(x_alloc_nearest_color): Fix last change to compare
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
4bb91c68 5 Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5 21
505bde11 22/* TODO:
505bde11 23 - structure the opcode space into opcode+flag.
dc1e502d 24 - merge with glibc's regex.[ch].
01618498 25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
01618498 29*/
505bde11 30
fa9a63c5 31/* AIX requires this to be the first thing in the file. */
0b32bf0e 32#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
33 #pragma alloca
34#endif
35
68d96f02 36#undef _GNU_SOURCE
fa9a63c5
RM
37#define _GNU_SOURCE
38
39#ifdef HAVE_CONFIG_H
0b32bf0e 40# include <config.h>
fa9a63c5
RM
41#endif
42
4bb91c68
SM
43#if defined STDC_HEADERS && !defined emacs
44# include <stddef.h>
45#else
46/* We need this for `regex.h', and perhaps for the Emacs include files. */
47# include <sys/types.h>
48#endif
fa9a63c5 49
14473664
SM
50/* Whether to use ISO C Amendment 1 wide char functions.
51 Those should not be used for Emacs since it uses its own. */
52#define WIDE_CHAR_SUPPORT \
a0ad02f7 53 (defined _LIBC || HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
14473664
SM
54
55/* For platform which support the ISO C amendement 1 functionality we
56 support user defined character classes. */
a0ad02f7 57#if WIDE_CHAR_SUPPORT
14473664
SM
58/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
59# include <wchar.h>
60# include <wctype.h>
61#endif
62
c0f9ea08
SM
63#ifdef _LIBC
64/* We have to keep the namespace clean. */
65# define regfree(preg) __regfree (preg)
66# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
67# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
68# define regerror(errcode, preg, errbuf, errbuf_size) \
69 __regerror(errcode, preg, errbuf, errbuf_size)
70# define re_set_registers(bu, re, nu, st, en) \
71 __re_set_registers (bu, re, nu, st, en)
72# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
73 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
74# define re_match(bufp, string, size, pos, regs) \
75 __re_match (bufp, string, size, pos, regs)
76# define re_search(bufp, string, size, startpos, range, regs) \
77 __re_search (bufp, string, size, startpos, range, regs)
78# define re_compile_pattern(pattern, length, bufp) \
79 __re_compile_pattern (pattern, length, bufp)
80# define re_set_syntax(syntax) __re_set_syntax (syntax)
81# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
82 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
83# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
84
14473664
SM
85/* Make sure we call libc's function even if the user overrides them. */
86# define btowc __btowc
87# define iswctype __iswctype
88# define wctype __wctype
89
c0f9ea08
SM
90# define WEAK_ALIAS(a,b) weak_alias (a, b)
91
92/* We are also using some library internals. */
93# include <locale/localeinfo.h>
94# include <locale/elem-hash.h>
95# include <langinfo.h>
96#else
97# define WEAK_ALIAS(a,b)
98#endif
99
4bb91c68 100/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 101#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
102# include <libintl.h>
103#else
104# define gettext(msgid) (msgid)
105#endif
106
5e69f11e
RM
107#ifndef gettext_noop
108/* This define is so xgettext can find the internationalizable
109 strings. */
0b32bf0e 110# define gettext_noop(String) String
5e69f11e
RM
111#endif
112
fa9a63c5
RM
113/* The `emacs' switch turns on certain matching commands
114 that make sense only in Emacs. */
115#ifdef emacs
116
0b32bf0e
SM
117# include "lisp.h"
118# include "buffer.h"
b18215fc
RS
119
120/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 121# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 122
0b32bf0e
SM
123# include "syntax.h"
124# include "charset.h"
125# include "category.h"
fa9a63c5 126
0b32bf0e
SM
127# define malloc xmalloc
128# define realloc xrealloc
129# define free xfree
9abbd165 130
0b32bf0e
SM
131/* Converts the pointer to the char to BEG-based offset from the start. */
132# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
133# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
134
135# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
136# define RE_STRING_CHAR(p, s) \
4e8a9132 137 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
0b32bf0e 138# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
2d1675e4
SM
139 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
140
141/* Set C a (possibly multibyte) character before P. P points into a
142 string which is the virtual concatenation of STR1 (which ends at
143 END1) or STR2 (which ends at END2). */
0b32bf0e 144# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
2d1675e4
SM
145 do { \
146 if (multibyte) \
147 { \
0b32bf0e
SM
148 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
149 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
150 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
151 c = STRING_CHAR (dtemp, (p) - dtemp); \
2d1675e4
SM
152 } \
153 else \
154 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
155 } while (0)
156
4e8a9132 157
fa9a63c5
RM
158#else /* not emacs */
159
160/* If we are not linking with Emacs proper,
161 we can't use the relocating allocator
162 even if config.h says that we can. */
0b32bf0e 163# undef REL_ALLOC
fa9a63c5 164
0b32bf0e
SM
165# if defined STDC_HEADERS || defined _LIBC
166# include <stdlib.h>
167# else
fa9a63c5
RM
168char *malloc ();
169char *realloc ();
0b32bf0e 170# endif
fa9a63c5 171
9e4ecb26 172/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 173 If nothing else has been done, use the method below. */
0b32bf0e
SM
174# ifdef INHIBIT_STRING_HEADER
175# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
176# if !defined bzero && !defined bcopy
177# undef INHIBIT_STRING_HEADER
178# endif
179# endif
180# endif
9e4ecb26 181
4bb91c68 182/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
183 This is used in most programs--a few other programs avoid this
184 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
185# ifndef INHIBIT_STRING_HEADER
186# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
187# include <string.h>
0b32bf0e 188# ifndef bzero
4bb91c68
SM
189# ifndef _LIBC
190# define bzero(s, n) (memset (s, '\0', n), (s))
191# else
192# define bzero(s, n) __bzero (s, n)
193# endif
0b32bf0e
SM
194# endif
195# else
196# include <strings.h>
4bb91c68
SM
197# ifndef memcmp
198# define memcmp(s1, s2, n) bcmp (s1, s2, n)
199# endif
200# ifndef memcpy
201# define memcpy(d, s, n) (bcopy (s, d, n), (d))
202# endif
0b32bf0e
SM
203# endif
204# endif
fa9a63c5
RM
205
206/* Define the syntax stuff for \<, \>, etc. */
207
990b2375
SM
208/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
209enum syntaxcode { Swhitespace = 0, Sword = 1 };
fa9a63c5 210
0b32bf0e
SM
211# ifdef SWITCH_ENUM_BUG
212# define SWITCH_ENUM_CAST(x) ((int)(x))
213# else
214# define SWITCH_ENUM_CAST(x) (x)
215# endif
fa9a63c5 216
e934739e 217/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
218# define BASE_LEADING_CODE_P(c) (0)
219# define CHAR_CHARSET(c) 0
220# define CHARSET_LEADING_CODE_BASE(c) 0
221# define MAX_MULTIBYTE_LENGTH 1
222# define RE_MULTIBYTE_P(x) 0
223# define WORD_BOUNDARY_P(c1, c2) (0)
224# define CHAR_HEAD_P(p) (1)
225# define SINGLE_BYTE_CHAR_P(c) (1)
226# define SAME_CHARSET_P(c1, c2) (1)
227# define MULTIBYTE_FORM_LENGTH(p, s) (1)
228# define STRING_CHAR(p, s) (*(p))
229# define RE_STRING_CHAR STRING_CHAR
230# define CHAR_STRING(c, s) (*(s) = (c), 1)
231# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
232# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
233# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 234 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
0b32bf0e 235# define MAKE_CHAR(charset, c1, c2) (c1)
fa9a63c5 236#endif /* not emacs */
4e8a9132
SM
237
238#ifndef RE_TRANSLATE
0b32bf0e
SM
239# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
240# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 241#endif
fa9a63c5
RM
242\f
243/* Get the interface, including the syntax bits. */
244#include "regex.h"
245
f71b19b6
DL
246/* isalpha etc. are used for the character classes. */
247#include <ctype.h>
fa9a63c5 248
f71b19b6 249#ifdef emacs
fa9a63c5 250
f71b19b6 251/* 1 if C is an ASCII character. */
0b32bf0e 252# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 253
f71b19b6 254/* 1 if C is a unibyte character. */
0b32bf0e 255# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 256
f71b19b6 257/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 258
f71b19b6 259/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
260# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
261# define ISCNTRL(c) ((c) < ' ')
262# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
263 || ((c) >= 'a' && (c) <= 'f') \
264 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
265
266/* This is only used for single-byte characters. */
0b32bf0e 267# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
268
269/* The rest must handle multibyte characters. */
270
0b32bf0e 271# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 272 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
273 : 1)
274
14473664 275# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 276 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
277 : 1)
278
0b32bf0e 279# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
280 ? (((c) >= 'a' && (c) <= 'z') \
281 || ((c) >= 'A' && (c) <= 'Z') \
282 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
283 : SYNTAX (c) == Sword)
284
0b32bf0e 285# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
286 ? (((c) >= 'a' && (c) <= 'z') \
287 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
288 : SYNTAX (c) == Sword)
289
0b32bf0e 290# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 291
0b32bf0e 292# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
293 ? ((c) > ' ' && (c) < 0177 \
294 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
295 || ((c) >= 'A' && (c) <= 'Z') \
296 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
297 : SYNTAX (c) != Sword)
298
0b32bf0e 299# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 300
0b32bf0e 301# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 302
0b32bf0e 303# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
304
305#else /* not emacs */
306
f71b19b6
DL
307/* Jim Meyering writes:
308
309 "... Some ctype macros are valid only for character codes that
310 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
311 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 312 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
313 STDC_HEADERS is defined, then autoconf has verified that the ctype
314 macros don't need to be guarded with references to isascii. ...
315 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
316 eliminate the && through constant folding."
317 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 318
4bb91c68 319# undef ISASCII
0b32bf0e
SM
320# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
321# define ISASCII(c) 1
322# else
323# define ISASCII(c) isascii(c)
324# endif
f71b19b6
DL
325
326/* 1 if C is an ASCII character. */
0b32bf0e 327# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
328
329/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
330# define ISUNIBYTE(c) 1
331
332# ifdef isblank
333# define ISBLANK(c) (ISASCII (c) && isblank (c))
334# else
335# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
336# endif
337# ifdef isgraph
338# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
339# else
340# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
341# endif
342
4bb91c68 343# undef ISPRINT
0b32bf0e
SM
344# define ISPRINT(c) (ISASCII (c) && isprint (c))
345# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
346# define ISALNUM(c) (ISASCII (c) && isalnum (c))
347# define ISALPHA(c) (ISASCII (c) && isalpha (c))
348# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
349# define ISLOWER(c) (ISASCII (c) && islower (c))
350# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
351# define ISSPACE(c) (ISASCII (c) && isspace (c))
352# define ISUPPER(c) (ISASCII (c) && isupper (c))
353# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
354
355# define ISWORD(c) ISALPHA(c)
356
4bb91c68
SM
357# ifdef _tolower
358# define TOLOWER(c) _tolower(c)
359# else
360# define TOLOWER(c) tolower(c)
361# endif
362
363/* How many characters in the character set. */
364# define CHAR_SET_SIZE 256
365
0b32bf0e 366# ifdef SYNTAX_TABLE
f71b19b6 367
0b32bf0e 368extern char *re_syntax_table;
f71b19b6 369
0b32bf0e
SM
370# else /* not SYNTAX_TABLE */
371
0b32bf0e
SM
372static char re_syntax_table[CHAR_SET_SIZE];
373
374static void
375init_syntax_once ()
376{
377 register int c;
378 static int done = 0;
379
380 if (done)
381 return;
382
383 bzero (re_syntax_table, sizeof re_syntax_table);
384
4bb91c68
SM
385 for (c = 0; c < CHAR_SET_SIZE; ++c)
386 if (ISALNUM (c))
387 re_syntax_table[c] = Sword;
fa9a63c5 388
0b32bf0e 389 re_syntax_table['_'] = Sword;
fa9a63c5 390
0b32bf0e
SM
391 done = 1;
392}
393
394# endif /* not SYNTAX_TABLE */
96cc36cc 395
4bb91c68
SM
396# define SYNTAX(c) re_syntax_table[(c)]
397
96cc36cc
RS
398#endif /* not emacs */
399\f
fa9a63c5 400#ifndef NULL
0b32bf0e 401# define NULL (void *)0
fa9a63c5
RM
402#endif
403
404/* We remove any previous definition of `SIGN_EXTEND_CHAR',
405 since ours (we hope) works properly with all combinations of
406 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 407 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
408#undef SIGN_EXTEND_CHAR
409#if __STDC__
0b32bf0e 410# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
411#else /* not __STDC__ */
412/* As in Harbison and Steele. */
0b32bf0e 413# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
414#endif
415\f
416/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
417 use `alloca' instead of `malloc'. This is because using malloc in
418 re_search* or re_match* could cause memory leaks when C-g is used in
419 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
420 the other hand, malloc is more portable, and easier to debug.
421
fa9a63c5
RM
422 Because we sometimes use alloca, some routines have to be macros,
423 not functions -- `alloca'-allocated space disappears at the end of the
424 function it is called in. */
425
426#ifdef REGEX_MALLOC
427
0b32bf0e
SM
428# define REGEX_ALLOCATE malloc
429# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
430# define REGEX_FREE free
fa9a63c5
RM
431
432#else /* not REGEX_MALLOC */
433
434/* Emacs already defines alloca, sometimes. */
0b32bf0e 435# ifndef alloca
fa9a63c5
RM
436
437/* Make alloca work the best possible way. */
0b32bf0e
SM
438# ifdef __GNUC__
439# define alloca __builtin_alloca
440# else /* not __GNUC__ */
441# if HAVE_ALLOCA_H
442# include <alloca.h>
443# endif /* HAVE_ALLOCA_H */
444# endif /* not __GNUC__ */
fa9a63c5 445
0b32bf0e 446# endif /* not alloca */
fa9a63c5 447
0b32bf0e 448# define REGEX_ALLOCATE alloca
fa9a63c5
RM
449
450/* Assumes a `char *destination' variable. */
0b32bf0e 451# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 452 (destination = (char *) alloca (nsize), \
4bb91c68 453 memcpy (destination, source, osize))
fa9a63c5
RM
454
455/* No need to do anything to free, after alloca. */
0b32bf0e 456# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
457
458#endif /* not REGEX_MALLOC */
459
460/* Define how to allocate the failure stack. */
461
0b32bf0e 462#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 463
0b32bf0e 464# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 465 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 466# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 467 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 468# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
469 r_alloc_free (&failure_stack_ptr)
470
4297555e 471#else /* not using relocating allocator */
fa9a63c5 472
0b32bf0e 473# ifdef REGEX_MALLOC
fa9a63c5 474
0b32bf0e
SM
475# define REGEX_ALLOCATE_STACK malloc
476# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
477# define REGEX_FREE_STACK free
fa9a63c5 478
0b32bf0e 479# else /* not REGEX_MALLOC */
fa9a63c5 480
0b32bf0e 481# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 482
0b32bf0e 483# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 484 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 485/* No need to explicitly free anything. */
0b32bf0e 486# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 487
0b32bf0e 488# endif /* not REGEX_MALLOC */
4297555e 489#endif /* not using relocating allocator */
fa9a63c5
RM
490
491
492/* True if `size1' is non-NULL and PTR is pointing anywhere inside
493 `string1' or just past its end. This works if PTR is NULL, which is
494 a good thing. */
25fe55af 495#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
496 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
497
498/* (Re)Allocate N items of type T using malloc, or fail. */
499#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
500#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
501#define RETALLOC_IF(addr, n, t) \
502 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
503#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
504
4bb91c68 505#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
506
507#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
508
509#undef MAX
510#undef MIN
511#define MAX(a, b) ((a) > (b) ? (a) : (b))
512#define MIN(a, b) ((a) < (b) ? (a) : (b))
513
66f0296e
SM
514/* Type of source-pattern and string chars. */
515typedef const unsigned char re_char;
516
fa9a63c5
RM
517typedef char boolean;
518#define false 0
519#define true 1
520
4bb91c68
SM
521static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
522 re_char *string1, int size1,
523 re_char *string2, int size2,
524 int pos,
525 struct re_registers *regs,
526 int stop));
fa9a63c5
RM
527\f
528/* These are the command codes that appear in compiled regular
4bb91c68 529 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
530 command code can specify any interpretation whatsoever for its
531 arguments. Zero bytes may appear in the compiled regular expression. */
532
533typedef enum
534{
535 no_op = 0,
536
4bb91c68 537 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
538 succeed,
539
25fe55af 540 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
541 exactn,
542
25fe55af 543 /* Matches any (more or less) character. */
fa9a63c5
RM
544 anychar,
545
25fe55af
RS
546 /* Matches any one char belonging to specified set. First
547 following byte is number of bitmap bytes. Then come bytes
548 for a bitmap saying which chars are in. Bits in each byte
549 are ordered low-bit-first. A character is in the set if its
550 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
551 automatically not in the set.
552
553 If the length byte has the 0x80 bit set, then that stuff
554 is followed by a range table:
555 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 556 See RANGE_TABLE_WORK_BITS below.
01618498 557 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 558 pairs, each 2 multibyte characters,
0b32bf0e 559 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
560 charset,
561
25fe55af 562 /* Same parameters as charset, but match any character that is
4bb91c68 563 not one of those specified. */
fa9a63c5
RM
564 charset_not,
565
25fe55af
RS
566 /* Start remembering the text that is matched, for storing in a
567 register. Followed by one byte with the register number, in
568 the range 0 to one less than the pattern buffer's re_nsub
505bde11 569 field. */
fa9a63c5
RM
570 start_memory,
571
25fe55af
RS
572 /* Stop remembering the text that is matched and store it in a
573 memory register. Followed by one byte with the register
574 number, in the range 0 to one less than `re_nsub' in the
505bde11 575 pattern buffer. */
fa9a63c5
RM
576 stop_memory,
577
25fe55af 578 /* Match a duplicate of something remembered. Followed by one
4bb91c68 579 byte containing the register number. */
fa9a63c5
RM
580 duplicate,
581
25fe55af 582 /* Fail unless at beginning of line. */
fa9a63c5
RM
583 begline,
584
4bb91c68 585 /* Fail unless at end of line. */
fa9a63c5
RM
586 endline,
587
25fe55af
RS
588 /* Succeeds if at beginning of buffer (if emacs) or at beginning
589 of string to be matched (if not). */
fa9a63c5
RM
590 begbuf,
591
25fe55af 592 /* Analogously, for end of buffer/string. */
fa9a63c5 593 endbuf,
5e69f11e 594
25fe55af 595 /* Followed by two byte relative address to which to jump. */
5e69f11e 596 jump,
fa9a63c5 597
25fe55af
RS
598 /* Followed by two-byte relative address of place to resume at
599 in case of failure. */
fa9a63c5 600 on_failure_jump,
5e69f11e 601
25fe55af
RS
602 /* Like on_failure_jump, but pushes a placeholder instead of the
603 current string position when executed. */
fa9a63c5 604 on_failure_keep_string_jump,
5e69f11e 605
505bde11
SM
606 /* Just like `on_failure_jump', except that it checks that we
607 don't get stuck in an infinite loop (matching an empty string
608 indefinitely). */
609 on_failure_jump_loop,
610
0683b6fa
SM
611 /* Just like `on_failure_jump_loop', except that it checks for
612 a different kind of loop (the kind that shows up with non-greedy
613 operators). This operation has to be immediately preceded
614 by a `no_op'. */
615 on_failure_jump_nastyloop,
616
0b32bf0e 617 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
618 It analyses the loop before which it is put and if the
619 loop does not require backtracking, it changes itself to
4e8a9132
SM
620 `on_failure_keep_string_jump' and short-circuits the loop,
621 else it just defaults to changing itself into `on_failure_jump'.
622 It assumes that it is pointing to just past a `jump'. */
505bde11 623 on_failure_jump_smart,
fa9a63c5 624
25fe55af 625 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
626 After matching N times, jump to the address upon failure.
627 Does not work if N starts at 0: use on_failure_jump_loop
628 instead. */
fa9a63c5
RM
629 succeed_n,
630
25fe55af
RS
631 /* Followed by two-byte relative address, and two-byte number n.
632 Jump to the address N times, then fail. */
fa9a63c5
RM
633 jump_n,
634
25fe55af
RS
635 /* Set the following two-byte relative address to the
636 subsequent two-byte number. The address *includes* the two
637 bytes of number. */
fa9a63c5
RM
638 set_number_at,
639
fa9a63c5
RM
640 wordbeg, /* Succeeds if at word beginning. */
641 wordend, /* Succeeds if at word end. */
642
643 wordbound, /* Succeeds if at a word boundary. */
1fb352e0 644 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5
RM
645
646 /* Matches any character whose syntax is specified. Followed by
25fe55af 647 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
648 syntaxspec,
649
650 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
651 notsyntaxspec
652
653#ifdef emacs
654 ,before_dot, /* Succeeds if before point. */
655 at_dot, /* Succeeds if at point. */
656 after_dot, /* Succeeds if after point. */
b18215fc
RS
657
658 /* Matches any character whose category-set contains the specified
25fe55af
RS
659 category. The operator is followed by a byte which contains a
660 category code (mnemonic ASCII character). */
b18215fc
RS
661 categoryspec,
662
663 /* Matches any character whose category-set does not contain the
664 specified category. The operator is followed by a byte which
665 contains the category code (mnemonic ASCII character). */
666 notcategoryspec
fa9a63c5
RM
667#endif /* emacs */
668} re_opcode_t;
669\f
670/* Common operations on the compiled pattern. */
671
672/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
673
674#define STORE_NUMBER(destination, number) \
675 do { \
676 (destination)[0] = (number) & 0377; \
677 (destination)[1] = (number) >> 8; \
678 } while (0)
679
680/* Same as STORE_NUMBER, except increment DESTINATION to
681 the byte after where the number is stored. Therefore, DESTINATION
682 must be an lvalue. */
683
684#define STORE_NUMBER_AND_INCR(destination, number) \
685 do { \
686 STORE_NUMBER (destination, number); \
687 (destination) += 2; \
688 } while (0)
689
690/* Put into DESTINATION a number stored in two contiguous bytes starting
691 at SOURCE. */
692
693#define EXTRACT_NUMBER(destination, source) \
694 do { \
695 (destination) = *(source) & 0377; \
696 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
697 } while (0)
698
699#ifdef DEBUG
4bb91c68 700static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
701static void
702extract_number (dest, source)
703 int *dest;
01618498 704 re_char *source;
fa9a63c5 705{
5e69f11e 706 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
707 *dest = *source & 0377;
708 *dest += temp << 8;
709}
710
4bb91c68 711# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
712# undef EXTRACT_NUMBER
713# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
714# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
715
716#endif /* DEBUG */
717
718/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
719 SOURCE must be an lvalue. */
720
721#define EXTRACT_NUMBER_AND_INCR(destination, source) \
722 do { \
723 EXTRACT_NUMBER (destination, source); \
25fe55af 724 (source) += 2; \
fa9a63c5
RM
725 } while (0)
726
727#ifdef DEBUG
4bb91c68
SM
728static void extract_number_and_incr _RE_ARGS ((int *destination,
729 re_char **source));
fa9a63c5
RM
730static void
731extract_number_and_incr (destination, source)
732 int *destination;
01618498 733 re_char **source;
5e69f11e 734{
fa9a63c5
RM
735 extract_number (destination, *source);
736 *source += 2;
737}
738
0b32bf0e
SM
739# ifndef EXTRACT_MACROS
740# undef EXTRACT_NUMBER_AND_INCR
741# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 742 extract_number_and_incr (&dest, &src)
0b32bf0e 743# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
744
745#endif /* DEBUG */
746\f
b18215fc
RS
747/* Store a multibyte character in three contiguous bytes starting
748 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 749 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
750
751#define STORE_CHARACTER_AND_INCR(destination, character) \
752 do { \
753 (destination)[0] = (character) & 0377; \
754 (destination)[1] = ((character) >> 8) & 0377; \
755 (destination)[2] = (character) >> 16; \
756 (destination) += 3; \
757 } while (0)
758
759/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 760 starting at SOURCE. */
b18215fc
RS
761
762#define EXTRACT_CHARACTER(destination, source) \
763 do { \
764 (destination) = ((source)[0] \
765 | ((source)[1] << 8) \
766 | ((source)[2] << 16)); \
767 } while (0)
768
769
770/* Macros for charset. */
771
772/* Size of bitmap of charset P in bytes. P is a start of charset,
773 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
774#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
775
776/* Nonzero if charset P has range table. */
25fe55af 777#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
778
779/* Return the address of range table of charset P. But not the start
780 of table itself, but the before where the number of ranges is
96cc36cc
RS
781 stored. `2 +' means to skip re_opcode_t and size of bitmap,
782 and the 2 bytes of flags at the start of the range table. */
783#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
784
785/* Extract the bit flags that start a range table. */
786#define CHARSET_RANGE_TABLE_BITS(p) \
787 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
788 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
789
790/* Test if C is listed in the bitmap of charset P. */
791#define CHARSET_LOOKUP_BITMAP(p, c) \
792 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
793 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
794
795/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
796 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
797 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
798 and end. */
799#define CHARSET_RANGE_TABLE_END(range_table, count) \
800 ((range_table) + (count) * 2 * 3)
801
25fe55af 802/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
803 COUNT is number of ranges in RANGE_TABLE. */
804#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
805 do \
806 { \
01618498
SM
807 re_wchar_t range_start, range_end; \
808 re_char *p; \
809 re_char *range_table_end \
b18215fc
RS
810 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
811 \
812 for (p = (range_table); p < range_table_end; p += 2 * 3) \
813 { \
814 EXTRACT_CHARACTER (range_start, p); \
815 EXTRACT_CHARACTER (range_end, p + 3); \
816 \
817 if (range_start <= (c) && (c) <= range_end) \
818 { \
819 (not) = !(not); \
820 break; \
821 } \
822 } \
823 } \
824 while (0)
825
826/* Test if C is in range table of CHARSET. The flag NOT is negated if
827 C is listed in it. */
828#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
829 do \
830 { \
831 /* Number of ranges in range table. */ \
832 int count; \
01618498
SM
833 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
834 \
b18215fc
RS
835 EXTRACT_NUMBER_AND_INCR (count, range_table); \
836 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
837 } \
838 while (0)
839\f
fa9a63c5
RM
840/* If DEBUG is defined, Regex prints many voluminous messages about what
841 it is doing (if the variable `debug' is nonzero). If linked with the
842 main program in `iregex.c', you can enter patterns and strings
843 interactively. And if linked with the main program in `main.c' and
4bb91c68 844 the other test files, you can run the already-written tests. */
fa9a63c5
RM
845
846#ifdef DEBUG
847
848/* We use standard I/O for debugging. */
0b32bf0e 849# include <stdio.h>
fa9a63c5
RM
850
851/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 852# include <assert.h>
fa9a63c5 853
99633e97 854static int debug = -100000;
fa9a63c5 855
0b32bf0e
SM
856# define DEBUG_STATEMENT(e) e
857# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
858# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
859# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
860# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
861# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 862 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 863# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 864 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
865
866
867/* Print the fastmap in human-readable form. */
868
869void
870print_fastmap (fastmap)
871 char *fastmap;
872{
873 unsigned was_a_range = 0;
5e69f11e
RM
874 unsigned i = 0;
875
fa9a63c5
RM
876 while (i < (1 << BYTEWIDTH))
877 {
878 if (fastmap[i++])
879 {
880 was_a_range = 0;
25fe55af
RS
881 putchar (i - 1);
882 while (i < (1 << BYTEWIDTH) && fastmap[i])
883 {
884 was_a_range = 1;
885 i++;
886 }
fa9a63c5 887 if (was_a_range)
25fe55af
RS
888 {
889 printf ("-");
890 putchar (i - 1);
891 }
892 }
fa9a63c5 893 }
5e69f11e 894 putchar ('\n');
fa9a63c5
RM
895}
896
897
898/* Print a compiled pattern string in human-readable form, starting at
899 the START pointer into it and ending just before the pointer END. */
900
901void
902print_partial_compiled_pattern (start, end)
01618498
SM
903 re_char *start;
904 re_char *end;
fa9a63c5
RM
905{
906 int mcnt, mcnt2;
01618498
SM
907 re_char *p = start;
908 re_char *pend = end;
fa9a63c5
RM
909
910 if (start == NULL)
911 {
912 printf ("(null)\n");
913 return;
914 }
5e69f11e 915
fa9a63c5
RM
916 /* Loop over pattern commands. */
917 while (p < pend)
918 {
919 printf ("%d:\t", p - start);
920
921 switch ((re_opcode_t) *p++)
922 {
25fe55af
RS
923 case no_op:
924 printf ("/no_op");
925 break;
fa9a63c5 926
99633e97
SM
927 case succeed:
928 printf ("/succeed");
929 break;
930
fa9a63c5
RM
931 case exactn:
932 mcnt = *p++;
25fe55af
RS
933 printf ("/exactn/%d", mcnt);
934 do
fa9a63c5 935 {
25fe55af 936 putchar ('/');
fa9a63c5 937 putchar (*p++);
25fe55af
RS
938 }
939 while (--mcnt);
940 break;
fa9a63c5
RM
941
942 case start_memory:
505bde11 943 printf ("/start_memory/%d", *p++);
25fe55af 944 break;
fa9a63c5
RM
945
946 case stop_memory:
505bde11 947 printf ("/stop_memory/%d", *p++);
25fe55af 948 break;
fa9a63c5
RM
949
950 case duplicate:
951 printf ("/duplicate/%d", *p++);
952 break;
953
954 case anychar:
955 printf ("/anychar");
956 break;
957
958 case charset:
25fe55af
RS
959 case charset_not:
960 {
961 register int c, last = -100;
fa9a63c5 962 register int in_range = 0;
99633e97
SM
963 int length = CHARSET_BITMAP_SIZE (p - 1);
964 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5
RM
965
966 printf ("/charset [%s",
25fe55af 967 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 968
25fe55af 969 assert (p + *p < pend);
fa9a63c5 970
25fe55af 971 for (c = 0; c < 256; c++)
96cc36cc 972 if (c / 8 < length
fa9a63c5
RM
973 && (p[1 + (c/8)] & (1 << (c % 8))))
974 {
975 /* Are we starting a range? */
976 if (last + 1 == c && ! in_range)
977 {
978 putchar ('-');
979 in_range = 1;
980 }
981 /* Have we broken a range? */
982 else if (last + 1 != c && in_range)
96cc36cc 983 {
fa9a63c5
RM
984 putchar (last);
985 in_range = 0;
986 }
5e69f11e 987
fa9a63c5
RM
988 if (! in_range)
989 putchar (c);
990
991 last = c;
25fe55af 992 }
fa9a63c5
RM
993
994 if (in_range)
995 putchar (last);
996
997 putchar (']');
998
99633e97 999 p += 1 + length;
96cc36cc 1000
96cc36cc 1001 if (has_range_table)
99633e97
SM
1002 {
1003 int count;
1004 printf ("has-range-table");
1005
1006 /* ??? Should print the range table; for now, just skip it. */
1007 p += 2; /* skip range table bits */
1008 EXTRACT_NUMBER_AND_INCR (count, p);
1009 p = CHARSET_RANGE_TABLE_END (p, count);
1010 }
fa9a63c5
RM
1011 }
1012 break;
1013
1014 case begline:
1015 printf ("/begline");
25fe55af 1016 break;
fa9a63c5
RM
1017
1018 case endline:
25fe55af
RS
1019 printf ("/endline");
1020 break;
fa9a63c5
RM
1021
1022 case on_failure_jump:
25fe55af
RS
1023 extract_number_and_incr (&mcnt, &p);
1024 printf ("/on_failure_jump to %d", p + mcnt - start);
1025 break;
fa9a63c5
RM
1026
1027 case on_failure_keep_string_jump:
25fe55af
RS
1028 extract_number_and_incr (&mcnt, &p);
1029 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
1030 break;
fa9a63c5 1031
0683b6fa
SM
1032 case on_failure_jump_nastyloop:
1033 extract_number_and_incr (&mcnt, &p);
1034 printf ("/on_failure_jump_nastyloop to %d", p + mcnt - start);
1035 break;
1036
505bde11 1037 case on_failure_jump_loop:
fa9a63c5 1038 extract_number_and_incr (&mcnt, &p);
505bde11 1039 printf ("/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1040 break;
1041
505bde11 1042 case on_failure_jump_smart:
fa9a63c5 1043 extract_number_and_incr (&mcnt, &p);
505bde11 1044 printf ("/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1045 break;
1046
25fe55af 1047 case jump:
fa9a63c5 1048 extract_number_and_incr (&mcnt, &p);
25fe55af 1049 printf ("/jump to %d", p + mcnt - start);
fa9a63c5
RM
1050 break;
1051
25fe55af
RS
1052 case succeed_n:
1053 extract_number_and_incr (&mcnt, &p);
1054 extract_number_and_incr (&mcnt2, &p);
99633e97 1055 printf ("/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1056 break;
5e69f11e 1057
25fe55af
RS
1058 case jump_n:
1059 extract_number_and_incr (&mcnt, &p);
1060 extract_number_and_incr (&mcnt2, &p);
99633e97 1061 printf ("/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1062 break;
5e69f11e 1063
25fe55af
RS
1064 case set_number_at:
1065 extract_number_and_incr (&mcnt, &p);
1066 extract_number_and_incr (&mcnt2, &p);
99633e97 1067 printf ("/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1068 break;
5e69f11e 1069
25fe55af 1070 case wordbound:
fa9a63c5
RM
1071 printf ("/wordbound");
1072 break;
1073
1074 case notwordbound:
1075 printf ("/notwordbound");
25fe55af 1076 break;
fa9a63c5
RM
1077
1078 case wordbeg:
1079 printf ("/wordbeg");
1080 break;
5e69f11e 1081
fa9a63c5
RM
1082 case wordend:
1083 printf ("/wordend");
5e69f11e 1084
1fb352e0
SM
1085 case syntaxspec:
1086 printf ("/syntaxspec");
1087 mcnt = *p++;
1088 printf ("/%d", mcnt);
1089 break;
1090
1091 case notsyntaxspec:
1092 printf ("/notsyntaxspec");
1093 mcnt = *p++;
1094 printf ("/%d", mcnt);
1095 break;
1096
0b32bf0e 1097# ifdef emacs
fa9a63c5
RM
1098 case before_dot:
1099 printf ("/before_dot");
25fe55af 1100 break;
fa9a63c5
RM
1101
1102 case at_dot:
1103 printf ("/at_dot");
25fe55af 1104 break;
fa9a63c5
RM
1105
1106 case after_dot:
1107 printf ("/after_dot");
25fe55af 1108 break;
fa9a63c5 1109
1fb352e0
SM
1110 case categoryspec:
1111 printf ("/categoryspec");
fa9a63c5
RM
1112 mcnt = *p++;
1113 printf ("/%d", mcnt);
25fe55af 1114 break;
5e69f11e 1115
1fb352e0
SM
1116 case notcategoryspec:
1117 printf ("/notcategoryspec");
fa9a63c5
RM
1118 mcnt = *p++;
1119 printf ("/%d", mcnt);
1120 break;
0b32bf0e 1121# endif /* emacs */
fa9a63c5 1122
fa9a63c5
RM
1123 case begbuf:
1124 printf ("/begbuf");
25fe55af 1125 break;
fa9a63c5
RM
1126
1127 case endbuf:
1128 printf ("/endbuf");
25fe55af 1129 break;
fa9a63c5 1130
25fe55af
RS
1131 default:
1132 printf ("?%d", *(p-1));
fa9a63c5
RM
1133 }
1134
1135 putchar ('\n');
1136 }
1137
1138 printf ("%d:\tend of pattern.\n", p - start);
1139}
1140
1141
1142void
1143print_compiled_pattern (bufp)
1144 struct re_pattern_buffer *bufp;
1145{
01618498 1146 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1147
1148 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1149 printf ("%ld bytes used/%ld bytes allocated.\n",
1150 bufp->used, bufp->allocated);
fa9a63c5
RM
1151
1152 if (bufp->fastmap_accurate && bufp->fastmap)
1153 {
1154 printf ("fastmap: ");
1155 print_fastmap (bufp->fastmap);
1156 }
1157
1158 printf ("re_nsub: %d\t", bufp->re_nsub);
1159 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1160 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1161 printf ("no_sub: %d\t", bufp->no_sub);
1162 printf ("not_bol: %d\t", bufp->not_bol);
1163 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1164 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1165 fflush (stdout);
fa9a63c5
RM
1166 /* Perhaps we should print the translate table? */
1167}
1168
1169
1170void
1171print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1172 re_char *where;
1173 re_char *string1;
1174 re_char *string2;
fa9a63c5
RM
1175 int size1;
1176 int size2;
1177{
4bb91c68 1178 int this_char;
5e69f11e 1179
fa9a63c5
RM
1180 if (where == NULL)
1181 printf ("(null)");
1182 else
1183 {
1184 if (FIRST_STRING_P (where))
25fe55af
RS
1185 {
1186 for (this_char = where - string1; this_char < size1; this_char++)
1187 putchar (string1[this_char]);
fa9a63c5 1188
25fe55af
RS
1189 where = string2;
1190 }
fa9a63c5
RM
1191
1192 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1193 putchar (string2[this_char]);
fa9a63c5
RM
1194 }
1195}
1196
1197#else /* not DEBUG */
1198
0b32bf0e
SM
1199# undef assert
1200# define assert(e)
fa9a63c5 1201
0b32bf0e
SM
1202# define DEBUG_STATEMENT(e)
1203# define DEBUG_PRINT1(x)
1204# define DEBUG_PRINT2(x1, x2)
1205# define DEBUG_PRINT3(x1, x2, x3)
1206# define DEBUG_PRINT4(x1, x2, x3, x4)
1207# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1208# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1209
1210#endif /* not DEBUG */
1211\f
1212/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1213 also be assigned to arbitrarily: each pattern buffer stores its own
1214 syntax, so it can be changed between regex compilations. */
1215/* This has no initializer because initialized variables in Emacs
1216 become read-only after dumping. */
1217reg_syntax_t re_syntax_options;
1218
1219
1220/* Specify the precise syntax of regexps for compilation. This provides
1221 for compatibility for various utilities which historically have
1222 different, incompatible syntaxes.
1223
1224 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1225 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1226
1227reg_syntax_t
1228re_set_syntax (syntax)
1229 reg_syntax_t syntax;
1230{
1231 reg_syntax_t ret = re_syntax_options;
5e69f11e 1232
fa9a63c5
RM
1233 re_syntax_options = syntax;
1234 return ret;
1235}
c0f9ea08 1236WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1237\f
1238/* This table gives an error message for each of the error codes listed
4bb91c68 1239 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1240 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1241 but why not be nice? */
fa9a63c5
RM
1242
1243static const char *re_error_msgid[] =
5e69f11e
RM
1244 {
1245 gettext_noop ("Success"), /* REG_NOERROR */
1246 gettext_noop ("No match"), /* REG_NOMATCH */
1247 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1248 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1249 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1250 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1251 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1252 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1253 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1254 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1255 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1256 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1257 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1258 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1259 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1260 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1261 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
1262 };
1263\f
4bb91c68 1264/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1265
1266/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1267 searching and matching functions should not call alloca. On some
1268 systems, alloca is implemented in terms of malloc, and if we're
1269 using the relocating allocator routines, then malloc could cause a
1270 relocation, which might (if the strings being searched are in the
1271 ralloc heap) shift the data out from underneath the regexp
1272 routines.
1273
5e69f11e 1274 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1275 processes input from X in a signal handler; processing X input may
1276 call malloc; if input arrives while a matching routine is calling
1277 malloc, then we're scrod. But Emacs can't just block input while
1278 calling matching routines; then we don't notice interrupts when
1279 they come in. So, Emacs blocks input around all regexp calls
1280 except the matching calls, which it leaves unprotected, in the
1281 faith that they will not malloc. */
1282
1283/* Normally, this is fine. */
1284#define MATCH_MAY_ALLOCATE
1285
1286/* When using GNU C, we are not REALLY using the C alloca, no matter
1287 what config.h may say. So don't take precautions for it. */
1288#ifdef __GNUC__
0b32bf0e 1289# undef C_ALLOCA
fa9a63c5
RM
1290#endif
1291
1292/* The match routines may not allocate if (1) they would do it with malloc
1293 and (2) it's not safe for them to use malloc.
1294 Note that if REL_ALLOC is defined, matching would not use malloc for the
1295 failure stack, but we would still use it for the register vectors;
4bb91c68 1296 so REL_ALLOC should not affect this. */
0b32bf0e
SM
1297#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1298# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1299#endif
1300
1301\f
1302/* Failure stack declarations and macros; both re_compile_fastmap and
1303 re_match_2 use a failure stack. These have to be macros because of
1304 REGEX_ALLOCATE_STACK. */
5e69f11e 1305
fa9a63c5 1306
320a2a73 1307/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1308 when matching. If this number is exceeded, we allocate more
1309 space, so it is not a hard limit. */
1310#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1311# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1312#endif
1313
1314/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1315 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1316 This is a variable only so users of regex can assign to it; we never
c0f9ea08
SM
1317 change it ourselves. */
1318# if defined MATCH_MAY_ALLOCATE
1319/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1320 whose default stack limit is 2mb. In order for a larger
1321 value to work reliably, you have to try to make it accord
1322 with the process stack limit. */
c0f9ea08
SM
1323size_t re_max_failures = 40000;
1324# else
1325size_t re_max_failures = 4000;
1326# endif
fa9a63c5
RM
1327
1328union fail_stack_elt
1329{
01618498 1330 re_char *pointer;
c0f9ea08
SM
1331 /* This should be the biggest `int' that's no bigger than a pointer. */
1332 long integer;
fa9a63c5
RM
1333};
1334
1335typedef union fail_stack_elt fail_stack_elt_t;
1336
1337typedef struct
1338{
1339 fail_stack_elt_t *stack;
c0f9ea08
SM
1340 size_t size;
1341 size_t avail; /* Offset of next open position. */
1342 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1343} fail_stack_type;
1344
505bde11 1345#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1346#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1347
1348
1349/* Define macros to initialize and free the failure stack.
1350 Do `return -2' if the alloc fails. */
1351
1352#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1353# define INIT_FAIL_STACK() \
fa9a63c5
RM
1354 do { \
1355 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1356 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1357 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1358 \
1359 if (fail_stack.stack == NULL) \
1360 return -2; \
1361 \
1362 fail_stack.size = INIT_FAILURE_ALLOC; \
1363 fail_stack.avail = 0; \
505bde11 1364 fail_stack.frame = 0; \
fa9a63c5
RM
1365 } while (0)
1366
0b32bf0e 1367# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1368#else
0b32bf0e 1369# define INIT_FAIL_STACK() \
fa9a63c5
RM
1370 do { \
1371 fail_stack.avail = 0; \
505bde11 1372 fail_stack.frame = 0; \
fa9a63c5
RM
1373 } while (0)
1374
0b32bf0e 1375# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1376#endif
1377
1378
320a2a73
KH
1379/* Double the size of FAIL_STACK, up to a limit
1380 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1381
1382 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1383 allocating space for it or it was already too large.
1384
4bb91c68 1385 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1386
320a2a73
KH
1387/* Factor to increase the failure stack size by
1388 when we increase it.
1389 This used to be 2, but 2 was too wasteful
1390 because the old discarded stacks added up to as much space
1391 were as ultimate, maximum-size stack. */
1392#define FAIL_STACK_GROWTH_FACTOR 4
1393
1394#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1395 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1396 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1397 ? 0 \
320a2a73
KH
1398 : ((fail_stack).stack \
1399 = (fail_stack_elt_t *) \
25fe55af
RS
1400 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1401 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1402 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1403 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1404 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1405 \
1406 (fail_stack).stack == NULL \
1407 ? 0 \
6453db45
KH
1408 : ((fail_stack).size \
1409 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1410 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1411 * FAIL_STACK_GROWTH_FACTOR)) \
1412 / sizeof (fail_stack_elt_t)), \
25fe55af 1413 1)))
fa9a63c5
RM
1414
1415
fa9a63c5
RM
1416/* Push a pointer value onto the failure stack.
1417 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1418 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1419#define PUSH_FAILURE_POINTER(item) \
01618498 1420 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1421
1422/* This pushes an integer-valued item onto the failure stack.
1423 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1424 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1425#define PUSH_FAILURE_INT(item) \
1426 fail_stack.stack[fail_stack.avail++].integer = (item)
1427
1428/* Push a fail_stack_elt_t value onto the failure stack.
1429 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1430 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1431#define PUSH_FAILURE_ELT(item) \
1432 fail_stack.stack[fail_stack.avail++] = (item)
1433
1434/* These three POP... operations complement the three PUSH... operations.
1435 All assume that `fail_stack' is nonempty. */
1436#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1437#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1438#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1439
505bde11
SM
1440/* Individual items aside from the registers. */
1441#define NUM_NONREG_ITEMS 3
1442
1443/* Used to examine the stack (to detect infinite loops). */
1444#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1445#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1446#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1447#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1448
1449
505bde11
SM
1450#define ENSURE_FAIL_STACK(space) \
1451while (REMAINING_AVAIL_SLOTS <= space) { \
1452 if (!GROW_FAIL_STACK (fail_stack)) \
1453 return -2; \
1454 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1455 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1456}
1457
1458/* Push register NUM onto the stack. */
1459#define PUSH_FAILURE_REG(num) \
1460do { \
1461 char *destination; \
1462 ENSURE_FAIL_STACK(3); \
1463 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1464 num, regstart[num], regend[num]); \
1465 PUSH_FAILURE_POINTER (regstart[num]); \
1466 PUSH_FAILURE_POINTER (regend[num]); \
1467 PUSH_FAILURE_INT (num); \
1468} while (0)
1469
01618498
SM
1470/* Change the counter's value to VAL, but make sure that it will
1471 be reset when backtracking. */
1472#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1473do { \
1474 char *destination; \
1475 int c; \
1476 ENSURE_FAIL_STACK(3); \
1477 EXTRACT_NUMBER (c, ptr); \
01618498 1478 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1479 PUSH_FAILURE_INT (c); \
1480 PUSH_FAILURE_POINTER (ptr); \
1481 PUSH_FAILURE_INT (-1); \
01618498 1482 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1483} while (0)
1484
505bde11 1485/* Pop a saved register off the stack. */
dc1e502d 1486#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1487do { \
1488 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1489 if (reg == -1) \
1490 { \
1491 /* It's a counter. */ \
6dcf2d0e
SM
1492 /* Here, we discard `const', making re_match non-reentrant. */ \
1493 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1494 reg = POP_FAILURE_INT (); \
1495 STORE_NUMBER (ptr, reg); \
1496 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1497 } \
1498 else \
1499 { \
1500 regend[reg] = POP_FAILURE_POINTER (); \
1501 regstart[reg] = POP_FAILURE_POINTER (); \
1502 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1503 reg, regstart[reg], regend[reg]); \
1504 } \
505bde11
SM
1505} while (0)
1506
1507/* Check that we are not stuck in an infinite loop. */
1508#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1509do { \
1510 int failure = TOP_FAILURE_HANDLE(); \
1511 /* Check for infinite matching loops */ \
1512 while (failure > 0 && \
1513 (FAILURE_STR (failure) == string_place \
1514 || FAILURE_STR (failure) == NULL)) \
1515 { \
1516 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1517 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11
SM
1518 if (FAILURE_PAT (failure) == pat_cur) \
1519 goto fail; \
66f0296e 1520 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1521 failure = NEXT_FAILURE_HANDLE(failure); \
1522 } \
1523 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1524} while (0)
1525
fa9a63c5 1526/* Push the information about the state we will need
5e69f11e
RM
1527 if we ever fail back to it.
1528
505bde11 1529 Requires variables fail_stack, regstart, regend and
320a2a73 1530 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1531 declared.
5e69f11e 1532
fa9a63c5
RM
1533 Does `return FAILURE_CODE' if runs out of memory. */
1534
505bde11
SM
1535#define PUSH_FAILURE_POINT(pattern, string_place) \
1536do { \
1537 char *destination; \
1538 /* Must be int, so when we don't save any registers, the arithmetic \
1539 of 0 + -1 isn't done as unsigned. */ \
1540 \
505bde11 1541 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1542 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1543 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1544 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1545 \
1546 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1547 \
1548 DEBUG_PRINT1 ("\n"); \
1549 \
1550 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1551 PUSH_FAILURE_INT (fail_stack.frame); \
1552 \
1553 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1554 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1555 DEBUG_PRINT1 ("'\n"); \
1556 PUSH_FAILURE_POINTER (string_place); \
1557 \
1558 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1559 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1560 PUSH_FAILURE_POINTER (pattern); \
1561 \
1562 /* Close the frame by moving the frame pointer past it. */ \
1563 fail_stack.frame = fail_stack.avail; \
1564} while (0)
fa9a63c5 1565
320a2a73
KH
1566/* Estimate the size of data pushed by a typical failure stack entry.
1567 An estimate is all we need, because all we use this for
1568 is to choose a limit for how big to make the failure stack. */
1569
1570#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1571
fa9a63c5
RM
1572/* How many items can still be added to the stack without overflowing it. */
1573#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1574
1575
1576/* Pops what PUSH_FAIL_STACK pushes.
1577
1578 We restore into the parameters, all of which should be lvalues:
1579 STR -- the saved data position.
1580 PAT -- the saved pattern position.
fa9a63c5 1581 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1582
fa9a63c5 1583 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1584 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1585
505bde11
SM
1586#define POP_FAILURE_POINT(str, pat) \
1587do { \
fa9a63c5
RM
1588 assert (!FAIL_STACK_EMPTY ()); \
1589 \
1590 /* Remove failure points and point to how many regs pushed. */ \
1591 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1592 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1593 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1594 \
505bde11
SM
1595 /* Pop the saved registers. */ \
1596 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1597 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1598 \
01618498 1599 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1600 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1601 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1602 \
1603 /* If the saved string location is NULL, it came from an \
1604 on_failure_keep_string_jump opcode, and we want to throw away the \
1605 saved NULL, thus retaining our current position in the string. */ \
01618498 1606 str = POP_FAILURE_POINTER (); \
505bde11 1607 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1608 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1609 DEBUG_PRINT1 ("'\n"); \
1610 \
505bde11
SM
1611 fail_stack.frame = POP_FAILURE_INT (); \
1612 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1613 \
505bde11
SM
1614 assert (fail_stack.avail >= 0); \
1615 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1616 \
fa9a63c5 1617 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1618} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1619
1620
1621\f
fa9a63c5 1622/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1623#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1624\f
1625/* Subroutine declarations and macros for regex_compile. */
1626
4bb91c68
SM
1627static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1628 reg_syntax_t syntax,
1629 struct re_pattern_buffer *bufp));
1630static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1631static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1632 int arg1, int arg2));
1633static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1634 int arg, unsigned char *end));
1635static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1636 int arg1, int arg2, unsigned char *end));
01618498
SM
1637static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1638 re_char *p,
4bb91c68 1639 reg_syntax_t syntax));
01618498
SM
1640static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1641 re_char *pend,
4bb91c68 1642 reg_syntax_t syntax));
01618498
SM
1643static re_char *skip_one_char _RE_ARGS ((re_char *p));
1644static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1645 char *fastmap, const int multibyte));
fa9a63c5 1646
5e69f11e 1647/* Fetch the next character in the uncompiled pattern---translating it
01618498 1648 if necessary. */
fa9a63c5 1649#define PATFETCH(c) \
99633e97
SM
1650 do { \
1651 PATFETCH_RAW (c); \
2d1675e4 1652 c = TRANSLATE (c); \
fa9a63c5
RM
1653 } while (0)
1654
1655/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1656 translation. */
fa9a63c5 1657#define PATFETCH_RAW(c) \
2d1675e4
SM
1658 do { \
1659 int len; \
1660 if (p == pend) return REG_EEND; \
1661 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1662 p += len; \
fa9a63c5
RM
1663 } while (0)
1664
fa9a63c5
RM
1665
1666/* If `translate' is non-null, return translate[D], else just D. We
1667 cast the subscript to translate because some data is declared as
1668 `char *', to avoid warnings when a string constant is passed. But
1669 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1670#ifndef TRANSLATE
0b32bf0e 1671# define TRANSLATE(d) \
66f0296e 1672 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1673#endif
fa9a63c5
RM
1674
1675
1676/* Macros for outputting the compiled pattern into `buffer'. */
1677
1678/* If the buffer isn't allocated when it comes in, use this. */
1679#define INIT_BUF_SIZE 32
1680
4bb91c68 1681/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1682#define GET_BUFFER_SPACE(n) \
01618498 1683 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1684 EXTEND_BUFFER ()
1685
1686/* Make sure we have one more byte of buffer space and then add C to it. */
1687#define BUF_PUSH(c) \
1688 do { \
1689 GET_BUFFER_SPACE (1); \
1690 *b++ = (unsigned char) (c); \
1691 } while (0)
1692
1693
1694/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1695#define BUF_PUSH_2(c1, c2) \
1696 do { \
1697 GET_BUFFER_SPACE (2); \
1698 *b++ = (unsigned char) (c1); \
1699 *b++ = (unsigned char) (c2); \
1700 } while (0)
1701
1702
4bb91c68 1703/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1704#define BUF_PUSH_3(c1, c2, c3) \
1705 do { \
1706 GET_BUFFER_SPACE (3); \
1707 *b++ = (unsigned char) (c1); \
1708 *b++ = (unsigned char) (c2); \
1709 *b++ = (unsigned char) (c3); \
1710 } while (0)
1711
1712
1713/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1714 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1715#define STORE_JUMP(op, loc, to) \
1716 store_op1 (op, loc, (to) - (loc) - 3)
1717
1718/* Likewise, for a two-argument jump. */
1719#define STORE_JUMP2(op, loc, to, arg) \
1720 store_op2 (op, loc, (to) - (loc) - 3, arg)
1721
4bb91c68 1722/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1723#define INSERT_JUMP(op, loc, to) \
1724 insert_op1 (op, loc, (to) - (loc) - 3, b)
1725
1726/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1727#define INSERT_JUMP2(op, loc, to, arg) \
1728 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1729
1730
1731/* This is not an arbitrary limit: the arguments which represent offsets
4bb91c68 1732 into the pattern are two bytes long. So if 2^16 bytes turns out to
fa9a63c5 1733 be too small, many things would have to change. */
4bb91c68
SM
1734/* Any other compiler which, like MSC, has allocation limit below 2^16
1735 bytes will have to use approach similar to what was done below for
1736 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1737 reallocating to 0 bytes. Such thing is not going to work too well.
1738 You have been warned!! */
1739#if defined _MSC_VER && !defined WIN32
1740/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1741# define MAX_BUF_SIZE 65500L
1742#else
1743# define MAX_BUF_SIZE (1L << 16)
1744#endif
fa9a63c5
RM
1745
1746/* Extend the buffer by twice its current size via realloc and
1747 reset the pointers that pointed into the old block to point to the
1748 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1749 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1750#if __BOUNDED_POINTERS__
1751# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1752# define MOVE_BUFFER_POINTER(P) \
1753 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1754# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1755 else \
1756 { \
1757 SET_HIGH_BOUND (b); \
1758 SET_HIGH_BOUND (begalt); \
1759 if (fixup_alt_jump) \
1760 SET_HIGH_BOUND (fixup_alt_jump); \
1761 if (laststart) \
1762 SET_HIGH_BOUND (laststart); \
1763 if (pending_exact) \
1764 SET_HIGH_BOUND (pending_exact); \
1765 }
1766#else
1767# define MOVE_BUFFER_POINTER(P) (P) += incr
1768# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1769#endif
fa9a63c5 1770#define EXTEND_BUFFER() \
25fe55af 1771 do { \
01618498 1772 re_char *old_buffer = bufp->buffer; \
25fe55af 1773 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1774 return REG_ESIZE; \
1775 bufp->allocated <<= 1; \
1776 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1777 bufp->allocated = MAX_BUF_SIZE; \
01618498 1778 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1779 if (bufp->buffer == NULL) \
1780 return REG_ESPACE; \
1781 /* If the buffer moved, move all the pointers into it. */ \
1782 if (old_buffer != bufp->buffer) \
1783 { \
4bb91c68
SM
1784 int incr = bufp->buffer - old_buffer; \
1785 MOVE_BUFFER_POINTER (b); \
1786 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1787 if (fixup_alt_jump) \
4bb91c68 1788 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1789 if (laststart) \
4bb91c68 1790 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1791 if (pending_exact) \
4bb91c68 1792 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1793 } \
4bb91c68 1794 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1795 } while (0)
1796
1797
1798/* Since we have one byte reserved for the register number argument to
1799 {start,stop}_memory, the maximum number of groups we can report
1800 things about is what fits in that byte. */
1801#define MAX_REGNUM 255
1802
1803/* But patterns can have more than `MAX_REGNUM' registers. We just
1804 ignore the excess. */
1805typedef unsigned regnum_t;
1806
1807
1808/* Macros for the compile stack. */
1809
1810/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1811 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1812/* int may be not enough when sizeof(int) == 2. */
1813typedef long pattern_offset_t;
fa9a63c5
RM
1814
1815typedef struct
1816{
1817 pattern_offset_t begalt_offset;
1818 pattern_offset_t fixup_alt_jump;
5e69f11e 1819 pattern_offset_t laststart_offset;
fa9a63c5
RM
1820 regnum_t regnum;
1821} compile_stack_elt_t;
1822
1823
1824typedef struct
1825{
1826 compile_stack_elt_t *stack;
1827 unsigned size;
1828 unsigned avail; /* Offset of next open position. */
1829} compile_stack_type;
1830
1831
1832#define INIT_COMPILE_STACK_SIZE 32
1833
1834#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1835#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1836
4bb91c68 1837/* The next available element. */
fa9a63c5
RM
1838#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1839
1840
b18215fc
RS
1841/* Structure to manage work area for range table. */
1842struct range_table_work_area
1843{
1844 int *table; /* actual work area. */
1845 int allocated; /* allocated size for work area in bytes. */
25fe55af 1846 int used; /* actually used size in words. */
96cc36cc 1847 int bits; /* flag to record character classes */
b18215fc
RS
1848};
1849
1850/* Make sure that WORK_AREA can hold more N multibyte characters. */
1851#define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1852 do { \
1853 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1854 { \
1855 (work_area).allocated += 16 * sizeof (int); \
1856 if ((work_area).table) \
1857 (work_area).table \
1858 = (int *) realloc ((work_area).table, (work_area).allocated); \
1859 else \
1860 (work_area).table \
1861 = (int *) malloc ((work_area).allocated); \
1862 if ((work_area).table == 0) \
1863 FREE_STACK_RETURN (REG_ESPACE); \
1864 } \
1865 } while (0)
1866
96cc36cc
RS
1867#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1868 (work_area).bits |= (bit)
1869
14473664
SM
1870/* Bits used to implement the multibyte-part of the various character classes
1871 such as [:alnum:] in a charset's range table. */
1872#define BIT_WORD 0x1
1873#define BIT_LOWER 0x2
1874#define BIT_PUNCT 0x4
1875#define BIT_SPACE 0x8
1876#define BIT_UPPER 0x10
1877#define BIT_MULTIBYTE 0x20
96cc36cc 1878
b18215fc
RS
1879/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1880#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1881 do { \
1882 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1883 (work_area).table[(work_area).used++] = (range_start); \
1884 (work_area).table[(work_area).used++] = (range_end); \
1885 } while (0)
1886
25fe55af 1887/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1888#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1889 do { \
1890 if ((work_area).table) \
1891 free ((work_area).table); \
1892 } while (0)
1893
96cc36cc 1894#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1895#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1896#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc
RS
1897#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1898
1899
fa9a63c5 1900/* Set the bit for character C in a list. */
01618498 1901#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1902
1903
1904/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1905#define GET_UNSIGNED_NUMBER(num) \
99633e97 1906 do { if (p != pend) \
fa9a63c5 1907 { \
25fe55af 1908 PATFETCH (c); \
4bb91c68 1909 while ('0' <= c && c <= '9') \
25fe55af
RS
1910 { \
1911 if (num < 0) \
1912 num = 0; \
1913 num = num * 10 + c - '0'; \
1914 if (p == pend) \
1915 break; \
1916 PATFETCH (c); \
1917 } \
1918 } \
99633e97 1919 } while (0)
fa9a63c5 1920
a0ad02f7 1921#if WIDE_CHAR_SUPPORT
14473664
SM
1922/* The GNU C library provides support for user-defined character classes
1923 and the functions from ISO C amendement 1. */
1924# ifdef CHARCLASS_NAME_MAX
1925# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1926# else
1927/* This shouldn't happen but some implementation might still have this
1928 problem. Use a reasonable default value. */
1929# define CHAR_CLASS_MAX_LENGTH 256
1930# endif
1931typedef wctype_t re_wctype_t;
01618498 1932typedef wchar_t re_wchar_t;
14473664
SM
1933# define re_wctype wctype
1934# define re_iswctype iswctype
1935# define re_wctype_to_bit(cc) 0
1936#else
1937# define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1938# define btowc(c) c
1939
01618498 1940/* Character classes. */
14473664
SM
1941typedef enum { RECC_ERROR = 0,
1942 RECC_ALNUM, RECC_ALPHA, RECC_WORD,
1943 RECC_GRAPH, RECC_PRINT,
1944 RECC_LOWER, RECC_UPPER,
1945 RECC_PUNCT, RECC_CNTRL,
1946 RECC_DIGIT, RECC_XDIGIT,
1947 RECC_BLANK, RECC_SPACE,
1948 RECC_MULTIBYTE, RECC_NONASCII,
1949 RECC_ASCII, RECC_UNIBYTE
1950} re_wctype_t;
1951
01618498
SM
1952typedef int re_wchar_t;
1953
14473664
SM
1954/* Map a string to the char class it names (if any). */
1955static re_wctype_t
1956re_wctype (string)
01618498 1957 re_char *string;
14473664
SM
1958{
1959 if (STREQ (string, "alnum")) return RECC_ALNUM;
1960 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1961 else if (STREQ (string, "word")) return RECC_WORD;
1962 else if (STREQ (string, "ascii")) return RECC_ASCII;
1963 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1964 else if (STREQ (string, "graph")) return RECC_GRAPH;
1965 else if (STREQ (string, "lower")) return RECC_LOWER;
1966 else if (STREQ (string, "print")) return RECC_PRINT;
1967 else if (STREQ (string, "punct")) return RECC_PUNCT;
1968 else if (STREQ (string, "space")) return RECC_SPACE;
1969 else if (STREQ (string, "upper")) return RECC_UPPER;
1970 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1971 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
1972 else if (STREQ (string, "digit")) return RECC_DIGIT;
1973 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
1974 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
1975 else if (STREQ (string, "blank")) return RECC_BLANK;
1976 else return 0;
1977}
1978
1979/* True iff CH is in the char class CC. */
1980static boolean
1981re_iswctype (ch, cc)
1982 int ch;
1983 re_wctype_t cc;
1984{
01618498
SM
1985 boolean ret = false;
1986
14473664
SM
1987 switch (cc)
1988 {
01618498
SM
1989 case RECC_ALNUM: ret = ISALNUM (ch);
1990 case RECC_ALPHA: ret = ISALPHA (ch);
1991 case RECC_BLANK: ret = ISBLANK (ch);
1992 case RECC_CNTRL: ret = ISCNTRL (ch);
1993 case RECC_DIGIT: ret = ISDIGIT (ch);
1994 case RECC_GRAPH: ret = ISGRAPH (ch);
1995 case RECC_LOWER: ret = ISLOWER (ch);
1996 case RECC_PRINT: ret = ISPRINT (ch);
1997 case RECC_PUNCT: ret = ISPUNCT (ch);
1998 case RECC_SPACE: ret = ISSPACE (ch);
1999 case RECC_UPPER: ret = ISUPPER (ch);
2000 case RECC_XDIGIT: ret = ISXDIGIT (ch);
2001 case RECC_ASCII: ret = IS_REAL_ASCII (ch);
2002 case RECC_NONASCII: ret = !IS_REAL_ASCII (ch);
2003 case RECC_UNIBYTE: ret = ISUNIBYTE (ch);
2004 case RECC_MULTIBYTE: ret = !ISUNIBYTE (ch);
2005 case RECC_WORD: ret = ISWORD (ch);
2006 case RECC_ERROR: ret = false;
14473664 2007 }
01618498 2008 return ret;
14473664 2009}
fa9a63c5 2010
14473664
SM
2011/* Return a bit-pattern to use in the range-table bits to match multibyte
2012 chars of class CC. */
2013static int
2014re_wctype_to_bit (cc)
2015 re_wctype_t cc;
2016{
01618498
SM
2017 int ret = 0;
2018
14473664
SM
2019 switch (cc)
2020 {
2021 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
01618498
SM
2022 case RECC_MULTIBYTE: ret = BIT_MULTIBYTE;
2023 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: ret = BIT_WORD;
2024 case RECC_LOWER: ret = BIT_LOWER;
2025 case RECC_UPPER: ret = BIT_UPPER;
2026 case RECC_PUNCT: ret = BIT_PUNCT;
2027 case RECC_SPACE: ret = BIT_SPACE;
14473664 2028 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
01618498 2029 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: ret = 0;
14473664 2030 }
01618498 2031 return ret;
14473664
SM
2032}
2033#endif
99633e97 2034
5b370c2b
AI
2035/* Explicit quit checking is only used on NTemacs. */
2036#if defined WINDOWSNT && defined emacs && defined QUIT
2037extern int immediate_quit;
2038# define IMMEDIATE_QUIT_CHECK \
2039 do { \
2040 if (immediate_quit) QUIT; \
2041 } while (0)
2042#else
01618498 2043# define IMMEDIATE_QUIT_CHECK ((void)0)
99633e97 2044#endif
fa9a63c5
RM
2045\f
2046#ifndef MATCH_MAY_ALLOCATE
2047
2048/* If we cannot allocate large objects within re_match_2_internal,
2049 we make the fail stack and register vectors global.
2050 The fail stack, we grow to the maximum size when a regexp
2051 is compiled.
2052 The register vectors, we adjust in size each time we
2053 compile a regexp, according to the number of registers it needs. */
2054
2055static fail_stack_type fail_stack;
2056
2057/* Size with which the following vectors are currently allocated.
2058 That is so we can make them bigger as needed,
4bb91c68 2059 but never make them smaller. */
fa9a63c5
RM
2060static int regs_allocated_size;
2061
66f0296e
SM
2062static re_char ** regstart, ** regend;
2063static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2064
2065/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2066 but don't make them smaller. */
fa9a63c5
RM
2067
2068static
2069regex_grow_registers (num_regs)
2070 int num_regs;
2071{
2072 if (num_regs > regs_allocated_size)
2073 {
66f0296e
SM
2074 RETALLOC_IF (regstart, num_regs, re_char *);
2075 RETALLOC_IF (regend, num_regs, re_char *);
2076 RETALLOC_IF (best_regstart, num_regs, re_char *);
2077 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2078
2079 regs_allocated_size = num_regs;
2080 }
2081}
2082
2083#endif /* not MATCH_MAY_ALLOCATE */
2084\f
99633e97
SM
2085static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2086 compile_stack,
2087 regnum_t regnum));
2088
fa9a63c5
RM
2089/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2090 Returns one of error codes defined in `regex.h', or zero for success.
2091
2092 Assumes the `allocated' (and perhaps `buffer') and `translate'
2093 fields are set in BUFP on entry.
2094
2095 If it succeeds, results are put in BUFP (if it returns an error, the
2096 contents of BUFP are undefined):
2097 `buffer' is the compiled pattern;
2098 `syntax' is set to SYNTAX;
2099 `used' is set to the length of the compiled pattern;
2100 `fastmap_accurate' is zero;
2101 `re_nsub' is the number of subexpressions in PATTERN;
2102 `not_bol' and `not_eol' are zero;
5e69f11e 2103
c0f9ea08 2104 The `fastmap' field is neither examined nor set. */
fa9a63c5 2105
505bde11
SM
2106/* Insert the `jump' from the end of last alternative to "here".
2107 The space for the jump has already been allocated. */
2108#define FIXUP_ALT_JUMP() \
2109do { \
2110 if (fixup_alt_jump) \
2111 STORE_JUMP (jump, fixup_alt_jump, b); \
2112} while (0)
2113
2114
fa9a63c5
RM
2115/* Return, freeing storage we allocated. */
2116#define FREE_STACK_RETURN(value) \
b18215fc
RS
2117 do { \
2118 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2119 free (compile_stack.stack); \
2120 return value; \
2121 } while (0)
fa9a63c5
RM
2122
2123static reg_errcode_t
2124regex_compile (pattern, size, syntax, bufp)
66f0296e 2125 re_char *pattern;
4bb91c68 2126 size_t size;
fa9a63c5
RM
2127 reg_syntax_t syntax;
2128 struct re_pattern_buffer *bufp;
2129{
01618498
SM
2130 /* We fetch characters from PATTERN here. */
2131 register re_wchar_t c, c1;
5e69f11e 2132
fa9a63c5 2133 /* A random temporary spot in PATTERN. */
66f0296e 2134 re_char *p1;
fa9a63c5
RM
2135
2136 /* Points to the end of the buffer, where we should append. */
2137 register unsigned char *b;
5e69f11e 2138
fa9a63c5
RM
2139 /* Keeps track of unclosed groups. */
2140 compile_stack_type compile_stack;
2141
2142 /* Points to the current (ending) position in the pattern. */
22336245
RS
2143#ifdef AIX
2144 /* `const' makes AIX compiler fail. */
66f0296e 2145 unsigned char *p = pattern;
22336245 2146#else
66f0296e 2147 re_char *p = pattern;
22336245 2148#endif
66f0296e 2149 re_char *pend = pattern + size;
5e69f11e 2150
fa9a63c5 2151 /* How to translate the characters in the pattern. */
6676cb1c 2152 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2153
2154 /* Address of the count-byte of the most recently inserted `exactn'
2155 command. This makes it possible to tell if a new exact-match
2156 character can be added to that command or if the character requires
2157 a new `exactn' command. */
2158 unsigned char *pending_exact = 0;
2159
2160 /* Address of start of the most recently finished expression.
2161 This tells, e.g., postfix * where to find the start of its
2162 operand. Reset at the beginning of groups and alternatives. */
2163 unsigned char *laststart = 0;
2164
2165 /* Address of beginning of regexp, or inside of last group. */
2166 unsigned char *begalt;
2167
2168 /* Place in the uncompiled pattern (i.e., the {) to
2169 which to go back if the interval is invalid. */
66f0296e 2170 re_char *beg_interval;
5e69f11e 2171
fa9a63c5 2172 /* Address of the place where a forward jump should go to the end of
25fe55af 2173 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2174 last -- ends with a forward jump of this sort. */
2175 unsigned char *fixup_alt_jump = 0;
2176
2177 /* Counts open-groups as they are encountered. Remembered for the
2178 matching close-group on the compile stack, so the same register
2179 number is put in the stop_memory as the start_memory. */
2180 regnum_t regnum = 0;
2181
b18215fc
RS
2182 /* Work area for range table of charset. */
2183 struct range_table_work_area range_table_work;
2184
2d1675e4
SM
2185 /* If the object matched can contain multibyte characters. */
2186 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2187
fa9a63c5 2188#ifdef DEBUG
99633e97 2189 debug++;
fa9a63c5 2190 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2191 if (debug > 0)
fa9a63c5
RM
2192 {
2193 unsigned debug_count;
5e69f11e 2194
fa9a63c5 2195 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2196 putchar (pattern[debug_count]);
fa9a63c5
RM
2197 putchar ('\n');
2198 }
2199#endif /* DEBUG */
2200
2201 /* Initialize the compile stack. */
2202 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2203 if (compile_stack.stack == NULL)
2204 return REG_ESPACE;
2205
2206 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2207 compile_stack.avail = 0;
2208
b18215fc
RS
2209 range_table_work.table = 0;
2210 range_table_work.allocated = 0;
2211
fa9a63c5
RM
2212 /* Initialize the pattern buffer. */
2213 bufp->syntax = syntax;
2214 bufp->fastmap_accurate = 0;
2215 bufp->not_bol = bufp->not_eol = 0;
2216
2217 /* Set `used' to zero, so that if we return an error, the pattern
2218 printer (for debugging) will think there's no pattern. We reset it
2219 at the end. */
2220 bufp->used = 0;
5e69f11e 2221
fa9a63c5 2222 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2223 bufp->re_nsub = 0;
fa9a63c5 2224
0b32bf0e 2225#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2226 /* Initialize the syntax table. */
2227 init_syntax_once ();
2228#endif
2229
2230 if (bufp->allocated == 0)
2231 {
2232 if (bufp->buffer)
2233 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
2234 enough space. This loses if buffer's address is bogus, but
2235 that is the user's responsibility. */
2236 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2237 }
fa9a63c5 2238 else
25fe55af
RS
2239 { /* Caller did not allocate a buffer. Do it for them. */
2240 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2241 }
fa9a63c5
RM
2242 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2243
2244 bufp->allocated = INIT_BUF_SIZE;
2245 }
2246
2247 begalt = b = bufp->buffer;
2248
2249 /* Loop through the uncompiled pattern until we're at the end. */
2250 while (p != pend)
2251 {
2252 PATFETCH (c);
2253
2254 switch (c)
25fe55af
RS
2255 {
2256 case '^':
2257 {
2258 if ( /* If at start of pattern, it's an operator. */
2259 p == pattern + 1
2260 /* If context independent, it's an operator. */
2261 || syntax & RE_CONTEXT_INDEP_ANCHORS
2262 /* Otherwise, depends on what's come before. */
2263 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2264 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2265 else
2266 goto normal_char;
2267 }
2268 break;
2269
2270
2271 case '$':
2272 {
2273 if ( /* If at end of pattern, it's an operator. */
2274 p == pend
2275 /* If context independent, it's an operator. */
2276 || syntax & RE_CONTEXT_INDEP_ANCHORS
2277 /* Otherwise, depends on what's next. */
2278 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2279 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2280 else
2281 goto normal_char;
2282 }
2283 break;
fa9a63c5
RM
2284
2285
2286 case '+':
25fe55af
RS
2287 case '?':
2288 if ((syntax & RE_BK_PLUS_QM)
2289 || (syntax & RE_LIMITED_OPS))
2290 goto normal_char;
2291 handle_plus:
2292 case '*':
2293 /* If there is no previous pattern... */
2294 if (!laststart)
2295 {
2296 if (syntax & RE_CONTEXT_INVALID_OPS)
2297 FREE_STACK_RETURN (REG_BADRPT);
2298 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2299 goto normal_char;
2300 }
2301
2302 {
25fe55af 2303 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2304 boolean zero_times_ok = 0, many_times_ok = 0;
2305 boolean greedy = 1;
25fe55af
RS
2306
2307 /* If there is a sequence of repetition chars, collapse it
2308 down to just one (the right one). We can't combine
2309 interval operators with these because of, e.g., `a{2}*',
2310 which should only match an even number of `a's. */
2311
2312 for (;;)
2313 {
0b32bf0e 2314 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2315 && c == '?' && (zero_times_ok || many_times_ok))
2316 greedy = 0;
2317 else
2318 {
2319 zero_times_ok |= c != '+';
2320 many_times_ok |= c != '?';
2321 }
25fe55af
RS
2322
2323 if (p == pend)
2324 break;
ed0767d8
SM
2325 else if (*p == '*'
2326 || (!(syntax & RE_BK_PLUS_QM)
2327 && (*p == '+' || *p == '?')))
25fe55af 2328 ;
ed0767d8 2329 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2330 {
ed0767d8
SM
2331 if (p+1 == pend)
2332 FREE_STACK_RETURN (REG_EESCAPE);
2333 if (p[1] == '+' || p[1] == '?')
2334 PATFETCH (c); /* Gobble up the backslash. */
2335 else
2336 break;
25fe55af
RS
2337 }
2338 else
ed0767d8 2339 break;
25fe55af 2340 /* If we get here, we found another repeat character. */
ed0767d8
SM
2341 PATFETCH (c);
2342 }
25fe55af
RS
2343
2344 /* Star, etc. applied to an empty pattern is equivalent
2345 to an empty pattern. */
4e8a9132 2346 if (!laststart || laststart == b)
25fe55af
RS
2347 break;
2348
2349 /* Now we know whether or not zero matches is allowed
2350 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2351 if (greedy)
2352 {
99633e97 2353 if (many_times_ok)
4e8a9132
SM
2354 {
2355 boolean simple = skip_one_char (laststart) == b;
2356 unsigned int startoffset = 0;
f6a3f532 2357 re_opcode_t ofj =
01618498 2358 /* Check if the loop can match the empty string. */
f6a3f532
SM
2359 (simple || !analyse_first (laststart, b, NULL, 0)) ?
2360 on_failure_jump : on_failure_jump_loop;
4e8a9132
SM
2361 assert (skip_one_char (laststart) <= b);
2362
2363 if (!zero_times_ok && simple)
2364 { /* Since simple * loops can be made faster by using
2365 on_failure_keep_string_jump, we turn simple P+
2366 into PP* if P is simple. */
2367 unsigned char *p1, *p2;
2368 startoffset = b - laststart;
2369 GET_BUFFER_SPACE (startoffset);
2370 p1 = b; p2 = laststart;
2371 while (p2 < p1)
2372 *b++ = *p2++;
2373 zero_times_ok = 1;
99633e97 2374 }
4e8a9132
SM
2375
2376 GET_BUFFER_SPACE (6);
2377 if (!zero_times_ok)
2378 /* A + loop. */
f6a3f532 2379 STORE_JUMP (ofj, b, b + 6);
99633e97 2380 else
4e8a9132
SM
2381 /* Simple * loops can use on_failure_keep_string_jump
2382 depending on what follows. But since we don't know
2383 that yet, we leave the decision up to
2384 on_failure_jump_smart. */
f6a3f532 2385 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2386 laststart + startoffset, b + 6);
99633e97 2387 b += 3;
4e8a9132 2388 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2389 b += 3;
2390 }
2391 else
2392 {
4e8a9132
SM
2393 /* A simple ? pattern. */
2394 assert (zero_times_ok);
2395 GET_BUFFER_SPACE (3);
2396 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2397 b += 3;
2398 }
1c8c6d39
DL
2399 }
2400 else /* not greedy */
2401 { /* I wish the greedy and non-greedy cases could be merged. */
2402
0683b6fa 2403 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2404 if (many_times_ok)
2405 {
f6a3f532
SM
2406 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2407
505bde11 2408 /* The non-greedy multiple match looks like a repeat..until:
1c8c6d39 2409 we only need a conditional jump at the end of the loop */
f6a3f532
SM
2410 if (emptyp) BUF_PUSH (no_op);
2411 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2412 : on_failure_jump, b, laststart);
1c8c6d39
DL
2413 b += 3;
2414 if (zero_times_ok)
2415 {
2416 /* The repeat...until naturally matches one or more.
2417 To also match zero times, we need to first jump to
2418 the end of the loop (its conditional jump). */
1c8c6d39
DL
2419 INSERT_JUMP (jump, laststart, b);
2420 b += 3;
2421 }
2422 }
2423 else
2424 {
2425 /* non-greedy a?? */
1c8c6d39
DL
2426 INSERT_JUMP (jump, laststart, b + 3);
2427 b += 3;
2428 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2429 b += 3;
2430 }
2431 }
2432 }
4e8a9132 2433 pending_exact = 0;
fa9a63c5
RM
2434 break;
2435
2436
2437 case '.':
25fe55af
RS
2438 laststart = b;
2439 BUF_PUSH (anychar);
2440 break;
fa9a63c5
RM
2441
2442
25fe55af
RS
2443 case '[':
2444 {
b18215fc 2445 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2446
25fe55af 2447 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2448
25fe55af
RS
2449 /* Ensure that we have enough space to push a charset: the
2450 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2451 GET_BUFFER_SPACE (34);
2452
25fe55af 2453 laststart = b;
e318085a 2454
25fe55af
RS
2455 /* We test `*p == '^' twice, instead of using an if
2456 statement, so we only need one BUF_PUSH. */
2457 BUF_PUSH (*p == '^' ? charset_not : charset);
2458 if (*p == '^')
2459 p++;
e318085a 2460
25fe55af
RS
2461 /* Remember the first position in the bracket expression. */
2462 p1 = p;
e318085a 2463
25fe55af
RS
2464 /* Push the number of bytes in the bitmap. */
2465 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2466
25fe55af
RS
2467 /* Clear the whole map. */
2468 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2469
25fe55af
RS
2470 /* charset_not matches newline according to a syntax bit. */
2471 if ((re_opcode_t) b[-2] == charset_not
2472 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2473 SET_LIST_BIT ('\n');
fa9a63c5 2474
25fe55af
RS
2475 /* Read in characters and ranges, setting map bits. */
2476 for (;;)
2477 {
b18215fc 2478 boolean escaped_char = false;
2d1675e4 2479 const unsigned char *p2 = p;
e318085a 2480
25fe55af 2481 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2482
25fe55af 2483 PATFETCH (c);
e318085a 2484
25fe55af
RS
2485 /* \ might escape characters inside [...] and [^...]. */
2486 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2487 {
2488 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2489
2490 PATFETCH (c);
b18215fc 2491 escaped_char = true;
25fe55af 2492 }
b18215fc
RS
2493 else
2494 {
657fcfbd
RS
2495 /* Could be the end of the bracket expression. If it's
2496 not (i.e., when the bracket expression is `[]' so
2497 far), the ']' character bit gets set way below. */
2d1675e4 2498 if (c == ']' && p2 != p1)
657fcfbd 2499 break;
25fe55af 2500 }
b18215fc 2501
b18215fc
RS
2502 /* What should we do for the character which is
2503 greater than 0x7F, but not BASE_LEADING_CODE_P?
2504 XXX */
2505
25fe55af
RS
2506 /* See if we're at the beginning of a possible character
2507 class. */
b18215fc 2508
2d1675e4
SM
2509 if (!escaped_char &&
2510 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2511 {
2512 /* Leave room for the null. */
14473664 2513 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2514 const unsigned char *class_beg;
b18215fc 2515
25fe55af
RS
2516 PATFETCH (c);
2517 c1 = 0;
ed0767d8 2518 class_beg = p;
b18215fc 2519
25fe55af
RS
2520 /* If pattern is `[[:'. */
2521 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2522
25fe55af
RS
2523 for (;;)
2524 {
14473664
SM
2525 PATFETCH (c);
2526 if ((c == ':' && *p == ']') || p == pend)
2527 break;
2528 if (c1 < CHAR_CLASS_MAX_LENGTH)
2529 str[c1++] = c;
2530 else
2531 /* This is in any case an invalid class name. */
2532 str[0] = '\0';
25fe55af
RS
2533 }
2534 str[c1] = '\0';
b18215fc
RS
2535
2536 /* If isn't a word bracketed by `[:' and `:]':
2537 undo the ending character, the letters, and
2538 leave the leading `:' and `[' (but set bits for
2539 them). */
25fe55af
RS
2540 if (c == ':' && *p == ']')
2541 {
2542 int ch;
14473664
SM
2543 re_wctype_t cc;
2544
2545 cc = re_wctype (str);
2546
2547 if (cc == 0)
fa9a63c5
RM
2548 FREE_STACK_RETURN (REG_ECTYPE);
2549
14473664
SM
2550 /* Throw away the ] at the end of the character
2551 class. */
2552 PATFETCH (c);
fa9a63c5 2553
14473664 2554 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2555
96cc36cc
RS
2556 /* Most character classes in a multibyte match
2557 just set a flag. Exceptions are is_blank,
2558 is_digit, is_cntrl, and is_xdigit, since
2559 they can only match ASCII characters. We
14473664
SM
2560 don't need to handle them for multibyte.
2561 They are distinguished by a negative wctype. */
96cc36cc 2562
2d1675e4 2563 if (multibyte)
14473664
SM
2564 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2565 re_wctype_to_bit (cc));
96cc36cc 2566
14473664 2567 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
25fe55af 2568 {
7ae68633 2569 int translated = TRANSLATE (ch);
14473664 2570 if (re_iswctype (btowc (ch), cc))
96cc36cc 2571 SET_LIST_BIT (translated);
25fe55af 2572 }
b18215fc
RS
2573
2574 /* Repeat the loop. */
2575 continue;
25fe55af
RS
2576 }
2577 else
2578 {
ed0767d8
SM
2579 /* Go back to right after the "[:". */
2580 p = class_beg;
25fe55af 2581 SET_LIST_BIT ('[');
b18215fc
RS
2582
2583 /* Because the `:' may starts the range, we
2584 can't simply set bit and repeat the loop.
25fe55af 2585 Instead, just set it to C and handle below. */
b18215fc 2586 c = ':';
25fe55af
RS
2587 }
2588 }
b18215fc
RS
2589
2590 if (p < pend && p[0] == '-' && p[1] != ']')
2591 {
2592
2593 /* Discard the `-'. */
2594 PATFETCH (c1);
2595
2596 /* Fetch the character which ends the range. */
2597 PATFETCH (c1);
b18215fc 2598
b54f61ed 2599 if (SINGLE_BYTE_CHAR_P (c))
e934739e 2600 {
b54f61ed
KH
2601 if (! SINGLE_BYTE_CHAR_P (c1))
2602 {
3ff2446d
KH
2603 /* Handle a range starting with a
2604 character of less than 256, and ending
2605 with a character of not less than 256.
2606 Split that into two ranges, the low one
2607 ending at 0377, and the high one
2608 starting at the smallest character in
2609 the charset of C1 and ending at C1. */
b54f61ed
KH
2610 int charset = CHAR_CHARSET (c1);
2611 int c2 = MAKE_CHAR (charset, 0, 0);
2612
2613 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2614 c2, c1);
333526e0 2615 c1 = 0377;
b54f61ed 2616 }
e934739e
RS
2617 }
2618 else if (!SAME_CHARSET_P (c, c1))
b18215fc 2619 FREE_STACK_RETURN (REG_ERANGE);
e318085a 2620 }
25fe55af 2621 else
b18215fc
RS
2622 /* Range from C to C. */
2623 c1 = c;
2624
2625 /* Set the range ... */
2626 if (SINGLE_BYTE_CHAR_P (c))
2627 /* ... into bitmap. */
25fe55af 2628 {
01618498 2629 re_wchar_t this_char;
b18215fc
RS
2630 int range_start = c, range_end = c1;
2631
2632 /* If the start is after the end, the range is empty. */
2633 if (range_start > range_end)
2634 {
2635 if (syntax & RE_NO_EMPTY_RANGES)
2636 FREE_STACK_RETURN (REG_ERANGE);
2637 /* Else, repeat the loop. */
2638 }
2639 else
2640 {
2641 for (this_char = range_start; this_char <= range_end;
2642 this_char++)
2643 SET_LIST_BIT (TRANSLATE (this_char));
e934739e 2644 }
25fe55af 2645 }
e318085a 2646 else
b18215fc
RS
2647 /* ... into range table. */
2648 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2649 }
2650
25fe55af
RS
2651 /* Discard any (non)matching list bytes that are all 0 at the
2652 end of the map. Decrease the map-length byte too. */
2653 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2654 b[-1]--;
2655 b += b[-1];
fa9a63c5 2656
96cc36cc
RS
2657 /* Build real range table from work area. */
2658 if (RANGE_TABLE_WORK_USED (range_table_work)
2659 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
2660 {
2661 int i;
2662 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2663
b18215fc 2664 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
2665 bytes for flags, two for COUNT, and three bytes for
2666 each character. */
2667 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 2668
b18215fc
RS
2669 /* Indicate the existence of range table. */
2670 laststart[1] |= 0x80;
fa9a63c5 2671
96cc36cc
RS
2672 /* Store the character class flag bits into the range table.
2673 If not in emacs, these flag bits are always 0. */
2674 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2675 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
2676
b18215fc
RS
2677 STORE_NUMBER_AND_INCR (b, used / 2);
2678 for (i = 0; i < used; i++)
2679 STORE_CHARACTER_AND_INCR
2680 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2681 }
25fe55af
RS
2682 }
2683 break;
fa9a63c5
RM
2684
2685
b18215fc 2686 case '(':
25fe55af
RS
2687 if (syntax & RE_NO_BK_PARENS)
2688 goto handle_open;
2689 else
2690 goto normal_char;
fa9a63c5
RM
2691
2692
25fe55af
RS
2693 case ')':
2694 if (syntax & RE_NO_BK_PARENS)
2695 goto handle_close;
2696 else
2697 goto normal_char;
e318085a
RS
2698
2699
25fe55af
RS
2700 case '\n':
2701 if (syntax & RE_NEWLINE_ALT)
2702 goto handle_alt;
2703 else
2704 goto normal_char;
e318085a
RS
2705
2706
b18215fc 2707 case '|':
25fe55af
RS
2708 if (syntax & RE_NO_BK_VBAR)
2709 goto handle_alt;
2710 else
2711 goto normal_char;
2712
2713
2714 case '{':
2715 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2716 goto handle_interval;
2717 else
2718 goto normal_char;
2719
2720
2721 case '\\':
2722 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2723
2724 /* Do not translate the character after the \, so that we can
2725 distinguish, e.g., \B from \b, even if we normally would
2726 translate, e.g., B to b. */
2727 PATFETCH_RAW (c);
2728
2729 switch (c)
2730 {
2731 case '(':
2732 if (syntax & RE_NO_BK_PARENS)
2733 goto normal_backslash;
2734
2735 handle_open:
505bde11
SM
2736 {
2737 int shy = 0;
2738 if (p+1 < pend)
2739 {
2740 /* Look for a special (?...) construct */
ed0767d8 2741 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 2742 {
ed0767d8 2743 PATFETCH (c); /* Gobble up the '?'. */
505bde11
SM
2744 PATFETCH (c);
2745 switch (c)
2746 {
2747 case ':': shy = 1; break;
2748 default:
2749 /* Only (?:...) is supported right now. */
2750 FREE_STACK_RETURN (REG_BADPAT);
2751 }
2752 }
505bde11
SM
2753 }
2754
2755 if (!shy)
2756 {
2757 bufp->re_nsub++;
2758 regnum++;
2759 }
25fe55af 2760
99633e97
SM
2761 if (COMPILE_STACK_FULL)
2762 {
2763 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2764 compile_stack_elt_t);
2765 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 2766
99633e97
SM
2767 compile_stack.size <<= 1;
2768 }
25fe55af 2769
99633e97
SM
2770 /* These are the values to restore when we hit end of this
2771 group. They are all relative offsets, so that if the
2772 whole pattern moves because of realloc, they will still
2773 be valid. */
2774 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2775 COMPILE_STACK_TOP.fixup_alt_jump
2776 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2777 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2778 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
2779
2780 /* Do not push a
2781 start_memory for groups beyond the last one we can
2782 represent in the compiled pattern. */
2783 if (regnum <= MAX_REGNUM && !shy)
2784 BUF_PUSH_2 (start_memory, regnum);
2785
2786 compile_stack.avail++;
2787
2788 fixup_alt_jump = 0;
2789 laststart = 0;
2790 begalt = b;
2791 /* If we've reached MAX_REGNUM groups, then this open
2792 won't actually generate any code, so we'll have to
2793 clear pending_exact explicitly. */
2794 pending_exact = 0;
2795 break;
505bde11 2796 }
25fe55af
RS
2797
2798 case ')':
2799 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2800
2801 if (COMPILE_STACK_EMPTY)
505bde11
SM
2802 {
2803 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2804 goto normal_backslash;
2805 else
2806 FREE_STACK_RETURN (REG_ERPAREN);
2807 }
25fe55af
RS
2808
2809 handle_close:
505bde11 2810 FIXUP_ALT_JUMP ();
25fe55af
RS
2811
2812 /* See similar code for backslashed left paren above. */
2813 if (COMPILE_STACK_EMPTY)
505bde11
SM
2814 {
2815 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2816 goto normal_char;
2817 else
2818 FREE_STACK_RETURN (REG_ERPAREN);
2819 }
25fe55af
RS
2820
2821 /* Since we just checked for an empty stack above, this
2822 ``can't happen''. */
2823 assert (compile_stack.avail != 0);
2824 {
2825 /* We don't just want to restore into `regnum', because
2826 later groups should continue to be numbered higher,
2827 as in `(ab)c(de)' -- the second group is #2. */
2828 regnum_t this_group_regnum;
2829
2830 compile_stack.avail--;
2831 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2832 fixup_alt_jump
2833 = COMPILE_STACK_TOP.fixup_alt_jump
2834 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2835 : 0;
2836 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2837 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
2838 /* If we've reached MAX_REGNUM groups, then this open
2839 won't actually generate any code, so we'll have to
2840 clear pending_exact explicitly. */
2841 pending_exact = 0;
e318085a 2842
25fe55af
RS
2843 /* We're at the end of the group, so now we know how many
2844 groups were inside this one. */
505bde11
SM
2845 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
2846 BUF_PUSH_2 (stop_memory, this_group_regnum);
25fe55af
RS
2847 }
2848 break;
2849
2850
2851 case '|': /* `\|'. */
2852 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2853 goto normal_backslash;
2854 handle_alt:
2855 if (syntax & RE_LIMITED_OPS)
2856 goto normal_char;
2857
2858 /* Insert before the previous alternative a jump which
2859 jumps to this alternative if the former fails. */
2860 GET_BUFFER_SPACE (3);
2861 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2862 pending_exact = 0;
2863 b += 3;
2864
2865 /* The alternative before this one has a jump after it
2866 which gets executed if it gets matched. Adjust that
2867 jump so it will jump to this alternative's analogous
2868 jump (put in below, which in turn will jump to the next
2869 (if any) alternative's such jump, etc.). The last such
2870 jump jumps to the correct final destination. A picture:
2871 _____ _____
2872 | | | |
2873 | v | v
2874 a | b | c
2875
2876 If we are at `b', then fixup_alt_jump right now points to a
2877 three-byte space after `a'. We'll put in the jump, set
2878 fixup_alt_jump to right after `b', and leave behind three
2879 bytes which we'll fill in when we get to after `c'. */
2880
505bde11 2881 FIXUP_ALT_JUMP ();
25fe55af
RS
2882
2883 /* Mark and leave space for a jump after this alternative,
2884 to be filled in later either by next alternative or
2885 when know we're at the end of a series of alternatives. */
2886 fixup_alt_jump = b;
2887 GET_BUFFER_SPACE (3);
2888 b += 3;
2889
2890 laststart = 0;
2891 begalt = b;
2892 break;
2893
2894
2895 case '{':
2896 /* If \{ is a literal. */
2897 if (!(syntax & RE_INTERVALS)
2898 /* If we're at `\{' and it's not the open-interval
2899 operator. */
4bb91c68 2900 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
2901 goto normal_backslash;
2902
2903 handle_interval:
2904 {
2905 /* If got here, then the syntax allows intervals. */
2906
2907 /* At least (most) this many matches must be made. */
99633e97 2908 int lower_bound = 0, upper_bound = -1;
25fe55af 2909
ed0767d8 2910 beg_interval = p;
25fe55af
RS
2911
2912 if (p == pend)
4bb91c68 2913 FREE_STACK_RETURN (REG_EBRACE);
25fe55af
RS
2914
2915 GET_UNSIGNED_NUMBER (lower_bound);
2916
2917 if (c == ',')
ed0767d8 2918 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
2919 else
2920 /* Interval such as `{1}' => match exactly once. */
2921 upper_bound = lower_bound;
2922
2923 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 2924 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 2925 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
2926
2927 if (!(syntax & RE_NO_BK_BRACES))
2928 {
4bb91c68
SM
2929 if (c != '\\')
2930 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
2931
2932 PATFETCH (c);
2933 }
2934
2935 if (c != '}')
4bb91c68 2936 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
2937
2938 /* We just parsed a valid interval. */
2939
2940 /* If it's invalid to have no preceding re. */
2941 if (!laststart)
2942 {
2943 if (syntax & RE_CONTEXT_INVALID_OPS)
2944 FREE_STACK_RETURN (REG_BADRPT);
2945 else if (syntax & RE_CONTEXT_INDEP_OPS)
2946 laststart = b;
2947 else
2948 goto unfetch_interval;
2949 }
2950
25fe55af 2951 if (upper_bound == 0)
ed0767d8
SM
2952 /* If the upper bound is zero, just drop the sub pattern
2953 altogether. */
2954 b = laststart;
2955 else if (lower_bound == 1 && upper_bound == 1)
2956 /* Just match it once: nothing to do here. */
2957 ;
25fe55af
RS
2958
2959 /* Otherwise, we have a nontrivial interval. When
2960 we're all done, the pattern will look like:
2961 set_number_at <jump count> <upper bound>
2962 set_number_at <succeed_n count> <lower bound>
2963 succeed_n <after jump addr> <succeed_n count>
2964 <body of loop>
2965 jump_n <succeed_n addr> <jump count>
2966 (The upper bound and `jump_n' are omitted if
2967 `upper_bound' is 1, though.) */
2968 else
2969 { /* If the upper bound is > 1, we need to insert
2970 more at the end of the loop. */
ed0767d8
SM
2971 unsigned int nbytes = (upper_bound < 0 ? 3
2972 : upper_bound > 1 ? 5 : 0);
2973 unsigned int startoffset = 0;
2974
2975 GET_BUFFER_SPACE (20); /* We might use less. */
2976
2977 if (lower_bound == 0)
2978 {
2979 /* A succeed_n that starts with 0 is really a
2980 a simple on_failure_jump_loop. */
2981 INSERT_JUMP (on_failure_jump_loop, laststart,
2982 b + 3 + nbytes);
2983 b += 3;
2984 }
2985 else
2986 {
2987 /* Initialize lower bound of the `succeed_n', even
2988 though it will be set during matching by its
2989 attendant `set_number_at' (inserted next),
2990 because `re_compile_fastmap' needs to know.
2991 Jump to the `jump_n' we might insert below. */
2992 INSERT_JUMP2 (succeed_n, laststart,
2993 b + 5 + nbytes,
2994 lower_bound);
2995 b += 5;
2996
2997 /* Code to initialize the lower bound. Insert
2998 before the `succeed_n'. The `5' is the last two
2999 bytes of this `set_number_at', plus 3 bytes of
3000 the following `succeed_n'. */
3001 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3002 b += 5;
3003 startoffset += 5;
3004 }
3005
3006 if (upper_bound < 0)
3007 {
3008 /* A negative upper bound stands for infinity,
3009 in which case it degenerates to a plain jump. */
3010 STORE_JUMP (jump, b, laststart + startoffset);
3011 b += 3;
3012 }
3013 else if (upper_bound > 1)
25fe55af
RS
3014 { /* More than one repetition is allowed, so
3015 append a backward jump to the `succeed_n'
3016 that starts this interval.
3017
3018 When we've reached this during matching,
3019 we'll have matched the interval once, so
3020 jump back only `upper_bound - 1' times. */
ed0767d8 3021 STORE_JUMP2 (jump_n, b, laststart + startoffset,
25fe55af
RS
3022 upper_bound - 1);
3023 b += 5;
3024
3025 /* The location we want to set is the second
3026 parameter of the `jump_n'; that is `b-2' as
3027 an absolute address. `laststart' will be
3028 the `set_number_at' we're about to insert;
3029 `laststart+3' the number to set, the source
3030 for the relative address. But we are
3031 inserting into the middle of the pattern --
3032 so everything is getting moved up by 5.
3033 Conclusion: (b - 2) - (laststart + 3) + 5,
3034 i.e., b - laststart.
3035
3036 We insert this at the beginning of the loop
3037 so that if we fail during matching, we'll
3038 reinitialize the bounds. */
3039 insert_op2 (set_number_at, laststart, b - laststart,
3040 upper_bound - 1, b);
3041 b += 5;
3042 }
3043 }
3044 pending_exact = 0;
3045 beg_interval = NULL;
3046 }
3047 break;
3048
3049 unfetch_interval:
3050 /* If an invalid interval, match the characters as literals. */
3051 assert (beg_interval);
3052 p = beg_interval;
3053 beg_interval = NULL;
3054
3055 /* normal_char and normal_backslash need `c'. */
ed0767d8 3056 c = '{';
25fe55af
RS
3057
3058 if (!(syntax & RE_NO_BK_BRACES))
3059 {
ed0767d8
SM
3060 assert (p > pattern && p[-1] == '\\');
3061 goto normal_backslash;
25fe55af 3062 }
ed0767d8
SM
3063 else
3064 goto normal_char;
e318085a 3065
b18215fc 3066#ifdef emacs
25fe55af
RS
3067 /* There is no way to specify the before_dot and after_dot
3068 operators. rms says this is ok. --karl */
3069 case '=':
3070 BUF_PUSH (at_dot);
3071 break;
3072
3073 case 's':
3074 laststart = b;
3075 PATFETCH (c);
3076 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3077 break;
3078
3079 case 'S':
3080 laststart = b;
3081 PATFETCH (c);
3082 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3083 break;
b18215fc
RS
3084
3085 case 'c':
3086 laststart = b;
3087 PATFETCH_RAW (c);
3088 BUF_PUSH_2 (categoryspec, c);
3089 break;
e318085a 3090
b18215fc
RS
3091 case 'C':
3092 laststart = b;
3093 PATFETCH_RAW (c);
3094 BUF_PUSH_2 (notcategoryspec, c);
3095 break;
3096#endif /* emacs */
e318085a 3097
e318085a 3098
25fe55af 3099 case 'w':
4bb91c68
SM
3100 if (syntax & RE_NO_GNU_OPS)
3101 goto normal_char;
25fe55af 3102 laststart = b;
1fb352e0 3103 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3104 break;
e318085a 3105
e318085a 3106
25fe55af 3107 case 'W':
4bb91c68
SM
3108 if (syntax & RE_NO_GNU_OPS)
3109 goto normal_char;
25fe55af 3110 laststart = b;
1fb352e0 3111 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3112 break;
e318085a
RS
3113
3114
25fe55af 3115 case '<':
4bb91c68
SM
3116 if (syntax & RE_NO_GNU_OPS)
3117 goto normal_char;
25fe55af
RS
3118 BUF_PUSH (wordbeg);
3119 break;
e318085a 3120
25fe55af 3121 case '>':
4bb91c68
SM
3122 if (syntax & RE_NO_GNU_OPS)
3123 goto normal_char;
25fe55af
RS
3124 BUF_PUSH (wordend);
3125 break;
e318085a 3126
25fe55af 3127 case 'b':
4bb91c68
SM
3128 if (syntax & RE_NO_GNU_OPS)
3129 goto normal_char;
25fe55af
RS
3130 BUF_PUSH (wordbound);
3131 break;
e318085a 3132
25fe55af 3133 case 'B':
4bb91c68
SM
3134 if (syntax & RE_NO_GNU_OPS)
3135 goto normal_char;
25fe55af
RS
3136 BUF_PUSH (notwordbound);
3137 break;
fa9a63c5 3138
25fe55af 3139 case '`':
4bb91c68
SM
3140 if (syntax & RE_NO_GNU_OPS)
3141 goto normal_char;
25fe55af
RS
3142 BUF_PUSH (begbuf);
3143 break;
e318085a 3144
25fe55af 3145 case '\'':
4bb91c68
SM
3146 if (syntax & RE_NO_GNU_OPS)
3147 goto normal_char;
25fe55af
RS
3148 BUF_PUSH (endbuf);
3149 break;
e318085a 3150
25fe55af
RS
3151 case '1': case '2': case '3': case '4': case '5':
3152 case '6': case '7': case '8': case '9':
3153 if (syntax & RE_NO_BK_REFS)
3154 goto normal_char;
e318085a 3155
25fe55af 3156 c1 = c - '0';
e318085a 3157
25fe55af
RS
3158 if (c1 > regnum)
3159 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3160
25fe55af 3161 /* Can't back reference to a subexpression if inside of it. */
4bb91c68 3162 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
25fe55af 3163 goto normal_char;
e318085a 3164
25fe55af
RS
3165 laststart = b;
3166 BUF_PUSH_2 (duplicate, c1);
3167 break;
e318085a 3168
e318085a 3169
25fe55af
RS
3170 case '+':
3171 case '?':
3172 if (syntax & RE_BK_PLUS_QM)
3173 goto handle_plus;
3174 else
3175 goto normal_backslash;
3176
3177 default:
3178 normal_backslash:
3179 /* You might think it would be useful for \ to mean
3180 not to translate; but if we don't translate it
4bb91c68 3181 it will never match anything. */
25fe55af
RS
3182 c = TRANSLATE (c);
3183 goto normal_char;
3184 }
3185 break;
fa9a63c5
RM
3186
3187
3188 default:
25fe55af 3189 /* Expects the character in `c'. */
fa9a63c5
RM
3190 normal_char:
3191 /* If no exactn currently being built. */
25fe55af 3192 if (!pending_exact
fa9a63c5 3193
25fe55af
RS
3194 /* If last exactn not at current position. */
3195 || pending_exact + *pending_exact + 1 != b
5e69f11e 3196
25fe55af 3197 /* We have only one byte following the exactn for the count. */
2d1675e4 3198 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3199
25fe55af 3200 /* If followed by a repetition operator. */
9d99031f 3201 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3202 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3203 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3204 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3205 || ((syntax & RE_INTERVALS)
25fe55af 3206 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3207 ? p != pend && *p == '{'
3208 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3209 {
3210 /* Start building a new exactn. */
5e69f11e 3211
25fe55af 3212 laststart = b;
fa9a63c5
RM
3213
3214 BUF_PUSH_2 (exactn, 0);
3215 pending_exact = b - 1;
25fe55af 3216 }
5e69f11e 3217
2d1675e4
SM
3218 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3219 {
e0277a47
KH
3220 int len;
3221
3222 if (multibyte)
3223 len = CHAR_STRING (c, b);
3224 else
3225 *b = c, len = 1;
2d1675e4
SM
3226 b += len;
3227 (*pending_exact) += len;
3228 }
3229
fa9a63c5 3230 break;
25fe55af 3231 } /* switch (c) */
fa9a63c5
RM
3232 } /* while p != pend */
3233
5e69f11e 3234
fa9a63c5 3235 /* Through the pattern now. */
5e69f11e 3236
505bde11 3237 FIXUP_ALT_JUMP ();
fa9a63c5 3238
5e69f11e 3239 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3240 FREE_STACK_RETURN (REG_EPAREN);
3241
3242 /* If we don't want backtracking, force success
3243 the first time we reach the end of the compiled pattern. */
3244 if (syntax & RE_NO_POSIX_BACKTRACKING)
3245 BUF_PUSH (succeed);
3246
3247 free (compile_stack.stack);
3248
3249 /* We have succeeded; set the length of the buffer. */
3250 bufp->used = b - bufp->buffer;
3251
3252#ifdef DEBUG
99633e97 3253 if (debug > 0)
fa9a63c5 3254 {
505bde11 3255 re_compile_fastmap (bufp);
fa9a63c5
RM
3256 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3257 print_compiled_pattern (bufp);
3258 }
99633e97 3259 debug--;
fa9a63c5
RM
3260#endif /* DEBUG */
3261
3262#ifndef MATCH_MAY_ALLOCATE
3263 /* Initialize the failure stack to the largest possible stack. This
3264 isn't necessary unless we're trying to avoid calling alloca in
3265 the search and match routines. */
3266 {
3267 int num_regs = bufp->re_nsub + 1;
3268
320a2a73 3269 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3270 {
a26f4ccd 3271 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3272
fa9a63c5
RM
3273 if (! fail_stack.stack)
3274 fail_stack.stack
5e69f11e 3275 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3276 * sizeof (fail_stack_elt_t));
3277 else
3278 fail_stack.stack
3279 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3280 (fail_stack.size
3281 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3282 }
3283
3284 regex_grow_registers (num_regs);
3285 }
3286#endif /* not MATCH_MAY_ALLOCATE */
3287
3288 return REG_NOERROR;
3289} /* regex_compile */
3290\f
3291/* Subroutines for `regex_compile'. */
3292
25fe55af 3293/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3294
3295static void
3296store_op1 (op, loc, arg)
3297 re_opcode_t op;
3298 unsigned char *loc;
3299 int arg;
3300{
3301 *loc = (unsigned char) op;
3302 STORE_NUMBER (loc + 1, arg);
3303}
3304
3305
3306/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3307
3308static void
3309store_op2 (op, loc, arg1, arg2)
3310 re_opcode_t op;
3311 unsigned char *loc;
3312 int arg1, arg2;
3313{
3314 *loc = (unsigned char) op;
3315 STORE_NUMBER (loc + 1, arg1);
3316 STORE_NUMBER (loc + 3, arg2);
3317}
3318
3319
3320/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3321 for OP followed by two-byte integer parameter ARG. */
3322
3323static void
3324insert_op1 (op, loc, arg, end)
3325 re_opcode_t op;
3326 unsigned char *loc;
3327 int arg;
5e69f11e 3328 unsigned char *end;
fa9a63c5
RM
3329{
3330 register unsigned char *pfrom = end;
3331 register unsigned char *pto = end + 3;
3332
3333 while (pfrom != loc)
3334 *--pto = *--pfrom;
5e69f11e 3335
fa9a63c5
RM
3336 store_op1 (op, loc, arg);
3337}
3338
3339
3340/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3341
3342static void
3343insert_op2 (op, loc, arg1, arg2, end)
3344 re_opcode_t op;
3345 unsigned char *loc;
3346 int arg1, arg2;
5e69f11e 3347 unsigned char *end;
fa9a63c5
RM
3348{
3349 register unsigned char *pfrom = end;
3350 register unsigned char *pto = end + 5;
3351
3352 while (pfrom != loc)
3353 *--pto = *--pfrom;
5e69f11e 3354
fa9a63c5
RM
3355 store_op2 (op, loc, arg1, arg2);
3356}
3357
3358
3359/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3360 after an alternative or a begin-subexpression. We assume there is at
3361 least one character before the ^. */
3362
3363static boolean
3364at_begline_loc_p (pattern, p, syntax)
01618498 3365 re_char *pattern, *p;
fa9a63c5
RM
3366 reg_syntax_t syntax;
3367{
01618498 3368 re_char *prev = p - 2;
fa9a63c5 3369 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3370
fa9a63c5
RM
3371 return
3372 /* After a subexpression? */
3373 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3374 /* After an alternative? */
d2af47df
SM
3375 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3376 /* After a shy subexpression? */
3377 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3378 && prev[-1] == '?' && prev[-2] == '('
3379 && (syntax & RE_NO_BK_PARENS
3380 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3381}
3382
3383
3384/* The dual of at_begline_loc_p. This one is for $. We assume there is
3385 at least one character after the $, i.e., `P < PEND'. */
3386
3387static boolean
3388at_endline_loc_p (p, pend, syntax)
01618498 3389 re_char *p, *pend;
99633e97 3390 reg_syntax_t syntax;
fa9a63c5 3391{
01618498 3392 re_char *next = p;
fa9a63c5 3393 boolean next_backslash = *next == '\\';
01618498 3394 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3395
fa9a63c5
RM
3396 return
3397 /* Before a subexpression? */
3398 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3399 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3400 /* Before an alternative? */
3401 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3402 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3403}
3404
3405
5e69f11e 3406/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3407 false if it's not. */
3408
3409static boolean
3410group_in_compile_stack (compile_stack, regnum)
3411 compile_stack_type compile_stack;
3412 regnum_t regnum;
3413{
3414 int this_element;
3415
5e69f11e
RM
3416 for (this_element = compile_stack.avail - 1;
3417 this_element >= 0;
fa9a63c5
RM
3418 this_element--)
3419 if (compile_stack.stack[this_element].regnum == regnum)
3420 return true;
3421
3422 return false;
3423}
fa9a63c5 3424\f
f6a3f532
SM
3425/* analyse_first.
3426 If fastmap is non-NULL, go through the pattern and fill fastmap
3427 with all the possible leading chars. If fastmap is NULL, don't
3428 bother filling it up (obviously) and only return whether the
3429 pattern could potentially match the empty string.
3430
3431 Return 1 if p..pend might match the empty string.
3432 Return 0 if p..pend matches at least one char.
01618498 3433 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3434
3435static int
3436analyse_first (p, pend, fastmap, multibyte)
01618498 3437 re_char *p, *pend;
f6a3f532
SM
3438 char *fastmap;
3439 const int multibyte;
fa9a63c5 3440{
505bde11 3441 int j, k;
1fb352e0 3442 boolean not;
fa9a63c5 3443
b18215fc 3444 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3445 flag is set true. */
b18215fc
RS
3446 boolean match_any_multibyte_characters = false;
3447
f6a3f532 3448 assert (p);
5e69f11e 3449
505bde11
SM
3450 /* The loop below works as follows:
3451 - It has a working-list kept in the PATTERN_STACK and which basically
3452 starts by only containing a pointer to the first operation.
3453 - If the opcode we're looking at is a match against some set of
3454 chars, then we add those chars to the fastmap and go on to the
3455 next work element from the worklist (done via `break').
3456 - If the opcode is a control operator on the other hand, we either
3457 ignore it (if it's meaningless at this point, such as `start_memory')
3458 or execute it (if it's a jump). If the jump has several destinations
3459 (i.e. `on_failure_jump'), then we push the other destination onto the
3460 worklist.
3461 We guarantee termination by ignoring backward jumps (more or less),
3462 so that `p' is monotonically increasing. More to the point, we
3463 never set `p' (or push) anything `<= p1'. */
3464
01618498 3465 while (p < pend)
fa9a63c5 3466 {
505bde11
SM
3467 /* `p1' is used as a marker of how far back a `on_failure_jump'
3468 can go without being ignored. It is normally equal to `p'
3469 (which prevents any backward `on_failure_jump') except right
3470 after a plain `jump', to allow patterns such as:
3471 0: jump 10
3472 3..9: <body>
3473 10: on_failure_jump 3
3474 as used for the *? operator. */
01618498 3475 re_char *p1 = p;
5e69f11e 3476
fa9a63c5
RM
3477 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3478 {
f6a3f532 3479 case succeed:
01618498 3480 return 1;
f6a3f532 3481 continue;
fa9a63c5 3482
fa9a63c5 3483 case duplicate:
505bde11
SM
3484 /* If the first character has to match a backreference, that means
3485 that the group was empty (since it already matched). Since this
3486 is the only case that interests us here, we can assume that the
3487 backreference must match the empty string. */
3488 p++;
3489 continue;
fa9a63c5
RM
3490
3491
3492 /* Following are the cases which match a character. These end
25fe55af 3493 with `break'. */
fa9a63c5
RM
3494
3495 case exactn:
e0277a47
KH
3496 if (fastmap)
3497 {
3498 int c = RE_STRING_CHAR (p + 1, pend - p);
3499
3500 if (SINGLE_BYTE_CHAR_P (c))
3501 fastmap[c] = 1;
3502 else
3503 fastmap[p[1]] = 1;
3504 }
fa9a63c5
RM
3505 break;
3506
3507
1fb352e0
SM
3508 case anychar:
3509 /* We could put all the chars except for \n (and maybe \0)
3510 but we don't bother since it is generally not worth it. */
f6a3f532 3511 if (!fastmap) break;
01618498 3512 return -1;
fa9a63c5
RM
3513
3514
b18215fc 3515 case charset_not:
ba5c004d
RS
3516 /* Chars beyond end of bitmap are possible matches.
3517 All the single-byte codes can occur in multibyte buffers.
3518 So any that are not listed in the charset
3519 are possible matches, even in multibyte buffers. */
1fb352e0 3520 if (!fastmap) break;
b18215fc 3521 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
1fb352e0 3522 j < (1 << BYTEWIDTH); j++)
b18215fc 3523 fastmap[j] = 1;
1fb352e0
SM
3524 /* Fallthrough */
3525 case charset:
3526 if (!fastmap) break;
3527 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3528 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3529 j >= 0; j--)
1fb352e0 3530 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
b18215fc
RS
3531 fastmap[j] = 1;
3532
1fb352e0
SM
3533 if ((not && multibyte)
3534 /* Any character set can possibly contain a character
3535 which doesn't match the specified set of characters. */
3536 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3537 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3538 /* If we can match a character class, we can match
3539 any character set. */
b18215fc
RS
3540 {
3541 set_fastmap_for_multibyte_characters:
3542 if (match_any_multibyte_characters == false)
3543 {
3544 for (j = 0x80; j < 0xA0; j++) /* XXX */
3545 if (BASE_LEADING_CODE_P (j))
3546 fastmap[j] = 1;
3547 match_any_multibyte_characters = true;
3548 }
3549 }
b18215fc 3550
1fb352e0
SM
3551 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3552 && match_any_multibyte_characters == false)
3553 {
3554 /* Set fastmap[I] 1 where I is a base leading code of each
3555 multibyte character in the range table. */
3556 int c, count;
b18215fc 3557
1fb352e0 3558 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 3559 bits for a character class. */
1fb352e0 3560 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 3561
1fb352e0
SM
3562 /* Extract the number of ranges in range table into COUNT. */
3563 EXTRACT_NUMBER_AND_INCR (count, p);
3564 for (; count > 0; count--, p += 2 * 3) /* XXX */
3565 {
3566 /* Extract the start of each range. */
3567 EXTRACT_CHARACTER (c, p);
3568 j = CHAR_CHARSET (c);
3569 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3570 }
3571 }
b18215fc
RS
3572 break;
3573
1fb352e0
SM
3574 case syntaxspec:
3575 case notsyntaxspec:
3576 if (!fastmap) break;
3577#ifndef emacs
3578 not = (re_opcode_t)p[-1] == notsyntaxspec;
3579 k = *p++;
3580 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 3581 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 3582 fastmap[j] = 1;
b18215fc 3583 break;
1fb352e0 3584#else /* emacs */
b18215fc
RS
3585 /* This match depends on text properties. These end with
3586 aborting optimizations. */
01618498 3587 return -1;
b18215fc
RS
3588
3589 case categoryspec:
b18215fc 3590 case notcategoryspec:
1fb352e0
SM
3591 if (!fastmap) break;
3592 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 3593 k = *p++;
1fb352e0
SM
3594 for (j = 0; j < (1 << BYTEWIDTH); j++)
3595 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
3596 fastmap[j] = 1;
3597
1fb352e0 3598 if (multibyte)
b18215fc 3599 /* Any character set can possibly contain a character
1fb352e0 3600 whose category is K (or not). */
b18215fc
RS
3601 goto set_fastmap_for_multibyte_characters;
3602 break;
3603
fa9a63c5 3604 /* All cases after this match the empty string. These end with
25fe55af 3605 `continue'. */
fa9a63c5 3606
fa9a63c5
RM
3607 case before_dot:
3608 case at_dot:
3609 case after_dot:
1fb352e0 3610#endif /* !emacs */
25fe55af
RS
3611 case no_op:
3612 case begline:
3613 case endline:
fa9a63c5
RM
3614 case begbuf:
3615 case endbuf:
3616 case wordbound:
3617 case notwordbound:
3618 case wordbeg:
3619 case wordend:
25fe55af 3620 continue;
fa9a63c5
RM
3621
3622
fa9a63c5 3623 case jump:
25fe55af 3624 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
3625 if (j < 0)
3626 /* Backward jumps can only go back to code that we've already
3627 visited. `re_compile' should make sure this is true. */
3628 break;
25fe55af 3629 p += j;
505bde11
SM
3630 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3631 {
3632 case on_failure_jump:
3633 case on_failure_keep_string_jump:
505bde11 3634 case on_failure_jump_loop:
0683b6fa 3635 case on_failure_jump_nastyloop:
505bde11
SM
3636 case on_failure_jump_smart:
3637 p++;
3638 break;
3639 default:
3640 continue;
3641 };
3642 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3643 to jump back to "just after here". */
3644 /* Fallthrough */
fa9a63c5 3645
25fe55af
RS
3646 case on_failure_jump:
3647 case on_failure_keep_string_jump:
0683b6fa 3648 case on_failure_jump_nastyloop:
505bde11
SM
3649 case on_failure_jump_loop:
3650 case on_failure_jump_smart:
25fe55af 3651 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 3652 if (p + j <= p1)
ed0767d8 3653 ; /* Backward jump to be ignored. */
01618498
SM
3654 else
3655 { /* We have to look down both arms.
3656 We first go down the "straight" path so as to minimize
3657 stack usage when going through alternatives. */
3658 int r = analyse_first (p, pend, fastmap, multibyte);
3659 if (r) return r;
3660 p += j;
3661 }
25fe55af 3662 continue;
fa9a63c5
RM
3663
3664
ed0767d8
SM
3665 case jump_n:
3666 /* This code simply does not properly handle forward jump_n. */
3667 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
3668 p += 4;
3669 /* jump_n can either jump or fall through. The (backward) jump
3670 case has already been handled, so we only need to look at the
3671 fallthrough case. */
3672 continue;
3673
fa9a63c5 3674 case succeed_n:
ed0767d8
SM
3675 /* If N == 0, it should be an on_failure_jump_loop instead. */
3676 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
3677 p += 4;
3678 /* We only care about one iteration of the loop, so we don't
3679 need to consider the case where this behaves like an
3680 on_failure_jump. */
25fe55af 3681 continue;
fa9a63c5
RM
3682
3683
3684 case set_number_at:
25fe55af
RS
3685 p += 4;
3686 continue;
fa9a63c5
RM
3687
3688
3689 case start_memory:
25fe55af 3690 case stop_memory:
505bde11 3691 p += 1;
fa9a63c5
RM
3692 continue;
3693
3694
3695 default:
25fe55af
RS
3696 abort (); /* We have listed all the cases. */
3697 } /* switch *p++ */
fa9a63c5
RM
3698
3699 /* Getting here means we have found the possible starting
25fe55af 3700 characters for one path of the pattern -- and that the empty
01618498
SM
3701 string does not match. We need not follow this path further. */
3702 return 0;
fa9a63c5
RM
3703 } /* while p */
3704
01618498
SM
3705 /* We reached the end without matching anything. */
3706 return 1;
3707
f6a3f532
SM
3708} /* analyse_first */
3709\f
3710/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3711 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3712 characters can start a string that matches the pattern. This fastmap
3713 is used by re_search to skip quickly over impossible starting points.
3714
3715 Character codes above (1 << BYTEWIDTH) are not represented in the
3716 fastmap, but the leading codes are represented. Thus, the fastmap
3717 indicates which character sets could start a match.
3718
3719 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3720 area as BUFP->fastmap.
3721
3722 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3723 the pattern buffer.
3724
3725 Returns 0 if we succeed, -2 if an internal error. */
3726
3727int
3728re_compile_fastmap (bufp)
3729 struct re_pattern_buffer *bufp;
3730{
3731 char *fastmap = bufp->fastmap;
3732 int analysis;
3733
3734 assert (fastmap && bufp->buffer);
3735
3736 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3737 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3738
3739 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 3740 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 3741 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
3742 return 0;
3743} /* re_compile_fastmap */
3744\f
3745/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3746 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3747 this memory for recording register information. STARTS and ENDS
3748 must be allocated using the malloc library routine, and must each
3749 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3750
3751 If NUM_REGS == 0, then subsequent matches should allocate their own
3752 register data.
3753
3754 Unless this function is called, the first search or match using
3755 PATTERN_BUFFER will allocate its own register data, without
3756 freeing the old data. */
3757
3758void
3759re_set_registers (bufp, regs, num_regs, starts, ends)
3760 struct re_pattern_buffer *bufp;
3761 struct re_registers *regs;
3762 unsigned num_regs;
3763 regoff_t *starts, *ends;
3764{
3765 if (num_regs)
3766 {
3767 bufp->regs_allocated = REGS_REALLOCATE;
3768 regs->num_regs = num_regs;
3769 regs->start = starts;
3770 regs->end = ends;
3771 }
3772 else
3773 {
3774 bufp->regs_allocated = REGS_UNALLOCATED;
3775 regs->num_regs = 0;
3776 regs->start = regs->end = (regoff_t *) 0;
3777 }
3778}
c0f9ea08 3779WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 3780\f
25fe55af 3781/* Searching routines. */
fa9a63c5
RM
3782
3783/* Like re_search_2, below, but only one string is specified, and
3784 doesn't let you say where to stop matching. */
3785
3786int
3787re_search (bufp, string, size, startpos, range, regs)
3788 struct re_pattern_buffer *bufp;
3789 const char *string;
3790 int size, startpos, range;
3791 struct re_registers *regs;
3792{
5e69f11e 3793 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
3794 regs, size);
3795}
c0f9ea08 3796WEAK_ALIAS (__re_search, re_search)
fa9a63c5 3797
b18215fc
RS
3798/* End address of virtual concatenation of string. */
3799#define STOP_ADDR_VSTRING(P) \
3800 (((P) >= size1 ? string2 + size2 : string1 + size1))
3801
3802/* Address of POS in the concatenation of virtual string. */
3803#define POS_ADDR_VSTRING(POS) \
3804 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
3805
3806/* Using the compiled pattern in BUFP->buffer, first tries to match the
3807 virtual concatenation of STRING1 and STRING2, starting first at index
3808 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 3809
fa9a63c5 3810 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 3811
fa9a63c5
RM
3812 RANGE is how far to scan while trying to match. RANGE = 0 means try
3813 only at STARTPOS; in general, the last start tried is STARTPOS +
3814 RANGE.
5e69f11e 3815
fa9a63c5
RM
3816 In REGS, return the indices of the virtual concatenation of STRING1
3817 and STRING2 that matched the entire BUFP->buffer and its contained
3818 subexpressions.
5e69f11e 3819
fa9a63c5
RM
3820 Do not consider matching one past the index STOP in the virtual
3821 concatenation of STRING1 and STRING2.
3822
3823 We return either the position in the strings at which the match was
3824 found, -1 if no match, or -2 if error (such as failure
3825 stack overflow). */
3826
3827int
66f0296e 3828re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 3829 struct re_pattern_buffer *bufp;
66f0296e 3830 const char *str1, *str2;
fa9a63c5
RM
3831 int size1, size2;
3832 int startpos;
3833 int range;
3834 struct re_registers *regs;
3835 int stop;
3836{
3837 int val;
66f0296e
SM
3838 re_char *string1 = (re_char*) str1;
3839 re_char *string2 = (re_char*) str2;
fa9a63c5 3840 register char *fastmap = bufp->fastmap;
6676cb1c 3841 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3842 int total_size = size1 + size2;
3843 int endpos = startpos + range;
c0f9ea08 3844 boolean anchored_start;
fa9a63c5 3845
25fe55af 3846 /* Nonzero if we have to concern multibyte character. */
2d1675e4 3847 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 3848
fa9a63c5
RM
3849 /* Check for out-of-range STARTPOS. */
3850 if (startpos < 0 || startpos > total_size)
3851 return -1;
5e69f11e 3852
fa9a63c5 3853 /* Fix up RANGE if it might eventually take us outside
34597fa9 3854 the virtual concatenation of STRING1 and STRING2.
5e69f11e 3855 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
3856 if (endpos < 0)
3857 range = 0 - startpos;
fa9a63c5
RM
3858 else if (endpos > total_size)
3859 range = total_size - startpos;
3860
3861 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 3862 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
3863 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3864 {
3865 if (startpos > 0)
3866 return -1;
3867 else
7b140fd7 3868 range = 0;
fa9a63c5
RM
3869 }
3870
ae4788a8
RS
3871#ifdef emacs
3872 /* In a forward search for something that starts with \=.
3873 don't keep searching past point. */
3874 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3875 {
7b140fd7
RS
3876 range = PT_BYTE - BEGV_BYTE - startpos;
3877 if (range < 0)
ae4788a8
RS
3878 return -1;
3879 }
3880#endif /* emacs */
3881
fa9a63c5
RM
3882 /* Update the fastmap now if not correct already. */
3883 if (fastmap && !bufp->fastmap_accurate)
01618498 3884 re_compile_fastmap (bufp);
5e69f11e 3885
c8499ba5 3886 /* See whether the pattern is anchored. */
c0f9ea08 3887 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 3888
b18215fc 3889#ifdef emacs
cc9b4df2
KH
3890 gl_state.object = re_match_object;
3891 {
99633e97 3892 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
3893
3894 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
3895 }
b18215fc
RS
3896#endif
3897
fa9a63c5
RM
3898 /* Loop through the string, looking for a place to start matching. */
3899 for (;;)
5e69f11e 3900 {
c8499ba5
RS
3901 /* If the pattern is anchored,
3902 skip quickly past places we cannot match.
3903 We don't bother to treat startpos == 0 specially
3904 because that case doesn't repeat. */
3905 if (anchored_start && startpos > 0)
3906 {
c0f9ea08
SM
3907 if (! ((startpos <= size1 ? string1[startpos - 1]
3908 : string2[startpos - size1 - 1])
3909 == '\n'))
c8499ba5
RS
3910 goto advance;
3911 }
3912
fa9a63c5 3913 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
3914 cannot be the start of a match. If the pattern can match the
3915 null string, however, we don't need to skip characters; we want
3916 the first null string. */
fa9a63c5
RM
3917 if (fastmap && startpos < total_size && !bufp->can_be_null)
3918 {
66f0296e 3919 register re_char *d;
01618498 3920 register re_wchar_t buf_ch;
e934739e
RS
3921
3922 d = POS_ADDR_VSTRING (startpos);
3923
25fe55af 3924 if (range > 0) /* Searching forwards. */
fa9a63c5 3925 {
fa9a63c5
RM
3926 register int lim = 0;
3927 int irange = range;
3928
25fe55af
RS
3929 if (startpos < size1 && startpos + range >= size1)
3930 lim = range - (size1 - startpos);
fa9a63c5 3931
25fe55af
RS
3932 /* Written out as an if-else to avoid testing `translate'
3933 inside the loop. */
28ae27ae
AS
3934 if (RE_TRANSLATE_P (translate))
3935 {
e934739e
RS
3936 if (multibyte)
3937 while (range > lim)
3938 {
3939 int buf_charlen;
3940
3941 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
3942 buf_charlen);
3943
3944 buf_ch = RE_TRANSLATE (translate, buf_ch);
3945 if (buf_ch >= 0400
3946 || fastmap[buf_ch])
3947 break;
3948
3949 range -= buf_charlen;
3950 d += buf_charlen;
3951 }
3952 else
3953 while (range > lim
66f0296e 3954 && !fastmap[RE_TRANSLATE (translate, *d)])
33c46939
RS
3955 {
3956 d++;
3957 range--;
3958 }
e934739e 3959 }
fa9a63c5 3960 else
66f0296e 3961 while (range > lim && !fastmap[*d])
33c46939
RS
3962 {
3963 d++;
3964 range--;
3965 }
fa9a63c5
RM
3966
3967 startpos += irange - range;
3968 }
25fe55af 3969 else /* Searching backwards. */
fa9a63c5 3970 {
2d1675e4
SM
3971 int room = (startpos >= size1
3972 ? size2 + size1 - startpos
3973 : size1 - startpos);
3974 buf_ch = RE_STRING_CHAR (d, room);
3975 buf_ch = TRANSLATE (buf_ch);
fa9a63c5 3976
e934739e
RS
3977 if (! (buf_ch >= 0400
3978 || fastmap[buf_ch]))
fa9a63c5
RM
3979 goto advance;
3980 }
3981 }
3982
3983 /* If can't match the null string, and that's all we have left, fail. */
3984 if (range >= 0 && startpos == total_size && fastmap
25fe55af 3985 && !bufp->can_be_null)
fa9a63c5
RM
3986 return -1;
3987
3988 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3989 startpos, regs, stop);
3990#ifndef REGEX_MALLOC
0b32bf0e 3991# ifdef C_ALLOCA
fa9a63c5 3992 alloca (0);
0b32bf0e 3993# endif
fa9a63c5
RM
3994#endif
3995
3996 if (val >= 0)
3997 return startpos;
5e69f11e 3998
fa9a63c5
RM
3999 if (val == -2)
4000 return -2;
4001
4002 advance:
5e69f11e 4003 if (!range)
25fe55af 4004 break;
5e69f11e 4005 else if (range > 0)
25fe55af 4006 {
b18215fc
RS
4007 /* Update STARTPOS to the next character boundary. */
4008 if (multibyte)
4009 {
66f0296e
SM
4010 re_char *p = POS_ADDR_VSTRING (startpos);
4011 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4012 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4013
4014 range -= len;
4015 if (range < 0)
4016 break;
4017 startpos += len;
4018 }
4019 else
4020 {
b560c397
RS
4021 range--;
4022 startpos++;
4023 }
e318085a 4024 }
fa9a63c5 4025 else
25fe55af
RS
4026 {
4027 range++;
4028 startpos--;
b18215fc
RS
4029
4030 /* Update STARTPOS to the previous character boundary. */
4031 if (multibyte)
4032 {
66f0296e 4033 re_char *p = POS_ADDR_VSTRING (startpos);
b18215fc
RS
4034 int len = 0;
4035
4036 /* Find the head of multibyte form. */
5d967c7a 4037 while (!CHAR_HEAD_P (*p))
b18215fc
RS
4038 p--, len++;
4039
4040 /* Adjust it. */
4041#if 0 /* XXX */
4042 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
4043 ;
4044 else
4045#endif
4046 {
4047 range += len;
4048 if (range > 0)
4049 break;
4050
4051 startpos -= len;
4052 }
4053 }
25fe55af 4054 }
fa9a63c5
RM
4055 }
4056 return -1;
4057} /* re_search_2 */
c0f9ea08 4058WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4059\f
4060/* Declarations and macros for re_match_2. */
4061
2d1675e4
SM
4062static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4063 register int len,
4064 RE_TRANSLATE_TYPE translate,
4065 const int multibyte));
fa9a63c5
RM
4066
4067/* This converts PTR, a pointer into one of the search strings `string1'
4068 and `string2' into an offset from the beginning of that string. */
4069#define POINTER_TO_OFFSET(ptr) \
4070 (FIRST_STRING_P (ptr) \
4071 ? ((regoff_t) ((ptr) - string1)) \
4072 : ((regoff_t) ((ptr) - string2 + size1)))
4073
fa9a63c5 4074/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4075 string2 if necessary.
4076 Check re_match_2_internal for a discussion of why end_match_2 might
4077 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4078#define PREFETCH() \
25fe55af 4079 while (d == dend) \
fa9a63c5
RM
4080 { \
4081 /* End of string2 => fail. */ \
25fe55af
RS
4082 if (dend == end_match_2) \
4083 goto fail; \
4bb91c68 4084 /* End of string1 => advance to string2. */ \
25fe55af 4085 d = string2; \
fa9a63c5
RM
4086 dend = end_match_2; \
4087 }
4088
f1ad044f
SM
4089/* Call before fetching a char with *d if you already checked other limits.
4090 This is meant for use in lookahead operations like wordend, etc..
4091 where we might need to look at parts of the string that might be
4092 outside of the LIMITs (i.e past `stop'). */
4093#define PREFETCH_NOLIMIT() \
4094 if (d == end1) \
4095 { \
4096 d = string2; \
4097 dend = end_match_2; \
4098 } \
fa9a63c5
RM
4099
4100/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 4101 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4102#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4103#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4104
4105
4106/* Test if D points to a character which is word-constituent. We have
4107 two special cases to check for: if past the end of string1, look at
4108 the first character in string2; and if before the beginning of
4109 string2, look at the last character in string1. */
4110#define WORDCHAR_P(d) \
4111 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4112 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4113 == Sword)
4114
9121ca40 4115/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4116
4117/* The comment at case wordbound is following one, but we don't use
4118 AT_WORD_BOUNDARY anymore to support multibyte form.
4119
4120 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
4121 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4122 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4123 macro and introducing temporary variables works around the bug. */
4124
9121ca40 4125#if 0
fa9a63c5
RM
4126/* Test if the character before D and the one at D differ with respect
4127 to being word-constituent. */
4128#define AT_WORD_BOUNDARY(d) \
4129 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4130 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4131#endif
fa9a63c5
RM
4132
4133/* Free everything we malloc. */
4134#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4135# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4136# define FREE_VARIABLES() \
fa9a63c5
RM
4137 do { \
4138 REGEX_FREE_STACK (fail_stack.stack); \
4139 FREE_VAR (regstart); \
4140 FREE_VAR (regend); \
fa9a63c5
RM
4141 FREE_VAR (best_regstart); \
4142 FREE_VAR (best_regend); \
fa9a63c5
RM
4143 } while (0)
4144#else
0b32bf0e 4145# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4146#endif /* not MATCH_MAY_ALLOCATE */
4147
505bde11
SM
4148\f
4149/* Optimization routines. */
4150
4e8a9132
SM
4151/* If the operation is a match against one or more chars,
4152 return a pointer to the next operation, else return NULL. */
01618498 4153static re_char *
4e8a9132 4154skip_one_char (p)
01618498 4155 re_char *p;
4e8a9132
SM
4156{
4157 switch (SWITCH_ENUM_CAST (*p++))
4158 {
4159 case anychar:
4160 break;
4161
4162 case exactn:
4163 p += *p + 1;
4164 break;
4165
4166 case charset_not:
4167 case charset:
4168 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4169 {
4170 int mcnt;
4171 p = CHARSET_RANGE_TABLE (p - 1);
4172 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4173 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4174 }
4175 else
4176 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4177 break;
4178
4e8a9132
SM
4179 case syntaxspec:
4180 case notsyntaxspec:
1fb352e0 4181#ifdef emacs
4e8a9132
SM
4182 case categoryspec:
4183 case notcategoryspec:
4184#endif /* emacs */
4185 p++;
4186 break;
4187
4188 default:
4189 p = NULL;
4190 }
4191 return p;
4192}
4193
4194
505bde11
SM
4195/* Jump over non-matching operations. */
4196static unsigned char *
4e8a9132 4197skip_noops (p, pend)
505bde11 4198 unsigned char *p, *pend;
505bde11
SM
4199{
4200 int mcnt;
4201 while (p < pend)
4202 {
4203 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4204 {
4205 case start_memory:
505bde11
SM
4206 case stop_memory:
4207 p += 2; break;
4208 case no_op:
4209 p += 1; break;
4210 case jump:
4211 p += 1;
4212 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4213 p += mcnt;
4214 break;
4215 default:
4216 return p;
4217 }
4218 }
4219 assert (p == pend);
4220 return p;
4221}
4222
4223/* Non-zero if "p1 matches something" implies "p2 fails". */
4224static int
4225mutually_exclusive_p (bufp, p1, p2)
4226 struct re_pattern_buffer *bufp;
4227 unsigned char *p1, *p2;
4228{
4e8a9132 4229 re_opcode_t op2;
2d1675e4 4230 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4231 unsigned char *pend = bufp->buffer + bufp->used;
4232
4e8a9132 4233 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4234 && p2 >= bufp->buffer && p2 <= pend);
4235
4236 /* Skip over open/close-group commands.
4237 If what follows this loop is a ...+ construct,
4238 look at what begins its body, since we will have to
4239 match at least one of that. */
4e8a9132
SM
4240 p2 = skip_noops (p2, pend);
4241 /* The same skip can be done for p1, except that this function
4242 is only used in the case where p1 is a simple match operator. */
4243 /* p1 = skip_noops (p1, pend); */
4244
4245 assert (p1 >= bufp->buffer && p1 < pend
4246 && p2 >= bufp->buffer && p2 <= pend);
4247
4248 op2 = p2 == pend ? succeed : *p2;
4249
4250 switch (SWITCH_ENUM_CAST (op2))
505bde11 4251 {
4e8a9132
SM
4252 case succeed:
4253 case endbuf:
4254 /* If we're at the end of the pattern, we can change. */
4255 if (skip_one_char (p1))
505bde11 4256 {
505bde11
SM
4257 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4258 return 1;
505bde11 4259 }
4e8a9132
SM
4260 break;
4261
4262 case endline:
4e8a9132
SM
4263 case exactn:
4264 {
01618498 4265 register re_wchar_t c
4e8a9132
SM
4266 = (re_opcode_t) *p2 == endline ? '\n'
4267 : RE_STRING_CHAR(p2 + 2, pend - p2 - 2);
505bde11 4268
4e8a9132
SM
4269 if ((re_opcode_t) *p1 == exactn)
4270 {
4271 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4272 {
4273 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4274 return 1;
4275 }
4276 }
505bde11 4277
4e8a9132
SM
4278 else if ((re_opcode_t) *p1 == charset
4279 || (re_opcode_t) *p1 == charset_not)
4280 {
4281 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4282
4e8a9132
SM
4283 /* Test if C is listed in charset (or charset_not)
4284 at `p1'. */
4285 if (SINGLE_BYTE_CHAR_P (c))
4286 {
4287 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4288 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4289 not = !not;
4290 }
4291 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4292 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4293
4e8a9132
SM
4294 /* `not' is equal to 1 if c would match, which means
4295 that we can't change to pop_failure_jump. */
4296 if (!not)
4297 {
4298 DEBUG_PRINT1 (" No match => fast loop.\n");
4299 return 1;
4300 }
4301 }
4302 else if ((re_opcode_t) *p1 == anychar
4303 && c == '\n')
4304 {
4305 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4306 return 1;
4307 }
4308 }
4309 break;
505bde11 4310
4e8a9132
SM
4311 case charset:
4312 case charset_not:
4313 {
4314 if ((re_opcode_t) *p1 == exactn)
4315 /* Reuse the code above. */
4316 return mutually_exclusive_p (bufp, p2, p1);
505bde11
SM
4317
4318
4319 /* It is hard to list up all the character in charset
4320 P2 if it includes multibyte character. Give up in
4321 such case. */
4322 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4323 {
4324 /* Now, we are sure that P2 has no range table.
4325 So, for the size of bitmap in P2, `p2[1]' is
4326 enough. But P1 may have range table, so the
4327 size of bitmap table of P1 is extracted by
4328 using macro `CHARSET_BITMAP_SIZE'.
4329
4330 Since we know that all the character listed in
4331 P2 is ASCII, it is enough to test only bitmap
4332 table of P1. */
4333
4334 if (*p1 == *p2)
4335 {
4336 int idx;
4337 /* We win if the charset inside the loop
4338 has no overlap with the one after the loop. */
4339 for (idx = 0;
4340 (idx < (int) p2[1]
4341 && idx < CHARSET_BITMAP_SIZE (p1));
4342 idx++)
4343 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4344 break;
4345
4346 if (idx == p2[1]
4347 || idx == CHARSET_BITMAP_SIZE (p1))
4348 {
4349 DEBUG_PRINT1 (" No match => fast loop.\n");
4350 return 1;
4351 }
4352 }
4353 else if ((re_opcode_t) *p1 == charset
4354 || (re_opcode_t) *p1 == charset_not)
4355 {
4356 int idx;
4357 /* We win if the charset_not inside the loop lists
4358 every character listed in the charset after. */
4359 for (idx = 0; idx < (int) p2[1]; idx++)
4360 if (! (p2[2 + idx] == 0
4361 || (idx < CHARSET_BITMAP_SIZE (p1)
4362 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4363 break;
4364
4e8a9132
SM
4365 if (idx == p2[1])
4366 {
4367 DEBUG_PRINT1 (" No match => fast loop.\n");
4368 return 1;
4369 }
4370 }
4371 }
4372 }
4373
4e8a9132
SM
4374 case wordend:
4375 case notsyntaxspec:
4376 return ((re_opcode_t) *p1 == syntaxspec
4377 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4378
4379 case wordbeg:
4380 case syntaxspec:
4381 return ((re_opcode_t) *p1 == notsyntaxspec
4382 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4383
4384 case wordbound:
4385 return (((re_opcode_t) *p1 == notsyntaxspec
4386 || (re_opcode_t) *p1 == syntaxspec)
4387 && p1[1] == Sword);
4388
1fb352e0 4389#ifdef emacs
4e8a9132
SM
4390 case categoryspec:
4391 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4392 case notcategoryspec:
4393 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4394#endif /* emacs */
4395
4396 default:
4397 ;
505bde11
SM
4398 }
4399
4400 /* Safe default. */
4401 return 0;
4402}
4403
fa9a63c5
RM
4404\f
4405/* Matching routines. */
4406
25fe55af 4407#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4408/* re_match is like re_match_2 except it takes only a single string. */
4409
4410int
4411re_match (bufp, string, size, pos, regs)
4412 struct re_pattern_buffer *bufp;
4413 const char *string;
4414 int size, pos;
4415 struct re_registers *regs;
4416{
4bb91c68 4417 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 4418 pos, regs, size);
0b32bf0e 4419# if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4420 alloca (0);
0b32bf0e 4421# endif
fa9a63c5
RM
4422 return result;
4423}
c0f9ea08 4424WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4425#endif /* not emacs */
4426
b18215fc
RS
4427#ifdef emacs
4428/* In Emacs, this is the string or buffer in which we
25fe55af 4429 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4430Lisp_Object re_match_object;
4431#endif
fa9a63c5
RM
4432
4433/* re_match_2 matches the compiled pattern in BUFP against the
4434 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4435 and SIZE2, respectively). We start matching at POS, and stop
4436 matching at STOP.
5e69f11e 4437
fa9a63c5 4438 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4439 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4440 documentation for exactly how many groups we fill.
4441
4442 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4443 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4444 matched substring. */
4445
4446int
4447re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4448 struct re_pattern_buffer *bufp;
4449 const char *string1, *string2;
4450 int size1, size2;
4451 int pos;
4452 struct re_registers *regs;
4453 int stop;
4454{
b18215fc 4455 int result;
25fe55af 4456
b18215fc 4457#ifdef emacs
cc9b4df2
KH
4458 int charpos;
4459 gl_state.object = re_match_object;
99633e97 4460 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4461 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4462#endif
4463
4bb91c68
SM
4464 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4465 (re_char*) string2, size2,
cc9b4df2 4466 pos, regs, stop);
0b32bf0e 4467#if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4468 alloca (0);
a60198e5 4469#endif
fa9a63c5
RM
4470 return result;
4471}
c0f9ea08 4472WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5
RM
4473
4474/* This is a separate function so that we can force an alloca cleanup
25fe55af 4475 afterwards. */
fa9a63c5
RM
4476static int
4477re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4478 struct re_pattern_buffer *bufp;
66f0296e 4479 re_char *string1, *string2;
fa9a63c5
RM
4480 int size1, size2;
4481 int pos;
4482 struct re_registers *regs;
4483 int stop;
4484{
4485 /* General temporaries. */
4486 int mcnt;
01618498 4487 size_t reg;
66f0296e 4488 boolean not;
fa9a63c5
RM
4489
4490 /* Just past the end of the corresponding string. */
66f0296e 4491 re_char *end1, *end2;
fa9a63c5
RM
4492
4493 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4494 each to consider matching. */
66f0296e 4495 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4496
4497 /* Where we are in the data, and the end of the current string. */
66f0296e 4498 re_char *d, *dend;
5e69f11e 4499
99633e97
SM
4500 /* Used sometimes to remember where we were before starting matching
4501 an operator so that we can go back in case of failure. This "atomic"
4502 behavior of matching opcodes is indispensable to the correctness
4503 of the on_failure_keep_string_jump optimization. */
4504 re_char *dfail;
4505
fa9a63c5 4506 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
4507 re_char *p = bufp->buffer;
4508 re_char *pend = p + bufp->used;
fa9a63c5 4509
25fe55af 4510 /* We use this to map every character in the string. */
6676cb1c 4511 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4512
25fe55af 4513 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4514 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4515
fa9a63c5
RM
4516 /* Failure point stack. Each place that can handle a failure further
4517 down the line pushes a failure point on this stack. It consists of
505bde11 4518 regstart, and regend for all registers corresponding to
fa9a63c5
RM
4519 the subexpressions we're currently inside, plus the number of such
4520 registers, and, finally, two char *'s. The first char * is where
4521 to resume scanning the pattern; the second one is where to resume
505bde11 4522 scanning the strings. */
25fe55af 4523#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4524 fail_stack_type fail_stack;
4525#endif
4526#ifdef DEBUG
fa9a63c5
RM
4527 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4528#endif
4529
0b32bf0e 4530#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
4531 /* This holds the pointer to the failure stack, when
4532 it is allocated relocatably. */
4533 fail_stack_elt_t *failure_stack_ptr;
99633e97 4534#endif
fa9a63c5
RM
4535
4536 /* We fill all the registers internally, independent of what we
25fe55af 4537 return, for use in backreferences. The number here includes
fa9a63c5 4538 an element for register zero. */
4bb91c68 4539 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 4540
fa9a63c5
RM
4541 /* Information on the contents of registers. These are pointers into
4542 the input strings; they record just what was matched (on this
4543 attempt) by a subexpression part of the pattern, that is, the
4544 regnum-th regstart pointer points to where in the pattern we began
4545 matching and the regnum-th regend points to right after where we
4546 stopped matching the regnum-th subexpression. (The zeroth register
4547 keeps track of what the whole pattern matches.) */
4548#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4549 re_char **regstart, **regend;
fa9a63c5
RM
4550#endif
4551
fa9a63c5 4552 /* The following record the register info as found in the above
5e69f11e 4553 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4554 This happens as we backtrack through the failure points, which in
4555 turn happens only if we have not yet matched the entire string. */
4556 unsigned best_regs_set = false;
4557#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4558 re_char **best_regstart, **best_regend;
fa9a63c5 4559#endif
5e69f11e 4560
fa9a63c5
RM
4561 /* Logically, this is `best_regend[0]'. But we don't want to have to
4562 allocate space for that if we're not allocating space for anything
25fe55af 4563 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4564 any of the other register vectors, and it seems rather a kludge to
4565 treat `best_regend' differently than the rest. So we keep track of
4566 the end of the best match so far in a separate variable. We
4567 initialize this to NULL so that when we backtrack the first time
4568 and need to test it, it's not garbage. */
66f0296e 4569 re_char *match_end = NULL;
fa9a63c5 4570
fa9a63c5
RM
4571#ifdef DEBUG
4572 /* Counts the total number of registers pushed. */
5e69f11e 4573 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4574#endif
4575
4576 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4577
fa9a63c5 4578 INIT_FAIL_STACK ();
5e69f11e 4579
fa9a63c5
RM
4580#ifdef MATCH_MAY_ALLOCATE
4581 /* Do not bother to initialize all the register variables if there are
4582 no groups in the pattern, as it takes a fair amount of time. If
4583 there are groups, we include space for register 0 (the whole
4584 pattern), even though we never use it, since it simplifies the
4585 array indexing. We should fix this. */
4586 if (bufp->re_nsub)
4587 {
66f0296e
SM
4588 regstart = REGEX_TALLOC (num_regs, re_char *);
4589 regend = REGEX_TALLOC (num_regs, re_char *);
4590 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4591 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 4592
505bde11 4593 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
4594 {
4595 FREE_VARIABLES ();
4596 return -2;
4597 }
fa9a63c5
RM
4598 }
4599 else
4600 {
4601 /* We must initialize all our variables to NULL, so that
25fe55af 4602 `FREE_VARIABLES' doesn't try to free them. */
505bde11 4603 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
4604 }
4605#endif /* MATCH_MAY_ALLOCATE */
4606
4607 /* The starting position is bogus. */
4608 if (pos < 0 || pos > size1 + size2)
4609 {
4610 FREE_VARIABLES ();
4611 return -1;
4612 }
5e69f11e 4613
fa9a63c5
RM
4614 /* Initialize subexpression text positions to -1 to mark ones that no
4615 start_memory/stop_memory has been seen for. Also initialize the
4616 register information struct. */
01618498
SM
4617 for (reg = 1; reg < num_regs; reg++)
4618 regstart[reg] = regend[reg] = NULL;
99633e97 4619
fa9a63c5 4620 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4621 `string1' is null. */
fa9a63c5
RM
4622 if (size2 == 0 && string1 != NULL)
4623 {
4624 string2 = string1;
4625 size2 = size1;
4626 string1 = 0;
4627 size1 = 0;
4628 }
4629 end1 = string1 + size1;
4630 end2 = string2 + size2;
4631
5e69f11e 4632 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4633 `dend' is the end of the input string that `d' points within. `d'
4634 is advanced into the following input string whenever necessary, but
4635 this happens before fetching; therefore, at the beginning of the
4636 loop, `d' can be pointing at the end of a string, but it cannot
4637 equal `string2'. */
419d1c74 4638 if (pos >= size1)
fa9a63c5 4639 {
419d1c74
SM
4640 /* Only match within string2. */
4641 d = string2 + pos - size1;
4642 dend = end_match_2 = string2 + stop - size1;
4643 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
4644 }
4645 else
4646 {
f1ad044f 4647 if (stop < size1)
419d1c74
SM
4648 {
4649 /* Only match within string1. */
4650 end_match_1 = string1 + stop;
4651 /* BEWARE!
4652 When we reach end_match_1, PREFETCH normally switches to string2.
4653 But in the present case, this means that just doing a PREFETCH
4654 makes us jump from `stop' to `gap' within the string.
4655 What we really want here is for the search to stop as
4656 soon as we hit end_match_1. That's why we set end_match_2
4657 to end_match_1 (since PREFETCH fails as soon as we hit
4658 end_match_2). */
4659 end_match_2 = end_match_1;
4660 }
4661 else
f1ad044f
SM
4662 { /* It's important to use this code when stop == size so that
4663 moving `d' from end1 to string2 will not prevent the d == dend
4664 check from catching the end of string. */
419d1c74
SM
4665 end_match_1 = end1;
4666 end_match_2 = string2 + stop - size1;
4667 }
4668 d = string1 + pos;
4669 dend = end_match_1;
fa9a63c5
RM
4670 }
4671
4672 DEBUG_PRINT1 ("The compiled pattern is: ");
4673 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4674 DEBUG_PRINT1 ("The string to match is: `");
4675 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4676 DEBUG_PRINT1 ("'\n");
5e69f11e 4677
25fe55af 4678 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
4679 function if the match is complete, or it drops through if the match
4680 fails at this starting point in the input data. */
4681 for (;;)
4682 {
505bde11 4683 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
4684
4685 if (p == pend)
4686 { /* End of pattern means we might have succeeded. */
25fe55af 4687 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 4688
fa9a63c5 4689 /* If we haven't matched the entire string, and we want the
25fe55af
RS
4690 longest match, try backtracking. */
4691 if (d != end_match_2)
fa9a63c5
RM
4692 {
4693 /* 1 if this match ends in the same string (string1 or string2)
4694 as the best previous match. */
5e69f11e 4695 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 4696 == FIRST_STRING_P (d));
fa9a63c5
RM
4697 /* 1 if this match is the best seen so far. */
4698 boolean best_match_p;
4699
4700 /* AIX compiler got confused when this was combined
25fe55af 4701 with the previous declaration. */
fa9a63c5
RM
4702 if (same_str_p)
4703 best_match_p = d > match_end;
4704 else
99633e97 4705 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 4706
25fe55af
RS
4707 DEBUG_PRINT1 ("backtracking.\n");
4708
4709 if (!FAIL_STACK_EMPTY ())
4710 { /* More failure points to try. */
4711
4712 /* If exceeds best match so far, save it. */
4713 if (!best_regs_set || best_match_p)
4714 {
4715 best_regs_set = true;
4716 match_end = d;
4717
4718 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4719
01618498 4720 for (reg = 1; reg < num_regs; reg++)
25fe55af 4721 {
01618498
SM
4722 best_regstart[reg] = regstart[reg];
4723 best_regend[reg] = regend[reg];
25fe55af
RS
4724 }
4725 }
4726 goto fail;
4727 }
4728
4729 /* If no failure points, don't restore garbage. And if
4730 last match is real best match, don't restore second
4731 best one. */
4732 else if (best_regs_set && !best_match_p)
4733 {
4734 restore_best_regs:
4735 /* Restore best match. It may happen that `dend ==
4736 end_match_1' while the restored d is in string2.
4737 For example, the pattern `x.*y.*z' against the
4738 strings `x-' and `y-z-', if the two strings are
4739 not consecutive in memory. */
4740 DEBUG_PRINT1 ("Restoring best registers.\n");
4741
4742 d = match_end;
4743 dend = ((d >= string1 && d <= end1)
4744 ? end_match_1 : end_match_2);
fa9a63c5 4745
01618498 4746 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 4747 {
01618498
SM
4748 regstart[reg] = best_regstart[reg];
4749 regend[reg] = best_regend[reg];
fa9a63c5 4750 }
25fe55af
RS
4751 }
4752 } /* d != end_match_2 */
fa9a63c5
RM
4753
4754 succeed_label:
25fe55af 4755 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 4756
25fe55af
RS
4757 /* If caller wants register contents data back, do it. */
4758 if (regs && !bufp->no_sub)
fa9a63c5 4759 {
25fe55af
RS
4760 /* Have the register data arrays been allocated? */
4761 if (bufp->regs_allocated == REGS_UNALLOCATED)
4762 { /* No. So allocate them with malloc. We need one
4763 extra element beyond `num_regs' for the `-1' marker
4764 GNU code uses. */
4765 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4766 regs->start = TALLOC (regs->num_regs, regoff_t);
4767 regs->end = TALLOC (regs->num_regs, regoff_t);
4768 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4769 {
4770 FREE_VARIABLES ();
4771 return -2;
4772 }
25fe55af
RS
4773 bufp->regs_allocated = REGS_REALLOCATE;
4774 }
4775 else if (bufp->regs_allocated == REGS_REALLOCATE)
4776 { /* Yes. If we need more elements than were already
4777 allocated, reallocate them. If we need fewer, just
4778 leave it alone. */
4779 if (regs->num_regs < num_regs + 1)
4780 {
4781 regs->num_regs = num_regs + 1;
4782 RETALLOC (regs->start, regs->num_regs, regoff_t);
4783 RETALLOC (regs->end, regs->num_regs, regoff_t);
4784 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4785 {
4786 FREE_VARIABLES ();
4787 return -2;
4788 }
25fe55af
RS
4789 }
4790 }
4791 else
fa9a63c5
RM
4792 {
4793 /* These braces fend off a "empty body in an else-statement"
25fe55af 4794 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
4795 assert (bufp->regs_allocated == REGS_FIXED);
4796 }
4797
25fe55af
RS
4798 /* Convert the pointer data in `regstart' and `regend' to
4799 indices. Register zero has to be set differently,
4800 since we haven't kept track of any info for it. */
4801 if (regs->num_regs > 0)
4802 {
4803 regs->start[0] = pos;
99633e97 4804 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 4805 }
5e69f11e 4806
25fe55af
RS
4807 /* Go through the first `min (num_regs, regs->num_regs)'
4808 registers, since that is all we initialized. */
01618498 4809 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 4810 {
01618498
SM
4811 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
4812 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
4813 else
4814 {
01618498
SM
4815 regs->start[reg]
4816 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
4817 regs->end[reg]
4818 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 4819 }
fa9a63c5 4820 }
5e69f11e 4821
25fe55af
RS
4822 /* If the regs structure we return has more elements than
4823 were in the pattern, set the extra elements to -1. If
4824 we (re)allocated the registers, this is the case,
4825 because we always allocate enough to have at least one
4826 -1 at the end. */
01618498
SM
4827 for (reg = num_regs; reg < regs->num_regs; reg++)
4828 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
4829 } /* regs && !bufp->no_sub */
4830
25fe55af
RS
4831 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4832 nfailure_points_pushed, nfailure_points_popped,
4833 nfailure_points_pushed - nfailure_points_popped);
4834 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 4835
99633e97 4836 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 4837
25fe55af 4838 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 4839
25fe55af
RS
4840 FREE_VARIABLES ();
4841 return mcnt;
4842 }
fa9a63c5 4843
25fe55af 4844 /* Otherwise match next pattern command. */
fa9a63c5
RM
4845 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4846 {
25fe55af
RS
4847 /* Ignore these. Used to ignore the n of succeed_n's which
4848 currently have n == 0. */
4849 case no_op:
4850 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4851 break;
fa9a63c5
RM
4852
4853 case succeed:
25fe55af 4854 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
4855 goto succeed_label;
4856
25fe55af
RS
4857 /* Match the next n pattern characters exactly. The following
4858 byte in the pattern defines n, and the n bytes after that
4859 are the characters to match. */
fa9a63c5
RM
4860 case exactn:
4861 mcnt = *p++;
25fe55af 4862 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 4863
99633e97
SM
4864 /* Remember the start point to rollback upon failure. */
4865 dfail = d;
4866
25fe55af
RS
4867 /* This is written out as an if-else so we don't waste time
4868 testing `translate' inside the loop. */
28703c16 4869 if (RE_TRANSLATE_P (translate))
fa9a63c5 4870 {
e934739e
RS
4871 if (multibyte)
4872 do
4873 {
4874 int pat_charlen, buf_charlen;
e71b1971 4875 unsigned int pat_ch, buf_ch;
e934739e
RS
4876
4877 PREFETCH ();
4878 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
4879 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4880
4881 if (RE_TRANSLATE (translate, buf_ch)
4882 != pat_ch)
99633e97
SM
4883 {
4884 d = dfail;
4885 goto fail;
4886 }
e934739e
RS
4887
4888 p += pat_charlen;
4889 d += buf_charlen;
4890 mcnt -= pat_charlen;
4891 }
4892 while (mcnt > 0);
4893 else
e934739e
RS
4894 do
4895 {
4896 PREFETCH ();
66f0296e 4897 if (RE_TRANSLATE (translate, *d) != *p++)
99633e97
SM
4898 {
4899 d = dfail;
4900 goto fail;
4901 }
33c46939 4902 d++;
e934739e
RS
4903 }
4904 while (--mcnt);
fa9a63c5
RM
4905 }
4906 else
4907 {
4908 do
4909 {
4910 PREFETCH ();
99633e97
SM
4911 if (*d++ != *p++)
4912 {
4913 d = dfail;
4914 goto fail;
4915 }
fa9a63c5
RM
4916 }
4917 while (--mcnt);
4918 }
25fe55af 4919 break;
fa9a63c5
RM
4920
4921
25fe55af 4922 /* Match any character except possibly a newline or a null. */
fa9a63c5 4923 case anychar:
e934739e
RS
4924 {
4925 int buf_charlen;
01618498 4926 re_wchar_t buf_ch;
fa9a63c5 4927
e934739e 4928 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 4929
e934739e 4930 PREFETCH ();
2d1675e4 4931 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
4932 buf_ch = TRANSLATE (buf_ch);
4933
4934 if ((!(bufp->syntax & RE_DOT_NEWLINE)
4935 && buf_ch == '\n')
4936 || ((bufp->syntax & RE_DOT_NOT_NULL)
4937 && buf_ch == '\000'))
4938 goto fail;
4939
e934739e
RS
4940 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4941 d += buf_charlen;
4942 }
fa9a63c5
RM
4943 break;
4944
4945
4946 case charset:
4947 case charset_not:
4948 {
b18215fc 4949 register unsigned int c;
fa9a63c5 4950 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
4951 int len;
4952
4953 /* Start of actual range_table, or end of bitmap if there is no
4954 range table. */
01618498 4955 re_char *range_table;
b18215fc 4956
96cc36cc 4957 /* Nonzero if there is a range table. */
b18215fc
RS
4958 int range_table_exists;
4959
96cc36cc
RS
4960 /* Number of ranges of range table. This is not included
4961 in the initial byte-length of the command. */
4962 int count = 0;
fa9a63c5 4963
25fe55af 4964 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 4965
b18215fc 4966 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 4967
b18215fc 4968 if (range_table_exists)
96cc36cc
RS
4969 {
4970 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
4971 EXTRACT_NUMBER_AND_INCR (count, range_table);
4972 }
b18215fc 4973
2d1675e4
SM
4974 PREFETCH ();
4975 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
4976 c = TRANSLATE (c); /* The character to match. */
b18215fc
RS
4977
4978 if (SINGLE_BYTE_CHAR_P (c))
4979 { /* Lookup bitmap. */
b18215fc
RS
4980 /* Cast to `unsigned' instead of `unsigned char' in
4981 case the bit list is a full 32 bytes long. */
4982 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
4983 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4984 not = !not;
b18215fc 4985 }
96cc36cc 4986#ifdef emacs
b18215fc 4987 else if (range_table_exists)
96cc36cc
RS
4988 {
4989 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
4990
14473664
SM
4991 if ( (class_bits & BIT_LOWER && ISLOWER (c))
4992 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
4993 | (class_bits & BIT_PUNCT && ISPUNCT (c))
4994 | (class_bits & BIT_SPACE && ISSPACE (c))
4995 | (class_bits & BIT_UPPER && ISUPPER (c))
4996 | (class_bits & BIT_WORD && ISWORD (c)))
4997 not = !not;
4998 else
4999 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5000 }
5001#endif /* emacs */
fa9a63c5 5002
96cc36cc
RS
5003 if (range_table_exists)
5004 p = CHARSET_RANGE_TABLE_END (range_table, count);
5005 else
5006 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5007
5008 if (!not) goto fail;
5e69f11e 5009
b18215fc 5010 d += len;
fa9a63c5
RM
5011 break;
5012 }
5013
5014
25fe55af 5015 /* The beginning of a group is represented by start_memory.
505bde11 5016 The argument is the register number. The text
25fe55af
RS
5017 matched within the group is recorded (in the internal
5018 registers data structure) under the register number. */
5019 case start_memory:
505bde11
SM
5020 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5021
5022 /* In case we need to undo this operation (via backtracking). */
5023 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5024
25fe55af 5025 regstart[*p] = d;
4bb91c68 5026 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5027 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5028
25fe55af 5029 /* Move past the register number and inner group count. */
505bde11 5030 p += 1;
25fe55af 5031 break;
fa9a63c5
RM
5032
5033
25fe55af 5034 /* The stop_memory opcode represents the end of a group. Its
505bde11 5035 argument is the same as start_memory's: the register number. */
fa9a63c5 5036 case stop_memory:
505bde11
SM
5037 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5038
5039 assert (!REG_UNSET (regstart[*p]));
5040 /* Strictly speaking, there should be code such as:
5041
0b32bf0e 5042 assert (REG_UNSET (regend[*p]));
505bde11
SM
5043 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5044
5045 But the only info to be pushed is regend[*p] and it is known to
5046 be UNSET, so there really isn't anything to push.
5047 Not pushing anything, on the other hand deprives us from the
5048 guarantee that regend[*p] is UNSET since undoing this operation
5049 will not reset its value properly. This is not important since
5050 the value will only be read on the next start_memory or at
5051 the very end and both events can only happen if this stop_memory
5052 is *not* undone. */
fa9a63c5 5053
25fe55af 5054 regend[*p] = d;
fa9a63c5
RM
5055 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5056
25fe55af 5057 /* Move past the register number and the inner group count. */
505bde11 5058 p += 1;
25fe55af 5059 break;
fa9a63c5
RM
5060
5061
5062 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5063 followed by the numeric value of <digit> as the register number. */
5064 case duplicate:
fa9a63c5 5065 {
66f0296e 5066 register re_char *d2, *dend2;
25fe55af 5067 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5068 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5069
25fe55af
RS
5070 /* Can't back reference a group which we've never matched. */
5071 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5072 goto fail;
5e69f11e 5073
25fe55af
RS
5074 /* Where in input to try to start matching. */
5075 d2 = regstart[regno];
5e69f11e 5076
99633e97
SM
5077 /* Remember the start point to rollback upon failure. */
5078 dfail = d;
5079
25fe55af
RS
5080 /* Where to stop matching; if both the place to start and
5081 the place to stop matching are in the same string, then
5082 set to the place to stop, otherwise, for now have to use
5083 the end of the first string. */
fa9a63c5 5084
25fe55af 5085 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5086 == FIRST_STRING_P (regend[regno]))
5087 ? regend[regno] : end_match_1);
5088 for (;;)
5089 {
5090 /* If necessary, advance to next segment in register
25fe55af 5091 contents. */
fa9a63c5
RM
5092 while (d2 == dend2)
5093 {
5094 if (dend2 == end_match_2) break;
5095 if (dend2 == regend[regno]) break;
5096
25fe55af
RS
5097 /* End of string1 => advance to string2. */
5098 d2 = string2;
5099 dend2 = regend[regno];
fa9a63c5
RM
5100 }
5101 /* At end of register contents => success */
5102 if (d2 == dend2) break;
5103
5104 /* If necessary, advance to next segment in data. */
5105 PREFETCH ();
5106
5107 /* How many characters left in this segment to match. */
5108 mcnt = dend - d;
5e69f11e 5109
fa9a63c5 5110 /* Want how many consecutive characters we can match in
25fe55af
RS
5111 one shot, so, if necessary, adjust the count. */
5112 if (mcnt > dend2 - d2)
fa9a63c5 5113 mcnt = dend2 - d2;
5e69f11e 5114
fa9a63c5 5115 /* Compare that many; failure if mismatch, else move
25fe55af 5116 past them. */
28703c16 5117 if (RE_TRANSLATE_P (translate)
2d1675e4 5118 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4bb91c68 5119 : memcmp (d, d2, mcnt))
99633e97
SM
5120 {
5121 d = dfail;
5122 goto fail;
5123 }
fa9a63c5 5124 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5125 }
5126 }
5127 break;
5128
5129
25fe55af 5130 /* begline matches the empty string at the beginning of the string
c0f9ea08 5131 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5132 case begline:
25fe55af 5133 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5134
25fe55af
RS
5135 if (AT_STRINGS_BEG (d))
5136 {
5137 if (!bufp->not_bol) break;
5138 }
419d1c74 5139 else
25fe55af 5140 {
419d1c74
SM
5141 unsigned char c;
5142 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5143 if (c == '\n')
419d1c74 5144 break;
25fe55af
RS
5145 }
5146 /* In all other cases, we fail. */
5147 goto fail;
fa9a63c5
RM
5148
5149
25fe55af 5150 /* endline is the dual of begline. */
fa9a63c5 5151 case endline:
25fe55af 5152 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5153
25fe55af
RS
5154 if (AT_STRINGS_END (d))
5155 {
5156 if (!bufp->not_eol) break;
5157 }
f1ad044f 5158 else
25fe55af 5159 {
f1ad044f 5160 PREFETCH_NOLIMIT ();
c0f9ea08 5161 if (*d == '\n')
f1ad044f 5162 break;
25fe55af
RS
5163 }
5164 goto fail;
fa9a63c5
RM
5165
5166
5167 /* Match at the very beginning of the data. */
25fe55af
RS
5168 case begbuf:
5169 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5170 if (AT_STRINGS_BEG (d))
5171 break;
5172 goto fail;
fa9a63c5
RM
5173
5174
5175 /* Match at the very end of the data. */
25fe55af
RS
5176 case endbuf:
5177 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5178 if (AT_STRINGS_END (d))
5179 break;
25fe55af 5180 goto fail;
5e69f11e 5181
5e69f11e 5182
25fe55af
RS
5183 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5184 pushes NULL as the value for the string on the stack. Then
505bde11 5185 `POP_FAILURE_POINT' will keep the current value for the
25fe55af
RS
5186 string, instead of restoring it. To see why, consider
5187 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5188 then the . fails against the \n. But the next thing we want
5189 to do is match the \n against the \n; if we restored the
5190 string value, we would be back at the foo.
5191
5192 Because this is used only in specific cases, we don't need to
5193 check all the things that `on_failure_jump' does, to make
5194 sure the right things get saved on the stack. Hence we don't
5195 share its code. The only reason to push anything on the
5196 stack at all is that otherwise we would have to change
5197 `anychar's code to do something besides goto fail in this
5198 case; that seems worse than this. */
5199 case on_failure_keep_string_jump:
505bde11
SM
5200 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5201 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5202 mcnt, p + mcnt);
fa9a63c5 5203
505bde11
SM
5204 PUSH_FAILURE_POINT (p - 3, NULL);
5205 break;
5206
0683b6fa
SM
5207 /* A nasty loop is introduced by the non-greedy *? and +?.
5208 With such loops, the stack only ever contains one failure point
5209 at a time, so that a plain on_failure_jump_loop kind of
5210 cycle detection cannot work. Worse yet, such a detection
5211 can not only fail to detect a cycle, but it can also wrongly
5212 detect a cycle (between different instantiations of the same
5213 loop.
5214 So the method used for those nasty loops is a little different:
5215 We use a special cycle-detection-stack-frame which is pushed
5216 when the on_failure_jump_nastyloop failure-point is *popped*.
5217 This special frame thus marks the beginning of one iteration
5218 through the loop and we can hence easily check right here
5219 whether something matched between the beginning and the end of
5220 the loop. */
5221 case on_failure_jump_nastyloop:
5222 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5223 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5224 mcnt, p + mcnt);
5225
5226 assert ((re_opcode_t)p[-4] == no_op);
5227 CHECK_INFINITE_LOOP (p - 4, d);
5228 PUSH_FAILURE_POINT (p - 3, d);
5229 break;
5230
505bde11 5231
4e8a9132
SM
5232 /* Simple loop detecting on_failure_jump: just check on the
5233 failure stack if the same spot was already hit earlier. */
505bde11
SM
5234 case on_failure_jump_loop:
5235 on_failure:
5236 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5237 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5238 mcnt, p + mcnt);
5239
5240 CHECK_INFINITE_LOOP (p - 3, d);
5241 PUSH_FAILURE_POINT (p - 3, d);
25fe55af 5242 break;
fa9a63c5
RM
5243
5244
5245 /* Uses of on_failure_jump:
5e69f11e 5246
25fe55af
RS
5247 Each alternative starts with an on_failure_jump that points
5248 to the beginning of the next alternative. Each alternative
5249 except the last ends with a jump that in effect jumps past
5250 the rest of the alternatives. (They really jump to the
5251 ending jump of the following alternative, because tensioning
5252 these jumps is a hassle.)
fa9a63c5 5253
25fe55af
RS
5254 Repeats start with an on_failure_jump that points past both
5255 the repetition text and either the following jump or
5256 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5257 case on_failure_jump:
5b370c2b 5258 IMMEDIATE_QUIT_CHECK;
25fe55af 5259 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5260 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5261 mcnt, p + mcnt);
25fe55af 5262
505bde11 5263 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5264 break;
5265
4e8a9132 5266 /* This operation is used for greedy *.
505bde11
SM
5267 Compare the beginning of the repeat with what in the
5268 pattern follows its end. If we can establish that there
5269 is nothing that they would both match, i.e., that we
5270 would have to backtrack because of (as in, e.g., `a*a')
5271 then we can use a non-backtracking loop based on
4e8a9132 5272 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5273 case on_failure_jump_smart:
5b370c2b 5274 IMMEDIATE_QUIT_CHECK;
25fe55af 5275 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5276 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5277 mcnt, p + mcnt);
25fe55af 5278 {
01618498 5279 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5280 /* Here, we discard `const', making re_match non-reentrant. */
5281 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5282 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5283
505bde11
SM
5284 p -= 3; /* Reset so that we will re-execute the
5285 instruction once it's been changed. */
fa9a63c5 5286
4e8a9132
SM
5287 EXTRACT_NUMBER (mcnt, p2 - 2);
5288
5289 /* Ensure this is a indeed the trivial kind of loop
5290 we are expecting. */
5291 assert (skip_one_char (p1) == p2 - 3);
5292 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5293 DEBUG_STATEMENT (debug += 2);
505bde11 5294 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5295 {
505bde11 5296 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5297 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5298 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5299 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5300 }
505bde11 5301 else
fa9a63c5 5302 {
505bde11
SM
5303 /* Default to a safe `on_failure_jump' loop. */
5304 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5305 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5306 }
99633e97 5307 DEBUG_STATEMENT (debug -= 2);
25fe55af 5308 }
505bde11 5309 break;
25fe55af
RS
5310
5311 /* Unconditionally jump (without popping any failure points). */
5312 case jump:
fa9a63c5 5313 unconditional_jump:
5b370c2b 5314 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5315 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5316 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5317 p += mcnt; /* Do the jump. */
505bde11 5318 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5319 break;
5320
5321
25fe55af
RS
5322 /* Have to succeed matching what follows at least n times.
5323 After that, handle like `on_failure_jump'. */
5324 case succeed_n:
01618498 5325 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5326 EXTRACT_NUMBER (mcnt, p + 2);
5327 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5328
dc1e502d
SM
5329 /* Originally, mcnt is how many times we HAVE to succeed. */
5330 if (mcnt != 0)
25fe55af 5331 {
6dcf2d0e
SM
5332 /* Here, we discard `const', making re_match non-reentrant. */
5333 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5334 mcnt--;
01618498
SM
5335 p += 4;
5336 PUSH_NUMBER (p2, mcnt);
25fe55af 5337 }
dc1e502d
SM
5338 else
5339 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5340 goto on_failure;
25fe55af
RS
5341 break;
5342
5343 case jump_n:
01618498 5344 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5345 EXTRACT_NUMBER (mcnt, p + 2);
5346 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5347
5348 /* Originally, this is how many times we CAN jump. */
dc1e502d 5349 if (mcnt != 0)
25fe55af 5350 {
6dcf2d0e
SM
5351 /* Here, we discard `const', making re_match non-reentrant. */
5352 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5353 mcnt--;
01618498 5354 PUSH_NUMBER (p2, mcnt);
dc1e502d 5355 goto unconditional_jump;
25fe55af
RS
5356 }
5357 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5358 else
5359 p += 4;
25fe55af 5360 break;
5e69f11e 5361
fa9a63c5
RM
5362 case set_number_at:
5363 {
01618498 5364 unsigned char *p2; /* Location of the counter. */
25fe55af 5365 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5366
25fe55af 5367 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5368 /* Here, we discard `const', making re_match non-reentrant. */
5369 p2 = (unsigned char*) p + mcnt;
01618498 5370 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5371 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5372 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5373 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5374 break;
5375 }
9121ca40
KH
5376
5377 case wordbound:
66f0296e
SM
5378 case notwordbound:
5379 not = (re_opcode_t) *(p - 1) == notwordbound;
5380 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5381
99633e97 5382 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5383
b18215fc 5384 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5385 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5386 not = !not;
b18215fc
RS
5387 else
5388 {
5389 /* C1 is the character before D, S1 is the syntax of C1, C2
5390 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5391 re_wchar_t c1, c2;
5392 int s1, s2;
b18215fc 5393#ifdef emacs
2d1675e4
SM
5394 int offset = PTR_TO_OFFSET (d - 1);
5395 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5396 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5397#endif
66f0296e 5398 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5399 s1 = SYNTAX (c1);
5400#ifdef emacs
5d967c7a 5401 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5402#endif
f1ad044f 5403 PREFETCH_NOLIMIT ();
2d1675e4 5404 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc
RS
5405 s2 = SYNTAX (c2);
5406
5407 if (/* Case 2: Only one of S1 and S2 is Sword. */
5408 ((s1 == Sword) != (s2 == Sword))
5409 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5410 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5411 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5412 not = !not;
5413 }
5414 if (not)
9121ca40 5415 break;
b18215fc 5416 else
9121ca40 5417 goto fail;
fa9a63c5
RM
5418
5419 case wordbeg:
25fe55af 5420 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5421
b18215fc
RS
5422 /* We FAIL in one of the following cases: */
5423
25fe55af 5424 /* Case 1: D is at the end of string. */
b18215fc 5425 if (AT_STRINGS_END (d))
99633e97 5426 goto fail;
b18215fc
RS
5427 else
5428 {
5429 /* C1 is the character before D, S1 is the syntax of C1, C2
5430 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5431 re_wchar_t c1, c2;
5432 int s1, s2;
fa9a63c5 5433#ifdef emacs
2d1675e4
SM
5434 int offset = PTR_TO_OFFSET (d);
5435 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5436 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5437#endif
99633e97 5438 PREFETCH ();
2d1675e4 5439 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc 5440 s2 = SYNTAX (c2);
25fe55af 5441
b18215fc
RS
5442 /* Case 2: S2 is not Sword. */
5443 if (s2 != Sword)
5444 goto fail;
5445
5446 /* Case 3: D is not at the beginning of string ... */
5447 if (!AT_STRINGS_BEG (d))
5448 {
5449 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5450#ifdef emacs
5d967c7a 5451 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5452#endif
b18215fc
RS
5453 s1 = SYNTAX (c1);
5454
5455 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5456 returns 0. */
b18215fc
RS
5457 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5458 goto fail;
5459 }
5460 }
e318085a
RS
5461 break;
5462
b18215fc 5463 case wordend:
25fe55af 5464 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5465
5466 /* We FAIL in one of the following cases: */
5467
5468 /* Case 1: D is at the beginning of string. */
5469 if (AT_STRINGS_BEG (d))
e318085a 5470 goto fail;
b18215fc
RS
5471 else
5472 {
5473 /* C1 is the character before D, S1 is the syntax of C1, C2
5474 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5475 re_wchar_t c1, c2;
5476 int s1, s2;
5d967c7a 5477#ifdef emacs
2d1675e4
SM
5478 int offset = PTR_TO_OFFSET (d) - 1;
5479 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5480 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5481#endif
99633e97 5482 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5483 s1 = SYNTAX (c1);
5484
5485 /* Case 2: S1 is not Sword. */
5486 if (s1 != Sword)
5487 goto fail;
5488
5489 /* Case 3: D is not at the end of string ... */
5490 if (!AT_STRINGS_END (d))
5491 {
f1ad044f 5492 PREFETCH_NOLIMIT ();
2d1675e4 5493 c2 = RE_STRING_CHAR (d, dend - d);
5d967c7a
RS
5494#ifdef emacs
5495 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5496#endif
b18215fc
RS
5497 s2 = SYNTAX (c2);
5498
5499 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5500 returns 0. */
b18215fc 5501 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5502 goto fail;
b18215fc
RS
5503 }
5504 }
e318085a
RS
5505 break;
5506
fa9a63c5 5507 case syntaxspec:
1fb352e0
SM
5508 case notsyntaxspec:
5509 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 5510 mcnt = *p++;
1fb352e0 5511 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 5512 PREFETCH ();
b18215fc
RS
5513#ifdef emacs
5514 {
2d1675e4
SM
5515 int offset = PTR_TO_OFFSET (d);
5516 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
5517 UPDATE_SYNTAX_TABLE (pos1);
5518 }
25fe55af 5519#endif
b18215fc 5520 {
01618498
SM
5521 int len;
5522 re_wchar_t c;
b18215fc 5523
2d1675e4 5524 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5525
990b2375 5526 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 5527 goto fail;
b18215fc
RS
5528 d += len;
5529 }
fa9a63c5
RM
5530 break;
5531
b18215fc 5532#ifdef emacs
1fb352e0
SM
5533 case before_dot:
5534 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5535 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 5536 goto fail;
b18215fc
RS
5537 break;
5538
1fb352e0
SM
5539 case at_dot:
5540 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5541 if (PTR_BYTE_POS (d) != PT_BYTE)
5542 goto fail;
5543 break;
b18215fc 5544
1fb352e0
SM
5545 case after_dot:
5546 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5547 if (PTR_BYTE_POS (d) <= PT_BYTE)
5548 goto fail;
e318085a 5549 break;
fa9a63c5 5550
1fb352e0 5551 case categoryspec:
b18215fc 5552 case notcategoryspec:
1fb352e0 5553 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 5554 mcnt = *p++;
1fb352e0 5555 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
5556 PREFETCH ();
5557 {
01618498
SM
5558 int len;
5559 re_wchar_t c;
5560
2d1675e4 5561 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5562
1fb352e0 5563 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
5564 goto fail;
5565 d += len;
5566 }
fa9a63c5 5567 break;
5e69f11e 5568
1fb352e0 5569#endif /* emacs */
5e69f11e 5570
0b32bf0e
SM
5571 default:
5572 abort ();
fa9a63c5 5573 }
b18215fc 5574 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
5575
5576
5577 /* We goto here if a matching operation fails. */
5578 fail:
5b370c2b 5579 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5580 if (!FAIL_STACK_EMPTY ())
505bde11 5581 {
01618498 5582 re_char *str, *pat;
505bde11 5583 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
5584 DEBUG_PRINT1 ("\nFAIL:\n");
5585 POP_FAILURE_POINT (str, pat);
505bde11
SM
5586 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
5587 {
5588 case on_failure_keep_string_jump:
5589 assert (str == NULL);
5590 goto continue_failure_jump;
5591
0683b6fa
SM
5592 case on_failure_jump_nastyloop:
5593 assert ((re_opcode_t)pat[-2] == no_op);
5594 PUSH_FAILURE_POINT (pat - 2, str);
5595 /* Fallthrough */
5596
505bde11
SM
5597 case on_failure_jump_loop:
5598 case on_failure_jump:
5599 case succeed_n:
5600 d = str;
5601 continue_failure_jump:
5602 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
5603 p = pat + mcnt;
5604 break;
b18215fc 5605
0683b6fa
SM
5606 case no_op:
5607 /* A special frame used for nastyloops. */
5608 goto fail;
5609
505bde11
SM
5610 default:
5611 abort();
5612 }
fa9a63c5 5613
505bde11 5614 assert (p >= bufp->buffer && p <= pend);
b18215fc 5615
0b32bf0e 5616 if (d >= string1 && d <= end1)
fa9a63c5 5617 dend = end_match_1;
0b32bf0e 5618 }
fa9a63c5 5619 else
0b32bf0e 5620 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
5621 } /* for (;;) */
5622
5623 if (best_regs_set)
5624 goto restore_best_regs;
5625
5626 FREE_VARIABLES ();
5627
b18215fc 5628 return -1; /* Failure to match. */
fa9a63c5
RM
5629} /* re_match_2 */
5630\f
5631/* Subroutine definitions for re_match_2. */
5632
fa9a63c5
RM
5633/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5634 bytes; nonzero otherwise. */
5e69f11e 5635
fa9a63c5 5636static int
2d1675e4
SM
5637bcmp_translate (s1, s2, len, translate, multibyte)
5638 re_char *s1, *s2;
fa9a63c5 5639 register int len;
6676cb1c 5640 RE_TRANSLATE_TYPE translate;
2d1675e4 5641 const int multibyte;
fa9a63c5 5642{
2d1675e4
SM
5643 register re_char *p1 = s1, *p2 = s2;
5644 re_char *p1_end = s1 + len;
5645 re_char *p2_end = s2 + len;
e934739e 5646
4bb91c68
SM
5647 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
5648 different lengths, but relying on a single `len' would break this. -sm */
5649 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 5650 {
e934739e 5651 int p1_charlen, p2_charlen;
01618498 5652 re_wchar_t p1_ch, p2_ch;
e934739e 5653
2d1675e4
SM
5654 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
5655 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
e934739e
RS
5656
5657 if (RE_TRANSLATE (translate, p1_ch)
5658 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 5659 return 1;
e934739e
RS
5660
5661 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 5662 }
e934739e
RS
5663
5664 if (p1 != p1_end || p2 != p2_end)
5665 return 1;
5666
fa9a63c5
RM
5667 return 0;
5668}
5669\f
5670/* Entry points for GNU code. */
5671
5672/* re_compile_pattern is the GNU regular expression compiler: it
5673 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5674 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 5675
fa9a63c5
RM
5676 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5677 are set in BUFP on entry.
5e69f11e 5678
b18215fc 5679 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
5680
5681const char *
5682re_compile_pattern (pattern, length, bufp)
5683 const char *pattern;
0b32bf0e 5684 size_t length;
fa9a63c5
RM
5685 struct re_pattern_buffer *bufp;
5686{
5687 reg_errcode_t ret;
5e69f11e 5688
fa9a63c5
RM
5689 /* GNU code is written to assume at least RE_NREGS registers will be set
5690 (and at least one extra will be -1). */
5691 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 5692
fa9a63c5
RM
5693 /* And GNU code determines whether or not to get register information
5694 by passing null for the REGS argument to re_match, etc., not by
5695 setting no_sub. */
5696 bufp->no_sub = 0;
5e69f11e 5697
4bb91c68 5698 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
5699
5700 if (!ret)
5701 return NULL;
5702 return gettext (re_error_msgid[(int) ret]);
5e69f11e 5703}
c0f9ea08 5704WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 5705\f
b18215fc
RS
5706/* Entry points compatible with 4.2 BSD regex library. We don't define
5707 them unless specifically requested. */
fa9a63c5 5708
0b32bf0e 5709#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
5710
5711/* BSD has one and only one pattern buffer. */
5712static struct re_pattern_buffer re_comp_buf;
5713
5714char *
0b32bf0e 5715# ifdef _LIBC
48afdd44
RM
5716/* Make these definitions weak in libc, so POSIX programs can redefine
5717 these names if they don't use our functions, and still use
5718 regcomp/regexec below without link errors. */
5719weak_function
0b32bf0e 5720# endif
fa9a63c5
RM
5721re_comp (s)
5722 const char *s;
5723{
5724 reg_errcode_t ret;
5e69f11e 5725
fa9a63c5
RM
5726 if (!s)
5727 {
5728 if (!re_comp_buf.buffer)
0b32bf0e 5729 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 5730 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
5731 return 0;
5732 }
5733
5734 if (!re_comp_buf.buffer)
5735 {
5736 re_comp_buf.buffer = (unsigned char *) malloc (200);
5737 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
5738 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5739 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
5740 re_comp_buf.allocated = 200;
5741
5742 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5743 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
5744 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5745 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
5746 }
5747
5748 /* Since `re_exec' always passes NULL for the `regs' argument, we
5749 don't need to initialize the pattern buffer fields which affect it. */
5750
fa9a63c5 5751 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 5752
fa9a63c5
RM
5753 if (!ret)
5754 return NULL;
5755
5756 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5757 return (char *) gettext (re_error_msgid[(int) ret]);
5758}
5759
5760
5761int
0b32bf0e 5762# ifdef _LIBC
48afdd44 5763weak_function
0b32bf0e 5764# endif
fa9a63c5
RM
5765re_exec (s)
5766 const char *s;
5767{
5768 const int len = strlen (s);
5769 return
5770 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5771}
5772#endif /* _REGEX_RE_COMP */
5773\f
5774/* POSIX.2 functions. Don't define these for Emacs. */
5775
5776#ifndef emacs
5777
5778/* regcomp takes a regular expression as a string and compiles it.
5779
b18215fc 5780 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
5781 since POSIX says we shouldn't. Thus, we set
5782
5783 `buffer' to the compiled pattern;
5784 `used' to the length of the compiled pattern;
5785 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5786 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5787 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
5788 `fastmap' to an allocated space for the fastmap;
5789 `fastmap_accurate' to zero;
fa9a63c5
RM
5790 `re_nsub' to the number of subexpressions in PATTERN.
5791
5792 PATTERN is the address of the pattern string.
5793
5794 CFLAGS is a series of bits which affect compilation.
5795
5796 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5797 use POSIX basic syntax.
5798
5799 If REG_NEWLINE is set, then . and [^...] don't match newline.
5800 Also, regexec will try a match beginning after every newline.
5801
5802 If REG_ICASE is set, then we considers upper- and lowercase
5803 versions of letters to be equivalent when matching.
5804
5805 If REG_NOSUB is set, then when PREG is passed to regexec, that
5806 routine will report only success or failure, and nothing about the
5807 registers.
5808
b18215fc 5809 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
5810 the return codes and their meanings.) */
5811
5812int
5813regcomp (preg, pattern, cflags)
5814 regex_t *preg;
5e69f11e 5815 const char *pattern;
fa9a63c5
RM
5816 int cflags;
5817{
5818 reg_errcode_t ret;
4bb91c68 5819 reg_syntax_t syntax
fa9a63c5
RM
5820 = (cflags & REG_EXTENDED) ?
5821 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5822
5823 /* regex_compile will allocate the space for the compiled pattern. */
5824 preg->buffer = 0;
5825 preg->allocated = 0;
5826 preg->used = 0;
5e69f11e 5827
c0f9ea08
SM
5828 /* Try to allocate space for the fastmap. */
5829 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 5830
fa9a63c5
RM
5831 if (cflags & REG_ICASE)
5832 {
5833 unsigned i;
5e69f11e 5834
6676cb1c
RS
5835 preg->translate
5836 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5837 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 5838 if (preg->translate == NULL)
0b32bf0e 5839 return (int) REG_ESPACE;
fa9a63c5
RM
5840
5841 /* Map uppercase characters to corresponding lowercase ones. */
5842 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 5843 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
5844 }
5845 else
5846 preg->translate = NULL;
5847
5848 /* If REG_NEWLINE is set, newlines are treated differently. */
5849 if (cflags & REG_NEWLINE)
5850 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5851 syntax &= ~RE_DOT_NEWLINE;
5852 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
5853 }
5854 else
c0f9ea08 5855 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
5856
5857 preg->no_sub = !!(cflags & REG_NOSUB);
5858
5e69f11e 5859 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 5860 can use strlen here in compiling the pattern. */
4bb91c68 5861 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 5862
fa9a63c5
RM
5863 /* POSIX doesn't distinguish between an unmatched open-group and an
5864 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
5865 if (ret == REG_ERPAREN)
5866 ret = REG_EPAREN;
5867
5868 if (ret == REG_NOERROR && preg->fastmap)
5869 { /* Compute the fastmap now, since regexec cannot modify the pattern
5870 buffer. */
5871 re_compile_fastmap (preg);
5872 if (preg->can_be_null)
5873 { /* The fastmap can't be used anyway. */
5874 free (preg->fastmap);
5875 preg->fastmap = NULL;
5876 }
5877 }
fa9a63c5
RM
5878 return (int) ret;
5879}
c0f9ea08 5880WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
5881
5882
5883/* regexec searches for a given pattern, specified by PREG, in the
5884 string STRING.
5e69f11e 5885
fa9a63c5 5886 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 5887 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
5888 least NMATCH elements, and we set them to the offsets of the
5889 corresponding matched substrings.
5e69f11e 5890
fa9a63c5
RM
5891 EFLAGS specifies `execution flags' which affect matching: if
5892 REG_NOTBOL is set, then ^ does not match at the beginning of the
5893 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 5894
fa9a63c5
RM
5895 We return 0 if we find a match and REG_NOMATCH if not. */
5896
5897int
5898regexec (preg, string, nmatch, pmatch, eflags)
5899 const regex_t *preg;
5e69f11e
RM
5900 const char *string;
5901 size_t nmatch;
5902 regmatch_t pmatch[];
fa9a63c5
RM
5903 int eflags;
5904{
5905 int ret;
5906 struct re_registers regs;
5907 regex_t private_preg;
5908 int len = strlen (string);
c0f9ea08 5909 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
5910
5911 private_preg = *preg;
5e69f11e 5912
fa9a63c5
RM
5913 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5914 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 5915
fa9a63c5
RM
5916 /* The user has told us exactly how many registers to return
5917 information about, via `nmatch'. We have to pass that on to the
b18215fc 5918 matching routines. */
fa9a63c5 5919 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 5920
fa9a63c5
RM
5921 if (want_reg_info)
5922 {
5923 regs.num_regs = nmatch;
4bb91c68
SM
5924 regs.start = TALLOC (nmatch * 2, regoff_t);
5925 if (regs.start == NULL)
0b32bf0e 5926 return (int) REG_NOMATCH;
4bb91c68 5927 regs.end = regs.start + nmatch;
fa9a63c5
RM
5928 }
5929
c0f9ea08
SM
5930 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
5931 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
5932 was a little bit longer but still only matching the real part.
5933 This works because the `endline' will check for a '\n' and will find a
5934 '\0', correctly deciding that this is not the end of a line.
5935 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
5936 a convenient '\0' there. For all we know, the string could be preceded
5937 by '\n' which would throw things off. */
5938
fa9a63c5
RM
5939 /* Perform the searching operation. */
5940 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
5941 /* start: */ 0, /* range: */ len,
5942 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 5943
fa9a63c5
RM
5944 /* Copy the register information to the POSIX structure. */
5945 if (want_reg_info)
5946 {
5947 if (ret >= 0)
0b32bf0e
SM
5948 {
5949 unsigned r;
fa9a63c5 5950
0b32bf0e
SM
5951 for (r = 0; r < nmatch; r++)
5952 {
5953 pmatch[r].rm_so = regs.start[r];
5954 pmatch[r].rm_eo = regs.end[r];
5955 }
5956 }
fa9a63c5 5957
b18215fc 5958 /* If we needed the temporary register info, free the space now. */
fa9a63c5 5959 free (regs.start);
fa9a63c5
RM
5960 }
5961
5962 /* We want zero return to mean success, unlike `re_search'. */
5963 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5964}
c0f9ea08 5965WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
5966
5967
5968/* Returns a message corresponding to an error code, ERRCODE, returned
5969 from either regcomp or regexec. We don't use PREG here. */
5970
5971size_t
5972regerror (errcode, preg, errbuf, errbuf_size)
5973 int errcode;
5974 const regex_t *preg;
5975 char *errbuf;
5976 size_t errbuf_size;
5977{
5978 const char *msg;
5979 size_t msg_size;
5980
5981 if (errcode < 0
5982 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 5983 /* Only error codes returned by the rest of the code should be passed
b18215fc 5984 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
5985 code generates an invalid error code, then the program has a bug.
5986 Dump core so we can fix it. */
5987 abort ();
5988
5989 msg = gettext (re_error_msgid[errcode]);
5990
5991 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 5992
fa9a63c5
RM
5993 if (errbuf_size != 0)
5994 {
5995 if (msg_size > errbuf_size)
0b32bf0e
SM
5996 {
5997 strncpy (errbuf, msg, errbuf_size - 1);
5998 errbuf[errbuf_size - 1] = 0;
5999 }
fa9a63c5 6000 else
0b32bf0e 6001 strcpy (errbuf, msg);
fa9a63c5
RM
6002 }
6003
6004 return msg_size;
6005}
c0f9ea08 6006WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6007
6008
6009/* Free dynamically allocated space used by PREG. */
6010
6011void
6012regfree (preg)
6013 regex_t *preg;
6014{
6015 if (preg->buffer != NULL)
6016 free (preg->buffer);
6017 preg->buffer = NULL;
5e69f11e 6018
fa9a63c5
RM
6019 preg->allocated = 0;
6020 preg->used = 0;
6021
6022 if (preg->fastmap != NULL)
6023 free (preg->fastmap);
6024 preg->fastmap = NULL;
6025 preg->fastmap_accurate = 0;
6026
6027 if (preg->translate != NULL)
6028 free (preg->translate);
6029 preg->translate = NULL;
6030}
c0f9ea08 6031WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6032
6033#endif /* not emacs */