190#include <ctype.h>
191
192/* Jim Meyering writes:
193
194 "... Some ctype macros are valid only for character codes that
195 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
196 using /bin/cc or gcc but without giving an ansi option). So, all
25fe55af 197 ctype uses should be through macros like ISPRINT... If
fa9a63c5
RM
198 STDC_HEADERS is defined, then autoconf has verified that the ctype
199 macros don't need to be guarded with references to isascii. ...
200 Defining isascii to 1 should let any compiler worth its salt
25fe55af 201 eliminate the && through constant folding." */
fa9a63c5
RM
202
203#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
204#define ISASCII(c) 1
205#else
206#define ISASCII(c) isascii(c)
207#endif
208
209#ifdef isblank
210#define ISBLANK(c) (ISASCII (c) && isblank (c))
211#else
212#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
213#endif
214#ifdef isgraph
215#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
216#else
217#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
218#endif
219
220#define ISPRINT(c) (ISASCII (c) && isprint (c))
221#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
222#define ISALNUM(c) (ISASCII (c) && isalnum (c))
223#define ISALPHA(c) (ISASCII (c) && isalpha (c))
224#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
225#define ISLOWER(c) (ISASCII (c) && islower (c))
226#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
227#define ISSPACE(c) (ISASCII (c) && isspace (c))
228#define ISUPPER(c) (ISASCII (c) && isupper (c))
229#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
230
231#ifndef NULL
075f06ec 232#define NULL (void *)0
fa9a63c5
RM
233#endif
234
235/* We remove any previous definition of `SIGN_EXTEND_CHAR',
236 since ours (we hope) works properly with all combinations of
237 machines, compilers, `char' and `unsigned char' argument types.
25fe55af 238 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
239#undef SIGN_EXTEND_CHAR
240#if __STDC__
241#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
242#else /* not __STDC__ */
243/* As in Harbison and Steele. */
244#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
245#endif
246\f
247/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
248 use `alloca' instead of `malloc'. This is because using malloc in
249 re_search* or re_match* could cause memory leaks when C-g is used in
250 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
251 the other hand, malloc is more portable, and easier to debug.
252
fa9a63c5
RM
253 Because we sometimes use alloca, some routines have to be macros,
254 not functions -- `alloca'-allocated space disappears at the end of the
255 function it is called in. */
256
257#ifdef REGEX_MALLOC
258
259#define REGEX_ALLOCATE malloc
260#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
261#define REGEX_FREE free
262
263#else /* not REGEX_MALLOC */
264
265/* Emacs already defines alloca, sometimes. */
266#ifndef alloca
267
268/* Make alloca work the best possible way. */
269#ifdef __GNUC__
270#define alloca __builtin_alloca
271#else /* not __GNUC__ */
272#if HAVE_ALLOCA_H
273#include <alloca.h>
274#else /* not __GNUC__ or HAVE_ALLOCA_H */
f3c4387f 275#if 0 /* It is a bad idea to declare alloca. We always cast the result. */
25fe55af 276#ifndef _AIX /* Already did AIX, up at the top. */
fa9a63c5
RM
277char *alloca ();
278#endif /* not _AIX */
f3c4387f 279#endif
5e69f11e 280#endif /* not HAVE_ALLOCA_H */
fa9a63c5
RM
281#endif /* not __GNUC__ */
282
283#endif /* not alloca */
284
285#define REGEX_ALLOCATE alloca
286
287/* Assumes a `char *destination' variable. */
288#define REGEX_REALLOCATE(source, osize, nsize) \
289 (destination = (char *) alloca (nsize), \
290 bcopy (source, destination, osize), \
291 destination)
292
293/* No need to do anything to free, after alloca. */
c2e1680a 294#define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
295
296#endif /* not REGEX_MALLOC */
297
298/* Define how to allocate the failure stack. */
299
33487cc8 300#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
4297555e 301
fa9a63c5
RM
302#define REGEX_ALLOCATE_STACK(size) \
303 r_alloc (&failure_stack_ptr, (size))
304#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
305 r_re_alloc (&failure_stack_ptr, (nsize))
306#define REGEX_FREE_STACK(ptr) \
307 r_alloc_free (&failure_stack_ptr)
308
4297555e 309#else /* not using relocating allocator */
fa9a63c5
RM
310
311#ifdef REGEX_MALLOC
312
313#define REGEX_ALLOCATE_STACK malloc
314#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
315#define REGEX_FREE_STACK free
316
317#else /* not REGEX_MALLOC */
318
319#define REGEX_ALLOCATE_STACK alloca
320
321#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
322 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 323/* No need to explicitly free anything. */
fa9a63c5
RM
324#define REGEX_FREE_STACK(arg)
325
326#endif /* not REGEX_MALLOC */
4297555e 327#endif /* not using relocating allocator */
fa9a63c5
RM
328
329
330/* True if `size1' is non-NULL and PTR is pointing anywhere inside
331 `string1' or just past its end. This works if PTR is NULL, which is
332 a good thing. */
25fe55af 333#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
334 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
335
336/* (Re)Allocate N items of type T using malloc, or fail. */
337#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
338#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
339#define RETALLOC_IF(addr, n, t) \
340 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
341#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
342
25fe55af 343#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
344
345#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
346
347#undef MAX
348#undef MIN
349#define MAX(a, b) ((a) > (b) ? (a) : (b))
350#define MIN(a, b) ((a) < (b) ? (a) : (b))
351
352typedef char boolean;
353#define false 0
354#define true 1
355
356static int re_match_2_internal ();
357\f
358/* These are the command codes that appear in compiled regular
25fe55af 359 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
360 command code can specify any interpretation whatsoever for its
361 arguments. Zero bytes may appear in the compiled regular expression. */
362
363typedef enum
364{
365 no_op = 0,
366
25fe55af 367 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
368 succeed,
369
25fe55af 370 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
371 exactn,
372
25fe55af 373 /* Matches any (more or less) character. */
fa9a63c5
RM
374 anychar,
375
25fe55af
RS
376 /* Matches any one char belonging to specified set. First
377 following byte is number of bitmap bytes. Then come bytes
378 for a bitmap saying which chars are in. Bits in each byte
379 are ordered low-bit-first. A character is in the set if its
380 bit is 1. A character too large to have a bit in the map is
381 automatically not in the set. */
fa9a63c5
RM
382 charset,
383
25fe55af
RS
384 /* Same parameters as charset, but match any character that is
385 not one of those specified. */
fa9a63c5
RM
386 charset_not,
387
25fe55af
RS
388 /* Start remembering the text that is matched, for storing in a
389 register. Followed by one byte with the register number, in
390 the range 0 to one less than the pattern buffer's re_nsub
391 field. Then followed by one byte with the number of groups
392 inner to this one. (This last has to be part of the
393 start_memory only because we need it in the on_failure_jump
394 of re_match_2.) */
fa9a63c5
RM
395 start_memory,
396
25fe55af
RS
397 /* Stop remembering the text that is matched and store it in a
398 memory register. Followed by one byte with the register
399 number, in the range 0 to one less than `re_nsub' in the
400 pattern buffer, and one byte with the number of inner groups,
401 just like `start_memory'. (We need the number of inner
402 groups here because we don't have any easy way of finding the
403 corresponding start_memory when we're at a stop_memory.) */
fa9a63c5
RM
404 stop_memory,
405
25fe55af
RS
406 /* Match a duplicate of something remembered. Followed by one
407 byte containing the register number. */
fa9a63c5
RM
408 duplicate,
409
25fe55af 410 /* Fail unless at beginning of line. */
fa9a63c5
RM
411 begline,
412
25fe55af 413 /* Fail unless at end of line. */
fa9a63c5
RM
414 endline,
415
25fe55af
RS
416 /* Succeeds if at beginning of buffer (if emacs) or at beginning
417 of string to be matched (if not). */
fa9a63c5
RM
418 begbuf,
419
25fe55af 420 /* Analogously, for end of buffer/string. */
fa9a63c5 421 endbuf,
5e69f11e 422
25fe55af 423 /* Followed by two byte relative address to which to jump. */
5e69f11e 424 jump,
fa9a63c5
RM
425
426 /* Same as jump, but marks the end of an alternative. */
427 jump_past_alt,
428
25fe55af
RS
429 /* Followed by two-byte relative address of place to resume at
430 in case of failure. */
fa9a63c5 431 on_failure_jump,
5e69f11e 432
25fe55af
RS
433 /* Like on_failure_jump, but pushes a placeholder instead of the
434 current string position when executed. */
fa9a63c5 435 on_failure_keep_string_jump,
5e69f11e 436
25fe55af
RS
437 /* Throw away latest failure point and then jump to following
438 two-byte relative address. */
fa9a63c5
RM
439 pop_failure_jump,
440
25fe55af
RS
441 /* Change to pop_failure_jump if know won't have to backtrack to
442 match; otherwise change to jump. This is used to jump
443 back to the beginning of a repeat. If what follows this jump
444 clearly won't match what the repeat does, such that we can be
445 sure that there is no use backtracking out of repetitions
446 already matched, then we change it to a pop_failure_jump.
447 Followed by two-byte address. */
fa9a63c5
RM
448 maybe_pop_jump,
449
25fe55af
RS
450 /* Jump to following two-byte address, and push a dummy failure
451 point. This failure point will be thrown away if an attempt
452 is made to use it for a failure. A `+' construct makes this
453 before the first repeat. Also used as an intermediary kind
454 of jump when compiling an alternative. */
fa9a63c5
RM
455 dummy_failure_jump,
456
457 /* Push a dummy failure point and continue. Used at the end of
458 alternatives. */
459 push_dummy_failure,
460
25fe55af
RS
461 /* Followed by two-byte relative address and two-byte number n.
462 After matching N times, jump to the address upon failure. */
fa9a63c5
RM
463 succeed_n,
464
25fe55af
RS
465 /* Followed by two-byte relative address, and two-byte number n.
466 Jump to the address N times, then fail. */
fa9a63c5
RM
467 jump_n,
468
25fe55af
RS
469 /* Set the following two-byte relative address to the
470 subsequent two-byte number. The address *includes* the two
471 bytes of number. */
fa9a63c5
RM
472 set_number_at,
473
474 wordchar, /* Matches any word-constituent character. */
475 notwordchar, /* Matches any char that is not a word-constituent. */
476
477 wordbeg, /* Succeeds if at word beginning. */
478 wordend, /* Succeeds if at word end. */
479
480 wordbound, /* Succeeds if at a word boundary. */
25fe55af 481 notwordbound /* Succeeds if not at a word boundary. */
fa9a63c5
RM
482
483#ifdef emacs
484 ,before_dot, /* Succeeds if before point. */
485 at_dot, /* Succeeds if at point. */
486 after_dot, /* Succeeds if after point. */
487
488 /* Matches any character whose syntax is specified. Followed by
25fe55af 489 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
490 syntaxspec,
491
492 /* Matches any character whose syntax is not that specified. */
b18215fc
RS
493 notsyntaxspec,
494
495 /* Matches any character whose category-set contains the specified
25fe55af
RS
496 category. The operator is followed by a byte which contains a
497 category code (mnemonic ASCII character). */
b18215fc
RS
498 categoryspec,
499
500 /* Matches any character whose category-set does not contain the
501 specified category. The operator is followed by a byte which
502 contains the category code (mnemonic ASCII character). */
503 notcategoryspec
fa9a63c5
RM
504#endif /* emacs */
505} re_opcode_t;
506\f
507/* Common operations on the compiled pattern. */
508
509/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
510
511#define STORE_NUMBER(destination, number) \
512 do { \
513 (destination)[0] = (number) & 0377; \
514 (destination)[1] = (number) >> 8; \
515 } while (0)
516
517/* Same as STORE_NUMBER, except increment DESTINATION to
518 the byte after where the number is stored. Therefore, DESTINATION
519 must be an lvalue. */
520
521#define STORE_NUMBER_AND_INCR(destination, number) \
522 do { \
523 STORE_NUMBER (destination, number); \
524 (destination) += 2; \
525 } while (0)
526
527/* Put into DESTINATION a number stored in two contiguous bytes starting
528 at SOURCE. */
529
530#define EXTRACT_NUMBER(destination, source) \
531 do { \
532 (destination) = *(source) & 0377; \
533 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
534 } while (0)
535
536#ifdef DEBUG
537static void
538extract_number (dest, source)
539 int *dest;
540 unsigned char *source;
541{
5e69f11e 542 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
543 *dest = *source & 0377;
544 *dest += temp << 8;
545}
546
25fe55af 547#ifndef EXTRACT_MACROS /* To debug the macros. */
fa9a63c5
RM
548#undef EXTRACT_NUMBER
549#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
550#endif /* not EXTRACT_MACROS */
551
552#endif /* DEBUG */
553
554/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
555 SOURCE must be an lvalue. */
556
557#define EXTRACT_NUMBER_AND_INCR(destination, source) \
558 do { \
559 EXTRACT_NUMBER (destination, source); \
25fe55af 560 (source) += 2; \
fa9a63c5
RM
561 } while (0)
562
563#ifdef DEBUG
564static void
565extract_number_and_incr (destination, source)
566 int *destination;
567 unsigned char **source;
5e69f11e 568{
fa9a63c5
RM
569 extract_number (destination, *source);
570 *source += 2;
571}
572
573#ifndef EXTRACT_MACROS
574#undef EXTRACT_NUMBER_AND_INCR
575#define EXTRACT_NUMBER_AND_INCR(dest, src) \
576 extract_number_and_incr (&dest, &src)
577#endif /* not EXTRACT_MACROS */
578
579#endif /* DEBUG */
580\f
b18215fc
RS
581/* Store a multibyte character in three contiguous bytes starting
582 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 583 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
584
585#define STORE_CHARACTER_AND_INCR(destination, character) \
586 do { \
587 (destination)[0] = (character) & 0377; \
588 (destination)[1] = ((character) >> 8) & 0377; \
589 (destination)[2] = (character) >> 16; \
590 (destination) += 3; \
591 } while (0)
592
593/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 594 starting at SOURCE. */
b18215fc
RS
595
596#define EXTRACT_CHARACTER(destination, source) \
597 do { \
598 (destination) = ((source)[0] \
599 | ((source)[1] << 8) \
600 | ((source)[2] << 16)); \
601 } while (0)
602
603
604/* Macros for charset. */
605
606/* Size of bitmap of charset P in bytes. P is a start of charset,
607 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
608#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
609
610/* Nonzero if charset P has range table. */
25fe55af 611#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
612
613/* Return the address of range table of charset P. But not the start
614 of table itself, but the before where the number of ranges is
25fe55af 615 stored. `2 +' means to skip re_opcode_t and size of bitmap. */
b18215fc
RS
616#define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)])
617
618/* Test if C is listed in the bitmap of charset P. */
619#define CHARSET_LOOKUP_BITMAP(p, c) \
620 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
621 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
622
623/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
624 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
625 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
626 and end. */
627#define CHARSET_RANGE_TABLE_END(range_table, count) \
628 ((range_table) + (count) * 2 * 3)
629
25fe55af 630/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
631 COUNT is number of ranges in RANGE_TABLE. */
632#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
633 do \
634 { \
635 int range_start, range_end; \
636 unsigned char *p; \
637 unsigned char *range_table_end \
638 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
639 \
640 for (p = (range_table); p < range_table_end; p += 2 * 3) \
641 { \
642 EXTRACT_CHARACTER (range_start, p); \
643 EXTRACT_CHARACTER (range_end, p + 3); \
644 \
645 if (range_start <= (c) && (c) <= range_end) \
646 { \
647 (not) = !(not); \
648 break; \
649 } \
650 } \
651 } \
652 while (0)
653
654/* Test if C is in range table of CHARSET. The flag NOT is negated if
655 C is listed in it. */
656#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
657 do \
658 { \
659 /* Number of ranges in range table. */ \
660 int count; \
661 unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \
662 \
663 EXTRACT_NUMBER_AND_INCR (count, range_table); \
664 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
665 } \
666 while (0)
667\f
fa9a63c5
RM
668/* If DEBUG is defined, Regex prints many voluminous messages about what
669 it is doing (if the variable `debug' is nonzero). If linked with the
670 main program in `iregex.c', you can enter patterns and strings
671 interactively. And if linked with the main program in `main.c' and
25fe55af 672 the other test files, you can run the already-written tests. */
fa9a63c5
RM
673
674#ifdef DEBUG
675
676/* We use standard I/O for debugging. */
677#include <stdio.h>
678
679/* It is useful to test things that ``must'' be true when debugging. */
680#include <assert.h>
681
682static int debug = 0;
683
684#define DEBUG_STATEMENT(e) e
685#define DEBUG_PRINT1(x) if (debug) printf (x)
686#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
687#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
688#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
25fe55af 689#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
fa9a63c5
RM
690 if (debug) print_partial_compiled_pattern (s, e)
691#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
692 if (debug) print_double_string (w, s1, sz1, s2, sz2)
693
694
695/* Print the fastmap in human-readable form. */
696
697void
698print_fastmap (fastmap)
699 char *fastmap;
700{
701 unsigned was_a_range = 0;
5e69f11e
RM
702 unsigned i = 0;
703
fa9a63c5
RM
704 while (i < (1 << BYTEWIDTH))
705 {
706 if (fastmap[i++])
707 {
708 was_a_range = 0;
25fe55af
RS
709 putchar (i - 1);
710 while (i < (1 << BYTEWIDTH) && fastmap[i])
711 {
712 was_a_range = 1;
713 i++;
714 }
fa9a63c5 715 if (was_a_range)
25fe55af
RS
716 {
717 printf ("-");
718 putchar (i - 1);
719 }
720 }
fa9a63c5 721 }
5e69f11e 722 putchar ('\n');
fa9a63c5
RM
723}
724
725
726/* Print a compiled pattern string in human-readable form, starting at
727 the START pointer into it and ending just before the pointer END. */
728
729void
730print_partial_compiled_pattern (start, end)
731 unsigned char *start;
732 unsigned char *end;
733{
734 int mcnt, mcnt2;
735 unsigned char *p = start;
736 unsigned char *pend = end;
737
738 if (start == NULL)
739 {
740 printf ("(null)\n");
741 return;
742 }
5e69f11e 743
fa9a63c5
RM
744 /* Loop over pattern commands. */
745 while (p < pend)
746 {
747 printf ("%d:\t", p - start);
748
749 switch ((re_opcode_t) *p++)
750 {
25fe55af
RS
751 case no_op:
752 printf ("/no_op");
753 break;
fa9a63c5
RM
754
755 case exactn:
756 mcnt = *p++;
25fe55af
RS
757 printf ("/exactn/%d", mcnt);
758 do
fa9a63c5 759 {
25fe55af 760 putchar ('/');
fa9a63c5 761 putchar (*p++);
25fe55af
RS
762 }
763 while (--mcnt);
764 break;
fa9a63c5
RM
765
766 case start_memory:
25fe55af
RS
767 mcnt = *p++;
768 printf ("/start_memory/%d/%d", mcnt, *p++);
769 break;
fa9a63c5
RM
770
771 case stop_memory:
25fe55af 772 mcnt = *p++;
fa9a63c5 773 printf ("/stop_memory/%d/%d", mcnt, *p++);
25fe55af 774 break;
fa9a63c5
RM
775
776 case duplicate:
777 printf ("/duplicate/%d", *p++);
778 break;
779
780 case anychar:
781 printf ("/anychar");
782 break;
783
784 case charset:
25fe55af
RS
785 case charset_not:
786 {
787 register int c, last = -100;
fa9a63c5
RM
788 register int in_range = 0;
789
790 printf ("/charset [%s",
25fe55af 791 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 792
25fe55af 793 assert (p + *p < pend);
fa9a63c5 794
25fe55af 795 for (c = 0; c < 256; c++)
fa9a63c5
RM
796 if (c / 8 < *p
797 && (p[1 + (c/8)] & (1 << (c % 8))))
798 {
799 /* Are we starting a range? */
800 if (last + 1 == c && ! in_range)
801 {
802 putchar ('-');
803 in_range = 1;
804 }
805 /* Have we broken a range? */
806 else if (last + 1 != c && in_range)
25fe55af 807 {
fa9a63c5
RM
808 putchar (last);
809 in_range = 0;
810 }
5e69f11e 811
fa9a63c5
RM
812 if (! in_range)
813 putchar (c);
814
815 last = c;
25fe55af 816 }
fa9a63c5
RM
817
818 if (in_range)
819 putchar (last);
820
821 putchar (']');
822
823 p += 1 + *p;
824 }
825 break;
826
827 case begline:
828 printf ("/begline");
25fe55af 829 break;
fa9a63c5
RM
830
831 case endline:
25fe55af
RS
832 printf ("/endline");
833 break;
fa9a63c5
RM
834
835 case on_failure_jump:
25fe55af
RS
836 extract_number_and_incr (&mcnt, &p);
837 printf ("/on_failure_jump to %d", p + mcnt - start);
838 break;
fa9a63c5
RM
839
840 case on_failure_keep_string_jump:
25fe55af
RS
841 extract_number_and_incr (&mcnt, &p);
842 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
843 break;
fa9a63c5
RM
844
845 case dummy_failure_jump:
25fe55af
RS
846 extract_number_and_incr (&mcnt, &p);
847 printf ("/dummy_failure_jump to %d", p + mcnt - start);
848 break;
fa9a63c5
RM
849
850 case push_dummy_failure:
25fe55af
RS
851 printf ("/push_dummy_failure");
852 break;
5e69f11e 853
25fe55af
RS
854 case maybe_pop_jump:
855 extract_number_and_incr (&mcnt, &p);
856 printf ("/maybe_pop_jump to %d", p + mcnt - start);
fa9a63c5
RM
857 break;
858
25fe55af 859 case pop_failure_jump:
fa9a63c5 860 extract_number_and_incr (&mcnt, &p);
25fe55af 861 printf ("/pop_failure_jump to %d", p + mcnt - start);
5e69f11e
RM
862 break;
863
25fe55af 864 case jump_past_alt:
fa9a63c5 865 extract_number_and_incr (&mcnt, &p);
25fe55af 866 printf ("/jump_past_alt to %d", p + mcnt - start);
5e69f11e
RM
867 break;
868
25fe55af 869 case jump:
fa9a63c5 870 extract_number_and_incr (&mcnt, &p);
25fe55af 871 printf ("/jump to %d", p + mcnt - start);
fa9a63c5
RM
872 break;
873
25fe55af
RS
874 case succeed_n:
875 extract_number_and_incr (&mcnt, &p);
876 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 877 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
25fe55af 878 break;
5e69f11e 879
25fe55af
RS
880 case jump_n:
881 extract_number_and_incr (&mcnt, &p);
882 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 883 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
25fe55af 884 break;
5e69f11e 885
25fe55af
RS
886 case set_number_at:
887 extract_number_and_incr (&mcnt, &p);
888 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 889 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
25fe55af 890 break;
5e69f11e 891
25fe55af 892 case wordbound:
fa9a63c5
RM
893 printf ("/wordbound");
894 break;
895
896 case notwordbound:
897 printf ("/notwordbound");
25fe55af 898 break;
fa9a63c5
RM
899
900 case wordbeg:
901 printf ("/wordbeg");
902 break;
5e69f11e 903
fa9a63c5
RM
904 case wordend:
905 printf ("/wordend");
5e69f11e 906
fa9a63c5
RM
907#ifdef emacs
908 case before_dot:
909 printf ("/before_dot");
25fe55af 910 break;
fa9a63c5
RM
911
912 case at_dot:
913 printf ("/at_dot");
25fe55af 914 break;
fa9a63c5
RM
915
916 case after_dot:
917 printf ("/after_dot");
25fe55af 918 break;
fa9a63c5
RM
919
920 case syntaxspec:
25fe55af 921 printf ("/syntaxspec");
fa9a63c5
RM
922 mcnt = *p++;
923 printf ("/%d", mcnt);
25fe55af 924 break;
5e69f11e 925
fa9a63c5 926 case notsyntaxspec:
25fe55af 927 printf ("/notsyntaxspec");
fa9a63c5
RM
928 mcnt = *p++;
929 printf ("/%d", mcnt);
930 break;
931#endif /* emacs */
932
933 case wordchar:
934 printf ("/wordchar");
25fe55af 935 break;
5e69f11e 936
fa9a63c5
RM
937 case notwordchar:
938 printf ("/notwordchar");
25fe55af 939 break;
fa9a63c5
RM
940
941 case begbuf:
942 printf ("/begbuf");
25fe55af 943 break;
fa9a63c5
RM
944
945 case endbuf:
946 printf ("/endbuf");
25fe55af 947 break;
fa9a63c5 948
25fe55af
RS
949 default:
950 printf ("?%d", *(p-1));
fa9a63c5
RM
951 }
952
953 putchar ('\n');
954 }
955
956 printf ("%d:\tend of pattern.\n", p - start);
957}
958
959
960void
961print_compiled_pattern (bufp)
962 struct re_pattern_buffer *bufp;
963{
964 unsigned char *buffer = bufp->buffer;
965
966 print_partial_compiled_pattern (buffer, buffer + bufp->used);
967 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
968
969 if (bufp->fastmap_accurate && bufp->fastmap)
970 {
971 printf ("fastmap: ");
972 print_fastmap (bufp->fastmap);
973 }
974
975 printf ("re_nsub: %d\t", bufp->re_nsub);
976 printf ("regs_alloc: %d\t", bufp->regs_allocated);
977 printf ("can_be_null: %d\t", bufp->can_be_null);
978 printf ("newline_anchor: %d\n", bufp->newline_anchor);
979 printf ("no_sub: %d\t", bufp->no_sub);
980 printf ("not_bol: %d\t", bufp->not_bol);
981 printf ("not_eol: %d\t", bufp->not_eol);
982 printf ("syntax: %d\n", bufp->syntax);
983 /* Perhaps we should print the translate table? */
984}
985
986
987void
988print_double_string (where, string1, size1, string2, size2)
989 const char *where;
990 const char *string1;
991 const char *string2;
992 int size1;
993 int size2;
994{
995 unsigned this_char;
5e69f11e 996
fa9a63c5
RM
997 if (where == NULL)
998 printf ("(null)");
999 else
1000 {
1001 if (FIRST_STRING_P (where))
25fe55af
RS
1002 {
1003 for (this_char = where - string1; this_char < size1; this_char++)
1004 putchar (string1[this_char]);
fa9a63c5 1005
25fe55af
RS
1006 where = string2;
1007 }
fa9a63c5
RM
1008
1009 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1010 putchar (string2[this_char]);
fa9a63c5
RM
1011 }
1012}
1013
1014#else /* not DEBUG */
1015
1016#undef assert
1017#define assert(e)
1018
1019#define DEBUG_STATEMENT(e)
1020#define DEBUG_PRINT1(x)
1021#define DEBUG_PRINT2(x1, x2)
1022#define DEBUG_PRINT3(x1, x2, x3)
1023#define DEBUG_PRINT4(x1, x2, x3, x4)
1024#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1025#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1026
1027#endif /* not DEBUG */
1028\f
1029/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1030 also be assigned to arbitrarily: each pattern buffer stores its own
1031 syntax, so it can be changed between regex compilations. */
1032/* This has no initializer because initialized variables in Emacs
1033 become read-only after dumping. */
1034reg_syntax_t re_syntax_options;
1035
1036
1037/* Specify the precise syntax of regexps for compilation. This provides
1038 for compatibility for various utilities which historically have
1039 different, incompatible syntaxes.
1040
1041 The argument SYNTAX is a bit mask comprised of the various bits
25fe55af 1042 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1043
1044reg_syntax_t
1045re_set_syntax (syntax)
1046 reg_syntax_t syntax;
1047{
1048 reg_syntax_t ret = re_syntax_options;
5e69f11e 1049
fa9a63c5
RM
1050 re_syntax_options = syntax;
1051 return ret;
1052}
1053\f
1054/* This table gives an error message for each of the error codes listed
25fe55af 1055 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1056 POSIX doesn't require that we do anything for REG_NOERROR,
25fe55af 1057 but why not be nice? */
fa9a63c5
RM
1058
1059static const char *re_error_msgid[] =
5e69f11e
RM
1060 {
1061 gettext_noop ("Success"), /* REG_NOERROR */
1062 gettext_noop ("No match"), /* REG_NOMATCH */
1063 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1064 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1065 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1066 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1067 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1068 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1069 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1070 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1071 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1072 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1073 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1074 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1075 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1076 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1077 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
1078 };
1079\f
25fe55af 1080/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1081
1082/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1083 searching and matching functions should not call alloca. On some
1084 systems, alloca is implemented in terms of malloc, and if we're
1085 using the relocating allocator routines, then malloc could cause a
1086 relocation, which might (if the strings being searched are in the
1087 ralloc heap) shift the data out from underneath the regexp
1088 routines.
1089
5e69f11e 1090 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1091 processes input from X in a signal handler; processing X input may
1092 call malloc; if input arrives while a matching routine is calling
1093 malloc, then we're scrod. But Emacs can't just block input while
1094 calling matching routines; then we don't notice interrupts when
1095 they come in. So, Emacs blocks input around all regexp calls
1096 except the matching calls, which it leaves unprotected, in the
1097 faith that they will not malloc. */
1098
1099/* Normally, this is fine. */
1100#define MATCH_MAY_ALLOCATE
1101
1102/* When using GNU C, we are not REALLY using the C alloca, no matter
1103 what config.h may say. So don't take precautions for it. */
1104#ifdef __GNUC__
1105#undef C_ALLOCA
1106#endif
1107
1108/* The match routines may not allocate if (1) they would do it with malloc
1109 and (2) it's not safe for them to use malloc.
1110 Note that if REL_ALLOC is defined, matching would not use malloc for the
1111 failure stack, but we would still use it for the register vectors;
25fe55af 1112 so REL_ALLOC should not affect this. */
fa9a63c5
RM
1113#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1114#undef MATCH_MAY_ALLOCATE
1115#endif
1116
1117\f
1118/* Failure stack declarations and macros; both re_compile_fastmap and
1119 re_match_2 use a failure stack. These have to be macros because of
1120 REGEX_ALLOCATE_STACK. */
5e69f11e 1121
fa9a63c5 1122
320a2a73 1123/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1124 when matching. If this number is exceeded, we allocate more
1125 space, so it is not a hard limit. */
1126#ifndef INIT_FAILURE_ALLOC
320a2a73 1127#define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1128#endif
1129
1130/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1131 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1132 This is a variable only so users of regex can assign to it; we never
25fe55af 1133 change it ourselves. */
fa9a63c5 1134#if defined (MATCH_MAY_ALLOCATE)
320a2a73
KH
1135/* Note that 4400 is enough to cause a crash on Alpha OSF/1,
1136 whose default stack limit is 2mb. In order for a larger
1137 value to work reliably, you have to try to make it accord
1138 with the process stack limit. */
1139int re_max_failures = 40000;
fa9a63c5 1140#else
320a2a73 1141int re_max_failures = 4000;
fa9a63c5
RM
1142#endif
1143
1144union fail_stack_elt
1145{
1146 unsigned char *pointer;
1147 int integer;
1148};
1149
1150typedef union fail_stack_elt fail_stack_elt_t;
1151
1152typedef struct
1153{
1154 fail_stack_elt_t *stack;
1155 unsigned size;
1156 unsigned avail; /* Offset of next open position. */
1157} fail_stack_type;
1158
1159#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1160#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1161#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1162
1163
1164/* Define macros to initialize and free the failure stack.
1165 Do `return -2' if the alloc fails. */
1166
1167#ifdef MATCH_MAY_ALLOCATE
1168#define INIT_FAIL_STACK() \
1169 do { \
1170 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1171 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1172 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1173 \
1174 if (fail_stack.stack == NULL) \
1175 return -2; \
1176 \
1177 fail_stack.size = INIT_FAILURE_ALLOC; \
1178 fail_stack.avail = 0; \
1179 } while (0)
1180
1181#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1182#else
1183#define INIT_FAIL_STACK() \
1184 do { \
1185 fail_stack.avail = 0; \
1186 } while (0)
1187
1188#define RESET_FAIL_STACK()
1189#endif
1190
1191
320a2a73
KH
1192/* Double the size of FAIL_STACK, up to a limit
1193 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1194
1195 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1196 allocating space for it or it was already too large.
1197
25fe55af 1198 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1199
320a2a73
KH
1200/* Factor to increase the failure stack size by
1201 when we increase it.
1202 This used to be 2, but 2 was too wasteful
1203 because the old discarded stacks added up to as much space
1204 were as ultimate, maximum-size stack. */
1205#define FAIL_STACK_GROWTH_FACTOR 4
1206
1207#define GROW_FAIL_STACK(fail_stack) \
1208 ((fail_stack).size >= re_max_failures * TYPICAL_FAILURE_SIZE \
fa9a63c5 1209 ? 0 \
320a2a73
KH
1210 : ((fail_stack).stack \
1211 = (fail_stack_elt_t *) \
25fe55af
RS
1212 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1213 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1214 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1215 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1216 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1217 \
1218 (fail_stack).stack == NULL \
1219 ? 0 \
320a2a73
KH
1220 : (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1221 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1222 * FAIL_STACK_GROWTH_FACTOR)), \
25fe55af 1223 1)))
fa9a63c5
RM
1224
1225
5e69f11e 1226/* Push pointer POINTER on FAIL_STACK.
fa9a63c5
RM
1227 Return 1 if was able to do so and 0 if ran out of memory allocating
1228 space to do so. */
1229#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1230 ((FAIL_STACK_FULL () \
320a2a73 1231 && !GROW_FAIL_STACK (FAIL_STACK)) \
fa9a63c5
RM
1232 ? 0 \
1233 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1234 1))
1235
1236/* Push a pointer value onto the failure stack.
1237 Assumes the variable `fail_stack'. Probably should only
25fe55af 1238 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1239#define PUSH_FAILURE_POINTER(item) \
1240 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1241
1242/* This pushes an integer-valued item onto the failure stack.
1243 Assumes the variable `fail_stack'. Probably should only
25fe55af 1244 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1245#define PUSH_FAILURE_INT(item) \
1246 fail_stack.stack[fail_stack.avail++].integer = (item)
1247
1248/* Push a fail_stack_elt_t value onto the failure stack.
1249 Assumes the variable `fail_stack'. Probably should only
25fe55af 1250 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1251#define PUSH_FAILURE_ELT(item) \
1252 fail_stack.stack[fail_stack.avail++] = (item)
1253
1254/* These three POP... operations complement the three PUSH... operations.
1255 All assume that `fail_stack' is nonempty. */
1256#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1257#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1258#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1259
1260/* Used to omit pushing failure point id's when we're not debugging. */
1261#ifdef DEBUG
1262#define DEBUG_PUSH PUSH_FAILURE_INT
1263#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1264#else
1265#define DEBUG_PUSH(item)
1266#define DEBUG_POP(item_addr)
1267#endif
1268
1269
1270/* Push the information about the state we will need
5e69f11e
RM
1271 if we ever fail back to it.
1272
fa9a63c5 1273 Requires variables fail_stack, regstart, regend, reg_info, and
320a2a73 1274 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1275 declared.
5e69f11e 1276
fa9a63c5
RM
1277 Does `return FAILURE_CODE' if runs out of memory. */
1278
1279#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1280 do { \
1281 char *destination; \
1282 /* Must be int, so when we don't save any registers, the arithmetic \
1283 of 0 + -1 isn't done as unsigned. */ \
1284 int this_reg; \
25fe55af 1285 \
fa9a63c5
RM
1286 DEBUG_STATEMENT (failure_id++); \
1287 DEBUG_STATEMENT (nfailure_points_pushed++); \
1288 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1289 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
25fe55af 1290 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
fa9a63c5
RM
1291 \
1292 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
25fe55af 1293 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
fa9a63c5
RM
1294 \
1295 /* Ensure we have enough space allocated for what we will push. */ \
1296 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1297 { \
320a2a73 1298 if (!GROW_FAIL_STACK (fail_stack)) \
25fe55af 1299 return failure_code; \
fa9a63c5 1300 \
25fe55af 1301 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
fa9a63c5 1302 (fail_stack).size); \
25fe55af 1303 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
fa9a63c5
RM
1304 } \
1305 \
1306 /* Push the info, starting with the registers. */ \
1307 DEBUG_PRINT1 ("\n"); \
1308 \
68d96f02 1309 if (1) \
faec11db
RS
1310 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1311 this_reg++) \
1312 { \
1313 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1314 DEBUG_STATEMENT (num_regs_pushed++); \
fa9a63c5 1315 \
faec11db
RS
1316 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1317 PUSH_FAILURE_POINTER (regstart[this_reg]); \
fa9a63c5 1318 \
faec11db
RS
1319 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1320 PUSH_FAILURE_POINTER (regend[this_reg]); \
1321 \
1322 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1323 DEBUG_PRINT2 (" match_null=%d", \
1324 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1325 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1326 DEBUG_PRINT2 (" matched_something=%d", \
1327 MATCHED_SOMETHING (reg_info[this_reg])); \
1328 DEBUG_PRINT2 (" ever_matched=%d", \
1329 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1330 DEBUG_PRINT1 ("\n"); \
1331 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1332 } \
fa9a63c5
RM
1333 \
1334 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1335 PUSH_FAILURE_INT (lowest_active_reg); \
1336 \
1337 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1338 PUSH_FAILURE_INT (highest_active_reg); \
1339 \
1340 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1341 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1342 PUSH_FAILURE_POINTER (pattern_place); \
1343 \
1344 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
25fe55af 1345 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
fa9a63c5
RM
1346 size2); \
1347 DEBUG_PRINT1 ("'\n"); \
1348 PUSH_FAILURE_POINTER (string_place); \
1349 \
1350 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1351 DEBUG_PUSH (failure_id); \
1352 } while (0)
1353
1354/* This is the number of items that are pushed and popped on the stack
1355 for each register. */
1356#define NUM_REG_ITEMS 3
1357
1358/* Individual items aside from the registers. */
1359#ifdef DEBUG
1360#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1361#else
1362#define NUM_NONREG_ITEMS 4
1363#endif
1364
320a2a73
KH
1365/* Estimate the size of data pushed by a typical failure stack entry.
1366 An estimate is all we need, because all we use this for
1367 is to choose a limit for how big to make the failure stack. */
1368
1369#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1370
320a2a73
KH
1371/* This is how many items we actually use for a failure point.
1372 It depends on the regexp. */
faec11db 1373#define NUM_FAILURE_ITEMS \
68d96f02 1374 (((0 \
faec11db
RS
1375 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1376 * NUM_REG_ITEMS) \
1377 + NUM_NONREG_ITEMS)
fa9a63c5
RM
1378
1379/* How many items can still be added to the stack without overflowing it. */
1380#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1381
1382
1383/* Pops what PUSH_FAIL_STACK pushes.
1384
1385 We restore into the parameters, all of which should be lvalues:
1386 STR -- the saved data position.
1387 PAT -- the saved pattern position.
1388 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1389 REGSTART, REGEND -- arrays of string positions.
1390 REG_INFO -- array of information about each subexpression.
5e69f11e 1391
fa9a63c5 1392 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1393 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5
RM
1394
1395#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1396{ \
1397 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1398 int this_reg; \
1399 const unsigned char *string_temp; \
1400 \
1401 assert (!FAIL_STACK_EMPTY ()); \
1402 \
1403 /* Remove failure points and point to how many regs pushed. */ \
1404 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1405 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1406 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5
RM
1407 \
1408 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1409 \
1410 DEBUG_POP (&failure_id); \
1411 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1412 \
1413 /* If the saved string location is NULL, it came from an \
1414 on_failure_keep_string_jump opcode, and we want to throw away the \
1415 saved NULL, thus retaining our current position in the string. */ \
1416 string_temp = POP_FAILURE_POINTER (); \
1417 if (string_temp != NULL) \
1418 str = (const char *) string_temp; \
1419 \
1420 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1421 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1422 DEBUG_PRINT1 ("'\n"); \
1423 \
1424 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1425 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1426 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1427 \
1428 /* Restore register info. */ \
1429 high_reg = (unsigned) POP_FAILURE_INT (); \
1430 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1431 \
1432 low_reg = (unsigned) POP_FAILURE_INT (); \
1433 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1434 \
68d96f02 1435 if (1) \
faec11db
RS
1436 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1437 { \
25fe55af 1438 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
fa9a63c5 1439 \
faec11db 1440 reg_info[this_reg].word = POP_FAILURE_ELT (); \
25fe55af 1441 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
fa9a63c5 1442 \
faec11db 1443 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
25fe55af 1444 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
fa9a63c5 1445 \
faec11db 1446 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
25fe55af 1447 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
faec11db 1448 } \
6676cb1c
RS
1449 else \
1450 { \
1451 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1452 { \
4fcecab1 1453 reg_info[this_reg].word.integer = 0; \
6676cb1c
RS
1454 regend[this_reg] = 0; \
1455 regstart[this_reg] = 0; \
1456 } \
1457 highest_active_reg = high_reg; \
1458 } \
fa9a63c5
RM
1459 \
1460 set_regs_matched_done = 0; \
1461 DEBUG_STATEMENT (nfailure_points_popped++); \
1462} /* POP_FAILURE_POINT */
1463
1464
1465\f
1466/* Structure for per-register (a.k.a. per-group) information.
1467 Other register information, such as the
1468 starting and ending positions (which are addresses), and the list of
1469 inner groups (which is a bits list) are maintained in separate
5e69f11e
RM
1470 variables.
1471
fa9a63c5
RM
1472 We are making a (strictly speaking) nonportable assumption here: that
1473 the compiler will pack our bit fields into something that fits into
1474 the type of `word', i.e., is something that fits into one item on the
1475 failure stack. */
1476
1477typedef union
1478{
1479 fail_stack_elt_t word;
1480 struct
1481 {
1482 /* This field is one if this group can match the empty string,
25fe55af 1483 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
fa9a63c5
RM
1484#define MATCH_NULL_UNSET_VALUE 3
1485 unsigned match_null_string_p : 2;
1486 unsigned is_active : 1;
1487 unsigned matched_something : 1;
1488 unsigned ever_matched_something : 1;
1489 } bits;
1490} register_info_type;
1491
1492#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1493#define IS_ACTIVE(R) ((R).bits.is_active)
1494#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1495#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1496
1497
1498/* Call this when have matched a real character; it sets `matched' flags
1499 for the subexpressions which we are currently inside. Also records
1500 that those subexprs have matched. */
1501#define SET_REGS_MATCHED() \
1502 do \
1503 { \
1504 if (!set_regs_matched_done) \
1505 { \
1506 unsigned r; \
1507 set_regs_matched_done = 1; \
1508 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1509 { \
1510 MATCHED_SOMETHING (reg_info[r]) \
1511 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1512 = 1; \
1513 } \
1514 } \
1515 } \
1516 while (0)
1517
1518/* Registers are set to a sentinel when they haven't yet matched. */
1519static char reg_unset_dummy;
1520#define REG_UNSET_VALUE (&reg_unset_dummy)
1521#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1522\f
1523/* Subroutine declarations and macros for regex_compile. */
1524
1525static void store_op1 (), store_op2 ();
1526static void insert_op1 (), insert_op2 ();
1527static boolean at_begline_loc_p (), at_endline_loc_p ();
1528static boolean group_in_compile_stack ();
1529static reg_errcode_t compile_range ();
1530
5e69f11e 1531/* Fetch the next character in the uncompiled pattern---translating it
fa9a63c5
RM
1532 if necessary. Also cast from a signed character in the constant
1533 string passed to us by the user to an unsigned char that we can use
1534 as an array index (in, e.g., `translate'). */
6676cb1c 1535#ifndef PATFETCH
fa9a63c5
RM
1536#define PATFETCH(c) \
1537 do {if (p == pend) return REG_EEND; \
1538 c = (unsigned char) *p++; \
6676cb1c 1539 if (translate) c = (unsigned char) translate[c]; \
fa9a63c5 1540 } while (0)
6676cb1c 1541#endif
fa9a63c5
RM
1542
1543/* Fetch the next character in the uncompiled pattern, with no
25fe55af 1544 translation. */
fa9a63c5
RM
1545#define PATFETCH_RAW(c) \
1546 do {if (p == pend) return REG_EEND; \
25fe55af 1547 c = (unsigned char) *p++; \
fa9a63c5
RM
1548 } while (0)
1549
1550/* Go backwards one character in the pattern. */
1551#define PATUNFETCH p--
1552
1553
1554/* If `translate' is non-null, return translate[D], else just D. We
1555 cast the subscript to translate because some data is declared as
1556 `char *', to avoid warnings when a string constant is passed. But
1557 when we use a character as a subscript we must make it unsigned. */
6676cb1c
RS
1558#ifndef TRANSLATE
1559#define TRANSLATE(d) \
bc192b5b 1560 (translate ? (unsigned char) RE_TRANSLATE (translate, (unsigned char) (d)) : (d))
6676cb1c 1561#endif
fa9a63c5
RM
1562
1563
1564/* Macros for outputting the compiled pattern into `buffer'. */
1565
1566/* If the buffer isn't allocated when it comes in, use this. */
1567#define INIT_BUF_SIZE 32
1568
25fe55af 1569/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5
RM
1570#define GET_BUFFER_SPACE(n) \
1571 while (b - bufp->buffer + (n) > bufp->allocated) \
1572 EXTEND_BUFFER ()
1573
1574/* Make sure we have one more byte of buffer space and then add C to it. */
1575#define BUF_PUSH(c) \
1576 do { \
1577 GET_BUFFER_SPACE (1); \
1578 *b++ = (unsigned char) (c); \
1579 } while (0)
1580
1581
1582/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1583#define BUF_PUSH_2(c1, c2) \
1584 do { \
1585 GET_BUFFER_SPACE (2); \
1586 *b++ = (unsigned char) (c1); \
1587 *b++ = (unsigned char) (c2); \
1588 } while (0)
1589
1590
25fe55af 1591/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1592#define BUF_PUSH_3(c1, c2, c3) \
1593 do { \
1594 GET_BUFFER_SPACE (3); \
1595 *b++ = (unsigned char) (c1); \
1596 *b++ = (unsigned char) (c2); \
1597 *b++ = (unsigned char) (c3); \
1598 } while (0)
1599
1600
1601/* Store a jump with opcode OP at LOC to location TO. We store a
25fe55af 1602 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1603#define STORE_JUMP(op, loc, to) \
1604 store_op1 (op, loc, (to) - (loc) - 3)
1605
1606/* Likewise, for a two-argument jump. */
1607#define STORE_JUMP2(op, loc, to, arg) \
1608 store_op2 (op, loc, (to) - (loc) - 3, arg)
1609
25fe55af 1610/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1611#define INSERT_JUMP(op, loc, to) \
1612 insert_op1 (op, loc, (to) - (loc) - 3, b)
1613
1614/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1615#define INSERT_JUMP2(op, loc, to, arg) \
1616 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1617
1618
1619/* This is not an arbitrary limit: the arguments which represent offsets
25fe55af 1620 into the pattern are two bytes long. So if 2^16 bytes turns out to
fa9a63c5
RM
1621 be too small, many things would have to change. */
1622#define MAX_BUF_SIZE (1L << 16)
1623
1624
1625/* Extend the buffer by twice its current size via realloc and
1626 reset the pointers that pointed into the old block to point to the
1627 correct places in the new one. If extending the buffer results in it
25fe55af 1628 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
fa9a63c5 1629#define EXTEND_BUFFER() \
25fe55af 1630 do { \
fa9a63c5 1631 unsigned char *old_buffer = bufp->buffer; \
25fe55af 1632 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1633 return REG_ESIZE; \
1634 bufp->allocated <<= 1; \
1635 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1636 bufp->allocated = MAX_BUF_SIZE; \
fa9a63c5
RM
1637 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1638 if (bufp->buffer == NULL) \
1639 return REG_ESPACE; \
1640 /* If the buffer moved, move all the pointers into it. */ \
1641 if (old_buffer != bufp->buffer) \
1642 { \
25fe55af
RS
1643 b = (b - old_buffer) + bufp->buffer; \
1644 begalt = (begalt - old_buffer) + bufp->buffer; \
1645 if (fixup_alt_jump) \
1646 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1647 if (laststart) \
1648 laststart = (laststart - old_buffer) + bufp->buffer; \
1649 if (pending_exact) \
1650 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
fa9a63c5
RM
1651 } \
1652 } while (0)
1653
1654
1655/* Since we have one byte reserved for the register number argument to
1656 {start,stop}_memory, the maximum number of groups we can report
1657 things about is what fits in that byte. */
1658#define MAX_REGNUM 255
1659
1660/* But patterns can have more than `MAX_REGNUM' registers. We just
1661 ignore the excess. */
1662typedef unsigned regnum_t;
1663
1664
1665/* Macros for the compile stack. */
1666
1667/* Since offsets can go either forwards or backwards, this type needs to
25fe55af 1668 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
fa9a63c5
RM
1669typedef int pattern_offset_t;
1670
1671typedef struct
1672{
1673 pattern_offset_t begalt_offset;
1674 pattern_offset_t fixup_alt_jump;
1675 pattern_offset_t inner_group_offset;
5e69f11e 1676 pattern_offset_t laststart_offset;
fa9a63c5
RM
1677 regnum_t regnum;
1678} compile_stack_elt_t;
1679
1680
1681typedef struct
1682{
1683 compile_stack_elt_t *stack;
1684 unsigned size;
1685 unsigned avail; /* Offset of next open position. */
1686} compile_stack_type;
1687
1688
1689#define INIT_COMPILE_STACK_SIZE 32
1690
1691#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1692#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1693
25fe55af 1694/* The next available element. */
fa9a63c5
RM
1695#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1696
1697
b18215fc
RS
1698/* Structure to manage work area for range table. */
1699struct range_table_work_area
1700{
1701 int *table; /* actual work area. */
1702 int allocated; /* allocated size for work area in bytes. */
25fe55af 1703 int used; /* actually used size in words. */
b18215fc
RS
1704};
1705
1706/* Make sure that WORK_AREA can hold more N multibyte characters. */
1707#define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1708 do { \
1709 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1710 { \
1711 (work_area).allocated += 16 * sizeof (int); \
1712 if ((work_area).table) \
1713 (work_area).table \
1714 = (int *) realloc ((work_area).table, (work_area).allocated); \
1715 else \
1716 (work_area).table \
1717 = (int *) malloc ((work_area).allocated); \
1718 if ((work_area).table == 0) \
1719 FREE_STACK_RETURN (REG_ESPACE); \
1720 } \
1721 } while (0)
1722
1723/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1724#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1725 do { \
1726 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1727 (work_area).table[(work_area).used++] = (range_start); \
1728 (work_area).table[(work_area).used++] = (range_end); \
1729 } while (0)
1730
25fe55af 1731/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1732#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1733 do { \
1734 if ((work_area).table) \
1735 free ((work_area).table); \
1736 } while (0)
1737
1738#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0)
1739#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1740#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1741
1742
fa9a63c5 1743/* Set the bit for character C in a list. */
25fe55af
RS
1744#define SET_LIST_BIT(c) \
1745 (b[((unsigned char) (c)) / BYTEWIDTH] \
fa9a63c5
RM
1746 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1747
1748
1749/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1750#define GET_UNSIGNED_NUMBER(num) \
fa9a63c5
RM
1751 { if (p != pend) \
1752 { \
25fe55af
RS
1753 PATFETCH (c); \
1754 while (ISDIGIT (c)) \
1755 { \
1756 if (num < 0) \
1757 num = 0; \
1758 num = num * 10 + c - '0'; \
1759 if (p == pend) \
1760 break; \
1761 PATFETCH (c); \
1762 } \
1763 } \
5e69f11e 1764 }
fa9a63c5
RM
1765
1766#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1767
1768#define IS_CHAR_CLASS(string) \
1769 (STREQ (string, "alpha") || STREQ (string, "upper") \
1770 || STREQ (string, "lower") || STREQ (string, "digit") \
1771 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1772 || STREQ (string, "space") || STREQ (string, "print") \
1773 || STREQ (string, "punct") || STREQ (string, "graph") \
1774 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1775\f
1776#ifndef MATCH_MAY_ALLOCATE
1777
1778/* If we cannot allocate large objects within re_match_2_internal,
1779 we make the fail stack and register vectors global.
1780 The fail stack, we grow to the maximum size when a regexp
1781 is compiled.
1782 The register vectors, we adjust in size each time we
1783 compile a regexp, according to the number of registers it needs. */
1784
1785static fail_stack_type fail_stack;
1786
1787/* Size with which the following vectors are currently allocated.
1788 That is so we can make them bigger as needed,
25fe55af 1789 but never make them smaller. */
fa9a63c5
RM
1790static int regs_allocated_size;
1791
25fe55af 1792static const char ** regstart, ** regend;
fa9a63c5
RM
1793static const char ** old_regstart, ** old_regend;
1794static const char **best_regstart, **best_regend;
5e69f11e 1795static register_info_type *reg_info;
fa9a63c5
RM
1796static const char **reg_dummy;
1797static register_info_type *reg_info_dummy;
1798
1799/* Make the register vectors big enough for NUM_REGS registers,
25fe55af 1800 but don't make them smaller. */
fa9a63c5
RM
1801
1802static
1803regex_grow_registers (num_regs)
1804 int num_regs;
1805{
1806 if (num_regs > regs_allocated_size)
1807 {
1808 RETALLOC_IF (regstart, num_regs, const char *);
1809 RETALLOC_IF (regend, num_regs, const char *);
1810 RETALLOC_IF (old_regstart, num_regs, const char *);
1811 RETALLOC_IF (old_regend, num_regs, const char *);
1812 RETALLOC_IF (best_regstart, num_regs, const char *);
1813 RETALLOC_IF (best_regend, num_regs, const char *);
1814 RETALLOC_IF (reg_info, num_regs, register_info_type);
1815 RETALLOC_IF (reg_dummy, num_regs, const char *);
1816 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1817
1818 regs_allocated_size = num_regs;
1819 }
1820}
1821
1822#endif /* not MATCH_MAY_ALLOCATE */
1823\f
1824/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1825 Returns one of error codes defined in `regex.h', or zero for success.
1826
1827 Assumes the `allocated' (and perhaps `buffer') and `translate'
1828 fields are set in BUFP on entry.
1829
1830 If it succeeds, results are put in BUFP (if it returns an error, the
1831 contents of BUFP are undefined):
1832 `buffer' is the compiled pattern;
1833 `syntax' is set to SYNTAX;
1834 `used' is set to the length of the compiled pattern;
1835 `fastmap_accurate' is zero;
1836 `re_nsub' is the number of subexpressions in PATTERN;
1837 `not_bol' and `not_eol' are zero;
5e69f11e 1838
fa9a63c5
RM
1839 The `fastmap' and `newline_anchor' fields are neither
1840 examined nor set. */
1841
1842/* Return, freeing storage we allocated. */
1843#define FREE_STACK_RETURN(value) \
b18215fc
RS
1844 do { \
1845 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
1846 free (compile_stack.stack); \
1847 return value; \
1848 } while (0)
fa9a63c5
RM
1849
1850static reg_errcode_t
1851regex_compile (pattern, size, syntax, bufp)
1852 const char *pattern;
1853 int size;
1854 reg_syntax_t syntax;
1855 struct re_pattern_buffer *bufp;
1856{
1857 /* We fetch characters from PATTERN here. Even though PATTERN is
1858 `char *' (i.e., signed), we declare these variables as unsigned, so
1859 they can be reliably used as array indices. */
b18215fc 1860 register unsigned int c, c1;
5e69f11e 1861
fa9a63c5
RM
1862 /* A random temporary spot in PATTERN. */
1863 const char *p1;
1864
1865 /* Points to the end of the buffer, where we should append. */
1866 register unsigned char *b;
5e69f11e 1867
fa9a63c5
RM
1868 /* Keeps track of unclosed groups. */
1869 compile_stack_type compile_stack;
1870
1871 /* Points to the current (ending) position in the pattern. */
1872 const char *p = pattern;
1873 const char *pend = pattern + size;
5e69f11e 1874
fa9a63c5 1875 /* How to translate the characters in the pattern. */
6676cb1c 1876 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
1877
1878 /* Address of the count-byte of the most recently inserted `exactn'
1879 command. This makes it possible to tell if a new exact-match
1880 character can be added to that command or if the character requires
1881 a new `exactn' command. */
1882 unsigned char *pending_exact = 0;
1883
1884 /* Address of start of the most recently finished expression.
1885 This tells, e.g., postfix * where to find the start of its
1886 operand. Reset at the beginning of groups and alternatives. */
1887 unsigned char *laststart = 0;
1888
1889 /* Address of beginning of regexp, or inside of last group. */
1890 unsigned char *begalt;
1891
1892 /* Place in the uncompiled pattern (i.e., the {) to
1893 which to go back if the interval is invalid. */
1894 const char *beg_interval;
5e69f11e 1895
fa9a63c5 1896 /* Address of the place where a forward jump should go to the end of
25fe55af 1897 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
1898 last -- ends with a forward jump of this sort. */
1899 unsigned char *fixup_alt_jump = 0;
1900
1901 /* Counts open-groups as they are encountered. Remembered for the
1902 matching close-group on the compile stack, so the same register
1903 number is put in the stop_memory as the start_memory. */
1904 regnum_t regnum = 0;
1905
b18215fc
RS
1906 /* Work area for range table of charset. */
1907 struct range_table_work_area range_table_work;
1908
fa9a63c5
RM
1909#ifdef DEBUG
1910 DEBUG_PRINT1 ("\nCompiling pattern: ");
1911 if (debug)
1912 {
1913 unsigned debug_count;
5e69f11e 1914
fa9a63c5 1915 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 1916 putchar (pattern[debug_count]);
fa9a63c5
RM
1917 putchar ('\n');
1918 }
1919#endif /* DEBUG */
1920
1921 /* Initialize the compile stack. */
1922 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1923 if (compile_stack.stack == NULL)
1924 return REG_ESPACE;
1925
1926 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1927 compile_stack.avail = 0;
1928
b18215fc
RS
1929 range_table_work.table = 0;
1930 range_table_work.allocated = 0;
1931
fa9a63c5
RM
1932 /* Initialize the pattern buffer. */
1933 bufp->syntax = syntax;
1934 bufp->fastmap_accurate = 0;
1935 bufp->not_bol = bufp->not_eol = 0;
1936
1937 /* Set `used' to zero, so that if we return an error, the pattern
1938 printer (for debugging) will think there's no pattern. We reset it
1939 at the end. */
1940 bufp->used = 0;
5e69f11e 1941
fa9a63c5 1942 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 1943 bufp->re_nsub = 0;
fa9a63c5 1944
b18215fc
RS
1945#ifdef emacs
1946 /* bufp->multibyte is set before regex_compile is called, so don't alter
1947 it. */
1948#else /* not emacs */
1949 /* Nothing is recognized as a multibyte character. */
1950 bufp->multibyte = 0;
1951#endif
1952
fa9a63c5
RM
1953#if !defined (emacs) && !defined (SYNTAX_TABLE)
1954 /* Initialize the syntax table. */
1955 init_syntax_once ();
1956#endif
1957
1958 if (bufp->allocated == 0)
1959 {
1960 if (bufp->buffer)
1961 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
1962 enough space. This loses if buffer's address is bogus, but
1963 that is the user's responsibility. */
1964 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1965 }
fa9a63c5 1966 else
25fe55af
RS
1967 { /* Caller did not allocate a buffer. Do it for them. */
1968 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1969 }
fa9a63c5
RM
1970 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1971
1972 bufp->allocated = INIT_BUF_SIZE;
1973 }
1974
1975 begalt = b = bufp->buffer;
1976
1977 /* Loop through the uncompiled pattern until we're at the end. */
1978 while (p != pend)
1979 {
1980 PATFETCH (c);
1981
1982 switch (c)
25fe55af
RS
1983 {
1984 case '^':
1985 {
1986 if ( /* If at start of pattern, it's an operator. */
1987 p == pattern + 1
1988 /* If context independent, it's an operator. */
1989 || syntax & RE_CONTEXT_INDEP_ANCHORS
1990 /* Otherwise, depends on what's come before. */
1991 || at_begline_loc_p (pattern, p, syntax))
1992 BUF_PUSH (begline);
1993 else
1994 goto normal_char;
1995 }
1996 break;
1997
1998
1999 case '$':
2000 {
2001 if ( /* If at end of pattern, it's an operator. */
2002 p == pend
2003 /* If context independent, it's an operator. */
2004 || syntax & RE_CONTEXT_INDEP_ANCHORS
2005 /* Otherwise, depends on what's next. */
2006 || at_endline_loc_p (p, pend, syntax))
2007 BUF_PUSH (endline);
2008 else
2009 goto normal_char;
2010 }
2011 break;
fa9a63c5
RM
2012
2013
2014 case '+':
25fe55af
RS
2015 case '?':
2016 if ((syntax & RE_BK_PLUS_QM)
2017 || (syntax & RE_LIMITED_OPS))
2018 goto normal_char;
2019 handle_plus:
2020 case '*':
2021 /* If there is no previous pattern... */
2022 if (!laststart)
2023 {
2024 if (syntax & RE_CONTEXT_INVALID_OPS)
2025 FREE_STACK_RETURN (REG_BADRPT);
2026 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2027 goto normal_char;
2028 }
2029
2030 {
2031 /* Are we optimizing this jump? */
2032 boolean keep_string_p = false;
2033
2034 /* 1 means zero (many) matches is allowed. */
2035 char zero_times_ok = 0, many_times_ok = 0;
2036
2037 /* If there is a sequence of repetition chars, collapse it
2038 down to just one (the right one). We can't combine
2039 interval operators with these because of, e.g., `a{2}*',
2040 which should only match an even number of `a's. */
2041
2042 for (;;)
2043 {
2044 zero_times_ok |= c != '+';
2045 many_times_ok |= c != '?';
2046
2047 if (p == pend)
2048 break;
2049
2050 PATFETCH (c);
2051
2052 if (c == '*'
2053 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2054 ;
2055
2056 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2057 {
2058 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2059
2060 PATFETCH (c1);
2061 if (!(c1 == '+' || c1 == '?'))
2062 {
2063 PATUNFETCH;
2064 PATUNFETCH;
2065 break;
2066 }
2067
2068 c = c1;
2069 }
2070 else
2071 {
2072 PATUNFETCH;
2073 break;
2074 }
2075
2076 /* If we get here, we found another repeat character. */
2077 }
2078
2079 /* Star, etc. applied to an empty pattern is equivalent
2080 to an empty pattern. */
2081 if (!laststart)
2082 break;
2083
2084 /* Now we know whether or not zero matches is allowed
2085 and also whether or not two or more matches is allowed. */
2086 if (many_times_ok)
2087 { /* More than one repetition is allowed, so put in at the
2088 end a backward relative jump from `b' to before the next
2089 jump we're going to put in below (which jumps from
2090 laststart to after this jump).
2091
2092 But if we are at the `*' in the exact sequence `.*\n',
2093 insert an unconditional jump backwards to the .,
2094 instead of the beginning of the loop. This way we only
2095 push a failure point once, instead of every time
2096 through the loop. */
2097 assert (p - 1 > pattern);
2098
2099 /* Allocate the space for the jump. */
2100 GET_BUFFER_SPACE (3);
2101
2102 /* We know we are not at the first character of the pattern,
2103 because laststart was nonzero. And we've already
2104 incremented `p', by the way, to be the character after
2105 the `*'. Do we have to do something analogous here
2106 for null bytes, because of RE_DOT_NOT_NULL? */
2107 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
fa9a63c5 2108 && zero_times_ok
25fe55af
RS
2109 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2110 && !(syntax & RE_DOT_NEWLINE))
2111 { /* We have .*\n. */
2112 STORE_JUMP (jump, b, laststart);
2113 keep_string_p = true;
2114 }
2115 else
2116 /* Anything else. */
2117 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2118
2119 /* We've added more stuff to the buffer. */
2120 b += 3;
2121 }
2122
2123 /* On failure, jump from laststart to b + 3, which will be the
2124 end of the buffer after this jump is inserted. */
2125 GET_BUFFER_SPACE (3);
2126 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2127 : on_failure_jump,
2128 laststart, b + 3);
2129 pending_exact = 0;
2130 b += 3;
2131
2132 if (!zero_times_ok)
2133 {
2134 /* At least one repetition is required, so insert a
2135 `dummy_failure_jump' before the initial
2136 `on_failure_jump' instruction of the loop. This
2137 effects a skip over that instruction the first time
2138 we hit that loop. */
2139 GET_BUFFER_SPACE (3);
2140 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2141 b += 3;
2142 }
2143 }
fa9a63c5
RM
2144 break;
2145
2146
2147 case '.':
25fe55af
RS
2148 laststart = b;
2149 BUF_PUSH (anychar);
2150 break;
fa9a63c5
RM
2151
2152
25fe55af
RS
2153 case '[':
2154 {
b18215fc 2155 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2156
25fe55af 2157 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2158
25fe55af
RS
2159 /* Ensure that we have enough space to push a charset: the
2160 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2161 GET_BUFFER_SPACE (34);
2162
25fe55af 2163 laststart = b;
e318085a 2164
25fe55af
RS
2165 /* We test `*p == '^' twice, instead of using an if
2166 statement, so we only need one BUF_PUSH. */
2167 BUF_PUSH (*p == '^' ? charset_not : charset);
2168 if (*p == '^')
2169 p++;
e318085a 2170
25fe55af
RS
2171 /* Remember the first position in the bracket expression. */
2172 p1 = p;
e318085a 2173
25fe55af
RS
2174 /* Push the number of bytes in the bitmap. */
2175 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2176
25fe55af
RS
2177 /* Clear the whole map. */
2178 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2179
25fe55af
RS
2180 /* charset_not matches newline according to a syntax bit. */
2181 if ((re_opcode_t) b[-2] == charset_not
2182 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2183 SET_LIST_BIT ('\n');
fa9a63c5 2184
25fe55af
RS
2185 /* Read in characters and ranges, setting map bits. */
2186 for (;;)
2187 {
b18215fc
RS
2188 int len;
2189 boolean escaped_char = false;
e318085a 2190
25fe55af 2191 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2192
25fe55af 2193 PATFETCH (c);
e318085a 2194
25fe55af
RS
2195 /* \ might escape characters inside [...] and [^...]. */
2196 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2197 {
2198 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2199
2200 PATFETCH (c);
b18215fc 2201 escaped_char = true;
25fe55af 2202 }
b18215fc
RS
2203 else
2204 {
657fcfbd
RS
2205 /* Could be the end of the bracket expression. If it's
2206 not (i.e., when the bracket expression is `[]' so
2207 far), the ']' character bit gets set way below. */
2208 if (c == ']' && p != p1 + 1)
2209 break;
25fe55af 2210 }
b18215fc
RS
2211
2212 /* If C indicates start of multibyte char, get the
2213 actual character code in C, and set the pattern
2214 pointer P to the next character boundary. */
2215 if (bufp->multibyte && BASE_LEADING_CODE_P (c))
2216 {
2217 PATUNFETCH;
2218 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2219 p += len;
25fe55af 2220 }
b18215fc
RS
2221 /* What should we do for the character which is
2222 greater than 0x7F, but not BASE_LEADING_CODE_P?
2223 XXX */
2224
25fe55af
RS
2225 /* See if we're at the beginning of a possible character
2226 class. */
b18215fc
RS
2227
2228 else if (!escaped_char &&
2229 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2230 {
2231 /* Leave room for the null. */
25fe55af 2232 char str[CHAR_CLASS_MAX_LENGTH + 1];
b18215fc 2233
25fe55af
RS
2234 PATFETCH (c);
2235 c1 = 0;
b18215fc 2236
25fe55af
RS
2237 /* If pattern is `[[:'. */
2238 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2239
25fe55af
RS
2240 for (;;)
2241 {
2242 PATFETCH (c);
2243 if (c == ':' || c == ']' || p == pend
2244 || c1 == CHAR_CLASS_MAX_LENGTH)
2245 break;
2246 str[c1++] = c;
2247 }
2248 str[c1] = '\0';
b18215fc
RS
2249
2250 /* If isn't a word bracketed by `[:' and `:]':
2251 undo the ending character, the letters, and
2252 leave the leading `:' and `[' (but set bits for
2253 them). */
25fe55af
RS
2254 if (c == ':' && *p == ']')
2255 {
2256 int ch;
2257 boolean is_alnum = STREQ (str, "alnum");
2258 boolean is_alpha = STREQ (str, "alpha");
2259 boolean is_blank = STREQ (str, "blank");
2260 boolean is_cntrl = STREQ (str, "cntrl");
2261 boolean is_digit = STREQ (str, "digit");
2262 boolean is_graph = STREQ (str, "graph");
2263 boolean is_lower = STREQ (str, "lower");
2264 boolean is_print = STREQ (str, "print");
2265 boolean is_punct = STREQ (str, "punct");
2266 boolean is_space = STREQ (str, "space");
2267 boolean is_upper = STREQ (str, "upper");
2268 boolean is_xdigit = STREQ (str, "xdigit");
2269
2270 if (!IS_CHAR_CLASS (str))
fa9a63c5
RM
2271 FREE_STACK_RETURN (REG_ECTYPE);
2272
25fe55af
RS
2273 /* Throw away the ] at the end of the character
2274 class. */
2275 PATFETCH (c);
fa9a63c5 2276
25fe55af 2277 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2278
25fe55af
RS
2279 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2280 {
7ae68633 2281 int translated = TRANSLATE (ch);
fa9a63c5
RM
2282 /* This was split into 3 if's to
2283 avoid an arbitrary limit in some compiler. */
25fe55af
RS
2284 if ( (is_alnum && ISALNUM (ch))
2285 || (is_alpha && ISALPHA (ch))
2286 || (is_blank && ISBLANK (ch))
2287 || (is_cntrl && ISCNTRL (ch)))
7ae68633 2288 SET_LIST_BIT (translated);
fa9a63c5 2289 if ( (is_digit && ISDIGIT (ch))
25fe55af
RS
2290 || (is_graph && ISGRAPH (ch))
2291 || (is_lower && ISLOWER (ch))
2292 || (is_print && ISPRINT (ch)))
7ae68633 2293 SET_LIST_BIT (translated);
fa9a63c5 2294 if ( (is_punct && ISPUNCT (ch))
25fe55af
RS
2295 || (is_space && ISSPACE (ch))
2296 || (is_upper && ISUPPER (ch))
2297 || (is_xdigit && ISXDIGIT (ch)))
7ae68633 2298 SET_LIST_BIT (translated);
25fe55af 2299 }
b18215fc
RS
2300
2301 /* Repeat the loop. */
2302 continue;
25fe55af
RS
2303 }
2304 else
2305 {
2306 c1++;
2307 while (c1--)
2308 PATUNFETCH;
2309 SET_LIST_BIT ('[');
b18215fc
RS
2310
2311 /* Because the `:' may starts the range, we
2312 can't simply set bit and repeat the loop.
25fe55af 2313 Instead, just set it to C and handle below. */
b18215fc 2314 c = ':';
25fe55af
RS
2315 }
2316 }
b18215fc
RS
2317
2318 if (p < pend && p[0] == '-' && p[1] != ']')
2319 {
2320
2321 /* Discard the `-'. */
2322 PATFETCH (c1);
2323
2324 /* Fetch the character which ends the range. */
2325 PATFETCH (c1);
2326 if (bufp->multibyte && BASE_LEADING_CODE_P (c1))
e318085a 2327 {
b18215fc
RS
2328 PATUNFETCH;
2329 c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2330 p += len;
e318085a 2331 }
b18215fc
RS
2332
2333 if (!SAME_CHARSET_P (c, c1))
2334 FREE_STACK_RETURN (REG_ERANGE);
e318085a 2335 }
25fe55af 2336 else
b18215fc
RS
2337 /* Range from C to C. */
2338 c1 = c;
2339
2340 /* Set the range ... */
2341 if (SINGLE_BYTE_CHAR_P (c))
2342 /* ... into bitmap. */
25fe55af 2343 {
b18215fc
RS
2344 unsigned this_char;
2345 int range_start = c, range_end = c1;
2346
2347 /* If the start is after the end, the range is empty. */
2348 if (range_start > range_end)
2349 {
2350 if (syntax & RE_NO_EMPTY_RANGES)
2351 FREE_STACK_RETURN (REG_ERANGE);
2352 /* Else, repeat the loop. */
2353 }
2354 else
2355 {
2356 for (this_char = range_start; this_char <= range_end;
2357 this_char++)
2358 SET_LIST_BIT (TRANSLATE (this_char));
25fe55af
RS
2359 }
2360 }
e318085a 2361 else
b18215fc
RS
2362 /* ... into range table. */
2363 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2364 }
2365
25fe55af
RS
2366 /* Discard any (non)matching list bytes that are all 0 at the
2367 end of the map. Decrease the map-length byte too. */
2368 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2369 b[-1]--;
2370 b += b[-1];
fa9a63c5 2371
b18215fc
RS
2372 /* Build real range table from work area. */
2373 if (RANGE_TABLE_WORK_USED (range_table_work))
2374 {
2375 int i;
2376 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2377
b18215fc 2378 /* Allocate space for COUNT + RANGE_TABLE. Needs two
25fe55af 2379 bytes for COUNT and three bytes for each character. */
b18215fc 2380 GET_BUFFER_SPACE (2 + used * 3);
fa9a63c5 2381
b18215fc
RS
2382 /* Indicate the existence of range table. */
2383 laststart[1] |= 0x80;
fa9a63c5 2384
b18215fc
RS
2385 STORE_NUMBER_AND_INCR (b, used / 2);
2386 for (i = 0; i < used; i++)
2387 STORE_CHARACTER_AND_INCR
2388 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2389 }
25fe55af
RS
2390 }
2391 break;
fa9a63c5
RM
2392
2393
b18215fc 2394 case '(':
25fe55af
RS
2395 if (syntax & RE_NO_BK_PARENS)
2396 goto handle_open;
2397 else
2398 goto normal_char;
fa9a63c5
RM
2399
2400
25fe55af
RS
2401 case ')':
2402 if (syntax & RE_NO_BK_PARENS)
2403 goto handle_close;
2404 else
2405 goto normal_char;
e318085a
RS
2406
2407
25fe55af
RS
2408 case '\n':
2409 if (syntax & RE_NEWLINE_ALT)
2410 goto handle_alt;
2411 else
2412 goto normal_char;
e318085a
RS
2413
2414
b18215fc 2415 case '|':
25fe55af
RS
2416 if (syntax & RE_NO_BK_VBAR)
2417 goto handle_alt;
2418 else
2419 goto normal_char;
2420
2421
2422 case '{':
2423 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2424 goto handle_interval;
2425 else
2426 goto normal_char;
2427
2428
2429 case '\\':
2430 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2431
2432 /* Do not translate the character after the \, so that we can
2433 distinguish, e.g., \B from \b, even if we normally would
2434 translate, e.g., B to b. */
2435 PATFETCH_RAW (c);
2436
2437 switch (c)
2438 {
2439 case '(':
2440 if (syntax & RE_NO_BK_PARENS)
2441 goto normal_backslash;
2442
2443 handle_open:
2444 bufp->re_nsub++;
2445 regnum++;
2446
2447 if (COMPILE_STACK_FULL)
2448 {
2449 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2450 compile_stack_elt_t);
2451 if (compile_stack.stack == NULL) return REG_ESPACE;
2452
2453 compile_stack.size <<= 1;
2454 }
2455
2456 /* These are the values to restore when we hit end of this
2457 group. They are all relative offsets, so that if the
2458 whole pattern moves because of realloc, they will still
2459 be valid. */
2460 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2461 COMPILE_STACK_TOP.fixup_alt_jump
2462 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2463 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2464 COMPILE_STACK_TOP.regnum = regnum;
2465
2466 /* We will eventually replace the 0 with the number of
2467 groups inner to this one. But do not push a
2468 start_memory for groups beyond the last one we can
2469 represent in the compiled pattern. */
2470 if (regnum <= MAX_REGNUM)
2471 {
2472 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2473 BUF_PUSH_3 (start_memory, regnum, 0);
2474 }
2475
2476 compile_stack.avail++;
2477
2478 fixup_alt_jump = 0;
2479 laststart = 0;
2480 begalt = b;
b18215fc
RS
2481 /* If we've reached MAX_REGNUM groups, then this open
2482 won't actually generate any code, so we'll have to
2483 clear pending_exact explicitly. */
2484 pending_exact = 0;
25fe55af
RS
2485 break;
2486
2487
2488 case ')':
2489 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2490
2491 if (COMPILE_STACK_EMPTY)
2492 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2493 goto normal_backslash;
2494 else
2495 FREE_STACK_RETURN (REG_ERPAREN);
2496
2497 handle_close:
2498 if (fixup_alt_jump)
2499 { /* Push a dummy failure point at the end of the
2500 alternative for a possible future
2501 `pop_failure_jump' to pop. See comments at
2502 `push_dummy_failure' in `re_match_2'. */
2503 BUF_PUSH (push_dummy_failure);
2504
2505 /* We allocated space for this jump when we assigned
2506 to `fixup_alt_jump', in the `handle_alt' case below. */
2507 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2508 }
2509
2510 /* See similar code for backslashed left paren above. */
2511 if (COMPILE_STACK_EMPTY)
2512 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2513 goto normal_char;
2514 else
2515 FREE_STACK_RETURN (REG_ERPAREN);
2516
2517 /* Since we just checked for an empty stack above, this
2518 ``can't happen''. */
2519 assert (compile_stack.avail != 0);
2520 {
2521 /* We don't just want to restore into `regnum', because
2522 later groups should continue to be numbered higher,
2523 as in `(ab)c(de)' -- the second group is #2. */
2524 regnum_t this_group_regnum;
2525
2526 compile_stack.avail--;
2527 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2528 fixup_alt_jump
2529 = COMPILE_STACK_TOP.fixup_alt_jump
2530 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2531 : 0;
2532 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2533 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
2534 /* If we've reached MAX_REGNUM groups, then this open
2535 won't actually generate any code, so we'll have to
2536 clear pending_exact explicitly. */
2537 pending_exact = 0;
e318085a 2538
25fe55af
RS
2539 /* We're at the end of the group, so now we know how many
2540 groups were inside this one. */
2541 if (this_group_regnum <= MAX_REGNUM)
2542 {
2543 unsigned char *inner_group_loc
2544 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2545
2546 *inner_group_loc = regnum - this_group_regnum;
2547 BUF_PUSH_3 (stop_memory, this_group_regnum,
2548 regnum - this_group_regnum);
2549 }
2550 }
2551 break;
2552
2553
2554 case '|': /* `\|'. */
2555 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2556 goto normal_backslash;
2557 handle_alt:
2558 if (syntax & RE_LIMITED_OPS)
2559 goto normal_char;
2560
2561 /* Insert before the previous alternative a jump which
2562 jumps to this alternative if the former fails. */
2563 GET_BUFFER_SPACE (3);
2564 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2565 pending_exact = 0;
2566 b += 3;
2567
2568 /* The alternative before this one has a jump after it
2569 which gets executed if it gets matched. Adjust that
2570 jump so it will jump to this alternative's analogous
2571 jump (put in below, which in turn will jump to the next
2572 (if any) alternative's such jump, etc.). The last such
2573 jump jumps to the correct final destination. A picture:
2574 _____ _____
2575 | | | |
2576 | v | v
2577 a | b | c
2578
2579 If we are at `b', then fixup_alt_jump right now points to a
2580 three-byte space after `a'. We'll put in the jump, set
2581 fixup_alt_jump to right after `b', and leave behind three
2582 bytes which we'll fill in when we get to after `c'. */
2583
2584 if (fixup_alt_jump)
2585 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2586
2587 /* Mark and leave space for a jump after this alternative,
2588 to be filled in later either by next alternative or
2589 when know we're at the end of a series of alternatives. */
2590 fixup_alt_jump = b;
2591 GET_BUFFER_SPACE (3);
2592 b += 3;
2593
2594 laststart = 0;
2595 begalt = b;
2596 break;
2597
2598
2599 case '{':
2600 /* If \{ is a literal. */
2601 if (!(syntax & RE_INTERVALS)
2602 /* If we're at `\{' and it's not the open-interval
2603 operator. */
2604 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2605 || (p - 2 == pattern && p == pend))
2606 goto normal_backslash;
2607
2608 handle_interval:
2609 {
2610 /* If got here, then the syntax allows intervals. */
2611
2612 /* At least (most) this many matches must be made. */
2613 int lower_bound = -1, upper_bound = -1;
2614
2615 beg_interval = p - 1;
2616
2617 if (p == pend)
2618 {
2619 if (syntax & RE_NO_BK_BRACES)
2620 goto unfetch_interval;
2621 else
2622 FREE_STACK_RETURN (REG_EBRACE);
2623 }
2624
2625 GET_UNSIGNED_NUMBER (lower_bound);
2626
2627 if (c == ',')
2628 {
2629 GET_UNSIGNED_NUMBER (upper_bound);
2630 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2631 }
2632 else
2633 /* Interval such as `{1}' => match exactly once. */
2634 upper_bound = lower_bound;
2635
2636 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2637 || lower_bound > upper_bound)
2638 {
2639 if (syntax & RE_NO_BK_BRACES)
2640 goto unfetch_interval;
2641 else
2642 FREE_STACK_RETURN (REG_BADBR);
2643 }
2644
2645 if (!(syntax & RE_NO_BK_BRACES))
2646 {
2647 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2648
2649 PATFETCH (c);
2650 }
2651
2652 if (c != '}')
2653 {
2654 if (syntax & RE_NO_BK_BRACES)
2655 goto unfetch_interval;
2656 else
2657 FREE_STACK_RETURN (REG_BADBR);
2658 }
2659
2660 /* We just parsed a valid interval. */
2661
2662 /* If it's invalid to have no preceding re. */
2663 if (!laststart)
2664 {
2665 if (syntax & RE_CONTEXT_INVALID_OPS)
2666 FREE_STACK_RETURN (REG_BADRPT);
2667 else if (syntax & RE_CONTEXT_INDEP_OPS)
2668 laststart = b;
2669 else
2670 goto unfetch_interval;
2671 }
2672
2673 /* If the upper bound is zero, don't want to succeed at
2674 all; jump from `laststart' to `b + 3', which will be
2675 the end of the buffer after we insert the jump. */
2676 if (upper_bound == 0)
2677 {
2678 GET_BUFFER_SPACE (3);
2679 INSERT_JUMP (jump, laststart, b + 3);
2680 b += 3;
2681 }
2682
2683 /* Otherwise, we have a nontrivial interval. When
2684 we're all done, the pattern will look like:
2685 set_number_at <jump count> <upper bound>
2686 set_number_at <succeed_n count> <lower bound>
2687 succeed_n <after jump addr> <succeed_n count>
2688 <body of loop>
2689 jump_n <succeed_n addr> <jump count>
2690 (The upper bound and `jump_n' are omitted if
2691 `upper_bound' is 1, though.) */
2692 else
2693 { /* If the upper bound is > 1, we need to insert
2694 more at the end of the loop. */
2695 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2696
2697 GET_BUFFER_SPACE (nbytes);
2698
2699 /* Initialize lower bound of the `succeed_n', even
2700 though it will be set during matching by its
2701 attendant `set_number_at' (inserted next),
2702 because `re_compile_fastmap' needs to know.
2703 Jump to the `jump_n' we might insert below. */
2704 INSERT_JUMP2 (succeed_n, laststart,
2705 b + 5 + (upper_bound > 1) * 5,
2706 lower_bound);
2707 b += 5;
2708
2709 /* Code to initialize the lower bound. Insert
2710 before the `succeed_n'. The `5' is the last two
2711 bytes of this `set_number_at', plus 3 bytes of
2712 the following `succeed_n'. */
2713 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2714 b += 5;
2715
2716 if (upper_bound > 1)
2717 { /* More than one repetition is allowed, so
2718 append a backward jump to the `succeed_n'
2719 that starts this interval.
2720
2721 When we've reached this during matching,
2722 we'll have matched the interval once, so
2723 jump back only `upper_bound - 1' times. */
2724 STORE_JUMP2 (jump_n, b, laststart + 5,
2725 upper_bound - 1);
2726 b += 5;
2727
2728 /* The location we want to set is the second
2729 parameter of the `jump_n'; that is `b-2' as
2730 an absolute address. `laststart' will be
2731 the `set_number_at' we're about to insert;
2732 `laststart+3' the number to set, the source
2733 for the relative address. But we are
2734 inserting into the middle of the pattern --
2735 so everything is getting moved up by 5.
2736 Conclusion: (b - 2) - (laststart + 3) + 5,
2737 i.e., b - laststart.
2738
2739 We insert this at the beginning of the loop
2740 so that if we fail during matching, we'll
2741 reinitialize the bounds. */
2742 insert_op2 (set_number_at, laststart, b - laststart,
2743 upper_bound - 1, b);
2744 b += 5;
2745 }
2746 }
2747 pending_exact = 0;
2748 beg_interval = NULL;
2749 }
2750 break;
2751
2752 unfetch_interval:
2753 /* If an invalid interval, match the characters as literals. */
2754 assert (beg_interval);
2755 p = beg_interval;
2756 beg_interval = NULL;
2757
2758 /* normal_char and normal_backslash need `c'. */
2759 PATFETCH (c);
2760
2761 if (!(syntax & RE_NO_BK_BRACES))
2762 {
2763 if (p > pattern && p[-1] == '\\')
2764 goto normal_backslash;
2765 }
2766 goto normal_char;
e318085a 2767
b18215fc 2768#ifdef emacs
25fe55af
RS
2769 /* There is no way to specify the before_dot and after_dot
2770 operators. rms says this is ok. --karl */
2771 case '=':
2772 BUF_PUSH (at_dot);
2773 break;
2774
2775 case 's':
2776 laststart = b;
2777 PATFETCH (c);
2778 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2779 break;
2780
2781 case 'S':
2782 laststart = b;
2783 PATFETCH (c);
2784 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2785 break;
b18215fc
RS
2786
2787 case 'c':
2788 laststart = b;
2789 PATFETCH_RAW (c);
2790 BUF_PUSH_2 (categoryspec, c);
2791 break;
e318085a 2792
b18215fc
RS
2793 case 'C':
2794 laststart = b;
2795 PATFETCH_RAW (c);
2796 BUF_PUSH_2 (notcategoryspec, c);
2797 break;
2798#endif /* emacs */
e318085a 2799
e318085a 2800
25fe55af
RS
2801 case 'w':
2802 laststart = b;
2803 BUF_PUSH (wordchar);
2804 break;
e318085a 2805
e318085a 2806
25fe55af
RS
2807 case 'W':
2808 laststart = b;
2809 BUF_PUSH (notwordchar);
2810 break;
e318085a
RS
2811
2812
25fe55af
RS
2813 case '<':
2814 BUF_PUSH (wordbeg);
2815 break;
e318085a 2816
25fe55af
RS
2817 case '>':
2818 BUF_PUSH (wordend);
2819 break;
e318085a 2820
25fe55af
RS
2821 case 'b':
2822 BUF_PUSH (wordbound);
2823 break;
e318085a 2824
25fe55af
RS
2825 case 'B':
2826 BUF_PUSH (notwordbound);
2827 break;
fa9a63c5 2828
25fe55af
RS
2829 case '`':
2830 BUF_PUSH (begbuf);
2831 break;
e318085a 2832
25fe55af
RS
2833 case '\'':
2834 BUF_PUSH (endbuf);
2835 break;
e318085a 2836
25fe55af
RS
2837 case '1': case '2': case '3': case '4': case '5':
2838 case '6': case '7': case '8': case '9':
2839 if (syntax & RE_NO_BK_REFS)
2840 goto normal_char;
e318085a 2841
25fe55af 2842 c1 = c - '0';
e318085a 2843
25fe55af
RS
2844 if (c1 > regnum)
2845 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 2846
25fe55af
RS
2847 /* Can't back reference to a subexpression if inside of it. */
2848 if (group_in_compile_stack (compile_stack, c1))
2849 goto normal_char;
e318085a 2850
25fe55af
RS
2851 laststart = b;
2852 BUF_PUSH_2 (duplicate, c1);
2853 break;
e318085a 2854
e318085a 2855
25fe55af
RS
2856 case '+':
2857 case '?':
2858 if (syntax & RE_BK_PLUS_QM)
2859 goto handle_plus;
2860 else
2861 goto normal_backslash;
2862
2863 default:
2864 normal_backslash:
2865 /* You might think it would be useful for \ to mean
2866 not to translate; but if we don't translate it
2867 it will never match anything. */
2868 c = TRANSLATE (c);
2869 goto normal_char;
2870 }
2871 break;
fa9a63c5
RM
2872
2873
2874 default:
25fe55af 2875 /* Expects the character in `c'. */
fa9a63c5 2876 normal_char:
b18215fc
RS
2877 p1 = p - 1; /* P1 points the head of C. */
2878#ifdef emacs
2879 if (bufp->multibyte)
2880 /* Set P to the next character boundary. */
2881 p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1;
2882#endif
fa9a63c5 2883 /* If no exactn currently being built. */
25fe55af 2884 if (!pending_exact
fa9a63c5 2885
25fe55af
RS
2886 /* If last exactn not at current position. */
2887 || pending_exact + *pending_exact + 1 != b
5e69f11e 2888
25fe55af 2889 /* We have only one byte following the exactn for the count. */
b18215fc 2890 || *pending_exact >= (1 << BYTEWIDTH) - (p - p1)
fa9a63c5 2891
25fe55af
RS
2892 /* If followed by a repetition operator. */
2893 || *p == '*' || *p == '^'
fa9a63c5
RM
2894 || ((syntax & RE_BK_PLUS_QM)
2895 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2896 : (*p == '+' || *p == '?'))
2897 || ((syntax & RE_INTERVALS)
25fe55af 2898 && ((syntax & RE_NO_BK_BRACES)
fa9a63c5 2899 ? *p == '{'
25fe55af 2900 : (p[0] == '\\' && p[1] == '{'))))
fa9a63c5
RM
2901 {
2902 /* Start building a new exactn. */
5e69f11e 2903
25fe55af 2904 laststart = b;
fa9a63c5
RM
2905
2906 BUF_PUSH_2 (exactn, 0);
2907 pending_exact = b - 1;
25fe55af 2908 }
5e69f11e 2909
b18215fc
RS
2910 /* Here, C may translated, therefore C may not equal to *P1. */
2911 while (1)
2912 {
fa9a63c5 2913 BUF_PUSH (c);
25fe55af 2914 (*pending_exact)++;
b18215fc
RS
2915 if (++p1 == p)
2916 break;
2917
2918 /* Rest of multibyte form should be copied literally. */
2919 c = *(unsigned char *)p1;
2920 }
fa9a63c5 2921 break;
25fe55af 2922 } /* switch (c) */
fa9a63c5
RM
2923 } /* while p != pend */
2924
5e69f11e 2925
fa9a63c5 2926 /* Through the pattern now. */
5e69f11e 2927
fa9a63c5
RM
2928 if (fixup_alt_jump)
2929 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2930
5e69f11e 2931 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
2932 FREE_STACK_RETURN (REG_EPAREN);
2933
2934 /* If we don't want backtracking, force success
2935 the first time we reach the end of the compiled pattern. */
2936 if (syntax & RE_NO_POSIX_BACKTRACKING)
2937 BUF_PUSH (succeed);
2938
2939 free (compile_stack.stack);
2940
2941 /* We have succeeded; set the length of the buffer. */
2942 bufp->used = b - bufp->buffer;
2943
2944#ifdef DEBUG
2945 if (debug)
2946 {
2947 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2948 print_compiled_pattern (bufp);
2949 }
2950#endif /* DEBUG */
2951
2952#ifndef MATCH_MAY_ALLOCATE
2953 /* Initialize the failure stack to the largest possible stack. This
2954 isn't necessary unless we're trying to avoid calling alloca in
2955 the search and match routines. */
2956 {
2957 int num_regs = bufp->re_nsub + 1;
2958
320a2a73 2959 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 2960 {
320a2a73 2961 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE);
fa9a63c5
RM
2962
2963#ifdef emacs
2964 if (! fail_stack.stack)
2965 fail_stack.stack
5e69f11e 2966 = (fail_stack_elt_t *) xmalloc (fail_stack.size
fa9a63c5
RM
2967 * sizeof (fail_stack_elt_t));
2968 else
2969 fail_stack.stack
2970 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2971 (fail_stack.size
2972 * sizeof (fail_stack_elt_t)));
2973#else /* not emacs */
2974 if (! fail_stack.stack)
2975 fail_stack.stack
5e69f11e 2976 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
2977 * sizeof (fail_stack_elt_t));
2978 else
2979 fail_stack.stack
2980 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2981 (fail_stack.size
2982 * sizeof (fail_stack_elt_t)));
2983#endif /* not emacs */
2984 }
2985
2986 regex_grow_registers (num_regs);
2987 }
2988#endif /* not MATCH_MAY_ALLOCATE */
2989
2990 return REG_NOERROR;
2991} /* regex_compile */
2992\f
2993/* Subroutines for `regex_compile'. */
2994
25fe55af 2995/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
2996
2997static void
2998store_op1 (op, loc, arg)
2999 re_opcode_t op;
3000 unsigned char *loc;
3001 int arg;
3002{
3003 *loc = (unsigned char) op;
3004 STORE_NUMBER (loc + 1, arg);
3005}
3006
3007
3008/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3009
3010static void
3011store_op2 (op, loc, arg1, arg2)
3012 re_opcode_t op;
3013 unsigned char *loc;
3014 int arg1, arg2;
3015{
3016 *loc = (unsigned char) op;
3017 STORE_NUMBER (loc + 1, arg1);
3018 STORE_NUMBER (loc + 3, arg2);
3019}
3020
3021
3022/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3023 for OP followed by two-byte integer parameter ARG. */
3024
3025static void
3026insert_op1 (op, loc, arg, end)
3027 re_opcode_t op;
3028 unsigned char *loc;
3029 int arg;
5e69f11e 3030 unsigned char *end;
fa9a63c5
RM
3031{
3032 register unsigned char *pfrom = end;
3033 register unsigned char *pto = end + 3;
3034
3035 while (pfrom != loc)
3036 *--pto = *--pfrom;
5e69f11e 3037
fa9a63c5
RM
3038 store_op1 (op, loc, arg);
3039}
3040
3041
3042/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3043
3044static void
3045insert_op2 (op, loc, arg1, arg2, end)
3046 re_opcode_t op;
3047 unsigned char *loc;
3048 int arg1, arg2;
5e69f11e 3049 unsigned char *end;
fa9a63c5
RM
3050{
3051 register unsigned char *pfrom = end;
3052 register unsigned char *pto = end + 5;
3053
3054 while (pfrom != loc)
3055 *--pto = *--pfrom;
5e69f11e 3056
fa9a63c5
RM
3057 store_op2 (op, loc, arg1, arg2);
3058}
3059
3060
3061/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3062 after an alternative or a begin-subexpression. We assume there is at
3063 least one character before the ^. */
3064
3065static boolean
3066at_begline_loc_p (pattern, p, syntax)
3067 const char *pattern, *p;
3068 reg_syntax_t syntax;
3069{
3070 const char *prev = p - 2;
3071 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3072
fa9a63c5
RM
3073 return
3074 /* After a subexpression? */
3075 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3076 /* After an alternative? */
fa9a63c5
RM
3077 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3078}
3079
3080
3081/* The dual of at_begline_loc_p. This one is for $. We assume there is
3082 at least one character after the $, i.e., `P < PEND'. */
3083
3084static boolean
3085at_endline_loc_p (p, pend, syntax)
3086 const char *p, *pend;
3087 int syntax;
3088{
3089 const char *next = p;
3090 boolean next_backslash = *next == '\\';
5bb52971 3091 const char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3092
fa9a63c5
RM
3093 return
3094 /* Before a subexpression? */
3095 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3096 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3097 /* Before an alternative? */
3098 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3099 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3100}
3101
3102
5e69f11e 3103/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3104 false if it's not. */
3105
3106static boolean
3107group_in_compile_stack (compile_stack, regnum)
3108 compile_stack_type compile_stack;
3109 regnum_t regnum;
3110{
3111 int this_element;
3112
5e69f11e
RM
3113 for (this_element = compile_stack.avail - 1;
3114 this_element >= 0;
fa9a63c5
RM
3115 this_element--)
3116 if (compile_stack.stack[this_element].regnum == regnum)
3117 return true;
3118
3119 return false;
3120}
3121
3122
3123/* Read the ending character of a range (in a bracket expression) from the
3124 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3125 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3126 Then we set the translation of all bits between the starting and
3127 ending characters (inclusive) in the compiled pattern B.
5e69f11e 3128
fa9a63c5 3129 Return an error code.
5e69f11e 3130
fa9a63c5
RM
3131 We use these short variable names so we can use the same macros as
3132 `regex_compile' itself. */
3133
3134static reg_errcode_t
3135compile_range (p_ptr, pend, translate, syntax, b)
3136 const char **p_ptr, *pend;
6676cb1c 3137 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
3138 reg_syntax_t syntax;
3139 unsigned char *b;
3140{
3141 unsigned this_char;
3142
3143 const char *p = *p_ptr;
3144 int range_start, range_end;
5e69f11e 3145
fa9a63c5
RM
3146 if (p == pend)
3147 return REG_ERANGE;
3148
3149 /* Even though the pattern is a signed `char *', we need to fetch
3150 with unsigned char *'s; if the high bit of the pattern character
3151 is set, the range endpoints will be negative if we fetch using a
3152 signed char *.
3153
5e69f11e 3154 We also want to fetch the endpoints without translating them; the
fa9a63c5
RM
3155 appropriate translation is done in the bit-setting loop below. */
3156 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3157 range_start = ((const unsigned char *) p)[-2];
3158 range_end = ((const unsigned char *) p)[0];
3159
3160 /* Have to increment the pointer into the pattern string, so the
3161 caller isn't still at the ending character. */
3162 (*p_ptr)++;
3163
25fe55af 3164 /* If the start is after the end, the range is empty. */
fa9a63c5
RM
3165 if (range_start > range_end)
3166 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3167
3168 /* Here we see why `this_char' has to be larger than an `unsigned
3169 char' -- the range is inclusive, so if `range_end' == 0xff
3170 (assuming 8-bit characters), we would otherwise go into an infinite
3171 loop, since all characters <= 0xff. */
3172 for (this_char = range_start; this_char <= range_end; this_char++)
3173 {
3174 SET_LIST_BIT (TRANSLATE (this_char));
3175 }
5e69f11e 3176
fa9a63c5
RM
3177 return REG_NOERROR;
3178}
3179\f
3180/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3181 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3182 characters can start a string that matches the pattern. This fastmap
3183 is used by re_search to skip quickly over impossible starting points.
3184
3185 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3186 area as BUFP->fastmap.
5e69f11e 3187
fa9a63c5
RM
3188 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3189 the pattern buffer.
3190
3191 Returns 0 if we succeed, -2 if an internal error. */
3192
3193int
3194re_compile_fastmap (bufp)
3195 struct re_pattern_buffer *bufp;
3196{
b18215fc 3197 int i, j, k;
fa9a63c5
RM
3198#ifdef MATCH_MAY_ALLOCATE
3199 fail_stack_type fail_stack;
3200#endif
3201#ifndef REGEX_MALLOC
3202 char *destination;
3203#endif
3204 /* We don't push any register information onto the failure stack. */
3205 unsigned num_regs = 0;
5e69f11e 3206
fa9a63c5
RM
3207 register char *fastmap = bufp->fastmap;
3208 unsigned char *pattern = bufp->buffer;
3209 unsigned long size = bufp->used;
3210 unsigned char *p = pattern;
3211 register unsigned char *pend = pattern + size;
3212
3213 /* This holds the pointer to the failure stack, when
3214 it is allocated relocatably. */
3215 fail_stack_elt_t *failure_stack_ptr;
3216
3217 /* Assume that each path through the pattern can be null until
25fe55af 3218 proven otherwise. We set this false at the bottom of switch
fa9a63c5
RM
3219 statement, to which we get only if a particular path doesn't
3220 match the empty string. */
3221 boolean path_can_be_null = true;
3222
3223 /* We aren't doing a `succeed_n' to begin with. */
3224 boolean succeed_n_p = false;
3225
b18215fc 3226 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3227 flag is set true. */
b18215fc
RS
3228 boolean match_any_multibyte_characters = false;
3229
3230 /* Maximum code of simple (single byte) character. */
3231 int simple_char_max;
3232
fa9a63c5 3233 assert (fastmap != NULL && p != NULL);
5e69f11e 3234
fa9a63c5 3235 INIT_FAIL_STACK ();
25fe55af 3236 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
fa9a63c5
RM
3237 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3238 bufp->can_be_null = 0;
5e69f11e 3239
fa9a63c5
RM
3240 while (1)
3241 {
3242 if (p == pend || *p == succeed)
3243 {
3244 /* We have reached the (effective) end of pattern. */
3245 if (!FAIL_STACK_EMPTY ())
3246 {
3247 bufp->can_be_null |= path_can_be_null;
3248
3249 /* Reset for next path. */
3250 path_can_be_null = true;
3251
3252 p = fail_stack.stack[--fail_stack.avail].pointer;
3253
3254 continue;
3255 }
3256 else
3257 break;
3258 }
3259
25fe55af 3260 /* We should never be about to go beyond the end of the pattern. */
fa9a63c5 3261 assert (p < pend);
5e69f11e 3262
fa9a63c5
RM
3263 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3264 {
3265
25fe55af
RS
3266 /* I guess the idea here is to simply not bother with a fastmap
3267 if a backreference is used, since it's too hard to figure out
3268 the fastmap for the corresponding group. Setting
3269 `can_be_null' stops `re_search_2' from using the fastmap, so
3270 that is all we do. */
fa9a63c5
RM
3271 case duplicate:
3272 bufp->can_be_null = 1;
25fe55af 3273 goto done;
fa9a63c5
RM
3274
3275
3276 /* Following are the cases which match a character. These end
25fe55af 3277 with `break'. */
fa9a63c5
RM
3278
3279 case exactn:
25fe55af 3280 fastmap[p[1]] = 1;
fa9a63c5
RM
3281 break;
3282
3283
b18215fc 3284#ifndef emacs
25fe55af
RS
3285 case charset:
3286 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
fa9a63c5 3287 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
25fe55af 3288 fastmap[j] = 1;
fa9a63c5
RM
3289 break;
3290
3291
3292 case charset_not:
3293 /* Chars beyond end of map must be allowed. */
3294 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
25fe55af 3295 fastmap[j] = 1;
fa9a63c5
RM
3296
3297 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3298 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
25fe55af
RS
3299 fastmap[j] = 1;
3300 break;
fa9a63c5
RM
3301
3302
3303 case wordchar:
3304 for (j = 0; j < (1 << BYTEWIDTH); j++)
3305 if (SYNTAX (j) == Sword)
3306 fastmap[j] = 1;
3307 break;
3308
3309
3310 case notwordchar:
3311 for (j = 0; j < (1 << BYTEWIDTH); j++)
3312 if (SYNTAX (j) != Sword)
3313 fastmap[j] = 1;
3314 break;
b18215fc
RS
3315#else /* emacs */
3316 case charset:
3317 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3318 j >= 0; j--)
3319 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3320 fastmap[j] = 1;
3321
3322 if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3323 && match_any_multibyte_characters == false)
3324 {
3325 /* Set fastmap[I] 1 where I is a base leading code of each
3326 multibyte character in the range table. */
3327 int c, count;
3328
3329 /* Make P points the range table. */
3330 p += CHARSET_BITMAP_SIZE (&p[-2]);
3331
3332 /* Extract the number of ranges in range table into
25fe55af 3333 COUNT. */
b18215fc
RS
3334 EXTRACT_NUMBER_AND_INCR (count, p);
3335 for (; count > 0; count--, p += 2 * 3) /* XXX */
3336 {
3337 /* Extract the start of each range. */
3338 EXTRACT_CHARACTER (c, p);
3339 j = CHAR_CHARSET (c);
3340 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3341 }
3342 }
3343 break;
fa9a63c5
RM
3344
3345
b18215fc
RS
3346 case charset_not:
3347 /* Chars beyond end of map must be allowed. End of map is
3348 `127' if bufp->multibyte is nonzero. */
3349 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3350 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3351 j < simple_char_max; j++)
3352 fastmap[j] = 1;
3353
3354 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3355 j >= 0; j--)
3356 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3357 fastmap[j] = 1;
3358
3359 if (bufp->multibyte)
3360 /* Any character set can possibly contain a character
3361 which doesn't match the specified set of characters. */
3362 {
3363 set_fastmap_for_multibyte_characters:
3364 if (match_any_multibyte_characters == false)
3365 {
3366 for (j = 0x80; j < 0xA0; j++) /* XXX */
3367 if (BASE_LEADING_CODE_P (j))
3368 fastmap[j] = 1;
3369 match_any_multibyte_characters = true;
3370 }
3371 }
3372 break;
3373
3374
3375 case wordchar:
3376 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3377 for (j = 0; j < simple_char_max; j++)
3378 if (SYNTAX (j) == Sword)
3379 fastmap[j] = 1;
3380
3381 if (bufp->multibyte)
3382 /* Any character set can possibly contain a character
25fe55af 3383 whose syntax is `Sword'. */
b18215fc
RS
3384 goto set_fastmap_for_multibyte_characters;
3385 break;
3386
3387
3388 case notwordchar:
3389 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3390 for (j = 0; j < simple_char_max; j++)
3391 if (SYNTAX (j) != Sword)
3392 fastmap[j] = 1;
3393
3394 if (bufp->multibyte)
3395 /* Any character set can possibly contain a character
3396 whose syntax is not `Sword'. */
3397 goto set_fastmap_for_multibyte_characters;
3398 break;
3399#endif
3400
25fe55af 3401 case anychar:
fa9a63c5
RM
3402 {
3403 int fastmap_newline = fastmap['\n'];
3404
b18215fc
RS
3405 /* `.' matches anything (but if bufp->multibyte is
3406 nonzero, matches `\000' .. `\127' and possible multibyte
3407 character) ... */
3408 if (bufp->multibyte)
3409 {
3410 simple_char_max = 0x80;
3411
3412 for (j = 0x80; j < 0xA0; j++)
3413 if (BASE_LEADING_CODE_P (j))
3414 fastmap[j] = 1;
3415 match_any_multibyte_characters = true;
3416 }
3417 else
3418 simple_char_max = (1 << BYTEWIDTH);
3419
3420 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3421 fastmap[j] = 1;
3422
3423 /* ... except perhaps newline. */
3424 if (!(bufp->syntax & RE_DOT_NEWLINE))
3425 fastmap['\n'] = fastmap_newline;
3426
3427 /* Return if we have already set `can_be_null'; if we have,
25fe55af 3428 then the fastmap is irrelevant. Something's wrong here. */
fa9a63c5
RM
3429 else if (bufp->can_be_null)
3430 goto done;
3431
3432 /* Otherwise, have to check alternative paths. */
3433 break;
3434 }
3435
3436#ifdef emacs
b18215fc
RS
3437 case wordbound:
3438 case notwordbound:
3439 case wordbeg:
3440 case wordend:
3441 case notsyntaxspec:
25fe55af 3442 case syntaxspec:
b18215fc
RS
3443 /* This match depends on text properties. These end with
3444 aborting optimizations. */
3445 bufp->can_be_null = 1;
25fe55af 3446 goto done;
b18215fc 3447#if 0
fa9a63c5 3448 k = *p++;
b18215fc
RS
3449 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3450 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3451 if (SYNTAX (j) == (enum syntaxcode) k)
3452 fastmap[j] = 1;
fa9a63c5 3453
b18215fc
RS
3454 if (bufp->multibyte)
3455 /* Any character set can possibly contain a character
3456 whose syntax is K. */
3457 goto set_fastmap_for_multibyte_characters;
3458 break;
fa9a63c5
RM
3459
3460 case notsyntaxspec:
3461 k = *p++;
b18215fc
RS
3462 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3463 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3464 if (SYNTAX (j) != (enum syntaxcode) k)
3465 fastmap[j] = 1;
b18215fc
RS
3466
3467 if (bufp->multibyte)
3468 /* Any character set can possibly contain a character
3469 whose syntax is not K. */
3470 goto set_fastmap_for_multibyte_characters;
3471 break;
3472#endif
3473
3474
3475 case categoryspec:
3476 k = *p++;
3477 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3478 for (j = 0; j < simple_char_max; j++)
3479 if (CHAR_HAS_CATEGORY (j, k))
3480 fastmap[j] = 1;
3481
3482 if (bufp->multibyte)
3483 /* Any character set can possibly contain a character
3484 whose category is K. */
3485 goto set_fastmap_for_multibyte_characters;
fa9a63c5
RM
3486 break;
3487
3488
b18215fc
RS
3489 case notcategoryspec:
3490 k = *p++;
3491 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3492 for (j = 0; j < simple_char_max; j++)
3493 if (!CHAR_HAS_CATEGORY (j, k))
3494 fastmap[j] = 1;
3495
3496 if (bufp->multibyte)
3497 /* Any character set can possibly contain a character
25fe55af 3498 whose category is not K. */
b18215fc
RS
3499 goto set_fastmap_for_multibyte_characters;
3500 break;
3501
fa9a63c5 3502 /* All cases after this match the empty string. These end with
25fe55af 3503 `continue'. */
fa9a63c5
RM
3504
3505
3506 case before_dot:
3507 case at_dot:
3508 case after_dot:
25fe55af 3509 continue;
ae4788a8 3510#endif /* emacs */
fa9a63c5
RM
3511
3512
25fe55af
RS
3513 case no_op:
3514 case begline:
3515 case endline:
fa9a63c5
RM
3516 case begbuf:
3517 case endbuf:
b18215fc 3518#ifndef emacs
fa9a63c5
RM
3519 case wordbound:
3520 case notwordbound:
3521 case wordbeg:
3522 case wordend:
25fe55af
RS
3523#endif
3524 case push_dummy_failure:
3525 continue;
fa9a63c5
RM
3526
3527
3528 case jump_n:
25fe55af 3529 case pop_failure_jump:
fa9a63c5
RM
3530 case maybe_pop_jump:
3531 case jump:
25fe55af 3532 case jump_past_alt:
fa9a63c5 3533 case dummy_failure_jump:
25fe55af 3534 EXTRACT_NUMBER_AND_INCR (j, p);
5e69f11e 3535 p += j;
fa9a63c5
RM
3536 if (j > 0)
3537 continue;
5e69f11e 3538
25fe55af
RS
3539 /* Jump backward implies we just went through the body of a
3540 loop and matched nothing. Opcode jumped to should be
3541 `on_failure_jump' or `succeed_n'. Just treat it like an
3542 ordinary jump. For a * loop, it has pushed its failure
3543 point already; if so, discard that as redundant. */
3544 if ((re_opcode_t) *p != on_failure_jump
fa9a63c5
RM
3545 && (re_opcode_t) *p != succeed_n)
3546 continue;
3547
25fe55af
RS
3548 p++;
3549 EXTRACT_NUMBER_AND_INCR (j, p);
3550 p += j;
5e69f11e 3551
25fe55af
RS
3552 /* If what's on the stack is where we are now, pop it. */
3553 if (!FAIL_STACK_EMPTY ()
fa9a63c5 3554 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
25fe55af 3555 fail_stack.avail--;
fa9a63c5 3556
25fe55af 3557 continue;
fa9a63c5
RM
3558
3559
25fe55af
RS
3560 case on_failure_jump:
3561 case on_failure_keep_string_jump:
fa9a63c5 3562 handle_on_failure_jump:
25fe55af
RS
3563 EXTRACT_NUMBER_AND_INCR (j, p);
3564
3565 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3566 end of the pattern. We don't want to push such a point,
3567 since when we restore it above, entering the switch will
3568 increment `p' past the end of the pattern. We don't need
3569 to push such a point since we obviously won't find any more
3570 fastmap entries beyond `pend'. Such a pattern can match
3571 the null string, though. */
3572 if (p + j < pend)
3573 {
3574 if (!PUSH_PATTERN_OP (p + j, fail_stack))
fa9a63c5
RM
3575 {
3576 RESET_FAIL_STACK ();
3577 return -2;
3578 }
fa9a63c5 3579 }
25fe55af
RS
3580 else
3581 bufp->can_be_null = 1;
fa9a63c5 3582
25fe55af
RS
3583 if (succeed_n_p)
3584 {
3585 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3586 succeed_n_p = false;
3587 }
3588
3589 continue;
fa9a63c5
RM
3590
3591
3592 case succeed_n:
25fe55af
RS
3593 /* Get to the number of times to succeed. */
3594 p += 2;
fa9a63c5 3595
25fe55af
RS
3596 /* Increment p past the n for when k != 0. */
3597 EXTRACT_NUMBER_AND_INCR (k, p);
3598 if (k == 0)
fa9a63c5 3599 {
25fe55af
RS
3600 p -= 4;
3601 succeed_n_p = true; /* Spaghetti code alert. */
3602 goto handle_on_failure_jump;
3603 }
3604 continue;
fa9a63c5
RM
3605
3606
3607 case set_number_at:
25fe55af
RS
3608 p += 4;
3609 continue;
fa9a63c5
RM
3610
3611
3612 case start_memory:
25fe55af 3613 case stop_memory:
fa9a63c5
RM
3614 p += 2;
3615 continue;
3616
3617
3618 default:
25fe55af
RS
3619 abort (); /* We have listed all the cases. */
3620 } /* switch *p++ */
fa9a63c5
RM
3621
3622 /* Getting here means we have found the possible starting
25fe55af
RS
3623 characters for one path of the pattern -- and that the empty
3624 string does not match. We need not follow this path further.
3625 Instead, look at the next alternative (remembered on the
3626 stack), or quit if no more. The test at the top of the loop
3627 does these things. */
fa9a63c5
RM
3628 path_can_be_null = false;
3629 p = pend;
3630 } /* while p */
3631
3632 /* Set `can_be_null' for the last path (also the first path, if the
25fe55af 3633 pattern is empty). */
fa9a63c5
RM
3634 bufp->can_be_null |= path_can_be_null;
3635
3636 done:
3637 RESET_FAIL_STACK ();
3638 return 0;
3639} /* re_compile_fastmap */
3640\f
3641/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3642 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3643 this memory for recording register information. STARTS and ENDS
3644 must be allocated using the malloc library routine, and must each
3645 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3646
3647 If NUM_REGS == 0, then subsequent matches should allocate their own
3648 register data.
3649
3650 Unless this function is called, the first search or match using
3651 PATTERN_BUFFER will allocate its own register data, without
3652 freeing the old data. */
3653
3654void
3655re_set_registers (bufp, regs, num_regs, starts, ends)
3656 struct re_pattern_buffer *bufp;
3657 struct re_registers *regs;
3658 unsigned num_regs;
3659 regoff_t *starts, *ends;
3660{
3661 if (num_regs)
3662 {
3663 bufp->regs_allocated = REGS_REALLOCATE;
3664 regs->num_regs = num_regs;
3665 regs->start = starts;
3666 regs->end = ends;
3667 }
3668 else
3669 {
3670 bufp->regs_allocated = REGS_UNALLOCATED;
3671 regs->num_regs = 0;
3672 regs->start = regs->end = (regoff_t *) 0;
3673 }
3674}
3675\f
25fe55af 3676/* Searching routines. */
fa9a63c5
RM
3677
3678/* Like re_search_2, below, but only one string is specified, and
3679 doesn't let you say where to stop matching. */
3680
3681int
3682re_search (bufp, string, size, startpos, range, regs)
3683 struct re_pattern_buffer *bufp;
3684 const char *string;
3685 int size, startpos, range;
3686 struct re_registers *regs;
3687{
5e69f11e 3688 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
3689 regs, size);
3690}
3691
b18215fc
RS
3692/* End address of virtual concatenation of string. */
3693#define STOP_ADDR_VSTRING(P) \
3694 (((P) >= size1 ? string2 + size2 : string1 + size1))
3695
3696/* Address of POS in the concatenation of virtual string. */
3697#define POS_ADDR_VSTRING(POS) \
3698 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
3699
3700/* Using the compiled pattern in BUFP->buffer, first tries to match the
3701 virtual concatenation of STRING1 and STRING2, starting first at index
3702 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 3703
fa9a63c5 3704 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 3705
fa9a63c5
RM
3706 RANGE is how far to scan while trying to match. RANGE = 0 means try
3707 only at STARTPOS; in general, the last start tried is STARTPOS +
3708 RANGE.
5e69f11e 3709
fa9a63c5
RM
3710 In REGS, return the indices of the virtual concatenation of STRING1
3711 and STRING2 that matched the entire BUFP->buffer and its contained
3712 subexpressions.
5e69f11e 3713
fa9a63c5
RM
3714 Do not consider matching one past the index STOP in the virtual
3715 concatenation of STRING1 and STRING2.
3716
3717 We return either the position in the strings at which the match was
3718 found, -1 if no match, or -2 if error (such as failure
3719 stack overflow). */
3720
3721int
3722re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3723 struct re_pattern_buffer *bufp;
3724 const char *string1, *string2;
3725 int size1, size2;
3726 int startpos;
3727 int range;
3728 struct re_registers *regs;
3729 int stop;
3730{
3731 int val;
3732 register char *fastmap = bufp->fastmap;
6676cb1c 3733 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3734 int total_size = size1 + size2;
3735 int endpos = startpos + range;
c8499ba5 3736 int anchored_start = 0;
fa9a63c5 3737
25fe55af 3738 /* Nonzero if we have to concern multibyte character. */
b18215fc
RS
3739 int multibyte = bufp->multibyte;
3740
fa9a63c5
RM
3741 /* Check for out-of-range STARTPOS. */
3742 if (startpos < 0 || startpos > total_size)
3743 return -1;
5e69f11e 3744
fa9a63c5 3745 /* Fix up RANGE if it might eventually take us outside
34597fa9 3746 the virtual concatenation of STRING1 and STRING2.
5e69f11e 3747 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
3748 if (endpos < 0)
3749 range = 0 - startpos;
fa9a63c5
RM
3750 else if (endpos > total_size)
3751 range = total_size - startpos;
3752
3753 /* If the search isn't to be a backwards one, don't waste time in a
3754 search for a pattern that must be anchored. */
3755 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3756 {
3757 if (startpos > 0)
3758 return -1;
3759 else
3760 range = 1;
3761 }
3762
ae4788a8
RS
3763#ifdef emacs
3764 /* In a forward search for something that starts with \=.
3765 don't keep searching past point. */
3766 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3767 {
3768 range = PT - startpos;
3769 if (range <= 0)
3770 return -1;
3771 }
3772#endif /* emacs */
3773
fa9a63c5
RM
3774 /* Update the fastmap now if not correct already. */
3775 if (fastmap && !bufp->fastmap_accurate)
3776 if (re_compile_fastmap (bufp) == -2)
3777 return -2;
5e69f11e 3778
c8499ba5
RS
3779 /* See whether the pattern is anchored. */
3780 if (bufp->buffer[0] == begline)
3781 anchored_start = 1;
3782
b18215fc
RS
3783#ifdef emacs
3784 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
25fe55af 3785 POS_AS_IN_BUFFER (startpos > 0
b18215fc
RS
3786 ? startpos - 1 : startpos),
3787 1);
3788#endif
3789
fa9a63c5
RM
3790 /* Loop through the string, looking for a place to start matching. */
3791 for (;;)
5e69f11e 3792 {
c8499ba5
RS
3793 /* If the pattern is anchored,
3794 skip quickly past places we cannot match.
3795 We don't bother to treat startpos == 0 specially
3796 because that case doesn't repeat. */
3797 if (anchored_start && startpos > 0)
3798 {
3799 if (! (bufp->newline_anchor
3800 && ((startpos <= size1 ? string1[startpos - 1]
3801 : string2[startpos - size1 - 1])
3802 == '\n')))
3803 goto advance;
3804 }
3805
fa9a63c5 3806 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
3807 cannot be the start of a match. If the pattern can match the
3808 null string, however, we don't need to skip characters; we want
3809 the first null string. */
fa9a63c5
RM
3810 if (fastmap && startpos < total_size && !bufp->can_be_null)
3811 {
25fe55af 3812 if (range > 0) /* Searching forwards. */
fa9a63c5
RM
3813 {
3814 register const char *d;
3815 register int lim = 0;
3816 int irange = range;
3817
25fe55af
RS
3818 if (startpos < size1 && startpos + range >= size1)
3819 lim = range - (size1 - startpos);
fa9a63c5 3820
b18215fc 3821 d = POS_ADDR_VSTRING (startpos);
5e69f11e 3822
25fe55af
RS
3823 /* Written out as an if-else to avoid testing `translate'
3824 inside the loop. */
fa9a63c5 3825 if (translate)
25fe55af
RS
3826 while (range > lim
3827 && !fastmap[(unsigned char)
bc192b5b 3828 RE_TRANSLATE (translate, (unsigned char) *d++)])
25fe55af 3829 range--;
fa9a63c5 3830 else
25fe55af
RS
3831 while (range > lim && !fastmap[(unsigned char) *d++])
3832 range--;
fa9a63c5
RM
3833
3834 startpos += irange - range;
3835 }
25fe55af 3836 else /* Searching backwards. */
fa9a63c5
RM
3837 {
3838 register char c = (size1 == 0 || startpos >= size1
25fe55af
RS
3839 ? string2[startpos - size1]
3840 : string1[startpos]);
fa9a63c5
RM
3841
3842 if (!fastmap[(unsigned char) TRANSLATE (c)])
3843 goto advance;
3844 }
3845 }
3846
3847 /* If can't match the null string, and that's all we have left, fail. */
3848 if (range >= 0 && startpos == total_size && fastmap
25fe55af 3849 && !bufp->can_be_null)
fa9a63c5
RM
3850 return -1;
3851
3852 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3853 startpos, regs, stop);
3854#ifndef REGEX_MALLOC
3855#ifdef C_ALLOCA
3856 alloca (0);
3857#endif
3858#endif
3859
3860 if (val >= 0)
3861 return startpos;
5e69f11e 3862
fa9a63c5
RM
3863 if (val == -2)
3864 return -2;
3865
3866 advance:
5e69f11e 3867 if (!range)
25fe55af 3868 break;
5e69f11e 3869 else if (range > 0)
25fe55af 3870 {
b18215fc
RS
3871 /* Update STARTPOS to the next character boundary. */
3872 if (multibyte)
3873 {
b560c397
RS
3874 const unsigned char *p
3875 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
3876 const unsigned char *pend
3877 = (const unsigned char *) STOP_ADDR_VSTRING (startpos);
b18215fc
RS
3878 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
3879
3880 range -= len;
3881 if (range < 0)
3882 break;
3883 startpos += len;
3884 }
3885 else
3886 {
b560c397
RS
3887 range--;
3888 startpos++;
3889 }
e318085a 3890 }
fa9a63c5 3891 else
25fe55af
RS
3892 {
3893 range++;
3894 startpos--;
b18215fc
RS
3895
3896 /* Update STARTPOS to the previous character boundary. */
3897 if (multibyte)
3898 {
b560c397
RS
3899 const unsigned char *p
3900 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
b18215fc
RS
3901 int len = 0;
3902
3903 /* Find the head of multibyte form. */
3904 while (!CHAR_HEAD_P (p))
3905 p--, len++;
3906
3907 /* Adjust it. */
3908#if 0 /* XXX */
3909 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
3910 ;
3911 else
3912#endif
3913 {
3914 range += len;
3915 if (range > 0)
3916 break;
3917
3918 startpos -= len;
3919 }
3920 }
25fe55af 3921 }
fa9a63c5
RM
3922 }
3923 return -1;
3924} /* re_search_2 */
3925\f
3926/* Declarations and macros for re_match_2. */
3927
3928static int bcmp_translate ();
3929static boolean alt_match_null_string_p (),
25fe55af
RS
3930 common_op_match_null_string_p (),
3931 group_match_null_string_p ();
fa9a63c5
RM
3932
3933/* This converts PTR, a pointer into one of the search strings `string1'
3934 and `string2' into an offset from the beginning of that string. */
3935#define POINTER_TO_OFFSET(ptr) \
3936 (FIRST_STRING_P (ptr) \
3937 ? ((regoff_t) ((ptr) - string1)) \
3938 : ((regoff_t) ((ptr) - string2 + size1)))
3939
3940/* Macros for dealing with the split strings in re_match_2. */
3941
3942#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3943
3944/* Call before fetching a character with *d. This switches over to
3945 string2 if necessary. */
3946#define PREFETCH() \
25fe55af 3947 while (d == dend) \
fa9a63c5
RM
3948 { \
3949 /* End of string2 => fail. */ \
25fe55af
RS
3950 if (dend == end_match_2) \
3951 goto fail; \
3952 /* End of string1 => advance to string2. */ \
3953 d = string2; \
fa9a63c5
RM
3954 dend = end_match_2; \
3955 }
3956
3957
3958/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 3959 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 3960#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 3961#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
3962
3963
3964/* Test if D points to a character which is word-constituent. We have
3965 two special cases to check for: if past the end of string1, look at
3966 the first character in string2; and if before the beginning of
3967 string2, look at the last character in string1. */
3968#define WORDCHAR_P(d) \
3969 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 3970 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
3971 == Sword)
3972
9121ca40 3973/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
3974
3975/* The comment at case wordbound is following one, but we don't use
3976 AT_WORD_BOUNDARY anymore to support multibyte form.
3977
3978 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
3979 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
3980 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
3981 macro and introducing temporary variables works around the bug. */
3982
9121ca40 3983#if 0
fa9a63c5
RM
3984/* Test if the character before D and the one at D differ with respect
3985 to being word-constituent. */
3986#define AT_WORD_BOUNDARY(d) \
3987 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3988 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 3989#endif
fa9a63c5
RM
3990
3991/* Free everything we malloc. */
3992#ifdef MATCH_MAY_ALLOCATE
00049484 3993#define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
fa9a63c5
RM
3994#define FREE_VARIABLES() \
3995 do { \
3996 REGEX_FREE_STACK (fail_stack.stack); \
3997 FREE_VAR (regstart); \
3998 FREE_VAR (regend); \
3999 FREE_VAR (old_regstart); \
4000 FREE_VAR (old_regend); \
4001 FREE_VAR (best_regstart); \
4002 FREE_VAR (best_regend); \
4003 FREE_VAR (reg_info); \
4004 FREE_VAR (reg_dummy); \
4005 FREE_VAR (reg_info_dummy); \
4006 } while (0)
4007#else
4008#define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4009#endif /* not MATCH_MAY_ALLOCATE */
4010
25fe55af 4011/* These values must meet several constraints. They must not be valid
fa9a63c5
RM
4012 register values; since we have a limit of 255 registers (because
4013 we use only one byte in the pattern for the register number), we can
25fe55af 4014 use numbers larger than 255. They must differ by 1, because of
fa9a63c5
RM
4015 NUM_FAILURE_ITEMS above. And the value for the lowest register must
4016 be larger than the value for the highest register, so we do not try
25fe55af 4017 to actually save any registers when none are active. */
fa9a63c5
RM
4018#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
4019#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
4020\f
4021/* Matching routines. */
4022
25fe55af 4023#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4024/* re_match is like re_match_2 except it takes only a single string. */
4025
4026int
4027re_match (bufp, string, size, pos, regs)
4028 struct re_pattern_buffer *bufp;
4029 const char *string;
4030 int size, pos;
4031 struct re_registers *regs;
4032{
4033 int result = re_match_2_internal (bufp, NULL, 0, string, size,
4034 pos, regs, size);
4035 alloca (0);
4036 return result;
4037}
4038#endif /* not emacs */
4039
b18215fc
RS
4040#ifdef emacs
4041/* In Emacs, this is the string or buffer in which we
25fe55af 4042 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4043Lisp_Object re_match_object;
4044#endif
fa9a63c5
RM
4045
4046/* re_match_2 matches the compiled pattern in BUFP against the
4047 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4048 and SIZE2, respectively). We start matching at POS, and stop
4049 matching at STOP.
5e69f11e 4050
fa9a63c5 4051 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4052 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4053 documentation for exactly how many groups we fill.
4054
4055 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4056 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4057 matched substring. */
4058
4059int
4060re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4061 struct re_pattern_buffer *bufp;
4062 const char *string1, *string2;
4063 int size1, size2;
4064 int pos;
4065 struct re_registers *regs;
4066 int stop;
4067{
b18215fc 4068 int result;
25fe55af 4069
b18215fc 4070#ifdef emacs
25fe55af
RS
4071 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
4072 POS_AS_IN_BUFFER (pos > 0 ? pos - 1 : pos),
b18215fc
RS
4073 1);
4074#endif
4075
4076 result = re_match_2_internal (bufp, string1, size1, string2, size2,
fa9a63c5
RM
4077 pos, regs, stop);
4078 alloca (0);
4079 return result;
4080}
4081
4082/* This is a separate function so that we can force an alloca cleanup
25fe55af 4083 afterwards. */
fa9a63c5
RM
4084static int
4085re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4086 struct re_pattern_buffer *bufp;
4087 const char *string1, *string2;
4088 int size1, size2;
4089 int pos;
4090 struct re_registers *regs;
4091 int stop;
4092{
4093 /* General temporaries. */
4094 int mcnt;
4095 unsigned char *p1;
4096
4097 /* Just past the end of the corresponding string. */
4098 const char *end1, *end2;
4099
4100 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4101 each to consider matching. */
fa9a63c5
RM
4102 const char *end_match_1, *end_match_2;
4103
4104 /* Where we are in the data, and the end of the current string. */
4105 const char *d, *dend;
5e69f11e 4106
fa9a63c5
RM
4107 /* Where we are in the pattern, and the end of the pattern. */
4108 unsigned char *p = bufp->buffer;
4109 register unsigned char *pend = p + bufp->used;
4110
4111 /* Mark the opcode just after a start_memory, so we can test for an
4112 empty subpattern when we get to the stop_memory. */
4113 unsigned char *just_past_start_mem = 0;
4114
25fe55af 4115 /* We use this to map every character in the string. */
6676cb1c 4116 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4117
25fe55af 4118 /* Nonzero if we have to concern multibyte character. */
b18215fc
RS
4119 int multibyte = bufp->multibyte;
4120
fa9a63c5
RM
4121 /* Failure point stack. Each place that can handle a failure further
4122 down the line pushes a failure point on this stack. It consists of
4123 restart, regend, and reg_info for all registers corresponding to
4124 the subexpressions we're currently inside, plus the number of such
4125 registers, and, finally, two char *'s. The first char * is where
4126 to resume scanning the pattern; the second one is where to resume
4127 scanning the strings. If the latter is zero, the failure point is
4128 a ``dummy''; if a failure happens and the failure point is a dummy,
25fe55af
RS
4129 it gets discarded and the next next one is tried. */
4130#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4131 fail_stack_type fail_stack;
4132#endif
4133#ifdef DEBUG
4134 static unsigned failure_id = 0;
4135 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4136#endif
4137
4138 /* This holds the pointer to the failure stack, when
4139 it is allocated relocatably. */
4140 fail_stack_elt_t *failure_stack_ptr;
4141
4142 /* We fill all the registers internally, independent of what we
25fe55af 4143 return, for use in backreferences. The number here includes
fa9a63c5
RM
4144 an element for register zero. */
4145 unsigned num_regs = bufp->re_nsub + 1;
5e69f11e 4146
fa9a63c5
RM
4147 /* The currently active registers. */
4148 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4149 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4150
4151 /* Information on the contents of registers. These are pointers into
4152 the input strings; they record just what was matched (on this
4153 attempt) by a subexpression part of the pattern, that is, the
4154 regnum-th regstart pointer points to where in the pattern we began
4155 matching and the regnum-th regend points to right after where we
4156 stopped matching the regnum-th subexpression. (The zeroth register
4157 keeps track of what the whole pattern matches.) */
4158#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4159 const char **regstart, **regend;
4160#endif
4161
4162 /* If a group that's operated upon by a repetition operator fails to
4163 match anything, then the register for its start will need to be
4164 restored because it will have been set to wherever in the string we
4165 are when we last see its open-group operator. Similarly for a
4166 register's end. */
4167#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4168 const char **old_regstart, **old_regend;
4169#endif
4170
4171 /* The is_active field of reg_info helps us keep track of which (possibly
4172 nested) subexpressions we are currently in. The matched_something
4173 field of reg_info[reg_num] helps us tell whether or not we have
4174 matched any of the pattern so far this time through the reg_num-th
4175 subexpression. These two fields get reset each time through any
25fe55af
RS
4176 loop their register is in. */
4177#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5e69f11e 4178 register_info_type *reg_info;
fa9a63c5
RM
4179#endif
4180
4181 /* The following record the register info as found in the above
5e69f11e 4182 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4183 This happens as we backtrack through the failure points, which in
4184 turn happens only if we have not yet matched the entire string. */
4185 unsigned best_regs_set = false;
4186#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4187 const char **best_regstart, **best_regend;
4188#endif
5e69f11e 4189
fa9a63c5
RM
4190 /* Logically, this is `best_regend[0]'. But we don't want to have to
4191 allocate space for that if we're not allocating space for anything
25fe55af 4192 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4193 any of the other register vectors, and it seems rather a kludge to
4194 treat `best_regend' differently than the rest. So we keep track of
4195 the end of the best match so far in a separate variable. We
4196 initialize this to NULL so that when we backtrack the first time
4197 and need to test it, it's not garbage. */
4198 const char *match_end = NULL;
4199
4200 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
4201 int set_regs_matched_done = 0;
4202
4203 /* Used when we pop values we don't care about. */
4204#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4205 const char **reg_dummy;
4206 register_info_type *reg_info_dummy;
4207#endif
4208
4209#ifdef DEBUG
4210 /* Counts the total number of registers pushed. */
5e69f11e 4211 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4212#endif
4213
4214 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4215
fa9a63c5 4216 INIT_FAIL_STACK ();
5e69f11e 4217
fa9a63c5
RM
4218#ifdef MATCH_MAY_ALLOCATE
4219 /* Do not bother to initialize all the register variables if there are
4220 no groups in the pattern, as it takes a fair amount of time. If
4221 there are groups, we include space for register 0 (the whole
4222 pattern), even though we never use it, since it simplifies the
4223 array indexing. We should fix this. */
4224 if (bufp->re_nsub)
4225 {
4226 regstart = REGEX_TALLOC (num_regs, const char *);
4227 regend = REGEX_TALLOC (num_regs, const char *);
4228 old_regstart = REGEX_TALLOC (num_regs, const char *);
4229 old_regend = REGEX_TALLOC (num_regs, const char *);
4230 best_regstart = REGEX_TALLOC (num_regs, const char *);
4231 best_regend = REGEX_TALLOC (num_regs, const char *);
4232 reg_info = REGEX_TALLOC (num_regs, register_info_type);
4233 reg_dummy = REGEX_TALLOC (num_regs, const char *);
4234 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4235
5e69f11e 4236 if (!(regstart && regend && old_regstart && old_regend && reg_info
25fe55af
RS
4237 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4238 {
4239 FREE_VARIABLES ();
4240 return -2;
4241 }
fa9a63c5
RM
4242 }
4243 else
4244 {
4245 /* We must initialize all our variables to NULL, so that
25fe55af 4246 `FREE_VARIABLES' doesn't try to free them. */
fa9a63c5 4247 regstart = regend = old_regstart = old_regend = best_regstart
25fe55af 4248 = best_regend = reg_dummy = NULL;
fa9a63c5
RM
4249 reg_info = reg_info_dummy = (register_info_type *) NULL;
4250 }
4251#endif /* MATCH_MAY_ALLOCATE */
4252
4253 /* The starting position is bogus. */
4254 if (pos < 0 || pos > size1 + size2)
4255 {
4256 FREE_VARIABLES ();
4257 return -1;
4258 }
5e69f11e 4259
fa9a63c5
RM
4260 /* Initialize subexpression text positions to -1 to mark ones that no
4261 start_memory/stop_memory has been seen for. Also initialize the
4262 register information struct. */
4263 for (mcnt = 1; mcnt < num_regs; mcnt++)
4264 {
5e69f11e 4265 regstart[mcnt] = regend[mcnt]
25fe55af 4266 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5e69f11e 4267
fa9a63c5
RM
4268 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4269 IS_ACTIVE (reg_info[mcnt]) = 0;
4270 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4271 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4272 }
5e69f11e 4273
fa9a63c5 4274 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4275 `string1' is null. */
fa9a63c5
RM
4276 if (size2 == 0 && string1 != NULL)
4277 {
4278 string2 = string1;
4279 size2 = size1;
4280 string1 = 0;
4281 size1 = 0;
4282 }
4283 end1 = string1 + size1;
4284 end2 = string2 + size2;
4285
4286 /* Compute where to stop matching, within the two strings. */
4287 if (stop <= size1)
4288 {
4289 end_match_1 = string1 + stop;
4290 end_match_2 = string2;
4291 }
4292 else
4293 {
4294 end_match_1 = end1;
4295 end_match_2 = string2 + stop - size1;
4296 }
4297
5e69f11e 4298 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4299 `dend' is the end of the input string that `d' points within. `d'
4300 is advanced into the following input string whenever necessary, but
4301 this happens before fetching; therefore, at the beginning of the
4302 loop, `d' can be pointing at the end of a string, but it cannot
4303 equal `string2'. */
4304 if (size1 > 0 && pos <= size1)
4305 {
4306 d = string1 + pos;
4307 dend = end_match_1;
4308 }
4309 else
4310 {
4311 d = string2 + pos - size1;
4312 dend = end_match_2;
4313 }
4314
4315 DEBUG_PRINT1 ("The compiled pattern is: ");
4316 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4317 DEBUG_PRINT1 ("The string to match is: `");
4318 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4319 DEBUG_PRINT1 ("'\n");
5e69f11e 4320
25fe55af 4321 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
4322 function if the match is complete, or it drops through if the match
4323 fails at this starting point in the input data. */
4324 for (;;)
4325 {
4326 DEBUG_PRINT2 ("\n0x%x: ", p);
4327
4328 if (p == pend)
4329 { /* End of pattern means we might have succeeded. */
25fe55af 4330 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 4331
fa9a63c5 4332 /* If we haven't matched the entire string, and we want the
25fe55af
RS
4333 longest match, try backtracking. */
4334 if (d != end_match_2)
fa9a63c5
RM
4335 {
4336 /* 1 if this match ends in the same string (string1 or string2)
4337 as the best previous match. */
5e69f11e 4338 boolean same_str_p = (FIRST_STRING_P (match_end)
fa9a63c5
RM
4339 == MATCHING_IN_FIRST_STRING);
4340 /* 1 if this match is the best seen so far. */
4341 boolean best_match_p;
4342
4343 /* AIX compiler got confused when this was combined
25fe55af 4344 with the previous declaration. */
fa9a63c5
RM
4345 if (same_str_p)
4346 best_match_p = d > match_end;
4347 else
4348 best_match_p = !MATCHING_IN_FIRST_STRING;
4349
25fe55af
RS
4350 DEBUG_PRINT1 ("backtracking.\n");
4351
4352 if (!FAIL_STACK_EMPTY ())
4353 { /* More failure points to try. */
4354
4355 /* If exceeds best match so far, save it. */
4356 if (!best_regs_set || best_match_p)
4357 {
4358 best_regs_set = true;
4359 match_end = d;
4360
4361 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4362
4363 for (mcnt = 1; mcnt < num_regs; mcnt++)
4364 {
4365 best_regstart[mcnt] = regstart[mcnt];
4366 best_regend[mcnt] = regend[mcnt];
4367 }
4368 }
4369 goto fail;
4370 }
4371
4372 /* If no failure points, don't restore garbage. And if
4373 last match is real best match, don't restore second
4374 best one. */
4375 else if (best_regs_set && !best_match_p)
4376 {
4377 restore_best_regs:
4378 /* Restore best match. It may happen that `dend ==
4379 end_match_1' while the restored d is in string2.
4380 For example, the pattern `x.*y.*z' against the
4381 strings `x-' and `y-z-', if the two strings are
4382 not consecutive in memory. */
4383 DEBUG_PRINT1 ("Restoring best registers.\n");
4384
4385 d = match_end;
4386 dend = ((d >= string1 && d <= end1)
4387 ? end_match_1 : end_match_2);
fa9a63c5
RM
4388
4389 for (mcnt = 1; mcnt < num_regs; mcnt++)
4390 {
4391 regstart[mcnt] = best_regstart[mcnt];
4392 regend[mcnt] = best_regend[mcnt];
4393 }
25fe55af
RS
4394 }
4395 } /* d != end_match_2 */
fa9a63c5
RM
4396
4397 succeed_label:
25fe55af 4398 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 4399
25fe55af
RS
4400 /* If caller wants register contents data back, do it. */
4401 if (regs && !bufp->no_sub)
fa9a63c5 4402 {
25fe55af
RS
4403 /* Have the register data arrays been allocated? */
4404 if (bufp->regs_allocated == REGS_UNALLOCATED)
4405 { /* No. So allocate them with malloc. We need one
4406 extra element beyond `num_regs' for the `-1' marker
4407 GNU code uses. */
4408 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4409 regs->start = TALLOC (regs->num_regs, regoff_t);
4410 regs->end = TALLOC (regs->num_regs, regoff_t);
4411 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4412 {
4413 FREE_VARIABLES ();
4414 return -2;
4415 }
25fe55af
RS
4416 bufp->regs_allocated = REGS_REALLOCATE;
4417 }
4418 else if (bufp->regs_allocated == REGS_REALLOCATE)
4419 { /* Yes. If we need more elements than were already
4420 allocated, reallocate them. If we need fewer, just
4421 leave it alone. */
4422 if (regs->num_regs < num_regs + 1)
4423 {
4424 regs->num_regs = num_regs + 1;
4425 RETALLOC (regs->start, regs->num_regs, regoff_t);
4426 RETALLOC (regs->end, regs->num_regs, regoff_t);
4427 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4428 {
4429 FREE_VARIABLES ();
4430 return -2;
4431 }
25fe55af
RS
4432 }
4433 }
4434 else
fa9a63c5
RM
4435 {
4436 /* These braces fend off a "empty body in an else-statement"
25fe55af 4437 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
4438 assert (bufp->regs_allocated == REGS_FIXED);
4439 }
4440
25fe55af
RS
4441 /* Convert the pointer data in `regstart' and `regend' to
4442 indices. Register zero has to be set differently,
4443 since we haven't kept track of any info for it. */
4444 if (regs->num_regs > 0)
4445 {
4446 regs->start[0] = pos;
4447 regs->end[0] = (MATCHING_IN_FIRST_STRING
fa9a63c5 4448 ? ((regoff_t) (d - string1))
25fe55af
RS
4449 : ((regoff_t) (d - string2 + size1)));
4450 }
5e69f11e 4451
25fe55af
RS
4452 /* Go through the first `min (num_regs, regs->num_regs)'
4453 registers, since that is all we initialized. */
fa9a63c5
RM
4454 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
4455 {
25fe55af
RS
4456 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4457 regs->start[mcnt] = regs->end[mcnt] = -1;
4458 else
4459 {
fa9a63c5
RM
4460 regs->start[mcnt]
4461 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
25fe55af 4462 regs->end[mcnt]
fa9a63c5 4463 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
25fe55af 4464 }
fa9a63c5 4465 }
5e69f11e 4466
25fe55af
RS
4467 /* If the regs structure we return has more elements than
4468 were in the pattern, set the extra elements to -1. If
4469 we (re)allocated the registers, this is the case,
4470 because we always allocate enough to have at least one
4471 -1 at the end. */
4472 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
4473 regs->start[mcnt] = regs->end[mcnt] = -1;
fa9a63c5
RM
4474 } /* regs && !bufp->no_sub */
4475
25fe55af
RS
4476 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4477 nfailure_points_pushed, nfailure_points_popped,
4478 nfailure_points_pushed - nfailure_points_popped);
4479 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 4480
25fe55af 4481 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
5e69f11e 4482 ? string1
fa9a63c5
RM
4483 : string2 - size1);
4484
25fe55af 4485 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 4486
25fe55af
RS
4487 FREE_VARIABLES ();
4488 return mcnt;
4489 }
fa9a63c5 4490
25fe55af 4491 /* Otherwise match next pattern command. */
fa9a63c5
RM
4492 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4493 {
25fe55af
RS
4494 /* Ignore these. Used to ignore the n of succeed_n's which
4495 currently have n == 0. */
4496 case no_op:
4497 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4498 break;
fa9a63c5
RM
4499
4500 case succeed:
25fe55af 4501 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
4502 goto succeed_label;
4503
25fe55af
RS
4504 /* Match the next n pattern characters exactly. The following
4505 byte in the pattern defines n, and the n bytes after that
4506 are the characters to match. */
fa9a63c5
RM
4507 case exactn:
4508 mcnt = *p++;
25fe55af 4509 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 4510
25fe55af
RS
4511 /* This is written out as an if-else so we don't waste time
4512 testing `translate' inside the loop. */
4513 if (translate)
fa9a63c5
RM
4514 {
4515 do
4516 {
4517 PREFETCH ();
bc192b5b 4518 if ((unsigned char) RE_TRANSLATE (translate, (unsigned char) *d++)
6676cb1c 4519 != (unsigned char) *p++)
25fe55af 4520 goto fail;
fa9a63c5
RM
4521 }
4522 while (--mcnt);
4523 }
4524 else
4525 {
4526 do
4527 {
4528 PREFETCH ();
4529 if (*d++ != (char) *p++) goto fail;
4530 }
4531 while (--mcnt);
4532 }
4533 SET_REGS_MATCHED ();
25fe55af 4534 break;
fa9a63c5
RM
4535
4536
25fe55af 4537 /* Match any character except possibly a newline or a null. */
fa9a63c5 4538 case anychar:
25fe55af 4539 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 4540
25fe55af 4541 PREFETCH ();
fa9a63c5 4542
25fe55af
RS
4543 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4544 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
fa9a63c5
RM
4545 goto fail;
4546
25fe55af
RS
4547 SET_REGS_MATCHED ();
4548 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
b18215fc 4549 d += multibyte ? MULTIBYTE_FORM_LENGTH (d, dend - d) : 1;
fa9a63c5
RM
4550 break;
4551
4552
4553 case charset:
4554 case charset_not:
4555 {
b18215fc 4556 register unsigned int c;
fa9a63c5 4557 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
4558 int len;
4559
4560 /* Start of actual range_table, or end of bitmap if there is no
4561 range table. */
4562 unsigned char *range_table;
4563
25fe55af 4564 /* Nonzero if there is range table. */
b18215fc
RS
4565 int range_table_exists;
4566
25fe55af 4567 /* Number of ranges of range table. Not in bytes. */
b18215fc 4568 int count;
fa9a63c5 4569
25fe55af 4570 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5
RM
4571
4572 PREFETCH ();
b18215fc 4573 c = (unsigned char) *d;
fa9a63c5 4574
b18215fc
RS
4575 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
4576 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
4577 if (range_table_exists)
4578 EXTRACT_NUMBER_AND_INCR (count, range_table);
4579 else
4580 count = 0;
4581
4582 if (multibyte && BASE_LEADING_CODE_P (c))
4583 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
4584
4585 if (SINGLE_BYTE_CHAR_P (c))
4586 { /* Lookup bitmap. */
4587 c = TRANSLATE (c); /* The character to match. */
4588 len = 1;
4589
4590 /* Cast to `unsigned' instead of `unsigned char' in
4591 case the bit list is a full 32 bytes long. */
4592 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
fa9a63c5
RM
4593 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4594 not = !not;
b18215fc
RS
4595 }
4596 else if (range_table_exists)
4597 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
fa9a63c5 4598
b18215fc 4599 p = CHARSET_RANGE_TABLE_END (range_table, count);
fa9a63c5
RM
4600
4601 if (!not) goto fail;
5e69f11e 4602
fa9a63c5 4603 SET_REGS_MATCHED ();
b18215fc 4604 d += len;
fa9a63c5
RM
4605 break;
4606 }
4607
4608
25fe55af
RS
4609 /* The beginning of a group is represented by start_memory.
4610 The arguments are the register number in the next byte, and the
4611 number of groups inner to this one in the next. The text
4612 matched within the group is recorded (in the internal
4613 registers data structure) under the register number. */
4614 case start_memory:
fa9a63c5
RM
4615 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4616
25fe55af 4617 /* Find out if this group can match the empty string. */
fa9a63c5 4618 p1 = p; /* To send to group_match_null_string_p. */
5e69f11e 4619
25fe55af
RS
4620 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4621 REG_MATCH_NULL_STRING_P (reg_info[*p])
4622 = group_match_null_string_p (&p1, pend, reg_info);
4623
4624 /* Save the position in the string where we were the last time
4625 we were at this open-group operator in case the group is
4626 operated upon by a repetition operator, e.g., with `(a*)*b'
4627 against `ab'; then we want to ignore where we are now in
4628 the string in case this attempt to match fails. */
4629 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4630 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4631 : regstart[*p];
5e69f11e 4632 DEBUG_PRINT2 (" old_regstart: %d\n",
fa9a63c5
RM
4633 POINTER_TO_OFFSET (old_regstart[*p]));
4634
25fe55af 4635 regstart[*p] = d;
fa9a63c5
RM
4636 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4637
25fe55af
RS
4638 IS_ACTIVE (reg_info[*p]) = 1;
4639 MATCHED_SOMETHING (reg_info[*p]) = 0;
fa9a63c5
RM
4640
4641 /* Clear this whenever we change the register activity status. */
4642 set_regs_matched_done = 0;
5e69f11e 4643
25fe55af
RS
4644 /* This is the new highest active register. */
4645 highest_active_reg = *p;
5e69f11e 4646
25fe55af
RS
4647 /* If nothing was active before, this is the new lowest active
4648 register. */
4649 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4650 lowest_active_reg = *p;
fa9a63c5 4651
25fe55af
RS
4652 /* Move past the register number and inner group count. */
4653 p += 2;
fa9a63c5
RM
4654 just_past_start_mem = p;
4655
25fe55af 4656 break;
fa9a63c5
RM
4657
4658
25fe55af
RS
4659 /* The stop_memory opcode represents the end of a group. Its
4660 arguments are the same as start_memory's: the register
4661 number, and the number of inner groups. */
fa9a63c5
RM
4662 case stop_memory:
4663 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
5e69f11e 4664
25fe55af
RS
4665 /* We need to save the string position the last time we were at
4666 this close-group operator in case the group is operated
4667 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4668 against `aba'; then we want to ignore where we are now in
4669 the string in case this attempt to match fails. */
4670 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4671 ? REG_UNSET (regend[*p]) ? d : regend[*p]
fa9a63c5 4672 : regend[*p];
5e69f11e 4673 DEBUG_PRINT2 (" old_regend: %d\n",
fa9a63c5
RM
4674 POINTER_TO_OFFSET (old_regend[*p]));
4675
25fe55af 4676 regend[*p] = d;
fa9a63c5
RM
4677 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4678
25fe55af
RS
4679 /* This register isn't active anymore. */
4680 IS_ACTIVE (reg_info[*p]) = 0;
fa9a63c5
RM
4681
4682 /* Clear this whenever we change the register activity status. */
4683 set_regs_matched_done = 0;
4684
25fe55af
RS
4685 /* If this was the only register active, nothing is active
4686 anymore. */
4687 if (lowest_active_reg == highest_active_reg)
4688 {
4689 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4690 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4691 }
4692 else
4693 { /* We must scan for the new highest active register, since
4694 it isn't necessarily one less than now: consider
4695 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4696 new highest active register is 1. */
4697 unsigned char r = *p - 1;
4698 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4699 r--;
4700
4701 /* If we end up at register zero, that means that we saved
4702 the registers as the result of an `on_failure_jump', not
4703 a `start_memory', and we jumped to past the innermost
4704 `stop_memory'. For example, in ((.)*) we save
4705 registers 1 and 2 as a result of the *, but when we pop
4706 back to the second ), we are at the stop_memory 1.
4707 Thus, nothing is active. */
fa9a63c5 4708 if (r == 0)
25fe55af
RS
4709 {
4710 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4711 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4712 }
4713 else
4714 highest_active_reg = r;
4715 }
4716
4717 /* If just failed to match something this time around with a
4718 group that's operated on by a repetition operator, try to
4719 force exit from the ``loop'', and restore the register
4720 information for this group that we had before trying this
4721 last match. */
4722 if ((!MATCHED_SOMETHING (reg_info[*p])
4723 || just_past_start_mem == p - 1)
5e69f11e 4724 && (p + 2) < pend)
25fe55af
RS
4725 {
4726 boolean is_a_jump_n = false;
4727
4728 p1 = p + 2;
4729 mcnt = 0;
4730 switch ((re_opcode_t) *p1++)
4731 {
4732 case jump_n:
fa9a63c5 4733 is_a_jump_n = true;
25fe55af 4734 case pop_failure_jump:
fa9a63c5
RM
4735 case maybe_pop_jump:
4736 case jump:
4737 case dummy_failure_jump:
25fe55af 4738 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
fa9a63c5
RM
4739 if (is_a_jump_n)
4740 p1 += 2;
25fe55af 4741 break;
5e69f11e 4742
25fe55af
RS
4743 default:
4744 /* do nothing */ ;
4745 }
fa9a63c5 4746 p1 += mcnt;
5e69f11e 4747
25fe55af
RS
4748 /* If the next operation is a jump backwards in the pattern
4749 to an on_failure_jump right before the start_memory
4750 corresponding to this stop_memory, exit from the loop
4751 by forcing a failure after pushing on the stack the
4752 on_failure_jump's jump in the pattern, and d. */
4753 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4754 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
fa9a63c5 4755 {
25fe55af
RS
4756 /* If this group ever matched anything, then restore
4757 what its registers were before trying this last
4758 failed match, e.g., with `(a*)*b' against `ab' for
4759 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4760 against `aba' for regend[3].
5e69f11e 4761
25fe55af
RS
4762 Also restore the registers for inner groups for,
4763 e.g., `((a*)(b*))*' against `aba' (register 3 would
4764 otherwise get trashed). */
5e69f11e 4765
25fe55af 4766 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
fa9a63c5 4767 {
5e69f11e
RM
4768 unsigned r;
4769
25fe55af 4770 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
5e69f11e 4771
fa9a63c5 4772 /* Restore this and inner groups' (if any) registers. */
25fe55af
RS
4773 for (r = *p; r < *p + *(p + 1); r++)
4774 {
4775 regstart[r] = old_regstart[r];
4776
4777 /* xx why this test? */
4778 if (old_regend[r] >= regstart[r])
4779 regend[r] = old_regend[r];
4780 }
4781 }
fa9a63c5 4782 p1++;
25fe55af
RS
4783 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4784 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
fa9a63c5 4785
25fe55af
RS
4786 goto fail;
4787 }
4788 }
5e69f11e 4789
25fe55af
RS
4790 /* Move past the register number and the inner group count. */
4791 p += 2;
4792 break;
fa9a63c5
RM
4793
4794
4795 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
4796 followed by the numeric value of <digit> as the register number. */
4797 case duplicate:
fa9a63c5
RM
4798 {
4799 register const char *d2, *dend2;
25fe55af 4800 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
4801 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4802
25fe55af
RS
4803 /* Can't back reference a group which we've never matched. */
4804 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4805 goto fail;
5e69f11e 4806
25fe55af
RS
4807 /* Where in input to try to start matching. */
4808 d2 = regstart[regno];
5e69f11e 4809
25fe55af
RS
4810 /* Where to stop matching; if both the place to start and
4811 the place to stop matching are in the same string, then
4812 set to the place to stop, otherwise, for now have to use
4813 the end of the first string. */
fa9a63c5 4814
25fe55af 4815 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
4816 == FIRST_STRING_P (regend[regno]))
4817 ? regend[regno] : end_match_1);
4818 for (;;)
4819 {
4820 /* If necessary, advance to next segment in register
25fe55af 4821 contents. */
fa9a63c5
RM
4822 while (d2 == dend2)
4823 {
4824 if (dend2 == end_match_2) break;
4825 if (dend2 == regend[regno]) break;
4826
25fe55af
RS
4827 /* End of string1 => advance to string2. */
4828 d2 = string2;
4829 dend2 = regend[regno];
fa9a63c5
RM
4830 }
4831 /* At end of register contents => success */
4832 if (d2 == dend2) break;
4833
4834 /* If necessary, advance to next segment in data. */
4835 PREFETCH ();
4836
4837 /* How many characters left in this segment to match. */
4838 mcnt = dend - d;
5e69f11e 4839
fa9a63c5 4840 /* Want how many consecutive characters we can match in
25fe55af
RS
4841 one shot, so, if necessary, adjust the count. */
4842 if (mcnt > dend2 - d2)
fa9a63c5 4843 mcnt = dend2 - d2;
5e69f11e 4844
fa9a63c5 4845 /* Compare that many; failure if mismatch, else move
25fe55af 4846 past them. */
5e69f11e 4847 if (translate
25fe55af
RS
4848 ? bcmp_translate (d, d2, mcnt, translate)
4849 : bcmp (d, d2, mcnt))
fa9a63c5
RM
4850 goto fail;
4851 d += mcnt, d2 += mcnt;
4852
25fe55af 4853 /* Do this because we've match some characters. */
fa9a63c5
RM
4854 SET_REGS_MATCHED ();
4855 }
4856 }
4857 break;
4858
4859
25fe55af
RS
4860 /* begline matches the empty string at the beginning of the string
4861 (unless `not_bol' is set in `bufp'), and, if
4862 `newline_anchor' is set, after newlines. */
fa9a63c5 4863 case begline:
25fe55af 4864 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 4865
25fe55af
RS
4866 if (AT_STRINGS_BEG (d))
4867 {
4868 if (!bufp->not_bol) break;
4869 }
4870 else if (d[-1] == '\n' && bufp->newline_anchor)
4871 {
4872 break;
4873 }
4874 /* In all other cases, we fail. */
4875 goto fail;
fa9a63c5
RM
4876
4877
25fe55af 4878 /* endline is the dual of begline. */
fa9a63c5 4879 case endline:
25fe55af 4880 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 4881
25fe55af
RS
4882 if (AT_STRINGS_END (d))
4883 {
4884 if (!bufp->not_eol) break;
4885 }
5e69f11e 4886
25fe55af
RS
4887 /* We have to ``prefetch'' the next character. */
4888 else if ((d == end1 ? *string2 : *d) == '\n'
4889 && bufp->newline_anchor)
4890 {
4891 break;
4892 }
4893 goto fail;
fa9a63c5
RM
4894
4895
4896 /* Match at the very beginning of the data. */
25fe55af
RS
4897 case begbuf:
4898 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4899 if (AT_STRINGS_BEG (d))
4900 break;
4901 goto fail;
fa9a63c5
RM
4902
4903
4904 /* Match at the very end of the data. */
25fe55af
RS
4905 case endbuf:
4906 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
4907 if (AT_STRINGS_END (d))
4908 break;
25fe55af 4909 goto fail;
5e69f11e 4910
5e69f11e 4911
25fe55af
RS
4912 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4913 pushes NULL as the value for the string on the stack. Then
4914 `pop_failure_point' will keep the current value for the
4915 string, instead of restoring it. To see why, consider
4916 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4917 then the . fails against the \n. But the next thing we want
4918 to do is match the \n against the \n; if we restored the
4919 string value, we would be back at the foo.
4920
4921 Because this is used only in specific cases, we don't need to
4922 check all the things that `on_failure_jump' does, to make
4923 sure the right things get saved on the stack. Hence we don't
4924 share its code. The only reason to push anything on the
4925 stack at all is that otherwise we would have to change
4926 `anychar's code to do something besides goto fail in this
4927 case; that seems worse than this. */
4928 case on_failure_keep_string_jump:
4929 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
fa9a63c5 4930
25fe55af
RS
4931 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4932 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
b18215fc 4933
25fe55af
RS
4934 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4935 break;
fa9a63c5
RM
4936
4937
4938 /* Uses of on_failure_jump:
5e69f11e 4939
25fe55af
RS
4940 Each alternative starts with an on_failure_jump that points
4941 to the beginning of the next alternative. Each alternative
4942 except the last ends with a jump that in effect jumps past
4943 the rest of the alternatives. (They really jump to the
4944 ending jump of the following alternative, because tensioning
4945 these jumps is a hassle.)
fa9a63c5 4946
25fe55af
RS
4947 Repeats start with an on_failure_jump that points past both
4948 the repetition text and either the following jump or
4949 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 4950 case on_failure_jump:
25fe55af
RS
4951 on_failure:
4952 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4953
4954 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4955 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4956
4957 /* If this on_failure_jump comes right before a group (i.e.,
4958 the original * applied to a group), save the information
4959 for that group and all inner ones, so that if we fail back
4960 to this point, the group's information will be correct.
4961 For example, in \(a*\)*\1, we need the preceding group,
4962 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4963
4964 /* We can't use `p' to check ahead because we push
4965 a failure point to `p + mcnt' after we do this. */
4966 p1 = p;
4967
4968 /* We need to skip no_op's before we look for the
4969 start_memory in case this on_failure_jump is happening as
4970 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4971 against aba. */
4972 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4973 p1++;
4974
4975 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4976 {
4977 /* We have a new highest active register now. This will
4978 get reset at the start_memory we are about to get to,
4979 but we will have saved all the registers relevant to
4980 this repetition op, as described above. */
4981 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4982 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4983 lowest_active_reg = *(p1 + 1);
4984 }
4985
4986 DEBUG_PRINT1 (":\n");
4987 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4988 break;
4989
4990
4991 /* A smart repeat ends with `maybe_pop_jump'.
4992 We change it to either `pop_failure_jump' or `jump'. */
4993 case maybe_pop_jump:
4994 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4995 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4996 {
fa9a63c5
RM
4997 register unsigned char *p2 = p;
4998
25fe55af
RS
4999 /* Compare the beginning of the repeat with what in the
5000 pattern follows its end. If we can establish that there
5001 is nothing that they would both match, i.e., that we
5002 would have to backtrack because of (as in, e.g., `a*a')
5003 then we can change to pop_failure_jump, because we'll
5004 never have to backtrack.
5e69f11e 5005
25fe55af
RS
5006 This is not true in the case of alternatives: in
5007 `(a|ab)*' we do need to backtrack to the `ab' alternative
5008 (e.g., if the string was `ab'). But instead of trying to
5009 detect that here, the alternative has put on a dummy
5010 failure point which is what we will end up popping. */
fa9a63c5
RM
5011
5012 /* Skip over open/close-group commands.
5013 If what follows this loop is a ...+ construct,
5014 look at what begins its body, since we will have to
5015 match at least one of that. */
5016 while (1)
5017 {
5018 if (p2 + 2 < pend
5019 && ((re_opcode_t) *p2 == stop_memory
5020 || (re_opcode_t) *p2 == start_memory))
5021 p2 += 3;
5022 else if (p2 + 6 < pend
5023 && (re_opcode_t) *p2 == dummy_failure_jump)
5024 p2 += 6;
5025 else
5026 break;
5027 }
5028
5029 p1 = p + mcnt;
5030 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
5e69f11e 5031 to the `maybe_finalize_jump' of this case. Examine what
25fe55af 5032 follows. */
fa9a63c5 5033
25fe55af
RS
5034 /* If we're at the end of the pattern, we can change. */
5035 if (p2 == pend)
fa9a63c5
RM
5036 {
5037 /* Consider what happens when matching ":\(.*\)"
5038 against ":/". I don't really understand this code
25fe55af
RS
5039 yet. */
5040 p[-3] = (unsigned char) pop_failure_jump;
5041 DEBUG_PRINT1
5042 (" End of pattern: change to `pop_failure_jump'.\n");
5043 }
fa9a63c5 5044
25fe55af 5045 else if ((re_opcode_t) *p2 == exactn
fa9a63c5
RM
5046 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
5047 {
b18215fc 5048 register unsigned int c
25fe55af 5049 = *p2 == (unsigned char) endline ? '\n' : p2[2];
fa9a63c5 5050
b18215fc 5051 if ((re_opcode_t) p1[3] == exactn)
e318085a 5052 {
b18215fc
RS
5053 if (!(multibyte /* && (c != '\n') */
5054 && BASE_LEADING_CODE_P (c))
5055 ? c != p1[5]
5056 : (STRING_CHAR (&p2[2], pend - &p2[2])
5057 != STRING_CHAR (&p1[5], pend - &p1[5])))
25fe55af
RS
5058 {
5059 p[-3] = (unsigned char) pop_failure_jump;
5060 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
5061 c, p1[5]);
5062 }
e318085a 5063 }
5e69f11e 5064
fa9a63c5
RM
5065 else if ((re_opcode_t) p1[3] == charset
5066 || (re_opcode_t) p1[3] == charset_not)
5067 {
5068 int not = (re_opcode_t) p1[3] == charset_not;
5e69f11e 5069
b18215fc
RS
5070 if (multibyte /* && (c != '\n') */
5071 && BASE_LEADING_CODE_P (c))
5072 c = STRING_CHAR (&p2[2], pend - &p2[2]);
5073
5074 /* Test if C is listed in charset (or charset_not)
5075 at `&p1[3]'. */
5076 if (SINGLE_BYTE_CHAR_P (c))
5077 {
5078 if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH
fa9a63c5
RM
5079 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5080 not = !not;
b18215fc
RS
5081 }
5082 else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3]))
5083 CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]);
fa9a63c5 5084
25fe55af
RS
5085 /* `not' is equal to 1 if c would match, which means
5086 that we can't change to pop_failure_jump. */
fa9a63c5 5087 if (!not)
25fe55af
RS
5088 {
5089 p[-3] = (unsigned char) pop_failure_jump;
5090 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5091 }
fa9a63c5
RM
5092 }
5093 }
25fe55af 5094 else if ((re_opcode_t) *p2 == charset)
fa9a63c5 5095 {
b18215fc 5096 if ((re_opcode_t) p1[3] == exactn)
e318085a 5097 {
b18215fc
RS
5098 register unsigned int c = p1[5];
5099 int not = 0;
5100
5101 if (multibyte && BASE_LEADING_CODE_P (c))
5102 c = STRING_CHAR (&p1[5], pend - &p1[5]);
5103
25fe55af 5104 /* Test if C is listed in charset at `p2'. */
b18215fc
RS
5105 if (SINGLE_BYTE_CHAR_P (c))
5106 {
5107 if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH
5108 && (p2[2 + c / BYTEWIDTH]
5109 & (1 << (c % BYTEWIDTH))))
5110 not = !not;
5111 }
5112 else if (CHARSET_RANGE_TABLE_EXISTS_P (p2))
5113 CHARSET_LOOKUP_RANGE_TABLE (not, c, p2);
5114
5115 if (!not)
25fe55af
RS
5116 {
5117 p[-3] = (unsigned char) pop_failure_jump;
5118 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
b18215fc 5119 }
25fe55af 5120 }
5e69f11e 5121
b18215fc
RS
5122 /* It is hard to list up all the character in charset
5123 P2 if it includes multibyte character. Give up in
5124 such case. */
5125 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
5126 {
5127 /* Now, we are sure that P2 has no range table.
5128 So, for the size of bitmap in P2, `p2[1]' is
25fe55af 5129 enough. But P1 may have range table, so the
b18215fc
RS
5130 size of bitmap table of P1 is extracted by
5131 using macro `CHARSET_BITMAP_SIZE'.
5132
5133 Since we know that all the character listed in
5134 P2 is ASCII, it is enough to test only bitmap
5135 table of P1. */
25fe55af 5136
b18215fc 5137 if ((re_opcode_t) p1[3] == charset_not)
fa9a63c5
RM
5138 {
5139 int idx;
b18215fc 5140 /* We win if the charset_not inside the loop lists
25fe55af 5141 every character listed in the charset after. */
fa9a63c5
RM
5142 for (idx = 0; idx < (int) p2[1]; idx++)
5143 if (! (p2[2 + idx] == 0
b18215fc 5144 || (idx < CHARSET_BITMAP_SIZE (&p1[3])
fa9a63c5
RM
5145 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
5146 break;
5147
5148 if (idx == p2[1])
25fe55af
RS
5149 {
5150 p[-3] = (unsigned char) pop_failure_jump;
5151 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5152 }
fa9a63c5
RM
5153 }
5154 else if ((re_opcode_t) p1[3] == charset)
5155 {
5156 int idx;
5157 /* We win if the charset inside the loop
5158 has no overlap with the one after the loop. */
5159 for (idx = 0;
b18215fc
RS
5160 (idx < (int) p2[1]
5161 && idx < CHARSET_BITMAP_SIZE (&p1[3]));
fa9a63c5
RM
5162 idx++)
5163 if ((p2[2 + idx] & p1[5 + idx]) != 0)
5164 break;
5165
b18215fc
RS
5166 if (idx == p2[1]
5167 || idx == CHARSET_BITMAP_SIZE (&p1[3]))
25fe55af
RS
5168 {
5169 p[-3] = (unsigned char) pop_failure_jump;
5170 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5171 }
fa9a63c5
RM
5172 }
5173 }
5174 }
b18215fc 5175 }
fa9a63c5
RM
5176 p -= 2; /* Point at relative address again. */
5177 if ((re_opcode_t) p[-1] != pop_failure_jump)
5178 {
5179 p[-1] = (unsigned char) jump;
25fe55af 5180 DEBUG_PRINT1 (" Match => jump.\n");
fa9a63c5
RM
5181 goto unconditional_jump;
5182 }
25fe55af 5183 /* Note fall through. */
fa9a63c5
RM
5184
5185
5186 /* The end of a simple repeat has a pop_failure_jump back to
25fe55af
RS
5187 its matching on_failure_jump, where the latter will push a
5188 failure point. The pop_failure_jump takes off failure
5189 points put on by this pop_failure_jump's matching
5190 on_failure_jump; we got through the pattern to here from the
5191 matching on_failure_jump, so didn't fail. */
5192 case pop_failure_jump:
5193 {
5194 /* We need to pass separate storage for the lowest and
5195 highest registers, even though we don't care about the
5196 actual values. Otherwise, we will restore only one
5197 register from the stack, since lowest will == highest in
5198 `pop_failure_point'. */
5199 unsigned dummy_low_reg, dummy_high_reg;
5200 unsigned char *pdummy;
5201 const char *sdummy;
5202
5203 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
5204 POP_FAILURE_POINT (sdummy, pdummy,
5205 dummy_low_reg, dummy_high_reg,
5206 reg_dummy, reg_dummy, reg_info_dummy);
5207 }
5208 /* Note fall through. */
5209
5210
5211 /* Unconditionally jump (without popping any failure points). */
5212 case jump:
fa9a63c5
RM
5213 unconditional_jump:
5214 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5215 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5216 p += mcnt; /* Do the jump. */
5217 DEBUG_PRINT2 ("(to 0x%x).\n", p);
5218 break;
5219
5220
5221 /* We need this opcode so we can detect where alternatives end
5222 in `group_match_null_string_p' et al. */
5223 case jump_past_alt:
5224 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
5225 goto unconditional_jump;
5226
5227
5228 /* Normally, the on_failure_jump pushes a failure point, which
5229 then gets popped at pop_failure_jump. We will end up at
5230 pop_failure_jump, also, and with a pattern of, say, `a+', we
5231 are skipping over the on_failure_jump, so we have to push
5232 something meaningless for pop_failure_jump to pop. */
5233 case dummy_failure_jump:
5234 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
5235 /* It doesn't matter what we push for the string here. What
5236 the code at `fail' tests is the value for the pattern. */
5237 PUSH_FAILURE_POINT (0, 0, -2);
5238 goto unconditional_jump;
5239
5240
5241 /* At the end of an alternative, we need to push a dummy failure
5242 point in case we are followed by a `pop_failure_jump', because
5243 we don't want the failure point for the alternative to be
5244 popped. For example, matching `(a|ab)*' against `aab'
5245 requires that we match the `ab' alternative. */
5246 case push_dummy_failure:
5247 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
5248 /* See comments just above at `dummy_failure_jump' about the
5249 two zeroes. */
5250 PUSH_FAILURE_POINT (0, 0, -2);
fa9a63c5
RM
5251 break;
5252
25fe55af
RS
5253 /* Have to succeed matching what follows at least n times.
5254 After that, handle like `on_failure_jump'. */
5255 case succeed_n:
5256 EXTRACT_NUMBER (mcnt, p + 2);
5257 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5258
25fe55af
RS
5259 assert (mcnt >= 0);
5260 /* Originally, this is how many times we HAVE to succeed. */
5261 if (mcnt > 0)
5262 {
5263 mcnt--;
fa9a63c5 5264 p += 2;
25fe55af
RS
5265 STORE_NUMBER_AND_INCR (p, mcnt);
5266 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
5267 }
fa9a63c5 5268 else if (mcnt == 0)
25fe55af
RS
5269 {
5270 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
fa9a63c5 5271 p[2] = (unsigned char) no_op;
25fe55af
RS
5272 p[3] = (unsigned char) no_op;
5273 goto on_failure;
5274 }
5275 break;
5276
5277 case jump_n:
5278 EXTRACT_NUMBER (mcnt, p + 2);
5279 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5280
5281 /* Originally, this is how many times we CAN jump. */
5282 if (mcnt)
5283 {
5284 mcnt--;
5285 STORE_NUMBER (p + 2, mcnt);
5e69f11e 5286 goto unconditional_jump;
25fe55af
RS
5287 }
5288 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5289 else
5290 p += 4;
25fe55af 5291 break;
5e69f11e 5292
fa9a63c5
RM
5293 case set_number_at:
5294 {
25fe55af 5295 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5296
25fe55af
RS
5297 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5298 p1 = p + mcnt;
5299 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5300 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
fa9a63c5 5301 STORE_NUMBER (p1, mcnt);
25fe55af
RS
5302 break;
5303 }
9121ca40
KH
5304
5305 case wordbound:
5306 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
fa9a63c5 5307
b18215fc 5308 /* We SUCCEED in one of the following cases: */
9121ca40 5309
b18215fc 5310 /* Case 1: D is at the beginning or the end of string. */
9121ca40
KH
5311 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5312 break;
b18215fc
RS
5313 else
5314 {
5315 /* C1 is the character before D, S1 is the syntax of C1, C2
5316 is the character at D, and S2 is the syntax of C2. */
5317 int c1, c2, s1, s2;
5318 int pos1 = PTR_TO_OFFSET (d - 1);
9121ca40 5319
b18215fc
RS
5320 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5321 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5322#ifdef emacs
5323 UPDATE_SYNTAX_TABLE (pos1 ? pos1 : 1);
25fe55af 5324#endif
b18215fc
RS
5325 s1 = SYNTAX (c1);
5326#ifdef emacs
5327 UPDATE_SYNTAX_TABLE_FORWARD (pos1 + 1);
25fe55af 5328#endif
b18215fc
RS
5329 s2 = SYNTAX (c2);
5330
5331 if (/* Case 2: Only one of S1 and S2 is Sword. */
5332 ((s1 == Sword) != (s2 == Sword))
5333 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5334 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5335 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
9121ca40 5336 break;
9121ca40 5337 }
b18215fc 5338 goto fail;
9121ca40
KH
5339
5340 case notwordbound:
9121ca40 5341 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
b18215fc
RS
5342
5343 /* We FAIL in one of the following cases: */
5344
5345 /* Case 1: D is at the beginning or the end of string. */
9121ca40
KH
5346 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5347 goto fail;
b18215fc
RS
5348 else
5349 {
5350 /* C1 is the character before D, S1 is the syntax of C1, C2
5351 is the character at D, and S2 is the syntax of C2. */
5352 int c1, c2, s1, s2;
5353 int pos1 = PTR_TO_OFFSET (d - 1);
9121ca40 5354
b18215fc
RS
5355 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5356 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5357#ifdef emacs
5358 UPDATE_SYNTAX_TABLE (pos1);
25fe55af 5359#endif
b18215fc
RS
5360 s1 = SYNTAX (c1);
5361#ifdef emacs
5362 UPDATE_SYNTAX_TABLE_FORWARD (pos1 + 1);
25fe55af 5363#endif
b18215fc
RS
5364 s2 = SYNTAX (c2);
5365
5366 if (/* Case 2: Only one of S1 and S2 is Sword. */
5367 ((s1 == Sword) != (s2 == Sword))
5368 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5369 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5370 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
9121ca40 5371 goto fail;
9121ca40 5372 }
b18215fc 5373 break;
fa9a63c5
RM
5374
5375 case wordbeg:
25fe55af 5376 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5377
b18215fc
RS
5378 /* We FAIL in one of the following cases: */
5379
25fe55af 5380 /* Case 1: D is at the end of string. */
b18215fc 5381 if (AT_STRINGS_END (d))
25fe55af 5382 goto fail;
b18215fc
RS
5383 else
5384 {
5385 /* C1 is the character before D, S1 is the syntax of C1, C2
5386 is the character at D, and S2 is the syntax of C2. */
5387 int c1, c2, s1, s2;
5388 int pos1 = PTR_TO_OFFSET (d);
fa9a63c5 5389
b18215fc 5390 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
fa9a63c5 5391#ifdef emacs
b18215fc 5392 UPDATE_SYNTAX_TABLE (pos1);
25fe55af 5393#endif
b18215fc 5394 s2 = SYNTAX (c2);
25fe55af 5395
b18215fc
RS
5396 /* Case 2: S2 is not Sword. */
5397 if (s2 != Sword)
5398 goto fail;
5399
5400 /* Case 3: D is not at the beginning of string ... */
5401 if (!AT_STRINGS_BEG (d))
5402 {
5403 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5404#ifdef emacs
5405 UPDATE_SYNTAX_TABLE_BACKWARD (pos1 - 1);
25fe55af 5406#endif
b18215fc
RS
5407 s1 = SYNTAX (c1);
5408
5409 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5410 returns 0. */
b18215fc
RS
5411 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5412 goto fail;
5413 }
5414 }
e318085a
RS
5415 break;
5416
b18215fc 5417 case wordend:
25fe55af 5418 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5419
5420 /* We FAIL in one of the following cases: */
5421
5422 /* Case 1: D is at the beginning of string. */
5423 if (AT_STRINGS_BEG (d))
e318085a 5424 goto fail;
b18215fc
RS
5425 else
5426 {
5427 /* C1 is the character before D, S1 is the syntax of C1, C2
5428 is the character at D, and S2 is the syntax of C2. */
5429 int c1, c2, s1, s2;
5430
5431 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5432 s1 = SYNTAX (c1);
5433
5434 /* Case 2: S1 is not Sword. */
5435 if (s1 != Sword)
5436 goto fail;
5437
5438 /* Case 3: D is not at the end of string ... */
5439 if (!AT_STRINGS_END (d))
5440 {
5441 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5442 s2 = SYNTAX (c2);
5443
5444 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5445 returns 0. */
b18215fc 5446 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5447 goto fail;
b18215fc
RS
5448 }
5449 }
e318085a
RS
5450 break;
5451
b18215fc 5452#ifdef emacs
25fe55af
RS
5453 case before_dot:
5454 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
b18215fc 5455 if (PTR_CHAR_POS ((unsigned char *) d) >= PT)
25fe55af
RS
5456 goto fail;
5457 break;
b18215fc 5458
25fe55af
RS
5459 case at_dot:
5460 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
b18215fc 5461 if (PTR_CHAR_POS ((unsigned char *) d) != PT)
25fe55af
RS
5462 goto fail;
5463 break;
b18215fc 5464
25fe55af
RS
5465 case after_dot:
5466 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
ae93ce92 5467 if (PTR_CHAR_POS ((unsigned char *) d) <= PT)
25fe55af
RS
5468 goto fail;
5469 break;
fa9a63c5
RM
5470
5471 case syntaxspec:
25fe55af 5472 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
fa9a63c5
RM
5473 mcnt = *p++;
5474 goto matchsyntax;
5475
25fe55af
RS
5476 case wordchar:
5477 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
fa9a63c5 5478 mcnt = (int) Sword;
25fe55af 5479 matchsyntax:
fa9a63c5 5480 PREFETCH ();
b18215fc
RS
5481#ifdef emacs
5482 {
5483 int pos1 = PTR_TO_OFFSET (d);
5484 UPDATE_SYNTAX_TABLE (pos1);
5485 }
25fe55af 5486#endif
b18215fc
RS
5487 {
5488 int c, len;
5489
5490 if (multibyte)
5491 /* we must concern about multibyte form, ... */
5492 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5493 else
5494 /* everything should be handled as ASCII, even though it
5495 looks like multibyte form. */
5496 c = *d, len = 1;
5497
5498 if (SYNTAX (c) != (enum syntaxcode) mcnt)
fa9a63c5 5499 goto fail;
b18215fc
RS
5500 d += len;
5501 }
25fe55af 5502 SET_REGS_MATCHED ();
fa9a63c5
RM
5503 break;
5504
5505 case notsyntaxspec:
25fe55af 5506 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
fa9a63c5
RM
5507 mcnt = *p++;
5508 goto matchnotsyntax;
5509
25fe55af
RS
5510 case notwordchar:
5511 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
fa9a63c5 5512 mcnt = (int) Sword;
25fe55af 5513 matchnotsyntax:
fa9a63c5 5514 PREFETCH ();
b18215fc
RS
5515#ifdef emacs
5516 {
5517 int pos1 = PTR_TO_OFFSET (d);
5518 UPDATE_SYNTAX_TABLE (pos1);
5519 }
25fe55af 5520#endif
b18215fc
RS
5521 {
5522 int c, len;
5523
5524 if (multibyte)
5525 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5526 else
5527 c = *d, len = 1;
5528
5529 if (SYNTAX (c) == (enum syntaxcode) mcnt)
fa9a63c5 5530 goto fail;
b18215fc
RS
5531 d += len;
5532 }
5533 SET_REGS_MATCHED ();
5534 break;
5535
5536 case categoryspec:
5537 DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p);
5538 mcnt = *p++;
5539 PREFETCH ();
5540 {
5541 int c, len;
5542
5543 if (multibyte)
5544 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5545 else
5546 c = *d, len = 1;
5547
5548 if (!CHAR_HAS_CATEGORY (c, mcnt))
5549 goto fail;
5550 d += len;
5551 }
fa9a63c5 5552 SET_REGS_MATCHED ();
e318085a 5553 break;
fa9a63c5 5554
b18215fc
RS
5555 case notcategoryspec:
5556 DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p);
5557 mcnt = *p++;
5558 PREFETCH ();
5559 {
5560 int c, len;
5561
5562 if (multibyte)
5563 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5564 else
5565 c = *d, len = 1;
5566
5567 if (CHAR_HAS_CATEGORY (c, mcnt))
5568 goto fail;
5569 d += len;
5570 }
5571 SET_REGS_MATCHED ();
5572 break;
5573
fa9a63c5
RM
5574#else /* not emacs */
5575 case wordchar:
b18215fc 5576 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
fa9a63c5 5577 PREFETCH ();
b18215fc
RS
5578 if (!WORDCHAR_P (d))
5579 goto fail;
fa9a63c5 5580 SET_REGS_MATCHED ();
b18215fc 5581 d++;
fa9a63c5 5582 break;
5e69f11e 5583
fa9a63c5 5584 case notwordchar:
b18215fc 5585 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
fa9a63c5
RM
5586 PREFETCH ();
5587 if (WORDCHAR_P (d))
b18215fc
RS
5588 goto fail;
5589 SET_REGS_MATCHED ();
5590 d++;
fa9a63c5
RM
5591 break;
5592#endif /* not emacs */
5e69f11e 5593
b18215fc
RS
5594 default:
5595 abort ();
fa9a63c5 5596 }
b18215fc 5597 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
5598
5599
5600 /* We goto here if a matching operation fails. */
5601 fail:
5602 if (!FAIL_STACK_EMPTY ())
b18215fc
RS
5603 { /* A restart point is known. Restore to that state. */
5604 DEBUG_PRINT1 ("\nFAIL:\n");
5605 POP_FAILURE_POINT (d, p,
5606 lowest_active_reg, highest_active_reg,
5607 regstart, regend, reg_info);
5608
5609 /* If this failure point is a dummy, try the next one. */
5610 if (!p)
fa9a63c5
RM
5611 goto fail;
5612
b18215fc 5613 /* If we failed to the end of the pattern, don't examine *p. */
fa9a63c5 5614 assert (p <= pend);
b18215fc
RS
5615 if (p < pend)
5616 {
5617 boolean is_a_jump_n = false;
5618
5619 /* If failed to a backwards jump that's part of a repetition
5620 loop, need to pop this failure point and use the next one. */
5621 switch ((re_opcode_t) *p)
5622 {
5623 case jump_n:
5624 is_a_jump_n = true;
5625 case maybe_pop_jump:
5626 case pop_failure_jump:
5627 case jump:
5628 p1 = p + 1;
5629 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5630 p1 += mcnt;
5631
5632 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5633 || (!is_a_jump_n
5634 && (re_opcode_t) *p1 == on_failure_jump))
5635 goto fail;
5636 break;
5637 default:
5638 /* do nothing */ ;
5639 }
5640 }
5641
5642 if (d >= string1 && d <= end1)
fa9a63c5 5643 dend = end_match_1;
b18215fc 5644 }
fa9a63c5 5645 else
b18215fc 5646 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
5647 } /* for (;;) */
5648
5649 if (best_regs_set)
5650 goto restore_best_regs;
5651
5652 FREE_VARIABLES ();
5653
b18215fc 5654 return -1; /* Failure to match. */
fa9a63c5
RM
5655} /* re_match_2 */
5656\f
5657/* Subroutine definitions for re_match_2. */
5658
5659
5660/* We are passed P pointing to a register number after a start_memory.
5e69f11e 5661
fa9a63c5
RM
5662 Return true if the pattern up to the corresponding stop_memory can
5663 match the empty string, and false otherwise.
5e69f11e 5664
fa9a63c5
RM
5665 If we find the matching stop_memory, sets P to point to one past its number.
5666 Otherwise, sets P to an undefined byte less than or equal to END.
5667
5668 We don't handle duplicates properly (yet). */
5669
5670static boolean
5671group_match_null_string_p (p, end, reg_info)
5672 unsigned char **p, *end;
5673 register_info_type *reg_info;
5674{
5675 int mcnt;
5676 /* Point to after the args to the start_memory. */
5677 unsigned char *p1 = *p + 2;
5e69f11e 5678
fa9a63c5
RM
5679 while (p1 < end)
5680 {
5681 /* Skip over opcodes that can match nothing, and return true or
5682 false, as appropriate, when we get to one that can't, or to the
b18215fc 5683 matching stop_memory. */
5e69f11e 5684
fa9a63c5 5685 switch ((re_opcode_t) *p1)
b18215fc
RS
5686 {
5687 /* Could be either a loop or a series of alternatives. */
5688 case on_failure_jump:
5689 p1++;
5690 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5e69f11e 5691
b18215fc 5692 /* If the next operation is not a jump backwards in the
fa9a63c5
RM
5693 pattern. */
5694
5695 if (mcnt >= 0)
5696 {
b18215fc
RS
5697 /* Go through the on_failure_jumps of the alternatives,
5698 seeing if any of the alternatives cannot match nothing.
5699 The last alternative starts with only a jump,
5700 whereas the rest start with on_failure_jump and end
5701 with a jump, e.g., here is the pattern for `a|b|c':
fa9a63c5 5702
b18215fc
RS
5703 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5704 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5705 /exactn/1/c
fa9a63c5 5706
b18215fc
RS
5707 So, we have to first go through the first (n-1)
5708 alternatives and then deal with the last one separately. */
fa9a63c5
RM
5709
5710
b18215fc
RS
5711 /* Deal with the first (n-1) alternatives, which start
5712 with an on_failure_jump (see above) that jumps to right
5713 past a jump_past_alt. */
fa9a63c5 5714
b18215fc
RS
5715 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5716 {
5717 /* `mcnt' holds how many bytes long the alternative
5718 is, including the ending `jump_past_alt' and
5719 its number. */
fa9a63c5 5720
b18215fc
RS
5721 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5722 reg_info))
5723 return false;
fa9a63c5 5724
b18215fc 5725 /* Move to right after this alternative, including the
fa9a63c5 5726 jump_past_alt. */
b18215fc 5727 p1 += mcnt;
fa9a63c5 5728
b18215fc
RS
5729 /* Break if it's the beginning of an n-th alternative
5730 that doesn't begin with an on_failure_jump. */
5731 if ((re_opcode_t) *p1 != on_failure_jump)
5732 break;
5e69f11e 5733
fa9a63c5
RM
5734 /* Still have to check that it's not an n-th
5735 alternative that starts with an on_failure_jump. */
5736 p1++;
b18215fc
RS
5737 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5738 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5739 {
5740 /* Get to the beginning of the n-th alternative. */
5741 p1 -= 3;
5742 break;
5743 }
5744 }
fa9a63c5 5745
b18215fc
RS
5746 /* Deal with the last alternative: go back and get number
5747 of the `jump_past_alt' just before it. `mcnt' contains
5748 the length of the alternative. */
5749 EXTRACT_NUMBER (mcnt, p1 - 2);
fa9a63c5 5750
b18215fc
RS
5751 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5752 return false;
fa9a63c5 5753
b18215fc
RS
5754 p1 += mcnt; /* Get past the n-th alternative. */
5755 } /* if mcnt > 0 */
5756 break;
fa9a63c5 5757
5e69f11e 5758
b18215fc 5759 case stop_memory:
fa9a63c5 5760 assert (p1[1] == **p);
b18215fc
RS
5761 *p = p1 + 2;
5762 return true;
fa9a63c5 5763
5e69f11e 5764
b18215fc
RS
5765 default:
5766 if (!common_op_match_null_string_p (&p1, end, reg_info))
5767 return false;
5768 }
fa9a63c5
RM
5769 } /* while p1 < end */
5770
5771 return false;
5772} /* group_match_null_string_p */
5773
5774
5775/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5776 It expects P to be the first byte of a single alternative and END one
5777 byte past the last. The alternative can contain groups. */
5e69f11e 5778
fa9a63c5
RM
5779static boolean
5780alt_match_null_string_p (p, end, reg_info)
5781 unsigned char *p, *end;
5782 register_info_type *reg_info;
5783{
5784 int mcnt;
5785 unsigned char *p1 = p;
5e69f11e 5786
fa9a63c5
RM
5787 while (p1 < end)
5788 {
5e69f11e 5789 /* Skip over opcodes that can match nothing, and break when we get
b18215fc 5790 to one that can't. */
5e69f11e 5791
fa9a63c5 5792 switch ((re_opcode_t) *p1)
b18215fc
RS
5793 {
5794 /* It's a loop. */
5795 case on_failure_jump:
5796 p1++;
5797 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5798 p1 += mcnt;
5799 break;
5e69f11e
RM
5800
5801 default:
b18215fc
RS
5802 if (!common_op_match_null_string_p (&p1, end, reg_info))
5803 return false;
5804 }
fa9a63c5
RM
5805 } /* while p1 < end */
5806
5807 return true;
5808} /* alt_match_null_string_p */
5809
5810
5811/* Deals with the ops common to group_match_null_string_p and
5e69f11e
RM
5812 alt_match_null_string_p.
5813
fa9a63c5
RM
5814 Sets P to one after the op and its arguments, if any. */
5815
5816static boolean
5817common_op_match_null_string_p (p, end, reg_info)
5818 unsigned char **p, *end;
5819 register_info_type *reg_info;
5820{
5821 int mcnt;
5822 boolean ret;
5823 int reg_no;
5824 unsigned char *p1 = *p;
5825
5826 switch ((re_opcode_t) *p1++)
5827 {
5828 case no_op:
5829 case begline:
5830 case endline:
5831 case begbuf:
5832 case endbuf:
5833 case wordbeg:
5834 case wordend:
5835 case wordbound:
5836 case notwordbound:
5837#ifdef emacs
5838 case before_dot:
5839 case at_dot:
5840 case after_dot:
5841#endif
5842 break;
5843
5844 case start_memory:
5845 reg_no = *p1;
5846 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5847 ret = group_match_null_string_p (&p1, end, reg_info);
5e69f11e 5848
fa9a63c5 5849 /* Have to set this here in case we're checking a group which
b18215fc 5850 contains a group and a back reference to it. */
fa9a63c5
RM
5851
5852 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
b18215fc 5853 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
fa9a63c5
RM
5854
5855 if (!ret)
b18215fc 5856 return false;
fa9a63c5 5857 break;
5e69f11e 5858
b18215fc 5859 /* If this is an optimized succeed_n for zero times, make the jump. */
fa9a63c5
RM
5860 case jump:
5861 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5862 if (mcnt >= 0)
b18215fc 5863 p1 += mcnt;
fa9a63c5 5864 else
b18215fc 5865 return false;
fa9a63c5
RM
5866 break;
5867
5868 case succeed_n:
b18215fc 5869 /* Get to the number of times to succeed. */
5e69f11e 5870 p1 += 2;
fa9a63c5
RM
5871 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5872
5873 if (mcnt == 0)
b18215fc
RS
5874 {
5875 p1 -= 4;
5876 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5877 p1 += mcnt;
5878 }
fa9a63c5 5879 else
b18215fc 5880 return false;
fa9a63c5
RM
5881 break;
5882
5e69f11e 5883 case duplicate:
fa9a63c5 5884 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
b18215fc 5885 return false;
fa9a63c5
RM
5886 break;
5887
5888 case set_number_at:
5889 p1 += 4;
5890
5891 default:
5892 /* All other opcodes mean we cannot match the empty string. */
5893 return false;
5894 }
5895
5896 *p = p1;
5897 return true;
5898} /* common_op_match_null_string_p */
5899
5900
5901/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5902 bytes; nonzero otherwise. */
5e69f11e 5903
fa9a63c5
RM
5904static int
5905bcmp_translate (s1, s2, len, translate)
5906 unsigned char *s1, *s2;
5907 register int len;
6676cb1c 5908 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
5909{
5910 register unsigned char *p1 = s1, *p2 = s2;
5911 while (len)
5912 {
bc192b5b
RS
5913 if (RE_TRANSLATE (translate, *p1++) != RE_TRANSLATE (translate, *p2++))
5914 return 1;
fa9a63c5
RM
5915 len--;
5916 }
5917 return 0;
5918}
5919\f
5920/* Entry points for GNU code. */
5921
5922/* re_compile_pattern is the GNU regular expression compiler: it
5923 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5924 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 5925
fa9a63c5
RM
5926 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5927 are set in BUFP on entry.
5e69f11e 5928
b18215fc 5929 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
5930
5931const char *
5932re_compile_pattern (pattern, length, bufp)
5933 const char *pattern;
5934 int length;
5935 struct re_pattern_buffer *bufp;
5936{
5937 reg_errcode_t ret;
5e69f11e 5938
fa9a63c5
RM
5939 /* GNU code is written to assume at least RE_NREGS registers will be set
5940 (and at least one extra will be -1). */
5941 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 5942
fa9a63c5
RM
5943 /* And GNU code determines whether or not to get register information
5944 by passing null for the REGS argument to re_match, etc., not by
5945 setting no_sub. */
5946 bufp->no_sub = 0;
5e69f11e 5947
b18215fc 5948 /* Match anchors at newline. */
fa9a63c5 5949 bufp->newline_anchor = 1;
5e69f11e 5950
fa9a63c5
RM
5951 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5952
5953 if (!ret)
5954 return NULL;
5955 return gettext (re_error_msgid[(int) ret]);
5e69f11e 5956}
fa9a63c5 5957\f
b18215fc
RS
5958/* Entry points compatible with 4.2 BSD regex library. We don't define
5959 them unless specifically requested. */
fa9a63c5 5960
0c085854 5961#if defined (_REGEX_RE_COMP) || defined (_LIBC)
fa9a63c5
RM
5962
5963/* BSD has one and only one pattern buffer. */
5964static struct re_pattern_buffer re_comp_buf;
5965
5966char *
48afdd44
RM
5967#ifdef _LIBC
5968/* Make these definitions weak in libc, so POSIX programs can redefine
5969 these names if they don't use our functions, and still use
5970 regcomp/regexec below without link errors. */
5971weak_function
5972#endif
fa9a63c5
RM
5973re_comp (s)
5974 const char *s;
5975{
5976 reg_errcode_t ret;
5e69f11e 5977
fa9a63c5
RM
5978 if (!s)
5979 {
5980 if (!re_comp_buf.buffer)
5981 return gettext ("No previous regular expression");
5982 return 0;
5983 }
5984
5985 if (!re_comp_buf.buffer)
5986 {
5987 re_comp_buf.buffer = (unsigned char *) malloc (200);
5988 if (re_comp_buf.buffer == NULL)
b18215fc 5989 return gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
5990 re_comp_buf.allocated = 200;
5991
5992 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5993 if (re_comp_buf.fastmap == NULL)
5994 return gettext (re_error_msgid[(int) REG_ESPACE]);
5995 }
5996
5997 /* Since `re_exec' always passes NULL for the `regs' argument, we
5998 don't need to initialize the pattern buffer fields which affect it. */
5999
b18215fc 6000 /* Match anchors at newlines. */
fa9a63c5
RM
6001 re_comp_buf.newline_anchor = 1;
6002
6003 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6004
fa9a63c5
RM
6005 if (!ret)
6006 return NULL;
6007
6008 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6009 return (char *) gettext (re_error_msgid[(int) ret]);
6010}
6011
6012
6013int
48afdd44
RM
6014#ifdef _LIBC
6015weak_function
6016#endif
fa9a63c5
RM
6017re_exec (s)
6018 const char *s;
6019{
6020 const int len = strlen (s);
6021 return
6022 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6023}
6024#endif /* _REGEX_RE_COMP */
6025\f
6026/* POSIX.2 functions. Don't define these for Emacs. */
6027
6028#ifndef emacs
6029
6030/* regcomp takes a regular expression as a string and compiles it.
6031
b18215fc 6032 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6033 since POSIX says we shouldn't. Thus, we set
6034
6035 `buffer' to the compiled pattern;
6036 `used' to the length of the compiled pattern;
6037 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6038 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6039 RE_SYNTAX_POSIX_BASIC;
6040 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
6041 `fastmap' and `fastmap_accurate' to zero;
6042 `re_nsub' to the number of subexpressions in PATTERN.
6043
6044 PATTERN is the address of the pattern string.
6045
6046 CFLAGS is a series of bits which affect compilation.
6047
6048 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6049 use POSIX basic syntax.
6050
6051 If REG_NEWLINE is set, then . and [^...] don't match newline.
6052 Also, regexec will try a match beginning after every newline.
6053
6054 If REG_ICASE is set, then we considers upper- and lowercase
6055 versions of letters to be equivalent when matching.
6056
6057 If REG_NOSUB is set, then when PREG is passed to regexec, that
6058 routine will report only success or failure, and nothing about the
6059 registers.
6060
b18215fc 6061 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6062 the return codes and their meanings.) */
6063
6064int
6065regcomp (preg, pattern, cflags)
6066 regex_t *preg;
5e69f11e 6067 const char *pattern;
fa9a63c5
RM
6068 int cflags;
6069{
6070 reg_errcode_t ret;
6071 unsigned syntax
6072 = (cflags & REG_EXTENDED) ?
6073 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6074
6075 /* regex_compile will allocate the space for the compiled pattern. */
6076 preg->buffer = 0;
6077 preg->allocated = 0;
6078 preg->used = 0;
5e69f11e 6079
fa9a63c5
RM
6080 /* Don't bother to use a fastmap when searching. This simplifies the
6081 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
6082 characters after newlines into the fastmap. This way, we just try
6083 every character. */
6084 preg->fastmap = 0;
5e69f11e 6085
fa9a63c5
RM
6086 if (cflags & REG_ICASE)
6087 {
6088 unsigned i;
5e69f11e 6089
6676cb1c
RS
6090 preg->translate
6091 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6092 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6093 if (preg->translate == NULL)
b18215fc 6094 return (int) REG_ESPACE;
fa9a63c5
RM
6095
6096 /* Map uppercase characters to corresponding lowercase ones. */
6097 for (i = 0; i < CHAR_SET_SIZE; i++)
b18215fc 6098 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
fa9a63c5
RM
6099 }
6100 else
6101 preg->translate = NULL;
6102
6103 /* If REG_NEWLINE is set, newlines are treated differently. */
6104 if (cflags & REG_NEWLINE)
6105 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6106 syntax &= ~RE_DOT_NEWLINE;
6107 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
b18215fc 6108 /* It also changes the matching behavior. */
fa9a63c5
RM
6109 preg->newline_anchor = 1;
6110 }
6111 else
6112 preg->newline_anchor = 0;
6113
6114 preg->no_sub = !!(cflags & REG_NOSUB);
6115
5e69f11e 6116 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5
RM
6117 can use strlen here in compiling the pattern. */
6118 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5e69f11e 6119
fa9a63c5
RM
6120 /* POSIX doesn't distinguish between an unmatched open-group and an
6121 unmatched close-group: both are REG_EPAREN. */
6122 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5e69f11e 6123
fa9a63c5
RM
6124 return (int) ret;
6125}
6126
6127
6128/* regexec searches for a given pattern, specified by PREG, in the
6129 string STRING.
5e69f11e 6130
fa9a63c5 6131 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6132 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6133 least NMATCH elements, and we set them to the offsets of the
6134 corresponding matched substrings.
5e69f11e 6135
fa9a63c5
RM
6136 EFLAGS specifies `execution flags' which affect matching: if
6137 REG_NOTBOL is set, then ^ does not match at the beginning of the
6138 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6139
fa9a63c5
RM
6140 We return 0 if we find a match and REG_NOMATCH if not. */
6141
6142int
6143regexec (preg, string, nmatch, pmatch, eflags)
6144 const regex_t *preg;
5e69f11e
RM
6145 const char *string;
6146 size_t nmatch;
6147 regmatch_t pmatch[];
fa9a63c5
RM
6148 int eflags;
6149{
6150 int ret;
6151 struct re_registers regs;
6152 regex_t private_preg;
6153 int len = strlen (string);
6154 boolean want_reg_info = !preg->no_sub && nmatch > 0;
6155
6156 private_preg = *preg;
5e69f11e 6157
fa9a63c5
RM
6158 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6159 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6160
fa9a63c5
RM
6161 /* The user has told us exactly how many registers to return
6162 information about, via `nmatch'. We have to pass that on to the
b18215fc 6163 matching routines. */
fa9a63c5 6164 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6165
fa9a63c5
RM
6166 if (want_reg_info)
6167 {
6168 regs.num_regs = nmatch;
6169 regs.start = TALLOC (nmatch, regoff_t);
6170 regs.end = TALLOC (nmatch, regoff_t);
6171 if (regs.start == NULL || regs.end == NULL)
b18215fc 6172 return (int) REG_NOMATCH;
fa9a63c5
RM
6173 }
6174
6175 /* Perform the searching operation. */
6176 ret = re_search (&private_preg, string, len,
b18215fc
RS
6177 /* start: */ 0, /* range: */ len,
6178 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6179
fa9a63c5
RM
6180 /* Copy the register information to the POSIX structure. */
6181 if (want_reg_info)
6182 {
6183 if (ret >= 0)
b18215fc
RS
6184 {
6185 unsigned r;
fa9a63c5 6186
b18215fc
RS
6187 for (r = 0; r < nmatch; r++)
6188 {
6189 pmatch[r].rm_so = regs.start[r];
6190 pmatch[r].rm_eo = regs.end[r];
6191 }
6192 }
fa9a63c5 6193
b18215fc 6194 /* If we needed the temporary register info, free the space now. */
fa9a63c5
RM
6195 free (regs.start);
6196 free (regs.end);
6197 }
6198
6199 /* We want zero return to mean success, unlike `re_search'. */
6200 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6201}
6202
6203
6204/* Returns a message corresponding to an error code, ERRCODE, returned
6205 from either regcomp or regexec. We don't use PREG here. */
6206
6207size_t
6208regerror (errcode, preg, errbuf, errbuf_size)
6209 int errcode;
6210 const regex_t *preg;
6211 char *errbuf;
6212 size_t errbuf_size;
6213{
6214 const char *msg;
6215 size_t msg_size;
6216
6217 if (errcode < 0
6218 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6219 /* Only error codes returned by the rest of the code should be passed
b18215fc 6220 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6221 code generates an invalid error code, then the program has a bug.
6222 Dump core so we can fix it. */
6223 abort ();
6224
6225 msg = gettext (re_error_msgid[errcode]);
6226
6227 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6228
fa9a63c5
RM
6229 if (errbuf_size != 0)
6230 {
6231 if (msg_size > errbuf_size)
b18215fc
RS
6232 {
6233 strncpy (errbuf, msg, errbuf_size - 1);
6234 errbuf[errbuf_size - 1] = 0;
6235 }
fa9a63c5 6236 else
b18215fc 6237 strcpy (errbuf, msg);
fa9a63c5
RM
6238 }
6239
6240 return msg_size;
6241}
6242
6243
6244/* Free dynamically allocated space used by PREG. */
6245
6246void
6247regfree (preg)
6248 regex_t *preg;
6249{
6250 if (preg->buffer != NULL)
6251 free (preg->buffer);
6252 preg->buffer = NULL;
5e69f11e 6253
fa9a63c5
RM
6254 preg->allocated = 0;
6255 preg->used = 0;
6256
6257 if (preg->fastmap != NULL)
6258 free (preg->fastmap);
6259 preg->fastmap = NULL;
6260 preg->fastmap_accurate = 0;
6261
6262 if (preg->translate != NULL)
6263 free (preg->translate);
6264 preg->translate = NULL;
6265}
6266
6267#endif /* not emacs */