(decode-char): Cancel the previous change.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
4bb91c68 5 Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5 21
36595814
SM
22/* BUGS:
23 - (x?)*y\1z should match both xxxxyxz and xxxyz.
24 TODO:
505bde11 25 - structure the opcode space into opcode+flag.
dc1e502d 26 - merge with glibc's regex.[ch].
01618498 27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
01618498 31*/
505bde11 32
fa9a63c5 33/* AIX requires this to be the first thing in the file. */
0b32bf0e 34#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
35 #pragma alloca
36#endif
37
68d96f02 38#undef _GNU_SOURCE
fa9a63c5
RM
39#define _GNU_SOURCE
40
41#ifdef HAVE_CONFIG_H
0b32bf0e 42# include <config.h>
fa9a63c5
RM
43#endif
44
4bb91c68
SM
45#if defined STDC_HEADERS && !defined emacs
46# include <stddef.h>
47#else
48/* We need this for `regex.h', and perhaps for the Emacs include files. */
49# include <sys/types.h>
50#endif
fa9a63c5 51
14473664
SM
52/* Whether to use ISO C Amendment 1 wide char functions.
53 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
54#if defined _LIBC
55#define WIDE_CHAR_SUPPORT 1
56#else
14473664 57#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
58 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
59#endif
14473664
SM
60
61/* For platform which support the ISO C amendement 1 functionality we
62 support user defined character classes. */
a0ad02f7 63#if WIDE_CHAR_SUPPORT
14473664
SM
64/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
65# include <wchar.h>
66# include <wctype.h>
67#endif
68
c0f9ea08
SM
69#ifdef _LIBC
70/* We have to keep the namespace clean. */
71# define regfree(preg) __regfree (preg)
72# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
73# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
74# define regerror(errcode, preg, errbuf, errbuf_size) \
75 __regerror(errcode, preg, errbuf, errbuf_size)
76# define re_set_registers(bu, re, nu, st, en) \
77 __re_set_registers (bu, re, nu, st, en)
78# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
79 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
80# define re_match(bufp, string, size, pos, regs) \
81 __re_match (bufp, string, size, pos, regs)
82# define re_search(bufp, string, size, startpos, range, regs) \
83 __re_search (bufp, string, size, startpos, range, regs)
84# define re_compile_pattern(pattern, length, bufp) \
85 __re_compile_pattern (pattern, length, bufp)
86# define re_set_syntax(syntax) __re_set_syntax (syntax)
87# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
88 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
89# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
90
14473664
SM
91/* Make sure we call libc's function even if the user overrides them. */
92# define btowc __btowc
93# define iswctype __iswctype
94# define wctype __wctype
95
c0f9ea08
SM
96# define WEAK_ALIAS(a,b) weak_alias (a, b)
97
98/* We are also using some library internals. */
99# include <locale/localeinfo.h>
100# include <locale/elem-hash.h>
101# include <langinfo.h>
102#else
103# define WEAK_ALIAS(a,b)
104#endif
105
4bb91c68 106/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 107#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
108# include <libintl.h>
109#else
110# define gettext(msgid) (msgid)
111#endif
112
5e69f11e
RM
113#ifndef gettext_noop
114/* This define is so xgettext can find the internationalizable
115 strings. */
0b32bf0e 116# define gettext_noop(String) String
5e69f11e
RM
117#endif
118
fa9a63c5
RM
119/* The `emacs' switch turns on certain matching commands
120 that make sense only in Emacs. */
121#ifdef emacs
122
0b32bf0e
SM
123# include "lisp.h"
124# include "buffer.h"
b18215fc
RS
125
126/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 127# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 128
0b32bf0e
SM
129# include "syntax.h"
130# include "charset.h"
131# include "category.h"
fa9a63c5 132
7689ef0b
EZ
133# ifdef malloc
134# undef malloc
135# endif
0b32bf0e 136# define malloc xmalloc
7689ef0b
EZ
137# ifdef realloc
138# undef realloc
139# endif
0b32bf0e 140# define realloc xrealloc
7689ef0b
EZ
141# ifdef free
142# undef free
143# endif
0b32bf0e 144# define free xfree
9abbd165 145
0b32bf0e
SM
146/* Converts the pointer to the char to BEG-based offset from the start. */
147# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
148# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
149
150# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
151# define RE_STRING_CHAR(p, s) \
4e8a9132 152 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
0b32bf0e 153# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
2d1675e4
SM
154 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
155
156/* Set C a (possibly multibyte) character before P. P points into a
157 string which is the virtual concatenation of STR1 (which ends at
158 END1) or STR2 (which ends at END2). */
0b32bf0e 159# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
2d1675e4
SM
160 do { \
161 if (multibyte) \
162 { \
0b32bf0e
SM
163 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
164 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
165 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
166 c = STRING_CHAR (dtemp, (p) - dtemp); \
2d1675e4
SM
167 } \
168 else \
169 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
170 } while (0)
171
4e8a9132 172
fa9a63c5
RM
173#else /* not emacs */
174
175/* If we are not linking with Emacs proper,
176 we can't use the relocating allocator
177 even if config.h says that we can. */
0b32bf0e 178# undef REL_ALLOC
fa9a63c5 179
0b32bf0e
SM
180# if defined STDC_HEADERS || defined _LIBC
181# include <stdlib.h>
182# else
fa9a63c5
RM
183char *malloc ();
184char *realloc ();
0b32bf0e 185# endif
fa9a63c5 186
9e4ecb26 187/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 188 If nothing else has been done, use the method below. */
0b32bf0e
SM
189# ifdef INHIBIT_STRING_HEADER
190# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
191# if !defined bzero && !defined bcopy
192# undef INHIBIT_STRING_HEADER
193# endif
194# endif
195# endif
9e4ecb26 196
4bb91c68 197/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
198 This is used in most programs--a few other programs avoid this
199 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
200# ifndef INHIBIT_STRING_HEADER
201# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
202# include <string.h>
0b32bf0e 203# ifndef bzero
4bb91c68
SM
204# ifndef _LIBC
205# define bzero(s, n) (memset (s, '\0', n), (s))
206# else
207# define bzero(s, n) __bzero (s, n)
208# endif
0b32bf0e
SM
209# endif
210# else
211# include <strings.h>
4bb91c68
SM
212# ifndef memcmp
213# define memcmp(s1, s2, n) bcmp (s1, s2, n)
214# endif
215# ifndef memcpy
216# define memcpy(d, s, n) (bcopy (s, d, n), (d))
217# endif
0b32bf0e
SM
218# endif
219# endif
fa9a63c5
RM
220
221/* Define the syntax stuff for \<, \>, etc. */
222
990b2375
SM
223/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
224enum syntaxcode { Swhitespace = 0, Sword = 1 };
fa9a63c5 225
0b32bf0e
SM
226# ifdef SWITCH_ENUM_BUG
227# define SWITCH_ENUM_CAST(x) ((int)(x))
228# else
229# define SWITCH_ENUM_CAST(x) (x)
230# endif
fa9a63c5 231
e934739e 232/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
233# define BASE_LEADING_CODE_P(c) (0)
234# define CHAR_CHARSET(c) 0
235# define CHARSET_LEADING_CODE_BASE(c) 0
236# define MAX_MULTIBYTE_LENGTH 1
237# define RE_MULTIBYTE_P(x) 0
238# define WORD_BOUNDARY_P(c1, c2) (0)
239# define CHAR_HEAD_P(p) (1)
240# define SINGLE_BYTE_CHAR_P(c) (1)
241# define SAME_CHARSET_P(c1, c2) (1)
242# define MULTIBYTE_FORM_LENGTH(p, s) (1)
243# define STRING_CHAR(p, s) (*(p))
244# define RE_STRING_CHAR STRING_CHAR
245# define CHAR_STRING(c, s) (*(s) = (c), 1)
246# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
247# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
248# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 249 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
0b32bf0e 250# define MAKE_CHAR(charset, c1, c2) (c1)
fa9a63c5 251#endif /* not emacs */
4e8a9132
SM
252
253#ifndef RE_TRANSLATE
0b32bf0e
SM
254# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
255# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 256#endif
fa9a63c5
RM
257\f
258/* Get the interface, including the syntax bits. */
259#include "regex.h"
260
f71b19b6
DL
261/* isalpha etc. are used for the character classes. */
262#include <ctype.h>
fa9a63c5 263
f71b19b6 264#ifdef emacs
fa9a63c5 265
f71b19b6 266/* 1 if C is an ASCII character. */
0b32bf0e 267# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 268
f71b19b6 269/* 1 if C is a unibyte character. */
0b32bf0e 270# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 271
f71b19b6 272/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 273
f71b19b6 274/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
275# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
276# define ISCNTRL(c) ((c) < ' ')
277# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
278 || ((c) >= 'a' && (c) <= 'f') \
279 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
280
281/* This is only used for single-byte characters. */
0b32bf0e 282# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
283
284/* The rest must handle multibyte characters. */
285
0b32bf0e 286# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 287 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
288 : 1)
289
14473664 290# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 291 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
292 : 1)
293
0b32bf0e 294# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
295 ? (((c) >= 'a' && (c) <= 'z') \
296 || ((c) >= 'A' && (c) <= 'Z') \
297 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
298 : SYNTAX (c) == Sword)
299
0b32bf0e 300# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
301 ? (((c) >= 'a' && (c) <= 'z') \
302 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
303 : SYNTAX (c) == Sword)
304
0b32bf0e 305# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 306
0b32bf0e 307# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
308 ? ((c) > ' ' && (c) < 0177 \
309 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
310 || ((c) >= 'A' && (c) <= 'Z') \
311 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
312 : SYNTAX (c) != Sword)
313
0b32bf0e 314# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 315
0b32bf0e 316# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 317
0b32bf0e 318# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
319
320#else /* not emacs */
321
f71b19b6
DL
322/* Jim Meyering writes:
323
324 "... Some ctype macros are valid only for character codes that
325 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
326 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 327 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
328 STDC_HEADERS is defined, then autoconf has verified that the ctype
329 macros don't need to be guarded with references to isascii. ...
330 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
331 eliminate the && through constant folding."
332 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 333
4bb91c68 334# undef ISASCII
0b32bf0e
SM
335# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
336# define ISASCII(c) 1
337# else
338# define ISASCII(c) isascii(c)
339# endif
f71b19b6
DL
340
341/* 1 if C is an ASCII character. */
0b32bf0e 342# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
343
344/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
345# define ISUNIBYTE(c) 1
346
347# ifdef isblank
348# define ISBLANK(c) (ISASCII (c) && isblank (c))
349# else
350# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
351# endif
352# ifdef isgraph
353# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
354# else
355# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
356# endif
357
4bb91c68 358# undef ISPRINT
0b32bf0e
SM
359# define ISPRINT(c) (ISASCII (c) && isprint (c))
360# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
361# define ISALNUM(c) (ISASCII (c) && isalnum (c))
362# define ISALPHA(c) (ISASCII (c) && isalpha (c))
363# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
364# define ISLOWER(c) (ISASCII (c) && islower (c))
365# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
366# define ISSPACE(c) (ISASCII (c) && isspace (c))
367# define ISUPPER(c) (ISASCII (c) && isupper (c))
368# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
369
370# define ISWORD(c) ISALPHA(c)
371
4bb91c68
SM
372# ifdef _tolower
373# define TOLOWER(c) _tolower(c)
374# else
375# define TOLOWER(c) tolower(c)
376# endif
377
378/* How many characters in the character set. */
379# define CHAR_SET_SIZE 256
380
0b32bf0e 381# ifdef SYNTAX_TABLE
f71b19b6 382
0b32bf0e 383extern char *re_syntax_table;
f71b19b6 384
0b32bf0e
SM
385# else /* not SYNTAX_TABLE */
386
0b32bf0e
SM
387static char re_syntax_table[CHAR_SET_SIZE];
388
389static void
390init_syntax_once ()
391{
392 register int c;
393 static int done = 0;
394
395 if (done)
396 return;
397
398 bzero (re_syntax_table, sizeof re_syntax_table);
399
4bb91c68
SM
400 for (c = 0; c < CHAR_SET_SIZE; ++c)
401 if (ISALNUM (c))
402 re_syntax_table[c] = Sword;
fa9a63c5 403
0b32bf0e 404 re_syntax_table['_'] = Sword;
fa9a63c5 405
0b32bf0e
SM
406 done = 1;
407}
408
409# endif /* not SYNTAX_TABLE */
96cc36cc 410
4bb91c68
SM
411# define SYNTAX(c) re_syntax_table[(c)]
412
96cc36cc
RS
413#endif /* not emacs */
414\f
fa9a63c5 415#ifndef NULL
0b32bf0e 416# define NULL (void *)0
fa9a63c5
RM
417#endif
418
419/* We remove any previous definition of `SIGN_EXTEND_CHAR',
420 since ours (we hope) works properly with all combinations of
421 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 422 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
423#undef SIGN_EXTEND_CHAR
424#if __STDC__
0b32bf0e 425# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
426#else /* not __STDC__ */
427/* As in Harbison and Steele. */
0b32bf0e 428# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
429#endif
430\f
431/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
432 use `alloca' instead of `malloc'. This is because using malloc in
433 re_search* or re_match* could cause memory leaks when C-g is used in
434 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
435 the other hand, malloc is more portable, and easier to debug.
436
fa9a63c5
RM
437 Because we sometimes use alloca, some routines have to be macros,
438 not functions -- `alloca'-allocated space disappears at the end of the
439 function it is called in. */
440
441#ifdef REGEX_MALLOC
442
0b32bf0e
SM
443# define REGEX_ALLOCATE malloc
444# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
445# define REGEX_FREE free
fa9a63c5
RM
446
447#else /* not REGEX_MALLOC */
448
449/* Emacs already defines alloca, sometimes. */
0b32bf0e 450# ifndef alloca
fa9a63c5
RM
451
452/* Make alloca work the best possible way. */
0b32bf0e
SM
453# ifdef __GNUC__
454# define alloca __builtin_alloca
455# else /* not __GNUC__ */
456# if HAVE_ALLOCA_H
457# include <alloca.h>
458# endif /* HAVE_ALLOCA_H */
459# endif /* not __GNUC__ */
fa9a63c5 460
0b32bf0e 461# endif /* not alloca */
fa9a63c5 462
0b32bf0e 463# define REGEX_ALLOCATE alloca
fa9a63c5
RM
464
465/* Assumes a `char *destination' variable. */
0b32bf0e 466# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 467 (destination = (char *) alloca (nsize), \
4bb91c68 468 memcpy (destination, source, osize))
fa9a63c5
RM
469
470/* No need to do anything to free, after alloca. */
0b32bf0e 471# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
472
473#endif /* not REGEX_MALLOC */
474
475/* Define how to allocate the failure stack. */
476
0b32bf0e 477#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 478
0b32bf0e 479# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 480 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 481# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 482 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 483# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
484 r_alloc_free (&failure_stack_ptr)
485
4297555e 486#else /* not using relocating allocator */
fa9a63c5 487
0b32bf0e 488# ifdef REGEX_MALLOC
fa9a63c5 489
0b32bf0e
SM
490# define REGEX_ALLOCATE_STACK malloc
491# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
492# define REGEX_FREE_STACK free
fa9a63c5 493
0b32bf0e 494# else /* not REGEX_MALLOC */
fa9a63c5 495
0b32bf0e 496# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 497
0b32bf0e 498# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 499 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 500/* No need to explicitly free anything. */
0b32bf0e 501# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 502
0b32bf0e 503# endif /* not REGEX_MALLOC */
4297555e 504#endif /* not using relocating allocator */
fa9a63c5
RM
505
506
507/* True if `size1' is non-NULL and PTR is pointing anywhere inside
508 `string1' or just past its end. This works if PTR is NULL, which is
509 a good thing. */
25fe55af 510#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
511 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
512
513/* (Re)Allocate N items of type T using malloc, or fail. */
514#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
515#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
516#define RETALLOC_IF(addr, n, t) \
517 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
518#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
519
4bb91c68 520#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
521
522#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
523
524#undef MAX
525#undef MIN
526#define MAX(a, b) ((a) > (b) ? (a) : (b))
527#define MIN(a, b) ((a) < (b) ? (a) : (b))
528
66f0296e
SM
529/* Type of source-pattern and string chars. */
530typedef const unsigned char re_char;
531
fa9a63c5
RM
532typedef char boolean;
533#define false 0
534#define true 1
535
4bb91c68
SM
536static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
537 re_char *string1, int size1,
538 re_char *string2, int size2,
539 int pos,
540 struct re_registers *regs,
541 int stop));
fa9a63c5
RM
542\f
543/* These are the command codes that appear in compiled regular
4bb91c68 544 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
545 command code can specify any interpretation whatsoever for its
546 arguments. Zero bytes may appear in the compiled regular expression. */
547
548typedef enum
549{
550 no_op = 0,
551
4bb91c68 552 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
553 succeed,
554
25fe55af 555 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
556 exactn,
557
25fe55af 558 /* Matches any (more or less) character. */
fa9a63c5
RM
559 anychar,
560
25fe55af
RS
561 /* Matches any one char belonging to specified set. First
562 following byte is number of bitmap bytes. Then come bytes
563 for a bitmap saying which chars are in. Bits in each byte
564 are ordered low-bit-first. A character is in the set if its
565 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
566 automatically not in the set.
567
568 If the length byte has the 0x80 bit set, then that stuff
569 is followed by a range table:
570 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 571 See RANGE_TABLE_WORK_BITS below.
01618498 572 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 573 pairs, each 2 multibyte characters,
0b32bf0e 574 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
575 charset,
576
25fe55af 577 /* Same parameters as charset, but match any character that is
4bb91c68 578 not one of those specified. */
fa9a63c5
RM
579 charset_not,
580
25fe55af
RS
581 /* Start remembering the text that is matched, for storing in a
582 register. Followed by one byte with the register number, in
583 the range 0 to one less than the pattern buffer's re_nsub
505bde11 584 field. */
fa9a63c5
RM
585 start_memory,
586
25fe55af
RS
587 /* Stop remembering the text that is matched and store it in a
588 memory register. Followed by one byte with the register
589 number, in the range 0 to one less than `re_nsub' in the
505bde11 590 pattern buffer. */
fa9a63c5
RM
591 stop_memory,
592
25fe55af 593 /* Match a duplicate of something remembered. Followed by one
4bb91c68 594 byte containing the register number. */
fa9a63c5
RM
595 duplicate,
596
25fe55af 597 /* Fail unless at beginning of line. */
fa9a63c5
RM
598 begline,
599
4bb91c68 600 /* Fail unless at end of line. */
fa9a63c5
RM
601 endline,
602
25fe55af
RS
603 /* Succeeds if at beginning of buffer (if emacs) or at beginning
604 of string to be matched (if not). */
fa9a63c5
RM
605 begbuf,
606
25fe55af 607 /* Analogously, for end of buffer/string. */
fa9a63c5 608 endbuf,
5e69f11e 609
25fe55af 610 /* Followed by two byte relative address to which to jump. */
5e69f11e 611 jump,
fa9a63c5 612
25fe55af
RS
613 /* Followed by two-byte relative address of place to resume at
614 in case of failure. */
fa9a63c5 615 on_failure_jump,
5e69f11e 616
25fe55af
RS
617 /* Like on_failure_jump, but pushes a placeholder instead of the
618 current string position when executed. */
fa9a63c5 619 on_failure_keep_string_jump,
5e69f11e 620
505bde11
SM
621 /* Just like `on_failure_jump', except that it checks that we
622 don't get stuck in an infinite loop (matching an empty string
623 indefinitely). */
624 on_failure_jump_loop,
625
0683b6fa
SM
626 /* Just like `on_failure_jump_loop', except that it checks for
627 a different kind of loop (the kind that shows up with non-greedy
628 operators). This operation has to be immediately preceded
629 by a `no_op'. */
630 on_failure_jump_nastyloop,
631
0b32bf0e 632 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
633 It analyses the loop before which it is put and if the
634 loop does not require backtracking, it changes itself to
4e8a9132
SM
635 `on_failure_keep_string_jump' and short-circuits the loop,
636 else it just defaults to changing itself into `on_failure_jump'.
637 It assumes that it is pointing to just past a `jump'. */
505bde11 638 on_failure_jump_smart,
fa9a63c5 639
25fe55af 640 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
641 After matching N times, jump to the address upon failure.
642 Does not work if N starts at 0: use on_failure_jump_loop
643 instead. */
fa9a63c5
RM
644 succeed_n,
645
25fe55af
RS
646 /* Followed by two-byte relative address, and two-byte number n.
647 Jump to the address N times, then fail. */
fa9a63c5
RM
648 jump_n,
649
25fe55af
RS
650 /* Set the following two-byte relative address to the
651 subsequent two-byte number. The address *includes* the two
652 bytes of number. */
fa9a63c5
RM
653 set_number_at,
654
fa9a63c5
RM
655 wordbeg, /* Succeeds if at word beginning. */
656 wordend, /* Succeeds if at word end. */
657
658 wordbound, /* Succeeds if at a word boundary. */
1fb352e0 659 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5
RM
660
661 /* Matches any character whose syntax is specified. Followed by
25fe55af 662 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
663 syntaxspec,
664
665 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
666 notsyntaxspec
667
668#ifdef emacs
669 ,before_dot, /* Succeeds if before point. */
670 at_dot, /* Succeeds if at point. */
671 after_dot, /* Succeeds if after point. */
b18215fc
RS
672
673 /* Matches any character whose category-set contains the specified
25fe55af
RS
674 category. The operator is followed by a byte which contains a
675 category code (mnemonic ASCII character). */
b18215fc
RS
676 categoryspec,
677
678 /* Matches any character whose category-set does not contain the
679 specified category. The operator is followed by a byte which
680 contains the category code (mnemonic ASCII character). */
681 notcategoryspec
fa9a63c5
RM
682#endif /* emacs */
683} re_opcode_t;
684\f
685/* Common operations on the compiled pattern. */
686
687/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
688
689#define STORE_NUMBER(destination, number) \
690 do { \
691 (destination)[0] = (number) & 0377; \
692 (destination)[1] = (number) >> 8; \
693 } while (0)
694
695/* Same as STORE_NUMBER, except increment DESTINATION to
696 the byte after where the number is stored. Therefore, DESTINATION
697 must be an lvalue. */
698
699#define STORE_NUMBER_AND_INCR(destination, number) \
700 do { \
701 STORE_NUMBER (destination, number); \
702 (destination) += 2; \
703 } while (0)
704
705/* Put into DESTINATION a number stored in two contiguous bytes starting
706 at SOURCE. */
707
708#define EXTRACT_NUMBER(destination, source) \
709 do { \
710 (destination) = *(source) & 0377; \
711 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
712 } while (0)
713
714#ifdef DEBUG
4bb91c68 715static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
716static void
717extract_number (dest, source)
718 int *dest;
01618498 719 re_char *source;
fa9a63c5 720{
5e69f11e 721 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
722 *dest = *source & 0377;
723 *dest += temp << 8;
724}
725
4bb91c68 726# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
727# undef EXTRACT_NUMBER
728# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
729# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
730
731#endif /* DEBUG */
732
733/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
734 SOURCE must be an lvalue. */
735
736#define EXTRACT_NUMBER_AND_INCR(destination, source) \
737 do { \
738 EXTRACT_NUMBER (destination, source); \
25fe55af 739 (source) += 2; \
fa9a63c5
RM
740 } while (0)
741
742#ifdef DEBUG
4bb91c68
SM
743static void extract_number_and_incr _RE_ARGS ((int *destination,
744 re_char **source));
fa9a63c5
RM
745static void
746extract_number_and_incr (destination, source)
747 int *destination;
01618498 748 re_char **source;
5e69f11e 749{
fa9a63c5
RM
750 extract_number (destination, *source);
751 *source += 2;
752}
753
0b32bf0e
SM
754# ifndef EXTRACT_MACROS
755# undef EXTRACT_NUMBER_AND_INCR
756# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 757 extract_number_and_incr (&dest, &src)
0b32bf0e 758# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
759
760#endif /* DEBUG */
761\f
b18215fc
RS
762/* Store a multibyte character in three contiguous bytes starting
763 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 764 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
765
766#define STORE_CHARACTER_AND_INCR(destination, character) \
767 do { \
768 (destination)[0] = (character) & 0377; \
769 (destination)[1] = ((character) >> 8) & 0377; \
770 (destination)[2] = (character) >> 16; \
771 (destination) += 3; \
772 } while (0)
773
774/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 775 starting at SOURCE. */
b18215fc
RS
776
777#define EXTRACT_CHARACTER(destination, source) \
778 do { \
779 (destination) = ((source)[0] \
780 | ((source)[1] << 8) \
781 | ((source)[2] << 16)); \
782 } while (0)
783
784
785/* Macros for charset. */
786
787/* Size of bitmap of charset P in bytes. P is a start of charset,
788 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
789#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
790
791/* Nonzero if charset P has range table. */
25fe55af 792#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
793
794/* Return the address of range table of charset P. But not the start
795 of table itself, but the before where the number of ranges is
96cc36cc
RS
796 stored. `2 +' means to skip re_opcode_t and size of bitmap,
797 and the 2 bytes of flags at the start of the range table. */
798#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
799
800/* Extract the bit flags that start a range table. */
801#define CHARSET_RANGE_TABLE_BITS(p) \
802 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
803 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
804
805/* Test if C is listed in the bitmap of charset P. */
806#define CHARSET_LOOKUP_BITMAP(p, c) \
807 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
808 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
809
810/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
811 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
812 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
813 and end. */
814#define CHARSET_RANGE_TABLE_END(range_table, count) \
815 ((range_table) + (count) * 2 * 3)
816
25fe55af 817/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
818 COUNT is number of ranges in RANGE_TABLE. */
819#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
820 do \
821 { \
01618498
SM
822 re_wchar_t range_start, range_end; \
823 re_char *p; \
824 re_char *range_table_end \
b18215fc
RS
825 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
826 \
827 for (p = (range_table); p < range_table_end; p += 2 * 3) \
828 { \
829 EXTRACT_CHARACTER (range_start, p); \
830 EXTRACT_CHARACTER (range_end, p + 3); \
831 \
832 if (range_start <= (c) && (c) <= range_end) \
833 { \
834 (not) = !(not); \
835 break; \
836 } \
837 } \
838 } \
839 while (0)
840
841/* Test if C is in range table of CHARSET. The flag NOT is negated if
842 C is listed in it. */
843#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
844 do \
845 { \
846 /* Number of ranges in range table. */ \
847 int count; \
01618498
SM
848 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
849 \
b18215fc
RS
850 EXTRACT_NUMBER_AND_INCR (count, range_table); \
851 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
852 } \
853 while (0)
854\f
fa9a63c5
RM
855/* If DEBUG is defined, Regex prints many voluminous messages about what
856 it is doing (if the variable `debug' is nonzero). If linked with the
857 main program in `iregex.c', you can enter patterns and strings
858 interactively. And if linked with the main program in `main.c' and
4bb91c68 859 the other test files, you can run the already-written tests. */
fa9a63c5
RM
860
861#ifdef DEBUG
862
863/* We use standard I/O for debugging. */
0b32bf0e 864# include <stdio.h>
fa9a63c5
RM
865
866/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 867# include <assert.h>
fa9a63c5 868
99633e97 869static int debug = -100000;
fa9a63c5 870
0b32bf0e
SM
871# define DEBUG_STATEMENT(e) e
872# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
873# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
874# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
875# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
876# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 877 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 878# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 879 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
880
881
882/* Print the fastmap in human-readable form. */
883
884void
885print_fastmap (fastmap)
886 char *fastmap;
887{
888 unsigned was_a_range = 0;
5e69f11e
RM
889 unsigned i = 0;
890
fa9a63c5
RM
891 while (i < (1 << BYTEWIDTH))
892 {
893 if (fastmap[i++])
894 {
895 was_a_range = 0;
25fe55af
RS
896 putchar (i - 1);
897 while (i < (1 << BYTEWIDTH) && fastmap[i])
898 {
899 was_a_range = 1;
900 i++;
901 }
fa9a63c5 902 if (was_a_range)
25fe55af
RS
903 {
904 printf ("-");
905 putchar (i - 1);
906 }
907 }
fa9a63c5 908 }
5e69f11e 909 putchar ('\n');
fa9a63c5
RM
910}
911
912
913/* Print a compiled pattern string in human-readable form, starting at
914 the START pointer into it and ending just before the pointer END. */
915
916void
917print_partial_compiled_pattern (start, end)
01618498
SM
918 re_char *start;
919 re_char *end;
fa9a63c5
RM
920{
921 int mcnt, mcnt2;
01618498
SM
922 re_char *p = start;
923 re_char *pend = end;
fa9a63c5
RM
924
925 if (start == NULL)
926 {
927 printf ("(null)\n");
928 return;
929 }
5e69f11e 930
fa9a63c5
RM
931 /* Loop over pattern commands. */
932 while (p < pend)
933 {
934 printf ("%d:\t", p - start);
935
936 switch ((re_opcode_t) *p++)
937 {
25fe55af
RS
938 case no_op:
939 printf ("/no_op");
940 break;
fa9a63c5 941
99633e97
SM
942 case succeed:
943 printf ("/succeed");
944 break;
945
fa9a63c5
RM
946 case exactn:
947 mcnt = *p++;
25fe55af
RS
948 printf ("/exactn/%d", mcnt);
949 do
fa9a63c5 950 {
25fe55af 951 putchar ('/');
fa9a63c5 952 putchar (*p++);
25fe55af
RS
953 }
954 while (--mcnt);
955 break;
fa9a63c5
RM
956
957 case start_memory:
505bde11 958 printf ("/start_memory/%d", *p++);
25fe55af 959 break;
fa9a63c5
RM
960
961 case stop_memory:
505bde11 962 printf ("/stop_memory/%d", *p++);
25fe55af 963 break;
fa9a63c5
RM
964
965 case duplicate:
966 printf ("/duplicate/%d", *p++);
967 break;
968
969 case anychar:
970 printf ("/anychar");
971 break;
972
973 case charset:
25fe55af
RS
974 case charset_not:
975 {
976 register int c, last = -100;
fa9a63c5 977 register int in_range = 0;
99633e97
SM
978 int length = CHARSET_BITMAP_SIZE (p - 1);
979 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5
RM
980
981 printf ("/charset [%s",
25fe55af 982 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 983
25fe55af 984 assert (p + *p < pend);
fa9a63c5 985
25fe55af 986 for (c = 0; c < 256; c++)
96cc36cc 987 if (c / 8 < length
fa9a63c5
RM
988 && (p[1 + (c/8)] & (1 << (c % 8))))
989 {
990 /* Are we starting a range? */
991 if (last + 1 == c && ! in_range)
992 {
993 putchar ('-');
994 in_range = 1;
995 }
996 /* Have we broken a range? */
997 else if (last + 1 != c && in_range)
96cc36cc 998 {
fa9a63c5
RM
999 putchar (last);
1000 in_range = 0;
1001 }
5e69f11e 1002
fa9a63c5
RM
1003 if (! in_range)
1004 putchar (c);
1005
1006 last = c;
25fe55af 1007 }
fa9a63c5
RM
1008
1009 if (in_range)
1010 putchar (last);
1011
1012 putchar (']');
1013
99633e97 1014 p += 1 + length;
96cc36cc 1015
96cc36cc 1016 if (has_range_table)
99633e97
SM
1017 {
1018 int count;
1019 printf ("has-range-table");
1020
1021 /* ??? Should print the range table; for now, just skip it. */
1022 p += 2; /* skip range table bits */
1023 EXTRACT_NUMBER_AND_INCR (count, p);
1024 p = CHARSET_RANGE_TABLE_END (p, count);
1025 }
fa9a63c5
RM
1026 }
1027 break;
1028
1029 case begline:
1030 printf ("/begline");
25fe55af 1031 break;
fa9a63c5
RM
1032
1033 case endline:
25fe55af
RS
1034 printf ("/endline");
1035 break;
fa9a63c5
RM
1036
1037 case on_failure_jump:
25fe55af
RS
1038 extract_number_and_incr (&mcnt, &p);
1039 printf ("/on_failure_jump to %d", p + mcnt - start);
1040 break;
fa9a63c5
RM
1041
1042 case on_failure_keep_string_jump:
25fe55af
RS
1043 extract_number_and_incr (&mcnt, &p);
1044 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
1045 break;
fa9a63c5 1046
0683b6fa
SM
1047 case on_failure_jump_nastyloop:
1048 extract_number_and_incr (&mcnt, &p);
1049 printf ("/on_failure_jump_nastyloop to %d", p + mcnt - start);
1050 break;
1051
505bde11 1052 case on_failure_jump_loop:
fa9a63c5 1053 extract_number_and_incr (&mcnt, &p);
505bde11 1054 printf ("/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1055 break;
1056
505bde11 1057 case on_failure_jump_smart:
fa9a63c5 1058 extract_number_and_incr (&mcnt, &p);
505bde11 1059 printf ("/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1060 break;
1061
25fe55af 1062 case jump:
fa9a63c5 1063 extract_number_and_incr (&mcnt, &p);
25fe55af 1064 printf ("/jump to %d", p + mcnt - start);
fa9a63c5
RM
1065 break;
1066
25fe55af
RS
1067 case succeed_n:
1068 extract_number_and_incr (&mcnt, &p);
1069 extract_number_and_incr (&mcnt2, &p);
99633e97 1070 printf ("/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1071 break;
5e69f11e 1072
25fe55af
RS
1073 case jump_n:
1074 extract_number_and_incr (&mcnt, &p);
1075 extract_number_and_incr (&mcnt2, &p);
99633e97 1076 printf ("/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1077 break;
5e69f11e 1078
25fe55af
RS
1079 case set_number_at:
1080 extract_number_and_incr (&mcnt, &p);
1081 extract_number_and_incr (&mcnt2, &p);
99633e97 1082 printf ("/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1083 break;
5e69f11e 1084
25fe55af 1085 case wordbound:
fa9a63c5
RM
1086 printf ("/wordbound");
1087 break;
1088
1089 case notwordbound:
1090 printf ("/notwordbound");
25fe55af 1091 break;
fa9a63c5
RM
1092
1093 case wordbeg:
1094 printf ("/wordbeg");
1095 break;
5e69f11e 1096
fa9a63c5
RM
1097 case wordend:
1098 printf ("/wordend");
5e69f11e 1099
1fb352e0
SM
1100 case syntaxspec:
1101 printf ("/syntaxspec");
1102 mcnt = *p++;
1103 printf ("/%d", mcnt);
1104 break;
1105
1106 case notsyntaxspec:
1107 printf ("/notsyntaxspec");
1108 mcnt = *p++;
1109 printf ("/%d", mcnt);
1110 break;
1111
0b32bf0e 1112# ifdef emacs
fa9a63c5
RM
1113 case before_dot:
1114 printf ("/before_dot");
25fe55af 1115 break;
fa9a63c5
RM
1116
1117 case at_dot:
1118 printf ("/at_dot");
25fe55af 1119 break;
fa9a63c5
RM
1120
1121 case after_dot:
1122 printf ("/after_dot");
25fe55af 1123 break;
fa9a63c5 1124
1fb352e0
SM
1125 case categoryspec:
1126 printf ("/categoryspec");
fa9a63c5
RM
1127 mcnt = *p++;
1128 printf ("/%d", mcnt);
25fe55af 1129 break;
5e69f11e 1130
1fb352e0
SM
1131 case notcategoryspec:
1132 printf ("/notcategoryspec");
fa9a63c5
RM
1133 mcnt = *p++;
1134 printf ("/%d", mcnt);
1135 break;
0b32bf0e 1136# endif /* emacs */
fa9a63c5 1137
fa9a63c5
RM
1138 case begbuf:
1139 printf ("/begbuf");
25fe55af 1140 break;
fa9a63c5
RM
1141
1142 case endbuf:
1143 printf ("/endbuf");
25fe55af 1144 break;
fa9a63c5 1145
25fe55af
RS
1146 default:
1147 printf ("?%d", *(p-1));
fa9a63c5
RM
1148 }
1149
1150 putchar ('\n');
1151 }
1152
1153 printf ("%d:\tend of pattern.\n", p - start);
1154}
1155
1156
1157void
1158print_compiled_pattern (bufp)
1159 struct re_pattern_buffer *bufp;
1160{
01618498 1161 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1162
1163 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1164 printf ("%ld bytes used/%ld bytes allocated.\n",
1165 bufp->used, bufp->allocated);
fa9a63c5
RM
1166
1167 if (bufp->fastmap_accurate && bufp->fastmap)
1168 {
1169 printf ("fastmap: ");
1170 print_fastmap (bufp->fastmap);
1171 }
1172
1173 printf ("re_nsub: %d\t", bufp->re_nsub);
1174 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1175 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1176 printf ("no_sub: %d\t", bufp->no_sub);
1177 printf ("not_bol: %d\t", bufp->not_bol);
1178 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1179 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1180 fflush (stdout);
fa9a63c5
RM
1181 /* Perhaps we should print the translate table? */
1182}
1183
1184
1185void
1186print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1187 re_char *where;
1188 re_char *string1;
1189 re_char *string2;
fa9a63c5
RM
1190 int size1;
1191 int size2;
1192{
4bb91c68 1193 int this_char;
5e69f11e 1194
fa9a63c5
RM
1195 if (where == NULL)
1196 printf ("(null)");
1197 else
1198 {
1199 if (FIRST_STRING_P (where))
25fe55af
RS
1200 {
1201 for (this_char = where - string1; this_char < size1; this_char++)
1202 putchar (string1[this_char]);
fa9a63c5 1203
25fe55af
RS
1204 where = string2;
1205 }
fa9a63c5
RM
1206
1207 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1208 putchar (string2[this_char]);
fa9a63c5
RM
1209 }
1210}
1211
1212#else /* not DEBUG */
1213
0b32bf0e
SM
1214# undef assert
1215# define assert(e)
fa9a63c5 1216
0b32bf0e
SM
1217# define DEBUG_STATEMENT(e)
1218# define DEBUG_PRINT1(x)
1219# define DEBUG_PRINT2(x1, x2)
1220# define DEBUG_PRINT3(x1, x2, x3)
1221# define DEBUG_PRINT4(x1, x2, x3, x4)
1222# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1223# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1224
1225#endif /* not DEBUG */
1226\f
1227/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1228 also be assigned to arbitrarily: each pattern buffer stores its own
1229 syntax, so it can be changed between regex compilations. */
1230/* This has no initializer because initialized variables in Emacs
1231 become read-only after dumping. */
1232reg_syntax_t re_syntax_options;
1233
1234
1235/* Specify the precise syntax of regexps for compilation. This provides
1236 for compatibility for various utilities which historically have
1237 different, incompatible syntaxes.
1238
1239 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1240 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1241
1242reg_syntax_t
1243re_set_syntax (syntax)
1244 reg_syntax_t syntax;
1245{
1246 reg_syntax_t ret = re_syntax_options;
5e69f11e 1247
fa9a63c5
RM
1248 re_syntax_options = syntax;
1249 return ret;
1250}
c0f9ea08 1251WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1252\f
1253/* This table gives an error message for each of the error codes listed
4bb91c68 1254 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1255 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1256 but why not be nice? */
fa9a63c5
RM
1257
1258static const char *re_error_msgid[] =
5e69f11e
RM
1259 {
1260 gettext_noop ("Success"), /* REG_NOERROR */
1261 gettext_noop ("No match"), /* REG_NOMATCH */
1262 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1263 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1264 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1265 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1266 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1267 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1268 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1269 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1270 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1271 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1272 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1273 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1274 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1275 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1276 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
1277 };
1278\f
4bb91c68 1279/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1280
1281/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1282 searching and matching functions should not call alloca. On some
1283 systems, alloca is implemented in terms of malloc, and if we're
1284 using the relocating allocator routines, then malloc could cause a
1285 relocation, which might (if the strings being searched are in the
1286 ralloc heap) shift the data out from underneath the regexp
1287 routines.
1288
5e69f11e 1289 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1290 processes input from X in a signal handler; processing X input may
1291 call malloc; if input arrives while a matching routine is calling
1292 malloc, then we're scrod. But Emacs can't just block input while
1293 calling matching routines; then we don't notice interrupts when
1294 they come in. So, Emacs blocks input around all regexp calls
1295 except the matching calls, which it leaves unprotected, in the
1296 faith that they will not malloc. */
1297
1298/* Normally, this is fine. */
1299#define MATCH_MAY_ALLOCATE
1300
1301/* When using GNU C, we are not REALLY using the C alloca, no matter
1302 what config.h may say. So don't take precautions for it. */
1303#ifdef __GNUC__
0b32bf0e 1304# undef C_ALLOCA
fa9a63c5
RM
1305#endif
1306
1307/* The match routines may not allocate if (1) they would do it with malloc
1308 and (2) it's not safe for them to use malloc.
1309 Note that if REL_ALLOC is defined, matching would not use malloc for the
1310 failure stack, but we would still use it for the register vectors;
4bb91c68 1311 so REL_ALLOC should not affect this. */
0b32bf0e
SM
1312#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1313# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1314#endif
1315
1316\f
1317/* Failure stack declarations and macros; both re_compile_fastmap and
1318 re_match_2 use a failure stack. These have to be macros because of
1319 REGEX_ALLOCATE_STACK. */
5e69f11e 1320
fa9a63c5 1321
320a2a73 1322/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1323 when matching. If this number is exceeded, we allocate more
1324 space, so it is not a hard limit. */
1325#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1326# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1327#endif
1328
1329/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1330 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1331 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1332 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1333 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1334# if defined MATCH_MAY_ALLOCATE
1335/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1336 whose default stack limit is 2mb. In order for a larger
1337 value to work reliably, you have to try to make it accord
1338 with the process stack limit. */
c0f9ea08
SM
1339size_t re_max_failures = 40000;
1340# else
1341size_t re_max_failures = 4000;
1342# endif
fa9a63c5
RM
1343
1344union fail_stack_elt
1345{
01618498 1346 re_char *pointer;
c0f9ea08
SM
1347 /* This should be the biggest `int' that's no bigger than a pointer. */
1348 long integer;
fa9a63c5
RM
1349};
1350
1351typedef union fail_stack_elt fail_stack_elt_t;
1352
1353typedef struct
1354{
1355 fail_stack_elt_t *stack;
c0f9ea08
SM
1356 size_t size;
1357 size_t avail; /* Offset of next open position. */
1358 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1359} fail_stack_type;
1360
505bde11 1361#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1362#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1363
1364
1365/* Define macros to initialize and free the failure stack.
1366 Do `return -2' if the alloc fails. */
1367
1368#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1369# define INIT_FAIL_STACK() \
fa9a63c5
RM
1370 do { \
1371 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1372 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1373 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1374 \
1375 if (fail_stack.stack == NULL) \
1376 return -2; \
1377 \
1378 fail_stack.size = INIT_FAILURE_ALLOC; \
1379 fail_stack.avail = 0; \
505bde11 1380 fail_stack.frame = 0; \
fa9a63c5
RM
1381 } while (0)
1382
0b32bf0e 1383# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1384#else
0b32bf0e 1385# define INIT_FAIL_STACK() \
fa9a63c5
RM
1386 do { \
1387 fail_stack.avail = 0; \
505bde11 1388 fail_stack.frame = 0; \
fa9a63c5
RM
1389 } while (0)
1390
0b32bf0e 1391# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1392#endif
1393
1394
320a2a73
KH
1395/* Double the size of FAIL_STACK, up to a limit
1396 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1397
1398 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1399 allocating space for it or it was already too large.
1400
4bb91c68 1401 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1402
320a2a73
KH
1403/* Factor to increase the failure stack size by
1404 when we increase it.
1405 This used to be 2, but 2 was too wasteful
1406 because the old discarded stacks added up to as much space
1407 were as ultimate, maximum-size stack. */
1408#define FAIL_STACK_GROWTH_FACTOR 4
1409
1410#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1411 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1412 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1413 ? 0 \
320a2a73
KH
1414 : ((fail_stack).stack \
1415 = (fail_stack_elt_t *) \
25fe55af
RS
1416 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1417 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1418 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1419 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1420 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1421 \
1422 (fail_stack).stack == NULL \
1423 ? 0 \
6453db45
KH
1424 : ((fail_stack).size \
1425 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1426 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1427 * FAIL_STACK_GROWTH_FACTOR)) \
1428 / sizeof (fail_stack_elt_t)), \
25fe55af 1429 1)))
fa9a63c5
RM
1430
1431
fa9a63c5
RM
1432/* Push a pointer value onto the failure stack.
1433 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1434 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1435#define PUSH_FAILURE_POINTER(item) \
01618498 1436 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1437
1438/* This pushes an integer-valued item onto the failure stack.
1439 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1440 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1441#define PUSH_FAILURE_INT(item) \
1442 fail_stack.stack[fail_stack.avail++].integer = (item)
1443
1444/* Push a fail_stack_elt_t value onto the failure stack.
1445 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1446 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1447#define PUSH_FAILURE_ELT(item) \
1448 fail_stack.stack[fail_stack.avail++] = (item)
1449
1450/* These three POP... operations complement the three PUSH... operations.
1451 All assume that `fail_stack' is nonempty. */
1452#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1453#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1454#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1455
505bde11
SM
1456/* Individual items aside from the registers. */
1457#define NUM_NONREG_ITEMS 3
1458
1459/* Used to examine the stack (to detect infinite loops). */
1460#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1461#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1462#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1463#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1464
1465
505bde11
SM
1466#define ENSURE_FAIL_STACK(space) \
1467while (REMAINING_AVAIL_SLOTS <= space) { \
1468 if (!GROW_FAIL_STACK (fail_stack)) \
1469 return -2; \
1470 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1471 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1472}
1473
1474/* Push register NUM onto the stack. */
1475#define PUSH_FAILURE_REG(num) \
1476do { \
1477 char *destination; \
1478 ENSURE_FAIL_STACK(3); \
1479 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1480 num, regstart[num], regend[num]); \
1481 PUSH_FAILURE_POINTER (regstart[num]); \
1482 PUSH_FAILURE_POINTER (regend[num]); \
1483 PUSH_FAILURE_INT (num); \
1484} while (0)
1485
01618498
SM
1486/* Change the counter's value to VAL, but make sure that it will
1487 be reset when backtracking. */
1488#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1489do { \
1490 char *destination; \
1491 int c; \
1492 ENSURE_FAIL_STACK(3); \
1493 EXTRACT_NUMBER (c, ptr); \
01618498 1494 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1495 PUSH_FAILURE_INT (c); \
1496 PUSH_FAILURE_POINTER (ptr); \
1497 PUSH_FAILURE_INT (-1); \
01618498 1498 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1499} while (0)
1500
505bde11 1501/* Pop a saved register off the stack. */
dc1e502d 1502#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1503do { \
1504 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1505 if (reg == -1) \
1506 { \
1507 /* It's a counter. */ \
6dcf2d0e
SM
1508 /* Here, we discard `const', making re_match non-reentrant. */ \
1509 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1510 reg = POP_FAILURE_INT (); \
1511 STORE_NUMBER (ptr, reg); \
1512 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1513 } \
1514 else \
1515 { \
1516 regend[reg] = POP_FAILURE_POINTER (); \
1517 regstart[reg] = POP_FAILURE_POINTER (); \
1518 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1519 reg, regstart[reg], regend[reg]); \
1520 } \
505bde11
SM
1521} while (0)
1522
f6df485f
RS
1523/* Discard a saved register off the stack. */
1524#define DISCARD_FAILURE_REG_OR_COUNT() \
1525do { \
1526 int reg = POP_FAILURE_INT (); \
1527 if (reg == -1) \
1528 { \
1529 /* It's a counter. */ \
1530 POP_FAILURE_POINTER (); \
1531 reg = POP_FAILURE_INT (); \
1532 DEBUG_PRINT3 (" Discard counter %p = %d\n", ptr, reg); \
1533 } \
1534 else \
1535 { \
1536 POP_FAILURE_POINTER (); \
1537 POP_FAILURE_POINTER (); \
1538 DEBUG_PRINT4 (" Discard reg %d (spanning %p -> %p)\n", \
1539 reg, regstart[reg], regend[reg]); \
1540 } \
1541} while (0)
1542
505bde11
SM
1543/* Check that we are not stuck in an infinite loop. */
1544#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1545do { \
f6df485f 1546 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1547 /* Check for infinite matching loops */ \
f6df485f
RS
1548 while (failure > 0 \
1549 && (FAILURE_STR (failure) == string_place \
1550 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1551 { \
1552 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1553 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1554 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f
RS
1555 { \
1556 while (fail_stack.frame < fail_stack.avail) \
1557 DISCARD_FAILURE_REG_OR_COUNT (); \
1558 goto fail; \
1559 } \
66f0296e 1560 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1561 failure = NEXT_FAILURE_HANDLE(failure); \
1562 } \
1563 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1564} while (0)
1565
fa9a63c5 1566/* Push the information about the state we will need
5e69f11e
RM
1567 if we ever fail back to it.
1568
505bde11 1569 Requires variables fail_stack, regstart, regend and
320a2a73 1570 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1571 declared.
5e69f11e 1572
fa9a63c5
RM
1573 Does `return FAILURE_CODE' if runs out of memory. */
1574
505bde11
SM
1575#define PUSH_FAILURE_POINT(pattern, string_place) \
1576do { \
1577 char *destination; \
1578 /* Must be int, so when we don't save any registers, the arithmetic \
1579 of 0 + -1 isn't done as unsigned. */ \
1580 \
505bde11 1581 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1582 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1583 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1584 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1585 \
1586 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1587 \
1588 DEBUG_PRINT1 ("\n"); \
1589 \
1590 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1591 PUSH_FAILURE_INT (fail_stack.frame); \
1592 \
1593 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1594 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1595 DEBUG_PRINT1 ("'\n"); \
1596 PUSH_FAILURE_POINTER (string_place); \
1597 \
1598 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1599 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1600 PUSH_FAILURE_POINTER (pattern); \
1601 \
1602 /* Close the frame by moving the frame pointer past it. */ \
1603 fail_stack.frame = fail_stack.avail; \
1604} while (0)
fa9a63c5 1605
320a2a73
KH
1606/* Estimate the size of data pushed by a typical failure stack entry.
1607 An estimate is all we need, because all we use this for
1608 is to choose a limit for how big to make the failure stack. */
ada30c0e 1609/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1610#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1611
fa9a63c5
RM
1612/* How many items can still be added to the stack without overflowing it. */
1613#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1614
1615
1616/* Pops what PUSH_FAIL_STACK pushes.
1617
1618 We restore into the parameters, all of which should be lvalues:
1619 STR -- the saved data position.
1620 PAT -- the saved pattern position.
fa9a63c5 1621 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1622
fa9a63c5 1623 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1624 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1625
505bde11
SM
1626#define POP_FAILURE_POINT(str, pat) \
1627do { \
fa9a63c5
RM
1628 assert (!FAIL_STACK_EMPTY ()); \
1629 \
1630 /* Remove failure points and point to how many regs pushed. */ \
1631 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1632 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1633 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1634 \
505bde11
SM
1635 /* Pop the saved registers. */ \
1636 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1637 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1638 \
01618498 1639 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1640 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1641 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1642 \
1643 /* If the saved string location is NULL, it came from an \
1644 on_failure_keep_string_jump opcode, and we want to throw away the \
1645 saved NULL, thus retaining our current position in the string. */ \
01618498 1646 str = POP_FAILURE_POINTER (); \
505bde11 1647 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1648 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1649 DEBUG_PRINT1 ("'\n"); \
1650 \
505bde11
SM
1651 fail_stack.frame = POP_FAILURE_INT (); \
1652 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1653 \
505bde11
SM
1654 assert (fail_stack.avail >= 0); \
1655 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1656 \
fa9a63c5 1657 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1658} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1659
1660
1661\f
fa9a63c5 1662/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1663#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1664\f
1665/* Subroutine declarations and macros for regex_compile. */
1666
4bb91c68
SM
1667static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1668 reg_syntax_t syntax,
1669 struct re_pattern_buffer *bufp));
1670static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1671static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1672 int arg1, int arg2));
1673static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1674 int arg, unsigned char *end));
1675static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1676 int arg1, int arg2, unsigned char *end));
01618498
SM
1677static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1678 re_char *p,
4bb91c68 1679 reg_syntax_t syntax));
01618498
SM
1680static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1681 re_char *pend,
4bb91c68 1682 reg_syntax_t syntax));
01618498
SM
1683static re_char *skip_one_char _RE_ARGS ((re_char *p));
1684static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1685 char *fastmap, const int multibyte));
fa9a63c5 1686
fa9a63c5 1687/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1688 translation. */
36595814 1689#define PATFETCH(c) \
2d1675e4
SM
1690 do { \
1691 int len; \
1692 if (p == pend) return REG_EEND; \
1693 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1694 p += len; \
fa9a63c5
RM
1695 } while (0)
1696
fa9a63c5
RM
1697
1698/* If `translate' is non-null, return translate[D], else just D. We
1699 cast the subscript to translate because some data is declared as
1700 `char *', to avoid warnings when a string constant is passed. But
1701 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1702#ifndef TRANSLATE
0b32bf0e 1703# define TRANSLATE(d) \
66f0296e 1704 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1705#endif
fa9a63c5
RM
1706
1707
1708/* Macros for outputting the compiled pattern into `buffer'. */
1709
1710/* If the buffer isn't allocated when it comes in, use this. */
1711#define INIT_BUF_SIZE 32
1712
4bb91c68 1713/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1714#define GET_BUFFER_SPACE(n) \
01618498 1715 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1716 EXTEND_BUFFER ()
1717
1718/* Make sure we have one more byte of buffer space and then add C to it. */
1719#define BUF_PUSH(c) \
1720 do { \
1721 GET_BUFFER_SPACE (1); \
1722 *b++ = (unsigned char) (c); \
1723 } while (0)
1724
1725
1726/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1727#define BUF_PUSH_2(c1, c2) \
1728 do { \
1729 GET_BUFFER_SPACE (2); \
1730 *b++ = (unsigned char) (c1); \
1731 *b++ = (unsigned char) (c2); \
1732 } while (0)
1733
1734
4bb91c68 1735/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1736#define BUF_PUSH_3(c1, c2, c3) \
1737 do { \
1738 GET_BUFFER_SPACE (3); \
1739 *b++ = (unsigned char) (c1); \
1740 *b++ = (unsigned char) (c2); \
1741 *b++ = (unsigned char) (c3); \
1742 } while (0)
1743
1744
1745/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1746 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1747#define STORE_JUMP(op, loc, to) \
1748 store_op1 (op, loc, (to) - (loc) - 3)
1749
1750/* Likewise, for a two-argument jump. */
1751#define STORE_JUMP2(op, loc, to, arg) \
1752 store_op2 (op, loc, (to) - (loc) - 3, arg)
1753
4bb91c68 1754/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1755#define INSERT_JUMP(op, loc, to) \
1756 insert_op1 (op, loc, (to) - (loc) - 3, b)
1757
1758/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1759#define INSERT_JUMP2(op, loc, to, arg) \
1760 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1761
1762
1763/* This is not an arbitrary limit: the arguments which represent offsets
4bb91c68 1764 into the pattern are two bytes long. So if 2^16 bytes turns out to
fa9a63c5 1765 be too small, many things would have to change. */
4bb91c68
SM
1766/* Any other compiler which, like MSC, has allocation limit below 2^16
1767 bytes will have to use approach similar to what was done below for
1768 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1769 reallocating to 0 bytes. Such thing is not going to work too well.
1770 You have been warned!! */
1771#if defined _MSC_VER && !defined WIN32
1772/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1773# define MAX_BUF_SIZE 65500L
1774#else
1775# define MAX_BUF_SIZE (1L << 16)
1776#endif
fa9a63c5
RM
1777
1778/* Extend the buffer by twice its current size via realloc and
1779 reset the pointers that pointed into the old block to point to the
1780 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1781 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1782#if __BOUNDED_POINTERS__
1783# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1784# define MOVE_BUFFER_POINTER(P) \
1785 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1786# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1787 else \
1788 { \
1789 SET_HIGH_BOUND (b); \
1790 SET_HIGH_BOUND (begalt); \
1791 if (fixup_alt_jump) \
1792 SET_HIGH_BOUND (fixup_alt_jump); \
1793 if (laststart) \
1794 SET_HIGH_BOUND (laststart); \
1795 if (pending_exact) \
1796 SET_HIGH_BOUND (pending_exact); \
1797 }
1798#else
1799# define MOVE_BUFFER_POINTER(P) (P) += incr
1800# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1801#endif
fa9a63c5 1802#define EXTEND_BUFFER() \
25fe55af 1803 do { \
01618498 1804 re_char *old_buffer = bufp->buffer; \
25fe55af 1805 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1806 return REG_ESIZE; \
1807 bufp->allocated <<= 1; \
1808 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1809 bufp->allocated = MAX_BUF_SIZE; \
01618498 1810 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1811 if (bufp->buffer == NULL) \
1812 return REG_ESPACE; \
1813 /* If the buffer moved, move all the pointers into it. */ \
1814 if (old_buffer != bufp->buffer) \
1815 { \
4bb91c68
SM
1816 int incr = bufp->buffer - old_buffer; \
1817 MOVE_BUFFER_POINTER (b); \
1818 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1819 if (fixup_alt_jump) \
4bb91c68 1820 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1821 if (laststart) \
4bb91c68 1822 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1823 if (pending_exact) \
4bb91c68 1824 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1825 } \
4bb91c68 1826 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1827 } while (0)
1828
1829
1830/* Since we have one byte reserved for the register number argument to
1831 {start,stop}_memory, the maximum number of groups we can report
1832 things about is what fits in that byte. */
1833#define MAX_REGNUM 255
1834
1835/* But patterns can have more than `MAX_REGNUM' registers. We just
1836 ignore the excess. */
1837typedef unsigned regnum_t;
1838
1839
1840/* Macros for the compile stack. */
1841
1842/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1843 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1844/* int may be not enough when sizeof(int) == 2. */
1845typedef long pattern_offset_t;
fa9a63c5
RM
1846
1847typedef struct
1848{
1849 pattern_offset_t begalt_offset;
1850 pattern_offset_t fixup_alt_jump;
5e69f11e 1851 pattern_offset_t laststart_offset;
fa9a63c5
RM
1852 regnum_t regnum;
1853} compile_stack_elt_t;
1854
1855
1856typedef struct
1857{
1858 compile_stack_elt_t *stack;
1859 unsigned size;
1860 unsigned avail; /* Offset of next open position. */
1861} compile_stack_type;
1862
1863
1864#define INIT_COMPILE_STACK_SIZE 32
1865
1866#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1867#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1868
4bb91c68 1869/* The next available element. */
fa9a63c5
RM
1870#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1871
1872
b18215fc
RS
1873/* Structure to manage work area for range table. */
1874struct range_table_work_area
1875{
1876 int *table; /* actual work area. */
1877 int allocated; /* allocated size for work area in bytes. */
25fe55af 1878 int used; /* actually used size in words. */
96cc36cc 1879 int bits; /* flag to record character classes */
b18215fc
RS
1880};
1881
1882/* Make sure that WORK_AREA can hold more N multibyte characters. */
1883#define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1884 do { \
1885 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1886 { \
1887 (work_area).allocated += 16 * sizeof (int); \
1888 if ((work_area).table) \
1889 (work_area).table \
1890 = (int *) realloc ((work_area).table, (work_area).allocated); \
1891 else \
1892 (work_area).table \
1893 = (int *) malloc ((work_area).allocated); \
1894 if ((work_area).table == 0) \
1895 FREE_STACK_RETURN (REG_ESPACE); \
1896 } \
1897 } while (0)
1898
96cc36cc
RS
1899#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1900 (work_area).bits |= (bit)
1901
14473664
SM
1902/* Bits used to implement the multibyte-part of the various character classes
1903 such as [:alnum:] in a charset's range table. */
1904#define BIT_WORD 0x1
1905#define BIT_LOWER 0x2
1906#define BIT_PUNCT 0x4
1907#define BIT_SPACE 0x8
1908#define BIT_UPPER 0x10
1909#define BIT_MULTIBYTE 0x20
96cc36cc 1910
36595814
SM
1911/* Set a range START..END to WORK_AREA.
1912 The range is passed through TRANSLATE, so START and END
1913 should be untranslated. */
1914#define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1915 do { \
1916 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1917 set_image_of_range (&work_area, start, end, translate); \
b18215fc
RS
1918 } while (0)
1919
25fe55af 1920/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1921#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1922 do { \
1923 if ((work_area).table) \
1924 free ((work_area).table); \
1925 } while (0)
1926
96cc36cc 1927#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1928#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1929#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc
RS
1930#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1931
1932
fa9a63c5 1933/* Set the bit for character C in a list. */
01618498 1934#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1935
1936
1937/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1938#define GET_UNSIGNED_NUMBER(num) \
99633e97 1939 do { if (p != pend) \
fa9a63c5 1940 { \
25fe55af 1941 PATFETCH (c); \
060cc8ff
RS
1942 if (c == ' ') \
1943 FREE_STACK_RETURN (REG_BADBR); \
4bb91c68 1944 while ('0' <= c && c <= '9') \
25fe55af 1945 { \
f6df485f 1946 int prev; \
25fe55af 1947 if (num < 0) \
f6df485f
RS
1948 num = 0; \
1949 prev = num; \
25fe55af 1950 num = num * 10 + c - '0'; \
f6df485f
RS
1951 if (num / 10 != prev) \
1952 FREE_STACK_RETURN (REG_BADBR); \
25fe55af 1953 if (p == pend) \
f6df485f 1954 break; \
25fe55af
RS
1955 PATFETCH (c); \
1956 } \
060cc8ff
RS
1957 if (c == ' ') \
1958 FREE_STACK_RETURN (REG_BADBR); \
25fe55af 1959 } \
99633e97 1960 } while (0)
fa9a63c5 1961
a0ad02f7 1962#if WIDE_CHAR_SUPPORT
14473664
SM
1963/* The GNU C library provides support for user-defined character classes
1964 and the functions from ISO C amendement 1. */
1965# ifdef CHARCLASS_NAME_MAX
1966# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1967# else
1968/* This shouldn't happen but some implementation might still have this
1969 problem. Use a reasonable default value. */
1970# define CHAR_CLASS_MAX_LENGTH 256
1971# endif
1972typedef wctype_t re_wctype_t;
01618498 1973typedef wchar_t re_wchar_t;
14473664
SM
1974# define re_wctype wctype
1975# define re_iswctype iswctype
1976# define re_wctype_to_bit(cc) 0
1977#else
1978# define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1979# define btowc(c) c
1980
01618498 1981/* Character classes. */
14473664
SM
1982typedef enum { RECC_ERROR = 0,
1983 RECC_ALNUM, RECC_ALPHA, RECC_WORD,
1984 RECC_GRAPH, RECC_PRINT,
1985 RECC_LOWER, RECC_UPPER,
1986 RECC_PUNCT, RECC_CNTRL,
1987 RECC_DIGIT, RECC_XDIGIT,
1988 RECC_BLANK, RECC_SPACE,
1989 RECC_MULTIBYTE, RECC_NONASCII,
1990 RECC_ASCII, RECC_UNIBYTE
1991} re_wctype_t;
1992
01618498
SM
1993typedef int re_wchar_t;
1994
14473664
SM
1995/* Map a string to the char class it names (if any). */
1996static re_wctype_t
ada30c0e
SM
1997re_wctype (str)
1998 re_char *str;
14473664 1999{
ada30c0e 2000 const char *string = str;
14473664
SM
2001 if (STREQ (string, "alnum")) return RECC_ALNUM;
2002 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2003 else if (STREQ (string, "word")) return RECC_WORD;
2004 else if (STREQ (string, "ascii")) return RECC_ASCII;
2005 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2006 else if (STREQ (string, "graph")) return RECC_GRAPH;
2007 else if (STREQ (string, "lower")) return RECC_LOWER;
2008 else if (STREQ (string, "print")) return RECC_PRINT;
2009 else if (STREQ (string, "punct")) return RECC_PUNCT;
2010 else if (STREQ (string, "space")) return RECC_SPACE;
2011 else if (STREQ (string, "upper")) return RECC_UPPER;
2012 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2013 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2014 else if (STREQ (string, "digit")) return RECC_DIGIT;
2015 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2016 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2017 else if (STREQ (string, "blank")) return RECC_BLANK;
2018 else return 0;
2019}
2020
2021/* True iff CH is in the char class CC. */
2022static boolean
2023re_iswctype (ch, cc)
2024 int ch;
2025 re_wctype_t cc;
2026{
2027 switch (cc)
2028 {
0cdd06f8
SM
2029 case RECC_ALNUM: return ISALNUM (ch);
2030 case RECC_ALPHA: return ISALPHA (ch);
2031 case RECC_BLANK: return ISBLANK (ch);
2032 case RECC_CNTRL: return ISCNTRL (ch);
2033 case RECC_DIGIT: return ISDIGIT (ch);
2034 case RECC_GRAPH: return ISGRAPH (ch);
2035 case RECC_LOWER: return ISLOWER (ch);
2036 case RECC_PRINT: return ISPRINT (ch);
2037 case RECC_PUNCT: return ISPUNCT (ch);
2038 case RECC_SPACE: return ISSPACE (ch);
2039 case RECC_UPPER: return ISUPPER (ch);
2040 case RECC_XDIGIT: return ISXDIGIT (ch);
2041 case RECC_ASCII: return IS_REAL_ASCII (ch);
2042 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2043 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2044 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2045 case RECC_WORD: return ISWORD (ch);
2046 case RECC_ERROR: return false;
2047 default:
2048 abort();
14473664
SM
2049 }
2050}
fa9a63c5 2051
14473664
SM
2052/* Return a bit-pattern to use in the range-table bits to match multibyte
2053 chars of class CC. */
2054static int
2055re_wctype_to_bit (cc)
2056 re_wctype_t cc;
2057{
2058 switch (cc)
2059 {
2060 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2061 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2062 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2063 case RECC_LOWER: return BIT_LOWER;
2064 case RECC_UPPER: return BIT_UPPER;
2065 case RECC_PUNCT: return BIT_PUNCT;
2066 case RECC_SPACE: return BIT_SPACE;
14473664 2067 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2068 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2069 default:
2070 abort();
14473664
SM
2071 }
2072}
2073#endif
99633e97 2074
36595814
SM
2075
2076
2077/* We need to find the image of the range start..end when passed through
2078 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2079 and is not even necessarily contiguous.
2080 We approximate it with the smallest contiguous range that contains
2081 all the chars we need. */
2082static void
2083set_image_of_range (work_area, start, end, translate)
2084 RE_TRANSLATE_TYPE translate;
2085 struct range_table_work_area *work_area;
2086 re_wchar_t start, end;
2087{
2088 re_wchar_t cmin = TRANSLATE (start), cmax = TRANSLATE (end);
2089 if (RE_TRANSLATE_P (translate))
2090 for (; start <= end; start++)
2091 {
2092 re_wchar_t c = TRANSLATE (start);
2093 cmin = MIN (cmin, c);
2094 cmax = MAX (cmax, c);
2095 }
2096 work_area->table[work_area->used++] = (cmin);
2097 work_area->table[work_area->used++] = (cmax);
2098}
2099
5b370c2b
AI
2100/* Explicit quit checking is only used on NTemacs. */
2101#if defined WINDOWSNT && defined emacs && defined QUIT
2102extern int immediate_quit;
2103# define IMMEDIATE_QUIT_CHECK \
2104 do { \
2105 if (immediate_quit) QUIT; \
2106 } while (0)
2107#else
01618498 2108# define IMMEDIATE_QUIT_CHECK ((void)0)
99633e97 2109#endif
fa9a63c5
RM
2110\f
2111#ifndef MATCH_MAY_ALLOCATE
2112
2113/* If we cannot allocate large objects within re_match_2_internal,
2114 we make the fail stack and register vectors global.
2115 The fail stack, we grow to the maximum size when a regexp
2116 is compiled.
2117 The register vectors, we adjust in size each time we
2118 compile a regexp, according to the number of registers it needs. */
2119
2120static fail_stack_type fail_stack;
2121
2122/* Size with which the following vectors are currently allocated.
2123 That is so we can make them bigger as needed,
4bb91c68 2124 but never make them smaller. */
fa9a63c5
RM
2125static int regs_allocated_size;
2126
66f0296e
SM
2127static re_char ** regstart, ** regend;
2128static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2129
2130/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2131 but don't make them smaller. */
fa9a63c5
RM
2132
2133static
2134regex_grow_registers (num_regs)
2135 int num_regs;
2136{
2137 if (num_regs > regs_allocated_size)
2138 {
66f0296e
SM
2139 RETALLOC_IF (regstart, num_regs, re_char *);
2140 RETALLOC_IF (regend, num_regs, re_char *);
2141 RETALLOC_IF (best_regstart, num_regs, re_char *);
2142 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2143
2144 regs_allocated_size = num_regs;
2145 }
2146}
2147
2148#endif /* not MATCH_MAY_ALLOCATE */
2149\f
99633e97
SM
2150static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2151 compile_stack,
2152 regnum_t regnum));
2153
fa9a63c5
RM
2154/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2155 Returns one of error codes defined in `regex.h', or zero for success.
2156
2157 Assumes the `allocated' (and perhaps `buffer') and `translate'
2158 fields are set in BUFP on entry.
2159
2160 If it succeeds, results are put in BUFP (if it returns an error, the
2161 contents of BUFP are undefined):
2162 `buffer' is the compiled pattern;
2163 `syntax' is set to SYNTAX;
2164 `used' is set to the length of the compiled pattern;
2165 `fastmap_accurate' is zero;
2166 `re_nsub' is the number of subexpressions in PATTERN;
2167 `not_bol' and `not_eol' are zero;
5e69f11e 2168
c0f9ea08 2169 The `fastmap' field is neither examined nor set. */
fa9a63c5 2170
505bde11
SM
2171/* Insert the `jump' from the end of last alternative to "here".
2172 The space for the jump has already been allocated. */
2173#define FIXUP_ALT_JUMP() \
2174do { \
2175 if (fixup_alt_jump) \
2176 STORE_JUMP (jump, fixup_alt_jump, b); \
2177} while (0)
2178
2179
fa9a63c5
RM
2180/* Return, freeing storage we allocated. */
2181#define FREE_STACK_RETURN(value) \
b18215fc
RS
2182 do { \
2183 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2184 free (compile_stack.stack); \
2185 return value; \
2186 } while (0)
fa9a63c5
RM
2187
2188static reg_errcode_t
2189regex_compile (pattern, size, syntax, bufp)
66f0296e 2190 re_char *pattern;
4bb91c68 2191 size_t size;
fa9a63c5
RM
2192 reg_syntax_t syntax;
2193 struct re_pattern_buffer *bufp;
2194{
01618498
SM
2195 /* We fetch characters from PATTERN here. */
2196 register re_wchar_t c, c1;
5e69f11e 2197
fa9a63c5 2198 /* A random temporary spot in PATTERN. */
66f0296e 2199 re_char *p1;
fa9a63c5
RM
2200
2201 /* Points to the end of the buffer, where we should append. */
2202 register unsigned char *b;
5e69f11e 2203
fa9a63c5
RM
2204 /* Keeps track of unclosed groups. */
2205 compile_stack_type compile_stack;
2206
2207 /* Points to the current (ending) position in the pattern. */
22336245
RS
2208#ifdef AIX
2209 /* `const' makes AIX compiler fail. */
66f0296e 2210 unsigned char *p = pattern;
22336245 2211#else
66f0296e 2212 re_char *p = pattern;
22336245 2213#endif
66f0296e 2214 re_char *pend = pattern + size;
5e69f11e 2215
fa9a63c5 2216 /* How to translate the characters in the pattern. */
6676cb1c 2217 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2218
2219 /* Address of the count-byte of the most recently inserted `exactn'
2220 command. This makes it possible to tell if a new exact-match
2221 character can be added to that command or if the character requires
2222 a new `exactn' command. */
2223 unsigned char *pending_exact = 0;
2224
2225 /* Address of start of the most recently finished expression.
2226 This tells, e.g., postfix * where to find the start of its
2227 operand. Reset at the beginning of groups and alternatives. */
2228 unsigned char *laststart = 0;
2229
2230 /* Address of beginning of regexp, or inside of last group. */
2231 unsigned char *begalt;
2232
2233 /* Place in the uncompiled pattern (i.e., the {) to
2234 which to go back if the interval is invalid. */
66f0296e 2235 re_char *beg_interval;
5e69f11e 2236
fa9a63c5 2237 /* Address of the place where a forward jump should go to the end of
25fe55af 2238 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2239 last -- ends with a forward jump of this sort. */
2240 unsigned char *fixup_alt_jump = 0;
2241
2242 /* Counts open-groups as they are encountered. Remembered for the
2243 matching close-group on the compile stack, so the same register
2244 number is put in the stop_memory as the start_memory. */
2245 regnum_t regnum = 0;
2246
b18215fc
RS
2247 /* Work area for range table of charset. */
2248 struct range_table_work_area range_table_work;
2249
2d1675e4
SM
2250 /* If the object matched can contain multibyte characters. */
2251 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2252
fa9a63c5 2253#ifdef DEBUG
99633e97 2254 debug++;
fa9a63c5 2255 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2256 if (debug > 0)
fa9a63c5
RM
2257 {
2258 unsigned debug_count;
5e69f11e 2259
fa9a63c5 2260 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2261 putchar (pattern[debug_count]);
fa9a63c5
RM
2262 putchar ('\n');
2263 }
2264#endif /* DEBUG */
2265
2266 /* Initialize the compile stack. */
2267 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2268 if (compile_stack.stack == NULL)
2269 return REG_ESPACE;
2270
2271 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2272 compile_stack.avail = 0;
2273
b18215fc
RS
2274 range_table_work.table = 0;
2275 range_table_work.allocated = 0;
2276
fa9a63c5
RM
2277 /* Initialize the pattern buffer. */
2278 bufp->syntax = syntax;
2279 bufp->fastmap_accurate = 0;
2280 bufp->not_bol = bufp->not_eol = 0;
2281
2282 /* Set `used' to zero, so that if we return an error, the pattern
2283 printer (for debugging) will think there's no pattern. We reset it
2284 at the end. */
2285 bufp->used = 0;
5e69f11e 2286
fa9a63c5 2287 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2288 bufp->re_nsub = 0;
fa9a63c5 2289
0b32bf0e 2290#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2291 /* Initialize the syntax table. */
2292 init_syntax_once ();
2293#endif
2294
2295 if (bufp->allocated == 0)
2296 {
2297 if (bufp->buffer)
2298 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
2299 enough space. This loses if buffer's address is bogus, but
2300 that is the user's responsibility. */
2301 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2302 }
fa9a63c5 2303 else
25fe55af
RS
2304 { /* Caller did not allocate a buffer. Do it for them. */
2305 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2306 }
fa9a63c5
RM
2307 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2308
2309 bufp->allocated = INIT_BUF_SIZE;
2310 }
2311
2312 begalt = b = bufp->buffer;
2313
2314 /* Loop through the uncompiled pattern until we're at the end. */
2315 while (p != pend)
2316 {
2317 PATFETCH (c);
2318
2319 switch (c)
25fe55af
RS
2320 {
2321 case '^':
2322 {
2323 if ( /* If at start of pattern, it's an operator. */
2324 p == pattern + 1
2325 /* If context independent, it's an operator. */
2326 || syntax & RE_CONTEXT_INDEP_ANCHORS
2327 /* Otherwise, depends on what's come before. */
2328 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2329 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2330 else
2331 goto normal_char;
2332 }
2333 break;
2334
2335
2336 case '$':
2337 {
2338 if ( /* If at end of pattern, it's an operator. */
2339 p == pend
2340 /* If context independent, it's an operator. */
2341 || syntax & RE_CONTEXT_INDEP_ANCHORS
2342 /* Otherwise, depends on what's next. */
2343 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2344 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2345 else
2346 goto normal_char;
2347 }
2348 break;
fa9a63c5
RM
2349
2350
2351 case '+':
25fe55af
RS
2352 case '?':
2353 if ((syntax & RE_BK_PLUS_QM)
2354 || (syntax & RE_LIMITED_OPS))
2355 goto normal_char;
2356 handle_plus:
2357 case '*':
2358 /* If there is no previous pattern... */
2359 if (!laststart)
2360 {
2361 if (syntax & RE_CONTEXT_INVALID_OPS)
2362 FREE_STACK_RETURN (REG_BADRPT);
2363 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2364 goto normal_char;
2365 }
2366
2367 {
25fe55af 2368 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2369 boolean zero_times_ok = 0, many_times_ok = 0;
2370 boolean greedy = 1;
25fe55af
RS
2371
2372 /* If there is a sequence of repetition chars, collapse it
2373 down to just one (the right one). We can't combine
2374 interval operators with these because of, e.g., `a{2}*',
2375 which should only match an even number of `a's. */
2376
2377 for (;;)
2378 {
0b32bf0e 2379 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2380 && c == '?' && (zero_times_ok || many_times_ok))
2381 greedy = 0;
2382 else
2383 {
2384 zero_times_ok |= c != '+';
2385 many_times_ok |= c != '?';
2386 }
25fe55af
RS
2387
2388 if (p == pend)
2389 break;
ed0767d8
SM
2390 else if (*p == '*'
2391 || (!(syntax & RE_BK_PLUS_QM)
2392 && (*p == '+' || *p == '?')))
25fe55af 2393 ;
ed0767d8 2394 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2395 {
ed0767d8
SM
2396 if (p+1 == pend)
2397 FREE_STACK_RETURN (REG_EESCAPE);
2398 if (p[1] == '+' || p[1] == '?')
2399 PATFETCH (c); /* Gobble up the backslash. */
2400 else
2401 break;
25fe55af
RS
2402 }
2403 else
ed0767d8 2404 break;
25fe55af 2405 /* If we get here, we found another repeat character. */
ed0767d8
SM
2406 PATFETCH (c);
2407 }
25fe55af
RS
2408
2409 /* Star, etc. applied to an empty pattern is equivalent
2410 to an empty pattern. */
4e8a9132 2411 if (!laststart || laststart == b)
25fe55af
RS
2412 break;
2413
2414 /* Now we know whether or not zero matches is allowed
2415 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2416 if (greedy)
2417 {
99633e97 2418 if (many_times_ok)
4e8a9132
SM
2419 {
2420 boolean simple = skip_one_char (laststart) == b;
2421 unsigned int startoffset = 0;
f6a3f532 2422 re_opcode_t ofj =
01618498 2423 /* Check if the loop can match the empty string. */
f6a3f532
SM
2424 (simple || !analyse_first (laststart, b, NULL, 0)) ?
2425 on_failure_jump : on_failure_jump_loop;
4e8a9132
SM
2426 assert (skip_one_char (laststart) <= b);
2427
2428 if (!zero_times_ok && simple)
2429 { /* Since simple * loops can be made faster by using
2430 on_failure_keep_string_jump, we turn simple P+
2431 into PP* if P is simple. */
2432 unsigned char *p1, *p2;
2433 startoffset = b - laststart;
2434 GET_BUFFER_SPACE (startoffset);
2435 p1 = b; p2 = laststart;
2436 while (p2 < p1)
2437 *b++ = *p2++;
2438 zero_times_ok = 1;
99633e97 2439 }
4e8a9132
SM
2440
2441 GET_BUFFER_SPACE (6);
2442 if (!zero_times_ok)
2443 /* A + loop. */
f6a3f532 2444 STORE_JUMP (ofj, b, b + 6);
99633e97 2445 else
4e8a9132
SM
2446 /* Simple * loops can use on_failure_keep_string_jump
2447 depending on what follows. But since we don't know
2448 that yet, we leave the decision up to
2449 on_failure_jump_smart. */
f6a3f532 2450 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2451 laststart + startoffset, b + 6);
99633e97 2452 b += 3;
4e8a9132 2453 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2454 b += 3;
2455 }
2456 else
2457 {
4e8a9132
SM
2458 /* A simple ? pattern. */
2459 assert (zero_times_ok);
2460 GET_BUFFER_SPACE (3);
2461 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2462 b += 3;
2463 }
1c8c6d39
DL
2464 }
2465 else /* not greedy */
2466 { /* I wish the greedy and non-greedy cases could be merged. */
2467
0683b6fa 2468 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2469 if (many_times_ok)
2470 {
f6a3f532
SM
2471 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2472
505bde11 2473 /* The non-greedy multiple match looks like a repeat..until:
1c8c6d39 2474 we only need a conditional jump at the end of the loop */
f6a3f532
SM
2475 if (emptyp) BUF_PUSH (no_op);
2476 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2477 : on_failure_jump, b, laststart);
1c8c6d39
DL
2478 b += 3;
2479 if (zero_times_ok)
2480 {
2481 /* The repeat...until naturally matches one or more.
2482 To also match zero times, we need to first jump to
2483 the end of the loop (its conditional jump). */
1c8c6d39
DL
2484 INSERT_JUMP (jump, laststart, b);
2485 b += 3;
2486 }
2487 }
2488 else
2489 {
2490 /* non-greedy a?? */
1c8c6d39
DL
2491 INSERT_JUMP (jump, laststart, b + 3);
2492 b += 3;
2493 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2494 b += 3;
2495 }
2496 }
2497 }
4e8a9132 2498 pending_exact = 0;
fa9a63c5
RM
2499 break;
2500
2501
2502 case '.':
25fe55af
RS
2503 laststart = b;
2504 BUF_PUSH (anychar);
2505 break;
fa9a63c5
RM
2506
2507
25fe55af
RS
2508 case '[':
2509 {
b18215fc 2510 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2511
25fe55af 2512 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2513
25fe55af
RS
2514 /* Ensure that we have enough space to push a charset: the
2515 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2516 GET_BUFFER_SPACE (34);
2517
25fe55af 2518 laststart = b;
e318085a 2519
25fe55af
RS
2520 /* We test `*p == '^' twice, instead of using an if
2521 statement, so we only need one BUF_PUSH. */
2522 BUF_PUSH (*p == '^' ? charset_not : charset);
2523 if (*p == '^')
2524 p++;
e318085a 2525
25fe55af
RS
2526 /* Remember the first position in the bracket expression. */
2527 p1 = p;
e318085a 2528
25fe55af
RS
2529 /* Push the number of bytes in the bitmap. */
2530 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2531
25fe55af
RS
2532 /* Clear the whole map. */
2533 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2534
25fe55af
RS
2535 /* charset_not matches newline according to a syntax bit. */
2536 if ((re_opcode_t) b[-2] == charset_not
2537 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2538 SET_LIST_BIT ('\n');
fa9a63c5 2539
25fe55af
RS
2540 /* Read in characters and ranges, setting map bits. */
2541 for (;;)
2542 {
b18215fc 2543 boolean escaped_char = false;
2d1675e4 2544 const unsigned char *p2 = p;
e318085a 2545
25fe55af 2546 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2547
36595814
SM
2548 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2549 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2550 So the translation is done later in a loop. Example:
2551 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2552 PATFETCH (c);
e318085a 2553
25fe55af
RS
2554 /* \ might escape characters inside [...] and [^...]. */
2555 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2556 {
2557 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2558
2559 PATFETCH (c);
b18215fc 2560 escaped_char = true;
25fe55af 2561 }
b18215fc
RS
2562 else
2563 {
657fcfbd
RS
2564 /* Could be the end of the bracket expression. If it's
2565 not (i.e., when the bracket expression is `[]' so
2566 far), the ']' character bit gets set way below. */
2d1675e4 2567 if (c == ']' && p2 != p1)
657fcfbd 2568 break;
25fe55af 2569 }
b18215fc 2570
b18215fc
RS
2571 /* What should we do for the character which is
2572 greater than 0x7F, but not BASE_LEADING_CODE_P?
2573 XXX */
2574
25fe55af
RS
2575 /* See if we're at the beginning of a possible character
2576 class. */
b18215fc 2577
2d1675e4
SM
2578 if (!escaped_char &&
2579 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2580 {
2581 /* Leave room for the null. */
14473664 2582 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2583 const unsigned char *class_beg;
b18215fc 2584
25fe55af
RS
2585 PATFETCH (c);
2586 c1 = 0;
ed0767d8 2587 class_beg = p;
b18215fc 2588
25fe55af
RS
2589 /* If pattern is `[[:'. */
2590 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2591
25fe55af
RS
2592 for (;;)
2593 {
14473664
SM
2594 PATFETCH (c);
2595 if ((c == ':' && *p == ']') || p == pend)
2596 break;
2597 if (c1 < CHAR_CLASS_MAX_LENGTH)
2598 str[c1++] = c;
2599 else
2600 /* This is in any case an invalid class name. */
2601 str[0] = '\0';
25fe55af
RS
2602 }
2603 str[c1] = '\0';
b18215fc
RS
2604
2605 /* If isn't a word bracketed by `[:' and `:]':
2606 undo the ending character, the letters, and
2607 leave the leading `:' and `[' (but set bits for
2608 them). */
25fe55af
RS
2609 if (c == ':' && *p == ']')
2610 {
36595814 2611 re_wchar_t ch;
14473664
SM
2612 re_wctype_t cc;
2613
2614 cc = re_wctype (str);
2615
2616 if (cc == 0)
fa9a63c5
RM
2617 FREE_STACK_RETURN (REG_ECTYPE);
2618
14473664
SM
2619 /* Throw away the ] at the end of the character
2620 class. */
2621 PATFETCH (c);
fa9a63c5 2622
14473664 2623 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2624
96cc36cc
RS
2625 /* Most character classes in a multibyte match
2626 just set a flag. Exceptions are is_blank,
2627 is_digit, is_cntrl, and is_xdigit, since
2628 they can only match ASCII characters. We
14473664
SM
2629 don't need to handle them for multibyte.
2630 They are distinguished by a negative wctype. */
96cc36cc 2631
2d1675e4 2632 if (multibyte)
14473664
SM
2633 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2634 re_wctype_to_bit (cc));
96cc36cc 2635
14473664 2636 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
25fe55af 2637 {
7ae68633 2638 int translated = TRANSLATE (ch);
14473664 2639 if (re_iswctype (btowc (ch), cc))
96cc36cc 2640 SET_LIST_BIT (translated);
25fe55af 2641 }
b18215fc
RS
2642
2643 /* Repeat the loop. */
2644 continue;
25fe55af
RS
2645 }
2646 else
2647 {
ed0767d8
SM
2648 /* Go back to right after the "[:". */
2649 p = class_beg;
25fe55af 2650 SET_LIST_BIT ('[');
b18215fc
RS
2651
2652 /* Because the `:' may starts the range, we
2653 can't simply set bit and repeat the loop.
25fe55af 2654 Instead, just set it to C and handle below. */
b18215fc 2655 c = ':';
25fe55af
RS
2656 }
2657 }
b18215fc
RS
2658
2659 if (p < pend && p[0] == '-' && p[1] != ']')
2660 {
2661
2662 /* Discard the `-'. */
2663 PATFETCH (c1);
2664
2665 /* Fetch the character which ends the range. */
2666 PATFETCH (c1);
b18215fc 2667
b54f61ed 2668 if (SINGLE_BYTE_CHAR_P (c))
e934739e 2669 {
b54f61ed
KH
2670 if (! SINGLE_BYTE_CHAR_P (c1))
2671 {
3ff2446d
KH
2672 /* Handle a range starting with a
2673 character of less than 256, and ending
2674 with a character of not less than 256.
2675 Split that into two ranges, the low one
2676 ending at 0377, and the high one
2677 starting at the smallest character in
2678 the charset of C1 and ending at C1. */
b54f61ed 2679 int charset = CHAR_CHARSET (c1);
36595814
SM
2680 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2681
b54f61ed
KH
2682 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2683 c2, c1);
333526e0 2684 c1 = 0377;
b54f61ed 2685 }
e934739e
RS
2686 }
2687 else if (!SAME_CHARSET_P (c, c1))
b18215fc 2688 FREE_STACK_RETURN (REG_ERANGE);
e318085a 2689 }
25fe55af 2690 else
b18215fc
RS
2691 /* Range from C to C. */
2692 c1 = c;
2693
2694 /* Set the range ... */
2695 if (SINGLE_BYTE_CHAR_P (c))
2696 /* ... into bitmap. */
25fe55af 2697 {
01618498 2698 re_wchar_t this_char;
36595814 2699 re_wchar_t range_start = c, range_end = c1;
b18215fc
RS
2700
2701 /* If the start is after the end, the range is empty. */
2702 if (range_start > range_end)
2703 {
2704 if (syntax & RE_NO_EMPTY_RANGES)
2705 FREE_STACK_RETURN (REG_ERANGE);
2706 /* Else, repeat the loop. */
2707 }
2708 else
2709 {
2710 for (this_char = range_start; this_char <= range_end;
2711 this_char++)
2712 SET_LIST_BIT (TRANSLATE (this_char));
e934739e 2713 }
25fe55af 2714 }
e318085a 2715 else
b18215fc
RS
2716 /* ... into range table. */
2717 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2718 }
2719
25fe55af
RS
2720 /* Discard any (non)matching list bytes that are all 0 at the
2721 end of the map. Decrease the map-length byte too. */
2722 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2723 b[-1]--;
2724 b += b[-1];
fa9a63c5 2725
96cc36cc
RS
2726 /* Build real range table from work area. */
2727 if (RANGE_TABLE_WORK_USED (range_table_work)
2728 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
2729 {
2730 int i;
2731 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2732
b18215fc 2733 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
2734 bytes for flags, two for COUNT, and three bytes for
2735 each character. */
2736 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 2737
b18215fc
RS
2738 /* Indicate the existence of range table. */
2739 laststart[1] |= 0x80;
fa9a63c5 2740
96cc36cc
RS
2741 /* Store the character class flag bits into the range table.
2742 If not in emacs, these flag bits are always 0. */
2743 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2744 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
2745
b18215fc
RS
2746 STORE_NUMBER_AND_INCR (b, used / 2);
2747 for (i = 0; i < used; i++)
2748 STORE_CHARACTER_AND_INCR
2749 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2750 }
25fe55af
RS
2751 }
2752 break;
fa9a63c5
RM
2753
2754
b18215fc 2755 case '(':
25fe55af
RS
2756 if (syntax & RE_NO_BK_PARENS)
2757 goto handle_open;
2758 else
2759 goto normal_char;
fa9a63c5
RM
2760
2761
25fe55af
RS
2762 case ')':
2763 if (syntax & RE_NO_BK_PARENS)
2764 goto handle_close;
2765 else
2766 goto normal_char;
e318085a
RS
2767
2768
25fe55af
RS
2769 case '\n':
2770 if (syntax & RE_NEWLINE_ALT)
2771 goto handle_alt;
2772 else
2773 goto normal_char;
e318085a
RS
2774
2775
b18215fc 2776 case '|':
25fe55af
RS
2777 if (syntax & RE_NO_BK_VBAR)
2778 goto handle_alt;
2779 else
2780 goto normal_char;
2781
2782
2783 case '{':
2784 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2785 goto handle_interval;
2786 else
2787 goto normal_char;
2788
2789
2790 case '\\':
2791 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2792
2793 /* Do not translate the character after the \, so that we can
2794 distinguish, e.g., \B from \b, even if we normally would
2795 translate, e.g., B to b. */
36595814 2796 PATFETCH (c);
25fe55af
RS
2797
2798 switch (c)
2799 {
2800 case '(':
2801 if (syntax & RE_NO_BK_PARENS)
2802 goto normal_backslash;
2803
2804 handle_open:
505bde11
SM
2805 {
2806 int shy = 0;
2807 if (p+1 < pend)
2808 {
2809 /* Look for a special (?...) construct */
ed0767d8 2810 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 2811 {
ed0767d8 2812 PATFETCH (c); /* Gobble up the '?'. */
505bde11
SM
2813 PATFETCH (c);
2814 switch (c)
2815 {
2816 case ':': shy = 1; break;
2817 default:
2818 /* Only (?:...) is supported right now. */
2819 FREE_STACK_RETURN (REG_BADPAT);
2820 }
2821 }
505bde11
SM
2822 }
2823
2824 if (!shy)
2825 {
2826 bufp->re_nsub++;
2827 regnum++;
2828 }
25fe55af 2829
99633e97
SM
2830 if (COMPILE_STACK_FULL)
2831 {
2832 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2833 compile_stack_elt_t);
2834 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 2835
99633e97
SM
2836 compile_stack.size <<= 1;
2837 }
25fe55af 2838
99633e97
SM
2839 /* These are the values to restore when we hit end of this
2840 group. They are all relative offsets, so that if the
2841 whole pattern moves because of realloc, they will still
2842 be valid. */
2843 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2844 COMPILE_STACK_TOP.fixup_alt_jump
2845 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2846 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2847 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
2848
2849 /* Do not push a
2850 start_memory for groups beyond the last one we can
2851 represent in the compiled pattern. */
2852 if (regnum <= MAX_REGNUM && !shy)
2853 BUF_PUSH_2 (start_memory, regnum);
2854
2855 compile_stack.avail++;
2856
2857 fixup_alt_jump = 0;
2858 laststart = 0;
2859 begalt = b;
2860 /* If we've reached MAX_REGNUM groups, then this open
2861 won't actually generate any code, so we'll have to
2862 clear pending_exact explicitly. */
2863 pending_exact = 0;
2864 break;
505bde11 2865 }
25fe55af
RS
2866
2867 case ')':
2868 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2869
2870 if (COMPILE_STACK_EMPTY)
505bde11
SM
2871 {
2872 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2873 goto normal_backslash;
2874 else
2875 FREE_STACK_RETURN (REG_ERPAREN);
2876 }
25fe55af
RS
2877
2878 handle_close:
505bde11 2879 FIXUP_ALT_JUMP ();
25fe55af
RS
2880
2881 /* See similar code for backslashed left paren above. */
2882 if (COMPILE_STACK_EMPTY)
505bde11
SM
2883 {
2884 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2885 goto normal_char;
2886 else
2887 FREE_STACK_RETURN (REG_ERPAREN);
2888 }
25fe55af
RS
2889
2890 /* Since we just checked for an empty stack above, this
2891 ``can't happen''. */
2892 assert (compile_stack.avail != 0);
2893 {
2894 /* We don't just want to restore into `regnum', because
2895 later groups should continue to be numbered higher,
2896 as in `(ab)c(de)' -- the second group is #2. */
2897 regnum_t this_group_regnum;
2898
2899 compile_stack.avail--;
2900 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2901 fixup_alt_jump
2902 = COMPILE_STACK_TOP.fixup_alt_jump
2903 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2904 : 0;
2905 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2906 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
2907 /* If we've reached MAX_REGNUM groups, then this open
2908 won't actually generate any code, so we'll have to
2909 clear pending_exact explicitly. */
2910 pending_exact = 0;
e318085a 2911
25fe55af
RS
2912 /* We're at the end of the group, so now we know how many
2913 groups were inside this one. */
505bde11
SM
2914 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
2915 BUF_PUSH_2 (stop_memory, this_group_regnum);
25fe55af
RS
2916 }
2917 break;
2918
2919
2920 case '|': /* `\|'. */
2921 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2922 goto normal_backslash;
2923 handle_alt:
2924 if (syntax & RE_LIMITED_OPS)
2925 goto normal_char;
2926
2927 /* Insert before the previous alternative a jump which
2928 jumps to this alternative if the former fails. */
2929 GET_BUFFER_SPACE (3);
2930 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2931 pending_exact = 0;
2932 b += 3;
2933
2934 /* The alternative before this one has a jump after it
2935 which gets executed if it gets matched. Adjust that
2936 jump so it will jump to this alternative's analogous
2937 jump (put in below, which in turn will jump to the next
2938 (if any) alternative's such jump, etc.). The last such
2939 jump jumps to the correct final destination. A picture:
2940 _____ _____
2941 | | | |
2942 | v | v
2943 a | b | c
2944
2945 If we are at `b', then fixup_alt_jump right now points to a
2946 three-byte space after `a'. We'll put in the jump, set
2947 fixup_alt_jump to right after `b', and leave behind three
2948 bytes which we'll fill in when we get to after `c'. */
2949
505bde11 2950 FIXUP_ALT_JUMP ();
25fe55af
RS
2951
2952 /* Mark and leave space for a jump after this alternative,
2953 to be filled in later either by next alternative or
2954 when know we're at the end of a series of alternatives. */
2955 fixup_alt_jump = b;
2956 GET_BUFFER_SPACE (3);
2957 b += 3;
2958
2959 laststart = 0;
2960 begalt = b;
2961 break;
2962
2963
2964 case '{':
2965 /* If \{ is a literal. */
2966 if (!(syntax & RE_INTERVALS)
2967 /* If we're at `\{' and it's not the open-interval
2968 operator. */
4bb91c68 2969 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
2970 goto normal_backslash;
2971
2972 handle_interval:
2973 {
2974 /* If got here, then the syntax allows intervals. */
2975
2976 /* At least (most) this many matches must be made. */
99633e97 2977 int lower_bound = 0, upper_bound = -1;
25fe55af 2978
ed0767d8 2979 beg_interval = p;
25fe55af
RS
2980
2981 if (p == pend)
4bb91c68 2982 FREE_STACK_RETURN (REG_EBRACE);
25fe55af
RS
2983
2984 GET_UNSIGNED_NUMBER (lower_bound);
2985
2986 if (c == ',')
ed0767d8 2987 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
2988 else
2989 /* Interval such as `{1}' => match exactly once. */
2990 upper_bound = lower_bound;
2991
2992 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 2993 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 2994 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
2995
2996 if (!(syntax & RE_NO_BK_BRACES))
2997 {
4bb91c68
SM
2998 if (c != '\\')
2999 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3000
3001 PATFETCH (c);
3002 }
3003
3004 if (c != '}')
4bb91c68 3005 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3006
3007 /* We just parsed a valid interval. */
3008
3009 /* If it's invalid to have no preceding re. */
3010 if (!laststart)
3011 {
3012 if (syntax & RE_CONTEXT_INVALID_OPS)
3013 FREE_STACK_RETURN (REG_BADRPT);
3014 else if (syntax & RE_CONTEXT_INDEP_OPS)
3015 laststart = b;
3016 else
3017 goto unfetch_interval;
3018 }
3019
25fe55af 3020 if (upper_bound == 0)
ed0767d8
SM
3021 /* If the upper bound is zero, just drop the sub pattern
3022 altogether. */
3023 b = laststart;
3024 else if (lower_bound == 1 && upper_bound == 1)
3025 /* Just match it once: nothing to do here. */
3026 ;
25fe55af
RS
3027
3028 /* Otherwise, we have a nontrivial interval. When
3029 we're all done, the pattern will look like:
3030 set_number_at <jump count> <upper bound>
3031 set_number_at <succeed_n count> <lower bound>
3032 succeed_n <after jump addr> <succeed_n count>
3033 <body of loop>
3034 jump_n <succeed_n addr> <jump count>
3035 (The upper bound and `jump_n' are omitted if
3036 `upper_bound' is 1, though.) */
3037 else
3038 { /* If the upper bound is > 1, we need to insert
3039 more at the end of the loop. */
ed0767d8
SM
3040 unsigned int nbytes = (upper_bound < 0 ? 3
3041 : upper_bound > 1 ? 5 : 0);
3042 unsigned int startoffset = 0;
3043
3044 GET_BUFFER_SPACE (20); /* We might use less. */
3045
3046 if (lower_bound == 0)
3047 {
3048 /* A succeed_n that starts with 0 is really a
3049 a simple on_failure_jump_loop. */
3050 INSERT_JUMP (on_failure_jump_loop, laststart,
3051 b + 3 + nbytes);
3052 b += 3;
3053 }
3054 else
3055 {
3056 /* Initialize lower bound of the `succeed_n', even
3057 though it will be set during matching by its
3058 attendant `set_number_at' (inserted next),
3059 because `re_compile_fastmap' needs to know.
3060 Jump to the `jump_n' we might insert below. */
3061 INSERT_JUMP2 (succeed_n, laststart,
3062 b + 5 + nbytes,
3063 lower_bound);
3064 b += 5;
3065
3066 /* Code to initialize the lower bound. Insert
3067 before the `succeed_n'. The `5' is the last two
3068 bytes of this `set_number_at', plus 3 bytes of
3069 the following `succeed_n'. */
3070 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3071 b += 5;
3072 startoffset += 5;
3073 }
3074
3075 if (upper_bound < 0)
3076 {
3077 /* A negative upper bound stands for infinity,
3078 in which case it degenerates to a plain jump. */
3079 STORE_JUMP (jump, b, laststart + startoffset);
3080 b += 3;
3081 }
3082 else if (upper_bound > 1)
25fe55af
RS
3083 { /* More than one repetition is allowed, so
3084 append a backward jump to the `succeed_n'
3085 that starts this interval.
3086
3087 When we've reached this during matching,
3088 we'll have matched the interval once, so
3089 jump back only `upper_bound - 1' times. */
ed0767d8 3090 STORE_JUMP2 (jump_n, b, laststart + startoffset,
25fe55af
RS
3091 upper_bound - 1);
3092 b += 5;
3093
3094 /* The location we want to set is the second
3095 parameter of the `jump_n'; that is `b-2' as
3096 an absolute address. `laststart' will be
3097 the `set_number_at' we're about to insert;
3098 `laststart+3' the number to set, the source
3099 for the relative address. But we are
3100 inserting into the middle of the pattern --
3101 so everything is getting moved up by 5.
3102 Conclusion: (b - 2) - (laststart + 3) + 5,
3103 i.e., b - laststart.
3104
3105 We insert this at the beginning of the loop
3106 so that if we fail during matching, we'll
3107 reinitialize the bounds. */
3108 insert_op2 (set_number_at, laststart, b - laststart,
3109 upper_bound - 1, b);
3110 b += 5;
3111 }
3112 }
3113 pending_exact = 0;
3114 beg_interval = NULL;
3115 }
3116 break;
3117
3118 unfetch_interval:
3119 /* If an invalid interval, match the characters as literals. */
3120 assert (beg_interval);
3121 p = beg_interval;
3122 beg_interval = NULL;
3123
3124 /* normal_char and normal_backslash need `c'. */
ed0767d8 3125 c = '{';
25fe55af
RS
3126
3127 if (!(syntax & RE_NO_BK_BRACES))
3128 {
ed0767d8
SM
3129 assert (p > pattern && p[-1] == '\\');
3130 goto normal_backslash;
25fe55af 3131 }
ed0767d8
SM
3132 else
3133 goto normal_char;
e318085a 3134
b18215fc 3135#ifdef emacs
25fe55af
RS
3136 /* There is no way to specify the before_dot and after_dot
3137 operators. rms says this is ok. --karl */
3138 case '=':
3139 BUF_PUSH (at_dot);
3140 break;
3141
3142 case 's':
3143 laststart = b;
3144 PATFETCH (c);
3145 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3146 break;
3147
3148 case 'S':
3149 laststart = b;
3150 PATFETCH (c);
3151 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3152 break;
b18215fc
RS
3153
3154 case 'c':
3155 laststart = b;
36595814 3156 PATFETCH (c);
b18215fc
RS
3157 BUF_PUSH_2 (categoryspec, c);
3158 break;
e318085a 3159
b18215fc
RS
3160 case 'C':
3161 laststart = b;
36595814 3162 PATFETCH (c);
b18215fc
RS
3163 BUF_PUSH_2 (notcategoryspec, c);
3164 break;
3165#endif /* emacs */
e318085a 3166
e318085a 3167
25fe55af 3168 case 'w':
4bb91c68
SM
3169 if (syntax & RE_NO_GNU_OPS)
3170 goto normal_char;
25fe55af 3171 laststart = b;
1fb352e0 3172 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3173 break;
e318085a 3174
e318085a 3175
25fe55af 3176 case 'W':
4bb91c68
SM
3177 if (syntax & RE_NO_GNU_OPS)
3178 goto normal_char;
25fe55af 3179 laststart = b;
1fb352e0 3180 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3181 break;
e318085a
RS
3182
3183
25fe55af 3184 case '<':
4bb91c68
SM
3185 if (syntax & RE_NO_GNU_OPS)
3186 goto normal_char;
25fe55af
RS
3187 BUF_PUSH (wordbeg);
3188 break;
e318085a 3189
25fe55af 3190 case '>':
4bb91c68
SM
3191 if (syntax & RE_NO_GNU_OPS)
3192 goto normal_char;
25fe55af
RS
3193 BUF_PUSH (wordend);
3194 break;
e318085a 3195
25fe55af 3196 case 'b':
4bb91c68
SM
3197 if (syntax & RE_NO_GNU_OPS)
3198 goto normal_char;
25fe55af
RS
3199 BUF_PUSH (wordbound);
3200 break;
e318085a 3201
25fe55af 3202 case 'B':
4bb91c68
SM
3203 if (syntax & RE_NO_GNU_OPS)
3204 goto normal_char;
25fe55af
RS
3205 BUF_PUSH (notwordbound);
3206 break;
fa9a63c5 3207
25fe55af 3208 case '`':
4bb91c68
SM
3209 if (syntax & RE_NO_GNU_OPS)
3210 goto normal_char;
25fe55af
RS
3211 BUF_PUSH (begbuf);
3212 break;
e318085a 3213
25fe55af 3214 case '\'':
4bb91c68
SM
3215 if (syntax & RE_NO_GNU_OPS)
3216 goto normal_char;
25fe55af
RS
3217 BUF_PUSH (endbuf);
3218 break;
e318085a 3219
25fe55af
RS
3220 case '1': case '2': case '3': case '4': case '5':
3221 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3222 {
3223 regnum_t reg;
e318085a 3224
0cdd06f8
SM
3225 if (syntax & RE_NO_BK_REFS)
3226 goto normal_backslash;
e318085a 3227
0cdd06f8 3228 reg = c - '0';
e318085a 3229
0cdd06f8
SM
3230 /* Can't back reference to a subexpression before its end. */
3231 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3232 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3233
0cdd06f8
SM
3234 laststart = b;
3235 BUF_PUSH_2 (duplicate, reg);
3236 }
25fe55af 3237 break;
e318085a 3238
e318085a 3239
25fe55af
RS
3240 case '+':
3241 case '?':
3242 if (syntax & RE_BK_PLUS_QM)
3243 goto handle_plus;
3244 else
3245 goto normal_backslash;
3246
3247 default:
3248 normal_backslash:
3249 /* You might think it would be useful for \ to mean
3250 not to translate; but if we don't translate it
4bb91c68 3251 it will never match anything. */
25fe55af
RS
3252 goto normal_char;
3253 }
3254 break;
fa9a63c5
RM
3255
3256
3257 default:
25fe55af 3258 /* Expects the character in `c'. */
fa9a63c5 3259 normal_char:
36595814 3260 /* If no exactn currently being built. */
25fe55af 3261 if (!pending_exact
fa9a63c5 3262
25fe55af
RS
3263 /* If last exactn not at current position. */
3264 || pending_exact + *pending_exact + 1 != b
5e69f11e 3265
25fe55af 3266 /* We have only one byte following the exactn for the count. */
2d1675e4 3267 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3268
25fe55af 3269 /* If followed by a repetition operator. */
9d99031f 3270 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3271 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3272 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3273 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3274 || ((syntax & RE_INTERVALS)
25fe55af 3275 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3276 ? p != pend && *p == '{'
3277 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3278 {
3279 /* Start building a new exactn. */
5e69f11e 3280
25fe55af 3281 laststart = b;
fa9a63c5
RM
3282
3283 BUF_PUSH_2 (exactn, 0);
3284 pending_exact = b - 1;
25fe55af 3285 }
5e69f11e 3286
2d1675e4
SM
3287 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3288 {
e0277a47
KH
3289 int len;
3290
36595814 3291 c = TRANSLATE (c);
e0277a47
KH
3292 if (multibyte)
3293 len = CHAR_STRING (c, b);
3294 else
3295 *b = c, len = 1;
2d1675e4
SM
3296 b += len;
3297 (*pending_exact) += len;
3298 }
3299
fa9a63c5 3300 break;
25fe55af 3301 } /* switch (c) */
fa9a63c5
RM
3302 } /* while p != pend */
3303
5e69f11e 3304
fa9a63c5 3305 /* Through the pattern now. */
5e69f11e 3306
505bde11 3307 FIXUP_ALT_JUMP ();
fa9a63c5 3308
5e69f11e 3309 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3310 FREE_STACK_RETURN (REG_EPAREN);
3311
3312 /* If we don't want backtracking, force success
3313 the first time we reach the end of the compiled pattern. */
3314 if (syntax & RE_NO_POSIX_BACKTRACKING)
3315 BUF_PUSH (succeed);
3316
3317 free (compile_stack.stack);
3318
3319 /* We have succeeded; set the length of the buffer. */
3320 bufp->used = b - bufp->buffer;
3321
3322#ifdef DEBUG
99633e97 3323 if (debug > 0)
fa9a63c5 3324 {
505bde11 3325 re_compile_fastmap (bufp);
fa9a63c5
RM
3326 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3327 print_compiled_pattern (bufp);
3328 }
99633e97 3329 debug--;
fa9a63c5
RM
3330#endif /* DEBUG */
3331
3332#ifndef MATCH_MAY_ALLOCATE
3333 /* Initialize the failure stack to the largest possible stack. This
3334 isn't necessary unless we're trying to avoid calling alloca in
3335 the search and match routines. */
3336 {
3337 int num_regs = bufp->re_nsub + 1;
3338
320a2a73 3339 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3340 {
a26f4ccd 3341 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3342
fa9a63c5
RM
3343 if (! fail_stack.stack)
3344 fail_stack.stack
5e69f11e 3345 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3346 * sizeof (fail_stack_elt_t));
3347 else
3348 fail_stack.stack
3349 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3350 (fail_stack.size
3351 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3352 }
3353
3354 regex_grow_registers (num_regs);
3355 }
3356#endif /* not MATCH_MAY_ALLOCATE */
3357
3358 return REG_NOERROR;
3359} /* regex_compile */
3360\f
3361/* Subroutines for `regex_compile'. */
3362
25fe55af 3363/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3364
3365static void
3366store_op1 (op, loc, arg)
3367 re_opcode_t op;
3368 unsigned char *loc;
3369 int arg;
3370{
3371 *loc = (unsigned char) op;
3372 STORE_NUMBER (loc + 1, arg);
3373}
3374
3375
3376/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3377
3378static void
3379store_op2 (op, loc, arg1, arg2)
3380 re_opcode_t op;
3381 unsigned char *loc;
3382 int arg1, arg2;
3383{
3384 *loc = (unsigned char) op;
3385 STORE_NUMBER (loc + 1, arg1);
3386 STORE_NUMBER (loc + 3, arg2);
3387}
3388
3389
3390/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3391 for OP followed by two-byte integer parameter ARG. */
3392
3393static void
3394insert_op1 (op, loc, arg, end)
3395 re_opcode_t op;
3396 unsigned char *loc;
3397 int arg;
5e69f11e 3398 unsigned char *end;
fa9a63c5
RM
3399{
3400 register unsigned char *pfrom = end;
3401 register unsigned char *pto = end + 3;
3402
3403 while (pfrom != loc)
3404 *--pto = *--pfrom;
5e69f11e 3405
fa9a63c5
RM
3406 store_op1 (op, loc, arg);
3407}
3408
3409
3410/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3411
3412static void
3413insert_op2 (op, loc, arg1, arg2, end)
3414 re_opcode_t op;
3415 unsigned char *loc;
3416 int arg1, arg2;
5e69f11e 3417 unsigned char *end;
fa9a63c5
RM
3418{
3419 register unsigned char *pfrom = end;
3420 register unsigned char *pto = end + 5;
3421
3422 while (pfrom != loc)
3423 *--pto = *--pfrom;
5e69f11e 3424
fa9a63c5
RM
3425 store_op2 (op, loc, arg1, arg2);
3426}
3427
3428
3429/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3430 after an alternative or a begin-subexpression. We assume there is at
3431 least one character before the ^. */
3432
3433static boolean
3434at_begline_loc_p (pattern, p, syntax)
01618498 3435 re_char *pattern, *p;
fa9a63c5
RM
3436 reg_syntax_t syntax;
3437{
01618498 3438 re_char *prev = p - 2;
fa9a63c5 3439 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3440
fa9a63c5
RM
3441 return
3442 /* After a subexpression? */
3443 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3444 /* After an alternative? */
d2af47df
SM
3445 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3446 /* After a shy subexpression? */
3447 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3448 && prev[-1] == '?' && prev[-2] == '('
3449 && (syntax & RE_NO_BK_PARENS
3450 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3451}
3452
3453
3454/* The dual of at_begline_loc_p. This one is for $. We assume there is
3455 at least one character after the $, i.e., `P < PEND'. */
3456
3457static boolean
3458at_endline_loc_p (p, pend, syntax)
01618498 3459 re_char *p, *pend;
99633e97 3460 reg_syntax_t syntax;
fa9a63c5 3461{
01618498 3462 re_char *next = p;
fa9a63c5 3463 boolean next_backslash = *next == '\\';
01618498 3464 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3465
fa9a63c5
RM
3466 return
3467 /* Before a subexpression? */
3468 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3469 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3470 /* Before an alternative? */
3471 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3472 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3473}
3474
3475
5e69f11e 3476/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3477 false if it's not. */
3478
3479static boolean
3480group_in_compile_stack (compile_stack, regnum)
3481 compile_stack_type compile_stack;
3482 regnum_t regnum;
3483{
3484 int this_element;
3485
5e69f11e
RM
3486 for (this_element = compile_stack.avail - 1;
3487 this_element >= 0;
fa9a63c5
RM
3488 this_element--)
3489 if (compile_stack.stack[this_element].regnum == regnum)
3490 return true;
3491
3492 return false;
3493}
fa9a63c5 3494\f
f6a3f532
SM
3495/* analyse_first.
3496 If fastmap is non-NULL, go through the pattern and fill fastmap
3497 with all the possible leading chars. If fastmap is NULL, don't
3498 bother filling it up (obviously) and only return whether the
3499 pattern could potentially match the empty string.
3500
3501 Return 1 if p..pend might match the empty string.
3502 Return 0 if p..pend matches at least one char.
01618498 3503 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3504
3505static int
3506analyse_first (p, pend, fastmap, multibyte)
01618498 3507 re_char *p, *pend;
f6a3f532
SM
3508 char *fastmap;
3509 const int multibyte;
fa9a63c5 3510{
505bde11 3511 int j, k;
1fb352e0 3512 boolean not;
fa9a63c5 3513
b18215fc 3514 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3515 flag is set true. */
b18215fc
RS
3516 boolean match_any_multibyte_characters = false;
3517
f6a3f532 3518 assert (p);
5e69f11e 3519
505bde11
SM
3520 /* The loop below works as follows:
3521 - It has a working-list kept in the PATTERN_STACK and which basically
3522 starts by only containing a pointer to the first operation.
3523 - If the opcode we're looking at is a match against some set of
3524 chars, then we add those chars to the fastmap and go on to the
3525 next work element from the worklist (done via `break').
3526 - If the opcode is a control operator on the other hand, we either
3527 ignore it (if it's meaningless at this point, such as `start_memory')
3528 or execute it (if it's a jump). If the jump has several destinations
3529 (i.e. `on_failure_jump'), then we push the other destination onto the
3530 worklist.
3531 We guarantee termination by ignoring backward jumps (more or less),
3532 so that `p' is monotonically increasing. More to the point, we
3533 never set `p' (or push) anything `<= p1'. */
3534
01618498 3535 while (p < pend)
fa9a63c5 3536 {
505bde11
SM
3537 /* `p1' is used as a marker of how far back a `on_failure_jump'
3538 can go without being ignored. It is normally equal to `p'
3539 (which prevents any backward `on_failure_jump') except right
3540 after a plain `jump', to allow patterns such as:
3541 0: jump 10
3542 3..9: <body>
3543 10: on_failure_jump 3
3544 as used for the *? operator. */
01618498 3545 re_char *p1 = p;
5e69f11e 3546
fa9a63c5
RM
3547 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3548 {
f6a3f532 3549 case succeed:
01618498 3550 return 1;
f6a3f532 3551 continue;
fa9a63c5 3552
fa9a63c5 3553 case duplicate:
505bde11
SM
3554 /* If the first character has to match a backreference, that means
3555 that the group was empty (since it already matched). Since this
3556 is the only case that interests us here, we can assume that the
3557 backreference must match the empty string. */
3558 p++;
3559 continue;
fa9a63c5
RM
3560
3561
3562 /* Following are the cases which match a character. These end
25fe55af 3563 with `break'. */
fa9a63c5
RM
3564
3565 case exactn:
e0277a47
KH
3566 if (fastmap)
3567 {
3568 int c = RE_STRING_CHAR (p + 1, pend - p);
3569
3570 if (SINGLE_BYTE_CHAR_P (c))
3571 fastmap[c] = 1;
3572 else
3573 fastmap[p[1]] = 1;
3574 }
fa9a63c5
RM
3575 break;
3576
3577
1fb352e0
SM
3578 case anychar:
3579 /* We could put all the chars except for \n (and maybe \0)
3580 but we don't bother since it is generally not worth it. */
f6a3f532 3581 if (!fastmap) break;
01618498 3582 return -1;
fa9a63c5
RM
3583
3584
b18215fc 3585 case charset_not:
ba5c004d
RS
3586 /* Chars beyond end of bitmap are possible matches.
3587 All the single-byte codes can occur in multibyte buffers.
3588 So any that are not listed in the charset
3589 are possible matches, even in multibyte buffers. */
1fb352e0 3590 if (!fastmap) break;
b18215fc 3591 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
1fb352e0 3592 j < (1 << BYTEWIDTH); j++)
b18215fc 3593 fastmap[j] = 1;
1fb352e0
SM
3594 /* Fallthrough */
3595 case charset:
3596 if (!fastmap) break;
3597 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3598 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3599 j >= 0; j--)
1fb352e0 3600 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
b18215fc
RS
3601 fastmap[j] = 1;
3602
1fb352e0
SM
3603 if ((not && multibyte)
3604 /* Any character set can possibly contain a character
3605 which doesn't match the specified set of characters. */
3606 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3607 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3608 /* If we can match a character class, we can match
3609 any character set. */
b18215fc
RS
3610 {
3611 set_fastmap_for_multibyte_characters:
3612 if (match_any_multibyte_characters == false)
3613 {
3614 for (j = 0x80; j < 0xA0; j++) /* XXX */
3615 if (BASE_LEADING_CODE_P (j))
3616 fastmap[j] = 1;
3617 match_any_multibyte_characters = true;
3618 }
3619 }
b18215fc 3620
1fb352e0
SM
3621 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3622 && match_any_multibyte_characters == false)
3623 {
3624 /* Set fastmap[I] 1 where I is a base leading code of each
3625 multibyte character in the range table. */
3626 int c, count;
b18215fc 3627
1fb352e0 3628 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 3629 bits for a character class. */
1fb352e0 3630 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 3631
1fb352e0
SM
3632 /* Extract the number of ranges in range table into COUNT. */
3633 EXTRACT_NUMBER_AND_INCR (count, p);
3634 for (; count > 0; count--, p += 2 * 3) /* XXX */
3635 {
3636 /* Extract the start of each range. */
3637 EXTRACT_CHARACTER (c, p);
3638 j = CHAR_CHARSET (c);
3639 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3640 }
3641 }
b18215fc
RS
3642 break;
3643
1fb352e0
SM
3644 case syntaxspec:
3645 case notsyntaxspec:
3646 if (!fastmap) break;
3647#ifndef emacs
3648 not = (re_opcode_t)p[-1] == notsyntaxspec;
3649 k = *p++;
3650 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 3651 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 3652 fastmap[j] = 1;
b18215fc 3653 break;
1fb352e0 3654#else /* emacs */
b18215fc
RS
3655 /* This match depends on text properties. These end with
3656 aborting optimizations. */
01618498 3657 return -1;
b18215fc
RS
3658
3659 case categoryspec:
b18215fc 3660 case notcategoryspec:
1fb352e0
SM
3661 if (!fastmap) break;
3662 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 3663 k = *p++;
1fb352e0
SM
3664 for (j = 0; j < (1 << BYTEWIDTH); j++)
3665 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
3666 fastmap[j] = 1;
3667
1fb352e0 3668 if (multibyte)
b18215fc 3669 /* Any character set can possibly contain a character
1fb352e0 3670 whose category is K (or not). */
b18215fc
RS
3671 goto set_fastmap_for_multibyte_characters;
3672 break;
3673
fa9a63c5 3674 /* All cases after this match the empty string. These end with
25fe55af 3675 `continue'. */
fa9a63c5 3676
fa9a63c5
RM
3677 case before_dot:
3678 case at_dot:
3679 case after_dot:
1fb352e0 3680#endif /* !emacs */
25fe55af
RS
3681 case no_op:
3682 case begline:
3683 case endline:
fa9a63c5
RM
3684 case begbuf:
3685 case endbuf:
3686 case wordbound:
3687 case notwordbound:
3688 case wordbeg:
3689 case wordend:
25fe55af 3690 continue;
fa9a63c5
RM
3691
3692
fa9a63c5 3693 case jump:
25fe55af 3694 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
3695 if (j < 0)
3696 /* Backward jumps can only go back to code that we've already
3697 visited. `re_compile' should make sure this is true. */
3698 break;
25fe55af 3699 p += j;
505bde11
SM
3700 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3701 {
3702 case on_failure_jump:
3703 case on_failure_keep_string_jump:
505bde11 3704 case on_failure_jump_loop:
0683b6fa 3705 case on_failure_jump_nastyloop:
505bde11
SM
3706 case on_failure_jump_smart:
3707 p++;
3708 break;
3709 default:
3710 continue;
3711 };
3712 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3713 to jump back to "just after here". */
3714 /* Fallthrough */
fa9a63c5 3715
25fe55af
RS
3716 case on_failure_jump:
3717 case on_failure_keep_string_jump:
0683b6fa 3718 case on_failure_jump_nastyloop:
505bde11
SM
3719 case on_failure_jump_loop:
3720 case on_failure_jump_smart:
25fe55af 3721 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 3722 if (p + j <= p1)
ed0767d8 3723 ; /* Backward jump to be ignored. */
01618498
SM
3724 else
3725 { /* We have to look down both arms.
3726 We first go down the "straight" path so as to minimize
3727 stack usage when going through alternatives. */
3728 int r = analyse_first (p, pend, fastmap, multibyte);
3729 if (r) return r;
3730 p += j;
3731 }
25fe55af 3732 continue;
fa9a63c5
RM
3733
3734
ed0767d8
SM
3735 case jump_n:
3736 /* This code simply does not properly handle forward jump_n. */
3737 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
3738 p += 4;
3739 /* jump_n can either jump or fall through. The (backward) jump
3740 case has already been handled, so we only need to look at the
3741 fallthrough case. */
3742 continue;
3743
fa9a63c5 3744 case succeed_n:
ed0767d8
SM
3745 /* If N == 0, it should be an on_failure_jump_loop instead. */
3746 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
3747 p += 4;
3748 /* We only care about one iteration of the loop, so we don't
3749 need to consider the case where this behaves like an
3750 on_failure_jump. */
25fe55af 3751 continue;
fa9a63c5
RM
3752
3753
3754 case set_number_at:
25fe55af
RS
3755 p += 4;
3756 continue;
fa9a63c5
RM
3757
3758
3759 case start_memory:
25fe55af 3760 case stop_memory:
505bde11 3761 p += 1;
fa9a63c5
RM
3762 continue;
3763
3764
3765 default:
25fe55af
RS
3766 abort (); /* We have listed all the cases. */
3767 } /* switch *p++ */
fa9a63c5
RM
3768
3769 /* Getting here means we have found the possible starting
25fe55af 3770 characters for one path of the pattern -- and that the empty
01618498
SM
3771 string does not match. We need not follow this path further. */
3772 return 0;
fa9a63c5
RM
3773 } /* while p */
3774
01618498
SM
3775 /* We reached the end without matching anything. */
3776 return 1;
3777
f6a3f532
SM
3778} /* analyse_first */
3779\f
3780/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3781 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3782 characters can start a string that matches the pattern. This fastmap
3783 is used by re_search to skip quickly over impossible starting points.
3784
3785 Character codes above (1 << BYTEWIDTH) are not represented in the
3786 fastmap, but the leading codes are represented. Thus, the fastmap
3787 indicates which character sets could start a match.
3788
3789 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3790 area as BUFP->fastmap.
3791
3792 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3793 the pattern buffer.
3794
3795 Returns 0 if we succeed, -2 if an internal error. */
3796
3797int
3798re_compile_fastmap (bufp)
3799 struct re_pattern_buffer *bufp;
3800{
3801 char *fastmap = bufp->fastmap;
3802 int analysis;
3803
3804 assert (fastmap && bufp->buffer);
3805
3806 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3807 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3808
3809 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 3810 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 3811 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
3812 return 0;
3813} /* re_compile_fastmap */
3814\f
3815/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3816 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3817 this memory for recording register information. STARTS and ENDS
3818 must be allocated using the malloc library routine, and must each
3819 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3820
3821 If NUM_REGS == 0, then subsequent matches should allocate their own
3822 register data.
3823
3824 Unless this function is called, the first search or match using
3825 PATTERN_BUFFER will allocate its own register data, without
3826 freeing the old data. */
3827
3828void
3829re_set_registers (bufp, regs, num_regs, starts, ends)
3830 struct re_pattern_buffer *bufp;
3831 struct re_registers *regs;
3832 unsigned num_regs;
3833 regoff_t *starts, *ends;
3834{
3835 if (num_regs)
3836 {
3837 bufp->regs_allocated = REGS_REALLOCATE;
3838 regs->num_regs = num_regs;
3839 regs->start = starts;
3840 regs->end = ends;
3841 }
3842 else
3843 {
3844 bufp->regs_allocated = REGS_UNALLOCATED;
3845 regs->num_regs = 0;
3846 regs->start = regs->end = (regoff_t *) 0;
3847 }
3848}
c0f9ea08 3849WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 3850\f
25fe55af 3851/* Searching routines. */
fa9a63c5
RM
3852
3853/* Like re_search_2, below, but only one string is specified, and
3854 doesn't let you say where to stop matching. */
3855
3856int
3857re_search (bufp, string, size, startpos, range, regs)
3858 struct re_pattern_buffer *bufp;
3859 const char *string;
3860 int size, startpos, range;
3861 struct re_registers *regs;
3862{
5e69f11e 3863 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
3864 regs, size);
3865}
c0f9ea08 3866WEAK_ALIAS (__re_search, re_search)
fa9a63c5 3867
b18215fc
RS
3868/* End address of virtual concatenation of string. */
3869#define STOP_ADDR_VSTRING(P) \
3870 (((P) >= size1 ? string2 + size2 : string1 + size1))
3871
3872/* Address of POS in the concatenation of virtual string. */
3873#define POS_ADDR_VSTRING(POS) \
3874 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
3875
3876/* Using the compiled pattern in BUFP->buffer, first tries to match the
3877 virtual concatenation of STRING1 and STRING2, starting first at index
3878 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 3879
fa9a63c5 3880 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 3881
fa9a63c5
RM
3882 RANGE is how far to scan while trying to match. RANGE = 0 means try
3883 only at STARTPOS; in general, the last start tried is STARTPOS +
3884 RANGE.
5e69f11e 3885
fa9a63c5
RM
3886 In REGS, return the indices of the virtual concatenation of STRING1
3887 and STRING2 that matched the entire BUFP->buffer and its contained
3888 subexpressions.
5e69f11e 3889
fa9a63c5
RM
3890 Do not consider matching one past the index STOP in the virtual
3891 concatenation of STRING1 and STRING2.
3892
3893 We return either the position in the strings at which the match was
3894 found, -1 if no match, or -2 if error (such as failure
3895 stack overflow). */
3896
3897int
66f0296e 3898re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 3899 struct re_pattern_buffer *bufp;
66f0296e 3900 const char *str1, *str2;
fa9a63c5
RM
3901 int size1, size2;
3902 int startpos;
3903 int range;
3904 struct re_registers *regs;
3905 int stop;
3906{
3907 int val;
66f0296e
SM
3908 re_char *string1 = (re_char*) str1;
3909 re_char *string2 = (re_char*) str2;
fa9a63c5 3910 register char *fastmap = bufp->fastmap;
6676cb1c 3911 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3912 int total_size = size1 + size2;
3913 int endpos = startpos + range;
c0f9ea08 3914 boolean anchored_start;
fa9a63c5 3915
25fe55af 3916 /* Nonzero if we have to concern multibyte character. */
2d1675e4 3917 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 3918
fa9a63c5
RM
3919 /* Check for out-of-range STARTPOS. */
3920 if (startpos < 0 || startpos > total_size)
3921 return -1;
5e69f11e 3922
fa9a63c5 3923 /* Fix up RANGE if it might eventually take us outside
34597fa9 3924 the virtual concatenation of STRING1 and STRING2.
5e69f11e 3925 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
3926 if (endpos < 0)
3927 range = 0 - startpos;
fa9a63c5
RM
3928 else if (endpos > total_size)
3929 range = total_size - startpos;
3930
3931 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 3932 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
3933 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3934 {
3935 if (startpos > 0)
3936 return -1;
3937 else
7b140fd7 3938 range = 0;
fa9a63c5
RM
3939 }
3940
ae4788a8
RS
3941#ifdef emacs
3942 /* In a forward search for something that starts with \=.
3943 don't keep searching past point. */
3944 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3945 {
7b140fd7
RS
3946 range = PT_BYTE - BEGV_BYTE - startpos;
3947 if (range < 0)
ae4788a8
RS
3948 return -1;
3949 }
3950#endif /* emacs */
3951
fa9a63c5
RM
3952 /* Update the fastmap now if not correct already. */
3953 if (fastmap && !bufp->fastmap_accurate)
01618498 3954 re_compile_fastmap (bufp);
5e69f11e 3955
c8499ba5 3956 /* See whether the pattern is anchored. */
c0f9ea08 3957 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 3958
b18215fc 3959#ifdef emacs
cc9b4df2
KH
3960 gl_state.object = re_match_object;
3961 {
99633e97 3962 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
3963
3964 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
3965 }
b18215fc
RS
3966#endif
3967
fa9a63c5
RM
3968 /* Loop through the string, looking for a place to start matching. */
3969 for (;;)
5e69f11e 3970 {
c8499ba5
RS
3971 /* If the pattern is anchored,
3972 skip quickly past places we cannot match.
3973 We don't bother to treat startpos == 0 specially
3974 because that case doesn't repeat. */
3975 if (anchored_start && startpos > 0)
3976 {
c0f9ea08
SM
3977 if (! ((startpos <= size1 ? string1[startpos - 1]
3978 : string2[startpos - size1 - 1])
3979 == '\n'))
c8499ba5
RS
3980 goto advance;
3981 }
3982
fa9a63c5 3983 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
3984 cannot be the start of a match. If the pattern can match the
3985 null string, however, we don't need to skip characters; we want
3986 the first null string. */
fa9a63c5
RM
3987 if (fastmap && startpos < total_size && !bufp->can_be_null)
3988 {
66f0296e 3989 register re_char *d;
01618498 3990 register re_wchar_t buf_ch;
e934739e
RS
3991
3992 d = POS_ADDR_VSTRING (startpos);
3993
25fe55af 3994 if (range > 0) /* Searching forwards. */
fa9a63c5 3995 {
fa9a63c5
RM
3996 register int lim = 0;
3997 int irange = range;
3998
25fe55af
RS
3999 if (startpos < size1 && startpos + range >= size1)
4000 lim = range - (size1 - startpos);
fa9a63c5 4001
25fe55af
RS
4002 /* Written out as an if-else to avoid testing `translate'
4003 inside the loop. */
28ae27ae
AS
4004 if (RE_TRANSLATE_P (translate))
4005 {
e934739e
RS
4006 if (multibyte)
4007 while (range > lim)
4008 {
4009 int buf_charlen;
4010
4011 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4012 buf_charlen);
4013
4014 buf_ch = RE_TRANSLATE (translate, buf_ch);
4015 if (buf_ch >= 0400
4016 || fastmap[buf_ch])
4017 break;
4018
4019 range -= buf_charlen;
4020 d += buf_charlen;
4021 }
4022 else
4023 while (range > lim
66f0296e 4024 && !fastmap[RE_TRANSLATE (translate, *d)])
33c46939
RS
4025 {
4026 d++;
4027 range--;
4028 }
e934739e 4029 }
fa9a63c5 4030 else
66f0296e 4031 while (range > lim && !fastmap[*d])
33c46939
RS
4032 {
4033 d++;
4034 range--;
4035 }
fa9a63c5
RM
4036
4037 startpos += irange - range;
4038 }
25fe55af 4039 else /* Searching backwards. */
fa9a63c5 4040 {
2d1675e4
SM
4041 int room = (startpos >= size1
4042 ? size2 + size1 - startpos
4043 : size1 - startpos);
4044 buf_ch = RE_STRING_CHAR (d, room);
4045 buf_ch = TRANSLATE (buf_ch);
fa9a63c5 4046
e934739e
RS
4047 if (! (buf_ch >= 0400
4048 || fastmap[buf_ch]))
fa9a63c5
RM
4049 goto advance;
4050 }
4051 }
4052
4053 /* If can't match the null string, and that's all we have left, fail. */
4054 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4055 && !bufp->can_be_null)
fa9a63c5
RM
4056 return -1;
4057
4058 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4059 startpos, regs, stop);
4060#ifndef REGEX_MALLOC
0b32bf0e 4061# ifdef C_ALLOCA
fa9a63c5 4062 alloca (0);
0b32bf0e 4063# endif
fa9a63c5
RM
4064#endif
4065
4066 if (val >= 0)
4067 return startpos;
5e69f11e 4068
fa9a63c5
RM
4069 if (val == -2)
4070 return -2;
4071
4072 advance:
5e69f11e 4073 if (!range)
25fe55af 4074 break;
5e69f11e 4075 else if (range > 0)
25fe55af 4076 {
b18215fc
RS
4077 /* Update STARTPOS to the next character boundary. */
4078 if (multibyte)
4079 {
66f0296e
SM
4080 re_char *p = POS_ADDR_VSTRING (startpos);
4081 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4082 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4083
4084 range -= len;
4085 if (range < 0)
4086 break;
4087 startpos += len;
4088 }
4089 else
4090 {
b560c397
RS
4091 range--;
4092 startpos++;
4093 }
e318085a 4094 }
fa9a63c5 4095 else
25fe55af
RS
4096 {
4097 range++;
4098 startpos--;
b18215fc
RS
4099
4100 /* Update STARTPOS to the previous character boundary. */
4101 if (multibyte)
4102 {
66f0296e 4103 re_char *p = POS_ADDR_VSTRING (startpos);
b18215fc
RS
4104 int len = 0;
4105
4106 /* Find the head of multibyte form. */
5d967c7a 4107 while (!CHAR_HEAD_P (*p))
b18215fc
RS
4108 p--, len++;
4109
4110 /* Adjust it. */
4111#if 0 /* XXX */
4112 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
4113 ;
4114 else
4115#endif
4116 {
4117 range += len;
4118 if (range > 0)
4119 break;
4120
4121 startpos -= len;
4122 }
4123 }
25fe55af 4124 }
fa9a63c5
RM
4125 }
4126 return -1;
4127} /* re_search_2 */
c0f9ea08 4128WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4129\f
4130/* Declarations and macros for re_match_2. */
4131
2d1675e4
SM
4132static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4133 register int len,
4134 RE_TRANSLATE_TYPE translate,
4135 const int multibyte));
fa9a63c5
RM
4136
4137/* This converts PTR, a pointer into one of the search strings `string1'
4138 and `string2' into an offset from the beginning of that string. */
4139#define POINTER_TO_OFFSET(ptr) \
4140 (FIRST_STRING_P (ptr) \
4141 ? ((regoff_t) ((ptr) - string1)) \
4142 : ((regoff_t) ((ptr) - string2 + size1)))
4143
fa9a63c5 4144/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4145 string2 if necessary.
4146 Check re_match_2_internal for a discussion of why end_match_2 might
4147 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4148#define PREFETCH() \
25fe55af 4149 while (d == dend) \
fa9a63c5
RM
4150 { \
4151 /* End of string2 => fail. */ \
25fe55af
RS
4152 if (dend == end_match_2) \
4153 goto fail; \
4bb91c68 4154 /* End of string1 => advance to string2. */ \
25fe55af 4155 d = string2; \
fa9a63c5
RM
4156 dend = end_match_2; \
4157 }
4158
f1ad044f
SM
4159/* Call before fetching a char with *d if you already checked other limits.
4160 This is meant for use in lookahead operations like wordend, etc..
4161 where we might need to look at parts of the string that might be
4162 outside of the LIMITs (i.e past `stop'). */
4163#define PREFETCH_NOLIMIT() \
4164 if (d == end1) \
4165 { \
4166 d = string2; \
4167 dend = end_match_2; \
4168 } \
fa9a63c5
RM
4169
4170/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 4171 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4172#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4173#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4174
4175
4176/* Test if D points to a character which is word-constituent. We have
4177 two special cases to check for: if past the end of string1, look at
4178 the first character in string2; and if before the beginning of
4179 string2, look at the last character in string1. */
4180#define WORDCHAR_P(d) \
4181 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4182 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4183 == Sword)
4184
9121ca40 4185/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4186
4187/* The comment at case wordbound is following one, but we don't use
4188 AT_WORD_BOUNDARY anymore to support multibyte form.
4189
4190 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
4191 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4192 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4193 macro and introducing temporary variables works around the bug. */
4194
9121ca40 4195#if 0
fa9a63c5
RM
4196/* Test if the character before D and the one at D differ with respect
4197 to being word-constituent. */
4198#define AT_WORD_BOUNDARY(d) \
4199 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4200 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4201#endif
fa9a63c5
RM
4202
4203/* Free everything we malloc. */
4204#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4205# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4206# define FREE_VARIABLES() \
fa9a63c5
RM
4207 do { \
4208 REGEX_FREE_STACK (fail_stack.stack); \
4209 FREE_VAR (regstart); \
4210 FREE_VAR (regend); \
fa9a63c5
RM
4211 FREE_VAR (best_regstart); \
4212 FREE_VAR (best_regend); \
fa9a63c5
RM
4213 } while (0)
4214#else
0b32bf0e 4215# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4216#endif /* not MATCH_MAY_ALLOCATE */
4217
505bde11
SM
4218\f
4219/* Optimization routines. */
4220
4e8a9132
SM
4221/* If the operation is a match against one or more chars,
4222 return a pointer to the next operation, else return NULL. */
01618498 4223static re_char *
4e8a9132 4224skip_one_char (p)
01618498 4225 re_char *p;
4e8a9132
SM
4226{
4227 switch (SWITCH_ENUM_CAST (*p++))
4228 {
4229 case anychar:
4230 break;
4231
4232 case exactn:
4233 p += *p + 1;
4234 break;
4235
4236 case charset_not:
4237 case charset:
4238 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4239 {
4240 int mcnt;
4241 p = CHARSET_RANGE_TABLE (p - 1);
4242 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4243 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4244 }
4245 else
4246 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4247 break;
4248
4e8a9132
SM
4249 case syntaxspec:
4250 case notsyntaxspec:
1fb352e0 4251#ifdef emacs
4e8a9132
SM
4252 case categoryspec:
4253 case notcategoryspec:
4254#endif /* emacs */
4255 p++;
4256 break;
4257
4258 default:
4259 p = NULL;
4260 }
4261 return p;
4262}
4263
4264
505bde11
SM
4265/* Jump over non-matching operations. */
4266static unsigned char *
4e8a9132 4267skip_noops (p, pend)
505bde11 4268 unsigned char *p, *pend;
505bde11
SM
4269{
4270 int mcnt;
4271 while (p < pend)
4272 {
4273 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4274 {
4275 case start_memory:
505bde11
SM
4276 case stop_memory:
4277 p += 2; break;
4278 case no_op:
4279 p += 1; break;
4280 case jump:
4281 p += 1;
4282 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4283 p += mcnt;
4284 break;
4285 default:
4286 return p;
4287 }
4288 }
4289 assert (p == pend);
4290 return p;
4291}
4292
4293/* Non-zero if "p1 matches something" implies "p2 fails". */
4294static int
4295mutually_exclusive_p (bufp, p1, p2)
4296 struct re_pattern_buffer *bufp;
4297 unsigned char *p1, *p2;
4298{
4e8a9132 4299 re_opcode_t op2;
2d1675e4 4300 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4301 unsigned char *pend = bufp->buffer + bufp->used;
4302
4e8a9132 4303 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4304 && p2 >= bufp->buffer && p2 <= pend);
4305
4306 /* Skip over open/close-group commands.
4307 If what follows this loop is a ...+ construct,
4308 look at what begins its body, since we will have to
4309 match at least one of that. */
4e8a9132
SM
4310 p2 = skip_noops (p2, pend);
4311 /* The same skip can be done for p1, except that this function
4312 is only used in the case where p1 is a simple match operator. */
4313 /* p1 = skip_noops (p1, pend); */
4314
4315 assert (p1 >= bufp->buffer && p1 < pend
4316 && p2 >= bufp->buffer && p2 <= pend);
4317
4318 op2 = p2 == pend ? succeed : *p2;
4319
4320 switch (SWITCH_ENUM_CAST (op2))
505bde11 4321 {
4e8a9132
SM
4322 case succeed:
4323 case endbuf:
4324 /* If we're at the end of the pattern, we can change. */
4325 if (skip_one_char (p1))
505bde11 4326 {
505bde11
SM
4327 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4328 return 1;
505bde11 4329 }
4e8a9132
SM
4330 break;
4331
4332 case endline:
4e8a9132
SM
4333 case exactn:
4334 {
01618498 4335 register re_wchar_t c
4e8a9132 4336 = (re_opcode_t) *p2 == endline ? '\n'
411e4203 4337 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
505bde11 4338
4e8a9132
SM
4339 if ((re_opcode_t) *p1 == exactn)
4340 {
4341 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4342 {
4343 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4344 return 1;
4345 }
4346 }
505bde11 4347
4e8a9132
SM
4348 else if ((re_opcode_t) *p1 == charset
4349 || (re_opcode_t) *p1 == charset_not)
4350 {
4351 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4352
4e8a9132
SM
4353 /* Test if C is listed in charset (or charset_not)
4354 at `p1'. */
4355 if (SINGLE_BYTE_CHAR_P (c))
4356 {
4357 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4358 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4359 not = !not;
4360 }
4361 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4362 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4363
4e8a9132
SM
4364 /* `not' is equal to 1 if c would match, which means
4365 that we can't change to pop_failure_jump. */
4366 if (!not)
4367 {
4368 DEBUG_PRINT1 (" No match => fast loop.\n");
4369 return 1;
4370 }
4371 }
4372 else if ((re_opcode_t) *p1 == anychar
4373 && c == '\n')
4374 {
4375 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4376 return 1;
4377 }
4378 }
4379 break;
505bde11 4380
4e8a9132 4381 case charset:
4e8a9132
SM
4382 {
4383 if ((re_opcode_t) *p1 == exactn)
4384 /* Reuse the code above. */
4385 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4386
505bde11
SM
4387 /* It is hard to list up all the character in charset
4388 P2 if it includes multibyte character. Give up in
4389 such case. */
4390 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4391 {
4392 /* Now, we are sure that P2 has no range table.
4393 So, for the size of bitmap in P2, `p2[1]' is
4394 enough. But P1 may have range table, so the
4395 size of bitmap table of P1 is extracted by
4396 using macro `CHARSET_BITMAP_SIZE'.
4397
4398 Since we know that all the character listed in
4399 P2 is ASCII, it is enough to test only bitmap
4400 table of P1. */
4401
411e4203 4402 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4403 {
4404 int idx;
4405 /* We win if the charset inside the loop
4406 has no overlap with the one after the loop. */
4407 for (idx = 0;
4408 (idx < (int) p2[1]
4409 && idx < CHARSET_BITMAP_SIZE (p1));
4410 idx++)
4411 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4412 break;
4413
4414 if (idx == p2[1]
4415 || idx == CHARSET_BITMAP_SIZE (p1))
4416 {
4417 DEBUG_PRINT1 (" No match => fast loop.\n");
4418 return 1;
4419 }
4420 }
411e4203 4421 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4422 {
4423 int idx;
4424 /* We win if the charset_not inside the loop lists
4425 every character listed in the charset after. */
4426 for (idx = 0; idx < (int) p2[1]; idx++)
4427 if (! (p2[2 + idx] == 0
4428 || (idx < CHARSET_BITMAP_SIZE (p1)
4429 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4430 break;
4431
4e8a9132
SM
4432 if (idx == p2[1])
4433 {
4434 DEBUG_PRINT1 (" No match => fast loop.\n");
4435 return 1;
4436 }
4437 }
4438 }
4439 }
609b757a 4440 break;
4e8a9132 4441
411e4203
SM
4442 case charset_not:
4443 switch (SWITCH_ENUM_CAST (*p1))
4444 {
4445 case exactn:
4446 case charset:
4447 /* Reuse the code above. */
4448 return mutually_exclusive_p (bufp, p2, p1);
4449 case charset_not:
4450 /* When we have two charset_not, it's very unlikely that
4451 they don't overlap. The union of the two sets of excluded
4452 chars should cover all possible chars, which, as a matter of
4453 fact, is virtually impossible in multibyte buffers. */
36595814 4454 break;
411e4203
SM
4455 }
4456 break;
4457
4e8a9132
SM
4458 case wordend:
4459 case notsyntaxspec:
4460 return ((re_opcode_t) *p1 == syntaxspec
4461 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4462
4463 case wordbeg:
4464 case syntaxspec:
4465 return ((re_opcode_t) *p1 == notsyntaxspec
4466 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4467
4468 case wordbound:
4469 return (((re_opcode_t) *p1 == notsyntaxspec
4470 || (re_opcode_t) *p1 == syntaxspec)
4471 && p1[1] == Sword);
4472
1fb352e0 4473#ifdef emacs
4e8a9132
SM
4474 case categoryspec:
4475 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4476 case notcategoryspec:
4477 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4478#endif /* emacs */
4479
4480 default:
4481 ;
505bde11
SM
4482 }
4483
4484 /* Safe default. */
4485 return 0;
4486}
4487
fa9a63c5
RM
4488\f
4489/* Matching routines. */
4490
25fe55af 4491#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4492/* re_match is like re_match_2 except it takes only a single string. */
4493
4494int
4495re_match (bufp, string, size, pos, regs)
4496 struct re_pattern_buffer *bufp;
4497 const char *string;
4498 int size, pos;
4499 struct re_registers *regs;
4500{
4bb91c68 4501 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 4502 pos, regs, size);
0b32bf0e 4503# if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4504 alloca (0);
0b32bf0e 4505# endif
fa9a63c5
RM
4506 return result;
4507}
c0f9ea08 4508WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4509#endif /* not emacs */
4510
b18215fc
RS
4511#ifdef emacs
4512/* In Emacs, this is the string or buffer in which we
25fe55af 4513 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4514Lisp_Object re_match_object;
4515#endif
fa9a63c5
RM
4516
4517/* re_match_2 matches the compiled pattern in BUFP against the
4518 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4519 and SIZE2, respectively). We start matching at POS, and stop
4520 matching at STOP.
5e69f11e 4521
fa9a63c5 4522 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4523 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4524 documentation for exactly how many groups we fill.
4525
4526 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4527 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4528 matched substring. */
4529
4530int
4531re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4532 struct re_pattern_buffer *bufp;
4533 const char *string1, *string2;
4534 int size1, size2;
4535 int pos;
4536 struct re_registers *regs;
4537 int stop;
4538{
b18215fc 4539 int result;
25fe55af 4540
b18215fc 4541#ifdef emacs
cc9b4df2
KH
4542 int charpos;
4543 gl_state.object = re_match_object;
99633e97 4544 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4545 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4546#endif
4547
4bb91c68
SM
4548 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4549 (re_char*) string2, size2,
cc9b4df2 4550 pos, regs, stop);
0b32bf0e 4551#if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4552 alloca (0);
a60198e5 4553#endif
fa9a63c5
RM
4554 return result;
4555}
c0f9ea08 4556WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5
RM
4557
4558/* This is a separate function so that we can force an alloca cleanup
25fe55af 4559 afterwards. */
fa9a63c5
RM
4560static int
4561re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4562 struct re_pattern_buffer *bufp;
66f0296e 4563 re_char *string1, *string2;
fa9a63c5
RM
4564 int size1, size2;
4565 int pos;
4566 struct re_registers *regs;
4567 int stop;
4568{
4569 /* General temporaries. */
4570 int mcnt;
01618498 4571 size_t reg;
66f0296e 4572 boolean not;
fa9a63c5
RM
4573
4574 /* Just past the end of the corresponding string. */
66f0296e 4575 re_char *end1, *end2;
fa9a63c5
RM
4576
4577 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4578 each to consider matching. */
66f0296e 4579 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4580
4581 /* Where we are in the data, and the end of the current string. */
66f0296e 4582 re_char *d, *dend;
5e69f11e 4583
99633e97
SM
4584 /* Used sometimes to remember where we were before starting matching
4585 an operator so that we can go back in case of failure. This "atomic"
4586 behavior of matching opcodes is indispensable to the correctness
4587 of the on_failure_keep_string_jump optimization. */
4588 re_char *dfail;
4589
fa9a63c5 4590 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
4591 re_char *p = bufp->buffer;
4592 re_char *pend = p + bufp->used;
fa9a63c5 4593
25fe55af 4594 /* We use this to map every character in the string. */
6676cb1c 4595 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4596
25fe55af 4597 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4598 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4599
fa9a63c5
RM
4600 /* Failure point stack. Each place that can handle a failure further
4601 down the line pushes a failure point on this stack. It consists of
505bde11 4602 regstart, and regend for all registers corresponding to
fa9a63c5
RM
4603 the subexpressions we're currently inside, plus the number of such
4604 registers, and, finally, two char *'s. The first char * is where
4605 to resume scanning the pattern; the second one is where to resume
505bde11 4606 scanning the strings. */
25fe55af 4607#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4608 fail_stack_type fail_stack;
4609#endif
4610#ifdef DEBUG
fa9a63c5
RM
4611 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4612#endif
4613
0b32bf0e 4614#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
4615 /* This holds the pointer to the failure stack, when
4616 it is allocated relocatably. */
4617 fail_stack_elt_t *failure_stack_ptr;
99633e97 4618#endif
fa9a63c5
RM
4619
4620 /* We fill all the registers internally, independent of what we
25fe55af 4621 return, for use in backreferences. The number here includes
fa9a63c5 4622 an element for register zero. */
4bb91c68 4623 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 4624
fa9a63c5
RM
4625 /* Information on the contents of registers. These are pointers into
4626 the input strings; they record just what was matched (on this
4627 attempt) by a subexpression part of the pattern, that is, the
4628 regnum-th regstart pointer points to where in the pattern we began
4629 matching and the regnum-th regend points to right after where we
4630 stopped matching the regnum-th subexpression. (The zeroth register
4631 keeps track of what the whole pattern matches.) */
4632#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4633 re_char **regstart, **regend;
fa9a63c5
RM
4634#endif
4635
fa9a63c5 4636 /* The following record the register info as found in the above
5e69f11e 4637 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4638 This happens as we backtrack through the failure points, which in
4639 turn happens only if we have not yet matched the entire string. */
4640 unsigned best_regs_set = false;
4641#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4642 re_char **best_regstart, **best_regend;
fa9a63c5 4643#endif
5e69f11e 4644
fa9a63c5
RM
4645 /* Logically, this is `best_regend[0]'. But we don't want to have to
4646 allocate space for that if we're not allocating space for anything
25fe55af 4647 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4648 any of the other register vectors, and it seems rather a kludge to
4649 treat `best_regend' differently than the rest. So we keep track of
4650 the end of the best match so far in a separate variable. We
4651 initialize this to NULL so that when we backtrack the first time
4652 and need to test it, it's not garbage. */
66f0296e 4653 re_char *match_end = NULL;
fa9a63c5 4654
fa9a63c5
RM
4655#ifdef DEBUG
4656 /* Counts the total number of registers pushed. */
5e69f11e 4657 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4658#endif
4659
4660 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4661
fa9a63c5 4662 INIT_FAIL_STACK ();
5e69f11e 4663
fa9a63c5
RM
4664#ifdef MATCH_MAY_ALLOCATE
4665 /* Do not bother to initialize all the register variables if there are
4666 no groups in the pattern, as it takes a fair amount of time. If
4667 there are groups, we include space for register 0 (the whole
4668 pattern), even though we never use it, since it simplifies the
4669 array indexing. We should fix this. */
4670 if (bufp->re_nsub)
4671 {
66f0296e
SM
4672 regstart = REGEX_TALLOC (num_regs, re_char *);
4673 regend = REGEX_TALLOC (num_regs, re_char *);
4674 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4675 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 4676
505bde11 4677 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
4678 {
4679 FREE_VARIABLES ();
4680 return -2;
4681 }
fa9a63c5
RM
4682 }
4683 else
4684 {
4685 /* We must initialize all our variables to NULL, so that
25fe55af 4686 `FREE_VARIABLES' doesn't try to free them. */
505bde11 4687 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
4688 }
4689#endif /* MATCH_MAY_ALLOCATE */
4690
4691 /* The starting position is bogus. */
4692 if (pos < 0 || pos > size1 + size2)
4693 {
4694 FREE_VARIABLES ();
4695 return -1;
4696 }
5e69f11e 4697
fa9a63c5
RM
4698 /* Initialize subexpression text positions to -1 to mark ones that no
4699 start_memory/stop_memory has been seen for. Also initialize the
4700 register information struct. */
01618498
SM
4701 for (reg = 1; reg < num_regs; reg++)
4702 regstart[reg] = regend[reg] = NULL;
99633e97 4703
fa9a63c5 4704 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4705 `string1' is null. */
fa9a63c5
RM
4706 if (size2 == 0 && string1 != NULL)
4707 {
4708 string2 = string1;
4709 size2 = size1;
4710 string1 = 0;
4711 size1 = 0;
4712 }
4713 end1 = string1 + size1;
4714 end2 = string2 + size2;
4715
5e69f11e 4716 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4717 `dend' is the end of the input string that `d' points within. `d'
4718 is advanced into the following input string whenever necessary, but
4719 this happens before fetching; therefore, at the beginning of the
4720 loop, `d' can be pointing at the end of a string, but it cannot
4721 equal `string2'. */
419d1c74 4722 if (pos >= size1)
fa9a63c5 4723 {
419d1c74
SM
4724 /* Only match within string2. */
4725 d = string2 + pos - size1;
4726 dend = end_match_2 = string2 + stop - size1;
4727 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
4728 }
4729 else
4730 {
f1ad044f 4731 if (stop < size1)
419d1c74
SM
4732 {
4733 /* Only match within string1. */
4734 end_match_1 = string1 + stop;
4735 /* BEWARE!
4736 When we reach end_match_1, PREFETCH normally switches to string2.
4737 But in the present case, this means that just doing a PREFETCH
4738 makes us jump from `stop' to `gap' within the string.
4739 What we really want here is for the search to stop as
4740 soon as we hit end_match_1. That's why we set end_match_2
4741 to end_match_1 (since PREFETCH fails as soon as we hit
4742 end_match_2). */
4743 end_match_2 = end_match_1;
4744 }
4745 else
f1ad044f
SM
4746 { /* It's important to use this code when stop == size so that
4747 moving `d' from end1 to string2 will not prevent the d == dend
4748 check from catching the end of string. */
419d1c74
SM
4749 end_match_1 = end1;
4750 end_match_2 = string2 + stop - size1;
4751 }
4752 d = string1 + pos;
4753 dend = end_match_1;
fa9a63c5
RM
4754 }
4755
4756 DEBUG_PRINT1 ("The compiled pattern is: ");
4757 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4758 DEBUG_PRINT1 ("The string to match is: `");
4759 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4760 DEBUG_PRINT1 ("'\n");
5e69f11e 4761
25fe55af 4762 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
4763 function if the match is complete, or it drops through if the match
4764 fails at this starting point in the input data. */
4765 for (;;)
4766 {
505bde11 4767 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
4768
4769 if (p == pend)
4770 { /* End of pattern means we might have succeeded. */
25fe55af 4771 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 4772
fa9a63c5 4773 /* If we haven't matched the entire string, and we want the
25fe55af
RS
4774 longest match, try backtracking. */
4775 if (d != end_match_2)
fa9a63c5
RM
4776 {
4777 /* 1 if this match ends in the same string (string1 or string2)
4778 as the best previous match. */
5e69f11e 4779 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 4780 == FIRST_STRING_P (d));
fa9a63c5
RM
4781 /* 1 if this match is the best seen so far. */
4782 boolean best_match_p;
4783
4784 /* AIX compiler got confused when this was combined
25fe55af 4785 with the previous declaration. */
fa9a63c5
RM
4786 if (same_str_p)
4787 best_match_p = d > match_end;
4788 else
99633e97 4789 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 4790
25fe55af
RS
4791 DEBUG_PRINT1 ("backtracking.\n");
4792
4793 if (!FAIL_STACK_EMPTY ())
4794 { /* More failure points to try. */
4795
4796 /* If exceeds best match so far, save it. */
4797 if (!best_regs_set || best_match_p)
4798 {
4799 best_regs_set = true;
4800 match_end = d;
4801
4802 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4803
01618498 4804 for (reg = 1; reg < num_regs; reg++)
25fe55af 4805 {
01618498
SM
4806 best_regstart[reg] = regstart[reg];
4807 best_regend[reg] = regend[reg];
25fe55af
RS
4808 }
4809 }
4810 goto fail;
4811 }
4812
4813 /* If no failure points, don't restore garbage. And if
4814 last match is real best match, don't restore second
4815 best one. */
4816 else if (best_regs_set && !best_match_p)
4817 {
4818 restore_best_regs:
4819 /* Restore best match. It may happen that `dend ==
4820 end_match_1' while the restored d is in string2.
4821 For example, the pattern `x.*y.*z' against the
4822 strings `x-' and `y-z-', if the two strings are
4823 not consecutive in memory. */
4824 DEBUG_PRINT1 ("Restoring best registers.\n");
4825
4826 d = match_end;
4827 dend = ((d >= string1 && d <= end1)
4828 ? end_match_1 : end_match_2);
fa9a63c5 4829
01618498 4830 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 4831 {
01618498
SM
4832 regstart[reg] = best_regstart[reg];
4833 regend[reg] = best_regend[reg];
fa9a63c5 4834 }
25fe55af
RS
4835 }
4836 } /* d != end_match_2 */
fa9a63c5
RM
4837
4838 succeed_label:
25fe55af 4839 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 4840
25fe55af
RS
4841 /* If caller wants register contents data back, do it. */
4842 if (regs && !bufp->no_sub)
fa9a63c5 4843 {
25fe55af
RS
4844 /* Have the register data arrays been allocated? */
4845 if (bufp->regs_allocated == REGS_UNALLOCATED)
4846 { /* No. So allocate them with malloc. We need one
4847 extra element beyond `num_regs' for the `-1' marker
4848 GNU code uses. */
4849 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4850 regs->start = TALLOC (regs->num_regs, regoff_t);
4851 regs->end = TALLOC (regs->num_regs, regoff_t);
4852 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4853 {
4854 FREE_VARIABLES ();
4855 return -2;
4856 }
25fe55af
RS
4857 bufp->regs_allocated = REGS_REALLOCATE;
4858 }
4859 else if (bufp->regs_allocated == REGS_REALLOCATE)
4860 { /* Yes. If we need more elements than were already
4861 allocated, reallocate them. If we need fewer, just
4862 leave it alone. */
4863 if (regs->num_regs < num_regs + 1)
4864 {
4865 regs->num_regs = num_regs + 1;
4866 RETALLOC (regs->start, regs->num_regs, regoff_t);
4867 RETALLOC (regs->end, regs->num_regs, regoff_t);
4868 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4869 {
4870 FREE_VARIABLES ();
4871 return -2;
4872 }
25fe55af
RS
4873 }
4874 }
4875 else
fa9a63c5
RM
4876 {
4877 /* These braces fend off a "empty body in an else-statement"
25fe55af 4878 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
4879 assert (bufp->regs_allocated == REGS_FIXED);
4880 }
4881
25fe55af
RS
4882 /* Convert the pointer data in `regstart' and `regend' to
4883 indices. Register zero has to be set differently,
4884 since we haven't kept track of any info for it. */
4885 if (regs->num_regs > 0)
4886 {
4887 regs->start[0] = pos;
99633e97 4888 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 4889 }
5e69f11e 4890
25fe55af
RS
4891 /* Go through the first `min (num_regs, regs->num_regs)'
4892 registers, since that is all we initialized. */
01618498 4893 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 4894 {
01618498
SM
4895 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
4896 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
4897 else
4898 {
01618498
SM
4899 regs->start[reg]
4900 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
4901 regs->end[reg]
4902 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 4903 }
fa9a63c5 4904 }
5e69f11e 4905
25fe55af
RS
4906 /* If the regs structure we return has more elements than
4907 were in the pattern, set the extra elements to -1. If
4908 we (re)allocated the registers, this is the case,
4909 because we always allocate enough to have at least one
4910 -1 at the end. */
01618498
SM
4911 for (reg = num_regs; reg < regs->num_regs; reg++)
4912 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
4913 } /* regs && !bufp->no_sub */
4914
25fe55af
RS
4915 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4916 nfailure_points_pushed, nfailure_points_popped,
4917 nfailure_points_pushed - nfailure_points_popped);
4918 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 4919
99633e97 4920 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 4921
25fe55af 4922 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 4923
25fe55af
RS
4924 FREE_VARIABLES ();
4925 return mcnt;
4926 }
fa9a63c5 4927
25fe55af 4928 /* Otherwise match next pattern command. */
fa9a63c5
RM
4929 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4930 {
25fe55af
RS
4931 /* Ignore these. Used to ignore the n of succeed_n's which
4932 currently have n == 0. */
4933 case no_op:
4934 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4935 break;
fa9a63c5
RM
4936
4937 case succeed:
25fe55af 4938 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
4939 goto succeed_label;
4940
25fe55af
RS
4941 /* Match the next n pattern characters exactly. The following
4942 byte in the pattern defines n, and the n bytes after that
4943 are the characters to match. */
fa9a63c5
RM
4944 case exactn:
4945 mcnt = *p++;
25fe55af 4946 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 4947
99633e97
SM
4948 /* Remember the start point to rollback upon failure. */
4949 dfail = d;
4950
25fe55af
RS
4951 /* This is written out as an if-else so we don't waste time
4952 testing `translate' inside the loop. */
28703c16 4953 if (RE_TRANSLATE_P (translate))
fa9a63c5 4954 {
e934739e
RS
4955 if (multibyte)
4956 do
4957 {
4958 int pat_charlen, buf_charlen;
e71b1971 4959 unsigned int pat_ch, buf_ch;
e934739e
RS
4960
4961 PREFETCH ();
4962 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
4963 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4964
4965 if (RE_TRANSLATE (translate, buf_ch)
4966 != pat_ch)
99633e97
SM
4967 {
4968 d = dfail;
4969 goto fail;
4970 }
e934739e
RS
4971
4972 p += pat_charlen;
4973 d += buf_charlen;
4974 mcnt -= pat_charlen;
4975 }
4976 while (mcnt > 0);
4977 else
e934739e
RS
4978 do
4979 {
4980 PREFETCH ();
66f0296e 4981 if (RE_TRANSLATE (translate, *d) != *p++)
99633e97
SM
4982 {
4983 d = dfail;
4984 goto fail;
4985 }
33c46939 4986 d++;
e934739e
RS
4987 }
4988 while (--mcnt);
fa9a63c5
RM
4989 }
4990 else
4991 {
4992 do
4993 {
4994 PREFETCH ();
99633e97
SM
4995 if (*d++ != *p++)
4996 {
4997 d = dfail;
4998 goto fail;
4999 }
fa9a63c5
RM
5000 }
5001 while (--mcnt);
5002 }
25fe55af 5003 break;
fa9a63c5
RM
5004
5005
25fe55af 5006 /* Match any character except possibly a newline or a null. */
fa9a63c5 5007 case anychar:
e934739e
RS
5008 {
5009 int buf_charlen;
01618498 5010 re_wchar_t buf_ch;
fa9a63c5 5011
e934739e 5012 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5013
e934739e 5014 PREFETCH ();
2d1675e4 5015 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
5016 buf_ch = TRANSLATE (buf_ch);
5017
5018 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5019 && buf_ch == '\n')
5020 || ((bufp->syntax & RE_DOT_NOT_NULL)
5021 && buf_ch == '\000'))
5022 goto fail;
5023
e934739e
RS
5024 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5025 d += buf_charlen;
5026 }
fa9a63c5
RM
5027 break;
5028
5029
5030 case charset:
5031 case charset_not:
5032 {
b18215fc 5033 register unsigned int c;
fa9a63c5 5034 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5035 int len;
5036
5037 /* Start of actual range_table, or end of bitmap if there is no
5038 range table. */
01618498 5039 re_char *range_table;
b18215fc 5040
96cc36cc 5041 /* Nonzero if there is a range table. */
b18215fc
RS
5042 int range_table_exists;
5043
96cc36cc
RS
5044 /* Number of ranges of range table. This is not included
5045 in the initial byte-length of the command. */
5046 int count = 0;
fa9a63c5 5047
25fe55af 5048 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5049
b18215fc 5050 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5051
b18215fc 5052 if (range_table_exists)
96cc36cc
RS
5053 {
5054 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5055 EXTRACT_NUMBER_AND_INCR (count, range_table);
5056 }
b18215fc 5057
2d1675e4
SM
5058 PREFETCH ();
5059 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5060 c = TRANSLATE (c); /* The character to match. */
b18215fc
RS
5061
5062 if (SINGLE_BYTE_CHAR_P (c))
5063 { /* Lookup bitmap. */
b18215fc
RS
5064 /* Cast to `unsigned' instead of `unsigned char' in
5065 case the bit list is a full 32 bytes long. */
5066 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5067 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5068 not = !not;
b18215fc 5069 }
96cc36cc 5070#ifdef emacs
b18215fc 5071 else if (range_table_exists)
96cc36cc
RS
5072 {
5073 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5074
14473664
SM
5075 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5076 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5077 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5078 | (class_bits & BIT_SPACE && ISSPACE (c))
5079 | (class_bits & BIT_UPPER && ISUPPER (c))
5080 | (class_bits & BIT_WORD && ISWORD (c)))
5081 not = !not;
5082 else
5083 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5084 }
5085#endif /* emacs */
fa9a63c5 5086
96cc36cc
RS
5087 if (range_table_exists)
5088 p = CHARSET_RANGE_TABLE_END (range_table, count);
5089 else
5090 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5091
5092 if (!not) goto fail;
5e69f11e 5093
b18215fc 5094 d += len;
fa9a63c5
RM
5095 break;
5096 }
5097
5098
25fe55af 5099 /* The beginning of a group is represented by start_memory.
505bde11 5100 The argument is the register number. The text
25fe55af
RS
5101 matched within the group is recorded (in the internal
5102 registers data structure) under the register number. */
5103 case start_memory:
505bde11
SM
5104 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5105
5106 /* In case we need to undo this operation (via backtracking). */
5107 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5108
25fe55af 5109 regstart[*p] = d;
4bb91c68 5110 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5111 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5112
25fe55af 5113 /* Move past the register number and inner group count. */
505bde11 5114 p += 1;
25fe55af 5115 break;
fa9a63c5
RM
5116
5117
25fe55af 5118 /* The stop_memory opcode represents the end of a group. Its
505bde11 5119 argument is the same as start_memory's: the register number. */
fa9a63c5 5120 case stop_memory:
505bde11
SM
5121 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5122
5123 assert (!REG_UNSET (regstart[*p]));
5124 /* Strictly speaking, there should be code such as:
5125
0b32bf0e 5126 assert (REG_UNSET (regend[*p]));
505bde11
SM
5127 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5128
5129 But the only info to be pushed is regend[*p] and it is known to
5130 be UNSET, so there really isn't anything to push.
5131 Not pushing anything, on the other hand deprives us from the
5132 guarantee that regend[*p] is UNSET since undoing this operation
5133 will not reset its value properly. This is not important since
5134 the value will only be read on the next start_memory or at
5135 the very end and both events can only happen if this stop_memory
5136 is *not* undone. */
fa9a63c5 5137
25fe55af 5138 regend[*p] = d;
fa9a63c5
RM
5139 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5140
25fe55af 5141 /* Move past the register number and the inner group count. */
505bde11 5142 p += 1;
25fe55af 5143 break;
fa9a63c5
RM
5144
5145
5146 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5147 followed by the numeric value of <digit> as the register number. */
5148 case duplicate:
fa9a63c5 5149 {
66f0296e 5150 register re_char *d2, *dend2;
25fe55af 5151 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5152 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5153
25fe55af
RS
5154 /* Can't back reference a group which we've never matched. */
5155 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5156 goto fail;
5e69f11e 5157
25fe55af
RS
5158 /* Where in input to try to start matching. */
5159 d2 = regstart[regno];
5e69f11e 5160
99633e97
SM
5161 /* Remember the start point to rollback upon failure. */
5162 dfail = d;
5163
25fe55af
RS
5164 /* Where to stop matching; if both the place to start and
5165 the place to stop matching are in the same string, then
5166 set to the place to stop, otherwise, for now have to use
5167 the end of the first string. */
fa9a63c5 5168
25fe55af 5169 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5170 == FIRST_STRING_P (regend[regno]))
5171 ? regend[regno] : end_match_1);
5172 for (;;)
5173 {
5174 /* If necessary, advance to next segment in register
25fe55af 5175 contents. */
fa9a63c5
RM
5176 while (d2 == dend2)
5177 {
5178 if (dend2 == end_match_2) break;
5179 if (dend2 == regend[regno]) break;
5180
25fe55af
RS
5181 /* End of string1 => advance to string2. */
5182 d2 = string2;
5183 dend2 = regend[regno];
fa9a63c5
RM
5184 }
5185 /* At end of register contents => success */
5186 if (d2 == dend2) break;
5187
5188 /* If necessary, advance to next segment in data. */
5189 PREFETCH ();
5190
5191 /* How many characters left in this segment to match. */
5192 mcnt = dend - d;
5e69f11e 5193
fa9a63c5 5194 /* Want how many consecutive characters we can match in
25fe55af
RS
5195 one shot, so, if necessary, adjust the count. */
5196 if (mcnt > dend2 - d2)
fa9a63c5 5197 mcnt = dend2 - d2;
5e69f11e 5198
fa9a63c5 5199 /* Compare that many; failure if mismatch, else move
25fe55af 5200 past them. */
28703c16 5201 if (RE_TRANSLATE_P (translate)
2d1675e4 5202 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4bb91c68 5203 : memcmp (d, d2, mcnt))
99633e97
SM
5204 {
5205 d = dfail;
5206 goto fail;
5207 }
fa9a63c5 5208 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5209 }
5210 }
5211 break;
5212
5213
25fe55af 5214 /* begline matches the empty string at the beginning of the string
c0f9ea08 5215 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5216 case begline:
25fe55af 5217 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5218
25fe55af
RS
5219 if (AT_STRINGS_BEG (d))
5220 {
5221 if (!bufp->not_bol) break;
5222 }
419d1c74 5223 else
25fe55af 5224 {
419d1c74
SM
5225 unsigned char c;
5226 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5227 if (c == '\n')
419d1c74 5228 break;
25fe55af
RS
5229 }
5230 /* In all other cases, we fail. */
5231 goto fail;
fa9a63c5
RM
5232
5233
25fe55af 5234 /* endline is the dual of begline. */
fa9a63c5 5235 case endline:
25fe55af 5236 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5237
25fe55af
RS
5238 if (AT_STRINGS_END (d))
5239 {
5240 if (!bufp->not_eol) break;
5241 }
f1ad044f 5242 else
25fe55af 5243 {
f1ad044f 5244 PREFETCH_NOLIMIT ();
c0f9ea08 5245 if (*d == '\n')
f1ad044f 5246 break;
25fe55af
RS
5247 }
5248 goto fail;
fa9a63c5
RM
5249
5250
5251 /* Match at the very beginning of the data. */
25fe55af
RS
5252 case begbuf:
5253 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5254 if (AT_STRINGS_BEG (d))
5255 break;
5256 goto fail;
fa9a63c5
RM
5257
5258
5259 /* Match at the very end of the data. */
25fe55af
RS
5260 case endbuf:
5261 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5262 if (AT_STRINGS_END (d))
5263 break;
25fe55af 5264 goto fail;
5e69f11e 5265
5e69f11e 5266
25fe55af
RS
5267 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5268 pushes NULL as the value for the string on the stack. Then
505bde11 5269 `POP_FAILURE_POINT' will keep the current value for the
25fe55af
RS
5270 string, instead of restoring it. To see why, consider
5271 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5272 then the . fails against the \n. But the next thing we want
5273 to do is match the \n against the \n; if we restored the
5274 string value, we would be back at the foo.
5275
5276 Because this is used only in specific cases, we don't need to
5277 check all the things that `on_failure_jump' does, to make
5278 sure the right things get saved on the stack. Hence we don't
5279 share its code. The only reason to push anything on the
5280 stack at all is that otherwise we would have to change
5281 `anychar's code to do something besides goto fail in this
5282 case; that seems worse than this. */
5283 case on_failure_keep_string_jump:
505bde11
SM
5284 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5285 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5286 mcnt, p + mcnt);
fa9a63c5 5287
505bde11
SM
5288 PUSH_FAILURE_POINT (p - 3, NULL);
5289 break;
5290
0683b6fa
SM
5291 /* A nasty loop is introduced by the non-greedy *? and +?.
5292 With such loops, the stack only ever contains one failure point
5293 at a time, so that a plain on_failure_jump_loop kind of
5294 cycle detection cannot work. Worse yet, such a detection
5295 can not only fail to detect a cycle, but it can also wrongly
5296 detect a cycle (between different instantiations of the same
5297 loop.
5298 So the method used for those nasty loops is a little different:
5299 We use a special cycle-detection-stack-frame which is pushed
5300 when the on_failure_jump_nastyloop failure-point is *popped*.
5301 This special frame thus marks the beginning of one iteration
5302 through the loop and we can hence easily check right here
5303 whether something matched between the beginning and the end of
5304 the loop. */
5305 case on_failure_jump_nastyloop:
5306 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5307 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5308 mcnt, p + mcnt);
5309
5310 assert ((re_opcode_t)p[-4] == no_op);
5311 CHECK_INFINITE_LOOP (p - 4, d);
5312 PUSH_FAILURE_POINT (p - 3, d);
5313 break;
5314
505bde11 5315
4e8a9132
SM
5316 /* Simple loop detecting on_failure_jump: just check on the
5317 failure stack if the same spot was already hit earlier. */
505bde11
SM
5318 case on_failure_jump_loop:
5319 on_failure:
5320 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5321 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5322 mcnt, p + mcnt);
5323
5324 CHECK_INFINITE_LOOP (p - 3, d);
5325 PUSH_FAILURE_POINT (p - 3, d);
25fe55af 5326 break;
fa9a63c5
RM
5327
5328
5329 /* Uses of on_failure_jump:
5e69f11e 5330
25fe55af
RS
5331 Each alternative starts with an on_failure_jump that points
5332 to the beginning of the next alternative. Each alternative
5333 except the last ends with a jump that in effect jumps past
5334 the rest of the alternatives. (They really jump to the
5335 ending jump of the following alternative, because tensioning
5336 these jumps is a hassle.)
fa9a63c5 5337
25fe55af
RS
5338 Repeats start with an on_failure_jump that points past both
5339 the repetition text and either the following jump or
5340 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5341 case on_failure_jump:
5b370c2b 5342 IMMEDIATE_QUIT_CHECK;
25fe55af 5343 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5344 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5345 mcnt, p + mcnt);
25fe55af 5346
505bde11 5347 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5348 break;
5349
4e8a9132 5350 /* This operation is used for greedy *.
505bde11
SM
5351 Compare the beginning of the repeat with what in the
5352 pattern follows its end. If we can establish that there
5353 is nothing that they would both match, i.e., that we
5354 would have to backtrack because of (as in, e.g., `a*a')
5355 then we can use a non-backtracking loop based on
4e8a9132 5356 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5357 case on_failure_jump_smart:
5b370c2b 5358 IMMEDIATE_QUIT_CHECK;
25fe55af 5359 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5360 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5361 mcnt, p + mcnt);
25fe55af 5362 {
01618498 5363 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5364 /* Here, we discard `const', making re_match non-reentrant. */
5365 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5366 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5367
505bde11
SM
5368 p -= 3; /* Reset so that we will re-execute the
5369 instruction once it's been changed. */
fa9a63c5 5370
4e8a9132
SM
5371 EXTRACT_NUMBER (mcnt, p2 - 2);
5372
5373 /* Ensure this is a indeed the trivial kind of loop
5374 we are expecting. */
5375 assert (skip_one_char (p1) == p2 - 3);
5376 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5377 DEBUG_STATEMENT (debug += 2);
505bde11 5378 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5379 {
505bde11 5380 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5381 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5382 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5383 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5384 }
505bde11 5385 else
fa9a63c5 5386 {
505bde11
SM
5387 /* Default to a safe `on_failure_jump' loop. */
5388 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5389 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5390 }
99633e97 5391 DEBUG_STATEMENT (debug -= 2);
25fe55af 5392 }
505bde11 5393 break;
25fe55af
RS
5394
5395 /* Unconditionally jump (without popping any failure points). */
5396 case jump:
fa9a63c5 5397 unconditional_jump:
5b370c2b 5398 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5399 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5400 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5401 p += mcnt; /* Do the jump. */
505bde11 5402 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5403 break;
5404
5405
25fe55af
RS
5406 /* Have to succeed matching what follows at least n times.
5407 After that, handle like `on_failure_jump'. */
5408 case succeed_n:
01618498 5409 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5410 EXTRACT_NUMBER (mcnt, p + 2);
5411 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5412
dc1e502d
SM
5413 /* Originally, mcnt is how many times we HAVE to succeed. */
5414 if (mcnt != 0)
25fe55af 5415 {
6dcf2d0e
SM
5416 /* Here, we discard `const', making re_match non-reentrant. */
5417 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5418 mcnt--;
01618498
SM
5419 p += 4;
5420 PUSH_NUMBER (p2, mcnt);
25fe55af 5421 }
dc1e502d
SM
5422 else
5423 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5424 goto on_failure;
25fe55af
RS
5425 break;
5426
5427 case jump_n:
01618498 5428 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5429 EXTRACT_NUMBER (mcnt, p + 2);
5430 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5431
5432 /* Originally, this is how many times we CAN jump. */
dc1e502d 5433 if (mcnt != 0)
25fe55af 5434 {
6dcf2d0e
SM
5435 /* Here, we discard `const', making re_match non-reentrant. */
5436 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5437 mcnt--;
01618498 5438 PUSH_NUMBER (p2, mcnt);
dc1e502d 5439 goto unconditional_jump;
25fe55af
RS
5440 }
5441 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5442 else
5443 p += 4;
25fe55af 5444 break;
5e69f11e 5445
fa9a63c5
RM
5446 case set_number_at:
5447 {
01618498 5448 unsigned char *p2; /* Location of the counter. */
25fe55af 5449 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5450
25fe55af 5451 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5452 /* Here, we discard `const', making re_match non-reentrant. */
5453 p2 = (unsigned char*) p + mcnt;
01618498 5454 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5455 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5456 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5457 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5458 break;
5459 }
9121ca40
KH
5460
5461 case wordbound:
66f0296e
SM
5462 case notwordbound:
5463 not = (re_opcode_t) *(p - 1) == notwordbound;
5464 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5465
99633e97 5466 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5467
b18215fc 5468 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5469 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5470 not = !not;
b18215fc
RS
5471 else
5472 {
5473 /* C1 is the character before D, S1 is the syntax of C1, C2
5474 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5475 re_wchar_t c1, c2;
5476 int s1, s2;
b18215fc 5477#ifdef emacs
2d1675e4
SM
5478 int offset = PTR_TO_OFFSET (d - 1);
5479 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5480 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5481#endif
66f0296e 5482 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5483 s1 = SYNTAX (c1);
5484#ifdef emacs
5d967c7a 5485 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5486#endif
f1ad044f 5487 PREFETCH_NOLIMIT ();
2d1675e4 5488 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc
RS
5489 s2 = SYNTAX (c2);
5490
5491 if (/* Case 2: Only one of S1 and S2 is Sword. */
5492 ((s1 == Sword) != (s2 == Sword))
5493 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5494 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5495 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5496 not = !not;
5497 }
5498 if (not)
9121ca40 5499 break;
b18215fc 5500 else
9121ca40 5501 goto fail;
fa9a63c5
RM
5502
5503 case wordbeg:
25fe55af 5504 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5505
b18215fc
RS
5506 /* We FAIL in one of the following cases: */
5507
25fe55af 5508 /* Case 1: D is at the end of string. */
b18215fc 5509 if (AT_STRINGS_END (d))
99633e97 5510 goto fail;
b18215fc
RS
5511 else
5512 {
5513 /* C1 is the character before D, S1 is the syntax of C1, C2
5514 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5515 re_wchar_t c1, c2;
5516 int s1, s2;
fa9a63c5 5517#ifdef emacs
2d1675e4
SM
5518 int offset = PTR_TO_OFFSET (d);
5519 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5520 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5521#endif
99633e97 5522 PREFETCH ();
2d1675e4 5523 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc 5524 s2 = SYNTAX (c2);
25fe55af 5525
b18215fc
RS
5526 /* Case 2: S2 is not Sword. */
5527 if (s2 != Sword)
5528 goto fail;
5529
5530 /* Case 3: D is not at the beginning of string ... */
5531 if (!AT_STRINGS_BEG (d))
5532 {
5533 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5534#ifdef emacs
5d967c7a 5535 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5536#endif
b18215fc
RS
5537 s1 = SYNTAX (c1);
5538
5539 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5540 returns 0. */
b18215fc
RS
5541 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5542 goto fail;
5543 }
5544 }
e318085a
RS
5545 break;
5546
b18215fc 5547 case wordend:
25fe55af 5548 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5549
5550 /* We FAIL in one of the following cases: */
5551
5552 /* Case 1: D is at the beginning of string. */
5553 if (AT_STRINGS_BEG (d))
e318085a 5554 goto fail;
b18215fc
RS
5555 else
5556 {
5557 /* C1 is the character before D, S1 is the syntax of C1, C2
5558 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5559 re_wchar_t c1, c2;
5560 int s1, s2;
5d967c7a 5561#ifdef emacs
2d1675e4
SM
5562 int offset = PTR_TO_OFFSET (d) - 1;
5563 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5564 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5565#endif
99633e97 5566 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5567 s1 = SYNTAX (c1);
5568
5569 /* Case 2: S1 is not Sword. */
5570 if (s1 != Sword)
5571 goto fail;
5572
5573 /* Case 3: D is not at the end of string ... */
5574 if (!AT_STRINGS_END (d))
5575 {
f1ad044f 5576 PREFETCH_NOLIMIT ();
2d1675e4 5577 c2 = RE_STRING_CHAR (d, dend - d);
5d967c7a
RS
5578#ifdef emacs
5579 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5580#endif
b18215fc
RS
5581 s2 = SYNTAX (c2);
5582
5583 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5584 returns 0. */
b18215fc 5585 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5586 goto fail;
b18215fc
RS
5587 }
5588 }
e318085a
RS
5589 break;
5590
fa9a63c5 5591 case syntaxspec:
1fb352e0
SM
5592 case notsyntaxspec:
5593 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 5594 mcnt = *p++;
1fb352e0 5595 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 5596 PREFETCH ();
b18215fc
RS
5597#ifdef emacs
5598 {
2d1675e4
SM
5599 int offset = PTR_TO_OFFSET (d);
5600 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
5601 UPDATE_SYNTAX_TABLE (pos1);
5602 }
25fe55af 5603#endif
b18215fc 5604 {
01618498
SM
5605 int len;
5606 re_wchar_t c;
b18215fc 5607
2d1675e4 5608 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5609
990b2375 5610 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 5611 goto fail;
b18215fc
RS
5612 d += len;
5613 }
fa9a63c5
RM
5614 break;
5615
b18215fc 5616#ifdef emacs
1fb352e0
SM
5617 case before_dot:
5618 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5619 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 5620 goto fail;
b18215fc
RS
5621 break;
5622
1fb352e0
SM
5623 case at_dot:
5624 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5625 if (PTR_BYTE_POS (d) != PT_BYTE)
5626 goto fail;
5627 break;
b18215fc 5628
1fb352e0
SM
5629 case after_dot:
5630 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5631 if (PTR_BYTE_POS (d) <= PT_BYTE)
5632 goto fail;
e318085a 5633 break;
fa9a63c5 5634
1fb352e0 5635 case categoryspec:
b18215fc 5636 case notcategoryspec:
1fb352e0 5637 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 5638 mcnt = *p++;
1fb352e0 5639 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
5640 PREFETCH ();
5641 {
01618498
SM
5642 int len;
5643 re_wchar_t c;
5644
2d1675e4 5645 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5646
1fb352e0 5647 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
5648 goto fail;
5649 d += len;
5650 }
fa9a63c5 5651 break;
5e69f11e 5652
1fb352e0 5653#endif /* emacs */
5e69f11e 5654
0b32bf0e
SM
5655 default:
5656 abort ();
fa9a63c5 5657 }
b18215fc 5658 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
5659
5660
5661 /* We goto here if a matching operation fails. */
5662 fail:
5b370c2b 5663 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5664 if (!FAIL_STACK_EMPTY ())
505bde11 5665 {
01618498 5666 re_char *str, *pat;
505bde11 5667 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
5668 DEBUG_PRINT1 ("\nFAIL:\n");
5669 POP_FAILURE_POINT (str, pat);
505bde11
SM
5670 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
5671 {
5672 case on_failure_keep_string_jump:
5673 assert (str == NULL);
5674 goto continue_failure_jump;
5675
0683b6fa
SM
5676 case on_failure_jump_nastyloop:
5677 assert ((re_opcode_t)pat[-2] == no_op);
5678 PUSH_FAILURE_POINT (pat - 2, str);
5679 /* Fallthrough */
5680
505bde11
SM
5681 case on_failure_jump_loop:
5682 case on_failure_jump:
5683 case succeed_n:
5684 d = str;
5685 continue_failure_jump:
5686 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
5687 p = pat + mcnt;
5688 break;
b18215fc 5689
0683b6fa
SM
5690 case no_op:
5691 /* A special frame used for nastyloops. */
5692 goto fail;
5693
505bde11
SM
5694 default:
5695 abort();
5696 }
fa9a63c5 5697
505bde11 5698 assert (p >= bufp->buffer && p <= pend);
b18215fc 5699
0b32bf0e 5700 if (d >= string1 && d <= end1)
fa9a63c5 5701 dend = end_match_1;
0b32bf0e 5702 }
fa9a63c5 5703 else
0b32bf0e 5704 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
5705 } /* for (;;) */
5706
5707 if (best_regs_set)
5708 goto restore_best_regs;
5709
5710 FREE_VARIABLES ();
5711
b18215fc 5712 return -1; /* Failure to match. */
fa9a63c5
RM
5713} /* re_match_2 */
5714\f
5715/* Subroutine definitions for re_match_2. */
5716
fa9a63c5
RM
5717/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5718 bytes; nonzero otherwise. */
5e69f11e 5719
fa9a63c5 5720static int
2d1675e4
SM
5721bcmp_translate (s1, s2, len, translate, multibyte)
5722 re_char *s1, *s2;
fa9a63c5 5723 register int len;
6676cb1c 5724 RE_TRANSLATE_TYPE translate;
2d1675e4 5725 const int multibyte;
fa9a63c5 5726{
2d1675e4
SM
5727 register re_char *p1 = s1, *p2 = s2;
5728 re_char *p1_end = s1 + len;
5729 re_char *p2_end = s2 + len;
e934739e 5730
4bb91c68
SM
5731 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
5732 different lengths, but relying on a single `len' would break this. -sm */
5733 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 5734 {
e934739e 5735 int p1_charlen, p2_charlen;
01618498 5736 re_wchar_t p1_ch, p2_ch;
e934739e 5737
2d1675e4
SM
5738 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
5739 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
e934739e
RS
5740
5741 if (RE_TRANSLATE (translate, p1_ch)
5742 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 5743 return 1;
e934739e
RS
5744
5745 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 5746 }
e934739e
RS
5747
5748 if (p1 != p1_end || p2 != p2_end)
5749 return 1;
5750
fa9a63c5
RM
5751 return 0;
5752}
5753\f
5754/* Entry points for GNU code. */
5755
5756/* re_compile_pattern is the GNU regular expression compiler: it
5757 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5758 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 5759
fa9a63c5
RM
5760 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5761 are set in BUFP on entry.
5e69f11e 5762
b18215fc 5763 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
5764
5765const char *
5766re_compile_pattern (pattern, length, bufp)
5767 const char *pattern;
0b32bf0e 5768 size_t length;
fa9a63c5
RM
5769 struct re_pattern_buffer *bufp;
5770{
5771 reg_errcode_t ret;
5e69f11e 5772
fa9a63c5
RM
5773 /* GNU code is written to assume at least RE_NREGS registers will be set
5774 (and at least one extra will be -1). */
5775 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 5776
fa9a63c5
RM
5777 /* And GNU code determines whether or not to get register information
5778 by passing null for the REGS argument to re_match, etc., not by
5779 setting no_sub. */
5780 bufp->no_sub = 0;
5e69f11e 5781
4bb91c68 5782 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
5783
5784 if (!ret)
5785 return NULL;
5786 return gettext (re_error_msgid[(int) ret]);
5e69f11e 5787}
c0f9ea08 5788WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 5789\f
b18215fc
RS
5790/* Entry points compatible with 4.2 BSD regex library. We don't define
5791 them unless specifically requested. */
fa9a63c5 5792
0b32bf0e 5793#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
5794
5795/* BSD has one and only one pattern buffer. */
5796static struct re_pattern_buffer re_comp_buf;
5797
5798char *
0b32bf0e 5799# ifdef _LIBC
48afdd44
RM
5800/* Make these definitions weak in libc, so POSIX programs can redefine
5801 these names if they don't use our functions, and still use
5802 regcomp/regexec below without link errors. */
5803weak_function
0b32bf0e 5804# endif
fa9a63c5
RM
5805re_comp (s)
5806 const char *s;
5807{
5808 reg_errcode_t ret;
5e69f11e 5809
fa9a63c5
RM
5810 if (!s)
5811 {
5812 if (!re_comp_buf.buffer)
0b32bf0e 5813 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 5814 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
5815 return 0;
5816 }
5817
5818 if (!re_comp_buf.buffer)
5819 {
5820 re_comp_buf.buffer = (unsigned char *) malloc (200);
5821 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
5822 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5823 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
5824 re_comp_buf.allocated = 200;
5825
5826 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5827 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
5828 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5829 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
5830 }
5831
5832 /* Since `re_exec' always passes NULL for the `regs' argument, we
5833 don't need to initialize the pattern buffer fields which affect it. */
5834
fa9a63c5 5835 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 5836
fa9a63c5
RM
5837 if (!ret)
5838 return NULL;
5839
5840 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5841 return (char *) gettext (re_error_msgid[(int) ret]);
5842}
5843
5844
5845int
0b32bf0e 5846# ifdef _LIBC
48afdd44 5847weak_function
0b32bf0e 5848# endif
fa9a63c5
RM
5849re_exec (s)
5850 const char *s;
5851{
5852 const int len = strlen (s);
5853 return
5854 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5855}
5856#endif /* _REGEX_RE_COMP */
5857\f
5858/* POSIX.2 functions. Don't define these for Emacs. */
5859
5860#ifndef emacs
5861
5862/* regcomp takes a regular expression as a string and compiles it.
5863
b18215fc 5864 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
5865 since POSIX says we shouldn't. Thus, we set
5866
5867 `buffer' to the compiled pattern;
5868 `used' to the length of the compiled pattern;
5869 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5870 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5871 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
5872 `fastmap' to an allocated space for the fastmap;
5873 `fastmap_accurate' to zero;
fa9a63c5
RM
5874 `re_nsub' to the number of subexpressions in PATTERN.
5875
5876 PATTERN is the address of the pattern string.
5877
5878 CFLAGS is a series of bits which affect compilation.
5879
5880 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5881 use POSIX basic syntax.
5882
5883 If REG_NEWLINE is set, then . and [^...] don't match newline.
5884 Also, regexec will try a match beginning after every newline.
5885
5886 If REG_ICASE is set, then we considers upper- and lowercase
5887 versions of letters to be equivalent when matching.
5888
5889 If REG_NOSUB is set, then when PREG is passed to regexec, that
5890 routine will report only success or failure, and nothing about the
5891 registers.
5892
b18215fc 5893 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
5894 the return codes and their meanings.) */
5895
5896int
5897regcomp (preg, pattern, cflags)
ada30c0e
SM
5898 regex_t *__restrict preg;
5899 const char *__restrict pattern;
fa9a63c5
RM
5900 int cflags;
5901{
5902 reg_errcode_t ret;
4bb91c68 5903 reg_syntax_t syntax
fa9a63c5
RM
5904 = (cflags & REG_EXTENDED) ?
5905 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5906
5907 /* regex_compile will allocate the space for the compiled pattern. */
5908 preg->buffer = 0;
5909 preg->allocated = 0;
5910 preg->used = 0;
5e69f11e 5911
c0f9ea08
SM
5912 /* Try to allocate space for the fastmap. */
5913 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 5914
fa9a63c5
RM
5915 if (cflags & REG_ICASE)
5916 {
5917 unsigned i;
5e69f11e 5918
6676cb1c
RS
5919 preg->translate
5920 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5921 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 5922 if (preg->translate == NULL)
0b32bf0e 5923 return (int) REG_ESPACE;
fa9a63c5
RM
5924
5925 /* Map uppercase characters to corresponding lowercase ones. */
5926 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 5927 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
5928 }
5929 else
5930 preg->translate = NULL;
5931
5932 /* If REG_NEWLINE is set, newlines are treated differently. */
5933 if (cflags & REG_NEWLINE)
5934 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5935 syntax &= ~RE_DOT_NEWLINE;
5936 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
5937 }
5938 else
c0f9ea08 5939 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
5940
5941 preg->no_sub = !!(cflags & REG_NOSUB);
5942
5e69f11e 5943 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 5944 can use strlen here in compiling the pattern. */
4bb91c68 5945 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 5946
fa9a63c5
RM
5947 /* POSIX doesn't distinguish between an unmatched open-group and an
5948 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
5949 if (ret == REG_ERPAREN)
5950 ret = REG_EPAREN;
5951
5952 if (ret == REG_NOERROR && preg->fastmap)
5953 { /* Compute the fastmap now, since regexec cannot modify the pattern
5954 buffer. */
5955 re_compile_fastmap (preg);
5956 if (preg->can_be_null)
5957 { /* The fastmap can't be used anyway. */
5958 free (preg->fastmap);
5959 preg->fastmap = NULL;
5960 }
5961 }
fa9a63c5
RM
5962 return (int) ret;
5963}
c0f9ea08 5964WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
5965
5966
5967/* regexec searches for a given pattern, specified by PREG, in the
5968 string STRING.
5e69f11e 5969
fa9a63c5 5970 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 5971 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
5972 least NMATCH elements, and we set them to the offsets of the
5973 corresponding matched substrings.
5e69f11e 5974
fa9a63c5
RM
5975 EFLAGS specifies `execution flags' which affect matching: if
5976 REG_NOTBOL is set, then ^ does not match at the beginning of the
5977 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 5978
fa9a63c5
RM
5979 We return 0 if we find a match and REG_NOMATCH if not. */
5980
5981int
5982regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
5983 const regex_t *__restrict preg;
5984 const char *__restrict string;
5e69f11e
RM
5985 size_t nmatch;
5986 regmatch_t pmatch[];
fa9a63c5
RM
5987 int eflags;
5988{
5989 int ret;
5990 struct re_registers regs;
5991 regex_t private_preg;
5992 int len = strlen (string);
c0f9ea08 5993 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
5994
5995 private_preg = *preg;
5e69f11e 5996
fa9a63c5
RM
5997 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5998 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 5999
fa9a63c5
RM
6000 /* The user has told us exactly how many registers to return
6001 information about, via `nmatch'. We have to pass that on to the
b18215fc 6002 matching routines. */
fa9a63c5 6003 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6004
fa9a63c5
RM
6005 if (want_reg_info)
6006 {
6007 regs.num_regs = nmatch;
4bb91c68
SM
6008 regs.start = TALLOC (nmatch * 2, regoff_t);
6009 if (regs.start == NULL)
0b32bf0e 6010 return (int) REG_NOMATCH;
4bb91c68 6011 regs.end = regs.start + nmatch;
fa9a63c5
RM
6012 }
6013
c0f9ea08
SM
6014 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6015 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6016 was a little bit longer but still only matching the real part.
6017 This works because the `endline' will check for a '\n' and will find a
6018 '\0', correctly deciding that this is not the end of a line.
6019 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6020 a convenient '\0' there. For all we know, the string could be preceded
6021 by '\n' which would throw things off. */
6022
fa9a63c5
RM
6023 /* Perform the searching operation. */
6024 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6025 /* start: */ 0, /* range: */ len,
6026 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6027
fa9a63c5
RM
6028 /* Copy the register information to the POSIX structure. */
6029 if (want_reg_info)
6030 {
6031 if (ret >= 0)
0b32bf0e
SM
6032 {
6033 unsigned r;
fa9a63c5 6034
0b32bf0e
SM
6035 for (r = 0; r < nmatch; r++)
6036 {
6037 pmatch[r].rm_so = regs.start[r];
6038 pmatch[r].rm_eo = regs.end[r];
6039 }
6040 }
fa9a63c5 6041
b18215fc 6042 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6043 free (regs.start);
fa9a63c5
RM
6044 }
6045
6046 /* We want zero return to mean success, unlike `re_search'. */
6047 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6048}
c0f9ea08 6049WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6050
6051
6052/* Returns a message corresponding to an error code, ERRCODE, returned
6053 from either regcomp or regexec. We don't use PREG here. */
6054
6055size_t
6056regerror (errcode, preg, errbuf, errbuf_size)
6057 int errcode;
6058 const regex_t *preg;
6059 char *errbuf;
6060 size_t errbuf_size;
6061{
6062 const char *msg;
6063 size_t msg_size;
6064
6065 if (errcode < 0
6066 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6067 /* Only error codes returned by the rest of the code should be passed
b18215fc 6068 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6069 code generates an invalid error code, then the program has a bug.
6070 Dump core so we can fix it. */
6071 abort ();
6072
6073 msg = gettext (re_error_msgid[errcode]);
6074
6075 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6076
fa9a63c5
RM
6077 if (errbuf_size != 0)
6078 {
6079 if (msg_size > errbuf_size)
0b32bf0e
SM
6080 {
6081 strncpy (errbuf, msg, errbuf_size - 1);
6082 errbuf[errbuf_size - 1] = 0;
6083 }
fa9a63c5 6084 else
0b32bf0e 6085 strcpy (errbuf, msg);
fa9a63c5
RM
6086 }
6087
6088 return msg_size;
6089}
c0f9ea08 6090WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6091
6092
6093/* Free dynamically allocated space used by PREG. */
6094
6095void
6096regfree (preg)
6097 regex_t *preg;
6098{
6099 if (preg->buffer != NULL)
6100 free (preg->buffer);
6101 preg->buffer = NULL;
5e69f11e 6102
fa9a63c5
RM
6103 preg->allocated = 0;
6104 preg->used = 0;
6105
6106 if (preg->fastmap != NULL)
6107 free (preg->fastmap);
6108 preg->fastmap = NULL;
6109 preg->fastmap_accurate = 0;
6110
6111 if (preg->translate != NULL)
6112 free (preg->translate);
6113 preg->translate = NULL;
6114}
c0f9ea08 6115WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6116
6117#endif /* not emacs */