* alloc.c (Fmemory_limit): Cast sbrk's returned value to char *.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
73b0cd50 2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
8cabe764 3 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
9ec0b715 7GNU Emacs is free software: you can redistribute it and/or modify
7146af97 8it under the terms of the GNU General Public License as published by
9ec0b715
GM
9the Free Software Foundation, either version 3 of the License, or
10(at your option) any later version.
7146af97
JB
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
9ec0b715 18along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 19
18160b98 20#include <config.h>
e9b309ac 21#include <stdio.h>
ab6780cd 22#include <limits.h> /* For CHAR_BIT. */
d7306fe6 23#include <setjmp.h>
92939d31 24
4455ad75
RS
25#ifdef ALLOC_DEBUG
26#undef INLINE
27#endif
28
68c45bf0 29#include <signal.h>
92939d31 30
aa477689
JD
31#ifdef HAVE_GTK_AND_PTHREAD
32#include <pthread.h>
33#endif
34
7539e11f
KR
35/* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
2e471eb5 38
7539e11f 39#undef HIDE_LISP_IMPLEMENTATION
7146af97 40#include "lisp.h"
ece93c02 41#include "process.h"
d5e35230 42#include "intervals.h"
4c0be5f4 43#include "puresize.h"
7146af97
JB
44#include "buffer.h"
45#include "window.h"
2538fae4 46#include "keyboard.h"
502b9b64 47#include "frame.h"
9ac0d9e0 48#include "blockinput.h"
9d80e883 49#include "character.h"
e065a56e 50#include "syssignal.h"
4a729fd8 51#include "termhooks.h" /* For struct terminal. */
34400008 52#include <setjmp.h>
e065a56e 53
6b61353c
KH
54/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58#undef GC_MALLOC_CHECK
59#endif
60
bf952fb6 61#include <unistd.h>
4004364e 62#ifndef HAVE_UNISTD_H
bf952fb6
DL
63extern POINTER_TYPE *sbrk ();
64#endif
ee1eea5c 65
de7124a7 66#include <fcntl.h>
de7124a7 67
69666f77 68#ifdef WINDOWSNT
f892cf9c 69#include "w32.h"
69666f77
EZ
70#endif
71
d1658221 72#ifdef DOUG_LEA_MALLOC
2e471eb5 73
d1658221 74#include <malloc.h>
3e60b029
DL
75/* malloc.h #defines this as size_t, at least in glibc2. */
76#ifndef __malloc_size_t
d1658221 77#define __malloc_size_t int
3e60b029 78#endif
81d492d5 79
2e471eb5
GM
80/* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
81d492d5
RS
83#define MMAP_MAX_AREAS 100000000
84
2e471eb5
GM
85#else /* not DOUG_LEA_MALLOC */
86
276cbe5a
RS
87/* The following come from gmalloc.c. */
88
276cbe5a 89#define __malloc_size_t size_t
276cbe5a 90extern __malloc_size_t _bytes_used;
3e60b029 91extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
92
93#endif /* not DOUG_LEA_MALLOC */
276cbe5a 94
7bc26fdb
PE
95#if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
96#ifdef HAVE_GTK_AND_PTHREAD
aa477689 97
f415cacd
JD
98/* When GTK uses the file chooser dialog, different backends can be loaded
99 dynamically. One such a backend is the Gnome VFS backend that gets loaded
100 if you run Gnome. That backend creates several threads and also allocates
101 memory with malloc.
102
103 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
104 functions below are called from malloc, there is a chance that one
105 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 106 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
107 that the backend handles concurrent access to malloc within its own threads
108 but Emacs code running in the main thread is not included in that control).
109
026cdede 110 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
111 happens in one of the backend threads we will have two threads that tries
112 to run Emacs code at once, and the code is not prepared for that.
113 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114
aa477689 115static pthread_mutex_t alloc_mutex;
aa477689 116
959dc601
JD
117#define BLOCK_INPUT_ALLOC \
118 do \
119 { \
120 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 121 BLOCK_INPUT; \
959dc601
JD
122 pthread_mutex_lock (&alloc_mutex); \
123 } \
aa477689 124 while (0)
959dc601
JD
125#define UNBLOCK_INPUT_ALLOC \
126 do \
127 { \
128 pthread_mutex_unlock (&alloc_mutex); \
129 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 130 UNBLOCK_INPUT; \
959dc601 131 } \
aa477689
JD
132 while (0)
133
7bc26fdb 134#else /* ! defined HAVE_GTK_AND_PTHREAD */
aa477689
JD
135
136#define BLOCK_INPUT_ALLOC BLOCK_INPUT
137#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138
7bc26fdb
PE
139#endif /* ! defined HAVE_GTK_AND_PTHREAD */
140#endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
aa477689 141
276cbe5a 142/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 143
276cbe5a
RS
144static __malloc_size_t bytes_used_when_full;
145
2e471eb5
GM
146/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
147 to a struct Lisp_String. */
148
7cdee936
SM
149#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
150#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 151#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 152
3ef06d12
SM
153#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
154#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
b059de99 155#define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
3ef06d12 156
7bc26fdb
PE
157/* Value is the number of bytes of S, a pointer to a struct Lisp_String.
158 Be careful during GC, because S->size contains the mark bit for
2e471eb5
GM
159 strings. */
160
3ef06d12 161#define GC_STRING_BYTES(S) (STRING_BYTES (S))
2e471eb5 162
29208e82
TT
163/* Global variables. */
164struct emacs_globals globals;
165
2e471eb5
GM
166/* Number of bytes of consing done since the last gc. */
167
7146af97
JB
168int consing_since_gc;
169
974aae61
RS
170/* Similar minimum, computed from Vgc_cons_percentage. */
171
172EMACS_INT gc_relative_threshold;
310ea200 173
24d8a105
RS
174/* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
176
177EMACS_INT memory_full_cons_threshold;
178
2e471eb5
GM
179/* Nonzero during GC. */
180
7146af97
JB
181int gc_in_progress;
182
3de0effb
RS
183/* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187int abort_on_gc;
188
34400008
GM
189/* Number of live and free conses etc. */
190
191static int total_conses, total_markers, total_symbols, total_vector_size;
192static int total_free_conses, total_free_markers, total_free_symbols;
193static int total_free_floats, total_floats;
fd27a537 194
2e471eb5 195/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
2e471eb5 198
d3d47262 199static char *spare_memory[7];
276cbe5a 200
24d8a105 201/* Amount of spare memory to keep in large reserve block. */
2e471eb5 202
276cbe5a
RS
203#define SPARE_MEMORY (1 << 14)
204
205/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 206
276cbe5a
RS
207static int malloc_hysteresis;
208
1b8950e5
RS
209/* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
2e471eb5 214
2c4685ee 215EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 216#define PUREBEG (char *) pure
2e471eb5 217
9e713715 218/* Pointer to the pure area, and its size. */
2e471eb5 219
9e713715
GM
220static char *purebeg;
221static size_t pure_size;
222
223/* Number of bytes of pure storage used before pure storage overflowed.
224 If this is non-zero, this implies that an overflow occurred. */
225
226static size_t pure_bytes_used_before_overflow;
7146af97 227
34400008
GM
228/* Value is non-zero if P points into pure space. */
229
230#define PURE_POINTER_P(P) \
231 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 232 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 233 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 234 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 235
e5bc14d4
YM
236/* Index in pure at which next pure Lisp object will be allocated.. */
237
238static EMACS_INT pure_bytes_used_lisp;
239
240/* Number of bytes allocated for non-Lisp objects in pure storage. */
241
242static EMACS_INT pure_bytes_used_non_lisp;
243
2e471eb5
GM
244/* If nonzero, this is a warning delivered by malloc and not yet
245 displayed. */
246
a8fe7202 247const char *pending_malloc_warning;
7146af97
JB
248
249/* Maximum amount of C stack to save when a GC happens. */
250
251#ifndef MAX_SAVE_STACK
252#define MAX_SAVE_STACK 16000
253#endif
254
255/* Buffer in which we save a copy of the C stack at each GC. */
256
d3d47262
JB
257static char *stack_copy;
258static int stack_copy_size;
7146af97 259
2e471eb5
GM
260/* Non-zero means ignore malloc warnings. Set during initialization.
261 Currently not used. */
262
d3d47262 263static int ignore_warnings;
350273a4 264
a59de17b 265Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 266
9e713715
GM
267/* Hook run after GC has finished. */
268
29208e82 269Lisp_Object Qpost_gc_hook;
2c5bd608 270
f57e2426
J
271static void mark_buffer (Lisp_Object);
272static void mark_terminals (void);
f57e2426
J
273extern void mark_backtrace (void);
274static void gc_sweep (void);
275static void mark_glyph_matrix (struct glyph_matrix *);
276static void mark_face_cache (struct face_cache *);
41c28a37 277
f57e2426
J
278static struct Lisp_String *allocate_string (void);
279static void compact_small_strings (void);
280static void free_large_strings (void);
281static void sweep_strings (void);
7da0b0d3
RS
282
283extern int message_enable_multibyte;
34400008 284
34400008
GM
285/* When scanning the C stack for live Lisp objects, Emacs keeps track
286 of what memory allocated via lisp_malloc is intended for what
287 purpose. This enumeration specifies the type of memory. */
288
289enum mem_type
290{
291 MEM_TYPE_NON_LISP,
292 MEM_TYPE_BUFFER,
293 MEM_TYPE_CONS,
294 MEM_TYPE_STRING,
295 MEM_TYPE_MISC,
296 MEM_TYPE_SYMBOL,
297 MEM_TYPE_FLOAT,
9c545a55
SM
298 /* We used to keep separate mem_types for subtypes of vectors such as
299 process, hash_table, frame, terminal, and window, but we never made
300 use of the distinction, so it only caused source-code complexity
301 and runtime slowdown. Minor but pointless. */
302 MEM_TYPE_VECTORLIKE
34400008
GM
303};
304
f57e2426
J
305static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
306static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
225ccad6 307
24d8a105 308
877935b1 309#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
310
311#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
312#include <stdio.h> /* For fprintf. */
313#endif
314
315/* A unique object in pure space used to make some Lisp objects
316 on free lists recognizable in O(1). */
317
d3d47262 318static Lisp_Object Vdead;
0b378936 319
877935b1
GM
320#ifdef GC_MALLOC_CHECK
321
322enum mem_type allocated_mem_type;
d3d47262 323static int dont_register_blocks;
877935b1
GM
324
325#endif /* GC_MALLOC_CHECK */
326
327/* A node in the red-black tree describing allocated memory containing
328 Lisp data. Each such block is recorded with its start and end
329 address when it is allocated, and removed from the tree when it
330 is freed.
331
332 A red-black tree is a balanced binary tree with the following
333 properties:
334
335 1. Every node is either red or black.
336 2. Every leaf is black.
337 3. If a node is red, then both of its children are black.
338 4. Every simple path from a node to a descendant leaf contains
339 the same number of black nodes.
340 5. The root is always black.
341
342 When nodes are inserted into the tree, or deleted from the tree,
343 the tree is "fixed" so that these properties are always true.
344
345 A red-black tree with N internal nodes has height at most 2
346 log(N+1). Searches, insertions and deletions are done in O(log N).
347 Please see a text book about data structures for a detailed
348 description of red-black trees. Any book worth its salt should
349 describe them. */
350
351struct mem_node
352{
9f7d9210
RS
353 /* Children of this node. These pointers are never NULL. When there
354 is no child, the value is MEM_NIL, which points to a dummy node. */
355 struct mem_node *left, *right;
356
357 /* The parent of this node. In the root node, this is NULL. */
358 struct mem_node *parent;
877935b1
GM
359
360 /* Start and end of allocated region. */
361 void *start, *end;
362
363 /* Node color. */
364 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 365
877935b1
GM
366 /* Memory type. */
367 enum mem_type type;
368};
369
370/* Base address of stack. Set in main. */
371
372Lisp_Object *stack_base;
373
374/* Root of the tree describing allocated Lisp memory. */
375
376static struct mem_node *mem_root;
377
ece93c02
GM
378/* Lowest and highest known address in the heap. */
379
380static void *min_heap_address, *max_heap_address;
381
877935b1
GM
382/* Sentinel node of the tree. */
383
384static struct mem_node mem_z;
385#define MEM_NIL &mem_z
386
f57e2426
J
387static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
388static void lisp_free (POINTER_TYPE *);
389static void mark_stack (void);
390static int live_vector_p (struct mem_node *, void *);
391static int live_buffer_p (struct mem_node *, void *);
392static int live_string_p (struct mem_node *, void *);
393static int live_cons_p (struct mem_node *, void *);
394static int live_symbol_p (struct mem_node *, void *);
395static int live_float_p (struct mem_node *, void *);
396static int live_misc_p (struct mem_node *, void *);
397static void mark_maybe_object (Lisp_Object);
398static void mark_memory (void *, void *, int);
399static void mem_init (void);
400static struct mem_node *mem_insert (void *, void *, enum mem_type);
401static void mem_insert_fixup (struct mem_node *);
402static void mem_rotate_left (struct mem_node *);
403static void mem_rotate_right (struct mem_node *);
404static void mem_delete (struct mem_node *);
405static void mem_delete_fixup (struct mem_node *);
406static INLINE struct mem_node *mem_find (void *);
34400008 407
34400008
GM
408
409#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 410static void check_gcpros (void);
34400008
GM
411#endif
412
877935b1 413#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 414
1f0b3fd2
GM
415/* Recording what needs to be marked for gc. */
416
417struct gcpro *gcprolist;
418
379b98b1
PE
419/* Addresses of staticpro'd variables. Initialize it to a nonzero
420 value; otherwise some compilers put it into BSS. */
1f0b3fd2 421
0078170f 422#define NSTATICS 0x640
d3d47262 423static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
424
425/* Index of next unused slot in staticvec. */
426
d3d47262 427static int staticidx = 0;
1f0b3fd2 428
f57e2426 429static POINTER_TYPE *pure_alloc (size_t, int);
1f0b3fd2
GM
430
431
432/* Value is SZ rounded up to the next multiple of ALIGNMENT.
433 ALIGNMENT must be a power of 2. */
434
ab6780cd
SM
435#define ALIGN(ptr, ALIGNMENT) \
436 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
437 & ~((ALIGNMENT) - 1)))
1f0b3fd2 438
ece93c02 439
7146af97 440\f
34400008
GM
441/************************************************************************
442 Malloc
443 ************************************************************************/
444
4455ad75 445/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
446
447void
a8fe7202 448malloc_warning (const char *str)
7146af97
JB
449{
450 pending_malloc_warning = str;
451}
452
34400008 453
4455ad75 454/* Display an already-pending malloc warning. */
34400008 455
d457598b 456void
971de7fb 457display_malloc_warning (void)
7146af97 458{
4455ad75
RS
459 call3 (intern ("display-warning"),
460 intern ("alloc"),
461 build_string (pending_malloc_warning),
462 intern ("emergency"));
7146af97 463 pending_malloc_warning = 0;
7146af97
JB
464}
465
34400008 466
d1658221 467#ifdef DOUG_LEA_MALLOC
4d74a5fc 468# define BYTES_USED (mallinfo ().uordblks)
d1658221 469#else
1177ecf6 470# define BYTES_USED _bytes_used
d1658221 471#endif
49efed3a 472\f
276cbe5a
RS
473/* Called if we can't allocate relocatable space for a buffer. */
474
475void
971de7fb 476buffer_memory_full (void)
276cbe5a 477{
2e471eb5
GM
478 /* If buffers use the relocating allocator, no need to free
479 spare_memory, because we may have plenty of malloc space left
480 that we could get, and if we don't, the malloc that fails will
481 itself cause spare_memory to be freed. If buffers don't use the
482 relocating allocator, treat this like any other failing
483 malloc. */
276cbe5a
RS
484
485#ifndef REL_ALLOC
486 memory_full ();
487#endif
488
2e471eb5
GM
489 /* This used to call error, but if we've run out of memory, we could
490 get infinite recursion trying to build the string. */
9b306d37 491 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
492}
493
34400008 494
212f33f1
KS
495#ifdef XMALLOC_OVERRUN_CHECK
496
bdbed949
KS
497/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
498 and a 16 byte trailer around each block.
499
500 The header consists of 12 fixed bytes + a 4 byte integer contaning the
501 original block size, while the trailer consists of 16 fixed bytes.
502
503 The header is used to detect whether this block has been allocated
504 through these functions -- as it seems that some low-level libc
505 functions may bypass the malloc hooks.
506*/
507
508
212f33f1 509#define XMALLOC_OVERRUN_CHECK_SIZE 16
bdbed949 510
212f33f1
KS
511static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
512 { 0x9a, 0x9b, 0xae, 0xaf,
513 0xbf, 0xbe, 0xce, 0xcf,
514 0xea, 0xeb, 0xec, 0xed };
515
516static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
517 { 0xaa, 0xab, 0xac, 0xad,
518 0xba, 0xbb, 0xbc, 0xbd,
519 0xca, 0xcb, 0xcc, 0xcd,
520 0xda, 0xdb, 0xdc, 0xdd };
521
bdbed949
KS
522/* Macros to insert and extract the block size in the header. */
523
524#define XMALLOC_PUT_SIZE(ptr, size) \
525 (ptr[-1] = (size & 0xff), \
526 ptr[-2] = ((size >> 8) & 0xff), \
527 ptr[-3] = ((size >> 16) & 0xff), \
528 ptr[-4] = ((size >> 24) & 0xff))
529
530#define XMALLOC_GET_SIZE(ptr) \
531 (size_t)((unsigned)(ptr[-1]) | \
532 ((unsigned)(ptr[-2]) << 8) | \
533 ((unsigned)(ptr[-3]) << 16) | \
534 ((unsigned)(ptr[-4]) << 24))
535
536
d8f165a8
JD
537/* The call depth in overrun_check functions. For example, this might happen:
538 xmalloc()
539 overrun_check_malloc()
540 -> malloc -> (via hook)_-> emacs_blocked_malloc
541 -> overrun_check_malloc
542 call malloc (hooks are NULL, so real malloc is called).
543 malloc returns 10000.
544 add overhead, return 10016.
545 <- (back in overrun_check_malloc)
857ae68b 546 add overhead again, return 10032
d8f165a8 547 xmalloc returns 10032.
857ae68b
JD
548
549 (time passes).
550
d8f165a8
JD
551 xfree(10032)
552 overrun_check_free(10032)
553 decrease overhed
554 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b
JD
555
556static int check_depth;
557
bdbed949
KS
558/* Like malloc, but wraps allocated block with header and trailer. */
559
212f33f1
KS
560POINTER_TYPE *
561overrun_check_malloc (size)
562 size_t size;
563{
bdbed949 564 register unsigned char *val;
857ae68b 565 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1 566
857ae68b
JD
567 val = (unsigned char *) malloc (size + overhead);
568 if (val && check_depth == 1)
212f33f1 569 {
72af86bd
AS
570 memcpy (val, xmalloc_overrun_check_header,
571 XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 572 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 573 XMALLOC_PUT_SIZE(val, size);
72af86bd
AS
574 memcpy (val + size, xmalloc_overrun_check_trailer,
575 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 576 }
857ae68b 577 --check_depth;
212f33f1
KS
578 return (POINTER_TYPE *)val;
579}
580
bdbed949
KS
581
582/* Like realloc, but checks old block for overrun, and wraps new block
583 with header and trailer. */
584
212f33f1
KS
585POINTER_TYPE *
586overrun_check_realloc (block, size)
587 POINTER_TYPE *block;
588 size_t size;
589{
bdbed949 590 register unsigned char *val = (unsigned char *)block;
857ae68b 591 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1
KS
592
593 if (val
857ae68b 594 && check_depth == 1
72af86bd
AS
595 && memcmp (xmalloc_overrun_check_header,
596 val - XMALLOC_OVERRUN_CHECK_SIZE,
597 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
212f33f1 598 {
bdbed949 599 size_t osize = XMALLOC_GET_SIZE (val);
72af86bd
AS
600 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
601 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 602 abort ();
72af86bd 603 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 604 val -= XMALLOC_OVERRUN_CHECK_SIZE;
72af86bd 605 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1
KS
606 }
607
857ae68b 608 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
212f33f1 609
857ae68b 610 if (val && check_depth == 1)
212f33f1 611 {
72af86bd
AS
612 memcpy (val, xmalloc_overrun_check_header,
613 XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 614 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 615 XMALLOC_PUT_SIZE(val, size);
72af86bd
AS
616 memcpy (val + size, xmalloc_overrun_check_trailer,
617 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 618 }
857ae68b 619 --check_depth;
212f33f1
KS
620 return (POINTER_TYPE *)val;
621}
622
bdbed949
KS
623/* Like free, but checks block for overrun. */
624
212f33f1
KS
625void
626overrun_check_free (block)
627 POINTER_TYPE *block;
628{
bdbed949 629 unsigned char *val = (unsigned char *)block;
212f33f1 630
857ae68b 631 ++check_depth;
212f33f1 632 if (val
857ae68b 633 && check_depth == 1
72af86bd
AS
634 && memcmp (xmalloc_overrun_check_header,
635 val - XMALLOC_OVERRUN_CHECK_SIZE,
636 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
212f33f1 637 {
bdbed949 638 size_t osize = XMALLOC_GET_SIZE (val);
72af86bd
AS
639 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
640 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 641 abort ();
454d7973
KS
642#ifdef XMALLOC_CLEAR_FREE_MEMORY
643 val -= XMALLOC_OVERRUN_CHECK_SIZE;
644 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
645#else
72af86bd 646 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 647 val -= XMALLOC_OVERRUN_CHECK_SIZE;
72af86bd 648 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
454d7973 649#endif
212f33f1
KS
650 }
651
652 free (val);
857ae68b 653 --check_depth;
212f33f1
KS
654}
655
656#undef malloc
657#undef realloc
658#undef free
659#define malloc overrun_check_malloc
660#define realloc overrun_check_realloc
661#define free overrun_check_free
662#endif
663
dafc79fa
SM
664#ifdef SYNC_INPUT
665/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
666 there's no need to block input around malloc. */
667#define MALLOC_BLOCK_INPUT ((void)0)
668#define MALLOC_UNBLOCK_INPUT ((void)0)
669#else
670#define MALLOC_BLOCK_INPUT BLOCK_INPUT
671#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
672#endif
bdbed949 673
34400008 674/* Like malloc but check for no memory and block interrupt input.. */
7146af97 675
c971ff9a 676POINTER_TYPE *
971de7fb 677xmalloc (size_t size)
7146af97 678{
c971ff9a 679 register POINTER_TYPE *val;
7146af97 680
dafc79fa 681 MALLOC_BLOCK_INPUT;
c971ff9a 682 val = (POINTER_TYPE *) malloc (size);
dafc79fa 683 MALLOC_UNBLOCK_INPUT;
7146af97 684
2e471eb5
GM
685 if (!val && size)
686 memory_full ();
7146af97
JB
687 return val;
688}
689
34400008
GM
690
691/* Like realloc but check for no memory and block interrupt input.. */
692
c971ff9a 693POINTER_TYPE *
971de7fb 694xrealloc (POINTER_TYPE *block, size_t size)
7146af97 695{
c971ff9a 696 register POINTER_TYPE *val;
7146af97 697
dafc79fa 698 MALLOC_BLOCK_INPUT;
56d2031b
JB
699 /* We must call malloc explicitly when BLOCK is 0, since some
700 reallocs don't do this. */
701 if (! block)
c971ff9a 702 val = (POINTER_TYPE *) malloc (size);
f048679d 703 else
c971ff9a 704 val = (POINTER_TYPE *) realloc (block, size);
dafc79fa 705 MALLOC_UNBLOCK_INPUT;
7146af97
JB
706
707 if (!val && size) memory_full ();
708 return val;
709}
9ac0d9e0 710
34400008 711
005ca5c7 712/* Like free but block interrupt input. */
34400008 713
9ac0d9e0 714void
971de7fb 715xfree (POINTER_TYPE *block)
9ac0d9e0 716{
70fdbb46
JM
717 if (!block)
718 return;
dafc79fa 719 MALLOC_BLOCK_INPUT;
9ac0d9e0 720 free (block);
dafc79fa 721 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
722 /* We don't call refill_memory_reserve here
723 because that duplicates doing so in emacs_blocked_free
724 and the criterion should go there. */
9ac0d9e0
JB
725}
726
c8099634 727
dca7c6a8
GM
728/* Like strdup, but uses xmalloc. */
729
730char *
971de7fb 731xstrdup (const char *s)
dca7c6a8 732{
675d5130 733 size_t len = strlen (s) + 1;
dca7c6a8 734 char *p = (char *) xmalloc (len);
72af86bd 735 memcpy (p, s, len);
dca7c6a8
GM
736 return p;
737}
738
739
f61bef8b
KS
740/* Unwind for SAFE_ALLOCA */
741
742Lisp_Object
971de7fb 743safe_alloca_unwind (Lisp_Object arg)
f61bef8b 744{
b766f870
KS
745 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
746
747 p->dogc = 0;
748 xfree (p->pointer);
749 p->pointer = 0;
7b7990cc 750 free_misc (arg);
f61bef8b
KS
751 return Qnil;
752}
753
754
34400008
GM
755/* Like malloc but used for allocating Lisp data. NBYTES is the
756 number of bytes to allocate, TYPE describes the intended use of the
757 allcated memory block (for strings, for conses, ...). */
758
212f33f1 759#ifndef USE_LSB_TAG
918a23a7 760static void *lisp_malloc_loser;
212f33f1 761#endif
918a23a7 762
675d5130 763static POINTER_TYPE *
971de7fb 764lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 765{
34400008 766 register void *val;
c8099634 767
dafc79fa 768 MALLOC_BLOCK_INPUT;
877935b1
GM
769
770#ifdef GC_MALLOC_CHECK
771 allocated_mem_type = type;
772#endif
177c0ea7 773
34400008 774 val = (void *) malloc (nbytes);
c8099634 775
6b61353c 776#ifndef USE_LSB_TAG
918a23a7
RS
777 /* If the memory just allocated cannot be addressed thru a Lisp
778 object's pointer, and it needs to be,
779 that's equivalent to running out of memory. */
780 if (val && type != MEM_TYPE_NON_LISP)
781 {
782 Lisp_Object tem;
783 XSETCONS (tem, (char *) val + nbytes - 1);
784 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
785 {
786 lisp_malloc_loser = val;
787 free (val);
788 val = 0;
789 }
790 }
6b61353c 791#endif
918a23a7 792
877935b1 793#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 794 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
795 mem_insert (val, (char *) val + nbytes, type);
796#endif
177c0ea7 797
dafc79fa 798 MALLOC_UNBLOCK_INPUT;
dca7c6a8
GM
799 if (!val && nbytes)
800 memory_full ();
c8099634
RS
801 return val;
802}
803
34400008
GM
804/* Free BLOCK. This must be called to free memory allocated with a
805 call to lisp_malloc. */
806
bf952fb6 807static void
971de7fb 808lisp_free (POINTER_TYPE *block)
c8099634 809{
dafc79fa 810 MALLOC_BLOCK_INPUT;
c8099634 811 free (block);
877935b1 812#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
813 mem_delete (mem_find (block));
814#endif
dafc79fa 815 MALLOC_UNBLOCK_INPUT;
c8099634 816}
34400008 817
ab6780cd
SM
818/* Allocation of aligned blocks of memory to store Lisp data. */
819/* The entry point is lisp_align_malloc which returns blocks of at most */
820/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
821
349a4500
SM
822/* Use posix_memalloc if the system has it and we're using the system's
823 malloc (because our gmalloc.c routines don't have posix_memalign although
824 its memalloc could be used). */
b4181b01
KS
825#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
826#define USE_POSIX_MEMALIGN 1
827#endif
ab6780cd
SM
828
829/* BLOCK_ALIGN has to be a power of 2. */
830#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
831
832/* Padding to leave at the end of a malloc'd block. This is to give
833 malloc a chance to minimize the amount of memory wasted to alignment.
834 It should be tuned to the particular malloc library used.
19bcad1f
SM
835 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
836 posix_memalign on the other hand would ideally prefer a value of 4
837 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
838 In Emacs, testing shows that those 1020 can most of the time be
839 efficiently used by malloc to place other objects, so a value of 0 can
840 still preferable unless you have a lot of aligned blocks and virtually
841 nothing else. */
19bcad1f
SM
842#define BLOCK_PADDING 0
843#define BLOCK_BYTES \
f501ccb4 844 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
19bcad1f
SM
845
846/* Internal data structures and constants. */
847
ab6780cd
SM
848#define ABLOCKS_SIZE 16
849
850/* An aligned block of memory. */
851struct ablock
852{
853 union
854 {
855 char payload[BLOCK_BYTES];
856 struct ablock *next_free;
857 } x;
858 /* `abase' is the aligned base of the ablocks. */
859 /* It is overloaded to hold the virtual `busy' field that counts
860 the number of used ablock in the parent ablocks.
861 The first ablock has the `busy' field, the others have the `abase'
862 field. To tell the difference, we assume that pointers will have
863 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
864 is used to tell whether the real base of the parent ablocks is `abase'
865 (if not, the word before the first ablock holds a pointer to the
866 real base). */
867 struct ablocks *abase;
868 /* The padding of all but the last ablock is unused. The padding of
869 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
870#if BLOCK_PADDING
871 char padding[BLOCK_PADDING];
ebb8d410 872#endif
ab6780cd
SM
873};
874
875/* A bunch of consecutive aligned blocks. */
876struct ablocks
877{
878 struct ablock blocks[ABLOCKS_SIZE];
879};
880
881/* Size of the block requested from malloc or memalign. */
19bcad1f 882#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
883
884#define ABLOCK_ABASE(block) \
885 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
886 ? (struct ablocks *)(block) \
887 : (block)->abase)
888
889/* Virtual `busy' field. */
890#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
891
892/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 893#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
894#define ABLOCKS_BASE(abase) (abase)
895#else
ab6780cd 896#define ABLOCKS_BASE(abase) \
005ca5c7 897 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 898#endif
ab6780cd
SM
899
900/* The list of free ablock. */
901static struct ablock *free_ablock;
902
903/* Allocate an aligned block of nbytes.
904 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
905 smaller or equal to BLOCK_BYTES. */
906static POINTER_TYPE *
971de7fb 907lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
908{
909 void *base, *val;
910 struct ablocks *abase;
911
912 eassert (nbytes <= BLOCK_BYTES);
913
dafc79fa 914 MALLOC_BLOCK_INPUT;
ab6780cd
SM
915
916#ifdef GC_MALLOC_CHECK
917 allocated_mem_type = type;
918#endif
919
920 if (!free_ablock)
921 {
005ca5c7
DL
922 int i;
923 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
924
925#ifdef DOUG_LEA_MALLOC
926 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
927 because mapped region contents are not preserved in
928 a dumped Emacs. */
929 mallopt (M_MMAP_MAX, 0);
930#endif
931
349a4500 932#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
933 {
934 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
935 if (err)
936 base = NULL;
937 abase = base;
19bcad1f
SM
938 }
939#else
ab6780cd
SM
940 base = malloc (ABLOCKS_BYTES);
941 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
942#endif
943
6b61353c
KH
944 if (base == 0)
945 {
dafc79fa 946 MALLOC_UNBLOCK_INPUT;
6b61353c
KH
947 memory_full ();
948 }
ab6780cd
SM
949
950 aligned = (base == abase);
951 if (!aligned)
952 ((void**)abase)[-1] = base;
953
954#ifdef DOUG_LEA_MALLOC
955 /* Back to a reasonable maximum of mmap'ed areas. */
956 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
957#endif
958
6b61353c 959#ifndef USE_LSB_TAG
8f924df7
KH
960 /* If the memory just allocated cannot be addressed thru a Lisp
961 object's pointer, and it needs to be, that's equivalent to
962 running out of memory. */
963 if (type != MEM_TYPE_NON_LISP)
964 {
965 Lisp_Object tem;
966 char *end = (char *) base + ABLOCKS_BYTES - 1;
967 XSETCONS (tem, end);
968 if ((char *) XCONS (tem) != end)
969 {
970 lisp_malloc_loser = base;
971 free (base);
dafc79fa 972 MALLOC_UNBLOCK_INPUT;
8f924df7
KH
973 memory_full ();
974 }
975 }
6b61353c 976#endif
8f924df7 977
ab6780cd
SM
978 /* Initialize the blocks and put them on the free list.
979 Is `base' was not properly aligned, we can't use the last block. */
980 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
981 {
982 abase->blocks[i].abase = abase;
983 abase->blocks[i].x.next_free = free_ablock;
984 free_ablock = &abase->blocks[i];
985 }
005ca5c7 986 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
ab6780cd 987
19bcad1f 988 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
989 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
990 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
991 eassert (ABLOCKS_BASE (abase) == base);
005ca5c7 992 eassert (aligned == (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
993 }
994
995 abase = ABLOCK_ABASE (free_ablock);
005ca5c7 996 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
997 val = free_ablock;
998 free_ablock = free_ablock->x.next_free;
999
ab6780cd
SM
1000#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1001 if (val && type != MEM_TYPE_NON_LISP)
1002 mem_insert (val, (char *) val + nbytes, type);
1003#endif
1004
dafc79fa 1005 MALLOC_UNBLOCK_INPUT;
ab6780cd
SM
1006 if (!val && nbytes)
1007 memory_full ();
1008
1009 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1010 return val;
1011}
1012
1013static void
971de7fb 1014lisp_align_free (POINTER_TYPE *block)
ab6780cd
SM
1015{
1016 struct ablock *ablock = block;
1017 struct ablocks *abase = ABLOCK_ABASE (ablock);
1018
dafc79fa 1019 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1020#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1021 mem_delete (mem_find (block));
1022#endif
1023 /* Put on free list. */
1024 ablock->x.next_free = free_ablock;
1025 free_ablock = ablock;
1026 /* Update busy count. */
005ca5c7 1027 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
d2db1c32 1028
005ca5c7 1029 if (2 > (long) ABLOCKS_BUSY (abase))
ab6780cd 1030 { /* All the blocks are free. */
005ca5c7 1031 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
ab6780cd
SM
1032 struct ablock **tem = &free_ablock;
1033 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1034
1035 while (*tem)
1036 {
1037 if (*tem >= (struct ablock *) abase && *tem < atop)
1038 {
1039 i++;
1040 *tem = (*tem)->x.next_free;
1041 }
1042 else
1043 tem = &(*tem)->x.next_free;
1044 }
1045 eassert ((aligned & 1) == aligned);
1046 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1047#ifdef USE_POSIX_MEMALIGN
cfb2f32e
SM
1048 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1049#endif
ab6780cd
SM
1050 free (ABLOCKS_BASE (abase));
1051 }
dafc79fa 1052 MALLOC_UNBLOCK_INPUT;
ab6780cd 1053}
3ef06d12
SM
1054
1055/* Return a new buffer structure allocated from the heap with
1056 a call to lisp_malloc. */
1057
1058struct buffer *
971de7fb 1059allocate_buffer (void)
3ef06d12
SM
1060{
1061 struct buffer *b
1062 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1063 MEM_TYPE_BUFFER);
67ee9f6e
SM
1064 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1065 XSETPVECTYPE (b, PVEC_BUFFER);
3ef06d12
SM
1066 return b;
1067}
1068
9ac0d9e0 1069\f
026cdede
SM
1070#ifndef SYSTEM_MALLOC
1071
9ac0d9e0
JB
1072/* Arranging to disable input signals while we're in malloc.
1073
1074 This only works with GNU malloc. To help out systems which can't
1075 use GNU malloc, all the calls to malloc, realloc, and free
1076 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1077 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1078 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1079 using GNU malloc. Fortunately, most of the major operating systems
1080 can use GNU malloc. */
9ac0d9e0 1081
026cdede 1082#ifndef SYNC_INPUT
dafc79fa
SM
1083/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1084 there's no need to block input around malloc. */
026cdede 1085
b3303f74 1086#ifndef DOUG_LEA_MALLOC
f57e2426
J
1087extern void * (*__malloc_hook) (size_t, const void *);
1088extern void * (*__realloc_hook) (void *, size_t, const void *);
1089extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1090/* Else declared in malloc.h, perhaps with an extra arg. */
1091#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1092static void * (*old_malloc_hook) (size_t, const void *);
1093static void * (*old_realloc_hook) (void *, size_t, const void*);
1094static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1095
ef1b0ba7
SM
1096static __malloc_size_t bytes_used_when_reconsidered;
1097
276cbe5a
RS
1098/* This function is used as the hook for free to call. */
1099
9ac0d9e0 1100static void
7c3320d8 1101emacs_blocked_free (void *ptr, const void *ptr2)
9ac0d9e0 1102{
aa477689 1103 BLOCK_INPUT_ALLOC;
877935b1
GM
1104
1105#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1106 if (ptr)
1107 {
1108 struct mem_node *m;
177c0ea7 1109
a83fee2c
GM
1110 m = mem_find (ptr);
1111 if (m == MEM_NIL || m->start != ptr)
1112 {
1113 fprintf (stderr,
1114 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1115 abort ();
1116 }
1117 else
1118 {
1119 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1120 mem_delete (m);
1121 }
1122 }
877935b1 1123#endif /* GC_MALLOC_CHECK */
177c0ea7 1124
9ac0d9e0
JB
1125 __free_hook = old_free_hook;
1126 free (ptr);
177c0ea7 1127
276cbe5a
RS
1128 /* If we released our reserve (due to running out of memory),
1129 and we have a fair amount free once again,
1130 try to set aside another reserve in case we run out once more. */
24d8a105 1131 if (! NILP (Vmemory_full)
276cbe5a
RS
1132 /* Verify there is enough space that even with the malloc
1133 hysteresis this call won't run out again.
1134 The code here is correct as long as SPARE_MEMORY
1135 is substantially larger than the block size malloc uses. */
1136 && (bytes_used_when_full
4d74a5fc 1137 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1138 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1139 refill_memory_reserve ();
276cbe5a 1140
b0846f52 1141 __free_hook = emacs_blocked_free;
aa477689 1142 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1143}
1144
34400008 1145
276cbe5a
RS
1146/* This function is the malloc hook that Emacs uses. */
1147
9ac0d9e0 1148static void *
7c3320d8 1149emacs_blocked_malloc (size_t size, const void *ptr)
9ac0d9e0
JB
1150{
1151 void *value;
1152
aa477689 1153 BLOCK_INPUT_ALLOC;
9ac0d9e0 1154 __malloc_hook = old_malloc_hook;
1177ecf6 1155#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1156 /* Segfaults on my system. --lorentey */
1157 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1158#else
d1658221 1159 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1160#endif
877935b1 1161
2756d8ee 1162 value = (void *) malloc (size);
877935b1
GM
1163
1164#ifdef GC_MALLOC_CHECK
1165 {
1166 struct mem_node *m = mem_find (value);
1167 if (m != MEM_NIL)
1168 {
1169 fprintf (stderr, "Malloc returned %p which is already in use\n",
1170 value);
1171 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1172 m->start, m->end, (char *) m->end - (char *) m->start,
1173 m->type);
1174 abort ();
1175 }
1176
1177 if (!dont_register_blocks)
1178 {
1179 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1180 allocated_mem_type = MEM_TYPE_NON_LISP;
1181 }
1182 }
1183#endif /* GC_MALLOC_CHECK */
177c0ea7 1184
b0846f52 1185 __malloc_hook = emacs_blocked_malloc;
aa477689 1186 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1187
877935b1 1188 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1189 return value;
1190}
1191
34400008
GM
1192
1193/* This function is the realloc hook that Emacs uses. */
1194
9ac0d9e0 1195static void *
7c3320d8 1196emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
9ac0d9e0
JB
1197{
1198 void *value;
1199
aa477689 1200 BLOCK_INPUT_ALLOC;
9ac0d9e0 1201 __realloc_hook = old_realloc_hook;
877935b1
GM
1202
1203#ifdef GC_MALLOC_CHECK
1204 if (ptr)
1205 {
1206 struct mem_node *m = mem_find (ptr);
1207 if (m == MEM_NIL || m->start != ptr)
1208 {
1209 fprintf (stderr,
1210 "Realloc of %p which wasn't allocated with malloc\n",
1211 ptr);
1212 abort ();
1213 }
1214
1215 mem_delete (m);
1216 }
177c0ea7 1217
877935b1 1218 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1219
877935b1
GM
1220 /* Prevent malloc from registering blocks. */
1221 dont_register_blocks = 1;
1222#endif /* GC_MALLOC_CHECK */
1223
2756d8ee 1224 value = (void *) realloc (ptr, size);
877935b1
GM
1225
1226#ifdef GC_MALLOC_CHECK
1227 dont_register_blocks = 0;
1228
1229 {
1230 struct mem_node *m = mem_find (value);
1231 if (m != MEM_NIL)
1232 {
1233 fprintf (stderr, "Realloc returns memory that is already in use\n");
1234 abort ();
1235 }
1236
1237 /* Can't handle zero size regions in the red-black tree. */
1238 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1239 }
177c0ea7 1240
877935b1
GM
1241 /* fprintf (stderr, "%p <- realloc\n", value); */
1242#endif /* GC_MALLOC_CHECK */
177c0ea7 1243
b0846f52 1244 __realloc_hook = emacs_blocked_realloc;
aa477689 1245 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1246
1247 return value;
1248}
1249
34400008 1250
aa477689
JD
1251#ifdef HAVE_GTK_AND_PTHREAD
1252/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1253 normal malloc. Some thread implementations need this as they call
1254 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1255 calls malloc because it is the first call, and we have an endless loop. */
1256
1257void
1258reset_malloc_hooks ()
1259{
4d580af2
AS
1260 __free_hook = old_free_hook;
1261 __malloc_hook = old_malloc_hook;
1262 __realloc_hook = old_realloc_hook;
aa477689
JD
1263}
1264#endif /* HAVE_GTK_AND_PTHREAD */
1265
1266
34400008
GM
1267/* Called from main to set up malloc to use our hooks. */
1268
9ac0d9e0 1269void
7c3320d8 1270uninterrupt_malloc (void)
9ac0d9e0 1271{
aa477689 1272#ifdef HAVE_GTK_AND_PTHREAD
a1b41389 1273#ifdef DOUG_LEA_MALLOC
aa477689
JD
1274 pthread_mutexattr_t attr;
1275
1276 /* GLIBC has a faster way to do this, but lets keep it portable.
1277 This is according to the Single UNIX Specification. */
1278 pthread_mutexattr_init (&attr);
1279 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1280 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1281#else /* !DOUG_LEA_MALLOC */
ce5b453a 1282 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1283 and the bundled gmalloc.c doesn't require it. */
1284 pthread_mutex_init (&alloc_mutex, NULL);
1285#endif /* !DOUG_LEA_MALLOC */
aa477689
JD
1286#endif /* HAVE_GTK_AND_PTHREAD */
1287
c8099634
RS
1288 if (__free_hook != emacs_blocked_free)
1289 old_free_hook = __free_hook;
b0846f52 1290 __free_hook = emacs_blocked_free;
9ac0d9e0 1291
c8099634
RS
1292 if (__malloc_hook != emacs_blocked_malloc)
1293 old_malloc_hook = __malloc_hook;
b0846f52 1294 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1295
c8099634
RS
1296 if (__realloc_hook != emacs_blocked_realloc)
1297 old_realloc_hook = __realloc_hook;
b0846f52 1298 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1299}
2e471eb5 1300
026cdede 1301#endif /* not SYNC_INPUT */
2e471eb5
GM
1302#endif /* not SYSTEM_MALLOC */
1303
1304
7146af97 1305\f
2e471eb5
GM
1306/***********************************************************************
1307 Interval Allocation
1308 ***********************************************************************/
1a4f1e2c 1309
34400008
GM
1310/* Number of intervals allocated in an interval_block structure.
1311 The 1020 is 1024 minus malloc overhead. */
1312
d5e35230
JA
1313#define INTERVAL_BLOCK_SIZE \
1314 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1315
34400008
GM
1316/* Intervals are allocated in chunks in form of an interval_block
1317 structure. */
1318
d5e35230 1319struct interval_block
2e471eb5 1320{
6b61353c 1321 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1322 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1323 struct interval_block *next;
2e471eb5 1324};
d5e35230 1325
34400008
GM
1326/* Current interval block. Its `next' pointer points to older
1327 blocks. */
1328
d3d47262 1329static struct interval_block *interval_block;
34400008
GM
1330
1331/* Index in interval_block above of the next unused interval
1332 structure. */
1333
d5e35230 1334static int interval_block_index;
34400008
GM
1335
1336/* Number of free and live intervals. */
1337
2e471eb5 1338static int total_free_intervals, total_intervals;
d5e35230 1339
34400008
GM
1340/* List of free intervals. */
1341
d5e35230
JA
1342INTERVAL interval_free_list;
1343
c8099634 1344/* Total number of interval blocks now in use. */
2e471eb5 1345
d3d47262 1346static int n_interval_blocks;
c8099634 1347
34400008
GM
1348
1349/* Initialize interval allocation. */
1350
d5e35230 1351static void
971de7fb 1352init_intervals (void)
d5e35230 1353{
005ca5c7
DL
1354 interval_block = NULL;
1355 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1356 interval_free_list = 0;
005ca5c7 1357 n_interval_blocks = 0;
d5e35230
JA
1358}
1359
34400008
GM
1360
1361/* Return a new interval. */
d5e35230
JA
1362
1363INTERVAL
971de7fb 1364make_interval (void)
d5e35230
JA
1365{
1366 INTERVAL val;
1367
e2984df0
CY
1368 /* eassert (!handling_signal); */
1369
dafc79fa 1370 MALLOC_BLOCK_INPUT;
cfb2f32e 1371
d5e35230
JA
1372 if (interval_free_list)
1373 {
1374 val = interval_free_list;
439d5cb4 1375 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1376 }
1377 else
1378 {
1379 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1380 {
3c06d205
KH
1381 register struct interval_block *newi;
1382
34400008
GM
1383 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1384 MEM_TYPE_NON_LISP);
d5e35230 1385
d5e35230
JA
1386 newi->next = interval_block;
1387 interval_block = newi;
1388 interval_block_index = 0;
c8099634 1389 n_interval_blocks++;
d5e35230
JA
1390 }
1391 val = &interval_block->intervals[interval_block_index++];
1392 }
e2984df0 1393
dafc79fa 1394 MALLOC_UNBLOCK_INPUT;
e2984df0 1395
d5e35230 1396 consing_since_gc += sizeof (struct interval);
310ea200 1397 intervals_consed++;
d5e35230 1398 RESET_INTERVAL (val);
2336fe58 1399 val->gcmarkbit = 0;
d5e35230
JA
1400 return val;
1401}
1402
34400008
GM
1403
1404/* Mark Lisp objects in interval I. */
d5e35230
JA
1405
1406static void
971de7fb 1407mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1408{
2336fe58
SM
1409 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1410 i->gcmarkbit = 1;
49723c04 1411 mark_object (i->plist);
d5e35230
JA
1412}
1413
34400008
GM
1414
1415/* Mark the interval tree rooted in TREE. Don't call this directly;
1416 use the macro MARK_INTERVAL_TREE instead. */
1417
d5e35230 1418static void
971de7fb 1419mark_interval_tree (register INTERVAL tree)
d5e35230 1420{
e8720644
JB
1421 /* No need to test if this tree has been marked already; this
1422 function is always called through the MARK_INTERVAL_TREE macro,
1423 which takes care of that. */
1424
1e934989 1425 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1426}
1427
34400008
GM
1428
1429/* Mark the interval tree rooted in I. */
1430
e8720644
JB
1431#define MARK_INTERVAL_TREE(i) \
1432 do { \
2336fe58 1433 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1434 mark_interval_tree (i); \
1435 } while (0)
d5e35230 1436
34400008 1437
2e471eb5
GM
1438#define UNMARK_BALANCE_INTERVALS(i) \
1439 do { \
1440 if (! NULL_INTERVAL_P (i)) \
2336fe58 1441 (i) = balance_intervals (i); \
2e471eb5 1442 } while (0)
d5e35230 1443
cc2d8c6b 1444\f
6e5cb96f 1445/* Number support. If USE_LISP_UNION_TYPE is in effect, we
cc2d8c6b
KR
1446 can't create number objects in macros. */
1447#ifndef make_number
1448Lisp_Object
ef1b0ba7 1449make_number (EMACS_INT n)
cc2d8c6b
KR
1450{
1451 Lisp_Object obj;
1452 obj.s.val = n;
1453 obj.s.type = Lisp_Int;
1454 return obj;
1455}
1456#endif
d5e35230 1457\f
2e471eb5
GM
1458/***********************************************************************
1459 String Allocation
1460 ***********************************************************************/
1a4f1e2c 1461
2e471eb5
GM
1462/* Lisp_Strings are allocated in string_block structures. When a new
1463 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1464 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1465 needed, it is taken from that list. During the sweep phase of GC,
1466 string_blocks that are entirely free are freed, except two which
1467 we keep.
7146af97 1468
2e471eb5
GM
1469 String data is allocated from sblock structures. Strings larger
1470 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1471 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1472
2e471eb5
GM
1473 Sblocks consist internally of sdata structures, one for each
1474 Lisp_String. The sdata structure points to the Lisp_String it
1475 belongs to. The Lisp_String points back to the `u.data' member of
1476 its sdata structure.
7146af97 1477
2e471eb5
GM
1478 When a Lisp_String is freed during GC, it is put back on
1479 string_free_list, and its `data' member and its sdata's `string'
1480 pointer is set to null. The size of the string is recorded in the
1481 `u.nbytes' member of the sdata. So, sdata structures that are no
1482 longer used, can be easily recognized, and it's easy to compact the
1483 sblocks of small strings which we do in compact_small_strings. */
7146af97 1484
2e471eb5
GM
1485/* Size in bytes of an sblock structure used for small strings. This
1486 is 8192 minus malloc overhead. */
7146af97 1487
2e471eb5 1488#define SBLOCK_SIZE 8188
c8099634 1489
2e471eb5
GM
1490/* Strings larger than this are considered large strings. String data
1491 for large strings is allocated from individual sblocks. */
7146af97 1492
2e471eb5
GM
1493#define LARGE_STRING_BYTES 1024
1494
1495/* Structure describing string memory sub-allocated from an sblock.
1496 This is where the contents of Lisp strings are stored. */
1497
1498struct sdata
7146af97 1499{
2e471eb5
GM
1500 /* Back-pointer to the string this sdata belongs to. If null, this
1501 structure is free, and the NBYTES member of the union below
34400008 1502 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1503 would return if STRING were non-null). If non-null, STRING_BYTES
1504 (STRING) is the size of the data, and DATA contains the string's
1505 contents. */
1506 struct Lisp_String *string;
7146af97 1507
31d929e5 1508#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1509
31d929e5
GM
1510 EMACS_INT nbytes;
1511 unsigned char data[1];
177c0ea7 1512
31d929e5
GM
1513#define SDATA_NBYTES(S) (S)->nbytes
1514#define SDATA_DATA(S) (S)->data
177c0ea7 1515
31d929e5
GM
1516#else /* not GC_CHECK_STRING_BYTES */
1517
2e471eb5
GM
1518 union
1519 {
1520 /* When STRING in non-null. */
1521 unsigned char data[1];
1522
1523 /* When STRING is null. */
1524 EMACS_INT nbytes;
1525 } u;
177c0ea7 1526
31d929e5
GM
1527
1528#define SDATA_NBYTES(S) (S)->u.nbytes
1529#define SDATA_DATA(S) (S)->u.data
1530
1531#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1532};
1533
31d929e5 1534
2e471eb5
GM
1535/* Structure describing a block of memory which is sub-allocated to
1536 obtain string data memory for strings. Blocks for small strings
1537 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1538 as large as needed. */
1539
1540struct sblock
7146af97 1541{
2e471eb5
GM
1542 /* Next in list. */
1543 struct sblock *next;
7146af97 1544
2e471eb5
GM
1545 /* Pointer to the next free sdata block. This points past the end
1546 of the sblock if there isn't any space left in this block. */
1547 struct sdata *next_free;
1548
1549 /* Start of data. */
1550 struct sdata first_data;
1551};
1552
1553/* Number of Lisp strings in a string_block structure. The 1020 is
1554 1024 minus malloc overhead. */
1555
19bcad1f 1556#define STRING_BLOCK_SIZE \
2e471eb5
GM
1557 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1558
1559/* Structure describing a block from which Lisp_String structures
1560 are allocated. */
1561
1562struct string_block
7146af97 1563{
6b61353c 1564 /* Place `strings' first, to preserve alignment. */
19bcad1f 1565 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1566 struct string_block *next;
2e471eb5 1567};
7146af97 1568
2e471eb5
GM
1569/* Head and tail of the list of sblock structures holding Lisp string
1570 data. We always allocate from current_sblock. The NEXT pointers
1571 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1572
2e471eb5 1573static struct sblock *oldest_sblock, *current_sblock;
7146af97 1574
2e471eb5 1575/* List of sblocks for large strings. */
7146af97 1576
2e471eb5 1577static struct sblock *large_sblocks;
7146af97 1578
2e471eb5 1579/* List of string_block structures, and how many there are. */
7146af97 1580
2e471eb5
GM
1581static struct string_block *string_blocks;
1582static int n_string_blocks;
7146af97 1583
2e471eb5 1584/* Free-list of Lisp_Strings. */
7146af97 1585
2e471eb5 1586static struct Lisp_String *string_free_list;
7146af97 1587
2e471eb5 1588/* Number of live and free Lisp_Strings. */
c8099634 1589
2e471eb5 1590static int total_strings, total_free_strings;
7146af97 1591
2e471eb5
GM
1592/* Number of bytes used by live strings. */
1593
14162469 1594static EMACS_INT total_string_size;
2e471eb5
GM
1595
1596/* Given a pointer to a Lisp_String S which is on the free-list
1597 string_free_list, return a pointer to its successor in the
1598 free-list. */
1599
1600#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1601
1602/* Return a pointer to the sdata structure belonging to Lisp string S.
1603 S must be live, i.e. S->data must not be null. S->data is actually
1604 a pointer to the `u.data' member of its sdata structure; the
1605 structure starts at a constant offset in front of that. */
177c0ea7 1606
31d929e5
GM
1607#ifdef GC_CHECK_STRING_BYTES
1608
1609#define SDATA_OF_STRING(S) \
1610 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1611 - sizeof (EMACS_INT)))
1612
1613#else /* not GC_CHECK_STRING_BYTES */
1614
2e471eb5
GM
1615#define SDATA_OF_STRING(S) \
1616 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1617
31d929e5
GM
1618#endif /* not GC_CHECK_STRING_BYTES */
1619
212f33f1
KS
1620
1621#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1622
1623/* We check for overrun in string data blocks by appending a small
1624 "cookie" after each allocated string data block, and check for the
8349069c 1625 presence of this cookie during GC. */
bdbed949
KS
1626
1627#define GC_STRING_OVERRUN_COOKIE_SIZE 4
1628static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1629 { 0xde, 0xad, 0xbe, 0xef };
1630
212f33f1 1631#else
bdbed949 1632#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1633#endif
1634
2e471eb5
GM
1635/* Value is the size of an sdata structure large enough to hold NBYTES
1636 bytes of string data. The value returned includes a terminating
1637 NUL byte, the size of the sdata structure, and padding. */
1638
31d929e5
GM
1639#ifdef GC_CHECK_STRING_BYTES
1640
2e471eb5
GM
1641#define SDATA_SIZE(NBYTES) \
1642 ((sizeof (struct Lisp_String *) \
1643 + (NBYTES) + 1 \
31d929e5 1644 + sizeof (EMACS_INT) \
2e471eb5
GM
1645 + sizeof (EMACS_INT) - 1) \
1646 & ~(sizeof (EMACS_INT) - 1))
1647
31d929e5
GM
1648#else /* not GC_CHECK_STRING_BYTES */
1649
1650#define SDATA_SIZE(NBYTES) \
1651 ((sizeof (struct Lisp_String *) \
1652 + (NBYTES) + 1 \
1653 + sizeof (EMACS_INT) - 1) \
1654 & ~(sizeof (EMACS_INT) - 1))
1655
1656#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1657
bdbed949
KS
1658/* Extra bytes to allocate for each string. */
1659
1660#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1661
2e471eb5 1662/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1663
d3d47262 1664static void
971de7fb 1665init_strings (void)
7146af97 1666{
2e471eb5
GM
1667 total_strings = total_free_strings = total_string_size = 0;
1668 oldest_sblock = current_sblock = large_sblocks = NULL;
1669 string_blocks = NULL;
1670 n_string_blocks = 0;
1671 string_free_list = NULL;
4d774b0f
JB
1672 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1673 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1674}
1675
2e471eb5 1676
361b097f
GM
1677#ifdef GC_CHECK_STRING_BYTES
1678
361b097f
GM
1679static int check_string_bytes_count;
1680
f57e2426
J
1681static void check_string_bytes (int);
1682static void check_sblock (struct sblock *);
676a7251
GM
1683
1684#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1685
1686
1687/* Like GC_STRING_BYTES, but with debugging check. */
1688
14162469
EZ
1689EMACS_INT
1690string_bytes (struct Lisp_String *s)
676a7251 1691{
14162469
EZ
1692 EMACS_INT nbytes =
1693 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1694
676a7251
GM
1695 if (!PURE_POINTER_P (s)
1696 && s->data
1697 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1698 abort ();
1699 return nbytes;
1700}
177c0ea7 1701
2c5bd608 1702/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1703
d3d47262 1704static void
676a7251
GM
1705check_sblock (b)
1706 struct sblock *b;
361b097f 1707{
676a7251 1708 struct sdata *from, *end, *from_end;
177c0ea7 1709
676a7251 1710 end = b->next_free;
177c0ea7 1711
676a7251 1712 for (from = &b->first_data; from < end; from = from_end)
361b097f 1713 {
676a7251
GM
1714 /* Compute the next FROM here because copying below may
1715 overwrite data we need to compute it. */
14162469 1716 EMACS_INT nbytes;
177c0ea7 1717
676a7251
GM
1718 /* Check that the string size recorded in the string is the
1719 same as the one recorded in the sdata structure. */
1720 if (from->string)
1721 CHECK_STRING_BYTES (from->string);
177c0ea7 1722
676a7251
GM
1723 if (from->string)
1724 nbytes = GC_STRING_BYTES (from->string);
1725 else
1726 nbytes = SDATA_NBYTES (from);
177c0ea7 1727
676a7251 1728 nbytes = SDATA_SIZE (nbytes);
212f33f1 1729 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1730 }
1731}
361b097f 1732
676a7251
GM
1733
1734/* Check validity of Lisp strings' string_bytes member. ALL_P
1735 non-zero means check all strings, otherwise check only most
1736 recently allocated strings. Used for hunting a bug. */
1737
d3d47262 1738static void
676a7251
GM
1739check_string_bytes (all_p)
1740 int all_p;
1741{
1742 if (all_p)
1743 {
1744 struct sblock *b;
1745
1746 for (b = large_sblocks; b; b = b->next)
1747 {
1748 struct Lisp_String *s = b->first_data.string;
1749 if (s)
1750 CHECK_STRING_BYTES (s);
361b097f 1751 }
177c0ea7 1752
676a7251
GM
1753 for (b = oldest_sblock; b; b = b->next)
1754 check_sblock (b);
361b097f 1755 }
676a7251
GM
1756 else
1757 check_sblock (current_sblock);
361b097f
GM
1758}
1759
1760#endif /* GC_CHECK_STRING_BYTES */
1761
212f33f1
KS
1762#ifdef GC_CHECK_STRING_FREE_LIST
1763
bdbed949
KS
1764/* Walk through the string free list looking for bogus next pointers.
1765 This may catch buffer overrun from a previous string. */
1766
212f33f1
KS
1767static void
1768check_string_free_list ()
1769{
1770 struct Lisp_String *s;
1771
1772 /* Pop a Lisp_String off the free-list. */
1773 s = string_free_list;
1774 while (s != NULL)
1775 {
14162469 1776 if ((unsigned long)s < 1024)
212f33f1
KS
1777 abort();
1778 s = NEXT_FREE_LISP_STRING (s);
1779 }
1780}
1781#else
1782#define check_string_free_list()
1783#endif
361b097f 1784
2e471eb5
GM
1785/* Return a new Lisp_String. */
1786
1787static struct Lisp_String *
971de7fb 1788allocate_string (void)
7146af97 1789{
2e471eb5 1790 struct Lisp_String *s;
7146af97 1791
e2984df0
CY
1792 /* eassert (!handling_signal); */
1793
dafc79fa 1794 MALLOC_BLOCK_INPUT;
cfb2f32e 1795
2e471eb5
GM
1796 /* If the free-list is empty, allocate a new string_block, and
1797 add all the Lisp_Strings in it to the free-list. */
1798 if (string_free_list == NULL)
7146af97 1799 {
2e471eb5
GM
1800 struct string_block *b;
1801 int i;
1802
34400008 1803 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
72af86bd 1804 memset (b, 0, sizeof *b);
2e471eb5
GM
1805 b->next = string_blocks;
1806 string_blocks = b;
1807 ++n_string_blocks;
1808
19bcad1f 1809 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1810 {
2e471eb5
GM
1811 s = b->strings + i;
1812 NEXT_FREE_LISP_STRING (s) = string_free_list;
1813 string_free_list = s;
7146af97 1814 }
2e471eb5 1815
19bcad1f 1816 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1817 }
c0f51373 1818
bdbed949 1819 check_string_free_list ();
212f33f1 1820
2e471eb5
GM
1821 /* Pop a Lisp_String off the free-list. */
1822 s = string_free_list;
1823 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1824
dafc79fa 1825 MALLOC_UNBLOCK_INPUT;
e2984df0 1826
2e471eb5 1827 /* Probably not strictly necessary, but play it safe. */
72af86bd 1828 memset (s, 0, sizeof *s);
c0f51373 1829
2e471eb5
GM
1830 --total_free_strings;
1831 ++total_strings;
1832 ++strings_consed;
1833 consing_since_gc += sizeof *s;
c0f51373 1834
361b097f 1835#ifdef GC_CHECK_STRING_BYTES
e39a993c 1836 if (!noninteractive)
361b097f 1837 {
676a7251
GM
1838 if (++check_string_bytes_count == 200)
1839 {
1840 check_string_bytes_count = 0;
1841 check_string_bytes (1);
1842 }
1843 else
1844 check_string_bytes (0);
361b097f 1845 }
676a7251 1846#endif /* GC_CHECK_STRING_BYTES */
361b097f 1847
2e471eb5 1848 return s;
c0f51373 1849}
7146af97 1850
7146af97 1851
2e471eb5
GM
1852/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1853 plus a NUL byte at the end. Allocate an sdata structure for S, and
1854 set S->data to its `u.data' member. Store a NUL byte at the end of
1855 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1856 S->data if it was initially non-null. */
7146af97 1857
2e471eb5 1858void
413d18e7
EZ
1859allocate_string_data (struct Lisp_String *s,
1860 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1861{
5c5fecb3 1862 struct sdata *data, *old_data;
2e471eb5 1863 struct sblock *b;
14162469 1864 EMACS_INT needed, old_nbytes;
7146af97 1865
2e471eb5
GM
1866 /* Determine the number of bytes needed to store NBYTES bytes
1867 of string data. */
1868 needed = SDATA_SIZE (nbytes);
e2984df0
CY
1869 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1870 old_nbytes = GC_STRING_BYTES (s);
1871
dafc79fa 1872 MALLOC_BLOCK_INPUT;
7146af97 1873
2e471eb5
GM
1874 if (nbytes > LARGE_STRING_BYTES)
1875 {
675d5130 1876 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1877
1878#ifdef DOUG_LEA_MALLOC
f8608968
GM
1879 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1880 because mapped region contents are not preserved in
d36b182f
DL
1881 a dumped Emacs.
1882
1883 In case you think of allowing it in a dumped Emacs at the
1884 cost of not being able to re-dump, there's another reason:
1885 mmap'ed data typically have an address towards the top of the
1886 address space, which won't fit into an EMACS_INT (at least on
1887 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1888 mallopt (M_MMAP_MAX, 0);
1889#endif
1890
212f33f1 1891 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1892
2e471eb5
GM
1893#ifdef DOUG_LEA_MALLOC
1894 /* Back to a reasonable maximum of mmap'ed areas. */
1895 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1896#endif
177c0ea7 1897
2e471eb5
GM
1898 b->next_free = &b->first_data;
1899 b->first_data.string = NULL;
1900 b->next = large_sblocks;
1901 large_sblocks = b;
1902 }
1903 else if (current_sblock == NULL
1904 || (((char *) current_sblock + SBLOCK_SIZE
1905 - (char *) current_sblock->next_free)
212f33f1 1906 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
1907 {
1908 /* Not enough room in the current sblock. */
34400008 1909 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1910 b->next_free = &b->first_data;
1911 b->first_data.string = NULL;
1912 b->next = NULL;
1913
1914 if (current_sblock)
1915 current_sblock->next = b;
1916 else
1917 oldest_sblock = b;
1918 current_sblock = b;
1919 }
1920 else
1921 b = current_sblock;
5c5fecb3 1922
2e471eb5 1923 data = b->next_free;
a0b08700
CY
1924 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1925
dafc79fa 1926 MALLOC_UNBLOCK_INPUT;
e2984df0 1927
2e471eb5 1928 data->string = s;
31d929e5
GM
1929 s->data = SDATA_DATA (data);
1930#ifdef GC_CHECK_STRING_BYTES
1931 SDATA_NBYTES (data) = nbytes;
1932#endif
2e471eb5
GM
1933 s->size = nchars;
1934 s->size_byte = nbytes;
1935 s->data[nbytes] = '\0';
212f33f1 1936#ifdef GC_CHECK_STRING_OVERRUN
72af86bd 1937 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 1938#endif
177c0ea7 1939
5c5fecb3
GM
1940 /* If S had already data assigned, mark that as free by setting its
1941 string back-pointer to null, and recording the size of the data
00c9c33c 1942 in it. */
5c5fecb3
GM
1943 if (old_data)
1944 {
31d929e5 1945 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
1946 old_data->string = NULL;
1947 }
1948
2e471eb5
GM
1949 consing_since_gc += needed;
1950}
1951
1952
1953/* Sweep and compact strings. */
1954
1955static void
971de7fb 1956sweep_strings (void)
2e471eb5
GM
1957{
1958 struct string_block *b, *next;
1959 struct string_block *live_blocks = NULL;
177c0ea7 1960
2e471eb5
GM
1961 string_free_list = NULL;
1962 total_strings = total_free_strings = 0;
1963 total_string_size = 0;
1964
1965 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1966 for (b = string_blocks; b; b = next)
1967 {
1968 int i, nfree = 0;
1969 struct Lisp_String *free_list_before = string_free_list;
1970
1971 next = b->next;
1972
19bcad1f 1973 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
1974 {
1975 struct Lisp_String *s = b->strings + i;
1976
1977 if (s->data)
1978 {
1979 /* String was not on free-list before. */
1980 if (STRING_MARKED_P (s))
1981 {
1982 /* String is live; unmark it and its intervals. */
1983 UNMARK_STRING (s);
177c0ea7 1984
2e471eb5
GM
1985 if (!NULL_INTERVAL_P (s->intervals))
1986 UNMARK_BALANCE_INTERVALS (s->intervals);
1987
1988 ++total_strings;
1989 total_string_size += STRING_BYTES (s);
1990 }
1991 else
1992 {
1993 /* String is dead. Put it on the free-list. */
1994 struct sdata *data = SDATA_OF_STRING (s);
1995
1996 /* Save the size of S in its sdata so that we know
1997 how large that is. Reset the sdata's string
1998 back-pointer so that we know it's free. */
31d929e5
GM
1999#ifdef GC_CHECK_STRING_BYTES
2000 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2001 abort ();
2002#else
2e471eb5 2003 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2004#endif
2e471eb5
GM
2005 data->string = NULL;
2006
2007 /* Reset the strings's `data' member so that we
2008 know it's free. */
2009 s->data = NULL;
2010
2011 /* Put the string on the free-list. */
2012 NEXT_FREE_LISP_STRING (s) = string_free_list;
2013 string_free_list = s;
2014 ++nfree;
2015 }
2016 }
2017 else
2018 {
2019 /* S was on the free-list before. Put it there again. */
2020 NEXT_FREE_LISP_STRING (s) = string_free_list;
2021 string_free_list = s;
2022 ++nfree;
2023 }
2024 }
2025
34400008 2026 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2027 the first two of them. */
19bcad1f
SM
2028 if (nfree == STRING_BLOCK_SIZE
2029 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2030 {
2031 lisp_free (b);
2032 --n_string_blocks;
2033 string_free_list = free_list_before;
2034 }
2035 else
2036 {
2037 total_free_strings += nfree;
2038 b->next = live_blocks;
2039 live_blocks = b;
2040 }
2041 }
2042
bdbed949 2043 check_string_free_list ();
212f33f1 2044
2e471eb5
GM
2045 string_blocks = live_blocks;
2046 free_large_strings ();
2047 compact_small_strings ();
212f33f1 2048
bdbed949 2049 check_string_free_list ();
2e471eb5
GM
2050}
2051
2052
2053/* Free dead large strings. */
2054
2055static void
971de7fb 2056free_large_strings (void)
2e471eb5
GM
2057{
2058 struct sblock *b, *next;
2059 struct sblock *live_blocks = NULL;
177c0ea7 2060
2e471eb5
GM
2061 for (b = large_sblocks; b; b = next)
2062 {
2063 next = b->next;
2064
2065 if (b->first_data.string == NULL)
2066 lisp_free (b);
2067 else
2068 {
2069 b->next = live_blocks;
2070 live_blocks = b;
2071 }
2072 }
2073
2074 large_sblocks = live_blocks;
2075}
2076
2077
2078/* Compact data of small strings. Free sblocks that don't contain
2079 data of live strings after compaction. */
2080
2081static void
971de7fb 2082compact_small_strings (void)
2e471eb5
GM
2083{
2084 struct sblock *b, *tb, *next;
2085 struct sdata *from, *to, *end, *tb_end;
2086 struct sdata *to_end, *from_end;
2087
2088 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2089 to, and TB_END is the end of TB. */
2090 tb = oldest_sblock;
2091 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2092 to = &tb->first_data;
2093
2094 /* Step through the blocks from the oldest to the youngest. We
2095 expect that old blocks will stabilize over time, so that less
2096 copying will happen this way. */
2097 for (b = oldest_sblock; b; b = b->next)
2098 {
2099 end = b->next_free;
2100 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2101
2e471eb5
GM
2102 for (from = &b->first_data; from < end; from = from_end)
2103 {
2104 /* Compute the next FROM here because copying below may
2105 overwrite data we need to compute it. */
14162469 2106 EMACS_INT nbytes;
2e471eb5 2107
31d929e5
GM
2108#ifdef GC_CHECK_STRING_BYTES
2109 /* Check that the string size recorded in the string is the
2110 same as the one recorded in the sdata structure. */
2111 if (from->string
2112 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2113 abort ();
2114#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2115
2e471eb5
GM
2116 if (from->string)
2117 nbytes = GC_STRING_BYTES (from->string);
2118 else
31d929e5 2119 nbytes = SDATA_NBYTES (from);
177c0ea7 2120
212f33f1
KS
2121 if (nbytes > LARGE_STRING_BYTES)
2122 abort ();
212f33f1 2123
2e471eb5 2124 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2125 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2126
2127#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
2128 if (memcmp (string_overrun_cookie,
2129 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2130 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2131 abort ();
2132#endif
177c0ea7 2133
2e471eb5
GM
2134 /* FROM->string non-null means it's alive. Copy its data. */
2135 if (from->string)
2136 {
2137 /* If TB is full, proceed with the next sblock. */
212f33f1 2138 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2139 if (to_end > tb_end)
2140 {
2141 tb->next_free = to;
2142 tb = tb->next;
2143 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2144 to = &tb->first_data;
212f33f1 2145 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2146 }
177c0ea7 2147
2e471eb5
GM
2148 /* Copy, and update the string's `data' pointer. */
2149 if (from != to)
2150 {
a2407477 2151 xassert (tb != b || to <= from);
72af86bd 2152 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2153 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2154 }
2155
2156 /* Advance past the sdata we copied to. */
2157 to = to_end;
2158 }
2159 }
2160 }
2161
2162 /* The rest of the sblocks following TB don't contain live data, so
2163 we can free them. */
2164 for (b = tb->next; b; b = next)
2165 {
2166 next = b->next;
2167 lisp_free (b);
2168 }
2169
2170 tb->next_free = to;
2171 tb->next = NULL;
2172 current_sblock = tb;
2173}
2174
2175
2176DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2177 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2178LENGTH must be an integer.
2179INIT must be an integer that represents a character. */)
5842a27b 2180 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2181{
2182 register Lisp_Object val;
2183 register unsigned char *p, *end;
14162469
EZ
2184 int c;
2185 EMACS_INT nbytes;
2e471eb5 2186
b7826503
PJ
2187 CHECK_NATNUM (length);
2188 CHECK_NUMBER (init);
2e471eb5
GM
2189
2190 c = XINT (init);
830ff83b 2191 if (ASCII_CHAR_P (c))
2e471eb5
GM
2192 {
2193 nbytes = XINT (length);
2194 val = make_uninit_string (nbytes);
d5db4077
KR
2195 p = SDATA (val);
2196 end = p + SCHARS (val);
2e471eb5
GM
2197 while (p != end)
2198 *p++ = c;
2199 }
2200 else
2201 {
d942b71c 2202 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 2203 int len = CHAR_STRING (c, str);
14162469 2204 EMACS_INT string_len = XINT (length);
2e471eb5 2205
14162469
EZ
2206 if (string_len > MOST_POSITIVE_FIXNUM / len)
2207 error ("Maximum string size exceeded");
2208 nbytes = len * string_len;
2209 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2210 p = SDATA (val);
2e471eb5
GM
2211 end = p + nbytes;
2212 while (p != end)
2213 {
72af86bd 2214 memcpy (p, str, len);
2e471eb5
GM
2215 p += len;
2216 }
2217 }
177c0ea7 2218
2e471eb5
GM
2219 *p = 0;
2220 return val;
2221}
2222
2223
2224DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2225 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2226LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2227 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2228{
2229 register Lisp_Object val;
2230 struct Lisp_Bool_Vector *p;
2231 int real_init, i;
14162469
EZ
2232 EMACS_INT length_in_chars, length_in_elts;
2233 int bits_per_value;
2e471eb5 2234
b7826503 2235 CHECK_NATNUM (length);
2e471eb5 2236
a097329f 2237 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2238
2239 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
2240 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2241 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
2242
2243 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2244 slot `size' of the struct Lisp_Bool_Vector. */
2245 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
177c0ea7 2246
2e471eb5 2247 /* Get rid of any bits that would cause confusion. */
d2029e5b 2248 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
d0fdb6da 2249 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
d2029e5b
SM
2250 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2251
2252 p = XBOOL_VECTOR (val);
2e471eb5 2253 p->size = XFASTINT (length);
177c0ea7 2254
2e471eb5
GM
2255 real_init = (NILP (init) ? 0 : -1);
2256 for (i = 0; i < length_in_chars ; i++)
2257 p->data[i] = real_init;
177c0ea7 2258
2e471eb5 2259 /* Clear the extraneous bits in the last byte. */
a097329f 2260 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
d2029e5b 2261 p->data[length_in_chars - 1]
a097329f 2262 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
2263
2264 return val;
2265}
2266
2267
2268/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2269 of characters from the contents. This string may be unibyte or
2270 multibyte, depending on the contents. */
2271
2272Lisp_Object
14162469 2273make_string (const char *contents, EMACS_INT nbytes)
2e471eb5
GM
2274{
2275 register Lisp_Object val;
14162469 2276 EMACS_INT nchars, multibyte_nbytes;
9eac9d59 2277
90256841
PE
2278 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2279 &nchars, &multibyte_nbytes);
9eac9d59
KH
2280 if (nbytes == nchars || nbytes != multibyte_nbytes)
2281 /* CONTENTS contains no multibyte sequences or contains an invalid
2282 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2283 val = make_unibyte_string (contents, nbytes);
2284 else
2285 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2286 return val;
2287}
2288
2289
2290/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2291
2292Lisp_Object
14162469 2293make_unibyte_string (const char *contents, EMACS_INT length)
2e471eb5
GM
2294{
2295 register Lisp_Object val;
2296 val = make_uninit_string (length);
72af86bd 2297 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2298 return val;
2299}
2300
2301
2302/* Make a multibyte string from NCHARS characters occupying NBYTES
2303 bytes at CONTENTS. */
2304
2305Lisp_Object
14162469
EZ
2306make_multibyte_string (const char *contents,
2307 EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2308{
2309 register Lisp_Object val;
2310 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2311 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2312 return val;
2313}
2314
2315
2316/* Make a string from NCHARS characters occupying NBYTES bytes at
2317 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2318
2319Lisp_Object
14162469
EZ
2320make_string_from_bytes (const char *contents,
2321 EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2322{
2323 register Lisp_Object val;
2324 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2325 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2326 if (SBYTES (val) == SCHARS (val))
2327 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2328 return val;
2329}
2330
2331
2332/* Make a string from NCHARS characters occupying NBYTES bytes at
2333 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2334 string as multibyte. If NCHARS is negative, it counts the number of
2335 characters by itself. */
2e471eb5
GM
2336
2337Lisp_Object
14162469
EZ
2338make_specified_string (const char *contents,
2339 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2e471eb5
GM
2340{
2341 register Lisp_Object val;
229b28c4
KH
2342
2343 if (nchars < 0)
2344 {
2345 if (multibyte)
90256841
PE
2346 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2347 nbytes);
229b28c4
KH
2348 else
2349 nchars = nbytes;
2350 }
2e471eb5 2351 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2352 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2353 if (!multibyte)
d5db4077 2354 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2355 return val;
2356}
2357
2358
2359/* Make a string from the data at STR, treating it as multibyte if the
2360 data warrants. */
2361
2362Lisp_Object
971de7fb 2363build_string (const char *str)
2e471eb5
GM
2364{
2365 return make_string (str, strlen (str));
2366}
2367
2368
2369/* Return an unibyte Lisp_String set up to hold LENGTH characters
2370 occupying LENGTH bytes. */
2371
2372Lisp_Object
413d18e7 2373make_uninit_string (EMACS_INT length)
2e471eb5
GM
2374{
2375 Lisp_Object val;
4d774b0f
JB
2376
2377 if (!length)
2378 return empty_unibyte_string;
2e471eb5 2379 val = make_uninit_multibyte_string (length, length);
d5db4077 2380 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2381 return val;
2382}
2383
2384
2385/* Return a multibyte Lisp_String set up to hold NCHARS characters
2386 which occupy NBYTES bytes. */
2387
2388Lisp_Object
413d18e7 2389make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2390{
2391 Lisp_Object string;
2392 struct Lisp_String *s;
2393
2394 if (nchars < 0)
2395 abort ();
4d774b0f
JB
2396 if (!nbytes)
2397 return empty_multibyte_string;
2e471eb5
GM
2398
2399 s = allocate_string ();
2400 allocate_string_data (s, nchars, nbytes);
2401 XSETSTRING (string, s);
2402 string_chars_consed += nbytes;
2403 return string;
2404}
2405
2406
2407\f
2408/***********************************************************************
2409 Float Allocation
2410 ***********************************************************************/
2411
2e471eb5
GM
2412/* We store float cells inside of float_blocks, allocating a new
2413 float_block with malloc whenever necessary. Float cells reclaimed
2414 by GC are put on a free list to be reallocated before allocating
ab6780cd 2415 any new float cells from the latest float_block. */
2e471eb5 2416
6b61353c
KH
2417#define FLOAT_BLOCK_SIZE \
2418 (((BLOCK_BYTES - sizeof (struct float_block *) \
2419 /* The compiler might add padding at the end. */ \
2420 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2421 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2422
2423#define GETMARKBIT(block,n) \
2424 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2425 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2426 & 1)
2427
2428#define SETMARKBIT(block,n) \
2429 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2430 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2431
2432#define UNSETMARKBIT(block,n) \
2433 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2434 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2435
2436#define FLOAT_BLOCK(fptr) \
2437 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2438
2439#define FLOAT_INDEX(fptr) \
2440 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2441
2442struct float_block
2443{
ab6780cd 2444 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2445 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2446 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2447 struct float_block *next;
2e471eb5
GM
2448};
2449
ab6780cd
SM
2450#define FLOAT_MARKED_P(fptr) \
2451 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2452
2453#define FLOAT_MARK(fptr) \
2454 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2455
2456#define FLOAT_UNMARK(fptr) \
2457 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2458
34400008
GM
2459/* Current float_block. */
2460
2e471eb5 2461struct float_block *float_block;
34400008
GM
2462
2463/* Index of first unused Lisp_Float in the current float_block. */
2464
2e471eb5
GM
2465int float_block_index;
2466
2467/* Total number of float blocks now in use. */
2468
2469int n_float_blocks;
2470
34400008
GM
2471/* Free-list of Lisp_Floats. */
2472
2e471eb5
GM
2473struct Lisp_Float *float_free_list;
2474
34400008 2475
966533c9 2476/* Initialize float allocation. */
34400008 2477
d3d47262 2478static void
971de7fb 2479init_float (void)
2e471eb5 2480{
08b7c2cb
SM
2481 float_block = NULL;
2482 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2483 float_free_list = 0;
08b7c2cb 2484 n_float_blocks = 0;
2e471eb5
GM
2485}
2486
34400008 2487
34400008
GM
2488/* Return a new float object with value FLOAT_VALUE. */
2489
2e471eb5 2490Lisp_Object
971de7fb 2491make_float (double float_value)
2e471eb5
GM
2492{
2493 register Lisp_Object val;
2494
e2984df0
CY
2495 /* eassert (!handling_signal); */
2496
dafc79fa 2497 MALLOC_BLOCK_INPUT;
cfb2f32e 2498
2e471eb5
GM
2499 if (float_free_list)
2500 {
2501 /* We use the data field for chaining the free list
2502 so that we won't use the same field that has the mark bit. */
2503 XSETFLOAT (val, float_free_list);
28a099a4 2504 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2505 }
2506 else
2507 {
2508 if (float_block_index == FLOAT_BLOCK_SIZE)
2509 {
2510 register struct float_block *new;
2511
ab6780cd
SM
2512 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2513 MEM_TYPE_FLOAT);
2e471eb5 2514 new->next = float_block;
72af86bd 2515 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2516 float_block = new;
2517 float_block_index = 0;
2518 n_float_blocks++;
2519 }
6b61353c
KH
2520 XSETFLOAT (val, &float_block->floats[float_block_index]);
2521 float_block_index++;
2e471eb5 2522 }
177c0ea7 2523
dafc79fa 2524 MALLOC_UNBLOCK_INPUT;
e2984df0 2525
f601cdf3 2526 XFLOAT_INIT (val, float_value);
6b61353c 2527 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2528 consing_since_gc += sizeof (struct Lisp_Float);
2529 floats_consed++;
2530 return val;
2531}
2532
2e471eb5
GM
2533
2534\f
2535/***********************************************************************
2536 Cons Allocation
2537 ***********************************************************************/
2538
2539/* We store cons cells inside of cons_blocks, allocating a new
2540 cons_block with malloc whenever necessary. Cons cells reclaimed by
2541 GC are put on a free list to be reallocated before allocating
08b7c2cb 2542 any new cons cells from the latest cons_block. */
2e471eb5
GM
2543
2544#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2545 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2546 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2547
2548#define CONS_BLOCK(fptr) \
2549 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2550
2551#define CONS_INDEX(fptr) \
2552 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2553
2554struct cons_block
2555{
08b7c2cb 2556 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2557 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2558 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2559 struct cons_block *next;
2e471eb5
GM
2560};
2561
08b7c2cb
SM
2562#define CONS_MARKED_P(fptr) \
2563 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2564
2565#define CONS_MARK(fptr) \
2566 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2567
2568#define CONS_UNMARK(fptr) \
2569 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2570
34400008
GM
2571/* Current cons_block. */
2572
2e471eb5 2573struct cons_block *cons_block;
34400008
GM
2574
2575/* Index of first unused Lisp_Cons in the current block. */
2576
2e471eb5
GM
2577int cons_block_index;
2578
34400008
GM
2579/* Free-list of Lisp_Cons structures. */
2580
2e471eb5
GM
2581struct Lisp_Cons *cons_free_list;
2582
2583/* Total number of cons blocks now in use. */
2584
d3d47262 2585static int n_cons_blocks;
2e471eb5 2586
34400008
GM
2587
2588/* Initialize cons allocation. */
2589
d3d47262 2590static void
971de7fb 2591init_cons (void)
2e471eb5 2592{
08b7c2cb
SM
2593 cons_block = NULL;
2594 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2595 cons_free_list = 0;
08b7c2cb 2596 n_cons_blocks = 0;
2e471eb5
GM
2597}
2598
34400008
GM
2599
2600/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2601
2602void
971de7fb 2603free_cons (struct Lisp_Cons *ptr)
2e471eb5 2604{
28a099a4 2605 ptr->u.chain = cons_free_list;
34400008
GM
2606#if GC_MARK_STACK
2607 ptr->car = Vdead;
2608#endif
2e471eb5
GM
2609 cons_free_list = ptr;
2610}
2611
2612DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2613 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2614 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2615{
2616 register Lisp_Object val;
2617
e2984df0
CY
2618 /* eassert (!handling_signal); */
2619
dafc79fa 2620 MALLOC_BLOCK_INPUT;
cfb2f32e 2621
2e471eb5
GM
2622 if (cons_free_list)
2623 {
2624 /* We use the cdr for chaining the free list
2625 so that we won't use the same field that has the mark bit. */
2626 XSETCONS (val, cons_free_list);
28a099a4 2627 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2628 }
2629 else
2630 {
2631 if (cons_block_index == CONS_BLOCK_SIZE)
2632 {
2633 register struct cons_block *new;
08b7c2cb
SM
2634 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2635 MEM_TYPE_CONS);
72af86bd 2636 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2637 new->next = cons_block;
2638 cons_block = new;
2639 cons_block_index = 0;
2640 n_cons_blocks++;
2641 }
6b61353c
KH
2642 XSETCONS (val, &cons_block->conses[cons_block_index]);
2643 cons_block_index++;
2e471eb5 2644 }
177c0ea7 2645
dafc79fa 2646 MALLOC_UNBLOCK_INPUT;
e2984df0 2647
f3fbd155
KR
2648 XSETCAR (val, car);
2649 XSETCDR (val, cdr);
6b61353c 2650 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2651 consing_since_gc += sizeof (struct Lisp_Cons);
2652 cons_cells_consed++;
2653 return val;
2654}
2655
e5aab7e7 2656#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2657/* Get an error now if there's any junk in the cons free list. */
2658void
971de7fb 2659check_cons_list (void)
e3e56238
RS
2660{
2661 struct Lisp_Cons *tail = cons_free_list;
2662
e3e56238 2663 while (tail)
28a099a4 2664 tail = tail->u.chain;
e3e56238 2665}
e5aab7e7 2666#endif
34400008 2667
9b306d37
KS
2668/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2669
2670Lisp_Object
971de7fb 2671list1 (Lisp_Object arg1)
9b306d37
KS
2672{
2673 return Fcons (arg1, Qnil);
2674}
2e471eb5
GM
2675
2676Lisp_Object
971de7fb 2677list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2678{
2679 return Fcons (arg1, Fcons (arg2, Qnil));
2680}
2681
34400008 2682
2e471eb5 2683Lisp_Object
971de7fb 2684list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2685{
2686 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2687}
2688
34400008 2689
2e471eb5 2690Lisp_Object
971de7fb 2691list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2692{
2693 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2694}
2695
34400008 2696
2e471eb5 2697Lisp_Object
971de7fb 2698list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2699{
2700 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2701 Fcons (arg5, Qnil)))));
2702}
2703
34400008 2704
2e471eb5 2705DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2706 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2707Any number of arguments, even zero arguments, are allowed.
2708usage: (list &rest OBJECTS) */)
5842a27b 2709 (int nargs, register Lisp_Object *args)
2e471eb5
GM
2710{
2711 register Lisp_Object val;
2712 val = Qnil;
2713
2714 while (nargs > 0)
2715 {
2716 nargs--;
2717 val = Fcons (args[nargs], val);
2718 }
2719 return val;
2720}
2721
34400008 2722
2e471eb5 2723DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2724 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2725 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2726{
2727 register Lisp_Object val;
14162469 2728 register EMACS_INT size;
2e471eb5 2729
b7826503 2730 CHECK_NATNUM (length);
2e471eb5
GM
2731 size = XFASTINT (length);
2732
2733 val = Qnil;
ce070307
GM
2734 while (size > 0)
2735 {
2736 val = Fcons (init, val);
2737 --size;
2738
2739 if (size > 0)
2740 {
2741 val = Fcons (init, val);
2742 --size;
177c0ea7 2743
ce070307
GM
2744 if (size > 0)
2745 {
2746 val = Fcons (init, val);
2747 --size;
177c0ea7 2748
ce070307
GM
2749 if (size > 0)
2750 {
2751 val = Fcons (init, val);
2752 --size;
177c0ea7 2753
ce070307
GM
2754 if (size > 0)
2755 {
2756 val = Fcons (init, val);
2757 --size;
2758 }
2759 }
2760 }
2761 }
2762
2763 QUIT;
2764 }
177c0ea7 2765
7146af97
JB
2766 return val;
2767}
2e471eb5
GM
2768
2769
7146af97 2770\f
2e471eb5
GM
2771/***********************************************************************
2772 Vector Allocation
2773 ***********************************************************************/
7146af97 2774
34400008
GM
2775/* Singly-linked list of all vectors. */
2776
d3d47262 2777static struct Lisp_Vector *all_vectors;
7146af97 2778
2e471eb5
GM
2779/* Total number of vector-like objects now in use. */
2780
d3d47262 2781static int n_vectors;
c8099634 2782
34400008
GM
2783
2784/* Value is a pointer to a newly allocated Lisp_Vector structure
2785 with room for LEN Lisp_Objects. */
2786
ece93c02 2787static struct Lisp_Vector *
971de7fb 2788allocate_vectorlike (EMACS_INT len)
1825c68d
KH
2789{
2790 struct Lisp_Vector *p;
675d5130 2791 size_t nbytes;
1825c68d 2792
dafc79fa
SM
2793 MALLOC_BLOCK_INPUT;
2794
d1658221 2795#ifdef DOUG_LEA_MALLOC
f8608968
GM
2796 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2797 because mapped region contents are not preserved in
2798 a dumped Emacs. */
d1658221
RS
2799 mallopt (M_MMAP_MAX, 0);
2800#endif
177c0ea7 2801
cfb2f32e
SM
2802 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2803 /* eassert (!handling_signal); */
2804
34400008 2805 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
9c545a55 2806 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
177c0ea7 2807
d1658221 2808#ifdef DOUG_LEA_MALLOC
34400008 2809 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 2810 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 2811#endif
177c0ea7 2812
34400008 2813 consing_since_gc += nbytes;
310ea200 2814 vector_cells_consed += len;
1825c68d
KH
2815
2816 p->next = all_vectors;
2817 all_vectors = p;
e2984df0 2818
dafc79fa 2819 MALLOC_UNBLOCK_INPUT;
e2984df0 2820
34400008 2821 ++n_vectors;
1825c68d
KH
2822 return p;
2823}
2824
34400008 2825
ece93c02
GM
2826/* Allocate a vector with NSLOTS slots. */
2827
2828struct Lisp_Vector *
971de7fb 2829allocate_vector (EMACS_INT nslots)
ece93c02 2830{
9c545a55 2831 struct Lisp_Vector *v = allocate_vectorlike (nslots);
ece93c02
GM
2832 v->size = nslots;
2833 return v;
2834}
2835
2836
2837/* Allocate other vector-like structures. */
2838
30f95089 2839struct Lisp_Vector *
971de7fb 2840allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
ece93c02 2841{
d2029e5b 2842 struct Lisp_Vector *v = allocate_vectorlike (memlen);
ece93c02 2843 EMACS_INT i;
177c0ea7 2844
d2029e5b
SM
2845 /* Only the first lisplen slots will be traced normally by the GC. */
2846 v->size = lisplen;
2847 for (i = 0; i < lisplen; ++i)
ece93c02 2848 v->contents[i] = Qnil;
177c0ea7 2849
d2029e5b
SM
2850 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2851 return v;
2852}
d2029e5b 2853
ece93c02 2854struct Lisp_Hash_Table *
878f97ff 2855allocate_hash_table (void)
ece93c02 2856{
878f97ff 2857 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
2858}
2859
2860
2861struct window *
971de7fb 2862allocate_window (void)
ece93c02 2863{
d2029e5b 2864 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
ece93c02 2865}
177c0ea7 2866
177c0ea7 2867
4a729fd8 2868struct terminal *
971de7fb 2869allocate_terminal (void)
4a729fd8 2870{
d2029e5b
SM
2871 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2872 next_terminal, PVEC_TERMINAL);
2873 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
2874 memset (&t->next_terminal, 0,
2875 (char*) (t + 1) - (char*) &t->next_terminal);
ece93c02 2876
d2029e5b 2877 return t;
4a729fd8 2878}
ece93c02
GM
2879
2880struct frame *
971de7fb 2881allocate_frame (void)
ece93c02 2882{
d2029e5b
SM
2883 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2884 face_cache, PVEC_FRAME);
2885 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
2886 memset (&f->face_cache, 0,
2887 (char *) (f + 1) - (char *) &f->face_cache);
d2029e5b 2888 return f;
ece93c02
GM
2889}
2890
2891
2892struct Lisp_Process *
971de7fb 2893allocate_process (void)
ece93c02 2894{
d2029e5b 2895 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
ece93c02
GM
2896}
2897
2898
7146af97 2899DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 2900 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 2901See also the function `vector'. */)
5842a27b 2902 (register Lisp_Object length, Lisp_Object init)
7146af97 2903{
1825c68d
KH
2904 Lisp_Object vector;
2905 register EMACS_INT sizei;
ae35e756 2906 register EMACS_INT i;
7146af97
JB
2907 register struct Lisp_Vector *p;
2908
b7826503 2909 CHECK_NATNUM (length);
c9dad5ed 2910 sizei = XFASTINT (length);
7146af97 2911
ece93c02 2912 p = allocate_vector (sizei);
ae35e756
PE
2913 for (i = 0; i < sizei; i++)
2914 p->contents[i] = init;
7146af97 2915
1825c68d 2916 XSETVECTOR (vector, p);
7146af97
JB
2917 return vector;
2918}
2919
34400008 2920
7146af97 2921DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 2922 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
2923Any number of arguments, even zero arguments, are allowed.
2924usage: (vector &rest OBJECTS) */)
5842a27b 2925 (register int nargs, Lisp_Object *args)
7146af97
JB
2926{
2927 register Lisp_Object len, val;
ae35e756 2928 register int i;
7146af97
JB
2929 register struct Lisp_Vector *p;
2930
67ba9986 2931 XSETFASTINT (len, nargs);
7146af97
JB
2932 val = Fmake_vector (len, Qnil);
2933 p = XVECTOR (val);
ae35e756
PE
2934 for (i = 0; i < nargs; i++)
2935 p->contents[i] = args[i];
7146af97
JB
2936 return val;
2937}
2938
34400008 2939
7146af97 2940DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 2941 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
2942The arguments should be the arglist, bytecode-string, constant vector,
2943stack size, (optional) doc string, and (optional) interactive spec.
2944The first four arguments are required; at most six have any
ae8e8122 2945significance.
92cc28b2 2946usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
5842a27b 2947 (register int nargs, Lisp_Object *args)
7146af97
JB
2948{
2949 register Lisp_Object len, val;
ae35e756 2950 register int i;
7146af97
JB
2951 register struct Lisp_Vector *p;
2952
67ba9986 2953 XSETFASTINT (len, nargs);
265a9e55 2954 if (!NILP (Vpurify_flag))
5a053ea9 2955 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
2956 else
2957 val = Fmake_vector (len, Qnil);
9eac9d59 2958
b1feb9b4 2959 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
9eac9d59
KH
2960 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2961 earlier because they produced a raw 8-bit string for byte-code
2962 and now such a byte-code string is loaded as multibyte while
2963 raw 8-bit characters converted to multibyte form. Thus, now we
2964 must convert them back to the original unibyte form. */
2965 args[1] = Fstring_as_unibyte (args[1]);
2966
7146af97 2967 p = XVECTOR (val);
ae35e756 2968 for (i = 0; i < nargs; i++)
7146af97 2969 {
265a9e55 2970 if (!NILP (Vpurify_flag))
ae35e756
PE
2971 args[i] = Fpurecopy (args[i]);
2972 p->contents[i] = args[i];
7146af97 2973 }
d2029e5b 2974 XSETPVECTYPE (p, PVEC_COMPILED);
50aee051 2975 XSETCOMPILED (val, p);
7146af97
JB
2976 return val;
2977}
2e471eb5 2978
34400008 2979
7146af97 2980\f
2e471eb5
GM
2981/***********************************************************************
2982 Symbol Allocation
2983 ***********************************************************************/
7146af97 2984
2e471eb5
GM
2985/* Each symbol_block is just under 1020 bytes long, since malloc
2986 really allocates in units of powers of two and uses 4 bytes for its
2987 own overhead. */
7146af97
JB
2988
2989#define SYMBOL_BLOCK_SIZE \
2990 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2991
2992struct symbol_block
2e471eb5 2993{
6b61353c 2994 /* Place `symbols' first, to preserve alignment. */
2e471eb5 2995 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 2996 struct symbol_block *next;
2e471eb5 2997};
7146af97 2998
34400008
GM
2999/* Current symbol block and index of first unused Lisp_Symbol
3000 structure in it. */
3001
d3d47262
JB
3002static struct symbol_block *symbol_block;
3003static int symbol_block_index;
7146af97 3004
34400008
GM
3005/* List of free symbols. */
3006
d3d47262 3007static struct Lisp_Symbol *symbol_free_list;
7146af97 3008
c8099634 3009/* Total number of symbol blocks now in use. */
2e471eb5 3010
d3d47262 3011static int n_symbol_blocks;
c8099634 3012
34400008
GM
3013
3014/* Initialize symbol allocation. */
3015
d3d47262 3016static void
971de7fb 3017init_symbol (void)
7146af97 3018{
005ca5c7
DL
3019 symbol_block = NULL;
3020 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3021 symbol_free_list = 0;
005ca5c7 3022 n_symbol_blocks = 0;
7146af97
JB
3023}
3024
34400008 3025
7146af97 3026DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3027 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3028Its value and function definition are void, and its property list is nil. */)
5842a27b 3029 (Lisp_Object name)
7146af97
JB
3030{
3031 register Lisp_Object val;
3032 register struct Lisp_Symbol *p;
3033
b7826503 3034 CHECK_STRING (name);
7146af97 3035
537407f0 3036 /* eassert (!handling_signal); */
cfb2f32e 3037
dafc79fa 3038 MALLOC_BLOCK_INPUT;
e2984df0 3039
7146af97
JB
3040 if (symbol_free_list)
3041 {
45d12a89 3042 XSETSYMBOL (val, symbol_free_list);
28a099a4 3043 symbol_free_list = symbol_free_list->next;
7146af97
JB
3044 }
3045 else
3046 {
3047 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3048 {
3c06d205 3049 struct symbol_block *new;
34400008
GM
3050 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3051 MEM_TYPE_SYMBOL);
7146af97
JB
3052 new->next = symbol_block;
3053 symbol_block = new;
3054 symbol_block_index = 0;
c8099634 3055 n_symbol_blocks++;
7146af97 3056 }
6b61353c
KH
3057 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3058 symbol_block_index++;
7146af97 3059 }
177c0ea7 3060
dafc79fa 3061 MALLOC_UNBLOCK_INPUT;
e2984df0 3062
7146af97 3063 p = XSYMBOL (val);
8fe5665d 3064 p->xname = name;
7146af97 3065 p->plist = Qnil;
ce5b453a
SM
3066 p->redirect = SYMBOL_PLAINVAL;
3067 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3068 p->function = Qunbound;
9e713715 3069 p->next = NULL;
2336fe58 3070 p->gcmarkbit = 0;
9e713715
GM
3071 p->interned = SYMBOL_UNINTERNED;
3072 p->constant = 0;
2e471eb5
GM
3073 consing_since_gc += sizeof (struct Lisp_Symbol);
3074 symbols_consed++;
7146af97
JB
3075 return val;
3076}
3077
3f25e183 3078
2e471eb5
GM
3079\f
3080/***********************************************************************
34400008 3081 Marker (Misc) Allocation
2e471eb5 3082 ***********************************************************************/
3f25e183 3083
2e471eb5
GM
3084/* Allocation of markers and other objects that share that structure.
3085 Works like allocation of conses. */
c0696668 3086
2e471eb5
GM
3087#define MARKER_BLOCK_SIZE \
3088 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3089
3090struct marker_block
c0696668 3091{
6b61353c 3092 /* Place `markers' first, to preserve alignment. */
2e471eb5 3093 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3094 struct marker_block *next;
2e471eb5 3095};
c0696668 3096
d3d47262
JB
3097static struct marker_block *marker_block;
3098static int marker_block_index;
c0696668 3099
d3d47262 3100static union Lisp_Misc *marker_free_list;
c0696668 3101
2e471eb5 3102/* Total number of marker blocks now in use. */
3f25e183 3103
d3d47262 3104static int n_marker_blocks;
2e471eb5 3105
d3d47262 3106static void
971de7fb 3107init_marker (void)
3f25e183 3108{
005ca5c7
DL
3109 marker_block = NULL;
3110 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3111 marker_free_list = 0;
005ca5c7 3112 n_marker_blocks = 0;
3f25e183
RS
3113}
3114
2e471eb5
GM
3115/* Return a newly allocated Lisp_Misc object, with no substructure. */
3116
3f25e183 3117Lisp_Object
971de7fb 3118allocate_misc (void)
7146af97 3119{
2e471eb5 3120 Lisp_Object val;
7146af97 3121
e2984df0
CY
3122 /* eassert (!handling_signal); */
3123
dafc79fa 3124 MALLOC_BLOCK_INPUT;
cfb2f32e 3125
2e471eb5 3126 if (marker_free_list)
7146af97 3127 {
2e471eb5
GM
3128 XSETMISC (val, marker_free_list);
3129 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3130 }
3131 else
7146af97 3132 {
2e471eb5
GM
3133 if (marker_block_index == MARKER_BLOCK_SIZE)
3134 {
3135 struct marker_block *new;
34400008
GM
3136 new = (struct marker_block *) lisp_malloc (sizeof *new,
3137 MEM_TYPE_MISC);
2e471eb5
GM
3138 new->next = marker_block;
3139 marker_block = new;
3140 marker_block_index = 0;
3141 n_marker_blocks++;
7b7990cc 3142 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3143 }
6b61353c
KH
3144 XSETMISC (val, &marker_block->markers[marker_block_index]);
3145 marker_block_index++;
7146af97 3146 }
177c0ea7 3147
dafc79fa 3148 MALLOC_UNBLOCK_INPUT;
e2984df0 3149
7b7990cc 3150 --total_free_markers;
2e471eb5
GM
3151 consing_since_gc += sizeof (union Lisp_Misc);
3152 misc_objects_consed++;
67ee9f6e 3153 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3154 return val;
3155}
3156
7b7990cc
KS
3157/* Free a Lisp_Misc object */
3158
3159void
971de7fb 3160free_misc (Lisp_Object misc)
7b7990cc 3161{
d314756e 3162 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3163 XMISC (misc)->u_free.chain = marker_free_list;
3164 marker_free_list = XMISC (misc);
3165
3166 total_free_markers++;
3167}
3168
42172a6b
RS
3169/* Return a Lisp_Misc_Save_Value object containing POINTER and
3170 INTEGER. This is used to package C values to call record_unwind_protect.
3171 The unwind function can get the C values back using XSAVE_VALUE. */
3172
3173Lisp_Object
971de7fb 3174make_save_value (void *pointer, int integer)
42172a6b
RS
3175{
3176 register Lisp_Object val;
3177 register struct Lisp_Save_Value *p;
3178
3179 val = allocate_misc ();
3180 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3181 p = XSAVE_VALUE (val);
3182 p->pointer = pointer;
3183 p->integer = integer;
b766f870 3184 p->dogc = 0;
42172a6b
RS
3185 return val;
3186}
3187
2e471eb5 3188DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3189 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3190 (void)
2e471eb5
GM
3191{
3192 register Lisp_Object val;
3193 register struct Lisp_Marker *p;
7146af97 3194
2e471eb5
GM
3195 val = allocate_misc ();
3196 XMISCTYPE (val) = Lisp_Misc_Marker;
3197 p = XMARKER (val);
3198 p->buffer = 0;
3199 p->bytepos = 0;
3200 p->charpos = 0;
ef89c2ce 3201 p->next = NULL;
2e471eb5 3202 p->insertion_type = 0;
7146af97
JB
3203 return val;
3204}
2e471eb5
GM
3205
3206/* Put MARKER back on the free list after using it temporarily. */
3207
3208void
971de7fb 3209free_marker (Lisp_Object marker)
2e471eb5 3210{
ef89c2ce 3211 unchain_marker (XMARKER (marker));
7b7990cc 3212 free_misc (marker);
2e471eb5
GM
3213}
3214
c0696668 3215\f
7146af97 3216/* Return a newly created vector or string with specified arguments as
736471d1
RS
3217 elements. If all the arguments are characters that can fit
3218 in a string of events, make a string; otherwise, make a vector.
3219
3220 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3221
3222Lisp_Object
971de7fb 3223make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3224{
3225 int i;
3226
3227 for (i = 0; i < nargs; i++)
736471d1 3228 /* The things that fit in a string
c9ca4659
RS
3229 are characters that are in 0...127,
3230 after discarding the meta bit and all the bits above it. */
e687453f 3231 if (!INTEGERP (args[i])
c9ca4659 3232 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3233 return Fvector (nargs, args);
3234
3235 /* Since the loop exited, we know that all the things in it are
3236 characters, so we can make a string. */
3237 {
c13ccad2 3238 Lisp_Object result;
177c0ea7 3239
50aee051 3240 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3241 for (i = 0; i < nargs; i++)
736471d1 3242 {
46e7e6b0 3243 SSET (result, i, XINT (args[i]));
736471d1
RS
3244 /* Move the meta bit to the right place for a string char. */
3245 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3246 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3247 }
177c0ea7 3248
7146af97
JB
3249 return result;
3250 }
3251}
2e471eb5
GM
3252
3253
7146af97 3254\f
24d8a105
RS
3255/************************************************************************
3256 Memory Full Handling
3257 ************************************************************************/
3258
3259
3260/* Called if malloc returns zero. */
3261
3262void
971de7fb 3263memory_full (void)
24d8a105
RS
3264{
3265 int i;
3266
3267 Vmemory_full = Qt;
3268
3269 memory_full_cons_threshold = sizeof (struct cons_block);
3270
3271 /* The first time we get here, free the spare memory. */
3272 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3273 if (spare_memory[i])
3274 {
3275 if (i == 0)
3276 free (spare_memory[i]);
3277 else if (i >= 1 && i <= 4)
3278 lisp_align_free (spare_memory[i]);
3279 else
3280 lisp_free (spare_memory[i]);
3281 spare_memory[i] = 0;
3282 }
3283
3284 /* Record the space now used. When it decreases substantially,
3285 we can refill the memory reserve. */
3286#ifndef SYSTEM_MALLOC
3287 bytes_used_when_full = BYTES_USED;
3288#endif
3289
3290 /* This used to call error, but if we've run out of memory, we could
3291 get infinite recursion trying to build the string. */
9b306d37 3292 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3293}
3294
3295/* If we released our reserve (due to running out of memory),
3296 and we have a fair amount free once again,
3297 try to set aside another reserve in case we run out once more.
3298
3299 This is called when a relocatable block is freed in ralloc.c,
3300 and also directly from this file, in case we're not using ralloc.c. */
3301
3302void
971de7fb 3303refill_memory_reserve (void)
24d8a105
RS
3304{
3305#ifndef SYSTEM_MALLOC
3306 if (spare_memory[0] == 0)
3307 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3308 if (spare_memory[1] == 0)
3309 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3310 MEM_TYPE_CONS);
3311 if (spare_memory[2] == 0)
3312 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3313 MEM_TYPE_CONS);
3314 if (spare_memory[3] == 0)
3315 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3316 MEM_TYPE_CONS);
3317 if (spare_memory[4] == 0)
3318 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3319 MEM_TYPE_CONS);
3320 if (spare_memory[5] == 0)
3321 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3322 MEM_TYPE_STRING);
3323 if (spare_memory[6] == 0)
3324 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3325 MEM_TYPE_STRING);
3326 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3327 Vmemory_full = Qnil;
3328#endif
3329}
3330\f
34400008
GM
3331/************************************************************************
3332 C Stack Marking
3333 ************************************************************************/
3334
13c844fb
GM
3335#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3336
71cf5fa0
GM
3337/* Conservative C stack marking requires a method to identify possibly
3338 live Lisp objects given a pointer value. We do this by keeping
3339 track of blocks of Lisp data that are allocated in a red-black tree
3340 (see also the comment of mem_node which is the type of nodes in
3341 that tree). Function lisp_malloc adds information for an allocated
3342 block to the red-black tree with calls to mem_insert, and function
3343 lisp_free removes it with mem_delete. Functions live_string_p etc
3344 call mem_find to lookup information about a given pointer in the
3345 tree, and use that to determine if the pointer points to a Lisp
3346 object or not. */
3347
34400008
GM
3348/* Initialize this part of alloc.c. */
3349
3350static void
971de7fb 3351mem_init (void)
34400008
GM
3352{
3353 mem_z.left = mem_z.right = MEM_NIL;
3354 mem_z.parent = NULL;
3355 mem_z.color = MEM_BLACK;
3356 mem_z.start = mem_z.end = NULL;
3357 mem_root = MEM_NIL;
3358}
3359
3360
3361/* Value is a pointer to the mem_node containing START. Value is
3362 MEM_NIL if there is no node in the tree containing START. */
3363
3364static INLINE struct mem_node *
971de7fb 3365mem_find (void *start)
34400008
GM
3366{
3367 struct mem_node *p;
3368
ece93c02
GM
3369 if (start < min_heap_address || start > max_heap_address)
3370 return MEM_NIL;
3371
34400008
GM
3372 /* Make the search always successful to speed up the loop below. */
3373 mem_z.start = start;
3374 mem_z.end = (char *) start + 1;
3375
3376 p = mem_root;
3377 while (start < p->start || start >= p->end)
3378 p = start < p->start ? p->left : p->right;
3379 return p;
3380}
3381
3382
3383/* Insert a new node into the tree for a block of memory with start
3384 address START, end address END, and type TYPE. Value is a
3385 pointer to the node that was inserted. */
3386
3387static struct mem_node *
971de7fb 3388mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3389{
3390 struct mem_node *c, *parent, *x;
3391
add3c3ea 3392 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3393 min_heap_address = start;
add3c3ea 3394 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3395 max_heap_address = end;
3396
34400008
GM
3397 /* See where in the tree a node for START belongs. In this
3398 particular application, it shouldn't happen that a node is already
3399 present. For debugging purposes, let's check that. */
3400 c = mem_root;
3401 parent = NULL;
3402
3403#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3404
34400008
GM
3405 while (c != MEM_NIL)
3406 {
3407 if (start >= c->start && start < c->end)
3408 abort ();
3409 parent = c;
3410 c = start < c->start ? c->left : c->right;
3411 }
177c0ea7 3412
34400008 3413#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3414
34400008
GM
3415 while (c != MEM_NIL)
3416 {
3417 parent = c;
3418 c = start < c->start ? c->left : c->right;
3419 }
177c0ea7 3420
34400008
GM
3421#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3422
3423 /* Create a new node. */
877935b1
GM
3424#ifdef GC_MALLOC_CHECK
3425 x = (struct mem_node *) _malloc_internal (sizeof *x);
3426 if (x == NULL)
3427 abort ();
3428#else
34400008 3429 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3430#endif
34400008
GM
3431 x->start = start;
3432 x->end = end;
3433 x->type = type;
3434 x->parent = parent;
3435 x->left = x->right = MEM_NIL;
3436 x->color = MEM_RED;
3437
3438 /* Insert it as child of PARENT or install it as root. */
3439 if (parent)
3440 {
3441 if (start < parent->start)
3442 parent->left = x;
3443 else
3444 parent->right = x;
3445 }
177c0ea7 3446 else
34400008
GM
3447 mem_root = x;
3448
3449 /* Re-establish red-black tree properties. */
3450 mem_insert_fixup (x);
877935b1 3451
34400008
GM
3452 return x;
3453}
3454
3455
3456/* Re-establish the red-black properties of the tree, and thereby
3457 balance the tree, after node X has been inserted; X is always red. */
3458
3459static void
971de7fb 3460mem_insert_fixup (struct mem_node *x)
34400008
GM
3461{
3462 while (x != mem_root && x->parent->color == MEM_RED)
3463 {
3464 /* X is red and its parent is red. This is a violation of
3465 red-black tree property #3. */
177c0ea7 3466
34400008
GM
3467 if (x->parent == x->parent->parent->left)
3468 {
3469 /* We're on the left side of our grandparent, and Y is our
3470 "uncle". */
3471 struct mem_node *y = x->parent->parent->right;
177c0ea7 3472
34400008
GM
3473 if (y->color == MEM_RED)
3474 {
3475 /* Uncle and parent are red but should be black because
3476 X is red. Change the colors accordingly and proceed
3477 with the grandparent. */
3478 x->parent->color = MEM_BLACK;
3479 y->color = MEM_BLACK;
3480 x->parent->parent->color = MEM_RED;
3481 x = x->parent->parent;
3482 }
3483 else
3484 {
3485 /* Parent and uncle have different colors; parent is
3486 red, uncle is black. */
3487 if (x == x->parent->right)
3488 {
3489 x = x->parent;
3490 mem_rotate_left (x);
3491 }
3492
3493 x->parent->color = MEM_BLACK;
3494 x->parent->parent->color = MEM_RED;
3495 mem_rotate_right (x->parent->parent);
3496 }
3497 }
3498 else
3499 {
3500 /* This is the symmetrical case of above. */
3501 struct mem_node *y = x->parent->parent->left;
177c0ea7 3502
34400008
GM
3503 if (y->color == MEM_RED)
3504 {
3505 x->parent->color = MEM_BLACK;
3506 y->color = MEM_BLACK;
3507 x->parent->parent->color = MEM_RED;
3508 x = x->parent->parent;
3509 }
3510 else
3511 {
3512 if (x == x->parent->left)
3513 {
3514 x = x->parent;
3515 mem_rotate_right (x);
3516 }
177c0ea7 3517
34400008
GM
3518 x->parent->color = MEM_BLACK;
3519 x->parent->parent->color = MEM_RED;
3520 mem_rotate_left (x->parent->parent);
3521 }
3522 }
3523 }
3524
3525 /* The root may have been changed to red due to the algorithm. Set
3526 it to black so that property #5 is satisfied. */
3527 mem_root->color = MEM_BLACK;
3528}
3529
3530
177c0ea7
JB
3531/* (x) (y)
3532 / \ / \
34400008
GM
3533 a (y) ===> (x) c
3534 / \ / \
3535 b c a b */
3536
3537static void
971de7fb 3538mem_rotate_left (struct mem_node *x)
34400008
GM
3539{
3540 struct mem_node *y;
3541
3542 /* Turn y's left sub-tree into x's right sub-tree. */
3543 y = x->right;
3544 x->right = y->left;
3545 if (y->left != MEM_NIL)
3546 y->left->parent = x;
3547
3548 /* Y's parent was x's parent. */
3549 if (y != MEM_NIL)
3550 y->parent = x->parent;
3551
3552 /* Get the parent to point to y instead of x. */
3553 if (x->parent)
3554 {
3555 if (x == x->parent->left)
3556 x->parent->left = y;
3557 else
3558 x->parent->right = y;
3559 }
3560 else
3561 mem_root = y;
3562
3563 /* Put x on y's left. */
3564 y->left = x;
3565 if (x != MEM_NIL)
3566 x->parent = y;
3567}
3568
3569
177c0ea7
JB
3570/* (x) (Y)
3571 / \ / \
3572 (y) c ===> a (x)
3573 / \ / \
34400008
GM
3574 a b b c */
3575
3576static void
971de7fb 3577mem_rotate_right (struct mem_node *x)
34400008
GM
3578{
3579 struct mem_node *y = x->left;
3580
3581 x->left = y->right;
3582 if (y->right != MEM_NIL)
3583 y->right->parent = x;
177c0ea7 3584
34400008
GM
3585 if (y != MEM_NIL)
3586 y->parent = x->parent;
3587 if (x->parent)
3588 {
3589 if (x == x->parent->right)
3590 x->parent->right = y;
3591 else
3592 x->parent->left = y;
3593 }
3594 else
3595 mem_root = y;
177c0ea7 3596
34400008
GM
3597 y->right = x;
3598 if (x != MEM_NIL)
3599 x->parent = y;
3600}
3601
3602
3603/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3604
3605static void
971de7fb 3606mem_delete (struct mem_node *z)
34400008
GM
3607{
3608 struct mem_node *x, *y;
3609
3610 if (!z || z == MEM_NIL)
3611 return;
3612
3613 if (z->left == MEM_NIL || z->right == MEM_NIL)
3614 y = z;
3615 else
3616 {
3617 y = z->right;
3618 while (y->left != MEM_NIL)
3619 y = y->left;
3620 }
3621
3622 if (y->left != MEM_NIL)
3623 x = y->left;
3624 else
3625 x = y->right;
3626
3627 x->parent = y->parent;
3628 if (y->parent)
3629 {
3630 if (y == y->parent->left)
3631 y->parent->left = x;
3632 else
3633 y->parent->right = x;
3634 }
3635 else
3636 mem_root = x;
3637
3638 if (y != z)
3639 {
3640 z->start = y->start;
3641 z->end = y->end;
3642 z->type = y->type;
3643 }
177c0ea7 3644
34400008
GM
3645 if (y->color == MEM_BLACK)
3646 mem_delete_fixup (x);
877935b1
GM
3647
3648#ifdef GC_MALLOC_CHECK
3649 _free_internal (y);
3650#else
34400008 3651 xfree (y);
877935b1 3652#endif
34400008
GM
3653}
3654
3655
3656/* Re-establish the red-black properties of the tree, after a
3657 deletion. */
3658
3659static void
971de7fb 3660mem_delete_fixup (struct mem_node *x)
34400008
GM
3661{
3662 while (x != mem_root && x->color == MEM_BLACK)
3663 {
3664 if (x == x->parent->left)
3665 {
3666 struct mem_node *w = x->parent->right;
177c0ea7 3667
34400008
GM
3668 if (w->color == MEM_RED)
3669 {
3670 w->color = MEM_BLACK;
3671 x->parent->color = MEM_RED;
3672 mem_rotate_left (x->parent);
3673 w = x->parent->right;
3674 }
177c0ea7 3675
34400008
GM
3676 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3677 {
3678 w->color = MEM_RED;
3679 x = x->parent;
3680 }
3681 else
3682 {
3683 if (w->right->color == MEM_BLACK)
3684 {
3685 w->left->color = MEM_BLACK;
3686 w->color = MEM_RED;
3687 mem_rotate_right (w);
3688 w = x->parent->right;
3689 }
3690 w->color = x->parent->color;
3691 x->parent->color = MEM_BLACK;
3692 w->right->color = MEM_BLACK;
3693 mem_rotate_left (x->parent);
3694 x = mem_root;
3695 }
3696 }
3697 else
3698 {
3699 struct mem_node *w = x->parent->left;
177c0ea7 3700
34400008
GM
3701 if (w->color == MEM_RED)
3702 {
3703 w->color = MEM_BLACK;
3704 x->parent->color = MEM_RED;
3705 mem_rotate_right (x->parent);
3706 w = x->parent->left;
3707 }
177c0ea7 3708
34400008
GM
3709 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3710 {
3711 w->color = MEM_RED;
3712 x = x->parent;
3713 }
3714 else
3715 {
3716 if (w->left->color == MEM_BLACK)
3717 {
3718 w->right->color = MEM_BLACK;
3719 w->color = MEM_RED;
3720 mem_rotate_left (w);
3721 w = x->parent->left;
3722 }
177c0ea7 3723
34400008
GM
3724 w->color = x->parent->color;
3725 x->parent->color = MEM_BLACK;
3726 w->left->color = MEM_BLACK;
3727 mem_rotate_right (x->parent);
3728 x = mem_root;
3729 }
3730 }
3731 }
177c0ea7 3732
34400008
GM
3733 x->color = MEM_BLACK;
3734}
3735
3736
3737/* Value is non-zero if P is a pointer to a live Lisp string on
3738 the heap. M is a pointer to the mem_block for P. */
3739
3740static INLINE int
971de7fb 3741live_string_p (struct mem_node *m, void *p)
34400008
GM
3742{
3743 if (m->type == MEM_TYPE_STRING)
3744 {
3745 struct string_block *b = (struct string_block *) m->start;
14162469 3746 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
3747
3748 /* P must point to the start of a Lisp_String structure, and it
3749 must not be on the free-list. */
176bc847
GM
3750 return (offset >= 0
3751 && offset % sizeof b->strings[0] == 0
6b61353c 3752 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3753 && ((struct Lisp_String *) p)->data != NULL);
3754 }
3755 else
3756 return 0;
3757}
3758
3759
3760/* Value is non-zero if P is a pointer to a live Lisp cons on
3761 the heap. M is a pointer to the mem_block for P. */
3762
3763static INLINE int
971de7fb 3764live_cons_p (struct mem_node *m, void *p)
34400008
GM
3765{
3766 if (m->type == MEM_TYPE_CONS)
3767 {
3768 struct cons_block *b = (struct cons_block *) m->start;
14162469 3769 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
3770
3771 /* P must point to the start of a Lisp_Cons, not be
3772 one of the unused cells in the current cons block,
3773 and not be on the free-list. */
176bc847
GM
3774 return (offset >= 0
3775 && offset % sizeof b->conses[0] == 0
6b61353c 3776 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3777 && (b != cons_block
3778 || offset / sizeof b->conses[0] < cons_block_index)
3779 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3780 }
3781 else
3782 return 0;
3783}
3784
3785
3786/* Value is non-zero if P is a pointer to a live Lisp symbol on
3787 the heap. M is a pointer to the mem_block for P. */
3788
3789static INLINE int
971de7fb 3790live_symbol_p (struct mem_node *m, void *p)
34400008
GM
3791{
3792 if (m->type == MEM_TYPE_SYMBOL)
3793 {
3794 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 3795 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3796
34400008
GM
3797 /* P must point to the start of a Lisp_Symbol, not be
3798 one of the unused cells in the current symbol block,
3799 and not be on the free-list. */
176bc847
GM
3800 return (offset >= 0
3801 && offset % sizeof b->symbols[0] == 0
6b61353c 3802 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3803 && (b != symbol_block
3804 || offset / sizeof b->symbols[0] < symbol_block_index)
3805 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3806 }
3807 else
3808 return 0;
3809}
3810
3811
3812/* Value is non-zero if P is a pointer to a live Lisp float on
3813 the heap. M is a pointer to the mem_block for P. */
3814
3815static INLINE int
971de7fb 3816live_float_p (struct mem_node *m, void *p)
34400008
GM
3817{
3818 if (m->type == MEM_TYPE_FLOAT)
3819 {
3820 struct float_block *b = (struct float_block *) m->start;
14162469 3821 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3822
ab6780cd
SM
3823 /* P must point to the start of a Lisp_Float and not be
3824 one of the unused cells in the current float block. */
176bc847
GM
3825 return (offset >= 0
3826 && offset % sizeof b->floats[0] == 0
6b61353c 3827 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3828 && (b != float_block
ab6780cd 3829 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3830 }
3831 else
3832 return 0;
3833}
3834
3835
3836/* Value is non-zero if P is a pointer to a live Lisp Misc on
3837 the heap. M is a pointer to the mem_block for P. */
3838
3839static INLINE int
971de7fb 3840live_misc_p (struct mem_node *m, void *p)
34400008
GM
3841{
3842 if (m->type == MEM_TYPE_MISC)
3843 {
3844 struct marker_block *b = (struct marker_block *) m->start;
14162469 3845 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3846
34400008
GM
3847 /* P must point to the start of a Lisp_Misc, not be
3848 one of the unused cells in the current misc block,
3849 and not be on the free-list. */
176bc847
GM
3850 return (offset >= 0
3851 && offset % sizeof b->markers[0] == 0
6b61353c 3852 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
3853 && (b != marker_block
3854 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 3855 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
3856 }
3857 else
3858 return 0;
3859}
3860
3861
3862/* Value is non-zero if P is a pointer to a live vector-like object.
3863 M is a pointer to the mem_block for P. */
3864
3865static INLINE int
971de7fb 3866live_vector_p (struct mem_node *m, void *p)
34400008 3867{
9c545a55 3868 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
34400008
GM
3869}
3870
3871
2336fe58 3872/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
3873 pointer to the mem_block for P. */
3874
3875static INLINE int
971de7fb 3876live_buffer_p (struct mem_node *m, void *p)
34400008
GM
3877{
3878 /* P must point to the start of the block, and the buffer
3879 must not have been killed. */
3880 return (m->type == MEM_TYPE_BUFFER
3881 && p == m->start
5d8ea120 3882 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
34400008
GM
3883}
3884
13c844fb
GM
3885#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3886
3887#if GC_MARK_STACK
3888
34400008
GM
3889#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3890
3891/* Array of objects that are kept alive because the C stack contains
3892 a pattern that looks like a reference to them . */
3893
3894#define MAX_ZOMBIES 10
3895static Lisp_Object zombies[MAX_ZOMBIES];
3896
3897/* Number of zombie objects. */
3898
3899static int nzombies;
3900
3901/* Number of garbage collections. */
3902
3903static int ngcs;
3904
3905/* Average percentage of zombies per collection. */
3906
3907static double avg_zombies;
3908
3909/* Max. number of live and zombie objects. */
3910
3911static int max_live, max_zombies;
3912
3913/* Average number of live objects per GC. */
3914
3915static double avg_live;
3916
3917DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 3918 doc: /* Show information about live and zombie objects. */)
5842a27b 3919 (void)
34400008 3920{
83fc9c63
DL
3921 Lisp_Object args[8], zombie_list = Qnil;
3922 int i;
3923 for (i = 0; i < nzombies; i++)
3924 zombie_list = Fcons (zombies[i], zombie_list);
3925 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
3926 args[1] = make_number (ngcs);
3927 args[2] = make_float (avg_live);
3928 args[3] = make_float (avg_zombies);
3929 args[4] = make_float (avg_zombies / avg_live / 100);
3930 args[5] = make_number (max_live);
3931 args[6] = make_number (max_zombies);
83fc9c63
DL
3932 args[7] = zombie_list;
3933 return Fmessage (8, args);
34400008
GM
3934}
3935
3936#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3937
3938
182ff242
GM
3939/* Mark OBJ if we can prove it's a Lisp_Object. */
3940
3941static INLINE void
971de7fb 3942mark_maybe_object (Lisp_Object obj)
182ff242 3943{
b609f591
YM
3944 void *po;
3945 struct mem_node *m;
3946
3947 if (INTEGERP (obj))
3948 return;
3949
3950 po = (void *) XPNTR (obj);
3951 m = mem_find (po);
177c0ea7 3952
182ff242
GM
3953 if (m != MEM_NIL)
3954 {
3955 int mark_p = 0;
3956
8e50cc2d 3957 switch (XTYPE (obj))
182ff242
GM
3958 {
3959 case Lisp_String:
3960 mark_p = (live_string_p (m, po)
3961 && !STRING_MARKED_P ((struct Lisp_String *) po));
3962 break;
3963
3964 case Lisp_Cons:
08b7c2cb 3965 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
3966 break;
3967
3968 case Lisp_Symbol:
2336fe58 3969 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
3970 break;
3971
3972 case Lisp_Float:
ab6780cd 3973 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
3974 break;
3975
3976 case Lisp_Vectorlike:
8e50cc2d 3977 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
3978 buffer because checking that dereferences the pointer
3979 PO which might point anywhere. */
3980 if (live_vector_p (m, po))
8e50cc2d 3981 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 3982 else if (live_buffer_p (m, po))
8e50cc2d 3983 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
3984 break;
3985
3986 case Lisp_Misc:
67ee9f6e 3987 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 3988 break;
6bbd7a29 3989
2de9f71c 3990 default:
6bbd7a29 3991 break;
182ff242
GM
3992 }
3993
3994 if (mark_p)
3995 {
3996#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3997 if (nzombies < MAX_ZOMBIES)
83fc9c63 3998 zombies[nzombies] = obj;
182ff242
GM
3999 ++nzombies;
4000#endif
49723c04 4001 mark_object (obj);
182ff242
GM
4002 }
4003 }
4004}
ece93c02
GM
4005
4006
4007/* If P points to Lisp data, mark that as live if it isn't already
4008 marked. */
4009
4010static INLINE void
971de7fb 4011mark_maybe_pointer (void *p)
ece93c02
GM
4012{
4013 struct mem_node *m;
4014
5045e68e
SM
4015 /* Quickly rule out some values which can't point to Lisp data. */
4016 if ((EMACS_INT) p %
4017#ifdef USE_LSB_TAG
4018 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4019#else
4020 2 /* We assume that Lisp data is aligned on even addresses. */
4021#endif
4022 )
ece93c02 4023 return;
177c0ea7 4024
ece93c02
GM
4025 m = mem_find (p);
4026 if (m != MEM_NIL)
4027 {
4028 Lisp_Object obj = Qnil;
177c0ea7 4029
ece93c02
GM
4030 switch (m->type)
4031 {
4032 case MEM_TYPE_NON_LISP:
2fe50224 4033 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4034 break;
177c0ea7 4035
ece93c02 4036 case MEM_TYPE_BUFFER:
3ef06d12 4037 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
4038 XSETVECTOR (obj, p);
4039 break;
177c0ea7 4040
ece93c02 4041 case MEM_TYPE_CONS:
08b7c2cb 4042 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4043 XSETCONS (obj, p);
4044 break;
177c0ea7 4045
ece93c02
GM
4046 case MEM_TYPE_STRING:
4047 if (live_string_p (m, p)
4048 && !STRING_MARKED_P ((struct Lisp_String *) p))
4049 XSETSTRING (obj, p);
4050 break;
4051
4052 case MEM_TYPE_MISC:
2336fe58
SM
4053 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4054 XSETMISC (obj, p);
ece93c02 4055 break;
177c0ea7 4056
ece93c02 4057 case MEM_TYPE_SYMBOL:
2336fe58 4058 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4059 XSETSYMBOL (obj, p);
4060 break;
177c0ea7 4061
ece93c02 4062 case MEM_TYPE_FLOAT:
ab6780cd 4063 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4064 XSETFLOAT (obj, p);
4065 break;
177c0ea7 4066
9c545a55 4067 case MEM_TYPE_VECTORLIKE:
ece93c02
GM
4068 if (live_vector_p (m, p))
4069 {
4070 Lisp_Object tem;
4071 XSETVECTOR (tem, p);
8e50cc2d 4072 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4073 obj = tem;
4074 }
4075 break;
4076
4077 default:
4078 abort ();
4079 }
4080
8e50cc2d 4081 if (!NILP (obj))
49723c04 4082 mark_object (obj);
ece93c02
GM
4083 }
4084}
4085
4086
55a314a5
YM
4087/* Mark Lisp objects referenced from the address range START+OFFSET..END
4088 or END+OFFSET..START. */
34400008 4089
177c0ea7 4090static void
971de7fb 4091mark_memory (void *start, void *end, int offset)
34400008
GM
4092{
4093 Lisp_Object *p;
ece93c02 4094 void **pp;
34400008
GM
4095
4096#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4097 nzombies = 0;
4098#endif
4099
4100 /* Make START the pointer to the start of the memory region,
4101 if it isn't already. */
4102 if (end < start)
4103 {
4104 void *tem = start;
4105 start = end;
4106 end = tem;
4107 }
ece93c02
GM
4108
4109 /* Mark Lisp_Objects. */
55a314a5 4110 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
182ff242 4111 mark_maybe_object (*p);
ece93c02
GM
4112
4113 /* Mark Lisp data pointed to. This is necessary because, in some
4114 situations, the C compiler optimizes Lisp objects away, so that
4115 only a pointer to them remains. Example:
4116
4117 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4118 ()
ece93c02
GM
4119 {
4120 Lisp_Object obj = build_string ("test");
4121 struct Lisp_String *s = XSTRING (obj);
4122 Fgarbage_collect ();
4123 fprintf (stderr, "test `%s'\n", s->data);
4124 return Qnil;
4125 }
4126
4127 Here, `obj' isn't really used, and the compiler optimizes it
4128 away. The only reference to the life string is through the
4129 pointer `s'. */
177c0ea7 4130
55a314a5 4131 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
ece93c02 4132 mark_maybe_pointer (*pp);
182ff242
GM
4133}
4134
30f637f8
DL
4135/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4136 the GCC system configuration. In gcc 3.2, the only systems for
4137 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4138 by others?) and ns32k-pc532-min. */
182ff242
GM
4139
4140#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4141
4142static int setjmp_tested_p, longjmps_done;
4143
4144#define SETJMP_WILL_LIKELY_WORK "\
4145\n\
4146Emacs garbage collector has been changed to use conservative stack\n\
4147marking. Emacs has determined that the method it uses to do the\n\
4148marking will likely work on your system, but this isn't sure.\n\
4149\n\
4150If you are a system-programmer, or can get the help of a local wizard\n\
4151who is, please take a look at the function mark_stack in alloc.c, and\n\
4152verify that the methods used are appropriate for your system.\n\
4153\n\
d191623b 4154Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4155"
4156
4157#define SETJMP_WILL_NOT_WORK "\
4158\n\
4159Emacs garbage collector has been changed to use conservative stack\n\
4160marking. Emacs has determined that the default method it uses to do the\n\
4161marking will not work on your system. We will need a system-dependent\n\
4162solution for your system.\n\
4163\n\
4164Please take a look at the function mark_stack in alloc.c, and\n\
4165try to find a way to make it work on your system.\n\
30f637f8
DL
4166\n\
4167Note that you may get false negatives, depending on the compiler.\n\
4168In particular, you need to use -O with GCC for this test.\n\
4169\n\
d191623b 4170Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4171"
4172
4173
4174/* Perform a quick check if it looks like setjmp saves registers in a
4175 jmp_buf. Print a message to stderr saying so. When this test
4176 succeeds, this is _not_ a proof that setjmp is sufficient for
4177 conservative stack marking. Only the sources or a disassembly
4178 can prove that. */
4179
4180static void
2018939f 4181test_setjmp (void)
182ff242
GM
4182{
4183 char buf[10];
4184 register int x;
4185 jmp_buf jbuf;
4186 int result = 0;
4187
4188 /* Arrange for X to be put in a register. */
4189 sprintf (buf, "1");
4190 x = strlen (buf);
4191 x = 2 * x - 1;
4192
4193 setjmp (jbuf);
4194 if (longjmps_done == 1)
34400008 4195 {
182ff242 4196 /* Came here after the longjmp at the end of the function.
34400008 4197
182ff242
GM
4198 If x == 1, the longjmp has restored the register to its
4199 value before the setjmp, and we can hope that setjmp
4200 saves all such registers in the jmp_buf, although that
4201 isn't sure.
34400008 4202
182ff242
GM
4203 For other values of X, either something really strange is
4204 taking place, or the setjmp just didn't save the register. */
4205
4206 if (x == 1)
4207 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4208 else
4209 {
4210 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4211 exit (1);
34400008
GM
4212 }
4213 }
182ff242
GM
4214
4215 ++longjmps_done;
4216 x = 2;
4217 if (longjmps_done == 1)
4218 longjmp (jbuf, 1);
34400008
GM
4219}
4220
182ff242
GM
4221#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4222
34400008
GM
4223
4224#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4225
4226/* Abort if anything GCPRO'd doesn't survive the GC. */
4227
4228static void
2018939f 4229check_gcpros (void)
34400008
GM
4230{
4231 struct gcpro *p;
4232 int i;
4233
4234 for (p = gcprolist; p; p = p->next)
4235 for (i = 0; i < p->nvars; ++i)
4236 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4237 /* FIXME: It's not necessarily a bug. It might just be that the
4238 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4239 abort ();
4240}
4241
4242#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4243
4244static void
2018939f 4245dump_zombies (void)
34400008
GM
4246{
4247 int i;
4248
4249 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4250 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4251 {
4252 fprintf (stderr, " %d = ", i);
4253 debug_print (zombies[i]);
4254 }
4255}
4256
4257#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4258
4259
182ff242
GM
4260/* Mark live Lisp objects on the C stack.
4261
4262 There are several system-dependent problems to consider when
4263 porting this to new architectures:
4264
4265 Processor Registers
4266
4267 We have to mark Lisp objects in CPU registers that can hold local
4268 variables or are used to pass parameters.
4269
4270 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4271 something that either saves relevant registers on the stack, or
4272 calls mark_maybe_object passing it each register's contents.
4273
4274 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4275 implementation assumes that calling setjmp saves registers we need
4276 to see in a jmp_buf which itself lies on the stack. This doesn't
4277 have to be true! It must be verified for each system, possibly
4278 by taking a look at the source code of setjmp.
4279
2018939f
AS
4280 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4281 can use it as a machine independent method to store all registers
4282 to the stack. In this case the macros described in the previous
4283 two paragraphs are not used.
4284
182ff242
GM
4285 Stack Layout
4286
4287 Architectures differ in the way their processor stack is organized.
4288 For example, the stack might look like this
4289
4290 +----------------+
4291 | Lisp_Object | size = 4
4292 +----------------+
4293 | something else | size = 2
4294 +----------------+
4295 | Lisp_Object | size = 4
4296 +----------------+
4297 | ... |
4298
4299 In such a case, not every Lisp_Object will be aligned equally. To
4300 find all Lisp_Object on the stack it won't be sufficient to walk
4301 the stack in steps of 4 bytes. Instead, two passes will be
4302 necessary, one starting at the start of the stack, and a second
4303 pass starting at the start of the stack + 2. Likewise, if the
4304 minimal alignment of Lisp_Objects on the stack is 1, four passes
4305 would be necessary, each one starting with one byte more offset
4306 from the stack start.
4307
4308 The current code assumes by default that Lisp_Objects are aligned
4309 equally on the stack. */
34400008
GM
4310
4311static void
971de7fb 4312mark_stack (void)
34400008 4313{
630909a5 4314 int i;
34400008
GM
4315 void *end;
4316
2018939f
AS
4317#ifdef HAVE___BUILTIN_UNWIND_INIT
4318 /* Force callee-saved registers and register windows onto the stack.
4319 This is the preferred method if available, obviating the need for
4320 machine dependent methods. */
4321 __builtin_unwind_init ();
4322 end = &end;
4323#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4324#ifndef GC_SAVE_REGISTERS_ON_STACK
4325 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4326 union aligned_jmpbuf {
4327 Lisp_Object o;
4328 jmp_buf j;
4329 } j;
4330 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4331#endif
34400008
GM
4332 /* This trick flushes the register windows so that all the state of
4333 the process is contained in the stack. */
ab6780cd 4334 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4335 needed on ia64 too. See mach_dep.c, where it also says inline
4336 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4337#ifdef __sparc__
4d18a7a2
DN
4338#if defined (__sparc64__) && defined (__FreeBSD__)
4339 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4340 asm ("flushw");
4341#else
34400008 4342 asm ("ta 3");
4c1616be 4343#endif
34400008 4344#endif
177c0ea7 4345
34400008
GM
4346 /* Save registers that we need to see on the stack. We need to see
4347 registers used to hold register variables and registers used to
4348 pass parameters. */
4349#ifdef GC_SAVE_REGISTERS_ON_STACK
4350 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4351#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4352
182ff242
GM
4353#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4354 setjmp will definitely work, test it
4355 and print a message with the result
4356 of the test. */
4357 if (!setjmp_tested_p)
4358 {
4359 setjmp_tested_p = 1;
4360 test_setjmp ();
4361 }
4362#endif /* GC_SETJMP_WORKS */
177c0ea7 4363
55a314a5 4364 setjmp (j.j);
34400008 4365 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4366#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4367#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4368
4369 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4370 that's not the case, something has to be done here to iterate
4371 over the stack segments. */
630909a5 4372#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4373#ifdef __GNUC__
4374#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4375#else
630909a5 4376#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4377#endif
182ff242 4378#endif
24452cd5 4379 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
55a314a5 4380 mark_memory (stack_base, end, i);
4dec23ff
AS
4381 /* Allow for marking a secondary stack, like the register stack on the
4382 ia64. */
4383#ifdef GC_MARK_SECONDARY_STACK
4384 GC_MARK_SECONDARY_STACK ();
4385#endif
34400008
GM
4386
4387#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4388 check_gcpros ();
4389#endif
4390}
4391
34400008
GM
4392#endif /* GC_MARK_STACK != 0 */
4393
4394
7ffb6955 4395/* Determine whether it is safe to access memory at address P. */
d3d47262 4396static int
971de7fb 4397valid_pointer_p (void *p)
7ffb6955 4398{
f892cf9c
EZ
4399#ifdef WINDOWSNT
4400 return w32_valid_pointer_p (p, 16);
4401#else
7ffb6955
KS
4402 int fd;
4403
4404 /* Obviously, we cannot just access it (we would SEGV trying), so we
4405 trick the o/s to tell us whether p is a valid pointer.
4406 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4407 not validate p in that case. */
4408
4409 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4410 {
4411 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4412 emacs_close (fd);
4413 unlink ("__Valid__Lisp__Object__");
4414 return valid;
4415 }
4416
4417 return -1;
f892cf9c 4418#endif
7ffb6955 4419}
3cd55735
KS
4420
4421/* Return 1 if OBJ is a valid lisp object.
4422 Return 0 if OBJ is NOT a valid lisp object.
4423 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4424 This function can be quite slow,
4425 so it should only be used in code for manual debugging. */
3cd55735
KS
4426
4427int
971de7fb 4428valid_lisp_object_p (Lisp_Object obj)
3cd55735 4429{
de7124a7 4430 void *p;
7ffb6955 4431#if GC_MARK_STACK
3cd55735 4432 struct mem_node *m;
de7124a7 4433#endif
3cd55735
KS
4434
4435 if (INTEGERP (obj))
4436 return 1;
4437
4438 p = (void *) XPNTR (obj);
3cd55735
KS
4439 if (PURE_POINTER_P (p))
4440 return 1;
4441
de7124a7 4442#if !GC_MARK_STACK
7ffb6955 4443 return valid_pointer_p (p);
de7124a7
KS
4444#else
4445
3cd55735
KS
4446 m = mem_find (p);
4447
4448 if (m == MEM_NIL)
7ffb6955
KS
4449 {
4450 int valid = valid_pointer_p (p);
4451 if (valid <= 0)
4452 return valid;
4453
4454 if (SUBRP (obj))
4455 return 1;
4456
4457 return 0;
4458 }
3cd55735
KS
4459
4460 switch (m->type)
4461 {
4462 case MEM_TYPE_NON_LISP:
4463 return 0;
4464
4465 case MEM_TYPE_BUFFER:
4466 return live_buffer_p (m, p);
4467
4468 case MEM_TYPE_CONS:
4469 return live_cons_p (m, p);
4470
4471 case MEM_TYPE_STRING:
4472 return live_string_p (m, p);
4473
4474 case MEM_TYPE_MISC:
4475 return live_misc_p (m, p);
4476
4477 case MEM_TYPE_SYMBOL:
4478 return live_symbol_p (m, p);
4479
4480 case MEM_TYPE_FLOAT:
4481 return live_float_p (m, p);
4482
9c545a55 4483 case MEM_TYPE_VECTORLIKE:
3cd55735
KS
4484 return live_vector_p (m, p);
4485
4486 default:
4487 break;
4488 }
4489
4490 return 0;
4491#endif
4492}
4493
4494
4495
34400008 4496\f
2e471eb5
GM
4497/***********************************************************************
4498 Pure Storage Management
4499 ***********************************************************************/
4500
1f0b3fd2
GM
4501/* Allocate room for SIZE bytes from pure Lisp storage and return a
4502 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 4503 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2
GM
4504
4505static POINTER_TYPE *
971de7fb 4506pure_alloc (size_t size, int type)
1f0b3fd2 4507{
1f0b3fd2 4508 POINTER_TYPE *result;
6b61353c
KH
4509#ifdef USE_LSB_TAG
4510 size_t alignment = (1 << GCTYPEBITS);
4511#else
44117420 4512 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4513
4514 /* Give Lisp_Floats an extra alignment. */
4515 if (type == Lisp_Float)
4516 {
1f0b3fd2
GM
4517#if defined __GNUC__ && __GNUC__ >= 2
4518 alignment = __alignof (struct Lisp_Float);
4519#else
4520 alignment = sizeof (struct Lisp_Float);
4521#endif
9e713715 4522 }
6b61353c 4523#endif
1f0b3fd2 4524
44117420 4525 again:
e5bc14d4
YM
4526 if (type >= 0)
4527 {
4528 /* Allocate space for a Lisp object from the beginning of the free
4529 space with taking account of alignment. */
4530 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4531 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4532 }
4533 else
4534 {
4535 /* Allocate space for a non-Lisp object from the end of the free
4536 space. */
4537 pure_bytes_used_non_lisp += size;
4538 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4539 }
4540 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
4541
4542 if (pure_bytes_used <= pure_size)
4543 return result;
4544
4545 /* Don't allocate a large amount here,
4546 because it might get mmap'd and then its address
4547 might not be usable. */
4548 purebeg = (char *) xmalloc (10000);
4549 pure_size = 10000;
4550 pure_bytes_used_before_overflow += pure_bytes_used - size;
4551 pure_bytes_used = 0;
e5bc14d4 4552 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 4553 goto again;
1f0b3fd2
GM
4554}
4555
4556
852f8cdc 4557/* Print a warning if PURESIZE is too small. */
9e713715
GM
4558
4559void
971de7fb 4560check_pure_size (void)
9e713715
GM
4561{
4562 if (pure_bytes_used_before_overflow)
2aee5ca3 4563 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
a4d35afd 4564 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4565}
4566
4567
79fd0489
YM
4568/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4569 the non-Lisp data pool of the pure storage, and return its start
4570 address. Return NULL if not found. */
4571
4572static char *
14162469 4573find_string_data_in_pure (const char *data, EMACS_INT nbytes)
79fd0489 4574{
14162469
EZ
4575 int i;
4576 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 4577 const unsigned char *p;
79fd0489
YM
4578 char *non_lisp_beg;
4579
4580 if (pure_bytes_used_non_lisp < nbytes + 1)
4581 return NULL;
4582
4583 /* Set up the Boyer-Moore table. */
4584 skip = nbytes + 1;
4585 for (i = 0; i < 256; i++)
4586 bm_skip[i] = skip;
4587
2aff7c53 4588 p = (const unsigned char *) data;
79fd0489
YM
4589 while (--skip > 0)
4590 bm_skip[*p++] = skip;
4591
4592 last_char_skip = bm_skip['\0'];
4593
4594 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4595 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4596
4597 /* See the comments in the function `boyer_moore' (search.c) for the
4598 use of `infinity'. */
4599 infinity = pure_bytes_used_non_lisp + 1;
4600 bm_skip['\0'] = infinity;
4601
2aff7c53 4602 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
4603 start = 0;
4604 do
4605 {
4606 /* Check the last character (== '\0'). */
4607 do
4608 {
4609 start += bm_skip[*(p + start)];
4610 }
4611 while (start <= start_max);
4612
4613 if (start < infinity)
4614 /* Couldn't find the last character. */
4615 return NULL;
4616
4617 /* No less than `infinity' means we could find the last
4618 character at `p[start - infinity]'. */
4619 start -= infinity;
4620
4621 /* Check the remaining characters. */
4622 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4623 /* Found. */
4624 return non_lisp_beg + start;
4625
4626 start += last_char_skip;
4627 }
4628 while (start <= start_max);
4629
4630 return NULL;
4631}
4632
4633
2e471eb5
GM
4634/* Return a string allocated in pure space. DATA is a buffer holding
4635 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4636 non-zero means make the result string multibyte.
1a4f1e2c 4637
2e471eb5
GM
4638 Must get an error if pure storage is full, since if it cannot hold
4639 a large string it may be able to hold conses that point to that
4640 string; then the string is not protected from gc. */
7146af97
JB
4641
4642Lisp_Object
14162469
EZ
4643make_pure_string (const char *data,
4644 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
7146af97 4645{
2e471eb5
GM
4646 Lisp_Object string;
4647 struct Lisp_String *s;
c0696668 4648
1f0b3fd2 4649 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
90256841 4650 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
4651 if (s->data == NULL)
4652 {
4653 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
72af86bd 4654 memcpy (s->data, data, nbytes);
79fd0489
YM
4655 s->data[nbytes] = '\0';
4656 }
2e471eb5
GM
4657 s->size = nchars;
4658 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 4659 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4660 XSETSTRING (string, s);
4661 return string;
7146af97
JB
4662}
4663
a56eaaef
DN
4664/* Return a string a string allocated in pure space. Do not allocate
4665 the string data, just point to DATA. */
4666
4667Lisp_Object
4668make_pure_c_string (const char *data)
4669{
4670 Lisp_Object string;
4671 struct Lisp_String *s;
14162469 4672 EMACS_INT nchars = strlen (data);
a56eaaef
DN
4673
4674 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4675 s->size = nchars;
4676 s->size_byte = -1;
323637a2 4677 s->data = (unsigned char *) data;
a56eaaef
DN
4678 s->intervals = NULL_INTERVAL;
4679 XSETSTRING (string, s);
4680 return string;
4681}
2e471eb5 4682
34400008
GM
4683/* Return a cons allocated from pure space. Give it pure copies
4684 of CAR as car and CDR as cdr. */
4685
7146af97 4686Lisp_Object
971de7fb 4687pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97
JB
4688{
4689 register Lisp_Object new;
1f0b3fd2 4690 struct Lisp_Cons *p;
7146af97 4691
1f0b3fd2
GM
4692 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4693 XSETCONS (new, p);
f3fbd155
KR
4694 XSETCAR (new, Fpurecopy (car));
4695 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4696 return new;
4697}
4698
7146af97 4699
34400008
GM
4700/* Value is a float object with value NUM allocated from pure space. */
4701
d3d47262 4702static Lisp_Object
971de7fb 4703make_pure_float (double num)
7146af97
JB
4704{
4705 register Lisp_Object new;
1f0b3fd2 4706 struct Lisp_Float *p;
7146af97 4707
1f0b3fd2
GM
4708 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4709 XSETFLOAT (new, p);
f601cdf3 4710 XFLOAT_INIT (new, num);
7146af97
JB
4711 return new;
4712}
4713
34400008
GM
4714
4715/* Return a vector with room for LEN Lisp_Objects allocated from
4716 pure space. */
4717
7146af97 4718Lisp_Object
971de7fb 4719make_pure_vector (EMACS_INT len)
7146af97 4720{
1f0b3fd2
GM
4721 Lisp_Object new;
4722 struct Lisp_Vector *p;
4723 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4724
1f0b3fd2
GM
4725 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4726 XSETVECTOR (new, p);
7146af97
JB
4727 XVECTOR (new)->size = len;
4728 return new;
4729}
4730
34400008 4731
7146af97 4732DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 4733 doc: /* Make a copy of object OBJ in pure storage.
228299fa 4734Recursively copies contents of vectors and cons cells.
7ee72033 4735Does not copy symbols. Copies strings without text properties. */)
5842a27b 4736 (register Lisp_Object obj)
7146af97 4737{
265a9e55 4738 if (NILP (Vpurify_flag))
7146af97
JB
4739 return obj;
4740
1f0b3fd2 4741 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4742 return obj;
4743
e9515805
SM
4744 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4745 {
4746 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4747 if (!NILP (tmp))
4748 return tmp;
4749 }
4750
d6dd74bb 4751 if (CONSP (obj))
e9515805 4752 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4753 else if (FLOATP (obj))
e9515805 4754 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4755 else if (STRINGP (obj))
42a5b22f 4756 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
4757 SBYTES (obj),
4758 STRING_MULTIBYTE (obj));
d6dd74bb
KH
4759 else if (COMPILEDP (obj) || VECTORP (obj))
4760 {
4761 register struct Lisp_Vector *vec;
14162469 4762 register EMACS_INT i;
6b61353c 4763 EMACS_INT size;
d6dd74bb
KH
4764
4765 size = XVECTOR (obj)->size;
7d535c68
KH
4766 if (size & PSEUDOVECTOR_FLAG)
4767 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 4768 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4769 for (i = 0; i < size; i++)
4770 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4771 if (COMPILEDP (obj))
985773c9
MB
4772 {
4773 XSETPVECTYPE (vec, PVEC_COMPILED);
4774 XSETCOMPILED (obj, vec);
4775 }
d6dd74bb
KH
4776 else
4777 XSETVECTOR (obj, vec);
7146af97 4778 }
d6dd74bb
KH
4779 else if (MARKERP (obj))
4780 error ("Attempt to copy a marker to pure storage");
e9515805
SM
4781 else
4782 /* Not purified, don't hash-cons. */
4783 return obj;
4784
4785 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4786 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
4787
4788 return obj;
7146af97 4789}
2e471eb5 4790
34400008 4791
7146af97 4792\f
34400008
GM
4793/***********************************************************************
4794 Protection from GC
4795 ***********************************************************************/
4796
2e471eb5
GM
4797/* Put an entry in staticvec, pointing at the variable with address
4798 VARADDRESS. */
7146af97
JB
4799
4800void
971de7fb 4801staticpro (Lisp_Object *varaddress)
7146af97
JB
4802{
4803 staticvec[staticidx++] = varaddress;
4804 if (staticidx >= NSTATICS)
4805 abort ();
4806}
4807
7146af97 4808\f
34400008
GM
4809/***********************************************************************
4810 Protection from GC
4811 ***********************************************************************/
1a4f1e2c 4812
e8197642
RS
4813/* Temporarily prevent garbage collection. */
4814
4815int
971de7fb 4816inhibit_garbage_collection (void)
e8197642 4817{
aed13378 4818 int count = SPECPDL_INDEX ();
54defd0d
AS
4819 int nbits = min (VALBITS, BITS_PER_INT);
4820
4821 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4822 return count;
4823}
4824
34400008 4825
7146af97 4826DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4827 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4828Garbage collection happens automatically if you cons more than
4829`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4830`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4831 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4832 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4833 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4834 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4835However, if there was overflow in pure space, `garbage-collect'
4836returns nil, because real GC can't be done. */)
5842a27b 4837 (void)
7146af97 4838{
7146af97 4839 register struct specbinding *bind;
7146af97
JB
4840 char stack_top_variable;
4841 register int i;
6efc7df7 4842 int message_p;
96117bc7 4843 Lisp_Object total[8];
331379bf 4844 int count = SPECPDL_INDEX ();
2c5bd608
DL
4845 EMACS_TIME t1, t2, t3;
4846
3de0effb
RS
4847 if (abort_on_gc)
4848 abort ();
4849
9e713715
GM
4850 /* Can't GC if pure storage overflowed because we can't determine
4851 if something is a pure object or not. */
4852 if (pure_bytes_used_before_overflow)
4853 return Qnil;
4854
bbc012e0
KS
4855 CHECK_CONS_LIST ();
4856
3c7e66a8
RS
4857 /* Don't keep undo information around forever.
4858 Do this early on, so it is no problem if the user quits. */
4859 {
4860 register struct buffer *nextb = all_buffers;
4861
4862 while (nextb)
4863 {
4864 /* If a buffer's undo list is Qt, that means that undo is
4865 turned off in that buffer. Calling truncate_undo_list on
4866 Qt tends to return NULL, which effectively turns undo back on.
4867 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 4868 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
3c7e66a8
RS
4869 truncate_undo_list (nextb);
4870
4871 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5d8ea120 4872 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
dc7b4525 4873 && ! nextb->text->inhibit_shrinking)
3c7e66a8
RS
4874 {
4875 /* If a buffer's gap size is more than 10% of the buffer
4876 size, or larger than 2000 bytes, then shrink it
4877 accordingly. Keep a minimum size of 20 bytes. */
4878 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4879
4880 if (nextb->text->gap_size > size)
4881 {
4882 struct buffer *save_current = current_buffer;
4883 current_buffer = nextb;
4884 make_gap (-(nextb->text->gap_size - size));
4885 current_buffer = save_current;
4886 }
4887 }
4888
4889 nextb = nextb->next;
4890 }
4891 }
4892
4893 EMACS_GET_TIME (t1);
4894
58595309
KH
4895 /* In case user calls debug_print during GC,
4896 don't let that cause a recursive GC. */
4897 consing_since_gc = 0;
4898
6efc7df7
GM
4899 /* Save what's currently displayed in the echo area. */
4900 message_p = push_message ();
c55b0da6 4901 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 4902
7146af97
JB
4903 /* Save a copy of the contents of the stack, for debugging. */
4904#if MAX_SAVE_STACK > 0
265a9e55 4905 if (NILP (Vpurify_flag))
7146af97
JB
4906 {
4907 i = &stack_top_variable - stack_bottom;
4908 if (i < 0) i = -i;
4909 if (i < MAX_SAVE_STACK)
4910 {
4911 if (stack_copy == 0)
9ac0d9e0 4912 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 4913 else if (stack_copy_size < i)
9ac0d9e0 4914 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
4915 if (stack_copy)
4916 {
42607681 4917 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
72af86bd 4918 memcpy (stack_copy, stack_bottom, i);
7146af97 4919 else
72af86bd 4920 memcpy (stack_copy, &stack_top_variable, i);
7146af97
JB
4921 }
4922 }
4923 }
4924#endif /* MAX_SAVE_STACK > 0 */
4925
299585ee 4926 if (garbage_collection_messages)
691c4285 4927 message1_nolog ("Garbage collecting...");
7146af97 4928
6e0fca1d
RS
4929 BLOCK_INPUT;
4930
eec7b73d
RS
4931 shrink_regexp_cache ();
4932
7146af97
JB
4933 gc_in_progress = 1;
4934
c23baf9f 4935 /* clear_marks (); */
7146af97 4936
005ca5c7 4937 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
4938
4939 for (i = 0; i < staticidx; i++)
49723c04 4940 mark_object (*staticvec[i]);
34400008 4941
126f9c02
SM
4942 for (bind = specpdl; bind != specpdl_ptr; bind++)
4943 {
4944 mark_object (bind->symbol);
4945 mark_object (bind->old_value);
4946 }
6ed8eeff 4947 mark_terminals ();
126f9c02 4948 mark_kboards ();
98a92e2d 4949 mark_ttys ();
126f9c02
SM
4950
4951#ifdef USE_GTK
4952 {
dd4c5104 4953 extern void xg_mark_data (void);
126f9c02
SM
4954 xg_mark_data ();
4955 }
4956#endif
4957
34400008
GM
4958#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4959 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4960 mark_stack ();
4961#else
acf5f7d3
SM
4962 {
4963 register struct gcpro *tail;
4964 for (tail = gcprolist; tail; tail = tail->next)
4965 for (i = 0; i < tail->nvars; i++)
005ca5c7 4966 mark_object (tail->var[i]);
acf5f7d3 4967 }
630686c8 4968 mark_byte_stack ();
b286858c
SM
4969 {
4970 struct catchtag *catch;
4971 struct handler *handler;
4972
7146af97
JB
4973 for (catch = catchlist; catch; catch = catch->next)
4974 {
49723c04
SM
4975 mark_object (catch->tag);
4976 mark_object (catch->val);
177c0ea7 4977 }
7146af97
JB
4978 for (handler = handlerlist; handler; handler = handler->next)
4979 {
49723c04
SM
4980 mark_object (handler->handler);
4981 mark_object (handler->var);
177c0ea7 4982 }
b286858c 4983 }
b40ea20a 4984 mark_backtrace ();
b286858c 4985#endif
7146af97 4986
454d7973
KS
4987#ifdef HAVE_WINDOW_SYSTEM
4988 mark_fringe_data ();
4989#endif
4990
74c35a48
SM
4991#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4992 mark_stack ();
4993#endif
4994
c37adf23
SM
4995 /* Everything is now marked, except for the things that require special
4996 finalization, i.e. the undo_list.
4997 Look thru every buffer's undo list
4c315bda
RS
4998 for elements that update markers that were not marked,
4999 and delete them. */
5000 {
5001 register struct buffer *nextb = all_buffers;
5002
5003 while (nextb)
5004 {
5005 /* If a buffer's undo list is Qt, that means that undo is
5006 turned off in that buffer. Calling truncate_undo_list on
5007 Qt tends to return NULL, which effectively turns undo back on.
5008 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5009 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4c315bda
RS
5010 {
5011 Lisp_Object tail, prev;
5d8ea120 5012 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
4c315bda
RS
5013 prev = Qnil;
5014 while (CONSP (tail))
5015 {
8e50cc2d
SM
5016 if (CONSP (XCAR (tail))
5017 && MARKERP (XCAR (XCAR (tail)))
2336fe58 5018 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5019 {
5020 if (NILP (prev))
5d8ea120 5021 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
4c315bda 5022 else
f3fbd155
KR
5023 {
5024 tail = XCDR (tail);
5025 XSETCDR (prev, tail);
5026 }
4c315bda
RS
5027 }
5028 else
5029 {
5030 prev = tail;
70949dac 5031 tail = XCDR (tail);
4c315bda
RS
5032 }
5033 }
5034 }
c37adf23
SM
5035 /* Now that we have stripped the elements that need not be in the
5036 undo_list any more, we can finally mark the list. */
5d8ea120 5037 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
4c315bda
RS
5038
5039 nextb = nextb->next;
5040 }
5041 }
5042
7146af97
JB
5043 gc_sweep ();
5044
5045 /* Clear the mark bits that we set in certain root slots. */
5046
033a5fa3 5047 unmark_byte_stack ();
3ef06d12
SM
5048 VECTOR_UNMARK (&buffer_defaults);
5049 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5050
34400008
GM
5051#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5052 dump_zombies ();
5053#endif
5054
6e0fca1d
RS
5055 UNBLOCK_INPUT;
5056
bbc012e0
KS
5057 CHECK_CONS_LIST ();
5058
c23baf9f 5059 /* clear_marks (); */
7146af97
JB
5060 gc_in_progress = 0;
5061
5062 consing_since_gc = 0;
5063 if (gc_cons_threshold < 10000)
5064 gc_cons_threshold = 10000;
5065
96f077ad
SM
5066 if (FLOATP (Vgc_cons_percentage))
5067 { /* Set gc_cons_combined_threshold. */
ae35e756
PE
5068 EMACS_INT tot = 0;
5069
5070 tot += total_conses * sizeof (struct Lisp_Cons);
5071 tot += total_symbols * sizeof (struct Lisp_Symbol);
5072 tot += total_markers * sizeof (union Lisp_Misc);
5073 tot += total_string_size;
5074 tot += total_vector_size * sizeof (Lisp_Object);
5075 tot += total_floats * sizeof (struct Lisp_Float);
5076 tot += total_intervals * sizeof (struct interval);
5077 tot += total_strings * sizeof (struct Lisp_String);
5078
5079 gc_relative_threshold = tot * XFLOAT_DATA (Vgc_cons_percentage);
96f077ad 5080 }
974aae61
RS
5081 else
5082 gc_relative_threshold = 0;
96f077ad 5083
299585ee
RS
5084 if (garbage_collection_messages)
5085 {
6efc7df7
GM
5086 if (message_p || minibuf_level > 0)
5087 restore_message ();
299585ee
RS
5088 else
5089 message1_nolog ("Garbage collecting...done");
5090 }
7146af97 5091
98edb5ff 5092 unbind_to (count, Qnil);
2e471eb5
GM
5093
5094 total[0] = Fcons (make_number (total_conses),
5095 make_number (total_free_conses));
5096 total[1] = Fcons (make_number (total_symbols),
5097 make_number (total_free_symbols));
5098 total[2] = Fcons (make_number (total_markers),
5099 make_number (total_free_markers));
96117bc7
GM
5100 total[3] = make_number (total_string_size);
5101 total[4] = make_number (total_vector_size);
5102 total[5] = Fcons (make_number (total_floats),
2e471eb5 5103 make_number (total_free_floats));
96117bc7 5104 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5105 make_number (total_free_intervals));
96117bc7 5106 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5107 make_number (total_free_strings));
5108
34400008 5109#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5110 {
34400008
GM
5111 /* Compute average percentage of zombies. */
5112 double nlive = 0;
177c0ea7 5113
34400008 5114 for (i = 0; i < 7; ++i)
83fc9c63
DL
5115 if (CONSP (total[i]))
5116 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5117
5118 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5119 max_live = max (nlive, max_live);
5120 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5121 max_zombies = max (nzombies, max_zombies);
5122 ++ngcs;
5123 }
5124#endif
7146af97 5125
9e713715
GM
5126 if (!NILP (Vpost_gc_hook))
5127 {
ae35e756 5128 int gc_count = inhibit_garbage_collection ();
9e713715 5129 safe_run_hooks (Qpost_gc_hook);
ae35e756 5130 unbind_to (gc_count, Qnil);
9e713715 5131 }
2c5bd608
DL
5132
5133 /* Accumulate statistics. */
5134 EMACS_GET_TIME (t2);
5135 EMACS_SUB_TIME (t3, t2, t1);
5136 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
5137 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5138 EMACS_SECS (t3) +
5139 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
5140 gcs_done++;
5141
96117bc7 5142 return Flist (sizeof total / sizeof *total, total);
7146af97 5143}
34400008 5144
41c28a37 5145
3770920e
GM
5146/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5147 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5148
5149static void
971de7fb 5150mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5151{
5152 struct glyph_row *row = matrix->rows;
5153 struct glyph_row *end = row + matrix->nrows;
5154
2e471eb5
GM
5155 for (; row < end; ++row)
5156 if (row->enabled_p)
5157 {
5158 int area;
5159 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5160 {
5161 struct glyph *glyph = row->glyphs[area];
5162 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5163
2e471eb5 5164 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5165 if (STRINGP (glyph->object)
2e471eb5 5166 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5167 mark_object (glyph->object);
2e471eb5
GM
5168 }
5169 }
41c28a37
GM
5170}
5171
34400008 5172
41c28a37
GM
5173/* Mark Lisp faces in the face cache C. */
5174
5175static void
971de7fb 5176mark_face_cache (struct face_cache *c)
41c28a37
GM
5177{
5178 if (c)
5179 {
5180 int i, j;
5181 for (i = 0; i < c->used; ++i)
5182 {
5183 struct face *face = FACE_FROM_ID (c->f, i);
5184
5185 if (face)
5186 {
5187 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5188 mark_object (face->lface[j]);
41c28a37
GM
5189 }
5190 }
5191 }
5192}
5193
5194
7146af97 5195\f
1a4f1e2c 5196/* Mark reference to a Lisp_Object.
2e471eb5
GM
5197 If the object referred to has not been seen yet, recursively mark
5198 all the references contained in it. */
7146af97 5199
785cd37f 5200#define LAST_MARKED_SIZE 500
d3d47262 5201static Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
5202int last_marked_index;
5203
1342fc6f
RS
5204/* For debugging--call abort when we cdr down this many
5205 links of a list, in mark_object. In debugging,
5206 the call to abort will hit a breakpoint.
5207 Normally this is zero and the check never goes off. */
d3d47262 5208static int mark_object_loop_halt;
1342fc6f 5209
8f11f7ec 5210static void
971de7fb 5211mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5212{
14162469
EZ
5213 register EMACS_UINT size = ptr->size;
5214 register EMACS_UINT i;
d2029e5b 5215
8f11f7ec 5216 eassert (!VECTOR_MARKED_P (ptr));
d2029e5b
SM
5217 VECTOR_MARK (ptr); /* Else mark it */
5218 if (size & PSEUDOVECTOR_FLAG)
5219 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5220
d2029e5b
SM
5221 /* Note that this size is not the memory-footprint size, but only
5222 the number of Lisp_Object fields that we should trace.
5223 The distinction is used e.g. by Lisp_Process which places extra
5224 non-Lisp_Object fields at the end of the structure. */
5225 for (i = 0; i < size; i++) /* and then mark its elements */
5226 mark_object (ptr->contents[i]);
d2029e5b
SM
5227}
5228
58026347
KH
5229/* Like mark_vectorlike but optimized for char-tables (and
5230 sub-char-tables) assuming that the contents are mostly integers or
5231 symbols. */
5232
5233static void
971de7fb 5234mark_char_table (struct Lisp_Vector *ptr)
58026347 5235{
14162469
EZ
5236 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5237 register EMACS_UINT i;
58026347 5238
8f11f7ec 5239 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5240 VECTOR_MARK (ptr);
5241 for (i = 0; i < size; i++)
5242 {
5243 Lisp_Object val = ptr->contents[i];
5244
ef1b0ba7 5245 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5246 continue;
5247 if (SUB_CHAR_TABLE_P (val))
5248 {
5249 if (! VECTOR_MARKED_P (XVECTOR (val)))
5250 mark_char_table (XVECTOR (val));
5251 }
5252 else
5253 mark_object (val);
5254 }
5255}
5256
41c28a37 5257void
971de7fb 5258mark_object (Lisp_Object arg)
7146af97 5259{
49723c04 5260 register Lisp_Object obj = arg;
4f5c1376
GM
5261#ifdef GC_CHECK_MARKED_OBJECTS
5262 void *po;
5263 struct mem_node *m;
5264#endif
1342fc6f 5265 int cdr_count = 0;
7146af97 5266
9149e743 5267 loop:
7146af97 5268
1f0b3fd2 5269 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5270 return;
5271
49723c04 5272 last_marked[last_marked_index++] = obj;
785cd37f
RS
5273 if (last_marked_index == LAST_MARKED_SIZE)
5274 last_marked_index = 0;
5275
4f5c1376
GM
5276 /* Perform some sanity checks on the objects marked here. Abort if
5277 we encounter an object we know is bogus. This increases GC time
5278 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5279#ifdef GC_CHECK_MARKED_OBJECTS
5280
5281 po = (void *) XPNTR (obj);
5282
5283 /* Check that the object pointed to by PO is known to be a Lisp
5284 structure allocated from the heap. */
5285#define CHECK_ALLOCATED() \
5286 do { \
5287 m = mem_find (po); \
5288 if (m == MEM_NIL) \
5289 abort (); \
5290 } while (0)
5291
5292 /* Check that the object pointed to by PO is live, using predicate
5293 function LIVEP. */
5294#define CHECK_LIVE(LIVEP) \
5295 do { \
5296 if (!LIVEP (m, po)) \
5297 abort (); \
5298 } while (0)
5299
5300 /* Check both of the above conditions. */
5301#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5302 do { \
5303 CHECK_ALLOCATED (); \
5304 CHECK_LIVE (LIVEP); \
5305 } while (0) \
177c0ea7 5306
4f5c1376 5307#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5308
4f5c1376
GM
5309#define CHECK_LIVE(LIVEP) (void) 0
5310#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5311
4f5c1376
GM
5312#endif /* not GC_CHECK_MARKED_OBJECTS */
5313
8e50cc2d 5314 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5315 {
5316 case Lisp_String:
5317 {
5318 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5319 if (STRING_MARKED_P (ptr))
5320 break;
4f5c1376 5321 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5322 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5323 MARK_STRING (ptr);
361b097f 5324#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5325 /* Check that the string size recorded in the string is the
5326 same as the one recorded in the sdata structure. */
5327 CHECK_STRING_BYTES (ptr);
361b097f 5328#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5329 }
5330 break;
5331
76437631 5332 case Lisp_Vectorlike:
8f11f7ec
SM
5333 if (VECTOR_MARKED_P (XVECTOR (obj)))
5334 break;
4f5c1376
GM
5335#ifdef GC_CHECK_MARKED_OBJECTS
5336 m = mem_find (po);
8e50cc2d 5337 if (m == MEM_NIL && !SUBRP (obj)
4f5c1376
GM
5338 && po != &buffer_defaults
5339 && po != &buffer_local_symbols)
5340 abort ();
5341#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5342
8e50cc2d 5343 if (BUFFERP (obj))
6b552283 5344 {
4f5c1376 5345#ifdef GC_CHECK_MARKED_OBJECTS
8f11f7ec
SM
5346 if (po != &buffer_defaults && po != &buffer_local_symbols)
5347 {
5348 struct buffer *b;
5349 for (b = all_buffers; b && b != po; b = b->next)
5350 ;
5351 if (b == NULL)
5352 abort ();
4f5c1376 5353 }
8f11f7ec
SM
5354#endif /* GC_CHECK_MARKED_OBJECTS */
5355 mark_buffer (obj);
6b552283 5356 }
8e50cc2d 5357 else if (SUBRP (obj))
169ee243 5358 break;
8e50cc2d 5359 else if (COMPILEDP (obj))
2e471eb5
GM
5360 /* We could treat this just like a vector, but it is better to
5361 save the COMPILED_CONSTANTS element for last and avoid
5362 recursion there. */
169ee243
RS
5363 {
5364 register struct Lisp_Vector *ptr = XVECTOR (obj);
14162469
EZ
5365 register EMACS_UINT size = ptr->size;
5366 register EMACS_UINT i;
169ee243 5367
4f5c1376 5368 CHECK_LIVE (live_vector_p);
3ef06d12 5369 VECTOR_MARK (ptr); /* Else mark it */
76437631 5370 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
5371 for (i = 0; i < size; i++) /* and then mark its elements */
5372 {
5373 if (i != COMPILED_CONSTANTS)
49723c04 5374 mark_object (ptr->contents[i]);
169ee243 5375 }
49723c04 5376 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5377 goto loop;
5378 }
8e50cc2d 5379 else if (FRAMEP (obj))
169ee243 5380 {
c70bbf06 5381 register struct frame *ptr = XFRAME (obj);
8f11f7ec
SM
5382 mark_vectorlike (XVECTOR (obj));
5383 mark_face_cache (ptr->face_cache);
707788bd 5384 }
8e50cc2d 5385 else if (WINDOWP (obj))
41c28a37
GM
5386 {
5387 register struct Lisp_Vector *ptr = XVECTOR (obj);
5388 struct window *w = XWINDOW (obj);
8f11f7ec
SM
5389 mark_vectorlike (ptr);
5390 /* Mark glyphs for leaf windows. Marking window matrices is
5391 sufficient because frame matrices use the same glyph
5392 memory. */
5393 if (NILP (w->hchild)
5394 && NILP (w->vchild)
5395 && w->current_matrix)
41c28a37 5396 {
8f11f7ec
SM
5397 mark_glyph_matrix (w->current_matrix);
5398 mark_glyph_matrix (w->desired_matrix);
41c28a37
GM
5399 }
5400 }
8e50cc2d 5401 else if (HASH_TABLE_P (obj))
41c28a37
GM
5402 {
5403 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
8f11f7ec
SM
5404 mark_vectorlike ((struct Lisp_Vector *)h);
5405 /* If hash table is not weak, mark all keys and values.
5406 For weak tables, mark only the vector. */
5407 if (NILP (h->weak))
5408 mark_object (h->key_and_value);
5409 else
5410 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5411 }
58026347 5412 else if (CHAR_TABLE_P (obj))
8f11f7ec 5413 mark_char_table (XVECTOR (obj));
04ff9756 5414 else
d2029e5b 5415 mark_vectorlike (XVECTOR (obj));
169ee243 5416 break;
7146af97 5417
7146af97
JB
5418 case Lisp_Symbol:
5419 {
c70bbf06 5420 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5421 struct Lisp_Symbol *ptrx;
5422
8f11f7ec
SM
5423 if (ptr->gcmarkbit)
5424 break;
4f5c1376 5425 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5426 ptr->gcmarkbit = 1;
49723c04
SM
5427 mark_object (ptr->function);
5428 mark_object (ptr->plist);
ce5b453a
SM
5429 switch (ptr->redirect)
5430 {
5431 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5432 case SYMBOL_VARALIAS:
5433 {
5434 Lisp_Object tem;
5435 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5436 mark_object (tem);
5437 break;
5438 }
5439 case SYMBOL_LOCALIZED:
5440 {
5441 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5442 /* If the value is forwarded to a buffer or keyboard field,
5443 these are marked when we see the corresponding object.
5444 And if it's forwarded to a C variable, either it's not
5445 a Lisp_Object var, or it's staticpro'd already. */
5446 mark_object (blv->where);
5447 mark_object (blv->valcell);
5448 mark_object (blv->defcell);
5449 break;
5450 }
5451 case SYMBOL_FORWARDED:
5452 /* If the value is forwarded to a buffer or keyboard field,
5453 these are marked when we see the corresponding object.
5454 And if it's forwarded to a C variable, either it's not
5455 a Lisp_Object var, or it's staticpro'd already. */
5456 break;
5457 default: abort ();
5458 }
8fe5665d
KR
5459 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5460 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5461 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5462
7146af97
JB
5463 ptr = ptr->next;
5464 if (ptr)
5465 {
b0846f52 5466 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 5467 XSETSYMBOL (obj, ptrx);
49723c04 5468 goto loop;
7146af97
JB
5469 }
5470 }
5471 break;
5472
a0a38eb7 5473 case Lisp_Misc:
4f5c1376 5474 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
67ee9f6e 5475 if (XMISCANY (obj)->gcmarkbit)
2336fe58 5476 break;
67ee9f6e 5477 XMISCANY (obj)->gcmarkbit = 1;
b766f870 5478
a5da44fe 5479 switch (XMISCTYPE (obj))
a0a38eb7 5480 {
465edf35 5481
2336fe58
SM
5482 case Lisp_Misc_Marker:
5483 /* DO NOT mark thru the marker's chain.
5484 The buffer's markers chain does not preserve markers from gc;
5485 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5486 break;
5487
8f924df7 5488 case Lisp_Misc_Save_Value:
9ea306d1 5489#if GC_MARK_STACK
b766f870
KS
5490 {
5491 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5492 /* If DOGC is set, POINTER is the address of a memory
5493 area containing INTEGER potential Lisp_Objects. */
5494 if (ptr->dogc)
5495 {
5496 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5497 int nelt;
5498 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5499 mark_maybe_object (*p);
5500 }
5501 }
9ea306d1 5502#endif
c8616056
KH
5503 break;
5504
e202fa34
KH
5505 case Lisp_Misc_Overlay:
5506 {
5507 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5508 mark_object (ptr->start);
5509 mark_object (ptr->end);
f54253ec
SM
5510 mark_object (ptr->plist);
5511 if (ptr->next)
5512 {
5513 XSETMISC (obj, ptr->next);
5514 goto loop;
5515 }
e202fa34
KH
5516 }
5517 break;
5518
a0a38eb7
KH
5519 default:
5520 abort ();
5521 }
7146af97
JB
5522 break;
5523
5524 case Lisp_Cons:
7146af97
JB
5525 {
5526 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
5527 if (CONS_MARKED_P (ptr))
5528 break;
4f5c1376 5529 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5530 CONS_MARK (ptr);
c54ca951 5531 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 5532 if (EQ (ptr->u.cdr, Qnil))
c54ca951 5533 {
49723c04 5534 obj = ptr->car;
1342fc6f 5535 cdr_count = 0;
c54ca951
RS
5536 goto loop;
5537 }
49723c04 5538 mark_object (ptr->car);
28a099a4 5539 obj = ptr->u.cdr;
1342fc6f
RS
5540 cdr_count++;
5541 if (cdr_count == mark_object_loop_halt)
5542 abort ();
7146af97
JB
5543 goto loop;
5544 }
5545
7146af97 5546 case Lisp_Float:
4f5c1376 5547 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5548 FLOAT_MARK (XFLOAT (obj));
7146af97 5549 break;
7146af97 5550
2de9f71c 5551 case_Lisp_Int:
7146af97
JB
5552 break;
5553
5554 default:
5555 abort ();
5556 }
4f5c1376
GM
5557
5558#undef CHECK_LIVE
5559#undef CHECK_ALLOCATED
5560#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5561}
5562
5563/* Mark the pointers in a buffer structure. */
5564
5565static void
971de7fb 5566mark_buffer (Lisp_Object buf)
7146af97 5567{
7146af97 5568 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5569 register Lisp_Object *ptr, tmp;
30e3190a 5570 Lisp_Object base_buffer;
7146af97 5571
8f11f7ec 5572 eassert (!VECTOR_MARKED_P (buffer));
3ef06d12 5573 VECTOR_MARK (buffer);
7146af97 5574
30e3190a 5575 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5576
c37adf23
SM
5577 /* For now, we just don't mark the undo_list. It's done later in
5578 a special way just before the sweep phase, and after stripping
5579 some of its elements that are not needed any more. */
4c315bda 5580
f54253ec
SM
5581 if (buffer->overlays_before)
5582 {
5583 XSETMISC (tmp, buffer->overlays_before);
5584 mark_object (tmp);
5585 }
5586 if (buffer->overlays_after)
5587 {
5588 XSETMISC (tmp, buffer->overlays_after);
5589 mark_object (tmp);
5590 }
5591
9ce376f9
SM
5592 /* buffer-local Lisp variables start at `undo_list',
5593 tho only the ones from `name' on are GC'd normally. */
5d8ea120 5594 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
7146af97
JB
5595 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5596 ptr++)
49723c04 5597 mark_object (*ptr);
30e3190a
RS
5598
5599 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5600 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5601 {
177c0ea7 5602 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5603 mark_buffer (base_buffer);
5604 }
7146af97 5605}
084b1a0c 5606
4a729fd8
SM
5607/* Mark the Lisp pointers in the terminal objects.
5608 Called by the Fgarbage_collector. */
5609
4a729fd8
SM
5610static void
5611mark_terminals (void)
5612{
5613 struct terminal *t;
5614 for (t = terminal_list; t; t = t->next_terminal)
5615 {
5616 eassert (t->name != NULL);
354884c4 5617#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
5618 /* If a terminal object is reachable from a stacpro'ed object,
5619 it might have been marked already. Make sure the image cache
5620 gets marked. */
5621 mark_image_cache (t->image_cache);
354884c4 5622#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
5623 if (!VECTOR_MARKED_P (t))
5624 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
5625 }
5626}
5627
5628
084b1a0c 5629
41c28a37
GM
5630/* Value is non-zero if OBJ will survive the current GC because it's
5631 either marked or does not need to be marked to survive. */
5632
5633int
971de7fb 5634survives_gc_p (Lisp_Object obj)
41c28a37
GM
5635{
5636 int survives_p;
177c0ea7 5637
8e50cc2d 5638 switch (XTYPE (obj))
41c28a37 5639 {
2de9f71c 5640 case_Lisp_Int:
41c28a37
GM
5641 survives_p = 1;
5642 break;
5643
5644 case Lisp_Symbol:
2336fe58 5645 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5646 break;
5647
5648 case Lisp_Misc:
67ee9f6e 5649 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
5650 break;
5651
5652 case Lisp_String:
08b7c2cb 5653 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5654 break;
5655
5656 case Lisp_Vectorlike:
8e50cc2d 5657 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5658 break;
5659
5660 case Lisp_Cons:
08b7c2cb 5661 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5662 break;
5663
41c28a37 5664 case Lisp_Float:
ab6780cd 5665 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5666 break;
41c28a37
GM
5667
5668 default:
5669 abort ();
5670 }
5671
34400008 5672 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5673}
5674
5675
7146af97 5676\f
1a4f1e2c 5677/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5678
5679static void
971de7fb 5680gc_sweep (void)
7146af97 5681{
41c28a37
GM
5682 /* Remove or mark entries in weak hash tables.
5683 This must be done before any object is unmarked. */
5684 sweep_weak_hash_tables ();
5685
2e471eb5 5686 sweep_strings ();
676a7251
GM
5687#ifdef GC_CHECK_STRING_BYTES
5688 if (!noninteractive)
5689 check_string_bytes (1);
5690#endif
7146af97
JB
5691
5692 /* Put all unmarked conses on free list */
5693 {
5694 register struct cons_block *cblk;
6ca94ac9 5695 struct cons_block **cprev = &cons_block;
7146af97
JB
5696 register int lim = cons_block_index;
5697 register int num_free = 0, num_used = 0;
5698
5699 cons_free_list = 0;
177c0ea7 5700
6ca94ac9 5701 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 5702 {
3ae2e3a3 5703 register int i = 0;
6ca94ac9 5704 int this_free = 0;
3ae2e3a3
RS
5705 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5706
5707 /* Scan the mark bits an int at a time. */
5708 for (i = 0; i <= ilim; i++)
5709 {
5710 if (cblk->gcmarkbits[i] == -1)
5711 {
5712 /* Fast path - all cons cells for this int are marked. */
5713 cblk->gcmarkbits[i] = 0;
5714 num_used += BITS_PER_INT;
5715 }
5716 else
5717 {
5718 /* Some cons cells for this int are not marked.
5719 Find which ones, and free them. */
5720 int start, pos, stop;
5721
5722 start = i * BITS_PER_INT;
5723 stop = lim - start;
5724 if (stop > BITS_PER_INT)
5725 stop = BITS_PER_INT;
5726 stop += start;
5727
5728 for (pos = start; pos < stop; pos++)
5729 {
5730 if (!CONS_MARKED_P (&cblk->conses[pos]))
5731 {
5732 this_free++;
5733 cblk->conses[pos].u.chain = cons_free_list;
5734 cons_free_list = &cblk->conses[pos];
34400008 5735#if GC_MARK_STACK
3ae2e3a3 5736 cons_free_list->car = Vdead;
34400008 5737#endif
3ae2e3a3
RS
5738 }
5739 else
5740 {
5741 num_used++;
5742 CONS_UNMARK (&cblk->conses[pos]);
5743 }
5744 }
5745 }
5746 }
5747
7146af97 5748 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5749 /* If this block contains only free conses and we have already
5750 seen more than two blocks worth of free conses then deallocate
5751 this block. */
6feef451 5752 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5753 {
6ca94ac9
KH
5754 *cprev = cblk->next;
5755 /* Unhook from the free list. */
28a099a4 5756 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 5757 lisp_align_free (cblk);
c8099634 5758 n_cons_blocks--;
6ca94ac9
KH
5759 }
5760 else
6feef451
AS
5761 {
5762 num_free += this_free;
5763 cprev = &cblk->next;
5764 }
7146af97
JB
5765 }
5766 total_conses = num_used;
5767 total_free_conses = num_free;
5768 }
5769
7146af97
JB
5770 /* Put all unmarked floats on free list */
5771 {
5772 register struct float_block *fblk;
6ca94ac9 5773 struct float_block **fprev = &float_block;
7146af97
JB
5774 register int lim = float_block_index;
5775 register int num_free = 0, num_used = 0;
5776
5777 float_free_list = 0;
177c0ea7 5778
6ca94ac9 5779 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5780 {
5781 register int i;
6ca94ac9 5782 int this_free = 0;
7146af97 5783 for (i = 0; i < lim; i++)
ab6780cd 5784 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5785 {
6ca94ac9 5786 this_free++;
28a099a4 5787 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
5788 float_free_list = &fblk->floats[i];
5789 }
5790 else
5791 {
5792 num_used++;
ab6780cd 5793 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5794 }
5795 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5796 /* If this block contains only free floats and we have already
5797 seen more than two blocks worth of free floats then deallocate
5798 this block. */
6feef451 5799 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5800 {
6ca94ac9
KH
5801 *fprev = fblk->next;
5802 /* Unhook from the free list. */
28a099a4 5803 float_free_list = fblk->floats[0].u.chain;
ab6780cd 5804 lisp_align_free (fblk);
c8099634 5805 n_float_blocks--;
6ca94ac9
KH
5806 }
5807 else
6feef451
AS
5808 {
5809 num_free += this_free;
5810 fprev = &fblk->next;
5811 }
7146af97
JB
5812 }
5813 total_floats = num_used;
5814 total_free_floats = num_free;
5815 }
7146af97 5816
d5e35230
JA
5817 /* Put all unmarked intervals on free list */
5818 {
5819 register struct interval_block *iblk;
6ca94ac9 5820 struct interval_block **iprev = &interval_block;
d5e35230
JA
5821 register int lim = interval_block_index;
5822 register int num_free = 0, num_used = 0;
5823
5824 interval_free_list = 0;
5825
6ca94ac9 5826 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5827 {
5828 register int i;
6ca94ac9 5829 int this_free = 0;
d5e35230
JA
5830
5831 for (i = 0; i < lim; i++)
5832 {
2336fe58 5833 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5834 {
439d5cb4 5835 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5836 interval_free_list = &iblk->intervals[i];
6ca94ac9 5837 this_free++;
d5e35230
JA
5838 }
5839 else
5840 {
5841 num_used++;
2336fe58 5842 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5843 }
5844 }
5845 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5846 /* If this block contains only free intervals and we have already
5847 seen more than two blocks worth of free intervals then
5848 deallocate this block. */
6feef451 5849 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5850 {
6ca94ac9
KH
5851 *iprev = iblk->next;
5852 /* Unhook from the free list. */
439d5cb4 5853 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
5854 lisp_free (iblk);
5855 n_interval_blocks--;
6ca94ac9
KH
5856 }
5857 else
6feef451
AS
5858 {
5859 num_free += this_free;
5860 iprev = &iblk->next;
5861 }
d5e35230
JA
5862 }
5863 total_intervals = num_used;
5864 total_free_intervals = num_free;
5865 }
d5e35230 5866
7146af97
JB
5867 /* Put all unmarked symbols on free list */
5868 {
5869 register struct symbol_block *sblk;
6ca94ac9 5870 struct symbol_block **sprev = &symbol_block;
7146af97
JB
5871 register int lim = symbol_block_index;
5872 register int num_free = 0, num_used = 0;
5873
d285b373 5874 symbol_free_list = NULL;
177c0ea7 5875
6ca94ac9 5876 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5877 {
6ca94ac9 5878 int this_free = 0;
d285b373
GM
5879 struct Lisp_Symbol *sym = sblk->symbols;
5880 struct Lisp_Symbol *end = sym + lim;
5881
5882 for (; sym < end; ++sym)
5883 {
20035321
SM
5884 /* Check if the symbol was created during loadup. In such a case
5885 it might be pointed to by pure bytecode which we don't trace,
5886 so we conservatively assume that it is live. */
8fe5665d 5887 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 5888
2336fe58 5889 if (!sym->gcmarkbit && !pure_p)
d285b373 5890 {
ce5b453a
SM
5891 if (sym->redirect == SYMBOL_LOCALIZED)
5892 xfree (SYMBOL_BLV (sym));
28a099a4 5893 sym->next = symbol_free_list;
d285b373 5894 symbol_free_list = sym;
34400008 5895#if GC_MARK_STACK
d285b373 5896 symbol_free_list->function = Vdead;
34400008 5897#endif
d285b373
GM
5898 ++this_free;
5899 }
5900 else
5901 {
5902 ++num_used;
5903 if (!pure_p)
8fe5665d 5904 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 5905 sym->gcmarkbit = 0;
d285b373
GM
5906 }
5907 }
177c0ea7 5908
7146af97 5909 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
5910 /* If this block contains only free symbols and we have already
5911 seen more than two blocks worth of free symbols then deallocate
5912 this block. */
6feef451 5913 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 5914 {
6ca94ac9
KH
5915 *sprev = sblk->next;
5916 /* Unhook from the free list. */
28a099a4 5917 symbol_free_list = sblk->symbols[0].next;
c8099634
RS
5918 lisp_free (sblk);
5919 n_symbol_blocks--;
6ca94ac9
KH
5920 }
5921 else
6feef451
AS
5922 {
5923 num_free += this_free;
5924 sprev = &sblk->next;
5925 }
7146af97
JB
5926 }
5927 total_symbols = num_used;
5928 total_free_symbols = num_free;
5929 }
5930
a9faeabe
RS
5931 /* Put all unmarked misc's on free list.
5932 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
5933 {
5934 register struct marker_block *mblk;
6ca94ac9 5935 struct marker_block **mprev = &marker_block;
7146af97
JB
5936 register int lim = marker_block_index;
5937 register int num_free = 0, num_used = 0;
5938
5939 marker_free_list = 0;
177c0ea7 5940
6ca94ac9 5941 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
5942 {
5943 register int i;
6ca94ac9 5944 int this_free = 0;
fa05e253 5945
7146af97 5946 for (i = 0; i < lim; i++)
465edf35 5947 {
d314756e 5948 if (!mblk->markers[i].u_any.gcmarkbit)
465edf35 5949 {
d314756e 5950 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
ef89c2ce 5951 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
5952 /* Set the type of the freed object to Lisp_Misc_Free.
5953 We could leave the type alone, since nobody checks it,
465edf35 5954 but this might catch bugs faster. */
a5da44fe 5955 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
5956 mblk->markers[i].u_free.chain = marker_free_list;
5957 marker_free_list = &mblk->markers[i];
6ca94ac9 5958 this_free++;
465edf35
KH
5959 }
5960 else
5961 {
5962 num_used++;
d314756e 5963 mblk->markers[i].u_any.gcmarkbit = 0;
465edf35
KH
5964 }
5965 }
7146af97 5966 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
5967 /* If this block contains only free markers and we have already
5968 seen more than two blocks worth of free markers then deallocate
5969 this block. */
6feef451 5970 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 5971 {
6ca94ac9
KH
5972 *mprev = mblk->next;
5973 /* Unhook from the free list. */
5974 marker_free_list = mblk->markers[0].u_free.chain;
c8099634
RS
5975 lisp_free (mblk);
5976 n_marker_blocks--;
6ca94ac9
KH
5977 }
5978 else
6feef451
AS
5979 {
5980 num_free += this_free;
5981 mprev = &mblk->next;
5982 }
7146af97
JB
5983 }
5984
5985 total_markers = num_used;
5986 total_free_markers = num_free;
5987 }
5988
5989 /* Free all unmarked buffers */
5990 {
5991 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5992
5993 while (buffer)
3ef06d12 5994 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
5995 {
5996 if (prev)
5997 prev->next = buffer->next;
5998 else
5999 all_buffers = buffer->next;
6000 next = buffer->next;
34400008 6001 lisp_free (buffer);
7146af97
JB
6002 buffer = next;
6003 }
6004 else
6005 {
3ef06d12 6006 VECTOR_UNMARK (buffer);
30e3190a 6007 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
6008 prev = buffer, buffer = buffer->next;
6009 }
6010 }
6011
7146af97
JB
6012 /* Free all unmarked vectors */
6013 {
6014 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6015 total_vector_size = 0;
6016
6017 while (vector)
3ef06d12 6018 if (!VECTOR_MARKED_P (vector))
7146af97
JB
6019 {
6020 if (prev)
6021 prev->next = vector->next;
6022 else
6023 all_vectors = vector->next;
6024 next = vector->next;
c8099634
RS
6025 lisp_free (vector);
6026 n_vectors--;
7146af97 6027 vector = next;
41c28a37 6028
7146af97
JB
6029 }
6030 else
6031 {
3ef06d12 6032 VECTOR_UNMARK (vector);
fa05e253
RS
6033 if (vector->size & PSEUDOVECTOR_FLAG)
6034 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6035 else
6036 total_vector_size += vector->size;
7146af97
JB
6037 prev = vector, vector = vector->next;
6038 }
6039 }
177c0ea7 6040
676a7251
GM
6041#ifdef GC_CHECK_STRING_BYTES
6042 if (!noninteractive)
6043 check_string_bytes (1);
6044#endif
7146af97 6045}
7146af97 6046
7146af97 6047
7146af97 6048
7146af97 6049\f
20d24714
JB
6050/* Debugging aids. */
6051
31ce1c91 6052DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6053 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6054This may be helpful in debugging Emacs's memory usage.
7ee72033 6055We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6056 (void)
20d24714
JB
6057{
6058 Lisp_Object end;
6059
d40d4be1 6060 XSETINT (end, (EMACS_INT) (char *) sbrk (0) / 1024);
20d24714
JB
6061
6062 return end;
6063}
6064
310ea200 6065DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6066 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6067Each of these counters increments for a certain kind of object.
6068The counters wrap around from the largest positive integer to zero.
6069Garbage collection does not decrease them.
6070The elements of the value are as follows:
6071 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6072All are in units of 1 = one object consed
6073except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6074objects consed.
6075MISCS include overlays, markers, and some internal types.
6076Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6077 (but the contents of a buffer's text do not count here). */)
5842a27b 6078 (void)
310ea200 6079{
2e471eb5 6080 Lisp_Object consed[8];
310ea200 6081
78e985eb
GM
6082 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6083 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6084 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6085 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6086 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6087 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6088 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6089 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6090
2e471eb5 6091 return Flist (8, consed);
310ea200 6092}
e0b8c689
KR
6093
6094int suppress_checking;
d3d47262 6095
e0b8c689 6096void
971de7fb 6097die (const char *msg, const char *file, int line)
e0b8c689 6098{
67ee9f6e 6099 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6100 file, line, msg);
6101 abort ();
6102}
20d24714 6103\f
7146af97
JB
6104/* Initialization */
6105
dfcf069d 6106void
971de7fb 6107init_alloc_once (void)
7146af97
JB
6108{
6109 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6110 purebeg = PUREBEG;
6111 pure_size = PURESIZE;
1f0b3fd2 6112 pure_bytes_used = 0;
e5bc14d4 6113 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
9e713715
GM
6114 pure_bytes_used_before_overflow = 0;
6115
ab6780cd
SM
6116 /* Initialize the list of free aligned blocks. */
6117 free_ablock = NULL;
6118
877935b1 6119#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6120 mem_init ();
6121 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6122#endif
9e713715 6123
7146af97
JB
6124 all_vectors = 0;
6125 ignore_warnings = 1;
d1658221
RS
6126#ifdef DOUG_LEA_MALLOC
6127 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6128 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6129 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6130#endif
7146af97
JB
6131 init_strings ();
6132 init_cons ();
6133 init_symbol ();
6134 init_marker ();
7146af97 6135 init_float ();
34400008 6136 init_intervals ();
5ac58e4c 6137 init_weak_hash_tables ();
d5e35230 6138
276cbe5a
RS
6139#ifdef REL_ALLOC
6140 malloc_hysteresis = 32;
6141#else
6142 malloc_hysteresis = 0;
6143#endif
6144
24d8a105 6145 refill_memory_reserve ();
276cbe5a 6146
7146af97
JB
6147 ignore_warnings = 0;
6148 gcprolist = 0;
630686c8 6149 byte_stack_list = 0;
7146af97
JB
6150 staticidx = 0;
6151 consing_since_gc = 0;
7d179cea 6152 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61 6153 gc_relative_threshold = 0;
7146af97
JB
6154}
6155
dfcf069d 6156void
971de7fb 6157init_alloc (void)
7146af97
JB
6158{
6159 gcprolist = 0;
630686c8 6160 byte_stack_list = 0;
182ff242
GM
6161#if GC_MARK_STACK
6162#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6163 setjmp_tested_p = longjmps_done = 0;
6164#endif
6165#endif
2c5bd608
DL
6166 Vgc_elapsed = make_float (0.0);
6167 gcs_done = 0;
7146af97
JB
6168}
6169
6170void
971de7fb 6171syms_of_alloc (void)
7146af97 6172{
29208e82 6173 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
a6266d23 6174 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
6175Garbage collection can happen automatically once this many bytes have been
6176allocated since the last garbage collection. All data types count.
7146af97 6177
228299fa 6178Garbage collection happens automatically only when `eval' is called.
7146af97 6179
228299fa 6180By binding this temporarily to a large number, you can effectively
96f077ad
SM
6181prevent garbage collection during a part of the program.
6182See also `gc-cons-percentage'. */);
6183
29208e82 6184 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
96f077ad
SM
6185 doc: /* *Portion of the heap used for allocation.
6186Garbage collection can happen automatically once this portion of the heap
6187has been allocated since the last garbage collection.
6188If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6189 Vgc_cons_percentage = make_float (0.1);
0819585c 6190
29208e82 6191 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
a6266d23 6192 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 6193
29208e82 6194 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6195 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6196
29208e82 6197 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6198 doc: /* Number of floats that have been consed so far. */);
0819585c 6199
29208e82 6200 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6201 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6202
29208e82 6203 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6204 doc: /* Number of symbols that have been consed so far. */);
0819585c 6205
29208e82 6206 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6207 doc: /* Number of string characters that have been consed so far. */);
0819585c 6208
29208e82 6209 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
a6266d23 6210 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 6211
29208e82 6212 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6213 doc: /* Number of intervals that have been consed so far. */);
7146af97 6214
29208e82 6215 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6216 doc: /* Number of strings that have been consed so far. */);
228299fa 6217
29208e82 6218 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6219 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6220This means that certain objects should be allocated in shared (pure) space.
6221It can also be set to a hash-table, in which case this table is used to
6222do hash-consing of the objects allocated to pure space. */);
228299fa 6223
29208e82 6224 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6225 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6226 garbage_collection_messages = 0;
6227
29208e82 6228 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6229 doc: /* Hook run after garbage collection has finished. */);
9e713715 6230 Vpost_gc_hook = Qnil;
d67b4f80 6231 Qpost_gc_hook = intern_c_string ("post-gc-hook");
9e713715
GM
6232 staticpro (&Qpost_gc_hook);
6233
29208e82 6234 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6235 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6236 /* We build this in advance because if we wait until we need it, we might
6237 not be able to allocate the memory to hold it. */
74a54b04 6238 Vmemory_signal_data
f4265f6c
DN
6239 = pure_cons (Qerror,
6240 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
74a54b04 6241
29208e82 6242 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6243 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6244 Vmemory_full = Qnil;
bcb61d60 6245
e8197642 6246 staticpro (&Qgc_cons_threshold);
d67b4f80 6247 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
e8197642 6248
a59de17b 6249 staticpro (&Qchar_table_extra_slots);
d67b4f80 6250 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
a59de17b 6251
29208e82 6252 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6253 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6254The time is in seconds as a floating point value. */);
29208e82 6255 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6256 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6257
7146af97
JB
6258 defsubr (&Scons);
6259 defsubr (&Slist);
6260 defsubr (&Svector);
6261 defsubr (&Smake_byte_code);
6262 defsubr (&Smake_list);
6263 defsubr (&Smake_vector);
6264 defsubr (&Smake_string);
7b07587b 6265 defsubr (&Smake_bool_vector);
7146af97
JB
6266 defsubr (&Smake_symbol);
6267 defsubr (&Smake_marker);
6268 defsubr (&Spurecopy);
6269 defsubr (&Sgarbage_collect);
20d24714 6270 defsubr (&Smemory_limit);
310ea200 6271 defsubr (&Smemory_use_counts);
34400008
GM
6272
6273#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6274 defsubr (&Sgc_status);
6275#endif
7146af97 6276}