Update FSF's address.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
669fa600 5 Copyright (C) 1993,94,95,96,97,98,99,2000,04 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5 21
6df42991 22/* TODO:
505bde11 23 - structure the opcode space into opcode+flag.
dc1e502d 24 - merge with glibc's regex.[ch].
01618498 25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
01618498 29*/
505bde11 30
fa9a63c5 31/* AIX requires this to be the first thing in the file. */
0b32bf0e 32#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
33 #pragma alloca
34#endif
35
fa9a63c5 36#ifdef HAVE_CONFIG_H
0b32bf0e 37# include <config.h>
fa9a63c5
RM
38#endif
39
4bb91c68
SM
40#if defined STDC_HEADERS && !defined emacs
41# include <stddef.h>
42#else
43/* We need this for `regex.h', and perhaps for the Emacs include files. */
44# include <sys/types.h>
45#endif
fa9a63c5 46
14473664
SM
47/* Whether to use ISO C Amendment 1 wide char functions.
48 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
49#if defined _LIBC
50#define WIDE_CHAR_SUPPORT 1
51#else
14473664 52#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
53 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
54#endif
14473664
SM
55
56/* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
a0ad02f7 58#if WIDE_CHAR_SUPPORT
14473664
SM
59/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60# include <wchar.h>
61# include <wctype.h>
62#endif
63
c0f9ea08
SM
64#ifdef _LIBC
65/* We have to keep the namespace clean. */
66# define regfree(preg) __regfree (preg)
67# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69# define regerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71# define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75# define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77# define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79# define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81# define re_set_syntax(syntax) __re_set_syntax (syntax)
82# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
85
14473664
SM
86/* Make sure we call libc's function even if the user overrides them. */
87# define btowc __btowc
88# define iswctype __iswctype
89# define wctype __wctype
90
c0f9ea08
SM
91# define WEAK_ALIAS(a,b) weak_alias (a, b)
92
93/* We are also using some library internals. */
94# include <locale/localeinfo.h>
95# include <locale/elem-hash.h>
96# include <langinfo.h>
97#else
98# define WEAK_ALIAS(a,b)
99#endif
100
4bb91c68 101/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 102#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
103# include <libintl.h>
104#else
105# define gettext(msgid) (msgid)
106#endif
107
5e69f11e
RM
108#ifndef gettext_noop
109/* This define is so xgettext can find the internationalizable
110 strings. */
0b32bf0e 111# define gettext_noop(String) String
5e69f11e
RM
112#endif
113
fa9a63c5
RM
114/* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116#ifdef emacs
117
0b32bf0e
SM
118# include "lisp.h"
119# include "buffer.h"
b18215fc
RS
120
121/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 122# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 123
0b32bf0e
SM
124# include "syntax.h"
125# include "charset.h"
126# include "category.h"
fa9a63c5 127
7689ef0b
EZ
128# ifdef malloc
129# undef malloc
130# endif
0b32bf0e 131# define malloc xmalloc
7689ef0b
EZ
132# ifdef realloc
133# undef realloc
134# endif
0b32bf0e 135# define realloc xrealloc
7689ef0b
EZ
136# ifdef free
137# undef free
138# endif
0b32bf0e 139# define free xfree
9abbd165 140
0b32bf0e
SM
141/* Converts the pointer to the char to BEG-based offset from the start. */
142# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
143# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
144
145# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
146# define RE_STRING_CHAR(p, s) \
4e8a9132 147 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
0b32bf0e 148# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
2d1675e4
SM
149 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
150
151/* Set C a (possibly multibyte) character before P. P points into a
152 string which is the virtual concatenation of STR1 (which ends at
153 END1) or STR2 (which ends at END2). */
0b32bf0e 154# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
2d1675e4
SM
155 do { \
156 if (multibyte) \
157 { \
0b32bf0e
SM
158 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
159 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
70806df6
KH
160 re_char *d0 = dtemp; \
161 PREV_CHAR_BOUNDARY (d0, dlimit); \
162 c = STRING_CHAR (d0, dtemp - d0); \
2d1675e4
SM
163 } \
164 else \
165 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
166 } while (0)
167
4e8a9132 168
fa9a63c5
RM
169#else /* not emacs */
170
171/* If we are not linking with Emacs proper,
172 we can't use the relocating allocator
173 even if config.h says that we can. */
0b32bf0e 174# undef REL_ALLOC
fa9a63c5 175
0b32bf0e
SM
176# if defined STDC_HEADERS || defined _LIBC
177# include <stdlib.h>
178# else
fa9a63c5
RM
179char *malloc ();
180char *realloc ();
0b32bf0e 181# endif
fa9a63c5 182
9e4ecb26 183/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 184 If nothing else has been done, use the method below. */
0b32bf0e
SM
185# ifdef INHIBIT_STRING_HEADER
186# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
187# if !defined bzero && !defined bcopy
188# undef INHIBIT_STRING_HEADER
189# endif
190# endif
191# endif
9e4ecb26 192
4bb91c68 193/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
194 This is used in most programs--a few other programs avoid this
195 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
196# ifndef INHIBIT_STRING_HEADER
197# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
198# include <string.h>
0b32bf0e 199# ifndef bzero
4bb91c68
SM
200# ifndef _LIBC
201# define bzero(s, n) (memset (s, '\0', n), (s))
202# else
203# define bzero(s, n) __bzero (s, n)
204# endif
0b32bf0e
SM
205# endif
206# else
207# include <strings.h>
4bb91c68
SM
208# ifndef memcmp
209# define memcmp(s1, s2, n) bcmp (s1, s2, n)
210# endif
211# ifndef memcpy
212# define memcpy(d, s, n) (bcopy (s, d, n), (d))
213# endif
0b32bf0e
SM
214# endif
215# endif
fa9a63c5
RM
216
217/* Define the syntax stuff for \<, \>, etc. */
218
990b2375 219/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 220enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 221
0b32bf0e
SM
222# ifdef SWITCH_ENUM_BUG
223# define SWITCH_ENUM_CAST(x) ((int)(x))
224# else
225# define SWITCH_ENUM_CAST(x) (x)
226# endif
fa9a63c5 227
e934739e 228/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
229# define BASE_LEADING_CODE_P(c) (0)
230# define CHAR_CHARSET(c) 0
231# define CHARSET_LEADING_CODE_BASE(c) 0
232# define MAX_MULTIBYTE_LENGTH 1
233# define RE_MULTIBYTE_P(x) 0
234# define WORD_BOUNDARY_P(c1, c2) (0)
235# define CHAR_HEAD_P(p) (1)
236# define SINGLE_BYTE_CHAR_P(c) (1)
237# define SAME_CHARSET_P(c1, c2) (1)
238# define MULTIBYTE_FORM_LENGTH(p, s) (1)
70806df6 239# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
0b32bf0e
SM
240# define STRING_CHAR(p, s) (*(p))
241# define RE_STRING_CHAR STRING_CHAR
242# define CHAR_STRING(c, s) (*(s) = (c), 1)
243# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
244# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
245# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 246 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
0b32bf0e 247# define MAKE_CHAR(charset, c1, c2) (c1)
fa9a63c5 248#endif /* not emacs */
4e8a9132
SM
249
250#ifndef RE_TRANSLATE
0b32bf0e
SM
251# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
252# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 253#endif
fa9a63c5
RM
254\f
255/* Get the interface, including the syntax bits. */
256#include "regex.h"
257
f71b19b6
DL
258/* isalpha etc. are used for the character classes. */
259#include <ctype.h>
fa9a63c5 260
f71b19b6 261#ifdef emacs
fa9a63c5 262
f71b19b6 263/* 1 if C is an ASCII character. */
0b32bf0e 264# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 265
f71b19b6 266/* 1 if C is a unibyte character. */
0b32bf0e 267# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 268
f71b19b6 269/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 270
f71b19b6 271/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
272# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
273# define ISCNTRL(c) ((c) < ' ')
274# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
275 || ((c) >= 'a' && (c) <= 'f') \
276 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
277
278/* This is only used for single-byte characters. */
0b32bf0e 279# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
280
281/* The rest must handle multibyte characters. */
282
0b32bf0e 283# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 284 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
285 : 1)
286
14473664 287# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 288 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
289 : 1)
290
0b32bf0e 291# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
292 ? (((c) >= 'a' && (c) <= 'z') \
293 || ((c) >= 'A' && (c) <= 'Z') \
294 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
295 : SYNTAX (c) == Sword)
296
0b32bf0e 297# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
298 ? (((c) >= 'a' && (c) <= 'z') \
299 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
300 : SYNTAX (c) == Sword)
301
0b32bf0e 302# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 303
0b32bf0e 304# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
305 ? ((c) > ' ' && (c) < 0177 \
306 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
307 || ((c) >= 'A' && (c) <= 'Z') \
308 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
309 : SYNTAX (c) != Sword)
310
0b32bf0e 311# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 312
0b32bf0e 313# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 314
0b32bf0e 315# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
316
317#else /* not emacs */
318
f71b19b6
DL
319/* Jim Meyering writes:
320
321 "... Some ctype macros are valid only for character codes that
322 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
323 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 324 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
325 STDC_HEADERS is defined, then autoconf has verified that the ctype
326 macros don't need to be guarded with references to isascii. ...
327 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
328 eliminate the && through constant folding."
329 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 330
4bb91c68 331# undef ISASCII
0b32bf0e
SM
332# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
333# define ISASCII(c) 1
334# else
335# define ISASCII(c) isascii(c)
336# endif
f71b19b6
DL
337
338/* 1 if C is an ASCII character. */
0b32bf0e 339# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
340
341/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
342# define ISUNIBYTE(c) 1
343
344# ifdef isblank
345# define ISBLANK(c) (ISASCII (c) && isblank (c))
346# else
347# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
348# endif
349# ifdef isgraph
350# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
351# else
352# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
353# endif
354
4bb91c68 355# undef ISPRINT
0b32bf0e
SM
356# define ISPRINT(c) (ISASCII (c) && isprint (c))
357# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
358# define ISALNUM(c) (ISASCII (c) && isalnum (c))
359# define ISALPHA(c) (ISASCII (c) && isalpha (c))
360# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
361# define ISLOWER(c) (ISASCII (c) && islower (c))
362# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
363# define ISSPACE(c) (ISASCII (c) && isspace (c))
364# define ISUPPER(c) (ISASCII (c) && isupper (c))
365# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
366
367# define ISWORD(c) ISALPHA(c)
368
4bb91c68
SM
369# ifdef _tolower
370# define TOLOWER(c) _tolower(c)
371# else
372# define TOLOWER(c) tolower(c)
373# endif
374
375/* How many characters in the character set. */
376# define CHAR_SET_SIZE 256
377
0b32bf0e 378# ifdef SYNTAX_TABLE
f71b19b6 379
0b32bf0e 380extern char *re_syntax_table;
f71b19b6 381
0b32bf0e
SM
382# else /* not SYNTAX_TABLE */
383
0b32bf0e
SM
384static char re_syntax_table[CHAR_SET_SIZE];
385
386static void
387init_syntax_once ()
388{
389 register int c;
390 static int done = 0;
391
392 if (done)
393 return;
394
395 bzero (re_syntax_table, sizeof re_syntax_table);
396
4bb91c68
SM
397 for (c = 0; c < CHAR_SET_SIZE; ++c)
398 if (ISALNUM (c))
399 re_syntax_table[c] = Sword;
fa9a63c5 400
669fa600 401 re_syntax_table['_'] = Ssymbol;
fa9a63c5 402
0b32bf0e
SM
403 done = 1;
404}
405
406# endif /* not SYNTAX_TABLE */
96cc36cc 407
4bb91c68
SM
408# define SYNTAX(c) re_syntax_table[(c)]
409
96cc36cc
RS
410#endif /* not emacs */
411\f
fa9a63c5 412#ifndef NULL
0b32bf0e 413# define NULL (void *)0
fa9a63c5
RM
414#endif
415
416/* We remove any previous definition of `SIGN_EXTEND_CHAR',
417 since ours (we hope) works properly with all combinations of
418 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 419 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
420#undef SIGN_EXTEND_CHAR
421#if __STDC__
0b32bf0e 422# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
423#else /* not __STDC__ */
424/* As in Harbison and Steele. */
0b32bf0e 425# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
426#endif
427\f
428/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
429 use `alloca' instead of `malloc'. This is because using malloc in
430 re_search* or re_match* could cause memory leaks when C-g is used in
431 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
432 the other hand, malloc is more portable, and easier to debug.
433
fa9a63c5
RM
434 Because we sometimes use alloca, some routines have to be macros,
435 not functions -- `alloca'-allocated space disappears at the end of the
436 function it is called in. */
437
438#ifdef REGEX_MALLOC
439
0b32bf0e
SM
440# define REGEX_ALLOCATE malloc
441# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
442# define REGEX_FREE free
fa9a63c5
RM
443
444#else /* not REGEX_MALLOC */
445
446/* Emacs already defines alloca, sometimes. */
0b32bf0e 447# ifndef alloca
fa9a63c5
RM
448
449/* Make alloca work the best possible way. */
0b32bf0e
SM
450# ifdef __GNUC__
451# define alloca __builtin_alloca
452# else /* not __GNUC__ */
453# if HAVE_ALLOCA_H
454# include <alloca.h>
455# endif /* HAVE_ALLOCA_H */
456# endif /* not __GNUC__ */
fa9a63c5 457
0b32bf0e 458# endif /* not alloca */
fa9a63c5 459
0b32bf0e 460# define REGEX_ALLOCATE alloca
fa9a63c5
RM
461
462/* Assumes a `char *destination' variable. */
0b32bf0e 463# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 464 (destination = (char *) alloca (nsize), \
4bb91c68 465 memcpy (destination, source, osize))
fa9a63c5
RM
466
467/* No need to do anything to free, after alloca. */
0b32bf0e 468# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
469
470#endif /* not REGEX_MALLOC */
471
472/* Define how to allocate the failure stack. */
473
0b32bf0e 474#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 475
0b32bf0e 476# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 477 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 478# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 479 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 480# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
481 r_alloc_free (&failure_stack_ptr)
482
4297555e 483#else /* not using relocating allocator */
fa9a63c5 484
0b32bf0e 485# ifdef REGEX_MALLOC
fa9a63c5 486
0b32bf0e
SM
487# define REGEX_ALLOCATE_STACK malloc
488# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
489# define REGEX_FREE_STACK free
fa9a63c5 490
0b32bf0e 491# else /* not REGEX_MALLOC */
fa9a63c5 492
0b32bf0e 493# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 494
0b32bf0e 495# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 496 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 497/* No need to explicitly free anything. */
0b32bf0e 498# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 499
0b32bf0e 500# endif /* not REGEX_MALLOC */
4297555e 501#endif /* not using relocating allocator */
fa9a63c5
RM
502
503
504/* True if `size1' is non-NULL and PTR is pointing anywhere inside
505 `string1' or just past its end. This works if PTR is NULL, which is
506 a good thing. */
25fe55af 507#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
508 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
509
510/* (Re)Allocate N items of type T using malloc, or fail. */
511#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
512#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
513#define RETALLOC_IF(addr, n, t) \
514 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
515#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
516
4bb91c68 517#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
518
519#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
520
521#undef MAX
522#undef MIN
523#define MAX(a, b) ((a) > (b) ? (a) : (b))
524#define MIN(a, b) ((a) < (b) ? (a) : (b))
525
66f0296e
SM
526/* Type of source-pattern and string chars. */
527typedef const unsigned char re_char;
528
fa9a63c5
RM
529typedef char boolean;
530#define false 0
531#define true 1
532
4bb91c68
SM
533static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
534 re_char *string1, int size1,
535 re_char *string2, int size2,
536 int pos,
537 struct re_registers *regs,
538 int stop));
fa9a63c5
RM
539\f
540/* These are the command codes that appear in compiled regular
4bb91c68 541 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
542 command code can specify any interpretation whatsoever for its
543 arguments. Zero bytes may appear in the compiled regular expression. */
544
545typedef enum
546{
547 no_op = 0,
548
4bb91c68 549 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
550 succeed,
551
25fe55af 552 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
553 exactn,
554
25fe55af 555 /* Matches any (more or less) character. */
fa9a63c5
RM
556 anychar,
557
25fe55af
RS
558 /* Matches any one char belonging to specified set. First
559 following byte is number of bitmap bytes. Then come bytes
560 for a bitmap saying which chars are in. Bits in each byte
561 are ordered low-bit-first. A character is in the set if its
562 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
563 automatically not in the set.
564
565 If the length byte has the 0x80 bit set, then that stuff
566 is followed by a range table:
567 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 568 See RANGE_TABLE_WORK_BITS below.
01618498 569 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 570 pairs, each 2 multibyte characters,
0b32bf0e 571 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
572 charset,
573
25fe55af 574 /* Same parameters as charset, but match any character that is
4bb91c68 575 not one of those specified. */
fa9a63c5
RM
576 charset_not,
577
25fe55af
RS
578 /* Start remembering the text that is matched, for storing in a
579 register. Followed by one byte with the register number, in
580 the range 0 to one less than the pattern buffer's re_nsub
505bde11 581 field. */
fa9a63c5
RM
582 start_memory,
583
25fe55af
RS
584 /* Stop remembering the text that is matched and store it in a
585 memory register. Followed by one byte with the register
586 number, in the range 0 to one less than `re_nsub' in the
505bde11 587 pattern buffer. */
fa9a63c5
RM
588 stop_memory,
589
25fe55af 590 /* Match a duplicate of something remembered. Followed by one
4bb91c68 591 byte containing the register number. */
fa9a63c5
RM
592 duplicate,
593
25fe55af 594 /* Fail unless at beginning of line. */
fa9a63c5
RM
595 begline,
596
4bb91c68 597 /* Fail unless at end of line. */
fa9a63c5
RM
598 endline,
599
25fe55af
RS
600 /* Succeeds if at beginning of buffer (if emacs) or at beginning
601 of string to be matched (if not). */
fa9a63c5
RM
602 begbuf,
603
25fe55af 604 /* Analogously, for end of buffer/string. */
fa9a63c5 605 endbuf,
5e69f11e 606
25fe55af 607 /* Followed by two byte relative address to which to jump. */
5e69f11e 608 jump,
fa9a63c5 609
25fe55af
RS
610 /* Followed by two-byte relative address of place to resume at
611 in case of failure. */
fa9a63c5 612 on_failure_jump,
5e69f11e 613
25fe55af
RS
614 /* Like on_failure_jump, but pushes a placeholder instead of the
615 current string position when executed. */
fa9a63c5 616 on_failure_keep_string_jump,
5e69f11e 617
505bde11
SM
618 /* Just like `on_failure_jump', except that it checks that we
619 don't get stuck in an infinite loop (matching an empty string
620 indefinitely). */
621 on_failure_jump_loop,
622
0683b6fa
SM
623 /* Just like `on_failure_jump_loop', except that it checks for
624 a different kind of loop (the kind that shows up with non-greedy
625 operators). This operation has to be immediately preceded
626 by a `no_op'. */
627 on_failure_jump_nastyloop,
628
0b32bf0e 629 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
630 It analyses the loop before which it is put and if the
631 loop does not require backtracking, it changes itself to
4e8a9132
SM
632 `on_failure_keep_string_jump' and short-circuits the loop,
633 else it just defaults to changing itself into `on_failure_jump'.
634 It assumes that it is pointing to just past a `jump'. */
505bde11 635 on_failure_jump_smart,
fa9a63c5 636
25fe55af 637 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
638 After matching N times, jump to the address upon failure.
639 Does not work if N starts at 0: use on_failure_jump_loop
640 instead. */
fa9a63c5
RM
641 succeed_n,
642
25fe55af
RS
643 /* Followed by two-byte relative address, and two-byte number n.
644 Jump to the address N times, then fail. */
fa9a63c5
RM
645 jump_n,
646
25fe55af
RS
647 /* Set the following two-byte relative address to the
648 subsequent two-byte number. The address *includes* the two
649 bytes of number. */
fa9a63c5
RM
650 set_number_at,
651
fa9a63c5
RM
652 wordbeg, /* Succeeds if at word beginning. */
653 wordend, /* Succeeds if at word end. */
654
655 wordbound, /* Succeeds if at a word boundary. */
1fb352e0 656 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 657
669fa600
SM
658 symbeg, /* Succeeds if at symbol beginning. */
659 symend, /* Succeeds if at symbol end. */
660
fa9a63c5 661 /* Matches any character whose syntax is specified. Followed by
25fe55af 662 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
663 syntaxspec,
664
665 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
666 notsyntaxspec
667
668#ifdef emacs
669 ,before_dot, /* Succeeds if before point. */
670 at_dot, /* Succeeds if at point. */
671 after_dot, /* Succeeds if after point. */
b18215fc
RS
672
673 /* Matches any character whose category-set contains the specified
25fe55af
RS
674 category. The operator is followed by a byte which contains a
675 category code (mnemonic ASCII character). */
b18215fc
RS
676 categoryspec,
677
678 /* Matches any character whose category-set does not contain the
679 specified category. The operator is followed by a byte which
680 contains the category code (mnemonic ASCII character). */
681 notcategoryspec
fa9a63c5
RM
682#endif /* emacs */
683} re_opcode_t;
684\f
685/* Common operations on the compiled pattern. */
686
687/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
688
689#define STORE_NUMBER(destination, number) \
690 do { \
691 (destination)[0] = (number) & 0377; \
692 (destination)[1] = (number) >> 8; \
693 } while (0)
694
695/* Same as STORE_NUMBER, except increment DESTINATION to
696 the byte after where the number is stored. Therefore, DESTINATION
697 must be an lvalue. */
698
699#define STORE_NUMBER_AND_INCR(destination, number) \
700 do { \
701 STORE_NUMBER (destination, number); \
702 (destination) += 2; \
703 } while (0)
704
705/* Put into DESTINATION a number stored in two contiguous bytes starting
706 at SOURCE. */
707
708#define EXTRACT_NUMBER(destination, source) \
709 do { \
710 (destination) = *(source) & 0377; \
711 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
712 } while (0)
713
714#ifdef DEBUG
4bb91c68 715static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
716static void
717extract_number (dest, source)
718 int *dest;
01618498 719 re_char *source;
fa9a63c5 720{
5e69f11e 721 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
722 *dest = *source & 0377;
723 *dest += temp << 8;
724}
725
4bb91c68 726# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
727# undef EXTRACT_NUMBER
728# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
729# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
730
731#endif /* DEBUG */
732
733/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
734 SOURCE must be an lvalue. */
735
736#define EXTRACT_NUMBER_AND_INCR(destination, source) \
737 do { \
738 EXTRACT_NUMBER (destination, source); \
25fe55af 739 (source) += 2; \
fa9a63c5
RM
740 } while (0)
741
742#ifdef DEBUG
4bb91c68
SM
743static void extract_number_and_incr _RE_ARGS ((int *destination,
744 re_char **source));
fa9a63c5
RM
745static void
746extract_number_and_incr (destination, source)
747 int *destination;
01618498 748 re_char **source;
5e69f11e 749{
fa9a63c5
RM
750 extract_number (destination, *source);
751 *source += 2;
752}
753
0b32bf0e
SM
754# ifndef EXTRACT_MACROS
755# undef EXTRACT_NUMBER_AND_INCR
756# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 757 extract_number_and_incr (&dest, &src)
0b32bf0e 758# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
759
760#endif /* DEBUG */
761\f
b18215fc
RS
762/* Store a multibyte character in three contiguous bytes starting
763 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 764 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
765
766#define STORE_CHARACTER_AND_INCR(destination, character) \
767 do { \
768 (destination)[0] = (character) & 0377; \
769 (destination)[1] = ((character) >> 8) & 0377; \
770 (destination)[2] = (character) >> 16; \
771 (destination) += 3; \
772 } while (0)
773
774/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 775 starting at SOURCE. */
b18215fc
RS
776
777#define EXTRACT_CHARACTER(destination, source) \
778 do { \
779 (destination) = ((source)[0] \
780 | ((source)[1] << 8) \
781 | ((source)[2] << 16)); \
782 } while (0)
783
784
785/* Macros for charset. */
786
787/* Size of bitmap of charset P in bytes. P is a start of charset,
788 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
789#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
790
791/* Nonzero if charset P has range table. */
25fe55af 792#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
793
794/* Return the address of range table of charset P. But not the start
795 of table itself, but the before where the number of ranges is
96cc36cc
RS
796 stored. `2 +' means to skip re_opcode_t and size of bitmap,
797 and the 2 bytes of flags at the start of the range table. */
798#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
799
800/* Extract the bit flags that start a range table. */
801#define CHARSET_RANGE_TABLE_BITS(p) \
802 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
803 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
804
805/* Test if C is listed in the bitmap of charset P. */
806#define CHARSET_LOOKUP_BITMAP(p, c) \
807 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
808 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
809
810/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
811 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
812 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
813 and end. */
814#define CHARSET_RANGE_TABLE_END(range_table, count) \
815 ((range_table) + (count) * 2 * 3)
816
25fe55af 817/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
818 COUNT is number of ranges in RANGE_TABLE. */
819#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
820 do \
821 { \
01618498
SM
822 re_wchar_t range_start, range_end; \
823 re_char *p; \
824 re_char *range_table_end \
b18215fc
RS
825 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
826 \
827 for (p = (range_table); p < range_table_end; p += 2 * 3) \
828 { \
829 EXTRACT_CHARACTER (range_start, p); \
830 EXTRACT_CHARACTER (range_end, p + 3); \
831 \
832 if (range_start <= (c) && (c) <= range_end) \
833 { \
834 (not) = !(not); \
835 break; \
836 } \
837 } \
838 } \
839 while (0)
840
841/* Test if C is in range table of CHARSET. The flag NOT is negated if
842 C is listed in it. */
843#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
844 do \
845 { \
846 /* Number of ranges in range table. */ \
847 int count; \
01618498
SM
848 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
849 \
b18215fc
RS
850 EXTRACT_NUMBER_AND_INCR (count, range_table); \
851 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
852 } \
853 while (0)
854\f
fa9a63c5
RM
855/* If DEBUG is defined, Regex prints many voluminous messages about what
856 it is doing (if the variable `debug' is nonzero). If linked with the
857 main program in `iregex.c', you can enter patterns and strings
858 interactively. And if linked with the main program in `main.c' and
4bb91c68 859 the other test files, you can run the already-written tests. */
fa9a63c5
RM
860
861#ifdef DEBUG
862
863/* We use standard I/O for debugging. */
0b32bf0e 864# include <stdio.h>
fa9a63c5
RM
865
866/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 867# include <assert.h>
fa9a63c5 868
99633e97 869static int debug = -100000;
fa9a63c5 870
0b32bf0e
SM
871# define DEBUG_STATEMENT(e) e
872# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
873# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
874# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
875# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
876# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 877 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 878# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 879 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
880
881
882/* Print the fastmap in human-readable form. */
883
884void
885print_fastmap (fastmap)
886 char *fastmap;
887{
888 unsigned was_a_range = 0;
5e69f11e
RM
889 unsigned i = 0;
890
fa9a63c5
RM
891 while (i < (1 << BYTEWIDTH))
892 {
893 if (fastmap[i++])
894 {
895 was_a_range = 0;
25fe55af
RS
896 putchar (i - 1);
897 while (i < (1 << BYTEWIDTH) && fastmap[i])
898 {
899 was_a_range = 1;
900 i++;
901 }
fa9a63c5 902 if (was_a_range)
25fe55af
RS
903 {
904 printf ("-");
905 putchar (i - 1);
906 }
907 }
fa9a63c5 908 }
5e69f11e 909 putchar ('\n');
fa9a63c5
RM
910}
911
912
913/* Print a compiled pattern string in human-readable form, starting at
914 the START pointer into it and ending just before the pointer END. */
915
916void
917print_partial_compiled_pattern (start, end)
01618498
SM
918 re_char *start;
919 re_char *end;
fa9a63c5
RM
920{
921 int mcnt, mcnt2;
01618498
SM
922 re_char *p = start;
923 re_char *pend = end;
fa9a63c5
RM
924
925 if (start == NULL)
926 {
a1a052df 927 fprintf (stderr, "(null)\n");
fa9a63c5
RM
928 return;
929 }
5e69f11e 930
fa9a63c5
RM
931 /* Loop over pattern commands. */
932 while (p < pend)
933 {
a1a052df 934 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
935
936 switch ((re_opcode_t) *p++)
937 {
25fe55af 938 case no_op:
a1a052df 939 fprintf (stderr, "/no_op");
25fe55af 940 break;
fa9a63c5 941
99633e97 942 case succeed:
a1a052df 943 fprintf (stderr, "/succeed");
99633e97
SM
944 break;
945
fa9a63c5
RM
946 case exactn:
947 mcnt = *p++;
a1a052df 948 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 949 do
fa9a63c5 950 {
a1a052df 951 fprintf (stderr, "/%c", *p++);
25fe55af
RS
952 }
953 while (--mcnt);
954 break;
fa9a63c5
RM
955
956 case start_memory:
a1a052df 957 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 958 break;
fa9a63c5
RM
959
960 case stop_memory:
a1a052df 961 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 962 break;
fa9a63c5
RM
963
964 case duplicate:
a1a052df 965 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
966 break;
967
968 case anychar:
a1a052df 969 fprintf (stderr, "/anychar");
fa9a63c5
RM
970 break;
971
972 case charset:
25fe55af
RS
973 case charset_not:
974 {
975 register int c, last = -100;
fa9a63c5 976 register int in_range = 0;
99633e97
SM
977 int length = CHARSET_BITMAP_SIZE (p - 1);
978 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 979
a1a052df 980 fprintf (stderr, "/charset [%s",
275a3409 981 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 982
275a3409
RS
983 if (p + *p >= pend)
984 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 985
25fe55af 986 for (c = 0; c < 256; c++)
96cc36cc 987 if (c / 8 < length
fa9a63c5
RM
988 && (p[1 + (c/8)] & (1 << (c % 8))))
989 {
990 /* Are we starting a range? */
991 if (last + 1 == c && ! in_range)
992 {
a1a052df 993 fprintf (stderr, "-");
fa9a63c5
RM
994 in_range = 1;
995 }
996 /* Have we broken a range? */
997 else if (last + 1 != c && in_range)
96cc36cc 998 {
a1a052df 999 fprintf (stderr, "%c", last);
fa9a63c5
RM
1000 in_range = 0;
1001 }
5e69f11e 1002
fa9a63c5 1003 if (! in_range)
a1a052df 1004 fprintf (stderr, "%c", c);
fa9a63c5
RM
1005
1006 last = c;
25fe55af 1007 }
fa9a63c5
RM
1008
1009 if (in_range)
a1a052df 1010 fprintf (stderr, "%c", last);
fa9a63c5 1011
a1a052df 1012 fprintf (stderr, "]");
fa9a63c5 1013
99633e97 1014 p += 1 + length;
96cc36cc 1015
96cc36cc 1016 if (has_range_table)
99633e97
SM
1017 {
1018 int count;
a1a052df 1019 fprintf (stderr, "has-range-table");
99633e97
SM
1020
1021 /* ??? Should print the range table; for now, just skip it. */
1022 p += 2; /* skip range table bits */
1023 EXTRACT_NUMBER_AND_INCR (count, p);
1024 p = CHARSET_RANGE_TABLE_END (p, count);
1025 }
fa9a63c5
RM
1026 }
1027 break;
1028
1029 case begline:
a1a052df 1030 fprintf (stderr, "/begline");
25fe55af 1031 break;
fa9a63c5
RM
1032
1033 case endline:
a1a052df 1034 fprintf (stderr, "/endline");
25fe55af 1035 break;
fa9a63c5
RM
1036
1037 case on_failure_jump:
25fe55af 1038 extract_number_and_incr (&mcnt, &p);
a1a052df 1039 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1040 break;
fa9a63c5
RM
1041
1042 case on_failure_keep_string_jump:
25fe55af 1043 extract_number_and_incr (&mcnt, &p);
a1a052df 1044 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1045 break;
fa9a63c5 1046
0683b6fa
SM
1047 case on_failure_jump_nastyloop:
1048 extract_number_and_incr (&mcnt, &p);
a1a052df 1049 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1050 break;
1051
505bde11 1052 case on_failure_jump_loop:
fa9a63c5 1053 extract_number_and_incr (&mcnt, &p);
a1a052df 1054 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1055 break;
1056
505bde11 1057 case on_failure_jump_smart:
fa9a63c5 1058 extract_number_and_incr (&mcnt, &p);
a1a052df 1059 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1060 break;
1061
25fe55af 1062 case jump:
fa9a63c5 1063 extract_number_and_incr (&mcnt, &p);
a1a052df 1064 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1065 break;
1066
25fe55af
RS
1067 case succeed_n:
1068 extract_number_and_incr (&mcnt, &p);
1069 extract_number_and_incr (&mcnt2, &p);
a1a052df 1070 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1071 break;
5e69f11e 1072
25fe55af
RS
1073 case jump_n:
1074 extract_number_and_incr (&mcnt, &p);
1075 extract_number_and_incr (&mcnt2, &p);
a1a052df 1076 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1077 break;
5e69f11e 1078
25fe55af
RS
1079 case set_number_at:
1080 extract_number_and_incr (&mcnt, &p);
1081 extract_number_and_incr (&mcnt2, &p);
a1a052df 1082 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1083 break;
5e69f11e 1084
25fe55af 1085 case wordbound:
a1a052df 1086 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1087 break;
1088
1089 case notwordbound:
a1a052df 1090 fprintf (stderr, "/notwordbound");
25fe55af 1091 break;
fa9a63c5
RM
1092
1093 case wordbeg:
a1a052df 1094 fprintf (stderr, "/wordbeg");
fa9a63c5 1095 break;
5e69f11e 1096
fa9a63c5 1097 case wordend:
a1a052df 1098 fprintf (stderr, "/wordend");
e2543b02 1099 break;
5e69f11e 1100
669fa600 1101 case symbeg:
e2543b02 1102 fprintf (stderr, "/symbeg");
669fa600
SM
1103 break;
1104
1105 case symend:
e2543b02 1106 fprintf (stderr, "/symend");
669fa600
SM
1107 break;
1108
1fb352e0 1109 case syntaxspec:
a1a052df 1110 fprintf (stderr, "/syntaxspec");
1fb352e0 1111 mcnt = *p++;
a1a052df 1112 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1113 break;
1114
1115 case notsyntaxspec:
a1a052df 1116 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1117 mcnt = *p++;
a1a052df 1118 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1119 break;
1120
0b32bf0e 1121# ifdef emacs
fa9a63c5 1122 case before_dot:
a1a052df 1123 fprintf (stderr, "/before_dot");
25fe55af 1124 break;
fa9a63c5
RM
1125
1126 case at_dot:
a1a052df 1127 fprintf (stderr, "/at_dot");
25fe55af 1128 break;
fa9a63c5
RM
1129
1130 case after_dot:
a1a052df 1131 fprintf (stderr, "/after_dot");
25fe55af 1132 break;
fa9a63c5 1133
1fb352e0 1134 case categoryspec:
a1a052df 1135 fprintf (stderr, "/categoryspec");
fa9a63c5 1136 mcnt = *p++;
a1a052df 1137 fprintf (stderr, "/%d", mcnt);
25fe55af 1138 break;
5e69f11e 1139
1fb352e0 1140 case notcategoryspec:
a1a052df 1141 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1142 mcnt = *p++;
a1a052df 1143 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1144 break;
0b32bf0e 1145# endif /* emacs */
fa9a63c5 1146
fa9a63c5 1147 case begbuf:
a1a052df 1148 fprintf (stderr, "/begbuf");
25fe55af 1149 break;
fa9a63c5
RM
1150
1151 case endbuf:
a1a052df 1152 fprintf (stderr, "/endbuf");
25fe55af 1153 break;
fa9a63c5 1154
25fe55af 1155 default:
a1a052df 1156 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1157 }
1158
a1a052df 1159 fprintf (stderr, "\n");
fa9a63c5
RM
1160 }
1161
a1a052df 1162 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1163}
1164
1165
1166void
1167print_compiled_pattern (bufp)
1168 struct re_pattern_buffer *bufp;
1169{
01618498 1170 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1171
1172 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1173 printf ("%ld bytes used/%ld bytes allocated.\n",
1174 bufp->used, bufp->allocated);
fa9a63c5
RM
1175
1176 if (bufp->fastmap_accurate && bufp->fastmap)
1177 {
1178 printf ("fastmap: ");
1179 print_fastmap (bufp->fastmap);
1180 }
1181
1182 printf ("re_nsub: %d\t", bufp->re_nsub);
1183 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1184 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1185 printf ("no_sub: %d\t", bufp->no_sub);
1186 printf ("not_bol: %d\t", bufp->not_bol);
1187 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1188 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1189 fflush (stdout);
fa9a63c5
RM
1190 /* Perhaps we should print the translate table? */
1191}
1192
1193
1194void
1195print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1196 re_char *where;
1197 re_char *string1;
1198 re_char *string2;
fa9a63c5
RM
1199 int size1;
1200 int size2;
1201{
4bb91c68 1202 int this_char;
5e69f11e 1203
fa9a63c5
RM
1204 if (where == NULL)
1205 printf ("(null)");
1206 else
1207 {
1208 if (FIRST_STRING_P (where))
25fe55af
RS
1209 {
1210 for (this_char = where - string1; this_char < size1; this_char++)
1211 putchar (string1[this_char]);
fa9a63c5 1212
25fe55af
RS
1213 where = string2;
1214 }
fa9a63c5
RM
1215
1216 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1217 putchar (string2[this_char]);
fa9a63c5
RM
1218 }
1219}
1220
1221#else /* not DEBUG */
1222
0b32bf0e
SM
1223# undef assert
1224# define assert(e)
fa9a63c5 1225
0b32bf0e
SM
1226# define DEBUG_STATEMENT(e)
1227# define DEBUG_PRINT1(x)
1228# define DEBUG_PRINT2(x1, x2)
1229# define DEBUG_PRINT3(x1, x2, x3)
1230# define DEBUG_PRINT4(x1, x2, x3, x4)
1231# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1232# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1233
1234#endif /* not DEBUG */
1235\f
1236/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1237 also be assigned to arbitrarily: each pattern buffer stores its own
1238 syntax, so it can be changed between regex compilations. */
1239/* This has no initializer because initialized variables in Emacs
1240 become read-only after dumping. */
1241reg_syntax_t re_syntax_options;
1242
1243
1244/* Specify the precise syntax of regexps for compilation. This provides
1245 for compatibility for various utilities which historically have
1246 different, incompatible syntaxes.
1247
1248 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1249 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1250
1251reg_syntax_t
1252re_set_syntax (syntax)
f9b0fd99 1253 reg_syntax_t syntax;
fa9a63c5
RM
1254{
1255 reg_syntax_t ret = re_syntax_options;
5e69f11e 1256
fa9a63c5
RM
1257 re_syntax_options = syntax;
1258 return ret;
1259}
c0f9ea08 1260WEAK_ALIAS (__re_set_syntax, re_set_syntax)
f9b0fd99
RS
1261
1262/* Regexp to use to replace spaces, or NULL meaning don't. */
1263static re_char *whitespace_regexp;
1264
1265void
1266re_set_whitespace_regexp (regexp)
1267 re_char *regexp;
1268{
1269 whitespace_regexp = regexp;
1270}
1271WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1272\f
1273/* This table gives an error message for each of the error codes listed
4bb91c68 1274 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1275 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1276 but why not be nice? */
fa9a63c5
RM
1277
1278static const char *re_error_msgid[] =
5e69f11e
RM
1279 {
1280 gettext_noop ("Success"), /* REG_NOERROR */
1281 gettext_noop ("No match"), /* REG_NOMATCH */
1282 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1283 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1284 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1285 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1286 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1287 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1288 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1289 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1290 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1291 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1292 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1293 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1294 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1295 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1296 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
b3e4c897 1297 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
fa9a63c5
RM
1298 };
1299\f
4bb91c68 1300/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1301
1302/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1303 searching and matching functions should not call alloca. On some
1304 systems, alloca is implemented in terms of malloc, and if we're
1305 using the relocating allocator routines, then malloc could cause a
1306 relocation, which might (if the strings being searched are in the
1307 ralloc heap) shift the data out from underneath the regexp
1308 routines.
1309
5e69f11e 1310 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1311 processes input from X in a signal handler; processing X input may
1312 call malloc; if input arrives while a matching routine is calling
1313 malloc, then we're scrod. But Emacs can't just block input while
1314 calling matching routines; then we don't notice interrupts when
1315 they come in. So, Emacs blocks input around all regexp calls
1316 except the matching calls, which it leaves unprotected, in the
1317 faith that they will not malloc. */
1318
1319/* Normally, this is fine. */
1320#define MATCH_MAY_ALLOCATE
1321
1322/* When using GNU C, we are not REALLY using the C alloca, no matter
1323 what config.h may say. So don't take precautions for it. */
1324#ifdef __GNUC__
0b32bf0e 1325# undef C_ALLOCA
fa9a63c5
RM
1326#endif
1327
1328/* The match routines may not allocate if (1) they would do it with malloc
1329 and (2) it's not safe for them to use malloc.
1330 Note that if REL_ALLOC is defined, matching would not use malloc for the
1331 failure stack, but we would still use it for the register vectors;
4bb91c68 1332 so REL_ALLOC should not affect this. */
0b32bf0e
SM
1333#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1334# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1335#endif
1336
1337\f
1338/* Failure stack declarations and macros; both re_compile_fastmap and
1339 re_match_2 use a failure stack. These have to be macros because of
1340 REGEX_ALLOCATE_STACK. */
5e69f11e 1341
fa9a63c5 1342
320a2a73 1343/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1344 when matching. If this number is exceeded, we allocate more
1345 space, so it is not a hard limit. */
1346#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1347# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1348#endif
1349
1350/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1351 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1352 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1353 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1354 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1355# if defined MATCH_MAY_ALLOCATE
1356/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1357 whose default stack limit is 2mb. In order for a larger
1358 value to work reliably, you have to try to make it accord
1359 with the process stack limit. */
c0f9ea08
SM
1360size_t re_max_failures = 40000;
1361# else
1362size_t re_max_failures = 4000;
1363# endif
fa9a63c5
RM
1364
1365union fail_stack_elt
1366{
01618498 1367 re_char *pointer;
c0f9ea08
SM
1368 /* This should be the biggest `int' that's no bigger than a pointer. */
1369 long integer;
fa9a63c5
RM
1370};
1371
1372typedef union fail_stack_elt fail_stack_elt_t;
1373
1374typedef struct
1375{
1376 fail_stack_elt_t *stack;
c0f9ea08
SM
1377 size_t size;
1378 size_t avail; /* Offset of next open position. */
1379 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1380} fail_stack_type;
1381
505bde11 1382#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1383#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1384
1385
1386/* Define macros to initialize and free the failure stack.
1387 Do `return -2' if the alloc fails. */
1388
1389#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1390# define INIT_FAIL_STACK() \
fa9a63c5
RM
1391 do { \
1392 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1393 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1394 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1395 \
1396 if (fail_stack.stack == NULL) \
1397 return -2; \
1398 \
1399 fail_stack.size = INIT_FAILURE_ALLOC; \
1400 fail_stack.avail = 0; \
505bde11 1401 fail_stack.frame = 0; \
fa9a63c5
RM
1402 } while (0)
1403
0b32bf0e 1404# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1405#else
0b32bf0e 1406# define INIT_FAIL_STACK() \
fa9a63c5
RM
1407 do { \
1408 fail_stack.avail = 0; \
505bde11 1409 fail_stack.frame = 0; \
fa9a63c5
RM
1410 } while (0)
1411
0b32bf0e 1412# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1413#endif
1414
1415
320a2a73
KH
1416/* Double the size of FAIL_STACK, up to a limit
1417 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1418
1419 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1420 allocating space for it or it was already too large.
1421
4bb91c68 1422 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1423
320a2a73
KH
1424/* Factor to increase the failure stack size by
1425 when we increase it.
1426 This used to be 2, but 2 was too wasteful
1427 because the old discarded stacks added up to as much space
1428 were as ultimate, maximum-size stack. */
1429#define FAIL_STACK_GROWTH_FACTOR 4
1430
1431#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1432 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1433 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1434 ? 0 \
320a2a73
KH
1435 : ((fail_stack).stack \
1436 = (fail_stack_elt_t *) \
25fe55af
RS
1437 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1438 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1439 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1440 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1441 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1442 \
1443 (fail_stack).stack == NULL \
1444 ? 0 \
6453db45
KH
1445 : ((fail_stack).size \
1446 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1447 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1448 * FAIL_STACK_GROWTH_FACTOR)) \
1449 / sizeof (fail_stack_elt_t)), \
25fe55af 1450 1)))
fa9a63c5
RM
1451
1452
fa9a63c5
RM
1453/* Push a pointer value onto the failure stack.
1454 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1455 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1456#define PUSH_FAILURE_POINTER(item) \
01618498 1457 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1458
1459/* This pushes an integer-valued item onto the failure stack.
1460 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1461 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1462#define PUSH_FAILURE_INT(item) \
1463 fail_stack.stack[fail_stack.avail++].integer = (item)
1464
1465/* Push a fail_stack_elt_t value onto the failure stack.
1466 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1467 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1468#define PUSH_FAILURE_ELT(item) \
1469 fail_stack.stack[fail_stack.avail++] = (item)
1470
1471/* These three POP... operations complement the three PUSH... operations.
1472 All assume that `fail_stack' is nonempty. */
1473#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1474#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1475#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1476
505bde11
SM
1477/* Individual items aside from the registers. */
1478#define NUM_NONREG_ITEMS 3
1479
1480/* Used to examine the stack (to detect infinite loops). */
1481#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1482#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1483#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1484#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1485
1486
505bde11
SM
1487#define ENSURE_FAIL_STACK(space) \
1488while (REMAINING_AVAIL_SLOTS <= space) { \
1489 if (!GROW_FAIL_STACK (fail_stack)) \
1490 return -2; \
1491 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1492 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1493}
1494
1495/* Push register NUM onto the stack. */
1496#define PUSH_FAILURE_REG(num) \
1497do { \
1498 char *destination; \
1499 ENSURE_FAIL_STACK(3); \
1500 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1501 num, regstart[num], regend[num]); \
1502 PUSH_FAILURE_POINTER (regstart[num]); \
1503 PUSH_FAILURE_POINTER (regend[num]); \
1504 PUSH_FAILURE_INT (num); \
1505} while (0)
1506
01618498
SM
1507/* Change the counter's value to VAL, but make sure that it will
1508 be reset when backtracking. */
1509#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1510do { \
1511 char *destination; \
1512 int c; \
1513 ENSURE_FAIL_STACK(3); \
1514 EXTRACT_NUMBER (c, ptr); \
01618498 1515 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1516 PUSH_FAILURE_INT (c); \
1517 PUSH_FAILURE_POINTER (ptr); \
1518 PUSH_FAILURE_INT (-1); \
01618498 1519 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1520} while (0)
1521
505bde11 1522/* Pop a saved register off the stack. */
dc1e502d 1523#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1524do { \
1525 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1526 if (reg == -1) \
1527 { \
1528 /* It's a counter. */ \
6dcf2d0e
SM
1529 /* Here, we discard `const', making re_match non-reentrant. */ \
1530 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1531 reg = POP_FAILURE_INT (); \
1532 STORE_NUMBER (ptr, reg); \
1533 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1534 } \
1535 else \
1536 { \
1537 regend[reg] = POP_FAILURE_POINTER (); \
1538 regstart[reg] = POP_FAILURE_POINTER (); \
1539 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1540 reg, regstart[reg], regend[reg]); \
1541 } \
505bde11
SM
1542} while (0)
1543
1544/* Check that we are not stuck in an infinite loop. */
1545#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1546do { \
f6df485f 1547 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1548 /* Check for infinite matching loops */ \
f6df485f
RS
1549 while (failure > 0 \
1550 && (FAILURE_STR (failure) == string_place \
1551 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1552 { \
1553 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1554 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1555 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1556 { \
6df42991
SM
1557 cycle = 1; \
1558 break; \
f6df485f 1559 } \
66f0296e 1560 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1561 failure = NEXT_FAILURE_HANDLE(failure); \
1562 } \
1563 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1564} while (0)
6df42991 1565
fa9a63c5 1566/* Push the information about the state we will need
5e69f11e
RM
1567 if we ever fail back to it.
1568
505bde11 1569 Requires variables fail_stack, regstart, regend and
320a2a73 1570 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1571 declared.
5e69f11e 1572
fa9a63c5
RM
1573 Does `return FAILURE_CODE' if runs out of memory. */
1574
505bde11
SM
1575#define PUSH_FAILURE_POINT(pattern, string_place) \
1576do { \
1577 char *destination; \
1578 /* Must be int, so when we don't save any registers, the arithmetic \
1579 of 0 + -1 isn't done as unsigned. */ \
1580 \
505bde11 1581 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1582 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1583 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1584 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1585 \
1586 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1587 \
1588 DEBUG_PRINT1 ("\n"); \
1589 \
1590 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1591 PUSH_FAILURE_INT (fail_stack.frame); \
1592 \
1593 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1594 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1595 DEBUG_PRINT1 ("'\n"); \
1596 PUSH_FAILURE_POINTER (string_place); \
1597 \
1598 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1599 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1600 PUSH_FAILURE_POINTER (pattern); \
1601 \
1602 /* Close the frame by moving the frame pointer past it. */ \
1603 fail_stack.frame = fail_stack.avail; \
1604} while (0)
fa9a63c5 1605
320a2a73
KH
1606/* Estimate the size of data pushed by a typical failure stack entry.
1607 An estimate is all we need, because all we use this for
1608 is to choose a limit for how big to make the failure stack. */
ada30c0e 1609/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1610#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1611
fa9a63c5
RM
1612/* How many items can still be added to the stack without overflowing it. */
1613#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1614
1615
1616/* Pops what PUSH_FAIL_STACK pushes.
1617
1618 We restore into the parameters, all of which should be lvalues:
1619 STR -- the saved data position.
1620 PAT -- the saved pattern position.
fa9a63c5 1621 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1622
fa9a63c5 1623 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1624 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1625
505bde11
SM
1626#define POP_FAILURE_POINT(str, pat) \
1627do { \
fa9a63c5
RM
1628 assert (!FAIL_STACK_EMPTY ()); \
1629 \
1630 /* Remove failure points and point to how many regs pushed. */ \
1631 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1632 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1633 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1634 \
505bde11
SM
1635 /* Pop the saved registers. */ \
1636 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1637 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1638 \
01618498 1639 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1640 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1641 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1642 \
1643 /* If the saved string location is NULL, it came from an \
1644 on_failure_keep_string_jump opcode, and we want to throw away the \
1645 saved NULL, thus retaining our current position in the string. */ \
01618498 1646 str = POP_FAILURE_POINTER (); \
505bde11 1647 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1648 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1649 DEBUG_PRINT1 ("'\n"); \
1650 \
505bde11
SM
1651 fail_stack.frame = POP_FAILURE_INT (); \
1652 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1653 \
505bde11
SM
1654 assert (fail_stack.avail >= 0); \
1655 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1656 \
fa9a63c5 1657 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1658} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1659
1660
1661\f
fa9a63c5 1662/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1663#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1664\f
1665/* Subroutine declarations and macros for regex_compile. */
1666
4bb91c68
SM
1667static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1668 reg_syntax_t syntax,
1669 struct re_pattern_buffer *bufp));
1670static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1671static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1672 int arg1, int arg2));
1673static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1674 int arg, unsigned char *end));
1675static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1676 int arg1, int arg2, unsigned char *end));
01618498
SM
1677static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1678 re_char *p,
4bb91c68 1679 reg_syntax_t syntax));
01618498
SM
1680static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1681 re_char *pend,
4bb91c68 1682 reg_syntax_t syntax));
01618498
SM
1683static re_char *skip_one_char _RE_ARGS ((re_char *p));
1684static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1685 char *fastmap, const int multibyte));
fa9a63c5 1686
fa9a63c5 1687/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1688 translation. */
36595814 1689#define PATFETCH(c) \
2d1675e4
SM
1690 do { \
1691 int len; \
1692 if (p == pend) return REG_EEND; \
1693 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1694 p += len; \
fa9a63c5
RM
1695 } while (0)
1696
fa9a63c5
RM
1697
1698/* If `translate' is non-null, return translate[D], else just D. We
1699 cast the subscript to translate because some data is declared as
1700 `char *', to avoid warnings when a string constant is passed. But
1701 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1702#ifndef TRANSLATE
0b32bf0e 1703# define TRANSLATE(d) \
66f0296e 1704 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1705#endif
fa9a63c5
RM
1706
1707
1708/* Macros for outputting the compiled pattern into `buffer'. */
1709
1710/* If the buffer isn't allocated when it comes in, use this. */
1711#define INIT_BUF_SIZE 32
1712
4bb91c68 1713/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1714#define GET_BUFFER_SPACE(n) \
01618498 1715 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1716 EXTEND_BUFFER ()
1717
1718/* Make sure we have one more byte of buffer space and then add C to it. */
1719#define BUF_PUSH(c) \
1720 do { \
1721 GET_BUFFER_SPACE (1); \
1722 *b++ = (unsigned char) (c); \
1723 } while (0)
1724
1725
1726/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1727#define BUF_PUSH_2(c1, c2) \
1728 do { \
1729 GET_BUFFER_SPACE (2); \
1730 *b++ = (unsigned char) (c1); \
1731 *b++ = (unsigned char) (c2); \
1732 } while (0)
1733
1734
4bb91c68 1735/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1736#define BUF_PUSH_3(c1, c2, c3) \
1737 do { \
1738 GET_BUFFER_SPACE (3); \
1739 *b++ = (unsigned char) (c1); \
1740 *b++ = (unsigned char) (c2); \
1741 *b++ = (unsigned char) (c3); \
1742 } while (0)
1743
1744
1745/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1746 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1747#define STORE_JUMP(op, loc, to) \
1748 store_op1 (op, loc, (to) - (loc) - 3)
1749
1750/* Likewise, for a two-argument jump. */
1751#define STORE_JUMP2(op, loc, to, arg) \
1752 store_op2 (op, loc, (to) - (loc) - 3, arg)
1753
4bb91c68 1754/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1755#define INSERT_JUMP(op, loc, to) \
1756 insert_op1 (op, loc, (to) - (loc) - 3, b)
1757
1758/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1759#define INSERT_JUMP2(op, loc, to, arg) \
1760 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1761
1762
1763/* This is not an arbitrary limit: the arguments which represent offsets
275a3409 1764 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1765 be too small, many things would have to change. */
275a3409
RS
1766# define MAX_BUF_SIZE (1L << 15)
1767
1768#if 0 /* This is when we thought it could be 2^16 bytes. */
4bb91c68
SM
1769/* Any other compiler which, like MSC, has allocation limit below 2^16
1770 bytes will have to use approach similar to what was done below for
1771 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1772 reallocating to 0 bytes. Such thing is not going to work too well.
1773 You have been warned!! */
1774#if defined _MSC_VER && !defined WIN32
1775/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1776# define MAX_BUF_SIZE 65500L
1777#else
1778# define MAX_BUF_SIZE (1L << 16)
1779#endif
275a3409 1780#endif /* 0 */
fa9a63c5
RM
1781
1782/* Extend the buffer by twice its current size via realloc and
1783 reset the pointers that pointed into the old block to point to the
1784 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1785 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1786#if __BOUNDED_POINTERS__
1787# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1788# define MOVE_BUFFER_POINTER(P) \
1789 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1790# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1791 else \
1792 { \
1793 SET_HIGH_BOUND (b); \
1794 SET_HIGH_BOUND (begalt); \
1795 if (fixup_alt_jump) \
1796 SET_HIGH_BOUND (fixup_alt_jump); \
1797 if (laststart) \
1798 SET_HIGH_BOUND (laststart); \
1799 if (pending_exact) \
1800 SET_HIGH_BOUND (pending_exact); \
1801 }
1802#else
1803# define MOVE_BUFFER_POINTER(P) (P) += incr
1804# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1805#endif
fa9a63c5 1806#define EXTEND_BUFFER() \
25fe55af 1807 do { \
01618498 1808 re_char *old_buffer = bufp->buffer; \
25fe55af 1809 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1810 return REG_ESIZE; \
1811 bufp->allocated <<= 1; \
1812 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1813 bufp->allocated = MAX_BUF_SIZE; \
01618498 1814 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1815 if (bufp->buffer == NULL) \
1816 return REG_ESPACE; \
1817 /* If the buffer moved, move all the pointers into it. */ \
1818 if (old_buffer != bufp->buffer) \
1819 { \
4bb91c68
SM
1820 int incr = bufp->buffer - old_buffer; \
1821 MOVE_BUFFER_POINTER (b); \
1822 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1823 if (fixup_alt_jump) \
4bb91c68 1824 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1825 if (laststart) \
4bb91c68 1826 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1827 if (pending_exact) \
4bb91c68 1828 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1829 } \
4bb91c68 1830 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1831 } while (0)
1832
1833
1834/* Since we have one byte reserved for the register number argument to
1835 {start,stop}_memory, the maximum number of groups we can report
1836 things about is what fits in that byte. */
1837#define MAX_REGNUM 255
1838
1839/* But patterns can have more than `MAX_REGNUM' registers. We just
1840 ignore the excess. */
098d42af 1841typedef int regnum_t;
fa9a63c5
RM
1842
1843
1844/* Macros for the compile stack. */
1845
1846/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1847 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1848/* int may be not enough when sizeof(int) == 2. */
1849typedef long pattern_offset_t;
fa9a63c5
RM
1850
1851typedef struct
1852{
1853 pattern_offset_t begalt_offset;
1854 pattern_offset_t fixup_alt_jump;
5e69f11e 1855 pattern_offset_t laststart_offset;
fa9a63c5
RM
1856 regnum_t regnum;
1857} compile_stack_elt_t;
1858
1859
1860typedef struct
1861{
1862 compile_stack_elt_t *stack;
1863 unsigned size;
1864 unsigned avail; /* Offset of next open position. */
1865} compile_stack_type;
1866
1867
1868#define INIT_COMPILE_STACK_SIZE 32
1869
1870#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1871#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1872
4bb91c68 1873/* The next available element. */
fa9a63c5
RM
1874#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1875
77d11aec
RS
1876/* Explicit quit checking is only used on NTemacs. */
1877#if defined WINDOWSNT && defined emacs && defined QUIT
1878extern int immediate_quit;
1879# define IMMEDIATE_QUIT_CHECK \
1880 do { \
1881 if (immediate_quit) QUIT; \
1882 } while (0)
1883#else
1884# define IMMEDIATE_QUIT_CHECK ((void)0)
1885#endif
1886\f
b18215fc
RS
1887/* Structure to manage work area for range table. */
1888struct range_table_work_area
1889{
1890 int *table; /* actual work area. */
1891 int allocated; /* allocated size for work area in bytes. */
25fe55af 1892 int used; /* actually used size in words. */
96cc36cc 1893 int bits; /* flag to record character classes */
b18215fc
RS
1894};
1895
77d11aec
RS
1896/* Make sure that WORK_AREA can hold more N multibyte characters.
1897 This is used only in set_image_of_range and set_image_of_range_1.
1898 It expects WORK_AREA to be a pointer.
1899 If it can't get the space, it returns from the surrounding function. */
1900
1901#define EXTEND_RANGE_TABLE(work_area, n) \
1902 do { \
1903 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1904 { \
1905 extend_range_table_work_area (work_area); \
1906 if ((work_area)->table == 0) \
1907 return (REG_ESPACE); \
1908 } \
b18215fc
RS
1909 } while (0)
1910
96cc36cc
RS
1911#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1912 (work_area).bits |= (bit)
1913
14473664
SM
1914/* Bits used to implement the multibyte-part of the various character classes
1915 such as [:alnum:] in a charset's range table. */
1916#define BIT_WORD 0x1
1917#define BIT_LOWER 0x2
1918#define BIT_PUNCT 0x4
1919#define BIT_SPACE 0x8
1920#define BIT_UPPER 0x10
1921#define BIT_MULTIBYTE 0x20
96cc36cc 1922
36595814
SM
1923/* Set a range START..END to WORK_AREA.
1924 The range is passed through TRANSLATE, so START and END
1925 should be untranslated. */
77d11aec
RS
1926#define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1927 do { \
1928 int tem; \
1929 tem = set_image_of_range (&work_area, start, end, translate); \
1930 if (tem > 0) \
1931 FREE_STACK_RETURN (tem); \
b18215fc
RS
1932 } while (0)
1933
25fe55af 1934/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1935#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1936 do { \
1937 if ((work_area).table) \
1938 free ((work_area).table); \
1939 } while (0)
1940
96cc36cc 1941#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1942#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1943#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 1944#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 1945\f
b18215fc 1946
fa9a63c5 1947/* Set the bit for character C in a list. */
01618498 1948#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1949
1950
1951/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1952#define GET_UNSIGNED_NUMBER(num) \
c72b0edd
SM
1953 do { \
1954 if (p == pend) \
1955 FREE_STACK_RETURN (REG_EBRACE); \
1956 else \
1957 { \
1958 PATFETCH (c); \
1959 while ('0' <= c && c <= '9') \
1960 { \
1961 int prev; \
1962 if (num < 0) \
1963 num = 0; \
1964 prev = num; \
1965 num = num * 10 + c - '0'; \
1966 if (num / 10 != prev) \
1967 FREE_STACK_RETURN (REG_BADBR); \
1968 if (p == pend) \
1969 FREE_STACK_RETURN (REG_EBRACE); \
1970 PATFETCH (c); \
1971 } \
1972 } \
1973 } while (0)
77d11aec 1974\f
1fdab503 1975#if ! WIDE_CHAR_SUPPORT
01618498 1976
14473664 1977/* Map a string to the char class it names (if any). */
1fdab503 1978re_wctype_t
ada30c0e
SM
1979re_wctype (str)
1980 re_char *str;
14473664 1981{
ada30c0e 1982 const char *string = str;
14473664
SM
1983 if (STREQ (string, "alnum")) return RECC_ALNUM;
1984 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1985 else if (STREQ (string, "word")) return RECC_WORD;
1986 else if (STREQ (string, "ascii")) return RECC_ASCII;
1987 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1988 else if (STREQ (string, "graph")) return RECC_GRAPH;
1989 else if (STREQ (string, "lower")) return RECC_LOWER;
1990 else if (STREQ (string, "print")) return RECC_PRINT;
1991 else if (STREQ (string, "punct")) return RECC_PUNCT;
1992 else if (STREQ (string, "space")) return RECC_SPACE;
1993 else if (STREQ (string, "upper")) return RECC_UPPER;
1994 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1995 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
1996 else if (STREQ (string, "digit")) return RECC_DIGIT;
1997 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
1998 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
1999 else if (STREQ (string, "blank")) return RECC_BLANK;
2000 else return 0;
2001}
2002
2003/* True iff CH is in the char class CC. */
1fdab503 2004boolean
14473664
SM
2005re_iswctype (ch, cc)
2006 int ch;
2007 re_wctype_t cc;
2008{
2009 switch (cc)
2010 {
0cdd06f8
SM
2011 case RECC_ALNUM: return ISALNUM (ch);
2012 case RECC_ALPHA: return ISALPHA (ch);
2013 case RECC_BLANK: return ISBLANK (ch);
2014 case RECC_CNTRL: return ISCNTRL (ch);
2015 case RECC_DIGIT: return ISDIGIT (ch);
2016 case RECC_GRAPH: return ISGRAPH (ch);
2017 case RECC_LOWER: return ISLOWER (ch);
2018 case RECC_PRINT: return ISPRINT (ch);
2019 case RECC_PUNCT: return ISPUNCT (ch);
2020 case RECC_SPACE: return ISSPACE (ch);
2021 case RECC_UPPER: return ISUPPER (ch);
2022 case RECC_XDIGIT: return ISXDIGIT (ch);
2023 case RECC_ASCII: return IS_REAL_ASCII (ch);
2024 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2025 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2026 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2027 case RECC_WORD: return ISWORD (ch);
2028 case RECC_ERROR: return false;
2029 default:
2030 abort();
14473664
SM
2031 }
2032}
fa9a63c5 2033
14473664
SM
2034/* Return a bit-pattern to use in the range-table bits to match multibyte
2035 chars of class CC. */
2036static int
2037re_wctype_to_bit (cc)
2038 re_wctype_t cc;
2039{
2040 switch (cc)
2041 {
2042 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2043 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2044 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2045 case RECC_LOWER: return BIT_LOWER;
2046 case RECC_UPPER: return BIT_UPPER;
2047 case RECC_PUNCT: return BIT_PUNCT;
2048 case RECC_SPACE: return BIT_SPACE;
14473664 2049 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2050 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2051 default:
2052 abort();
14473664
SM
2053 }
2054}
2055#endif
77d11aec
RS
2056\f
2057/* Filling in the work area of a range. */
2058
2059/* Actually extend the space in WORK_AREA. */
2060
2061static void
2062extend_range_table_work_area (work_area)
2063 struct range_table_work_area *work_area;
177c0ea7 2064{
77d11aec
RS
2065 work_area->allocated += 16 * sizeof (int);
2066 if (work_area->table)
2067 work_area->table
2068 = (int *) realloc (work_area->table, work_area->allocated);
2069 else
2070 work_area->table
2071 = (int *) malloc (work_area->allocated);
2072}
2073
2074#ifdef emacs
2075
2076/* Carefully find the ranges of codes that are equivalent
2077 under case conversion to the range start..end when passed through
2078 TRANSLATE. Handle the case where non-letters can come in between
2079 two upper-case letters (which happens in Latin-1).
2080 Also handle the case of groups of more than 2 case-equivalent chars.
2081
2082 The basic method is to look at consecutive characters and see
2083 if they can form a run that can be handled as one.
2084
2085 Returns -1 if successful, REG_ESPACE if ran out of space. */
2086
2087static int
2088set_image_of_range_1 (work_area, start, end, translate)
2089 RE_TRANSLATE_TYPE translate;
2090 struct range_table_work_area *work_area;
2091 re_wchar_t start, end;
2092{
2093 /* `one_case' indicates a character, or a run of characters,
2094 each of which is an isolate (no case-equivalents).
2095 This includes all ASCII non-letters.
2096
2097 `two_case' indicates a character, or a run of characters,
2098 each of which has two case-equivalent forms.
2099 This includes all ASCII letters.
2100
2101 `strange' indicates a character that has more than one
2102 case-equivalent. */
177c0ea7 2103
77d11aec
RS
2104 enum case_type {one_case, two_case, strange};
2105
2106 /* Describe the run that is in progress,
2107 which the next character can try to extend.
2108 If run_type is strange, that means there really is no run.
2109 If run_type is one_case, then run_start...run_end is the run.
2110 If run_type is two_case, then the run is run_start...run_end,
2111 and the case-equivalents end at run_eqv_end. */
2112
2113 enum case_type run_type = strange;
2114 int run_start, run_end, run_eqv_end;
2115
2116 Lisp_Object eqv_table;
2117
2118 if (!RE_TRANSLATE_P (translate))
2119 {
b7c12565 2120 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2121 work_area->table[work_area->used++] = (start);
2122 work_area->table[work_area->used++] = (end);
b7c12565 2123 return -1;
77d11aec
RS
2124 }
2125
2126 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2127
77d11aec
RS
2128 for (; start <= end; start++)
2129 {
2130 enum case_type this_type;
2131 int eqv = RE_TRANSLATE (eqv_table, start);
2132 int minchar, maxchar;
2133
2134 /* Classify this character */
2135 if (eqv == start)
2136 this_type = one_case;
2137 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2138 this_type = two_case;
2139 else
2140 this_type = strange;
2141
2142 if (start < eqv)
2143 minchar = start, maxchar = eqv;
2144 else
2145 minchar = eqv, maxchar = start;
2146
2147 /* Can this character extend the run in progress? */
2148 if (this_type == strange || this_type != run_type
2149 || !(minchar == run_end + 1
2150 && (run_type == two_case
2151 ? maxchar == run_eqv_end + 1 : 1)))
2152 {
2153 /* No, end the run.
2154 Record each of its equivalent ranges. */
2155 if (run_type == one_case)
2156 {
2157 EXTEND_RANGE_TABLE (work_area, 2);
2158 work_area->table[work_area->used++] = run_start;
2159 work_area->table[work_area->used++] = run_end;
2160 }
2161 else if (run_type == two_case)
2162 {
2163 EXTEND_RANGE_TABLE (work_area, 4);
2164 work_area->table[work_area->used++] = run_start;
2165 work_area->table[work_area->used++] = run_end;
2166 work_area->table[work_area->used++]
2167 = RE_TRANSLATE (eqv_table, run_start);
2168 work_area->table[work_area->used++]
2169 = RE_TRANSLATE (eqv_table, run_end);
2170 }
2171 run_type = strange;
2172 }
177c0ea7 2173
77d11aec
RS
2174 if (this_type == strange)
2175 {
2176 /* For a strange character, add each of its equivalents, one
2177 by one. Don't start a range. */
2178 do
2179 {
2180 EXTEND_RANGE_TABLE (work_area, 2);
2181 work_area->table[work_area->used++] = eqv;
2182 work_area->table[work_area->used++] = eqv;
2183 eqv = RE_TRANSLATE (eqv_table, eqv);
2184 }
2185 while (eqv != start);
2186 }
2187
2188 /* Add this char to the run, or start a new run. */
2189 else if (run_type == strange)
2190 {
2191 /* Initialize a new range. */
2192 run_type = this_type;
2193 run_start = start;
2194 run_end = start;
2195 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2196 }
2197 else
2198 {
2199 /* Extend a running range. */
2200 run_end = minchar;
2201 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2202 }
2203 }
2204
2205 /* If a run is still in progress at the end, finish it now
2206 by recording its equivalent ranges. */
2207 if (run_type == one_case)
2208 {
2209 EXTEND_RANGE_TABLE (work_area, 2);
2210 work_area->table[work_area->used++] = run_start;
2211 work_area->table[work_area->used++] = run_end;
2212 }
2213 else if (run_type == two_case)
2214 {
2215 EXTEND_RANGE_TABLE (work_area, 4);
2216 work_area->table[work_area->used++] = run_start;
2217 work_area->table[work_area->used++] = run_end;
2218 work_area->table[work_area->used++]
2219 = RE_TRANSLATE (eqv_table, run_start);
2220 work_area->table[work_area->used++]
2221 = RE_TRANSLATE (eqv_table, run_end);
2222 }
2223
2224 return -1;
2225}
36595814 2226
77d11aec 2227#endif /* emacs */
36595814 2228
b7c12565 2229/* Record the the image of the range start..end when passed through
36595814
SM
2230 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2231 and is not even necessarily contiguous.
b7c12565
RS
2232 Normally we approximate it with the smallest contiguous range that contains
2233 all the chars we need. However, for Latin-1 we go to extra effort
2234 to do a better job.
2235
2236 This function is not called for ASCII ranges.
77d11aec
RS
2237
2238 Returns -1 if successful, REG_ESPACE if ran out of space. */
2239
2240static int
36595814
SM
2241set_image_of_range (work_area, start, end, translate)
2242 RE_TRANSLATE_TYPE translate;
2243 struct range_table_work_area *work_area;
2244 re_wchar_t start, end;
2245{
77d11aec
RS
2246 re_wchar_t cmin, cmax;
2247
2248#ifdef emacs
2249 /* For Latin-1 ranges, use set_image_of_range_1
2250 to get proper handling of ranges that include letters and nonletters.
b7c12565 2251 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2252 For other character sets, we don't bother to get this right. */
b7c12565
RS
2253 if (RE_TRANSLATE_P (translate) && start < 04400
2254 && !(start < 04200 && end >= 04377))
77d11aec 2255 {
b7c12565 2256 int newend;
77d11aec 2257 int tem;
b7c12565
RS
2258 newend = end;
2259 if (newend > 04377)
2260 newend = 04377;
2261 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2262 if (tem > 0)
2263 return tem;
2264
2265 start = 04400;
2266 if (end < 04400)
2267 return -1;
2268 }
2269#endif
2270
b7c12565
RS
2271 EXTEND_RANGE_TABLE (work_area, 2);
2272 work_area->table[work_area->used++] = (start);
2273 work_area->table[work_area->used++] = (end);
2274
2275 cmin = -1, cmax = -1;
77d11aec 2276
36595814 2277 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2278 {
2279 int ch;
77d11aec 2280
b7c12565
RS
2281 for (ch = start; ch <= end; ch++)
2282 {
2283 re_wchar_t c = TRANSLATE (ch);
2284 if (! (start <= c && c <= end))
2285 {
2286 if (cmin == -1)
2287 cmin = c, cmax = c;
2288 else
2289 {
2290 cmin = MIN (cmin, c);
2291 cmax = MAX (cmax, c);
2292 }
2293 }
2294 }
2295
2296 if (cmin != -1)
2297 {
2298 EXTEND_RANGE_TABLE (work_area, 2);
2299 work_area->table[work_area->used++] = (cmin);
2300 work_area->table[work_area->used++] = (cmax);
2301 }
2302 }
36595814 2303
77d11aec
RS
2304 return -1;
2305}
fa9a63c5
RM
2306\f
2307#ifndef MATCH_MAY_ALLOCATE
2308
2309/* If we cannot allocate large objects within re_match_2_internal,
2310 we make the fail stack and register vectors global.
2311 The fail stack, we grow to the maximum size when a regexp
2312 is compiled.
2313 The register vectors, we adjust in size each time we
2314 compile a regexp, according to the number of registers it needs. */
2315
2316static fail_stack_type fail_stack;
2317
2318/* Size with which the following vectors are currently allocated.
2319 That is so we can make them bigger as needed,
4bb91c68 2320 but never make them smaller. */
fa9a63c5
RM
2321static int regs_allocated_size;
2322
66f0296e
SM
2323static re_char ** regstart, ** regend;
2324static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2325
2326/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2327 but don't make them smaller. */
fa9a63c5
RM
2328
2329static
2330regex_grow_registers (num_regs)
2331 int num_regs;
2332{
2333 if (num_regs > regs_allocated_size)
2334 {
66f0296e
SM
2335 RETALLOC_IF (regstart, num_regs, re_char *);
2336 RETALLOC_IF (regend, num_regs, re_char *);
2337 RETALLOC_IF (best_regstart, num_regs, re_char *);
2338 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2339
2340 regs_allocated_size = num_regs;
2341 }
2342}
2343
2344#endif /* not MATCH_MAY_ALLOCATE */
2345\f
99633e97
SM
2346static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2347 compile_stack,
2348 regnum_t regnum));
2349
fa9a63c5
RM
2350/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2351 Returns one of error codes defined in `regex.h', or zero for success.
2352
2353 Assumes the `allocated' (and perhaps `buffer') and `translate'
2354 fields are set in BUFP on entry.
2355
2356 If it succeeds, results are put in BUFP (if it returns an error, the
2357 contents of BUFP are undefined):
2358 `buffer' is the compiled pattern;
2359 `syntax' is set to SYNTAX;
2360 `used' is set to the length of the compiled pattern;
2361 `fastmap_accurate' is zero;
2362 `re_nsub' is the number of subexpressions in PATTERN;
2363 `not_bol' and `not_eol' are zero;
5e69f11e 2364
c0f9ea08 2365 The `fastmap' field is neither examined nor set. */
fa9a63c5 2366
505bde11
SM
2367/* Insert the `jump' from the end of last alternative to "here".
2368 The space for the jump has already been allocated. */
2369#define FIXUP_ALT_JUMP() \
2370do { \
2371 if (fixup_alt_jump) \
2372 STORE_JUMP (jump, fixup_alt_jump, b); \
2373} while (0)
2374
2375
fa9a63c5
RM
2376/* Return, freeing storage we allocated. */
2377#define FREE_STACK_RETURN(value) \
b18215fc
RS
2378 do { \
2379 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2380 free (compile_stack.stack); \
2381 return value; \
2382 } while (0)
fa9a63c5
RM
2383
2384static reg_errcode_t
2385regex_compile (pattern, size, syntax, bufp)
66f0296e 2386 re_char *pattern;
4bb91c68 2387 size_t size;
fa9a63c5
RM
2388 reg_syntax_t syntax;
2389 struct re_pattern_buffer *bufp;
2390{
01618498
SM
2391 /* We fetch characters from PATTERN here. */
2392 register re_wchar_t c, c1;
5e69f11e 2393
fa9a63c5 2394 /* A random temporary spot in PATTERN. */
66f0296e 2395 re_char *p1;
fa9a63c5
RM
2396
2397 /* Points to the end of the buffer, where we should append. */
2398 register unsigned char *b;
5e69f11e 2399
fa9a63c5
RM
2400 /* Keeps track of unclosed groups. */
2401 compile_stack_type compile_stack;
2402
2403 /* Points to the current (ending) position in the pattern. */
22336245
RS
2404#ifdef AIX
2405 /* `const' makes AIX compiler fail. */
66f0296e 2406 unsigned char *p = pattern;
22336245 2407#else
66f0296e 2408 re_char *p = pattern;
22336245 2409#endif
66f0296e 2410 re_char *pend = pattern + size;
5e69f11e 2411
fa9a63c5 2412 /* How to translate the characters in the pattern. */
6676cb1c 2413 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2414
2415 /* Address of the count-byte of the most recently inserted `exactn'
2416 command. This makes it possible to tell if a new exact-match
2417 character can be added to that command or if the character requires
2418 a new `exactn' command. */
2419 unsigned char *pending_exact = 0;
2420
2421 /* Address of start of the most recently finished expression.
2422 This tells, e.g., postfix * where to find the start of its
2423 operand. Reset at the beginning of groups and alternatives. */
2424 unsigned char *laststart = 0;
2425
2426 /* Address of beginning of regexp, or inside of last group. */
2427 unsigned char *begalt;
2428
2429 /* Place in the uncompiled pattern (i.e., the {) to
2430 which to go back if the interval is invalid. */
66f0296e 2431 re_char *beg_interval;
5e69f11e 2432
fa9a63c5 2433 /* Address of the place where a forward jump should go to the end of
25fe55af 2434 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2435 last -- ends with a forward jump of this sort. */
2436 unsigned char *fixup_alt_jump = 0;
2437
2438 /* Counts open-groups as they are encountered. Remembered for the
2439 matching close-group on the compile stack, so the same register
2440 number is put in the stop_memory as the start_memory. */
2441 regnum_t regnum = 0;
2442
b18215fc
RS
2443 /* Work area for range table of charset. */
2444 struct range_table_work_area range_table_work;
2445
2d1675e4
SM
2446 /* If the object matched can contain multibyte characters. */
2447 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2448
f9b0fd99
RS
2449 /* Nonzero if we have pushed down into a subpattern. */
2450 int in_subpattern = 0;
2451
2452 /* These hold the values of p, pattern, and pend from the main
2453 pattern when we have pushed into a subpattern. */
2454 re_char *main_p;
2455 re_char *main_pattern;
2456 re_char *main_pend;
2457
fa9a63c5 2458#ifdef DEBUG
99633e97 2459 debug++;
fa9a63c5 2460 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2461 if (debug > 0)
fa9a63c5
RM
2462 {
2463 unsigned debug_count;
5e69f11e 2464
fa9a63c5 2465 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2466 putchar (pattern[debug_count]);
fa9a63c5
RM
2467 putchar ('\n');
2468 }
2469#endif /* DEBUG */
2470
2471 /* Initialize the compile stack. */
2472 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2473 if (compile_stack.stack == NULL)
2474 return REG_ESPACE;
2475
2476 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2477 compile_stack.avail = 0;
2478
b18215fc
RS
2479 range_table_work.table = 0;
2480 range_table_work.allocated = 0;
2481
fa9a63c5
RM
2482 /* Initialize the pattern buffer. */
2483 bufp->syntax = syntax;
2484 bufp->fastmap_accurate = 0;
2485 bufp->not_bol = bufp->not_eol = 0;
2486
2487 /* Set `used' to zero, so that if we return an error, the pattern
2488 printer (for debugging) will think there's no pattern. We reset it
2489 at the end. */
2490 bufp->used = 0;
5e69f11e 2491
fa9a63c5 2492 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2493 bufp->re_nsub = 0;
fa9a63c5 2494
0b32bf0e 2495#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2496 /* Initialize the syntax table. */
2497 init_syntax_once ();
2498#endif
2499
2500 if (bufp->allocated == 0)
2501 {
2502 if (bufp->buffer)
2503 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
2504 enough space. This loses if buffer's address is bogus, but
2505 that is the user's responsibility. */
2506 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2507 }
fa9a63c5 2508 else
25fe55af
RS
2509 { /* Caller did not allocate a buffer. Do it for them. */
2510 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2511 }
fa9a63c5
RM
2512 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2513
2514 bufp->allocated = INIT_BUF_SIZE;
2515 }
2516
2517 begalt = b = bufp->buffer;
2518
2519 /* Loop through the uncompiled pattern until we're at the end. */
f9b0fd99 2520 while (1)
fa9a63c5 2521 {
f9b0fd99
RS
2522 if (p == pend)
2523 {
2524 /* If this is the end of an included regexp,
2525 pop back to the main regexp and try again. */
2526 if (in_subpattern)
2527 {
2528 in_subpattern = 0;
2529 pattern = main_pattern;
2530 p = main_p;
2531 pend = main_pend;
2532 continue;
2533 }
2534 /* If this is the end of the main regexp, we are done. */
2535 break;
2536 }
2537
fa9a63c5
RM
2538 PATFETCH (c);
2539
2540 switch (c)
25fe55af 2541 {
f9b0fd99
RS
2542 case ' ':
2543 {
2544 re_char *p1 = p;
2545
2546 /* If there's no special whitespace regexp, treat
4fb680cd
RS
2547 spaces normally. And don't try to do this recursively. */
2548 if (!whitespace_regexp || in_subpattern)
f9b0fd99
RS
2549 goto normal_char;
2550
2551 /* Peek past following spaces. */
2552 while (p1 != pend)
2553 {
2554 if (*p1 != ' ')
2555 break;
2556 p1++;
2557 }
2558 /* If the spaces are followed by a repetition op,
2559 treat them normally. */
c721eee5
RS
2560 if (p1 != pend
2561 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
f9b0fd99
RS
2562 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2563 goto normal_char;
2564
2565 /* Replace the spaces with the whitespace regexp. */
2566 in_subpattern = 1;
2567 main_p = p1;
2568 main_pend = pend;
2569 main_pattern = pattern;
2570 p = pattern = whitespace_regexp;
2571 pend = p + strlen (p);
2572 break;
2573 }
2574
25fe55af
RS
2575 case '^':
2576 {
2577 if ( /* If at start of pattern, it's an operator. */
2578 p == pattern + 1
2579 /* If context independent, it's an operator. */
2580 || syntax & RE_CONTEXT_INDEP_ANCHORS
2581 /* Otherwise, depends on what's come before. */
2582 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2583 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2584 else
2585 goto normal_char;
2586 }
2587 break;
2588
2589
2590 case '$':
2591 {
2592 if ( /* If at end of pattern, it's an operator. */
2593 p == pend
2594 /* If context independent, it's an operator. */
2595 || syntax & RE_CONTEXT_INDEP_ANCHORS
2596 /* Otherwise, depends on what's next. */
2597 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2598 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2599 else
2600 goto normal_char;
2601 }
2602 break;
fa9a63c5
RM
2603
2604
2605 case '+':
25fe55af
RS
2606 case '?':
2607 if ((syntax & RE_BK_PLUS_QM)
2608 || (syntax & RE_LIMITED_OPS))
2609 goto normal_char;
2610 handle_plus:
2611 case '*':
2612 /* If there is no previous pattern... */
2613 if (!laststart)
2614 {
2615 if (syntax & RE_CONTEXT_INVALID_OPS)
2616 FREE_STACK_RETURN (REG_BADRPT);
2617 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2618 goto normal_char;
2619 }
2620
2621 {
25fe55af 2622 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2623 boolean zero_times_ok = 0, many_times_ok = 0;
2624 boolean greedy = 1;
25fe55af
RS
2625
2626 /* If there is a sequence of repetition chars, collapse it
2627 down to just one (the right one). We can't combine
2628 interval operators with these because of, e.g., `a{2}*',
2629 which should only match an even number of `a's. */
2630
2631 for (;;)
2632 {
0b32bf0e 2633 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2634 && c == '?' && (zero_times_ok || many_times_ok))
2635 greedy = 0;
2636 else
2637 {
2638 zero_times_ok |= c != '+';
2639 many_times_ok |= c != '?';
2640 }
25fe55af
RS
2641
2642 if (p == pend)
2643 break;
ed0767d8
SM
2644 else if (*p == '*'
2645 || (!(syntax & RE_BK_PLUS_QM)
2646 && (*p == '+' || *p == '?')))
25fe55af 2647 ;
ed0767d8 2648 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2649 {
ed0767d8
SM
2650 if (p+1 == pend)
2651 FREE_STACK_RETURN (REG_EESCAPE);
2652 if (p[1] == '+' || p[1] == '?')
2653 PATFETCH (c); /* Gobble up the backslash. */
2654 else
2655 break;
25fe55af
RS
2656 }
2657 else
ed0767d8 2658 break;
25fe55af 2659 /* If we get here, we found another repeat character. */
ed0767d8
SM
2660 PATFETCH (c);
2661 }
25fe55af
RS
2662
2663 /* Star, etc. applied to an empty pattern is equivalent
2664 to an empty pattern. */
4e8a9132 2665 if (!laststart || laststart == b)
25fe55af
RS
2666 break;
2667
2668 /* Now we know whether or not zero matches is allowed
2669 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2670 if (greedy)
2671 {
99633e97 2672 if (many_times_ok)
4e8a9132
SM
2673 {
2674 boolean simple = skip_one_char (laststart) == b;
2675 unsigned int startoffset = 0;
f6a3f532 2676 re_opcode_t ofj =
01618498 2677 /* Check if the loop can match the empty string. */
6df42991
SM
2678 (simple || !analyse_first (laststart, b, NULL, 0))
2679 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2680 assert (skip_one_char (laststart) <= b);
177c0ea7 2681
4e8a9132
SM
2682 if (!zero_times_ok && simple)
2683 { /* Since simple * loops can be made faster by using
2684 on_failure_keep_string_jump, we turn simple P+
2685 into PP* if P is simple. */
2686 unsigned char *p1, *p2;
2687 startoffset = b - laststart;
2688 GET_BUFFER_SPACE (startoffset);
2689 p1 = b; p2 = laststart;
2690 while (p2 < p1)
2691 *b++ = *p2++;
2692 zero_times_ok = 1;
99633e97 2693 }
4e8a9132
SM
2694
2695 GET_BUFFER_SPACE (6);
2696 if (!zero_times_ok)
2697 /* A + loop. */
f6a3f532 2698 STORE_JUMP (ofj, b, b + 6);
99633e97 2699 else
4e8a9132
SM
2700 /* Simple * loops can use on_failure_keep_string_jump
2701 depending on what follows. But since we don't know
2702 that yet, we leave the decision up to
2703 on_failure_jump_smart. */
f6a3f532 2704 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2705 laststart + startoffset, b + 6);
99633e97 2706 b += 3;
4e8a9132 2707 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2708 b += 3;
2709 }
2710 else
2711 {
4e8a9132
SM
2712 /* A simple ? pattern. */
2713 assert (zero_times_ok);
2714 GET_BUFFER_SPACE (3);
2715 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2716 b += 3;
2717 }
1c8c6d39
DL
2718 }
2719 else /* not greedy */
2720 { /* I wish the greedy and non-greedy cases could be merged. */
2721
0683b6fa 2722 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2723 if (many_times_ok)
2724 {
f6a3f532
SM
2725 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2726
6df42991
SM
2727 /* The non-greedy multiple match looks like
2728 a repeat..until: we only need a conditional jump
2729 at the end of the loop. */
f6a3f532
SM
2730 if (emptyp) BUF_PUSH (no_op);
2731 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2732 : on_failure_jump, b, laststart);
1c8c6d39
DL
2733 b += 3;
2734 if (zero_times_ok)
2735 {
2736 /* The repeat...until naturally matches one or more.
2737 To also match zero times, we need to first jump to
6df42991 2738 the end of the loop (its conditional jump). */
1c8c6d39
DL
2739 INSERT_JUMP (jump, laststart, b);
2740 b += 3;
2741 }
2742 }
2743 else
2744 {
2745 /* non-greedy a?? */
1c8c6d39
DL
2746 INSERT_JUMP (jump, laststart, b + 3);
2747 b += 3;
2748 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2749 b += 3;
2750 }
2751 }
2752 }
4e8a9132 2753 pending_exact = 0;
fa9a63c5
RM
2754 break;
2755
2756
2757 case '.':
25fe55af
RS
2758 laststart = b;
2759 BUF_PUSH (anychar);
2760 break;
fa9a63c5
RM
2761
2762
25fe55af
RS
2763 case '[':
2764 {
b18215fc 2765 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2766
25fe55af 2767 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2768
25fe55af
RS
2769 /* Ensure that we have enough space to push a charset: the
2770 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2771 GET_BUFFER_SPACE (34);
2772
25fe55af 2773 laststart = b;
e318085a 2774
25fe55af
RS
2775 /* We test `*p == '^' twice, instead of using an if
2776 statement, so we only need one BUF_PUSH. */
2777 BUF_PUSH (*p == '^' ? charset_not : charset);
2778 if (*p == '^')
2779 p++;
e318085a 2780
25fe55af
RS
2781 /* Remember the first position in the bracket expression. */
2782 p1 = p;
e318085a 2783
25fe55af
RS
2784 /* Push the number of bytes in the bitmap. */
2785 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2786
25fe55af
RS
2787 /* Clear the whole map. */
2788 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2789
25fe55af
RS
2790 /* charset_not matches newline according to a syntax bit. */
2791 if ((re_opcode_t) b[-2] == charset_not
2792 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2793 SET_LIST_BIT ('\n');
fa9a63c5 2794
25fe55af
RS
2795 /* Read in characters and ranges, setting map bits. */
2796 for (;;)
2797 {
b18215fc 2798 boolean escaped_char = false;
2d1675e4 2799 const unsigned char *p2 = p;
e318085a 2800
25fe55af 2801 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2802
36595814
SM
2803 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2804 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2805 So the translation is done later in a loop. Example:
2806 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2807 PATFETCH (c);
e318085a 2808
25fe55af
RS
2809 /* \ might escape characters inside [...] and [^...]. */
2810 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2811 {
2812 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2813
2814 PATFETCH (c);
b18215fc 2815 escaped_char = true;
25fe55af 2816 }
b18215fc
RS
2817 else
2818 {
657fcfbd
RS
2819 /* Could be the end of the bracket expression. If it's
2820 not (i.e., when the bracket expression is `[]' so
2821 far), the ']' character bit gets set way below. */
2d1675e4 2822 if (c == ']' && p2 != p1)
657fcfbd 2823 break;
25fe55af 2824 }
b18215fc 2825
b18215fc
RS
2826 /* What should we do for the character which is
2827 greater than 0x7F, but not BASE_LEADING_CODE_P?
2828 XXX */
2829
25fe55af
RS
2830 /* See if we're at the beginning of a possible character
2831 class. */
b18215fc 2832
2d1675e4
SM
2833 if (!escaped_char &&
2834 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2835 {
2836 /* Leave room for the null. */
14473664 2837 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2838 const unsigned char *class_beg;
b18215fc 2839
25fe55af
RS
2840 PATFETCH (c);
2841 c1 = 0;
ed0767d8 2842 class_beg = p;
b18215fc 2843
25fe55af
RS
2844 /* If pattern is `[[:'. */
2845 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2846
25fe55af
RS
2847 for (;;)
2848 {
14473664
SM
2849 PATFETCH (c);
2850 if ((c == ':' && *p == ']') || p == pend)
2851 break;
2852 if (c1 < CHAR_CLASS_MAX_LENGTH)
2853 str[c1++] = c;
2854 else
2855 /* This is in any case an invalid class name. */
2856 str[0] = '\0';
25fe55af
RS
2857 }
2858 str[c1] = '\0';
b18215fc
RS
2859
2860 /* If isn't a word bracketed by `[:' and `:]':
2861 undo the ending character, the letters, and
2862 leave the leading `:' and `[' (but set bits for
2863 them). */
25fe55af
RS
2864 if (c == ':' && *p == ']')
2865 {
36595814 2866 re_wchar_t ch;
14473664
SM
2867 re_wctype_t cc;
2868
2869 cc = re_wctype (str);
2870
2871 if (cc == 0)
fa9a63c5
RM
2872 FREE_STACK_RETURN (REG_ECTYPE);
2873
14473664
SM
2874 /* Throw away the ] at the end of the character
2875 class. */
2876 PATFETCH (c);
fa9a63c5 2877
14473664 2878 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2879
96cc36cc
RS
2880 /* Most character classes in a multibyte match
2881 just set a flag. Exceptions are is_blank,
2882 is_digit, is_cntrl, and is_xdigit, since
2883 they can only match ASCII characters. We
14473664
SM
2884 don't need to handle them for multibyte.
2885 They are distinguished by a negative wctype. */
96cc36cc 2886
2d1675e4 2887 if (multibyte)
14473664
SM
2888 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2889 re_wctype_to_bit (cc));
96cc36cc 2890
14473664 2891 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
25fe55af 2892 {
7ae68633 2893 int translated = TRANSLATE (ch);
14473664 2894 if (re_iswctype (btowc (ch), cc))
96cc36cc 2895 SET_LIST_BIT (translated);
25fe55af 2896 }
b18215fc
RS
2897
2898 /* Repeat the loop. */
2899 continue;
25fe55af
RS
2900 }
2901 else
2902 {
ed0767d8
SM
2903 /* Go back to right after the "[:". */
2904 p = class_beg;
25fe55af 2905 SET_LIST_BIT ('[');
b18215fc
RS
2906
2907 /* Because the `:' may starts the range, we
2908 can't simply set bit and repeat the loop.
25fe55af 2909 Instead, just set it to C and handle below. */
b18215fc 2910 c = ':';
25fe55af
RS
2911 }
2912 }
b18215fc
RS
2913
2914 if (p < pend && p[0] == '-' && p[1] != ']')
2915 {
2916
2917 /* Discard the `-'. */
2918 PATFETCH (c1);
2919
2920 /* Fetch the character which ends the range. */
2921 PATFETCH (c1);
b18215fc 2922
b54f61ed 2923 if (SINGLE_BYTE_CHAR_P (c))
e934739e 2924 {
b54f61ed
KH
2925 if (! SINGLE_BYTE_CHAR_P (c1))
2926 {
3ff2446d
KH
2927 /* Handle a range starting with a
2928 character of less than 256, and ending
2929 with a character of not less than 256.
2930 Split that into two ranges, the low one
2931 ending at 0377, and the high one
2932 starting at the smallest character in
2933 the charset of C1 and ending at C1. */
b54f61ed 2934 int charset = CHAR_CHARSET (c1);
36595814
SM
2935 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2936
b54f61ed
KH
2937 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2938 c2, c1);
333526e0 2939 c1 = 0377;
b54f61ed 2940 }
e934739e
RS
2941 }
2942 else if (!SAME_CHARSET_P (c, c1))
b3e4c897 2943 FREE_STACK_RETURN (REG_ERANGEX);
e318085a 2944 }
25fe55af 2945 else
b18215fc
RS
2946 /* Range from C to C. */
2947 c1 = c;
2948
2949 /* Set the range ... */
2950 if (SINGLE_BYTE_CHAR_P (c))
2951 /* ... into bitmap. */
25fe55af 2952 {
01618498 2953 re_wchar_t this_char;
36595814 2954 re_wchar_t range_start = c, range_end = c1;
b18215fc
RS
2955
2956 /* If the start is after the end, the range is empty. */
2957 if (range_start > range_end)
2958 {
2959 if (syntax & RE_NO_EMPTY_RANGES)
2960 FREE_STACK_RETURN (REG_ERANGE);
2961 /* Else, repeat the loop. */
2962 }
2963 else
2964 {
2965 for (this_char = range_start; this_char <= range_end;
2966 this_char++)
2967 SET_LIST_BIT (TRANSLATE (this_char));
e934739e 2968 }
25fe55af 2969 }
e318085a 2970 else
b18215fc
RS
2971 /* ... into range table. */
2972 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2973 }
2974
25fe55af
RS
2975 /* Discard any (non)matching list bytes that are all 0 at the
2976 end of the map. Decrease the map-length byte too. */
2977 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2978 b[-1]--;
2979 b += b[-1];
fa9a63c5 2980
96cc36cc
RS
2981 /* Build real range table from work area. */
2982 if (RANGE_TABLE_WORK_USED (range_table_work)
2983 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
2984 {
2985 int i;
2986 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2987
b18215fc 2988 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
2989 bytes for flags, two for COUNT, and three bytes for
2990 each character. */
2991 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 2992
b18215fc
RS
2993 /* Indicate the existence of range table. */
2994 laststart[1] |= 0x80;
fa9a63c5 2995
96cc36cc
RS
2996 /* Store the character class flag bits into the range table.
2997 If not in emacs, these flag bits are always 0. */
2998 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2999 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3000
b18215fc
RS
3001 STORE_NUMBER_AND_INCR (b, used / 2);
3002 for (i = 0; i < used; i++)
3003 STORE_CHARACTER_AND_INCR
3004 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3005 }
25fe55af
RS
3006 }
3007 break;
fa9a63c5
RM
3008
3009
b18215fc 3010 case '(':
25fe55af
RS
3011 if (syntax & RE_NO_BK_PARENS)
3012 goto handle_open;
3013 else
3014 goto normal_char;
fa9a63c5
RM
3015
3016
25fe55af
RS
3017 case ')':
3018 if (syntax & RE_NO_BK_PARENS)
3019 goto handle_close;
3020 else
3021 goto normal_char;
e318085a
RS
3022
3023
25fe55af
RS
3024 case '\n':
3025 if (syntax & RE_NEWLINE_ALT)
3026 goto handle_alt;
3027 else
3028 goto normal_char;
e318085a
RS
3029
3030
b18215fc 3031 case '|':
25fe55af
RS
3032 if (syntax & RE_NO_BK_VBAR)
3033 goto handle_alt;
3034 else
3035 goto normal_char;
3036
3037
3038 case '{':
3039 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3040 goto handle_interval;
3041 else
3042 goto normal_char;
3043
3044
3045 case '\\':
3046 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3047
3048 /* Do not translate the character after the \, so that we can
3049 distinguish, e.g., \B from \b, even if we normally would
3050 translate, e.g., B to b. */
36595814 3051 PATFETCH (c);
25fe55af
RS
3052
3053 switch (c)
3054 {
3055 case '(':
3056 if (syntax & RE_NO_BK_PARENS)
3057 goto normal_backslash;
3058
3059 handle_open:
505bde11
SM
3060 {
3061 int shy = 0;
3062 if (p+1 < pend)
3063 {
3064 /* Look for a special (?...) construct */
ed0767d8 3065 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3066 {
ed0767d8 3067 PATFETCH (c); /* Gobble up the '?'. */
505bde11
SM
3068 PATFETCH (c);
3069 switch (c)
3070 {
3071 case ':': shy = 1; break;
3072 default:
3073 /* Only (?:...) is supported right now. */
3074 FREE_STACK_RETURN (REG_BADPAT);
3075 }
3076 }
505bde11
SM
3077 }
3078
3079 if (!shy)
3080 {
3081 bufp->re_nsub++;
3082 regnum++;
3083 }
25fe55af 3084
99633e97
SM
3085 if (COMPILE_STACK_FULL)
3086 {
3087 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3088 compile_stack_elt_t);
3089 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3090
99633e97
SM
3091 compile_stack.size <<= 1;
3092 }
25fe55af 3093
99633e97
SM
3094 /* These are the values to restore when we hit end of this
3095 group. They are all relative offsets, so that if the
3096 whole pattern moves because of realloc, they will still
3097 be valid. */
3098 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3099 COMPILE_STACK_TOP.fixup_alt_jump
3100 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3101 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3102 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3103
3104 /* Do not push a
3105 start_memory for groups beyond the last one we can
3106 represent in the compiled pattern. */
3107 if (regnum <= MAX_REGNUM && !shy)
3108 BUF_PUSH_2 (start_memory, regnum);
3109
3110 compile_stack.avail++;
3111
3112 fixup_alt_jump = 0;
3113 laststart = 0;
3114 begalt = b;
3115 /* If we've reached MAX_REGNUM groups, then this open
3116 won't actually generate any code, so we'll have to
3117 clear pending_exact explicitly. */
3118 pending_exact = 0;
3119 break;
505bde11 3120 }
25fe55af
RS
3121
3122 case ')':
3123 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3124
3125 if (COMPILE_STACK_EMPTY)
505bde11
SM
3126 {
3127 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3128 goto normal_backslash;
3129 else
3130 FREE_STACK_RETURN (REG_ERPAREN);
3131 }
25fe55af
RS
3132
3133 handle_close:
505bde11 3134 FIXUP_ALT_JUMP ();
25fe55af
RS
3135
3136 /* See similar code for backslashed left paren above. */
3137 if (COMPILE_STACK_EMPTY)
505bde11
SM
3138 {
3139 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3140 goto normal_char;
3141 else
3142 FREE_STACK_RETURN (REG_ERPAREN);
3143 }
25fe55af
RS
3144
3145 /* Since we just checked for an empty stack above, this
3146 ``can't happen''. */
3147 assert (compile_stack.avail != 0);
3148 {
3149 /* We don't just want to restore into `regnum', because
3150 later groups should continue to be numbered higher,
3151 as in `(ab)c(de)' -- the second group is #2. */
3152 regnum_t this_group_regnum;
3153
3154 compile_stack.avail--;
3155 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3156 fixup_alt_jump
3157 = COMPILE_STACK_TOP.fixup_alt_jump
3158 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3159 : 0;
3160 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3161 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3162 /* If we've reached MAX_REGNUM groups, then this open
3163 won't actually generate any code, so we'll have to
3164 clear pending_exact explicitly. */
3165 pending_exact = 0;
e318085a 3166
25fe55af
RS
3167 /* We're at the end of the group, so now we know how many
3168 groups were inside this one. */
505bde11
SM
3169 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3170 BUF_PUSH_2 (stop_memory, this_group_regnum);
25fe55af
RS
3171 }
3172 break;
3173
3174
3175 case '|': /* `\|'. */
3176 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3177 goto normal_backslash;
3178 handle_alt:
3179 if (syntax & RE_LIMITED_OPS)
3180 goto normal_char;
3181
3182 /* Insert before the previous alternative a jump which
3183 jumps to this alternative if the former fails. */
3184 GET_BUFFER_SPACE (3);
3185 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3186 pending_exact = 0;
3187 b += 3;
3188
3189 /* The alternative before this one has a jump after it
3190 which gets executed if it gets matched. Adjust that
3191 jump so it will jump to this alternative's analogous
3192 jump (put in below, which in turn will jump to the next
3193 (if any) alternative's such jump, etc.). The last such
3194 jump jumps to the correct final destination. A picture:
3195 _____ _____
3196 | | | |
3197 | v | v
3198 a | b | c
3199
3200 If we are at `b', then fixup_alt_jump right now points to a
3201 three-byte space after `a'. We'll put in the jump, set
3202 fixup_alt_jump to right after `b', and leave behind three
3203 bytes which we'll fill in when we get to after `c'. */
3204
505bde11 3205 FIXUP_ALT_JUMP ();
25fe55af
RS
3206
3207 /* Mark and leave space for a jump after this alternative,
3208 to be filled in later either by next alternative or
3209 when know we're at the end of a series of alternatives. */
3210 fixup_alt_jump = b;
3211 GET_BUFFER_SPACE (3);
3212 b += 3;
3213
3214 laststart = 0;
3215 begalt = b;
3216 break;
3217
3218
3219 case '{':
3220 /* If \{ is a literal. */
3221 if (!(syntax & RE_INTERVALS)
3222 /* If we're at `\{' and it's not the open-interval
3223 operator. */
4bb91c68 3224 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3225 goto normal_backslash;
3226
3227 handle_interval:
3228 {
3229 /* If got here, then the syntax allows intervals. */
3230
3231 /* At least (most) this many matches must be made. */
99633e97 3232 int lower_bound = 0, upper_bound = -1;
25fe55af 3233
ed0767d8 3234 beg_interval = p;
25fe55af 3235
25fe55af
RS
3236 GET_UNSIGNED_NUMBER (lower_bound);
3237
3238 if (c == ',')
ed0767d8 3239 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3240 else
3241 /* Interval such as `{1}' => match exactly once. */
3242 upper_bound = lower_bound;
3243
3244 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3245 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3246 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3247
3248 if (!(syntax & RE_NO_BK_BRACES))
3249 {
4bb91c68
SM
3250 if (c != '\\')
3251 FREE_STACK_RETURN (REG_BADBR);
c72b0edd
SM
3252 if (p == pend)
3253 FREE_STACK_RETURN (REG_EESCAPE);
25fe55af
RS
3254 PATFETCH (c);
3255 }
3256
3257 if (c != '}')
4bb91c68 3258 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3259
3260 /* We just parsed a valid interval. */
3261
3262 /* If it's invalid to have no preceding re. */
3263 if (!laststart)
3264 {
3265 if (syntax & RE_CONTEXT_INVALID_OPS)
3266 FREE_STACK_RETURN (REG_BADRPT);
3267 else if (syntax & RE_CONTEXT_INDEP_OPS)
3268 laststart = b;
3269 else
3270 goto unfetch_interval;
3271 }
3272
6df42991
SM
3273 if (upper_bound == 0)
3274 /* If the upper bound is zero, just drop the sub pattern
3275 altogether. */
3276 b = laststart;
3277 else if (lower_bound == 1 && upper_bound == 1)
3278 /* Just match it once: nothing to do here. */
3279 ;
3280
3281 /* Otherwise, we have a nontrivial interval. When
3282 we're all done, the pattern will look like:
3283 set_number_at <jump count> <upper bound>
3284 set_number_at <succeed_n count> <lower bound>
3285 succeed_n <after jump addr> <succeed_n count>
3286 <body of loop>
3287 jump_n <succeed_n addr> <jump count>
3288 (The upper bound and `jump_n' are omitted if
3289 `upper_bound' is 1, though.) */
3290 else
3291 { /* If the upper bound is > 1, we need to insert
3292 more at the end of the loop. */
3293 unsigned int nbytes = (upper_bound < 0 ? 3
3294 : upper_bound > 1 ? 5 : 0);
3295 unsigned int startoffset = 0;
3296
3297 GET_BUFFER_SPACE (20); /* We might use less. */
3298
3299 if (lower_bound == 0)
3300 {
3301 /* A succeed_n that starts with 0 is really a
3302 a simple on_failure_jump_loop. */
3303 INSERT_JUMP (on_failure_jump_loop, laststart,
3304 b + 3 + nbytes);
3305 b += 3;
3306 }
3307 else
3308 {
3309 /* Initialize lower bound of the `succeed_n', even
3310 though it will be set during matching by its
3311 attendant `set_number_at' (inserted next),
3312 because `re_compile_fastmap' needs to know.
3313 Jump to the `jump_n' we might insert below. */
3314 INSERT_JUMP2 (succeed_n, laststart,
3315 b + 5 + nbytes,
3316 lower_bound);
3317 b += 5;
3318
3319 /* Code to initialize the lower bound. Insert
3320 before the `succeed_n'. The `5' is the last two
3321 bytes of this `set_number_at', plus 3 bytes of
3322 the following `succeed_n'. */
3323 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3324 b += 5;
3325 startoffset += 5;
3326 }
3327
3328 if (upper_bound < 0)
3329 {
3330 /* A negative upper bound stands for infinity,
3331 in which case it degenerates to a plain jump. */
3332 STORE_JUMP (jump, b, laststart + startoffset);
3333 b += 3;
3334 }
3335 else if (upper_bound > 1)
3336 { /* More than one repetition is allowed, so
3337 append a backward jump to the `succeed_n'
3338 that starts this interval.
3339
3340 When we've reached this during matching,
3341 we'll have matched the interval once, so
3342 jump back only `upper_bound - 1' times. */
3343 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3344 upper_bound - 1);
3345 b += 5;
3346
3347 /* The location we want to set is the second
3348 parameter of the `jump_n'; that is `b-2' as
3349 an absolute address. `laststart' will be
3350 the `set_number_at' we're about to insert;
3351 `laststart+3' the number to set, the source
3352 for the relative address. But we are
3353 inserting into the middle of the pattern --
3354 so everything is getting moved up by 5.
3355 Conclusion: (b - 2) - (laststart + 3) + 5,
3356 i.e., b - laststart.
3357
3358 We insert this at the beginning of the loop
3359 so that if we fail during matching, we'll
3360 reinitialize the bounds. */
3361 insert_op2 (set_number_at, laststart, b - laststart,
3362 upper_bound - 1, b);
3363 b += 5;
3364 }
3365 }
25fe55af
RS
3366 pending_exact = 0;
3367 beg_interval = NULL;
3368 }
3369 break;
3370
3371 unfetch_interval:
3372 /* If an invalid interval, match the characters as literals. */
3373 assert (beg_interval);
3374 p = beg_interval;
3375 beg_interval = NULL;
3376
3377 /* normal_char and normal_backslash need `c'. */
ed0767d8 3378 c = '{';
25fe55af
RS
3379
3380 if (!(syntax & RE_NO_BK_BRACES))
3381 {
ed0767d8
SM
3382 assert (p > pattern && p[-1] == '\\');
3383 goto normal_backslash;
25fe55af 3384 }
ed0767d8
SM
3385 else
3386 goto normal_char;
e318085a 3387
b18215fc 3388#ifdef emacs
25fe55af
RS
3389 /* There is no way to specify the before_dot and after_dot
3390 operators. rms says this is ok. --karl */
3391 case '=':
3392 BUF_PUSH (at_dot);
3393 break;
3394
3395 case 's':
3396 laststart = b;
3397 PATFETCH (c);
3398 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3399 break;
3400
3401 case 'S':
3402 laststart = b;
3403 PATFETCH (c);
3404 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3405 break;
b18215fc
RS
3406
3407 case 'c':
3408 laststart = b;
36595814 3409 PATFETCH (c);
b18215fc
RS
3410 BUF_PUSH_2 (categoryspec, c);
3411 break;
e318085a 3412
b18215fc
RS
3413 case 'C':
3414 laststart = b;
36595814 3415 PATFETCH (c);
b18215fc
RS
3416 BUF_PUSH_2 (notcategoryspec, c);
3417 break;
3418#endif /* emacs */
e318085a 3419
e318085a 3420
25fe55af 3421 case 'w':
4bb91c68
SM
3422 if (syntax & RE_NO_GNU_OPS)
3423 goto normal_char;
25fe55af 3424 laststart = b;
1fb352e0 3425 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3426 break;
e318085a 3427
e318085a 3428
25fe55af 3429 case 'W':
4bb91c68
SM
3430 if (syntax & RE_NO_GNU_OPS)
3431 goto normal_char;
25fe55af 3432 laststart = b;
1fb352e0 3433 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3434 break;
e318085a
RS
3435
3436
25fe55af 3437 case '<':
4bb91c68
SM
3438 if (syntax & RE_NO_GNU_OPS)
3439 goto normal_char;
25fe55af
RS
3440 BUF_PUSH (wordbeg);
3441 break;
e318085a 3442
25fe55af 3443 case '>':
4bb91c68
SM
3444 if (syntax & RE_NO_GNU_OPS)
3445 goto normal_char;
25fe55af
RS
3446 BUF_PUSH (wordend);
3447 break;
e318085a 3448
669fa600
SM
3449 case '_':
3450 if (syntax & RE_NO_GNU_OPS)
3451 goto normal_char;
3452 laststart = b;
3453 PATFETCH (c);
3454 if (c == '<')
3455 BUF_PUSH (symbeg);
3456 else if (c == '>')
3457 BUF_PUSH (symend);
3458 else
3459 FREE_STACK_RETURN (REG_BADPAT);
3460 break;
3461
25fe55af 3462 case 'b':
4bb91c68
SM
3463 if (syntax & RE_NO_GNU_OPS)
3464 goto normal_char;
25fe55af
RS
3465 BUF_PUSH (wordbound);
3466 break;
e318085a 3467
25fe55af 3468 case 'B':
4bb91c68
SM
3469 if (syntax & RE_NO_GNU_OPS)
3470 goto normal_char;
25fe55af
RS
3471 BUF_PUSH (notwordbound);
3472 break;
fa9a63c5 3473
25fe55af 3474 case '`':
4bb91c68
SM
3475 if (syntax & RE_NO_GNU_OPS)
3476 goto normal_char;
25fe55af
RS
3477 BUF_PUSH (begbuf);
3478 break;
e318085a 3479
25fe55af 3480 case '\'':
4bb91c68
SM
3481 if (syntax & RE_NO_GNU_OPS)
3482 goto normal_char;
25fe55af
RS
3483 BUF_PUSH (endbuf);
3484 break;
e318085a 3485
25fe55af
RS
3486 case '1': case '2': case '3': case '4': case '5':
3487 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3488 {
3489 regnum_t reg;
e318085a 3490
0cdd06f8
SM
3491 if (syntax & RE_NO_BK_REFS)
3492 goto normal_backslash;
e318085a 3493
0cdd06f8 3494 reg = c - '0';
e318085a 3495
0cdd06f8
SM
3496 /* Can't back reference to a subexpression before its end. */
3497 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3498 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3499
0cdd06f8
SM
3500 laststart = b;
3501 BUF_PUSH_2 (duplicate, reg);
3502 }
25fe55af 3503 break;
e318085a 3504
e318085a 3505
25fe55af
RS
3506 case '+':
3507 case '?':
3508 if (syntax & RE_BK_PLUS_QM)
3509 goto handle_plus;
3510 else
3511 goto normal_backslash;
3512
3513 default:
3514 normal_backslash:
3515 /* You might think it would be useful for \ to mean
3516 not to translate; but if we don't translate it
4bb91c68 3517 it will never match anything. */
25fe55af
RS
3518 goto normal_char;
3519 }
3520 break;
fa9a63c5
RM
3521
3522
3523 default:
25fe55af 3524 /* Expects the character in `c'. */
fa9a63c5 3525 normal_char:
36595814 3526 /* If no exactn currently being built. */
25fe55af 3527 if (!pending_exact
fa9a63c5 3528
25fe55af
RS
3529 /* If last exactn not at current position. */
3530 || pending_exact + *pending_exact + 1 != b
5e69f11e 3531
25fe55af 3532 /* We have only one byte following the exactn for the count. */
2d1675e4 3533 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3534
25fe55af 3535 /* If followed by a repetition operator. */
9d99031f 3536 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3537 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3538 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3539 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3540 || ((syntax & RE_INTERVALS)
25fe55af 3541 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3542 ? p != pend && *p == '{'
3543 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3544 {
3545 /* Start building a new exactn. */
5e69f11e 3546
25fe55af 3547 laststart = b;
fa9a63c5
RM
3548
3549 BUF_PUSH_2 (exactn, 0);
3550 pending_exact = b - 1;
25fe55af 3551 }
5e69f11e 3552
2d1675e4
SM
3553 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3554 {
e0277a47
KH
3555 int len;
3556
36595814 3557 c = TRANSLATE (c);
e0277a47
KH
3558 if (multibyte)
3559 len = CHAR_STRING (c, b);
3560 else
3561 *b = c, len = 1;
2d1675e4
SM
3562 b += len;
3563 (*pending_exact) += len;
3564 }
3565
fa9a63c5 3566 break;
25fe55af 3567 } /* switch (c) */
fa9a63c5
RM
3568 } /* while p != pend */
3569
5e69f11e 3570
fa9a63c5 3571 /* Through the pattern now. */
5e69f11e 3572
505bde11 3573 FIXUP_ALT_JUMP ();
fa9a63c5 3574
5e69f11e 3575 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3576 FREE_STACK_RETURN (REG_EPAREN);
3577
3578 /* If we don't want backtracking, force success
3579 the first time we reach the end of the compiled pattern. */
3580 if (syntax & RE_NO_POSIX_BACKTRACKING)
3581 BUF_PUSH (succeed);
3582
fa9a63c5
RM
3583 /* We have succeeded; set the length of the buffer. */
3584 bufp->used = b - bufp->buffer;
3585
3586#ifdef DEBUG
99633e97 3587 if (debug > 0)
fa9a63c5 3588 {
505bde11 3589 re_compile_fastmap (bufp);
fa9a63c5
RM
3590 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3591 print_compiled_pattern (bufp);
3592 }
99633e97 3593 debug--;
fa9a63c5
RM
3594#endif /* DEBUG */
3595
3596#ifndef MATCH_MAY_ALLOCATE
3597 /* Initialize the failure stack to the largest possible stack. This
3598 isn't necessary unless we're trying to avoid calling alloca in
3599 the search and match routines. */
3600 {
3601 int num_regs = bufp->re_nsub + 1;
3602
320a2a73 3603 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3604 {
a26f4ccd 3605 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3606
fa9a63c5
RM
3607 if (! fail_stack.stack)
3608 fail_stack.stack
5e69f11e 3609 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3610 * sizeof (fail_stack_elt_t));
3611 else
3612 fail_stack.stack
3613 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3614 (fail_stack.size
3615 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3616 }
3617
3618 regex_grow_registers (num_regs);
3619 }
3620#endif /* not MATCH_MAY_ALLOCATE */
3621
7c67c9f6 3622 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3623} /* regex_compile */
3624\f
3625/* Subroutines for `regex_compile'. */
3626
25fe55af 3627/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3628
3629static void
3630store_op1 (op, loc, arg)
3631 re_opcode_t op;
3632 unsigned char *loc;
3633 int arg;
3634{
3635 *loc = (unsigned char) op;
3636 STORE_NUMBER (loc + 1, arg);
3637}
3638
3639
3640/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3641
3642static void
3643store_op2 (op, loc, arg1, arg2)
3644 re_opcode_t op;
3645 unsigned char *loc;
3646 int arg1, arg2;
3647{
3648 *loc = (unsigned char) op;
3649 STORE_NUMBER (loc + 1, arg1);
3650 STORE_NUMBER (loc + 3, arg2);
3651}
3652
3653
3654/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3655 for OP followed by two-byte integer parameter ARG. */
3656
3657static void
3658insert_op1 (op, loc, arg, end)
3659 re_opcode_t op;
3660 unsigned char *loc;
3661 int arg;
5e69f11e 3662 unsigned char *end;
fa9a63c5
RM
3663{
3664 register unsigned char *pfrom = end;
3665 register unsigned char *pto = end + 3;
3666
3667 while (pfrom != loc)
3668 *--pto = *--pfrom;
5e69f11e 3669
fa9a63c5
RM
3670 store_op1 (op, loc, arg);
3671}
3672
3673
3674/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3675
3676static void
3677insert_op2 (op, loc, arg1, arg2, end)
3678 re_opcode_t op;
3679 unsigned char *loc;
3680 int arg1, arg2;
5e69f11e 3681 unsigned char *end;
fa9a63c5
RM
3682{
3683 register unsigned char *pfrom = end;
3684 register unsigned char *pto = end + 5;
3685
3686 while (pfrom != loc)
3687 *--pto = *--pfrom;
5e69f11e 3688
fa9a63c5
RM
3689 store_op2 (op, loc, arg1, arg2);
3690}
3691
3692
3693/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3694 after an alternative or a begin-subexpression. We assume there is at
3695 least one character before the ^. */
3696
3697static boolean
3698at_begline_loc_p (pattern, p, syntax)
01618498 3699 re_char *pattern, *p;
fa9a63c5
RM
3700 reg_syntax_t syntax;
3701{
01618498 3702 re_char *prev = p - 2;
fa9a63c5 3703 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3704
fa9a63c5
RM
3705 return
3706 /* After a subexpression? */
3707 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3708 /* After an alternative? */
d2af47df
SM
3709 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3710 /* After a shy subexpression? */
3711 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3712 && prev[-1] == '?' && prev[-2] == '('
3713 && (syntax & RE_NO_BK_PARENS
3714 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3715}
3716
3717
3718/* The dual of at_begline_loc_p. This one is for $. We assume there is
3719 at least one character after the $, i.e., `P < PEND'. */
3720
3721static boolean
3722at_endline_loc_p (p, pend, syntax)
01618498 3723 re_char *p, *pend;
99633e97 3724 reg_syntax_t syntax;
fa9a63c5 3725{
01618498 3726 re_char *next = p;
fa9a63c5 3727 boolean next_backslash = *next == '\\';
01618498 3728 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3729
fa9a63c5
RM
3730 return
3731 /* Before a subexpression? */
3732 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3733 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3734 /* Before an alternative? */
3735 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3736 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3737}
3738
3739
5e69f11e 3740/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3741 false if it's not. */
3742
3743static boolean
3744group_in_compile_stack (compile_stack, regnum)
3745 compile_stack_type compile_stack;
3746 regnum_t regnum;
3747{
3748 int this_element;
3749
5e69f11e
RM
3750 for (this_element = compile_stack.avail - 1;
3751 this_element >= 0;
fa9a63c5
RM
3752 this_element--)
3753 if (compile_stack.stack[this_element].regnum == regnum)
3754 return true;
3755
3756 return false;
3757}
fa9a63c5 3758\f
f6a3f532
SM
3759/* analyse_first.
3760 If fastmap is non-NULL, go through the pattern and fill fastmap
3761 with all the possible leading chars. If fastmap is NULL, don't
3762 bother filling it up (obviously) and only return whether the
3763 pattern could potentially match the empty string.
3764
3765 Return 1 if p..pend might match the empty string.
3766 Return 0 if p..pend matches at least one char.
01618498 3767 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3768
3769static int
3770analyse_first (p, pend, fastmap, multibyte)
01618498 3771 re_char *p, *pend;
f6a3f532
SM
3772 char *fastmap;
3773 const int multibyte;
fa9a63c5 3774{
505bde11 3775 int j, k;
1fb352e0 3776 boolean not;
fa9a63c5 3777
b18215fc 3778 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3779 flag is set true. */
b18215fc
RS
3780 boolean match_any_multibyte_characters = false;
3781
f6a3f532 3782 assert (p);
5e69f11e 3783
505bde11
SM
3784 /* The loop below works as follows:
3785 - It has a working-list kept in the PATTERN_STACK and which basically
3786 starts by only containing a pointer to the first operation.
3787 - If the opcode we're looking at is a match against some set of
3788 chars, then we add those chars to the fastmap and go on to the
3789 next work element from the worklist (done via `break').
3790 - If the opcode is a control operator on the other hand, we either
3791 ignore it (if it's meaningless at this point, such as `start_memory')
3792 or execute it (if it's a jump). If the jump has several destinations
3793 (i.e. `on_failure_jump'), then we push the other destination onto the
3794 worklist.
3795 We guarantee termination by ignoring backward jumps (more or less),
3796 so that `p' is monotonically increasing. More to the point, we
3797 never set `p' (or push) anything `<= p1'. */
3798
01618498 3799 while (p < pend)
fa9a63c5 3800 {
505bde11
SM
3801 /* `p1' is used as a marker of how far back a `on_failure_jump'
3802 can go without being ignored. It is normally equal to `p'
3803 (which prevents any backward `on_failure_jump') except right
3804 after a plain `jump', to allow patterns such as:
3805 0: jump 10
3806 3..9: <body>
3807 10: on_failure_jump 3
3808 as used for the *? operator. */
01618498 3809 re_char *p1 = p;
5e69f11e 3810
fa9a63c5
RM
3811 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3812 {
f6a3f532 3813 case succeed:
01618498 3814 return 1;
f6a3f532 3815 continue;
fa9a63c5 3816
fa9a63c5 3817 case duplicate:
505bde11
SM
3818 /* If the first character has to match a backreference, that means
3819 that the group was empty (since it already matched). Since this
3820 is the only case that interests us here, we can assume that the
3821 backreference must match the empty string. */
3822 p++;
3823 continue;
fa9a63c5
RM
3824
3825
3826 /* Following are the cases which match a character. These end
25fe55af 3827 with `break'. */
fa9a63c5
RM
3828
3829 case exactn:
e0277a47
KH
3830 if (fastmap)
3831 {
3832 int c = RE_STRING_CHAR (p + 1, pend - p);
3833
3834 if (SINGLE_BYTE_CHAR_P (c))
3835 fastmap[c] = 1;
3836 else
3837 fastmap[p[1]] = 1;
3838 }
fa9a63c5
RM
3839 break;
3840
3841
1fb352e0
SM
3842 case anychar:
3843 /* We could put all the chars except for \n (and maybe \0)
3844 but we don't bother since it is generally not worth it. */
f6a3f532 3845 if (!fastmap) break;
01618498 3846 return -1;
fa9a63c5
RM
3847
3848
b18215fc 3849 case charset_not:
ba5c004d
RS
3850 /* Chars beyond end of bitmap are possible matches.
3851 All the single-byte codes can occur in multibyte buffers.
3852 So any that are not listed in the charset
3853 are possible matches, even in multibyte buffers. */
1fb352e0 3854 if (!fastmap) break;
b18215fc 3855 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
1fb352e0 3856 j < (1 << BYTEWIDTH); j++)
b18215fc 3857 fastmap[j] = 1;
1fb352e0
SM
3858 /* Fallthrough */
3859 case charset:
3860 if (!fastmap) break;
3861 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3862 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3863 j >= 0; j--)
1fb352e0 3864 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
b18215fc
RS
3865 fastmap[j] = 1;
3866
1fb352e0
SM
3867 if ((not && multibyte)
3868 /* Any character set can possibly contain a character
3869 which doesn't match the specified set of characters. */
3870 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3871 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3872 /* If we can match a character class, we can match
3873 any character set. */
b18215fc
RS
3874 {
3875 set_fastmap_for_multibyte_characters:
3876 if (match_any_multibyte_characters == false)
3877 {
3878 for (j = 0x80; j < 0xA0; j++) /* XXX */
3879 if (BASE_LEADING_CODE_P (j))
3880 fastmap[j] = 1;
3881 match_any_multibyte_characters = true;
3882 }
3883 }
b18215fc 3884
1fb352e0
SM
3885 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3886 && match_any_multibyte_characters == false)
3887 {
3888 /* Set fastmap[I] 1 where I is a base leading code of each
3889 multibyte character in the range table. */
3890 int c, count;
b18215fc 3891
1fb352e0 3892 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 3893 bits for a character class. */
1fb352e0 3894 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 3895
1fb352e0
SM
3896 /* Extract the number of ranges in range table into COUNT. */
3897 EXTRACT_NUMBER_AND_INCR (count, p);
3898 for (; count > 0; count--, p += 2 * 3) /* XXX */
3899 {
3900 /* Extract the start of each range. */
3901 EXTRACT_CHARACTER (c, p);
3902 j = CHAR_CHARSET (c);
3903 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3904 }
3905 }
b18215fc
RS
3906 break;
3907
1fb352e0
SM
3908 case syntaxspec:
3909 case notsyntaxspec:
3910 if (!fastmap) break;
3911#ifndef emacs
3912 not = (re_opcode_t)p[-1] == notsyntaxspec;
3913 k = *p++;
3914 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 3915 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 3916 fastmap[j] = 1;
b18215fc 3917 break;
1fb352e0 3918#else /* emacs */
b18215fc
RS
3919 /* This match depends on text properties. These end with
3920 aborting optimizations. */
01618498 3921 return -1;
b18215fc
RS
3922
3923 case categoryspec:
b18215fc 3924 case notcategoryspec:
1fb352e0
SM
3925 if (!fastmap) break;
3926 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 3927 k = *p++;
1fb352e0
SM
3928 for (j = 0; j < (1 << BYTEWIDTH); j++)
3929 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
3930 fastmap[j] = 1;
3931
1fb352e0 3932 if (multibyte)
b18215fc 3933 /* Any character set can possibly contain a character
1fb352e0 3934 whose category is K (or not). */
b18215fc
RS
3935 goto set_fastmap_for_multibyte_characters;
3936 break;
3937
fa9a63c5 3938 /* All cases after this match the empty string. These end with
25fe55af 3939 `continue'. */
fa9a63c5 3940
fa9a63c5
RM
3941 case before_dot:
3942 case at_dot:
3943 case after_dot:
1fb352e0 3944#endif /* !emacs */
25fe55af
RS
3945 case no_op:
3946 case begline:
3947 case endline:
fa9a63c5
RM
3948 case begbuf:
3949 case endbuf:
3950 case wordbound:
3951 case notwordbound:
3952 case wordbeg:
3953 case wordend:
669fa600
SM
3954 case symbeg:
3955 case symend:
25fe55af 3956 continue;
fa9a63c5
RM
3957
3958
fa9a63c5 3959 case jump:
25fe55af 3960 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
3961 if (j < 0)
3962 /* Backward jumps can only go back to code that we've already
3963 visited. `re_compile' should make sure this is true. */
3964 break;
25fe55af 3965 p += j;
505bde11
SM
3966 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3967 {
3968 case on_failure_jump:
3969 case on_failure_keep_string_jump:
505bde11 3970 case on_failure_jump_loop:
0683b6fa 3971 case on_failure_jump_nastyloop:
505bde11
SM
3972 case on_failure_jump_smart:
3973 p++;
3974 break;
3975 default:
3976 continue;
3977 };
3978 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3979 to jump back to "just after here". */
3980 /* Fallthrough */
fa9a63c5 3981
25fe55af
RS
3982 case on_failure_jump:
3983 case on_failure_keep_string_jump:
0683b6fa 3984 case on_failure_jump_nastyloop:
505bde11
SM
3985 case on_failure_jump_loop:
3986 case on_failure_jump_smart:
25fe55af 3987 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 3988 if (p + j <= p1)
ed0767d8 3989 ; /* Backward jump to be ignored. */
01618498
SM
3990 else
3991 { /* We have to look down both arms.
3992 We first go down the "straight" path so as to minimize
3993 stack usage when going through alternatives. */
3994 int r = analyse_first (p, pend, fastmap, multibyte);
3995 if (r) return r;
3996 p += j;
3997 }
25fe55af 3998 continue;
fa9a63c5
RM
3999
4000
ed0767d8
SM
4001 case jump_n:
4002 /* This code simply does not properly handle forward jump_n. */
4003 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4004 p += 4;
4005 /* jump_n can either jump or fall through. The (backward) jump
4006 case has already been handled, so we only need to look at the
4007 fallthrough case. */
4008 continue;
177c0ea7 4009
fa9a63c5 4010 case succeed_n:
ed0767d8
SM
4011 /* If N == 0, it should be an on_failure_jump_loop instead. */
4012 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4013 p += 4;
4014 /* We only care about one iteration of the loop, so we don't
4015 need to consider the case where this behaves like an
4016 on_failure_jump. */
25fe55af 4017 continue;
fa9a63c5
RM
4018
4019
4020 case set_number_at:
25fe55af
RS
4021 p += 4;
4022 continue;
fa9a63c5
RM
4023
4024
4025 case start_memory:
25fe55af 4026 case stop_memory:
505bde11 4027 p += 1;
fa9a63c5
RM
4028 continue;
4029
4030
4031 default:
25fe55af
RS
4032 abort (); /* We have listed all the cases. */
4033 } /* switch *p++ */
fa9a63c5
RM
4034
4035 /* Getting here means we have found the possible starting
25fe55af 4036 characters for one path of the pattern -- and that the empty
01618498
SM
4037 string does not match. We need not follow this path further. */
4038 return 0;
fa9a63c5
RM
4039 } /* while p */
4040
01618498
SM
4041 /* We reached the end without matching anything. */
4042 return 1;
4043
f6a3f532
SM
4044} /* analyse_first */
4045\f
4046/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4047 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4048 characters can start a string that matches the pattern. This fastmap
4049 is used by re_search to skip quickly over impossible starting points.
4050
4051 Character codes above (1 << BYTEWIDTH) are not represented in the
4052 fastmap, but the leading codes are represented. Thus, the fastmap
4053 indicates which character sets could start a match.
4054
4055 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4056 area as BUFP->fastmap.
4057
4058 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4059 the pattern buffer.
4060
4061 Returns 0 if we succeed, -2 if an internal error. */
4062
4063int
4064re_compile_fastmap (bufp)
4065 struct re_pattern_buffer *bufp;
4066{
4067 char *fastmap = bufp->fastmap;
4068 int analysis;
4069
4070 assert (fastmap && bufp->buffer);
4071
4072 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4073 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4074
4075 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4076 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4077 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4078 return 0;
4079} /* re_compile_fastmap */
4080\f
4081/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4082 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4083 this memory for recording register information. STARTS and ENDS
4084 must be allocated using the malloc library routine, and must each
4085 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4086
4087 If NUM_REGS == 0, then subsequent matches should allocate their own
4088 register data.
4089
4090 Unless this function is called, the first search or match using
4091 PATTERN_BUFFER will allocate its own register data, without
4092 freeing the old data. */
4093
4094void
4095re_set_registers (bufp, regs, num_regs, starts, ends)
4096 struct re_pattern_buffer *bufp;
4097 struct re_registers *regs;
4098 unsigned num_regs;
4099 regoff_t *starts, *ends;
4100{
4101 if (num_regs)
4102 {
4103 bufp->regs_allocated = REGS_REALLOCATE;
4104 regs->num_regs = num_regs;
4105 regs->start = starts;
4106 regs->end = ends;
4107 }
4108 else
4109 {
4110 bufp->regs_allocated = REGS_UNALLOCATED;
4111 regs->num_regs = 0;
4112 regs->start = regs->end = (regoff_t *) 0;
4113 }
4114}
c0f9ea08 4115WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4116\f
25fe55af 4117/* Searching routines. */
fa9a63c5
RM
4118
4119/* Like re_search_2, below, but only one string is specified, and
4120 doesn't let you say where to stop matching. */
4121
4122int
4123re_search (bufp, string, size, startpos, range, regs)
4124 struct re_pattern_buffer *bufp;
4125 const char *string;
4126 int size, startpos, range;
4127 struct re_registers *regs;
4128{
5e69f11e 4129 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4130 regs, size);
4131}
c0f9ea08 4132WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4133
70806df6
KH
4134/* Head address of virtual concatenation of string. */
4135#define HEAD_ADDR_VSTRING(P) \
4136 (((P) >= size1 ? string2 : string1))
4137
b18215fc
RS
4138/* End address of virtual concatenation of string. */
4139#define STOP_ADDR_VSTRING(P) \
4140 (((P) >= size1 ? string2 + size2 : string1 + size1))
4141
4142/* Address of POS in the concatenation of virtual string. */
4143#define POS_ADDR_VSTRING(POS) \
4144 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4145
4146/* Using the compiled pattern in BUFP->buffer, first tries to match the
4147 virtual concatenation of STRING1 and STRING2, starting first at index
4148 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4149
fa9a63c5 4150 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4151
fa9a63c5
RM
4152 RANGE is how far to scan while trying to match. RANGE = 0 means try
4153 only at STARTPOS; in general, the last start tried is STARTPOS +
4154 RANGE.
5e69f11e 4155
fa9a63c5
RM
4156 In REGS, return the indices of the virtual concatenation of STRING1
4157 and STRING2 that matched the entire BUFP->buffer and its contained
4158 subexpressions.
5e69f11e 4159
fa9a63c5
RM
4160 Do not consider matching one past the index STOP in the virtual
4161 concatenation of STRING1 and STRING2.
4162
4163 We return either the position in the strings at which the match was
4164 found, -1 if no match, or -2 if error (such as failure
4165 stack overflow). */
4166
4167int
66f0296e 4168re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4169 struct re_pattern_buffer *bufp;
66f0296e 4170 const char *str1, *str2;
fa9a63c5
RM
4171 int size1, size2;
4172 int startpos;
4173 int range;
4174 struct re_registers *regs;
4175 int stop;
4176{
4177 int val;
66f0296e
SM
4178 re_char *string1 = (re_char*) str1;
4179 re_char *string2 = (re_char*) str2;
fa9a63c5 4180 register char *fastmap = bufp->fastmap;
6676cb1c 4181 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4182 int total_size = size1 + size2;
4183 int endpos = startpos + range;
c0f9ea08 4184 boolean anchored_start;
fa9a63c5 4185
25fe55af 4186 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4187 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4188
fa9a63c5
RM
4189 /* Check for out-of-range STARTPOS. */
4190 if (startpos < 0 || startpos > total_size)
4191 return -1;
5e69f11e 4192
fa9a63c5 4193 /* Fix up RANGE if it might eventually take us outside
34597fa9 4194 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4195 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4196 if (endpos < 0)
4197 range = 0 - startpos;
fa9a63c5
RM
4198 else if (endpos > total_size)
4199 range = total_size - startpos;
4200
4201 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4202 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4203 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4204 {
4205 if (startpos > 0)
4206 return -1;
4207 else
7b140fd7 4208 range = 0;
fa9a63c5
RM
4209 }
4210
ae4788a8
RS
4211#ifdef emacs
4212 /* In a forward search for something that starts with \=.
4213 don't keep searching past point. */
4214 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4215 {
7b140fd7
RS
4216 range = PT_BYTE - BEGV_BYTE - startpos;
4217 if (range < 0)
ae4788a8
RS
4218 return -1;
4219 }
4220#endif /* emacs */
4221
fa9a63c5
RM
4222 /* Update the fastmap now if not correct already. */
4223 if (fastmap && !bufp->fastmap_accurate)
01618498 4224 re_compile_fastmap (bufp);
5e69f11e 4225
c8499ba5 4226 /* See whether the pattern is anchored. */
c0f9ea08 4227 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4228
b18215fc 4229#ifdef emacs
cc9b4df2
KH
4230 gl_state.object = re_match_object;
4231 {
99633e97 4232 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4233
4234 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4235 }
b18215fc
RS
4236#endif
4237
fa9a63c5
RM
4238 /* Loop through the string, looking for a place to start matching. */
4239 for (;;)
5e69f11e 4240 {
c8499ba5
RS
4241 /* If the pattern is anchored,
4242 skip quickly past places we cannot match.
4243 We don't bother to treat startpos == 0 specially
4244 because that case doesn't repeat. */
4245 if (anchored_start && startpos > 0)
4246 {
c0f9ea08
SM
4247 if (! ((startpos <= size1 ? string1[startpos - 1]
4248 : string2[startpos - size1 - 1])
4249 == '\n'))
c8499ba5
RS
4250 goto advance;
4251 }
4252
fa9a63c5 4253 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4254 cannot be the start of a match. If the pattern can match the
4255 null string, however, we don't need to skip characters; we want
4256 the first null string. */
fa9a63c5
RM
4257 if (fastmap && startpos < total_size && !bufp->can_be_null)
4258 {
66f0296e 4259 register re_char *d;
01618498 4260 register re_wchar_t buf_ch;
e934739e
RS
4261
4262 d = POS_ADDR_VSTRING (startpos);
4263
25fe55af 4264 if (range > 0) /* Searching forwards. */
fa9a63c5 4265 {
fa9a63c5
RM
4266 register int lim = 0;
4267 int irange = range;
4268
25fe55af
RS
4269 if (startpos < size1 && startpos + range >= size1)
4270 lim = range - (size1 - startpos);
fa9a63c5 4271
25fe55af
RS
4272 /* Written out as an if-else to avoid testing `translate'
4273 inside the loop. */
28ae27ae
AS
4274 if (RE_TRANSLATE_P (translate))
4275 {
e934739e
RS
4276 if (multibyte)
4277 while (range > lim)
4278 {
4279 int buf_charlen;
4280
4281 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4282 buf_charlen);
4283
4284 buf_ch = RE_TRANSLATE (translate, buf_ch);
4285 if (buf_ch >= 0400
4286 || fastmap[buf_ch])
4287 break;
4288
4289 range -= buf_charlen;
4290 d += buf_charlen;
4291 }
4292 else
cf1982d9
EZ
4293 {
4294 /* Convert *d to integer to shut up GCC's
4295 whining about comparison that is always
4296 true. */
4297 int di = *d;
4298
4299 while (range > lim
4300 && !fastmap[RE_TRANSLATE (translate, di)])
4301 {
4302 di = *(++d);
4303 range--;
4304 }
4305 }
e934739e 4306 }
fa9a63c5 4307 else
66f0296e 4308 while (range > lim && !fastmap[*d])
33c46939
RS
4309 {
4310 d++;
4311 range--;
4312 }
fa9a63c5
RM
4313
4314 startpos += irange - range;
4315 }
25fe55af 4316 else /* Searching backwards. */
fa9a63c5 4317 {
2d1675e4
SM
4318 int room = (startpos >= size1
4319 ? size2 + size1 - startpos
4320 : size1 - startpos);
4321 buf_ch = RE_STRING_CHAR (d, room);
4322 buf_ch = TRANSLATE (buf_ch);
fa9a63c5 4323
e934739e
RS
4324 if (! (buf_ch >= 0400
4325 || fastmap[buf_ch]))
fa9a63c5
RM
4326 goto advance;
4327 }
4328 }
4329
4330 /* If can't match the null string, and that's all we have left, fail. */
4331 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4332 && !bufp->can_be_null)
fa9a63c5
RM
4333 return -1;
4334
4335 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4336 startpos, regs, stop);
4337#ifndef REGEX_MALLOC
0b32bf0e 4338# ifdef C_ALLOCA
fa9a63c5 4339 alloca (0);
0b32bf0e 4340# endif
fa9a63c5
RM
4341#endif
4342
4343 if (val >= 0)
4344 return startpos;
5e69f11e 4345
fa9a63c5
RM
4346 if (val == -2)
4347 return -2;
4348
4349 advance:
5e69f11e 4350 if (!range)
25fe55af 4351 break;
5e69f11e 4352 else if (range > 0)
25fe55af 4353 {
b18215fc
RS
4354 /* Update STARTPOS to the next character boundary. */
4355 if (multibyte)
4356 {
66f0296e
SM
4357 re_char *p = POS_ADDR_VSTRING (startpos);
4358 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4359 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4360
4361 range -= len;
4362 if (range < 0)
4363 break;
4364 startpos += len;
4365 }
4366 else
4367 {
b560c397
RS
4368 range--;
4369 startpos++;
4370 }
e318085a 4371 }
fa9a63c5 4372 else
25fe55af
RS
4373 {
4374 range++;
4375 startpos--;
b18215fc
RS
4376
4377 /* Update STARTPOS to the previous character boundary. */
4378 if (multibyte)
4379 {
70806df6
KH
4380 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4381 re_char *p0 = p;
4382 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4383
4384 /* Find the head of multibyte form. */
70806df6
KH
4385 PREV_CHAR_BOUNDARY (p, phead);
4386 range += p0 - 1 - p;
4387 if (range > 0)
4388 break;
b18215fc 4389
70806df6 4390 startpos -= p0 - 1 - p;
b18215fc 4391 }
25fe55af 4392 }
fa9a63c5
RM
4393 }
4394 return -1;
4395} /* re_search_2 */
c0f9ea08 4396WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4397\f
4398/* Declarations and macros for re_match_2. */
4399
2d1675e4
SM
4400static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4401 register int len,
4402 RE_TRANSLATE_TYPE translate,
4403 const int multibyte));
fa9a63c5
RM
4404
4405/* This converts PTR, a pointer into one of the search strings `string1'
4406 and `string2' into an offset from the beginning of that string. */
4407#define POINTER_TO_OFFSET(ptr) \
4408 (FIRST_STRING_P (ptr) \
4409 ? ((regoff_t) ((ptr) - string1)) \
4410 : ((regoff_t) ((ptr) - string2 + size1)))
4411
fa9a63c5 4412/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4413 string2 if necessary.
4414 Check re_match_2_internal for a discussion of why end_match_2 might
4415 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4416#define PREFETCH() \
25fe55af 4417 while (d == dend) \
fa9a63c5
RM
4418 { \
4419 /* End of string2 => fail. */ \
25fe55af
RS
4420 if (dend == end_match_2) \
4421 goto fail; \
4bb91c68 4422 /* End of string1 => advance to string2. */ \
25fe55af 4423 d = string2; \
fa9a63c5
RM
4424 dend = end_match_2; \
4425 }
4426
f1ad044f
SM
4427/* Call before fetching a char with *d if you already checked other limits.
4428 This is meant for use in lookahead operations like wordend, etc..
4429 where we might need to look at parts of the string that might be
4430 outside of the LIMITs (i.e past `stop'). */
4431#define PREFETCH_NOLIMIT() \
4432 if (d == end1) \
4433 { \
4434 d = string2; \
4435 dend = end_match_2; \
4436 } \
fa9a63c5
RM
4437
4438/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 4439 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4440#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4441#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4442
4443
4444/* Test if D points to a character which is word-constituent. We have
4445 two special cases to check for: if past the end of string1, look at
4446 the first character in string2; and if before the beginning of
4447 string2, look at the last character in string1. */
4448#define WORDCHAR_P(d) \
4449 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4450 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4451 == Sword)
4452
9121ca40 4453/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4454
4455/* The comment at case wordbound is following one, but we don't use
4456 AT_WORD_BOUNDARY anymore to support multibyte form.
4457
4458 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
4459 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4460 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4461 macro and introducing temporary variables works around the bug. */
4462
9121ca40 4463#if 0
fa9a63c5
RM
4464/* Test if the character before D and the one at D differ with respect
4465 to being word-constituent. */
4466#define AT_WORD_BOUNDARY(d) \
4467 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4468 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4469#endif
fa9a63c5
RM
4470
4471/* Free everything we malloc. */
4472#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4473# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4474# define FREE_VARIABLES() \
fa9a63c5
RM
4475 do { \
4476 REGEX_FREE_STACK (fail_stack.stack); \
4477 FREE_VAR (regstart); \
4478 FREE_VAR (regend); \
fa9a63c5
RM
4479 FREE_VAR (best_regstart); \
4480 FREE_VAR (best_regend); \
fa9a63c5
RM
4481 } while (0)
4482#else
0b32bf0e 4483# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4484#endif /* not MATCH_MAY_ALLOCATE */
4485
505bde11
SM
4486\f
4487/* Optimization routines. */
4488
4e8a9132
SM
4489/* If the operation is a match against one or more chars,
4490 return a pointer to the next operation, else return NULL. */
01618498 4491static re_char *
4e8a9132 4492skip_one_char (p)
01618498 4493 re_char *p;
4e8a9132
SM
4494{
4495 switch (SWITCH_ENUM_CAST (*p++))
4496 {
4497 case anychar:
4498 break;
177c0ea7 4499
4e8a9132
SM
4500 case exactn:
4501 p += *p + 1;
4502 break;
4503
4504 case charset_not:
4505 case charset:
4506 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4507 {
4508 int mcnt;
4509 p = CHARSET_RANGE_TABLE (p - 1);
4510 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4511 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4512 }
4513 else
4514 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4515 break;
177c0ea7 4516
4e8a9132
SM
4517 case syntaxspec:
4518 case notsyntaxspec:
1fb352e0 4519#ifdef emacs
4e8a9132
SM
4520 case categoryspec:
4521 case notcategoryspec:
4522#endif /* emacs */
4523 p++;
4524 break;
4525
4526 default:
4527 p = NULL;
4528 }
4529 return p;
4530}
4531
4532
505bde11 4533/* Jump over non-matching operations. */
275a3409 4534static re_char *
4e8a9132 4535skip_noops (p, pend)
275a3409 4536 re_char *p, *pend;
505bde11
SM
4537{
4538 int mcnt;
4539 while (p < pend)
4540 {
4541 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4542 {
4543 case start_memory:
505bde11
SM
4544 case stop_memory:
4545 p += 2; break;
4546 case no_op:
4547 p += 1; break;
4548 case jump:
4549 p += 1;
4550 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4551 p += mcnt;
4552 break;
4553 default:
4554 return p;
4555 }
4556 }
4557 assert (p == pend);
4558 return p;
4559}
4560
4561/* Non-zero if "p1 matches something" implies "p2 fails". */
4562static int
4563mutually_exclusive_p (bufp, p1, p2)
4564 struct re_pattern_buffer *bufp;
275a3409 4565 re_char *p1, *p2;
505bde11 4566{
4e8a9132 4567 re_opcode_t op2;
2d1675e4 4568 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4569 unsigned char *pend = bufp->buffer + bufp->used;
4570
4e8a9132 4571 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4572 && p2 >= bufp->buffer && p2 <= pend);
4573
4574 /* Skip over open/close-group commands.
4575 If what follows this loop is a ...+ construct,
4576 look at what begins its body, since we will have to
4577 match at least one of that. */
4e8a9132
SM
4578 p2 = skip_noops (p2, pend);
4579 /* The same skip can be done for p1, except that this function
4580 is only used in the case where p1 is a simple match operator. */
4581 /* p1 = skip_noops (p1, pend); */
4582
4583 assert (p1 >= bufp->buffer && p1 < pend
4584 && p2 >= bufp->buffer && p2 <= pend);
4585
4586 op2 = p2 == pend ? succeed : *p2;
4587
4588 switch (SWITCH_ENUM_CAST (op2))
505bde11 4589 {
4e8a9132
SM
4590 case succeed:
4591 case endbuf:
4592 /* If we're at the end of the pattern, we can change. */
4593 if (skip_one_char (p1))
505bde11 4594 {
505bde11
SM
4595 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4596 return 1;
505bde11 4597 }
4e8a9132 4598 break;
177c0ea7 4599
4e8a9132 4600 case endline:
4e8a9132
SM
4601 case exactn:
4602 {
01618498 4603 register re_wchar_t c
4e8a9132 4604 = (re_opcode_t) *p2 == endline ? '\n'
411e4203 4605 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
505bde11 4606
4e8a9132
SM
4607 if ((re_opcode_t) *p1 == exactn)
4608 {
4609 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4610 {
4611 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4612 return 1;
4613 }
4614 }
505bde11 4615
4e8a9132
SM
4616 else if ((re_opcode_t) *p1 == charset
4617 || (re_opcode_t) *p1 == charset_not)
4618 {
4619 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4620
4e8a9132
SM
4621 /* Test if C is listed in charset (or charset_not)
4622 at `p1'. */
4623 if (SINGLE_BYTE_CHAR_P (c))
4624 {
4625 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4626 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4627 not = !not;
4628 }
4629 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4630 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4631
4e8a9132
SM
4632 /* `not' is equal to 1 if c would match, which means
4633 that we can't change to pop_failure_jump. */
4634 if (!not)
4635 {
4636 DEBUG_PRINT1 (" No match => fast loop.\n");
4637 return 1;
4638 }
4639 }
4640 else if ((re_opcode_t) *p1 == anychar
4641 && c == '\n')
4642 {
4643 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4644 return 1;
4645 }
4646 }
4647 break;
505bde11 4648
4e8a9132 4649 case charset:
4e8a9132
SM
4650 {
4651 if ((re_opcode_t) *p1 == exactn)
4652 /* Reuse the code above. */
4653 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4654
505bde11
SM
4655 /* It is hard to list up all the character in charset
4656 P2 if it includes multibyte character. Give up in
4657 such case. */
4658 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4659 {
4660 /* Now, we are sure that P2 has no range table.
4661 So, for the size of bitmap in P2, `p2[1]' is
4662 enough. But P1 may have range table, so the
4663 size of bitmap table of P1 is extracted by
4664 using macro `CHARSET_BITMAP_SIZE'.
4665
4666 Since we know that all the character listed in
4667 P2 is ASCII, it is enough to test only bitmap
4668 table of P1. */
4669
411e4203 4670 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4671 {
4672 int idx;
4673 /* We win if the charset inside the loop
4674 has no overlap with the one after the loop. */
4675 for (idx = 0;
4676 (idx < (int) p2[1]
4677 && idx < CHARSET_BITMAP_SIZE (p1));
4678 idx++)
4679 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4680 break;
4681
4682 if (idx == p2[1]
4683 || idx == CHARSET_BITMAP_SIZE (p1))
4684 {
4685 DEBUG_PRINT1 (" No match => fast loop.\n");
4686 return 1;
4687 }
4688 }
411e4203 4689 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4690 {
4691 int idx;
4692 /* We win if the charset_not inside the loop lists
4693 every character listed in the charset after. */
4694 for (idx = 0; idx < (int) p2[1]; idx++)
4695 if (! (p2[2 + idx] == 0
4696 || (idx < CHARSET_BITMAP_SIZE (p1)
4697 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4698 break;
4699
4e8a9132
SM
4700 if (idx == p2[1])
4701 {
4702 DEBUG_PRINT1 (" No match => fast loop.\n");
4703 return 1;
4704 }
4705 }
4706 }
4707 }
609b757a 4708 break;
177c0ea7 4709
411e4203
SM
4710 case charset_not:
4711 switch (SWITCH_ENUM_CAST (*p1))
4712 {
4713 case exactn:
4714 case charset:
4715 /* Reuse the code above. */
4716 return mutually_exclusive_p (bufp, p2, p1);
4717 case charset_not:
4718 /* When we have two charset_not, it's very unlikely that
4719 they don't overlap. The union of the two sets of excluded
4720 chars should cover all possible chars, which, as a matter of
4721 fact, is virtually impossible in multibyte buffers. */
36595814 4722 break;
411e4203
SM
4723 }
4724 break;
4725
4e8a9132 4726 case wordend:
669fa600
SM
4727 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4728 case symend:
4e8a9132 4729 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
4730 && (p1[1] == Ssymbol || p1[1] == Sword));
4731 case notsyntaxspec:
4732 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4733
4734 case wordbeg:
669fa600
SM
4735 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4736 case symbeg:
4e8a9132 4737 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
4738 && (p1[1] == Ssymbol || p1[1] == Sword));
4739 case syntaxspec:
4740 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4741
4742 case wordbound:
4743 return (((re_opcode_t) *p1 == notsyntaxspec
4744 || (re_opcode_t) *p1 == syntaxspec)
4745 && p1[1] == Sword);
4746
1fb352e0 4747#ifdef emacs
4e8a9132
SM
4748 case categoryspec:
4749 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4750 case notcategoryspec:
4751 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4752#endif /* emacs */
4753
4754 default:
4755 ;
505bde11
SM
4756 }
4757
4758 /* Safe default. */
4759 return 0;
4760}
4761
fa9a63c5
RM
4762\f
4763/* Matching routines. */
4764
25fe55af 4765#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4766/* re_match is like re_match_2 except it takes only a single string. */
4767
4768int
4769re_match (bufp, string, size, pos, regs)
4770 struct re_pattern_buffer *bufp;
4771 const char *string;
4772 int size, pos;
4773 struct re_registers *regs;
4774{
4bb91c68 4775 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 4776 pos, regs, size);
0b32bf0e 4777# if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4778 alloca (0);
0b32bf0e 4779# endif
fa9a63c5
RM
4780 return result;
4781}
c0f9ea08 4782WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4783#endif /* not emacs */
4784
b18215fc
RS
4785#ifdef emacs
4786/* In Emacs, this is the string or buffer in which we
25fe55af 4787 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4788Lisp_Object re_match_object;
4789#endif
fa9a63c5
RM
4790
4791/* re_match_2 matches the compiled pattern in BUFP against the
4792 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4793 and SIZE2, respectively). We start matching at POS, and stop
4794 matching at STOP.
5e69f11e 4795
fa9a63c5 4796 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4797 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4798 documentation for exactly how many groups we fill.
4799
4800 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4801 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4802 matched substring. */
4803
4804int
4805re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4806 struct re_pattern_buffer *bufp;
4807 const char *string1, *string2;
4808 int size1, size2;
4809 int pos;
4810 struct re_registers *regs;
4811 int stop;
4812{
b18215fc 4813 int result;
25fe55af 4814
b18215fc 4815#ifdef emacs
cc9b4df2
KH
4816 int charpos;
4817 gl_state.object = re_match_object;
99633e97 4818 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4819 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4820#endif
4821
4bb91c68
SM
4822 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4823 (re_char*) string2, size2,
cc9b4df2 4824 pos, regs, stop);
0b32bf0e 4825#if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4826 alloca (0);
a60198e5 4827#endif
fa9a63c5
RM
4828 return result;
4829}
c0f9ea08 4830WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5
RM
4831
4832/* This is a separate function so that we can force an alloca cleanup
25fe55af 4833 afterwards. */
fa9a63c5
RM
4834static int
4835re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4836 struct re_pattern_buffer *bufp;
66f0296e 4837 re_char *string1, *string2;
fa9a63c5
RM
4838 int size1, size2;
4839 int pos;
4840 struct re_registers *regs;
4841 int stop;
4842{
4843 /* General temporaries. */
4844 int mcnt;
01618498 4845 size_t reg;
66f0296e 4846 boolean not;
fa9a63c5
RM
4847
4848 /* Just past the end of the corresponding string. */
66f0296e 4849 re_char *end1, *end2;
fa9a63c5
RM
4850
4851 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4852 each to consider matching. */
66f0296e 4853 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4854
4855 /* Where we are in the data, and the end of the current string. */
66f0296e 4856 re_char *d, *dend;
5e69f11e 4857
99633e97
SM
4858 /* Used sometimes to remember where we were before starting matching
4859 an operator so that we can go back in case of failure. This "atomic"
4860 behavior of matching opcodes is indispensable to the correctness
4861 of the on_failure_keep_string_jump optimization. */
4862 re_char *dfail;
4863
fa9a63c5 4864 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
4865 re_char *p = bufp->buffer;
4866 re_char *pend = p + bufp->used;
fa9a63c5 4867
25fe55af 4868 /* We use this to map every character in the string. */
6676cb1c 4869 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4870
25fe55af 4871 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4872 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4873
fa9a63c5
RM
4874 /* Failure point stack. Each place that can handle a failure further
4875 down the line pushes a failure point on this stack. It consists of
505bde11 4876 regstart, and regend for all registers corresponding to
fa9a63c5
RM
4877 the subexpressions we're currently inside, plus the number of such
4878 registers, and, finally, two char *'s. The first char * is where
4879 to resume scanning the pattern; the second one is where to resume
505bde11 4880 scanning the strings. */
25fe55af 4881#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4882 fail_stack_type fail_stack;
4883#endif
4884#ifdef DEBUG
fa9a63c5
RM
4885 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4886#endif
4887
0b32bf0e 4888#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
4889 /* This holds the pointer to the failure stack, when
4890 it is allocated relocatably. */
4891 fail_stack_elt_t *failure_stack_ptr;
99633e97 4892#endif
fa9a63c5
RM
4893
4894 /* We fill all the registers internally, independent of what we
25fe55af 4895 return, for use in backreferences. The number here includes
fa9a63c5 4896 an element for register zero. */
4bb91c68 4897 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 4898
fa9a63c5
RM
4899 /* Information on the contents of registers. These are pointers into
4900 the input strings; they record just what was matched (on this
4901 attempt) by a subexpression part of the pattern, that is, the
4902 regnum-th regstart pointer points to where in the pattern we began
4903 matching and the regnum-th regend points to right after where we
4904 stopped matching the regnum-th subexpression. (The zeroth register
4905 keeps track of what the whole pattern matches.) */
4906#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4907 re_char **regstart, **regend;
fa9a63c5
RM
4908#endif
4909
fa9a63c5 4910 /* The following record the register info as found in the above
5e69f11e 4911 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4912 This happens as we backtrack through the failure points, which in
4913 turn happens only if we have not yet matched the entire string. */
4914 unsigned best_regs_set = false;
4915#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4916 re_char **best_regstart, **best_regend;
fa9a63c5 4917#endif
5e69f11e 4918
fa9a63c5
RM
4919 /* Logically, this is `best_regend[0]'. But we don't want to have to
4920 allocate space for that if we're not allocating space for anything
25fe55af 4921 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4922 any of the other register vectors, and it seems rather a kludge to
4923 treat `best_regend' differently than the rest. So we keep track of
4924 the end of the best match so far in a separate variable. We
4925 initialize this to NULL so that when we backtrack the first time
4926 and need to test it, it's not garbage. */
66f0296e 4927 re_char *match_end = NULL;
fa9a63c5 4928
fa9a63c5
RM
4929#ifdef DEBUG
4930 /* Counts the total number of registers pushed. */
5e69f11e 4931 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4932#endif
4933
4934 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4935
fa9a63c5 4936 INIT_FAIL_STACK ();
5e69f11e 4937
fa9a63c5
RM
4938#ifdef MATCH_MAY_ALLOCATE
4939 /* Do not bother to initialize all the register variables if there are
4940 no groups in the pattern, as it takes a fair amount of time. If
4941 there are groups, we include space for register 0 (the whole
4942 pattern), even though we never use it, since it simplifies the
4943 array indexing. We should fix this. */
4944 if (bufp->re_nsub)
4945 {
66f0296e
SM
4946 regstart = REGEX_TALLOC (num_regs, re_char *);
4947 regend = REGEX_TALLOC (num_regs, re_char *);
4948 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4949 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 4950
505bde11 4951 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
4952 {
4953 FREE_VARIABLES ();
4954 return -2;
4955 }
fa9a63c5
RM
4956 }
4957 else
4958 {
4959 /* We must initialize all our variables to NULL, so that
25fe55af 4960 `FREE_VARIABLES' doesn't try to free them. */
505bde11 4961 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
4962 }
4963#endif /* MATCH_MAY_ALLOCATE */
4964
4965 /* The starting position is bogus. */
4966 if (pos < 0 || pos > size1 + size2)
4967 {
4968 FREE_VARIABLES ();
4969 return -1;
4970 }
5e69f11e 4971
fa9a63c5
RM
4972 /* Initialize subexpression text positions to -1 to mark ones that no
4973 start_memory/stop_memory has been seen for. Also initialize the
4974 register information struct. */
01618498
SM
4975 for (reg = 1; reg < num_regs; reg++)
4976 regstart[reg] = regend[reg] = NULL;
99633e97 4977
fa9a63c5 4978 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4979 `string1' is null. */
fa9a63c5
RM
4980 if (size2 == 0 && string1 != NULL)
4981 {
4982 string2 = string1;
4983 size2 = size1;
4984 string1 = 0;
4985 size1 = 0;
4986 }
4987 end1 = string1 + size1;
4988 end2 = string2 + size2;
4989
5e69f11e 4990 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4991 `dend' is the end of the input string that `d' points within. `d'
4992 is advanced into the following input string whenever necessary, but
4993 this happens before fetching; therefore, at the beginning of the
4994 loop, `d' can be pointing at the end of a string, but it cannot
4995 equal `string2'. */
419d1c74 4996 if (pos >= size1)
fa9a63c5 4997 {
419d1c74
SM
4998 /* Only match within string2. */
4999 d = string2 + pos - size1;
5000 dend = end_match_2 = string2 + stop - size1;
5001 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
5002 }
5003 else
5004 {
f1ad044f 5005 if (stop < size1)
419d1c74
SM
5006 {
5007 /* Only match within string1. */
5008 end_match_1 = string1 + stop;
5009 /* BEWARE!
5010 When we reach end_match_1, PREFETCH normally switches to string2.
5011 But in the present case, this means that just doing a PREFETCH
5012 makes us jump from `stop' to `gap' within the string.
5013 What we really want here is for the search to stop as
5014 soon as we hit end_match_1. That's why we set end_match_2
5015 to end_match_1 (since PREFETCH fails as soon as we hit
5016 end_match_2). */
5017 end_match_2 = end_match_1;
5018 }
5019 else
f1ad044f
SM
5020 { /* It's important to use this code when stop == size so that
5021 moving `d' from end1 to string2 will not prevent the d == dend
5022 check from catching the end of string. */
419d1c74
SM
5023 end_match_1 = end1;
5024 end_match_2 = string2 + stop - size1;
5025 }
5026 d = string1 + pos;
5027 dend = end_match_1;
fa9a63c5
RM
5028 }
5029
5030 DEBUG_PRINT1 ("The compiled pattern is: ");
5031 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5032 DEBUG_PRINT1 ("The string to match is: `");
5033 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5034 DEBUG_PRINT1 ("'\n");
5e69f11e 5035
25fe55af 5036 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
5037 function if the match is complete, or it drops through if the match
5038 fails at this starting point in the input data. */
5039 for (;;)
5040 {
505bde11 5041 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
5042
5043 if (p == pend)
5044 { /* End of pattern means we might have succeeded. */
25fe55af 5045 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 5046
fa9a63c5 5047 /* If we haven't matched the entire string, and we want the
25fe55af
RS
5048 longest match, try backtracking. */
5049 if (d != end_match_2)
fa9a63c5
RM
5050 {
5051 /* 1 if this match ends in the same string (string1 or string2)
5052 as the best previous match. */
5e69f11e 5053 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 5054 == FIRST_STRING_P (d));
fa9a63c5
RM
5055 /* 1 if this match is the best seen so far. */
5056 boolean best_match_p;
5057
5058 /* AIX compiler got confused when this was combined
25fe55af 5059 with the previous declaration. */
fa9a63c5
RM
5060 if (same_str_p)
5061 best_match_p = d > match_end;
5062 else
99633e97 5063 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 5064
25fe55af
RS
5065 DEBUG_PRINT1 ("backtracking.\n");
5066
5067 if (!FAIL_STACK_EMPTY ())
5068 { /* More failure points to try. */
5069
5070 /* If exceeds best match so far, save it. */
5071 if (!best_regs_set || best_match_p)
5072 {
5073 best_regs_set = true;
5074 match_end = d;
5075
5076 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5077
01618498 5078 for (reg = 1; reg < num_regs; reg++)
25fe55af 5079 {
01618498
SM
5080 best_regstart[reg] = regstart[reg];
5081 best_regend[reg] = regend[reg];
25fe55af
RS
5082 }
5083 }
5084 goto fail;
5085 }
5086
5087 /* If no failure points, don't restore garbage. And if
5088 last match is real best match, don't restore second
5089 best one. */
5090 else if (best_regs_set && !best_match_p)
5091 {
5092 restore_best_regs:
5093 /* Restore best match. It may happen that `dend ==
5094 end_match_1' while the restored d is in string2.
5095 For example, the pattern `x.*y.*z' against the
5096 strings `x-' and `y-z-', if the two strings are
5097 not consecutive in memory. */
5098 DEBUG_PRINT1 ("Restoring best registers.\n");
5099
5100 d = match_end;
5101 dend = ((d >= string1 && d <= end1)
5102 ? end_match_1 : end_match_2);
fa9a63c5 5103
01618498 5104 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5105 {
01618498
SM
5106 regstart[reg] = best_regstart[reg];
5107 regend[reg] = best_regend[reg];
fa9a63c5 5108 }
25fe55af
RS
5109 }
5110 } /* d != end_match_2 */
fa9a63c5
RM
5111
5112 succeed_label:
25fe55af 5113 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5114
25fe55af
RS
5115 /* If caller wants register contents data back, do it. */
5116 if (regs && !bufp->no_sub)
fa9a63c5 5117 {
25fe55af
RS
5118 /* Have the register data arrays been allocated? */
5119 if (bufp->regs_allocated == REGS_UNALLOCATED)
5120 { /* No. So allocate them with malloc. We need one
5121 extra element beyond `num_regs' for the `-1' marker
5122 GNU code uses. */
5123 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5124 regs->start = TALLOC (regs->num_regs, regoff_t);
5125 regs->end = TALLOC (regs->num_regs, regoff_t);
5126 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5127 {
5128 FREE_VARIABLES ();
5129 return -2;
5130 }
25fe55af
RS
5131 bufp->regs_allocated = REGS_REALLOCATE;
5132 }
5133 else if (bufp->regs_allocated == REGS_REALLOCATE)
5134 { /* Yes. If we need more elements than were already
5135 allocated, reallocate them. If we need fewer, just
5136 leave it alone. */
5137 if (regs->num_regs < num_regs + 1)
5138 {
5139 regs->num_regs = num_regs + 1;
5140 RETALLOC (regs->start, regs->num_regs, regoff_t);
5141 RETALLOC (regs->end, regs->num_regs, regoff_t);
5142 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5143 {
5144 FREE_VARIABLES ();
5145 return -2;
5146 }
25fe55af
RS
5147 }
5148 }
5149 else
fa9a63c5
RM
5150 {
5151 /* These braces fend off a "empty body in an else-statement"
25fe55af 5152 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5153 assert (bufp->regs_allocated == REGS_FIXED);
5154 }
5155
25fe55af
RS
5156 /* Convert the pointer data in `regstart' and `regend' to
5157 indices. Register zero has to be set differently,
5158 since we haven't kept track of any info for it. */
5159 if (regs->num_regs > 0)
5160 {
5161 regs->start[0] = pos;
99633e97 5162 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5163 }
5e69f11e 5164
25fe55af
RS
5165 /* Go through the first `min (num_regs, regs->num_regs)'
5166 registers, since that is all we initialized. */
01618498 5167 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5168 {
01618498
SM
5169 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5170 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5171 else
5172 {
01618498
SM
5173 regs->start[reg]
5174 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5175 regs->end[reg]
5176 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5177 }
fa9a63c5 5178 }
5e69f11e 5179
25fe55af
RS
5180 /* If the regs structure we return has more elements than
5181 were in the pattern, set the extra elements to -1. If
5182 we (re)allocated the registers, this is the case,
5183 because we always allocate enough to have at least one
5184 -1 at the end. */
01618498
SM
5185 for (reg = num_regs; reg < regs->num_regs; reg++)
5186 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5187 } /* regs && !bufp->no_sub */
5188
25fe55af
RS
5189 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5190 nfailure_points_pushed, nfailure_points_popped,
5191 nfailure_points_pushed - nfailure_points_popped);
5192 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5193
99633e97 5194 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5195
25fe55af 5196 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5197
25fe55af
RS
5198 FREE_VARIABLES ();
5199 return mcnt;
5200 }
fa9a63c5 5201
25fe55af 5202 /* Otherwise match next pattern command. */
fa9a63c5
RM
5203 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5204 {
25fe55af
RS
5205 /* Ignore these. Used to ignore the n of succeed_n's which
5206 currently have n == 0. */
5207 case no_op:
5208 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5209 break;
fa9a63c5
RM
5210
5211 case succeed:
25fe55af 5212 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5213 goto succeed_label;
5214
25fe55af
RS
5215 /* Match the next n pattern characters exactly. The following
5216 byte in the pattern defines n, and the n bytes after that
5217 are the characters to match. */
fa9a63c5
RM
5218 case exactn:
5219 mcnt = *p++;
25fe55af 5220 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5221
99633e97
SM
5222 /* Remember the start point to rollback upon failure. */
5223 dfail = d;
5224
25fe55af
RS
5225 /* This is written out as an if-else so we don't waste time
5226 testing `translate' inside the loop. */
28703c16 5227 if (RE_TRANSLATE_P (translate))
fa9a63c5 5228 {
e934739e
RS
5229 if (multibyte)
5230 do
5231 {
5232 int pat_charlen, buf_charlen;
e71b1971 5233 unsigned int pat_ch, buf_ch;
e934739e
RS
5234
5235 PREFETCH ();
5236 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5237 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5238
5239 if (RE_TRANSLATE (translate, buf_ch)
5240 != pat_ch)
99633e97
SM
5241 {
5242 d = dfail;
5243 goto fail;
5244 }
e934739e
RS
5245
5246 p += pat_charlen;
5247 d += buf_charlen;
5248 mcnt -= pat_charlen;
5249 }
5250 while (mcnt > 0);
5251 else
e934739e
RS
5252 do
5253 {
cf1982d9
EZ
5254 /* Avoid compiler whining about comparison being
5255 always true. */
5256 int di;
5257
e934739e 5258 PREFETCH ();
cf1982d9
EZ
5259 di = *d;
5260 if (RE_TRANSLATE (translate, di) != *p++)
99633e97
SM
5261 {
5262 d = dfail;
5263 goto fail;
5264 }
33c46939 5265 d++;
e934739e
RS
5266 }
5267 while (--mcnt);
fa9a63c5
RM
5268 }
5269 else
5270 {
5271 do
5272 {
5273 PREFETCH ();
99633e97
SM
5274 if (*d++ != *p++)
5275 {
5276 d = dfail;
5277 goto fail;
5278 }
fa9a63c5
RM
5279 }
5280 while (--mcnt);
5281 }
25fe55af 5282 break;
fa9a63c5
RM
5283
5284
25fe55af 5285 /* Match any character except possibly a newline or a null. */
fa9a63c5 5286 case anychar:
e934739e
RS
5287 {
5288 int buf_charlen;
01618498 5289 re_wchar_t buf_ch;
fa9a63c5 5290
e934739e 5291 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5292
e934739e 5293 PREFETCH ();
2d1675e4 5294 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
5295 buf_ch = TRANSLATE (buf_ch);
5296
5297 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5298 && buf_ch == '\n')
5299 || ((bufp->syntax & RE_DOT_NOT_NULL)
5300 && buf_ch == '\000'))
5301 goto fail;
5302
e934739e
RS
5303 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5304 d += buf_charlen;
5305 }
fa9a63c5
RM
5306 break;
5307
5308
5309 case charset:
5310 case charset_not:
5311 {
b18215fc 5312 register unsigned int c;
fa9a63c5 5313 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5314 int len;
5315
5316 /* Start of actual range_table, or end of bitmap if there is no
5317 range table. */
01618498 5318 re_char *range_table;
b18215fc 5319
96cc36cc 5320 /* Nonzero if there is a range table. */
b18215fc
RS
5321 int range_table_exists;
5322
96cc36cc
RS
5323 /* Number of ranges of range table. This is not included
5324 in the initial byte-length of the command. */
5325 int count = 0;
fa9a63c5 5326
25fe55af 5327 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5328
b18215fc 5329 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5330
b18215fc 5331 if (range_table_exists)
96cc36cc
RS
5332 {
5333 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5334 EXTRACT_NUMBER_AND_INCR (count, range_table);
5335 }
b18215fc 5336
2d1675e4
SM
5337 PREFETCH ();
5338 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5339 c = TRANSLATE (c); /* The character to match. */
b18215fc
RS
5340
5341 if (SINGLE_BYTE_CHAR_P (c))
5342 { /* Lookup bitmap. */
b18215fc
RS
5343 /* Cast to `unsigned' instead of `unsigned char' in
5344 case the bit list is a full 32 bytes long. */
5345 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5346 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5347 not = !not;
b18215fc 5348 }
96cc36cc 5349#ifdef emacs
b18215fc 5350 else if (range_table_exists)
96cc36cc
RS
5351 {
5352 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5353
14473664
SM
5354 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5355 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5356 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5357 | (class_bits & BIT_SPACE && ISSPACE (c))
5358 | (class_bits & BIT_UPPER && ISUPPER (c))
5359 | (class_bits & BIT_WORD && ISWORD (c)))
5360 not = !not;
5361 else
5362 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5363 }
5364#endif /* emacs */
fa9a63c5 5365
96cc36cc
RS
5366 if (range_table_exists)
5367 p = CHARSET_RANGE_TABLE_END (range_table, count);
5368 else
5369 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5370
5371 if (!not) goto fail;
5e69f11e 5372
b18215fc 5373 d += len;
fa9a63c5
RM
5374 break;
5375 }
5376
5377
25fe55af 5378 /* The beginning of a group is represented by start_memory.
505bde11 5379 The argument is the register number. The text
25fe55af
RS
5380 matched within the group is recorded (in the internal
5381 registers data structure) under the register number. */
5382 case start_memory:
505bde11
SM
5383 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5384
5385 /* In case we need to undo this operation (via backtracking). */
5386 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5387
25fe55af 5388 regstart[*p] = d;
4bb91c68 5389 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5390 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5391
25fe55af 5392 /* Move past the register number and inner group count. */
505bde11 5393 p += 1;
25fe55af 5394 break;
fa9a63c5
RM
5395
5396
25fe55af 5397 /* The stop_memory opcode represents the end of a group. Its
505bde11 5398 argument is the same as start_memory's: the register number. */
fa9a63c5 5399 case stop_memory:
505bde11
SM
5400 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5401
5402 assert (!REG_UNSET (regstart[*p]));
5403 /* Strictly speaking, there should be code such as:
177c0ea7 5404
0b32bf0e 5405 assert (REG_UNSET (regend[*p]));
505bde11
SM
5406 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5407
5408 But the only info to be pushed is regend[*p] and it is known to
5409 be UNSET, so there really isn't anything to push.
5410 Not pushing anything, on the other hand deprives us from the
5411 guarantee that regend[*p] is UNSET since undoing this operation
5412 will not reset its value properly. This is not important since
5413 the value will only be read on the next start_memory or at
5414 the very end and both events can only happen if this stop_memory
5415 is *not* undone. */
fa9a63c5 5416
25fe55af 5417 regend[*p] = d;
fa9a63c5
RM
5418 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5419
25fe55af 5420 /* Move past the register number and the inner group count. */
505bde11 5421 p += 1;
25fe55af 5422 break;
fa9a63c5
RM
5423
5424
5425 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5426 followed by the numeric value of <digit> as the register number. */
5427 case duplicate:
fa9a63c5 5428 {
66f0296e 5429 register re_char *d2, *dend2;
25fe55af 5430 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5431 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5432
25fe55af
RS
5433 /* Can't back reference a group which we've never matched. */
5434 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5435 goto fail;
5e69f11e 5436
25fe55af
RS
5437 /* Where in input to try to start matching. */
5438 d2 = regstart[regno];
5e69f11e 5439
99633e97
SM
5440 /* Remember the start point to rollback upon failure. */
5441 dfail = d;
5442
25fe55af
RS
5443 /* Where to stop matching; if both the place to start and
5444 the place to stop matching are in the same string, then
5445 set to the place to stop, otherwise, for now have to use
5446 the end of the first string. */
fa9a63c5 5447
25fe55af 5448 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5449 == FIRST_STRING_P (regend[regno]))
5450 ? regend[regno] : end_match_1);
5451 for (;;)
5452 {
5453 /* If necessary, advance to next segment in register
25fe55af 5454 contents. */
fa9a63c5
RM
5455 while (d2 == dend2)
5456 {
5457 if (dend2 == end_match_2) break;
5458 if (dend2 == regend[regno]) break;
5459
25fe55af
RS
5460 /* End of string1 => advance to string2. */
5461 d2 = string2;
5462 dend2 = regend[regno];
fa9a63c5
RM
5463 }
5464 /* At end of register contents => success */
5465 if (d2 == dend2) break;
5466
5467 /* If necessary, advance to next segment in data. */
5468 PREFETCH ();
5469
5470 /* How many characters left in this segment to match. */
5471 mcnt = dend - d;
5e69f11e 5472
fa9a63c5 5473 /* Want how many consecutive characters we can match in
25fe55af
RS
5474 one shot, so, if necessary, adjust the count. */
5475 if (mcnt > dend2 - d2)
fa9a63c5 5476 mcnt = dend2 - d2;
5e69f11e 5477
fa9a63c5 5478 /* Compare that many; failure if mismatch, else move
25fe55af 5479 past them. */
28703c16 5480 if (RE_TRANSLATE_P (translate)
2d1675e4 5481 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4bb91c68 5482 : memcmp (d, d2, mcnt))
99633e97
SM
5483 {
5484 d = dfail;
5485 goto fail;
5486 }
fa9a63c5 5487 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5488 }
5489 }
5490 break;
5491
5492
25fe55af 5493 /* begline matches the empty string at the beginning of the string
c0f9ea08 5494 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5495 case begline:
25fe55af 5496 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5497
25fe55af
RS
5498 if (AT_STRINGS_BEG (d))
5499 {
5500 if (!bufp->not_bol) break;
5501 }
419d1c74 5502 else
25fe55af 5503 {
419d1c74
SM
5504 unsigned char c;
5505 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5506 if (c == '\n')
419d1c74 5507 break;
25fe55af
RS
5508 }
5509 /* In all other cases, we fail. */
5510 goto fail;
fa9a63c5
RM
5511
5512
25fe55af 5513 /* endline is the dual of begline. */
fa9a63c5 5514 case endline:
25fe55af 5515 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5516
25fe55af
RS
5517 if (AT_STRINGS_END (d))
5518 {
5519 if (!bufp->not_eol) break;
5520 }
f1ad044f 5521 else
25fe55af 5522 {
f1ad044f 5523 PREFETCH_NOLIMIT ();
c0f9ea08 5524 if (*d == '\n')
f1ad044f 5525 break;
25fe55af
RS
5526 }
5527 goto fail;
fa9a63c5
RM
5528
5529
5530 /* Match at the very beginning of the data. */
25fe55af
RS
5531 case begbuf:
5532 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5533 if (AT_STRINGS_BEG (d))
5534 break;
5535 goto fail;
fa9a63c5
RM
5536
5537
5538 /* Match at the very end of the data. */
25fe55af
RS
5539 case endbuf:
5540 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5541 if (AT_STRINGS_END (d))
5542 break;
25fe55af 5543 goto fail;
5e69f11e 5544
5e69f11e 5545
25fe55af
RS
5546 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5547 pushes NULL as the value for the string on the stack. Then
505bde11 5548 `POP_FAILURE_POINT' will keep the current value for the
25fe55af
RS
5549 string, instead of restoring it. To see why, consider
5550 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5551 then the . fails against the \n. But the next thing we want
5552 to do is match the \n against the \n; if we restored the
5553 string value, we would be back at the foo.
5554
5555 Because this is used only in specific cases, we don't need to
5556 check all the things that `on_failure_jump' does, to make
5557 sure the right things get saved on the stack. Hence we don't
5558 share its code. The only reason to push anything on the
5559 stack at all is that otherwise we would have to change
5560 `anychar's code to do something besides goto fail in this
5561 case; that seems worse than this. */
5562 case on_failure_keep_string_jump:
505bde11
SM
5563 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5564 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5565 mcnt, p + mcnt);
fa9a63c5 5566
505bde11
SM
5567 PUSH_FAILURE_POINT (p - 3, NULL);
5568 break;
5569
0683b6fa
SM
5570 /* A nasty loop is introduced by the non-greedy *? and +?.
5571 With such loops, the stack only ever contains one failure point
5572 at a time, so that a plain on_failure_jump_loop kind of
5573 cycle detection cannot work. Worse yet, such a detection
5574 can not only fail to detect a cycle, but it can also wrongly
5575 detect a cycle (between different instantiations of the same
6df42991 5576 loop).
0683b6fa
SM
5577 So the method used for those nasty loops is a little different:
5578 We use a special cycle-detection-stack-frame which is pushed
5579 when the on_failure_jump_nastyloop failure-point is *popped*.
5580 This special frame thus marks the beginning of one iteration
5581 through the loop and we can hence easily check right here
5582 whether something matched between the beginning and the end of
5583 the loop. */
5584 case on_failure_jump_nastyloop:
5585 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5586 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5587 mcnt, p + mcnt);
5588
5589 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5590 {
5591 int cycle = 0;
5592 CHECK_INFINITE_LOOP (p - 4, d);
5593 if (!cycle)
5594 /* If there's a cycle, just continue without pushing
5595 this failure point. The failure point is the "try again"
5596 option, which shouldn't be tried.
5597 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5598 PUSH_FAILURE_POINT (p - 3, d);
5599 }
0683b6fa
SM
5600 break;
5601
4e8a9132
SM
5602 /* Simple loop detecting on_failure_jump: just check on the
5603 failure stack if the same spot was already hit earlier. */
505bde11
SM
5604 case on_failure_jump_loop:
5605 on_failure:
5606 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5607 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5608 mcnt, p + mcnt);
6df42991
SM
5609 {
5610 int cycle = 0;
5611 CHECK_INFINITE_LOOP (p - 3, d);
5612 if (cycle)
5613 /* If there's a cycle, get out of the loop, as if the matching
5614 had failed. We used to just `goto fail' here, but that was
5615 aborting the search a bit too early: we want to keep the
5616 empty-loop-match and keep matching after the loop.
5617 We want (x?)*y\1z to match both xxyz and xxyxz. */
5618 p += mcnt;
5619 else
5620 PUSH_FAILURE_POINT (p - 3, d);
5621 }
25fe55af 5622 break;
fa9a63c5
RM
5623
5624
5625 /* Uses of on_failure_jump:
5e69f11e 5626
25fe55af
RS
5627 Each alternative starts with an on_failure_jump that points
5628 to the beginning of the next alternative. Each alternative
5629 except the last ends with a jump that in effect jumps past
5630 the rest of the alternatives. (They really jump to the
5631 ending jump of the following alternative, because tensioning
5632 these jumps is a hassle.)
fa9a63c5 5633
25fe55af
RS
5634 Repeats start with an on_failure_jump that points past both
5635 the repetition text and either the following jump or
5636 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5637 case on_failure_jump:
5b370c2b 5638 IMMEDIATE_QUIT_CHECK;
25fe55af 5639 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5640 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5641 mcnt, p + mcnt);
25fe55af 5642
505bde11 5643 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5644 break;
5645
4e8a9132 5646 /* This operation is used for greedy *.
505bde11
SM
5647 Compare the beginning of the repeat with what in the
5648 pattern follows its end. If we can establish that there
5649 is nothing that they would both match, i.e., that we
5650 would have to backtrack because of (as in, e.g., `a*a')
5651 then we can use a non-backtracking loop based on
4e8a9132 5652 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5653 case on_failure_jump_smart:
5b370c2b 5654 IMMEDIATE_QUIT_CHECK;
25fe55af 5655 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5656 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5657 mcnt, p + mcnt);
25fe55af 5658 {
01618498 5659 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5660 /* Here, we discard `const', making re_match non-reentrant. */
5661 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5662 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5663
505bde11
SM
5664 p -= 3; /* Reset so that we will re-execute the
5665 instruction once it's been changed. */
fa9a63c5 5666
4e8a9132
SM
5667 EXTRACT_NUMBER (mcnt, p2 - 2);
5668
5669 /* Ensure this is a indeed the trivial kind of loop
5670 we are expecting. */
5671 assert (skip_one_char (p1) == p2 - 3);
5672 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5673 DEBUG_STATEMENT (debug += 2);
505bde11 5674 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5675 {
505bde11 5676 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5677 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5678 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5679 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5680 }
505bde11 5681 else
fa9a63c5 5682 {
505bde11
SM
5683 /* Default to a safe `on_failure_jump' loop. */
5684 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5685 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5686 }
99633e97 5687 DEBUG_STATEMENT (debug -= 2);
25fe55af 5688 }
505bde11 5689 break;
25fe55af
RS
5690
5691 /* Unconditionally jump (without popping any failure points). */
5692 case jump:
fa9a63c5 5693 unconditional_jump:
5b370c2b 5694 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5695 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5696 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5697 p += mcnt; /* Do the jump. */
505bde11 5698 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5699 break;
5700
5701
25fe55af
RS
5702 /* Have to succeed matching what follows at least n times.
5703 After that, handle like `on_failure_jump'. */
5704 case succeed_n:
01618498 5705 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5706 EXTRACT_NUMBER (mcnt, p + 2);
5707 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5708
dc1e502d
SM
5709 /* Originally, mcnt is how many times we HAVE to succeed. */
5710 if (mcnt != 0)
25fe55af 5711 {
6dcf2d0e
SM
5712 /* Here, we discard `const', making re_match non-reentrant. */
5713 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5714 mcnt--;
01618498
SM
5715 p += 4;
5716 PUSH_NUMBER (p2, mcnt);
25fe55af 5717 }
dc1e502d
SM
5718 else
5719 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5720 goto on_failure;
25fe55af
RS
5721 break;
5722
5723 case jump_n:
01618498 5724 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5725 EXTRACT_NUMBER (mcnt, p + 2);
5726 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5727
5728 /* Originally, this is how many times we CAN jump. */
dc1e502d 5729 if (mcnt != 0)
25fe55af 5730 {
6dcf2d0e
SM
5731 /* Here, we discard `const', making re_match non-reentrant. */
5732 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5733 mcnt--;
01618498 5734 PUSH_NUMBER (p2, mcnt);
dc1e502d 5735 goto unconditional_jump;
25fe55af
RS
5736 }
5737 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5738 else
5739 p += 4;
25fe55af 5740 break;
5e69f11e 5741
fa9a63c5
RM
5742 case set_number_at:
5743 {
01618498 5744 unsigned char *p2; /* Location of the counter. */
25fe55af 5745 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5746
25fe55af 5747 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5748 /* Here, we discard `const', making re_match non-reentrant. */
5749 p2 = (unsigned char*) p + mcnt;
01618498 5750 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5751 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5752 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5753 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5754 break;
5755 }
9121ca40
KH
5756
5757 case wordbound:
66f0296e
SM
5758 case notwordbound:
5759 not = (re_opcode_t) *(p - 1) == notwordbound;
5760 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5761
99633e97 5762 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5763
b18215fc 5764 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5765 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5766 not = !not;
b18215fc
RS
5767 else
5768 {
5769 /* C1 is the character before D, S1 is the syntax of C1, C2
5770 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5771 re_wchar_t c1, c2;
5772 int s1, s2;
b18215fc 5773#ifdef emacs
2d1675e4
SM
5774 int offset = PTR_TO_OFFSET (d - 1);
5775 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5776 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5777#endif
66f0296e 5778 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5779 s1 = SYNTAX (c1);
5780#ifdef emacs
5d967c7a 5781 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5782#endif
f1ad044f 5783 PREFETCH_NOLIMIT ();
2d1675e4 5784 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc
RS
5785 s2 = SYNTAX (c2);
5786
5787 if (/* Case 2: Only one of S1 and S2 is Sword. */
5788 ((s1 == Sword) != (s2 == Sword))
5789 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5790 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5791 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5792 not = !not;
5793 }
5794 if (not)
9121ca40 5795 break;
b18215fc 5796 else
9121ca40 5797 goto fail;
fa9a63c5
RM
5798
5799 case wordbeg:
25fe55af 5800 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5801
b18215fc
RS
5802 /* We FAIL in one of the following cases: */
5803
25fe55af 5804 /* Case 1: D is at the end of string. */
b18215fc 5805 if (AT_STRINGS_END (d))
99633e97 5806 goto fail;
b18215fc
RS
5807 else
5808 {
5809 /* C1 is the character before D, S1 is the syntax of C1, C2
5810 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5811 re_wchar_t c1, c2;
5812 int s1, s2;
fa9a63c5 5813#ifdef emacs
2d1675e4
SM
5814 int offset = PTR_TO_OFFSET (d);
5815 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5816 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5817#endif
99633e97 5818 PREFETCH ();
2d1675e4 5819 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc 5820 s2 = SYNTAX (c2);
177c0ea7 5821
b18215fc
RS
5822 /* Case 2: S2 is not Sword. */
5823 if (s2 != Sword)
5824 goto fail;
5825
5826 /* Case 3: D is not at the beginning of string ... */
5827 if (!AT_STRINGS_BEG (d))
5828 {
5829 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5830#ifdef emacs
5d967c7a 5831 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5832#endif
b18215fc
RS
5833 s1 = SYNTAX (c1);
5834
5835 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5836 returns 0. */
b18215fc
RS
5837 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5838 goto fail;
5839 }
5840 }
e318085a
RS
5841 break;
5842
b18215fc 5843 case wordend:
25fe55af 5844 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5845
5846 /* We FAIL in one of the following cases: */
5847
5848 /* Case 1: D is at the beginning of string. */
5849 if (AT_STRINGS_BEG (d))
e318085a 5850 goto fail;
b18215fc
RS
5851 else
5852 {
5853 /* C1 is the character before D, S1 is the syntax of C1, C2
5854 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5855 re_wchar_t c1, c2;
5856 int s1, s2;
5d967c7a 5857#ifdef emacs
2d1675e4
SM
5858 int offset = PTR_TO_OFFSET (d) - 1;
5859 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5860 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5861#endif
99633e97 5862 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5863 s1 = SYNTAX (c1);
5864
5865 /* Case 2: S1 is not Sword. */
5866 if (s1 != Sword)
5867 goto fail;
5868
5869 /* Case 3: D is not at the end of string ... */
5870 if (!AT_STRINGS_END (d))
5871 {
f1ad044f 5872 PREFETCH_NOLIMIT ();
2d1675e4 5873 c2 = RE_STRING_CHAR (d, dend - d);
5d967c7a 5874#ifdef emacs
134579f2 5875 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5d967c7a 5876#endif
b18215fc
RS
5877 s2 = SYNTAX (c2);
5878
5879 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5880 returns 0. */
b18215fc 5881 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5882 goto fail;
b18215fc
RS
5883 }
5884 }
e318085a
RS
5885 break;
5886
669fa600
SM
5887 case symbeg:
5888 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5889
5890 /* We FAIL in one of the following cases: */
5891
5892 /* Case 1: D is at the end of string. */
5893 if (AT_STRINGS_END (d))
5894 goto fail;
5895 else
5896 {
5897 /* C1 is the character before D, S1 is the syntax of C1, C2
5898 is the character at D, and S2 is the syntax of C2. */
5899 re_wchar_t c1, c2;
5900 int s1, s2;
5901#ifdef emacs
5902 int offset = PTR_TO_OFFSET (d);
5903 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5904 UPDATE_SYNTAX_TABLE (charpos);
5905#endif
5906 PREFETCH ();
5907 c2 = RE_STRING_CHAR (d, dend - d);
5908 s2 = SYNTAX (c2);
5909
5910 /* Case 2: S2 is neither Sword nor Ssymbol. */
5911 if (s2 != Sword && s2 != Ssymbol)
5912 goto fail;
5913
5914 /* Case 3: D is not at the beginning of string ... */
5915 if (!AT_STRINGS_BEG (d))
5916 {
5917 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5918#ifdef emacs
5919 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5920#endif
5921 s1 = SYNTAX (c1);
5922
5923 /* ... and S1 is Sword or Ssymbol. */
5924 if (s1 == Sword || s1 == Ssymbol)
5925 goto fail;
5926 }
5927 }
5928 break;
5929
5930 case symend:
5931 DEBUG_PRINT1 ("EXECUTING symend.\n");
5932
5933 /* We FAIL in one of the following cases: */
5934
5935 /* Case 1: D is at the beginning of string. */
5936 if (AT_STRINGS_BEG (d))
5937 goto fail;
5938 else
5939 {
5940 /* C1 is the character before D, S1 is the syntax of C1, C2
5941 is the character at D, and S2 is the syntax of C2. */
5942 re_wchar_t c1, c2;
5943 int s1, s2;
5944#ifdef emacs
5945 int offset = PTR_TO_OFFSET (d) - 1;
5946 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5947 UPDATE_SYNTAX_TABLE (charpos);
5948#endif
5949 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5950 s1 = SYNTAX (c1);
5951
5952 /* Case 2: S1 is neither Ssymbol nor Sword. */
5953 if (s1 != Sword && s1 != Ssymbol)
5954 goto fail;
5955
5956 /* Case 3: D is not at the end of string ... */
5957 if (!AT_STRINGS_END (d))
5958 {
5959 PREFETCH_NOLIMIT ();
5960 c2 = RE_STRING_CHAR (d, dend - d);
5961#ifdef emacs
134579f2 5962 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
669fa600
SM
5963#endif
5964 s2 = SYNTAX (c2);
5965
5966 /* ... and S2 is Sword or Ssymbol. */
5967 if (s2 == Sword || s2 == Ssymbol)
5968 goto fail;
5969 }
5970 }
5971 break;
5972
fa9a63c5 5973 case syntaxspec:
1fb352e0
SM
5974 case notsyntaxspec:
5975 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 5976 mcnt = *p++;
1fb352e0 5977 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 5978 PREFETCH ();
b18215fc
RS
5979#ifdef emacs
5980 {
2d1675e4
SM
5981 int offset = PTR_TO_OFFSET (d);
5982 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
5983 UPDATE_SYNTAX_TABLE (pos1);
5984 }
25fe55af 5985#endif
b18215fc 5986 {
01618498
SM
5987 int len;
5988 re_wchar_t c;
b18215fc 5989
2d1675e4 5990 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5991
990b2375 5992 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 5993 goto fail;
b18215fc
RS
5994 d += len;
5995 }
fa9a63c5
RM
5996 break;
5997
b18215fc 5998#ifdef emacs
1fb352e0
SM
5999 case before_dot:
6000 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6001 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 6002 goto fail;
b18215fc
RS
6003 break;
6004
1fb352e0
SM
6005 case at_dot:
6006 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6007 if (PTR_BYTE_POS (d) != PT_BYTE)
6008 goto fail;
6009 break;
b18215fc 6010
1fb352e0
SM
6011 case after_dot:
6012 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6013 if (PTR_BYTE_POS (d) <= PT_BYTE)
6014 goto fail;
e318085a 6015 break;
fa9a63c5 6016
1fb352e0 6017 case categoryspec:
b18215fc 6018 case notcategoryspec:
1fb352e0 6019 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 6020 mcnt = *p++;
1fb352e0 6021 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
6022 PREFETCH ();
6023 {
01618498
SM
6024 int len;
6025 re_wchar_t c;
6026
2d1675e4 6027 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 6028
1fb352e0 6029 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
6030 goto fail;
6031 d += len;
6032 }
fa9a63c5 6033 break;
5e69f11e 6034
1fb352e0 6035#endif /* emacs */
5e69f11e 6036
0b32bf0e
SM
6037 default:
6038 abort ();
fa9a63c5 6039 }
b18215fc 6040 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
6041
6042
6043 /* We goto here if a matching operation fails. */
6044 fail:
5b370c2b 6045 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6046 if (!FAIL_STACK_EMPTY ())
505bde11 6047 {
01618498 6048 re_char *str, *pat;
505bde11 6049 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
6050 DEBUG_PRINT1 ("\nFAIL:\n");
6051 POP_FAILURE_POINT (str, pat);
505bde11
SM
6052 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6053 {
6054 case on_failure_keep_string_jump:
6055 assert (str == NULL);
6056 goto continue_failure_jump;
6057
0683b6fa
SM
6058 case on_failure_jump_nastyloop:
6059 assert ((re_opcode_t)pat[-2] == no_op);
6060 PUSH_FAILURE_POINT (pat - 2, str);
6061 /* Fallthrough */
6062
505bde11
SM
6063 case on_failure_jump_loop:
6064 case on_failure_jump:
6065 case succeed_n:
6066 d = str;
6067 continue_failure_jump:
6068 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6069 p = pat + mcnt;
6070 break;
b18215fc 6071
0683b6fa
SM
6072 case no_op:
6073 /* A special frame used for nastyloops. */
6074 goto fail;
6075
505bde11
SM
6076 default:
6077 abort();
6078 }
fa9a63c5 6079
505bde11 6080 assert (p >= bufp->buffer && p <= pend);
b18215fc 6081
0b32bf0e 6082 if (d >= string1 && d <= end1)
fa9a63c5 6083 dend = end_match_1;
0b32bf0e 6084 }
fa9a63c5 6085 else
0b32bf0e 6086 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6087 } /* for (;;) */
6088
6089 if (best_regs_set)
6090 goto restore_best_regs;
6091
6092 FREE_VARIABLES ();
6093
b18215fc 6094 return -1; /* Failure to match. */
fa9a63c5
RM
6095} /* re_match_2 */
6096\f
6097/* Subroutine definitions for re_match_2. */
6098
fa9a63c5
RM
6099/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6100 bytes; nonzero otherwise. */
5e69f11e 6101
fa9a63c5 6102static int
2d1675e4
SM
6103bcmp_translate (s1, s2, len, translate, multibyte)
6104 re_char *s1, *s2;
fa9a63c5 6105 register int len;
6676cb1c 6106 RE_TRANSLATE_TYPE translate;
2d1675e4 6107 const int multibyte;
fa9a63c5 6108{
2d1675e4
SM
6109 register re_char *p1 = s1, *p2 = s2;
6110 re_char *p1_end = s1 + len;
6111 re_char *p2_end = s2 + len;
e934739e 6112
4bb91c68
SM
6113 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6114 different lengths, but relying on a single `len' would break this. -sm */
6115 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6116 {
e934739e 6117 int p1_charlen, p2_charlen;
01618498 6118 re_wchar_t p1_ch, p2_ch;
e934739e 6119
2d1675e4
SM
6120 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6121 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
e934739e
RS
6122
6123 if (RE_TRANSLATE (translate, p1_ch)
6124 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6125 return 1;
e934739e
RS
6126
6127 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6128 }
e934739e
RS
6129
6130 if (p1 != p1_end || p2 != p2_end)
6131 return 1;
6132
fa9a63c5
RM
6133 return 0;
6134}
6135\f
6136/* Entry points for GNU code. */
6137
6138/* re_compile_pattern is the GNU regular expression compiler: it
6139 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6140 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6141
fa9a63c5
RM
6142 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6143 are set in BUFP on entry.
5e69f11e 6144
b18215fc 6145 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6146
6147const char *
6148re_compile_pattern (pattern, length, bufp)
6149 const char *pattern;
0b32bf0e 6150 size_t length;
fa9a63c5
RM
6151 struct re_pattern_buffer *bufp;
6152{
6153 reg_errcode_t ret;
5e69f11e 6154
fa9a63c5
RM
6155 /* GNU code is written to assume at least RE_NREGS registers will be set
6156 (and at least one extra will be -1). */
6157 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6158
fa9a63c5
RM
6159 /* And GNU code determines whether or not to get register information
6160 by passing null for the REGS argument to re_match, etc., not by
6161 setting no_sub. */
6162 bufp->no_sub = 0;
5e69f11e 6163
4bb91c68 6164 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6165
6166 if (!ret)
6167 return NULL;
6168 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6169}
c0f9ea08 6170WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6171\f
b18215fc
RS
6172/* Entry points compatible with 4.2 BSD regex library. We don't define
6173 them unless specifically requested. */
fa9a63c5 6174
0b32bf0e 6175#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6176
6177/* BSD has one and only one pattern buffer. */
6178static struct re_pattern_buffer re_comp_buf;
6179
6180char *
0b32bf0e 6181# ifdef _LIBC
48afdd44
RM
6182/* Make these definitions weak in libc, so POSIX programs can redefine
6183 these names if they don't use our functions, and still use
6184 regcomp/regexec below without link errors. */
6185weak_function
0b32bf0e 6186# endif
fa9a63c5
RM
6187re_comp (s)
6188 const char *s;
6189{
6190 reg_errcode_t ret;
5e69f11e 6191
fa9a63c5
RM
6192 if (!s)
6193 {
6194 if (!re_comp_buf.buffer)
0b32bf0e 6195 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6196 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6197 return 0;
6198 }
6199
6200 if (!re_comp_buf.buffer)
6201 {
6202 re_comp_buf.buffer = (unsigned char *) malloc (200);
6203 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6204 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6205 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6206 re_comp_buf.allocated = 200;
6207
6208 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6209 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6210 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6211 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6212 }
6213
6214 /* Since `re_exec' always passes NULL for the `regs' argument, we
6215 don't need to initialize the pattern buffer fields which affect it. */
6216
fa9a63c5 6217 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6218
fa9a63c5
RM
6219 if (!ret)
6220 return NULL;
6221
6222 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6223 return (char *) gettext (re_error_msgid[(int) ret]);
6224}
6225
6226
6227int
0b32bf0e 6228# ifdef _LIBC
48afdd44 6229weak_function
0b32bf0e 6230# endif
fa9a63c5
RM
6231re_exec (s)
6232 const char *s;
6233{
6234 const int len = strlen (s);
6235 return
6236 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6237}
6238#endif /* _REGEX_RE_COMP */
6239\f
6240/* POSIX.2 functions. Don't define these for Emacs. */
6241
6242#ifndef emacs
6243
6244/* regcomp takes a regular expression as a string and compiles it.
6245
b18215fc 6246 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6247 since POSIX says we shouldn't. Thus, we set
6248
6249 `buffer' to the compiled pattern;
6250 `used' to the length of the compiled pattern;
6251 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6252 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6253 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6254 `fastmap' to an allocated space for the fastmap;
6255 `fastmap_accurate' to zero;
fa9a63c5
RM
6256 `re_nsub' to the number of subexpressions in PATTERN.
6257
6258 PATTERN is the address of the pattern string.
6259
6260 CFLAGS is a series of bits which affect compilation.
6261
6262 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6263 use POSIX basic syntax.
6264
6265 If REG_NEWLINE is set, then . and [^...] don't match newline.
6266 Also, regexec will try a match beginning after every newline.
6267
6268 If REG_ICASE is set, then we considers upper- and lowercase
6269 versions of letters to be equivalent when matching.
6270
6271 If REG_NOSUB is set, then when PREG is passed to regexec, that
6272 routine will report only success or failure, and nothing about the
6273 registers.
6274
b18215fc 6275 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6276 the return codes and their meanings.) */
6277
6278int
6279regcomp (preg, pattern, cflags)
ada30c0e
SM
6280 regex_t *__restrict preg;
6281 const char *__restrict pattern;
fa9a63c5
RM
6282 int cflags;
6283{
6284 reg_errcode_t ret;
4bb91c68 6285 reg_syntax_t syntax
fa9a63c5
RM
6286 = (cflags & REG_EXTENDED) ?
6287 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6288
6289 /* regex_compile will allocate the space for the compiled pattern. */
6290 preg->buffer = 0;
6291 preg->allocated = 0;
6292 preg->used = 0;
5e69f11e 6293
c0f9ea08
SM
6294 /* Try to allocate space for the fastmap. */
6295 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6296
fa9a63c5
RM
6297 if (cflags & REG_ICASE)
6298 {
6299 unsigned i;
5e69f11e 6300
6676cb1c
RS
6301 preg->translate
6302 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6303 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6304 if (preg->translate == NULL)
0b32bf0e 6305 return (int) REG_ESPACE;
fa9a63c5
RM
6306
6307 /* Map uppercase characters to corresponding lowercase ones. */
6308 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6309 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6310 }
6311 else
6312 preg->translate = NULL;
6313
6314 /* If REG_NEWLINE is set, newlines are treated differently. */
6315 if (cflags & REG_NEWLINE)
6316 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6317 syntax &= ~RE_DOT_NEWLINE;
6318 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6319 }
6320 else
c0f9ea08 6321 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6322
6323 preg->no_sub = !!(cflags & REG_NOSUB);
6324
5e69f11e 6325 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6326 can use strlen here in compiling the pattern. */
4bb91c68 6327 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6328
fa9a63c5
RM
6329 /* POSIX doesn't distinguish between an unmatched open-group and an
6330 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6331 if (ret == REG_ERPAREN)
6332 ret = REG_EPAREN;
6333
6334 if (ret == REG_NOERROR && preg->fastmap)
6335 { /* Compute the fastmap now, since regexec cannot modify the pattern
6336 buffer. */
6337 re_compile_fastmap (preg);
6338 if (preg->can_be_null)
6339 { /* The fastmap can't be used anyway. */
6340 free (preg->fastmap);
6341 preg->fastmap = NULL;
6342 }
6343 }
fa9a63c5
RM
6344 return (int) ret;
6345}
c0f9ea08 6346WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6347
6348
6349/* regexec searches for a given pattern, specified by PREG, in the
6350 string STRING.
5e69f11e 6351
fa9a63c5 6352 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6353 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6354 least NMATCH elements, and we set them to the offsets of the
6355 corresponding matched substrings.
5e69f11e 6356
fa9a63c5
RM
6357 EFLAGS specifies `execution flags' which affect matching: if
6358 REG_NOTBOL is set, then ^ does not match at the beginning of the
6359 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6360
fa9a63c5
RM
6361 We return 0 if we find a match and REG_NOMATCH if not. */
6362
6363int
6364regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6365 const regex_t *__restrict preg;
6366 const char *__restrict string;
5e69f11e 6367 size_t nmatch;
9f2dbe01 6368 regmatch_t pmatch[__restrict_arr];
fa9a63c5
RM
6369 int eflags;
6370{
6371 int ret;
6372 struct re_registers regs;
6373 regex_t private_preg;
6374 int len = strlen (string);
c0f9ea08 6375 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6376
6377 private_preg = *preg;
5e69f11e 6378
fa9a63c5
RM
6379 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6380 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6381
fa9a63c5
RM
6382 /* The user has told us exactly how many registers to return
6383 information about, via `nmatch'. We have to pass that on to the
b18215fc 6384 matching routines. */
fa9a63c5 6385 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6386
fa9a63c5
RM
6387 if (want_reg_info)
6388 {
6389 regs.num_regs = nmatch;
4bb91c68
SM
6390 regs.start = TALLOC (nmatch * 2, regoff_t);
6391 if (regs.start == NULL)
0b32bf0e 6392 return (int) REG_NOMATCH;
4bb91c68 6393 regs.end = regs.start + nmatch;
fa9a63c5
RM
6394 }
6395
c0f9ea08
SM
6396 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6397 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6398 was a little bit longer but still only matching the real part.
6399 This works because the `endline' will check for a '\n' and will find a
6400 '\0', correctly deciding that this is not the end of a line.
6401 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6402 a convenient '\0' there. For all we know, the string could be preceded
6403 by '\n' which would throw things off. */
6404
fa9a63c5
RM
6405 /* Perform the searching operation. */
6406 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6407 /* start: */ 0, /* range: */ len,
6408 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6409
fa9a63c5
RM
6410 /* Copy the register information to the POSIX structure. */
6411 if (want_reg_info)
6412 {
6413 if (ret >= 0)
0b32bf0e
SM
6414 {
6415 unsigned r;
fa9a63c5 6416
0b32bf0e
SM
6417 for (r = 0; r < nmatch; r++)
6418 {
6419 pmatch[r].rm_so = regs.start[r];
6420 pmatch[r].rm_eo = regs.end[r];
6421 }
6422 }
fa9a63c5 6423
b18215fc 6424 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6425 free (regs.start);
fa9a63c5
RM
6426 }
6427
6428 /* We want zero return to mean success, unlike `re_search'. */
6429 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6430}
c0f9ea08 6431WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6432
6433
6434/* Returns a message corresponding to an error code, ERRCODE, returned
6435 from either regcomp or regexec. We don't use PREG here. */
6436
6437size_t
6438regerror (errcode, preg, errbuf, errbuf_size)
6439 int errcode;
6440 const regex_t *preg;
6441 char *errbuf;
6442 size_t errbuf_size;
6443{
6444 const char *msg;
6445 size_t msg_size;
6446
6447 if (errcode < 0
6448 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6449 /* Only error codes returned by the rest of the code should be passed
b18215fc 6450 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6451 code generates an invalid error code, then the program has a bug.
6452 Dump core so we can fix it. */
6453 abort ();
6454
6455 msg = gettext (re_error_msgid[errcode]);
6456
6457 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6458
fa9a63c5
RM
6459 if (errbuf_size != 0)
6460 {
6461 if (msg_size > errbuf_size)
0b32bf0e
SM
6462 {
6463 strncpy (errbuf, msg, errbuf_size - 1);
6464 errbuf[errbuf_size - 1] = 0;
6465 }
fa9a63c5 6466 else
0b32bf0e 6467 strcpy (errbuf, msg);
fa9a63c5
RM
6468 }
6469
6470 return msg_size;
6471}
c0f9ea08 6472WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6473
6474
6475/* Free dynamically allocated space used by PREG. */
6476
6477void
6478regfree (preg)
6479 regex_t *preg;
6480{
6481 if (preg->buffer != NULL)
6482 free (preg->buffer);
6483 preg->buffer = NULL;
5e69f11e 6484
fa9a63c5
RM
6485 preg->allocated = 0;
6486 preg->used = 0;
6487
6488 if (preg->fastmap != NULL)
6489 free (preg->fastmap);
6490 preg->fastmap = NULL;
6491 preg->fastmap_accurate = 0;
6492
6493 if (preg->translate != NULL)
6494 free (preg->translate);
6495 preg->translate = NULL;
6496}
c0f9ea08 6497WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6498
6499#endif /* not emacs */
ab5796a9
MB
6500
6501/* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6502 (do not change this comment) */