* alloc.c (Fmemory_limit): Cast sbrk's returned value to char *.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
28
29 #include <signal.h>
30
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
34
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
38
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
53
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
60
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
65
66 #include <fcntl.h>
67
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
71
72 #ifdef DOUG_LEA_MALLOC
73
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #else /* not DOUG_LEA_MALLOC */
86
87 /* The following come from gmalloc.c. */
88
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
92
93 #endif /* not DOUG_LEA_MALLOC */
94
95 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
96 #ifdef HAVE_GTK_AND_PTHREAD
97
98 /* When GTK uses the file chooser dialog, different backends can be loaded
99 dynamically. One such a backend is the Gnome VFS backend that gets loaded
100 if you run Gnome. That backend creates several threads and also allocates
101 memory with malloc.
102
103 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
104 functions below are called from malloc, there is a chance that one
105 of these threads preempts the Emacs main thread and the hook variables
106 end up in an inconsistent state. So we have a mutex to prevent that (note
107 that the backend handles concurrent access to malloc within its own threads
108 but Emacs code running in the main thread is not included in that control).
109
110 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
111 happens in one of the backend threads we will have two threads that tries
112 to run Emacs code at once, and the code is not prepared for that.
113 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114
115 static pthread_mutex_t alloc_mutex;
116
117 #define BLOCK_INPUT_ALLOC \
118 do \
119 { \
120 if (pthread_equal (pthread_self (), main_thread)) \
121 BLOCK_INPUT; \
122 pthread_mutex_lock (&alloc_mutex); \
123 } \
124 while (0)
125 #define UNBLOCK_INPUT_ALLOC \
126 do \
127 { \
128 pthread_mutex_unlock (&alloc_mutex); \
129 if (pthread_equal (pthread_self (), main_thread)) \
130 UNBLOCK_INPUT; \
131 } \
132 while (0)
133
134 #else /* ! defined HAVE_GTK_AND_PTHREAD */
135
136 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
137 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138
139 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
140 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
141
142 /* Value of _bytes_used, when spare_memory was freed. */
143
144 static __malloc_size_t bytes_used_when_full;
145
146 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
147 to a struct Lisp_String. */
148
149 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
150 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
151 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
152
153 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
154 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
155 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
156
157 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
158 Be careful during GC, because S->size contains the mark bit for
159 strings. */
160
161 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
162
163 /* Global variables. */
164 struct emacs_globals globals;
165
166 /* Number of bytes of consing done since the last gc. */
167
168 int consing_since_gc;
169
170 /* Similar minimum, computed from Vgc_cons_percentage. */
171
172 EMACS_INT gc_relative_threshold;
173
174 /* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
176
177 EMACS_INT memory_full_cons_threshold;
178
179 /* Nonzero during GC. */
180
181 int gc_in_progress;
182
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187 int abort_on_gc;
188
189 /* Number of live and free conses etc. */
190
191 static int total_conses, total_markers, total_symbols, total_vector_size;
192 static int total_free_conses, total_free_markers, total_free_symbols;
193 static int total_free_floats, total_floats;
194
195 /* Points to memory space allocated as "spare", to be freed if we run
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
198
199 static char *spare_memory[7];
200
201 /* Amount of spare memory to keep in large reserve block. */
202
203 #define SPARE_MEMORY (1 << 14)
204
205 /* Number of extra blocks malloc should get when it needs more core. */
206
207 static int malloc_hysteresis;
208
209 /* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
214
215 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
216 #define PUREBEG (char *) pure
217
218 /* Pointer to the pure area, and its size. */
219
220 static char *purebeg;
221 static size_t pure_size;
222
223 /* Number of bytes of pure storage used before pure storage overflowed.
224 If this is non-zero, this implies that an overflow occurred. */
225
226 static size_t pure_bytes_used_before_overflow;
227
228 /* Value is non-zero if P points into pure space. */
229
230 #define PURE_POINTER_P(P) \
231 (((PNTR_COMPARISON_TYPE) (P) \
232 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
233 && ((PNTR_COMPARISON_TYPE) (P) \
234 >= (PNTR_COMPARISON_TYPE) purebeg))
235
236 /* Index in pure at which next pure Lisp object will be allocated.. */
237
238 static EMACS_INT pure_bytes_used_lisp;
239
240 /* Number of bytes allocated for non-Lisp objects in pure storage. */
241
242 static EMACS_INT pure_bytes_used_non_lisp;
243
244 /* If nonzero, this is a warning delivered by malloc and not yet
245 displayed. */
246
247 const char *pending_malloc_warning;
248
249 /* Maximum amount of C stack to save when a GC happens. */
250
251 #ifndef MAX_SAVE_STACK
252 #define MAX_SAVE_STACK 16000
253 #endif
254
255 /* Buffer in which we save a copy of the C stack at each GC. */
256
257 static char *stack_copy;
258 static int stack_copy_size;
259
260 /* Non-zero means ignore malloc warnings. Set during initialization.
261 Currently not used. */
262
263 static int ignore_warnings;
264
265 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
266
267 /* Hook run after GC has finished. */
268
269 Lisp_Object Qpost_gc_hook;
270
271 static void mark_buffer (Lisp_Object);
272 static void mark_terminals (void);
273 extern void mark_backtrace (void);
274 static void gc_sweep (void);
275 static void mark_glyph_matrix (struct glyph_matrix *);
276 static void mark_face_cache (struct face_cache *);
277
278 static struct Lisp_String *allocate_string (void);
279 static void compact_small_strings (void);
280 static void free_large_strings (void);
281 static void sweep_strings (void);
282
283 extern int message_enable_multibyte;
284
285 /* When scanning the C stack for live Lisp objects, Emacs keeps track
286 of what memory allocated via lisp_malloc is intended for what
287 purpose. This enumeration specifies the type of memory. */
288
289 enum mem_type
290 {
291 MEM_TYPE_NON_LISP,
292 MEM_TYPE_BUFFER,
293 MEM_TYPE_CONS,
294 MEM_TYPE_STRING,
295 MEM_TYPE_MISC,
296 MEM_TYPE_SYMBOL,
297 MEM_TYPE_FLOAT,
298 /* We used to keep separate mem_types for subtypes of vectors such as
299 process, hash_table, frame, terminal, and window, but we never made
300 use of the distinction, so it only caused source-code complexity
301 and runtime slowdown. Minor but pointless. */
302 MEM_TYPE_VECTORLIKE
303 };
304
305 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
306 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
307
308
309 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
310
311 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
312 #include <stdio.h> /* For fprintf. */
313 #endif
314
315 /* A unique object in pure space used to make some Lisp objects
316 on free lists recognizable in O(1). */
317
318 static Lisp_Object Vdead;
319
320 #ifdef GC_MALLOC_CHECK
321
322 enum mem_type allocated_mem_type;
323 static int dont_register_blocks;
324
325 #endif /* GC_MALLOC_CHECK */
326
327 /* A node in the red-black tree describing allocated memory containing
328 Lisp data. Each such block is recorded with its start and end
329 address when it is allocated, and removed from the tree when it
330 is freed.
331
332 A red-black tree is a balanced binary tree with the following
333 properties:
334
335 1. Every node is either red or black.
336 2. Every leaf is black.
337 3. If a node is red, then both of its children are black.
338 4. Every simple path from a node to a descendant leaf contains
339 the same number of black nodes.
340 5. The root is always black.
341
342 When nodes are inserted into the tree, or deleted from the tree,
343 the tree is "fixed" so that these properties are always true.
344
345 A red-black tree with N internal nodes has height at most 2
346 log(N+1). Searches, insertions and deletions are done in O(log N).
347 Please see a text book about data structures for a detailed
348 description of red-black trees. Any book worth its salt should
349 describe them. */
350
351 struct mem_node
352 {
353 /* Children of this node. These pointers are never NULL. When there
354 is no child, the value is MEM_NIL, which points to a dummy node. */
355 struct mem_node *left, *right;
356
357 /* The parent of this node. In the root node, this is NULL. */
358 struct mem_node *parent;
359
360 /* Start and end of allocated region. */
361 void *start, *end;
362
363 /* Node color. */
364 enum {MEM_BLACK, MEM_RED} color;
365
366 /* Memory type. */
367 enum mem_type type;
368 };
369
370 /* Base address of stack. Set in main. */
371
372 Lisp_Object *stack_base;
373
374 /* Root of the tree describing allocated Lisp memory. */
375
376 static struct mem_node *mem_root;
377
378 /* Lowest and highest known address in the heap. */
379
380 static void *min_heap_address, *max_heap_address;
381
382 /* Sentinel node of the tree. */
383
384 static struct mem_node mem_z;
385 #define MEM_NIL &mem_z
386
387 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
388 static void lisp_free (POINTER_TYPE *);
389 static void mark_stack (void);
390 static int live_vector_p (struct mem_node *, void *);
391 static int live_buffer_p (struct mem_node *, void *);
392 static int live_string_p (struct mem_node *, void *);
393 static int live_cons_p (struct mem_node *, void *);
394 static int live_symbol_p (struct mem_node *, void *);
395 static int live_float_p (struct mem_node *, void *);
396 static int live_misc_p (struct mem_node *, void *);
397 static void mark_maybe_object (Lisp_Object);
398 static void mark_memory (void *, void *, int);
399 static void mem_init (void);
400 static struct mem_node *mem_insert (void *, void *, enum mem_type);
401 static void mem_insert_fixup (struct mem_node *);
402 static void mem_rotate_left (struct mem_node *);
403 static void mem_rotate_right (struct mem_node *);
404 static void mem_delete (struct mem_node *);
405 static void mem_delete_fixup (struct mem_node *);
406 static INLINE struct mem_node *mem_find (void *);
407
408
409 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
410 static void check_gcpros (void);
411 #endif
412
413 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
414
415 /* Recording what needs to be marked for gc. */
416
417 struct gcpro *gcprolist;
418
419 /* Addresses of staticpro'd variables. Initialize it to a nonzero
420 value; otherwise some compilers put it into BSS. */
421
422 #define NSTATICS 0x640
423 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
424
425 /* Index of next unused slot in staticvec. */
426
427 static int staticidx = 0;
428
429 static POINTER_TYPE *pure_alloc (size_t, int);
430
431
432 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
433 ALIGNMENT must be a power of 2. */
434
435 #define ALIGN(ptr, ALIGNMENT) \
436 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
437 & ~((ALIGNMENT) - 1)))
438
439
440 \f
441 /************************************************************************
442 Malloc
443 ************************************************************************/
444
445 /* Function malloc calls this if it finds we are near exhausting storage. */
446
447 void
448 malloc_warning (const char *str)
449 {
450 pending_malloc_warning = str;
451 }
452
453
454 /* Display an already-pending malloc warning. */
455
456 void
457 display_malloc_warning (void)
458 {
459 call3 (intern ("display-warning"),
460 intern ("alloc"),
461 build_string (pending_malloc_warning),
462 intern ("emergency"));
463 pending_malloc_warning = 0;
464 }
465
466
467 #ifdef DOUG_LEA_MALLOC
468 # define BYTES_USED (mallinfo ().uordblks)
469 #else
470 # define BYTES_USED _bytes_used
471 #endif
472 \f
473 /* Called if we can't allocate relocatable space for a buffer. */
474
475 void
476 buffer_memory_full (void)
477 {
478 /* If buffers use the relocating allocator, no need to free
479 spare_memory, because we may have plenty of malloc space left
480 that we could get, and if we don't, the malloc that fails will
481 itself cause spare_memory to be freed. If buffers don't use the
482 relocating allocator, treat this like any other failing
483 malloc. */
484
485 #ifndef REL_ALLOC
486 memory_full ();
487 #endif
488
489 /* This used to call error, but if we've run out of memory, we could
490 get infinite recursion trying to build the string. */
491 xsignal (Qnil, Vmemory_signal_data);
492 }
493
494
495 #ifdef XMALLOC_OVERRUN_CHECK
496
497 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
498 and a 16 byte trailer around each block.
499
500 The header consists of 12 fixed bytes + a 4 byte integer contaning the
501 original block size, while the trailer consists of 16 fixed bytes.
502
503 The header is used to detect whether this block has been allocated
504 through these functions -- as it seems that some low-level libc
505 functions may bypass the malloc hooks.
506 */
507
508
509 #define XMALLOC_OVERRUN_CHECK_SIZE 16
510
511 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
512 { 0x9a, 0x9b, 0xae, 0xaf,
513 0xbf, 0xbe, 0xce, 0xcf,
514 0xea, 0xeb, 0xec, 0xed };
515
516 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
517 { 0xaa, 0xab, 0xac, 0xad,
518 0xba, 0xbb, 0xbc, 0xbd,
519 0xca, 0xcb, 0xcc, 0xcd,
520 0xda, 0xdb, 0xdc, 0xdd };
521
522 /* Macros to insert and extract the block size in the header. */
523
524 #define XMALLOC_PUT_SIZE(ptr, size) \
525 (ptr[-1] = (size & 0xff), \
526 ptr[-2] = ((size >> 8) & 0xff), \
527 ptr[-3] = ((size >> 16) & 0xff), \
528 ptr[-4] = ((size >> 24) & 0xff))
529
530 #define XMALLOC_GET_SIZE(ptr) \
531 (size_t)((unsigned)(ptr[-1]) | \
532 ((unsigned)(ptr[-2]) << 8) | \
533 ((unsigned)(ptr[-3]) << 16) | \
534 ((unsigned)(ptr[-4]) << 24))
535
536
537 /* The call depth in overrun_check functions. For example, this might happen:
538 xmalloc()
539 overrun_check_malloc()
540 -> malloc -> (via hook)_-> emacs_blocked_malloc
541 -> overrun_check_malloc
542 call malloc (hooks are NULL, so real malloc is called).
543 malloc returns 10000.
544 add overhead, return 10016.
545 <- (back in overrun_check_malloc)
546 add overhead again, return 10032
547 xmalloc returns 10032.
548
549 (time passes).
550
551 xfree(10032)
552 overrun_check_free(10032)
553 decrease overhed
554 free(10016) <- crash, because 10000 is the original pointer. */
555
556 static int check_depth;
557
558 /* Like malloc, but wraps allocated block with header and trailer. */
559
560 POINTER_TYPE *
561 overrun_check_malloc (size)
562 size_t size;
563 {
564 register unsigned char *val;
565 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
566
567 val = (unsigned char *) malloc (size + overhead);
568 if (val && check_depth == 1)
569 {
570 memcpy (val, xmalloc_overrun_check_header,
571 XMALLOC_OVERRUN_CHECK_SIZE - 4);
572 val += XMALLOC_OVERRUN_CHECK_SIZE;
573 XMALLOC_PUT_SIZE(val, size);
574 memcpy (val + size, xmalloc_overrun_check_trailer,
575 XMALLOC_OVERRUN_CHECK_SIZE);
576 }
577 --check_depth;
578 return (POINTER_TYPE *)val;
579 }
580
581
582 /* Like realloc, but checks old block for overrun, and wraps new block
583 with header and trailer. */
584
585 POINTER_TYPE *
586 overrun_check_realloc (block, size)
587 POINTER_TYPE *block;
588 size_t size;
589 {
590 register unsigned char *val = (unsigned char *)block;
591 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
592
593 if (val
594 && check_depth == 1
595 && memcmp (xmalloc_overrun_check_header,
596 val - XMALLOC_OVERRUN_CHECK_SIZE,
597 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
598 {
599 size_t osize = XMALLOC_GET_SIZE (val);
600 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
601 XMALLOC_OVERRUN_CHECK_SIZE))
602 abort ();
603 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
604 val -= XMALLOC_OVERRUN_CHECK_SIZE;
605 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
606 }
607
608 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
609
610 if (val && check_depth == 1)
611 {
612 memcpy (val, xmalloc_overrun_check_header,
613 XMALLOC_OVERRUN_CHECK_SIZE - 4);
614 val += XMALLOC_OVERRUN_CHECK_SIZE;
615 XMALLOC_PUT_SIZE(val, size);
616 memcpy (val + size, xmalloc_overrun_check_trailer,
617 XMALLOC_OVERRUN_CHECK_SIZE);
618 }
619 --check_depth;
620 return (POINTER_TYPE *)val;
621 }
622
623 /* Like free, but checks block for overrun. */
624
625 void
626 overrun_check_free (block)
627 POINTER_TYPE *block;
628 {
629 unsigned char *val = (unsigned char *)block;
630
631 ++check_depth;
632 if (val
633 && check_depth == 1
634 && memcmp (xmalloc_overrun_check_header,
635 val - XMALLOC_OVERRUN_CHECK_SIZE,
636 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
637 {
638 size_t osize = XMALLOC_GET_SIZE (val);
639 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
640 XMALLOC_OVERRUN_CHECK_SIZE))
641 abort ();
642 #ifdef XMALLOC_CLEAR_FREE_MEMORY
643 val -= XMALLOC_OVERRUN_CHECK_SIZE;
644 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
645 #else
646 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
647 val -= XMALLOC_OVERRUN_CHECK_SIZE;
648 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
649 #endif
650 }
651
652 free (val);
653 --check_depth;
654 }
655
656 #undef malloc
657 #undef realloc
658 #undef free
659 #define malloc overrun_check_malloc
660 #define realloc overrun_check_realloc
661 #define free overrun_check_free
662 #endif
663
664 #ifdef SYNC_INPUT
665 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
666 there's no need to block input around malloc. */
667 #define MALLOC_BLOCK_INPUT ((void)0)
668 #define MALLOC_UNBLOCK_INPUT ((void)0)
669 #else
670 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
671 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
672 #endif
673
674 /* Like malloc but check for no memory and block interrupt input.. */
675
676 POINTER_TYPE *
677 xmalloc (size_t size)
678 {
679 register POINTER_TYPE *val;
680
681 MALLOC_BLOCK_INPUT;
682 val = (POINTER_TYPE *) malloc (size);
683 MALLOC_UNBLOCK_INPUT;
684
685 if (!val && size)
686 memory_full ();
687 return val;
688 }
689
690
691 /* Like realloc but check for no memory and block interrupt input.. */
692
693 POINTER_TYPE *
694 xrealloc (POINTER_TYPE *block, size_t size)
695 {
696 register POINTER_TYPE *val;
697
698 MALLOC_BLOCK_INPUT;
699 /* We must call malloc explicitly when BLOCK is 0, since some
700 reallocs don't do this. */
701 if (! block)
702 val = (POINTER_TYPE *) malloc (size);
703 else
704 val = (POINTER_TYPE *) realloc (block, size);
705 MALLOC_UNBLOCK_INPUT;
706
707 if (!val && size) memory_full ();
708 return val;
709 }
710
711
712 /* Like free but block interrupt input. */
713
714 void
715 xfree (POINTER_TYPE *block)
716 {
717 if (!block)
718 return;
719 MALLOC_BLOCK_INPUT;
720 free (block);
721 MALLOC_UNBLOCK_INPUT;
722 /* We don't call refill_memory_reserve here
723 because that duplicates doing so in emacs_blocked_free
724 and the criterion should go there. */
725 }
726
727
728 /* Like strdup, but uses xmalloc. */
729
730 char *
731 xstrdup (const char *s)
732 {
733 size_t len = strlen (s) + 1;
734 char *p = (char *) xmalloc (len);
735 memcpy (p, s, len);
736 return p;
737 }
738
739
740 /* Unwind for SAFE_ALLOCA */
741
742 Lisp_Object
743 safe_alloca_unwind (Lisp_Object arg)
744 {
745 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
746
747 p->dogc = 0;
748 xfree (p->pointer);
749 p->pointer = 0;
750 free_misc (arg);
751 return Qnil;
752 }
753
754
755 /* Like malloc but used for allocating Lisp data. NBYTES is the
756 number of bytes to allocate, TYPE describes the intended use of the
757 allcated memory block (for strings, for conses, ...). */
758
759 #ifndef USE_LSB_TAG
760 static void *lisp_malloc_loser;
761 #endif
762
763 static POINTER_TYPE *
764 lisp_malloc (size_t nbytes, enum mem_type type)
765 {
766 register void *val;
767
768 MALLOC_BLOCK_INPUT;
769
770 #ifdef GC_MALLOC_CHECK
771 allocated_mem_type = type;
772 #endif
773
774 val = (void *) malloc (nbytes);
775
776 #ifndef USE_LSB_TAG
777 /* If the memory just allocated cannot be addressed thru a Lisp
778 object's pointer, and it needs to be,
779 that's equivalent to running out of memory. */
780 if (val && type != MEM_TYPE_NON_LISP)
781 {
782 Lisp_Object tem;
783 XSETCONS (tem, (char *) val + nbytes - 1);
784 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
785 {
786 lisp_malloc_loser = val;
787 free (val);
788 val = 0;
789 }
790 }
791 #endif
792
793 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
794 if (val && type != MEM_TYPE_NON_LISP)
795 mem_insert (val, (char *) val + nbytes, type);
796 #endif
797
798 MALLOC_UNBLOCK_INPUT;
799 if (!val && nbytes)
800 memory_full ();
801 return val;
802 }
803
804 /* Free BLOCK. This must be called to free memory allocated with a
805 call to lisp_malloc. */
806
807 static void
808 lisp_free (POINTER_TYPE *block)
809 {
810 MALLOC_BLOCK_INPUT;
811 free (block);
812 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
813 mem_delete (mem_find (block));
814 #endif
815 MALLOC_UNBLOCK_INPUT;
816 }
817
818 /* Allocation of aligned blocks of memory to store Lisp data. */
819 /* The entry point is lisp_align_malloc which returns blocks of at most */
820 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
821
822 /* Use posix_memalloc if the system has it and we're using the system's
823 malloc (because our gmalloc.c routines don't have posix_memalign although
824 its memalloc could be used). */
825 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
826 #define USE_POSIX_MEMALIGN 1
827 #endif
828
829 /* BLOCK_ALIGN has to be a power of 2. */
830 #define BLOCK_ALIGN (1 << 10)
831
832 /* Padding to leave at the end of a malloc'd block. This is to give
833 malloc a chance to minimize the amount of memory wasted to alignment.
834 It should be tuned to the particular malloc library used.
835 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
836 posix_memalign on the other hand would ideally prefer a value of 4
837 because otherwise, there's 1020 bytes wasted between each ablocks.
838 In Emacs, testing shows that those 1020 can most of the time be
839 efficiently used by malloc to place other objects, so a value of 0 can
840 still preferable unless you have a lot of aligned blocks and virtually
841 nothing else. */
842 #define BLOCK_PADDING 0
843 #define BLOCK_BYTES \
844 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
845
846 /* Internal data structures and constants. */
847
848 #define ABLOCKS_SIZE 16
849
850 /* An aligned block of memory. */
851 struct ablock
852 {
853 union
854 {
855 char payload[BLOCK_BYTES];
856 struct ablock *next_free;
857 } x;
858 /* `abase' is the aligned base of the ablocks. */
859 /* It is overloaded to hold the virtual `busy' field that counts
860 the number of used ablock in the parent ablocks.
861 The first ablock has the `busy' field, the others have the `abase'
862 field. To tell the difference, we assume that pointers will have
863 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
864 is used to tell whether the real base of the parent ablocks is `abase'
865 (if not, the word before the first ablock holds a pointer to the
866 real base). */
867 struct ablocks *abase;
868 /* The padding of all but the last ablock is unused. The padding of
869 the last ablock in an ablocks is not allocated. */
870 #if BLOCK_PADDING
871 char padding[BLOCK_PADDING];
872 #endif
873 };
874
875 /* A bunch of consecutive aligned blocks. */
876 struct ablocks
877 {
878 struct ablock blocks[ABLOCKS_SIZE];
879 };
880
881 /* Size of the block requested from malloc or memalign. */
882 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
883
884 #define ABLOCK_ABASE(block) \
885 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
886 ? (struct ablocks *)(block) \
887 : (block)->abase)
888
889 /* Virtual `busy' field. */
890 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
891
892 /* Pointer to the (not necessarily aligned) malloc block. */
893 #ifdef USE_POSIX_MEMALIGN
894 #define ABLOCKS_BASE(abase) (abase)
895 #else
896 #define ABLOCKS_BASE(abase) \
897 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
898 #endif
899
900 /* The list of free ablock. */
901 static struct ablock *free_ablock;
902
903 /* Allocate an aligned block of nbytes.
904 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
905 smaller or equal to BLOCK_BYTES. */
906 static POINTER_TYPE *
907 lisp_align_malloc (size_t nbytes, enum mem_type type)
908 {
909 void *base, *val;
910 struct ablocks *abase;
911
912 eassert (nbytes <= BLOCK_BYTES);
913
914 MALLOC_BLOCK_INPUT;
915
916 #ifdef GC_MALLOC_CHECK
917 allocated_mem_type = type;
918 #endif
919
920 if (!free_ablock)
921 {
922 int i;
923 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
924
925 #ifdef DOUG_LEA_MALLOC
926 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
927 because mapped region contents are not preserved in
928 a dumped Emacs. */
929 mallopt (M_MMAP_MAX, 0);
930 #endif
931
932 #ifdef USE_POSIX_MEMALIGN
933 {
934 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
935 if (err)
936 base = NULL;
937 abase = base;
938 }
939 #else
940 base = malloc (ABLOCKS_BYTES);
941 abase = ALIGN (base, BLOCK_ALIGN);
942 #endif
943
944 if (base == 0)
945 {
946 MALLOC_UNBLOCK_INPUT;
947 memory_full ();
948 }
949
950 aligned = (base == abase);
951 if (!aligned)
952 ((void**)abase)[-1] = base;
953
954 #ifdef DOUG_LEA_MALLOC
955 /* Back to a reasonable maximum of mmap'ed areas. */
956 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
957 #endif
958
959 #ifndef USE_LSB_TAG
960 /* If the memory just allocated cannot be addressed thru a Lisp
961 object's pointer, and it needs to be, that's equivalent to
962 running out of memory. */
963 if (type != MEM_TYPE_NON_LISP)
964 {
965 Lisp_Object tem;
966 char *end = (char *) base + ABLOCKS_BYTES - 1;
967 XSETCONS (tem, end);
968 if ((char *) XCONS (tem) != end)
969 {
970 lisp_malloc_loser = base;
971 free (base);
972 MALLOC_UNBLOCK_INPUT;
973 memory_full ();
974 }
975 }
976 #endif
977
978 /* Initialize the blocks and put them on the free list.
979 Is `base' was not properly aligned, we can't use the last block. */
980 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
981 {
982 abase->blocks[i].abase = abase;
983 abase->blocks[i].x.next_free = free_ablock;
984 free_ablock = &abase->blocks[i];
985 }
986 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
987
988 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
989 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
990 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
991 eassert (ABLOCKS_BASE (abase) == base);
992 eassert (aligned == (long) ABLOCKS_BUSY (abase));
993 }
994
995 abase = ABLOCK_ABASE (free_ablock);
996 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
997 val = free_ablock;
998 free_ablock = free_ablock->x.next_free;
999
1000 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1001 if (val && type != MEM_TYPE_NON_LISP)
1002 mem_insert (val, (char *) val + nbytes, type);
1003 #endif
1004
1005 MALLOC_UNBLOCK_INPUT;
1006 if (!val && nbytes)
1007 memory_full ();
1008
1009 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1010 return val;
1011 }
1012
1013 static void
1014 lisp_align_free (POINTER_TYPE *block)
1015 {
1016 struct ablock *ablock = block;
1017 struct ablocks *abase = ABLOCK_ABASE (ablock);
1018
1019 MALLOC_BLOCK_INPUT;
1020 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1021 mem_delete (mem_find (block));
1022 #endif
1023 /* Put on free list. */
1024 ablock->x.next_free = free_ablock;
1025 free_ablock = ablock;
1026 /* Update busy count. */
1027 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1028
1029 if (2 > (long) ABLOCKS_BUSY (abase))
1030 { /* All the blocks are free. */
1031 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1032 struct ablock **tem = &free_ablock;
1033 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1034
1035 while (*tem)
1036 {
1037 if (*tem >= (struct ablock *) abase && *tem < atop)
1038 {
1039 i++;
1040 *tem = (*tem)->x.next_free;
1041 }
1042 else
1043 tem = &(*tem)->x.next_free;
1044 }
1045 eassert ((aligned & 1) == aligned);
1046 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1047 #ifdef USE_POSIX_MEMALIGN
1048 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1049 #endif
1050 free (ABLOCKS_BASE (abase));
1051 }
1052 MALLOC_UNBLOCK_INPUT;
1053 }
1054
1055 /* Return a new buffer structure allocated from the heap with
1056 a call to lisp_malloc. */
1057
1058 struct buffer *
1059 allocate_buffer (void)
1060 {
1061 struct buffer *b
1062 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1063 MEM_TYPE_BUFFER);
1064 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1065 XSETPVECTYPE (b, PVEC_BUFFER);
1066 return b;
1067 }
1068
1069 \f
1070 #ifndef SYSTEM_MALLOC
1071
1072 /* Arranging to disable input signals while we're in malloc.
1073
1074 This only works with GNU malloc. To help out systems which can't
1075 use GNU malloc, all the calls to malloc, realloc, and free
1076 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1077 pair; unfortunately, we have no idea what C library functions
1078 might call malloc, so we can't really protect them unless you're
1079 using GNU malloc. Fortunately, most of the major operating systems
1080 can use GNU malloc. */
1081
1082 #ifndef SYNC_INPUT
1083 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1084 there's no need to block input around malloc. */
1085
1086 #ifndef DOUG_LEA_MALLOC
1087 extern void * (*__malloc_hook) (size_t, const void *);
1088 extern void * (*__realloc_hook) (void *, size_t, const void *);
1089 extern void (*__free_hook) (void *, const void *);
1090 /* Else declared in malloc.h, perhaps with an extra arg. */
1091 #endif /* DOUG_LEA_MALLOC */
1092 static void * (*old_malloc_hook) (size_t, const void *);
1093 static void * (*old_realloc_hook) (void *, size_t, const void*);
1094 static void (*old_free_hook) (void*, const void*);
1095
1096 static __malloc_size_t bytes_used_when_reconsidered;
1097
1098 /* This function is used as the hook for free to call. */
1099
1100 static void
1101 emacs_blocked_free (void *ptr, const void *ptr2)
1102 {
1103 BLOCK_INPUT_ALLOC;
1104
1105 #ifdef GC_MALLOC_CHECK
1106 if (ptr)
1107 {
1108 struct mem_node *m;
1109
1110 m = mem_find (ptr);
1111 if (m == MEM_NIL || m->start != ptr)
1112 {
1113 fprintf (stderr,
1114 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1115 abort ();
1116 }
1117 else
1118 {
1119 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1120 mem_delete (m);
1121 }
1122 }
1123 #endif /* GC_MALLOC_CHECK */
1124
1125 __free_hook = old_free_hook;
1126 free (ptr);
1127
1128 /* If we released our reserve (due to running out of memory),
1129 and we have a fair amount free once again,
1130 try to set aside another reserve in case we run out once more. */
1131 if (! NILP (Vmemory_full)
1132 /* Verify there is enough space that even with the malloc
1133 hysteresis this call won't run out again.
1134 The code here is correct as long as SPARE_MEMORY
1135 is substantially larger than the block size malloc uses. */
1136 && (bytes_used_when_full
1137 > ((bytes_used_when_reconsidered = BYTES_USED)
1138 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1139 refill_memory_reserve ();
1140
1141 __free_hook = emacs_blocked_free;
1142 UNBLOCK_INPUT_ALLOC;
1143 }
1144
1145
1146 /* This function is the malloc hook that Emacs uses. */
1147
1148 static void *
1149 emacs_blocked_malloc (size_t size, const void *ptr)
1150 {
1151 void *value;
1152
1153 BLOCK_INPUT_ALLOC;
1154 __malloc_hook = old_malloc_hook;
1155 #ifdef DOUG_LEA_MALLOC
1156 /* Segfaults on my system. --lorentey */
1157 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1158 #else
1159 __malloc_extra_blocks = malloc_hysteresis;
1160 #endif
1161
1162 value = (void *) malloc (size);
1163
1164 #ifdef GC_MALLOC_CHECK
1165 {
1166 struct mem_node *m = mem_find (value);
1167 if (m != MEM_NIL)
1168 {
1169 fprintf (stderr, "Malloc returned %p which is already in use\n",
1170 value);
1171 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1172 m->start, m->end, (char *) m->end - (char *) m->start,
1173 m->type);
1174 abort ();
1175 }
1176
1177 if (!dont_register_blocks)
1178 {
1179 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1180 allocated_mem_type = MEM_TYPE_NON_LISP;
1181 }
1182 }
1183 #endif /* GC_MALLOC_CHECK */
1184
1185 __malloc_hook = emacs_blocked_malloc;
1186 UNBLOCK_INPUT_ALLOC;
1187
1188 /* fprintf (stderr, "%p malloc\n", value); */
1189 return value;
1190 }
1191
1192
1193 /* This function is the realloc hook that Emacs uses. */
1194
1195 static void *
1196 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1197 {
1198 void *value;
1199
1200 BLOCK_INPUT_ALLOC;
1201 __realloc_hook = old_realloc_hook;
1202
1203 #ifdef GC_MALLOC_CHECK
1204 if (ptr)
1205 {
1206 struct mem_node *m = mem_find (ptr);
1207 if (m == MEM_NIL || m->start != ptr)
1208 {
1209 fprintf (stderr,
1210 "Realloc of %p which wasn't allocated with malloc\n",
1211 ptr);
1212 abort ();
1213 }
1214
1215 mem_delete (m);
1216 }
1217
1218 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1219
1220 /* Prevent malloc from registering blocks. */
1221 dont_register_blocks = 1;
1222 #endif /* GC_MALLOC_CHECK */
1223
1224 value = (void *) realloc (ptr, size);
1225
1226 #ifdef GC_MALLOC_CHECK
1227 dont_register_blocks = 0;
1228
1229 {
1230 struct mem_node *m = mem_find (value);
1231 if (m != MEM_NIL)
1232 {
1233 fprintf (stderr, "Realloc returns memory that is already in use\n");
1234 abort ();
1235 }
1236
1237 /* Can't handle zero size regions in the red-black tree. */
1238 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1239 }
1240
1241 /* fprintf (stderr, "%p <- realloc\n", value); */
1242 #endif /* GC_MALLOC_CHECK */
1243
1244 __realloc_hook = emacs_blocked_realloc;
1245 UNBLOCK_INPUT_ALLOC;
1246
1247 return value;
1248 }
1249
1250
1251 #ifdef HAVE_GTK_AND_PTHREAD
1252 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1253 normal malloc. Some thread implementations need this as they call
1254 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1255 calls malloc because it is the first call, and we have an endless loop. */
1256
1257 void
1258 reset_malloc_hooks ()
1259 {
1260 __free_hook = old_free_hook;
1261 __malloc_hook = old_malloc_hook;
1262 __realloc_hook = old_realloc_hook;
1263 }
1264 #endif /* HAVE_GTK_AND_PTHREAD */
1265
1266
1267 /* Called from main to set up malloc to use our hooks. */
1268
1269 void
1270 uninterrupt_malloc (void)
1271 {
1272 #ifdef HAVE_GTK_AND_PTHREAD
1273 #ifdef DOUG_LEA_MALLOC
1274 pthread_mutexattr_t attr;
1275
1276 /* GLIBC has a faster way to do this, but lets keep it portable.
1277 This is according to the Single UNIX Specification. */
1278 pthread_mutexattr_init (&attr);
1279 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1280 pthread_mutex_init (&alloc_mutex, &attr);
1281 #else /* !DOUG_LEA_MALLOC */
1282 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1283 and the bundled gmalloc.c doesn't require it. */
1284 pthread_mutex_init (&alloc_mutex, NULL);
1285 #endif /* !DOUG_LEA_MALLOC */
1286 #endif /* HAVE_GTK_AND_PTHREAD */
1287
1288 if (__free_hook != emacs_blocked_free)
1289 old_free_hook = __free_hook;
1290 __free_hook = emacs_blocked_free;
1291
1292 if (__malloc_hook != emacs_blocked_malloc)
1293 old_malloc_hook = __malloc_hook;
1294 __malloc_hook = emacs_blocked_malloc;
1295
1296 if (__realloc_hook != emacs_blocked_realloc)
1297 old_realloc_hook = __realloc_hook;
1298 __realloc_hook = emacs_blocked_realloc;
1299 }
1300
1301 #endif /* not SYNC_INPUT */
1302 #endif /* not SYSTEM_MALLOC */
1303
1304
1305 \f
1306 /***********************************************************************
1307 Interval Allocation
1308 ***********************************************************************/
1309
1310 /* Number of intervals allocated in an interval_block structure.
1311 The 1020 is 1024 minus malloc overhead. */
1312
1313 #define INTERVAL_BLOCK_SIZE \
1314 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1315
1316 /* Intervals are allocated in chunks in form of an interval_block
1317 structure. */
1318
1319 struct interval_block
1320 {
1321 /* Place `intervals' first, to preserve alignment. */
1322 struct interval intervals[INTERVAL_BLOCK_SIZE];
1323 struct interval_block *next;
1324 };
1325
1326 /* Current interval block. Its `next' pointer points to older
1327 blocks. */
1328
1329 static struct interval_block *interval_block;
1330
1331 /* Index in interval_block above of the next unused interval
1332 structure. */
1333
1334 static int interval_block_index;
1335
1336 /* Number of free and live intervals. */
1337
1338 static int total_free_intervals, total_intervals;
1339
1340 /* List of free intervals. */
1341
1342 INTERVAL interval_free_list;
1343
1344 /* Total number of interval blocks now in use. */
1345
1346 static int n_interval_blocks;
1347
1348
1349 /* Initialize interval allocation. */
1350
1351 static void
1352 init_intervals (void)
1353 {
1354 interval_block = NULL;
1355 interval_block_index = INTERVAL_BLOCK_SIZE;
1356 interval_free_list = 0;
1357 n_interval_blocks = 0;
1358 }
1359
1360
1361 /* Return a new interval. */
1362
1363 INTERVAL
1364 make_interval (void)
1365 {
1366 INTERVAL val;
1367
1368 /* eassert (!handling_signal); */
1369
1370 MALLOC_BLOCK_INPUT;
1371
1372 if (interval_free_list)
1373 {
1374 val = interval_free_list;
1375 interval_free_list = INTERVAL_PARENT (interval_free_list);
1376 }
1377 else
1378 {
1379 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1380 {
1381 register struct interval_block *newi;
1382
1383 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1384 MEM_TYPE_NON_LISP);
1385
1386 newi->next = interval_block;
1387 interval_block = newi;
1388 interval_block_index = 0;
1389 n_interval_blocks++;
1390 }
1391 val = &interval_block->intervals[interval_block_index++];
1392 }
1393
1394 MALLOC_UNBLOCK_INPUT;
1395
1396 consing_since_gc += sizeof (struct interval);
1397 intervals_consed++;
1398 RESET_INTERVAL (val);
1399 val->gcmarkbit = 0;
1400 return val;
1401 }
1402
1403
1404 /* Mark Lisp objects in interval I. */
1405
1406 static void
1407 mark_interval (register INTERVAL i, Lisp_Object dummy)
1408 {
1409 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1410 i->gcmarkbit = 1;
1411 mark_object (i->plist);
1412 }
1413
1414
1415 /* Mark the interval tree rooted in TREE. Don't call this directly;
1416 use the macro MARK_INTERVAL_TREE instead. */
1417
1418 static void
1419 mark_interval_tree (register INTERVAL tree)
1420 {
1421 /* No need to test if this tree has been marked already; this
1422 function is always called through the MARK_INTERVAL_TREE macro,
1423 which takes care of that. */
1424
1425 traverse_intervals_noorder (tree, mark_interval, Qnil);
1426 }
1427
1428
1429 /* Mark the interval tree rooted in I. */
1430
1431 #define MARK_INTERVAL_TREE(i) \
1432 do { \
1433 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1434 mark_interval_tree (i); \
1435 } while (0)
1436
1437
1438 #define UNMARK_BALANCE_INTERVALS(i) \
1439 do { \
1440 if (! NULL_INTERVAL_P (i)) \
1441 (i) = balance_intervals (i); \
1442 } while (0)
1443
1444 \f
1445 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1446 can't create number objects in macros. */
1447 #ifndef make_number
1448 Lisp_Object
1449 make_number (EMACS_INT n)
1450 {
1451 Lisp_Object obj;
1452 obj.s.val = n;
1453 obj.s.type = Lisp_Int;
1454 return obj;
1455 }
1456 #endif
1457 \f
1458 /***********************************************************************
1459 String Allocation
1460 ***********************************************************************/
1461
1462 /* Lisp_Strings are allocated in string_block structures. When a new
1463 string_block is allocated, all the Lisp_Strings it contains are
1464 added to a free-list string_free_list. When a new Lisp_String is
1465 needed, it is taken from that list. During the sweep phase of GC,
1466 string_blocks that are entirely free are freed, except two which
1467 we keep.
1468
1469 String data is allocated from sblock structures. Strings larger
1470 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1471 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1472
1473 Sblocks consist internally of sdata structures, one for each
1474 Lisp_String. The sdata structure points to the Lisp_String it
1475 belongs to. The Lisp_String points back to the `u.data' member of
1476 its sdata structure.
1477
1478 When a Lisp_String is freed during GC, it is put back on
1479 string_free_list, and its `data' member and its sdata's `string'
1480 pointer is set to null. The size of the string is recorded in the
1481 `u.nbytes' member of the sdata. So, sdata structures that are no
1482 longer used, can be easily recognized, and it's easy to compact the
1483 sblocks of small strings which we do in compact_small_strings. */
1484
1485 /* Size in bytes of an sblock structure used for small strings. This
1486 is 8192 minus malloc overhead. */
1487
1488 #define SBLOCK_SIZE 8188
1489
1490 /* Strings larger than this are considered large strings. String data
1491 for large strings is allocated from individual sblocks. */
1492
1493 #define LARGE_STRING_BYTES 1024
1494
1495 /* Structure describing string memory sub-allocated from an sblock.
1496 This is where the contents of Lisp strings are stored. */
1497
1498 struct sdata
1499 {
1500 /* Back-pointer to the string this sdata belongs to. If null, this
1501 structure is free, and the NBYTES member of the union below
1502 contains the string's byte size (the same value that STRING_BYTES
1503 would return if STRING were non-null). If non-null, STRING_BYTES
1504 (STRING) is the size of the data, and DATA contains the string's
1505 contents. */
1506 struct Lisp_String *string;
1507
1508 #ifdef GC_CHECK_STRING_BYTES
1509
1510 EMACS_INT nbytes;
1511 unsigned char data[1];
1512
1513 #define SDATA_NBYTES(S) (S)->nbytes
1514 #define SDATA_DATA(S) (S)->data
1515
1516 #else /* not GC_CHECK_STRING_BYTES */
1517
1518 union
1519 {
1520 /* When STRING in non-null. */
1521 unsigned char data[1];
1522
1523 /* When STRING is null. */
1524 EMACS_INT nbytes;
1525 } u;
1526
1527
1528 #define SDATA_NBYTES(S) (S)->u.nbytes
1529 #define SDATA_DATA(S) (S)->u.data
1530
1531 #endif /* not GC_CHECK_STRING_BYTES */
1532 };
1533
1534
1535 /* Structure describing a block of memory which is sub-allocated to
1536 obtain string data memory for strings. Blocks for small strings
1537 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1538 as large as needed. */
1539
1540 struct sblock
1541 {
1542 /* Next in list. */
1543 struct sblock *next;
1544
1545 /* Pointer to the next free sdata block. This points past the end
1546 of the sblock if there isn't any space left in this block. */
1547 struct sdata *next_free;
1548
1549 /* Start of data. */
1550 struct sdata first_data;
1551 };
1552
1553 /* Number of Lisp strings in a string_block structure. The 1020 is
1554 1024 minus malloc overhead. */
1555
1556 #define STRING_BLOCK_SIZE \
1557 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1558
1559 /* Structure describing a block from which Lisp_String structures
1560 are allocated. */
1561
1562 struct string_block
1563 {
1564 /* Place `strings' first, to preserve alignment. */
1565 struct Lisp_String strings[STRING_BLOCK_SIZE];
1566 struct string_block *next;
1567 };
1568
1569 /* Head and tail of the list of sblock structures holding Lisp string
1570 data. We always allocate from current_sblock. The NEXT pointers
1571 in the sblock structures go from oldest_sblock to current_sblock. */
1572
1573 static struct sblock *oldest_sblock, *current_sblock;
1574
1575 /* List of sblocks for large strings. */
1576
1577 static struct sblock *large_sblocks;
1578
1579 /* List of string_block structures, and how many there are. */
1580
1581 static struct string_block *string_blocks;
1582 static int n_string_blocks;
1583
1584 /* Free-list of Lisp_Strings. */
1585
1586 static struct Lisp_String *string_free_list;
1587
1588 /* Number of live and free Lisp_Strings. */
1589
1590 static int total_strings, total_free_strings;
1591
1592 /* Number of bytes used by live strings. */
1593
1594 static EMACS_INT total_string_size;
1595
1596 /* Given a pointer to a Lisp_String S which is on the free-list
1597 string_free_list, return a pointer to its successor in the
1598 free-list. */
1599
1600 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1601
1602 /* Return a pointer to the sdata structure belonging to Lisp string S.
1603 S must be live, i.e. S->data must not be null. S->data is actually
1604 a pointer to the `u.data' member of its sdata structure; the
1605 structure starts at a constant offset in front of that. */
1606
1607 #ifdef GC_CHECK_STRING_BYTES
1608
1609 #define SDATA_OF_STRING(S) \
1610 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1611 - sizeof (EMACS_INT)))
1612
1613 #else /* not GC_CHECK_STRING_BYTES */
1614
1615 #define SDATA_OF_STRING(S) \
1616 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1617
1618 #endif /* not GC_CHECK_STRING_BYTES */
1619
1620
1621 #ifdef GC_CHECK_STRING_OVERRUN
1622
1623 /* We check for overrun in string data blocks by appending a small
1624 "cookie" after each allocated string data block, and check for the
1625 presence of this cookie during GC. */
1626
1627 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1628 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1629 { 0xde, 0xad, 0xbe, 0xef };
1630
1631 #else
1632 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1633 #endif
1634
1635 /* Value is the size of an sdata structure large enough to hold NBYTES
1636 bytes of string data. The value returned includes a terminating
1637 NUL byte, the size of the sdata structure, and padding. */
1638
1639 #ifdef GC_CHECK_STRING_BYTES
1640
1641 #define SDATA_SIZE(NBYTES) \
1642 ((sizeof (struct Lisp_String *) \
1643 + (NBYTES) + 1 \
1644 + sizeof (EMACS_INT) \
1645 + sizeof (EMACS_INT) - 1) \
1646 & ~(sizeof (EMACS_INT) - 1))
1647
1648 #else /* not GC_CHECK_STRING_BYTES */
1649
1650 #define SDATA_SIZE(NBYTES) \
1651 ((sizeof (struct Lisp_String *) \
1652 + (NBYTES) + 1 \
1653 + sizeof (EMACS_INT) - 1) \
1654 & ~(sizeof (EMACS_INT) - 1))
1655
1656 #endif /* not GC_CHECK_STRING_BYTES */
1657
1658 /* Extra bytes to allocate for each string. */
1659
1660 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1661
1662 /* Initialize string allocation. Called from init_alloc_once. */
1663
1664 static void
1665 init_strings (void)
1666 {
1667 total_strings = total_free_strings = total_string_size = 0;
1668 oldest_sblock = current_sblock = large_sblocks = NULL;
1669 string_blocks = NULL;
1670 n_string_blocks = 0;
1671 string_free_list = NULL;
1672 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1673 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1674 }
1675
1676
1677 #ifdef GC_CHECK_STRING_BYTES
1678
1679 static int check_string_bytes_count;
1680
1681 static void check_string_bytes (int);
1682 static void check_sblock (struct sblock *);
1683
1684 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1685
1686
1687 /* Like GC_STRING_BYTES, but with debugging check. */
1688
1689 EMACS_INT
1690 string_bytes (struct Lisp_String *s)
1691 {
1692 EMACS_INT nbytes =
1693 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1694
1695 if (!PURE_POINTER_P (s)
1696 && s->data
1697 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1698 abort ();
1699 return nbytes;
1700 }
1701
1702 /* Check validity of Lisp strings' string_bytes member in B. */
1703
1704 static void
1705 check_sblock (b)
1706 struct sblock *b;
1707 {
1708 struct sdata *from, *end, *from_end;
1709
1710 end = b->next_free;
1711
1712 for (from = &b->first_data; from < end; from = from_end)
1713 {
1714 /* Compute the next FROM here because copying below may
1715 overwrite data we need to compute it. */
1716 EMACS_INT nbytes;
1717
1718 /* Check that the string size recorded in the string is the
1719 same as the one recorded in the sdata structure. */
1720 if (from->string)
1721 CHECK_STRING_BYTES (from->string);
1722
1723 if (from->string)
1724 nbytes = GC_STRING_BYTES (from->string);
1725 else
1726 nbytes = SDATA_NBYTES (from);
1727
1728 nbytes = SDATA_SIZE (nbytes);
1729 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1730 }
1731 }
1732
1733
1734 /* Check validity of Lisp strings' string_bytes member. ALL_P
1735 non-zero means check all strings, otherwise check only most
1736 recently allocated strings. Used for hunting a bug. */
1737
1738 static void
1739 check_string_bytes (all_p)
1740 int all_p;
1741 {
1742 if (all_p)
1743 {
1744 struct sblock *b;
1745
1746 for (b = large_sblocks; b; b = b->next)
1747 {
1748 struct Lisp_String *s = b->first_data.string;
1749 if (s)
1750 CHECK_STRING_BYTES (s);
1751 }
1752
1753 for (b = oldest_sblock; b; b = b->next)
1754 check_sblock (b);
1755 }
1756 else
1757 check_sblock (current_sblock);
1758 }
1759
1760 #endif /* GC_CHECK_STRING_BYTES */
1761
1762 #ifdef GC_CHECK_STRING_FREE_LIST
1763
1764 /* Walk through the string free list looking for bogus next pointers.
1765 This may catch buffer overrun from a previous string. */
1766
1767 static void
1768 check_string_free_list ()
1769 {
1770 struct Lisp_String *s;
1771
1772 /* Pop a Lisp_String off the free-list. */
1773 s = string_free_list;
1774 while (s != NULL)
1775 {
1776 if ((unsigned long)s < 1024)
1777 abort();
1778 s = NEXT_FREE_LISP_STRING (s);
1779 }
1780 }
1781 #else
1782 #define check_string_free_list()
1783 #endif
1784
1785 /* Return a new Lisp_String. */
1786
1787 static struct Lisp_String *
1788 allocate_string (void)
1789 {
1790 struct Lisp_String *s;
1791
1792 /* eassert (!handling_signal); */
1793
1794 MALLOC_BLOCK_INPUT;
1795
1796 /* If the free-list is empty, allocate a new string_block, and
1797 add all the Lisp_Strings in it to the free-list. */
1798 if (string_free_list == NULL)
1799 {
1800 struct string_block *b;
1801 int i;
1802
1803 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1804 memset (b, 0, sizeof *b);
1805 b->next = string_blocks;
1806 string_blocks = b;
1807 ++n_string_blocks;
1808
1809 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1810 {
1811 s = b->strings + i;
1812 NEXT_FREE_LISP_STRING (s) = string_free_list;
1813 string_free_list = s;
1814 }
1815
1816 total_free_strings += STRING_BLOCK_SIZE;
1817 }
1818
1819 check_string_free_list ();
1820
1821 /* Pop a Lisp_String off the free-list. */
1822 s = string_free_list;
1823 string_free_list = NEXT_FREE_LISP_STRING (s);
1824
1825 MALLOC_UNBLOCK_INPUT;
1826
1827 /* Probably not strictly necessary, but play it safe. */
1828 memset (s, 0, sizeof *s);
1829
1830 --total_free_strings;
1831 ++total_strings;
1832 ++strings_consed;
1833 consing_since_gc += sizeof *s;
1834
1835 #ifdef GC_CHECK_STRING_BYTES
1836 if (!noninteractive)
1837 {
1838 if (++check_string_bytes_count == 200)
1839 {
1840 check_string_bytes_count = 0;
1841 check_string_bytes (1);
1842 }
1843 else
1844 check_string_bytes (0);
1845 }
1846 #endif /* GC_CHECK_STRING_BYTES */
1847
1848 return s;
1849 }
1850
1851
1852 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1853 plus a NUL byte at the end. Allocate an sdata structure for S, and
1854 set S->data to its `u.data' member. Store a NUL byte at the end of
1855 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1856 S->data if it was initially non-null. */
1857
1858 void
1859 allocate_string_data (struct Lisp_String *s,
1860 EMACS_INT nchars, EMACS_INT nbytes)
1861 {
1862 struct sdata *data, *old_data;
1863 struct sblock *b;
1864 EMACS_INT needed, old_nbytes;
1865
1866 /* Determine the number of bytes needed to store NBYTES bytes
1867 of string data. */
1868 needed = SDATA_SIZE (nbytes);
1869 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1870 old_nbytes = GC_STRING_BYTES (s);
1871
1872 MALLOC_BLOCK_INPUT;
1873
1874 if (nbytes > LARGE_STRING_BYTES)
1875 {
1876 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1877
1878 #ifdef DOUG_LEA_MALLOC
1879 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1880 because mapped region contents are not preserved in
1881 a dumped Emacs.
1882
1883 In case you think of allowing it in a dumped Emacs at the
1884 cost of not being able to re-dump, there's another reason:
1885 mmap'ed data typically have an address towards the top of the
1886 address space, which won't fit into an EMACS_INT (at least on
1887 32-bit systems with the current tagging scheme). --fx */
1888 mallopt (M_MMAP_MAX, 0);
1889 #endif
1890
1891 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1892
1893 #ifdef DOUG_LEA_MALLOC
1894 /* Back to a reasonable maximum of mmap'ed areas. */
1895 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1896 #endif
1897
1898 b->next_free = &b->first_data;
1899 b->first_data.string = NULL;
1900 b->next = large_sblocks;
1901 large_sblocks = b;
1902 }
1903 else if (current_sblock == NULL
1904 || (((char *) current_sblock + SBLOCK_SIZE
1905 - (char *) current_sblock->next_free)
1906 < (needed + GC_STRING_EXTRA)))
1907 {
1908 /* Not enough room in the current sblock. */
1909 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1910 b->next_free = &b->first_data;
1911 b->first_data.string = NULL;
1912 b->next = NULL;
1913
1914 if (current_sblock)
1915 current_sblock->next = b;
1916 else
1917 oldest_sblock = b;
1918 current_sblock = b;
1919 }
1920 else
1921 b = current_sblock;
1922
1923 data = b->next_free;
1924 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1925
1926 MALLOC_UNBLOCK_INPUT;
1927
1928 data->string = s;
1929 s->data = SDATA_DATA (data);
1930 #ifdef GC_CHECK_STRING_BYTES
1931 SDATA_NBYTES (data) = nbytes;
1932 #endif
1933 s->size = nchars;
1934 s->size_byte = nbytes;
1935 s->data[nbytes] = '\0';
1936 #ifdef GC_CHECK_STRING_OVERRUN
1937 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1938 #endif
1939
1940 /* If S had already data assigned, mark that as free by setting its
1941 string back-pointer to null, and recording the size of the data
1942 in it. */
1943 if (old_data)
1944 {
1945 SDATA_NBYTES (old_data) = old_nbytes;
1946 old_data->string = NULL;
1947 }
1948
1949 consing_since_gc += needed;
1950 }
1951
1952
1953 /* Sweep and compact strings. */
1954
1955 static void
1956 sweep_strings (void)
1957 {
1958 struct string_block *b, *next;
1959 struct string_block *live_blocks = NULL;
1960
1961 string_free_list = NULL;
1962 total_strings = total_free_strings = 0;
1963 total_string_size = 0;
1964
1965 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1966 for (b = string_blocks; b; b = next)
1967 {
1968 int i, nfree = 0;
1969 struct Lisp_String *free_list_before = string_free_list;
1970
1971 next = b->next;
1972
1973 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1974 {
1975 struct Lisp_String *s = b->strings + i;
1976
1977 if (s->data)
1978 {
1979 /* String was not on free-list before. */
1980 if (STRING_MARKED_P (s))
1981 {
1982 /* String is live; unmark it and its intervals. */
1983 UNMARK_STRING (s);
1984
1985 if (!NULL_INTERVAL_P (s->intervals))
1986 UNMARK_BALANCE_INTERVALS (s->intervals);
1987
1988 ++total_strings;
1989 total_string_size += STRING_BYTES (s);
1990 }
1991 else
1992 {
1993 /* String is dead. Put it on the free-list. */
1994 struct sdata *data = SDATA_OF_STRING (s);
1995
1996 /* Save the size of S in its sdata so that we know
1997 how large that is. Reset the sdata's string
1998 back-pointer so that we know it's free. */
1999 #ifdef GC_CHECK_STRING_BYTES
2000 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2001 abort ();
2002 #else
2003 data->u.nbytes = GC_STRING_BYTES (s);
2004 #endif
2005 data->string = NULL;
2006
2007 /* Reset the strings's `data' member so that we
2008 know it's free. */
2009 s->data = NULL;
2010
2011 /* Put the string on the free-list. */
2012 NEXT_FREE_LISP_STRING (s) = string_free_list;
2013 string_free_list = s;
2014 ++nfree;
2015 }
2016 }
2017 else
2018 {
2019 /* S was on the free-list before. Put it there again. */
2020 NEXT_FREE_LISP_STRING (s) = string_free_list;
2021 string_free_list = s;
2022 ++nfree;
2023 }
2024 }
2025
2026 /* Free blocks that contain free Lisp_Strings only, except
2027 the first two of them. */
2028 if (nfree == STRING_BLOCK_SIZE
2029 && total_free_strings > STRING_BLOCK_SIZE)
2030 {
2031 lisp_free (b);
2032 --n_string_blocks;
2033 string_free_list = free_list_before;
2034 }
2035 else
2036 {
2037 total_free_strings += nfree;
2038 b->next = live_blocks;
2039 live_blocks = b;
2040 }
2041 }
2042
2043 check_string_free_list ();
2044
2045 string_blocks = live_blocks;
2046 free_large_strings ();
2047 compact_small_strings ();
2048
2049 check_string_free_list ();
2050 }
2051
2052
2053 /* Free dead large strings. */
2054
2055 static void
2056 free_large_strings (void)
2057 {
2058 struct sblock *b, *next;
2059 struct sblock *live_blocks = NULL;
2060
2061 for (b = large_sblocks; b; b = next)
2062 {
2063 next = b->next;
2064
2065 if (b->first_data.string == NULL)
2066 lisp_free (b);
2067 else
2068 {
2069 b->next = live_blocks;
2070 live_blocks = b;
2071 }
2072 }
2073
2074 large_sblocks = live_blocks;
2075 }
2076
2077
2078 /* Compact data of small strings. Free sblocks that don't contain
2079 data of live strings after compaction. */
2080
2081 static void
2082 compact_small_strings (void)
2083 {
2084 struct sblock *b, *tb, *next;
2085 struct sdata *from, *to, *end, *tb_end;
2086 struct sdata *to_end, *from_end;
2087
2088 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2089 to, and TB_END is the end of TB. */
2090 tb = oldest_sblock;
2091 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2092 to = &tb->first_data;
2093
2094 /* Step through the blocks from the oldest to the youngest. We
2095 expect that old blocks will stabilize over time, so that less
2096 copying will happen this way. */
2097 for (b = oldest_sblock; b; b = b->next)
2098 {
2099 end = b->next_free;
2100 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2101
2102 for (from = &b->first_data; from < end; from = from_end)
2103 {
2104 /* Compute the next FROM here because copying below may
2105 overwrite data we need to compute it. */
2106 EMACS_INT nbytes;
2107
2108 #ifdef GC_CHECK_STRING_BYTES
2109 /* Check that the string size recorded in the string is the
2110 same as the one recorded in the sdata structure. */
2111 if (from->string
2112 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2113 abort ();
2114 #endif /* GC_CHECK_STRING_BYTES */
2115
2116 if (from->string)
2117 nbytes = GC_STRING_BYTES (from->string);
2118 else
2119 nbytes = SDATA_NBYTES (from);
2120
2121 if (nbytes > LARGE_STRING_BYTES)
2122 abort ();
2123
2124 nbytes = SDATA_SIZE (nbytes);
2125 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2126
2127 #ifdef GC_CHECK_STRING_OVERRUN
2128 if (memcmp (string_overrun_cookie,
2129 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2130 GC_STRING_OVERRUN_COOKIE_SIZE))
2131 abort ();
2132 #endif
2133
2134 /* FROM->string non-null means it's alive. Copy its data. */
2135 if (from->string)
2136 {
2137 /* If TB is full, proceed with the next sblock. */
2138 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2139 if (to_end > tb_end)
2140 {
2141 tb->next_free = to;
2142 tb = tb->next;
2143 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2144 to = &tb->first_data;
2145 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2146 }
2147
2148 /* Copy, and update the string's `data' pointer. */
2149 if (from != to)
2150 {
2151 xassert (tb != b || to <= from);
2152 memmove (to, from, nbytes + GC_STRING_EXTRA);
2153 to->string->data = SDATA_DATA (to);
2154 }
2155
2156 /* Advance past the sdata we copied to. */
2157 to = to_end;
2158 }
2159 }
2160 }
2161
2162 /* The rest of the sblocks following TB don't contain live data, so
2163 we can free them. */
2164 for (b = tb->next; b; b = next)
2165 {
2166 next = b->next;
2167 lisp_free (b);
2168 }
2169
2170 tb->next_free = to;
2171 tb->next = NULL;
2172 current_sblock = tb;
2173 }
2174
2175
2176 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2177 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2178 LENGTH must be an integer.
2179 INIT must be an integer that represents a character. */)
2180 (Lisp_Object length, Lisp_Object init)
2181 {
2182 register Lisp_Object val;
2183 register unsigned char *p, *end;
2184 int c;
2185 EMACS_INT nbytes;
2186
2187 CHECK_NATNUM (length);
2188 CHECK_NUMBER (init);
2189
2190 c = XINT (init);
2191 if (ASCII_CHAR_P (c))
2192 {
2193 nbytes = XINT (length);
2194 val = make_uninit_string (nbytes);
2195 p = SDATA (val);
2196 end = p + SCHARS (val);
2197 while (p != end)
2198 *p++ = c;
2199 }
2200 else
2201 {
2202 unsigned char str[MAX_MULTIBYTE_LENGTH];
2203 int len = CHAR_STRING (c, str);
2204 EMACS_INT string_len = XINT (length);
2205
2206 if (string_len > MOST_POSITIVE_FIXNUM / len)
2207 error ("Maximum string size exceeded");
2208 nbytes = len * string_len;
2209 val = make_uninit_multibyte_string (string_len, nbytes);
2210 p = SDATA (val);
2211 end = p + nbytes;
2212 while (p != end)
2213 {
2214 memcpy (p, str, len);
2215 p += len;
2216 }
2217 }
2218
2219 *p = 0;
2220 return val;
2221 }
2222
2223
2224 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2225 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2226 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2227 (Lisp_Object length, Lisp_Object init)
2228 {
2229 register Lisp_Object val;
2230 struct Lisp_Bool_Vector *p;
2231 int real_init, i;
2232 EMACS_INT length_in_chars, length_in_elts;
2233 int bits_per_value;
2234
2235 CHECK_NATNUM (length);
2236
2237 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2238
2239 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2240 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2241 / BOOL_VECTOR_BITS_PER_CHAR);
2242
2243 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2244 slot `size' of the struct Lisp_Bool_Vector. */
2245 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2246
2247 /* Get rid of any bits that would cause confusion. */
2248 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2249 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2250 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2251
2252 p = XBOOL_VECTOR (val);
2253 p->size = XFASTINT (length);
2254
2255 real_init = (NILP (init) ? 0 : -1);
2256 for (i = 0; i < length_in_chars ; i++)
2257 p->data[i] = real_init;
2258
2259 /* Clear the extraneous bits in the last byte. */
2260 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2261 p->data[length_in_chars - 1]
2262 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2263
2264 return val;
2265 }
2266
2267
2268 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2269 of characters from the contents. This string may be unibyte or
2270 multibyte, depending on the contents. */
2271
2272 Lisp_Object
2273 make_string (const char *contents, EMACS_INT nbytes)
2274 {
2275 register Lisp_Object val;
2276 EMACS_INT nchars, multibyte_nbytes;
2277
2278 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2279 &nchars, &multibyte_nbytes);
2280 if (nbytes == nchars || nbytes != multibyte_nbytes)
2281 /* CONTENTS contains no multibyte sequences or contains an invalid
2282 multibyte sequence. We must make unibyte string. */
2283 val = make_unibyte_string (contents, nbytes);
2284 else
2285 val = make_multibyte_string (contents, nchars, nbytes);
2286 return val;
2287 }
2288
2289
2290 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2291
2292 Lisp_Object
2293 make_unibyte_string (const char *contents, EMACS_INT length)
2294 {
2295 register Lisp_Object val;
2296 val = make_uninit_string (length);
2297 memcpy (SDATA (val), contents, length);
2298 return val;
2299 }
2300
2301
2302 /* Make a multibyte string from NCHARS characters occupying NBYTES
2303 bytes at CONTENTS. */
2304
2305 Lisp_Object
2306 make_multibyte_string (const char *contents,
2307 EMACS_INT nchars, EMACS_INT nbytes)
2308 {
2309 register Lisp_Object val;
2310 val = make_uninit_multibyte_string (nchars, nbytes);
2311 memcpy (SDATA (val), contents, nbytes);
2312 return val;
2313 }
2314
2315
2316 /* Make a string from NCHARS characters occupying NBYTES bytes at
2317 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2318
2319 Lisp_Object
2320 make_string_from_bytes (const char *contents,
2321 EMACS_INT nchars, EMACS_INT nbytes)
2322 {
2323 register Lisp_Object val;
2324 val = make_uninit_multibyte_string (nchars, nbytes);
2325 memcpy (SDATA (val), contents, nbytes);
2326 if (SBYTES (val) == SCHARS (val))
2327 STRING_SET_UNIBYTE (val);
2328 return val;
2329 }
2330
2331
2332 /* Make a string from NCHARS characters occupying NBYTES bytes at
2333 CONTENTS. The argument MULTIBYTE controls whether to label the
2334 string as multibyte. If NCHARS is negative, it counts the number of
2335 characters by itself. */
2336
2337 Lisp_Object
2338 make_specified_string (const char *contents,
2339 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2340 {
2341 register Lisp_Object val;
2342
2343 if (nchars < 0)
2344 {
2345 if (multibyte)
2346 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2347 nbytes);
2348 else
2349 nchars = nbytes;
2350 }
2351 val = make_uninit_multibyte_string (nchars, nbytes);
2352 memcpy (SDATA (val), contents, nbytes);
2353 if (!multibyte)
2354 STRING_SET_UNIBYTE (val);
2355 return val;
2356 }
2357
2358
2359 /* Make a string from the data at STR, treating it as multibyte if the
2360 data warrants. */
2361
2362 Lisp_Object
2363 build_string (const char *str)
2364 {
2365 return make_string (str, strlen (str));
2366 }
2367
2368
2369 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2370 occupying LENGTH bytes. */
2371
2372 Lisp_Object
2373 make_uninit_string (EMACS_INT length)
2374 {
2375 Lisp_Object val;
2376
2377 if (!length)
2378 return empty_unibyte_string;
2379 val = make_uninit_multibyte_string (length, length);
2380 STRING_SET_UNIBYTE (val);
2381 return val;
2382 }
2383
2384
2385 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2386 which occupy NBYTES bytes. */
2387
2388 Lisp_Object
2389 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2390 {
2391 Lisp_Object string;
2392 struct Lisp_String *s;
2393
2394 if (nchars < 0)
2395 abort ();
2396 if (!nbytes)
2397 return empty_multibyte_string;
2398
2399 s = allocate_string ();
2400 allocate_string_data (s, nchars, nbytes);
2401 XSETSTRING (string, s);
2402 string_chars_consed += nbytes;
2403 return string;
2404 }
2405
2406
2407 \f
2408 /***********************************************************************
2409 Float Allocation
2410 ***********************************************************************/
2411
2412 /* We store float cells inside of float_blocks, allocating a new
2413 float_block with malloc whenever necessary. Float cells reclaimed
2414 by GC are put on a free list to be reallocated before allocating
2415 any new float cells from the latest float_block. */
2416
2417 #define FLOAT_BLOCK_SIZE \
2418 (((BLOCK_BYTES - sizeof (struct float_block *) \
2419 /* The compiler might add padding at the end. */ \
2420 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2421 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2422
2423 #define GETMARKBIT(block,n) \
2424 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2425 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2426 & 1)
2427
2428 #define SETMARKBIT(block,n) \
2429 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2430 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2431
2432 #define UNSETMARKBIT(block,n) \
2433 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2434 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2435
2436 #define FLOAT_BLOCK(fptr) \
2437 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2438
2439 #define FLOAT_INDEX(fptr) \
2440 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2441
2442 struct float_block
2443 {
2444 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2445 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2446 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2447 struct float_block *next;
2448 };
2449
2450 #define FLOAT_MARKED_P(fptr) \
2451 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2452
2453 #define FLOAT_MARK(fptr) \
2454 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2455
2456 #define FLOAT_UNMARK(fptr) \
2457 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2458
2459 /* Current float_block. */
2460
2461 struct float_block *float_block;
2462
2463 /* Index of first unused Lisp_Float in the current float_block. */
2464
2465 int float_block_index;
2466
2467 /* Total number of float blocks now in use. */
2468
2469 int n_float_blocks;
2470
2471 /* Free-list of Lisp_Floats. */
2472
2473 struct Lisp_Float *float_free_list;
2474
2475
2476 /* Initialize float allocation. */
2477
2478 static void
2479 init_float (void)
2480 {
2481 float_block = NULL;
2482 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2483 float_free_list = 0;
2484 n_float_blocks = 0;
2485 }
2486
2487
2488 /* Return a new float object with value FLOAT_VALUE. */
2489
2490 Lisp_Object
2491 make_float (double float_value)
2492 {
2493 register Lisp_Object val;
2494
2495 /* eassert (!handling_signal); */
2496
2497 MALLOC_BLOCK_INPUT;
2498
2499 if (float_free_list)
2500 {
2501 /* We use the data field for chaining the free list
2502 so that we won't use the same field that has the mark bit. */
2503 XSETFLOAT (val, float_free_list);
2504 float_free_list = float_free_list->u.chain;
2505 }
2506 else
2507 {
2508 if (float_block_index == FLOAT_BLOCK_SIZE)
2509 {
2510 register struct float_block *new;
2511
2512 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2513 MEM_TYPE_FLOAT);
2514 new->next = float_block;
2515 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2516 float_block = new;
2517 float_block_index = 0;
2518 n_float_blocks++;
2519 }
2520 XSETFLOAT (val, &float_block->floats[float_block_index]);
2521 float_block_index++;
2522 }
2523
2524 MALLOC_UNBLOCK_INPUT;
2525
2526 XFLOAT_INIT (val, float_value);
2527 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2528 consing_since_gc += sizeof (struct Lisp_Float);
2529 floats_consed++;
2530 return val;
2531 }
2532
2533
2534 \f
2535 /***********************************************************************
2536 Cons Allocation
2537 ***********************************************************************/
2538
2539 /* We store cons cells inside of cons_blocks, allocating a new
2540 cons_block with malloc whenever necessary. Cons cells reclaimed by
2541 GC are put on a free list to be reallocated before allocating
2542 any new cons cells from the latest cons_block. */
2543
2544 #define CONS_BLOCK_SIZE \
2545 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2546 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2547
2548 #define CONS_BLOCK(fptr) \
2549 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2550
2551 #define CONS_INDEX(fptr) \
2552 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2553
2554 struct cons_block
2555 {
2556 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2557 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2558 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2559 struct cons_block *next;
2560 };
2561
2562 #define CONS_MARKED_P(fptr) \
2563 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2564
2565 #define CONS_MARK(fptr) \
2566 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2567
2568 #define CONS_UNMARK(fptr) \
2569 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2570
2571 /* Current cons_block. */
2572
2573 struct cons_block *cons_block;
2574
2575 /* Index of first unused Lisp_Cons in the current block. */
2576
2577 int cons_block_index;
2578
2579 /* Free-list of Lisp_Cons structures. */
2580
2581 struct Lisp_Cons *cons_free_list;
2582
2583 /* Total number of cons blocks now in use. */
2584
2585 static int n_cons_blocks;
2586
2587
2588 /* Initialize cons allocation. */
2589
2590 static void
2591 init_cons (void)
2592 {
2593 cons_block = NULL;
2594 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2595 cons_free_list = 0;
2596 n_cons_blocks = 0;
2597 }
2598
2599
2600 /* Explicitly free a cons cell by putting it on the free-list. */
2601
2602 void
2603 free_cons (struct Lisp_Cons *ptr)
2604 {
2605 ptr->u.chain = cons_free_list;
2606 #if GC_MARK_STACK
2607 ptr->car = Vdead;
2608 #endif
2609 cons_free_list = ptr;
2610 }
2611
2612 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2613 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2614 (Lisp_Object car, Lisp_Object cdr)
2615 {
2616 register Lisp_Object val;
2617
2618 /* eassert (!handling_signal); */
2619
2620 MALLOC_BLOCK_INPUT;
2621
2622 if (cons_free_list)
2623 {
2624 /* We use the cdr for chaining the free list
2625 so that we won't use the same field that has the mark bit. */
2626 XSETCONS (val, cons_free_list);
2627 cons_free_list = cons_free_list->u.chain;
2628 }
2629 else
2630 {
2631 if (cons_block_index == CONS_BLOCK_SIZE)
2632 {
2633 register struct cons_block *new;
2634 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2635 MEM_TYPE_CONS);
2636 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2637 new->next = cons_block;
2638 cons_block = new;
2639 cons_block_index = 0;
2640 n_cons_blocks++;
2641 }
2642 XSETCONS (val, &cons_block->conses[cons_block_index]);
2643 cons_block_index++;
2644 }
2645
2646 MALLOC_UNBLOCK_INPUT;
2647
2648 XSETCAR (val, car);
2649 XSETCDR (val, cdr);
2650 eassert (!CONS_MARKED_P (XCONS (val)));
2651 consing_since_gc += sizeof (struct Lisp_Cons);
2652 cons_cells_consed++;
2653 return val;
2654 }
2655
2656 #ifdef GC_CHECK_CONS_LIST
2657 /* Get an error now if there's any junk in the cons free list. */
2658 void
2659 check_cons_list (void)
2660 {
2661 struct Lisp_Cons *tail = cons_free_list;
2662
2663 while (tail)
2664 tail = tail->u.chain;
2665 }
2666 #endif
2667
2668 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2669
2670 Lisp_Object
2671 list1 (Lisp_Object arg1)
2672 {
2673 return Fcons (arg1, Qnil);
2674 }
2675
2676 Lisp_Object
2677 list2 (Lisp_Object arg1, Lisp_Object arg2)
2678 {
2679 return Fcons (arg1, Fcons (arg2, Qnil));
2680 }
2681
2682
2683 Lisp_Object
2684 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2685 {
2686 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2687 }
2688
2689
2690 Lisp_Object
2691 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2692 {
2693 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2694 }
2695
2696
2697 Lisp_Object
2698 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2699 {
2700 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2701 Fcons (arg5, Qnil)))));
2702 }
2703
2704
2705 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2706 doc: /* Return a newly created list with specified arguments as elements.
2707 Any number of arguments, even zero arguments, are allowed.
2708 usage: (list &rest OBJECTS) */)
2709 (int nargs, register Lisp_Object *args)
2710 {
2711 register Lisp_Object val;
2712 val = Qnil;
2713
2714 while (nargs > 0)
2715 {
2716 nargs--;
2717 val = Fcons (args[nargs], val);
2718 }
2719 return val;
2720 }
2721
2722
2723 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2724 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2725 (register Lisp_Object length, Lisp_Object init)
2726 {
2727 register Lisp_Object val;
2728 register EMACS_INT size;
2729
2730 CHECK_NATNUM (length);
2731 size = XFASTINT (length);
2732
2733 val = Qnil;
2734 while (size > 0)
2735 {
2736 val = Fcons (init, val);
2737 --size;
2738
2739 if (size > 0)
2740 {
2741 val = Fcons (init, val);
2742 --size;
2743
2744 if (size > 0)
2745 {
2746 val = Fcons (init, val);
2747 --size;
2748
2749 if (size > 0)
2750 {
2751 val = Fcons (init, val);
2752 --size;
2753
2754 if (size > 0)
2755 {
2756 val = Fcons (init, val);
2757 --size;
2758 }
2759 }
2760 }
2761 }
2762
2763 QUIT;
2764 }
2765
2766 return val;
2767 }
2768
2769
2770 \f
2771 /***********************************************************************
2772 Vector Allocation
2773 ***********************************************************************/
2774
2775 /* Singly-linked list of all vectors. */
2776
2777 static struct Lisp_Vector *all_vectors;
2778
2779 /* Total number of vector-like objects now in use. */
2780
2781 static int n_vectors;
2782
2783
2784 /* Value is a pointer to a newly allocated Lisp_Vector structure
2785 with room for LEN Lisp_Objects. */
2786
2787 static struct Lisp_Vector *
2788 allocate_vectorlike (EMACS_INT len)
2789 {
2790 struct Lisp_Vector *p;
2791 size_t nbytes;
2792
2793 MALLOC_BLOCK_INPUT;
2794
2795 #ifdef DOUG_LEA_MALLOC
2796 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2797 because mapped region contents are not preserved in
2798 a dumped Emacs. */
2799 mallopt (M_MMAP_MAX, 0);
2800 #endif
2801
2802 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2803 /* eassert (!handling_signal); */
2804
2805 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2806 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2807
2808 #ifdef DOUG_LEA_MALLOC
2809 /* Back to a reasonable maximum of mmap'ed areas. */
2810 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2811 #endif
2812
2813 consing_since_gc += nbytes;
2814 vector_cells_consed += len;
2815
2816 p->next = all_vectors;
2817 all_vectors = p;
2818
2819 MALLOC_UNBLOCK_INPUT;
2820
2821 ++n_vectors;
2822 return p;
2823 }
2824
2825
2826 /* Allocate a vector with NSLOTS slots. */
2827
2828 struct Lisp_Vector *
2829 allocate_vector (EMACS_INT nslots)
2830 {
2831 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2832 v->size = nslots;
2833 return v;
2834 }
2835
2836
2837 /* Allocate other vector-like structures. */
2838
2839 struct Lisp_Vector *
2840 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2841 {
2842 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2843 EMACS_INT i;
2844
2845 /* Only the first lisplen slots will be traced normally by the GC. */
2846 v->size = lisplen;
2847 for (i = 0; i < lisplen; ++i)
2848 v->contents[i] = Qnil;
2849
2850 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2851 return v;
2852 }
2853
2854 struct Lisp_Hash_Table *
2855 allocate_hash_table (void)
2856 {
2857 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2858 }
2859
2860
2861 struct window *
2862 allocate_window (void)
2863 {
2864 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2865 }
2866
2867
2868 struct terminal *
2869 allocate_terminal (void)
2870 {
2871 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2872 next_terminal, PVEC_TERMINAL);
2873 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2874 memset (&t->next_terminal, 0,
2875 (char*) (t + 1) - (char*) &t->next_terminal);
2876
2877 return t;
2878 }
2879
2880 struct frame *
2881 allocate_frame (void)
2882 {
2883 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2884 face_cache, PVEC_FRAME);
2885 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2886 memset (&f->face_cache, 0,
2887 (char *) (f + 1) - (char *) &f->face_cache);
2888 return f;
2889 }
2890
2891
2892 struct Lisp_Process *
2893 allocate_process (void)
2894 {
2895 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2896 }
2897
2898
2899 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2900 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2901 See also the function `vector'. */)
2902 (register Lisp_Object length, Lisp_Object init)
2903 {
2904 Lisp_Object vector;
2905 register EMACS_INT sizei;
2906 register EMACS_INT i;
2907 register struct Lisp_Vector *p;
2908
2909 CHECK_NATNUM (length);
2910 sizei = XFASTINT (length);
2911
2912 p = allocate_vector (sizei);
2913 for (i = 0; i < sizei; i++)
2914 p->contents[i] = init;
2915
2916 XSETVECTOR (vector, p);
2917 return vector;
2918 }
2919
2920
2921 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2922 doc: /* Return a newly created vector with specified arguments as elements.
2923 Any number of arguments, even zero arguments, are allowed.
2924 usage: (vector &rest OBJECTS) */)
2925 (register int nargs, Lisp_Object *args)
2926 {
2927 register Lisp_Object len, val;
2928 register int i;
2929 register struct Lisp_Vector *p;
2930
2931 XSETFASTINT (len, nargs);
2932 val = Fmake_vector (len, Qnil);
2933 p = XVECTOR (val);
2934 for (i = 0; i < nargs; i++)
2935 p->contents[i] = args[i];
2936 return val;
2937 }
2938
2939
2940 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2941 doc: /* Create a byte-code object with specified arguments as elements.
2942 The arguments should be the arglist, bytecode-string, constant vector,
2943 stack size, (optional) doc string, and (optional) interactive spec.
2944 The first four arguments are required; at most six have any
2945 significance.
2946 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2947 (register int nargs, Lisp_Object *args)
2948 {
2949 register Lisp_Object len, val;
2950 register int i;
2951 register struct Lisp_Vector *p;
2952
2953 XSETFASTINT (len, nargs);
2954 if (!NILP (Vpurify_flag))
2955 val = make_pure_vector ((EMACS_INT) nargs);
2956 else
2957 val = Fmake_vector (len, Qnil);
2958
2959 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2960 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2961 earlier because they produced a raw 8-bit string for byte-code
2962 and now such a byte-code string is loaded as multibyte while
2963 raw 8-bit characters converted to multibyte form. Thus, now we
2964 must convert them back to the original unibyte form. */
2965 args[1] = Fstring_as_unibyte (args[1]);
2966
2967 p = XVECTOR (val);
2968 for (i = 0; i < nargs; i++)
2969 {
2970 if (!NILP (Vpurify_flag))
2971 args[i] = Fpurecopy (args[i]);
2972 p->contents[i] = args[i];
2973 }
2974 XSETPVECTYPE (p, PVEC_COMPILED);
2975 XSETCOMPILED (val, p);
2976 return val;
2977 }
2978
2979
2980 \f
2981 /***********************************************************************
2982 Symbol Allocation
2983 ***********************************************************************/
2984
2985 /* Each symbol_block is just under 1020 bytes long, since malloc
2986 really allocates in units of powers of two and uses 4 bytes for its
2987 own overhead. */
2988
2989 #define SYMBOL_BLOCK_SIZE \
2990 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2991
2992 struct symbol_block
2993 {
2994 /* Place `symbols' first, to preserve alignment. */
2995 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2996 struct symbol_block *next;
2997 };
2998
2999 /* Current symbol block and index of first unused Lisp_Symbol
3000 structure in it. */
3001
3002 static struct symbol_block *symbol_block;
3003 static int symbol_block_index;
3004
3005 /* List of free symbols. */
3006
3007 static struct Lisp_Symbol *symbol_free_list;
3008
3009 /* Total number of symbol blocks now in use. */
3010
3011 static int n_symbol_blocks;
3012
3013
3014 /* Initialize symbol allocation. */
3015
3016 static void
3017 init_symbol (void)
3018 {
3019 symbol_block = NULL;
3020 symbol_block_index = SYMBOL_BLOCK_SIZE;
3021 symbol_free_list = 0;
3022 n_symbol_blocks = 0;
3023 }
3024
3025
3026 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3027 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3028 Its value and function definition are void, and its property list is nil. */)
3029 (Lisp_Object name)
3030 {
3031 register Lisp_Object val;
3032 register struct Lisp_Symbol *p;
3033
3034 CHECK_STRING (name);
3035
3036 /* eassert (!handling_signal); */
3037
3038 MALLOC_BLOCK_INPUT;
3039
3040 if (symbol_free_list)
3041 {
3042 XSETSYMBOL (val, symbol_free_list);
3043 symbol_free_list = symbol_free_list->next;
3044 }
3045 else
3046 {
3047 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3048 {
3049 struct symbol_block *new;
3050 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3051 MEM_TYPE_SYMBOL);
3052 new->next = symbol_block;
3053 symbol_block = new;
3054 symbol_block_index = 0;
3055 n_symbol_blocks++;
3056 }
3057 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3058 symbol_block_index++;
3059 }
3060
3061 MALLOC_UNBLOCK_INPUT;
3062
3063 p = XSYMBOL (val);
3064 p->xname = name;
3065 p->plist = Qnil;
3066 p->redirect = SYMBOL_PLAINVAL;
3067 SET_SYMBOL_VAL (p, Qunbound);
3068 p->function = Qunbound;
3069 p->next = NULL;
3070 p->gcmarkbit = 0;
3071 p->interned = SYMBOL_UNINTERNED;
3072 p->constant = 0;
3073 consing_since_gc += sizeof (struct Lisp_Symbol);
3074 symbols_consed++;
3075 return val;
3076 }
3077
3078
3079 \f
3080 /***********************************************************************
3081 Marker (Misc) Allocation
3082 ***********************************************************************/
3083
3084 /* Allocation of markers and other objects that share that structure.
3085 Works like allocation of conses. */
3086
3087 #define MARKER_BLOCK_SIZE \
3088 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3089
3090 struct marker_block
3091 {
3092 /* Place `markers' first, to preserve alignment. */
3093 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3094 struct marker_block *next;
3095 };
3096
3097 static struct marker_block *marker_block;
3098 static int marker_block_index;
3099
3100 static union Lisp_Misc *marker_free_list;
3101
3102 /* Total number of marker blocks now in use. */
3103
3104 static int n_marker_blocks;
3105
3106 static void
3107 init_marker (void)
3108 {
3109 marker_block = NULL;
3110 marker_block_index = MARKER_BLOCK_SIZE;
3111 marker_free_list = 0;
3112 n_marker_blocks = 0;
3113 }
3114
3115 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3116
3117 Lisp_Object
3118 allocate_misc (void)
3119 {
3120 Lisp_Object val;
3121
3122 /* eassert (!handling_signal); */
3123
3124 MALLOC_BLOCK_INPUT;
3125
3126 if (marker_free_list)
3127 {
3128 XSETMISC (val, marker_free_list);
3129 marker_free_list = marker_free_list->u_free.chain;
3130 }
3131 else
3132 {
3133 if (marker_block_index == MARKER_BLOCK_SIZE)
3134 {
3135 struct marker_block *new;
3136 new = (struct marker_block *) lisp_malloc (sizeof *new,
3137 MEM_TYPE_MISC);
3138 new->next = marker_block;
3139 marker_block = new;
3140 marker_block_index = 0;
3141 n_marker_blocks++;
3142 total_free_markers += MARKER_BLOCK_SIZE;
3143 }
3144 XSETMISC (val, &marker_block->markers[marker_block_index]);
3145 marker_block_index++;
3146 }
3147
3148 MALLOC_UNBLOCK_INPUT;
3149
3150 --total_free_markers;
3151 consing_since_gc += sizeof (union Lisp_Misc);
3152 misc_objects_consed++;
3153 XMISCANY (val)->gcmarkbit = 0;
3154 return val;
3155 }
3156
3157 /* Free a Lisp_Misc object */
3158
3159 void
3160 free_misc (Lisp_Object misc)
3161 {
3162 XMISCTYPE (misc) = Lisp_Misc_Free;
3163 XMISC (misc)->u_free.chain = marker_free_list;
3164 marker_free_list = XMISC (misc);
3165
3166 total_free_markers++;
3167 }
3168
3169 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3170 INTEGER. This is used to package C values to call record_unwind_protect.
3171 The unwind function can get the C values back using XSAVE_VALUE. */
3172
3173 Lisp_Object
3174 make_save_value (void *pointer, int integer)
3175 {
3176 register Lisp_Object val;
3177 register struct Lisp_Save_Value *p;
3178
3179 val = allocate_misc ();
3180 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3181 p = XSAVE_VALUE (val);
3182 p->pointer = pointer;
3183 p->integer = integer;
3184 p->dogc = 0;
3185 return val;
3186 }
3187
3188 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3189 doc: /* Return a newly allocated marker which does not point at any place. */)
3190 (void)
3191 {
3192 register Lisp_Object val;
3193 register struct Lisp_Marker *p;
3194
3195 val = allocate_misc ();
3196 XMISCTYPE (val) = Lisp_Misc_Marker;
3197 p = XMARKER (val);
3198 p->buffer = 0;
3199 p->bytepos = 0;
3200 p->charpos = 0;
3201 p->next = NULL;
3202 p->insertion_type = 0;
3203 return val;
3204 }
3205
3206 /* Put MARKER back on the free list after using it temporarily. */
3207
3208 void
3209 free_marker (Lisp_Object marker)
3210 {
3211 unchain_marker (XMARKER (marker));
3212 free_misc (marker);
3213 }
3214
3215 \f
3216 /* Return a newly created vector or string with specified arguments as
3217 elements. If all the arguments are characters that can fit
3218 in a string of events, make a string; otherwise, make a vector.
3219
3220 Any number of arguments, even zero arguments, are allowed. */
3221
3222 Lisp_Object
3223 make_event_array (register int nargs, Lisp_Object *args)
3224 {
3225 int i;
3226
3227 for (i = 0; i < nargs; i++)
3228 /* The things that fit in a string
3229 are characters that are in 0...127,
3230 after discarding the meta bit and all the bits above it. */
3231 if (!INTEGERP (args[i])
3232 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3233 return Fvector (nargs, args);
3234
3235 /* Since the loop exited, we know that all the things in it are
3236 characters, so we can make a string. */
3237 {
3238 Lisp_Object result;
3239
3240 result = Fmake_string (make_number (nargs), make_number (0));
3241 for (i = 0; i < nargs; i++)
3242 {
3243 SSET (result, i, XINT (args[i]));
3244 /* Move the meta bit to the right place for a string char. */
3245 if (XINT (args[i]) & CHAR_META)
3246 SSET (result, i, SREF (result, i) | 0x80);
3247 }
3248
3249 return result;
3250 }
3251 }
3252
3253
3254 \f
3255 /************************************************************************
3256 Memory Full Handling
3257 ************************************************************************/
3258
3259
3260 /* Called if malloc returns zero. */
3261
3262 void
3263 memory_full (void)
3264 {
3265 int i;
3266
3267 Vmemory_full = Qt;
3268
3269 memory_full_cons_threshold = sizeof (struct cons_block);
3270
3271 /* The first time we get here, free the spare memory. */
3272 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3273 if (spare_memory[i])
3274 {
3275 if (i == 0)
3276 free (spare_memory[i]);
3277 else if (i >= 1 && i <= 4)
3278 lisp_align_free (spare_memory[i]);
3279 else
3280 lisp_free (spare_memory[i]);
3281 spare_memory[i] = 0;
3282 }
3283
3284 /* Record the space now used. When it decreases substantially,
3285 we can refill the memory reserve. */
3286 #ifndef SYSTEM_MALLOC
3287 bytes_used_when_full = BYTES_USED;
3288 #endif
3289
3290 /* This used to call error, but if we've run out of memory, we could
3291 get infinite recursion trying to build the string. */
3292 xsignal (Qnil, Vmemory_signal_data);
3293 }
3294
3295 /* If we released our reserve (due to running out of memory),
3296 and we have a fair amount free once again,
3297 try to set aside another reserve in case we run out once more.
3298
3299 This is called when a relocatable block is freed in ralloc.c,
3300 and also directly from this file, in case we're not using ralloc.c. */
3301
3302 void
3303 refill_memory_reserve (void)
3304 {
3305 #ifndef SYSTEM_MALLOC
3306 if (spare_memory[0] == 0)
3307 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3308 if (spare_memory[1] == 0)
3309 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3310 MEM_TYPE_CONS);
3311 if (spare_memory[2] == 0)
3312 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3313 MEM_TYPE_CONS);
3314 if (spare_memory[3] == 0)
3315 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3316 MEM_TYPE_CONS);
3317 if (spare_memory[4] == 0)
3318 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3319 MEM_TYPE_CONS);
3320 if (spare_memory[5] == 0)
3321 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3322 MEM_TYPE_STRING);
3323 if (spare_memory[6] == 0)
3324 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3325 MEM_TYPE_STRING);
3326 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3327 Vmemory_full = Qnil;
3328 #endif
3329 }
3330 \f
3331 /************************************************************************
3332 C Stack Marking
3333 ************************************************************************/
3334
3335 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3336
3337 /* Conservative C stack marking requires a method to identify possibly
3338 live Lisp objects given a pointer value. We do this by keeping
3339 track of blocks of Lisp data that are allocated in a red-black tree
3340 (see also the comment of mem_node which is the type of nodes in
3341 that tree). Function lisp_malloc adds information for an allocated
3342 block to the red-black tree with calls to mem_insert, and function
3343 lisp_free removes it with mem_delete. Functions live_string_p etc
3344 call mem_find to lookup information about a given pointer in the
3345 tree, and use that to determine if the pointer points to a Lisp
3346 object or not. */
3347
3348 /* Initialize this part of alloc.c. */
3349
3350 static void
3351 mem_init (void)
3352 {
3353 mem_z.left = mem_z.right = MEM_NIL;
3354 mem_z.parent = NULL;
3355 mem_z.color = MEM_BLACK;
3356 mem_z.start = mem_z.end = NULL;
3357 mem_root = MEM_NIL;
3358 }
3359
3360
3361 /* Value is a pointer to the mem_node containing START. Value is
3362 MEM_NIL if there is no node in the tree containing START. */
3363
3364 static INLINE struct mem_node *
3365 mem_find (void *start)
3366 {
3367 struct mem_node *p;
3368
3369 if (start < min_heap_address || start > max_heap_address)
3370 return MEM_NIL;
3371
3372 /* Make the search always successful to speed up the loop below. */
3373 mem_z.start = start;
3374 mem_z.end = (char *) start + 1;
3375
3376 p = mem_root;
3377 while (start < p->start || start >= p->end)
3378 p = start < p->start ? p->left : p->right;
3379 return p;
3380 }
3381
3382
3383 /* Insert a new node into the tree for a block of memory with start
3384 address START, end address END, and type TYPE. Value is a
3385 pointer to the node that was inserted. */
3386
3387 static struct mem_node *
3388 mem_insert (void *start, void *end, enum mem_type type)
3389 {
3390 struct mem_node *c, *parent, *x;
3391
3392 if (min_heap_address == NULL || start < min_heap_address)
3393 min_heap_address = start;
3394 if (max_heap_address == NULL || end > max_heap_address)
3395 max_heap_address = end;
3396
3397 /* See where in the tree a node for START belongs. In this
3398 particular application, it shouldn't happen that a node is already
3399 present. For debugging purposes, let's check that. */
3400 c = mem_root;
3401 parent = NULL;
3402
3403 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3404
3405 while (c != MEM_NIL)
3406 {
3407 if (start >= c->start && start < c->end)
3408 abort ();
3409 parent = c;
3410 c = start < c->start ? c->left : c->right;
3411 }
3412
3413 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3414
3415 while (c != MEM_NIL)
3416 {
3417 parent = c;
3418 c = start < c->start ? c->left : c->right;
3419 }
3420
3421 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3422
3423 /* Create a new node. */
3424 #ifdef GC_MALLOC_CHECK
3425 x = (struct mem_node *) _malloc_internal (sizeof *x);
3426 if (x == NULL)
3427 abort ();
3428 #else
3429 x = (struct mem_node *) xmalloc (sizeof *x);
3430 #endif
3431 x->start = start;
3432 x->end = end;
3433 x->type = type;
3434 x->parent = parent;
3435 x->left = x->right = MEM_NIL;
3436 x->color = MEM_RED;
3437
3438 /* Insert it as child of PARENT or install it as root. */
3439 if (parent)
3440 {
3441 if (start < parent->start)
3442 parent->left = x;
3443 else
3444 parent->right = x;
3445 }
3446 else
3447 mem_root = x;
3448
3449 /* Re-establish red-black tree properties. */
3450 mem_insert_fixup (x);
3451
3452 return x;
3453 }
3454
3455
3456 /* Re-establish the red-black properties of the tree, and thereby
3457 balance the tree, after node X has been inserted; X is always red. */
3458
3459 static void
3460 mem_insert_fixup (struct mem_node *x)
3461 {
3462 while (x != mem_root && x->parent->color == MEM_RED)
3463 {
3464 /* X is red and its parent is red. This is a violation of
3465 red-black tree property #3. */
3466
3467 if (x->parent == x->parent->parent->left)
3468 {
3469 /* We're on the left side of our grandparent, and Y is our
3470 "uncle". */
3471 struct mem_node *y = x->parent->parent->right;
3472
3473 if (y->color == MEM_RED)
3474 {
3475 /* Uncle and parent are red but should be black because
3476 X is red. Change the colors accordingly and proceed
3477 with the grandparent. */
3478 x->parent->color = MEM_BLACK;
3479 y->color = MEM_BLACK;
3480 x->parent->parent->color = MEM_RED;
3481 x = x->parent->parent;
3482 }
3483 else
3484 {
3485 /* Parent and uncle have different colors; parent is
3486 red, uncle is black. */
3487 if (x == x->parent->right)
3488 {
3489 x = x->parent;
3490 mem_rotate_left (x);
3491 }
3492
3493 x->parent->color = MEM_BLACK;
3494 x->parent->parent->color = MEM_RED;
3495 mem_rotate_right (x->parent->parent);
3496 }
3497 }
3498 else
3499 {
3500 /* This is the symmetrical case of above. */
3501 struct mem_node *y = x->parent->parent->left;
3502
3503 if (y->color == MEM_RED)
3504 {
3505 x->parent->color = MEM_BLACK;
3506 y->color = MEM_BLACK;
3507 x->parent->parent->color = MEM_RED;
3508 x = x->parent->parent;
3509 }
3510 else
3511 {
3512 if (x == x->parent->left)
3513 {
3514 x = x->parent;
3515 mem_rotate_right (x);
3516 }
3517
3518 x->parent->color = MEM_BLACK;
3519 x->parent->parent->color = MEM_RED;
3520 mem_rotate_left (x->parent->parent);
3521 }
3522 }
3523 }
3524
3525 /* The root may have been changed to red due to the algorithm. Set
3526 it to black so that property #5 is satisfied. */
3527 mem_root->color = MEM_BLACK;
3528 }
3529
3530
3531 /* (x) (y)
3532 / \ / \
3533 a (y) ===> (x) c
3534 / \ / \
3535 b c a b */
3536
3537 static void
3538 mem_rotate_left (struct mem_node *x)
3539 {
3540 struct mem_node *y;
3541
3542 /* Turn y's left sub-tree into x's right sub-tree. */
3543 y = x->right;
3544 x->right = y->left;
3545 if (y->left != MEM_NIL)
3546 y->left->parent = x;
3547
3548 /* Y's parent was x's parent. */
3549 if (y != MEM_NIL)
3550 y->parent = x->parent;
3551
3552 /* Get the parent to point to y instead of x. */
3553 if (x->parent)
3554 {
3555 if (x == x->parent->left)
3556 x->parent->left = y;
3557 else
3558 x->parent->right = y;
3559 }
3560 else
3561 mem_root = y;
3562
3563 /* Put x on y's left. */
3564 y->left = x;
3565 if (x != MEM_NIL)
3566 x->parent = y;
3567 }
3568
3569
3570 /* (x) (Y)
3571 / \ / \
3572 (y) c ===> a (x)
3573 / \ / \
3574 a b b c */
3575
3576 static void
3577 mem_rotate_right (struct mem_node *x)
3578 {
3579 struct mem_node *y = x->left;
3580
3581 x->left = y->right;
3582 if (y->right != MEM_NIL)
3583 y->right->parent = x;
3584
3585 if (y != MEM_NIL)
3586 y->parent = x->parent;
3587 if (x->parent)
3588 {
3589 if (x == x->parent->right)
3590 x->parent->right = y;
3591 else
3592 x->parent->left = y;
3593 }
3594 else
3595 mem_root = y;
3596
3597 y->right = x;
3598 if (x != MEM_NIL)
3599 x->parent = y;
3600 }
3601
3602
3603 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3604
3605 static void
3606 mem_delete (struct mem_node *z)
3607 {
3608 struct mem_node *x, *y;
3609
3610 if (!z || z == MEM_NIL)
3611 return;
3612
3613 if (z->left == MEM_NIL || z->right == MEM_NIL)
3614 y = z;
3615 else
3616 {
3617 y = z->right;
3618 while (y->left != MEM_NIL)
3619 y = y->left;
3620 }
3621
3622 if (y->left != MEM_NIL)
3623 x = y->left;
3624 else
3625 x = y->right;
3626
3627 x->parent = y->parent;
3628 if (y->parent)
3629 {
3630 if (y == y->parent->left)
3631 y->parent->left = x;
3632 else
3633 y->parent->right = x;
3634 }
3635 else
3636 mem_root = x;
3637
3638 if (y != z)
3639 {
3640 z->start = y->start;
3641 z->end = y->end;
3642 z->type = y->type;
3643 }
3644
3645 if (y->color == MEM_BLACK)
3646 mem_delete_fixup (x);
3647
3648 #ifdef GC_MALLOC_CHECK
3649 _free_internal (y);
3650 #else
3651 xfree (y);
3652 #endif
3653 }
3654
3655
3656 /* Re-establish the red-black properties of the tree, after a
3657 deletion. */
3658
3659 static void
3660 mem_delete_fixup (struct mem_node *x)
3661 {
3662 while (x != mem_root && x->color == MEM_BLACK)
3663 {
3664 if (x == x->parent->left)
3665 {
3666 struct mem_node *w = x->parent->right;
3667
3668 if (w->color == MEM_RED)
3669 {
3670 w->color = MEM_BLACK;
3671 x->parent->color = MEM_RED;
3672 mem_rotate_left (x->parent);
3673 w = x->parent->right;
3674 }
3675
3676 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3677 {
3678 w->color = MEM_RED;
3679 x = x->parent;
3680 }
3681 else
3682 {
3683 if (w->right->color == MEM_BLACK)
3684 {
3685 w->left->color = MEM_BLACK;
3686 w->color = MEM_RED;
3687 mem_rotate_right (w);
3688 w = x->parent->right;
3689 }
3690 w->color = x->parent->color;
3691 x->parent->color = MEM_BLACK;
3692 w->right->color = MEM_BLACK;
3693 mem_rotate_left (x->parent);
3694 x = mem_root;
3695 }
3696 }
3697 else
3698 {
3699 struct mem_node *w = x->parent->left;
3700
3701 if (w->color == MEM_RED)
3702 {
3703 w->color = MEM_BLACK;
3704 x->parent->color = MEM_RED;
3705 mem_rotate_right (x->parent);
3706 w = x->parent->left;
3707 }
3708
3709 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3710 {
3711 w->color = MEM_RED;
3712 x = x->parent;
3713 }
3714 else
3715 {
3716 if (w->left->color == MEM_BLACK)
3717 {
3718 w->right->color = MEM_BLACK;
3719 w->color = MEM_RED;
3720 mem_rotate_left (w);
3721 w = x->parent->left;
3722 }
3723
3724 w->color = x->parent->color;
3725 x->parent->color = MEM_BLACK;
3726 w->left->color = MEM_BLACK;
3727 mem_rotate_right (x->parent);
3728 x = mem_root;
3729 }
3730 }
3731 }
3732
3733 x->color = MEM_BLACK;
3734 }
3735
3736
3737 /* Value is non-zero if P is a pointer to a live Lisp string on
3738 the heap. M is a pointer to the mem_block for P. */
3739
3740 static INLINE int
3741 live_string_p (struct mem_node *m, void *p)
3742 {
3743 if (m->type == MEM_TYPE_STRING)
3744 {
3745 struct string_block *b = (struct string_block *) m->start;
3746 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3747
3748 /* P must point to the start of a Lisp_String structure, and it
3749 must not be on the free-list. */
3750 return (offset >= 0
3751 && offset % sizeof b->strings[0] == 0
3752 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3753 && ((struct Lisp_String *) p)->data != NULL);
3754 }
3755 else
3756 return 0;
3757 }
3758
3759
3760 /* Value is non-zero if P is a pointer to a live Lisp cons on
3761 the heap. M is a pointer to the mem_block for P. */
3762
3763 static INLINE int
3764 live_cons_p (struct mem_node *m, void *p)
3765 {
3766 if (m->type == MEM_TYPE_CONS)
3767 {
3768 struct cons_block *b = (struct cons_block *) m->start;
3769 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3770
3771 /* P must point to the start of a Lisp_Cons, not be
3772 one of the unused cells in the current cons block,
3773 and not be on the free-list. */
3774 return (offset >= 0
3775 && offset % sizeof b->conses[0] == 0
3776 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3777 && (b != cons_block
3778 || offset / sizeof b->conses[0] < cons_block_index)
3779 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3780 }
3781 else
3782 return 0;
3783 }
3784
3785
3786 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3787 the heap. M is a pointer to the mem_block for P. */
3788
3789 static INLINE int
3790 live_symbol_p (struct mem_node *m, void *p)
3791 {
3792 if (m->type == MEM_TYPE_SYMBOL)
3793 {
3794 struct symbol_block *b = (struct symbol_block *) m->start;
3795 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3796
3797 /* P must point to the start of a Lisp_Symbol, not be
3798 one of the unused cells in the current symbol block,
3799 and not be on the free-list. */
3800 return (offset >= 0
3801 && offset % sizeof b->symbols[0] == 0
3802 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3803 && (b != symbol_block
3804 || offset / sizeof b->symbols[0] < symbol_block_index)
3805 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3806 }
3807 else
3808 return 0;
3809 }
3810
3811
3812 /* Value is non-zero if P is a pointer to a live Lisp float on
3813 the heap. M is a pointer to the mem_block for P. */
3814
3815 static INLINE int
3816 live_float_p (struct mem_node *m, void *p)
3817 {
3818 if (m->type == MEM_TYPE_FLOAT)
3819 {
3820 struct float_block *b = (struct float_block *) m->start;
3821 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3822
3823 /* P must point to the start of a Lisp_Float and not be
3824 one of the unused cells in the current float block. */
3825 return (offset >= 0
3826 && offset % sizeof b->floats[0] == 0
3827 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3828 && (b != float_block
3829 || offset / sizeof b->floats[0] < float_block_index));
3830 }
3831 else
3832 return 0;
3833 }
3834
3835
3836 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3837 the heap. M is a pointer to the mem_block for P. */
3838
3839 static INLINE int
3840 live_misc_p (struct mem_node *m, void *p)
3841 {
3842 if (m->type == MEM_TYPE_MISC)
3843 {
3844 struct marker_block *b = (struct marker_block *) m->start;
3845 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3846
3847 /* P must point to the start of a Lisp_Misc, not be
3848 one of the unused cells in the current misc block,
3849 and not be on the free-list. */
3850 return (offset >= 0
3851 && offset % sizeof b->markers[0] == 0
3852 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3853 && (b != marker_block
3854 || offset / sizeof b->markers[0] < marker_block_index)
3855 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3856 }
3857 else
3858 return 0;
3859 }
3860
3861
3862 /* Value is non-zero if P is a pointer to a live vector-like object.
3863 M is a pointer to the mem_block for P. */
3864
3865 static INLINE int
3866 live_vector_p (struct mem_node *m, void *p)
3867 {
3868 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3869 }
3870
3871
3872 /* Value is non-zero if P is a pointer to a live buffer. M is a
3873 pointer to the mem_block for P. */
3874
3875 static INLINE int
3876 live_buffer_p (struct mem_node *m, void *p)
3877 {
3878 /* P must point to the start of the block, and the buffer
3879 must not have been killed. */
3880 return (m->type == MEM_TYPE_BUFFER
3881 && p == m->start
3882 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3883 }
3884
3885 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3886
3887 #if GC_MARK_STACK
3888
3889 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3890
3891 /* Array of objects that are kept alive because the C stack contains
3892 a pattern that looks like a reference to them . */
3893
3894 #define MAX_ZOMBIES 10
3895 static Lisp_Object zombies[MAX_ZOMBIES];
3896
3897 /* Number of zombie objects. */
3898
3899 static int nzombies;
3900
3901 /* Number of garbage collections. */
3902
3903 static int ngcs;
3904
3905 /* Average percentage of zombies per collection. */
3906
3907 static double avg_zombies;
3908
3909 /* Max. number of live and zombie objects. */
3910
3911 static int max_live, max_zombies;
3912
3913 /* Average number of live objects per GC. */
3914
3915 static double avg_live;
3916
3917 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3918 doc: /* Show information about live and zombie objects. */)
3919 (void)
3920 {
3921 Lisp_Object args[8], zombie_list = Qnil;
3922 int i;
3923 for (i = 0; i < nzombies; i++)
3924 zombie_list = Fcons (zombies[i], zombie_list);
3925 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3926 args[1] = make_number (ngcs);
3927 args[2] = make_float (avg_live);
3928 args[3] = make_float (avg_zombies);
3929 args[4] = make_float (avg_zombies / avg_live / 100);
3930 args[5] = make_number (max_live);
3931 args[6] = make_number (max_zombies);
3932 args[7] = zombie_list;
3933 return Fmessage (8, args);
3934 }
3935
3936 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3937
3938
3939 /* Mark OBJ if we can prove it's a Lisp_Object. */
3940
3941 static INLINE void
3942 mark_maybe_object (Lisp_Object obj)
3943 {
3944 void *po;
3945 struct mem_node *m;
3946
3947 if (INTEGERP (obj))
3948 return;
3949
3950 po = (void *) XPNTR (obj);
3951 m = mem_find (po);
3952
3953 if (m != MEM_NIL)
3954 {
3955 int mark_p = 0;
3956
3957 switch (XTYPE (obj))
3958 {
3959 case Lisp_String:
3960 mark_p = (live_string_p (m, po)
3961 && !STRING_MARKED_P ((struct Lisp_String *) po));
3962 break;
3963
3964 case Lisp_Cons:
3965 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3966 break;
3967
3968 case Lisp_Symbol:
3969 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3970 break;
3971
3972 case Lisp_Float:
3973 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3974 break;
3975
3976 case Lisp_Vectorlike:
3977 /* Note: can't check BUFFERP before we know it's a
3978 buffer because checking that dereferences the pointer
3979 PO which might point anywhere. */
3980 if (live_vector_p (m, po))
3981 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3982 else if (live_buffer_p (m, po))
3983 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3984 break;
3985
3986 case Lisp_Misc:
3987 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
3988 break;
3989
3990 default:
3991 break;
3992 }
3993
3994 if (mark_p)
3995 {
3996 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3997 if (nzombies < MAX_ZOMBIES)
3998 zombies[nzombies] = obj;
3999 ++nzombies;
4000 #endif
4001 mark_object (obj);
4002 }
4003 }
4004 }
4005
4006
4007 /* If P points to Lisp data, mark that as live if it isn't already
4008 marked. */
4009
4010 static INLINE void
4011 mark_maybe_pointer (void *p)
4012 {
4013 struct mem_node *m;
4014
4015 /* Quickly rule out some values which can't point to Lisp data. */
4016 if ((EMACS_INT) p %
4017 #ifdef USE_LSB_TAG
4018 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4019 #else
4020 2 /* We assume that Lisp data is aligned on even addresses. */
4021 #endif
4022 )
4023 return;
4024
4025 m = mem_find (p);
4026 if (m != MEM_NIL)
4027 {
4028 Lisp_Object obj = Qnil;
4029
4030 switch (m->type)
4031 {
4032 case MEM_TYPE_NON_LISP:
4033 /* Nothing to do; not a pointer to Lisp memory. */
4034 break;
4035
4036 case MEM_TYPE_BUFFER:
4037 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4038 XSETVECTOR (obj, p);
4039 break;
4040
4041 case MEM_TYPE_CONS:
4042 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4043 XSETCONS (obj, p);
4044 break;
4045
4046 case MEM_TYPE_STRING:
4047 if (live_string_p (m, p)
4048 && !STRING_MARKED_P ((struct Lisp_String *) p))
4049 XSETSTRING (obj, p);
4050 break;
4051
4052 case MEM_TYPE_MISC:
4053 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4054 XSETMISC (obj, p);
4055 break;
4056
4057 case MEM_TYPE_SYMBOL:
4058 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4059 XSETSYMBOL (obj, p);
4060 break;
4061
4062 case MEM_TYPE_FLOAT:
4063 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4064 XSETFLOAT (obj, p);
4065 break;
4066
4067 case MEM_TYPE_VECTORLIKE:
4068 if (live_vector_p (m, p))
4069 {
4070 Lisp_Object tem;
4071 XSETVECTOR (tem, p);
4072 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4073 obj = tem;
4074 }
4075 break;
4076
4077 default:
4078 abort ();
4079 }
4080
4081 if (!NILP (obj))
4082 mark_object (obj);
4083 }
4084 }
4085
4086
4087 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4088 or END+OFFSET..START. */
4089
4090 static void
4091 mark_memory (void *start, void *end, int offset)
4092 {
4093 Lisp_Object *p;
4094 void **pp;
4095
4096 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4097 nzombies = 0;
4098 #endif
4099
4100 /* Make START the pointer to the start of the memory region,
4101 if it isn't already. */
4102 if (end < start)
4103 {
4104 void *tem = start;
4105 start = end;
4106 end = tem;
4107 }
4108
4109 /* Mark Lisp_Objects. */
4110 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4111 mark_maybe_object (*p);
4112
4113 /* Mark Lisp data pointed to. This is necessary because, in some
4114 situations, the C compiler optimizes Lisp objects away, so that
4115 only a pointer to them remains. Example:
4116
4117 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4118 ()
4119 {
4120 Lisp_Object obj = build_string ("test");
4121 struct Lisp_String *s = XSTRING (obj);
4122 Fgarbage_collect ();
4123 fprintf (stderr, "test `%s'\n", s->data);
4124 return Qnil;
4125 }
4126
4127 Here, `obj' isn't really used, and the compiler optimizes it
4128 away. The only reference to the life string is through the
4129 pointer `s'. */
4130
4131 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4132 mark_maybe_pointer (*pp);
4133 }
4134
4135 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4136 the GCC system configuration. In gcc 3.2, the only systems for
4137 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4138 by others?) and ns32k-pc532-min. */
4139
4140 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4141
4142 static int setjmp_tested_p, longjmps_done;
4143
4144 #define SETJMP_WILL_LIKELY_WORK "\
4145 \n\
4146 Emacs garbage collector has been changed to use conservative stack\n\
4147 marking. Emacs has determined that the method it uses to do the\n\
4148 marking will likely work on your system, but this isn't sure.\n\
4149 \n\
4150 If you are a system-programmer, or can get the help of a local wizard\n\
4151 who is, please take a look at the function mark_stack in alloc.c, and\n\
4152 verify that the methods used are appropriate for your system.\n\
4153 \n\
4154 Please mail the result to <emacs-devel@gnu.org>.\n\
4155 "
4156
4157 #define SETJMP_WILL_NOT_WORK "\
4158 \n\
4159 Emacs garbage collector has been changed to use conservative stack\n\
4160 marking. Emacs has determined that the default method it uses to do the\n\
4161 marking will not work on your system. We will need a system-dependent\n\
4162 solution for your system.\n\
4163 \n\
4164 Please take a look at the function mark_stack in alloc.c, and\n\
4165 try to find a way to make it work on your system.\n\
4166 \n\
4167 Note that you may get false negatives, depending on the compiler.\n\
4168 In particular, you need to use -O with GCC for this test.\n\
4169 \n\
4170 Please mail the result to <emacs-devel@gnu.org>.\n\
4171 "
4172
4173
4174 /* Perform a quick check if it looks like setjmp saves registers in a
4175 jmp_buf. Print a message to stderr saying so. When this test
4176 succeeds, this is _not_ a proof that setjmp is sufficient for
4177 conservative stack marking. Only the sources or a disassembly
4178 can prove that. */
4179
4180 static void
4181 test_setjmp (void)
4182 {
4183 char buf[10];
4184 register int x;
4185 jmp_buf jbuf;
4186 int result = 0;
4187
4188 /* Arrange for X to be put in a register. */
4189 sprintf (buf, "1");
4190 x = strlen (buf);
4191 x = 2 * x - 1;
4192
4193 setjmp (jbuf);
4194 if (longjmps_done == 1)
4195 {
4196 /* Came here after the longjmp at the end of the function.
4197
4198 If x == 1, the longjmp has restored the register to its
4199 value before the setjmp, and we can hope that setjmp
4200 saves all such registers in the jmp_buf, although that
4201 isn't sure.
4202
4203 For other values of X, either something really strange is
4204 taking place, or the setjmp just didn't save the register. */
4205
4206 if (x == 1)
4207 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4208 else
4209 {
4210 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4211 exit (1);
4212 }
4213 }
4214
4215 ++longjmps_done;
4216 x = 2;
4217 if (longjmps_done == 1)
4218 longjmp (jbuf, 1);
4219 }
4220
4221 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4222
4223
4224 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4225
4226 /* Abort if anything GCPRO'd doesn't survive the GC. */
4227
4228 static void
4229 check_gcpros (void)
4230 {
4231 struct gcpro *p;
4232 int i;
4233
4234 for (p = gcprolist; p; p = p->next)
4235 for (i = 0; i < p->nvars; ++i)
4236 if (!survives_gc_p (p->var[i]))
4237 /* FIXME: It's not necessarily a bug. It might just be that the
4238 GCPRO is unnecessary or should release the object sooner. */
4239 abort ();
4240 }
4241
4242 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4243
4244 static void
4245 dump_zombies (void)
4246 {
4247 int i;
4248
4249 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4250 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4251 {
4252 fprintf (stderr, " %d = ", i);
4253 debug_print (zombies[i]);
4254 }
4255 }
4256
4257 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4258
4259
4260 /* Mark live Lisp objects on the C stack.
4261
4262 There are several system-dependent problems to consider when
4263 porting this to new architectures:
4264
4265 Processor Registers
4266
4267 We have to mark Lisp objects in CPU registers that can hold local
4268 variables or are used to pass parameters.
4269
4270 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4271 something that either saves relevant registers on the stack, or
4272 calls mark_maybe_object passing it each register's contents.
4273
4274 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4275 implementation assumes that calling setjmp saves registers we need
4276 to see in a jmp_buf which itself lies on the stack. This doesn't
4277 have to be true! It must be verified for each system, possibly
4278 by taking a look at the source code of setjmp.
4279
4280 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4281 can use it as a machine independent method to store all registers
4282 to the stack. In this case the macros described in the previous
4283 two paragraphs are not used.
4284
4285 Stack Layout
4286
4287 Architectures differ in the way their processor stack is organized.
4288 For example, the stack might look like this
4289
4290 +----------------+
4291 | Lisp_Object | size = 4
4292 +----------------+
4293 | something else | size = 2
4294 +----------------+
4295 | Lisp_Object | size = 4
4296 +----------------+
4297 | ... |
4298
4299 In such a case, not every Lisp_Object will be aligned equally. To
4300 find all Lisp_Object on the stack it won't be sufficient to walk
4301 the stack in steps of 4 bytes. Instead, two passes will be
4302 necessary, one starting at the start of the stack, and a second
4303 pass starting at the start of the stack + 2. Likewise, if the
4304 minimal alignment of Lisp_Objects on the stack is 1, four passes
4305 would be necessary, each one starting with one byte more offset
4306 from the stack start.
4307
4308 The current code assumes by default that Lisp_Objects are aligned
4309 equally on the stack. */
4310
4311 static void
4312 mark_stack (void)
4313 {
4314 int i;
4315 void *end;
4316
4317 #ifdef HAVE___BUILTIN_UNWIND_INIT
4318 /* Force callee-saved registers and register windows onto the stack.
4319 This is the preferred method if available, obviating the need for
4320 machine dependent methods. */
4321 __builtin_unwind_init ();
4322 end = &end;
4323 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4324 #ifndef GC_SAVE_REGISTERS_ON_STACK
4325 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4326 union aligned_jmpbuf {
4327 Lisp_Object o;
4328 jmp_buf j;
4329 } j;
4330 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4331 #endif
4332 /* This trick flushes the register windows so that all the state of
4333 the process is contained in the stack. */
4334 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4335 needed on ia64 too. See mach_dep.c, where it also says inline
4336 assembler doesn't work with relevant proprietary compilers. */
4337 #ifdef __sparc__
4338 #if defined (__sparc64__) && defined (__FreeBSD__)
4339 /* FreeBSD does not have a ta 3 handler. */
4340 asm ("flushw");
4341 #else
4342 asm ("ta 3");
4343 #endif
4344 #endif
4345
4346 /* Save registers that we need to see on the stack. We need to see
4347 registers used to hold register variables and registers used to
4348 pass parameters. */
4349 #ifdef GC_SAVE_REGISTERS_ON_STACK
4350 GC_SAVE_REGISTERS_ON_STACK (end);
4351 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4352
4353 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4354 setjmp will definitely work, test it
4355 and print a message with the result
4356 of the test. */
4357 if (!setjmp_tested_p)
4358 {
4359 setjmp_tested_p = 1;
4360 test_setjmp ();
4361 }
4362 #endif /* GC_SETJMP_WORKS */
4363
4364 setjmp (j.j);
4365 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4366 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4367 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4368
4369 /* This assumes that the stack is a contiguous region in memory. If
4370 that's not the case, something has to be done here to iterate
4371 over the stack segments. */
4372 #ifndef GC_LISP_OBJECT_ALIGNMENT
4373 #ifdef __GNUC__
4374 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4375 #else
4376 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4377 #endif
4378 #endif
4379 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4380 mark_memory (stack_base, end, i);
4381 /* Allow for marking a secondary stack, like the register stack on the
4382 ia64. */
4383 #ifdef GC_MARK_SECONDARY_STACK
4384 GC_MARK_SECONDARY_STACK ();
4385 #endif
4386
4387 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4388 check_gcpros ();
4389 #endif
4390 }
4391
4392 #endif /* GC_MARK_STACK != 0 */
4393
4394
4395 /* Determine whether it is safe to access memory at address P. */
4396 static int
4397 valid_pointer_p (void *p)
4398 {
4399 #ifdef WINDOWSNT
4400 return w32_valid_pointer_p (p, 16);
4401 #else
4402 int fd;
4403
4404 /* Obviously, we cannot just access it (we would SEGV trying), so we
4405 trick the o/s to tell us whether p is a valid pointer.
4406 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4407 not validate p in that case. */
4408
4409 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4410 {
4411 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4412 emacs_close (fd);
4413 unlink ("__Valid__Lisp__Object__");
4414 return valid;
4415 }
4416
4417 return -1;
4418 #endif
4419 }
4420
4421 /* Return 1 if OBJ is a valid lisp object.
4422 Return 0 if OBJ is NOT a valid lisp object.
4423 Return -1 if we cannot validate OBJ.
4424 This function can be quite slow,
4425 so it should only be used in code for manual debugging. */
4426
4427 int
4428 valid_lisp_object_p (Lisp_Object obj)
4429 {
4430 void *p;
4431 #if GC_MARK_STACK
4432 struct mem_node *m;
4433 #endif
4434
4435 if (INTEGERP (obj))
4436 return 1;
4437
4438 p = (void *) XPNTR (obj);
4439 if (PURE_POINTER_P (p))
4440 return 1;
4441
4442 #if !GC_MARK_STACK
4443 return valid_pointer_p (p);
4444 #else
4445
4446 m = mem_find (p);
4447
4448 if (m == MEM_NIL)
4449 {
4450 int valid = valid_pointer_p (p);
4451 if (valid <= 0)
4452 return valid;
4453
4454 if (SUBRP (obj))
4455 return 1;
4456
4457 return 0;
4458 }
4459
4460 switch (m->type)
4461 {
4462 case MEM_TYPE_NON_LISP:
4463 return 0;
4464
4465 case MEM_TYPE_BUFFER:
4466 return live_buffer_p (m, p);
4467
4468 case MEM_TYPE_CONS:
4469 return live_cons_p (m, p);
4470
4471 case MEM_TYPE_STRING:
4472 return live_string_p (m, p);
4473
4474 case MEM_TYPE_MISC:
4475 return live_misc_p (m, p);
4476
4477 case MEM_TYPE_SYMBOL:
4478 return live_symbol_p (m, p);
4479
4480 case MEM_TYPE_FLOAT:
4481 return live_float_p (m, p);
4482
4483 case MEM_TYPE_VECTORLIKE:
4484 return live_vector_p (m, p);
4485
4486 default:
4487 break;
4488 }
4489
4490 return 0;
4491 #endif
4492 }
4493
4494
4495
4496 \f
4497 /***********************************************************************
4498 Pure Storage Management
4499 ***********************************************************************/
4500
4501 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4502 pointer to it. TYPE is the Lisp type for which the memory is
4503 allocated. TYPE < 0 means it's not used for a Lisp object. */
4504
4505 static POINTER_TYPE *
4506 pure_alloc (size_t size, int type)
4507 {
4508 POINTER_TYPE *result;
4509 #ifdef USE_LSB_TAG
4510 size_t alignment = (1 << GCTYPEBITS);
4511 #else
4512 size_t alignment = sizeof (EMACS_INT);
4513
4514 /* Give Lisp_Floats an extra alignment. */
4515 if (type == Lisp_Float)
4516 {
4517 #if defined __GNUC__ && __GNUC__ >= 2
4518 alignment = __alignof (struct Lisp_Float);
4519 #else
4520 alignment = sizeof (struct Lisp_Float);
4521 #endif
4522 }
4523 #endif
4524
4525 again:
4526 if (type >= 0)
4527 {
4528 /* Allocate space for a Lisp object from the beginning of the free
4529 space with taking account of alignment. */
4530 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4531 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4532 }
4533 else
4534 {
4535 /* Allocate space for a non-Lisp object from the end of the free
4536 space. */
4537 pure_bytes_used_non_lisp += size;
4538 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4539 }
4540 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4541
4542 if (pure_bytes_used <= pure_size)
4543 return result;
4544
4545 /* Don't allocate a large amount here,
4546 because it might get mmap'd and then its address
4547 might not be usable. */
4548 purebeg = (char *) xmalloc (10000);
4549 pure_size = 10000;
4550 pure_bytes_used_before_overflow += pure_bytes_used - size;
4551 pure_bytes_used = 0;
4552 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4553 goto again;
4554 }
4555
4556
4557 /* Print a warning if PURESIZE is too small. */
4558
4559 void
4560 check_pure_size (void)
4561 {
4562 if (pure_bytes_used_before_overflow)
4563 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4564 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4565 }
4566
4567
4568 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4569 the non-Lisp data pool of the pure storage, and return its start
4570 address. Return NULL if not found. */
4571
4572 static char *
4573 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4574 {
4575 int i;
4576 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4577 const unsigned char *p;
4578 char *non_lisp_beg;
4579
4580 if (pure_bytes_used_non_lisp < nbytes + 1)
4581 return NULL;
4582
4583 /* Set up the Boyer-Moore table. */
4584 skip = nbytes + 1;
4585 for (i = 0; i < 256; i++)
4586 bm_skip[i] = skip;
4587
4588 p = (const unsigned char *) data;
4589 while (--skip > 0)
4590 bm_skip[*p++] = skip;
4591
4592 last_char_skip = bm_skip['\0'];
4593
4594 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4595 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4596
4597 /* See the comments in the function `boyer_moore' (search.c) for the
4598 use of `infinity'. */
4599 infinity = pure_bytes_used_non_lisp + 1;
4600 bm_skip['\0'] = infinity;
4601
4602 p = (const unsigned char *) non_lisp_beg + nbytes;
4603 start = 0;
4604 do
4605 {
4606 /* Check the last character (== '\0'). */
4607 do
4608 {
4609 start += bm_skip[*(p + start)];
4610 }
4611 while (start <= start_max);
4612
4613 if (start < infinity)
4614 /* Couldn't find the last character. */
4615 return NULL;
4616
4617 /* No less than `infinity' means we could find the last
4618 character at `p[start - infinity]'. */
4619 start -= infinity;
4620
4621 /* Check the remaining characters. */
4622 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4623 /* Found. */
4624 return non_lisp_beg + start;
4625
4626 start += last_char_skip;
4627 }
4628 while (start <= start_max);
4629
4630 return NULL;
4631 }
4632
4633
4634 /* Return a string allocated in pure space. DATA is a buffer holding
4635 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4636 non-zero means make the result string multibyte.
4637
4638 Must get an error if pure storage is full, since if it cannot hold
4639 a large string it may be able to hold conses that point to that
4640 string; then the string is not protected from gc. */
4641
4642 Lisp_Object
4643 make_pure_string (const char *data,
4644 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4645 {
4646 Lisp_Object string;
4647 struct Lisp_String *s;
4648
4649 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4650 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4651 if (s->data == NULL)
4652 {
4653 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4654 memcpy (s->data, data, nbytes);
4655 s->data[nbytes] = '\0';
4656 }
4657 s->size = nchars;
4658 s->size_byte = multibyte ? nbytes : -1;
4659 s->intervals = NULL_INTERVAL;
4660 XSETSTRING (string, s);
4661 return string;
4662 }
4663
4664 /* Return a string a string allocated in pure space. Do not allocate
4665 the string data, just point to DATA. */
4666
4667 Lisp_Object
4668 make_pure_c_string (const char *data)
4669 {
4670 Lisp_Object string;
4671 struct Lisp_String *s;
4672 EMACS_INT nchars = strlen (data);
4673
4674 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4675 s->size = nchars;
4676 s->size_byte = -1;
4677 s->data = (unsigned char *) data;
4678 s->intervals = NULL_INTERVAL;
4679 XSETSTRING (string, s);
4680 return string;
4681 }
4682
4683 /* Return a cons allocated from pure space. Give it pure copies
4684 of CAR as car and CDR as cdr. */
4685
4686 Lisp_Object
4687 pure_cons (Lisp_Object car, Lisp_Object cdr)
4688 {
4689 register Lisp_Object new;
4690 struct Lisp_Cons *p;
4691
4692 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4693 XSETCONS (new, p);
4694 XSETCAR (new, Fpurecopy (car));
4695 XSETCDR (new, Fpurecopy (cdr));
4696 return new;
4697 }
4698
4699
4700 /* Value is a float object with value NUM allocated from pure space. */
4701
4702 static Lisp_Object
4703 make_pure_float (double num)
4704 {
4705 register Lisp_Object new;
4706 struct Lisp_Float *p;
4707
4708 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4709 XSETFLOAT (new, p);
4710 XFLOAT_INIT (new, num);
4711 return new;
4712 }
4713
4714
4715 /* Return a vector with room for LEN Lisp_Objects allocated from
4716 pure space. */
4717
4718 Lisp_Object
4719 make_pure_vector (EMACS_INT len)
4720 {
4721 Lisp_Object new;
4722 struct Lisp_Vector *p;
4723 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4724
4725 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4726 XSETVECTOR (new, p);
4727 XVECTOR (new)->size = len;
4728 return new;
4729 }
4730
4731
4732 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4733 doc: /* Make a copy of object OBJ in pure storage.
4734 Recursively copies contents of vectors and cons cells.
4735 Does not copy symbols. Copies strings without text properties. */)
4736 (register Lisp_Object obj)
4737 {
4738 if (NILP (Vpurify_flag))
4739 return obj;
4740
4741 if (PURE_POINTER_P (XPNTR (obj)))
4742 return obj;
4743
4744 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4745 {
4746 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4747 if (!NILP (tmp))
4748 return tmp;
4749 }
4750
4751 if (CONSP (obj))
4752 obj = pure_cons (XCAR (obj), XCDR (obj));
4753 else if (FLOATP (obj))
4754 obj = make_pure_float (XFLOAT_DATA (obj));
4755 else if (STRINGP (obj))
4756 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4757 SBYTES (obj),
4758 STRING_MULTIBYTE (obj));
4759 else if (COMPILEDP (obj) || VECTORP (obj))
4760 {
4761 register struct Lisp_Vector *vec;
4762 register EMACS_INT i;
4763 EMACS_INT size;
4764
4765 size = XVECTOR (obj)->size;
4766 if (size & PSEUDOVECTOR_FLAG)
4767 size &= PSEUDOVECTOR_SIZE_MASK;
4768 vec = XVECTOR (make_pure_vector (size));
4769 for (i = 0; i < size; i++)
4770 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4771 if (COMPILEDP (obj))
4772 {
4773 XSETPVECTYPE (vec, PVEC_COMPILED);
4774 XSETCOMPILED (obj, vec);
4775 }
4776 else
4777 XSETVECTOR (obj, vec);
4778 }
4779 else if (MARKERP (obj))
4780 error ("Attempt to copy a marker to pure storage");
4781 else
4782 /* Not purified, don't hash-cons. */
4783 return obj;
4784
4785 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4786 Fputhash (obj, obj, Vpurify_flag);
4787
4788 return obj;
4789 }
4790
4791
4792 \f
4793 /***********************************************************************
4794 Protection from GC
4795 ***********************************************************************/
4796
4797 /* Put an entry in staticvec, pointing at the variable with address
4798 VARADDRESS. */
4799
4800 void
4801 staticpro (Lisp_Object *varaddress)
4802 {
4803 staticvec[staticidx++] = varaddress;
4804 if (staticidx >= NSTATICS)
4805 abort ();
4806 }
4807
4808 \f
4809 /***********************************************************************
4810 Protection from GC
4811 ***********************************************************************/
4812
4813 /* Temporarily prevent garbage collection. */
4814
4815 int
4816 inhibit_garbage_collection (void)
4817 {
4818 int count = SPECPDL_INDEX ();
4819 int nbits = min (VALBITS, BITS_PER_INT);
4820
4821 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4822 return count;
4823 }
4824
4825
4826 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4827 doc: /* Reclaim storage for Lisp objects no longer needed.
4828 Garbage collection happens automatically if you cons more than
4829 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4830 `garbage-collect' normally returns a list with info on amount of space in use:
4831 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4832 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4833 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4834 (USED-STRINGS . FREE-STRINGS))
4835 However, if there was overflow in pure space, `garbage-collect'
4836 returns nil, because real GC can't be done. */)
4837 (void)
4838 {
4839 register struct specbinding *bind;
4840 char stack_top_variable;
4841 register int i;
4842 int message_p;
4843 Lisp_Object total[8];
4844 int count = SPECPDL_INDEX ();
4845 EMACS_TIME t1, t2, t3;
4846
4847 if (abort_on_gc)
4848 abort ();
4849
4850 /* Can't GC if pure storage overflowed because we can't determine
4851 if something is a pure object or not. */
4852 if (pure_bytes_used_before_overflow)
4853 return Qnil;
4854
4855 CHECK_CONS_LIST ();
4856
4857 /* Don't keep undo information around forever.
4858 Do this early on, so it is no problem if the user quits. */
4859 {
4860 register struct buffer *nextb = all_buffers;
4861
4862 while (nextb)
4863 {
4864 /* If a buffer's undo list is Qt, that means that undo is
4865 turned off in that buffer. Calling truncate_undo_list on
4866 Qt tends to return NULL, which effectively turns undo back on.
4867 So don't call truncate_undo_list if undo_list is Qt. */
4868 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4869 truncate_undo_list (nextb);
4870
4871 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4872 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4873 && ! nextb->text->inhibit_shrinking)
4874 {
4875 /* If a buffer's gap size is more than 10% of the buffer
4876 size, or larger than 2000 bytes, then shrink it
4877 accordingly. Keep a minimum size of 20 bytes. */
4878 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4879
4880 if (nextb->text->gap_size > size)
4881 {
4882 struct buffer *save_current = current_buffer;
4883 current_buffer = nextb;
4884 make_gap (-(nextb->text->gap_size - size));
4885 current_buffer = save_current;
4886 }
4887 }
4888
4889 nextb = nextb->next;
4890 }
4891 }
4892
4893 EMACS_GET_TIME (t1);
4894
4895 /* In case user calls debug_print during GC,
4896 don't let that cause a recursive GC. */
4897 consing_since_gc = 0;
4898
4899 /* Save what's currently displayed in the echo area. */
4900 message_p = push_message ();
4901 record_unwind_protect (pop_message_unwind, Qnil);
4902
4903 /* Save a copy of the contents of the stack, for debugging. */
4904 #if MAX_SAVE_STACK > 0
4905 if (NILP (Vpurify_flag))
4906 {
4907 i = &stack_top_variable - stack_bottom;
4908 if (i < 0) i = -i;
4909 if (i < MAX_SAVE_STACK)
4910 {
4911 if (stack_copy == 0)
4912 stack_copy = (char *) xmalloc (stack_copy_size = i);
4913 else if (stack_copy_size < i)
4914 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4915 if (stack_copy)
4916 {
4917 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4918 memcpy (stack_copy, stack_bottom, i);
4919 else
4920 memcpy (stack_copy, &stack_top_variable, i);
4921 }
4922 }
4923 }
4924 #endif /* MAX_SAVE_STACK > 0 */
4925
4926 if (garbage_collection_messages)
4927 message1_nolog ("Garbage collecting...");
4928
4929 BLOCK_INPUT;
4930
4931 shrink_regexp_cache ();
4932
4933 gc_in_progress = 1;
4934
4935 /* clear_marks (); */
4936
4937 /* Mark all the special slots that serve as the roots of accessibility. */
4938
4939 for (i = 0; i < staticidx; i++)
4940 mark_object (*staticvec[i]);
4941
4942 for (bind = specpdl; bind != specpdl_ptr; bind++)
4943 {
4944 mark_object (bind->symbol);
4945 mark_object (bind->old_value);
4946 }
4947 mark_terminals ();
4948 mark_kboards ();
4949 mark_ttys ();
4950
4951 #ifdef USE_GTK
4952 {
4953 extern void xg_mark_data (void);
4954 xg_mark_data ();
4955 }
4956 #endif
4957
4958 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4959 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4960 mark_stack ();
4961 #else
4962 {
4963 register struct gcpro *tail;
4964 for (tail = gcprolist; tail; tail = tail->next)
4965 for (i = 0; i < tail->nvars; i++)
4966 mark_object (tail->var[i]);
4967 }
4968 mark_byte_stack ();
4969 {
4970 struct catchtag *catch;
4971 struct handler *handler;
4972
4973 for (catch = catchlist; catch; catch = catch->next)
4974 {
4975 mark_object (catch->tag);
4976 mark_object (catch->val);
4977 }
4978 for (handler = handlerlist; handler; handler = handler->next)
4979 {
4980 mark_object (handler->handler);
4981 mark_object (handler->var);
4982 }
4983 }
4984 mark_backtrace ();
4985 #endif
4986
4987 #ifdef HAVE_WINDOW_SYSTEM
4988 mark_fringe_data ();
4989 #endif
4990
4991 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4992 mark_stack ();
4993 #endif
4994
4995 /* Everything is now marked, except for the things that require special
4996 finalization, i.e. the undo_list.
4997 Look thru every buffer's undo list
4998 for elements that update markers that were not marked,
4999 and delete them. */
5000 {
5001 register struct buffer *nextb = all_buffers;
5002
5003 while (nextb)
5004 {
5005 /* If a buffer's undo list is Qt, that means that undo is
5006 turned off in that buffer. Calling truncate_undo_list on
5007 Qt tends to return NULL, which effectively turns undo back on.
5008 So don't call truncate_undo_list if undo_list is Qt. */
5009 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5010 {
5011 Lisp_Object tail, prev;
5012 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5013 prev = Qnil;
5014 while (CONSP (tail))
5015 {
5016 if (CONSP (XCAR (tail))
5017 && MARKERP (XCAR (XCAR (tail)))
5018 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5019 {
5020 if (NILP (prev))
5021 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5022 else
5023 {
5024 tail = XCDR (tail);
5025 XSETCDR (prev, tail);
5026 }
5027 }
5028 else
5029 {
5030 prev = tail;
5031 tail = XCDR (tail);
5032 }
5033 }
5034 }
5035 /* Now that we have stripped the elements that need not be in the
5036 undo_list any more, we can finally mark the list. */
5037 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5038
5039 nextb = nextb->next;
5040 }
5041 }
5042
5043 gc_sweep ();
5044
5045 /* Clear the mark bits that we set in certain root slots. */
5046
5047 unmark_byte_stack ();
5048 VECTOR_UNMARK (&buffer_defaults);
5049 VECTOR_UNMARK (&buffer_local_symbols);
5050
5051 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5052 dump_zombies ();
5053 #endif
5054
5055 UNBLOCK_INPUT;
5056
5057 CHECK_CONS_LIST ();
5058
5059 /* clear_marks (); */
5060 gc_in_progress = 0;
5061
5062 consing_since_gc = 0;
5063 if (gc_cons_threshold < 10000)
5064 gc_cons_threshold = 10000;
5065
5066 if (FLOATP (Vgc_cons_percentage))
5067 { /* Set gc_cons_combined_threshold. */
5068 EMACS_INT tot = 0;
5069
5070 tot += total_conses * sizeof (struct Lisp_Cons);
5071 tot += total_symbols * sizeof (struct Lisp_Symbol);
5072 tot += total_markers * sizeof (union Lisp_Misc);
5073 tot += total_string_size;
5074 tot += total_vector_size * sizeof (Lisp_Object);
5075 tot += total_floats * sizeof (struct Lisp_Float);
5076 tot += total_intervals * sizeof (struct interval);
5077 tot += total_strings * sizeof (struct Lisp_String);
5078
5079 gc_relative_threshold = tot * XFLOAT_DATA (Vgc_cons_percentage);
5080 }
5081 else
5082 gc_relative_threshold = 0;
5083
5084 if (garbage_collection_messages)
5085 {
5086 if (message_p || minibuf_level > 0)
5087 restore_message ();
5088 else
5089 message1_nolog ("Garbage collecting...done");
5090 }
5091
5092 unbind_to (count, Qnil);
5093
5094 total[0] = Fcons (make_number (total_conses),
5095 make_number (total_free_conses));
5096 total[1] = Fcons (make_number (total_symbols),
5097 make_number (total_free_symbols));
5098 total[2] = Fcons (make_number (total_markers),
5099 make_number (total_free_markers));
5100 total[3] = make_number (total_string_size);
5101 total[4] = make_number (total_vector_size);
5102 total[5] = Fcons (make_number (total_floats),
5103 make_number (total_free_floats));
5104 total[6] = Fcons (make_number (total_intervals),
5105 make_number (total_free_intervals));
5106 total[7] = Fcons (make_number (total_strings),
5107 make_number (total_free_strings));
5108
5109 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5110 {
5111 /* Compute average percentage of zombies. */
5112 double nlive = 0;
5113
5114 for (i = 0; i < 7; ++i)
5115 if (CONSP (total[i]))
5116 nlive += XFASTINT (XCAR (total[i]));
5117
5118 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5119 max_live = max (nlive, max_live);
5120 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5121 max_zombies = max (nzombies, max_zombies);
5122 ++ngcs;
5123 }
5124 #endif
5125
5126 if (!NILP (Vpost_gc_hook))
5127 {
5128 int gc_count = inhibit_garbage_collection ();
5129 safe_run_hooks (Qpost_gc_hook);
5130 unbind_to (gc_count, Qnil);
5131 }
5132
5133 /* Accumulate statistics. */
5134 EMACS_GET_TIME (t2);
5135 EMACS_SUB_TIME (t3, t2, t1);
5136 if (FLOATP (Vgc_elapsed))
5137 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5138 EMACS_SECS (t3) +
5139 EMACS_USECS (t3) * 1.0e-6);
5140 gcs_done++;
5141
5142 return Flist (sizeof total / sizeof *total, total);
5143 }
5144
5145
5146 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5147 only interesting objects referenced from glyphs are strings. */
5148
5149 static void
5150 mark_glyph_matrix (struct glyph_matrix *matrix)
5151 {
5152 struct glyph_row *row = matrix->rows;
5153 struct glyph_row *end = row + matrix->nrows;
5154
5155 for (; row < end; ++row)
5156 if (row->enabled_p)
5157 {
5158 int area;
5159 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5160 {
5161 struct glyph *glyph = row->glyphs[area];
5162 struct glyph *end_glyph = glyph + row->used[area];
5163
5164 for (; glyph < end_glyph; ++glyph)
5165 if (STRINGP (glyph->object)
5166 && !STRING_MARKED_P (XSTRING (glyph->object)))
5167 mark_object (glyph->object);
5168 }
5169 }
5170 }
5171
5172
5173 /* Mark Lisp faces in the face cache C. */
5174
5175 static void
5176 mark_face_cache (struct face_cache *c)
5177 {
5178 if (c)
5179 {
5180 int i, j;
5181 for (i = 0; i < c->used; ++i)
5182 {
5183 struct face *face = FACE_FROM_ID (c->f, i);
5184
5185 if (face)
5186 {
5187 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5188 mark_object (face->lface[j]);
5189 }
5190 }
5191 }
5192 }
5193
5194
5195 \f
5196 /* Mark reference to a Lisp_Object.
5197 If the object referred to has not been seen yet, recursively mark
5198 all the references contained in it. */
5199
5200 #define LAST_MARKED_SIZE 500
5201 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5202 int last_marked_index;
5203
5204 /* For debugging--call abort when we cdr down this many
5205 links of a list, in mark_object. In debugging,
5206 the call to abort will hit a breakpoint.
5207 Normally this is zero and the check never goes off. */
5208 static int mark_object_loop_halt;
5209
5210 static void
5211 mark_vectorlike (struct Lisp_Vector *ptr)
5212 {
5213 register EMACS_UINT size = ptr->size;
5214 register EMACS_UINT i;
5215
5216 eassert (!VECTOR_MARKED_P (ptr));
5217 VECTOR_MARK (ptr); /* Else mark it */
5218 if (size & PSEUDOVECTOR_FLAG)
5219 size &= PSEUDOVECTOR_SIZE_MASK;
5220
5221 /* Note that this size is not the memory-footprint size, but only
5222 the number of Lisp_Object fields that we should trace.
5223 The distinction is used e.g. by Lisp_Process which places extra
5224 non-Lisp_Object fields at the end of the structure. */
5225 for (i = 0; i < size; i++) /* and then mark its elements */
5226 mark_object (ptr->contents[i]);
5227 }
5228
5229 /* Like mark_vectorlike but optimized for char-tables (and
5230 sub-char-tables) assuming that the contents are mostly integers or
5231 symbols. */
5232
5233 static void
5234 mark_char_table (struct Lisp_Vector *ptr)
5235 {
5236 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5237 register EMACS_UINT i;
5238
5239 eassert (!VECTOR_MARKED_P (ptr));
5240 VECTOR_MARK (ptr);
5241 for (i = 0; i < size; i++)
5242 {
5243 Lisp_Object val = ptr->contents[i];
5244
5245 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5246 continue;
5247 if (SUB_CHAR_TABLE_P (val))
5248 {
5249 if (! VECTOR_MARKED_P (XVECTOR (val)))
5250 mark_char_table (XVECTOR (val));
5251 }
5252 else
5253 mark_object (val);
5254 }
5255 }
5256
5257 void
5258 mark_object (Lisp_Object arg)
5259 {
5260 register Lisp_Object obj = arg;
5261 #ifdef GC_CHECK_MARKED_OBJECTS
5262 void *po;
5263 struct mem_node *m;
5264 #endif
5265 int cdr_count = 0;
5266
5267 loop:
5268
5269 if (PURE_POINTER_P (XPNTR (obj)))
5270 return;
5271
5272 last_marked[last_marked_index++] = obj;
5273 if (last_marked_index == LAST_MARKED_SIZE)
5274 last_marked_index = 0;
5275
5276 /* Perform some sanity checks on the objects marked here. Abort if
5277 we encounter an object we know is bogus. This increases GC time
5278 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5279 #ifdef GC_CHECK_MARKED_OBJECTS
5280
5281 po = (void *) XPNTR (obj);
5282
5283 /* Check that the object pointed to by PO is known to be a Lisp
5284 structure allocated from the heap. */
5285 #define CHECK_ALLOCATED() \
5286 do { \
5287 m = mem_find (po); \
5288 if (m == MEM_NIL) \
5289 abort (); \
5290 } while (0)
5291
5292 /* Check that the object pointed to by PO is live, using predicate
5293 function LIVEP. */
5294 #define CHECK_LIVE(LIVEP) \
5295 do { \
5296 if (!LIVEP (m, po)) \
5297 abort (); \
5298 } while (0)
5299
5300 /* Check both of the above conditions. */
5301 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5302 do { \
5303 CHECK_ALLOCATED (); \
5304 CHECK_LIVE (LIVEP); \
5305 } while (0) \
5306
5307 #else /* not GC_CHECK_MARKED_OBJECTS */
5308
5309 #define CHECK_LIVE(LIVEP) (void) 0
5310 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5311
5312 #endif /* not GC_CHECK_MARKED_OBJECTS */
5313
5314 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5315 {
5316 case Lisp_String:
5317 {
5318 register struct Lisp_String *ptr = XSTRING (obj);
5319 if (STRING_MARKED_P (ptr))
5320 break;
5321 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5322 MARK_INTERVAL_TREE (ptr->intervals);
5323 MARK_STRING (ptr);
5324 #ifdef GC_CHECK_STRING_BYTES
5325 /* Check that the string size recorded in the string is the
5326 same as the one recorded in the sdata structure. */
5327 CHECK_STRING_BYTES (ptr);
5328 #endif /* GC_CHECK_STRING_BYTES */
5329 }
5330 break;
5331
5332 case Lisp_Vectorlike:
5333 if (VECTOR_MARKED_P (XVECTOR (obj)))
5334 break;
5335 #ifdef GC_CHECK_MARKED_OBJECTS
5336 m = mem_find (po);
5337 if (m == MEM_NIL && !SUBRP (obj)
5338 && po != &buffer_defaults
5339 && po != &buffer_local_symbols)
5340 abort ();
5341 #endif /* GC_CHECK_MARKED_OBJECTS */
5342
5343 if (BUFFERP (obj))
5344 {
5345 #ifdef GC_CHECK_MARKED_OBJECTS
5346 if (po != &buffer_defaults && po != &buffer_local_symbols)
5347 {
5348 struct buffer *b;
5349 for (b = all_buffers; b && b != po; b = b->next)
5350 ;
5351 if (b == NULL)
5352 abort ();
5353 }
5354 #endif /* GC_CHECK_MARKED_OBJECTS */
5355 mark_buffer (obj);
5356 }
5357 else if (SUBRP (obj))
5358 break;
5359 else if (COMPILEDP (obj))
5360 /* We could treat this just like a vector, but it is better to
5361 save the COMPILED_CONSTANTS element for last and avoid
5362 recursion there. */
5363 {
5364 register struct Lisp_Vector *ptr = XVECTOR (obj);
5365 register EMACS_UINT size = ptr->size;
5366 register EMACS_UINT i;
5367
5368 CHECK_LIVE (live_vector_p);
5369 VECTOR_MARK (ptr); /* Else mark it */
5370 size &= PSEUDOVECTOR_SIZE_MASK;
5371 for (i = 0; i < size; i++) /* and then mark its elements */
5372 {
5373 if (i != COMPILED_CONSTANTS)
5374 mark_object (ptr->contents[i]);
5375 }
5376 obj = ptr->contents[COMPILED_CONSTANTS];
5377 goto loop;
5378 }
5379 else if (FRAMEP (obj))
5380 {
5381 register struct frame *ptr = XFRAME (obj);
5382 mark_vectorlike (XVECTOR (obj));
5383 mark_face_cache (ptr->face_cache);
5384 }
5385 else if (WINDOWP (obj))
5386 {
5387 register struct Lisp_Vector *ptr = XVECTOR (obj);
5388 struct window *w = XWINDOW (obj);
5389 mark_vectorlike (ptr);
5390 /* Mark glyphs for leaf windows. Marking window matrices is
5391 sufficient because frame matrices use the same glyph
5392 memory. */
5393 if (NILP (w->hchild)
5394 && NILP (w->vchild)
5395 && w->current_matrix)
5396 {
5397 mark_glyph_matrix (w->current_matrix);
5398 mark_glyph_matrix (w->desired_matrix);
5399 }
5400 }
5401 else if (HASH_TABLE_P (obj))
5402 {
5403 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5404 mark_vectorlike ((struct Lisp_Vector *)h);
5405 /* If hash table is not weak, mark all keys and values.
5406 For weak tables, mark only the vector. */
5407 if (NILP (h->weak))
5408 mark_object (h->key_and_value);
5409 else
5410 VECTOR_MARK (XVECTOR (h->key_and_value));
5411 }
5412 else if (CHAR_TABLE_P (obj))
5413 mark_char_table (XVECTOR (obj));
5414 else
5415 mark_vectorlike (XVECTOR (obj));
5416 break;
5417
5418 case Lisp_Symbol:
5419 {
5420 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5421 struct Lisp_Symbol *ptrx;
5422
5423 if (ptr->gcmarkbit)
5424 break;
5425 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5426 ptr->gcmarkbit = 1;
5427 mark_object (ptr->function);
5428 mark_object (ptr->plist);
5429 switch (ptr->redirect)
5430 {
5431 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5432 case SYMBOL_VARALIAS:
5433 {
5434 Lisp_Object tem;
5435 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5436 mark_object (tem);
5437 break;
5438 }
5439 case SYMBOL_LOCALIZED:
5440 {
5441 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5442 /* If the value is forwarded to a buffer or keyboard field,
5443 these are marked when we see the corresponding object.
5444 And if it's forwarded to a C variable, either it's not
5445 a Lisp_Object var, or it's staticpro'd already. */
5446 mark_object (blv->where);
5447 mark_object (blv->valcell);
5448 mark_object (blv->defcell);
5449 break;
5450 }
5451 case SYMBOL_FORWARDED:
5452 /* If the value is forwarded to a buffer or keyboard field,
5453 these are marked when we see the corresponding object.
5454 And if it's forwarded to a C variable, either it's not
5455 a Lisp_Object var, or it's staticpro'd already. */
5456 break;
5457 default: abort ();
5458 }
5459 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5460 MARK_STRING (XSTRING (ptr->xname));
5461 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5462
5463 ptr = ptr->next;
5464 if (ptr)
5465 {
5466 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5467 XSETSYMBOL (obj, ptrx);
5468 goto loop;
5469 }
5470 }
5471 break;
5472
5473 case Lisp_Misc:
5474 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5475 if (XMISCANY (obj)->gcmarkbit)
5476 break;
5477 XMISCANY (obj)->gcmarkbit = 1;
5478
5479 switch (XMISCTYPE (obj))
5480 {
5481
5482 case Lisp_Misc_Marker:
5483 /* DO NOT mark thru the marker's chain.
5484 The buffer's markers chain does not preserve markers from gc;
5485 instead, markers are removed from the chain when freed by gc. */
5486 break;
5487
5488 case Lisp_Misc_Save_Value:
5489 #if GC_MARK_STACK
5490 {
5491 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5492 /* If DOGC is set, POINTER is the address of a memory
5493 area containing INTEGER potential Lisp_Objects. */
5494 if (ptr->dogc)
5495 {
5496 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5497 int nelt;
5498 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5499 mark_maybe_object (*p);
5500 }
5501 }
5502 #endif
5503 break;
5504
5505 case Lisp_Misc_Overlay:
5506 {
5507 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5508 mark_object (ptr->start);
5509 mark_object (ptr->end);
5510 mark_object (ptr->plist);
5511 if (ptr->next)
5512 {
5513 XSETMISC (obj, ptr->next);
5514 goto loop;
5515 }
5516 }
5517 break;
5518
5519 default:
5520 abort ();
5521 }
5522 break;
5523
5524 case Lisp_Cons:
5525 {
5526 register struct Lisp_Cons *ptr = XCONS (obj);
5527 if (CONS_MARKED_P (ptr))
5528 break;
5529 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5530 CONS_MARK (ptr);
5531 /* If the cdr is nil, avoid recursion for the car. */
5532 if (EQ (ptr->u.cdr, Qnil))
5533 {
5534 obj = ptr->car;
5535 cdr_count = 0;
5536 goto loop;
5537 }
5538 mark_object (ptr->car);
5539 obj = ptr->u.cdr;
5540 cdr_count++;
5541 if (cdr_count == mark_object_loop_halt)
5542 abort ();
5543 goto loop;
5544 }
5545
5546 case Lisp_Float:
5547 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5548 FLOAT_MARK (XFLOAT (obj));
5549 break;
5550
5551 case_Lisp_Int:
5552 break;
5553
5554 default:
5555 abort ();
5556 }
5557
5558 #undef CHECK_LIVE
5559 #undef CHECK_ALLOCATED
5560 #undef CHECK_ALLOCATED_AND_LIVE
5561 }
5562
5563 /* Mark the pointers in a buffer structure. */
5564
5565 static void
5566 mark_buffer (Lisp_Object buf)
5567 {
5568 register struct buffer *buffer = XBUFFER (buf);
5569 register Lisp_Object *ptr, tmp;
5570 Lisp_Object base_buffer;
5571
5572 eassert (!VECTOR_MARKED_P (buffer));
5573 VECTOR_MARK (buffer);
5574
5575 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5576
5577 /* For now, we just don't mark the undo_list. It's done later in
5578 a special way just before the sweep phase, and after stripping
5579 some of its elements that are not needed any more. */
5580
5581 if (buffer->overlays_before)
5582 {
5583 XSETMISC (tmp, buffer->overlays_before);
5584 mark_object (tmp);
5585 }
5586 if (buffer->overlays_after)
5587 {
5588 XSETMISC (tmp, buffer->overlays_after);
5589 mark_object (tmp);
5590 }
5591
5592 /* buffer-local Lisp variables start at `undo_list',
5593 tho only the ones from `name' on are GC'd normally. */
5594 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5595 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5596 ptr++)
5597 mark_object (*ptr);
5598
5599 /* If this is an indirect buffer, mark its base buffer. */
5600 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5601 {
5602 XSETBUFFER (base_buffer, buffer->base_buffer);
5603 mark_buffer (base_buffer);
5604 }
5605 }
5606
5607 /* Mark the Lisp pointers in the terminal objects.
5608 Called by the Fgarbage_collector. */
5609
5610 static void
5611 mark_terminals (void)
5612 {
5613 struct terminal *t;
5614 for (t = terminal_list; t; t = t->next_terminal)
5615 {
5616 eassert (t->name != NULL);
5617 #ifdef HAVE_WINDOW_SYSTEM
5618 /* If a terminal object is reachable from a stacpro'ed object,
5619 it might have been marked already. Make sure the image cache
5620 gets marked. */
5621 mark_image_cache (t->image_cache);
5622 #endif /* HAVE_WINDOW_SYSTEM */
5623 if (!VECTOR_MARKED_P (t))
5624 mark_vectorlike ((struct Lisp_Vector *)t);
5625 }
5626 }
5627
5628
5629
5630 /* Value is non-zero if OBJ will survive the current GC because it's
5631 either marked or does not need to be marked to survive. */
5632
5633 int
5634 survives_gc_p (Lisp_Object obj)
5635 {
5636 int survives_p;
5637
5638 switch (XTYPE (obj))
5639 {
5640 case_Lisp_Int:
5641 survives_p = 1;
5642 break;
5643
5644 case Lisp_Symbol:
5645 survives_p = XSYMBOL (obj)->gcmarkbit;
5646 break;
5647
5648 case Lisp_Misc:
5649 survives_p = XMISCANY (obj)->gcmarkbit;
5650 break;
5651
5652 case Lisp_String:
5653 survives_p = STRING_MARKED_P (XSTRING (obj));
5654 break;
5655
5656 case Lisp_Vectorlike:
5657 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5658 break;
5659
5660 case Lisp_Cons:
5661 survives_p = CONS_MARKED_P (XCONS (obj));
5662 break;
5663
5664 case Lisp_Float:
5665 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5666 break;
5667
5668 default:
5669 abort ();
5670 }
5671
5672 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5673 }
5674
5675
5676 \f
5677 /* Sweep: find all structures not marked, and free them. */
5678
5679 static void
5680 gc_sweep (void)
5681 {
5682 /* Remove or mark entries in weak hash tables.
5683 This must be done before any object is unmarked. */
5684 sweep_weak_hash_tables ();
5685
5686 sweep_strings ();
5687 #ifdef GC_CHECK_STRING_BYTES
5688 if (!noninteractive)
5689 check_string_bytes (1);
5690 #endif
5691
5692 /* Put all unmarked conses on free list */
5693 {
5694 register struct cons_block *cblk;
5695 struct cons_block **cprev = &cons_block;
5696 register int lim = cons_block_index;
5697 register int num_free = 0, num_used = 0;
5698
5699 cons_free_list = 0;
5700
5701 for (cblk = cons_block; cblk; cblk = *cprev)
5702 {
5703 register int i = 0;
5704 int this_free = 0;
5705 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5706
5707 /* Scan the mark bits an int at a time. */
5708 for (i = 0; i <= ilim; i++)
5709 {
5710 if (cblk->gcmarkbits[i] == -1)
5711 {
5712 /* Fast path - all cons cells for this int are marked. */
5713 cblk->gcmarkbits[i] = 0;
5714 num_used += BITS_PER_INT;
5715 }
5716 else
5717 {
5718 /* Some cons cells for this int are not marked.
5719 Find which ones, and free them. */
5720 int start, pos, stop;
5721
5722 start = i * BITS_PER_INT;
5723 stop = lim - start;
5724 if (stop > BITS_PER_INT)
5725 stop = BITS_PER_INT;
5726 stop += start;
5727
5728 for (pos = start; pos < stop; pos++)
5729 {
5730 if (!CONS_MARKED_P (&cblk->conses[pos]))
5731 {
5732 this_free++;
5733 cblk->conses[pos].u.chain = cons_free_list;
5734 cons_free_list = &cblk->conses[pos];
5735 #if GC_MARK_STACK
5736 cons_free_list->car = Vdead;
5737 #endif
5738 }
5739 else
5740 {
5741 num_used++;
5742 CONS_UNMARK (&cblk->conses[pos]);
5743 }
5744 }
5745 }
5746 }
5747
5748 lim = CONS_BLOCK_SIZE;
5749 /* If this block contains only free conses and we have already
5750 seen more than two blocks worth of free conses then deallocate
5751 this block. */
5752 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5753 {
5754 *cprev = cblk->next;
5755 /* Unhook from the free list. */
5756 cons_free_list = cblk->conses[0].u.chain;
5757 lisp_align_free (cblk);
5758 n_cons_blocks--;
5759 }
5760 else
5761 {
5762 num_free += this_free;
5763 cprev = &cblk->next;
5764 }
5765 }
5766 total_conses = num_used;
5767 total_free_conses = num_free;
5768 }
5769
5770 /* Put all unmarked floats on free list */
5771 {
5772 register struct float_block *fblk;
5773 struct float_block **fprev = &float_block;
5774 register int lim = float_block_index;
5775 register int num_free = 0, num_used = 0;
5776
5777 float_free_list = 0;
5778
5779 for (fblk = float_block; fblk; fblk = *fprev)
5780 {
5781 register int i;
5782 int this_free = 0;
5783 for (i = 0; i < lim; i++)
5784 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5785 {
5786 this_free++;
5787 fblk->floats[i].u.chain = float_free_list;
5788 float_free_list = &fblk->floats[i];
5789 }
5790 else
5791 {
5792 num_used++;
5793 FLOAT_UNMARK (&fblk->floats[i]);
5794 }
5795 lim = FLOAT_BLOCK_SIZE;
5796 /* If this block contains only free floats and we have already
5797 seen more than two blocks worth of free floats then deallocate
5798 this block. */
5799 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5800 {
5801 *fprev = fblk->next;
5802 /* Unhook from the free list. */
5803 float_free_list = fblk->floats[0].u.chain;
5804 lisp_align_free (fblk);
5805 n_float_blocks--;
5806 }
5807 else
5808 {
5809 num_free += this_free;
5810 fprev = &fblk->next;
5811 }
5812 }
5813 total_floats = num_used;
5814 total_free_floats = num_free;
5815 }
5816
5817 /* Put all unmarked intervals on free list */
5818 {
5819 register struct interval_block *iblk;
5820 struct interval_block **iprev = &interval_block;
5821 register int lim = interval_block_index;
5822 register int num_free = 0, num_used = 0;
5823
5824 interval_free_list = 0;
5825
5826 for (iblk = interval_block; iblk; iblk = *iprev)
5827 {
5828 register int i;
5829 int this_free = 0;
5830
5831 for (i = 0; i < lim; i++)
5832 {
5833 if (!iblk->intervals[i].gcmarkbit)
5834 {
5835 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5836 interval_free_list = &iblk->intervals[i];
5837 this_free++;
5838 }
5839 else
5840 {
5841 num_used++;
5842 iblk->intervals[i].gcmarkbit = 0;
5843 }
5844 }
5845 lim = INTERVAL_BLOCK_SIZE;
5846 /* If this block contains only free intervals and we have already
5847 seen more than two blocks worth of free intervals then
5848 deallocate this block. */
5849 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5850 {
5851 *iprev = iblk->next;
5852 /* Unhook from the free list. */
5853 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5854 lisp_free (iblk);
5855 n_interval_blocks--;
5856 }
5857 else
5858 {
5859 num_free += this_free;
5860 iprev = &iblk->next;
5861 }
5862 }
5863 total_intervals = num_used;
5864 total_free_intervals = num_free;
5865 }
5866
5867 /* Put all unmarked symbols on free list */
5868 {
5869 register struct symbol_block *sblk;
5870 struct symbol_block **sprev = &symbol_block;
5871 register int lim = symbol_block_index;
5872 register int num_free = 0, num_used = 0;
5873
5874 symbol_free_list = NULL;
5875
5876 for (sblk = symbol_block; sblk; sblk = *sprev)
5877 {
5878 int this_free = 0;
5879 struct Lisp_Symbol *sym = sblk->symbols;
5880 struct Lisp_Symbol *end = sym + lim;
5881
5882 for (; sym < end; ++sym)
5883 {
5884 /* Check if the symbol was created during loadup. In such a case
5885 it might be pointed to by pure bytecode which we don't trace,
5886 so we conservatively assume that it is live. */
5887 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5888
5889 if (!sym->gcmarkbit && !pure_p)
5890 {
5891 if (sym->redirect == SYMBOL_LOCALIZED)
5892 xfree (SYMBOL_BLV (sym));
5893 sym->next = symbol_free_list;
5894 symbol_free_list = sym;
5895 #if GC_MARK_STACK
5896 symbol_free_list->function = Vdead;
5897 #endif
5898 ++this_free;
5899 }
5900 else
5901 {
5902 ++num_used;
5903 if (!pure_p)
5904 UNMARK_STRING (XSTRING (sym->xname));
5905 sym->gcmarkbit = 0;
5906 }
5907 }
5908
5909 lim = SYMBOL_BLOCK_SIZE;
5910 /* If this block contains only free symbols and we have already
5911 seen more than two blocks worth of free symbols then deallocate
5912 this block. */
5913 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5914 {
5915 *sprev = sblk->next;
5916 /* Unhook from the free list. */
5917 symbol_free_list = sblk->symbols[0].next;
5918 lisp_free (sblk);
5919 n_symbol_blocks--;
5920 }
5921 else
5922 {
5923 num_free += this_free;
5924 sprev = &sblk->next;
5925 }
5926 }
5927 total_symbols = num_used;
5928 total_free_symbols = num_free;
5929 }
5930
5931 /* Put all unmarked misc's on free list.
5932 For a marker, first unchain it from the buffer it points into. */
5933 {
5934 register struct marker_block *mblk;
5935 struct marker_block **mprev = &marker_block;
5936 register int lim = marker_block_index;
5937 register int num_free = 0, num_used = 0;
5938
5939 marker_free_list = 0;
5940
5941 for (mblk = marker_block; mblk; mblk = *mprev)
5942 {
5943 register int i;
5944 int this_free = 0;
5945
5946 for (i = 0; i < lim; i++)
5947 {
5948 if (!mblk->markers[i].u_any.gcmarkbit)
5949 {
5950 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5951 unchain_marker (&mblk->markers[i].u_marker);
5952 /* Set the type of the freed object to Lisp_Misc_Free.
5953 We could leave the type alone, since nobody checks it,
5954 but this might catch bugs faster. */
5955 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5956 mblk->markers[i].u_free.chain = marker_free_list;
5957 marker_free_list = &mblk->markers[i];
5958 this_free++;
5959 }
5960 else
5961 {
5962 num_used++;
5963 mblk->markers[i].u_any.gcmarkbit = 0;
5964 }
5965 }
5966 lim = MARKER_BLOCK_SIZE;
5967 /* If this block contains only free markers and we have already
5968 seen more than two blocks worth of free markers then deallocate
5969 this block. */
5970 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5971 {
5972 *mprev = mblk->next;
5973 /* Unhook from the free list. */
5974 marker_free_list = mblk->markers[0].u_free.chain;
5975 lisp_free (mblk);
5976 n_marker_blocks--;
5977 }
5978 else
5979 {
5980 num_free += this_free;
5981 mprev = &mblk->next;
5982 }
5983 }
5984
5985 total_markers = num_used;
5986 total_free_markers = num_free;
5987 }
5988
5989 /* Free all unmarked buffers */
5990 {
5991 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5992
5993 while (buffer)
5994 if (!VECTOR_MARKED_P (buffer))
5995 {
5996 if (prev)
5997 prev->next = buffer->next;
5998 else
5999 all_buffers = buffer->next;
6000 next = buffer->next;
6001 lisp_free (buffer);
6002 buffer = next;
6003 }
6004 else
6005 {
6006 VECTOR_UNMARK (buffer);
6007 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6008 prev = buffer, buffer = buffer->next;
6009 }
6010 }
6011
6012 /* Free all unmarked vectors */
6013 {
6014 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6015 total_vector_size = 0;
6016
6017 while (vector)
6018 if (!VECTOR_MARKED_P (vector))
6019 {
6020 if (prev)
6021 prev->next = vector->next;
6022 else
6023 all_vectors = vector->next;
6024 next = vector->next;
6025 lisp_free (vector);
6026 n_vectors--;
6027 vector = next;
6028
6029 }
6030 else
6031 {
6032 VECTOR_UNMARK (vector);
6033 if (vector->size & PSEUDOVECTOR_FLAG)
6034 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6035 else
6036 total_vector_size += vector->size;
6037 prev = vector, vector = vector->next;
6038 }
6039 }
6040
6041 #ifdef GC_CHECK_STRING_BYTES
6042 if (!noninteractive)
6043 check_string_bytes (1);
6044 #endif
6045 }
6046
6047
6048
6049 \f
6050 /* Debugging aids. */
6051
6052 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6053 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6054 This may be helpful in debugging Emacs's memory usage.
6055 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6056 (void)
6057 {
6058 Lisp_Object end;
6059
6060 XSETINT (end, (EMACS_INT) (char *) sbrk (0) / 1024);
6061
6062 return end;
6063 }
6064
6065 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6066 doc: /* Return a list of counters that measure how much consing there has been.
6067 Each of these counters increments for a certain kind of object.
6068 The counters wrap around from the largest positive integer to zero.
6069 Garbage collection does not decrease them.
6070 The elements of the value are as follows:
6071 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6072 All are in units of 1 = one object consed
6073 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6074 objects consed.
6075 MISCS include overlays, markers, and some internal types.
6076 Frames, windows, buffers, and subprocesses count as vectors
6077 (but the contents of a buffer's text do not count here). */)
6078 (void)
6079 {
6080 Lisp_Object consed[8];
6081
6082 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6083 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6084 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6085 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6086 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6087 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6088 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6089 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6090
6091 return Flist (8, consed);
6092 }
6093
6094 int suppress_checking;
6095
6096 void
6097 die (const char *msg, const char *file, int line)
6098 {
6099 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6100 file, line, msg);
6101 abort ();
6102 }
6103 \f
6104 /* Initialization */
6105
6106 void
6107 init_alloc_once (void)
6108 {
6109 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6110 purebeg = PUREBEG;
6111 pure_size = PURESIZE;
6112 pure_bytes_used = 0;
6113 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6114 pure_bytes_used_before_overflow = 0;
6115
6116 /* Initialize the list of free aligned blocks. */
6117 free_ablock = NULL;
6118
6119 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6120 mem_init ();
6121 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6122 #endif
6123
6124 all_vectors = 0;
6125 ignore_warnings = 1;
6126 #ifdef DOUG_LEA_MALLOC
6127 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6128 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6129 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6130 #endif
6131 init_strings ();
6132 init_cons ();
6133 init_symbol ();
6134 init_marker ();
6135 init_float ();
6136 init_intervals ();
6137 init_weak_hash_tables ();
6138
6139 #ifdef REL_ALLOC
6140 malloc_hysteresis = 32;
6141 #else
6142 malloc_hysteresis = 0;
6143 #endif
6144
6145 refill_memory_reserve ();
6146
6147 ignore_warnings = 0;
6148 gcprolist = 0;
6149 byte_stack_list = 0;
6150 staticidx = 0;
6151 consing_since_gc = 0;
6152 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6153 gc_relative_threshold = 0;
6154 }
6155
6156 void
6157 init_alloc (void)
6158 {
6159 gcprolist = 0;
6160 byte_stack_list = 0;
6161 #if GC_MARK_STACK
6162 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6163 setjmp_tested_p = longjmps_done = 0;
6164 #endif
6165 #endif
6166 Vgc_elapsed = make_float (0.0);
6167 gcs_done = 0;
6168 }
6169
6170 void
6171 syms_of_alloc (void)
6172 {
6173 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6174 doc: /* *Number of bytes of consing between garbage collections.
6175 Garbage collection can happen automatically once this many bytes have been
6176 allocated since the last garbage collection. All data types count.
6177
6178 Garbage collection happens automatically only when `eval' is called.
6179
6180 By binding this temporarily to a large number, you can effectively
6181 prevent garbage collection during a part of the program.
6182 See also `gc-cons-percentage'. */);
6183
6184 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6185 doc: /* *Portion of the heap used for allocation.
6186 Garbage collection can happen automatically once this portion of the heap
6187 has been allocated since the last garbage collection.
6188 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6189 Vgc_cons_percentage = make_float (0.1);
6190
6191 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6192 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6193
6194 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6195 doc: /* Number of cons cells that have been consed so far. */);
6196
6197 DEFVAR_INT ("floats-consed", floats_consed,
6198 doc: /* Number of floats that have been consed so far. */);
6199
6200 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6201 doc: /* Number of vector cells that have been consed so far. */);
6202
6203 DEFVAR_INT ("symbols-consed", symbols_consed,
6204 doc: /* Number of symbols that have been consed so far. */);
6205
6206 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6207 doc: /* Number of string characters that have been consed so far. */);
6208
6209 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6210 doc: /* Number of miscellaneous objects that have been consed so far. */);
6211
6212 DEFVAR_INT ("intervals-consed", intervals_consed,
6213 doc: /* Number of intervals that have been consed so far. */);
6214
6215 DEFVAR_INT ("strings-consed", strings_consed,
6216 doc: /* Number of strings that have been consed so far. */);
6217
6218 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6219 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6220 This means that certain objects should be allocated in shared (pure) space.
6221 It can also be set to a hash-table, in which case this table is used to
6222 do hash-consing of the objects allocated to pure space. */);
6223
6224 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6225 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6226 garbage_collection_messages = 0;
6227
6228 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6229 doc: /* Hook run after garbage collection has finished. */);
6230 Vpost_gc_hook = Qnil;
6231 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6232 staticpro (&Qpost_gc_hook);
6233
6234 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6235 doc: /* Precomputed `signal' argument for memory-full error. */);
6236 /* We build this in advance because if we wait until we need it, we might
6237 not be able to allocate the memory to hold it. */
6238 Vmemory_signal_data
6239 = pure_cons (Qerror,
6240 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6241
6242 DEFVAR_LISP ("memory-full", Vmemory_full,
6243 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6244 Vmemory_full = Qnil;
6245
6246 staticpro (&Qgc_cons_threshold);
6247 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6248
6249 staticpro (&Qchar_table_extra_slots);
6250 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6251
6252 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6253 doc: /* Accumulated time elapsed in garbage collections.
6254 The time is in seconds as a floating point value. */);
6255 DEFVAR_INT ("gcs-done", gcs_done,
6256 doc: /* Accumulated number of garbage collections done. */);
6257
6258 defsubr (&Scons);
6259 defsubr (&Slist);
6260 defsubr (&Svector);
6261 defsubr (&Smake_byte_code);
6262 defsubr (&Smake_list);
6263 defsubr (&Smake_vector);
6264 defsubr (&Smake_string);
6265 defsubr (&Smake_bool_vector);
6266 defsubr (&Smake_symbol);
6267 defsubr (&Smake_marker);
6268 defsubr (&Spurecopy);
6269 defsubr (&Sgarbage_collect);
6270 defsubr (&Smemory_limit);
6271 defsubr (&Smemory_use_counts);
6272
6273 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6274 defsubr (&Sgc_status);
6275 #endif
6276 }