Many doc fixes.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a
RS
1/* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
bc78d348
KB
3 internationalization features.)
4
0c085854 5 Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
e318085a 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
e318085a 20 USA. */
fa9a63c5
RM
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
68d96f02 27#undef _GNU_SOURCE
fa9a63c5
RM
28#define _GNU_SOURCE
29
30#ifdef HAVE_CONFIG_H
31#include <config.h>
32#endif
33
e318085a 34/* We need this for `regex.h', and perhaps for the Emacs include files. */
fa9a63c5
RM
35#include <sys/types.h>
36
e318085a 37/* This is for other GNU distributions with internationalized messages. */
fa9a63c5
RM
38#if HAVE_LIBINTL_H || defined (_LIBC)
39# include <libintl.h>
40#else
41# define gettext(msgid) (msgid)
42#endif
43
5e69f11e
RM
44#ifndef gettext_noop
45/* This define is so xgettext can find the internationalizable
46 strings. */
47#define gettext_noop(String) String
48#endif
49
fa9a63c5
RM
50/* The `emacs' switch turns on certain matching commands
51 that make sense only in Emacs. */
52#ifdef emacs
53
54#include "lisp.h"
55#include "buffer.h"
56#include "syntax.h"
57
9abbd165
RS
58#define malloc xmalloc
59#define free xfree
60
fa9a63c5
RM
61#else /* not emacs */
62
63/* If we are not linking with Emacs proper,
64 we can't use the relocating allocator
65 even if config.h says that we can. */
66#undef REL_ALLOC
67
68#if defined (STDC_HEADERS) || defined (_LIBC)
69#include <stdlib.h>
70#else
71char *malloc ();
72char *realloc ();
73#endif
74
9e4ecb26 75/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
e318085a 76 If nothing else has been done, use the method below. */
9e4ecb26
KH
77#ifdef INHIBIT_STRING_HEADER
78#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
79#if !defined (bzero) && !defined (bcopy)
80#undef INHIBIT_STRING_HEADER
81#endif
82#endif
83#endif
84
85/* This is the normal way of making sure we have a bcopy and a bzero.
86 This is used in most programs--a few other programs avoid this
87 by defining INHIBIT_STRING_HEADER. */
fa9a63c5 88#ifndef INHIBIT_STRING_HEADER
7f998252 89#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
fa9a63c5
RM
90#include <string.h>
91#ifndef bcmp
92#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
93#endif
94#ifndef bcopy
95#define bcopy(s, d, n) memcpy ((d), (s), (n))
96#endif
97#ifndef bzero
98#define bzero(s, n) memset ((s), 0, (n))
99#endif
100#else
101#include <strings.h>
102#endif
103#endif
104
105/* Define the syntax stuff for \<, \>, etc. */
106
107/* This must be nonzero for the wordchar and notwordchar pattern
108 commands in re_match_2. */
5e69f11e 109#ifndef Sword
fa9a63c5
RM
110#define Sword 1
111#endif
112
113#ifdef SWITCH_ENUM_BUG
114#define SWITCH_ENUM_CAST(x) ((int)(x))
115#else
116#define SWITCH_ENUM_CAST(x) (x)
117#endif
118
119#ifdef SYNTAX_TABLE
120
121extern char *re_syntax_table;
122
123#else /* not SYNTAX_TABLE */
124
125/* How many characters in the character set. */
126#define CHAR_SET_SIZE 256
127
128static char re_syntax_table[CHAR_SET_SIZE];
129
130static void
131init_syntax_once ()
132{
133 register int c;
134 static int done = 0;
135
136 if (done)
137 return;
138
139 bzero (re_syntax_table, sizeof re_syntax_table);
140
141 for (c = 'a'; c <= 'z'; c++)
142 re_syntax_table[c] = Sword;
143
144 for (c = 'A'; c <= 'Z'; c++)
145 re_syntax_table[c] = Sword;
146
147 for (c = '0'; c <= '9'; c++)
148 re_syntax_table[c] = Sword;
149
150 re_syntax_table['_'] = Sword;
151
152 done = 1;
153}
154
155#endif /* not SYNTAX_TABLE */
156
157#define SYNTAX(c) re_syntax_table[c]
158
159#endif /* not emacs */
160\f
161/* Get the interface, including the syntax bits. */
162#include "regex.h"
163
164/* isalpha etc. are used for the character classes. */
165#include <ctype.h>
166
167/* Jim Meyering writes:
168
169 "... Some ctype macros are valid only for character codes that
170 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
171 using /bin/cc or gcc but without giving an ansi option). So, all
e318085a 172 ctype uses should be through macros like ISPRINT... If
fa9a63c5
RM
173 STDC_HEADERS is defined, then autoconf has verified that the ctype
174 macros don't need to be guarded with references to isascii. ...
175 Defining isascii to 1 should let any compiler worth its salt
e318085a 176 eliminate the && through constant folding." */
fa9a63c5
RM
177
178#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
179#define ISASCII(c) 1
180#else
181#define ISASCII(c) isascii(c)
182#endif
183
184#ifdef isblank
185#define ISBLANK(c) (ISASCII (c) && isblank (c))
186#else
187#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
188#endif
189#ifdef isgraph
190#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
191#else
192#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
193#endif
194
195#define ISPRINT(c) (ISASCII (c) && isprint (c))
196#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
197#define ISALNUM(c) (ISASCII (c) && isalnum (c))
198#define ISALPHA(c) (ISASCII (c) && isalpha (c))
199#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
200#define ISLOWER(c) (ISASCII (c) && islower (c))
201#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
202#define ISSPACE(c) (ISASCII (c) && isspace (c))
203#define ISUPPER(c) (ISASCII (c) && isupper (c))
204#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
205
206#ifndef NULL
075f06ec 207#define NULL (void *)0
fa9a63c5
RM
208#endif
209
210/* We remove any previous definition of `SIGN_EXTEND_CHAR',
211 since ours (we hope) works properly with all combinations of
212 machines, compilers, `char' and `unsigned char' argument types.
e318085a 213 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
214#undef SIGN_EXTEND_CHAR
215#if __STDC__
216#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
217#else /* not __STDC__ */
218/* As in Harbison and Steele. */
219#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
220#endif
221\f
222/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
223 use `alloca' instead of `malloc'. This is because using malloc in
224 re_search* or re_match* could cause memory leaks when C-g is used in
225 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
226 the other hand, malloc is more portable, and easier to debug.
227
fa9a63c5
RM
228 Because we sometimes use alloca, some routines have to be macros,
229 not functions -- `alloca'-allocated space disappears at the end of the
230 function it is called in. */
231
232#ifdef REGEX_MALLOC
233
234#define REGEX_ALLOCATE malloc
235#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
236#define REGEX_FREE free
237
238#else /* not REGEX_MALLOC */
239
240/* Emacs already defines alloca, sometimes. */
241#ifndef alloca
242
243/* Make alloca work the best possible way. */
244#ifdef __GNUC__
245#define alloca __builtin_alloca
246#else /* not __GNUC__ */
247#if HAVE_ALLOCA_H
248#include <alloca.h>
249#else /* not __GNUC__ or HAVE_ALLOCA_H */
f3c4387f 250#if 0 /* It is a bad idea to declare alloca. We always cast the result. */
e318085a 251#ifndef _AIX /* Already did AIX, up at the top. */
fa9a63c5
RM
252char *alloca ();
253#endif /* not _AIX */
f3c4387f 254#endif
5e69f11e 255#endif /* not HAVE_ALLOCA_H */
fa9a63c5
RM
256#endif /* not __GNUC__ */
257
258#endif /* not alloca */
259
260#define REGEX_ALLOCATE alloca
261
262/* Assumes a `char *destination' variable. */
263#define REGEX_REALLOCATE(source, osize, nsize) \
264 (destination = (char *) alloca (nsize), \
265 bcopy (source, destination, osize), \
266 destination)
267
268/* No need to do anything to free, after alloca. */
c2e1680a 269#define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
270
271#endif /* not REGEX_MALLOC */
272
273/* Define how to allocate the failure stack. */
274
33487cc8 275#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
4297555e 276
fa9a63c5
RM
277#define REGEX_ALLOCATE_STACK(size) \
278 r_alloc (&failure_stack_ptr, (size))
279#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
280 r_re_alloc (&failure_stack_ptr, (nsize))
281#define REGEX_FREE_STACK(ptr) \
282 r_alloc_free (&failure_stack_ptr)
283
4297555e 284#else /* not using relocating allocator */
fa9a63c5
RM
285
286#ifdef REGEX_MALLOC
287
288#define REGEX_ALLOCATE_STACK malloc
289#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
290#define REGEX_FREE_STACK free
291
292#else /* not REGEX_MALLOC */
293
294#define REGEX_ALLOCATE_STACK alloca
295
296#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
297 REGEX_REALLOCATE (source, osize, nsize)
e318085a 298/* No need to explicitly free anything. */
fa9a63c5
RM
299#define REGEX_FREE_STACK(arg)
300
301#endif /* not REGEX_MALLOC */
4297555e 302#endif /* not using relocating allocator */
fa9a63c5
RM
303
304
305/* True if `size1' is non-NULL and PTR is pointing anywhere inside
306 `string1' or just past its end. This works if PTR is NULL, which is
307 a good thing. */
e318085a 308#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
309 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
310
311/* (Re)Allocate N items of type T using malloc, or fail. */
312#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
313#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
314#define RETALLOC_IF(addr, n, t) \
315 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
316#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
317
e318085a 318#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
319
320#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
321
322#undef MAX
323#undef MIN
324#define MAX(a, b) ((a) > (b) ? (a) : (b))
325#define MIN(a, b) ((a) < (b) ? (a) : (b))
326
327typedef char boolean;
328#define false 0
329#define true 1
330
331static int re_match_2_internal ();
332\f
333/* These are the command codes that appear in compiled regular
e318085a 334 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
335 command code can specify any interpretation whatsoever for its
336 arguments. Zero bytes may appear in the compiled regular expression. */
337
338typedef enum
339{
340 no_op = 0,
341
e318085a 342 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
343 succeed,
344
e318085a 345 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
346 exactn,
347
e318085a 348 /* Matches any (more or less) character. */
fa9a63c5
RM
349 anychar,
350
e318085a
RS
351 /* Matches any one char belonging to specified set. First
352 following byte is number of bitmap bytes. Then come bytes
353 for a bitmap saying which chars are in. Bits in each byte
354 are ordered low-bit-first. A character is in the set if its
355 bit is 1. A character too large to have a bit in the map is
356 automatically not in the set. */
fa9a63c5
RM
357 charset,
358
e318085a
RS
359 /* Same parameters as charset, but match any character that is
360 not one of those specified. */
fa9a63c5
RM
361 charset_not,
362
e318085a
RS
363 /* Start remembering the text that is matched, for storing in a
364 register. Followed by one byte with the register number, in
365 the range 0 to one less than the pattern buffer's re_nsub
366 field. Then followed by one byte with the number of groups
367 inner to this one. (This last has to be part of the
368 start_memory only because we need it in the on_failure_jump
369 of re_match_2.) */
fa9a63c5
RM
370 start_memory,
371
e318085a
RS
372 /* Stop remembering the text that is matched and store it in a
373 memory register. Followed by one byte with the register
374 number, in the range 0 to one less than `re_nsub' in the
375 pattern buffer, and one byte with the number of inner groups,
376 just like `start_memory'. (We need the number of inner
377 groups here because we don't have any easy way of finding the
378 corresponding start_memory when we're at a stop_memory.) */
fa9a63c5
RM
379 stop_memory,
380
e318085a
RS
381 /* Match a duplicate of something remembered. Followed by one
382 byte containing the register number. */
fa9a63c5
RM
383 duplicate,
384
e318085a 385 /* Fail unless at beginning of line. */
fa9a63c5
RM
386 begline,
387
e318085a 388 /* Fail unless at end of line. */
fa9a63c5
RM
389 endline,
390
e318085a
RS
391 /* Succeeds if at beginning of buffer (if emacs) or at beginning
392 of string to be matched (if not). */
fa9a63c5
RM
393 begbuf,
394
e318085a 395 /* Analogously, for end of buffer/string. */
fa9a63c5 396 endbuf,
5e69f11e 397
e318085a 398 /* Followed by two byte relative address to which to jump. */
5e69f11e 399 jump,
fa9a63c5
RM
400
401 /* Same as jump, but marks the end of an alternative. */
402 jump_past_alt,
403
e318085a
RS
404 /* Followed by two-byte relative address of place to resume at
405 in case of failure. */
fa9a63c5 406 on_failure_jump,
5e69f11e 407
e318085a
RS
408 /* Like on_failure_jump, but pushes a placeholder instead of the
409 current string position when executed. */
fa9a63c5 410 on_failure_keep_string_jump,
5e69f11e 411
e318085a
RS
412 /* Throw away latest failure point and then jump to following
413 two-byte relative address. */
fa9a63c5
RM
414 pop_failure_jump,
415
e318085a
RS
416 /* Change to pop_failure_jump if know won't have to backtrack to
417 match; otherwise change to jump. This is used to jump
418 back to the beginning of a repeat. If what follows this jump
419 clearly won't match what the repeat does, such that we can be
420 sure that there is no use backtracking out of repetitions
421 already matched, then we change it to a pop_failure_jump.
422 Followed by two-byte address. */
fa9a63c5
RM
423 maybe_pop_jump,
424
e318085a
RS
425 /* Jump to following two-byte address, and push a dummy failure
426 point. This failure point will be thrown away if an attempt
427 is made to use it for a failure. A `+' construct makes this
428 before the first repeat. Also used as an intermediary kind
429 of jump when compiling an alternative. */
fa9a63c5
RM
430 dummy_failure_jump,
431
432 /* Push a dummy failure point and continue. Used at the end of
433 alternatives. */
434 push_dummy_failure,
435
e318085a
RS
436 /* Followed by two-byte relative address and two-byte number n.
437 After matching N times, jump to the address upon failure. */
fa9a63c5
RM
438 succeed_n,
439
e318085a
RS
440 /* Followed by two-byte relative address, and two-byte number n.
441 Jump to the address N times, then fail. */
fa9a63c5
RM
442 jump_n,
443
e318085a
RS
444 /* Set the following two-byte relative address to the
445 subsequent two-byte number. The address *includes* the two
446 bytes of number. */
fa9a63c5
RM
447 set_number_at,
448
449 wordchar, /* Matches any word-constituent character. */
450 notwordchar, /* Matches any char that is not a word-constituent. */
451
452 wordbeg, /* Succeeds if at word beginning. */
453 wordend, /* Succeeds if at word end. */
454
455 wordbound, /* Succeeds if at a word boundary. */
e318085a 456 notwordbound /* Succeeds if not at a word boundary. */
fa9a63c5
RM
457
458#ifdef emacs
459 ,before_dot, /* Succeeds if before point. */
460 at_dot, /* Succeeds if at point. */
461 after_dot, /* Succeeds if after point. */
462
463 /* Matches any character whose syntax is specified. Followed by
e318085a 464 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
465 syntaxspec,
466
467 /* Matches any character whose syntax is not that specified. */
468 notsyntaxspec
469#endif /* emacs */
470} re_opcode_t;
471\f
472/* Common operations on the compiled pattern. */
473
474/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
475
476#define STORE_NUMBER(destination, number) \
477 do { \
478 (destination)[0] = (number) & 0377; \
479 (destination)[1] = (number) >> 8; \
480 } while (0)
481
482/* Same as STORE_NUMBER, except increment DESTINATION to
483 the byte after where the number is stored. Therefore, DESTINATION
484 must be an lvalue. */
485
486#define STORE_NUMBER_AND_INCR(destination, number) \
487 do { \
488 STORE_NUMBER (destination, number); \
489 (destination) += 2; \
490 } while (0)
491
492/* Put into DESTINATION a number stored in two contiguous bytes starting
493 at SOURCE. */
494
495#define EXTRACT_NUMBER(destination, source) \
496 do { \
497 (destination) = *(source) & 0377; \
498 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
499 } while (0)
500
501#ifdef DEBUG
502static void
503extract_number (dest, source)
504 int *dest;
505 unsigned char *source;
506{
5e69f11e 507 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
508 *dest = *source & 0377;
509 *dest += temp << 8;
510}
511
e318085a 512#ifndef EXTRACT_MACROS /* To debug the macros. */
fa9a63c5
RM
513#undef EXTRACT_NUMBER
514#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
515#endif /* not EXTRACT_MACROS */
516
517#endif /* DEBUG */
518
519/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
520 SOURCE must be an lvalue. */
521
522#define EXTRACT_NUMBER_AND_INCR(destination, source) \
523 do { \
524 EXTRACT_NUMBER (destination, source); \
e318085a 525 (source) += 2; \
fa9a63c5
RM
526 } while (0)
527
528#ifdef DEBUG
529static void
530extract_number_and_incr (destination, source)
531 int *destination;
532 unsigned char **source;
5e69f11e 533{
fa9a63c5
RM
534 extract_number (destination, *source);
535 *source += 2;
536}
537
538#ifndef EXTRACT_MACROS
539#undef EXTRACT_NUMBER_AND_INCR
540#define EXTRACT_NUMBER_AND_INCR(dest, src) \
541 extract_number_and_incr (&dest, &src)
542#endif /* not EXTRACT_MACROS */
543
544#endif /* DEBUG */
545\f
546/* If DEBUG is defined, Regex prints many voluminous messages about what
547 it is doing (if the variable `debug' is nonzero). If linked with the
548 main program in `iregex.c', you can enter patterns and strings
549 interactively. And if linked with the main program in `main.c' and
e318085a 550 the other test files, you can run the already-written tests. */
fa9a63c5
RM
551
552#ifdef DEBUG
553
554/* We use standard I/O for debugging. */
555#include <stdio.h>
556
557/* It is useful to test things that ``must'' be true when debugging. */
558#include <assert.h>
559
560static int debug = 0;
561
562#define DEBUG_STATEMENT(e) e
563#define DEBUG_PRINT1(x) if (debug) printf (x)
564#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
565#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
566#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
e318085a 567#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
fa9a63c5
RM
568 if (debug) print_partial_compiled_pattern (s, e)
569#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
570 if (debug) print_double_string (w, s1, sz1, s2, sz2)
571
572
573/* Print the fastmap in human-readable form. */
574
575void
576print_fastmap (fastmap)
577 char *fastmap;
578{
579 unsigned was_a_range = 0;
5e69f11e
RM
580 unsigned i = 0;
581
fa9a63c5
RM
582 while (i < (1 << BYTEWIDTH))
583 {
584 if (fastmap[i++])
585 {
586 was_a_range = 0;
e318085a
RS
587 putchar (i - 1);
588 while (i < (1 << BYTEWIDTH) && fastmap[i])
589 {
590 was_a_range = 1;
591 i++;
592 }
fa9a63c5 593 if (was_a_range)
e318085a
RS
594 {
595 printf ("-");
596 putchar (i - 1);
597 }
598 }
fa9a63c5 599 }
5e69f11e 600 putchar ('\n');
fa9a63c5
RM
601}
602
603
604/* Print a compiled pattern string in human-readable form, starting at
605 the START pointer into it and ending just before the pointer END. */
606
607void
608print_partial_compiled_pattern (start, end)
609 unsigned char *start;
610 unsigned char *end;
611{
612 int mcnt, mcnt2;
613 unsigned char *p = start;
614 unsigned char *pend = end;
615
616 if (start == NULL)
617 {
618 printf ("(null)\n");
619 return;
620 }
5e69f11e 621
fa9a63c5
RM
622 /* Loop over pattern commands. */
623 while (p < pend)
624 {
625 printf ("%d:\t", p - start);
626
627 switch ((re_opcode_t) *p++)
628 {
e318085a
RS
629 case no_op:
630 printf ("/no_op");
631 break;
fa9a63c5
RM
632
633 case exactn:
634 mcnt = *p++;
e318085a
RS
635 printf ("/exactn/%d", mcnt);
636 do
fa9a63c5 637 {
e318085a 638 putchar ('/');
fa9a63c5 639 putchar (*p++);
e318085a
RS
640 }
641 while (--mcnt);
642 break;
fa9a63c5
RM
643
644 case start_memory:
e318085a
RS
645 mcnt = *p++;
646 printf ("/start_memory/%d/%d", mcnt, *p++);
647 break;
fa9a63c5
RM
648
649 case stop_memory:
e318085a 650 mcnt = *p++;
fa9a63c5 651 printf ("/stop_memory/%d/%d", mcnt, *p++);
e318085a 652 break;
fa9a63c5
RM
653
654 case duplicate:
655 printf ("/duplicate/%d", *p++);
656 break;
657
658 case anychar:
659 printf ("/anychar");
660 break;
661
662 case charset:
e318085a
RS
663 case charset_not:
664 {
665 register int c, last = -100;
fa9a63c5
RM
666 register int in_range = 0;
667
668 printf ("/charset [%s",
e318085a 669 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 670
e318085a 671 assert (p + *p < pend);
fa9a63c5 672
e318085a 673 for (c = 0; c < 256; c++)
fa9a63c5
RM
674 if (c / 8 < *p
675 && (p[1 + (c/8)] & (1 << (c % 8))))
676 {
677 /* Are we starting a range? */
678 if (last + 1 == c && ! in_range)
679 {
680 putchar ('-');
681 in_range = 1;
682 }
683 /* Have we broken a range? */
684 else if (last + 1 != c && in_range)
e318085a 685 {
fa9a63c5
RM
686 putchar (last);
687 in_range = 0;
688 }
5e69f11e 689
fa9a63c5
RM
690 if (! in_range)
691 putchar (c);
692
693 last = c;
e318085a 694 }
fa9a63c5
RM
695
696 if (in_range)
697 putchar (last);
698
699 putchar (']');
700
701 p += 1 + *p;
702 }
703 break;
704
705 case begline:
706 printf ("/begline");
e318085a 707 break;
fa9a63c5
RM
708
709 case endline:
e318085a
RS
710 printf ("/endline");
711 break;
fa9a63c5
RM
712
713 case on_failure_jump:
e318085a
RS
714 extract_number_and_incr (&mcnt, &p);
715 printf ("/on_failure_jump to %d", p + mcnt - start);
716 break;
fa9a63c5
RM
717
718 case on_failure_keep_string_jump:
e318085a
RS
719 extract_number_and_incr (&mcnt, &p);
720 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
721 break;
fa9a63c5
RM
722
723 case dummy_failure_jump:
e318085a
RS
724 extract_number_and_incr (&mcnt, &p);
725 printf ("/dummy_failure_jump to %d", p + mcnt - start);
726 break;
fa9a63c5
RM
727
728 case push_dummy_failure:
e318085a
RS
729 printf ("/push_dummy_failure");
730 break;
5e69f11e 731
e318085a
RS
732 case maybe_pop_jump:
733 extract_number_and_incr (&mcnt, &p);
734 printf ("/maybe_pop_jump to %d", p + mcnt - start);
fa9a63c5
RM
735 break;
736
e318085a 737 case pop_failure_jump:
fa9a63c5 738 extract_number_and_incr (&mcnt, &p);
e318085a 739 printf ("/pop_failure_jump to %d", p + mcnt - start);
5e69f11e
RM
740 break;
741
e318085a 742 case jump_past_alt:
fa9a63c5 743 extract_number_and_incr (&mcnt, &p);
e318085a 744 printf ("/jump_past_alt to %d", p + mcnt - start);
5e69f11e
RM
745 break;
746
e318085a 747 case jump:
fa9a63c5 748 extract_number_and_incr (&mcnt, &p);
e318085a 749 printf ("/jump to %d", p + mcnt - start);
fa9a63c5
RM
750 break;
751
e318085a
RS
752 case succeed_n:
753 extract_number_and_incr (&mcnt, &p);
754 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 755 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
e318085a 756 break;
5e69f11e 757
e318085a
RS
758 case jump_n:
759 extract_number_and_incr (&mcnt, &p);
760 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 761 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
e318085a 762 break;
5e69f11e 763
e318085a
RS
764 case set_number_at:
765 extract_number_and_incr (&mcnt, &p);
766 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 767 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
e318085a 768 break;
5e69f11e 769
e318085a 770 case wordbound:
fa9a63c5
RM
771 printf ("/wordbound");
772 break;
773
774 case notwordbound:
775 printf ("/notwordbound");
e318085a 776 break;
fa9a63c5
RM
777
778 case wordbeg:
779 printf ("/wordbeg");
780 break;
5e69f11e 781
fa9a63c5
RM
782 case wordend:
783 printf ("/wordend");
5e69f11e 784
fa9a63c5
RM
785#ifdef emacs
786 case before_dot:
787 printf ("/before_dot");
e318085a 788 break;
fa9a63c5
RM
789
790 case at_dot:
791 printf ("/at_dot");
e318085a 792 break;
fa9a63c5
RM
793
794 case after_dot:
795 printf ("/after_dot");
e318085a 796 break;
fa9a63c5
RM
797
798 case syntaxspec:
e318085a 799 printf ("/syntaxspec");
fa9a63c5
RM
800 mcnt = *p++;
801 printf ("/%d", mcnt);
e318085a 802 break;
5e69f11e 803
fa9a63c5 804 case notsyntaxspec:
e318085a 805 printf ("/notsyntaxspec");
fa9a63c5
RM
806 mcnt = *p++;
807 printf ("/%d", mcnt);
808 break;
809#endif /* emacs */
810
811 case wordchar:
812 printf ("/wordchar");
e318085a 813 break;
5e69f11e 814
fa9a63c5
RM
815 case notwordchar:
816 printf ("/notwordchar");
e318085a 817 break;
fa9a63c5
RM
818
819 case begbuf:
820 printf ("/begbuf");
e318085a 821 break;
fa9a63c5
RM
822
823 case endbuf:
824 printf ("/endbuf");
e318085a 825 break;
fa9a63c5 826
e318085a
RS
827 default:
828 printf ("?%d", *(p-1));
fa9a63c5
RM
829 }
830
831 putchar ('\n');
832 }
833
834 printf ("%d:\tend of pattern.\n", p - start);
835}
836
837
838void
839print_compiled_pattern (bufp)
840 struct re_pattern_buffer *bufp;
841{
842 unsigned char *buffer = bufp->buffer;
843
844 print_partial_compiled_pattern (buffer, buffer + bufp->used);
845 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
846
847 if (bufp->fastmap_accurate && bufp->fastmap)
848 {
849 printf ("fastmap: ");
850 print_fastmap (bufp->fastmap);
851 }
852
853 printf ("re_nsub: %d\t", bufp->re_nsub);
854 printf ("regs_alloc: %d\t", bufp->regs_allocated);
855 printf ("can_be_null: %d\t", bufp->can_be_null);
856 printf ("newline_anchor: %d\n", bufp->newline_anchor);
857 printf ("no_sub: %d\t", bufp->no_sub);
858 printf ("not_bol: %d\t", bufp->not_bol);
859 printf ("not_eol: %d\t", bufp->not_eol);
860 printf ("syntax: %d\n", bufp->syntax);
861 /* Perhaps we should print the translate table? */
862}
863
864
865void
866print_double_string (where, string1, size1, string2, size2)
867 const char *where;
868 const char *string1;
869 const char *string2;
870 int size1;
871 int size2;
872{
873 unsigned this_char;
5e69f11e 874
fa9a63c5
RM
875 if (where == NULL)
876 printf ("(null)");
877 else
878 {
879 if (FIRST_STRING_P (where))
e318085a
RS
880 {
881 for (this_char = where - string1; this_char < size1; this_char++)
882 putchar (string1[this_char]);
fa9a63c5 883
e318085a
RS
884 where = string2;
885 }
fa9a63c5
RM
886
887 for (this_char = where - string2; this_char < size2; this_char++)
e318085a 888 putchar (string2[this_char]);
fa9a63c5
RM
889 }
890}
891
892#else /* not DEBUG */
893
894#undef assert
895#define assert(e)
896
897#define DEBUG_STATEMENT(e)
898#define DEBUG_PRINT1(x)
899#define DEBUG_PRINT2(x1, x2)
900#define DEBUG_PRINT3(x1, x2, x3)
901#define DEBUG_PRINT4(x1, x2, x3, x4)
902#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
903#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
904
905#endif /* not DEBUG */
906\f
907/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
908 also be assigned to arbitrarily: each pattern buffer stores its own
909 syntax, so it can be changed between regex compilations. */
910/* This has no initializer because initialized variables in Emacs
911 become read-only after dumping. */
912reg_syntax_t re_syntax_options;
913
914
915/* Specify the precise syntax of regexps for compilation. This provides
916 for compatibility for various utilities which historically have
917 different, incompatible syntaxes.
918
919 The argument SYNTAX is a bit mask comprised of the various bits
e318085a 920 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
921
922reg_syntax_t
923re_set_syntax (syntax)
924 reg_syntax_t syntax;
925{
926 reg_syntax_t ret = re_syntax_options;
5e69f11e 927
fa9a63c5
RM
928 re_syntax_options = syntax;
929 return ret;
930}
931\f
932/* This table gives an error message for each of the error codes listed
e318085a 933 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 934 POSIX doesn't require that we do anything for REG_NOERROR,
e318085a 935 but why not be nice? */
fa9a63c5
RM
936
937static const char *re_error_msgid[] =
5e69f11e
RM
938 {
939 gettext_noop ("Success"), /* REG_NOERROR */
940 gettext_noop ("No match"), /* REG_NOMATCH */
941 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
942 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
943 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
944 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
945 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
946 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
947 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
948 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
949 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
950 gettext_noop ("Invalid range end"), /* REG_ERANGE */
951 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
952 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
953 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
954 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
955 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
956 };
957\f
e318085a 958/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
959
960/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
961 searching and matching functions should not call alloca. On some
962 systems, alloca is implemented in terms of malloc, and if we're
963 using the relocating allocator routines, then malloc could cause a
964 relocation, which might (if the strings being searched are in the
965 ralloc heap) shift the data out from underneath the regexp
966 routines.
967
5e69f11e 968 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
969 processes input from X in a signal handler; processing X input may
970 call malloc; if input arrives while a matching routine is calling
971 malloc, then we're scrod. But Emacs can't just block input while
972 calling matching routines; then we don't notice interrupts when
973 they come in. So, Emacs blocks input around all regexp calls
974 except the matching calls, which it leaves unprotected, in the
975 faith that they will not malloc. */
976
977/* Normally, this is fine. */
978#define MATCH_MAY_ALLOCATE
979
980/* When using GNU C, we are not REALLY using the C alloca, no matter
981 what config.h may say. So don't take precautions for it. */
982#ifdef __GNUC__
983#undef C_ALLOCA
984#endif
985
986/* The match routines may not allocate if (1) they would do it with malloc
987 and (2) it's not safe for them to use malloc.
988 Note that if REL_ALLOC is defined, matching would not use malloc for the
989 failure stack, but we would still use it for the register vectors;
e318085a 990 so REL_ALLOC should not affect this. */
fa9a63c5
RM
991#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
992#undef MATCH_MAY_ALLOCATE
993#endif
994
995\f
996/* Failure stack declarations and macros; both re_compile_fastmap and
997 re_match_2 use a failure stack. These have to be macros because of
998 REGEX_ALLOCATE_STACK. */
5e69f11e 999
fa9a63c5
RM
1000
1001/* Number of failure points for which to initially allocate space
1002 when matching. If this number is exceeded, we allocate more
1003 space, so it is not a hard limit. */
1004#ifndef INIT_FAILURE_ALLOC
1005#define INIT_FAILURE_ALLOC 5
1006#endif
1007
1008/* Roughly the maximum number of failure points on the stack. Would be
ffd76827 1009 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
fa9a63c5 1010 This is a variable only so users of regex can assign to it; we never
e318085a 1011 change it ourselves. */
fa9a63c5 1012#if defined (MATCH_MAY_ALLOCATE)
0f374b2b 1013/* 4400 was enough to cause a crash on Alpha OSF/1,
264d34bf 1014 whose default stack limit is 2mb. */
6411ab23 1015int re_max_failures = 20000;
fa9a63c5
RM
1016#else
1017int re_max_failures = 2000;
1018#endif
1019
1020union fail_stack_elt
1021{
1022 unsigned char *pointer;
1023 int integer;
1024};
1025
1026typedef union fail_stack_elt fail_stack_elt_t;
1027
1028typedef struct
1029{
1030 fail_stack_elt_t *stack;
1031 unsigned size;
1032 unsigned avail; /* Offset of next open position. */
1033} fail_stack_type;
1034
1035#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1036#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1037#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1038
1039
1040/* Define macros to initialize and free the failure stack.
1041 Do `return -2' if the alloc fails. */
1042
1043#ifdef MATCH_MAY_ALLOCATE
1044#define INIT_FAIL_STACK() \
1045 do { \
1046 fail_stack.stack = (fail_stack_elt_t *) \
1047 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1048 \
1049 if (fail_stack.stack == NULL) \
1050 return -2; \
1051 \
1052 fail_stack.size = INIT_FAILURE_ALLOC; \
1053 fail_stack.avail = 0; \
1054 } while (0)
1055
1056#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1057#else
1058#define INIT_FAIL_STACK() \
1059 do { \
1060 fail_stack.avail = 0; \
1061 } while (0)
1062
1063#define RESET_FAIL_STACK()
1064#endif
1065
1066
1067/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1068
1069 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1070 allocating space for it or it was already too large.
1071
e318085a 1072 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5
RM
1073
1074#define DOUBLE_FAIL_STACK(fail_stack) \
1075 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
1076 ? 0 \
1077 : ((fail_stack).stack = (fail_stack_elt_t *) \
e318085a
RS
1078 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1079 (fail_stack).size * sizeof (fail_stack_elt_t), \
1080 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
fa9a63c5
RM
1081 \
1082 (fail_stack).stack == NULL \
1083 ? 0 \
e318085a
RS
1084 : ((fail_stack).size <<= 1, \
1085 1)))
fa9a63c5
RM
1086
1087
5e69f11e 1088/* Push pointer POINTER on FAIL_STACK.
fa9a63c5
RM
1089 Return 1 if was able to do so and 0 if ran out of memory allocating
1090 space to do so. */
1091#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1092 ((FAIL_STACK_FULL () \
1093 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1094 ? 0 \
1095 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1096 1))
1097
1098/* Push a pointer value onto the failure stack.
1099 Assumes the variable `fail_stack'. Probably should only
e318085a 1100 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1101#define PUSH_FAILURE_POINTER(item) \
1102 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1103
1104/* This pushes an integer-valued item onto the failure stack.
1105 Assumes the variable `fail_stack'. Probably should only
e318085a 1106 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1107#define PUSH_FAILURE_INT(item) \
1108 fail_stack.stack[fail_stack.avail++].integer = (item)
1109
1110/* Push a fail_stack_elt_t value onto the failure stack.
1111 Assumes the variable `fail_stack'. Probably should only
e318085a 1112 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1113#define PUSH_FAILURE_ELT(item) \
1114 fail_stack.stack[fail_stack.avail++] = (item)
1115
1116/* These three POP... operations complement the three PUSH... operations.
1117 All assume that `fail_stack' is nonempty. */
1118#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1119#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1120#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1121
1122/* Used to omit pushing failure point id's when we're not debugging. */
1123#ifdef DEBUG
1124#define DEBUG_PUSH PUSH_FAILURE_INT
1125#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1126#else
1127#define DEBUG_PUSH(item)
1128#define DEBUG_POP(item_addr)
1129#endif
1130
1131
1132/* Push the information about the state we will need
5e69f11e
RM
1133 if we ever fail back to it.
1134
fa9a63c5
RM
1135 Requires variables fail_stack, regstart, regend, reg_info, and
1136 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1137 declared.
5e69f11e 1138
fa9a63c5
RM
1139 Does `return FAILURE_CODE' if runs out of memory. */
1140
1141#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1142 do { \
1143 char *destination; \
1144 /* Must be int, so when we don't save any registers, the arithmetic \
1145 of 0 + -1 isn't done as unsigned. */ \
1146 int this_reg; \
e318085a 1147 \
fa9a63c5
RM
1148 DEBUG_STATEMENT (failure_id++); \
1149 DEBUG_STATEMENT (nfailure_points_pushed++); \
1150 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1151 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
e318085a 1152 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
fa9a63c5
RM
1153 \
1154 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
e318085a 1155 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
fa9a63c5
RM
1156 \
1157 /* Ensure we have enough space allocated for what we will push. */ \
1158 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1159 { \
e318085a
RS
1160 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1161 return failure_code; \
fa9a63c5 1162 \
e318085a 1163 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
fa9a63c5 1164 (fail_stack).size); \
e318085a 1165 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
fa9a63c5
RM
1166 } \
1167 \
1168 /* Push the info, starting with the registers. */ \
1169 DEBUG_PRINT1 ("\n"); \
1170 \
68d96f02 1171 if (1) \
faec11db
RS
1172 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1173 this_reg++) \
1174 { \
1175 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1176 DEBUG_STATEMENT (num_regs_pushed++); \
fa9a63c5 1177 \
faec11db
RS
1178 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1179 PUSH_FAILURE_POINTER (regstart[this_reg]); \
fa9a63c5 1180 \
faec11db
RS
1181 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1182 PUSH_FAILURE_POINTER (regend[this_reg]); \
1183 \
1184 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1185 DEBUG_PRINT2 (" match_null=%d", \
1186 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1187 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1188 DEBUG_PRINT2 (" matched_something=%d", \
1189 MATCHED_SOMETHING (reg_info[this_reg])); \
1190 DEBUG_PRINT2 (" ever_matched=%d", \
1191 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1192 DEBUG_PRINT1 ("\n"); \
1193 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1194 } \
fa9a63c5
RM
1195 \
1196 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1197 PUSH_FAILURE_INT (lowest_active_reg); \
1198 \
1199 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1200 PUSH_FAILURE_INT (highest_active_reg); \
1201 \
1202 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1203 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1204 PUSH_FAILURE_POINTER (pattern_place); \
1205 \
1206 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
e318085a 1207 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
fa9a63c5
RM
1208 size2); \
1209 DEBUG_PRINT1 ("'\n"); \
1210 PUSH_FAILURE_POINTER (string_place); \
1211 \
1212 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1213 DEBUG_PUSH (failure_id); \
1214 } while (0)
1215
1216/* This is the number of items that are pushed and popped on the stack
1217 for each register. */
1218#define NUM_REG_ITEMS 3
1219
1220/* Individual items aside from the registers. */
1221#ifdef DEBUG
1222#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1223#else
1224#define NUM_NONREG_ITEMS 4
1225#endif
1226
1227/* We push at most this many items on the stack. */
ffd76827
RS
1228/* We used to use (num_regs - 1), which is the number of registers
1229 this regexp will save; but that was changed to 5
1230 to avoid stack overflow for a regexp with lots of parens. */
1231#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
fa9a63c5
RM
1232
1233/* We actually push this many items. */
faec11db 1234#define NUM_FAILURE_ITEMS \
68d96f02 1235 (((0 \
faec11db
RS
1236 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1237 * NUM_REG_ITEMS) \
1238 + NUM_NONREG_ITEMS)
fa9a63c5
RM
1239
1240/* How many items can still be added to the stack without overflowing it. */
1241#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1242
1243
1244/* Pops what PUSH_FAIL_STACK pushes.
1245
1246 We restore into the parameters, all of which should be lvalues:
1247 STR -- the saved data position.
1248 PAT -- the saved pattern position.
1249 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1250 REGSTART, REGEND -- arrays of string positions.
1251 REG_INFO -- array of information about each subexpression.
5e69f11e 1252
fa9a63c5 1253 Also assumes the variables `fail_stack' and (if debugging), `bufp',
e318085a 1254 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5
RM
1255
1256#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1257{ \
1258 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1259 int this_reg; \
1260 const unsigned char *string_temp; \
1261 \
1262 assert (!FAIL_STACK_EMPTY ()); \
1263 \
1264 /* Remove failure points and point to how many regs pushed. */ \
1265 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1266 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
e318085a 1267 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5
RM
1268 \
1269 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1270 \
1271 DEBUG_POP (&failure_id); \
1272 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1273 \
1274 /* If the saved string location is NULL, it came from an \
1275 on_failure_keep_string_jump opcode, and we want to throw away the \
1276 saved NULL, thus retaining our current position in the string. */ \
1277 string_temp = POP_FAILURE_POINTER (); \
1278 if (string_temp != NULL) \
1279 str = (const char *) string_temp; \
1280 \
1281 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1282 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1283 DEBUG_PRINT1 ("'\n"); \
1284 \
1285 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1286 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1287 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1288 \
1289 /* Restore register info. */ \
1290 high_reg = (unsigned) POP_FAILURE_INT (); \
1291 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1292 \
1293 low_reg = (unsigned) POP_FAILURE_INT (); \
1294 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1295 \
68d96f02 1296 if (1) \
faec11db
RS
1297 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1298 { \
e318085a 1299 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
fa9a63c5 1300 \
faec11db 1301 reg_info[this_reg].word = POP_FAILURE_ELT (); \
e318085a 1302 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
fa9a63c5 1303 \
faec11db 1304 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
e318085a 1305 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
fa9a63c5 1306 \
faec11db 1307 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
e318085a 1308 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
faec11db 1309 } \
6676cb1c
RS
1310 else \
1311 { \
1312 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1313 { \
4fcecab1 1314 reg_info[this_reg].word.integer = 0; \
6676cb1c
RS
1315 regend[this_reg] = 0; \
1316 regstart[this_reg] = 0; \
1317 } \
1318 highest_active_reg = high_reg; \
1319 } \
fa9a63c5
RM
1320 \
1321 set_regs_matched_done = 0; \
1322 DEBUG_STATEMENT (nfailure_points_popped++); \
1323} /* POP_FAILURE_POINT */
1324
1325
1326\f
1327/* Structure for per-register (a.k.a. per-group) information.
1328 Other register information, such as the
1329 starting and ending positions (which are addresses), and the list of
1330 inner groups (which is a bits list) are maintained in separate
5e69f11e
RM
1331 variables.
1332
fa9a63c5
RM
1333 We are making a (strictly speaking) nonportable assumption here: that
1334 the compiler will pack our bit fields into something that fits into
1335 the type of `word', i.e., is something that fits into one item on the
1336 failure stack. */
1337
1338typedef union
1339{
1340 fail_stack_elt_t word;
1341 struct
1342 {
1343 /* This field is one if this group can match the empty string,
e318085a 1344 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
fa9a63c5
RM
1345#define MATCH_NULL_UNSET_VALUE 3
1346 unsigned match_null_string_p : 2;
1347 unsigned is_active : 1;
1348 unsigned matched_something : 1;
1349 unsigned ever_matched_something : 1;
1350 } bits;
1351} register_info_type;
1352
1353#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1354#define IS_ACTIVE(R) ((R).bits.is_active)
1355#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1356#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1357
1358
1359/* Call this when have matched a real character; it sets `matched' flags
1360 for the subexpressions which we are currently inside. Also records
1361 that those subexprs have matched. */
1362#define SET_REGS_MATCHED() \
1363 do \
1364 { \
1365 if (!set_regs_matched_done) \
1366 { \
1367 unsigned r; \
1368 set_regs_matched_done = 1; \
1369 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1370 { \
1371 MATCHED_SOMETHING (reg_info[r]) \
1372 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1373 = 1; \
1374 } \
1375 } \
1376 } \
1377 while (0)
1378
1379/* Registers are set to a sentinel when they haven't yet matched. */
1380static char reg_unset_dummy;
1381#define REG_UNSET_VALUE (&reg_unset_dummy)
1382#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1383\f
1384/* Subroutine declarations and macros for regex_compile. */
1385
1386static void store_op1 (), store_op2 ();
1387static void insert_op1 (), insert_op2 ();
1388static boolean at_begline_loc_p (), at_endline_loc_p ();
1389static boolean group_in_compile_stack ();
1390static reg_errcode_t compile_range ();
1391
5e69f11e 1392/* Fetch the next character in the uncompiled pattern---translating it
fa9a63c5
RM
1393 if necessary. Also cast from a signed character in the constant
1394 string passed to us by the user to an unsigned char that we can use
1395 as an array index (in, e.g., `translate'). */
6676cb1c 1396#ifndef PATFETCH
fa9a63c5
RM
1397#define PATFETCH(c) \
1398 do {if (p == pend) return REG_EEND; \
1399 c = (unsigned char) *p++; \
6676cb1c 1400 if (translate) c = (unsigned char) translate[c]; \
fa9a63c5 1401 } while (0)
6676cb1c 1402#endif
fa9a63c5
RM
1403
1404/* Fetch the next character in the uncompiled pattern, with no
e318085a 1405 translation. */
fa9a63c5
RM
1406#define PATFETCH_RAW(c) \
1407 do {if (p == pend) return REG_EEND; \
e318085a 1408 c = (unsigned char) *p++; \
fa9a63c5
RM
1409 } while (0)
1410
1411/* Go backwards one character in the pattern. */
1412#define PATUNFETCH p--
1413
1414
1415/* If `translate' is non-null, return translate[D], else just D. We
1416 cast the subscript to translate because some data is declared as
1417 `char *', to avoid warnings when a string constant is passed. But
1418 when we use a character as a subscript we must make it unsigned. */
6676cb1c
RS
1419#ifndef TRANSLATE
1420#define TRANSLATE(d) \
1421 (translate ? (char) translate[(unsigned char) (d)] : (d))
1422#endif
fa9a63c5
RM
1423
1424
1425/* Macros for outputting the compiled pattern into `buffer'. */
1426
1427/* If the buffer isn't allocated when it comes in, use this. */
1428#define INIT_BUF_SIZE 32
1429
e318085a 1430/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5
RM
1431#define GET_BUFFER_SPACE(n) \
1432 while (b - bufp->buffer + (n) > bufp->allocated) \
1433 EXTEND_BUFFER ()
1434
1435/* Make sure we have one more byte of buffer space and then add C to it. */
1436#define BUF_PUSH(c) \
1437 do { \
1438 GET_BUFFER_SPACE (1); \
1439 *b++ = (unsigned char) (c); \
1440 } while (0)
1441
1442
1443/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1444#define BUF_PUSH_2(c1, c2) \
1445 do { \
1446 GET_BUFFER_SPACE (2); \
1447 *b++ = (unsigned char) (c1); \
1448 *b++ = (unsigned char) (c2); \
1449 } while (0)
1450
1451
e318085a 1452/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1453#define BUF_PUSH_3(c1, c2, c3) \
1454 do { \
1455 GET_BUFFER_SPACE (3); \
1456 *b++ = (unsigned char) (c1); \
1457 *b++ = (unsigned char) (c2); \
1458 *b++ = (unsigned char) (c3); \
1459 } while (0)
1460
1461
1462/* Store a jump with opcode OP at LOC to location TO. We store a
e318085a 1463 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1464#define STORE_JUMP(op, loc, to) \
1465 store_op1 (op, loc, (to) - (loc) - 3)
1466
1467/* Likewise, for a two-argument jump. */
1468#define STORE_JUMP2(op, loc, to, arg) \
1469 store_op2 (op, loc, (to) - (loc) - 3, arg)
1470
e318085a 1471/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1472#define INSERT_JUMP(op, loc, to) \
1473 insert_op1 (op, loc, (to) - (loc) - 3, b)
1474
1475/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1476#define INSERT_JUMP2(op, loc, to, arg) \
1477 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1478
1479
1480/* This is not an arbitrary limit: the arguments which represent offsets
e318085a 1481 into the pattern are two bytes long. So if 2^16 bytes turns out to
fa9a63c5
RM
1482 be too small, many things would have to change. */
1483#define MAX_BUF_SIZE (1L << 16)
1484
1485
1486/* Extend the buffer by twice its current size via realloc and
1487 reset the pointers that pointed into the old block to point to the
1488 correct places in the new one. If extending the buffer results in it
e318085a 1489 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
fa9a63c5 1490#define EXTEND_BUFFER() \
e318085a 1491 do { \
fa9a63c5 1492 unsigned char *old_buffer = bufp->buffer; \
e318085a 1493 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1494 return REG_ESIZE; \
1495 bufp->allocated <<= 1; \
1496 if (bufp->allocated > MAX_BUF_SIZE) \
e318085a 1497 bufp->allocated = MAX_BUF_SIZE; \
fa9a63c5
RM
1498 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1499 if (bufp->buffer == NULL) \
1500 return REG_ESPACE; \
1501 /* If the buffer moved, move all the pointers into it. */ \
1502 if (old_buffer != bufp->buffer) \
1503 { \
e318085a
RS
1504 b = (b - old_buffer) + bufp->buffer; \
1505 begalt = (begalt - old_buffer) + bufp->buffer; \
1506 if (fixup_alt_jump) \
1507 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1508 if (laststart) \
1509 laststart = (laststart - old_buffer) + bufp->buffer; \
1510 if (pending_exact) \
1511 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
fa9a63c5
RM
1512 } \
1513 } while (0)
1514
1515
1516/* Since we have one byte reserved for the register number argument to
1517 {start,stop}_memory, the maximum number of groups we can report
1518 things about is what fits in that byte. */
1519#define MAX_REGNUM 255
1520
1521/* But patterns can have more than `MAX_REGNUM' registers. We just
1522 ignore the excess. */
1523typedef unsigned regnum_t;
1524
1525
1526/* Macros for the compile stack. */
1527
1528/* Since offsets can go either forwards or backwards, this type needs to
e318085a 1529 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
fa9a63c5
RM
1530typedef int pattern_offset_t;
1531
1532typedef struct
1533{
1534 pattern_offset_t begalt_offset;
1535 pattern_offset_t fixup_alt_jump;
1536 pattern_offset_t inner_group_offset;
5e69f11e 1537 pattern_offset_t laststart_offset;
fa9a63c5
RM
1538 regnum_t regnum;
1539} compile_stack_elt_t;
1540
1541
1542typedef struct
1543{
1544 compile_stack_elt_t *stack;
1545 unsigned size;
1546 unsigned avail; /* Offset of next open position. */
1547} compile_stack_type;
1548
1549
1550#define INIT_COMPILE_STACK_SIZE 32
1551
1552#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1553#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1554
e318085a 1555/* The next available element. */
fa9a63c5
RM
1556#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1557
1558
1559/* Set the bit for character C in a list. */
e318085a
RS
1560#define SET_LIST_BIT(c) \
1561 (b[((unsigned char) (c)) / BYTEWIDTH] \
fa9a63c5
RM
1562 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1563
1564
1565/* Get the next unsigned number in the uncompiled pattern. */
e318085a 1566#define GET_UNSIGNED_NUMBER(num) \
fa9a63c5
RM
1567 { if (p != pend) \
1568 { \
e318085a
RS
1569 PATFETCH (c); \
1570 while (ISDIGIT (c)) \
1571 { \
1572 if (num < 0) \
1573 num = 0; \
1574 num = num * 10 + c - '0'; \
1575 if (p == pend) \
1576 break; \
1577 PATFETCH (c); \
1578 } \
1579 } \
5e69f11e 1580 }
fa9a63c5
RM
1581
1582#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1583
1584#define IS_CHAR_CLASS(string) \
1585 (STREQ (string, "alpha") || STREQ (string, "upper") \
1586 || STREQ (string, "lower") || STREQ (string, "digit") \
1587 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1588 || STREQ (string, "space") || STREQ (string, "print") \
1589 || STREQ (string, "punct") || STREQ (string, "graph") \
1590 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1591\f
1592#ifndef MATCH_MAY_ALLOCATE
1593
1594/* If we cannot allocate large objects within re_match_2_internal,
1595 we make the fail stack and register vectors global.
1596 The fail stack, we grow to the maximum size when a regexp
1597 is compiled.
1598 The register vectors, we adjust in size each time we
1599 compile a regexp, according to the number of registers it needs. */
1600
1601static fail_stack_type fail_stack;
1602
1603/* Size with which the following vectors are currently allocated.
1604 That is so we can make them bigger as needed,
e318085a 1605 but never make them smaller. */
fa9a63c5
RM
1606static int regs_allocated_size;
1607
e318085a 1608static const char ** regstart, ** regend;
fa9a63c5
RM
1609static const char ** old_regstart, ** old_regend;
1610static const char **best_regstart, **best_regend;
5e69f11e 1611static register_info_type *reg_info;
fa9a63c5
RM
1612static const char **reg_dummy;
1613static register_info_type *reg_info_dummy;
1614
1615/* Make the register vectors big enough for NUM_REGS registers,
e318085a 1616 but don't make them smaller. */
fa9a63c5
RM
1617
1618static
1619regex_grow_registers (num_regs)
1620 int num_regs;
1621{
1622 if (num_regs > regs_allocated_size)
1623 {
1624 RETALLOC_IF (regstart, num_regs, const char *);
1625 RETALLOC_IF (regend, num_regs, const char *);
1626 RETALLOC_IF (old_regstart, num_regs, const char *);
1627 RETALLOC_IF (old_regend, num_regs, const char *);
1628 RETALLOC_IF (best_regstart, num_regs, const char *);
1629 RETALLOC_IF (best_regend, num_regs, const char *);
1630 RETALLOC_IF (reg_info, num_regs, register_info_type);
1631 RETALLOC_IF (reg_dummy, num_regs, const char *);
1632 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1633
1634 regs_allocated_size = num_regs;
1635 }
1636}
1637
1638#endif /* not MATCH_MAY_ALLOCATE */
1639\f
1640/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1641 Returns one of error codes defined in `regex.h', or zero for success.
1642
1643 Assumes the `allocated' (and perhaps `buffer') and `translate'
1644 fields are set in BUFP on entry.
1645
1646 If it succeeds, results are put in BUFP (if it returns an error, the
1647 contents of BUFP are undefined):
1648 `buffer' is the compiled pattern;
1649 `syntax' is set to SYNTAX;
1650 `used' is set to the length of the compiled pattern;
1651 `fastmap_accurate' is zero;
1652 `re_nsub' is the number of subexpressions in PATTERN;
1653 `not_bol' and `not_eol' are zero;
5e69f11e 1654
fa9a63c5
RM
1655 The `fastmap' and `newline_anchor' fields are neither
1656 examined nor set. */
1657
1658/* Return, freeing storage we allocated. */
1659#define FREE_STACK_RETURN(value) \
1660 return (free (compile_stack.stack), value)
1661
1662static reg_errcode_t
1663regex_compile (pattern, size, syntax, bufp)
1664 const char *pattern;
1665 int size;
1666 reg_syntax_t syntax;
1667 struct re_pattern_buffer *bufp;
1668{
1669 /* We fetch characters from PATTERN here. Even though PATTERN is
1670 `char *' (i.e., signed), we declare these variables as unsigned, so
1671 they can be reliably used as array indices. */
1672 register unsigned char c, c1;
5e69f11e 1673
fa9a63c5
RM
1674 /* A random temporary spot in PATTERN. */
1675 const char *p1;
1676
1677 /* Points to the end of the buffer, where we should append. */
1678 register unsigned char *b;
5e69f11e 1679
fa9a63c5
RM
1680 /* Keeps track of unclosed groups. */
1681 compile_stack_type compile_stack;
1682
1683 /* Points to the current (ending) position in the pattern. */
1684 const char *p = pattern;
1685 const char *pend = pattern + size;
5e69f11e 1686
fa9a63c5 1687 /* How to translate the characters in the pattern. */
6676cb1c 1688 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
1689
1690 /* Address of the count-byte of the most recently inserted `exactn'
1691 command. This makes it possible to tell if a new exact-match
1692 character can be added to that command or if the character requires
1693 a new `exactn' command. */
1694 unsigned char *pending_exact = 0;
1695
1696 /* Address of start of the most recently finished expression.
1697 This tells, e.g., postfix * where to find the start of its
1698 operand. Reset at the beginning of groups and alternatives. */
1699 unsigned char *laststart = 0;
1700
1701 /* Address of beginning of regexp, or inside of last group. */
1702 unsigned char *begalt;
1703
1704 /* Place in the uncompiled pattern (i.e., the {) to
1705 which to go back if the interval is invalid. */
1706 const char *beg_interval;
5e69f11e 1707
fa9a63c5 1708 /* Address of the place where a forward jump should go to the end of
e318085a 1709 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
1710 last -- ends with a forward jump of this sort. */
1711 unsigned char *fixup_alt_jump = 0;
1712
1713 /* Counts open-groups as they are encountered. Remembered for the
1714 matching close-group on the compile stack, so the same register
1715 number is put in the stop_memory as the start_memory. */
1716 regnum_t regnum = 0;
1717
1718#ifdef DEBUG
1719 DEBUG_PRINT1 ("\nCompiling pattern: ");
1720 if (debug)
1721 {
1722 unsigned debug_count;
5e69f11e 1723
fa9a63c5 1724 for (debug_count = 0; debug_count < size; debug_count++)
e318085a 1725 putchar (pattern[debug_count]);
fa9a63c5
RM
1726 putchar ('\n');
1727 }
1728#endif /* DEBUG */
1729
1730 /* Initialize the compile stack. */
1731 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1732 if (compile_stack.stack == NULL)
1733 return REG_ESPACE;
1734
1735 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1736 compile_stack.avail = 0;
1737
1738 /* Initialize the pattern buffer. */
1739 bufp->syntax = syntax;
1740 bufp->fastmap_accurate = 0;
1741 bufp->not_bol = bufp->not_eol = 0;
1742
1743 /* Set `used' to zero, so that if we return an error, the pattern
1744 printer (for debugging) will think there's no pattern. We reset it
1745 at the end. */
1746 bufp->used = 0;
5e69f11e 1747
fa9a63c5 1748 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 1749 bufp->re_nsub = 0;
fa9a63c5
RM
1750
1751#if !defined (emacs) && !defined (SYNTAX_TABLE)
1752 /* Initialize the syntax table. */
1753 init_syntax_once ();
1754#endif
1755
1756 if (bufp->allocated == 0)
1757 {
1758 if (bufp->buffer)
1759 { /* If zero allocated, but buffer is non-null, try to realloc
e318085a
RS
1760 enough space. This loses if buffer's address is bogus, but
1761 that is the user's responsibility. */
1762 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1763 }
fa9a63c5 1764 else
e318085a
RS
1765 { /* Caller did not allocate a buffer. Do it for them. */
1766 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1767 }
fa9a63c5
RM
1768 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1769
1770 bufp->allocated = INIT_BUF_SIZE;
1771 }
1772
1773 begalt = b = bufp->buffer;
1774
1775 /* Loop through the uncompiled pattern until we're at the end. */
1776 while (p != pend)
1777 {
1778 PATFETCH (c);
1779
1780 switch (c)
e318085a
RS
1781 {
1782 case '^':
1783 {
1784 if ( /* If at start of pattern, it's an operator. */
1785 p == pattern + 1
1786 /* If context independent, it's an operator. */
1787 || syntax & RE_CONTEXT_INDEP_ANCHORS
1788 /* Otherwise, depends on what's come before. */
1789 || at_begline_loc_p (pattern, p, syntax))
1790 BUF_PUSH (begline);
1791 else
1792 goto normal_char;
1793 }
1794 break;
1795
1796
1797 case '$':
1798 {
1799 if ( /* If at end of pattern, it's an operator. */
1800 p == pend
1801 /* If context independent, it's an operator. */
1802 || syntax & RE_CONTEXT_INDEP_ANCHORS
1803 /* Otherwise, depends on what's next. */
1804 || at_endline_loc_p (p, pend, syntax))
1805 BUF_PUSH (endline);
1806 else
1807 goto normal_char;
1808 }
1809 break;
fa9a63c5
RM
1810
1811
1812 case '+':
e318085a
RS
1813 case '?':
1814 if ((syntax & RE_BK_PLUS_QM)
1815 || (syntax & RE_LIMITED_OPS))
1816 goto normal_char;
1817 handle_plus:
1818 case '*':
1819 /* If there is no previous pattern... */
1820 if (!laststart)
1821 {
1822 if (syntax & RE_CONTEXT_INVALID_OPS)
1823 FREE_STACK_RETURN (REG_BADRPT);
1824 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1825 goto normal_char;
1826 }
1827
1828 {
1829 /* Are we optimizing this jump? */
1830 boolean keep_string_p = false;
1831
1832 /* 1 means zero (many) matches is allowed. */
1833 char zero_times_ok = 0, many_times_ok = 0;
1834
1835 /* If there is a sequence of repetition chars, collapse it
1836 down to just one (the right one). We can't combine
1837 interval operators with these because of, e.g., `a{2}*',
1838 which should only match an even number of `a's. */
1839
1840 for (;;)
1841 {
1842 zero_times_ok |= c != '+';
1843 many_times_ok |= c != '?';
1844
1845 if (p == pend)
1846 break;
1847
1848 PATFETCH (c);
1849
1850 if (c == '*'
1851 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1852 ;
1853
1854 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1855 {
1856 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1857
1858 PATFETCH (c1);
1859 if (!(c1 == '+' || c1 == '?'))
1860 {
1861 PATUNFETCH;
1862 PATUNFETCH;
1863 break;
1864 }
1865
1866 c = c1;
1867 }
1868 else
1869 {
1870 PATUNFETCH;
1871 break;
1872 }
1873
1874 /* If we get here, we found another repeat character. */
1875 }
1876
1877 /* Star, etc. applied to an empty pattern is equivalent
1878 to an empty pattern. */
1879 if (!laststart)
1880 break;
1881
1882 /* Now we know whether or not zero matches is allowed
1883 and also whether or not two or more matches is allowed. */
1884 if (many_times_ok)
1885 { /* More than one repetition is allowed, so put in at the
1886 end a backward relative jump from `b' to before the next
1887 jump we're going to put in below (which jumps from
1888 laststart to after this jump).
1889
1890 But if we are at the `*' in the exact sequence `.*\n',
1891 insert an unconditional jump backwards to the .,
1892 instead of the beginning of the loop. This way we only
1893 push a failure point once, instead of every time
1894 through the loop. */
1895 assert (p - 1 > pattern);
1896
1897 /* Allocate the space for the jump. */
1898 GET_BUFFER_SPACE (3);
1899
1900 /* We know we are not at the first character of the pattern,
1901 because laststart was nonzero. And we've already
1902 incremented `p', by the way, to be the character after
1903 the `*'. Do we have to do something analogous here
1904 for null bytes, because of RE_DOT_NOT_NULL? */
1905 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
fa9a63c5 1906 && zero_times_ok
e318085a
RS
1907 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1908 && !(syntax & RE_DOT_NEWLINE))
1909 { /* We have .*\n. */
1910 STORE_JUMP (jump, b, laststart);
1911 keep_string_p = true;
1912 }
1913 else
1914 /* Anything else. */
1915 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1916
1917 /* We've added more stuff to the buffer. */
1918 b += 3;
1919 }
1920
1921 /* On failure, jump from laststart to b + 3, which will be the
1922 end of the buffer after this jump is inserted. */
1923 GET_BUFFER_SPACE (3);
1924 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1925 : on_failure_jump,
1926 laststart, b + 3);
1927 pending_exact = 0;
1928 b += 3;
1929
1930 if (!zero_times_ok)
1931 {
1932 /* At least one repetition is required, so insert a
1933 `dummy_failure_jump' before the initial
1934 `on_failure_jump' instruction of the loop. This
1935 effects a skip over that instruction the first time
1936 we hit that loop. */
1937 GET_BUFFER_SPACE (3);
1938 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1939 b += 3;
1940 }
1941 }
fa9a63c5
RM
1942 break;
1943
1944
1945 case '.':
e318085a
RS
1946 laststart = b;
1947 BUF_PUSH (anychar);
1948 break;
fa9a63c5
RM
1949
1950
e318085a
RS
1951 case '[':
1952 {
1953 boolean had_char_class = false;
fa9a63c5 1954
e318085a 1955 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 1956
e318085a
RS
1957 /* Ensure that we have enough space to push a charset: the
1958 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
1959 GET_BUFFER_SPACE (34);
1960
e318085a
RS
1961 laststart = b;
1962
1963 /* We test `*p == '^' twice, instead of using an if
1964 statement, so we only need one BUF_PUSH. */
1965 BUF_PUSH (*p == '^' ? charset_not : charset);
1966 if (*p == '^')
1967 p++;
1968
1969 /* Remember the first position in the bracket expression. */
1970 p1 = p;
1971
1972 /* Push the number of bytes in the bitmap. */
1973 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1974
1975 /* Clear the whole map. */
1976 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1977
1978 /* charset_not matches newline according to a syntax bit. */
1979 if ((re_opcode_t) b[-2] == charset_not
1980 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1981 SET_LIST_BIT ('\n');
1982
1983 /* Read in characters and ranges, setting map bits. */
1984 for (;;)
1985 {
1986 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1987
1988 PATFETCH (c);
1989
1990 /* \ might escape characters inside [...] and [^...]. */
1991 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1992 {
1993 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1994
1995 PATFETCH (c1);
1996 SET_LIST_BIT (c1);
1997 continue;
1998 }
1999
2000 /* Could be the end of the bracket expression. If it's
2001 not (i.e., when the bracket expression is `[]' so
2002 far), the ']' character bit gets set way below. */
2003 if (c == ']' && p != p1 + 1)
2004 break;
2005
2006 /* Look ahead to see if it's a range when the last thing
2007 was a character class. */
2008 if (had_char_class && c == '-' && *p != ']')
2009 FREE_STACK_RETURN (REG_ERANGE);
2010
2011 /* Look ahead to see if it's a range when the last thing
2012 was a character: if this is a hyphen not at the
2013 beginning or the end of a list, then it's the range
2014 operator. */
2015 if (c == '-'
2016 && !(p - 2 >= pattern && p[-2] == '[')
2017 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2018 && *p != ']')
2019 {
2020 reg_errcode_t ret
2021 = compile_range (&p, pend, translate, syntax, b);
2022 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2023 }
2024
2025 else if (p[0] == '-' && p[1] != ']')
2026 { /* This handles ranges made up of characters only. */
2027 reg_errcode_t ret;
fa9a63c5
RM
2028
2029 /* Move past the `-'. */
e318085a
RS
2030 PATFETCH (c1);
2031
2032 ret = compile_range (&p, pend, translate, syntax, b);
2033 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2034 }
2035
2036 /* See if we're at the beginning of a possible character
2037 class. */
2038
2039 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2040 { /* Leave room for the null. */
2041 char str[CHAR_CLASS_MAX_LENGTH + 1];
2042
2043 PATFETCH (c);
2044 c1 = 0;
2045
2046 /* If pattern is `[[:'. */
2047 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2048
2049 for (;;)
2050 {
2051 PATFETCH (c);
2052 if (c == ':' || c == ']' || p == pend
2053 || c1 == CHAR_CLASS_MAX_LENGTH)
2054 break;
2055 str[c1++] = c;
2056 }
2057 str[c1] = '\0';
2058
2059 /* If isn't a word bracketed by `[:' and:`]':
2060 undo the ending character, the letters, and leave
2061 the leading `:' and `[' (but set bits for them). */
2062 if (c == ':' && *p == ']')
2063 {
2064 int ch;
2065 boolean is_alnum = STREQ (str, "alnum");
2066 boolean is_alpha = STREQ (str, "alpha");
2067 boolean is_blank = STREQ (str, "blank");
2068 boolean is_cntrl = STREQ (str, "cntrl");
2069 boolean is_digit = STREQ (str, "digit");
2070 boolean is_graph = STREQ (str, "graph");
2071 boolean is_lower = STREQ (str, "lower");
2072 boolean is_print = STREQ (str, "print");
2073 boolean is_punct = STREQ (str, "punct");
2074 boolean is_space = STREQ (str, "space");
2075 boolean is_upper = STREQ (str, "upper");
2076 boolean is_xdigit = STREQ (str, "xdigit");
2077
2078 if (!IS_CHAR_CLASS (str))
fa9a63c5
RM
2079 FREE_STACK_RETURN (REG_ECTYPE);
2080
e318085a
RS
2081 /* Throw away the ] at the end of the character
2082 class. */
2083 PATFETCH (c);
fa9a63c5 2084
e318085a 2085 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2086
e318085a
RS
2087 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2088 {
7ae68633 2089 int translated = TRANSLATE (ch);
fa9a63c5
RM
2090 /* This was split into 3 if's to
2091 avoid an arbitrary limit in some compiler. */
e318085a
RS
2092 if ( (is_alnum && ISALNUM (ch))
2093 || (is_alpha && ISALPHA (ch))
2094 || (is_blank && ISBLANK (ch))
2095 || (is_cntrl && ISCNTRL (ch)))
7ae68633 2096 SET_LIST_BIT (translated);
fa9a63c5 2097 if ( (is_digit && ISDIGIT (ch))
e318085a
RS
2098 || (is_graph && ISGRAPH (ch))
2099 || (is_lower && ISLOWER (ch))
2100 || (is_print && ISPRINT (ch)))
7ae68633 2101 SET_LIST_BIT (translated);
fa9a63c5 2102 if ( (is_punct && ISPUNCT (ch))
e318085a
RS
2103 || (is_space && ISSPACE (ch))
2104 || (is_upper && ISUPPER (ch))
2105 || (is_xdigit && ISXDIGIT (ch)))
7ae68633 2106 SET_LIST_BIT (translated);
e318085a
RS
2107 }
2108 had_char_class = true;
2109 }
2110 else
2111 {
2112 c1++;
2113 while (c1--)
2114 PATUNFETCH;
2115 SET_LIST_BIT ('[');
2116 SET_LIST_BIT (':');
2117 had_char_class = false;
2118 }
2119 }
2120 else
2121 {
2122 had_char_class = false;
2123 SET_LIST_BIT (c);
2124 }
2125 }
2126
2127 /* Discard any (non)matching list bytes that are all 0 at the
2128 end of the map. Decrease the map-length byte too. */
2129 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2130 b[-1]--;
2131 b += b[-1];
2132 }
2133 break;
fa9a63c5
RM
2134
2135
2136 case '(':
e318085a
RS
2137 if (syntax & RE_NO_BK_PARENS)
2138 goto handle_open;
2139 else
2140 goto normal_char;
fa9a63c5
RM
2141
2142
e318085a
RS
2143 case ')':
2144 if (syntax & RE_NO_BK_PARENS)
2145 goto handle_close;
2146 else
2147 goto normal_char;
fa9a63c5
RM
2148
2149
e318085a
RS
2150 case '\n':
2151 if (syntax & RE_NEWLINE_ALT)
2152 goto handle_alt;
2153 else
2154 goto normal_char;
fa9a63c5
RM
2155
2156
2157 case '|':
e318085a
RS
2158 if (syntax & RE_NO_BK_VBAR)
2159 goto handle_alt;
2160 else
2161 goto normal_char;
2162
2163
2164 case '{':
2165 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2166 goto handle_interval;
2167 else
2168 goto normal_char;
2169
2170
2171 case '\\':
2172 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2173
2174 /* Do not translate the character after the \, so that we can
2175 distinguish, e.g., \B from \b, even if we normally would
2176 translate, e.g., B to b. */
2177 PATFETCH_RAW (c);
2178
2179 switch (c)
2180 {
2181 case '(':
2182 if (syntax & RE_NO_BK_PARENS)
2183 goto normal_backslash;
2184
2185 handle_open:
2186 bufp->re_nsub++;
2187 regnum++;
2188
2189 if (COMPILE_STACK_FULL)
2190 {
2191 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2192 compile_stack_elt_t);
2193 if (compile_stack.stack == NULL) return REG_ESPACE;
2194
2195 compile_stack.size <<= 1;
2196 }
2197
2198 /* These are the values to restore when we hit end of this
2199 group. They are all relative offsets, so that if the
2200 whole pattern moves because of realloc, they will still
2201 be valid. */
2202 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2203 COMPILE_STACK_TOP.fixup_alt_jump
2204 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2205 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2206 COMPILE_STACK_TOP.regnum = regnum;
2207
2208 /* We will eventually replace the 0 with the number of
2209 groups inner to this one. But do not push a
2210 start_memory for groups beyond the last one we can
2211 represent in the compiled pattern. */
2212 if (regnum <= MAX_REGNUM)
2213 {
2214 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2215 BUF_PUSH_3 (start_memory, regnum, 0);
2216 }
2217
2218 compile_stack.avail++;
2219
2220 fixup_alt_jump = 0;
2221 laststart = 0;
2222 begalt = b;
fa9a63c5
RM
2223 /* If we've reached MAX_REGNUM groups, then this open
2224 won't actually generate any code, so we'll have to
2225 clear pending_exact explicitly. */
2226 pending_exact = 0;
e318085a
RS
2227 break;
2228
2229
2230 case ')':
2231 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2232
2233 if (COMPILE_STACK_EMPTY)
2234 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2235 goto normal_backslash;
2236 else
2237 FREE_STACK_RETURN (REG_ERPAREN);
2238
2239 handle_close:
2240 if (fixup_alt_jump)
2241 { /* Push a dummy failure point at the end of the
2242 alternative for a possible future
2243 `pop_failure_jump' to pop. See comments at
2244 `push_dummy_failure' in `re_match_2'. */
2245 BUF_PUSH (push_dummy_failure);
2246
2247 /* We allocated space for this jump when we assigned
2248 to `fixup_alt_jump', in the `handle_alt' case below. */
2249 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2250 }
2251
2252 /* See similar code for backslashed left paren above. */
2253 if (COMPILE_STACK_EMPTY)
2254 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2255 goto normal_char;
2256 else
2257 FREE_STACK_RETURN (REG_ERPAREN);
2258
2259 /* Since we just checked for an empty stack above, this
2260 ``can't happen''. */
2261 assert (compile_stack.avail != 0);
2262 {
2263 /* We don't just want to restore into `regnum', because
2264 later groups should continue to be numbered higher,
2265 as in `(ab)c(de)' -- the second group is #2. */
2266 regnum_t this_group_regnum;
2267
2268 compile_stack.avail--;
2269 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2270 fixup_alt_jump
2271 = COMPILE_STACK_TOP.fixup_alt_jump
2272 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2273 : 0;
2274 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2275 this_group_regnum = COMPILE_STACK_TOP.regnum;
fa9a63c5
RM
2276 /* If we've reached MAX_REGNUM groups, then this open
2277 won't actually generate any code, so we'll have to
2278 clear pending_exact explicitly. */
2279 pending_exact = 0;
2280
e318085a
RS
2281 /* We're at the end of the group, so now we know how many
2282 groups were inside this one. */
2283 if (this_group_regnum <= MAX_REGNUM)
2284 {
2285 unsigned char *inner_group_loc
2286 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2287
2288 *inner_group_loc = regnum - this_group_regnum;
2289 BUF_PUSH_3 (stop_memory, this_group_regnum,
2290 regnum - this_group_regnum);
2291 }
2292 }
2293 break;
2294
2295
2296 case '|': /* `\|'. */
2297 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2298 goto normal_backslash;
2299 handle_alt:
2300 if (syntax & RE_LIMITED_OPS)
2301 goto normal_char;
2302
2303 /* Insert before the previous alternative a jump which
2304 jumps to this alternative if the former fails. */
2305 GET_BUFFER_SPACE (3);
2306 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2307 pending_exact = 0;
2308 b += 3;
2309
2310 /* The alternative before this one has a jump after it
2311 which gets executed if it gets matched. Adjust that
2312 jump so it will jump to this alternative's analogous
2313 jump (put in below, which in turn will jump to the next
2314 (if any) alternative's such jump, etc.). The last such
2315 jump jumps to the correct final destination. A picture:
2316 _____ _____
2317 | | | |
2318 | v | v
2319 a | b | c
2320
2321 If we are at `b', then fixup_alt_jump right now points to a
2322 three-byte space after `a'. We'll put in the jump, set
2323 fixup_alt_jump to right after `b', and leave behind three
2324 bytes which we'll fill in when we get to after `c'. */
2325
2326 if (fixup_alt_jump)
2327 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2328
2329 /* Mark and leave space for a jump after this alternative,
2330 to be filled in later either by next alternative or
2331 when know we're at the end of a series of alternatives. */
2332 fixup_alt_jump = b;
2333 GET_BUFFER_SPACE (3);
2334 b += 3;
2335
2336 laststart = 0;
2337 begalt = b;
2338 break;
2339
2340
2341 case '{':
2342 /* If \{ is a literal. */
2343 if (!(syntax & RE_INTERVALS)
2344 /* If we're at `\{' and it's not the open-interval
2345 operator. */
2346 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2347 || (p - 2 == pattern && p == pend))
2348 goto normal_backslash;
2349
2350 handle_interval:
2351 {
2352 /* If got here, then the syntax allows intervals. */
2353
2354 /* At least (most) this many matches must be made. */
2355 int lower_bound = -1, upper_bound = -1;
2356
2357 beg_interval = p - 1;
2358
2359 if (p == pend)
2360 {
2361 if (syntax & RE_NO_BK_BRACES)
2362 goto unfetch_interval;
2363 else
2364 FREE_STACK_RETURN (REG_EBRACE);
2365 }
2366
2367 GET_UNSIGNED_NUMBER (lower_bound);
2368
2369 if (c == ',')
2370 {
2371 GET_UNSIGNED_NUMBER (upper_bound);
2372 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2373 }
2374 else
2375 /* Interval such as `{1}' => match exactly once. */
2376 upper_bound = lower_bound;
2377
2378 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2379 || lower_bound > upper_bound)
2380 {
2381 if (syntax & RE_NO_BK_BRACES)
2382 goto unfetch_interval;
2383 else
2384 FREE_STACK_RETURN (REG_BADBR);
2385 }
2386
2387 if (!(syntax & RE_NO_BK_BRACES))
2388 {
2389 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2390
2391 PATFETCH (c);
2392 }
2393
2394 if (c != '}')
2395 {
2396 if (syntax & RE_NO_BK_BRACES)
2397 goto unfetch_interval;
2398 else
2399 FREE_STACK_RETURN (REG_BADBR);
2400 }
2401
2402 /* We just parsed a valid interval. */
2403
2404 /* If it's invalid to have no preceding re. */
2405 if (!laststart)
2406 {
2407 if (syntax & RE_CONTEXT_INVALID_OPS)
2408 FREE_STACK_RETURN (REG_BADRPT);
2409 else if (syntax & RE_CONTEXT_INDEP_OPS)
2410 laststart = b;
2411 else
2412 goto unfetch_interval;
2413 }
2414
2415 /* If the upper bound is zero, don't want to succeed at
2416 all; jump from `laststart' to `b + 3', which will be
2417 the end of the buffer after we insert the jump. */
2418 if (upper_bound == 0)
2419 {
2420 GET_BUFFER_SPACE (3);
2421 INSERT_JUMP (jump, laststart, b + 3);
2422 b += 3;
2423 }
2424
2425 /* Otherwise, we have a nontrivial interval. When
2426 we're all done, the pattern will look like:
2427 set_number_at <jump count> <upper bound>
2428 set_number_at <succeed_n count> <lower bound>
2429 succeed_n <after jump addr> <succeed_n count>
2430 <body of loop>
2431 jump_n <succeed_n addr> <jump count>
2432 (The upper bound and `jump_n' are omitted if
2433 `upper_bound' is 1, though.) */
2434 else
2435 { /* If the upper bound is > 1, we need to insert
2436 more at the end of the loop. */
2437 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2438
2439 GET_BUFFER_SPACE (nbytes);
2440
2441 /* Initialize lower bound of the `succeed_n', even
2442 though it will be set during matching by its
2443 attendant `set_number_at' (inserted next),
2444 because `re_compile_fastmap' needs to know.
2445 Jump to the `jump_n' we might insert below. */
2446 INSERT_JUMP2 (succeed_n, laststart,
2447 b + 5 + (upper_bound > 1) * 5,
2448 lower_bound);
2449 b += 5;
2450
2451 /* Code to initialize the lower bound. Insert
2452 before the `succeed_n'. The `5' is the last two
2453 bytes of this `set_number_at', plus 3 bytes of
2454 the following `succeed_n'. */
2455 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2456 b += 5;
2457
2458 if (upper_bound > 1)
2459 { /* More than one repetition is allowed, so
2460 append a backward jump to the `succeed_n'
2461 that starts this interval.
2462
2463 When we've reached this during matching,
2464 we'll have matched the interval once, so
2465 jump back only `upper_bound - 1' times. */
2466 STORE_JUMP2 (jump_n, b, laststart + 5,
2467 upper_bound - 1);
2468 b += 5;
2469
2470 /* The location we want to set is the second
2471 parameter of the `jump_n'; that is `b-2' as
2472 an absolute address. `laststart' will be
2473 the `set_number_at' we're about to insert;
2474 `laststart+3' the number to set, the source
2475 for the relative address. But we are
2476 inserting into the middle of the pattern --
2477 so everything is getting moved up by 5.
2478 Conclusion: (b - 2) - (laststart + 3) + 5,
2479 i.e., b - laststart.
2480
2481 We insert this at the beginning of the loop
2482 so that if we fail during matching, we'll
2483 reinitialize the bounds. */
2484 insert_op2 (set_number_at, laststart, b - laststart,
2485 upper_bound - 1, b);
2486 b += 5;
2487 }
2488 }
2489 pending_exact = 0;
2490 beg_interval = NULL;
2491 }
2492 break;
2493
2494 unfetch_interval:
2495 /* If an invalid interval, match the characters as literals. */
2496 assert (beg_interval);
2497 p = beg_interval;
2498 beg_interval = NULL;
2499
2500 /* normal_char and normal_backslash need `c'. */
2501 PATFETCH (c);
2502
2503 if (!(syntax & RE_NO_BK_BRACES))
2504 {
2505 if (p > pattern && p[-1] == '\\')
2506 goto normal_backslash;
2507 }
2508 goto normal_char;
fa9a63c5
RM
2509
2510#ifdef emacs
e318085a
RS
2511 /* There is no way to specify the before_dot and after_dot
2512 operators. rms says this is ok. --karl */
2513 case '=':
2514 BUF_PUSH (at_dot);
2515 break;
2516
2517 case 's':
2518 laststart = b;
2519 PATFETCH (c);
2520 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2521 break;
2522
2523 case 'S':
2524 laststart = b;
2525 PATFETCH (c);
2526 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2527 break;
fa9a63c5
RM
2528#endif /* emacs */
2529
2530
e318085a
RS
2531 case 'w':
2532 laststart = b;
2533 BUF_PUSH (wordchar);
2534 break;
fa9a63c5 2535
fa9a63c5 2536
e318085a
RS
2537 case 'W':
2538 laststart = b;
2539 BUF_PUSH (notwordchar);
2540 break;
fa9a63c5 2541
fa9a63c5 2542
e318085a
RS
2543 case '<':
2544 BUF_PUSH (wordbeg);
2545 break;
fa9a63c5 2546
e318085a
RS
2547 case '>':
2548 BUF_PUSH (wordend);
2549 break;
fa9a63c5 2550
e318085a
RS
2551 case 'b':
2552 BUF_PUSH (wordbound);
2553 break;
fa9a63c5 2554
e318085a
RS
2555 case 'B':
2556 BUF_PUSH (notwordbound);
2557 break;
fa9a63c5 2558
e318085a
RS
2559 case '`':
2560 BUF_PUSH (begbuf);
2561 break;
fa9a63c5 2562
e318085a
RS
2563 case '\'':
2564 BUF_PUSH (endbuf);
2565 break;
fa9a63c5 2566
e318085a
RS
2567 case '1': case '2': case '3': case '4': case '5':
2568 case '6': case '7': case '8': case '9':
2569 if (syntax & RE_NO_BK_REFS)
2570 goto normal_char;
fa9a63c5 2571
e318085a 2572 c1 = c - '0';
fa9a63c5 2573
e318085a
RS
2574 if (c1 > regnum)
2575 FREE_STACK_RETURN (REG_ESUBREG);
fa9a63c5 2576
e318085a
RS
2577 /* Can't back reference to a subexpression if inside of it. */
2578 if (group_in_compile_stack (compile_stack, c1))
2579 goto normal_char;
fa9a63c5 2580
e318085a
RS
2581 laststart = b;
2582 BUF_PUSH_2 (duplicate, c1);
2583 break;
fa9a63c5 2584
fa9a63c5 2585
e318085a
RS
2586 case '+':
2587 case '?':
2588 if (syntax & RE_BK_PLUS_QM)
2589 goto handle_plus;
2590 else
2591 goto normal_backslash;
2592
2593 default:
2594 normal_backslash:
2595 /* You might think it would be useful for \ to mean
2596 not to translate; but if we don't translate it
2597 it will never match anything. */
2598 c = TRANSLATE (c);
2599 goto normal_char;
2600 }
2601 break;
fa9a63c5
RM
2602
2603
2604 default:
e318085a 2605 /* Expects the character in `c'. */
fa9a63c5
RM
2606 normal_char:
2607 /* If no exactn currently being built. */
e318085a 2608 if (!pending_exact
fa9a63c5 2609
e318085a
RS
2610 /* If last exactn not at current position. */
2611 || pending_exact + *pending_exact + 1 != b
5e69f11e 2612
e318085a 2613 /* We have only one byte following the exactn for the count. */
fa9a63c5
RM
2614 || *pending_exact == (1 << BYTEWIDTH) - 1
2615
e318085a
RS
2616 /* If followed by a repetition operator. */
2617 || *p == '*' || *p == '^'
fa9a63c5
RM
2618 || ((syntax & RE_BK_PLUS_QM)
2619 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2620 : (*p == '+' || *p == '?'))
2621 || ((syntax & RE_INTERVALS)
e318085a 2622 && ((syntax & RE_NO_BK_BRACES)
fa9a63c5 2623 ? *p == '{'
e318085a 2624 : (p[0] == '\\' && p[1] == '{'))))
fa9a63c5
RM
2625 {
2626 /* Start building a new exactn. */
5e69f11e 2627
e318085a 2628 laststart = b;
fa9a63c5
RM
2629
2630 BUF_PUSH_2 (exactn, 0);
2631 pending_exact = b - 1;
e318085a 2632 }
5e69f11e 2633
fa9a63c5 2634 BUF_PUSH (c);
e318085a 2635 (*pending_exact)++;
fa9a63c5 2636 break;
e318085a 2637 } /* switch (c) */
fa9a63c5
RM
2638 } /* while p != pend */
2639
5e69f11e 2640
fa9a63c5 2641 /* Through the pattern now. */
5e69f11e 2642
fa9a63c5
RM
2643 if (fixup_alt_jump)
2644 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2645
5e69f11e 2646 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
2647 FREE_STACK_RETURN (REG_EPAREN);
2648
2649 /* If we don't want backtracking, force success
2650 the first time we reach the end of the compiled pattern. */
2651 if (syntax & RE_NO_POSIX_BACKTRACKING)
2652 BUF_PUSH (succeed);
2653
2654 free (compile_stack.stack);
2655
2656 /* We have succeeded; set the length of the buffer. */
2657 bufp->used = b - bufp->buffer;
2658
2659#ifdef DEBUG
2660 if (debug)
2661 {
2662 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2663 print_compiled_pattern (bufp);
2664 }
2665#endif /* DEBUG */
2666
2667#ifndef MATCH_MAY_ALLOCATE
2668 /* Initialize the failure stack to the largest possible stack. This
2669 isn't necessary unless we're trying to avoid calling alloca in
2670 the search and match routines. */
2671 {
2672 int num_regs = bufp->re_nsub + 1;
2673
2674 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2675 is strictly greater than re_max_failures, the largest possible stack
2676 is 2 * re_max_failures failure points. */
2677 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2678 {
2679 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2680
2681#ifdef emacs
2682 if (! fail_stack.stack)
2683 fail_stack.stack
5e69f11e 2684 = (fail_stack_elt_t *) xmalloc (fail_stack.size
fa9a63c5
RM
2685 * sizeof (fail_stack_elt_t));
2686 else
2687 fail_stack.stack
2688 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2689 (fail_stack.size
2690 * sizeof (fail_stack_elt_t)));
2691#else /* not emacs */
2692 if (! fail_stack.stack)
2693 fail_stack.stack
5e69f11e 2694 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
2695 * sizeof (fail_stack_elt_t));
2696 else
2697 fail_stack.stack
2698 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2699 (fail_stack.size
2700 * sizeof (fail_stack_elt_t)));
2701#endif /* not emacs */
2702 }
2703
2704 regex_grow_registers (num_regs);
2705 }
2706#endif /* not MATCH_MAY_ALLOCATE */
2707
2708 return REG_NOERROR;
2709} /* regex_compile */
2710\f
2711/* Subroutines for `regex_compile'. */
2712
e318085a 2713/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
2714
2715static void
2716store_op1 (op, loc, arg)
2717 re_opcode_t op;
2718 unsigned char *loc;
2719 int arg;
2720{
2721 *loc = (unsigned char) op;
2722 STORE_NUMBER (loc + 1, arg);
2723}
2724
2725
2726/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2727
2728static void
2729store_op2 (op, loc, arg1, arg2)
2730 re_opcode_t op;
2731 unsigned char *loc;
2732 int arg1, arg2;
2733{
2734 *loc = (unsigned char) op;
2735 STORE_NUMBER (loc + 1, arg1);
2736 STORE_NUMBER (loc + 3, arg2);
2737}
2738
2739
2740/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2741 for OP followed by two-byte integer parameter ARG. */
2742
2743static void
2744insert_op1 (op, loc, arg, end)
2745 re_opcode_t op;
2746 unsigned char *loc;
2747 int arg;
5e69f11e 2748 unsigned char *end;
fa9a63c5
RM
2749{
2750 register unsigned char *pfrom = end;
2751 register unsigned char *pto = end + 3;
2752
2753 while (pfrom != loc)
2754 *--pto = *--pfrom;
5e69f11e 2755
fa9a63c5
RM
2756 store_op1 (op, loc, arg);
2757}
2758
2759
2760/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2761
2762static void
2763insert_op2 (op, loc, arg1, arg2, end)
2764 re_opcode_t op;
2765 unsigned char *loc;
2766 int arg1, arg2;
5e69f11e 2767 unsigned char *end;
fa9a63c5
RM
2768{
2769 register unsigned char *pfrom = end;
2770 register unsigned char *pto = end + 5;
2771
2772 while (pfrom != loc)
2773 *--pto = *--pfrom;
5e69f11e 2774
fa9a63c5
RM
2775 store_op2 (op, loc, arg1, arg2);
2776}
2777
2778
2779/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2780 after an alternative or a begin-subexpression. We assume there is at
2781 least one character before the ^. */
2782
2783static boolean
2784at_begline_loc_p (pattern, p, syntax)
2785 const char *pattern, *p;
2786 reg_syntax_t syntax;
2787{
2788 const char *prev = p - 2;
2789 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 2790
fa9a63c5
RM
2791 return
2792 /* After a subexpression? */
2793 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
e318085a 2794 /* After an alternative? */
fa9a63c5
RM
2795 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2796}
2797
2798
2799/* The dual of at_begline_loc_p. This one is for $. We assume there is
2800 at least one character after the $, i.e., `P < PEND'. */
2801
2802static boolean
2803at_endline_loc_p (p, pend, syntax)
2804 const char *p, *pend;
2805 int syntax;
2806{
2807 const char *next = p;
2808 boolean next_backslash = *next == '\\';
5bb52971 2809 const char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 2810
fa9a63c5
RM
2811 return
2812 /* Before a subexpression? */
2813 (syntax & RE_NO_BK_PARENS ? *next == ')'
e318085a 2814 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
2815 /* Before an alternative? */
2816 || (syntax & RE_NO_BK_VBAR ? *next == '|'
e318085a 2817 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
2818}
2819
2820
5e69f11e 2821/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
2822 false if it's not. */
2823
2824static boolean
2825group_in_compile_stack (compile_stack, regnum)
2826 compile_stack_type compile_stack;
2827 regnum_t regnum;
2828{
2829 int this_element;
2830
5e69f11e
RM
2831 for (this_element = compile_stack.avail - 1;
2832 this_element >= 0;
fa9a63c5
RM
2833 this_element--)
2834 if (compile_stack.stack[this_element].regnum == regnum)
2835 return true;
2836
2837 return false;
2838}
2839
2840
2841/* Read the ending character of a range (in a bracket expression) from the
2842 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2843 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2844 Then we set the translation of all bits between the starting and
2845 ending characters (inclusive) in the compiled pattern B.
5e69f11e 2846
fa9a63c5 2847 Return an error code.
5e69f11e 2848
fa9a63c5
RM
2849 We use these short variable names so we can use the same macros as
2850 `regex_compile' itself. */
2851
2852static reg_errcode_t
2853compile_range (p_ptr, pend, translate, syntax, b)
2854 const char **p_ptr, *pend;
6676cb1c 2855 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
2856 reg_syntax_t syntax;
2857 unsigned char *b;
2858{
2859 unsigned this_char;
2860
2861 const char *p = *p_ptr;
2862 int range_start, range_end;
5e69f11e 2863
fa9a63c5
RM
2864 if (p == pend)
2865 return REG_ERANGE;
2866
2867 /* Even though the pattern is a signed `char *', we need to fetch
2868 with unsigned char *'s; if the high bit of the pattern character
2869 is set, the range endpoints will be negative if we fetch using a
2870 signed char *.
2871
5e69f11e 2872 We also want to fetch the endpoints without translating them; the
fa9a63c5
RM
2873 appropriate translation is done in the bit-setting loop below. */
2874 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
2875 range_start = ((const unsigned char *) p)[-2];
2876 range_end = ((const unsigned char *) p)[0];
2877
2878 /* Have to increment the pointer into the pattern string, so the
2879 caller isn't still at the ending character. */
2880 (*p_ptr)++;
2881
e318085a 2882 /* If the start is after the end, the range is empty. */
fa9a63c5
RM
2883 if (range_start > range_end)
2884 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2885
2886 /* Here we see why `this_char' has to be larger than an `unsigned
2887 char' -- the range is inclusive, so if `range_end' == 0xff
2888 (assuming 8-bit characters), we would otherwise go into an infinite
2889 loop, since all characters <= 0xff. */
2890 for (this_char = range_start; this_char <= range_end; this_char++)
2891 {
2892 SET_LIST_BIT (TRANSLATE (this_char));
2893 }
5e69f11e 2894
fa9a63c5
RM
2895 return REG_NOERROR;
2896}
2897\f
2898/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2899 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2900 characters can start a string that matches the pattern. This fastmap
2901 is used by re_search to skip quickly over impossible starting points.
2902
2903 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2904 area as BUFP->fastmap.
5e69f11e 2905
fa9a63c5
RM
2906 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2907 the pattern buffer.
2908
2909 Returns 0 if we succeed, -2 if an internal error. */
2910
2911int
2912re_compile_fastmap (bufp)
2913 struct re_pattern_buffer *bufp;
2914{
2915 int j, k;
2916#ifdef MATCH_MAY_ALLOCATE
2917 fail_stack_type fail_stack;
2918#endif
2919#ifndef REGEX_MALLOC
2920 char *destination;
2921#endif
2922 /* We don't push any register information onto the failure stack. */
2923 unsigned num_regs = 0;
5e69f11e 2924
fa9a63c5
RM
2925 register char *fastmap = bufp->fastmap;
2926 unsigned char *pattern = bufp->buffer;
2927 unsigned long size = bufp->used;
2928 unsigned char *p = pattern;
2929 register unsigned char *pend = pattern + size;
2930
2931 /* This holds the pointer to the failure stack, when
2932 it is allocated relocatably. */
2933 fail_stack_elt_t *failure_stack_ptr;
2934
2935 /* Assume that each path through the pattern can be null until
e318085a 2936 proven otherwise. We set this false at the bottom of switch
fa9a63c5
RM
2937 statement, to which we get only if a particular path doesn't
2938 match the empty string. */
2939 boolean path_can_be_null = true;
2940
2941 /* We aren't doing a `succeed_n' to begin with. */
2942 boolean succeed_n_p = false;
2943
2944 assert (fastmap != NULL && p != NULL);
5e69f11e 2945
fa9a63c5 2946 INIT_FAIL_STACK ();
e318085a 2947 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
fa9a63c5
RM
2948 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2949 bufp->can_be_null = 0;
5e69f11e 2950
fa9a63c5
RM
2951 while (1)
2952 {
2953 if (p == pend || *p == succeed)
2954 {
2955 /* We have reached the (effective) end of pattern. */
2956 if (!FAIL_STACK_EMPTY ())
2957 {
2958 bufp->can_be_null |= path_can_be_null;
2959
2960 /* Reset for next path. */
2961 path_can_be_null = true;
2962
2963 p = fail_stack.stack[--fail_stack.avail].pointer;
2964
2965 continue;
2966 }
2967 else
2968 break;
2969 }
2970
e318085a 2971 /* We should never be about to go beyond the end of the pattern. */
fa9a63c5 2972 assert (p < pend);
5e69f11e 2973
fa9a63c5
RM
2974 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
2975 {
2976
e318085a
RS
2977 /* I guess the idea here is to simply not bother with a fastmap
2978 if a backreference is used, since it's too hard to figure out
2979 the fastmap for the corresponding group. Setting
2980 `can_be_null' stops `re_search_2' from using the fastmap, so
2981 that is all we do. */
fa9a63c5
RM
2982 case duplicate:
2983 bufp->can_be_null = 1;
e318085a 2984 goto done;
fa9a63c5
RM
2985
2986
2987 /* Following are the cases which match a character. These end
e318085a 2988 with `break'. */
fa9a63c5
RM
2989
2990 case exactn:
e318085a 2991 fastmap[p[1]] = 1;
fa9a63c5
RM
2992 break;
2993
2994
e318085a
RS
2995 case charset:
2996 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
fa9a63c5 2997 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
e318085a 2998 fastmap[j] = 1;
fa9a63c5
RM
2999 break;
3000
3001
3002 case charset_not:
3003 /* Chars beyond end of map must be allowed. */
3004 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
e318085a 3005 fastmap[j] = 1;
fa9a63c5
RM
3006
3007 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3008 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
e318085a
RS
3009 fastmap[j] = 1;
3010 break;
fa9a63c5
RM
3011
3012
3013 case wordchar:
3014 for (j = 0; j < (1 << BYTEWIDTH); j++)
3015 if (SYNTAX (j) == Sword)
3016 fastmap[j] = 1;
3017 break;
3018
3019
3020 case notwordchar:
3021 for (j = 0; j < (1 << BYTEWIDTH); j++)
3022 if (SYNTAX (j) != Sword)
3023 fastmap[j] = 1;
3024 break;
3025
3026
e318085a 3027 case anychar:
fa9a63c5
RM
3028 {
3029 int fastmap_newline = fastmap['\n'];
3030
e318085a 3031 /* `.' matches anything ... */
fa9a63c5
RM
3032 for (j = 0; j < (1 << BYTEWIDTH); j++)
3033 fastmap[j] = 1;
3034
3035 /* ... except perhaps newline. */
3036 if (!(bufp->syntax & RE_DOT_NEWLINE))
3037 fastmap['\n'] = fastmap_newline;
3038
3039 /* Return if we have already set `can_be_null'; if we have,
e318085a 3040 then the fastmap is irrelevant. Something's wrong here. */
fa9a63c5
RM
3041 else if (bufp->can_be_null)
3042 goto done;
3043
3044 /* Otherwise, have to check alternative paths. */
3045 break;
3046 }
3047
3048#ifdef emacs
e318085a 3049 case syntaxspec:
fa9a63c5
RM
3050 k = *p++;
3051 for (j = 0; j < (1 << BYTEWIDTH); j++)
3052 if (SYNTAX (j) == (enum syntaxcode) k)
3053 fastmap[j] = 1;
3054 break;
3055
3056
3057 case notsyntaxspec:
3058 k = *p++;
3059 for (j = 0; j < (1 << BYTEWIDTH); j++)
3060 if (SYNTAX (j) != (enum syntaxcode) k)
3061 fastmap[j] = 1;
3062 break;
3063
3064
3065 /* All cases after this match the empty string. These end with
e318085a 3066 `continue'. */
fa9a63c5
RM
3067
3068
3069 case before_dot:
3070 case at_dot:
3071 case after_dot:
e318085a 3072 continue;
ae4788a8 3073#endif /* emacs */
fa9a63c5
RM
3074
3075
e318085a
RS
3076 case no_op:
3077 case begline:
3078 case endline:
fa9a63c5
RM
3079 case begbuf:
3080 case endbuf:
3081 case wordbound:
3082 case notwordbound:
3083 case wordbeg:
3084 case wordend:
e318085a
RS
3085 case push_dummy_failure:
3086 continue;
fa9a63c5
RM
3087
3088
3089 case jump_n:
e318085a 3090 case pop_failure_jump:
fa9a63c5
RM
3091 case maybe_pop_jump:
3092 case jump:
e318085a 3093 case jump_past_alt:
fa9a63c5 3094 case dummy_failure_jump:
e318085a 3095 EXTRACT_NUMBER_AND_INCR (j, p);
5e69f11e 3096 p += j;
fa9a63c5
RM
3097 if (j > 0)
3098 continue;
5e69f11e 3099
e318085a
RS
3100 /* Jump backward implies we just went through the body of a
3101 loop and matched nothing. Opcode jumped to should be
3102 `on_failure_jump' or `succeed_n'. Just treat it like an
3103 ordinary jump. For a * loop, it has pushed its failure
3104 point already; if so, discard that as redundant. */
3105 if ((re_opcode_t) *p != on_failure_jump
fa9a63c5
RM
3106 && (re_opcode_t) *p != succeed_n)
3107 continue;
3108
e318085a
RS
3109 p++;
3110 EXTRACT_NUMBER_AND_INCR (j, p);
3111 p += j;
5e69f11e 3112
e318085a
RS
3113 /* If what's on the stack is where we are now, pop it. */
3114 if (!FAIL_STACK_EMPTY ()
fa9a63c5 3115 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
e318085a 3116 fail_stack.avail--;
fa9a63c5 3117
e318085a 3118 continue;
fa9a63c5
RM
3119
3120
e318085a
RS
3121 case on_failure_jump:
3122 case on_failure_keep_string_jump:
fa9a63c5 3123 handle_on_failure_jump:
e318085a
RS
3124 EXTRACT_NUMBER_AND_INCR (j, p);
3125
3126 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3127 end of the pattern. We don't want to push such a point,
3128 since when we restore it above, entering the switch will
3129 increment `p' past the end of the pattern. We don't need
3130 to push such a point since we obviously won't find any more
3131 fastmap entries beyond `pend'. Such a pattern can match
3132 the null string, though. */
3133 if (p + j < pend)
3134 {
3135 if (!PUSH_PATTERN_OP (p + j, fail_stack))
fa9a63c5
RM
3136 {
3137 RESET_FAIL_STACK ();
3138 return -2;
3139 }
e318085a
RS
3140 }
3141 else
3142 bufp->can_be_null = 1;
3143
3144 if (succeed_n_p)
3145 {
3146 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3147 succeed_n_p = false;
fa9a63c5
RM
3148 }
3149
e318085a 3150 continue;
fa9a63c5
RM
3151
3152
3153 case succeed_n:
e318085a
RS
3154 /* Get to the number of times to succeed. */
3155 p += 2;
fa9a63c5 3156
e318085a
RS
3157 /* Increment p past the n for when k != 0. */
3158 EXTRACT_NUMBER_AND_INCR (k, p);
3159 if (k == 0)
fa9a63c5 3160 {
e318085a
RS
3161 p -= 4;
3162 succeed_n_p = true; /* Spaghetti code alert. */
3163 goto handle_on_failure_jump;
3164 }
3165 continue;
fa9a63c5
RM
3166
3167
3168 case set_number_at:
e318085a
RS
3169 p += 4;
3170 continue;
fa9a63c5
RM
3171
3172
3173 case start_memory:
e318085a 3174 case stop_memory:
fa9a63c5
RM
3175 p += 2;
3176 continue;
3177
3178
3179 default:
e318085a
RS
3180 abort (); /* We have listed all the cases. */
3181 } /* switch *p++ */
fa9a63c5
RM
3182
3183 /* Getting here means we have found the possible starting
e318085a
RS
3184 characters for one path of the pattern -- and that the empty
3185 string does not match. We need not follow this path further.
3186 Instead, look at the next alternative (remembered on the
3187 stack), or quit if no more. The test at the top of the loop
3188 does these things. */
fa9a63c5
RM
3189 path_can_be_null = false;
3190 p = pend;
3191 } /* while p */
3192
3193 /* Set `can_be_null' for the last path (also the first path, if the
e318085a 3194 pattern is empty). */
fa9a63c5
RM
3195 bufp->can_be_null |= path_can_be_null;
3196
3197 done:
3198 RESET_FAIL_STACK ();
3199 return 0;
3200} /* re_compile_fastmap */
3201\f
3202/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3203 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3204 this memory for recording register information. STARTS and ENDS
3205 must be allocated using the malloc library routine, and must each
3206 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3207
3208 If NUM_REGS == 0, then subsequent matches should allocate their own
3209 register data.
3210
3211 Unless this function is called, the first search or match using
3212 PATTERN_BUFFER will allocate its own register data, without
3213 freeing the old data. */
3214
3215void
3216re_set_registers (bufp, regs, num_regs, starts, ends)
3217 struct re_pattern_buffer *bufp;
3218 struct re_registers *regs;
3219 unsigned num_regs;
3220 regoff_t *starts, *ends;
3221{
3222 if (num_regs)
3223 {
3224 bufp->regs_allocated = REGS_REALLOCATE;
3225 regs->num_regs = num_regs;
3226 regs->start = starts;
3227 regs->end = ends;
3228 }
3229 else
3230 {
3231 bufp->regs_allocated = REGS_UNALLOCATED;
3232 regs->num_regs = 0;
3233 regs->start = regs->end = (regoff_t *) 0;
3234 }
3235}
3236\f
e318085a 3237/* Searching routines. */
fa9a63c5
RM
3238
3239/* Like re_search_2, below, but only one string is specified, and
3240 doesn't let you say where to stop matching. */
3241
3242int
3243re_search (bufp, string, size, startpos, range, regs)
3244 struct re_pattern_buffer *bufp;
3245 const char *string;
3246 int size, startpos, range;
3247 struct re_registers *regs;
3248{
5e69f11e 3249 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
3250 regs, size);
3251}
3252
3253
3254/* Using the compiled pattern in BUFP->buffer, first tries to match the
3255 virtual concatenation of STRING1 and STRING2, starting first at index
3256 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 3257
fa9a63c5 3258 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 3259
fa9a63c5
RM
3260 RANGE is how far to scan while trying to match. RANGE = 0 means try
3261 only at STARTPOS; in general, the last start tried is STARTPOS +
3262 RANGE.
5e69f11e 3263
fa9a63c5
RM
3264 In REGS, return the indices of the virtual concatenation of STRING1
3265 and STRING2 that matched the entire BUFP->buffer and its contained
3266 subexpressions.
5e69f11e 3267
fa9a63c5
RM
3268 Do not consider matching one past the index STOP in the virtual
3269 concatenation of STRING1 and STRING2.
3270
3271 We return either the position in the strings at which the match was
3272 found, -1 if no match, or -2 if error (such as failure
3273 stack overflow). */
3274
3275int
3276re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3277 struct re_pattern_buffer *bufp;
3278 const char *string1, *string2;
3279 int size1, size2;
3280 int startpos;
3281 int range;
3282 struct re_registers *regs;
3283 int stop;
3284{
3285 int val;
3286 register char *fastmap = bufp->fastmap;
6676cb1c 3287 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3288 int total_size = size1 + size2;
3289 int endpos = startpos + range;
c8499ba5 3290 int anchored_start = 0;
fa9a63c5
RM
3291
3292 /* Check for out-of-range STARTPOS. */
3293 if (startpos < 0 || startpos > total_size)
3294 return -1;
5e69f11e 3295
fa9a63c5 3296 /* Fix up RANGE if it might eventually take us outside
34597fa9 3297 the virtual concatenation of STRING1 and STRING2.
5e69f11e 3298 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
3299 if (endpos < 0)
3300 range = 0 - startpos;
fa9a63c5
RM
3301 else if (endpos > total_size)
3302 range = total_size - startpos;
3303
3304 /* If the search isn't to be a backwards one, don't waste time in a
3305 search for a pattern that must be anchored. */
3306 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3307 {
3308 if (startpos > 0)
3309 return -1;
3310 else
3311 range = 1;
3312 }
3313
ae4788a8
RS
3314#ifdef emacs
3315 /* In a forward search for something that starts with \=.
3316 don't keep searching past point. */
3317 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3318 {
3319 range = PT - startpos;
3320 if (range <= 0)
3321 return -1;
3322 }
3323#endif /* emacs */
3324
fa9a63c5
RM
3325 /* Update the fastmap now if not correct already. */
3326 if (fastmap && !bufp->fastmap_accurate)
3327 if (re_compile_fastmap (bufp) == -2)
3328 return -2;
5e69f11e 3329
c8499ba5
RS
3330 /* See whether the pattern is anchored. */
3331 if (bufp->buffer[0] == begline)
3332 anchored_start = 1;
3333
fa9a63c5
RM
3334 /* Loop through the string, looking for a place to start matching. */
3335 for (;;)
5e69f11e 3336 {
c8499ba5
RS
3337 /* If the pattern is anchored,
3338 skip quickly past places we cannot match.
3339 We don't bother to treat startpos == 0 specially
3340 because that case doesn't repeat. */
3341 if (anchored_start && startpos > 0)
3342 {
3343 if (! (bufp->newline_anchor
3344 && ((startpos <= size1 ? string1[startpos - 1]
3345 : string2[startpos - size1 - 1])
3346 == '\n')))
3347 goto advance;
3348 }
3349
fa9a63c5 3350 /* If a fastmap is supplied, skip quickly over characters that
e318085a
RS
3351 cannot be the start of a match. If the pattern can match the
3352 null string, however, we don't need to skip characters; we want
3353 the first null string. */
fa9a63c5
RM
3354 if (fastmap && startpos < total_size && !bufp->can_be_null)
3355 {
e318085a 3356 if (range > 0) /* Searching forwards. */
fa9a63c5
RM
3357 {
3358 register const char *d;
3359 register int lim = 0;
3360 int irange = range;
3361
e318085a
RS
3362 if (startpos < size1 && startpos + range >= size1)
3363 lim = range - (size1 - startpos);
fa9a63c5
RM
3364
3365 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5e69f11e 3366
e318085a
RS
3367 /* Written out as an if-else to avoid testing `translate'
3368 inside the loop. */
fa9a63c5 3369 if (translate)
e318085a
RS
3370 while (range > lim
3371 && !fastmap[(unsigned char)
fa9a63c5 3372 translate[(unsigned char) *d++]])
e318085a 3373 range--;
fa9a63c5 3374 else
e318085a
RS
3375 while (range > lim && !fastmap[(unsigned char) *d++])
3376 range--;
fa9a63c5
RM
3377
3378 startpos += irange - range;
3379 }
e318085a 3380 else /* Searching backwards. */
fa9a63c5
RM
3381 {
3382 register char c = (size1 == 0 || startpos >= size1
e318085a
RS
3383 ? string2[startpos - size1]
3384 : string1[startpos]);
fa9a63c5
RM
3385
3386 if (!fastmap[(unsigned char) TRANSLATE (c)])
3387 goto advance;
3388 }
3389 }
3390
3391 /* If can't match the null string, and that's all we have left, fail. */
3392 if (range >= 0 && startpos == total_size && fastmap
e318085a 3393 && !bufp->can_be_null)
fa9a63c5
RM
3394 return -1;
3395
3396 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3397 startpos, regs, stop);
3398#ifndef REGEX_MALLOC
3399#ifdef C_ALLOCA
3400 alloca (0);
3401#endif
3402#endif
3403
3404 if (val >= 0)
3405 return startpos;
5e69f11e 3406
fa9a63c5
RM
3407 if (val == -2)
3408 return -2;
3409
3410 advance:
5e69f11e 3411 if (!range)
e318085a 3412 break;
5e69f11e 3413 else if (range > 0)
e318085a
RS
3414 {
3415 range--;
3416 startpos++;
3417 }
fa9a63c5 3418 else
e318085a
RS
3419 {
3420 range++;
3421 startpos--;
3422 }
fa9a63c5
RM
3423 }
3424 return -1;
3425} /* re_search_2 */
3426\f
3427/* Declarations and macros for re_match_2. */
3428
3429static int bcmp_translate ();
3430static boolean alt_match_null_string_p (),
e318085a
RS
3431 common_op_match_null_string_p (),
3432 group_match_null_string_p ();
fa9a63c5
RM
3433
3434/* This converts PTR, a pointer into one of the search strings `string1'
3435 and `string2' into an offset from the beginning of that string. */
3436#define POINTER_TO_OFFSET(ptr) \
3437 (FIRST_STRING_P (ptr) \
3438 ? ((regoff_t) ((ptr) - string1)) \
3439 : ((regoff_t) ((ptr) - string2 + size1)))
3440
3441/* Macros for dealing with the split strings in re_match_2. */
3442
3443#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3444
3445/* Call before fetching a character with *d. This switches over to
3446 string2 if necessary. */
3447#define PREFETCH() \
e318085a 3448 while (d == dend) \
fa9a63c5
RM
3449 { \
3450 /* End of string2 => fail. */ \
e318085a
RS
3451 if (dend == end_match_2) \
3452 goto fail; \
3453 /* End of string1 => advance to string2. */ \
3454 d = string2; \
fa9a63c5
RM
3455 dend = end_match_2; \
3456 }
3457
3458
3459/* Test if at very beginning or at very end of the virtual concatenation
e318085a 3460 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 3461#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 3462#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
3463
3464
3465/* Test if D points to a character which is word-constituent. We have
3466 two special cases to check for: if past the end of string1, look at
3467 the first character in string2; and if before the beginning of
3468 string2, look at the last character in string1. */
3469#define WORDCHAR_P(d) \
3470 (SYNTAX ((d) == end1 ? *string2 \
e318085a 3471 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
3472 == Sword)
3473
9121ca40
KH
3474/* Disabled due to a compiler bug -- see comment at case wordbound */
3475#if 0
fa9a63c5
RM
3476/* Test if the character before D and the one at D differ with respect
3477 to being word-constituent. */
3478#define AT_WORD_BOUNDARY(d) \
3479 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3480 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 3481#endif
fa9a63c5
RM
3482
3483/* Free everything we malloc. */
3484#ifdef MATCH_MAY_ALLOCATE
c8499ba5 3485#define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
fa9a63c5
RM
3486#define FREE_VARIABLES() \
3487 do { \
3488 REGEX_FREE_STACK (fail_stack.stack); \
3489 FREE_VAR (regstart); \
3490 FREE_VAR (regend); \
3491 FREE_VAR (old_regstart); \
3492 FREE_VAR (old_regend); \
3493 FREE_VAR (best_regstart); \
3494 FREE_VAR (best_regend); \
3495 FREE_VAR (reg_info); \
3496 FREE_VAR (reg_dummy); \
3497 FREE_VAR (reg_info_dummy); \
3498 } while (0)
3499#else
3500#define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3501#endif /* not MATCH_MAY_ALLOCATE */
3502
e318085a 3503/* These values must meet several constraints. They must not be valid
fa9a63c5
RM
3504 register values; since we have a limit of 255 registers (because
3505 we use only one byte in the pattern for the register number), we can
e318085a 3506 use numbers larger than 255. They must differ by 1, because of
fa9a63c5
RM
3507 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3508 be larger than the value for the highest register, so we do not try
e318085a 3509 to actually save any registers when none are active. */
fa9a63c5
RM
3510#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3511#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3512\f
3513/* Matching routines. */
3514
e318085a 3515#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
3516/* re_match is like re_match_2 except it takes only a single string. */
3517
3518int
3519re_match (bufp, string, size, pos, regs)
3520 struct re_pattern_buffer *bufp;
3521 const char *string;
3522 int size, pos;
3523 struct re_registers *regs;
3524{
3525 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3526 pos, regs, size);
3527 alloca (0);
3528 return result;
3529}
3530#endif /* not emacs */
3531
3532
3533/* re_match_2 matches the compiled pattern in BUFP against the
3534 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3535 and SIZE2, respectively). We start matching at POS, and stop
3536 matching at STOP.
5e69f11e 3537
fa9a63c5 3538 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
e318085a 3539 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
3540 documentation for exactly how many groups we fill.
3541
3542 We return -1 if no match, -2 if an internal error (such as the
e318085a 3543 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
3544 matched substring. */
3545
3546int
3547re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3548 struct re_pattern_buffer *bufp;
3549 const char *string1, *string2;
3550 int size1, size2;
3551 int pos;
3552 struct re_registers *regs;
3553 int stop;
3554{
3555 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3556 pos, regs, stop);
3557 alloca (0);
3558 return result;
3559}
3560
3561/* This is a separate function so that we can force an alloca cleanup
e318085a 3562 afterwards. */
fa9a63c5
RM
3563static int
3564re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3565 struct re_pattern_buffer *bufp;
3566 const char *string1, *string2;
3567 int size1, size2;
3568 int pos;
3569 struct re_registers *regs;
3570 int stop;
3571{
3572 /* General temporaries. */
3573 int mcnt;
3574 unsigned char *p1;
3575
3576 /* Just past the end of the corresponding string. */
3577 const char *end1, *end2;
3578
3579 /* Pointers into string1 and string2, just past the last characters in
e318085a 3580 each to consider matching. */
fa9a63c5
RM
3581 const char *end_match_1, *end_match_2;
3582
3583 /* Where we are in the data, and the end of the current string. */
3584 const char *d, *dend;
5e69f11e 3585
fa9a63c5
RM
3586 /* Where we are in the pattern, and the end of the pattern. */
3587 unsigned char *p = bufp->buffer;
3588 register unsigned char *pend = p + bufp->used;
3589
3590 /* Mark the opcode just after a start_memory, so we can test for an
3591 empty subpattern when we get to the stop_memory. */
3592 unsigned char *just_past_start_mem = 0;
3593
e318085a 3594 /* We use this to map every character in the string. */
6676cb1c 3595 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3596
3597 /* Failure point stack. Each place that can handle a failure further
3598 down the line pushes a failure point on this stack. It consists of
3599 restart, regend, and reg_info for all registers corresponding to
3600 the subexpressions we're currently inside, plus the number of such
3601 registers, and, finally, two char *'s. The first char * is where
3602 to resume scanning the pattern; the second one is where to resume
3603 scanning the strings. If the latter is zero, the failure point is
3604 a ``dummy''; if a failure happens and the failure point is a dummy,
e318085a
RS
3605 it gets discarded and the next next one is tried. */
3606#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
3607 fail_stack_type fail_stack;
3608#endif
3609#ifdef DEBUG
3610 static unsigned failure_id = 0;
3611 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3612#endif
3613
3614 /* This holds the pointer to the failure stack, when
3615 it is allocated relocatably. */
3616 fail_stack_elt_t *failure_stack_ptr;
3617
3618 /* We fill all the registers internally, independent of what we
e318085a 3619 return, for use in backreferences. The number here includes
fa9a63c5
RM
3620 an element for register zero. */
3621 unsigned num_regs = bufp->re_nsub + 1;
5e69f11e 3622
fa9a63c5
RM
3623 /* The currently active registers. */
3624 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3625 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3626
3627 /* Information on the contents of registers. These are pointers into
3628 the input strings; they record just what was matched (on this
3629 attempt) by a subexpression part of the pattern, that is, the
3630 regnum-th regstart pointer points to where in the pattern we began
3631 matching and the regnum-th regend points to right after where we
3632 stopped matching the regnum-th subexpression. (The zeroth register
3633 keeps track of what the whole pattern matches.) */
3634#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3635 const char **regstart, **regend;
3636#endif
3637
3638 /* If a group that's operated upon by a repetition operator fails to
3639 match anything, then the register for its start will need to be
3640 restored because it will have been set to wherever in the string we
3641 are when we last see its open-group operator. Similarly for a
3642 register's end. */
3643#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3644 const char **old_regstart, **old_regend;
3645#endif
3646
3647 /* The is_active field of reg_info helps us keep track of which (possibly
3648 nested) subexpressions we are currently in. The matched_something
3649 field of reg_info[reg_num] helps us tell whether or not we have
3650 matched any of the pattern so far this time through the reg_num-th
3651 subexpression. These two fields get reset each time through any
e318085a
RS
3652 loop their register is in. */
3653#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5e69f11e 3654 register_info_type *reg_info;
fa9a63c5
RM
3655#endif
3656
3657 /* The following record the register info as found in the above
5e69f11e 3658 variables when we find a match better than any we've seen before.
fa9a63c5
RM
3659 This happens as we backtrack through the failure points, which in
3660 turn happens only if we have not yet matched the entire string. */
3661 unsigned best_regs_set = false;
3662#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3663 const char **best_regstart, **best_regend;
3664#endif
5e69f11e 3665
fa9a63c5
RM
3666 /* Logically, this is `best_regend[0]'. But we don't want to have to
3667 allocate space for that if we're not allocating space for anything
e318085a 3668 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
3669 any of the other register vectors, and it seems rather a kludge to
3670 treat `best_regend' differently than the rest. So we keep track of
3671 the end of the best match so far in a separate variable. We
3672 initialize this to NULL so that when we backtrack the first time
3673 and need to test it, it's not garbage. */
3674 const char *match_end = NULL;
3675
3676 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3677 int set_regs_matched_done = 0;
3678
3679 /* Used when we pop values we don't care about. */
3680#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3681 const char **reg_dummy;
3682 register_info_type *reg_info_dummy;
3683#endif
3684
3685#ifdef DEBUG
3686 /* Counts the total number of registers pushed. */
5e69f11e 3687 unsigned num_regs_pushed = 0;
fa9a63c5
RM
3688#endif
3689
3690 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 3691
fa9a63c5 3692 INIT_FAIL_STACK ();
5e69f11e 3693
fa9a63c5
RM
3694#ifdef MATCH_MAY_ALLOCATE
3695 /* Do not bother to initialize all the register variables if there are
3696 no groups in the pattern, as it takes a fair amount of time. If
3697 there are groups, we include space for register 0 (the whole
3698 pattern), even though we never use it, since it simplifies the
3699 array indexing. We should fix this. */
3700 if (bufp->re_nsub)
3701 {
3702 regstart = REGEX_TALLOC (num_regs, const char *);
3703 regend = REGEX_TALLOC (num_regs, const char *);
3704 old_regstart = REGEX_TALLOC (num_regs, const char *);
3705 old_regend = REGEX_TALLOC (num_regs, const char *);
3706 best_regstart = REGEX_TALLOC (num_regs, const char *);
3707 best_regend = REGEX_TALLOC (num_regs, const char *);
3708 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3709 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3710 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3711
5e69f11e 3712 if (!(regstart && regend && old_regstart && old_regend && reg_info
e318085a
RS
3713 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3714 {
3715 FREE_VARIABLES ();
3716 return -2;
3717 }
fa9a63c5
RM
3718 }
3719 else
3720 {
3721 /* We must initialize all our variables to NULL, so that
e318085a 3722 `FREE_VARIABLES' doesn't try to free them. */
fa9a63c5 3723 regstart = regend = old_regstart = old_regend = best_regstart
e318085a 3724 = best_regend = reg_dummy = NULL;
fa9a63c5
RM
3725 reg_info = reg_info_dummy = (register_info_type *) NULL;
3726 }
3727#endif /* MATCH_MAY_ALLOCATE */
3728
3729 /* The starting position is bogus. */
3730 if (pos < 0 || pos > size1 + size2)
3731 {
3732 FREE_VARIABLES ();
3733 return -1;
3734 }
5e69f11e 3735
fa9a63c5
RM
3736 /* Initialize subexpression text positions to -1 to mark ones that no
3737 start_memory/stop_memory has been seen for. Also initialize the
3738 register information struct. */
3739 for (mcnt = 1; mcnt < num_regs; mcnt++)
3740 {
5e69f11e 3741 regstart[mcnt] = regend[mcnt]
e318085a 3742 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5e69f11e 3743
fa9a63c5
RM
3744 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3745 IS_ACTIVE (reg_info[mcnt]) = 0;
3746 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3747 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3748 }
5e69f11e 3749
fa9a63c5 3750 /* We move `string1' into `string2' if the latter's empty -- but not if
e318085a 3751 `string1' is null. */
fa9a63c5
RM
3752 if (size2 == 0 && string1 != NULL)
3753 {
3754 string2 = string1;
3755 size2 = size1;
3756 string1 = 0;
3757 size1 = 0;
3758 }
3759 end1 = string1 + size1;
3760 end2 = string2 + size2;
3761
3762 /* Compute where to stop matching, within the two strings. */
3763 if (stop <= size1)
3764 {
3765 end_match_1 = string1 + stop;
3766 end_match_2 = string2;
3767 }
3768 else
3769 {
3770 end_match_1 = end1;
3771 end_match_2 = string2 + stop - size1;
3772 }
3773
5e69f11e 3774 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
3775 `dend' is the end of the input string that `d' points within. `d'
3776 is advanced into the following input string whenever necessary, but
3777 this happens before fetching; therefore, at the beginning of the
3778 loop, `d' can be pointing at the end of a string, but it cannot
3779 equal `string2'. */
3780 if (size1 > 0 && pos <= size1)
3781 {
3782 d = string1 + pos;
3783 dend = end_match_1;
3784 }
3785 else
3786 {
3787 d = string2 + pos - size1;
3788 dend = end_match_2;
3789 }
3790
3791 DEBUG_PRINT1 ("The compiled pattern is: ");
3792 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3793 DEBUG_PRINT1 ("The string to match is: `");
3794 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3795 DEBUG_PRINT1 ("'\n");
5e69f11e 3796
e318085a 3797 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
3798 function if the match is complete, or it drops through if the match
3799 fails at this starting point in the input data. */
3800 for (;;)
3801 {
3802 DEBUG_PRINT2 ("\n0x%x: ", p);
3803
3804 if (p == pend)
3805 { /* End of pattern means we might have succeeded. */
e318085a 3806 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 3807
fa9a63c5 3808 /* If we haven't matched the entire string, and we want the
e318085a
RS
3809 longest match, try backtracking. */
3810 if (d != end_match_2)
fa9a63c5
RM
3811 {
3812 /* 1 if this match ends in the same string (string1 or string2)
3813 as the best previous match. */
5e69f11e 3814 boolean same_str_p = (FIRST_STRING_P (match_end)
fa9a63c5
RM
3815 == MATCHING_IN_FIRST_STRING);
3816 /* 1 if this match is the best seen so far. */
3817 boolean best_match_p;
3818
3819 /* AIX compiler got confused when this was combined
e318085a 3820 with the previous declaration. */
fa9a63c5
RM
3821 if (same_str_p)
3822 best_match_p = d > match_end;
3823 else
3824 best_match_p = !MATCHING_IN_FIRST_STRING;
3825
e318085a
RS
3826 DEBUG_PRINT1 ("backtracking.\n");
3827
3828 if (!FAIL_STACK_EMPTY ())
3829 { /* More failure points to try. */
3830
3831 /* If exceeds best match so far, save it. */
3832 if (!best_regs_set || best_match_p)
3833 {
3834 best_regs_set = true;
3835 match_end = d;
3836
3837 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3838
3839 for (mcnt = 1; mcnt < num_regs; mcnt++)
3840 {
3841 best_regstart[mcnt] = regstart[mcnt];
3842 best_regend[mcnt] = regend[mcnt];
3843 }
3844 }
3845 goto fail;
3846 }
3847
3848 /* If no failure points, don't restore garbage. And if
3849 last match is real best match, don't restore second
3850 best one. */
3851 else if (best_regs_set && !best_match_p)
3852 {
3853 restore_best_regs:
3854 /* Restore best match. It may happen that `dend ==
3855 end_match_1' while the restored d is in string2.
3856 For example, the pattern `x.*y.*z' against the
3857 strings `x-' and `y-z-', if the two strings are
3858 not consecutive in memory. */
3859 DEBUG_PRINT1 ("Restoring best registers.\n");
3860
3861 d = match_end;
3862 dend = ((d >= string1 && d <= end1)
3863 ? end_match_1 : end_match_2);
fa9a63c5
RM
3864
3865 for (mcnt = 1; mcnt < num_regs; mcnt++)
3866 {
3867 regstart[mcnt] = best_regstart[mcnt];
3868 regend[mcnt] = best_regend[mcnt];
3869 }
e318085a
RS
3870 }
3871 } /* d != end_match_2 */
fa9a63c5
RM
3872
3873 succeed_label:
e318085a 3874 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 3875
e318085a
RS
3876 /* If caller wants register contents data back, do it. */
3877 if (regs && !bufp->no_sub)
fa9a63c5 3878 {
e318085a
RS
3879 /* Have the register data arrays been allocated? */
3880 if (bufp->regs_allocated == REGS_UNALLOCATED)
3881 { /* No. So allocate them with malloc. We need one
3882 extra element beyond `num_regs' for the `-1' marker
3883 GNU code uses. */
3884 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3885 regs->start = TALLOC (regs->num_regs, regoff_t);
3886 regs->end = TALLOC (regs->num_regs, regoff_t);
3887 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
3888 {
3889 FREE_VARIABLES ();
3890 return -2;
3891 }
e318085a
RS
3892 bufp->regs_allocated = REGS_REALLOCATE;
3893 }
3894 else if (bufp->regs_allocated == REGS_REALLOCATE)
3895 { /* Yes. If we need more elements than were already
3896 allocated, reallocate them. If we need fewer, just
3897 leave it alone. */
3898 if (regs->num_regs < num_regs + 1)
3899 {
3900 regs->num_regs = num_regs + 1;
3901 RETALLOC (regs->start, regs->num_regs, regoff_t);
3902 RETALLOC (regs->end, regs->num_regs, regoff_t);
3903 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
3904 {
3905 FREE_VARIABLES ();
3906 return -2;
3907 }
e318085a
RS
3908 }
3909 }
3910 else
fa9a63c5
RM
3911 {
3912 /* These braces fend off a "empty body in an else-statement"
e318085a 3913 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
3914 assert (bufp->regs_allocated == REGS_FIXED);
3915 }
3916
e318085a
RS
3917 /* Convert the pointer data in `regstart' and `regend' to
3918 indices. Register zero has to be set differently,
3919 since we haven't kept track of any info for it. */
3920 if (regs->num_regs > 0)
3921 {
3922 regs->start[0] = pos;
3923 regs->end[0] = (MATCHING_IN_FIRST_STRING
fa9a63c5 3924 ? ((regoff_t) (d - string1))
e318085a
RS
3925 : ((regoff_t) (d - string2 + size1)));
3926 }
5e69f11e 3927
e318085a
RS
3928 /* Go through the first `min (num_regs, regs->num_regs)'
3929 registers, since that is all we initialized. */
fa9a63c5
RM
3930 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3931 {
e318085a
RS
3932 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3933 regs->start[mcnt] = regs->end[mcnt] = -1;
3934 else
3935 {
fa9a63c5
RM
3936 regs->start[mcnt]
3937 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
e318085a 3938 regs->end[mcnt]
fa9a63c5 3939 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
e318085a 3940 }
fa9a63c5 3941 }
5e69f11e 3942
e318085a
RS
3943 /* If the regs structure we return has more elements than
3944 were in the pattern, set the extra elements to -1. If
3945 we (re)allocated the registers, this is the case,
3946 because we always allocate enough to have at least one
3947 -1 at the end. */
3948 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3949 regs->start[mcnt] = regs->end[mcnt] = -1;
fa9a63c5
RM
3950 } /* regs && !bufp->no_sub */
3951
e318085a
RS
3952 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3953 nfailure_points_pushed, nfailure_points_popped,
3954 nfailure_points_pushed - nfailure_points_popped);
3955 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 3956
e318085a 3957 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
5e69f11e 3958 ? string1
fa9a63c5
RM
3959 : string2 - size1);
3960
e318085a 3961 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 3962
e318085a
RS
3963 FREE_VARIABLES ();
3964 return mcnt;
3965 }
fa9a63c5 3966
e318085a 3967 /* Otherwise match next pattern command. */
fa9a63c5
RM
3968 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3969 {
e318085a
RS
3970 /* Ignore these. Used to ignore the n of succeed_n's which
3971 currently have n == 0. */
3972 case no_op:
3973 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3974 break;
fa9a63c5
RM
3975
3976 case succeed:
e318085a 3977 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
3978 goto succeed_label;
3979
e318085a
RS
3980 /* Match the next n pattern characters exactly. The following
3981 byte in the pattern defines n, and the n bytes after that
3982 are the characters to match. */
fa9a63c5
RM
3983 case exactn:
3984 mcnt = *p++;
e318085a 3985 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 3986
e318085a
RS
3987 /* This is written out as an if-else so we don't waste time
3988 testing `translate' inside the loop. */
3989 if (translate)
fa9a63c5
RM
3990 {
3991 do
3992 {
3993 PREFETCH ();
6676cb1c
RS
3994 if ((unsigned char) translate[(unsigned char) *d++]
3995 != (unsigned char) *p++)
e318085a 3996 goto fail;
fa9a63c5
RM
3997 }
3998 while (--mcnt);
3999 }
4000 else
4001 {
4002 do
4003 {
4004 PREFETCH ();
4005 if (*d++ != (char) *p++) goto fail;
4006 }
4007 while (--mcnt);
4008 }
4009 SET_REGS_MATCHED ();
e318085a 4010 break;
fa9a63c5
RM
4011
4012
e318085a 4013 /* Match any character except possibly a newline or a null. */
fa9a63c5 4014 case anychar:
e318085a 4015 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 4016
e318085a 4017 PREFETCH ();
fa9a63c5 4018
e318085a
RS
4019 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4020 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
fa9a63c5
RM
4021 goto fail;
4022
e318085a
RS
4023 SET_REGS_MATCHED ();
4024 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4025 d++;
fa9a63c5
RM
4026 break;
4027
4028
4029 case charset:
4030 case charset_not:
4031 {
4032 register unsigned char c;
4033 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4034
e318085a 4035 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5
RM
4036
4037 PREFETCH ();
4038 c = TRANSLATE (*d); /* The character to match. */
4039
e318085a
RS
4040 /* Cast to `unsigned' instead of `unsigned char' in case the
4041 bit list is a full 32 bytes long. */
fa9a63c5
RM
4042 if (c < (unsigned) (*p * BYTEWIDTH)
4043 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4044 not = !not;
4045
4046 p += 1 + *p;
4047
4048 if (!not) goto fail;
5e69f11e 4049
fa9a63c5 4050 SET_REGS_MATCHED ();
e318085a 4051 d++;
fa9a63c5
RM
4052 break;
4053 }
4054
4055
e318085a
RS
4056 /* The beginning of a group is represented by start_memory.
4057 The arguments are the register number in the next byte, and the
4058 number of groups inner to this one in the next. The text
4059 matched within the group is recorded (in the internal
4060 registers data structure) under the register number. */
4061 case start_memory:
fa9a63c5
RM
4062 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4063
e318085a 4064 /* Find out if this group can match the empty string. */
fa9a63c5 4065 p1 = p; /* To send to group_match_null_string_p. */
5e69f11e 4066
e318085a
RS
4067 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4068 REG_MATCH_NULL_STRING_P (reg_info[*p])
4069 = group_match_null_string_p (&p1, pend, reg_info);
4070
4071 /* Save the position in the string where we were the last time
4072 we were at this open-group operator in case the group is
4073 operated upon by a repetition operator, e.g., with `(a*)*b'
4074 against `ab'; then we want to ignore where we are now in
4075 the string in case this attempt to match fails. */
4076 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4077 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4078 : regstart[*p];
5e69f11e 4079 DEBUG_PRINT2 (" old_regstart: %d\n",
fa9a63c5
RM
4080 POINTER_TO_OFFSET (old_regstart[*p]));
4081
e318085a 4082 regstart[*p] = d;
fa9a63c5
RM
4083 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4084
e318085a
RS
4085 IS_ACTIVE (reg_info[*p]) = 1;
4086 MATCHED_SOMETHING (reg_info[*p]) = 0;
fa9a63c5
RM
4087
4088 /* Clear this whenever we change the register activity status. */
4089 set_regs_matched_done = 0;
5e69f11e 4090
e318085a
RS
4091 /* This is the new highest active register. */
4092 highest_active_reg = *p;
5e69f11e 4093
e318085a
RS
4094 /* If nothing was active before, this is the new lowest active
4095 register. */
4096 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4097 lowest_active_reg = *p;
fa9a63c5 4098
e318085a
RS
4099 /* Move past the register number and inner group count. */
4100 p += 2;
fa9a63c5
RM
4101 just_past_start_mem = p;
4102
e318085a 4103 break;
fa9a63c5
RM
4104
4105
e318085a
RS
4106 /* The stop_memory opcode represents the end of a group. Its
4107 arguments are the same as start_memory's: the register
4108 number, and the number of inner groups. */
fa9a63c5
RM
4109 case stop_memory:
4110 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
5e69f11e 4111
e318085a
RS
4112 /* We need to save the string position the last time we were at
4113 this close-group operator in case the group is operated
4114 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4115 against `aba'; then we want to ignore where we are now in
4116 the string in case this attempt to match fails. */
4117 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4118 ? REG_UNSET (regend[*p]) ? d : regend[*p]
fa9a63c5 4119 : regend[*p];
5e69f11e 4120 DEBUG_PRINT2 (" old_regend: %d\n",
fa9a63c5
RM
4121 POINTER_TO_OFFSET (old_regend[*p]));
4122
e318085a 4123 regend[*p] = d;
fa9a63c5
RM
4124 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4125
e318085a
RS
4126 /* This register isn't active anymore. */
4127 IS_ACTIVE (reg_info[*p]) = 0;
fa9a63c5
RM
4128
4129 /* Clear this whenever we change the register activity status. */
4130 set_regs_matched_done = 0;
4131
e318085a
RS
4132 /* If this was the only register active, nothing is active
4133 anymore. */
4134 if (lowest_active_reg == highest_active_reg)
4135 {
4136 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4137 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4138 }
4139 else
4140 { /* We must scan for the new highest active register, since
4141 it isn't necessarily one less than now: consider
4142 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4143 new highest active register is 1. */
4144 unsigned char r = *p - 1;
4145 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4146 r--;
4147
4148 /* If we end up at register zero, that means that we saved
4149 the registers as the result of an `on_failure_jump', not
4150 a `start_memory', and we jumped to past the innermost
4151 `stop_memory'. For example, in ((.)*) we save
4152 registers 1 and 2 as a result of the *, but when we pop
4153 back to the second ), we are at the stop_memory 1.
4154 Thus, nothing is active. */
fa9a63c5 4155 if (r == 0)
e318085a
RS
4156 {
4157 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4158 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4159 }
4160 else
4161 highest_active_reg = r;
4162 }
4163
4164 /* If just failed to match something this time around with a
4165 group that's operated on by a repetition operator, try to
4166 force exit from the ``loop'', and restore the register
4167 information for this group that we had before trying this
4168 last match. */
4169 if ((!MATCHED_SOMETHING (reg_info[*p])
4170 || just_past_start_mem == p - 1)
5e69f11e 4171 && (p + 2) < pend)
e318085a
RS
4172 {
4173 boolean is_a_jump_n = false;
4174
4175 p1 = p + 2;
4176 mcnt = 0;
4177 switch ((re_opcode_t) *p1++)
4178 {
4179 case jump_n:
fa9a63c5 4180 is_a_jump_n = true;
e318085a 4181 case pop_failure_jump:
fa9a63c5
RM
4182 case maybe_pop_jump:
4183 case jump:
4184 case dummy_failure_jump:
e318085a 4185 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
fa9a63c5
RM
4186 if (is_a_jump_n)
4187 p1 += 2;
e318085a 4188 break;
5e69f11e 4189
e318085a
RS
4190 default:
4191 /* do nothing */ ;
4192 }
fa9a63c5 4193 p1 += mcnt;
5e69f11e 4194
e318085a
RS
4195 /* If the next operation is a jump backwards in the pattern
4196 to an on_failure_jump right before the start_memory
4197 corresponding to this stop_memory, exit from the loop
4198 by forcing a failure after pushing on the stack the
4199 on_failure_jump's jump in the pattern, and d. */
4200 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4201 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
fa9a63c5 4202 {
e318085a
RS
4203 /* If this group ever matched anything, then restore
4204 what its registers were before trying this last
4205 failed match, e.g., with `(a*)*b' against `ab' for
4206 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4207 against `aba' for regend[3].
5e69f11e 4208
e318085a
RS
4209 Also restore the registers for inner groups for,
4210 e.g., `((a*)(b*))*' against `aba' (register 3 would
4211 otherwise get trashed). */
5e69f11e 4212
e318085a 4213 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
fa9a63c5 4214 {
5e69f11e
RM
4215 unsigned r;
4216
e318085a 4217 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
5e69f11e 4218
fa9a63c5 4219 /* Restore this and inner groups' (if any) registers. */
e318085a
RS
4220 for (r = *p; r < *p + *(p + 1); r++)
4221 {
4222 regstart[r] = old_regstart[r];
4223
4224 /* xx why this test? */
4225 if (old_regend[r] >= regstart[r])
4226 regend[r] = old_regend[r];
4227 }
4228 }
fa9a63c5 4229 p1++;
e318085a
RS
4230 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4231 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
fa9a63c5 4232
e318085a
RS
4233 goto fail;
4234 }
4235 }
5e69f11e 4236
e318085a
RS
4237 /* Move past the register number and the inner group count. */
4238 p += 2;
4239 break;
fa9a63c5
RM
4240
4241
4242 /* \<digit> has been turned into a `duplicate' command which is
e318085a
RS
4243 followed by the numeric value of <digit> as the register number. */
4244 case duplicate:
fa9a63c5
RM
4245 {
4246 register const char *d2, *dend2;
e318085a 4247 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
4248 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4249
e318085a
RS
4250 /* Can't back reference a group which we've never matched. */
4251 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4252 goto fail;
5e69f11e 4253
e318085a
RS
4254 /* Where in input to try to start matching. */
4255 d2 = regstart[regno];
5e69f11e 4256
e318085a
RS
4257 /* Where to stop matching; if both the place to start and
4258 the place to stop matching are in the same string, then
4259 set to the place to stop, otherwise, for now have to use
4260 the end of the first string. */
fa9a63c5 4261
e318085a 4262 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
4263 == FIRST_STRING_P (regend[regno]))
4264 ? regend[regno] : end_match_1);
4265 for (;;)
4266 {
4267 /* If necessary, advance to next segment in register
e318085a 4268 contents. */
fa9a63c5
RM
4269 while (d2 == dend2)
4270 {
4271 if (dend2 == end_match_2) break;
4272 if (dend2 == regend[regno]) break;
4273
e318085a
RS
4274 /* End of string1 => advance to string2. */
4275 d2 = string2;
4276 dend2 = regend[regno];
fa9a63c5
RM
4277 }
4278 /* At end of register contents => success */
4279 if (d2 == dend2) break;
4280
4281 /* If necessary, advance to next segment in data. */
4282 PREFETCH ();
4283
4284 /* How many characters left in this segment to match. */
4285 mcnt = dend - d;
5e69f11e 4286
fa9a63c5 4287 /* Want how many consecutive characters we can match in
e318085a
RS
4288 one shot, so, if necessary, adjust the count. */
4289 if (mcnt > dend2 - d2)
fa9a63c5 4290 mcnt = dend2 - d2;
5e69f11e 4291
fa9a63c5 4292 /* Compare that many; failure if mismatch, else move
e318085a 4293 past them. */
5e69f11e 4294 if (translate
e318085a
RS
4295 ? bcmp_translate (d, d2, mcnt, translate)
4296 : bcmp (d, d2, mcnt))
fa9a63c5
RM
4297 goto fail;
4298 d += mcnt, d2 += mcnt;
4299
e318085a 4300 /* Do this because we've match some characters. */
fa9a63c5
RM
4301 SET_REGS_MATCHED ();
4302 }
4303 }
4304 break;
4305
4306
e318085a
RS
4307 /* begline matches the empty string at the beginning of the string
4308 (unless `not_bol' is set in `bufp'), and, if
4309 `newline_anchor' is set, after newlines. */
fa9a63c5 4310 case begline:
e318085a 4311 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 4312
e318085a
RS
4313 if (AT_STRINGS_BEG (d))
4314 {
4315 if (!bufp->not_bol) break;
4316 }
4317 else if (d[-1] == '\n' && bufp->newline_anchor)
4318 {
4319 break;
4320 }
4321 /* In all other cases, we fail. */
4322 goto fail;
fa9a63c5
RM
4323
4324
e318085a 4325 /* endline is the dual of begline. */
fa9a63c5 4326 case endline:
e318085a 4327 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 4328
e318085a
RS
4329 if (AT_STRINGS_END (d))
4330 {
4331 if (!bufp->not_eol) break;
4332 }
5e69f11e 4333
e318085a
RS
4334 /* We have to ``prefetch'' the next character. */
4335 else if ((d == end1 ? *string2 : *d) == '\n'
4336 && bufp->newline_anchor)
4337 {
4338 break;
4339 }
4340 goto fail;
fa9a63c5
RM
4341
4342
4343 /* Match at the very beginning of the data. */
e318085a
RS
4344 case begbuf:
4345 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4346 if (AT_STRINGS_BEG (d))
4347 break;
4348 goto fail;
fa9a63c5
RM
4349
4350
4351 /* Match at the very end of the data. */
e318085a
RS
4352 case endbuf:
4353 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
4354 if (AT_STRINGS_END (d))
4355 break;
e318085a 4356 goto fail;
fa9a63c5 4357
5e69f11e 4358
e318085a
RS
4359 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4360 pushes NULL as the value for the string on the stack. Then
4361 `pop_failure_point' will keep the current value for the
4362 string, instead of restoring it. To see why, consider
4363 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4364 then the . fails against the \n. But the next thing we want
4365 to do is match the \n against the \n; if we restored the
4366 string value, we would be back at the foo.
4367
4368 Because this is used only in specific cases, we don't need to
4369 check all the things that `on_failure_jump' does, to make
4370 sure the right things get saved on the stack. Hence we don't
4371 share its code. The only reason to push anything on the
4372 stack at all is that otherwise we would have to change
4373 `anychar's code to do something besides goto fail in this
4374 case; that seems worse than this. */
4375 case on_failure_keep_string_jump:
4376 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
5e69f11e 4377
e318085a
RS
4378 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4379 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
fa9a63c5 4380
e318085a
RS
4381 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4382 break;
fa9a63c5
RM
4383
4384
4385 /* Uses of on_failure_jump:
5e69f11e 4386
e318085a
RS
4387 Each alternative starts with an on_failure_jump that points
4388 to the beginning of the next alternative. Each alternative
4389 except the last ends with a jump that in effect jumps past
4390 the rest of the alternatives. (They really jump to the
4391 ending jump of the following alternative, because tensioning
4392 these jumps is a hassle.)
fa9a63c5 4393
e318085a
RS
4394 Repeats start with an on_failure_jump that points past both
4395 the repetition text and either the following jump or
4396 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 4397 case on_failure_jump:
e318085a
RS
4398 on_failure:
4399 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4400
4401 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4402 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4403
4404 /* If this on_failure_jump comes right before a group (i.e.,
4405 the original * applied to a group), save the information
4406 for that group and all inner ones, so that if we fail back
4407 to this point, the group's information will be correct.
4408 For example, in \(a*\)*\1, we need the preceding group,
4409 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4410
4411 /* We can't use `p' to check ahead because we push
4412 a failure point to `p + mcnt' after we do this. */
4413 p1 = p;
4414
4415 /* We need to skip no_op's before we look for the
4416 start_memory in case this on_failure_jump is happening as
4417 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4418 against aba. */
4419 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4420 p1++;
4421
4422 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4423 {
4424 /* We have a new highest active register now. This will
4425 get reset at the start_memory we are about to get to,
4426 but we will have saved all the registers relevant to
4427 this repetition op, as described above. */
4428 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4429 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4430 lowest_active_reg = *(p1 + 1);
4431 }
4432
4433 DEBUG_PRINT1 (":\n");
4434 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4435 break;
4436
4437
4438 /* A smart repeat ends with `maybe_pop_jump'.
4439 We change it to either `pop_failure_jump' or `jump'. */
4440 case maybe_pop_jump:
4441 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4442 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4443 {
fa9a63c5
RM
4444 register unsigned char *p2 = p;
4445
e318085a
RS
4446 /* Compare the beginning of the repeat with what in the
4447 pattern follows its end. If we can establish that there
4448 is nothing that they would both match, i.e., that we
4449 would have to backtrack because of (as in, e.g., `a*a')
4450 then we can change to pop_failure_jump, because we'll
4451 never have to backtrack.
5e69f11e 4452
e318085a
RS
4453 This is not true in the case of alternatives: in
4454 `(a|ab)*' we do need to backtrack to the `ab' alternative
4455 (e.g., if the string was `ab'). But instead of trying to
4456 detect that here, the alternative has put on a dummy
4457 failure point which is what we will end up popping. */
fa9a63c5
RM
4458
4459 /* Skip over open/close-group commands.
4460 If what follows this loop is a ...+ construct,
4461 look at what begins its body, since we will have to
4462 match at least one of that. */
4463 while (1)
4464 {
4465 if (p2 + 2 < pend
4466 && ((re_opcode_t) *p2 == stop_memory
4467 || (re_opcode_t) *p2 == start_memory))
4468 p2 += 3;
4469 else if (p2 + 6 < pend
4470 && (re_opcode_t) *p2 == dummy_failure_jump)
4471 p2 += 6;
4472 else
4473 break;
4474 }
4475
4476 p1 = p + mcnt;
4477 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
5e69f11e 4478 to the `maybe_finalize_jump' of this case. Examine what
e318085a 4479 follows. */
fa9a63c5 4480
e318085a
RS
4481 /* If we're at the end of the pattern, we can change. */
4482 if (p2 == pend)
fa9a63c5
RM
4483 {
4484 /* Consider what happens when matching ":\(.*\)"
4485 against ":/". I don't really understand this code
e318085a
RS
4486 yet. */
4487 p[-3] = (unsigned char) pop_failure_jump;
4488 DEBUG_PRINT1
4489 (" End of pattern: change to `pop_failure_jump'.\n");
4490 }
fa9a63c5 4491
e318085a 4492 else if ((re_opcode_t) *p2 == exactn
fa9a63c5
RM
4493 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4494 {
4495 register unsigned char c
e318085a 4496 = *p2 == (unsigned char) endline ? '\n' : p2[2];
fa9a63c5 4497
e318085a
RS
4498 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4499 {
4500 p[-3] = (unsigned char) pop_failure_jump;
4501 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4502 c, p1[5]);
4503 }
5e69f11e 4504
fa9a63c5
RM
4505 else if ((re_opcode_t) p1[3] == charset
4506 || (re_opcode_t) p1[3] == charset_not)
4507 {
4508 int not = (re_opcode_t) p1[3] == charset_not;
5e69f11e 4509
fa9a63c5
RM
4510 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4511 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4512 not = !not;
4513
e318085a
RS
4514 /* `not' is equal to 1 if c would match, which means
4515 that we can't change to pop_failure_jump. */
fa9a63c5 4516 if (!not)
e318085a
RS
4517 {
4518 p[-3] = (unsigned char) pop_failure_jump;
4519 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4520 }
fa9a63c5
RM
4521 }
4522 }
e318085a 4523 else if ((re_opcode_t) *p2 == charset)
fa9a63c5
RM
4524 {
4525#ifdef DEBUG
4526 register unsigned char c
e318085a 4527 = *p2 == (unsigned char) endline ? '\n' : p2[2];
fa9a63c5
RM
4528#endif
4529
e318085a 4530 if ((re_opcode_t) p1[3] == exactn
12c11fcd
RS
4531 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4532 && (p2[2 + p1[5] / BYTEWIDTH]
4533 & (1 << (p1[5] % BYTEWIDTH)))))
e318085a
RS
4534 {
4535 p[-3] = (unsigned char) pop_failure_jump;
4536 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4537 c, p1[5]);
4538 }
5e69f11e 4539
fa9a63c5
RM
4540 else if ((re_opcode_t) p1[3] == charset_not)
4541 {
4542 int idx;
4543 /* We win if the charset_not inside the loop
4544 lists every character listed in the charset after. */
4545 for (idx = 0; idx < (int) p2[1]; idx++)
4546 if (! (p2[2 + idx] == 0
4547 || (idx < (int) p1[4]
4548 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4549 break;
4550
4551 if (idx == p2[1])
e318085a
RS
4552 {
4553 p[-3] = (unsigned char) pop_failure_jump;
4554 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4555 }
fa9a63c5
RM
4556 }
4557 else if ((re_opcode_t) p1[3] == charset)
4558 {
4559 int idx;
4560 /* We win if the charset inside the loop
4561 has no overlap with the one after the loop. */
4562 for (idx = 0;
4563 idx < (int) p2[1] && idx < (int) p1[4];
4564 idx++)
4565 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4566 break;
4567
4568 if (idx == p2[1] || idx == p1[4])
e318085a
RS
4569 {
4570 p[-3] = (unsigned char) pop_failure_jump;
4571 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4572 }
fa9a63c5
RM
4573 }
4574 }
4575 }
4576 p -= 2; /* Point at relative address again. */
4577 if ((re_opcode_t) p[-1] != pop_failure_jump)
4578 {
4579 p[-1] = (unsigned char) jump;
e318085a 4580 DEBUG_PRINT1 (" Match => jump.\n");
fa9a63c5
RM
4581 goto unconditional_jump;
4582 }
e318085a 4583 /* Note fall through. */
fa9a63c5
RM
4584
4585
4586 /* The end of a simple repeat has a pop_failure_jump back to
e318085a
RS
4587 its matching on_failure_jump, where the latter will push a
4588 failure point. The pop_failure_jump takes off failure
4589 points put on by this pop_failure_jump's matching
4590 on_failure_jump; we got through the pattern to here from the
4591 matching on_failure_jump, so didn't fail. */
4592 case pop_failure_jump:
4593 {
4594 /* We need to pass separate storage for the lowest and
4595 highest registers, even though we don't care about the
4596 actual values. Otherwise, we will restore only one
4597 register from the stack, since lowest will == highest in
4598 `pop_failure_point'. */
4599 unsigned dummy_low_reg, dummy_high_reg;
4600 unsigned char *pdummy;
4601 const char *sdummy;
4602
4603 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4604 POP_FAILURE_POINT (sdummy, pdummy,
4605 dummy_low_reg, dummy_high_reg,
4606 reg_dummy, reg_dummy, reg_info_dummy);
4607 }
4608 /* Note fall through. */
4609
4610
4611 /* Unconditionally jump (without popping any failure points). */
4612 case jump:
fa9a63c5
RM
4613 unconditional_jump:
4614 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
e318085a
RS
4615 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4616 p += mcnt; /* Do the jump. */
4617 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4618 break;
4619
4620
4621 /* We need this opcode so we can detect where alternatives end
4622 in `group_match_null_string_p' et al. */
4623 case jump_past_alt:
4624 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4625 goto unconditional_jump;
4626
4627
4628 /* Normally, the on_failure_jump pushes a failure point, which
4629 then gets popped at pop_failure_jump. We will end up at
4630 pop_failure_jump, also, and with a pattern of, say, `a+', we
4631 are skipping over the on_failure_jump, so we have to push
4632 something meaningless for pop_failure_jump to pop. */
4633 case dummy_failure_jump:
4634 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4635 /* It doesn't matter what we push for the string here. What
4636 the code at `fail' tests is the value for the pattern. */
4637 PUSH_FAILURE_POINT (0, 0, -2);
4638 goto unconditional_jump;
4639
4640
4641 /* At the end of an alternative, we need to push a dummy failure
4642 point in case we are followed by a `pop_failure_jump', because
4643 we don't want the failure point for the alternative to be
4644 popped. For example, matching `(a|ab)*' against `aab'
4645 requires that we match the `ab' alternative. */
4646 case push_dummy_failure:
4647 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4648 /* See comments just above at `dummy_failure_jump' about the
4649 two zeroes. */
4650 PUSH_FAILURE_POINT (0, 0, -2);
fa9a63c5
RM
4651 break;
4652
e318085a
RS
4653 /* Have to succeed matching what follows at least n times.
4654 After that, handle like `on_failure_jump'. */
4655 case succeed_n:
4656 EXTRACT_NUMBER (mcnt, p + 2);
4657 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 4658
e318085a
RS
4659 assert (mcnt >= 0);
4660 /* Originally, this is how many times we HAVE to succeed. */
4661 if (mcnt > 0)
4662 {
4663 mcnt--;
fa9a63c5 4664 p += 2;
e318085a
RS
4665 STORE_NUMBER_AND_INCR (p, mcnt);
4666 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4667 }
fa9a63c5 4668 else if (mcnt == 0)
e318085a
RS
4669 {
4670 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
fa9a63c5 4671 p[2] = (unsigned char) no_op;
e318085a
RS
4672 p[3] = (unsigned char) no_op;
4673 goto on_failure;
4674 }
4675 break;
4676
4677 case jump_n:
4678 EXTRACT_NUMBER (mcnt, p + 2);
4679 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4680
4681 /* Originally, this is how many times we CAN jump. */
4682 if (mcnt)
4683 {
4684 mcnt--;
4685 STORE_NUMBER (p + 2, mcnt);
5e69f11e 4686 goto unconditional_jump;
e318085a
RS
4687 }
4688 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
4689 else
4690 p += 4;
e318085a 4691 break;
5e69f11e 4692
fa9a63c5
RM
4693 case set_number_at:
4694 {
e318085a 4695 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 4696
e318085a
RS
4697 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4698 p1 = p + mcnt;
4699 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4700 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
fa9a63c5 4701 STORE_NUMBER (p1, mcnt);
e318085a
RS
4702 break;
4703 }
fa9a63c5 4704
9121ca40
KH
4705#if 0
4706 /* The DEC Alpha C compiler 3.x generates incorrect code for the
e318085a
RS
4707 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4708 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
9121ca40
KH
4709 macro and introducing temporary variables works around the bug. */
4710
4711 case wordbound:
4712 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4713 if (AT_WORD_BOUNDARY (d))
fa9a63c5 4714 break;
9121ca40 4715 goto fail;
fa9a63c5
RM
4716
4717 case notwordbound:
9121ca40 4718 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
fa9a63c5
RM
4719 if (AT_WORD_BOUNDARY (d))
4720 goto fail;
9121ca40
KH
4721 break;
4722#else
4723 case wordbound:
4724 {
4725 boolean prevchar, thischar;
4726
4727 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4728 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4729 break;
4730
4731 prevchar = WORDCHAR_P (d - 1);
4732 thischar = WORDCHAR_P (d);
4733 if (prevchar != thischar)
4734 break;
4735 goto fail;
4736 }
4737
4738 case notwordbound:
4739 {
4740 boolean prevchar, thischar;
4741
4742 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4743 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4744 goto fail;
4745
4746 prevchar = WORDCHAR_P (d - 1);
4747 thischar = WORDCHAR_P (d);
4748 if (prevchar != thischar)
4749 goto fail;
4750 break;
4751 }
4752#endif
fa9a63c5
RM
4753
4754 case wordbeg:
e318085a 4755 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5
RM
4756 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4757 break;
e318085a 4758 goto fail;
fa9a63c5
RM
4759
4760 case wordend:
e318085a 4761 DEBUG_PRINT1 ("EXECUTING wordend.\n");
fa9a63c5 4762 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
e318085a 4763 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
fa9a63c5 4764 break;
e318085a 4765 goto fail;
fa9a63c5
RM
4766
4767#ifdef emacs
e318085a
RS
4768 case before_dot:
4769 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
ae93ce92 4770 if (PTR_CHAR_POS ((unsigned char *) d) >= PT)
e318085a
RS
4771 goto fail;
4772 break;
4773
4774 case at_dot:
4775 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
ae93ce92 4776 if (PTR_CHAR_POS ((unsigned char *) d) != PT)
e318085a
RS
4777 goto fail;
4778 break;
4779
4780 case after_dot:
4781 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
ae93ce92 4782 if (PTR_CHAR_POS ((unsigned char *) d) <= PT)
e318085a
RS
4783 goto fail;
4784 break;
fa9a63c5
RM
4785
4786 case syntaxspec:
e318085a 4787 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
fa9a63c5
RM
4788 mcnt = *p++;
4789 goto matchsyntax;
4790
e318085a
RS
4791 case wordchar:
4792 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
fa9a63c5 4793 mcnt = (int) Sword;
e318085a 4794 matchsyntax:
fa9a63c5
RM
4795 PREFETCH ();
4796 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4797 d++;
4798 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4799 goto fail;
e318085a 4800 SET_REGS_MATCHED ();
fa9a63c5
RM
4801 break;
4802
4803 case notsyntaxspec:
e318085a 4804 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
fa9a63c5
RM
4805 mcnt = *p++;
4806 goto matchnotsyntax;
4807
e318085a
RS
4808 case notwordchar:
4809 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
fa9a63c5 4810 mcnt = (int) Sword;
e318085a 4811 matchnotsyntax:
fa9a63c5
RM
4812 PREFETCH ();
4813 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4814 d++;
4815 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4816 goto fail;
4817 SET_REGS_MATCHED ();
e318085a 4818 break;
fa9a63c5
RM
4819
4820#else /* not emacs */
4821 case wordchar:
e318085a 4822 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
fa9a63c5 4823 PREFETCH ();
e318085a
RS
4824 if (!WORDCHAR_P (d))
4825 goto fail;
fa9a63c5 4826 SET_REGS_MATCHED ();
e318085a 4827 d++;
fa9a63c5 4828 break;
5e69f11e 4829
fa9a63c5 4830 case notwordchar:
e318085a 4831 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
fa9a63c5
RM
4832 PREFETCH ();
4833 if (WORDCHAR_P (d))
e318085a
RS
4834 goto fail;
4835 SET_REGS_MATCHED ();
4836 d++;
fa9a63c5
RM
4837 break;
4838#endif /* not emacs */
5e69f11e 4839
e318085a
RS
4840 default:
4841 abort ();
fa9a63c5 4842 }
e318085a 4843 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
4844
4845
4846 /* We goto here if a matching operation fails. */
4847 fail:
4848 if (!FAIL_STACK_EMPTY ())
e318085a
RS
4849 { /* A restart point is known. Restore to that state. */
4850 DEBUG_PRINT1 ("\nFAIL:\n");
4851 POP_FAILURE_POINT (d, p,
4852 lowest_active_reg, highest_active_reg,
4853 regstart, regend, reg_info);
4854
4855 /* If this failure point is a dummy, try the next one. */
4856 if (!p)
fa9a63c5
RM
4857 goto fail;
4858
e318085a 4859 /* If we failed to the end of the pattern, don't examine *p. */
fa9a63c5 4860 assert (p <= pend);
e318085a
RS
4861 if (p < pend)
4862 {
4863 boolean is_a_jump_n = false;
4864
4865 /* If failed to a backwards jump that's part of a repetition
4866 loop, need to pop this failure point and use the next one. */
4867 switch ((re_opcode_t) *p)
4868 {
4869 case jump_n:
4870 is_a_jump_n = true;
4871 case maybe_pop_jump:
4872 case pop_failure_jump:
4873 case jump:
4874 p1 = p + 1;
4875 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4876 p1 += mcnt;
4877
4878 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4879 || (!is_a_jump_n
4880 && (re_opcode_t) *p1 == on_failure_jump))
4881 goto fail;
4882 break;
4883 default:
4884 /* do nothing */ ;
4885 }
4886 }
4887
4888 if (d >= string1 && d <= end1)
fa9a63c5 4889 dend = end_match_1;
e318085a 4890 }
fa9a63c5 4891 else
e318085a 4892 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
4893 } /* for (;;) */
4894
4895 if (best_regs_set)
4896 goto restore_best_regs;
4897
4898 FREE_VARIABLES ();
4899
e318085a 4900 return -1; /* Failure to match. */
fa9a63c5
RM
4901} /* re_match_2 */
4902\f
4903/* Subroutine definitions for re_match_2. */
4904
4905
4906/* We are passed P pointing to a register number after a start_memory.
5e69f11e 4907
fa9a63c5
RM
4908 Return true if the pattern up to the corresponding stop_memory can
4909 match the empty string, and false otherwise.
5e69f11e 4910
fa9a63c5
RM
4911 If we find the matching stop_memory, sets P to point to one past its number.
4912 Otherwise, sets P to an undefined byte less than or equal to END.
4913
4914 We don't handle duplicates properly (yet). */
4915
4916static boolean
4917group_match_null_string_p (p, end, reg_info)
4918 unsigned char **p, *end;
4919 register_info_type *reg_info;
4920{
4921 int mcnt;
4922 /* Point to after the args to the start_memory. */
4923 unsigned char *p1 = *p + 2;
5e69f11e 4924
fa9a63c5
RM
4925 while (p1 < end)
4926 {
4927 /* Skip over opcodes that can match nothing, and return true or
4928 false, as appropriate, when we get to one that can't, or to the
e318085a 4929 matching stop_memory. */
5e69f11e 4930
fa9a63c5 4931 switch ((re_opcode_t) *p1)
e318085a
RS
4932 {
4933 /* Could be either a loop or a series of alternatives. */
4934 case on_failure_jump:
4935 p1++;
4936 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5e69f11e 4937
e318085a 4938 /* If the next operation is not a jump backwards in the
fa9a63c5
RM
4939 pattern. */
4940
4941 if (mcnt >= 0)
4942 {
e318085a
RS
4943 /* Go through the on_failure_jumps of the alternatives,
4944 seeing if any of the alternatives cannot match nothing.
4945 The last alternative starts with only a jump,
4946 whereas the rest start with on_failure_jump and end
4947 with a jump, e.g., here is the pattern for `a|b|c':
fa9a63c5 4948
e318085a
RS
4949 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4950 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4951 /exactn/1/c
fa9a63c5 4952
e318085a
RS
4953 So, we have to first go through the first (n-1)
4954 alternatives and then deal with the last one separately. */
fa9a63c5
RM
4955
4956
e318085a
RS
4957 /* Deal with the first (n-1) alternatives, which start
4958 with an on_failure_jump (see above) that jumps to right
4959 past a jump_past_alt. */
fa9a63c5 4960
e318085a
RS
4961 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4962 {
4963 /* `mcnt' holds how many bytes long the alternative
4964 is, including the ending `jump_past_alt' and
4965 its number. */
fa9a63c5 4966
e318085a
RS
4967 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4968 reg_info))
4969 return false;
fa9a63c5 4970
e318085a 4971 /* Move to right after this alternative, including the
fa9a63c5 4972 jump_past_alt. */
e318085a 4973 p1 += mcnt;
fa9a63c5 4974
e318085a
RS
4975 /* Break if it's the beginning of an n-th alternative
4976 that doesn't begin with an on_failure_jump. */
4977 if ((re_opcode_t) *p1 != on_failure_jump)
4978 break;
5e69f11e 4979
fa9a63c5
RM
4980 /* Still have to check that it's not an n-th
4981 alternative that starts with an on_failure_jump. */
4982 p1++;
e318085a
RS
4983 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4984 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4985 {
4986 /* Get to the beginning of the n-th alternative. */
4987 p1 -= 3;
4988 break;
4989 }
4990 }
fa9a63c5 4991
e318085a
RS
4992 /* Deal with the last alternative: go back and get number
4993 of the `jump_past_alt' just before it. `mcnt' contains
4994 the length of the alternative. */
4995 EXTRACT_NUMBER (mcnt, p1 - 2);
fa9a63c5 4996
e318085a
RS
4997 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4998 return false;
fa9a63c5 4999
e318085a
RS
5000 p1 += mcnt; /* Get past the n-th alternative. */
5001 } /* if mcnt > 0 */
5002 break;
fa9a63c5 5003
5e69f11e 5004
e318085a 5005 case stop_memory:
fa9a63c5 5006 assert (p1[1] == **p);
e318085a
RS
5007 *p = p1 + 2;
5008 return true;
fa9a63c5 5009
5e69f11e 5010
e318085a
RS
5011 default:
5012 if (!common_op_match_null_string_p (&p1, end, reg_info))
5013 return false;
5014 }
fa9a63c5
RM
5015 } /* while p1 < end */
5016
5017 return false;
5018} /* group_match_null_string_p */
5019
5020
5021/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5022 It expects P to be the first byte of a single alternative and END one
5023 byte past the last. The alternative can contain groups. */
5e69f11e 5024
fa9a63c5
RM
5025static boolean
5026alt_match_null_string_p (p, end, reg_info)
5027 unsigned char *p, *end;
5028 register_info_type *reg_info;
5029{
5030 int mcnt;
5031 unsigned char *p1 = p;
5e69f11e 5032
fa9a63c5
RM
5033 while (p1 < end)
5034 {
5e69f11e 5035 /* Skip over opcodes that can match nothing, and break when we get
e318085a 5036 to one that can't. */
5e69f11e 5037
fa9a63c5 5038 switch ((re_opcode_t) *p1)
e318085a
RS
5039 {
5040 /* It's a loop. */
5041 case on_failure_jump:
5042 p1++;
5043 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5044 p1 += mcnt;
5045 break;
5e69f11e
RM
5046
5047 default:
e318085a
RS
5048 if (!common_op_match_null_string_p (&p1, end, reg_info))
5049 return false;
5050 }
fa9a63c5
RM
5051 } /* while p1 < end */
5052
5053 return true;
5054} /* alt_match_null_string_p */
5055
5056
5057/* Deals with the ops common to group_match_null_string_p and
5e69f11e
RM
5058 alt_match_null_string_p.
5059
fa9a63c5
RM
5060 Sets P to one after the op and its arguments, if any. */
5061
5062static boolean
5063common_op_match_null_string_p (p, end, reg_info)
5064 unsigned char **p, *end;
5065 register_info_type *reg_info;
5066{
5067 int mcnt;
5068 boolean ret;
5069 int reg_no;
5070 unsigned char *p1 = *p;
5071
5072 switch ((re_opcode_t) *p1++)
5073 {
5074 case no_op:
5075 case begline:
5076 case endline:
5077 case begbuf:
5078 case endbuf:
5079 case wordbeg:
5080 case wordend:
5081 case wordbound:
5082 case notwordbound:
5083#ifdef emacs
5084 case before_dot:
5085 case at_dot:
5086 case after_dot:
5087#endif
5088 break;
5089
5090 case start_memory:
5091 reg_no = *p1;
5092 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5093 ret = group_match_null_string_p (&p1, end, reg_info);
5e69f11e 5094
fa9a63c5 5095 /* Have to set this here in case we're checking a group which
e318085a 5096 contains a group and a back reference to it. */
fa9a63c5
RM
5097
5098 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
e318085a 5099 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
fa9a63c5
RM
5100
5101 if (!ret)
e318085a 5102 return false;
fa9a63c5 5103 break;
5e69f11e 5104
e318085a 5105 /* If this is an optimized succeed_n for zero times, make the jump. */
fa9a63c5
RM
5106 case jump:
5107 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5108 if (mcnt >= 0)
e318085a 5109 p1 += mcnt;
fa9a63c5 5110 else
e318085a 5111 return false;
fa9a63c5
RM
5112 break;
5113
5114 case succeed_n:
e318085a 5115 /* Get to the number of times to succeed. */
5e69f11e 5116 p1 += 2;
fa9a63c5
RM
5117 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5118
5119 if (mcnt == 0)
e318085a
RS
5120 {
5121 p1 -= 4;
5122 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5123 p1 += mcnt;
5124 }
fa9a63c5 5125 else
e318085a 5126 return false;
fa9a63c5
RM
5127 break;
5128
5e69f11e 5129 case duplicate:
fa9a63c5 5130 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
e318085a 5131 return false;
fa9a63c5
RM
5132 break;
5133
5134 case set_number_at:
5135 p1 += 4;
5136
5137 default:
5138 /* All other opcodes mean we cannot match the empty string. */
5139 return false;
5140 }
5141
5142 *p = p1;
5143 return true;
5144} /* common_op_match_null_string_p */
5145
5146
5147/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5148 bytes; nonzero otherwise. */
5e69f11e 5149
fa9a63c5
RM
5150static int
5151bcmp_translate (s1, s2, len, translate)
5152 unsigned char *s1, *s2;
5153 register int len;
6676cb1c 5154 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
5155{
5156 register unsigned char *p1 = s1, *p2 = s2;
5157 while (len)
5158 {
5159 if (translate[*p1++] != translate[*p2++]) return 1;
5160 len--;
5161 }
5162 return 0;
5163}
5164\f
5165/* Entry points for GNU code. */
5166
5167/* re_compile_pattern is the GNU regular expression compiler: it
5168 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5169 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 5170
fa9a63c5
RM
5171 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5172 are set in BUFP on entry.
5e69f11e 5173
e318085a 5174 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
5175
5176const char *
5177re_compile_pattern (pattern, length, bufp)
5178 const char *pattern;
5179 int length;
5180 struct re_pattern_buffer *bufp;
5181{
5182 reg_errcode_t ret;
5e69f11e 5183
fa9a63c5
RM
5184 /* GNU code is written to assume at least RE_NREGS registers will be set
5185 (and at least one extra will be -1). */
5186 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 5187
fa9a63c5
RM
5188 /* And GNU code determines whether or not to get register information
5189 by passing null for the REGS argument to re_match, etc., not by
5190 setting no_sub. */
5191 bufp->no_sub = 0;
5e69f11e 5192
e318085a 5193 /* Match anchors at newline. */
fa9a63c5 5194 bufp->newline_anchor = 1;
5e69f11e 5195
fa9a63c5
RM
5196 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5197
5198 if (!ret)
5199 return NULL;
5200 return gettext (re_error_msgid[(int) ret]);
5e69f11e 5201}
fa9a63c5 5202\f
e318085a
RS
5203/* Entry points compatible with 4.2 BSD regex library. We don't define
5204 them unless specifically requested. */
fa9a63c5 5205
0c085854 5206#if defined (_REGEX_RE_COMP) || defined (_LIBC)
fa9a63c5
RM
5207
5208/* BSD has one and only one pattern buffer. */
5209static struct re_pattern_buffer re_comp_buf;
5210
5211char *
48afdd44
RM
5212#ifdef _LIBC
5213/* Make these definitions weak in libc, so POSIX programs can redefine
5214 these names if they don't use our functions, and still use
5215 regcomp/regexec below without link errors. */
5216weak_function
5217#endif
fa9a63c5
RM
5218re_comp (s)
5219 const char *s;
5220{
5221 reg_errcode_t ret;
5e69f11e 5222
fa9a63c5
RM
5223 if (!s)
5224 {
5225 if (!re_comp_buf.buffer)
5226 return gettext ("No previous regular expression");
5227 return 0;
5228 }
5229
5230 if (!re_comp_buf.buffer)
5231 {
5232 re_comp_buf.buffer = (unsigned char *) malloc (200);
5233 if (re_comp_buf.buffer == NULL)
e318085a 5234 return gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
5235 re_comp_buf.allocated = 200;
5236
5237 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5238 if (re_comp_buf.fastmap == NULL)
5239 return gettext (re_error_msgid[(int) REG_ESPACE]);
5240 }
5241
5242 /* Since `re_exec' always passes NULL for the `regs' argument, we
5243 don't need to initialize the pattern buffer fields which affect it. */
5244
e318085a 5245 /* Match anchors at newlines. */
fa9a63c5
RM
5246 re_comp_buf.newline_anchor = 1;
5247
5248 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 5249
fa9a63c5
RM
5250 if (!ret)
5251 return NULL;
5252
5253 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5254 return (char *) gettext (re_error_msgid[(int) ret]);
5255}
5256
5257
5258int
48afdd44
RM
5259#ifdef _LIBC
5260weak_function
5261#endif
fa9a63c5
RM
5262re_exec (s)
5263 const char *s;
5264{
5265 const int len = strlen (s);
5266 return
5267 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5268}
5269#endif /* _REGEX_RE_COMP */
5270\f
5271/* POSIX.2 functions. Don't define these for Emacs. */
5272
5273#ifndef emacs
5274
5275/* regcomp takes a regular expression as a string and compiles it.
5276
e318085a 5277 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
5278 since POSIX says we shouldn't. Thus, we set
5279
5280 `buffer' to the compiled pattern;
5281 `used' to the length of the compiled pattern;
5282 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5283 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5284 RE_SYNTAX_POSIX_BASIC;
5285 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5286 `fastmap' and `fastmap_accurate' to zero;
5287 `re_nsub' to the number of subexpressions in PATTERN.
5288
5289 PATTERN is the address of the pattern string.
5290
5291 CFLAGS is a series of bits which affect compilation.
5292
5293 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5294 use POSIX basic syntax.
5295
5296 If REG_NEWLINE is set, then . and [^...] don't match newline.
5297 Also, regexec will try a match beginning after every newline.
5298
5299 If REG_ICASE is set, then we considers upper- and lowercase
5300 versions of letters to be equivalent when matching.
5301
5302 If REG_NOSUB is set, then when PREG is passed to regexec, that
5303 routine will report only success or failure, and nothing about the
5304 registers.
5305
e318085a 5306 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
5307 the return codes and their meanings.) */
5308
5309int
5310regcomp (preg, pattern, cflags)
5311 regex_t *preg;
5e69f11e 5312 const char *pattern;
fa9a63c5
RM
5313 int cflags;
5314{
5315 reg_errcode_t ret;
5316 unsigned syntax
5317 = (cflags & REG_EXTENDED) ?
5318 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5319
5320 /* regex_compile will allocate the space for the compiled pattern. */
5321 preg->buffer = 0;
5322 preg->allocated = 0;
5323 preg->used = 0;
5e69f11e 5324
fa9a63c5
RM
5325 /* Don't bother to use a fastmap when searching. This simplifies the
5326 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5327 characters after newlines into the fastmap. This way, we just try
5328 every character. */
5329 preg->fastmap = 0;
5e69f11e 5330
fa9a63c5
RM
5331 if (cflags & REG_ICASE)
5332 {
5333 unsigned i;
5e69f11e 5334
6676cb1c
RS
5335 preg->translate
5336 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5337 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 5338 if (preg->translate == NULL)
e318085a 5339 return (int) REG_ESPACE;
fa9a63c5
RM
5340
5341 /* Map uppercase characters to corresponding lowercase ones. */
5342 for (i = 0; i < CHAR_SET_SIZE; i++)
e318085a 5343 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
fa9a63c5
RM
5344 }
5345 else
5346 preg->translate = NULL;
5347
5348 /* If REG_NEWLINE is set, newlines are treated differently. */
5349 if (cflags & REG_NEWLINE)
5350 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5351 syntax &= ~RE_DOT_NEWLINE;
5352 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
e318085a 5353 /* It also changes the matching behavior. */
fa9a63c5
RM
5354 preg->newline_anchor = 1;
5355 }
5356 else
5357 preg->newline_anchor = 0;
5358
5359 preg->no_sub = !!(cflags & REG_NOSUB);
5360
5e69f11e 5361 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5
RM
5362 can use strlen here in compiling the pattern. */
5363 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5e69f11e 5364
fa9a63c5
RM
5365 /* POSIX doesn't distinguish between an unmatched open-group and an
5366 unmatched close-group: both are REG_EPAREN. */
5367 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5e69f11e 5368
fa9a63c5
RM
5369 return (int) ret;
5370}
5371
5372
5373/* regexec searches for a given pattern, specified by PREG, in the
5374 string STRING.
5e69f11e 5375
fa9a63c5 5376 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
e318085a 5377 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
5378 least NMATCH elements, and we set them to the offsets of the
5379 corresponding matched substrings.
5e69f11e 5380
fa9a63c5
RM
5381 EFLAGS specifies `execution flags' which affect matching: if
5382 REG_NOTBOL is set, then ^ does not match at the beginning of the
5383 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 5384
fa9a63c5
RM
5385 We return 0 if we find a match and REG_NOMATCH if not. */
5386
5387int
5388regexec (preg, string, nmatch, pmatch, eflags)
5389 const regex_t *preg;
5e69f11e
RM
5390 const char *string;
5391 size_t nmatch;
5392 regmatch_t pmatch[];
fa9a63c5
RM
5393 int eflags;
5394{
5395 int ret;
5396 struct re_registers regs;
5397 regex_t private_preg;
5398 int len = strlen (string);
5399 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5400
5401 private_preg = *preg;
5e69f11e 5402
fa9a63c5
RM
5403 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5404 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 5405
fa9a63c5
RM
5406 /* The user has told us exactly how many registers to return
5407 information about, via `nmatch'. We have to pass that on to the
e318085a 5408 matching routines. */
fa9a63c5 5409 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 5410
fa9a63c5
RM
5411 if (want_reg_info)
5412 {
5413 regs.num_regs = nmatch;
5414 regs.start = TALLOC (nmatch, regoff_t);
5415 regs.end = TALLOC (nmatch, regoff_t);
5416 if (regs.start == NULL || regs.end == NULL)
e318085a 5417 return (int) REG_NOMATCH;
fa9a63c5
RM
5418 }
5419
5420 /* Perform the searching operation. */
5421 ret = re_search (&private_preg, string, len,
e318085a
RS
5422 /* start: */ 0, /* range: */ len,
5423 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 5424
fa9a63c5
RM
5425 /* Copy the register information to the POSIX structure. */
5426 if (want_reg_info)
5427 {
5428 if (ret >= 0)
e318085a
RS
5429 {
5430 unsigned r;
fa9a63c5 5431
e318085a
RS
5432 for (r = 0; r < nmatch; r++)
5433 {
5434 pmatch[r].rm_so = regs.start[r];
5435 pmatch[r].rm_eo = regs.end[r];
5436 }
5437 }
fa9a63c5 5438
e318085a 5439 /* If we needed the temporary register info, free the space now. */
fa9a63c5
RM
5440 free (regs.start);
5441 free (regs.end);
5442 }
5443
5444 /* We want zero return to mean success, unlike `re_search'. */
5445 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5446}
5447
5448
5449/* Returns a message corresponding to an error code, ERRCODE, returned
5450 from either regcomp or regexec. We don't use PREG here. */
5451
5452size_t
5453regerror (errcode, preg, errbuf, errbuf_size)
5454 int errcode;
5455 const regex_t *preg;
5456 char *errbuf;
5457 size_t errbuf_size;
5458{
5459 const char *msg;
5460 size_t msg_size;
5461
5462 if (errcode < 0
5463 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 5464 /* Only error codes returned by the rest of the code should be passed
e318085a 5465 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
5466 code generates an invalid error code, then the program has a bug.
5467 Dump core so we can fix it. */
5468 abort ();
5469
5470 msg = gettext (re_error_msgid[errcode]);
5471
5472 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 5473
fa9a63c5
RM
5474 if (errbuf_size != 0)
5475 {
5476 if (msg_size > errbuf_size)
e318085a
RS
5477 {
5478 strncpy (errbuf, msg, errbuf_size - 1);
5479 errbuf[errbuf_size - 1] = 0;
5480 }
fa9a63c5 5481 else
e318085a 5482 strcpy (errbuf, msg);
fa9a63c5
RM
5483 }
5484
5485 return msg_size;
5486}
5487
5488
5489/* Free dynamically allocated space used by PREG. */
5490
5491void
5492regfree (preg)
5493 regex_t *preg;
5494{
5495 if (preg->buffer != NULL)
5496 free (preg->buffer);
5497 preg->buffer = NULL;
5e69f11e 5498
fa9a63c5
RM
5499 preg->allocated = 0;
5500 preg->used = 0;
5501
5502 if (preg->fastmap != NULL)
5503 free (preg->fastmap);
5504 preg->fastmap = NULL;
5505 preg->fastmap_accurate = 0;
5506
5507 if (preg->translate != NULL)
5508 free (preg->translate);
5509 preg->translate = NULL;
5510}
5511
5512#endif /* not emacs */