*** empty log message ***
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
0b5538bd 5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
1cee1e27 6 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
bc78d348 7
fa9a63c5
RM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
7814e705 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
4fc5845f 20 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
7814e705 21 USA. */
fa9a63c5 22
6df42991 23/* TODO:
505bde11 24 - structure the opcode space into opcode+flag.
dc1e502d 25 - merge with glibc's regex.[ch].
01618498 26 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
27 need to modify the compiled regexp so that re_match can be reentrant.
28 - get rid of on_failure_jump_smart by doing the optimization in re_comp
29 rather than at run-time, so that re_match can be reentrant.
01618498 30*/
505bde11 31
fa9a63c5 32/* AIX requires this to be the first thing in the file. */
0b32bf0e 33#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
34 #pragma alloca
35#endif
36
fa9a63c5 37#ifdef HAVE_CONFIG_H
0b32bf0e 38# include <config.h>
fa9a63c5
RM
39#endif
40
4bb91c68
SM
41#if defined STDC_HEADERS && !defined emacs
42# include <stddef.h>
43#else
44/* We need this for `regex.h', and perhaps for the Emacs include files. */
45# include <sys/types.h>
46#endif
fa9a63c5 47
14473664
SM
48/* Whether to use ISO C Amendment 1 wide char functions.
49 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
50#if defined _LIBC
51#define WIDE_CHAR_SUPPORT 1
52#else
14473664 53#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
54 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
55#endif
14473664
SM
56
57/* For platform which support the ISO C amendement 1 functionality we
58 support user defined character classes. */
a0ad02f7 59#if WIDE_CHAR_SUPPORT
14473664
SM
60/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
61# include <wchar.h>
62# include <wctype.h>
63#endif
64
c0f9ea08
SM
65#ifdef _LIBC
66/* We have to keep the namespace clean. */
67# define regfree(preg) __regfree (preg)
68# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
69# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
70# define regerror(errcode, preg, errbuf, errbuf_size) \
71 __regerror(errcode, preg, errbuf, errbuf_size)
72# define re_set_registers(bu, re, nu, st, en) \
73 __re_set_registers (bu, re, nu, st, en)
74# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
75 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
76# define re_match(bufp, string, size, pos, regs) \
77 __re_match (bufp, string, size, pos, regs)
78# define re_search(bufp, string, size, startpos, range, regs) \
79 __re_search (bufp, string, size, startpos, range, regs)
80# define re_compile_pattern(pattern, length, bufp) \
81 __re_compile_pattern (pattern, length, bufp)
82# define re_set_syntax(syntax) __re_set_syntax (syntax)
83# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
84 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
85# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86
14473664
SM
87/* Make sure we call libc's function even if the user overrides them. */
88# define btowc __btowc
89# define iswctype __iswctype
90# define wctype __wctype
91
c0f9ea08
SM
92# define WEAK_ALIAS(a,b) weak_alias (a, b)
93
94/* We are also using some library internals. */
95# include <locale/localeinfo.h>
96# include <locale/elem-hash.h>
97# include <langinfo.h>
98#else
99# define WEAK_ALIAS(a,b)
100#endif
101
4bb91c68 102/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 103#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
104# include <libintl.h>
105#else
106# define gettext(msgid) (msgid)
107#endif
108
5e69f11e
RM
109#ifndef gettext_noop
110/* This define is so xgettext can find the internationalizable
111 strings. */
0b32bf0e 112# define gettext_noop(String) String
5e69f11e
RM
113#endif
114
fa9a63c5
RM
115/* The `emacs' switch turns on certain matching commands
116 that make sense only in Emacs. */
117#ifdef emacs
118
0b32bf0e
SM
119# include "lisp.h"
120# include "buffer.h"
b18215fc
RS
121
122/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 123# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 124
0b32bf0e 125# include "syntax.h"
9117d724 126# include "character.h"
0b32bf0e 127# include "category.h"
fa9a63c5 128
7689ef0b
EZ
129# ifdef malloc
130# undef malloc
131# endif
0b32bf0e 132# define malloc xmalloc
7689ef0b
EZ
133# ifdef realloc
134# undef realloc
135# endif
0b32bf0e 136# define realloc xrealloc
7689ef0b
EZ
137# ifdef free
138# undef free
139# endif
0b32bf0e 140# define free xfree
9abbd165 141
7814e705 142/* Converts the pointer to the char to BEG-based offset from the start. */
0b32bf0e
SM
143# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
144# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
145
146# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
bf216479 147# define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
0b32bf0e 148# define RE_STRING_CHAR(p, s) \
4e8a9132 149 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
0b32bf0e 150# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
2d1675e4
SM
151 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
152
6fdd04b0
KH
153/* Set C a (possibly converted to multibyte) character before P. P
154 points into a string which is the virtual concatenation of STR1
155 (which ends at END1) or STR2 (which ends at END2). */
bf216479
KH
156# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
157 do { \
6fdd04b0 158 if (multibyte) \
bf216479
KH
159 { \
160 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
161 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
162 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
163 c = STRING_CHAR (dtemp, (p) - dtemp); \
164 } \
165 else \
166 { \
167 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
6fdd04b0 168 MAKE_CHAR_MULTIBYTE (c); \
bf216479 169 } \
2d1675e4
SM
170 } while (0)
171
6fdd04b0
KH
172/* Set C a (possibly converted to multibyte) character at P, and set
173 LEN to the byte length of that character. */
174# define GET_CHAR_AFTER(c, p, len) \
175 do { \
176 if (multibyte) \
177 c = STRING_CHAR_AND_LENGTH (p, 0, len); \
178 else \
179 { \
180 c = *p; \
181 len = 1; \
182 MAKE_CHAR_MULTIBYTE (c); \
183 } \
8f924df7 184 } while (0)
4e8a9132 185
fa9a63c5
RM
186#else /* not emacs */
187
188/* If we are not linking with Emacs proper,
189 we can't use the relocating allocator
190 even if config.h says that we can. */
0b32bf0e 191# undef REL_ALLOC
fa9a63c5 192
0b32bf0e
SM
193# if defined STDC_HEADERS || defined _LIBC
194# include <stdlib.h>
195# else
fa9a63c5
RM
196char *malloc ();
197char *realloc ();
0b32bf0e 198# endif
fa9a63c5 199
a77f947b
CY
200/* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
201
202void *
203xmalloc (size)
204 size_t size;
205{
206 register void *val;
207 val = (void *) malloc (size);
208 if (!val && size)
209 {
210 write (2, "virtual memory exhausted\n", 25);
211 exit (1);
212 }
213 return val;
214}
215
216void *
217xrealloc (block, size)
218 void *block;
219 size_t size;
220{
221 register void *val;
222 /* We must call malloc explicitly when BLOCK is 0, since some
223 reallocs don't do this. */
224 if (! block)
225 val = (void *) malloc (size);
226 else
227 val = (void *) realloc (block, size);
228 if (!val && size)
229 {
230 write (2, "virtual memory exhausted\n", 25);
231 exit (1);
232 }
233 return val;
234}
235
a073faa6
CY
236# ifdef malloc
237# undef malloc
238# endif
239# define malloc xmalloc
240# ifdef realloc
241# undef realloc
242# endif
243# define realloc xrealloc
244
9e4ecb26 245/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 246 If nothing else has been done, use the method below. */
0b32bf0e
SM
247# ifdef INHIBIT_STRING_HEADER
248# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
249# if !defined bzero && !defined bcopy
250# undef INHIBIT_STRING_HEADER
251# endif
252# endif
253# endif
9e4ecb26 254
4bb91c68 255/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
256 This is used in most programs--a few other programs avoid this
257 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
258# ifndef INHIBIT_STRING_HEADER
259# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
260# include <string.h>
0b32bf0e 261# ifndef bzero
4bb91c68
SM
262# ifndef _LIBC
263# define bzero(s, n) (memset (s, '\0', n), (s))
264# else
265# define bzero(s, n) __bzero (s, n)
266# endif
0b32bf0e
SM
267# endif
268# else
269# include <strings.h>
4bb91c68
SM
270# ifndef memcmp
271# define memcmp(s1, s2, n) bcmp (s1, s2, n)
272# endif
273# ifndef memcpy
274# define memcpy(d, s, n) (bcopy (s, d, n), (d))
275# endif
0b32bf0e
SM
276# endif
277# endif
fa9a63c5
RM
278
279/* Define the syntax stuff for \<, \>, etc. */
280
990b2375 281/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 282enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 283
0b32bf0e
SM
284# ifdef SWITCH_ENUM_BUG
285# define SWITCH_ENUM_CAST(x) ((int)(x))
286# else
287# define SWITCH_ENUM_CAST(x) (x)
288# endif
fa9a63c5 289
e934739e 290/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
291# define BASE_LEADING_CODE_P(c) (0)
292# define CHAR_CHARSET(c) 0
293# define CHARSET_LEADING_CODE_BASE(c) 0
294# define MAX_MULTIBYTE_LENGTH 1
295# define RE_MULTIBYTE_P(x) 0
bf216479 296# define RE_TARGET_MULTIBYTE_P(x) 0
0b32bf0e
SM
297# define WORD_BOUNDARY_P(c1, c2) (0)
298# define CHAR_HEAD_P(p) (1)
299# define SINGLE_BYTE_CHAR_P(c) (1)
300# define SAME_CHARSET_P(c1, c2) (1)
301# define MULTIBYTE_FORM_LENGTH(p, s) (1)
70806df6 302# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
0b32bf0e
SM
303# define STRING_CHAR(p, s) (*(p))
304# define RE_STRING_CHAR STRING_CHAR
305# define CHAR_STRING(c, s) (*(s) = (c), 1)
306# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
307# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
308# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 309 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
6fdd04b0
KH
310# define GET_CHAR_AFTER(c, p, len) \
311 (c = *p, len = 1)
0b32bf0e 312# define MAKE_CHAR(charset, c1, c2) (c1)
9117d724
KH
313# define BYTE8_TO_CHAR(c) (c)
314# define CHAR_BYTE8_P(c) (0)
6fdd04b0
KH
315# define MAKE_CHAR_MULTIBYTE(c) (c)
316# define MAKE_CHAR_UNIBYTE(c) (c)
bf216479 317# define CHAR_LEADING_CODE(c) (c)
8f924df7 318
fa9a63c5 319#endif /* not emacs */
4e8a9132
SM
320
321#ifndef RE_TRANSLATE
0b32bf0e
SM
322# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
323# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 324#endif
fa9a63c5
RM
325\f
326/* Get the interface, including the syntax bits. */
327#include "regex.h"
328
f71b19b6
DL
329/* isalpha etc. are used for the character classes. */
330#include <ctype.h>
fa9a63c5 331
f71b19b6 332#ifdef emacs
fa9a63c5 333
f71b19b6 334/* 1 if C is an ASCII character. */
0b32bf0e 335# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 336
f71b19b6 337/* 1 if C is a unibyte character. */
0b32bf0e 338# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 339
f71b19b6 340/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 341
f71b19b6 342/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
343# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
344# define ISCNTRL(c) ((c) < ' ')
345# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
346 || ((c) >= 'a' && (c) <= 'f') \
347 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
348
349/* This is only used for single-byte characters. */
0b32bf0e 350# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
351
352/* The rest must handle multibyte characters. */
353
0b32bf0e 354# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 355 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
356 : 1)
357
14473664 358# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 359 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
360 : 1)
361
0b32bf0e 362# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
363 ? (((c) >= 'a' && (c) <= 'z') \
364 || ((c) >= 'A' && (c) <= 'Z') \
365 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
366 : SYNTAX (c) == Sword)
367
0b32bf0e 368# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
369 ? (((c) >= 'a' && (c) <= 'z') \
370 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
371 : SYNTAX (c) == Sword)
372
0b32bf0e 373# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 374
0b32bf0e 375# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
376 ? ((c) > ' ' && (c) < 0177 \
377 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
378 || ((c) >= 'A' && (c) <= 'Z') \
379 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
380 : SYNTAX (c) != Sword)
381
0b32bf0e 382# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 383
0b32bf0e 384# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 385
0b32bf0e 386# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
387
388#else /* not emacs */
389
f71b19b6
DL
390/* Jim Meyering writes:
391
392 "... Some ctype macros are valid only for character codes that
393 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
394 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 395 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
396 STDC_HEADERS is defined, then autoconf has verified that the ctype
397 macros don't need to be guarded with references to isascii. ...
398 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
399 eliminate the && through constant folding."
400 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 401
4bb91c68 402# undef ISASCII
0b32bf0e
SM
403# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
404# define ISASCII(c) 1
405# else
406# define ISASCII(c) isascii(c)
407# endif
f71b19b6
DL
408
409/* 1 if C is an ASCII character. */
0b32bf0e 410# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
411
412/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
413# define ISUNIBYTE(c) 1
414
415# ifdef isblank
416# define ISBLANK(c) (ISASCII (c) && isblank (c))
417# else
418# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
419# endif
420# ifdef isgraph
421# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
422# else
423# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
424# endif
425
4bb91c68 426# undef ISPRINT
0b32bf0e
SM
427# define ISPRINT(c) (ISASCII (c) && isprint (c))
428# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
429# define ISALNUM(c) (ISASCII (c) && isalnum (c))
430# define ISALPHA(c) (ISASCII (c) && isalpha (c))
431# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
432# define ISLOWER(c) (ISASCII (c) && islower (c))
433# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
434# define ISSPACE(c) (ISASCII (c) && isspace (c))
435# define ISUPPER(c) (ISASCII (c) && isupper (c))
436# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
437
438# define ISWORD(c) ISALPHA(c)
439
4bb91c68
SM
440# ifdef _tolower
441# define TOLOWER(c) _tolower(c)
442# else
443# define TOLOWER(c) tolower(c)
444# endif
445
446/* How many characters in the character set. */
447# define CHAR_SET_SIZE 256
448
0b32bf0e 449# ifdef SYNTAX_TABLE
f71b19b6 450
0b32bf0e 451extern char *re_syntax_table;
f71b19b6 452
0b32bf0e
SM
453# else /* not SYNTAX_TABLE */
454
0b32bf0e
SM
455static char re_syntax_table[CHAR_SET_SIZE];
456
457static void
458init_syntax_once ()
459{
460 register int c;
461 static int done = 0;
462
463 if (done)
464 return;
465
466 bzero (re_syntax_table, sizeof re_syntax_table);
467
4bb91c68
SM
468 for (c = 0; c < CHAR_SET_SIZE; ++c)
469 if (ISALNUM (c))
470 re_syntax_table[c] = Sword;
fa9a63c5 471
669fa600 472 re_syntax_table['_'] = Ssymbol;
fa9a63c5 473
0b32bf0e
SM
474 done = 1;
475}
476
477# endif /* not SYNTAX_TABLE */
96cc36cc 478
4bb91c68
SM
479# define SYNTAX(c) re_syntax_table[(c)]
480
96cc36cc
RS
481#endif /* not emacs */
482\f
fa9a63c5 483#ifndef NULL
0b32bf0e 484# define NULL (void *)0
fa9a63c5
RM
485#endif
486
487/* We remove any previous definition of `SIGN_EXTEND_CHAR',
488 since ours (we hope) works properly with all combinations of
489 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 490 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
491#undef SIGN_EXTEND_CHAR
492#if __STDC__
0b32bf0e 493# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
494#else /* not __STDC__ */
495/* As in Harbison and Steele. */
0b32bf0e 496# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
497#endif
498\f
499/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
500 use `alloca' instead of `malloc'. This is because using malloc in
501 re_search* or re_match* could cause memory leaks when C-g is used in
502 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
503 the other hand, malloc is more portable, and easier to debug.
504
fa9a63c5
RM
505 Because we sometimes use alloca, some routines have to be macros,
506 not functions -- `alloca'-allocated space disappears at the end of the
507 function it is called in. */
508
509#ifdef REGEX_MALLOC
510
0b32bf0e
SM
511# define REGEX_ALLOCATE malloc
512# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
513# define REGEX_FREE free
fa9a63c5
RM
514
515#else /* not REGEX_MALLOC */
516
517/* Emacs already defines alloca, sometimes. */
0b32bf0e 518# ifndef alloca
fa9a63c5
RM
519
520/* Make alloca work the best possible way. */
0b32bf0e
SM
521# ifdef __GNUC__
522# define alloca __builtin_alloca
523# else /* not __GNUC__ */
7f585e7a 524# ifdef HAVE_ALLOCA_H
0b32bf0e
SM
525# include <alloca.h>
526# endif /* HAVE_ALLOCA_H */
527# endif /* not __GNUC__ */
fa9a63c5 528
0b32bf0e 529# endif /* not alloca */
fa9a63c5 530
0b32bf0e 531# define REGEX_ALLOCATE alloca
fa9a63c5
RM
532
533/* Assumes a `char *destination' variable. */
0b32bf0e 534# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 535 (destination = (char *) alloca (nsize), \
4bb91c68 536 memcpy (destination, source, osize))
fa9a63c5
RM
537
538/* No need to do anything to free, after alloca. */
0b32bf0e 539# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
540
541#endif /* not REGEX_MALLOC */
542
543/* Define how to allocate the failure stack. */
544
0b32bf0e 545#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 546
0b32bf0e 547# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 548 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 549# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 550 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 551# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
552 r_alloc_free (&failure_stack_ptr)
553
4297555e 554#else /* not using relocating allocator */
fa9a63c5 555
0b32bf0e 556# ifdef REGEX_MALLOC
fa9a63c5 557
0b32bf0e
SM
558# define REGEX_ALLOCATE_STACK malloc
559# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
560# define REGEX_FREE_STACK free
fa9a63c5 561
0b32bf0e 562# else /* not REGEX_MALLOC */
fa9a63c5 563
0b32bf0e 564# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 565
0b32bf0e 566# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 567 REGEX_REALLOCATE (source, osize, nsize)
7814e705 568/* No need to explicitly free anything. */
0b32bf0e 569# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 570
0b32bf0e 571# endif /* not REGEX_MALLOC */
4297555e 572#endif /* not using relocating allocator */
fa9a63c5
RM
573
574
575/* True if `size1' is non-NULL and PTR is pointing anywhere inside
576 `string1' or just past its end. This works if PTR is NULL, which is
577 a good thing. */
25fe55af 578#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
579 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
580
581/* (Re)Allocate N items of type T using malloc, or fail. */
582#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
583#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
584#define RETALLOC_IF(addr, n, t) \
585 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
586#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
587
4bb91c68 588#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
589
590#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
591
592#undef MAX
593#undef MIN
594#define MAX(a, b) ((a) > (b) ? (a) : (b))
595#define MIN(a, b) ((a) < (b) ? (a) : (b))
596
66f0296e
SM
597/* Type of source-pattern and string chars. */
598typedef const unsigned char re_char;
599
fa9a63c5
RM
600typedef char boolean;
601#define false 0
602#define true 1
603
4bb91c68
SM
604static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
605 re_char *string1, int size1,
606 re_char *string2, int size2,
607 int pos,
608 struct re_registers *regs,
609 int stop));
fa9a63c5
RM
610\f
611/* These are the command codes that appear in compiled regular
4bb91c68 612 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
613 command code can specify any interpretation whatsoever for its
614 arguments. Zero bytes may appear in the compiled regular expression. */
615
616typedef enum
617{
618 no_op = 0,
619
4bb91c68 620 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
621 succeed,
622
25fe55af 623 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
624 exactn,
625
25fe55af 626 /* Matches any (more or less) character. */
fa9a63c5
RM
627 anychar,
628
25fe55af
RS
629 /* Matches any one char belonging to specified set. First
630 following byte is number of bitmap bytes. Then come bytes
631 for a bitmap saying which chars are in. Bits in each byte
632 are ordered low-bit-first. A character is in the set if its
633 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
634 automatically not in the set.
635
636 If the length byte has the 0x80 bit set, then that stuff
637 is followed by a range table:
638 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 639 See RANGE_TABLE_WORK_BITS below.
01618498 640 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 641 pairs, each 2 multibyte characters,
0b32bf0e 642 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
643 charset,
644
25fe55af 645 /* Same parameters as charset, but match any character that is
4bb91c68 646 not one of those specified. */
fa9a63c5
RM
647 charset_not,
648
25fe55af
RS
649 /* Start remembering the text that is matched, for storing in a
650 register. Followed by one byte with the register number, in
651 the range 0 to one less than the pattern buffer's re_nsub
505bde11 652 field. */
fa9a63c5
RM
653 start_memory,
654
25fe55af
RS
655 /* Stop remembering the text that is matched and store it in a
656 memory register. Followed by one byte with the register
657 number, in the range 0 to one less than `re_nsub' in the
505bde11 658 pattern buffer. */
fa9a63c5
RM
659 stop_memory,
660
25fe55af 661 /* Match a duplicate of something remembered. Followed by one
4bb91c68 662 byte containing the register number. */
fa9a63c5
RM
663 duplicate,
664
25fe55af 665 /* Fail unless at beginning of line. */
fa9a63c5
RM
666 begline,
667
4bb91c68 668 /* Fail unless at end of line. */
fa9a63c5
RM
669 endline,
670
25fe55af
RS
671 /* Succeeds if at beginning of buffer (if emacs) or at beginning
672 of string to be matched (if not). */
fa9a63c5
RM
673 begbuf,
674
25fe55af 675 /* Analogously, for end of buffer/string. */
fa9a63c5 676 endbuf,
5e69f11e 677
25fe55af 678 /* Followed by two byte relative address to which to jump. */
5e69f11e 679 jump,
fa9a63c5 680
25fe55af 681 /* Followed by two-byte relative address of place to resume at
7814e705 682 in case of failure. */
fa9a63c5 683 on_failure_jump,
5e69f11e 684
25fe55af
RS
685 /* Like on_failure_jump, but pushes a placeholder instead of the
686 current string position when executed. */
fa9a63c5 687 on_failure_keep_string_jump,
5e69f11e 688
505bde11
SM
689 /* Just like `on_failure_jump', except that it checks that we
690 don't get stuck in an infinite loop (matching an empty string
691 indefinitely). */
692 on_failure_jump_loop,
693
0683b6fa
SM
694 /* Just like `on_failure_jump_loop', except that it checks for
695 a different kind of loop (the kind that shows up with non-greedy
696 operators). This operation has to be immediately preceded
697 by a `no_op'. */
698 on_failure_jump_nastyloop,
699
0b32bf0e 700 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
701 It analyses the loop before which it is put and if the
702 loop does not require backtracking, it changes itself to
4e8a9132
SM
703 `on_failure_keep_string_jump' and short-circuits the loop,
704 else it just defaults to changing itself into `on_failure_jump'.
705 It assumes that it is pointing to just past a `jump'. */
505bde11 706 on_failure_jump_smart,
fa9a63c5 707
25fe55af 708 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
709 After matching N times, jump to the address upon failure.
710 Does not work if N starts at 0: use on_failure_jump_loop
711 instead. */
fa9a63c5
RM
712 succeed_n,
713
25fe55af
RS
714 /* Followed by two-byte relative address, and two-byte number n.
715 Jump to the address N times, then fail. */
fa9a63c5
RM
716 jump_n,
717
25fe55af 718 /* Set the following two-byte relative address to the
7814e705 719 subsequent two-byte number. The address *includes* the two
25fe55af 720 bytes of number. */
fa9a63c5
RM
721 set_number_at,
722
fa9a63c5
RM
723 wordbeg, /* Succeeds if at word beginning. */
724 wordend, /* Succeeds if at word end. */
725
726 wordbound, /* Succeeds if at a word boundary. */
7814e705 727 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 728
669fa600
SM
729 symbeg, /* Succeeds if at symbol beginning. */
730 symend, /* Succeeds if at symbol end. */
731
fa9a63c5 732 /* Matches any character whose syntax is specified. Followed by
25fe55af 733 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
734 syntaxspec,
735
736 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
737 notsyntaxspec
738
739#ifdef emacs
740 ,before_dot, /* Succeeds if before point. */
741 at_dot, /* Succeeds if at point. */
742 after_dot, /* Succeeds if after point. */
b18215fc
RS
743
744 /* Matches any character whose category-set contains the specified
7814e705
JB
745 category. The operator is followed by a byte which contains a
746 category code (mnemonic ASCII character). */
b18215fc
RS
747 categoryspec,
748
749 /* Matches any character whose category-set does not contain the
750 specified category. The operator is followed by a byte which
751 contains the category code (mnemonic ASCII character). */
752 notcategoryspec
fa9a63c5
RM
753#endif /* emacs */
754} re_opcode_t;
755\f
756/* Common operations on the compiled pattern. */
757
758/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
759
760#define STORE_NUMBER(destination, number) \
761 do { \
762 (destination)[0] = (number) & 0377; \
763 (destination)[1] = (number) >> 8; \
764 } while (0)
765
766/* Same as STORE_NUMBER, except increment DESTINATION to
767 the byte after where the number is stored. Therefore, DESTINATION
768 must be an lvalue. */
769
770#define STORE_NUMBER_AND_INCR(destination, number) \
771 do { \
772 STORE_NUMBER (destination, number); \
773 (destination) += 2; \
774 } while (0)
775
776/* Put into DESTINATION a number stored in two contiguous bytes starting
777 at SOURCE. */
778
779#define EXTRACT_NUMBER(destination, source) \
780 do { \
781 (destination) = *(source) & 0377; \
782 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
783 } while (0)
784
785#ifdef DEBUG
4bb91c68 786static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
787static void
788extract_number (dest, source)
789 int *dest;
01618498 790 re_char *source;
fa9a63c5 791{
5e69f11e 792 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
793 *dest = *source & 0377;
794 *dest += temp << 8;
795}
796
4bb91c68 797# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
798# undef EXTRACT_NUMBER
799# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
800# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
801
802#endif /* DEBUG */
803
804/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
805 SOURCE must be an lvalue. */
806
807#define EXTRACT_NUMBER_AND_INCR(destination, source) \
808 do { \
809 EXTRACT_NUMBER (destination, source); \
25fe55af 810 (source) += 2; \
fa9a63c5
RM
811 } while (0)
812
813#ifdef DEBUG
4bb91c68
SM
814static void extract_number_and_incr _RE_ARGS ((int *destination,
815 re_char **source));
fa9a63c5
RM
816static void
817extract_number_and_incr (destination, source)
818 int *destination;
01618498 819 re_char **source;
5e69f11e 820{
fa9a63c5
RM
821 extract_number (destination, *source);
822 *source += 2;
823}
824
0b32bf0e
SM
825# ifndef EXTRACT_MACROS
826# undef EXTRACT_NUMBER_AND_INCR
827# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 828 extract_number_and_incr (&dest, &src)
0b32bf0e 829# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
830
831#endif /* DEBUG */
832\f
b18215fc
RS
833/* Store a multibyte character in three contiguous bytes starting
834 DESTINATION, and increment DESTINATION to the byte after where the
7814e705 835 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
836
837#define STORE_CHARACTER_AND_INCR(destination, character) \
838 do { \
839 (destination)[0] = (character) & 0377; \
840 (destination)[1] = ((character) >> 8) & 0377; \
841 (destination)[2] = (character) >> 16; \
842 (destination) += 3; \
843 } while (0)
844
845/* Put into DESTINATION a character stored in three contiguous bytes
7814e705 846 starting at SOURCE. */
b18215fc
RS
847
848#define EXTRACT_CHARACTER(destination, source) \
849 do { \
850 (destination) = ((source)[0] \
851 | ((source)[1] << 8) \
852 | ((source)[2] << 16)); \
853 } while (0)
854
855
856/* Macros for charset. */
857
858/* Size of bitmap of charset P in bytes. P is a start of charset,
859 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
860#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
861
862/* Nonzero if charset P has range table. */
25fe55af 863#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
864
865/* Return the address of range table of charset P. But not the start
866 of table itself, but the before where the number of ranges is
96cc36cc
RS
867 stored. `2 +' means to skip re_opcode_t and size of bitmap,
868 and the 2 bytes of flags at the start of the range table. */
869#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
870
871/* Extract the bit flags that start a range table. */
872#define CHARSET_RANGE_TABLE_BITS(p) \
873 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
874 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
875
876/* Test if C is listed in the bitmap of charset P. */
877#define CHARSET_LOOKUP_BITMAP(p, c) \
878 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
879 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
880
881/* Return the address of end of RANGE_TABLE. COUNT is number of
7814e705
JB
882 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
883 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
884 and end. */
885#define CHARSET_RANGE_TABLE_END(range_table, count) \
886 ((range_table) + (count) * 2 * 3)
887
7814e705 888/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
889 COUNT is number of ranges in RANGE_TABLE. */
890#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
891 do \
892 { \
01618498
SM
893 re_wchar_t range_start, range_end; \
894 re_char *p; \
895 re_char *range_table_end \
b18215fc
RS
896 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
897 \
898 for (p = (range_table); p < range_table_end; p += 2 * 3) \
899 { \
900 EXTRACT_CHARACTER (range_start, p); \
901 EXTRACT_CHARACTER (range_end, p + 3); \
902 \
903 if (range_start <= (c) && (c) <= range_end) \
904 { \
905 (not) = !(not); \
906 break; \
907 } \
908 } \
909 } \
910 while (0)
911
912/* Test if C is in range table of CHARSET. The flag NOT is negated if
913 C is listed in it. */
914#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
915 do \
916 { \
917 /* Number of ranges in range table. */ \
918 int count; \
01618498
SM
919 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
920 \
b18215fc
RS
921 EXTRACT_NUMBER_AND_INCR (count, range_table); \
922 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
923 } \
924 while (0)
925\f
fa9a63c5
RM
926/* If DEBUG is defined, Regex prints many voluminous messages about what
927 it is doing (if the variable `debug' is nonzero). If linked with the
928 main program in `iregex.c', you can enter patterns and strings
929 interactively. And if linked with the main program in `main.c' and
4bb91c68 930 the other test files, you can run the already-written tests. */
fa9a63c5
RM
931
932#ifdef DEBUG
933
934/* We use standard I/O for debugging. */
0b32bf0e 935# include <stdio.h>
fa9a63c5
RM
936
937/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 938# include <assert.h>
fa9a63c5 939
99633e97 940static int debug = -100000;
fa9a63c5 941
0b32bf0e
SM
942# define DEBUG_STATEMENT(e) e
943# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
944# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
945# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
946# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
947# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 948 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 949# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 950 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
951
952
953/* Print the fastmap in human-readable form. */
954
955void
956print_fastmap (fastmap)
957 char *fastmap;
958{
959 unsigned was_a_range = 0;
5e69f11e
RM
960 unsigned i = 0;
961
fa9a63c5
RM
962 while (i < (1 << BYTEWIDTH))
963 {
964 if (fastmap[i++])
965 {
966 was_a_range = 0;
25fe55af
RS
967 putchar (i - 1);
968 while (i < (1 << BYTEWIDTH) && fastmap[i])
969 {
970 was_a_range = 1;
971 i++;
972 }
fa9a63c5 973 if (was_a_range)
25fe55af
RS
974 {
975 printf ("-");
976 putchar (i - 1);
977 }
978 }
fa9a63c5 979 }
5e69f11e 980 putchar ('\n');
fa9a63c5
RM
981}
982
983
984/* Print a compiled pattern string in human-readable form, starting at
985 the START pointer into it and ending just before the pointer END. */
986
987void
988print_partial_compiled_pattern (start, end)
01618498
SM
989 re_char *start;
990 re_char *end;
fa9a63c5
RM
991{
992 int mcnt, mcnt2;
01618498
SM
993 re_char *p = start;
994 re_char *pend = end;
fa9a63c5
RM
995
996 if (start == NULL)
997 {
a1a052df 998 fprintf (stderr, "(null)\n");
fa9a63c5
RM
999 return;
1000 }
5e69f11e 1001
fa9a63c5
RM
1002 /* Loop over pattern commands. */
1003 while (p < pend)
1004 {
a1a052df 1005 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
1006
1007 switch ((re_opcode_t) *p++)
1008 {
25fe55af 1009 case no_op:
a1a052df 1010 fprintf (stderr, "/no_op");
25fe55af 1011 break;
fa9a63c5 1012
99633e97 1013 case succeed:
a1a052df 1014 fprintf (stderr, "/succeed");
99633e97
SM
1015 break;
1016
fa9a63c5
RM
1017 case exactn:
1018 mcnt = *p++;
a1a052df 1019 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 1020 do
fa9a63c5 1021 {
a1a052df 1022 fprintf (stderr, "/%c", *p++);
25fe55af
RS
1023 }
1024 while (--mcnt);
1025 break;
fa9a63c5
RM
1026
1027 case start_memory:
a1a052df 1028 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 1029 break;
fa9a63c5
RM
1030
1031 case stop_memory:
a1a052df 1032 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 1033 break;
fa9a63c5
RM
1034
1035 case duplicate:
a1a052df 1036 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
1037 break;
1038
1039 case anychar:
a1a052df 1040 fprintf (stderr, "/anychar");
fa9a63c5
RM
1041 break;
1042
1043 case charset:
25fe55af
RS
1044 case charset_not:
1045 {
1046 register int c, last = -100;
fa9a63c5 1047 register int in_range = 0;
99633e97
SM
1048 int length = CHARSET_BITMAP_SIZE (p - 1);
1049 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 1050
a1a052df 1051 fprintf (stderr, "/charset [%s",
839966f3 1052 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 1053
839966f3
KH
1054 if (p + *p >= pend)
1055 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 1056
25fe55af 1057 for (c = 0; c < 256; c++)
96cc36cc 1058 if (c / 8 < length
fa9a63c5
RM
1059 && (p[1 + (c/8)] & (1 << (c % 8))))
1060 {
1061 /* Are we starting a range? */
1062 if (last + 1 == c && ! in_range)
1063 {
a1a052df 1064 fprintf (stderr, "-");
fa9a63c5
RM
1065 in_range = 1;
1066 }
1067 /* Have we broken a range? */
1068 else if (last + 1 != c && in_range)
96cc36cc 1069 {
a1a052df 1070 fprintf (stderr, "%c", last);
fa9a63c5
RM
1071 in_range = 0;
1072 }
5e69f11e 1073
fa9a63c5 1074 if (! in_range)
a1a052df 1075 fprintf (stderr, "%c", c);
fa9a63c5
RM
1076
1077 last = c;
25fe55af 1078 }
fa9a63c5
RM
1079
1080 if (in_range)
a1a052df 1081 fprintf (stderr, "%c", last);
fa9a63c5 1082
a1a052df 1083 fprintf (stderr, "]");
fa9a63c5 1084
99633e97 1085 p += 1 + length;
96cc36cc 1086
96cc36cc 1087 if (has_range_table)
99633e97
SM
1088 {
1089 int count;
a1a052df 1090 fprintf (stderr, "has-range-table");
99633e97
SM
1091
1092 /* ??? Should print the range table; for now, just skip it. */
1093 p += 2; /* skip range table bits */
1094 EXTRACT_NUMBER_AND_INCR (count, p);
1095 p = CHARSET_RANGE_TABLE_END (p, count);
1096 }
fa9a63c5
RM
1097 }
1098 break;
1099
1100 case begline:
a1a052df 1101 fprintf (stderr, "/begline");
25fe55af 1102 break;
fa9a63c5
RM
1103
1104 case endline:
a1a052df 1105 fprintf (stderr, "/endline");
25fe55af 1106 break;
fa9a63c5
RM
1107
1108 case on_failure_jump:
25fe55af 1109 extract_number_and_incr (&mcnt, &p);
a1a052df 1110 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1111 break;
fa9a63c5
RM
1112
1113 case on_failure_keep_string_jump:
25fe55af 1114 extract_number_and_incr (&mcnt, &p);
a1a052df 1115 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1116 break;
fa9a63c5 1117
0683b6fa
SM
1118 case on_failure_jump_nastyloop:
1119 extract_number_and_incr (&mcnt, &p);
a1a052df 1120 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1121 break;
1122
505bde11 1123 case on_failure_jump_loop:
fa9a63c5 1124 extract_number_and_incr (&mcnt, &p);
a1a052df 1125 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1126 break;
1127
505bde11 1128 case on_failure_jump_smart:
fa9a63c5 1129 extract_number_and_incr (&mcnt, &p);
a1a052df 1130 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1131 break;
1132
25fe55af 1133 case jump:
fa9a63c5 1134 extract_number_and_incr (&mcnt, &p);
a1a052df 1135 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1136 break;
1137
25fe55af
RS
1138 case succeed_n:
1139 extract_number_and_incr (&mcnt, &p);
1140 extract_number_and_incr (&mcnt2, &p);
a1a052df 1141 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1142 break;
5e69f11e 1143
25fe55af
RS
1144 case jump_n:
1145 extract_number_and_incr (&mcnt, &p);
1146 extract_number_and_incr (&mcnt2, &p);
a1a052df 1147 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1148 break;
5e69f11e 1149
25fe55af
RS
1150 case set_number_at:
1151 extract_number_and_incr (&mcnt, &p);
1152 extract_number_and_incr (&mcnt2, &p);
a1a052df 1153 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1154 break;
5e69f11e 1155
25fe55af 1156 case wordbound:
a1a052df 1157 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1158 break;
1159
1160 case notwordbound:
a1a052df 1161 fprintf (stderr, "/notwordbound");
25fe55af 1162 break;
fa9a63c5
RM
1163
1164 case wordbeg:
a1a052df 1165 fprintf (stderr, "/wordbeg");
fa9a63c5 1166 break;
5e69f11e 1167
fa9a63c5 1168 case wordend:
a1a052df 1169 fprintf (stderr, "/wordend");
e2543b02 1170 break;
5e69f11e 1171
669fa600 1172 case symbeg:
e2543b02 1173 fprintf (stderr, "/symbeg");
669fa600
SM
1174 break;
1175
1176 case symend:
e2543b02 1177 fprintf (stderr, "/symend");
669fa600 1178 break;
5e69f11e 1179
1fb352e0 1180 case syntaxspec:
a1a052df 1181 fprintf (stderr, "/syntaxspec");
1fb352e0 1182 mcnt = *p++;
a1a052df 1183 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1184 break;
1185
1186 case notsyntaxspec:
a1a052df 1187 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1188 mcnt = *p++;
a1a052df 1189 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1190 break;
1191
0b32bf0e 1192# ifdef emacs
fa9a63c5 1193 case before_dot:
a1a052df 1194 fprintf (stderr, "/before_dot");
25fe55af 1195 break;
fa9a63c5
RM
1196
1197 case at_dot:
a1a052df 1198 fprintf (stderr, "/at_dot");
25fe55af 1199 break;
fa9a63c5
RM
1200
1201 case after_dot:
a1a052df 1202 fprintf (stderr, "/after_dot");
25fe55af 1203 break;
fa9a63c5 1204
1fb352e0 1205 case categoryspec:
a1a052df 1206 fprintf (stderr, "/categoryspec");
fa9a63c5 1207 mcnt = *p++;
a1a052df 1208 fprintf (stderr, "/%d", mcnt);
25fe55af 1209 break;
5e69f11e 1210
1fb352e0 1211 case notcategoryspec:
a1a052df 1212 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1213 mcnt = *p++;
a1a052df 1214 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1215 break;
0b32bf0e 1216# endif /* emacs */
fa9a63c5 1217
fa9a63c5 1218 case begbuf:
a1a052df 1219 fprintf (stderr, "/begbuf");
25fe55af 1220 break;
fa9a63c5
RM
1221
1222 case endbuf:
a1a052df 1223 fprintf (stderr, "/endbuf");
25fe55af 1224 break;
fa9a63c5 1225
25fe55af 1226 default:
a1a052df 1227 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1228 }
1229
a1a052df 1230 fprintf (stderr, "\n");
fa9a63c5
RM
1231 }
1232
a1a052df 1233 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1234}
1235
1236
1237void
1238print_compiled_pattern (bufp)
1239 struct re_pattern_buffer *bufp;
1240{
01618498 1241 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1242
1243 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1244 printf ("%ld bytes used/%ld bytes allocated.\n",
1245 bufp->used, bufp->allocated);
fa9a63c5
RM
1246
1247 if (bufp->fastmap_accurate && bufp->fastmap)
1248 {
1249 printf ("fastmap: ");
1250 print_fastmap (bufp->fastmap);
1251 }
1252
1253 printf ("re_nsub: %d\t", bufp->re_nsub);
1254 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1255 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1256 printf ("no_sub: %d\t", bufp->no_sub);
1257 printf ("not_bol: %d\t", bufp->not_bol);
1258 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1259 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1260 fflush (stdout);
fa9a63c5
RM
1261 /* Perhaps we should print the translate table? */
1262}
1263
1264
1265void
1266print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1267 re_char *where;
1268 re_char *string1;
1269 re_char *string2;
fa9a63c5
RM
1270 int size1;
1271 int size2;
1272{
4bb91c68 1273 int this_char;
5e69f11e 1274
fa9a63c5
RM
1275 if (where == NULL)
1276 printf ("(null)");
1277 else
1278 {
1279 if (FIRST_STRING_P (where))
25fe55af
RS
1280 {
1281 for (this_char = where - string1; this_char < size1; this_char++)
1282 putchar (string1[this_char]);
fa9a63c5 1283
25fe55af
RS
1284 where = string2;
1285 }
fa9a63c5
RM
1286
1287 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1288 putchar (string2[this_char]);
fa9a63c5
RM
1289 }
1290}
1291
1292#else /* not DEBUG */
1293
0b32bf0e
SM
1294# undef assert
1295# define assert(e)
fa9a63c5 1296
0b32bf0e
SM
1297# define DEBUG_STATEMENT(e)
1298# define DEBUG_PRINT1(x)
1299# define DEBUG_PRINT2(x1, x2)
1300# define DEBUG_PRINT3(x1, x2, x3)
1301# define DEBUG_PRINT4(x1, x2, x3, x4)
1302# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1303# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1304
1305#endif /* not DEBUG */
1306\f
1307/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1308 also be assigned to arbitrarily: each pattern buffer stores its own
1309 syntax, so it can be changed between regex compilations. */
1310/* This has no initializer because initialized variables in Emacs
1311 become read-only after dumping. */
1312reg_syntax_t re_syntax_options;
1313
1314
1315/* Specify the precise syntax of regexps for compilation. This provides
1316 for compatibility for various utilities which historically have
1317 different, incompatible syntaxes.
1318
1319 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1320 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1321
1322reg_syntax_t
1323re_set_syntax (syntax)
f9b0fd99 1324 reg_syntax_t syntax;
fa9a63c5
RM
1325{
1326 reg_syntax_t ret = re_syntax_options;
5e69f11e 1327
fa9a63c5
RM
1328 re_syntax_options = syntax;
1329 return ret;
1330}
c0f9ea08 1331WEAK_ALIAS (__re_set_syntax, re_set_syntax)
f9b0fd99
RS
1332
1333/* Regexp to use to replace spaces, or NULL meaning don't. */
1334static re_char *whitespace_regexp;
1335
1336void
1337re_set_whitespace_regexp (regexp)
6470ea05 1338 const char *regexp;
f9b0fd99 1339{
6470ea05 1340 whitespace_regexp = (re_char *) regexp;
f9b0fd99
RS
1341}
1342WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1343\f
1344/* This table gives an error message for each of the error codes listed
4bb91c68 1345 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1346 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1347 but why not be nice? */
fa9a63c5
RM
1348
1349static const char *re_error_msgid[] =
5e69f11e
RM
1350 {
1351 gettext_noop ("Success"), /* REG_NOERROR */
1352 gettext_noop ("No match"), /* REG_NOMATCH */
1353 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1354 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1355 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1356 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1357 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1358 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1359 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1360 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1361 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1362 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1363 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1364 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1365 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1366 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1367 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
b3e4c897 1368 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
fa9a63c5
RM
1369 };
1370\f
4bb91c68 1371/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1372
1373/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1374 searching and matching functions should not call alloca. On some
1375 systems, alloca is implemented in terms of malloc, and if we're
1376 using the relocating allocator routines, then malloc could cause a
1377 relocation, which might (if the strings being searched are in the
1378 ralloc heap) shift the data out from underneath the regexp
1379 routines.
1380
5e69f11e 1381 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1382 processes input from X in a signal handler; processing X input may
1383 call malloc; if input arrives while a matching routine is calling
1384 malloc, then we're scrod. But Emacs can't just block input while
1385 calling matching routines; then we don't notice interrupts when
1386 they come in. So, Emacs blocks input around all regexp calls
1387 except the matching calls, which it leaves unprotected, in the
1388 faith that they will not malloc. */
1389
1390/* Normally, this is fine. */
1391#define MATCH_MAY_ALLOCATE
1392
1393/* When using GNU C, we are not REALLY using the C alloca, no matter
1394 what config.h may say. So don't take precautions for it. */
1395#ifdef __GNUC__
0b32bf0e 1396# undef C_ALLOCA
fa9a63c5
RM
1397#endif
1398
1399/* The match routines may not allocate if (1) they would do it with malloc
1400 and (2) it's not safe for them to use malloc.
1401 Note that if REL_ALLOC is defined, matching would not use malloc for the
1402 failure stack, but we would still use it for the register vectors;
4bb91c68 1403 so REL_ALLOC should not affect this. */
0b32bf0e
SM
1404#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1405# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1406#endif
1407
1408\f
1409/* Failure stack declarations and macros; both re_compile_fastmap and
1410 re_match_2 use a failure stack. These have to be macros because of
1411 REGEX_ALLOCATE_STACK. */
5e69f11e 1412
fa9a63c5 1413
320a2a73 1414/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1415 when matching. If this number is exceeded, we allocate more
1416 space, so it is not a hard limit. */
1417#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1418# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1419#endif
1420
1421/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1422 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1423 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1424 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1425 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1426# if defined MATCH_MAY_ALLOCATE
1427/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1428 whose default stack limit is 2mb. In order for a larger
1429 value to work reliably, you have to try to make it accord
1430 with the process stack limit. */
c0f9ea08
SM
1431size_t re_max_failures = 40000;
1432# else
1433size_t re_max_failures = 4000;
1434# endif
fa9a63c5
RM
1435
1436union fail_stack_elt
1437{
01618498 1438 re_char *pointer;
c0f9ea08
SM
1439 /* This should be the biggest `int' that's no bigger than a pointer. */
1440 long integer;
fa9a63c5
RM
1441};
1442
1443typedef union fail_stack_elt fail_stack_elt_t;
1444
1445typedef struct
1446{
1447 fail_stack_elt_t *stack;
c0f9ea08
SM
1448 size_t size;
1449 size_t avail; /* Offset of next open position. */
1450 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1451} fail_stack_type;
1452
505bde11 1453#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1454#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1455
1456
1457/* Define macros to initialize and free the failure stack.
1458 Do `return -2' if the alloc fails. */
1459
1460#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1461# define INIT_FAIL_STACK() \
fa9a63c5
RM
1462 do { \
1463 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1464 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1465 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1466 \
1467 if (fail_stack.stack == NULL) \
1468 return -2; \
1469 \
1470 fail_stack.size = INIT_FAILURE_ALLOC; \
1471 fail_stack.avail = 0; \
505bde11 1472 fail_stack.frame = 0; \
fa9a63c5
RM
1473 } while (0)
1474
0b32bf0e 1475# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1476#else
0b32bf0e 1477# define INIT_FAIL_STACK() \
fa9a63c5
RM
1478 do { \
1479 fail_stack.avail = 0; \
505bde11 1480 fail_stack.frame = 0; \
fa9a63c5
RM
1481 } while (0)
1482
0b32bf0e 1483# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1484#endif
1485
1486
320a2a73
KH
1487/* Double the size of FAIL_STACK, up to a limit
1488 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1489
1490 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1491 allocating space for it or it was already too large.
1492
4bb91c68 1493 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1494
320a2a73
KH
1495/* Factor to increase the failure stack size by
1496 when we increase it.
1497 This used to be 2, but 2 was too wasteful
1498 because the old discarded stacks added up to as much space
1499 were as ultimate, maximum-size stack. */
1500#define FAIL_STACK_GROWTH_FACTOR 4
1501
1502#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1503 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1504 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1505 ? 0 \
320a2a73
KH
1506 : ((fail_stack).stack \
1507 = (fail_stack_elt_t *) \
25fe55af
RS
1508 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1509 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1510 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1511 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1512 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1513 \
1514 (fail_stack).stack == NULL \
1515 ? 0 \
6453db45
KH
1516 : ((fail_stack).size \
1517 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1518 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1519 * FAIL_STACK_GROWTH_FACTOR)) \
1520 / sizeof (fail_stack_elt_t)), \
25fe55af 1521 1)))
fa9a63c5
RM
1522
1523
fa9a63c5
RM
1524/* Push a pointer value onto the failure stack.
1525 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1526 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1527#define PUSH_FAILURE_POINTER(item) \
01618498 1528 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1529
1530/* This pushes an integer-valued item onto the failure stack.
1531 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1532 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1533#define PUSH_FAILURE_INT(item) \
1534 fail_stack.stack[fail_stack.avail++].integer = (item)
1535
1536/* Push a fail_stack_elt_t value onto the failure stack.
1537 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1538 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1539#define PUSH_FAILURE_ELT(item) \
1540 fail_stack.stack[fail_stack.avail++] = (item)
1541
1542/* These three POP... operations complement the three PUSH... operations.
1543 All assume that `fail_stack' is nonempty. */
1544#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1545#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1546#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1547
505bde11
SM
1548/* Individual items aside from the registers. */
1549#define NUM_NONREG_ITEMS 3
1550
1551/* Used to examine the stack (to detect infinite loops). */
1552#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1553#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1554#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1555#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1556
1557
505bde11
SM
1558#define ENSURE_FAIL_STACK(space) \
1559while (REMAINING_AVAIL_SLOTS <= space) { \
1560 if (!GROW_FAIL_STACK (fail_stack)) \
1561 return -2; \
1562 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1563 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1564}
1565
1566/* Push register NUM onto the stack. */
1567#define PUSH_FAILURE_REG(num) \
1568do { \
1569 char *destination; \
1570 ENSURE_FAIL_STACK(3); \
1571 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1572 num, regstart[num], regend[num]); \
1573 PUSH_FAILURE_POINTER (regstart[num]); \
1574 PUSH_FAILURE_POINTER (regend[num]); \
1575 PUSH_FAILURE_INT (num); \
1576} while (0)
1577
01618498
SM
1578/* Change the counter's value to VAL, but make sure that it will
1579 be reset when backtracking. */
1580#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1581do { \
1582 char *destination; \
1583 int c; \
1584 ENSURE_FAIL_STACK(3); \
1585 EXTRACT_NUMBER (c, ptr); \
01618498 1586 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1587 PUSH_FAILURE_INT (c); \
1588 PUSH_FAILURE_POINTER (ptr); \
1589 PUSH_FAILURE_INT (-1); \
01618498 1590 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1591} while (0)
1592
505bde11 1593/* Pop a saved register off the stack. */
dc1e502d 1594#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1595do { \
1596 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1597 if (reg == -1) \
1598 { \
1599 /* It's a counter. */ \
6dcf2d0e
SM
1600 /* Here, we discard `const', making re_match non-reentrant. */ \
1601 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1602 reg = POP_FAILURE_INT (); \
1603 STORE_NUMBER (ptr, reg); \
1604 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1605 } \
1606 else \
1607 { \
1608 regend[reg] = POP_FAILURE_POINTER (); \
1609 regstart[reg] = POP_FAILURE_POINTER (); \
1610 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1611 reg, regstart[reg], regend[reg]); \
1612 } \
505bde11
SM
1613} while (0)
1614
1615/* Check that we are not stuck in an infinite loop. */
1616#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1617do { \
f6df485f 1618 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1619 /* Check for infinite matching loops */ \
f6df485f
RS
1620 while (failure > 0 \
1621 && (FAILURE_STR (failure) == string_place \
1622 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1623 { \
1624 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1625 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1626 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1627 { \
6df42991
SM
1628 cycle = 1; \
1629 break; \
f6df485f 1630 } \
66f0296e 1631 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1632 failure = NEXT_FAILURE_HANDLE(failure); \
1633 } \
1634 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1635} while (0)
6df42991 1636
fa9a63c5 1637/* Push the information about the state we will need
5e69f11e
RM
1638 if we ever fail back to it.
1639
505bde11 1640 Requires variables fail_stack, regstart, regend and
320a2a73 1641 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1642 declared.
5e69f11e 1643
fa9a63c5
RM
1644 Does `return FAILURE_CODE' if runs out of memory. */
1645
505bde11
SM
1646#define PUSH_FAILURE_POINT(pattern, string_place) \
1647do { \
1648 char *destination; \
1649 /* Must be int, so when we don't save any registers, the arithmetic \
1650 of 0 + -1 isn't done as unsigned. */ \
1651 \
505bde11 1652 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1653 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1654 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1655 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1656 \
1657 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1658 \
1659 DEBUG_PRINT1 ("\n"); \
1660 \
1661 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1662 PUSH_FAILURE_INT (fail_stack.frame); \
1663 \
1664 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1665 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1666 DEBUG_PRINT1 ("'\n"); \
1667 PUSH_FAILURE_POINTER (string_place); \
1668 \
1669 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1670 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1671 PUSH_FAILURE_POINTER (pattern); \
1672 \
1673 /* Close the frame by moving the frame pointer past it. */ \
1674 fail_stack.frame = fail_stack.avail; \
1675} while (0)
fa9a63c5 1676
320a2a73
KH
1677/* Estimate the size of data pushed by a typical failure stack entry.
1678 An estimate is all we need, because all we use this for
1679 is to choose a limit for how big to make the failure stack. */
ada30c0e 1680/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1681#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1682
fa9a63c5
RM
1683/* How many items can still be added to the stack without overflowing it. */
1684#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1685
1686
1687/* Pops what PUSH_FAIL_STACK pushes.
1688
1689 We restore into the parameters, all of which should be lvalues:
1690 STR -- the saved data position.
1691 PAT -- the saved pattern position.
fa9a63c5 1692 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1693
fa9a63c5 1694 Also assumes the variables `fail_stack' and (if debugging), `bufp',
7814e705 1695 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1696
505bde11
SM
1697#define POP_FAILURE_POINT(str, pat) \
1698do { \
fa9a63c5
RM
1699 assert (!FAIL_STACK_EMPTY ()); \
1700 \
1701 /* Remove failure points and point to how many regs pushed. */ \
1702 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1703 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1704 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1705 \
505bde11
SM
1706 /* Pop the saved registers. */ \
1707 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1708 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1709 \
01618498 1710 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1711 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1712 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1713 \
1714 /* If the saved string location is NULL, it came from an \
1715 on_failure_keep_string_jump opcode, and we want to throw away the \
1716 saved NULL, thus retaining our current position in the string. */ \
01618498 1717 str = POP_FAILURE_POINTER (); \
505bde11 1718 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1719 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1720 DEBUG_PRINT1 ("'\n"); \
1721 \
505bde11
SM
1722 fail_stack.frame = POP_FAILURE_INT (); \
1723 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1724 \
505bde11
SM
1725 assert (fail_stack.avail >= 0); \
1726 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1727 \
fa9a63c5 1728 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1729} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1730
1731
1732\f
fa9a63c5 1733/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1734#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1735\f
1736/* Subroutine declarations and macros for regex_compile. */
1737
4bb91c68
SM
1738static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1739 reg_syntax_t syntax,
1740 struct re_pattern_buffer *bufp));
1741static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1742static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1743 int arg1, int arg2));
1744static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1745 int arg, unsigned char *end));
1746static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1747 int arg1, int arg2, unsigned char *end));
01618498
SM
1748static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1749 re_char *p,
4bb91c68 1750 reg_syntax_t syntax));
01618498
SM
1751static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1752 re_char *pend,
4bb91c68 1753 reg_syntax_t syntax));
01618498
SM
1754static re_char *skip_one_char _RE_ARGS ((re_char *p));
1755static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1756 char *fastmap, const int multibyte));
fa9a63c5 1757
fa9a63c5 1758/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1759 translation. */
36595814 1760#define PATFETCH(c) \
2d1675e4
SM
1761 do { \
1762 int len; \
1763 if (p == pend) return REG_EEND; \
1764 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1765 p += len; \
fa9a63c5
RM
1766 } while (0)
1767
fa9a63c5
RM
1768
1769/* If `translate' is non-null, return translate[D], else just D. We
1770 cast the subscript to translate because some data is declared as
1771 `char *', to avoid warnings when a string constant is passed. But
1772 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1773#ifndef TRANSLATE
0b32bf0e 1774# define TRANSLATE(d) \
66f0296e 1775 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1776#endif
fa9a63c5
RM
1777
1778
1779/* Macros for outputting the compiled pattern into `buffer'. */
1780
1781/* If the buffer isn't allocated when it comes in, use this. */
1782#define INIT_BUF_SIZE 32
1783
4bb91c68 1784/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1785#define GET_BUFFER_SPACE(n) \
01618498 1786 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1787 EXTEND_BUFFER ()
1788
1789/* Make sure we have one more byte of buffer space and then add C to it. */
1790#define BUF_PUSH(c) \
1791 do { \
1792 GET_BUFFER_SPACE (1); \
1793 *b++ = (unsigned char) (c); \
1794 } while (0)
1795
1796
1797/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1798#define BUF_PUSH_2(c1, c2) \
1799 do { \
1800 GET_BUFFER_SPACE (2); \
1801 *b++ = (unsigned char) (c1); \
1802 *b++ = (unsigned char) (c2); \
1803 } while (0)
1804
1805
4bb91c68 1806/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1807#define BUF_PUSH_3(c1, c2, c3) \
1808 do { \
1809 GET_BUFFER_SPACE (3); \
1810 *b++ = (unsigned char) (c1); \
1811 *b++ = (unsigned char) (c2); \
1812 *b++ = (unsigned char) (c3); \
1813 } while (0)
1814
1815
1816/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1817 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1818#define STORE_JUMP(op, loc, to) \
1819 store_op1 (op, loc, (to) - (loc) - 3)
1820
1821/* Likewise, for a two-argument jump. */
1822#define STORE_JUMP2(op, loc, to, arg) \
1823 store_op2 (op, loc, (to) - (loc) - 3, arg)
1824
4bb91c68 1825/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1826#define INSERT_JUMP(op, loc, to) \
1827 insert_op1 (op, loc, (to) - (loc) - 3, b)
1828
1829/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1830#define INSERT_JUMP2(op, loc, to, arg) \
1831 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1832
1833
1834/* This is not an arbitrary limit: the arguments which represent offsets
839966f3 1835 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1836 be too small, many things would have to change. */
839966f3
KH
1837# define MAX_BUF_SIZE (1L << 15)
1838
1839#if 0 /* This is when we thought it could be 2^16 bytes. */
4bb91c68
SM
1840/* Any other compiler which, like MSC, has allocation limit below 2^16
1841 bytes will have to use approach similar to what was done below for
1842 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1843 reallocating to 0 bytes. Such thing is not going to work too well.
1844 You have been warned!! */
1845#if defined _MSC_VER && !defined WIN32
1846/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1847# define MAX_BUF_SIZE 65500L
1848#else
1849# define MAX_BUF_SIZE (1L << 16)
1850#endif
839966f3 1851#endif /* 0 */
fa9a63c5
RM
1852
1853/* Extend the buffer by twice its current size via realloc and
1854 reset the pointers that pointed into the old block to point to the
1855 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1856 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1857#if __BOUNDED_POINTERS__
1858# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1859# define MOVE_BUFFER_POINTER(P) \
1860 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1861# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1862 else \
1863 { \
1864 SET_HIGH_BOUND (b); \
1865 SET_HIGH_BOUND (begalt); \
1866 if (fixup_alt_jump) \
1867 SET_HIGH_BOUND (fixup_alt_jump); \
1868 if (laststart) \
1869 SET_HIGH_BOUND (laststart); \
1870 if (pending_exact) \
1871 SET_HIGH_BOUND (pending_exact); \
1872 }
1873#else
1874# define MOVE_BUFFER_POINTER(P) (P) += incr
1875# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1876#endif
fa9a63c5 1877#define EXTEND_BUFFER() \
25fe55af 1878 do { \
01618498 1879 re_char *old_buffer = bufp->buffer; \
25fe55af 1880 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1881 return REG_ESIZE; \
1882 bufp->allocated <<= 1; \
1883 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1884 bufp->allocated = MAX_BUF_SIZE; \
01618498 1885 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1886 if (bufp->buffer == NULL) \
1887 return REG_ESPACE; \
1888 /* If the buffer moved, move all the pointers into it. */ \
1889 if (old_buffer != bufp->buffer) \
1890 { \
4bb91c68
SM
1891 int incr = bufp->buffer - old_buffer; \
1892 MOVE_BUFFER_POINTER (b); \
1893 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1894 if (fixup_alt_jump) \
4bb91c68 1895 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1896 if (laststart) \
4bb91c68 1897 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1898 if (pending_exact) \
4bb91c68 1899 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1900 } \
4bb91c68 1901 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1902 } while (0)
1903
1904
1905/* Since we have one byte reserved for the register number argument to
1906 {start,stop}_memory, the maximum number of groups we can report
1907 things about is what fits in that byte. */
1908#define MAX_REGNUM 255
1909
1910/* But patterns can have more than `MAX_REGNUM' registers. We just
1911 ignore the excess. */
098d42af 1912typedef int regnum_t;
fa9a63c5
RM
1913
1914
1915/* Macros for the compile stack. */
1916
1917/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1918 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1919/* int may be not enough when sizeof(int) == 2. */
1920typedef long pattern_offset_t;
fa9a63c5
RM
1921
1922typedef struct
1923{
1924 pattern_offset_t begalt_offset;
1925 pattern_offset_t fixup_alt_jump;
5e69f11e 1926 pattern_offset_t laststart_offset;
fa9a63c5
RM
1927 regnum_t regnum;
1928} compile_stack_elt_t;
1929
1930
1931typedef struct
1932{
1933 compile_stack_elt_t *stack;
1934 unsigned size;
1935 unsigned avail; /* Offset of next open position. */
1936} compile_stack_type;
1937
1938
1939#define INIT_COMPILE_STACK_SIZE 32
1940
1941#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1942#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1943
4bb91c68 1944/* The next available element. */
fa9a63c5
RM
1945#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1946
1cee1e27
SM
1947/* Explicit quit checking is only used on NTemacs and whenever we
1948 use polling to process input events. */
1949#if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
77d11aec
RS
1950extern int immediate_quit;
1951# define IMMEDIATE_QUIT_CHECK \
1952 do { \
1953 if (immediate_quit) QUIT; \
1954 } while (0)
1955#else
1956# define IMMEDIATE_QUIT_CHECK ((void)0)
1957#endif
1958\f
b18215fc
RS
1959/* Structure to manage work area for range table. */
1960struct range_table_work_area
1961{
1962 int *table; /* actual work area. */
1963 int allocated; /* allocated size for work area in bytes. */
7814e705 1964 int used; /* actually used size in words. */
96cc36cc 1965 int bits; /* flag to record character classes */
b18215fc
RS
1966};
1967
77d11aec
RS
1968/* Make sure that WORK_AREA can hold more N multibyte characters.
1969 This is used only in set_image_of_range and set_image_of_range_1.
1970 It expects WORK_AREA to be a pointer.
1971 If it can't get the space, it returns from the surrounding function. */
1972
1973#define EXTEND_RANGE_TABLE(work_area, n) \
1974 do { \
8f924df7 1975 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
77d11aec 1976 { \
8f924df7
KH
1977 extend_range_table_work_area (&work_area); \
1978 if ((work_area).table == 0) \
77d11aec
RS
1979 return (REG_ESPACE); \
1980 } \
b18215fc
RS
1981 } while (0)
1982
96cc36cc
RS
1983#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1984 (work_area).bits |= (bit)
1985
14473664
SM
1986/* Bits used to implement the multibyte-part of the various character classes
1987 such as [:alnum:] in a charset's range table. */
1988#define BIT_WORD 0x1
1989#define BIT_LOWER 0x2
1990#define BIT_PUNCT 0x4
1991#define BIT_SPACE 0x8
1992#define BIT_UPPER 0x10
1993#define BIT_MULTIBYTE 0x20
96cc36cc 1994
b18215fc
RS
1995/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1996#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
77d11aec 1997 do { \
8f924df7 1998 EXTEND_RANGE_TABLE ((work_area), 2); \
b18215fc
RS
1999 (work_area).table[(work_area).used++] = (range_start); \
2000 (work_area).table[(work_area).used++] = (range_end); \
2001 } while (0)
2002
7814e705 2003/* Free allocated memory for WORK_AREA. */
b18215fc
RS
2004#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
2005 do { \
2006 if ((work_area).table) \
2007 free ((work_area).table); \
2008 } while (0)
2009
96cc36cc 2010#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 2011#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 2012#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 2013#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 2014\f
b18215fc 2015
fa9a63c5 2016/* Set the bit for character C in a list. */
01618498 2017#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
2018
2019
bf216479
KH
2020#ifdef emacs
2021
8f924df7
KH
2022/* Store characters in the rage range C0 to C1 in WORK_AREA while
2023 translating them and paying attention to the continuity of
2024 translated characters.
2025
2026 Implementation note: It is better to implement this fairly big
2027 macro by a function, but it's not that easy because macros called
2028 in this macro assume various local variables already declared. */
bf216479 2029
6fdd04b0
KH
2030#define SETUP_MULTIBYTE_RANGE(work_area, c0, c1) \
2031 do { \
2032 re_wchar_t c, t, t_last; \
2033 int n; \
2034 \
2035 c = (c0); \
2036 t_last = multibyte ? TRANSLATE (c) : TRANSLATE (MAKE_CHAR_MULTIBYTE (c)); \
2037 for (c++, n = 1; c <= (c1); c++, n++) \
2038 { \
2039 t = multibyte ? TRANSLATE (c) : TRANSLATE (MAKE_CHAR_MULTIBYTE (c)); \
2040 if (t_last + n == t) \
2041 continue; \
2042 SET_RANGE_TABLE_WORK_AREA ((work_area), t_last, t_last + n - 1); \
2043 t_last = t; \
8f924df7 2044 n = 0; \
6fdd04b0
KH
2045 } \
2046 if (n > 0) \
2047 SET_RANGE_TABLE_WORK_AREA ((work_area), t_last, t_last + n - 1); \
bf216479
KH
2048 } while (0)
2049
2050#endif /* emacs */
2051
fa9a63c5 2052/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 2053#define GET_UNSIGNED_NUMBER(num) \
c72b0edd
SM
2054 do { \
2055 if (p == pend) \
2056 FREE_STACK_RETURN (REG_EBRACE); \
2057 else \
2058 { \
2059 PATFETCH (c); \
2060 while ('0' <= c && c <= '9') \
2061 { \
2062 int prev; \
2063 if (num < 0) \
2064 num = 0; \
2065 prev = num; \
2066 num = num * 10 + c - '0'; \
2067 if (num / 10 != prev) \
2068 FREE_STACK_RETURN (REG_BADBR); \
2069 if (p == pend) \
2070 FREE_STACK_RETURN (REG_EBRACE); \
2071 PATFETCH (c); \
2072 } \
2073 } \
2074 } while (0)
77d11aec 2075\f
1fdab503 2076#if ! WIDE_CHAR_SUPPORT
01618498 2077
14473664 2078/* Map a string to the char class it names (if any). */
1fdab503 2079re_wctype_t
ada30c0e
SM
2080re_wctype (str)
2081 re_char *str;
14473664 2082{
ada30c0e 2083 const char *string = str;
14473664
SM
2084 if (STREQ (string, "alnum")) return RECC_ALNUM;
2085 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2086 else if (STREQ (string, "word")) return RECC_WORD;
2087 else if (STREQ (string, "ascii")) return RECC_ASCII;
2088 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2089 else if (STREQ (string, "graph")) return RECC_GRAPH;
2090 else if (STREQ (string, "lower")) return RECC_LOWER;
2091 else if (STREQ (string, "print")) return RECC_PRINT;
2092 else if (STREQ (string, "punct")) return RECC_PUNCT;
2093 else if (STREQ (string, "space")) return RECC_SPACE;
2094 else if (STREQ (string, "upper")) return RECC_UPPER;
2095 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2096 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2097 else if (STREQ (string, "digit")) return RECC_DIGIT;
2098 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2099 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2100 else if (STREQ (string, "blank")) return RECC_BLANK;
2101 else return 0;
2102}
2103
2104/* True iff CH is in the char class CC. */
1fdab503 2105boolean
14473664
SM
2106re_iswctype (ch, cc)
2107 int ch;
2108 re_wctype_t cc;
2109{
2110 switch (cc)
2111 {
0cdd06f8
SM
2112 case RECC_ALNUM: return ISALNUM (ch);
2113 case RECC_ALPHA: return ISALPHA (ch);
2114 case RECC_BLANK: return ISBLANK (ch);
2115 case RECC_CNTRL: return ISCNTRL (ch);
2116 case RECC_DIGIT: return ISDIGIT (ch);
2117 case RECC_GRAPH: return ISGRAPH (ch);
2118 case RECC_LOWER: return ISLOWER (ch);
2119 case RECC_PRINT: return ISPRINT (ch);
2120 case RECC_PUNCT: return ISPUNCT (ch);
2121 case RECC_SPACE: return ISSPACE (ch);
2122 case RECC_UPPER: return ISUPPER (ch);
2123 case RECC_XDIGIT: return ISXDIGIT (ch);
2124 case RECC_ASCII: return IS_REAL_ASCII (ch);
2125 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2126 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2127 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2128 case RECC_WORD: return ISWORD (ch);
2129 case RECC_ERROR: return false;
2130 default:
2131 abort();
14473664
SM
2132 }
2133}
fa9a63c5 2134
14473664
SM
2135/* Return a bit-pattern to use in the range-table bits to match multibyte
2136 chars of class CC. */
2137static int
2138re_wctype_to_bit (cc)
2139 re_wctype_t cc;
2140{
2141 switch (cc)
2142 {
2143 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2144 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2145 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2146 case RECC_LOWER: return BIT_LOWER;
2147 case RECC_UPPER: return BIT_UPPER;
2148 case RECC_PUNCT: return BIT_PUNCT;
2149 case RECC_SPACE: return BIT_SPACE;
14473664 2150 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2151 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2152 default:
2153 abort();
14473664
SM
2154 }
2155}
2156#endif
77d11aec
RS
2157\f
2158/* Filling in the work area of a range. */
2159
2160/* Actually extend the space in WORK_AREA. */
2161
2162static void
2163extend_range_table_work_area (work_area)
2164 struct range_table_work_area *work_area;
177c0ea7 2165{
77d11aec
RS
2166 work_area->allocated += 16 * sizeof (int);
2167 if (work_area->table)
2168 work_area->table
2169 = (int *) realloc (work_area->table, work_area->allocated);
2170 else
2171 work_area->table
2172 = (int *) malloc (work_area->allocated);
2173}
2174
8f924df7 2175#if 0
77d11aec
RS
2176#ifdef emacs
2177
2178/* Carefully find the ranges of codes that are equivalent
2179 under case conversion to the range start..end when passed through
2180 TRANSLATE. Handle the case where non-letters can come in between
2181 two upper-case letters (which happens in Latin-1).
2182 Also handle the case of groups of more than 2 case-equivalent chars.
2183
2184 The basic method is to look at consecutive characters and see
2185 if they can form a run that can be handled as one.
2186
2187 Returns -1 if successful, REG_ESPACE if ran out of space. */
2188
2189static int
2190set_image_of_range_1 (work_area, start, end, translate)
2191 RE_TRANSLATE_TYPE translate;
2192 struct range_table_work_area *work_area;
2193 re_wchar_t start, end;
2194{
2195 /* `one_case' indicates a character, or a run of characters,
2196 each of which is an isolate (no case-equivalents).
2197 This includes all ASCII non-letters.
2198
2199 `two_case' indicates a character, or a run of characters,
2200 each of which has two case-equivalent forms.
2201 This includes all ASCII letters.
2202
2203 `strange' indicates a character that has more than one
2204 case-equivalent. */
177c0ea7 2205
77d11aec
RS
2206 enum case_type {one_case, two_case, strange};
2207
2208 /* Describe the run that is in progress,
2209 which the next character can try to extend.
2210 If run_type is strange, that means there really is no run.
2211 If run_type is one_case, then run_start...run_end is the run.
2212 If run_type is two_case, then the run is run_start...run_end,
2213 and the case-equivalents end at run_eqv_end. */
2214
2215 enum case_type run_type = strange;
2216 int run_start, run_end, run_eqv_end;
2217
2218 Lisp_Object eqv_table;
2219
2220 if (!RE_TRANSLATE_P (translate))
2221 {
b7c12565 2222 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2223 work_area->table[work_area->used++] = (start);
2224 work_area->table[work_area->used++] = (end);
b7c12565 2225 return -1;
77d11aec
RS
2226 }
2227
2228 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2229
77d11aec
RS
2230 for (; start <= end; start++)
2231 {
2232 enum case_type this_type;
2233 int eqv = RE_TRANSLATE (eqv_table, start);
2234 int minchar, maxchar;
2235
2236 /* Classify this character */
2237 if (eqv == start)
2238 this_type = one_case;
2239 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2240 this_type = two_case;
2241 else
2242 this_type = strange;
2243
2244 if (start < eqv)
2245 minchar = start, maxchar = eqv;
2246 else
2247 minchar = eqv, maxchar = start;
2248
2249 /* Can this character extend the run in progress? */
2250 if (this_type == strange || this_type != run_type
2251 || !(minchar == run_end + 1
2252 && (run_type == two_case
2253 ? maxchar == run_eqv_end + 1 : 1)))
2254 {
2255 /* No, end the run.
2256 Record each of its equivalent ranges. */
2257 if (run_type == one_case)
2258 {
2259 EXTEND_RANGE_TABLE (work_area, 2);
2260 work_area->table[work_area->used++] = run_start;
2261 work_area->table[work_area->used++] = run_end;
2262 }
2263 else if (run_type == two_case)
2264 {
2265 EXTEND_RANGE_TABLE (work_area, 4);
2266 work_area->table[work_area->used++] = run_start;
2267 work_area->table[work_area->used++] = run_end;
2268 work_area->table[work_area->used++]
2269 = RE_TRANSLATE (eqv_table, run_start);
2270 work_area->table[work_area->used++]
2271 = RE_TRANSLATE (eqv_table, run_end);
2272 }
2273 run_type = strange;
2274 }
177c0ea7 2275
77d11aec
RS
2276 if (this_type == strange)
2277 {
2278 /* For a strange character, add each of its equivalents, one
2279 by one. Don't start a range. */
2280 do
2281 {
2282 EXTEND_RANGE_TABLE (work_area, 2);
2283 work_area->table[work_area->used++] = eqv;
2284 work_area->table[work_area->used++] = eqv;
2285 eqv = RE_TRANSLATE (eqv_table, eqv);
2286 }
2287 while (eqv != start);
2288 }
2289
2290 /* Add this char to the run, or start a new run. */
2291 else if (run_type == strange)
2292 {
2293 /* Initialize a new range. */
2294 run_type = this_type;
2295 run_start = start;
2296 run_end = start;
2297 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2298 }
2299 else
2300 {
2301 /* Extend a running range. */
2302 run_end = minchar;
2303 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2304 }
2305 }
2306
2307 /* If a run is still in progress at the end, finish it now
2308 by recording its equivalent ranges. */
2309 if (run_type == one_case)
2310 {
2311 EXTEND_RANGE_TABLE (work_area, 2);
2312 work_area->table[work_area->used++] = run_start;
2313 work_area->table[work_area->used++] = run_end;
2314 }
2315 else if (run_type == two_case)
2316 {
2317 EXTEND_RANGE_TABLE (work_area, 4);
2318 work_area->table[work_area->used++] = run_start;
2319 work_area->table[work_area->used++] = run_end;
2320 work_area->table[work_area->used++]
2321 = RE_TRANSLATE (eqv_table, run_start);
2322 work_area->table[work_area->used++]
2323 = RE_TRANSLATE (eqv_table, run_end);
2324 }
2325
2326 return -1;
2327}
36595814 2328
77d11aec 2329#endif /* emacs */
36595814 2330
b7c12565 2331/* Record the the image of the range start..end when passed through
36595814
SM
2332 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2333 and is not even necessarily contiguous.
b7c12565
RS
2334 Normally we approximate it with the smallest contiguous range that contains
2335 all the chars we need. However, for Latin-1 we go to extra effort
2336 to do a better job.
2337
2338 This function is not called for ASCII ranges.
77d11aec
RS
2339
2340 Returns -1 if successful, REG_ESPACE if ran out of space. */
2341
2342static int
36595814
SM
2343set_image_of_range (work_area, start, end, translate)
2344 RE_TRANSLATE_TYPE translate;
2345 struct range_table_work_area *work_area;
2346 re_wchar_t start, end;
2347{
77d11aec
RS
2348 re_wchar_t cmin, cmax;
2349
2350#ifdef emacs
2351 /* For Latin-1 ranges, use set_image_of_range_1
2352 to get proper handling of ranges that include letters and nonletters.
b7c12565 2353 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2354 For other character sets, we don't bother to get this right. */
b7c12565
RS
2355 if (RE_TRANSLATE_P (translate) && start < 04400
2356 && !(start < 04200 && end >= 04377))
77d11aec 2357 {
b7c12565 2358 int newend;
77d11aec 2359 int tem;
b7c12565
RS
2360 newend = end;
2361 if (newend > 04377)
2362 newend = 04377;
2363 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2364 if (tem > 0)
2365 return tem;
2366
2367 start = 04400;
2368 if (end < 04400)
2369 return -1;
2370 }
2371#endif
2372
b7c12565
RS
2373 EXTEND_RANGE_TABLE (work_area, 2);
2374 work_area->table[work_area->used++] = (start);
2375 work_area->table[work_area->used++] = (end);
2376
2377 cmin = -1, cmax = -1;
77d11aec 2378
36595814 2379 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2380 {
2381 int ch;
77d11aec 2382
b7c12565
RS
2383 for (ch = start; ch <= end; ch++)
2384 {
2385 re_wchar_t c = TRANSLATE (ch);
2386 if (! (start <= c && c <= end))
2387 {
2388 if (cmin == -1)
2389 cmin = c, cmax = c;
2390 else
2391 {
2392 cmin = MIN (cmin, c);
2393 cmax = MAX (cmax, c);
2394 }
2395 }
2396 }
2397
2398 if (cmin != -1)
2399 {
2400 EXTEND_RANGE_TABLE (work_area, 2);
2401 work_area->table[work_area->used++] = (cmin);
2402 work_area->table[work_area->used++] = (cmax);
2403 }
2404 }
36595814 2405
77d11aec
RS
2406 return -1;
2407}
8f924df7 2408#endif /* 0 */
fa9a63c5
RM
2409\f
2410#ifndef MATCH_MAY_ALLOCATE
2411
2412/* If we cannot allocate large objects within re_match_2_internal,
2413 we make the fail stack and register vectors global.
2414 The fail stack, we grow to the maximum size when a regexp
2415 is compiled.
2416 The register vectors, we adjust in size each time we
2417 compile a regexp, according to the number of registers it needs. */
2418
2419static fail_stack_type fail_stack;
2420
2421/* Size with which the following vectors are currently allocated.
2422 That is so we can make them bigger as needed,
4bb91c68 2423 but never make them smaller. */
fa9a63c5
RM
2424static int regs_allocated_size;
2425
66f0296e
SM
2426static re_char ** regstart, ** regend;
2427static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2428
2429/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2430 but don't make them smaller. */
fa9a63c5
RM
2431
2432static
2433regex_grow_registers (num_regs)
2434 int num_regs;
2435{
2436 if (num_regs > regs_allocated_size)
2437 {
66f0296e
SM
2438 RETALLOC_IF (regstart, num_regs, re_char *);
2439 RETALLOC_IF (regend, num_regs, re_char *);
2440 RETALLOC_IF (best_regstart, num_regs, re_char *);
2441 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2442
2443 regs_allocated_size = num_regs;
2444 }
2445}
2446
2447#endif /* not MATCH_MAY_ALLOCATE */
2448\f
99633e97
SM
2449static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2450 compile_stack,
2451 regnum_t regnum));
2452
fa9a63c5
RM
2453/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2454 Returns one of error codes defined in `regex.h', or zero for success.
2455
2456 Assumes the `allocated' (and perhaps `buffer') and `translate'
2457 fields are set in BUFP on entry.
2458
2459 If it succeeds, results are put in BUFP (if it returns an error, the
2460 contents of BUFP are undefined):
2461 `buffer' is the compiled pattern;
2462 `syntax' is set to SYNTAX;
2463 `used' is set to the length of the compiled pattern;
2464 `fastmap_accurate' is zero;
2465 `re_nsub' is the number of subexpressions in PATTERN;
2466 `not_bol' and `not_eol' are zero;
5e69f11e 2467
c0f9ea08 2468 The `fastmap' field is neither examined nor set. */
fa9a63c5 2469
505bde11
SM
2470/* Insert the `jump' from the end of last alternative to "here".
2471 The space for the jump has already been allocated. */
2472#define FIXUP_ALT_JUMP() \
2473do { \
2474 if (fixup_alt_jump) \
2475 STORE_JUMP (jump, fixup_alt_jump, b); \
2476} while (0)
2477
2478
fa9a63c5
RM
2479/* Return, freeing storage we allocated. */
2480#define FREE_STACK_RETURN(value) \
b18215fc
RS
2481 do { \
2482 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2483 free (compile_stack.stack); \
2484 return value; \
2485 } while (0)
fa9a63c5
RM
2486
2487static reg_errcode_t
2488regex_compile (pattern, size, syntax, bufp)
66f0296e 2489 re_char *pattern;
4bb91c68 2490 size_t size;
fa9a63c5
RM
2491 reg_syntax_t syntax;
2492 struct re_pattern_buffer *bufp;
2493{
01618498
SM
2494 /* We fetch characters from PATTERN here. */
2495 register re_wchar_t c, c1;
5e69f11e 2496
fa9a63c5 2497 /* A random temporary spot in PATTERN. */
66f0296e 2498 re_char *p1;
fa9a63c5
RM
2499
2500 /* Points to the end of the buffer, where we should append. */
2501 register unsigned char *b;
5e69f11e 2502
fa9a63c5
RM
2503 /* Keeps track of unclosed groups. */
2504 compile_stack_type compile_stack;
2505
2506 /* Points to the current (ending) position in the pattern. */
22336245
RS
2507#ifdef AIX
2508 /* `const' makes AIX compiler fail. */
66f0296e 2509 unsigned char *p = pattern;
22336245 2510#else
66f0296e 2511 re_char *p = pattern;
22336245 2512#endif
66f0296e 2513 re_char *pend = pattern + size;
5e69f11e 2514
fa9a63c5 2515 /* How to translate the characters in the pattern. */
6676cb1c 2516 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2517
2518 /* Address of the count-byte of the most recently inserted `exactn'
2519 command. This makes it possible to tell if a new exact-match
2520 character can be added to that command or if the character requires
2521 a new `exactn' command. */
2522 unsigned char *pending_exact = 0;
2523
2524 /* Address of start of the most recently finished expression.
2525 This tells, e.g., postfix * where to find the start of its
2526 operand. Reset at the beginning of groups and alternatives. */
2527 unsigned char *laststart = 0;
2528
2529 /* Address of beginning of regexp, or inside of last group. */
2530 unsigned char *begalt;
2531
2532 /* Place in the uncompiled pattern (i.e., the {) to
2533 which to go back if the interval is invalid. */
66f0296e 2534 re_char *beg_interval;
5e69f11e 2535
fa9a63c5 2536 /* Address of the place where a forward jump should go to the end of
7814e705 2537 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2538 last -- ends with a forward jump of this sort. */
2539 unsigned char *fixup_alt_jump = 0;
2540
2541 /* Counts open-groups as they are encountered. Remembered for the
2542 matching close-group on the compile stack, so the same register
2543 number is put in the stop_memory as the start_memory. */
2544 regnum_t regnum = 0;
2545
b18215fc
RS
2546 /* Work area for range table of charset. */
2547 struct range_table_work_area range_table_work;
2548
2d1675e4
SM
2549 /* If the object matched can contain multibyte characters. */
2550 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2551
8f924df7 2552 /* If a target of matching can contain multibyte characters. */
6fdd04b0
KH
2553 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
2554
f9b0fd99
RS
2555 /* Nonzero if we have pushed down into a subpattern. */
2556 int in_subpattern = 0;
2557
2558 /* These hold the values of p, pattern, and pend from the main
2559 pattern when we have pushed into a subpattern. */
2560 re_char *main_p;
2561 re_char *main_pattern;
2562 re_char *main_pend;
2563
fa9a63c5 2564#ifdef DEBUG
99633e97 2565 debug++;
fa9a63c5 2566 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2567 if (debug > 0)
fa9a63c5
RM
2568 {
2569 unsigned debug_count;
5e69f11e 2570
fa9a63c5 2571 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2572 putchar (pattern[debug_count]);
fa9a63c5
RM
2573 putchar ('\n');
2574 }
2575#endif /* DEBUG */
2576
2577 /* Initialize the compile stack. */
2578 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2579 if (compile_stack.stack == NULL)
2580 return REG_ESPACE;
2581
2582 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2583 compile_stack.avail = 0;
2584
b18215fc
RS
2585 range_table_work.table = 0;
2586 range_table_work.allocated = 0;
2587
fa9a63c5
RM
2588 /* Initialize the pattern buffer. */
2589 bufp->syntax = syntax;
2590 bufp->fastmap_accurate = 0;
2591 bufp->not_bol = bufp->not_eol = 0;
6224b623 2592 bufp->used_syntax = 0;
fa9a63c5
RM
2593
2594 /* Set `used' to zero, so that if we return an error, the pattern
2595 printer (for debugging) will think there's no pattern. We reset it
2596 at the end. */
2597 bufp->used = 0;
5e69f11e 2598
fa9a63c5 2599 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2600 bufp->re_nsub = 0;
fa9a63c5 2601
0b32bf0e 2602#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2603 /* Initialize the syntax table. */
2604 init_syntax_once ();
2605#endif
2606
2607 if (bufp->allocated == 0)
2608 {
2609 if (bufp->buffer)
2610 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af 2611 enough space. This loses if buffer's address is bogus, but
7814e705 2612 that is the user's responsibility. */
25fe55af
RS
2613 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2614 }
fa9a63c5 2615 else
7814e705 2616 { /* Caller did not allocate a buffer. Do it for them. */
25fe55af
RS
2617 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2618 }
fa9a63c5
RM
2619 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2620
2621 bufp->allocated = INIT_BUF_SIZE;
2622 }
2623
2624 begalt = b = bufp->buffer;
2625
2626 /* Loop through the uncompiled pattern until we're at the end. */
f9b0fd99 2627 while (1)
fa9a63c5 2628 {
f9b0fd99
RS
2629 if (p == pend)
2630 {
2631 /* If this is the end of an included regexp,
2632 pop back to the main regexp and try again. */
2633 if (in_subpattern)
2634 {
2635 in_subpattern = 0;
2636 pattern = main_pattern;
2637 p = main_p;
2638 pend = main_pend;
2639 continue;
2640 }
2641 /* If this is the end of the main regexp, we are done. */
2642 break;
2643 }
2644
fa9a63c5
RM
2645 PATFETCH (c);
2646
2647 switch (c)
25fe55af 2648 {
f9b0fd99
RS
2649 case ' ':
2650 {
2651 re_char *p1 = p;
2652
2653 /* If there's no special whitespace regexp, treat
4fb680cd
RS
2654 spaces normally. And don't try to do this recursively. */
2655 if (!whitespace_regexp || in_subpattern)
f9b0fd99
RS
2656 goto normal_char;
2657
2658 /* Peek past following spaces. */
2659 while (p1 != pend)
2660 {
2661 if (*p1 != ' ')
2662 break;
2663 p1++;
2664 }
2665 /* If the spaces are followed by a repetition op,
2666 treat them normally. */
c721eee5
RS
2667 if (p1 != pend
2668 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
f9b0fd99
RS
2669 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2670 goto normal_char;
2671
2672 /* Replace the spaces with the whitespace regexp. */
2673 in_subpattern = 1;
2674 main_p = p1;
2675 main_pend = pend;
2676 main_pattern = pattern;
2677 p = pattern = whitespace_regexp;
2678 pend = p + strlen (p);
2679 break;
7814e705 2680 }
f9b0fd99 2681
25fe55af
RS
2682 case '^':
2683 {
7814e705 2684 if ( /* If at start of pattern, it's an operator. */
25fe55af 2685 p == pattern + 1
7814e705 2686 /* If context independent, it's an operator. */
25fe55af 2687 || syntax & RE_CONTEXT_INDEP_ANCHORS
7814e705 2688 /* Otherwise, depends on what's come before. */
25fe55af 2689 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2690 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2691 else
2692 goto normal_char;
2693 }
2694 break;
2695
2696
2697 case '$':
2698 {
2699 if ( /* If at end of pattern, it's an operator. */
2700 p == pend
7814e705 2701 /* If context independent, it's an operator. */
25fe55af
RS
2702 || syntax & RE_CONTEXT_INDEP_ANCHORS
2703 /* Otherwise, depends on what's next. */
2704 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2705 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2706 else
2707 goto normal_char;
2708 }
2709 break;
fa9a63c5
RM
2710
2711
2712 case '+':
25fe55af
RS
2713 case '?':
2714 if ((syntax & RE_BK_PLUS_QM)
2715 || (syntax & RE_LIMITED_OPS))
2716 goto normal_char;
2717 handle_plus:
2718 case '*':
2719 /* If there is no previous pattern... */
2720 if (!laststart)
2721 {
2722 if (syntax & RE_CONTEXT_INVALID_OPS)
2723 FREE_STACK_RETURN (REG_BADRPT);
2724 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2725 goto normal_char;
2726 }
2727
2728 {
7814e705 2729 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2730 boolean zero_times_ok = 0, many_times_ok = 0;
2731 boolean greedy = 1;
25fe55af
RS
2732
2733 /* If there is a sequence of repetition chars, collapse it
2734 down to just one (the right one). We can't combine
2735 interval operators with these because of, e.g., `a{2}*',
7814e705 2736 which should only match an even number of `a's. */
25fe55af
RS
2737
2738 for (;;)
2739 {
0b32bf0e 2740 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2741 && c == '?' && (zero_times_ok || many_times_ok))
2742 greedy = 0;
2743 else
2744 {
2745 zero_times_ok |= c != '+';
2746 many_times_ok |= c != '?';
2747 }
25fe55af
RS
2748
2749 if (p == pend)
2750 break;
ed0767d8
SM
2751 else if (*p == '*'
2752 || (!(syntax & RE_BK_PLUS_QM)
2753 && (*p == '+' || *p == '?')))
25fe55af 2754 ;
ed0767d8 2755 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2756 {
ed0767d8
SM
2757 if (p+1 == pend)
2758 FREE_STACK_RETURN (REG_EESCAPE);
2759 if (p[1] == '+' || p[1] == '?')
2760 PATFETCH (c); /* Gobble up the backslash. */
2761 else
2762 break;
25fe55af
RS
2763 }
2764 else
ed0767d8 2765 break;
25fe55af 2766 /* If we get here, we found another repeat character. */
ed0767d8
SM
2767 PATFETCH (c);
2768 }
25fe55af
RS
2769
2770 /* Star, etc. applied to an empty pattern is equivalent
2771 to an empty pattern. */
4e8a9132 2772 if (!laststart || laststart == b)
25fe55af
RS
2773 break;
2774
2775 /* Now we know whether or not zero matches is allowed
7814e705 2776 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2777 if (greedy)
2778 {
99633e97 2779 if (many_times_ok)
4e8a9132
SM
2780 {
2781 boolean simple = skip_one_char (laststart) == b;
2782 unsigned int startoffset = 0;
f6a3f532 2783 re_opcode_t ofj =
01618498 2784 /* Check if the loop can match the empty string. */
6df42991
SM
2785 (simple || !analyse_first (laststart, b, NULL, 0))
2786 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2787 assert (skip_one_char (laststart) <= b);
177c0ea7 2788
4e8a9132
SM
2789 if (!zero_times_ok && simple)
2790 { /* Since simple * loops can be made faster by using
2791 on_failure_keep_string_jump, we turn simple P+
2792 into PP* if P is simple. */
2793 unsigned char *p1, *p2;
2794 startoffset = b - laststart;
2795 GET_BUFFER_SPACE (startoffset);
2796 p1 = b; p2 = laststart;
2797 while (p2 < p1)
2798 *b++ = *p2++;
2799 zero_times_ok = 1;
99633e97 2800 }
4e8a9132
SM
2801
2802 GET_BUFFER_SPACE (6);
2803 if (!zero_times_ok)
2804 /* A + loop. */
f6a3f532 2805 STORE_JUMP (ofj, b, b + 6);
99633e97 2806 else
4e8a9132
SM
2807 /* Simple * loops can use on_failure_keep_string_jump
2808 depending on what follows. But since we don't know
2809 that yet, we leave the decision up to
2810 on_failure_jump_smart. */
f6a3f532 2811 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2812 laststart + startoffset, b + 6);
99633e97 2813 b += 3;
4e8a9132 2814 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2815 b += 3;
2816 }
2817 else
2818 {
4e8a9132
SM
2819 /* A simple ? pattern. */
2820 assert (zero_times_ok);
2821 GET_BUFFER_SPACE (3);
2822 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2823 b += 3;
2824 }
1c8c6d39
DL
2825 }
2826 else /* not greedy */
2827 { /* I wish the greedy and non-greedy cases could be merged. */
2828
0683b6fa 2829 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2830 if (many_times_ok)
2831 {
f6a3f532
SM
2832 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2833
6df42991
SM
2834 /* The non-greedy multiple match looks like
2835 a repeat..until: we only need a conditional jump
2836 at the end of the loop. */
f6a3f532
SM
2837 if (emptyp) BUF_PUSH (no_op);
2838 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2839 : on_failure_jump, b, laststart);
1c8c6d39
DL
2840 b += 3;
2841 if (zero_times_ok)
2842 {
2843 /* The repeat...until naturally matches one or more.
2844 To also match zero times, we need to first jump to
6df42991 2845 the end of the loop (its conditional jump). */
1c8c6d39
DL
2846 INSERT_JUMP (jump, laststart, b);
2847 b += 3;
2848 }
2849 }
2850 else
2851 {
2852 /* non-greedy a?? */
1c8c6d39
DL
2853 INSERT_JUMP (jump, laststart, b + 3);
2854 b += 3;
2855 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2856 b += 3;
2857 }
2858 }
2859 }
4e8a9132 2860 pending_exact = 0;
fa9a63c5
RM
2861 break;
2862
2863
2864 case '.':
25fe55af
RS
2865 laststart = b;
2866 BUF_PUSH (anychar);
2867 break;
fa9a63c5
RM
2868
2869
25fe55af
RS
2870 case '[':
2871 {
b18215fc 2872 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2873
25fe55af 2874 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2875
25fe55af
RS
2876 /* Ensure that we have enough space to push a charset: the
2877 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2878 GET_BUFFER_SPACE (34);
2879
25fe55af 2880 laststart = b;
e318085a 2881
25fe55af 2882 /* We test `*p == '^' twice, instead of using an if
7814e705 2883 statement, so we only need one BUF_PUSH. */
25fe55af
RS
2884 BUF_PUSH (*p == '^' ? charset_not : charset);
2885 if (*p == '^')
2886 p++;
e318085a 2887
25fe55af
RS
2888 /* Remember the first position in the bracket expression. */
2889 p1 = p;
e318085a 2890
7814e705 2891 /* Push the number of bytes in the bitmap. */
25fe55af 2892 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2893
25fe55af
RS
2894 /* Clear the whole map. */
2895 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2896
25fe55af
RS
2897 /* charset_not matches newline according to a syntax bit. */
2898 if ((re_opcode_t) b[-2] == charset_not
2899 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2900 SET_LIST_BIT ('\n');
fa9a63c5 2901
7814e705 2902 /* Read in characters and ranges, setting map bits. */
25fe55af
RS
2903 for (;;)
2904 {
b18215fc 2905 boolean escaped_char = false;
2d1675e4 2906 const unsigned char *p2 = p;
e318085a 2907
25fe55af 2908 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2909
36595814
SM
2910 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2911 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2912 So the translation is done later in a loop. Example:
2913 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2914 PATFETCH (c);
e318085a 2915
25fe55af
RS
2916 /* \ might escape characters inside [...] and [^...]. */
2917 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2918 {
2919 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2920
2921 PATFETCH (c);
b18215fc 2922 escaped_char = true;
25fe55af 2923 }
b18215fc
RS
2924 else
2925 {
7814e705 2926 /* Could be the end of the bracket expression. If it's
657fcfbd
RS
2927 not (i.e., when the bracket expression is `[]' so
2928 far), the ']' character bit gets set way below. */
2d1675e4 2929 if (c == ']' && p2 != p1)
657fcfbd 2930 break;
25fe55af 2931 }
b18215fc 2932
25fe55af
RS
2933 /* See if we're at the beginning of a possible character
2934 class. */
b18215fc 2935
2d1675e4
SM
2936 if (!escaped_char &&
2937 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd 2938 {
7814e705 2939 /* Leave room for the null. */
14473664 2940 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2941 const unsigned char *class_beg;
b18215fc 2942
25fe55af
RS
2943 PATFETCH (c);
2944 c1 = 0;
ed0767d8 2945 class_beg = p;
b18215fc 2946
25fe55af
RS
2947 /* If pattern is `[[:'. */
2948 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2949
25fe55af
RS
2950 for (;;)
2951 {
14473664
SM
2952 PATFETCH (c);
2953 if ((c == ':' && *p == ']') || p == pend)
2954 break;
2955 if (c1 < CHAR_CLASS_MAX_LENGTH)
2956 str[c1++] = c;
2957 else
2958 /* This is in any case an invalid class name. */
2959 str[0] = '\0';
25fe55af
RS
2960 }
2961 str[c1] = '\0';
b18215fc
RS
2962
2963 /* If isn't a word bracketed by `[:' and `:]':
2964 undo the ending character, the letters, and
2965 leave the leading `:' and `[' (but set bits for
2966 them). */
25fe55af
RS
2967 if (c == ':' && *p == ']')
2968 {
36595814 2969 re_wchar_t ch;
14473664 2970 re_wctype_t cc;
8f924df7 2971 int limit;
14473664
SM
2972
2973 cc = re_wctype (str);
2974
2975 if (cc == 0)
fa9a63c5
RM
2976 FREE_STACK_RETURN (REG_ECTYPE);
2977
14473664
SM
2978 /* Throw away the ] at the end of the character
2979 class. */
2980 PATFETCH (c);
fa9a63c5 2981
14473664 2982 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2983
96cc36cc
RS
2984 /* Most character classes in a multibyte match
2985 just set a flag. Exceptions are is_blank,
2986 is_digit, is_cntrl, and is_xdigit, since
2987 they can only match ASCII characters. We
14473664
SM
2988 don't need to handle them for multibyte.
2989 They are distinguished by a negative wctype. */
96cc36cc 2990
8f924df7
KH
2991 for (ch = 0; ch < 128; ++ch)
2992 if (re_iswctype (btowc (ch), cc))
2993 {
2994 c = TRANSLATE (ch);
2995 SET_LIST_BIT (c);
2996 }
96cc36cc 2997
8f924df7 2998 if (target_multibyte)
25fe55af 2999 {
8f924df7
KH
3000 SET_RANGE_TABLE_WORK_AREA_BIT
3001 (range_table_work, re_wctype_to_bit (cc));
3002 }
3003 else
25fe55af 3004 {
8f924df7
KH
3005 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
3006 {
3007 c = ch;
3008 MAKE_CHAR_MULTIBYTE (c);
3009 if (re_iswctype (btowc (c), cc))
3010 {
3011 c = TRANSLATE (c);
3012 MAKE_CHAR_UNIBYTE (c);
3013 SET_LIST_BIT (c);
3014 }
3015 }
25fe55af 3016 }
b18215fc 3017
6224b623
SM
3018 /* In most cases the matching rule for char classes
3019 only uses the syntax table for multibyte chars,
3020 so that the content of the syntax-table it is not
3021 hardcoded in the range_table. SPACE and WORD are
3022 the two exceptions. */
3023 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
3024 bufp->used_syntax = 1;
3025
b18215fc
RS
3026 /* Repeat the loop. */
3027 continue;
25fe55af
RS
3028 }
3029 else
3030 {
ed0767d8
SM
3031 /* Go back to right after the "[:". */
3032 p = class_beg;
25fe55af 3033 SET_LIST_BIT ('[');
b18215fc
RS
3034
3035 /* Because the `:' may starts the range, we
3036 can't simply set bit and repeat the loop.
7814e705 3037 Instead, just set it to C and handle below. */
b18215fc 3038 c = ':';
25fe55af
RS
3039 }
3040 }
b18215fc
RS
3041
3042 if (p < pend && p[0] == '-' && p[1] != ']')
3043 {
3044
3045 /* Discard the `-'. */
3046 PATFETCH (c1);
3047
3048 /* Fetch the character which ends the range. */
3049 PATFETCH (c1);
6fdd04b0 3050 if (c > c1)
e934739e 3051 {
6fdd04b0 3052 if (syntax & RE_NO_EMPTY_RANGES)
e0da2cdd 3053 FREE_STACK_RETURN (REG_ERANGEX);
6fdd04b0 3054 /* Else, repeat the loop. */
e934739e 3055 }
e318085a 3056 }
25fe55af 3057 else
b18215fc
RS
3058 /* Range from C to C. */
3059 c1 = c;
3060
6fdd04b0
KH
3061#ifndef emacs
3062 c = TRANSLATE (c);
3063 c1 = TRANSLATE (c1);
8f924df7
KH
3064 /* Set the range into bitmap */
3065 for (; c <= c1; c++)
3066 SET_LIST_BIT (TRANSLATE (c));
6fdd04b0
KH
3067#else /* not emacs */
3068 if (target_multibyte)
25fe55af 3069 {
8f924df7 3070 if (c1 >= 128)
b18215fc 3071 {
6fdd04b0
KH
3072 re_wchar_t c0 = MAX (c, 128);
3073
3074 SETUP_MULTIBYTE_RANGE (range_table_work, c0, c1);
8f924df7 3075 c1 = 127;
b18215fc 3076 }
8f924df7
KH
3077 for (; c <= c1; c++)
3078 SET_LIST_BIT (TRANSLATE (c));
bf216479 3079 }
6fdd04b0 3080 else
25fe55af 3081 {
8f924df7
KH
3082 re_wchar_t c0;
3083
3084 for (; c <= c1; c++)
b18215fc 3085 {
8f924df7
KH
3086 c0 = c;
3087 if (! multibyte)
3088 MAKE_CHAR_MULTIBYTE (c0);
3089 c0 = TRANSLATE (c0);
3090 MAKE_CHAR_UNIBYTE (c0);
3091 SET_LIST_BIT (c0);
e934739e 3092 }
25fe55af 3093 }
6fdd04b0 3094#endif /* not emacs */
e318085a
RS
3095 }
3096
25fe55af 3097 /* Discard any (non)matching list bytes that are all 0 at the
7814e705 3098 end of the map. Decrease the map-length byte too. */
25fe55af
RS
3099 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3100 b[-1]--;
3101 b += b[-1];
fa9a63c5 3102
96cc36cc
RS
3103 /* Build real range table from work area. */
3104 if (RANGE_TABLE_WORK_USED (range_table_work)
3105 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
3106 {
3107 int i;
3108 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 3109
b18215fc 3110 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
3111 bytes for flags, two for COUNT, and three bytes for
3112 each character. */
3113 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 3114
b18215fc
RS
3115 /* Indicate the existence of range table. */
3116 laststart[1] |= 0x80;
fa9a63c5 3117
96cc36cc
RS
3118 /* Store the character class flag bits into the range table.
3119 If not in emacs, these flag bits are always 0. */
3120 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3121 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3122
b18215fc
RS
3123 STORE_NUMBER_AND_INCR (b, used / 2);
3124 for (i = 0; i < used; i++)
3125 STORE_CHARACTER_AND_INCR
3126 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3127 }
25fe55af
RS
3128 }
3129 break;
fa9a63c5
RM
3130
3131
b18215fc 3132 case '(':
25fe55af
RS
3133 if (syntax & RE_NO_BK_PARENS)
3134 goto handle_open;
3135 else
3136 goto normal_char;
fa9a63c5
RM
3137
3138
25fe55af
RS
3139 case ')':
3140 if (syntax & RE_NO_BK_PARENS)
3141 goto handle_close;
3142 else
3143 goto normal_char;
e318085a
RS
3144
3145
25fe55af
RS
3146 case '\n':
3147 if (syntax & RE_NEWLINE_ALT)
3148 goto handle_alt;
3149 else
3150 goto normal_char;
e318085a
RS
3151
3152
b18215fc 3153 case '|':
25fe55af
RS
3154 if (syntax & RE_NO_BK_VBAR)
3155 goto handle_alt;
3156 else
3157 goto normal_char;
3158
3159
3160 case '{':
3161 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3162 goto handle_interval;
3163 else
3164 goto normal_char;
3165
3166
3167 case '\\':
3168 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3169
3170 /* Do not translate the character after the \, so that we can
3171 distinguish, e.g., \B from \b, even if we normally would
3172 translate, e.g., B to b. */
36595814 3173 PATFETCH (c);
25fe55af
RS
3174
3175 switch (c)
3176 {
3177 case '(':
3178 if (syntax & RE_NO_BK_PARENS)
3179 goto normal_backslash;
3180
3181 handle_open:
505bde11
SM
3182 {
3183 int shy = 0;
3184 if (p+1 < pend)
3185 {
3186 /* Look for a special (?...) construct */
ed0767d8 3187 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3188 {
ed0767d8 3189 PATFETCH (c); /* Gobble up the '?'. */
505bde11
SM
3190 PATFETCH (c);
3191 switch (c)
3192 {
3193 case ':': shy = 1; break;
3194 default:
3195 /* Only (?:...) is supported right now. */
3196 FREE_STACK_RETURN (REG_BADPAT);
3197 }
3198 }
505bde11
SM
3199 }
3200
3201 if (!shy)
3202 {
3203 bufp->re_nsub++;
3204 regnum++;
3205 }
25fe55af 3206
99633e97
SM
3207 if (COMPILE_STACK_FULL)
3208 {
3209 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3210 compile_stack_elt_t);
3211 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3212
99633e97
SM
3213 compile_stack.size <<= 1;
3214 }
25fe55af 3215
99633e97 3216 /* These are the values to restore when we hit end of this
7814e705 3217 group. They are all relative offsets, so that if the
99633e97
SM
3218 whole pattern moves because of realloc, they will still
3219 be valid. */
3220 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3221 COMPILE_STACK_TOP.fixup_alt_jump
3222 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3223 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3224 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3225
3226 /* Do not push a
3227 start_memory for groups beyond the last one we can
3228 represent in the compiled pattern. */
3229 if (regnum <= MAX_REGNUM && !shy)
3230 BUF_PUSH_2 (start_memory, regnum);
3231
3232 compile_stack.avail++;
3233
3234 fixup_alt_jump = 0;
3235 laststart = 0;
3236 begalt = b;
3237 /* If we've reached MAX_REGNUM groups, then this open
3238 won't actually generate any code, so we'll have to
3239 clear pending_exact explicitly. */
3240 pending_exact = 0;
3241 break;
505bde11 3242 }
25fe55af
RS
3243
3244 case ')':
3245 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3246
3247 if (COMPILE_STACK_EMPTY)
505bde11
SM
3248 {
3249 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3250 goto normal_backslash;
3251 else
3252 FREE_STACK_RETURN (REG_ERPAREN);
3253 }
25fe55af
RS
3254
3255 handle_close:
505bde11 3256 FIXUP_ALT_JUMP ();
25fe55af
RS
3257
3258 /* See similar code for backslashed left paren above. */
3259 if (COMPILE_STACK_EMPTY)
505bde11
SM
3260 {
3261 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3262 goto normal_char;
3263 else
3264 FREE_STACK_RETURN (REG_ERPAREN);
3265 }
25fe55af
RS
3266
3267 /* Since we just checked for an empty stack above, this
3268 ``can't happen''. */
3269 assert (compile_stack.avail != 0);
3270 {
3271 /* We don't just want to restore into `regnum', because
3272 later groups should continue to be numbered higher,
7814e705 3273 as in `(ab)c(de)' -- the second group is #2. */
25fe55af
RS
3274 regnum_t this_group_regnum;
3275
3276 compile_stack.avail--;
3277 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3278 fixup_alt_jump
3279 = COMPILE_STACK_TOP.fixup_alt_jump
3280 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3281 : 0;
3282 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3283 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3284 /* If we've reached MAX_REGNUM groups, then this open
3285 won't actually generate any code, so we'll have to
3286 clear pending_exact explicitly. */
3287 pending_exact = 0;
e318085a 3288
25fe55af 3289 /* We're at the end of the group, so now we know how many
7814e705 3290 groups were inside this one. */
505bde11
SM
3291 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3292 BUF_PUSH_2 (stop_memory, this_group_regnum);
25fe55af
RS
3293 }
3294 break;
3295
3296
3297 case '|': /* `\|'. */
3298 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3299 goto normal_backslash;
3300 handle_alt:
3301 if (syntax & RE_LIMITED_OPS)
3302 goto normal_char;
3303
3304 /* Insert before the previous alternative a jump which
7814e705 3305 jumps to this alternative if the former fails. */
25fe55af
RS
3306 GET_BUFFER_SPACE (3);
3307 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3308 pending_exact = 0;
3309 b += 3;
3310
3311 /* The alternative before this one has a jump after it
3312 which gets executed if it gets matched. Adjust that
3313 jump so it will jump to this alternative's analogous
3314 jump (put in below, which in turn will jump to the next
3315 (if any) alternative's such jump, etc.). The last such
3316 jump jumps to the correct final destination. A picture:
3317 _____ _____
3318 | | | |
3319 | v | v
3320 a | b | c
3321
3322 If we are at `b', then fixup_alt_jump right now points to a
3323 three-byte space after `a'. We'll put in the jump, set
3324 fixup_alt_jump to right after `b', and leave behind three
3325 bytes which we'll fill in when we get to after `c'. */
3326
505bde11 3327 FIXUP_ALT_JUMP ();
25fe55af
RS
3328
3329 /* Mark and leave space for a jump after this alternative,
3330 to be filled in later either by next alternative or
3331 when know we're at the end of a series of alternatives. */
3332 fixup_alt_jump = b;
3333 GET_BUFFER_SPACE (3);
3334 b += 3;
3335
3336 laststart = 0;
3337 begalt = b;
3338 break;
3339
3340
3341 case '{':
3342 /* If \{ is a literal. */
3343 if (!(syntax & RE_INTERVALS)
3344 /* If we're at `\{' and it's not the open-interval
3345 operator. */
4bb91c68 3346 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3347 goto normal_backslash;
3348
3349 handle_interval:
3350 {
3351 /* If got here, then the syntax allows intervals. */
3352
3353 /* At least (most) this many matches must be made. */
99633e97 3354 int lower_bound = 0, upper_bound = -1;
25fe55af 3355
ed0767d8 3356 beg_interval = p;
25fe55af 3357
25fe55af
RS
3358 GET_UNSIGNED_NUMBER (lower_bound);
3359
3360 if (c == ',')
ed0767d8 3361 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3362 else
3363 /* Interval such as `{1}' => match exactly once. */
3364 upper_bound = lower_bound;
3365
3366 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3367 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3368 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3369
3370 if (!(syntax & RE_NO_BK_BRACES))
3371 {
4bb91c68
SM
3372 if (c != '\\')
3373 FREE_STACK_RETURN (REG_BADBR);
c72b0edd
SM
3374 if (p == pend)
3375 FREE_STACK_RETURN (REG_EESCAPE);
25fe55af
RS
3376 PATFETCH (c);
3377 }
3378
3379 if (c != '}')
4bb91c68 3380 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3381
3382 /* We just parsed a valid interval. */
3383
3384 /* If it's invalid to have no preceding re. */
3385 if (!laststart)
3386 {
3387 if (syntax & RE_CONTEXT_INVALID_OPS)
3388 FREE_STACK_RETURN (REG_BADRPT);
3389 else if (syntax & RE_CONTEXT_INDEP_OPS)
3390 laststart = b;
3391 else
3392 goto unfetch_interval;
3393 }
3394
6df42991
SM
3395 if (upper_bound == 0)
3396 /* If the upper bound is zero, just drop the sub pattern
3397 altogether. */
3398 b = laststart;
3399 else if (lower_bound == 1 && upper_bound == 1)
3400 /* Just match it once: nothing to do here. */
3401 ;
3402
3403 /* Otherwise, we have a nontrivial interval. When
3404 we're all done, the pattern will look like:
3405 set_number_at <jump count> <upper bound>
3406 set_number_at <succeed_n count> <lower bound>
3407 succeed_n <after jump addr> <succeed_n count>
3408 <body of loop>
3409 jump_n <succeed_n addr> <jump count>
3410 (The upper bound and `jump_n' are omitted if
3411 `upper_bound' is 1, though.) */
3412 else
3413 { /* If the upper bound is > 1, we need to insert
3414 more at the end of the loop. */
3415 unsigned int nbytes = (upper_bound < 0 ? 3
3416 : upper_bound > 1 ? 5 : 0);
3417 unsigned int startoffset = 0;
3418
3419 GET_BUFFER_SPACE (20); /* We might use less. */
3420
3421 if (lower_bound == 0)
3422 {
3423 /* A succeed_n that starts with 0 is really a
3424 a simple on_failure_jump_loop. */
3425 INSERT_JUMP (on_failure_jump_loop, laststart,
3426 b + 3 + nbytes);
3427 b += 3;
3428 }
3429 else
3430 {
3431 /* Initialize lower bound of the `succeed_n', even
3432 though it will be set during matching by its
3433 attendant `set_number_at' (inserted next),
3434 because `re_compile_fastmap' needs to know.
3435 Jump to the `jump_n' we might insert below. */
3436 INSERT_JUMP2 (succeed_n, laststart,
3437 b + 5 + nbytes,
3438 lower_bound);
3439 b += 5;
3440
3441 /* Code to initialize the lower bound. Insert
7814e705 3442 before the `succeed_n'. The `5' is the last two
6df42991
SM
3443 bytes of this `set_number_at', plus 3 bytes of
3444 the following `succeed_n'. */
3445 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3446 b += 5;
3447 startoffset += 5;
3448 }
3449
3450 if (upper_bound < 0)
3451 {
3452 /* A negative upper bound stands for infinity,
3453 in which case it degenerates to a plain jump. */
3454 STORE_JUMP (jump, b, laststart + startoffset);
3455 b += 3;
3456 }
3457 else if (upper_bound > 1)
3458 { /* More than one repetition is allowed, so
3459 append a backward jump to the `succeed_n'
3460 that starts this interval.
3461
3462 When we've reached this during matching,
3463 we'll have matched the interval once, so
3464 jump back only `upper_bound - 1' times. */
3465 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3466 upper_bound - 1);
3467 b += 5;
3468
3469 /* The location we want to set is the second
3470 parameter of the `jump_n'; that is `b-2' as
3471 an absolute address. `laststart' will be
3472 the `set_number_at' we're about to insert;
3473 `laststart+3' the number to set, the source
3474 for the relative address. But we are
3475 inserting into the middle of the pattern --
3476 so everything is getting moved up by 5.
3477 Conclusion: (b - 2) - (laststart + 3) + 5,
3478 i.e., b - laststart.
3479
3480 We insert this at the beginning of the loop
3481 so that if we fail during matching, we'll
3482 reinitialize the bounds. */
3483 insert_op2 (set_number_at, laststart, b - laststart,
3484 upper_bound - 1, b);
3485 b += 5;
3486 }
3487 }
25fe55af
RS
3488 pending_exact = 0;
3489 beg_interval = NULL;
3490 }
3491 break;
3492
3493 unfetch_interval:
3494 /* If an invalid interval, match the characters as literals. */
3495 assert (beg_interval);
3496 p = beg_interval;
3497 beg_interval = NULL;
3498
3499 /* normal_char and normal_backslash need `c'. */
ed0767d8 3500 c = '{';
25fe55af
RS
3501
3502 if (!(syntax & RE_NO_BK_BRACES))
3503 {
ed0767d8
SM
3504 assert (p > pattern && p[-1] == '\\');
3505 goto normal_backslash;
25fe55af 3506 }
ed0767d8
SM
3507 else
3508 goto normal_char;
e318085a 3509
b18215fc 3510#ifdef emacs
25fe55af 3511 /* There is no way to specify the before_dot and after_dot
7814e705 3512 operators. rms says this is ok. --karl */
25fe55af
RS
3513 case '=':
3514 BUF_PUSH (at_dot);
3515 break;
3516
3517 case 's':
3518 laststart = b;
3519 PATFETCH (c);
3520 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3521 break;
3522
3523 case 'S':
3524 laststart = b;
3525 PATFETCH (c);
3526 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3527 break;
b18215fc
RS
3528
3529 case 'c':
3530 laststart = b;
36595814 3531 PATFETCH (c);
b18215fc
RS
3532 BUF_PUSH_2 (categoryspec, c);
3533 break;
e318085a 3534
b18215fc
RS
3535 case 'C':
3536 laststart = b;
36595814 3537 PATFETCH (c);
b18215fc
RS
3538 BUF_PUSH_2 (notcategoryspec, c);
3539 break;
3540#endif /* emacs */
e318085a 3541
e318085a 3542
25fe55af 3543 case 'w':
4bb91c68
SM
3544 if (syntax & RE_NO_GNU_OPS)
3545 goto normal_char;
25fe55af 3546 laststart = b;
1fb352e0 3547 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3548 break;
e318085a 3549
e318085a 3550
25fe55af 3551 case 'W':
4bb91c68
SM
3552 if (syntax & RE_NO_GNU_OPS)
3553 goto normal_char;
25fe55af 3554 laststart = b;
1fb352e0 3555 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3556 break;
e318085a
RS
3557
3558
25fe55af 3559 case '<':
4bb91c68
SM
3560 if (syntax & RE_NO_GNU_OPS)
3561 goto normal_char;
25fe55af
RS
3562 BUF_PUSH (wordbeg);
3563 break;
e318085a 3564
25fe55af 3565 case '>':
4bb91c68
SM
3566 if (syntax & RE_NO_GNU_OPS)
3567 goto normal_char;
25fe55af
RS
3568 BUF_PUSH (wordend);
3569 break;
e318085a 3570
669fa600
SM
3571 case '_':
3572 if (syntax & RE_NO_GNU_OPS)
3573 goto normal_char;
3574 laststart = b;
3575 PATFETCH (c);
3576 if (c == '<')
3577 BUF_PUSH (symbeg);
3578 else if (c == '>')
3579 BUF_PUSH (symend);
3580 else
3581 FREE_STACK_RETURN (REG_BADPAT);
3582 break;
3583
25fe55af 3584 case 'b':
4bb91c68
SM
3585 if (syntax & RE_NO_GNU_OPS)
3586 goto normal_char;
25fe55af
RS
3587 BUF_PUSH (wordbound);
3588 break;
e318085a 3589
25fe55af 3590 case 'B':
4bb91c68
SM
3591 if (syntax & RE_NO_GNU_OPS)
3592 goto normal_char;
25fe55af
RS
3593 BUF_PUSH (notwordbound);
3594 break;
fa9a63c5 3595
25fe55af 3596 case '`':
4bb91c68
SM
3597 if (syntax & RE_NO_GNU_OPS)
3598 goto normal_char;
25fe55af
RS
3599 BUF_PUSH (begbuf);
3600 break;
e318085a 3601
25fe55af 3602 case '\'':
4bb91c68
SM
3603 if (syntax & RE_NO_GNU_OPS)
3604 goto normal_char;
25fe55af
RS
3605 BUF_PUSH (endbuf);
3606 break;
e318085a 3607
25fe55af
RS
3608 case '1': case '2': case '3': case '4': case '5':
3609 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3610 {
3611 regnum_t reg;
e318085a 3612
0cdd06f8
SM
3613 if (syntax & RE_NO_BK_REFS)
3614 goto normal_backslash;
e318085a 3615
0cdd06f8 3616 reg = c - '0';
e318085a 3617
0cdd06f8
SM
3618 /* Can't back reference to a subexpression before its end. */
3619 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3620 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3621
0cdd06f8
SM
3622 laststart = b;
3623 BUF_PUSH_2 (duplicate, reg);
3624 }
25fe55af 3625 break;
e318085a 3626
e318085a 3627
25fe55af
RS
3628 case '+':
3629 case '?':
3630 if (syntax & RE_BK_PLUS_QM)
3631 goto handle_plus;
3632 else
3633 goto normal_backslash;
3634
3635 default:
3636 normal_backslash:
3637 /* You might think it would be useful for \ to mean
3638 not to translate; but if we don't translate it
4bb91c68 3639 it will never match anything. */
25fe55af
RS
3640 goto normal_char;
3641 }
3642 break;
fa9a63c5
RM
3643
3644
3645 default:
25fe55af 3646 /* Expects the character in `c'. */
fa9a63c5 3647 normal_char:
36595814 3648 /* If no exactn currently being built. */
25fe55af 3649 if (!pending_exact
fa9a63c5 3650
25fe55af
RS
3651 /* If last exactn not at current position. */
3652 || pending_exact + *pending_exact + 1 != b
5e69f11e 3653
25fe55af 3654 /* We have only one byte following the exactn for the count. */
2d1675e4 3655 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3656
7814e705 3657 /* If followed by a repetition operator. */
9d99031f 3658 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3659 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3660 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3661 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3662 || ((syntax & RE_INTERVALS)
25fe55af 3663 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3664 ? p != pend && *p == '{'
3665 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3666 {
3667 /* Start building a new exactn. */
5e69f11e 3668
25fe55af 3669 laststart = b;
fa9a63c5
RM
3670
3671 BUF_PUSH_2 (exactn, 0);
3672 pending_exact = b - 1;
25fe55af 3673 }
5e69f11e 3674
2d1675e4
SM
3675 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3676 {
e0277a47
KH
3677 int len;
3678
bf216479
KH
3679 if (! multibyte)
3680 MAKE_CHAR_MULTIBYTE (c);
36595814 3681 c = TRANSLATE (c);
6fdd04b0
KH
3682 if (target_multibyte)
3683 {
3684 len = CHAR_STRING (c, b);
3685 b += len;
3686 }
e0277a47 3687 else
6fdd04b0
KH
3688 {
3689 MAKE_CHAR_UNIBYTE (c);
3690 *b++ = c;
3691 len = 1;
3692 }
2d1675e4
SM
3693 (*pending_exact) += len;
3694 }
3695
fa9a63c5 3696 break;
25fe55af 3697 } /* switch (c) */
fa9a63c5
RM
3698 } /* while p != pend */
3699
5e69f11e 3700
fa9a63c5 3701 /* Through the pattern now. */
5e69f11e 3702
505bde11 3703 FIXUP_ALT_JUMP ();
fa9a63c5 3704
5e69f11e 3705 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3706 FREE_STACK_RETURN (REG_EPAREN);
3707
3708 /* If we don't want backtracking, force success
3709 the first time we reach the end of the compiled pattern. */
3710 if (syntax & RE_NO_POSIX_BACKTRACKING)
3711 BUF_PUSH (succeed);
3712
fa9a63c5
RM
3713 /* We have succeeded; set the length of the buffer. */
3714 bufp->used = b - bufp->buffer;
3715
6fdd04b0
KH
3716#ifdef emacs
3717 /* Now the buffer is adjusted for the multibyteness of a target. */
3718 bufp->multibyte = bufp->target_multibyte;
3719#endif
3720
fa9a63c5 3721#ifdef DEBUG
99633e97 3722 if (debug > 0)
fa9a63c5 3723 {
505bde11 3724 re_compile_fastmap (bufp);
fa9a63c5
RM
3725 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3726 print_compiled_pattern (bufp);
3727 }
99633e97 3728 debug--;
fa9a63c5
RM
3729#endif /* DEBUG */
3730
3731#ifndef MATCH_MAY_ALLOCATE
3732 /* Initialize the failure stack to the largest possible stack. This
3733 isn't necessary unless we're trying to avoid calling alloca in
3734 the search and match routines. */
3735 {
3736 int num_regs = bufp->re_nsub + 1;
3737
320a2a73 3738 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3739 {
a26f4ccd 3740 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3741
fa9a63c5
RM
3742 if (! fail_stack.stack)
3743 fail_stack.stack
5e69f11e 3744 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3745 * sizeof (fail_stack_elt_t));
3746 else
3747 fail_stack.stack
3748 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3749 (fail_stack.size
3750 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3751 }
3752
3753 regex_grow_registers (num_regs);
3754 }
3755#endif /* not MATCH_MAY_ALLOCATE */
3756
839966f3 3757 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3758} /* regex_compile */
3759\f
3760/* Subroutines for `regex_compile'. */
3761
7814e705 3762/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3763
3764static void
3765store_op1 (op, loc, arg)
3766 re_opcode_t op;
3767 unsigned char *loc;
3768 int arg;
3769{
3770 *loc = (unsigned char) op;
3771 STORE_NUMBER (loc + 1, arg);
3772}
3773
3774
3775/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3776
3777static void
3778store_op2 (op, loc, arg1, arg2)
3779 re_opcode_t op;
3780 unsigned char *loc;
3781 int arg1, arg2;
3782{
3783 *loc = (unsigned char) op;
3784 STORE_NUMBER (loc + 1, arg1);
3785 STORE_NUMBER (loc + 3, arg2);
3786}
3787
3788
3789/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3790 for OP followed by two-byte integer parameter ARG. */
3791
3792static void
3793insert_op1 (op, loc, arg, end)
3794 re_opcode_t op;
3795 unsigned char *loc;
3796 int arg;
5e69f11e 3797 unsigned char *end;
fa9a63c5
RM
3798{
3799 register unsigned char *pfrom = end;
3800 register unsigned char *pto = end + 3;
3801
3802 while (pfrom != loc)
3803 *--pto = *--pfrom;
5e69f11e 3804
fa9a63c5
RM
3805 store_op1 (op, loc, arg);
3806}
3807
3808
3809/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3810
3811static void
3812insert_op2 (op, loc, arg1, arg2, end)
3813 re_opcode_t op;
3814 unsigned char *loc;
3815 int arg1, arg2;
5e69f11e 3816 unsigned char *end;
fa9a63c5
RM
3817{
3818 register unsigned char *pfrom = end;
3819 register unsigned char *pto = end + 5;
3820
3821 while (pfrom != loc)
3822 *--pto = *--pfrom;
5e69f11e 3823
fa9a63c5
RM
3824 store_op2 (op, loc, arg1, arg2);
3825}
3826
3827
3828/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3829 after an alternative or a begin-subexpression. We assume there is at
3830 least one character before the ^. */
3831
3832static boolean
3833at_begline_loc_p (pattern, p, syntax)
01618498 3834 re_char *pattern, *p;
fa9a63c5
RM
3835 reg_syntax_t syntax;
3836{
01618498 3837 re_char *prev = p - 2;
fa9a63c5 3838 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3839
fa9a63c5
RM
3840 return
3841 /* After a subexpression? */
3842 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3843 /* After an alternative? */
d2af47df
SM
3844 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3845 /* After a shy subexpression? */
3846 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3847 && prev[-1] == '?' && prev[-2] == '('
3848 && (syntax & RE_NO_BK_PARENS
3849 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3850}
3851
3852
3853/* The dual of at_begline_loc_p. This one is for $. We assume there is
3854 at least one character after the $, i.e., `P < PEND'. */
3855
3856static boolean
3857at_endline_loc_p (p, pend, syntax)
01618498 3858 re_char *p, *pend;
99633e97 3859 reg_syntax_t syntax;
fa9a63c5 3860{
01618498 3861 re_char *next = p;
fa9a63c5 3862 boolean next_backslash = *next == '\\';
01618498 3863 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3864
fa9a63c5
RM
3865 return
3866 /* Before a subexpression? */
3867 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3868 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3869 /* Before an alternative? */
3870 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3871 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3872}
3873
3874
5e69f11e 3875/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3876 false if it's not. */
3877
3878static boolean
3879group_in_compile_stack (compile_stack, regnum)
3880 compile_stack_type compile_stack;
3881 regnum_t regnum;
3882{
3883 int this_element;
3884
5e69f11e
RM
3885 for (this_element = compile_stack.avail - 1;
3886 this_element >= 0;
fa9a63c5
RM
3887 this_element--)
3888 if (compile_stack.stack[this_element].regnum == regnum)
3889 return true;
3890
3891 return false;
3892}
fa9a63c5 3893\f
f6a3f532
SM
3894/* analyse_first.
3895 If fastmap is non-NULL, go through the pattern and fill fastmap
3896 with all the possible leading chars. If fastmap is NULL, don't
3897 bother filling it up (obviously) and only return whether the
3898 pattern could potentially match the empty string.
3899
3900 Return 1 if p..pend might match the empty string.
3901 Return 0 if p..pend matches at least one char.
01618498 3902 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3903
3904static int
3905analyse_first (p, pend, fastmap, multibyte)
01618498 3906 re_char *p, *pend;
f6a3f532
SM
3907 char *fastmap;
3908 const int multibyte;
fa9a63c5 3909{
505bde11 3910 int j, k;
1fb352e0 3911 boolean not;
fa9a63c5 3912
b18215fc 3913 /* If all elements for base leading-codes in fastmap is set, this
7814e705 3914 flag is set true. */
b18215fc
RS
3915 boolean match_any_multibyte_characters = false;
3916
f6a3f532 3917 assert (p);
5e69f11e 3918
505bde11
SM
3919 /* The loop below works as follows:
3920 - It has a working-list kept in the PATTERN_STACK and which basically
3921 starts by only containing a pointer to the first operation.
3922 - If the opcode we're looking at is a match against some set of
3923 chars, then we add those chars to the fastmap and go on to the
3924 next work element from the worklist (done via `break').
3925 - If the opcode is a control operator on the other hand, we either
3926 ignore it (if it's meaningless at this point, such as `start_memory')
3927 or execute it (if it's a jump). If the jump has several destinations
3928 (i.e. `on_failure_jump'), then we push the other destination onto the
3929 worklist.
3930 We guarantee termination by ignoring backward jumps (more or less),
3931 so that `p' is monotonically increasing. More to the point, we
3932 never set `p' (or push) anything `<= p1'. */
3933
01618498 3934 while (p < pend)
fa9a63c5 3935 {
505bde11
SM
3936 /* `p1' is used as a marker of how far back a `on_failure_jump'
3937 can go without being ignored. It is normally equal to `p'
3938 (which prevents any backward `on_failure_jump') except right
3939 after a plain `jump', to allow patterns such as:
3940 0: jump 10
3941 3..9: <body>
3942 10: on_failure_jump 3
3943 as used for the *? operator. */
01618498 3944 re_char *p1 = p;
5e69f11e 3945
fa9a63c5
RM
3946 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3947 {
f6a3f532 3948 case succeed:
01618498 3949 return 1;
f6a3f532 3950 continue;
fa9a63c5 3951
fa9a63c5 3952 case duplicate:
505bde11
SM
3953 /* If the first character has to match a backreference, that means
3954 that the group was empty (since it already matched). Since this
3955 is the only case that interests us here, we can assume that the
3956 backreference must match the empty string. */
3957 p++;
3958 continue;
fa9a63c5
RM
3959
3960
3961 /* Following are the cases which match a character. These end
7814e705 3962 with `break'. */
fa9a63c5
RM
3963
3964 case exactn:
e0277a47 3965 if (fastmap)
bf216479
KH
3966 /* If multibyte is nonzero, the first byte of each
3967 character is an ASCII or a leading code. Otherwise,
3968 each byte is a character. Thus, this works in both
3969 cases. */
3970 fastmap[p[1]] = 1;
fa9a63c5
RM
3971 break;
3972
3973
1fb352e0
SM
3974 case anychar:
3975 /* We could put all the chars except for \n (and maybe \0)
3976 but we don't bother since it is generally not worth it. */
f6a3f532 3977 if (!fastmap) break;
01618498 3978 return -1;
fa9a63c5
RM
3979
3980
b18215fc 3981 case charset_not:
1fb352e0 3982 if (!fastmap) break;
bf216479
KH
3983 {
3984 /* Chars beyond end of bitmap are possible matches. */
6fdd04b0
KH
3985 /* In a multibyte case, the bitmap is used only for ASCII
3986 characters. */
bf216479
KH
3987 int limit = multibyte ? 128 : (1 << BYTEWIDTH);
3988
3989 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3990 j < limit; j++)
3991 fastmap[j] = 1;
3992 }
3993
1fb352e0
SM
3994 /* Fallthrough */
3995 case charset:
3996 if (!fastmap) break;
3997 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3998 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3999 j >= 0; j--)
1fb352e0 4000 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
49da453b 4001 fastmap[j] = 1;
b18215fc 4002
1fb352e0 4003 if ((not && multibyte)
bf216479 4004 /* Any leading code can possibly start a character
1fb352e0
SM
4005 which doesn't match the specified set of characters. */
4006 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4007 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
4008 /* If we can match a character class, we can match
6fdd04b0 4009 any multibyte characters. */
b18215fc 4010 {
b18215fc
RS
4011 if (match_any_multibyte_characters == false)
4012 {
6fdd04b0
KH
4013 for (j = 0x80; j < (1 << BYTEWIDTH); j++)
4014 fastmap[j] = 1;
b18215fc
RS
4015 match_any_multibyte_characters = true;
4016 }
4017 }
b18215fc 4018
1fb352e0
SM
4019 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4020 && match_any_multibyte_characters == false)
4021 {
bf216479 4022 /* Set fastmap[I] to 1 where I is a leading code of each
9117d724 4023 multibyte characer in the range table. */
1fb352e0 4024 int c, count;
bf216479 4025 unsigned char lc1, lc2;
b18215fc 4026
1fb352e0 4027 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 4028 bits for a character class. */
1fb352e0 4029 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 4030
1fb352e0
SM
4031 /* Extract the number of ranges in range table into COUNT. */
4032 EXTRACT_NUMBER_AND_INCR (count, p);
4033 for (; count > 0; count--, p += 2 * 3) /* XXX */
4034 {
9117d724
KH
4035 /* Extract the start and end of each range. */
4036 EXTRACT_CHARACTER (c, p);
bf216479 4037 lc1 = CHAR_LEADING_CODE (c);
9117d724 4038 p += 3;
1fb352e0 4039 EXTRACT_CHARACTER (c, p);
bf216479
KH
4040 lc2 = CHAR_LEADING_CODE (c);
4041 for (j = lc1; j <= lc2; j++)
9117d724 4042 fastmap[j] = 1;
1fb352e0
SM
4043 }
4044 }
b18215fc
RS
4045 break;
4046
1fb352e0
SM
4047 case syntaxspec:
4048 case notsyntaxspec:
4049 if (!fastmap) break;
4050#ifndef emacs
4051 not = (re_opcode_t)p[-1] == notsyntaxspec;
4052 k = *p++;
4053 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 4054 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 4055 fastmap[j] = 1;
b18215fc 4056 break;
1fb352e0 4057#else /* emacs */
b18215fc
RS
4058 /* This match depends on text properties. These end with
4059 aborting optimizations. */
01618498 4060 return -1;
b18215fc
RS
4061
4062 case categoryspec:
b18215fc 4063 case notcategoryspec:
1fb352e0
SM
4064 if (!fastmap) break;
4065 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 4066 k = *p++;
bf216479 4067 for (j = (multibyte ? 127 : (1 << BYTEWIDTH)); j >= 0; j--)
1fb352e0 4068 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
4069 fastmap[j] = 1;
4070
1fb352e0 4071 if (multibyte)
6fdd04b0
KH
4072 {
4073 /* Any character set can possibly contain a character
4074 whose category is K (or not). */
4075 if (match_any_multibyte_characters == false)
4076 {
4077 for (j = 0x80; j < (1 << BYTEWIDTH); j++)
4078 fastmap[j] = 1;
4079 match_any_multibyte_characters = true;
4080 }
4081 }
b18215fc
RS
4082 break;
4083
fa9a63c5 4084 /* All cases after this match the empty string. These end with
25fe55af 4085 `continue'. */
fa9a63c5 4086
fa9a63c5
RM
4087 case before_dot:
4088 case at_dot:
4089 case after_dot:
1fb352e0 4090#endif /* !emacs */
25fe55af
RS
4091 case no_op:
4092 case begline:
4093 case endline:
fa9a63c5
RM
4094 case begbuf:
4095 case endbuf:
4096 case wordbound:
4097 case notwordbound:
4098 case wordbeg:
4099 case wordend:
669fa600
SM
4100 case symbeg:
4101 case symend:
25fe55af 4102 continue;
fa9a63c5
RM
4103
4104
fa9a63c5 4105 case jump:
25fe55af 4106 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
4107 if (j < 0)
4108 /* Backward jumps can only go back to code that we've already
4109 visited. `re_compile' should make sure this is true. */
4110 break;
25fe55af 4111 p += j;
505bde11
SM
4112 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4113 {
4114 case on_failure_jump:
4115 case on_failure_keep_string_jump:
505bde11 4116 case on_failure_jump_loop:
0683b6fa 4117 case on_failure_jump_nastyloop:
505bde11
SM
4118 case on_failure_jump_smart:
4119 p++;
4120 break;
4121 default:
4122 continue;
4123 };
4124 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4125 to jump back to "just after here". */
4126 /* Fallthrough */
fa9a63c5 4127
25fe55af
RS
4128 case on_failure_jump:
4129 case on_failure_keep_string_jump:
0683b6fa 4130 case on_failure_jump_nastyloop:
505bde11
SM
4131 case on_failure_jump_loop:
4132 case on_failure_jump_smart:
25fe55af 4133 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 4134 if (p + j <= p1)
ed0767d8 4135 ; /* Backward jump to be ignored. */
01618498
SM
4136 else
4137 { /* We have to look down both arms.
4138 We first go down the "straight" path so as to minimize
4139 stack usage when going through alternatives. */
4140 int r = analyse_first (p, pend, fastmap, multibyte);
4141 if (r) return r;
4142 p += j;
4143 }
25fe55af 4144 continue;
fa9a63c5
RM
4145
4146
ed0767d8
SM
4147 case jump_n:
4148 /* This code simply does not properly handle forward jump_n. */
4149 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4150 p += 4;
4151 /* jump_n can either jump or fall through. The (backward) jump
4152 case has already been handled, so we only need to look at the
4153 fallthrough case. */
4154 continue;
177c0ea7 4155
fa9a63c5 4156 case succeed_n:
ed0767d8
SM
4157 /* If N == 0, it should be an on_failure_jump_loop instead. */
4158 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4159 p += 4;
4160 /* We only care about one iteration of the loop, so we don't
4161 need to consider the case where this behaves like an
4162 on_failure_jump. */
25fe55af 4163 continue;
fa9a63c5
RM
4164
4165
4166 case set_number_at:
25fe55af
RS
4167 p += 4;
4168 continue;
fa9a63c5
RM
4169
4170
4171 case start_memory:
25fe55af 4172 case stop_memory:
505bde11 4173 p += 1;
fa9a63c5
RM
4174 continue;
4175
4176
4177 default:
25fe55af
RS
4178 abort (); /* We have listed all the cases. */
4179 } /* switch *p++ */
fa9a63c5
RM
4180
4181 /* Getting here means we have found the possible starting
25fe55af 4182 characters for one path of the pattern -- and that the empty
7814e705 4183 string does not match. We need not follow this path further. */
01618498 4184 return 0;
fa9a63c5
RM
4185 } /* while p */
4186
01618498
SM
4187 /* We reached the end without matching anything. */
4188 return 1;
4189
f6a3f532
SM
4190} /* analyse_first */
4191\f
4192/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4193 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4194 characters can start a string that matches the pattern. This fastmap
4195 is used by re_search to skip quickly over impossible starting points.
4196
4197 Character codes above (1 << BYTEWIDTH) are not represented in the
4198 fastmap, but the leading codes are represented. Thus, the fastmap
4199 indicates which character sets could start a match.
4200
4201 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4202 area as BUFP->fastmap.
4203
4204 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4205 the pattern buffer.
4206
4207 Returns 0 if we succeed, -2 if an internal error. */
4208
4209int
4210re_compile_fastmap (bufp)
4211 struct re_pattern_buffer *bufp;
4212{
4213 char *fastmap = bufp->fastmap;
4214 int analysis;
4215
4216 assert (fastmap && bufp->buffer);
4217
7814e705 4218 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
f6a3f532
SM
4219 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4220
4221 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4222 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4223 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4224 return 0;
4225} /* re_compile_fastmap */
4226\f
4227/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4228 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4229 this memory for recording register information. STARTS and ENDS
4230 must be allocated using the malloc library routine, and must each
4231 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4232
4233 If NUM_REGS == 0, then subsequent matches should allocate their own
4234 register data.
4235
4236 Unless this function is called, the first search or match using
4237 PATTERN_BUFFER will allocate its own register data, without
4238 freeing the old data. */
4239
4240void
4241re_set_registers (bufp, regs, num_regs, starts, ends)
4242 struct re_pattern_buffer *bufp;
4243 struct re_registers *regs;
4244 unsigned num_regs;
4245 regoff_t *starts, *ends;
4246{
4247 if (num_regs)
4248 {
4249 bufp->regs_allocated = REGS_REALLOCATE;
4250 regs->num_regs = num_regs;
4251 regs->start = starts;
4252 regs->end = ends;
4253 }
4254 else
4255 {
4256 bufp->regs_allocated = REGS_UNALLOCATED;
4257 regs->num_regs = 0;
4258 regs->start = regs->end = (regoff_t *) 0;
4259 }
4260}
c0f9ea08 4261WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4262\f
7814e705 4263/* Searching routines. */
fa9a63c5
RM
4264
4265/* Like re_search_2, below, but only one string is specified, and
4266 doesn't let you say where to stop matching. */
4267
4268int
4269re_search (bufp, string, size, startpos, range, regs)
4270 struct re_pattern_buffer *bufp;
4271 const char *string;
4272 int size, startpos, range;
4273 struct re_registers *regs;
4274{
5e69f11e 4275 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4276 regs, size);
4277}
c0f9ea08 4278WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4279
70806df6
KH
4280/* Head address of virtual concatenation of string. */
4281#define HEAD_ADDR_VSTRING(P) \
4282 (((P) >= size1 ? string2 : string1))
4283
b18215fc
RS
4284/* End address of virtual concatenation of string. */
4285#define STOP_ADDR_VSTRING(P) \
4286 (((P) >= size1 ? string2 + size2 : string1 + size1))
4287
4288/* Address of POS in the concatenation of virtual string. */
4289#define POS_ADDR_VSTRING(POS) \
4290 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4291
4292/* Using the compiled pattern in BUFP->buffer, first tries to match the
4293 virtual concatenation of STRING1 and STRING2, starting first at index
4294 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4295
fa9a63c5 4296 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4297
fa9a63c5
RM
4298 RANGE is how far to scan while trying to match. RANGE = 0 means try
4299 only at STARTPOS; in general, the last start tried is STARTPOS +
4300 RANGE.
5e69f11e 4301
fa9a63c5
RM
4302 In REGS, return the indices of the virtual concatenation of STRING1
4303 and STRING2 that matched the entire BUFP->buffer and its contained
4304 subexpressions.
5e69f11e 4305
fa9a63c5
RM
4306 Do not consider matching one past the index STOP in the virtual
4307 concatenation of STRING1 and STRING2.
4308
4309 We return either the position in the strings at which the match was
4310 found, -1 if no match, or -2 if error (such as failure
4311 stack overflow). */
4312
4313int
66f0296e 4314re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4315 struct re_pattern_buffer *bufp;
66f0296e 4316 const char *str1, *str2;
fa9a63c5
RM
4317 int size1, size2;
4318 int startpos;
4319 int range;
4320 struct re_registers *regs;
4321 int stop;
4322{
4323 int val;
66f0296e
SM
4324 re_char *string1 = (re_char*) str1;
4325 re_char *string2 = (re_char*) str2;
fa9a63c5 4326 register char *fastmap = bufp->fastmap;
6676cb1c 4327 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4328 int total_size = size1 + size2;
4329 int endpos = startpos + range;
c0f9ea08 4330 boolean anchored_start;
6fdd04b0
KH
4331 /* Nonzero if BUFP is setup for multibyte characters. We are sure
4332 that it is the same as RE_TARGET_MULTIBYTE_P (bufp). */
2d1675e4 4333 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4334
fa9a63c5
RM
4335 /* Check for out-of-range STARTPOS. */
4336 if (startpos < 0 || startpos > total_size)
4337 return -1;
5e69f11e 4338
fa9a63c5 4339 /* Fix up RANGE if it might eventually take us outside
34597fa9 4340 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4341 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4342 if (endpos < 0)
4343 range = 0 - startpos;
fa9a63c5
RM
4344 else if (endpos > total_size)
4345 range = total_size - startpos;
4346
4347 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4348 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4349 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4350 {
4351 if (startpos > 0)
4352 return -1;
4353 else
7b140fd7 4354 range = 0;
fa9a63c5
RM
4355 }
4356
ae4788a8
RS
4357#ifdef emacs
4358 /* In a forward search for something that starts with \=.
4359 don't keep searching past point. */
4360 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4361 {
7b140fd7
RS
4362 range = PT_BYTE - BEGV_BYTE - startpos;
4363 if (range < 0)
ae4788a8
RS
4364 return -1;
4365 }
4366#endif /* emacs */
4367
fa9a63c5
RM
4368 /* Update the fastmap now if not correct already. */
4369 if (fastmap && !bufp->fastmap_accurate)
01618498 4370 re_compile_fastmap (bufp);
5e69f11e 4371
c8499ba5 4372 /* See whether the pattern is anchored. */
c0f9ea08 4373 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4374
b18215fc 4375#ifdef emacs
cc9b4df2
KH
4376 gl_state.object = re_match_object;
4377 {
99633e97 4378 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4379
4380 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4381 }
b18215fc
RS
4382#endif
4383
fa9a63c5
RM
4384 /* Loop through the string, looking for a place to start matching. */
4385 for (;;)
5e69f11e 4386 {
c8499ba5
RS
4387 /* If the pattern is anchored,
4388 skip quickly past places we cannot match.
4389 We don't bother to treat startpos == 0 specially
4390 because that case doesn't repeat. */
4391 if (anchored_start && startpos > 0)
4392 {
c0f9ea08
SM
4393 if (! ((startpos <= size1 ? string1[startpos - 1]
4394 : string2[startpos - size1 - 1])
4395 == '\n'))
c8499ba5
RS
4396 goto advance;
4397 }
4398
fa9a63c5 4399 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4400 cannot be the start of a match. If the pattern can match the
4401 null string, however, we don't need to skip characters; we want
7814e705 4402 the first null string. */
fa9a63c5
RM
4403 if (fastmap && startpos < total_size && !bufp->can_be_null)
4404 {
66f0296e 4405 register re_char *d;
01618498 4406 register re_wchar_t buf_ch;
e934739e
RS
4407
4408 d = POS_ADDR_VSTRING (startpos);
4409
7814e705 4410 if (range > 0) /* Searching forwards. */
fa9a63c5 4411 {
fa9a63c5
RM
4412 register int lim = 0;
4413 int irange = range;
4414
25fe55af
RS
4415 if (startpos < size1 && startpos + range >= size1)
4416 lim = range - (size1 - startpos);
fa9a63c5 4417
25fe55af
RS
4418 /* Written out as an if-else to avoid testing `translate'
4419 inside the loop. */
28ae27ae
AS
4420 if (RE_TRANSLATE_P (translate))
4421 {
e934739e
RS
4422 if (multibyte)
4423 while (range > lim)
4424 {
4425 int buf_charlen;
4426
4427 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4428 buf_charlen);
e934739e 4429 buf_ch = RE_TRANSLATE (translate, buf_ch);
bf216479 4430 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
e934739e
RS
4431 break;
4432
4433 range -= buf_charlen;
4434 d += buf_charlen;
4435 }
4436 else
bf216479 4437 while (range > lim)
33c46939 4438 {
bf216479
KH
4439 buf_ch = *d;
4440 MAKE_CHAR_MULTIBYTE (buf_ch);
b884eb4d 4441 buf_ch = RE_TRANSLATE (translate, buf_ch);
6fdd04b0 4442 MAKE_CHAR_UNIBYTE (buf_ch);
6fdd04b0 4443 if (fastmap[buf_ch])
bf216479 4444 break;
33c46939
RS
4445 d++;
4446 range--;
4447 }
e934739e 4448 }
fa9a63c5 4449 else
6fdd04b0
KH
4450 {
4451 if (multibyte)
4452 while (range > lim)
4453 {
4454 int buf_charlen;
fa9a63c5 4455
6fdd04b0
KH
4456 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4457 buf_charlen);
4458 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4459 break;
4460 range -= buf_charlen;
4461 d += buf_charlen;
4462 }
e934739e 4463 else
6fdd04b0 4464 while (range > lim && !fastmap[*d])
33c46939
RS
4465 {
4466 d++;
4467 range--;
4468 }
e934739e 4469 }
fa9a63c5
RM
4470 startpos += irange - range;
4471 }
7814e705 4472 else /* Searching backwards. */
fa9a63c5 4473 {
2d1675e4
SM
4474 int room = (startpos >= size1
4475 ? size2 + size1 - startpos
4476 : size1 - startpos);
ba5e343c
KH
4477 if (multibyte)
4478 {
6fdd04b0 4479 buf_ch = STRING_CHAR (d, room);
ba5e343c
KH
4480 buf_ch = TRANSLATE (buf_ch);
4481 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4482 goto advance;
4483 }
4484 else
4485 {
4486 if (! fastmap[TRANSLATE (*d)])
4487 goto advance;
4488 }
fa9a63c5
RM
4489 }
4490 }
4491
4492 /* If can't match the null string, and that's all we have left, fail. */
4493 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4494 && !bufp->can_be_null)
fa9a63c5
RM
4495 return -1;
4496
4497 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4498 startpos, regs, stop);
4499#ifndef REGEX_MALLOC
0b32bf0e 4500# ifdef C_ALLOCA
fa9a63c5 4501 alloca (0);
0b32bf0e 4502# endif
fa9a63c5
RM
4503#endif
4504
4505 if (val >= 0)
4506 return startpos;
5e69f11e 4507
fa9a63c5
RM
4508 if (val == -2)
4509 return -2;
4510
4511 advance:
5e69f11e 4512 if (!range)
25fe55af 4513 break;
5e69f11e 4514 else if (range > 0)
25fe55af 4515 {
b18215fc
RS
4516 /* Update STARTPOS to the next character boundary. */
4517 if (multibyte)
4518 {
66f0296e
SM
4519 re_char *p = POS_ADDR_VSTRING (startpos);
4520 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4521 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4522
4523 range -= len;
4524 if (range < 0)
4525 break;
4526 startpos += len;
4527 }
4528 else
4529 {
b560c397
RS
4530 range--;
4531 startpos++;
4532 }
e318085a 4533 }
fa9a63c5 4534 else
25fe55af
RS
4535 {
4536 range++;
4537 startpos--;
b18215fc
RS
4538
4539 /* Update STARTPOS to the previous character boundary. */
4540 if (multibyte)
4541 {
70806df6
KH
4542 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4543 re_char *p0 = p;
4544 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4545
4546 /* Find the head of multibyte form. */
70806df6
KH
4547 PREV_CHAR_BOUNDARY (p, phead);
4548 range += p0 - 1 - p;
4549 if (range > 0)
4550 break;
b18215fc 4551
70806df6 4552 startpos -= p0 - 1 - p;
b18215fc 4553 }
25fe55af 4554 }
fa9a63c5
RM
4555 }
4556 return -1;
4557} /* re_search_2 */
c0f9ea08 4558WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4559\f
4560/* Declarations and macros for re_match_2. */
4561
2d1675e4
SM
4562static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4563 register int len,
4564 RE_TRANSLATE_TYPE translate,
4565 const int multibyte));
fa9a63c5
RM
4566
4567/* This converts PTR, a pointer into one of the search strings `string1'
4568 and `string2' into an offset from the beginning of that string. */
4569#define POINTER_TO_OFFSET(ptr) \
4570 (FIRST_STRING_P (ptr) \
4571 ? ((regoff_t) ((ptr) - string1)) \
4572 : ((regoff_t) ((ptr) - string2 + size1)))
4573
fa9a63c5 4574/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4575 string2 if necessary.
4576 Check re_match_2_internal for a discussion of why end_match_2 might
4577 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4578#define PREFETCH() \
25fe55af 4579 while (d == dend) \
fa9a63c5
RM
4580 { \
4581 /* End of string2 => fail. */ \
25fe55af
RS
4582 if (dend == end_match_2) \
4583 goto fail; \
4bb91c68 4584 /* End of string1 => advance to string2. */ \
25fe55af 4585 d = string2; \
fa9a63c5
RM
4586 dend = end_match_2; \
4587 }
4588
f1ad044f
SM
4589/* Call before fetching a char with *d if you already checked other limits.
4590 This is meant for use in lookahead operations like wordend, etc..
4591 where we might need to look at parts of the string that might be
4592 outside of the LIMITs (i.e past `stop'). */
4593#define PREFETCH_NOLIMIT() \
4594 if (d == end1) \
4595 { \
4596 d = string2; \
4597 dend = end_match_2; \
4598 } \
fa9a63c5
RM
4599
4600/* Test if at very beginning or at very end of the virtual concatenation
7814e705 4601 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4602#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4603#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4604
4605
4606/* Test if D points to a character which is word-constituent. We have
4607 two special cases to check for: if past the end of string1, look at
4608 the first character in string2; and if before the beginning of
4609 string2, look at the last character in string1. */
4610#define WORDCHAR_P(d) \
4611 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4612 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4613 == Sword)
4614
9121ca40 4615/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4616
4617/* The comment at case wordbound is following one, but we don't use
4618 AT_WORD_BOUNDARY anymore to support multibyte form.
4619
4620 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af 4621 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7814e705 4622 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4623 macro and introducing temporary variables works around the bug. */
4624
9121ca40 4625#if 0
fa9a63c5
RM
4626/* Test if the character before D and the one at D differ with respect
4627 to being word-constituent. */
4628#define AT_WORD_BOUNDARY(d) \
4629 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4630 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4631#endif
fa9a63c5
RM
4632
4633/* Free everything we malloc. */
4634#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4635# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4636# define FREE_VARIABLES() \
fa9a63c5
RM
4637 do { \
4638 REGEX_FREE_STACK (fail_stack.stack); \
4639 FREE_VAR (regstart); \
4640 FREE_VAR (regend); \
fa9a63c5
RM
4641 FREE_VAR (best_regstart); \
4642 FREE_VAR (best_regend); \
fa9a63c5
RM
4643 } while (0)
4644#else
0b32bf0e 4645# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4646#endif /* not MATCH_MAY_ALLOCATE */
4647
505bde11
SM
4648\f
4649/* Optimization routines. */
4650
4e8a9132
SM
4651/* If the operation is a match against one or more chars,
4652 return a pointer to the next operation, else return NULL. */
01618498 4653static re_char *
4e8a9132 4654skip_one_char (p)
01618498 4655 re_char *p;
4e8a9132
SM
4656{
4657 switch (SWITCH_ENUM_CAST (*p++))
4658 {
4659 case anychar:
4660 break;
177c0ea7 4661
4e8a9132
SM
4662 case exactn:
4663 p += *p + 1;
4664 break;
4665
4666 case charset_not:
4667 case charset:
4668 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4669 {
4670 int mcnt;
4671 p = CHARSET_RANGE_TABLE (p - 1);
4672 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4673 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4674 }
4675 else
4676 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4677 break;
177c0ea7 4678
4e8a9132
SM
4679 case syntaxspec:
4680 case notsyntaxspec:
1fb352e0 4681#ifdef emacs
4e8a9132
SM
4682 case categoryspec:
4683 case notcategoryspec:
4684#endif /* emacs */
4685 p++;
4686 break;
4687
4688 default:
4689 p = NULL;
4690 }
4691 return p;
4692}
4693
4694
505bde11 4695/* Jump over non-matching operations. */
839966f3 4696static re_char *
4e8a9132 4697skip_noops (p, pend)
839966f3 4698 re_char *p, *pend;
505bde11
SM
4699{
4700 int mcnt;
4701 while (p < pend)
4702 {
4703 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4704 {
4705 case start_memory:
505bde11
SM
4706 case stop_memory:
4707 p += 2; break;
4708 case no_op:
4709 p += 1; break;
4710 case jump:
4711 p += 1;
4712 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4713 p += mcnt;
4714 break;
4715 default:
4716 return p;
4717 }
4718 }
4719 assert (p == pend);
4720 return p;
4721}
4722
4723/* Non-zero if "p1 matches something" implies "p2 fails". */
4724static int
4725mutually_exclusive_p (bufp, p1, p2)
4726 struct re_pattern_buffer *bufp;
839966f3 4727 re_char *p1, *p2;
505bde11 4728{
4e8a9132 4729 re_opcode_t op2;
2d1675e4 4730 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4731 unsigned char *pend = bufp->buffer + bufp->used;
4732
4e8a9132 4733 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4734 && p2 >= bufp->buffer && p2 <= pend);
4735
4736 /* Skip over open/close-group commands.
4737 If what follows this loop is a ...+ construct,
4738 look at what begins its body, since we will have to
4739 match at least one of that. */
4e8a9132
SM
4740 p2 = skip_noops (p2, pend);
4741 /* The same skip can be done for p1, except that this function
4742 is only used in the case where p1 is a simple match operator. */
4743 /* p1 = skip_noops (p1, pend); */
4744
4745 assert (p1 >= bufp->buffer && p1 < pend
4746 && p2 >= bufp->buffer && p2 <= pend);
4747
4748 op2 = p2 == pend ? succeed : *p2;
4749
4750 switch (SWITCH_ENUM_CAST (op2))
505bde11 4751 {
4e8a9132
SM
4752 case succeed:
4753 case endbuf:
4754 /* If we're at the end of the pattern, we can change. */
4755 if (skip_one_char (p1))
505bde11 4756 {
505bde11
SM
4757 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4758 return 1;
505bde11 4759 }
4e8a9132 4760 break;
177c0ea7 4761
4e8a9132 4762 case endline:
4e8a9132
SM
4763 case exactn:
4764 {
01618498 4765 register re_wchar_t c
4e8a9132 4766 = (re_opcode_t) *p2 == endline ? '\n'
411e4203 4767 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
505bde11 4768
4e8a9132
SM
4769 if ((re_opcode_t) *p1 == exactn)
4770 {
4771 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4772 {
4773 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4774 return 1;
4775 }
4776 }
505bde11 4777
4e8a9132
SM
4778 else if ((re_opcode_t) *p1 == charset
4779 || (re_opcode_t) *p1 == charset_not)
4780 {
4781 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4782
4e8a9132
SM
4783 /* Test if C is listed in charset (or charset_not)
4784 at `p1'. */
6fdd04b0 4785 if (! multibyte || IS_REAL_ASCII (c))
4e8a9132
SM
4786 {
4787 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4788 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4789 not = !not;
4790 }
4791 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4792 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4793
4e8a9132
SM
4794 /* `not' is equal to 1 if c would match, which means
4795 that we can't change to pop_failure_jump. */
4796 if (!not)
4797 {
4798 DEBUG_PRINT1 (" No match => fast loop.\n");
4799 return 1;
4800 }
4801 }
4802 else if ((re_opcode_t) *p1 == anychar
4803 && c == '\n')
4804 {
4805 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4806 return 1;
4807 }
4808 }
4809 break;
505bde11 4810
4e8a9132 4811 case charset:
4e8a9132
SM
4812 {
4813 if ((re_opcode_t) *p1 == exactn)
4814 /* Reuse the code above. */
4815 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4816
505bde11
SM
4817 /* It is hard to list up all the character in charset
4818 P2 if it includes multibyte character. Give up in
4819 such case. */
4820 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4821 {
4822 /* Now, we are sure that P2 has no range table.
4823 So, for the size of bitmap in P2, `p2[1]' is
7814e705 4824 enough. But P1 may have range table, so the
505bde11
SM
4825 size of bitmap table of P1 is extracted by
4826 using macro `CHARSET_BITMAP_SIZE'.
4827
6fdd04b0
KH
4828 In a multibyte case, we know that all the character
4829 listed in P2 is ASCII. In a unibyte case, P1 has only a
4830 bitmap table. So, in both cases, it is enough to test
4831 only the bitmap table of P1. */
505bde11 4832
411e4203 4833 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4834 {
4835 int idx;
4836 /* We win if the charset inside the loop
4837 has no overlap with the one after the loop. */
4838 for (idx = 0;
4839 (idx < (int) p2[1]
4840 && idx < CHARSET_BITMAP_SIZE (p1));
4841 idx++)
4842 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4843 break;
4844
4845 if (idx == p2[1]
4846 || idx == CHARSET_BITMAP_SIZE (p1))
4847 {
4848 DEBUG_PRINT1 (" No match => fast loop.\n");
4849 return 1;
4850 }
4851 }
411e4203 4852 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4853 {
4854 int idx;
4855 /* We win if the charset_not inside the loop lists
7814e705 4856 every character listed in the charset after. */
505bde11
SM
4857 for (idx = 0; idx < (int) p2[1]; idx++)
4858 if (! (p2[2 + idx] == 0
4859 || (idx < CHARSET_BITMAP_SIZE (p1)
4860 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4861 break;
4862
4e8a9132
SM
4863 if (idx == p2[1])
4864 {
4865 DEBUG_PRINT1 (" No match => fast loop.\n");
4866 return 1;
4867 }
4868 }
4869 }
4870 }
609b757a 4871 break;
177c0ea7 4872
411e4203
SM
4873 case charset_not:
4874 switch (SWITCH_ENUM_CAST (*p1))
4875 {
4876 case exactn:
4877 case charset:
4878 /* Reuse the code above. */
4879 return mutually_exclusive_p (bufp, p2, p1);
4880 case charset_not:
4881 /* When we have two charset_not, it's very unlikely that
4882 they don't overlap. The union of the two sets of excluded
4883 chars should cover all possible chars, which, as a matter of
4884 fact, is virtually impossible in multibyte buffers. */
36595814 4885 break;
411e4203
SM
4886 }
4887 break;
4888
4e8a9132 4889 case wordend:
669fa600
SM
4890 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4891 case symend:
4e8a9132 4892 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
4893 && (p1[1] == Ssymbol || p1[1] == Sword));
4894 case notsyntaxspec:
4895 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4896
4897 case wordbeg:
669fa600
SM
4898 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4899 case symbeg:
4e8a9132 4900 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
4901 && (p1[1] == Ssymbol || p1[1] == Sword));
4902 case syntaxspec:
4903 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4904
4905 case wordbound:
4906 return (((re_opcode_t) *p1 == notsyntaxspec
4907 || (re_opcode_t) *p1 == syntaxspec)
4908 && p1[1] == Sword);
4909
1fb352e0 4910#ifdef emacs
4e8a9132
SM
4911 case categoryspec:
4912 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4913 case notcategoryspec:
4914 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4915#endif /* emacs */
4916
4917 default:
4918 ;
505bde11
SM
4919 }
4920
4921 /* Safe default. */
4922 return 0;
4923}
4924
fa9a63c5
RM
4925\f
4926/* Matching routines. */
4927
25fe55af 4928#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4929/* re_match is like re_match_2 except it takes only a single string. */
4930
4931int
4932re_match (bufp, string, size, pos, regs)
4933 struct re_pattern_buffer *bufp;
4934 const char *string;
4935 int size, pos;
4936 struct re_registers *regs;
4937{
4bb91c68 4938 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 4939 pos, regs, size);
0b32bf0e 4940# if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4941 alloca (0);
0b32bf0e 4942# endif
fa9a63c5
RM
4943 return result;
4944}
c0f9ea08 4945WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4946#endif /* not emacs */
4947
b18215fc
RS
4948#ifdef emacs
4949/* In Emacs, this is the string or buffer in which we
7814e705 4950 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4951Lisp_Object re_match_object;
4952#endif
fa9a63c5
RM
4953
4954/* re_match_2 matches the compiled pattern in BUFP against the
4955 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4956 and SIZE2, respectively). We start matching at POS, and stop
4957 matching at STOP.
5e69f11e 4958
fa9a63c5 4959 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
7814e705 4960 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4961 documentation for exactly how many groups we fill.
4962
4963 We return -1 if no match, -2 if an internal error (such as the
7814e705 4964 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4965 matched substring. */
4966
4967int
4968re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4969 struct re_pattern_buffer *bufp;
4970 const char *string1, *string2;
4971 int size1, size2;
4972 int pos;
4973 struct re_registers *regs;
4974 int stop;
4975{
b18215fc 4976 int result;
25fe55af 4977
b18215fc 4978#ifdef emacs
cc9b4df2
KH
4979 int charpos;
4980 gl_state.object = re_match_object;
99633e97 4981 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4982 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4983#endif
4984
4bb91c68
SM
4985 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4986 (re_char*) string2, size2,
cc9b4df2 4987 pos, regs, stop);
0b32bf0e 4988#if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4989 alloca (0);
a60198e5 4990#endif
fa9a63c5
RM
4991 return result;
4992}
c0f9ea08 4993WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5 4994
bf216479 4995#ifdef emacs
6fdd04b0
KH
4996#define TRANSLATE_VIA_MULTIBYTE(c) \
4997 do { \
4998 if (multibyte) \
4999 (c) = TRANSLATE (c); \
5000 else \
5001 { \
5002 MAKE_CHAR_MULTIBYTE (c); \
5003 (c) = TRANSLATE (c); \
5004 MAKE_CHAR_UNIBYTE (c); \
5005 } \
5006 } while (0)
5007
bf216479 5008#else
6fdd04b0 5009#define TRANSLATE_VIA_MULTIBYTE(c) ((c) = TRANSLATE (c))
bf216479
KH
5010#endif
5011
5012
fa9a63c5 5013/* This is a separate function so that we can force an alloca cleanup
7814e705 5014 afterwards. */
fa9a63c5
RM
5015static int
5016re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
5017 struct re_pattern_buffer *bufp;
66f0296e 5018 re_char *string1, *string2;
fa9a63c5
RM
5019 int size1, size2;
5020 int pos;
5021 struct re_registers *regs;
5022 int stop;
5023{
5024 /* General temporaries. */
5025 int mcnt;
01618498 5026 size_t reg;
66f0296e 5027 boolean not;
fa9a63c5
RM
5028
5029 /* Just past the end of the corresponding string. */
66f0296e 5030 re_char *end1, *end2;
fa9a63c5
RM
5031
5032 /* Pointers into string1 and string2, just past the last characters in
7814e705 5033 each to consider matching. */
66f0296e 5034 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
5035
5036 /* Where we are in the data, and the end of the current string. */
66f0296e 5037 re_char *d, *dend;
5e69f11e 5038
99633e97
SM
5039 /* Used sometimes to remember where we were before starting matching
5040 an operator so that we can go back in case of failure. This "atomic"
5041 behavior of matching opcodes is indispensable to the correctness
5042 of the on_failure_keep_string_jump optimization. */
5043 re_char *dfail;
5044
fa9a63c5 5045 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
5046 re_char *p = bufp->buffer;
5047 re_char *pend = p + bufp->used;
fa9a63c5 5048
25fe55af 5049 /* We use this to map every character in the string. */
6676cb1c 5050 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 5051
6fdd04b0
KH
5052 /* Nonzero if BUFP is setup for multibyte characters. We are sure
5053 that it is the same as RE_TARGET_MULTIBYTE_P (bufp). */
2d1675e4 5054 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 5055
fa9a63c5
RM
5056 /* Failure point stack. Each place that can handle a failure further
5057 down the line pushes a failure point on this stack. It consists of
505bde11 5058 regstart, and regend for all registers corresponding to
fa9a63c5
RM
5059 the subexpressions we're currently inside, plus the number of such
5060 registers, and, finally, two char *'s. The first char * is where
5061 to resume scanning the pattern; the second one is where to resume
7814e705
JB
5062 scanning the strings. */
5063#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
5064 fail_stack_type fail_stack;
5065#endif
5066#ifdef DEBUG
fa9a63c5
RM
5067 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5068#endif
5069
0b32bf0e 5070#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
5071 /* This holds the pointer to the failure stack, when
5072 it is allocated relocatably. */
5073 fail_stack_elt_t *failure_stack_ptr;
99633e97 5074#endif
fa9a63c5
RM
5075
5076 /* We fill all the registers internally, independent of what we
7814e705 5077 return, for use in backreferences. The number here includes
fa9a63c5 5078 an element for register zero. */
4bb91c68 5079 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 5080
fa9a63c5
RM
5081 /* Information on the contents of registers. These are pointers into
5082 the input strings; they record just what was matched (on this
5083 attempt) by a subexpression part of the pattern, that is, the
5084 regnum-th regstart pointer points to where in the pattern we began
5085 matching and the regnum-th regend points to right after where we
5086 stopped matching the regnum-th subexpression. (The zeroth register
5087 keeps track of what the whole pattern matches.) */
5088#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5089 re_char **regstart, **regend;
fa9a63c5
RM
5090#endif
5091
fa9a63c5 5092 /* The following record the register info as found in the above
5e69f11e 5093 variables when we find a match better than any we've seen before.
fa9a63c5
RM
5094 This happens as we backtrack through the failure points, which in
5095 turn happens only if we have not yet matched the entire string. */
5096 unsigned best_regs_set = false;
5097#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5098 re_char **best_regstart, **best_regend;
fa9a63c5 5099#endif
5e69f11e 5100
fa9a63c5
RM
5101 /* Logically, this is `best_regend[0]'. But we don't want to have to
5102 allocate space for that if we're not allocating space for anything
7814e705 5103 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
5104 any of the other register vectors, and it seems rather a kludge to
5105 treat `best_regend' differently than the rest. So we keep track of
5106 the end of the best match so far in a separate variable. We
5107 initialize this to NULL so that when we backtrack the first time
5108 and need to test it, it's not garbage. */
66f0296e 5109 re_char *match_end = NULL;
fa9a63c5 5110
fa9a63c5
RM
5111#ifdef DEBUG
5112 /* Counts the total number of registers pushed. */
5e69f11e 5113 unsigned num_regs_pushed = 0;
fa9a63c5
RM
5114#endif
5115
5116 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 5117
fa9a63c5 5118 INIT_FAIL_STACK ();
5e69f11e 5119
fa9a63c5
RM
5120#ifdef MATCH_MAY_ALLOCATE
5121 /* Do not bother to initialize all the register variables if there are
5122 no groups in the pattern, as it takes a fair amount of time. If
5123 there are groups, we include space for register 0 (the whole
5124 pattern), even though we never use it, since it simplifies the
5125 array indexing. We should fix this. */
5126 if (bufp->re_nsub)
5127 {
66f0296e
SM
5128 regstart = REGEX_TALLOC (num_regs, re_char *);
5129 regend = REGEX_TALLOC (num_regs, re_char *);
5130 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5131 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 5132
505bde11 5133 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
5134 {
5135 FREE_VARIABLES ();
5136 return -2;
5137 }
fa9a63c5
RM
5138 }
5139 else
5140 {
5141 /* We must initialize all our variables to NULL, so that
25fe55af 5142 `FREE_VARIABLES' doesn't try to free them. */
505bde11 5143 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
5144 }
5145#endif /* MATCH_MAY_ALLOCATE */
5146
5147 /* The starting position is bogus. */
5148 if (pos < 0 || pos > size1 + size2)
5149 {
5150 FREE_VARIABLES ();
5151 return -1;
5152 }
5e69f11e 5153
fa9a63c5
RM
5154 /* Initialize subexpression text positions to -1 to mark ones that no
5155 start_memory/stop_memory has been seen for. Also initialize the
5156 register information struct. */
01618498
SM
5157 for (reg = 1; reg < num_regs; reg++)
5158 regstart[reg] = regend[reg] = NULL;
99633e97 5159
fa9a63c5 5160 /* We move `string1' into `string2' if the latter's empty -- but not if
7814e705 5161 `string1' is null. */
fa9a63c5
RM
5162 if (size2 == 0 && string1 != NULL)
5163 {
5164 string2 = string1;
5165 size2 = size1;
5166 string1 = 0;
5167 size1 = 0;
5168 }
5169 end1 = string1 + size1;
5170 end2 = string2 + size2;
5171
5e69f11e 5172 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
5173 `dend' is the end of the input string that `d' points within. `d'
5174 is advanced into the following input string whenever necessary, but
5175 this happens before fetching; therefore, at the beginning of the
5176 loop, `d' can be pointing at the end of a string, but it cannot
5177 equal `string2'. */
419d1c74 5178 if (pos >= size1)
fa9a63c5 5179 {
419d1c74
SM
5180 /* Only match within string2. */
5181 d = string2 + pos - size1;
5182 dend = end_match_2 = string2 + stop - size1;
5183 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
5184 }
5185 else
5186 {
f1ad044f 5187 if (stop < size1)
419d1c74
SM
5188 {
5189 /* Only match within string1. */
5190 end_match_1 = string1 + stop;
5191 /* BEWARE!
5192 When we reach end_match_1, PREFETCH normally switches to string2.
5193 But in the present case, this means that just doing a PREFETCH
5194 makes us jump from `stop' to `gap' within the string.
5195 What we really want here is for the search to stop as
5196 soon as we hit end_match_1. That's why we set end_match_2
5197 to end_match_1 (since PREFETCH fails as soon as we hit
5198 end_match_2). */
5199 end_match_2 = end_match_1;
5200 }
5201 else
f1ad044f
SM
5202 { /* It's important to use this code when stop == size so that
5203 moving `d' from end1 to string2 will not prevent the d == dend
5204 check from catching the end of string. */
419d1c74
SM
5205 end_match_1 = end1;
5206 end_match_2 = string2 + stop - size1;
5207 }
5208 d = string1 + pos;
5209 dend = end_match_1;
fa9a63c5
RM
5210 }
5211
5212 DEBUG_PRINT1 ("The compiled pattern is: ");
5213 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5214 DEBUG_PRINT1 ("The string to match is: `");
5215 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5216 DEBUG_PRINT1 ("'\n");
5e69f11e 5217
7814e705 5218 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
5219 function if the match is complete, or it drops through if the match
5220 fails at this starting point in the input data. */
5221 for (;;)
5222 {
505bde11 5223 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
5224
5225 if (p == pend)
5226 { /* End of pattern means we might have succeeded. */
25fe55af 5227 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 5228
fa9a63c5 5229 /* If we haven't matched the entire string, and we want the
25fe55af
RS
5230 longest match, try backtracking. */
5231 if (d != end_match_2)
fa9a63c5
RM
5232 {
5233 /* 1 if this match ends in the same string (string1 or string2)
5234 as the best previous match. */
5e69f11e 5235 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 5236 == FIRST_STRING_P (d));
fa9a63c5
RM
5237 /* 1 if this match is the best seen so far. */
5238 boolean best_match_p;
5239
5240 /* AIX compiler got confused when this was combined
7814e705 5241 with the previous declaration. */
fa9a63c5
RM
5242 if (same_str_p)
5243 best_match_p = d > match_end;
5244 else
99633e97 5245 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 5246
25fe55af
RS
5247 DEBUG_PRINT1 ("backtracking.\n");
5248
5249 if (!FAIL_STACK_EMPTY ())
5250 { /* More failure points to try. */
5251
5252 /* If exceeds best match so far, save it. */
5253 if (!best_regs_set || best_match_p)
5254 {
5255 best_regs_set = true;
5256 match_end = d;
5257
5258 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5259
01618498 5260 for (reg = 1; reg < num_regs; reg++)
25fe55af 5261 {
01618498
SM
5262 best_regstart[reg] = regstart[reg];
5263 best_regend[reg] = regend[reg];
25fe55af
RS
5264 }
5265 }
5266 goto fail;
5267 }
5268
5269 /* If no failure points, don't restore garbage. And if
5270 last match is real best match, don't restore second
5271 best one. */
5272 else if (best_regs_set && !best_match_p)
5273 {
5274 restore_best_regs:
5275 /* Restore best match. It may happen that `dend ==
5276 end_match_1' while the restored d is in string2.
5277 For example, the pattern `x.*y.*z' against the
5278 strings `x-' and `y-z-', if the two strings are
7814e705 5279 not consecutive in memory. */
25fe55af
RS
5280 DEBUG_PRINT1 ("Restoring best registers.\n");
5281
5282 d = match_end;
5283 dend = ((d >= string1 && d <= end1)
5284 ? end_match_1 : end_match_2);
fa9a63c5 5285
01618498 5286 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5287 {
01618498
SM
5288 regstart[reg] = best_regstart[reg];
5289 regend[reg] = best_regend[reg];
fa9a63c5 5290 }
25fe55af
RS
5291 }
5292 } /* d != end_match_2 */
fa9a63c5
RM
5293
5294 succeed_label:
25fe55af 5295 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5296
25fe55af
RS
5297 /* If caller wants register contents data back, do it. */
5298 if (regs && !bufp->no_sub)
fa9a63c5 5299 {
25fe55af
RS
5300 /* Have the register data arrays been allocated? */
5301 if (bufp->regs_allocated == REGS_UNALLOCATED)
7814e705 5302 { /* No. So allocate them with malloc. We need one
25fe55af
RS
5303 extra element beyond `num_regs' for the `-1' marker
5304 GNU code uses. */
5305 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5306 regs->start = TALLOC (regs->num_regs, regoff_t);
5307 regs->end = TALLOC (regs->num_regs, regoff_t);
5308 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5309 {
5310 FREE_VARIABLES ();
5311 return -2;
5312 }
25fe55af
RS
5313 bufp->regs_allocated = REGS_REALLOCATE;
5314 }
5315 else if (bufp->regs_allocated == REGS_REALLOCATE)
5316 { /* Yes. If we need more elements than were already
5317 allocated, reallocate them. If we need fewer, just
5318 leave it alone. */
5319 if (regs->num_regs < num_regs + 1)
5320 {
5321 regs->num_regs = num_regs + 1;
5322 RETALLOC (regs->start, regs->num_regs, regoff_t);
5323 RETALLOC (regs->end, regs->num_regs, regoff_t);
5324 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5325 {
5326 FREE_VARIABLES ();
5327 return -2;
5328 }
25fe55af
RS
5329 }
5330 }
5331 else
fa9a63c5
RM
5332 {
5333 /* These braces fend off a "empty body in an else-statement"
7814e705 5334 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5335 assert (bufp->regs_allocated == REGS_FIXED);
5336 }
5337
25fe55af
RS
5338 /* Convert the pointer data in `regstart' and `regend' to
5339 indices. Register zero has to be set differently,
5340 since we haven't kept track of any info for it. */
5341 if (regs->num_regs > 0)
5342 {
5343 regs->start[0] = pos;
99633e97 5344 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5345 }
5e69f11e 5346
25fe55af
RS
5347 /* Go through the first `min (num_regs, regs->num_regs)'
5348 registers, since that is all we initialized. */
01618498 5349 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5350 {
01618498
SM
5351 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5352 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5353 else
5354 {
01618498
SM
5355 regs->start[reg]
5356 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5357 regs->end[reg]
5358 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5359 }
fa9a63c5 5360 }
5e69f11e 5361
25fe55af
RS
5362 /* If the regs structure we return has more elements than
5363 were in the pattern, set the extra elements to -1. If
5364 we (re)allocated the registers, this is the case,
5365 because we always allocate enough to have at least one
7814e705 5366 -1 at the end. */
01618498
SM
5367 for (reg = num_regs; reg < regs->num_regs; reg++)
5368 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5369 } /* regs && !bufp->no_sub */
5370
25fe55af
RS
5371 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5372 nfailure_points_pushed, nfailure_points_popped,
5373 nfailure_points_pushed - nfailure_points_popped);
5374 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5375
99633e97 5376 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5377
25fe55af 5378 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5379
25fe55af
RS
5380 FREE_VARIABLES ();
5381 return mcnt;
5382 }
fa9a63c5 5383
7814e705 5384 /* Otherwise match next pattern command. */
fa9a63c5
RM
5385 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5386 {
25fe55af
RS
5387 /* Ignore these. Used to ignore the n of succeed_n's which
5388 currently have n == 0. */
5389 case no_op:
5390 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5391 break;
fa9a63c5
RM
5392
5393 case succeed:
25fe55af 5394 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5395 goto succeed_label;
5396
7814e705 5397 /* Match the next n pattern characters exactly. The following
25fe55af 5398 byte in the pattern defines n, and the n bytes after that
7814e705 5399 are the characters to match. */
fa9a63c5
RM
5400 case exactn:
5401 mcnt = *p++;
25fe55af 5402 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5403
99633e97
SM
5404 /* Remember the start point to rollback upon failure. */
5405 dfail = d;
5406
6fdd04b0 5407#ifndef emacs
25fe55af
RS
5408 /* This is written out as an if-else so we don't waste time
5409 testing `translate' inside the loop. */
28703c16 5410 if (RE_TRANSLATE_P (translate))
6fdd04b0
KH
5411 do
5412 {
5413 PREFETCH ();
5414 if (RE_TRANSLATE (translate, *d) != *p++)
e934739e 5415 {
6fdd04b0
KH
5416 d = dfail;
5417 goto fail;
e934739e 5418 }
6fdd04b0
KH
5419 d++;
5420 }
5421 while (--mcnt);
fa9a63c5 5422 else
6fdd04b0
KH
5423 do
5424 {
5425 PREFETCH ();
5426 if (*d++ != *p++)
bf216479 5427 {
6fdd04b0
KH
5428 d = dfail;
5429 goto fail;
bf216479 5430 }
6fdd04b0
KH
5431 }
5432 while (--mcnt);
5433#else /* emacs */
5434 /* The cost of testing `translate' is comparatively small. */
5435 if (multibyte)
5436 do
5437 {
5438 int pat_charlen, buf_charlen;
5439 unsigned int pat_ch, buf_ch;
e934739e 5440
6fdd04b0
KH
5441 PREFETCH ();
5442 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5443 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e 5444
6fdd04b0 5445 if (TRANSLATE (buf_ch) != pat_ch)
e934739e 5446 {
6fdd04b0
KH
5447 d = dfail;
5448 goto fail;
e934739e 5449 }
bf216479 5450
6fdd04b0
KH
5451 p += pat_charlen;
5452 d += buf_charlen;
5453 mcnt -= pat_charlen;
5454 }
5455 while (mcnt > 0);
fa9a63c5 5456 else
6fdd04b0
KH
5457 do
5458 {
5459 unsigned int buf_ch;
bf216479 5460
6fdd04b0
KH
5461 PREFETCH ();
5462 buf_ch = *d++;
5463 TRANSLATE_VIA_MULTIBYTE (buf_ch);
5464 if (buf_ch != *p++)
5465 {
5466 d = dfail;
5467 goto fail;
bf216479 5468 }
6fdd04b0
KH
5469 }
5470 while (--mcnt);
5471#endif
25fe55af 5472 break;
fa9a63c5
RM
5473
5474
25fe55af 5475 /* Match any character except possibly a newline or a null. */
fa9a63c5 5476 case anychar:
e934739e
RS
5477 {
5478 int buf_charlen;
01618498 5479 re_wchar_t buf_ch;
fa9a63c5 5480
e934739e 5481 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5482
e934739e 5483 PREFETCH ();
2d1675e4 5484 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
5485 buf_ch = TRANSLATE (buf_ch);
5486
5487 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5488 && buf_ch == '\n')
5489 || ((bufp->syntax & RE_DOT_NOT_NULL)
5490 && buf_ch == '\000'))
5491 goto fail;
5492
e934739e
RS
5493 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5494 d += buf_charlen;
5495 }
fa9a63c5
RM
5496 break;
5497
5498
5499 case charset:
5500 case charset_not:
5501 {
b18215fc 5502 register unsigned int c;
fa9a63c5 5503 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5504 int len;
5505
5506 /* Start of actual range_table, or end of bitmap if there is no
5507 range table. */
01618498 5508 re_char *range_table;
b18215fc 5509
96cc36cc 5510 /* Nonzero if there is a range table. */
b18215fc
RS
5511 int range_table_exists;
5512
96cc36cc
RS
5513 /* Number of ranges of range table. This is not included
5514 in the initial byte-length of the command. */
5515 int count = 0;
fa9a63c5 5516
25fe55af 5517 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5518
b18215fc 5519 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5520
b18215fc 5521 if (range_table_exists)
96cc36cc
RS
5522 {
5523 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5524 EXTRACT_NUMBER_AND_INCR (count, range_table);
5525 }
b18215fc 5526
2d1675e4
SM
5527 PREFETCH ();
5528 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6fdd04b0 5529 TRANSLATE_VIA_MULTIBYTE (c); /* The character to match. */
b18215fc 5530
bf216479 5531 if (! multibyte || IS_REAL_ASCII (c))
b18215fc 5532 { /* Lookup bitmap. */
b18215fc
RS
5533 /* Cast to `unsigned' instead of `unsigned char' in
5534 case the bit list is a full 32 bytes long. */
5535 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5536 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5537 not = !not;
b18215fc 5538 }
96cc36cc 5539#ifdef emacs
b18215fc 5540 else if (range_table_exists)
96cc36cc
RS
5541 {
5542 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5543
14473664
SM
5544 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5545 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5546 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5547 | (class_bits & BIT_SPACE && ISSPACE (c))
5548 | (class_bits & BIT_UPPER && ISUPPER (c))
5549 | (class_bits & BIT_WORD && ISWORD (c)))
5550 not = !not;
5551 else
5552 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5553 }
5554#endif /* emacs */
fa9a63c5 5555
96cc36cc
RS
5556 if (range_table_exists)
5557 p = CHARSET_RANGE_TABLE_END (range_table, count);
5558 else
5559 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5560
5561 if (!not) goto fail;
5e69f11e 5562
b18215fc 5563 d += len;
fa9a63c5
RM
5564 break;
5565 }
5566
5567
25fe55af 5568 /* The beginning of a group is represented by start_memory.
505bde11 5569 The argument is the register number. The text
25fe55af 5570 matched within the group is recorded (in the internal
7814e705 5571 registers data structure) under the register number. */
25fe55af 5572 case start_memory:
505bde11
SM
5573 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5574
5575 /* In case we need to undo this operation (via backtracking). */
5576 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5577
25fe55af 5578 regstart[*p] = d;
4bb91c68 5579 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5580 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5581
25fe55af 5582 /* Move past the register number and inner group count. */
505bde11 5583 p += 1;
25fe55af 5584 break;
fa9a63c5
RM
5585
5586
25fe55af 5587 /* The stop_memory opcode represents the end of a group. Its
505bde11 5588 argument is the same as start_memory's: the register number. */
fa9a63c5 5589 case stop_memory:
505bde11
SM
5590 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5591
5592 assert (!REG_UNSET (regstart[*p]));
5593 /* Strictly speaking, there should be code such as:
177c0ea7 5594
0b32bf0e 5595 assert (REG_UNSET (regend[*p]));
505bde11
SM
5596 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5597
5598 But the only info to be pushed is regend[*p] and it is known to
5599 be UNSET, so there really isn't anything to push.
5600 Not pushing anything, on the other hand deprives us from the
5601 guarantee that regend[*p] is UNSET since undoing this operation
5602 will not reset its value properly. This is not important since
5603 the value will only be read on the next start_memory or at
5604 the very end and both events can only happen if this stop_memory
5605 is *not* undone. */
fa9a63c5 5606
25fe55af 5607 regend[*p] = d;
fa9a63c5
RM
5608 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5609
25fe55af 5610 /* Move past the register number and the inner group count. */
505bde11 5611 p += 1;
25fe55af 5612 break;
fa9a63c5
RM
5613
5614
5615 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5616 followed by the numeric value of <digit> as the register number. */
5617 case duplicate:
fa9a63c5 5618 {
66f0296e 5619 register re_char *d2, *dend2;
7814e705 5620 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5621 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5622
7814e705 5623 /* Can't back reference a group which we've never matched. */
25fe55af
RS
5624 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5625 goto fail;
5e69f11e 5626
7814e705 5627 /* Where in input to try to start matching. */
25fe55af 5628 d2 = regstart[regno];
5e69f11e 5629
99633e97
SM
5630 /* Remember the start point to rollback upon failure. */
5631 dfail = d;
5632
25fe55af
RS
5633 /* Where to stop matching; if both the place to start and
5634 the place to stop matching are in the same string, then
5635 set to the place to stop, otherwise, for now have to use
5636 the end of the first string. */
fa9a63c5 5637
25fe55af 5638 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5639 == FIRST_STRING_P (regend[regno]))
5640 ? regend[regno] : end_match_1);
5641 for (;;)
5642 {
5643 /* If necessary, advance to next segment in register
25fe55af 5644 contents. */
fa9a63c5
RM
5645 while (d2 == dend2)
5646 {
5647 if (dend2 == end_match_2) break;
5648 if (dend2 == regend[regno]) break;
5649
25fe55af
RS
5650 /* End of string1 => advance to string2. */
5651 d2 = string2;
5652 dend2 = regend[regno];
fa9a63c5
RM
5653 }
5654 /* At end of register contents => success */
5655 if (d2 == dend2) break;
5656
5657 /* If necessary, advance to next segment in data. */
5658 PREFETCH ();
5659
5660 /* How many characters left in this segment to match. */
5661 mcnt = dend - d;
5e69f11e 5662
fa9a63c5 5663 /* Want how many consecutive characters we can match in
25fe55af
RS
5664 one shot, so, if necessary, adjust the count. */
5665 if (mcnt > dend2 - d2)
fa9a63c5 5666 mcnt = dend2 - d2;
5e69f11e 5667
fa9a63c5 5668 /* Compare that many; failure if mismatch, else move
25fe55af 5669 past them. */
28703c16 5670 if (RE_TRANSLATE_P (translate)
2d1675e4 5671 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4bb91c68 5672 : memcmp (d, d2, mcnt))
99633e97
SM
5673 {
5674 d = dfail;
5675 goto fail;
5676 }
fa9a63c5 5677 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5678 }
5679 }
5680 break;
5681
5682
25fe55af 5683 /* begline matches the empty string at the beginning of the string
c0f9ea08 5684 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5685 case begline:
25fe55af 5686 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5687
25fe55af
RS
5688 if (AT_STRINGS_BEG (d))
5689 {
5690 if (!bufp->not_bol) break;
5691 }
419d1c74 5692 else
25fe55af 5693 {
bf216479 5694 unsigned c;
419d1c74 5695 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5696 if (c == '\n')
419d1c74 5697 break;
25fe55af
RS
5698 }
5699 /* In all other cases, we fail. */
5700 goto fail;
fa9a63c5
RM
5701
5702
25fe55af 5703 /* endline is the dual of begline. */
fa9a63c5 5704 case endline:
25fe55af 5705 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5706
25fe55af
RS
5707 if (AT_STRINGS_END (d))
5708 {
5709 if (!bufp->not_eol) break;
5710 }
f1ad044f 5711 else
25fe55af 5712 {
f1ad044f 5713 PREFETCH_NOLIMIT ();
c0f9ea08 5714 if (*d == '\n')
f1ad044f 5715 break;
25fe55af
RS
5716 }
5717 goto fail;
fa9a63c5
RM
5718
5719
5720 /* Match at the very beginning of the data. */
25fe55af
RS
5721 case begbuf:
5722 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5723 if (AT_STRINGS_BEG (d))
5724 break;
5725 goto fail;
fa9a63c5
RM
5726
5727
5728 /* Match at the very end of the data. */
25fe55af
RS
5729 case endbuf:
5730 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5731 if (AT_STRINGS_END (d))
5732 break;
25fe55af 5733 goto fail;
5e69f11e 5734
5e69f11e 5735
25fe55af
RS
5736 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5737 pushes NULL as the value for the string on the stack. Then
505bde11 5738 `POP_FAILURE_POINT' will keep the current value for the
25fe55af 5739 string, instead of restoring it. To see why, consider
7814e705 5740 matching `foo\nbar' against `.*\n'. The .* matches the foo;
25fe55af
RS
5741 then the . fails against the \n. But the next thing we want
5742 to do is match the \n against the \n; if we restored the
5743 string value, we would be back at the foo.
5744
5745 Because this is used only in specific cases, we don't need to
5746 check all the things that `on_failure_jump' does, to make
5747 sure the right things get saved on the stack. Hence we don't
5748 share its code. The only reason to push anything on the
5749 stack at all is that otherwise we would have to change
5750 `anychar's code to do something besides goto fail in this
5751 case; that seems worse than this. */
5752 case on_failure_keep_string_jump:
505bde11
SM
5753 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5754 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5755 mcnt, p + mcnt);
fa9a63c5 5756
505bde11
SM
5757 PUSH_FAILURE_POINT (p - 3, NULL);
5758 break;
5759
0683b6fa
SM
5760 /* A nasty loop is introduced by the non-greedy *? and +?.
5761 With such loops, the stack only ever contains one failure point
5762 at a time, so that a plain on_failure_jump_loop kind of
5763 cycle detection cannot work. Worse yet, such a detection
5764 can not only fail to detect a cycle, but it can also wrongly
5765 detect a cycle (between different instantiations of the same
6df42991 5766 loop).
0683b6fa
SM
5767 So the method used for those nasty loops is a little different:
5768 We use a special cycle-detection-stack-frame which is pushed
5769 when the on_failure_jump_nastyloop failure-point is *popped*.
5770 This special frame thus marks the beginning of one iteration
5771 through the loop and we can hence easily check right here
5772 whether something matched between the beginning and the end of
5773 the loop. */
5774 case on_failure_jump_nastyloop:
5775 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5776 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5777 mcnt, p + mcnt);
5778
5779 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5780 {
5781 int cycle = 0;
5782 CHECK_INFINITE_LOOP (p - 4, d);
5783 if (!cycle)
5784 /* If there's a cycle, just continue without pushing
5785 this failure point. The failure point is the "try again"
5786 option, which shouldn't be tried.
5787 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5788 PUSH_FAILURE_POINT (p - 3, d);
5789 }
0683b6fa
SM
5790 break;
5791
4e8a9132
SM
5792 /* Simple loop detecting on_failure_jump: just check on the
5793 failure stack if the same spot was already hit earlier. */
505bde11
SM
5794 case on_failure_jump_loop:
5795 on_failure:
5796 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5797 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5798 mcnt, p + mcnt);
6df42991
SM
5799 {
5800 int cycle = 0;
5801 CHECK_INFINITE_LOOP (p - 3, d);
5802 if (cycle)
5803 /* If there's a cycle, get out of the loop, as if the matching
5804 had failed. We used to just `goto fail' here, but that was
5805 aborting the search a bit too early: we want to keep the
5806 empty-loop-match and keep matching after the loop.
5807 We want (x?)*y\1z to match both xxyz and xxyxz. */
5808 p += mcnt;
5809 else
5810 PUSH_FAILURE_POINT (p - 3, d);
5811 }
25fe55af 5812 break;
fa9a63c5
RM
5813
5814
5815 /* Uses of on_failure_jump:
5e69f11e 5816
25fe55af
RS
5817 Each alternative starts with an on_failure_jump that points
5818 to the beginning of the next alternative. Each alternative
5819 except the last ends with a jump that in effect jumps past
5820 the rest of the alternatives. (They really jump to the
5821 ending jump of the following alternative, because tensioning
5822 these jumps is a hassle.)
fa9a63c5 5823
25fe55af
RS
5824 Repeats start with an on_failure_jump that points past both
5825 the repetition text and either the following jump or
5826 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5827 case on_failure_jump:
25fe55af 5828 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5829 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5830 mcnt, p + mcnt);
25fe55af 5831
505bde11 5832 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5833 break;
5834
4e8a9132 5835 /* This operation is used for greedy *.
505bde11
SM
5836 Compare the beginning of the repeat with what in the
5837 pattern follows its end. If we can establish that there
5838 is nothing that they would both match, i.e., that we
5839 would have to backtrack because of (as in, e.g., `a*a')
5840 then we can use a non-backtracking loop based on
4e8a9132 5841 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5842 case on_failure_jump_smart:
25fe55af 5843 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5844 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5845 mcnt, p + mcnt);
25fe55af 5846 {
01618498 5847 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5848 /* Here, we discard `const', making re_match non-reentrant. */
5849 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5850 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5851
505bde11
SM
5852 p -= 3; /* Reset so that we will re-execute the
5853 instruction once it's been changed. */
fa9a63c5 5854
4e8a9132
SM
5855 EXTRACT_NUMBER (mcnt, p2 - 2);
5856
5857 /* Ensure this is a indeed the trivial kind of loop
5858 we are expecting. */
5859 assert (skip_one_char (p1) == p2 - 3);
5860 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5861 DEBUG_STATEMENT (debug += 2);
505bde11 5862 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5863 {
505bde11 5864 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5865 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5866 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5867 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5868 }
505bde11 5869 else
fa9a63c5 5870 {
505bde11
SM
5871 /* Default to a safe `on_failure_jump' loop. */
5872 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5873 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5874 }
99633e97 5875 DEBUG_STATEMENT (debug -= 2);
25fe55af 5876 }
505bde11 5877 break;
25fe55af
RS
5878
5879 /* Unconditionally jump (without popping any failure points). */
5880 case jump:
fa9a63c5 5881 unconditional_jump:
5b370c2b 5882 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5883 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af 5884 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7814e705 5885 p += mcnt; /* Do the jump. */
505bde11 5886 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5887 break;
5888
5889
25fe55af
RS
5890 /* Have to succeed matching what follows at least n times.
5891 After that, handle like `on_failure_jump'. */
5892 case succeed_n:
01618498 5893 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5894 EXTRACT_NUMBER (mcnt, p + 2);
5895 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5896
dc1e502d
SM
5897 /* Originally, mcnt is how many times we HAVE to succeed. */
5898 if (mcnt != 0)
25fe55af 5899 {
6dcf2d0e
SM
5900 /* Here, we discard `const', making re_match non-reentrant. */
5901 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5902 mcnt--;
01618498
SM
5903 p += 4;
5904 PUSH_NUMBER (p2, mcnt);
25fe55af 5905 }
dc1e502d
SM
5906 else
5907 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5908 goto on_failure;
25fe55af
RS
5909 break;
5910
5911 case jump_n:
01618498 5912 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5913 EXTRACT_NUMBER (mcnt, p + 2);
5914 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5915
5916 /* Originally, this is how many times we CAN jump. */
dc1e502d 5917 if (mcnt != 0)
25fe55af 5918 {
6dcf2d0e
SM
5919 /* Here, we discard `const', making re_match non-reentrant. */
5920 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5921 mcnt--;
01618498 5922 PUSH_NUMBER (p2, mcnt);
dc1e502d 5923 goto unconditional_jump;
25fe55af
RS
5924 }
5925 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5926 else
5927 p += 4;
25fe55af 5928 break;
5e69f11e 5929
fa9a63c5
RM
5930 case set_number_at:
5931 {
01618498 5932 unsigned char *p2; /* Location of the counter. */
25fe55af 5933 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5934
25fe55af 5935 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5936 /* Here, we discard `const', making re_match non-reentrant. */
5937 p2 = (unsigned char*) p + mcnt;
01618498 5938 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5939 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5940 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5941 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5942 break;
5943 }
9121ca40
KH
5944
5945 case wordbound:
66f0296e
SM
5946 case notwordbound:
5947 not = (re_opcode_t) *(p - 1) == notwordbound;
5948 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5949
99633e97 5950 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5951
b18215fc 5952 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5953 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5954 not = !not;
b18215fc
RS
5955 else
5956 {
5957 /* C1 is the character before D, S1 is the syntax of C1, C2
5958 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5959 re_wchar_t c1, c2;
5960 int s1, s2;
bf216479 5961 int dummy;
b18215fc 5962#ifdef emacs
2d1675e4
SM
5963 int offset = PTR_TO_OFFSET (d - 1);
5964 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5965 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5966#endif
66f0296e 5967 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5968 s1 = SYNTAX (c1);
5969#ifdef emacs
5d967c7a 5970 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5971#endif
f1ad044f 5972 PREFETCH_NOLIMIT ();
6fdd04b0 5973 GET_CHAR_AFTER (c2, d, dummy);
b18215fc
RS
5974 s2 = SYNTAX (c2);
5975
5976 if (/* Case 2: Only one of S1 and S2 is Sword. */
5977 ((s1 == Sword) != (s2 == Sword))
5978 /* Case 3: Both of S1 and S2 are Sword, and macro
7814e705 5979 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5980 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5981 not = !not;
5982 }
5983 if (not)
9121ca40 5984 break;
b18215fc 5985 else
9121ca40 5986 goto fail;
fa9a63c5
RM
5987
5988 case wordbeg:
25fe55af 5989 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5990
b18215fc
RS
5991 /* We FAIL in one of the following cases: */
5992
7814e705 5993 /* Case 1: D is at the end of string. */
b18215fc 5994 if (AT_STRINGS_END (d))
99633e97 5995 goto fail;
b18215fc
RS
5996 else
5997 {
5998 /* C1 is the character before D, S1 is the syntax of C1, C2
5999 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6000 re_wchar_t c1, c2;
6001 int s1, s2;
bf216479 6002 int dummy;
fa9a63c5 6003#ifdef emacs
2d1675e4
SM
6004 int offset = PTR_TO_OFFSET (d);
6005 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6006 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 6007#endif
99633e97 6008 PREFETCH ();
6fdd04b0 6009 GET_CHAR_AFTER (c2, d, dummy);
b18215fc 6010 s2 = SYNTAX (c2);
177c0ea7 6011
b18215fc
RS
6012 /* Case 2: S2 is not Sword. */
6013 if (s2 != Sword)
6014 goto fail;
6015
6016 /* Case 3: D is not at the beginning of string ... */
6017 if (!AT_STRINGS_BEG (d))
6018 {
6019 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6020#ifdef emacs
5d967c7a 6021 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 6022#endif
b18215fc
RS
6023 s1 = SYNTAX (c1);
6024
6025 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6026 returns 0. */
b18215fc
RS
6027 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6028 goto fail;
6029 }
6030 }
e318085a
RS
6031 break;
6032
b18215fc 6033 case wordend:
25fe55af 6034 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
6035
6036 /* We FAIL in one of the following cases: */
6037
6038 /* Case 1: D is at the beginning of string. */
6039 if (AT_STRINGS_BEG (d))
e318085a 6040 goto fail;
b18215fc
RS
6041 else
6042 {
6043 /* C1 is the character before D, S1 is the syntax of C1, C2
6044 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6045 re_wchar_t c1, c2;
6046 int s1, s2;
bf216479 6047 int dummy;
5d967c7a 6048#ifdef emacs
2d1675e4
SM
6049 int offset = PTR_TO_OFFSET (d) - 1;
6050 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6051 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 6052#endif
99633e97 6053 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
6054 s1 = SYNTAX (c1);
6055
6056 /* Case 2: S1 is not Sword. */
6057 if (s1 != Sword)
6058 goto fail;
6059
6060 /* Case 3: D is not at the end of string ... */
6061 if (!AT_STRINGS_END (d))
6062 {
f1ad044f 6063 PREFETCH_NOLIMIT ();
6fdd04b0 6064 GET_CHAR_AFTER (c2, d, dummy);
5d967c7a
RS
6065#ifdef emacs
6066 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
6067#endif
b18215fc
RS
6068 s2 = SYNTAX (c2);
6069
6070 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6071 returns 0. */
b18215fc 6072 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 6073 goto fail;
b18215fc
RS
6074 }
6075 }
e318085a
RS
6076 break;
6077
669fa600
SM
6078 case symbeg:
6079 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6080
6081 /* We FAIL in one of the following cases: */
6082
7814e705 6083 /* Case 1: D is at the end of string. */
669fa600
SM
6084 if (AT_STRINGS_END (d))
6085 goto fail;
6086 else
6087 {
6088 /* C1 is the character before D, S1 is the syntax of C1, C2
6089 is the character at D, and S2 is the syntax of C2. */
6090 re_wchar_t c1, c2;
6091 int s1, s2;
6092#ifdef emacs
6093 int offset = PTR_TO_OFFSET (d);
6094 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6095 UPDATE_SYNTAX_TABLE (charpos);
6096#endif
6097 PREFETCH ();
6098 c2 = RE_STRING_CHAR (d, dend - d);
6099 s2 = SYNTAX (c2);
7814e705 6100
669fa600
SM
6101 /* Case 2: S2 is neither Sword nor Ssymbol. */
6102 if (s2 != Sword && s2 != Ssymbol)
6103 goto fail;
6104
6105 /* Case 3: D is not at the beginning of string ... */
6106 if (!AT_STRINGS_BEG (d))
6107 {
6108 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6109#ifdef emacs
6110 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6111#endif
6112 s1 = SYNTAX (c1);
6113
6114 /* ... and S1 is Sword or Ssymbol. */
6115 if (s1 == Sword || s1 == Ssymbol)
6116 goto fail;
6117 }
6118 }
6119 break;
6120
6121 case symend:
6122 DEBUG_PRINT1 ("EXECUTING symend.\n");
6123
6124 /* We FAIL in one of the following cases: */
6125
6126 /* Case 1: D is at the beginning of string. */
6127 if (AT_STRINGS_BEG (d))
6128 goto fail;
6129 else
6130 {
6131 /* C1 is the character before D, S1 is the syntax of C1, C2
6132 is the character at D, and S2 is the syntax of C2. */
6133 re_wchar_t c1, c2;
6134 int s1, s2;
6135#ifdef emacs
6136 int offset = PTR_TO_OFFSET (d) - 1;
6137 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6138 UPDATE_SYNTAX_TABLE (charpos);
6139#endif
6140 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6141 s1 = SYNTAX (c1);
6142
6143 /* Case 2: S1 is neither Ssymbol nor Sword. */
6144 if (s1 != Sword && s1 != Ssymbol)
6145 goto fail;
6146
6147 /* Case 3: D is not at the end of string ... */
6148 if (!AT_STRINGS_END (d))
6149 {
6150 PREFETCH_NOLIMIT ();
6151 c2 = RE_STRING_CHAR (d, dend - d);
6152#ifdef emacs
134579f2 6153 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
669fa600
SM
6154#endif
6155 s2 = SYNTAX (c2);
6156
6157 /* ... and S2 is Sword or Ssymbol. */
6158 if (s2 == Sword || s2 == Ssymbol)
6159 goto fail;
b18215fc
RS
6160 }
6161 }
e318085a
RS
6162 break;
6163
fa9a63c5 6164 case syntaxspec:
1fb352e0
SM
6165 case notsyntaxspec:
6166 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 6167 mcnt = *p++;
1fb352e0 6168 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 6169 PREFETCH ();
b18215fc
RS
6170#ifdef emacs
6171 {
2d1675e4
SM
6172 int offset = PTR_TO_OFFSET (d);
6173 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
6174 UPDATE_SYNTAX_TABLE (pos1);
6175 }
25fe55af 6176#endif
b18215fc 6177 {
01618498
SM
6178 int len;
6179 re_wchar_t c;
b18215fc 6180
6fdd04b0 6181 GET_CHAR_AFTER (c, d, len);
990b2375 6182 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 6183 goto fail;
b18215fc
RS
6184 d += len;
6185 }
fa9a63c5
RM
6186 break;
6187
b18215fc 6188#ifdef emacs
1fb352e0
SM
6189 case before_dot:
6190 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6191 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 6192 goto fail;
b18215fc
RS
6193 break;
6194
1fb352e0
SM
6195 case at_dot:
6196 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6197 if (PTR_BYTE_POS (d) != PT_BYTE)
6198 goto fail;
6199 break;
b18215fc 6200
1fb352e0
SM
6201 case after_dot:
6202 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6203 if (PTR_BYTE_POS (d) <= PT_BYTE)
6204 goto fail;
e318085a 6205 break;
fa9a63c5 6206
1fb352e0 6207 case categoryspec:
b18215fc 6208 case notcategoryspec:
1fb352e0 6209 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 6210 mcnt = *p++;
1fb352e0 6211 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
6212 PREFETCH ();
6213 {
01618498
SM
6214 int len;
6215 re_wchar_t c;
6216
6fdd04b0 6217 GET_CHAR_AFTER (c, d, len);
1fb352e0 6218 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
6219 goto fail;
6220 d += len;
6221 }
fa9a63c5 6222 break;
5e69f11e 6223
1fb352e0 6224#endif /* emacs */
5e69f11e 6225
0b32bf0e
SM
6226 default:
6227 abort ();
fa9a63c5 6228 }
b18215fc 6229 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
6230
6231
6232 /* We goto here if a matching operation fails. */
6233 fail:
5b370c2b 6234 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6235 if (!FAIL_STACK_EMPTY ())
505bde11 6236 {
01618498 6237 re_char *str, *pat;
505bde11 6238 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
6239 DEBUG_PRINT1 ("\nFAIL:\n");
6240 POP_FAILURE_POINT (str, pat);
505bde11
SM
6241 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6242 {
6243 case on_failure_keep_string_jump:
6244 assert (str == NULL);
6245 goto continue_failure_jump;
6246
0683b6fa
SM
6247 case on_failure_jump_nastyloop:
6248 assert ((re_opcode_t)pat[-2] == no_op);
6249 PUSH_FAILURE_POINT (pat - 2, str);
6250 /* Fallthrough */
6251
505bde11
SM
6252 case on_failure_jump_loop:
6253 case on_failure_jump:
6254 case succeed_n:
6255 d = str;
6256 continue_failure_jump:
6257 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6258 p = pat + mcnt;
6259 break;
b18215fc 6260
0683b6fa
SM
6261 case no_op:
6262 /* A special frame used for nastyloops. */
6263 goto fail;
6264
505bde11
SM
6265 default:
6266 abort();
6267 }
fa9a63c5 6268
505bde11 6269 assert (p >= bufp->buffer && p <= pend);
b18215fc 6270
0b32bf0e 6271 if (d >= string1 && d <= end1)
fa9a63c5 6272 dend = end_match_1;
0b32bf0e 6273 }
fa9a63c5 6274 else
0b32bf0e 6275 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6276 } /* for (;;) */
6277
6278 if (best_regs_set)
6279 goto restore_best_regs;
6280
6281 FREE_VARIABLES ();
6282
b18215fc 6283 return -1; /* Failure to match. */
fa9a63c5
RM
6284} /* re_match_2 */
6285\f
6286/* Subroutine definitions for re_match_2. */
6287
fa9a63c5
RM
6288/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6289 bytes; nonzero otherwise. */
5e69f11e 6290
fa9a63c5 6291static int
2d1675e4
SM
6292bcmp_translate (s1, s2, len, translate, multibyte)
6293 re_char *s1, *s2;
fa9a63c5 6294 register int len;
6676cb1c 6295 RE_TRANSLATE_TYPE translate;
2d1675e4 6296 const int multibyte;
fa9a63c5 6297{
2d1675e4
SM
6298 register re_char *p1 = s1, *p2 = s2;
6299 re_char *p1_end = s1 + len;
6300 re_char *p2_end = s2 + len;
e934739e 6301
4bb91c68
SM
6302 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6303 different lengths, but relying on a single `len' would break this. -sm */
6304 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6305 {
e934739e 6306 int p1_charlen, p2_charlen;
01618498 6307 re_wchar_t p1_ch, p2_ch;
e934739e 6308
6fdd04b0
KH
6309 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6310 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
e934739e
RS
6311
6312 if (RE_TRANSLATE (translate, p1_ch)
6313 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6314 return 1;
e934739e
RS
6315
6316 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6317 }
e934739e
RS
6318
6319 if (p1 != p1_end || p2 != p2_end)
6320 return 1;
6321
fa9a63c5
RM
6322 return 0;
6323}
6324\f
6325/* Entry points for GNU code. */
6326
6327/* re_compile_pattern is the GNU regular expression compiler: it
6328 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6329 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6330
fa9a63c5
RM
6331 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6332 are set in BUFP on entry.
5e69f11e 6333
b18215fc 6334 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6335
6336const char *
6337re_compile_pattern (pattern, length, bufp)
6338 const char *pattern;
0b32bf0e 6339 size_t length;
fa9a63c5
RM
6340 struct re_pattern_buffer *bufp;
6341{
6342 reg_errcode_t ret;
5e69f11e 6343
1208f11a
RS
6344#ifdef emacs
6345 gl_state.current_syntax_table = current_buffer->syntax_table;
6346#endif
6347
fa9a63c5
RM
6348 /* GNU code is written to assume at least RE_NREGS registers will be set
6349 (and at least one extra will be -1). */
6350 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6351
fa9a63c5
RM
6352 /* And GNU code determines whether or not to get register information
6353 by passing null for the REGS argument to re_match, etc., not by
6354 setting no_sub. */
6355 bufp->no_sub = 0;
5e69f11e 6356
4bb91c68 6357 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6358
6359 if (!ret)
6360 return NULL;
6361 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6362}
c0f9ea08 6363WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6364\f
b18215fc
RS
6365/* Entry points compatible with 4.2 BSD regex library. We don't define
6366 them unless specifically requested. */
fa9a63c5 6367
0b32bf0e 6368#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6369
6370/* BSD has one and only one pattern buffer. */
6371static struct re_pattern_buffer re_comp_buf;
6372
6373char *
0b32bf0e 6374# ifdef _LIBC
48afdd44
RM
6375/* Make these definitions weak in libc, so POSIX programs can redefine
6376 these names if they don't use our functions, and still use
6377 regcomp/regexec below without link errors. */
6378weak_function
0b32bf0e 6379# endif
fa9a63c5
RM
6380re_comp (s)
6381 const char *s;
6382{
6383 reg_errcode_t ret;
5e69f11e 6384
fa9a63c5
RM
6385 if (!s)
6386 {
6387 if (!re_comp_buf.buffer)
0b32bf0e 6388 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6389 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6390 return 0;
6391 }
6392
6393 if (!re_comp_buf.buffer)
6394 {
6395 re_comp_buf.buffer = (unsigned char *) malloc (200);
6396 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6397 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6398 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6399 re_comp_buf.allocated = 200;
6400
6401 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6402 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6403 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6404 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6405 }
6406
6407 /* Since `re_exec' always passes NULL for the `regs' argument, we
6408 don't need to initialize the pattern buffer fields which affect it. */
6409
fa9a63c5 6410 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6411
fa9a63c5
RM
6412 if (!ret)
6413 return NULL;
6414
6415 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6416 return (char *) gettext (re_error_msgid[(int) ret]);
6417}
6418
6419
6420int
0b32bf0e 6421# ifdef _LIBC
48afdd44 6422weak_function
0b32bf0e 6423# endif
fa9a63c5
RM
6424re_exec (s)
6425 const char *s;
6426{
6427 const int len = strlen (s);
6428 return
6429 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6430}
6431#endif /* _REGEX_RE_COMP */
6432\f
6433/* POSIX.2 functions. Don't define these for Emacs. */
6434
6435#ifndef emacs
6436
6437/* regcomp takes a regular expression as a string and compiles it.
6438
b18215fc 6439 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6440 since POSIX says we shouldn't. Thus, we set
6441
6442 `buffer' to the compiled pattern;
6443 `used' to the length of the compiled pattern;
6444 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6445 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6446 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6447 `fastmap' to an allocated space for the fastmap;
6448 `fastmap_accurate' to zero;
fa9a63c5
RM
6449 `re_nsub' to the number of subexpressions in PATTERN.
6450
6451 PATTERN is the address of the pattern string.
6452
6453 CFLAGS is a series of bits which affect compilation.
6454
6455 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6456 use POSIX basic syntax.
6457
6458 If REG_NEWLINE is set, then . and [^...] don't match newline.
6459 Also, regexec will try a match beginning after every newline.
6460
6461 If REG_ICASE is set, then we considers upper- and lowercase
6462 versions of letters to be equivalent when matching.
6463
6464 If REG_NOSUB is set, then when PREG is passed to regexec, that
6465 routine will report only success or failure, and nothing about the
6466 registers.
6467
b18215fc 6468 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6469 the return codes and their meanings.) */
6470
6471int
6472regcomp (preg, pattern, cflags)
ada30c0e
SM
6473 regex_t *__restrict preg;
6474 const char *__restrict pattern;
fa9a63c5
RM
6475 int cflags;
6476{
6477 reg_errcode_t ret;
4bb91c68 6478 reg_syntax_t syntax
fa9a63c5
RM
6479 = (cflags & REG_EXTENDED) ?
6480 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6481
6482 /* regex_compile will allocate the space for the compiled pattern. */
6483 preg->buffer = 0;
6484 preg->allocated = 0;
6485 preg->used = 0;
5e69f11e 6486
c0f9ea08
SM
6487 /* Try to allocate space for the fastmap. */
6488 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6489
fa9a63c5
RM
6490 if (cflags & REG_ICASE)
6491 {
6492 unsigned i;
5e69f11e 6493
6676cb1c
RS
6494 preg->translate
6495 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6496 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6497 if (preg->translate == NULL)
0b32bf0e 6498 return (int) REG_ESPACE;
fa9a63c5
RM
6499
6500 /* Map uppercase characters to corresponding lowercase ones. */
6501 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6502 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6503 }
6504 else
6505 preg->translate = NULL;
6506
6507 /* If REG_NEWLINE is set, newlines are treated differently. */
6508 if (cflags & REG_NEWLINE)
6509 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6510 syntax &= ~RE_DOT_NEWLINE;
6511 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6512 }
6513 else
c0f9ea08 6514 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6515
6516 preg->no_sub = !!(cflags & REG_NOSUB);
6517
5e69f11e 6518 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6519 can use strlen here in compiling the pattern. */
4bb91c68 6520 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6521
fa9a63c5
RM
6522 /* POSIX doesn't distinguish between an unmatched open-group and an
6523 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6524 if (ret == REG_ERPAREN)
6525 ret = REG_EPAREN;
6526
6527 if (ret == REG_NOERROR && preg->fastmap)
6528 { /* Compute the fastmap now, since regexec cannot modify the pattern
6529 buffer. */
6530 re_compile_fastmap (preg);
6531 if (preg->can_be_null)
6532 { /* The fastmap can't be used anyway. */
6533 free (preg->fastmap);
6534 preg->fastmap = NULL;
6535 }
6536 }
fa9a63c5
RM
6537 return (int) ret;
6538}
c0f9ea08 6539WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6540
6541
6542/* regexec searches for a given pattern, specified by PREG, in the
6543 string STRING.
5e69f11e 6544
fa9a63c5 6545 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6546 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6547 least NMATCH elements, and we set them to the offsets of the
6548 corresponding matched substrings.
5e69f11e 6549
fa9a63c5
RM
6550 EFLAGS specifies `execution flags' which affect matching: if
6551 REG_NOTBOL is set, then ^ does not match at the beginning of the
6552 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6553
fa9a63c5
RM
6554 We return 0 if we find a match and REG_NOMATCH if not. */
6555
6556int
6557regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6558 const regex_t *__restrict preg;
6559 const char *__restrict string;
5e69f11e 6560 size_t nmatch;
9f2dbe01 6561 regmatch_t pmatch[__restrict_arr];
fa9a63c5
RM
6562 int eflags;
6563{
6564 int ret;
6565 struct re_registers regs;
6566 regex_t private_preg;
6567 int len = strlen (string);
c0f9ea08 6568 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6569
6570 private_preg = *preg;
5e69f11e 6571
fa9a63c5
RM
6572 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6573 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6574
fa9a63c5
RM
6575 /* The user has told us exactly how many registers to return
6576 information about, via `nmatch'. We have to pass that on to the
b18215fc 6577 matching routines. */
fa9a63c5 6578 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6579
fa9a63c5
RM
6580 if (want_reg_info)
6581 {
6582 regs.num_regs = nmatch;
4bb91c68
SM
6583 regs.start = TALLOC (nmatch * 2, regoff_t);
6584 if (regs.start == NULL)
0b32bf0e 6585 return (int) REG_NOMATCH;
4bb91c68 6586 regs.end = regs.start + nmatch;
fa9a63c5
RM
6587 }
6588
c0f9ea08
SM
6589 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6590 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6591 was a little bit longer but still only matching the real part.
6592 This works because the `endline' will check for a '\n' and will find a
6593 '\0', correctly deciding that this is not the end of a line.
6594 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6595 a convenient '\0' there. For all we know, the string could be preceded
6596 by '\n' which would throw things off. */
6597
fa9a63c5
RM
6598 /* Perform the searching operation. */
6599 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6600 /* start: */ 0, /* range: */ len,
6601 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6602
fa9a63c5
RM
6603 /* Copy the register information to the POSIX structure. */
6604 if (want_reg_info)
6605 {
6606 if (ret >= 0)
0b32bf0e
SM
6607 {
6608 unsigned r;
fa9a63c5 6609
0b32bf0e
SM
6610 for (r = 0; r < nmatch; r++)
6611 {
6612 pmatch[r].rm_so = regs.start[r];
6613 pmatch[r].rm_eo = regs.end[r];
6614 }
6615 }
fa9a63c5 6616
b18215fc 6617 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6618 free (regs.start);
fa9a63c5
RM
6619 }
6620
6621 /* We want zero return to mean success, unlike `re_search'. */
6622 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6623}
c0f9ea08 6624WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6625
6626
6627/* Returns a message corresponding to an error code, ERRCODE, returned
6628 from either regcomp or regexec. We don't use PREG here. */
6629
6630size_t
6631regerror (errcode, preg, errbuf, errbuf_size)
6632 int errcode;
6633 const regex_t *preg;
6634 char *errbuf;
6635 size_t errbuf_size;
6636{
6637 const char *msg;
6638 size_t msg_size;
6639
6640 if (errcode < 0
6641 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6642 /* Only error codes returned by the rest of the code should be passed
b18215fc 6643 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6644 code generates an invalid error code, then the program has a bug.
6645 Dump core so we can fix it. */
6646 abort ();
6647
6648 msg = gettext (re_error_msgid[errcode]);
6649
6650 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6651
fa9a63c5
RM
6652 if (errbuf_size != 0)
6653 {
6654 if (msg_size > errbuf_size)
0b32bf0e
SM
6655 {
6656 strncpy (errbuf, msg, errbuf_size - 1);
6657 errbuf[errbuf_size - 1] = 0;
6658 }
fa9a63c5 6659 else
0b32bf0e 6660 strcpy (errbuf, msg);
fa9a63c5
RM
6661 }
6662
6663 return msg_size;
6664}
c0f9ea08 6665WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6666
6667
6668/* Free dynamically allocated space used by PREG. */
6669
6670void
6671regfree (preg)
6672 regex_t *preg;
6673{
6674 if (preg->buffer != NULL)
6675 free (preg->buffer);
6676 preg->buffer = NULL;
5e69f11e 6677
fa9a63c5
RM
6678 preg->allocated = 0;
6679 preg->used = 0;
6680
6681 if (preg->fastmap != NULL)
6682 free (preg->fastmap);
6683 preg->fastmap = NULL;
6684 preg->fastmap_accurate = 0;
6685
6686 if (preg->translate != NULL)
6687 free (preg->translate);
6688 preg->translate = NULL;
6689}
c0f9ea08 6690WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6691
6692#endif /* not emacs */
839966f3
KH
6693
6694/* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6695 (do not change this comment) */