add ability to see exactly where actuator currently is
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
CommitLineData
df27a6a3 1/*
aab6cbba 2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
4cff3ded
AW
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
df27a6a3 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
5673fe39
MM
10
11#include <math.h>
4cff3ded
AW
12#include <string>
13using std::string;
5673fe39 14
4cff3ded 15#include "Planner.h"
3fceb8eb 16#include "Conveyor.h"
4cff3ded 17#include "Robot.h"
5673fe39
MM
18#include "nuts_bolts.h"
19#include "Pin.h"
20#include "StepperMotor.h"
21#include "Gcode.h"
5647f709 22#include "PublicDataRequest.h"
66383b80 23#include "RobotPublicAccess.h"
4cff3ded
AW
24#include "arm_solutions/BaseSolution.h"
25#include "arm_solutions/CartesianSolution.h"
c41d6d95 26#include "arm_solutions/RotatableCartesianSolution.h"
2a06c415 27#include "arm_solutions/LinearDeltaSolution.h"
bdaaa75d 28#include "arm_solutions/HBotSolution.h"
1217e470 29#include "arm_solutions/MorganSCARASolution.h"
61134a65 30#include "StepTicker.h"
7af0714f
JM
31#include "checksumm.h"
32#include "utils.h"
8d54c34c 33#include "ConfigValue.h"
5966b7d0 34#include "libs/StreamOutput.h"
dd0a7cfa 35#include "StreamOutputPool.h"
38bf9a1c 36
78d0e16a
MM
37#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
38#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
39#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
40#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
41#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
42#define arc_correction_checksum CHECKSUM("arc_correction")
43#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
44#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
45#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
43424972
JM
46
47// arm solutions
78d0e16a
MM
48#define arm_solution_checksum CHECKSUM("arm_solution")
49#define cartesian_checksum CHECKSUM("cartesian")
50#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
51#define rostock_checksum CHECKSUM("rostock")
2a06c415 52#define linear_delta_checksum CHECKSUM("linear_delta")
78d0e16a
MM
53#define delta_checksum CHECKSUM("delta")
54#define hbot_checksum CHECKSUM("hbot")
55#define corexy_checksum CHECKSUM("corexy")
56#define kossel_checksum CHECKSUM("kossel")
1217e470 57#define morgan_checksum CHECKSUM("morgan")
78d0e16a
MM
58
59// stepper motor stuff
60#define alpha_step_pin_checksum CHECKSUM("alpha_step_pin")
61#define beta_step_pin_checksum CHECKSUM("beta_step_pin")
62#define gamma_step_pin_checksum CHECKSUM("gamma_step_pin")
63#define alpha_dir_pin_checksum CHECKSUM("alpha_dir_pin")
64#define beta_dir_pin_checksum CHECKSUM("beta_dir_pin")
65#define gamma_dir_pin_checksum CHECKSUM("gamma_dir_pin")
66#define alpha_en_pin_checksum CHECKSUM("alpha_en_pin")
67#define beta_en_pin_checksum CHECKSUM("beta_en_pin")
68#define gamma_en_pin_checksum CHECKSUM("gamma_en_pin")
a84f0186 69
78d0e16a
MM
70#define alpha_steps_per_mm_checksum CHECKSUM("alpha_steps_per_mm")
71#define beta_steps_per_mm_checksum CHECKSUM("beta_steps_per_mm")
72#define gamma_steps_per_mm_checksum CHECKSUM("gamma_steps_per_mm")
73
df6a30f2
MM
74#define alpha_max_rate_checksum CHECKSUM("alpha_max_rate")
75#define beta_max_rate_checksum CHECKSUM("beta_max_rate")
76#define gamma_max_rate_checksum CHECKSUM("gamma_max_rate")
77
78
78d0e16a
MM
79// new-style actuator stuff
80#define actuator_checksum CHEKCSUM("actuator")
81
82#define step_pin_checksum CHECKSUM("step_pin")
83#define dir_pin_checksum CHEKCSUM("dir_pin")
84#define en_pin_checksum CHECKSUM("en_pin")
85
86#define steps_per_mm_checksum CHECKSUM("steps_per_mm")
df6a30f2 87#define max_rate_checksum CHECKSUM("max_rate")
78d0e16a
MM
88
89#define alpha_checksum CHECKSUM("alpha")
90#define beta_checksum CHECKSUM("beta")
91#define gamma_checksum CHECKSUM("gamma")
92
43424972 93
38bf9a1c
JM
94#define NEXT_ACTION_DEFAULT 0
95#define NEXT_ACTION_DWELL 1
96#define NEXT_ACTION_GO_HOME 2
97
98#define MOTION_MODE_SEEK 0 // G0
99#define MOTION_MODE_LINEAR 1 // G1
100#define MOTION_MODE_CW_ARC 2 // G2
101#define MOTION_MODE_CCW_ARC 3 // G3
102#define MOTION_MODE_CANCEL 4 // G80
103
104#define PATH_CONTROL_MODE_EXACT_PATH 0
105#define PATH_CONTROL_MODE_EXACT_STOP 1
106#define PATH_CONTROL_MODE_CONTINOUS 2
107
108#define PROGRAM_FLOW_RUNNING 0
109#define PROGRAM_FLOW_PAUSED 1
110#define PROGRAM_FLOW_COMPLETED 2
111
112#define SPINDLE_DIRECTION_CW 0
113#define SPINDLE_DIRECTION_CCW 1
114
edac9072
AW
115// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
116// It takes care of cutting arcs into segments, same thing for line that are too long
41fd89e0 117#define max(a,b) (((a) > (b)) ? (a) : (b))
edac9072 118
4710532a
JM
119Robot::Robot()
120{
a1b7e9f0 121 this->inch_mode = false;
0e8b102e 122 this->absolute_mode = true;
df27a6a3 123 this->motion_mode = MOTION_MODE_SEEK;
4cff3ded 124 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
df27a6a3 125 clear_vector(this->last_milestone);
3632a517 126 clear_vector(this->transformed_last_milestone);
0b804a41 127 this->arm_solution = NULL;
da947c62 128 seconds_per_minute = 60.0F;
fae93525 129 this->clearToolOffset();
3632a517 130 this->compensationTransform= nullptr;
728477c4 131 this->halted= false;
4cff3ded
AW
132}
133
134//Called when the module has just been loaded
4710532a
JM
135void Robot::on_module_loaded()
136{
4cff3ded 137 this->register_for_event(ON_GCODE_RECEIVED);
b55cfff1
JM
138 this->register_for_event(ON_GET_PUBLIC_DATA);
139 this->register_for_event(ON_SET_PUBLIC_DATA);
728477c4 140 this->register_for_event(ON_HALT);
4cff3ded
AW
141
142 // Configuration
da24d6ae
AW
143 this->on_config_reload(this);
144}
145
4710532a
JM
146void Robot::on_config_reload(void *argument)
147{
5984acdf 148
edac9072
AW
149 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
150 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
151 // To make adding those solution easier, they have their own, separate object.
5984acdf 152 // Here we read the config to find out which arm solution to use
0b804a41 153 if (this->arm_solution) delete this->arm_solution;
314ab8f7 154 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
d149c730 155 // Note checksums are not const expressions when in debug mode, so don't use switch
98761c28 156 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
314ab8f7 157 this->arm_solution = new HBotSolution(THEKERNEL->config);
bdaaa75d 158
2a06c415
JM
159 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
160 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
73a4e3c0 161
4710532a 162 } else if(solution_checksum == rotatable_cartesian_checksum) {
314ab8f7 163 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
b73a756d 164
1217e470
QH
165 } else if(solution_checksum == morgan_checksum) {
166 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
167
4710532a 168 } else if(solution_checksum == cartesian_checksum) {
314ab8f7 169 this->arm_solution = new CartesianSolution(THEKERNEL->config);
73a4e3c0 170
4710532a 171 } else {
314ab8f7 172 this->arm_solution = new CartesianSolution(THEKERNEL->config);
d149c730 173 }
73a4e3c0 174
0b804a41 175
da947c62
MM
176 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
177 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
178 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
1ad23cd3 179 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
da947c62
MM
180 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.5f)->as_number();
181 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
78d0e16a 182
c9ed779d
MM
183 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
184 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
185 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
feb204be 186
78d0e16a
MM
187 Pin alpha_step_pin;
188 Pin alpha_dir_pin;
189 Pin alpha_en_pin;
190 Pin beta_step_pin;
191 Pin beta_dir_pin;
192 Pin beta_en_pin;
193 Pin gamma_step_pin;
194 Pin gamma_dir_pin;
195 Pin gamma_en_pin;
196
197 alpha_step_pin.from_string( THEKERNEL->config->value(alpha_step_pin_checksum )->by_default("2.0" )->as_string())->as_output();
198 alpha_dir_pin.from_string( THEKERNEL->config->value(alpha_dir_pin_checksum )->by_default("0.5" )->as_string())->as_output();
199 alpha_en_pin.from_string( THEKERNEL->config->value(alpha_en_pin_checksum )->by_default("0.4" )->as_string())->as_output();
200 beta_step_pin.from_string( THEKERNEL->config->value(beta_step_pin_checksum )->by_default("2.1" )->as_string())->as_output();
9c5fa39a
MM
201 beta_dir_pin.from_string( THEKERNEL->config->value(beta_dir_pin_checksum )->by_default("0.11" )->as_string())->as_output();
202 beta_en_pin.from_string( THEKERNEL->config->value(beta_en_pin_checksum )->by_default("0.10" )->as_string())->as_output();
78d0e16a
MM
203 gamma_step_pin.from_string( THEKERNEL->config->value(gamma_step_pin_checksum )->by_default("2.2" )->as_string())->as_output();
204 gamma_dir_pin.from_string( THEKERNEL->config->value(gamma_dir_pin_checksum )->by_default("0.20" )->as_string())->as_output();
205 gamma_en_pin.from_string( THEKERNEL->config->value(gamma_en_pin_checksum )->by_default("0.19" )->as_string())->as_output();
78d0e16a 206
a84f0186
MM
207 float steps_per_mm[3] = {
208 THEKERNEL->config->value(alpha_steps_per_mm_checksum)->by_default( 80.0F)->as_number(),
209 THEKERNEL->config->value(beta_steps_per_mm_checksum )->by_default( 80.0F)->as_number(),
210 THEKERNEL->config->value(gamma_steps_per_mm_checksum)->by_default(2560.0F)->as_number(),
211 };
212
78d0e16a
MM
213 // TODO: delete or detect old steppermotors
214 // Make our 3 StepperMotors
9c5fa39a
MM
215 this->alpha_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(alpha_step_pin, alpha_dir_pin, alpha_en_pin) );
216 this->beta_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(beta_step_pin, beta_dir_pin, beta_en_pin ) );
217 this->gamma_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(gamma_step_pin, gamma_dir_pin, gamma_en_pin) );
78d0e16a 218
a84f0186
MM
219 alpha_stepper_motor->change_steps_per_mm(steps_per_mm[0]);
220 beta_stepper_motor->change_steps_per_mm(steps_per_mm[1]);
221 gamma_stepper_motor->change_steps_per_mm(steps_per_mm[2]);
222
df6a30f2
MM
223 alpha_stepper_motor->max_rate = THEKERNEL->config->value(alpha_max_rate_checksum)->by_default(30000.0F)->as_number() / 60.0F;
224 beta_stepper_motor->max_rate = THEKERNEL->config->value(beta_max_rate_checksum )->by_default(30000.0F)->as_number() / 60.0F;
225 gamma_stepper_motor->max_rate = THEKERNEL->config->value(gamma_max_rate_checksum)->by_default(30000.0F)->as_number() / 60.0F;
dd0a7cfa 226 check_max_actuator_speeds(); // check the configs are sane
df6a30f2 227
78d0e16a
MM
228 actuators.clear();
229 actuators.push_back(alpha_stepper_motor);
230 actuators.push_back(beta_stepper_motor);
231 actuators.push_back(gamma_stepper_motor);
975469ad 232
dd0a7cfa 233
975469ad
MM
234 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
235 // so the first move can be correct if homing is not performed
236 float actuator_pos[3];
237 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
238 for (int i = 0; i < 3; i++)
239 actuators[i]->change_last_milestone(actuator_pos[i]);
5966b7d0
AT
240
241 //this->clearToolOffset();
4cff3ded
AW
242}
243
dd0a7cfa
JM
244// this does a sanity check that actuator speeds do not exceed steps rate capability
245// we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
246void Robot::check_max_actuator_speeds()
247{
248 float step_freq= alpha_stepper_motor->max_rate * alpha_stepper_motor->get_steps_per_mm();
249 if(step_freq > THEKERNEL->base_stepping_frequency) {
250 alpha_stepper_motor->max_rate= floorf(THEKERNEL->base_stepping_frequency / alpha_stepper_motor->get_steps_per_mm());
251 THEKERNEL->streams->printf("WARNING: alpha_max_rate exceeds base_stepping_frequency * alpha_steps_per_mm: %f, setting to %f\n", step_freq, alpha_stepper_motor->max_rate);
252 }
253
254 step_freq= beta_stepper_motor->max_rate * beta_stepper_motor->get_steps_per_mm();
255 if(step_freq > THEKERNEL->base_stepping_frequency) {
256 beta_stepper_motor->max_rate= floorf(THEKERNEL->base_stepping_frequency / beta_stepper_motor->get_steps_per_mm());
257 THEKERNEL->streams->printf("WARNING: beta_max_rate exceeds base_stepping_frequency * beta_steps_per_mm: %f, setting to %f\n", step_freq, beta_stepper_motor->max_rate);
258 }
259
260 step_freq= gamma_stepper_motor->max_rate * gamma_stepper_motor->get_steps_per_mm();
261 if(step_freq > THEKERNEL->base_stepping_frequency) {
262 gamma_stepper_motor->max_rate= floorf(THEKERNEL->base_stepping_frequency / gamma_stepper_motor->get_steps_per_mm());
263 THEKERNEL->streams->printf("WARNING: gamma_max_rate exceeds base_stepping_frequency * gamma_steps_per_mm: %f, setting to %f\n", step_freq, gamma_stepper_motor->max_rate);
264 }
265}
266
728477c4
JM
267void Robot::on_halt(void *arg)
268{
269 halted= (arg == nullptr);
270}
271
4710532a
JM
272void Robot::on_get_public_data(void *argument)
273{
274 PublicDataRequest *pdr = static_cast<PublicDataRequest *>(argument);
b55cfff1
JM
275
276 if(!pdr->starts_with(robot_checksum)) return;
277
278 if(pdr->second_element_is(speed_override_percent_checksum)) {
1ad23cd3 279 static float return_data;
da947c62 280 return_data = 100.0F * 60.0F / seconds_per_minute;
b55cfff1
JM
281 pdr->set_data_ptr(&return_data);
282 pdr->set_taken();
98761c28 283
4710532a 284 } else if(pdr->second_element_is(current_position_checksum)) {
1ad23cd3 285 static float return_data[3];
4710532a
JM
286 return_data[0] = from_millimeters(this->last_milestone[0]);
287 return_data[1] = from_millimeters(this->last_milestone[1]);
288 return_data[2] = from_millimeters(this->last_milestone[2]);
b55cfff1
JM
289
290 pdr->set_data_ptr(&return_data);
98761c28 291 pdr->set_taken();
b55cfff1 292 }
5647f709
JM
293}
294
4710532a
JM
295void Robot::on_set_public_data(void *argument)
296{
297 PublicDataRequest *pdr = static_cast<PublicDataRequest *>(argument);
5647f709 298
b55cfff1 299 if(!pdr->starts_with(robot_checksum)) return;
5647f709 300
b55cfff1 301 if(pdr->second_element_is(speed_override_percent_checksum)) {
7a522ccc 302 // NOTE do not use this while printing!
4710532a 303 float t = *static_cast<float *>(pdr->get_data_ptr());
98761c28 304 // enforce minimum 10% speed
4710532a 305 if (t < 10.0F) t = 10.0F;
98761c28 306
da947c62 307 this->seconds_per_minute = t / 0.6F; // t * 60 / 100
b55cfff1 308 pdr->set_taken();
4710532a
JM
309 } else if(pdr->second_element_is(current_position_checksum)) {
310 float *t = static_cast<float *>(pdr->get_data_ptr());
311 for (int i = 0; i < 3; i++) {
8adf2390
L
312 this->last_milestone[i] = this->to_millimeters(t[i]);
313 }
314
315 float actuator_pos[3];
316 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
317 for (int i = 0; i < 3; i++)
318 actuators[i]->change_last_milestone(actuator_pos[i]);
319
320 pdr->set_taken();
321 }
5647f709
JM
322}
323
4cff3ded 324//A GCode has been received
edac9072 325//See if the current Gcode line has some orders for us
4710532a
JM
326void Robot::on_gcode_received(void *argument)
327{
328 Gcode *gcode = static_cast<Gcode *>(argument);
6bc4a00a 329
23c90ba6 330 this->motion_mode = -1;
4cff3ded 331
4710532a
JM
332 //G-letter Gcodes are mostly what the Robot module is interrested in, other modules also catch the gcode event and do stuff accordingly
333 if( gcode->has_g) {
334 switch( gcode->g ) {
74b6303c
DD
335 case 0: this->motion_mode = MOTION_MODE_SEEK; gcode->mark_as_taken(); break;
336 case 1: this->motion_mode = MOTION_MODE_LINEAR; gcode->mark_as_taken(); break;
337 case 2: this->motion_mode = MOTION_MODE_CW_ARC; gcode->mark_as_taken(); break;
338 case 3: this->motion_mode = MOTION_MODE_CCW_ARC; gcode->mark_as_taken(); break;
339 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); gcode->mark_as_taken(); break;
340 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); gcode->mark_as_taken(); break;
341 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); gcode->mark_as_taken(); break;
342 case 20: this->inch_mode = true; gcode->mark_as_taken(); break;
343 case 21: this->inch_mode = false; gcode->mark_as_taken(); break;
344 case 90: this->absolute_mode = true; gcode->mark_as_taken(); break;
345 case 91: this->absolute_mode = false; gcode->mark_as_taken(); break;
0b804a41 346 case 92: {
4710532a 347 if(gcode->get_num_args() == 0) {
cef9acea
JM
348 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
349 reset_axis_position(0, i);
350 }
351
4710532a
JM
352 } else {
353 for (char letter = 'X'; letter <= 'Z'; letter++) {
cef9acea
JM
354 if ( gcode->has_letter(letter) ) {
355 reset_axis_position(this->to_millimeters(gcode->get_value(letter)), letter - 'X');
356 }
eaf8a8a8 357 }
6bc4a00a 358 }
78d0e16a 359
74b6303c 360 gcode->mark_as_taken();
78d0e16a 361 return;
4710532a
JM
362 }
363 }
364 } else if( gcode->has_m) {
365 switch( gcode->m ) {
0fb5b438 366 case 92: // M92 - set steps per mm
0fb5b438 367 if (gcode->has_letter('X'))
78d0e16a 368 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
0fb5b438 369 if (gcode->has_letter('Y'))
78d0e16a 370 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
0fb5b438 371 if (gcode->has_letter('Z'))
78d0e16a 372 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
7369629d
MM
373 if (gcode->has_letter('F'))
374 seconds_per_minute = gcode->get_value('F');
78d0e16a
MM
375
376 gcode->stream->printf("X:%g Y:%g Z:%g F:%g ", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm, seconds_per_minute);
0fb5b438 377 gcode->add_nl = true;
74b6303c 378 gcode->mark_as_taken();
dd0a7cfa 379 check_max_actuator_speeds();
0fb5b438 380 return;
4710532a 381 case 114: {
58c32991
JM
382 char buf[64];
383 int n = snprintf(buf, sizeof(buf), "C: X:%1.3f Y:%1.3f Z:%1.3f A:%1.3f B:%1.3f C:%1.3f ",
4710532a
JM
384 from_millimeters(this->last_milestone[0]),
385 from_millimeters(this->last_milestone[1]),
58c32991
JM
386 from_millimeters(this->last_milestone[2]),
387 actuators[X_AXIS]->get_current_position(),
388 actuators[Y_AXIS]->get_current_position(),
389 actuators[Z_AXIS]->get_current_position() );
4710532a
JM
390 gcode->txt_after_ok.append(buf, n);
391 gcode->mark_as_taken();
392 }
393 return;
33e4cc02 394
83488642
JM
395 case 203: // M203 Set maximum feedrates in mm/sec
396 if (gcode->has_letter('X'))
4710532a 397 this->max_speeds[X_AXIS] = gcode->get_value('X');
83488642 398 if (gcode->has_letter('Y'))
4710532a 399 this->max_speeds[Y_AXIS] = gcode->get_value('Y');
83488642 400 if (gcode->has_letter('Z'))
4710532a 401 this->max_speeds[Z_AXIS] = gcode->get_value('Z');
83488642 402 if (gcode->has_letter('A'))
4710532a 403 alpha_stepper_motor->max_rate = gcode->get_value('A');
83488642 404 if (gcode->has_letter('B'))
4710532a 405 beta_stepper_motor->max_rate = gcode->get_value('B');
83488642 406 if (gcode->has_letter('C'))
4710532a 407 gamma_stepper_motor->max_rate = gcode->get_value('C');
83488642 408
dd0a7cfa
JM
409 check_max_actuator_speeds();
410
83488642 411 gcode->stream->printf("X:%g Y:%g Z:%g A:%g B:%g C:%g ",
4710532a
JM
412 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
413 alpha_stepper_motor->max_rate, beta_stepper_motor->max_rate, gamma_stepper_motor->max_rate);
83488642
JM
414 gcode->add_nl = true;
415 gcode->mark_as_taken();
416 break;
417
c5fe1787 418 case 204: // M204 Snnn - set acceleration to nnn, Znnn sets z acceleration
d4ee6ee2 419 gcode->mark_as_taken();
83488642 420
4710532a 421 if (gcode->has_letter('S')) {
83488642
JM
422 // TODO for safety so it applies only to following gcodes, maybe a better way to do this?
423 THEKERNEL->conveyor->wait_for_empty_queue();
4710532a 424 float acc = gcode->get_value('S'); // mm/s^2
d4ee6ee2 425 // enforce minimum
da947c62
MM
426 if (acc < 1.0F)
427 acc = 1.0F;
4710532a 428 THEKERNEL->planner->acceleration = acc;
d4ee6ee2 429 }
c5fe1787
JM
430 if (gcode->has_letter('Z')) {
431 // TODO for safety so it applies only to following gcodes, maybe a better way to do this?
432 THEKERNEL->conveyor->wait_for_empty_queue();
433 float acc = gcode->get_value('Z'); // mm/s^2
434 // enforce positive
435 if (acc < 0.0F)
436 acc = 0.0F;
437 THEKERNEL->planner->z_acceleration = acc;
438 }
d4ee6ee2
JM
439 break;
440
8b69c90d 441 case 205: // M205 Xnnn - set junction deviation Snnn - Set minimum planner speed
d4ee6ee2 442 gcode->mark_as_taken();
4710532a
JM
443 if (gcode->has_letter('X')) {
444 float jd = gcode->get_value('X');
d4ee6ee2 445 // enforce minimum
8b69c90d
JM
446 if (jd < 0.0F)
447 jd = 0.0F;
4710532a 448 THEKERNEL->planner->junction_deviation = jd;
d4ee6ee2 449 }
4710532a
JM
450 if (gcode->has_letter('S')) {
451 float mps = gcode->get_value('S');
8b69c90d
JM
452 // enforce minimum
453 if (mps < 0.0F)
454 mps = 0.0F;
4710532a 455 THEKERNEL->planner->minimum_planner_speed = mps;
8b69c90d 456 }
d4ee6ee2 457 break;
98761c28 458
7369629d 459 case 220: // M220 - speed override percentage
74b6303c 460 gcode->mark_as_taken();
4710532a 461 if (gcode->has_letter('S')) {
1ad23cd3 462 float factor = gcode->get_value('S');
98761c28 463 // enforce minimum 10% speed
da947c62
MM
464 if (factor < 10.0F)
465 factor = 10.0F;
466 // enforce maximum 10x speed
467 if (factor > 1000.0F)
468 factor = 1000.0F;
469
470 seconds_per_minute = 6000.0F / factor;
7369629d 471 }
b4f56013 472 break;
ec4773e5 473
494dc541
JM
474 case 400: // wait until all moves are done up to this point
475 gcode->mark_as_taken();
314ab8f7 476 THEKERNEL->conveyor->wait_for_empty_queue();
494dc541
JM
477 break;
478
33e4cc02 479 case 500: // M500 saves some volatile settings to config override file
b7cd847e 480 case 503: { // M503 just prints the settings
78d0e16a 481 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm);
c5fe1787 482 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f Z%1.5f\n", THEKERNEL->planner->acceleration, THEKERNEL->planner->z_acceleration);
8b69c90d 483 gcode->stream->printf(";X- Junction Deviation, S - Minimum Planner speed:\nM205 X%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->minimum_planner_speed);
83488642 484 gcode->stream->printf(";Max feedrates in mm/sec, XYZ cartesian, ABC actuator:\nM203 X%1.5f Y%1.5f Z%1.5f A%1.5f B%1.5f C%1.5f\n",
4710532a
JM
485 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
486 alpha_stepper_motor->max_rate, beta_stepper_motor->max_rate, gamma_stepper_motor->max_rate);
b7cd847e
JM
487
488 // get or save any arm solution specific optional values
489 BaseSolution::arm_options_t options;
490 if(arm_solution->get_optional(options) && !options.empty()) {
491 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
4710532a 492 for(auto &i : options) {
b7cd847e
JM
493 gcode->stream->printf(" %c%1.4f", i.first, i.second);
494 }
495 gcode->stream->printf("\n");
496 }
33e4cc02
JM
497 gcode->mark_as_taken();
498 break;
b7cd847e 499 }
33e4cc02 500
b7cd847e 501 case 665: { // M665 set optional arm solution variables based on arm solution.
ec4773e5 502 gcode->mark_as_taken();
b7cd847e
JM
503 // the parameter args could be any letter except S so ask solution what options it supports
504 BaseSolution::arm_options_t options;
505 if(arm_solution->get_optional(options)) {
4710532a 506 for(auto &i : options) {
b7cd847e 507 // foreach optional value
4710532a 508 char c = i.first;
b7cd847e 509 if(gcode->has_letter(c)) { // set new value
4710532a 510 i.second = gcode->get_value(c);
b7cd847e
JM
511 }
512 // print all current values of supported options
513 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
5523c05d 514 gcode->add_nl = true;
ec4773e5 515 }
b7cd847e
JM
516 // set the new options
517 arm_solution->set_optional(options);
ec4773e5 518 }
ec4773e5 519
b7cd847e 520 // set delta segments per second, not saved by M500
ec29d378 521 if(gcode->has_letter('S')) {
4710532a 522 this->delta_segments_per_second = gcode->get_value('S');
ec29d378 523 }
ec4773e5 524 break;
b7cd847e 525 }
6989211c 526 }
494dc541
JM
527 }
528
c83887ea
MM
529 if( this->motion_mode < 0)
530 return;
6bc4a00a 531
4710532a 532 //Get parameters
1ad23cd3 533 float target[3], offset[3];
c2885de8 534 clear_vector(offset);
6bc4a00a 535
2ba859c9 536 memcpy(target, this->last_milestone, sizeof(target)); //default to last target
6bc4a00a 537
4710532a
JM
538 for(char letter = 'I'; letter <= 'K'; letter++) {
539 if( gcode->has_letter(letter) ) {
540 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
c2885de8
JM
541 }
542 }
4710532a
JM
543 for(char letter = 'X'; letter <= 'Z'; letter++) {
544 if( gcode->has_letter(letter) ) {
c7689006 545 target[letter - 'X'] = this->to_millimeters(gcode->get_value(letter)) + (this->absolute_mode ? this->toolOffset[letter - 'X'] : target[letter - 'X']);
c2885de8
JM
546 }
547 }
6bc4a00a 548
4710532a 549 if( gcode->has_letter('F') ) {
7369629d 550 if( this->motion_mode == MOTION_MODE_SEEK )
da947c62 551 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 552 else
da947c62 553 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 554 }
6bc4a00a 555
4cff3ded 556 //Perform any physical actions
fae93525
JM
557 switch(this->motion_mode) {
558 case MOTION_MODE_CANCEL: break;
559 case MOTION_MODE_SEEK : this->append_line(gcode, target, this->seek_rate / seconds_per_minute ); break;
560 case MOTION_MODE_LINEAR: this->append_line(gcode, target, this->feed_rate / seconds_per_minute ); break;
561 case MOTION_MODE_CW_ARC:
562 case MOTION_MODE_CCW_ARC: this->compute_arc(gcode, offset, target ); break;
4cff3ded 563 }
13e4a3f9 564
fae93525 565 // last_milestone was set to target in append_milestone, no need to do it again
4cff3ded 566
edac9072
AW
567}
568
5984acdf 569// We received a new gcode, and one of the functions
edac9072
AW
570// determined the distance for that given gcode. So now we can attach this gcode to the right block
571// and continue
4710532a
JM
572void Robot::distance_in_gcode_is_known(Gcode *gcode)
573{
edac9072 574 //If the queue is empty, execute immediatly, otherwise attach to the last added block
e0ee24ed 575 THEKERNEL->conveyor->append_gcode(gcode);
edac9072
AW
576}
577
cef9acea
JM
578// reset the position for all axis (used in homing for delta as last_milestone may be bogus)
579void Robot::reset_axis_position(float x, float y, float z)
580{
581 this->last_milestone[X_AXIS] = x;
582 this->last_milestone[Y_AXIS] = y;
583 this->last_milestone[Z_AXIS] = z;
3632a517
JM
584 this->transformed_last_milestone[X_AXIS] = x;
585 this->transformed_last_milestone[Y_AXIS] = y;
586 this->transformed_last_milestone[Z_AXIS] = z;
cef9acea
JM
587
588 float actuator_pos[3];
589 arm_solution->cartesian_to_actuator(this->last_milestone, actuator_pos);
590 for (int i = 0; i < 3; i++)
591 actuators[i]->change_last_milestone(actuator_pos[i]);
592}
593
594// Reset the position for an axis (used in homing and G92)
4710532a
JM
595void Robot::reset_axis_position(float position, int axis)
596{
2ba859c9 597 this->last_milestone[axis] = position;
3632a517 598 this->transformed_last_milestone[axis] = position;
29c28822
MM
599
600 float actuator_pos[3];
cef9acea 601 arm_solution->cartesian_to_actuator(this->last_milestone, actuator_pos);
29c28822
MM
602
603 for (int i = 0; i < 3; i++)
604 actuators[i]->change_last_milestone(actuator_pos[i]);
4cff3ded
AW
605}
606
728477c4 607// Use FK to find out where actuator is and reset lastmilestone to match
728477c4
JM
608void Robot::reset_position_from_current_actuator_position()
609{
58c32991
JM
610 float actuator_pos[]= {actuators[X_AXIS]->get_current_position(), actuators[Y_AXIS]->get_current_position(), actuators[Z_AXIS]->get_current_position()};
611 arm_solution->actuator_to_cartesian(actuator_pos, this->last_milestone);
728477c4 612}
edac9072 613
4cff3ded 614// Convert target from millimeters to steps, and append this to the planner
da947c62 615void Robot::append_milestone( float target[], float rate_mm_s )
df6a30f2 616{
1ad23cd3 617 float deltas[3];
df6a30f2
MM
618 float unit_vec[3];
619 float actuator_pos[3];
3632a517 620 float transformed_target[3]; // adjust target for bed compensation
df6a30f2
MM
621 float millimeters_of_travel;
622
3632a517
JM
623 // unity transform by default
624 memcpy(transformed_target, target, sizeof(transformed_target));
5e45206a 625
3632a517
JM
626 // check function pointer and call if set to transform the target to compensate for bed
627 if(compensationTransform) {
628 // some compensation strategies can transform XYZ, some just change Z
629 compensationTransform(transformed_target);
33742399 630 }
ff7e9858 631
3632a517
JM
632 // find distance moved by each axis, use transformed target from last_transformed_target
633 for (int axis = X_AXIS; axis <= Z_AXIS; axis++){
634 deltas[axis] = transformed_target[axis] - transformed_last_milestone[axis];
635 }
636 // store last transformed
637 memcpy(this->transformed_last_milestone, transformed_target, sizeof(this->transformed_last_milestone));
aab6cbba 638
edac9072 639 // Compute how long this move moves, so we can attach it to the block for later use
869acfb8 640 millimeters_of_travel = sqrtf( powf( deltas[X_AXIS], 2 ) + powf( deltas[Y_AXIS], 2 ) + powf( deltas[Z_AXIS], 2 ) );
df6a30f2
MM
641
642 // find distance unit vector
643 for (int i = 0; i < 3; i++)
644 unit_vec[i] = deltas[i] / millimeters_of_travel;
645
646 // Do not move faster than the configured cartesian limits
4710532a
JM
647 for (int axis = X_AXIS; axis <= Z_AXIS; axis++) {
648 if ( max_speeds[axis] > 0 ) {
da947c62 649 float axis_speed = fabs(unit_vec[axis] * rate_mm_s);
df6a30f2
MM
650
651 if (axis_speed > max_speeds[axis])
da947c62 652 rate_mm_s *= ( max_speeds[axis] / axis_speed );
7b470506
AW
653 }
654 }
4cff3ded 655
5e45206a 656 // find actuator position given cartesian position, use actual adjusted target
3632a517 657 arm_solution->cartesian_to_actuator( transformed_target, actuator_pos );
df6a30f2
MM
658
659 // check per-actuator speed limits
4710532a 660 for (int actuator = 0; actuator <= 2; actuator++) {
da947c62 661 float actuator_rate = fabs(actuator_pos[actuator] - actuators[actuator]->last_milestone_mm) * rate_mm_s / millimeters_of_travel;
df6a30f2
MM
662
663 if (actuator_rate > actuators[actuator]->max_rate)
da947c62 664 rate_mm_s *= (actuators[actuator]->max_rate / actuator_rate);
df6a30f2
MM
665 }
666
edac9072 667 // Append the block to the planner
da947c62 668 THEKERNEL->planner->append_block( actuator_pos, rate_mm_s, millimeters_of_travel, unit_vec );
4cff3ded 669
5e45206a 670 // Update the last_milestone to the current target for the next time we use last_milestone, use the requested target not the adjusted one
c2885de8 671 memcpy(this->last_milestone, target, sizeof(this->last_milestone)); // this->last_milestone[] = target[];
4cff3ded
AW
672
673}
674
edac9072 675// Append a move to the queue ( cutting it into segments if needed )
4710532a
JM
676void Robot::append_line(Gcode *gcode, float target[], float rate_mm_s )
677{
4cff3ded 678
edac9072 679 // Find out the distance for this gcode
869acfb8 680 gcode->millimeters_of_travel = powf( target[X_AXIS] - this->last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - this->last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - this->last_milestone[Z_AXIS], 2 );
4cff3ded 681
edac9072 682 // We ignore non-moves ( for example, extruder moves are not XYZ moves )
4710532a 683 if( gcode->millimeters_of_travel < 1e-8F ) {
95b4885b
JM
684 return;
685 }
436a2cd1 686
2ba859c9
MM
687 gcode->millimeters_of_travel = sqrtf(gcode->millimeters_of_travel);
688
edac9072 689 // Mark the gcode as having a known distance
5dcb2ff3 690 this->distance_in_gcode_is_known( gcode );
436a2cd1 691
4a0c8e14
JM
692 // We cut the line into smaller segments. This is not usefull in a cartesian robot, but necessary for robots with rotational axes.
693 // In cartesian robot, a high "mm_per_line_segment" setting will prevent waste.
694 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
4a0c8e14 695 uint16_t segments;
5984acdf 696
c2885de8 697 if(this->delta_segments_per_second > 1.0F) {
4a0c8e14
JM
698 // enabled if set to something > 1, it is set to 0.0 by default
699 // segment based on current speed and requested segments per second
700 // the faster the travel speed the fewer segments needed
701 // NOTE rate is mm/sec and we take into account any speed override
da947c62 702 float seconds = gcode->millimeters_of_travel / rate_mm_s;
4710532a 703 segments = max(1, ceil(this->delta_segments_per_second * seconds));
4a0c8e14 704 // TODO if we are only moving in Z on a delta we don't really need to segment at all
5984acdf 705
4710532a
JM
706 } else {
707 if(this->mm_per_line_segment == 0.0F) {
708 segments = 1; // don't split it up
709 } else {
710 segments = ceil( gcode->millimeters_of_travel / this->mm_per_line_segment);
4a0c8e14
JM
711 }
712 }
5984acdf 713
4710532a 714 if (segments > 1) {
2ba859c9
MM
715 // A vector to keep track of the endpoint of each segment
716 float segment_delta[3];
717 float segment_end[3];
718
719 // How far do we move each segment?
9fff6045 720 for (int i = X_AXIS; i <= Z_AXIS; i++)
2ba859c9 721 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
4cff3ded 722
c8e0fb15
MM
723 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
724 // We always add another point after this loop so we stop at segments-1, ie i < segments
4710532a 725 for (int i = 1; i < segments; i++) {
728477c4 726 if(halted) return; // don;t queue any more segments
4710532a 727 for(int axis = X_AXIS; axis <= Z_AXIS; axis++ )
2ba859c9
MM
728 segment_end[axis] = last_milestone[axis] + segment_delta[axis];
729
730 // Append the end of this segment to the queue
731 this->append_milestone(segment_end, rate_mm_s);
732 }
4cff3ded 733 }
5984acdf
MM
734
735 // Append the end of this full move to the queue
da947c62 736 this->append_milestone(target, rate_mm_s);
2134bcf2
MM
737
738 // if adding these blocks didn't start executing, do that now
739 THEKERNEL->conveyor->ensure_running();
4cff3ded
AW
740}
741
4cff3ded 742
edac9072 743// Append an arc to the queue ( cutting it into segments as needed )
4710532a
JM
744void Robot::append_arc(Gcode *gcode, float target[], float offset[], float radius, bool is_clockwise )
745{
aab6cbba 746
edac9072 747 // Scary math
2ba859c9
MM
748 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
749 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
750 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1ad23cd3
MM
751 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
752 float r_axis1 = -offset[this->plane_axis_1];
753 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
754 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
aab6cbba
AW
755
756 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
4710532a
JM
757 float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
758 if (angular_travel < 0) {
759 angular_travel += 2 * M_PI;
760 }
761 if (is_clockwise) {
762 angular_travel -= 2 * M_PI;
763 }
aab6cbba 764
edac9072 765 // Find the distance for this gcode
4710532a 766 gcode->millimeters_of_travel = hypotf(angular_travel * radius, fabs(linear_travel));
436a2cd1 767
edac9072 768 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
4710532a
JM
769 if( gcode->millimeters_of_travel < 0.0001F ) {
770 return;
771 }
5dcb2ff3 772
edac9072 773 // Mark the gcode as having a known distance
d149c730 774 this->distance_in_gcode_is_known( gcode );
5984acdf
MM
775
776 // Figure out how many segments for this gcode
4710532a 777 uint16_t segments = floor(gcode->millimeters_of_travel / this->mm_per_arc_segment);
aab6cbba 778
4710532a
JM
779 float theta_per_segment = angular_travel / segments;
780 float linear_per_segment = linear_travel / segments;
aab6cbba
AW
781
782 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
783 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
784 r_T = [cos(phi) -sin(phi);
785 sin(phi) cos(phi] * r ;
786 For arc generation, the center of the circle is the axis of rotation and the radius vector is
787 defined from the circle center to the initial position. Each line segment is formed by successive
788 vector rotations. This requires only two cos() and sin() computations to form the rotation
789 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1ad23cd3 790 all float numbers are single precision on the Arduino. (True float precision will not have
aab6cbba
AW
791 round off issues for CNC applications.) Single precision error can accumulate to be greater than
792 tool precision in some cases. Therefore, arc path correction is implemented.
793
794 Small angle approximation may be used to reduce computation overhead further. This approximation
795 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
796 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
797 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
798 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
799 issue for CNC machines with the single precision Arduino calculations.
800 This approximation also allows mc_arc to immediately insert a line segment into the planner
801 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
802 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
803 This is important when there are successive arc motions.
804 */
805 // Vector rotation matrix values
4710532a 806 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1ad23cd3 807 float sin_T = theta_per_segment;
aab6cbba 808
1ad23cd3
MM
809 float arc_target[3];
810 float sin_Ti;
811 float cos_Ti;
812 float r_axisi;
aab6cbba
AW
813 uint16_t i;
814 int8_t count = 0;
815
816 // Initialize the linear axis
2ba859c9 817 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
aab6cbba 818
4710532a 819 for (i = 1; i < segments; i++) { // Increment (segments-1)
728477c4 820 if(halted) return; // don't queue any more segments
aab6cbba 821
b66fb830 822 if (count < this->arc_correction ) {
4710532a
JM
823 // Apply vector rotation matrix
824 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
825 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
826 r_axis1 = r_axisi;
827 count++;
aab6cbba 828 } else {
4710532a
JM
829 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
830 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
831 cos_Ti = cosf(i * theta_per_segment);
832 sin_Ti = sinf(i * theta_per_segment);
833 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
834 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
835 count = 0;
aab6cbba
AW
836 }
837
838 // Update arc_target location
839 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
840 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
841 arc_target[this->plane_axis_2] += linear_per_segment;
edac9072
AW
842
843 // Append this segment to the queue
da947c62 844 this->append_milestone(arc_target, this->feed_rate / seconds_per_minute);
aab6cbba
AW
845
846 }
edac9072 847
aab6cbba 848 // Ensure last segment arrives at target location.
da947c62 849 this->append_milestone(target, this->feed_rate / seconds_per_minute);
aab6cbba
AW
850}
851
edac9072 852// Do the math for an arc and add it to the queue
4710532a
JM
853void Robot::compute_arc(Gcode *gcode, float offset[], float target[])
854{
aab6cbba
AW
855
856 // Find the radius
13addf09 857 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
aab6cbba
AW
858
859 // Set clockwise/counter-clockwise sign for mc_arc computations
860 bool is_clockwise = false;
4710532a
JM
861 if( this->motion_mode == MOTION_MODE_CW_ARC ) {
862 is_clockwise = true;
863 }
aab6cbba
AW
864
865 // Append arc
436a2cd1 866 this->append_arc(gcode, target, offset, radius, is_clockwise );
aab6cbba
AW
867
868}
869
870
4710532a
JM
871float Robot::theta(float x, float y)
872{
873 float t = atanf(x / fabs(y));
874 if (y > 0) {
875 return(t);
876 } else {
877 if (t > 0) {
878 return(M_PI - t);
879 } else {
880 return(-M_PI - t);
881 }
882 }
4cff3ded
AW
883}
884
4710532a
JM
885void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
886{
4cff3ded
AW
887 this->plane_axis_0 = axis_0;
888 this->plane_axis_1 = axis_1;
889 this->plane_axis_2 = axis_2;
890}
891
fae93525 892void Robot::clearToolOffset()
4710532a 893{
fae93525
JM
894 memset(this->toolOffset, 0, sizeof(this->toolOffset));
895}
896
897void Robot::setToolOffset(const float offset[3])
898{
fae93525 899 memcpy(this->toolOffset, offset, sizeof(this->toolOffset));
5966b7d0
AT
900}
901