(outline-insert-heading): Tighten up match.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
d05b383a 2 Copyright (C) 1985,86,88,93,94,95,97,98,1999,2000,01,02,03,2004
4a2f9c6a 3 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
7c299e7a 9the Free Software Foundation; either version 2, or (at your option)
7146af97
JB
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
3b7ad313
EN
19the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
7146af97 21
18160b98 22#include <config.h>
e9b309ac 23#include <stdio.h>
ab6780cd 24#include <limits.h> /* For CHAR_BIT. */
92939d31 25
4455ad75
RS
26#ifdef ALLOC_DEBUG
27#undef INLINE
28#endif
29
68c45bf0 30/* Note that this declares bzero on OSF/1. How dumb. */
2e471eb5 31
68c45bf0 32#include <signal.h>
92939d31 33
7539e11f
KR
34/* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
2e471eb5 37
7539e11f 38#undef HIDE_LISP_IMPLEMENTATION
7146af97 39#include "lisp.h"
ece93c02 40#include "process.h"
d5e35230 41#include "intervals.h"
4c0be5f4 42#include "puresize.h"
7146af97
JB
43#include "buffer.h"
44#include "window.h"
2538fae4 45#include "keyboard.h"
502b9b64 46#include "frame.h"
9ac0d9e0 47#include "blockinput.h"
e54daa22 48#include "charset.h"
e065a56e 49#include "syssignal.h"
34400008 50#include <setjmp.h>
e065a56e 51
ad5f3636
DL
52/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56#undef GC_MALLOC_CHECK
57#endif
58
bf952fb6
DL
59#ifdef HAVE_UNISTD_H
60#include <unistd.h>
61#else
62extern POINTER_TYPE *sbrk ();
63#endif
ee1eea5c 64
d1658221 65#ifdef DOUG_LEA_MALLOC
2e471eb5 66
d1658221 67#include <malloc.h>
3e60b029
DL
68/* malloc.h #defines this as size_t, at least in glibc2. */
69#ifndef __malloc_size_t
d1658221 70#define __malloc_size_t int
3e60b029 71#endif
81d492d5 72
2e471eb5
GM
73/* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
81d492d5
RS
76#define MMAP_MAX_AREAS 100000000
77
2e471eb5
GM
78#else /* not DOUG_LEA_MALLOC */
79
276cbe5a
RS
80/* The following come from gmalloc.c. */
81
276cbe5a 82#define __malloc_size_t size_t
276cbe5a 83extern __malloc_size_t _bytes_used;
3e60b029 84extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
85
86#endif /* not DOUG_LEA_MALLOC */
276cbe5a 87
276cbe5a 88/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 89
276cbe5a
RS
90static __malloc_size_t bytes_used_when_full;
91
2e471eb5
GM
92/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
7cdee936
SM
95#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97#define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
2e471eb5 98
3ef06d12
SM
99#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101#define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
2e471eb5
GM
103/* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
3ef06d12 108#define GC_STRING_BYTES(S) (STRING_BYTES (S))
7cdee936 109#define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
2e471eb5
GM
110
111/* Number of bytes of consing done since the last gc. */
112
7146af97
JB
113int consing_since_gc;
114
310ea200 115/* Count the amount of consing of various sorts of space. */
2e471eb5 116
31ade731
SM
117EMACS_INT cons_cells_consed;
118EMACS_INT floats_consed;
119EMACS_INT vector_cells_consed;
120EMACS_INT symbols_consed;
121EMACS_INT string_chars_consed;
122EMACS_INT misc_objects_consed;
123EMACS_INT intervals_consed;
124EMACS_INT strings_consed;
2e471eb5
GM
125
126/* Number of bytes of consing since GC before another GC should be done. */
310ea200 127
31ade731 128EMACS_INT gc_cons_threshold;
7146af97 129
2e471eb5
GM
130/* Nonzero during GC. */
131
7146af97
JB
132int gc_in_progress;
133
3de0effb
RS
134/* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138int abort_on_gc;
139
299585ee 140/* Nonzero means display messages at beginning and end of GC. */
2e471eb5 141
299585ee
RS
142int garbage_collection_messages;
143
7146af97
JB
144#ifndef VIRT_ADDR_VARIES
145extern
146#endif /* VIRT_ADDR_VARIES */
2e471eb5 147int malloc_sbrk_used;
7146af97
JB
148
149#ifndef VIRT_ADDR_VARIES
150extern
151#endif /* VIRT_ADDR_VARIES */
2e471eb5 152int malloc_sbrk_unused;
7146af97 153
502b9b64 154/* Two limits controlling how much undo information to keep. */
2e471eb5 155
31ade731
SM
156EMACS_INT undo_limit;
157EMACS_INT undo_strong_limit;
7146af97 158
34400008
GM
159/* Number of live and free conses etc. */
160
161static int total_conses, total_markers, total_symbols, total_vector_size;
162static int total_free_conses, total_free_markers, total_free_symbols;
163static int total_free_floats, total_floats;
fd27a537 164
2e471eb5
GM
165/* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
167
276cbe5a
RS
168static char *spare_memory;
169
170/* Amount of spare memory to keep in reserve. */
2e471eb5 171
276cbe5a
RS
172#define SPARE_MEMORY (1 << 14)
173
174/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 175
276cbe5a
RS
176static int malloc_hysteresis;
177
2e471eb5
GM
178/* Non-nil means defun should do purecopy on the function definition. */
179
7146af97
JB
180Lisp_Object Vpurify_flag;
181
74a54b04
RS
182/* Non-nil means we are handling a memory-full error. */
183
184Lisp_Object Vmemory_full;
185
7146af97 186#ifndef HAVE_SHM
2e471eb5 187
379b98b1
PE
188/* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
2e471eb5 190
379b98b1 191EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
7146af97 192#define PUREBEG (char *) pure
2e471eb5 193
9e713715 194#else /* HAVE_SHM */
2e471eb5 195
7146af97
JB
196#define pure PURE_SEG_BITS /* Use shared memory segment */
197#define PUREBEG (char *)PURE_SEG_BITS
4c0be5f4 198
9e713715 199#endif /* HAVE_SHM */
2e471eb5 200
9e713715 201/* Pointer to the pure area, and its size. */
2e471eb5 202
9e713715
GM
203static char *purebeg;
204static size_t pure_size;
205
206/* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
208
209static size_t pure_bytes_used_before_overflow;
7146af97 210
34400008
GM
211/* Value is non-zero if P points into pure space. */
212
213#define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 216 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 217 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 218
2e471eb5
GM
219/* Index in pure at which next pure object will be allocated.. */
220
31ade731 221EMACS_INT pure_bytes_used;
7146af97 222
2e471eb5
GM
223/* If nonzero, this is a warning delivered by malloc and not yet
224 displayed. */
225
7146af97
JB
226char *pending_malloc_warning;
227
bcb61d60 228/* Pre-computed signal argument for use when memory is exhausted. */
2e471eb5 229
74a54b04 230Lisp_Object Vmemory_signal_data;
bcb61d60 231
7146af97
JB
232/* Maximum amount of C stack to save when a GC happens. */
233
234#ifndef MAX_SAVE_STACK
235#define MAX_SAVE_STACK 16000
236#endif
237
238/* Buffer in which we save a copy of the C stack at each GC. */
239
240char *stack_copy;
241int stack_copy_size;
242
2e471eb5
GM
243/* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
245
7146af97 246int ignore_warnings;
350273a4 247
a59de17b 248Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 249
9e713715
GM
250/* Hook run after GC has finished. */
251
252Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
253
2c5bd608
DL
254Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
255EMACS_INT gcs_done; /* accumulated GCs */
256
2e471eb5 257static void mark_buffer P_ ((Lisp_Object));
6793bc63 258extern void mark_kboards P_ ((void));
2e471eb5 259static void gc_sweep P_ ((void));
41c28a37
GM
260static void mark_glyph_matrix P_ ((struct glyph_matrix *));
261static void mark_face_cache P_ ((struct face_cache *));
262
263#ifdef HAVE_WINDOW_SYSTEM
264static void mark_image P_ ((struct image *));
265static void mark_image_cache P_ ((struct frame *));
266#endif /* HAVE_WINDOW_SYSTEM */
267
2e471eb5
GM
268static struct Lisp_String *allocate_string P_ ((void));
269static void compact_small_strings P_ ((void));
270static void free_large_strings P_ ((void));
271static void sweep_strings P_ ((void));
7da0b0d3
RS
272
273extern int message_enable_multibyte;
34400008 274
34400008
GM
275/* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
278
279enum mem_type
280{
281 MEM_TYPE_NON_LISP,
282 MEM_TYPE_BUFFER,
283 MEM_TYPE_CONS,
284 MEM_TYPE_STRING,
285 MEM_TYPE_MISC,
286 MEM_TYPE_SYMBOL,
287 MEM_TYPE_FLOAT,
ece93c02
GM
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
291 MEM_TYPE_VECTOR,
292 MEM_TYPE_PROCESS,
293 MEM_TYPE_HASH_TABLE,
294 MEM_TYPE_FRAME,
295 MEM_TYPE_WINDOW
34400008
GM
296};
297
877935b1 298#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
299
300#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301#include <stdio.h> /* For fprintf. */
302#endif
303
304/* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
306
307Lisp_Object Vdead;
308
877935b1
GM
309#ifdef GC_MALLOC_CHECK
310
311enum mem_type allocated_mem_type;
312int dont_register_blocks;
313
314#endif /* GC_MALLOC_CHECK */
315
316/* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
319 is freed.
320
321 A red-black tree is a balanced binary tree with the following
322 properties:
323
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
330
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
333
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
338 describe them. */
339
340struct mem_node
341{
9f7d9210
RS
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node *left, *right;
345
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node *parent;
877935b1
GM
348
349 /* Start and end of allocated region. */
350 void *start, *end;
351
352 /* Node color. */
353 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 354
877935b1
GM
355 /* Memory type. */
356 enum mem_type type;
357};
358
359/* Base address of stack. Set in main. */
360
361Lisp_Object *stack_base;
362
363/* Root of the tree describing allocated Lisp memory. */
364
365static struct mem_node *mem_root;
366
ece93c02
GM
367/* Lowest and highest known address in the heap. */
368
369static void *min_heap_address, *max_heap_address;
370
877935b1
GM
371/* Sentinel node of the tree. */
372
373static struct mem_node mem_z;
374#define MEM_NIL &mem_z
375
b3303f74 376static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
ece93c02 377static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
bf952fb6 378static void lisp_free P_ ((POINTER_TYPE *));
34400008 379static void mark_stack P_ ((void));
34400008
GM
380static int live_vector_p P_ ((struct mem_node *, void *));
381static int live_buffer_p P_ ((struct mem_node *, void *));
382static int live_string_p P_ ((struct mem_node *, void *));
383static int live_cons_p P_ ((struct mem_node *, void *));
384static int live_symbol_p P_ ((struct mem_node *, void *));
385static int live_float_p P_ ((struct mem_node *, void *));
386static int live_misc_p P_ ((struct mem_node *, void *));
182ff242 387static void mark_maybe_object P_ ((Lisp_Object));
34400008
GM
388static void mark_memory P_ ((void *, void *));
389static void mem_init P_ ((void));
390static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
391static void mem_insert_fixup P_ ((struct mem_node *));
392static void mem_rotate_left P_ ((struct mem_node *));
393static void mem_rotate_right P_ ((struct mem_node *));
394static void mem_delete P_ ((struct mem_node *));
395static void mem_delete_fixup P_ ((struct mem_node *));
396static INLINE struct mem_node *mem_find P_ ((void *));
397
398#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399static void check_gcpros P_ ((void));
400#endif
401
877935b1 402#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 403
1f0b3fd2
GM
404/* Recording what needs to be marked for gc. */
405
406struct gcpro *gcprolist;
407
379b98b1
PE
408/* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
1f0b3fd2 410
382d38fa 411#define NSTATICS 1280
379b98b1 412Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
413
414/* Index of next unused slot in staticvec. */
415
416int staticidx = 0;
417
418static POINTER_TYPE *pure_alloc P_ ((size_t, int));
419
420
421/* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
423
ab6780cd
SM
424#define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
1f0b3fd2 427
ece93c02 428
7146af97 429\f
34400008
GM
430/************************************************************************
431 Malloc
432 ************************************************************************/
433
4455ad75 434/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
435
436void
7146af97
JB
437malloc_warning (str)
438 char *str;
439{
440 pending_malloc_warning = str;
441}
442
34400008 443
4455ad75 444/* Display an already-pending malloc warning. */
34400008 445
d457598b 446void
7146af97
JB
447display_malloc_warning ()
448{
4455ad75
RS
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
7146af97 453 pending_malloc_warning = 0;
7146af97
JB
454}
455
34400008 456
d1658221 457#ifdef DOUG_LEA_MALLOC
1177ecf6 458# define BYTES_USED (mallinfo ().arena)
d1658221 459#else
1177ecf6 460# define BYTES_USED _bytes_used
d1658221
RS
461#endif
462
34400008 463
2e471eb5 464/* Called if malloc returns zero. */
276cbe5a 465
d457598b 466void
7146af97
JB
467memory_full ()
468{
74a54b04
RS
469 Vmemory_full = Qt;
470
276cbe5a 471#ifndef SYSTEM_MALLOC
d1658221 472 bytes_used_when_full = BYTES_USED;
276cbe5a
RS
473#endif
474
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
477 {
478 free (spare_memory);
479 spare_memory = 0;
480 }
481
2e471eb5
GM
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
276cbe5a 484 while (1)
74a54b04 485 Fsignal (Qnil, Vmemory_signal_data);
276cbe5a
RS
486}
487
34400008 488
276cbe5a
RS
489/* Called if we can't allocate relocatable space for a buffer. */
490
491void
492buffer_memory_full ()
493{
2e471eb5
GM
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
276cbe5a
RS
500
501#ifndef REL_ALLOC
502 memory_full ();
503#endif
504
74a54b04
RS
505 Vmemory_full = Qt;
506
2e471eb5
GM
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
bcb61d60 509 while (1)
74a54b04 510 Fsignal (Qnil, Vmemory_signal_data);
7146af97
JB
511}
512
34400008
GM
513
514/* Like malloc but check for no memory and block interrupt input.. */
7146af97 515
c971ff9a 516POINTER_TYPE *
7146af97 517xmalloc (size)
675d5130 518 size_t size;
7146af97 519{
c971ff9a 520 register POINTER_TYPE *val;
7146af97 521
9ac0d9e0 522 BLOCK_INPUT;
c971ff9a 523 val = (POINTER_TYPE *) malloc (size);
9ac0d9e0 524 UNBLOCK_INPUT;
7146af97 525
2e471eb5
GM
526 if (!val && size)
527 memory_full ();
7146af97
JB
528 return val;
529}
530
34400008
GM
531
532/* Like realloc but check for no memory and block interrupt input.. */
533
c971ff9a 534POINTER_TYPE *
7146af97 535xrealloc (block, size)
c971ff9a 536 POINTER_TYPE *block;
675d5130 537 size_t size;
7146af97 538{
c971ff9a 539 register POINTER_TYPE *val;
7146af97 540
9ac0d9e0 541 BLOCK_INPUT;
56d2031b
JB
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
c971ff9a 545 val = (POINTER_TYPE *) malloc (size);
f048679d 546 else
c971ff9a 547 val = (POINTER_TYPE *) realloc (block, size);
9ac0d9e0 548 UNBLOCK_INPUT;
7146af97
JB
549
550 if (!val && size) memory_full ();
551 return val;
552}
9ac0d9e0 553
34400008 554
d7489312 555/* Like free but block interrupt input. */
34400008 556
9ac0d9e0
JB
557void
558xfree (block)
c971ff9a 559 POINTER_TYPE *block;
9ac0d9e0
JB
560{
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
564}
565
c8099634 566
dca7c6a8
GM
567/* Like strdup, but uses xmalloc. */
568
569char *
570xstrdup (s)
943b873e 571 const char *s;
dca7c6a8 572{
675d5130 573 size_t len = strlen (s) + 1;
dca7c6a8
GM
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
577}
578
579
34400008
GM
580/* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
583
918a23a7
RS
584static void *lisp_malloc_loser;
585
675d5130 586static POINTER_TYPE *
34400008 587lisp_malloc (nbytes, type)
675d5130 588 size_t nbytes;
34400008 589 enum mem_type type;
c8099634 590{
34400008 591 register void *val;
c8099634
RS
592
593 BLOCK_INPUT;
877935b1
GM
594
595#ifdef GC_MALLOC_CHECK
596 allocated_mem_type = type;
597#endif
177c0ea7 598
34400008 599 val = (void *) malloc (nbytes);
c8099634 600
918a23a7
RS
601 /* If the memory just allocated cannot be addressed thru a Lisp
602 object's pointer, and it needs to be,
603 that's equivalent to running out of memory. */
604 if (val && type != MEM_TYPE_NON_LISP)
605 {
606 Lisp_Object tem;
607 XSETCONS (tem, (char *) val + nbytes - 1);
608 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
609 {
610 lisp_malloc_loser = val;
611 free (val);
612 val = 0;
613 }
614 }
615
877935b1 616#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 617 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
618 mem_insert (val, (char *) val + nbytes, type);
619#endif
177c0ea7 620
dca7c6a8
GM
621 UNBLOCK_INPUT;
622 if (!val && nbytes)
623 memory_full ();
c8099634
RS
624 return val;
625}
626
34400008
GM
627/* Free BLOCK. This must be called to free memory allocated with a
628 call to lisp_malloc. */
629
bf952fb6 630static void
c8099634 631lisp_free (block)
675d5130 632 POINTER_TYPE *block;
c8099634
RS
633{
634 BLOCK_INPUT;
c8099634 635 free (block);
877935b1 636#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
637 mem_delete (mem_find (block));
638#endif
c8099634
RS
639 UNBLOCK_INPUT;
640}
34400008 641
ab6780cd
SM
642/* Allocation of aligned blocks of memory to store Lisp data. */
643/* The entry point is lisp_align_malloc which returns blocks of at most */
644/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
645
646
647/* BLOCK_ALIGN has to be a power of 2. */
648#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
649
650/* Padding to leave at the end of a malloc'd block. This is to give
651 malloc a chance to minimize the amount of memory wasted to alignment.
652 It should be tuned to the particular malloc library used.
19bcad1f
SM
653 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
654 posix_memalign on the other hand would ideally prefer a value of 4
655 because otherwise, there's 1020 bytes wasted between each ablocks.
656 But testing shows that those 1020 will most of the time be efficiently
657 used by malloc to place other objects, so a value of 0 is still preferable
658 unless you have a lot of cons&floats and virtually nothing else. */
659#define BLOCK_PADDING 0
660#define BLOCK_BYTES \
661 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
662
663/* Internal data structures and constants. */
664
ab6780cd
SM
665#define ABLOCKS_SIZE 16
666
667/* An aligned block of memory. */
668struct ablock
669{
670 union
671 {
672 char payload[BLOCK_BYTES];
673 struct ablock *next_free;
674 } x;
675 /* `abase' is the aligned base of the ablocks. */
676 /* It is overloaded to hold the virtual `busy' field that counts
677 the number of used ablock in the parent ablocks.
678 The first ablock has the `busy' field, the others have the `abase'
679 field. To tell the difference, we assume that pointers will have
680 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
681 is used to tell whether the real base of the parent ablocks is `abase'
682 (if not, the word before the first ablock holds a pointer to the
683 real base). */
684 struct ablocks *abase;
685 /* The padding of all but the last ablock is unused. The padding of
686 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
687#if BLOCK_PADDING
688 char padding[BLOCK_PADDING];
ebb8d410 689#endif
ab6780cd
SM
690};
691
692/* A bunch of consecutive aligned blocks. */
693struct ablocks
694{
695 struct ablock blocks[ABLOCKS_SIZE];
696};
697
698/* Size of the block requested from malloc or memalign. */
19bcad1f 699#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
700
701#define ABLOCK_ABASE(block) \
702 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
703 ? (struct ablocks *)(block) \
704 : (block)->abase)
705
706/* Virtual `busy' field. */
707#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
708
709/* Pointer to the (not necessarily aligned) malloc block. */
19bcad1f
SM
710#ifdef HAVE_POSIX_MEMALIGN
711#define ABLOCKS_BASE(abase) (abase)
712#else
ab6780cd 713#define ABLOCKS_BASE(abase) \
03bb6a06 714 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 715#endif
ab6780cd
SM
716
717/* The list of free ablock. */
718static struct ablock *free_ablock;
719
720/* Allocate an aligned block of nbytes.
721 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
722 smaller or equal to BLOCK_BYTES. */
723static POINTER_TYPE *
724lisp_align_malloc (nbytes, type)
725 size_t nbytes;
726 enum mem_type type;
727{
728 void *base, *val;
729 struct ablocks *abase;
730
731 eassert (nbytes <= BLOCK_BYTES);
732
733 BLOCK_INPUT;
734
735#ifdef GC_MALLOC_CHECK
736 allocated_mem_type = type;
737#endif
738
739 if (!free_ablock)
740 {
d7489312
DL
741 int i;
742 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
743
744#ifdef DOUG_LEA_MALLOC
745 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
746 because mapped region contents are not preserved in
747 a dumped Emacs. */
748 mallopt (M_MMAP_MAX, 0);
749#endif
750
19bcad1f
SM
751#ifdef HAVE_POSIX_MEMALIGN
752 {
753 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
754 abase = err ? (base = NULL) : base;
755 }
756#else
ab6780cd
SM
757 base = malloc (ABLOCKS_BYTES);
758 abase = ALIGN (base, BLOCK_ALIGN);
4532fdde
RS
759 if (base == 0)
760 {
761 UNBLOCK_INPUT;
762 memory_full ();
763 }
19bcad1f 764#endif
ab6780cd
SM
765
766 aligned = (base == abase);
767 if (!aligned)
768 ((void**)abase)[-1] = base;
769
770#ifdef DOUG_LEA_MALLOC
771 /* Back to a reasonable maximum of mmap'ed areas. */
772 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
773#endif
774
f4446bbf
GM
775 /* If the memory just allocated cannot be addressed thru a Lisp
776 object's pointer, and it needs to be, that's equivalent to
777 running out of memory. */
778 if (type != MEM_TYPE_NON_LISP)
779 {
780 Lisp_Object tem;
781 char *end = (char *) base + ABLOCKS_BYTES - 1;
782 XSETCONS (tem, end);
783 if ((char *) XCONS (tem) != end)
784 {
785 lisp_malloc_loser = base;
786 free (base);
787 UNBLOCK_INPUT;
788 memory_full ();
789 }
790 }
791
ab6780cd
SM
792 /* Initialize the blocks and put them on the free list.
793 Is `base' was not properly aligned, we can't use the last block. */
794 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
795 {
796 abase->blocks[i].abase = abase;
797 abase->blocks[i].x.next_free = free_ablock;
798 free_ablock = &abase->blocks[i];
799 }
03bb6a06 800 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
ab6780cd 801
19bcad1f 802 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
803 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
804 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
805 eassert (ABLOCKS_BASE (abase) == base);
03bb6a06 806 eassert (aligned == (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
807 }
808
809 abase = ABLOCK_ABASE (free_ablock);
03bb6a06 810 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
811 val = free_ablock;
812 free_ablock = free_ablock->x.next_free;
813
ab6780cd
SM
814#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
815 if (val && type != MEM_TYPE_NON_LISP)
816 mem_insert (val, (char *) val + nbytes, type);
817#endif
818
819 UNBLOCK_INPUT;
820 if (!val && nbytes)
821 memory_full ();
822
823 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
824 return val;
825}
826
827static void
828lisp_align_free (block)
829 POINTER_TYPE *block;
830{
831 struct ablock *ablock = block;
832 struct ablocks *abase = ABLOCK_ABASE (ablock);
833
834 BLOCK_INPUT;
835#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
836 mem_delete (mem_find (block));
837#endif
838 /* Put on free list. */
839 ablock->x.next_free = free_ablock;
840 free_ablock = ablock;
841 /* Update busy count. */
03bb6a06 842 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
ab6780cd 843
03bb6a06 844 if (2 > (long) ABLOCKS_BUSY (abase))
ab6780cd 845 { /* All the blocks are free. */
03bb6a06 846 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
ab6780cd
SM
847 struct ablock **tem = &free_ablock;
848 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
849
850 while (*tem)
851 {
852 if (*tem >= (struct ablock *) abase && *tem < atop)
853 {
854 i++;
855 *tem = (*tem)->x.next_free;
856 }
857 else
858 tem = &(*tem)->x.next_free;
859 }
860 eassert ((aligned & 1) == aligned);
861 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
862 free (ABLOCKS_BASE (abase));
863 }
864 UNBLOCK_INPUT;
865}
3ef06d12
SM
866
867/* Return a new buffer structure allocated from the heap with
868 a call to lisp_malloc. */
869
870struct buffer *
871allocate_buffer ()
872{
873 struct buffer *b
874 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
875 MEM_TYPE_BUFFER);
876 return b;
877}
878
9ac0d9e0
JB
879\f
880/* Arranging to disable input signals while we're in malloc.
881
882 This only works with GNU malloc. To help out systems which can't
883 use GNU malloc, all the calls to malloc, realloc, and free
884 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
885 pairs; unfortunately, we have no idea what C library functions
886 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
887 using GNU malloc. Fortunately, most of the major operating systems
888 can use GNU malloc. */
9ac0d9e0
JB
889
890#ifndef SYSTEM_MALLOC
b3303f74
DL
891#ifndef DOUG_LEA_MALLOC
892extern void * (*__malloc_hook) P_ ((size_t));
893extern void * (*__realloc_hook) P_ ((void *, size_t));
894extern void (*__free_hook) P_ ((void *));
895/* Else declared in malloc.h, perhaps with an extra arg. */
896#endif /* DOUG_LEA_MALLOC */
b0846f52 897static void * (*old_malloc_hook) ();
b0846f52 898static void * (*old_realloc_hook) ();
b0846f52 899static void (*old_free_hook) ();
9ac0d9e0 900
276cbe5a
RS
901/* This function is used as the hook for free to call. */
902
9ac0d9e0
JB
903static void
904emacs_blocked_free (ptr)
905 void *ptr;
906{
907 BLOCK_INPUT;
877935b1
GM
908
909#ifdef GC_MALLOC_CHECK
a83fee2c
GM
910 if (ptr)
911 {
912 struct mem_node *m;
177c0ea7 913
a83fee2c
GM
914 m = mem_find (ptr);
915 if (m == MEM_NIL || m->start != ptr)
916 {
917 fprintf (stderr,
918 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
919 abort ();
920 }
921 else
922 {
923 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
924 mem_delete (m);
925 }
926 }
877935b1 927#endif /* GC_MALLOC_CHECK */
177c0ea7 928
9ac0d9e0
JB
929 __free_hook = old_free_hook;
930 free (ptr);
177c0ea7 931
276cbe5a
RS
932 /* If we released our reserve (due to running out of memory),
933 and we have a fair amount free once again,
934 try to set aside another reserve in case we run out once more. */
935 if (spare_memory == 0
936 /* Verify there is enough space that even with the malloc
937 hysteresis this call won't run out again.
938 The code here is correct as long as SPARE_MEMORY
939 is substantially larger than the block size malloc uses. */
940 && (bytes_used_when_full
d1658221 941 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
675d5130 942 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a 943
b0846f52 944 __free_hook = emacs_blocked_free;
9ac0d9e0
JB
945 UNBLOCK_INPUT;
946}
947
34400008 948
276cbe5a
RS
949/* If we released our reserve (due to running out of memory),
950 and we have a fair amount free once again,
951 try to set aside another reserve in case we run out once more.
952
953 This is called when a relocatable block is freed in ralloc.c. */
954
955void
956refill_memory_reserve ()
957{
958 if (spare_memory == 0)
675d5130 959 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a
RS
960}
961
34400008 962
276cbe5a
RS
963/* This function is the malloc hook that Emacs uses. */
964
9ac0d9e0
JB
965static void *
966emacs_blocked_malloc (size)
675d5130 967 size_t size;
9ac0d9e0
JB
968{
969 void *value;
970
971 BLOCK_INPUT;
972 __malloc_hook = old_malloc_hook;
1177ecf6 973#ifdef DOUG_LEA_MALLOC
d1658221 974 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1177ecf6 975#else
d1658221 976 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 977#endif
877935b1 978
2756d8ee 979 value = (void *) malloc (size);
877935b1
GM
980
981#ifdef GC_MALLOC_CHECK
982 {
983 struct mem_node *m = mem_find (value);
984 if (m != MEM_NIL)
985 {
986 fprintf (stderr, "Malloc returned %p which is already in use\n",
987 value);
988 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
989 m->start, m->end, (char *) m->end - (char *) m->start,
990 m->type);
991 abort ();
992 }
993
994 if (!dont_register_blocks)
995 {
996 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
997 allocated_mem_type = MEM_TYPE_NON_LISP;
998 }
999 }
1000#endif /* GC_MALLOC_CHECK */
177c0ea7 1001
b0846f52 1002 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0
JB
1003 UNBLOCK_INPUT;
1004
877935b1 1005 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1006 return value;
1007}
1008
34400008
GM
1009
1010/* This function is the realloc hook that Emacs uses. */
1011
9ac0d9e0
JB
1012static void *
1013emacs_blocked_realloc (ptr, size)
1014 void *ptr;
675d5130 1015 size_t size;
9ac0d9e0
JB
1016{
1017 void *value;
1018
1019 BLOCK_INPUT;
1020 __realloc_hook = old_realloc_hook;
877935b1
GM
1021
1022#ifdef GC_MALLOC_CHECK
1023 if (ptr)
1024 {
1025 struct mem_node *m = mem_find (ptr);
1026 if (m == MEM_NIL || m->start != ptr)
1027 {
1028 fprintf (stderr,
1029 "Realloc of %p which wasn't allocated with malloc\n",
1030 ptr);
1031 abort ();
1032 }
1033
1034 mem_delete (m);
1035 }
177c0ea7 1036
877935b1 1037 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1038
877935b1
GM
1039 /* Prevent malloc from registering blocks. */
1040 dont_register_blocks = 1;
1041#endif /* GC_MALLOC_CHECK */
1042
2756d8ee 1043 value = (void *) realloc (ptr, size);
877935b1
GM
1044
1045#ifdef GC_MALLOC_CHECK
1046 dont_register_blocks = 0;
1047
1048 {
1049 struct mem_node *m = mem_find (value);
1050 if (m != MEM_NIL)
1051 {
1052 fprintf (stderr, "Realloc returns memory that is already in use\n");
1053 abort ();
1054 }
1055
1056 /* Can't handle zero size regions in the red-black tree. */
1057 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1058 }
177c0ea7 1059
877935b1
GM
1060 /* fprintf (stderr, "%p <- realloc\n", value); */
1061#endif /* GC_MALLOC_CHECK */
177c0ea7 1062
b0846f52 1063 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0
JB
1064 UNBLOCK_INPUT;
1065
1066 return value;
1067}
1068
34400008
GM
1069
1070/* Called from main to set up malloc to use our hooks. */
1071
9ac0d9e0
JB
1072void
1073uninterrupt_malloc ()
1074{
c8099634
RS
1075 if (__free_hook != emacs_blocked_free)
1076 old_free_hook = __free_hook;
b0846f52 1077 __free_hook = emacs_blocked_free;
9ac0d9e0 1078
c8099634
RS
1079 if (__malloc_hook != emacs_blocked_malloc)
1080 old_malloc_hook = __malloc_hook;
b0846f52 1081 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1082
c8099634
RS
1083 if (__realloc_hook != emacs_blocked_realloc)
1084 old_realloc_hook = __realloc_hook;
b0846f52 1085 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1086}
2e471eb5
GM
1087
1088#endif /* not SYSTEM_MALLOC */
1089
1090
7146af97 1091\f
2e471eb5
GM
1092/***********************************************************************
1093 Interval Allocation
1094 ***********************************************************************/
1a4f1e2c 1095
34400008
GM
1096/* Number of intervals allocated in an interval_block structure.
1097 The 1020 is 1024 minus malloc overhead. */
1098
d5e35230
JA
1099#define INTERVAL_BLOCK_SIZE \
1100 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1101
34400008
GM
1102/* Intervals are allocated in chunks in form of an interval_block
1103 structure. */
1104
d5e35230 1105struct interval_block
2e471eb5 1106{
d05b383a 1107 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1108 struct interval intervals[INTERVAL_BLOCK_SIZE];
d05b383a 1109 struct interval_block *next;
2e471eb5 1110};
d5e35230 1111
34400008
GM
1112/* Current interval block. Its `next' pointer points to older
1113 blocks. */
1114
d5e35230 1115struct interval_block *interval_block;
34400008
GM
1116
1117/* Index in interval_block above of the next unused interval
1118 structure. */
1119
d5e35230 1120static int interval_block_index;
34400008
GM
1121
1122/* Number of free and live intervals. */
1123
2e471eb5 1124static int total_free_intervals, total_intervals;
d5e35230 1125
34400008
GM
1126/* List of free intervals. */
1127
d5e35230
JA
1128INTERVAL interval_free_list;
1129
c8099634 1130/* Total number of interval blocks now in use. */
2e471eb5 1131
c8099634
RS
1132int n_interval_blocks;
1133
34400008
GM
1134
1135/* Initialize interval allocation. */
1136
d5e35230
JA
1137static void
1138init_intervals ()
1139{
0930c1a1
SM
1140 interval_block = NULL;
1141 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1142 interval_free_list = 0;
0930c1a1 1143 n_interval_blocks = 0;
d5e35230
JA
1144}
1145
34400008
GM
1146
1147/* Return a new interval. */
d5e35230
JA
1148
1149INTERVAL
1150make_interval ()
1151{
1152 INTERVAL val;
1153
1154 if (interval_free_list)
1155 {
1156 val = interval_free_list;
439d5cb4 1157 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1158 }
1159 else
1160 {
1161 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1162 {
3c06d205
KH
1163 register struct interval_block *newi;
1164
34400008
GM
1165 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1166 MEM_TYPE_NON_LISP);
d5e35230 1167
d5e35230
JA
1168 newi->next = interval_block;
1169 interval_block = newi;
1170 interval_block_index = 0;
c8099634 1171 n_interval_blocks++;
d5e35230
JA
1172 }
1173 val = &interval_block->intervals[interval_block_index++];
1174 }
1175 consing_since_gc += sizeof (struct interval);
310ea200 1176 intervals_consed++;
d5e35230 1177 RESET_INTERVAL (val);
2336fe58 1178 val->gcmarkbit = 0;
d5e35230
JA
1179 return val;
1180}
1181
34400008
GM
1182
1183/* Mark Lisp objects in interval I. */
d5e35230
JA
1184
1185static void
d393c068 1186mark_interval (i, dummy)
d5e35230 1187 register INTERVAL i;
d393c068 1188 Lisp_Object dummy;
d5e35230 1189{
2336fe58
SM
1190 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1191 i->gcmarkbit = 1;
49723c04 1192 mark_object (i->plist);
d5e35230
JA
1193}
1194
34400008
GM
1195
1196/* Mark the interval tree rooted in TREE. Don't call this directly;
1197 use the macro MARK_INTERVAL_TREE instead. */
1198
d5e35230
JA
1199static void
1200mark_interval_tree (tree)
1201 register INTERVAL tree;
1202{
e8720644
JB
1203 /* No need to test if this tree has been marked already; this
1204 function is always called through the MARK_INTERVAL_TREE macro,
1205 which takes care of that. */
1206
1e934989 1207 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1208}
1209
34400008
GM
1210
1211/* Mark the interval tree rooted in I. */
1212
e8720644
JB
1213#define MARK_INTERVAL_TREE(i) \
1214 do { \
2336fe58 1215 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1216 mark_interval_tree (i); \
1217 } while (0)
d5e35230 1218
34400008 1219
2e471eb5
GM
1220#define UNMARK_BALANCE_INTERVALS(i) \
1221 do { \
1222 if (! NULL_INTERVAL_P (i)) \
2336fe58 1223 (i) = balance_intervals (i); \
2e471eb5 1224 } while (0)
d5e35230 1225
cc2d8c6b
KR
1226\f
1227/* Number support. If NO_UNION_TYPE isn't in effect, we
1228 can't create number objects in macros. */
1229#ifndef make_number
1230Lisp_Object
1231make_number (n)
1232 int n;
1233{
1234 Lisp_Object obj;
1235 obj.s.val = n;
1236 obj.s.type = Lisp_Int;
1237 return obj;
1238}
1239#endif
d5e35230 1240\f
2e471eb5
GM
1241/***********************************************************************
1242 String Allocation
1243 ***********************************************************************/
1a4f1e2c 1244
2e471eb5
GM
1245/* Lisp_Strings are allocated in string_block structures. When a new
1246 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1247 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1248 needed, it is taken from that list. During the sweep phase of GC,
1249 string_blocks that are entirely free are freed, except two which
1250 we keep.
7146af97 1251
2e471eb5
GM
1252 String data is allocated from sblock structures. Strings larger
1253 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1254 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1255
2e471eb5
GM
1256 Sblocks consist internally of sdata structures, one for each
1257 Lisp_String. The sdata structure points to the Lisp_String it
1258 belongs to. The Lisp_String points back to the `u.data' member of
1259 its sdata structure.
7146af97 1260
2e471eb5
GM
1261 When a Lisp_String is freed during GC, it is put back on
1262 string_free_list, and its `data' member and its sdata's `string'
1263 pointer is set to null. The size of the string is recorded in the
1264 `u.nbytes' member of the sdata. So, sdata structures that are no
1265 longer used, can be easily recognized, and it's easy to compact the
1266 sblocks of small strings which we do in compact_small_strings. */
7146af97 1267
2e471eb5
GM
1268/* Size in bytes of an sblock structure used for small strings. This
1269 is 8192 minus malloc overhead. */
7146af97 1270
2e471eb5 1271#define SBLOCK_SIZE 8188
c8099634 1272
2e471eb5
GM
1273/* Strings larger than this are considered large strings. String data
1274 for large strings is allocated from individual sblocks. */
7146af97 1275
2e471eb5
GM
1276#define LARGE_STRING_BYTES 1024
1277
1278/* Structure describing string memory sub-allocated from an sblock.
1279 This is where the contents of Lisp strings are stored. */
1280
1281struct sdata
7146af97 1282{
2e471eb5
GM
1283 /* Back-pointer to the string this sdata belongs to. If null, this
1284 structure is free, and the NBYTES member of the union below
34400008 1285 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1286 would return if STRING were non-null). If non-null, STRING_BYTES
1287 (STRING) is the size of the data, and DATA contains the string's
1288 contents. */
1289 struct Lisp_String *string;
7146af97 1290
31d929e5 1291#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1292
31d929e5
GM
1293 EMACS_INT nbytes;
1294 unsigned char data[1];
177c0ea7 1295
31d929e5
GM
1296#define SDATA_NBYTES(S) (S)->nbytes
1297#define SDATA_DATA(S) (S)->data
177c0ea7 1298
31d929e5
GM
1299#else /* not GC_CHECK_STRING_BYTES */
1300
2e471eb5
GM
1301 union
1302 {
1303 /* When STRING in non-null. */
1304 unsigned char data[1];
1305
1306 /* When STRING is null. */
1307 EMACS_INT nbytes;
1308 } u;
177c0ea7 1309
31d929e5
GM
1310
1311#define SDATA_NBYTES(S) (S)->u.nbytes
1312#define SDATA_DATA(S) (S)->u.data
1313
1314#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1315};
1316
31d929e5 1317
2e471eb5
GM
1318/* Structure describing a block of memory which is sub-allocated to
1319 obtain string data memory for strings. Blocks for small strings
1320 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1321 as large as needed. */
1322
1323struct sblock
7146af97 1324{
2e471eb5
GM
1325 /* Next in list. */
1326 struct sblock *next;
7146af97 1327
2e471eb5
GM
1328 /* Pointer to the next free sdata block. This points past the end
1329 of the sblock if there isn't any space left in this block. */
1330 struct sdata *next_free;
1331
1332 /* Start of data. */
1333 struct sdata first_data;
1334};
1335
1336/* Number of Lisp strings in a string_block structure. The 1020 is
1337 1024 minus malloc overhead. */
1338
19bcad1f 1339#define STRING_BLOCK_SIZE \
2e471eb5
GM
1340 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1341
1342/* Structure describing a block from which Lisp_String structures
1343 are allocated. */
1344
1345struct string_block
7146af97 1346{
d05b383a 1347 /* Place `strings' first, to preserve alignment. */
19bcad1f 1348 struct Lisp_String strings[STRING_BLOCK_SIZE];
d05b383a 1349 struct string_block *next;
2e471eb5 1350};
7146af97 1351
2e471eb5
GM
1352/* Head and tail of the list of sblock structures holding Lisp string
1353 data. We always allocate from current_sblock. The NEXT pointers
1354 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1355
2e471eb5 1356static struct sblock *oldest_sblock, *current_sblock;
7146af97 1357
2e471eb5 1358/* List of sblocks for large strings. */
7146af97 1359
2e471eb5 1360static struct sblock *large_sblocks;
7146af97 1361
2e471eb5 1362/* List of string_block structures, and how many there are. */
7146af97 1363
2e471eb5
GM
1364static struct string_block *string_blocks;
1365static int n_string_blocks;
7146af97 1366
2e471eb5 1367/* Free-list of Lisp_Strings. */
7146af97 1368
2e471eb5 1369static struct Lisp_String *string_free_list;
7146af97 1370
2e471eb5 1371/* Number of live and free Lisp_Strings. */
c8099634 1372
2e471eb5 1373static int total_strings, total_free_strings;
7146af97 1374
2e471eb5
GM
1375/* Number of bytes used by live strings. */
1376
1377static int total_string_size;
1378
1379/* Given a pointer to a Lisp_String S which is on the free-list
1380 string_free_list, return a pointer to its successor in the
1381 free-list. */
1382
1383#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1384
1385/* Return a pointer to the sdata structure belonging to Lisp string S.
1386 S must be live, i.e. S->data must not be null. S->data is actually
1387 a pointer to the `u.data' member of its sdata structure; the
1388 structure starts at a constant offset in front of that. */
177c0ea7 1389
31d929e5
GM
1390#ifdef GC_CHECK_STRING_BYTES
1391
1392#define SDATA_OF_STRING(S) \
1393 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1394 - sizeof (EMACS_INT)))
1395
1396#else /* not GC_CHECK_STRING_BYTES */
1397
2e471eb5
GM
1398#define SDATA_OF_STRING(S) \
1399 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1400
31d929e5
GM
1401#endif /* not GC_CHECK_STRING_BYTES */
1402
2e471eb5
GM
1403/* Value is the size of an sdata structure large enough to hold NBYTES
1404 bytes of string data. The value returned includes a terminating
1405 NUL byte, the size of the sdata structure, and padding. */
1406
31d929e5
GM
1407#ifdef GC_CHECK_STRING_BYTES
1408
2e471eb5
GM
1409#define SDATA_SIZE(NBYTES) \
1410 ((sizeof (struct Lisp_String *) \
1411 + (NBYTES) + 1 \
31d929e5 1412 + sizeof (EMACS_INT) \
2e471eb5
GM
1413 + sizeof (EMACS_INT) - 1) \
1414 & ~(sizeof (EMACS_INT) - 1))
1415
31d929e5
GM
1416#else /* not GC_CHECK_STRING_BYTES */
1417
1418#define SDATA_SIZE(NBYTES) \
1419 ((sizeof (struct Lisp_String *) \
1420 + (NBYTES) + 1 \
1421 + sizeof (EMACS_INT) - 1) \
1422 & ~(sizeof (EMACS_INT) - 1))
1423
1424#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1425
1426/* Initialize string allocation. Called from init_alloc_once. */
d457598b
AS
1427
1428void
2e471eb5 1429init_strings ()
7146af97 1430{
2e471eb5
GM
1431 total_strings = total_free_strings = total_string_size = 0;
1432 oldest_sblock = current_sblock = large_sblocks = NULL;
1433 string_blocks = NULL;
1434 n_string_blocks = 0;
1435 string_free_list = NULL;
7146af97
JB
1436}
1437
2e471eb5 1438
361b097f
GM
1439#ifdef GC_CHECK_STRING_BYTES
1440
361b097f
GM
1441static int check_string_bytes_count;
1442
676a7251
GM
1443void check_string_bytes P_ ((int));
1444void check_sblock P_ ((struct sblock *));
1445
1446#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1447
1448
1449/* Like GC_STRING_BYTES, but with debugging check. */
1450
1451int
1452string_bytes (s)
1453 struct Lisp_String *s;
1454{
7cdee936 1455 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
676a7251
GM
1456 if (!PURE_POINTER_P (s)
1457 && s->data
1458 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1459 abort ();
1460 return nbytes;
1461}
177c0ea7 1462
2c5bd608 1463/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1464
361b097f 1465void
676a7251
GM
1466check_sblock (b)
1467 struct sblock *b;
361b097f 1468{
676a7251 1469 struct sdata *from, *end, *from_end;
177c0ea7 1470
676a7251 1471 end = b->next_free;
177c0ea7 1472
676a7251 1473 for (from = &b->first_data; from < end; from = from_end)
361b097f 1474 {
676a7251
GM
1475 /* Compute the next FROM here because copying below may
1476 overwrite data we need to compute it. */
1477 int nbytes;
177c0ea7 1478
676a7251
GM
1479 /* Check that the string size recorded in the string is the
1480 same as the one recorded in the sdata structure. */
1481 if (from->string)
1482 CHECK_STRING_BYTES (from->string);
177c0ea7 1483
676a7251
GM
1484 if (from->string)
1485 nbytes = GC_STRING_BYTES (from->string);
1486 else
1487 nbytes = SDATA_NBYTES (from);
177c0ea7 1488
676a7251
GM
1489 nbytes = SDATA_SIZE (nbytes);
1490 from_end = (struct sdata *) ((char *) from + nbytes);
1491 }
1492}
361b097f 1493
676a7251
GM
1494
1495/* Check validity of Lisp strings' string_bytes member. ALL_P
1496 non-zero means check all strings, otherwise check only most
1497 recently allocated strings. Used for hunting a bug. */
1498
1499void
1500check_string_bytes (all_p)
1501 int all_p;
1502{
1503 if (all_p)
1504 {
1505 struct sblock *b;
1506
1507 for (b = large_sblocks; b; b = b->next)
1508 {
1509 struct Lisp_String *s = b->first_data.string;
1510 if (s)
1511 CHECK_STRING_BYTES (s);
361b097f 1512 }
177c0ea7 1513
676a7251
GM
1514 for (b = oldest_sblock; b; b = b->next)
1515 check_sblock (b);
361b097f 1516 }
676a7251
GM
1517 else
1518 check_sblock (current_sblock);
361b097f
GM
1519}
1520
1521#endif /* GC_CHECK_STRING_BYTES */
1522
1523
2e471eb5
GM
1524/* Return a new Lisp_String. */
1525
1526static struct Lisp_String *
1527allocate_string ()
7146af97 1528{
2e471eb5 1529 struct Lisp_String *s;
7146af97 1530
2e471eb5
GM
1531 /* If the free-list is empty, allocate a new string_block, and
1532 add all the Lisp_Strings in it to the free-list. */
1533 if (string_free_list == NULL)
7146af97 1534 {
2e471eb5
GM
1535 struct string_block *b;
1536 int i;
1537
34400008 1538 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1539 bzero (b, sizeof *b);
1540 b->next = string_blocks;
1541 string_blocks = b;
1542 ++n_string_blocks;
1543
19bcad1f 1544 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1545 {
2e471eb5
GM
1546 s = b->strings + i;
1547 NEXT_FREE_LISP_STRING (s) = string_free_list;
1548 string_free_list = s;
7146af97 1549 }
2e471eb5 1550
19bcad1f 1551 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1552 }
c0f51373 1553
2e471eb5
GM
1554 /* Pop a Lisp_String off the free-list. */
1555 s = string_free_list;
1556 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1557
2e471eb5
GM
1558 /* Probably not strictly necessary, but play it safe. */
1559 bzero (s, sizeof *s);
c0f51373 1560
2e471eb5
GM
1561 --total_free_strings;
1562 ++total_strings;
1563 ++strings_consed;
1564 consing_since_gc += sizeof *s;
c0f51373 1565
361b097f 1566#ifdef GC_CHECK_STRING_BYTES
83a96b4d 1567 if (!noninteractive
e0f712ba 1568#ifdef MAC_OS8
83a96b4d
AC
1569 && current_sblock
1570#endif
1571 )
361b097f 1572 {
676a7251
GM
1573 if (++check_string_bytes_count == 200)
1574 {
1575 check_string_bytes_count = 0;
1576 check_string_bytes (1);
1577 }
1578 else
1579 check_string_bytes (0);
361b097f 1580 }
676a7251 1581#endif /* GC_CHECK_STRING_BYTES */
361b097f 1582
2e471eb5 1583 return s;
c0f51373 1584}
7146af97 1585
7146af97 1586
2e471eb5
GM
1587/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1588 plus a NUL byte at the end. Allocate an sdata structure for S, and
1589 set S->data to its `u.data' member. Store a NUL byte at the end of
1590 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1591 S->data if it was initially non-null. */
7146af97 1592
2e471eb5
GM
1593void
1594allocate_string_data (s, nchars, nbytes)
1595 struct Lisp_String *s;
1596 int nchars, nbytes;
7146af97 1597{
5c5fecb3 1598 struct sdata *data, *old_data;
2e471eb5 1599 struct sblock *b;
5c5fecb3 1600 int needed, old_nbytes;
7146af97 1601
2e471eb5
GM
1602 /* Determine the number of bytes needed to store NBYTES bytes
1603 of string data. */
1604 needed = SDATA_SIZE (nbytes);
7146af97 1605
2e471eb5
GM
1606 if (nbytes > LARGE_STRING_BYTES)
1607 {
675d5130 1608 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1609
1610#ifdef DOUG_LEA_MALLOC
f8608968
GM
1611 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1612 because mapped region contents are not preserved in
d36b182f
DL
1613 a dumped Emacs.
1614
1615 In case you think of allowing it in a dumped Emacs at the
1616 cost of not being able to re-dump, there's another reason:
1617 mmap'ed data typically have an address towards the top of the
1618 address space, which won't fit into an EMACS_INT (at least on
1619 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1620 mallopt (M_MMAP_MAX, 0);
1621#endif
1622
34400008 1623 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
177c0ea7 1624
2e471eb5
GM
1625#ifdef DOUG_LEA_MALLOC
1626 /* Back to a reasonable maximum of mmap'ed areas. */
1627 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1628#endif
177c0ea7 1629
2e471eb5
GM
1630 b->next_free = &b->first_data;
1631 b->first_data.string = NULL;
1632 b->next = large_sblocks;
1633 large_sblocks = b;
1634 }
1635 else if (current_sblock == NULL
1636 || (((char *) current_sblock + SBLOCK_SIZE
1637 - (char *) current_sblock->next_free)
1638 < needed))
1639 {
1640 /* Not enough room in the current sblock. */
34400008 1641 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1642 b->next_free = &b->first_data;
1643 b->first_data.string = NULL;
1644 b->next = NULL;
1645
1646 if (current_sblock)
1647 current_sblock->next = b;
1648 else
1649 oldest_sblock = b;
1650 current_sblock = b;
1651 }
1652 else
1653 b = current_sblock;
5c5fecb3
GM
1654
1655 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1656 old_nbytes = GC_STRING_BYTES (s);
177c0ea7 1657
2e471eb5
GM
1658 data = b->next_free;
1659 data->string = s;
31d929e5
GM
1660 s->data = SDATA_DATA (data);
1661#ifdef GC_CHECK_STRING_BYTES
1662 SDATA_NBYTES (data) = nbytes;
1663#endif
2e471eb5
GM
1664 s->size = nchars;
1665 s->size_byte = nbytes;
1666 s->data[nbytes] = '\0';
1667 b->next_free = (struct sdata *) ((char *) data + needed);
177c0ea7 1668
5c5fecb3
GM
1669 /* If S had already data assigned, mark that as free by setting its
1670 string back-pointer to null, and recording the size of the data
00c9c33c 1671 in it. */
5c5fecb3
GM
1672 if (old_data)
1673 {
31d929e5 1674 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
1675 old_data->string = NULL;
1676 }
1677
2e471eb5
GM
1678 consing_since_gc += needed;
1679}
1680
1681
1682/* Sweep and compact strings. */
1683
1684static void
1685sweep_strings ()
1686{
1687 struct string_block *b, *next;
1688 struct string_block *live_blocks = NULL;
177c0ea7 1689
2e471eb5
GM
1690 string_free_list = NULL;
1691 total_strings = total_free_strings = 0;
1692 total_string_size = 0;
1693
1694 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1695 for (b = string_blocks; b; b = next)
1696 {
1697 int i, nfree = 0;
1698 struct Lisp_String *free_list_before = string_free_list;
1699
1700 next = b->next;
1701
19bcad1f 1702 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
1703 {
1704 struct Lisp_String *s = b->strings + i;
1705
1706 if (s->data)
1707 {
1708 /* String was not on free-list before. */
1709 if (STRING_MARKED_P (s))
1710 {
1711 /* String is live; unmark it and its intervals. */
1712 UNMARK_STRING (s);
177c0ea7 1713
2e471eb5
GM
1714 if (!NULL_INTERVAL_P (s->intervals))
1715 UNMARK_BALANCE_INTERVALS (s->intervals);
1716
1717 ++total_strings;
1718 total_string_size += STRING_BYTES (s);
1719 }
1720 else
1721 {
1722 /* String is dead. Put it on the free-list. */
1723 struct sdata *data = SDATA_OF_STRING (s);
1724
1725 /* Save the size of S in its sdata so that we know
1726 how large that is. Reset the sdata's string
1727 back-pointer so that we know it's free. */
31d929e5
GM
1728#ifdef GC_CHECK_STRING_BYTES
1729 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1730 abort ();
1731#else
2e471eb5 1732 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 1733#endif
2e471eb5
GM
1734 data->string = NULL;
1735
1736 /* Reset the strings's `data' member so that we
1737 know it's free. */
1738 s->data = NULL;
1739
1740 /* Put the string on the free-list. */
1741 NEXT_FREE_LISP_STRING (s) = string_free_list;
1742 string_free_list = s;
1743 ++nfree;
1744 }
1745 }
1746 else
1747 {
1748 /* S was on the free-list before. Put it there again. */
1749 NEXT_FREE_LISP_STRING (s) = string_free_list;
1750 string_free_list = s;
1751 ++nfree;
1752 }
1753 }
1754
34400008 1755 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 1756 the first two of them. */
19bcad1f
SM
1757 if (nfree == STRING_BLOCK_SIZE
1758 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
1759 {
1760 lisp_free (b);
1761 --n_string_blocks;
1762 string_free_list = free_list_before;
1763 }
1764 else
1765 {
1766 total_free_strings += nfree;
1767 b->next = live_blocks;
1768 live_blocks = b;
1769 }
1770 }
1771
1772 string_blocks = live_blocks;
1773 free_large_strings ();
1774 compact_small_strings ();
1775}
1776
1777
1778/* Free dead large strings. */
1779
1780static void
1781free_large_strings ()
1782{
1783 struct sblock *b, *next;
1784 struct sblock *live_blocks = NULL;
177c0ea7 1785
2e471eb5
GM
1786 for (b = large_sblocks; b; b = next)
1787 {
1788 next = b->next;
1789
1790 if (b->first_data.string == NULL)
1791 lisp_free (b);
1792 else
1793 {
1794 b->next = live_blocks;
1795 live_blocks = b;
1796 }
1797 }
1798
1799 large_sblocks = live_blocks;
1800}
1801
1802
1803/* Compact data of small strings. Free sblocks that don't contain
1804 data of live strings after compaction. */
1805
1806static void
1807compact_small_strings ()
1808{
1809 struct sblock *b, *tb, *next;
1810 struct sdata *from, *to, *end, *tb_end;
1811 struct sdata *to_end, *from_end;
1812
1813 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1814 to, and TB_END is the end of TB. */
1815 tb = oldest_sblock;
1816 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1817 to = &tb->first_data;
1818
1819 /* Step through the blocks from the oldest to the youngest. We
1820 expect that old blocks will stabilize over time, so that less
1821 copying will happen this way. */
1822 for (b = oldest_sblock; b; b = b->next)
1823 {
1824 end = b->next_free;
1825 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 1826
2e471eb5
GM
1827 for (from = &b->first_data; from < end; from = from_end)
1828 {
1829 /* Compute the next FROM here because copying below may
1830 overwrite data we need to compute it. */
1831 int nbytes;
1832
31d929e5
GM
1833#ifdef GC_CHECK_STRING_BYTES
1834 /* Check that the string size recorded in the string is the
1835 same as the one recorded in the sdata structure. */
1836 if (from->string
1837 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1838 abort ();
1839#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 1840
2e471eb5
GM
1841 if (from->string)
1842 nbytes = GC_STRING_BYTES (from->string);
1843 else
31d929e5 1844 nbytes = SDATA_NBYTES (from);
177c0ea7 1845
2e471eb5
GM
1846 nbytes = SDATA_SIZE (nbytes);
1847 from_end = (struct sdata *) ((char *) from + nbytes);
177c0ea7 1848
2e471eb5
GM
1849 /* FROM->string non-null means it's alive. Copy its data. */
1850 if (from->string)
1851 {
1852 /* If TB is full, proceed with the next sblock. */
1853 to_end = (struct sdata *) ((char *) to + nbytes);
1854 if (to_end > tb_end)
1855 {
1856 tb->next_free = to;
1857 tb = tb->next;
1858 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1859 to = &tb->first_data;
1860 to_end = (struct sdata *) ((char *) to + nbytes);
1861 }
177c0ea7 1862
2e471eb5
GM
1863 /* Copy, and update the string's `data' pointer. */
1864 if (from != to)
1865 {
a2407477
GM
1866 xassert (tb != b || to <= from);
1867 safe_bcopy ((char *) from, (char *) to, nbytes);
31d929e5 1868 to->string->data = SDATA_DATA (to);
2e471eb5
GM
1869 }
1870
1871 /* Advance past the sdata we copied to. */
1872 to = to_end;
1873 }
1874 }
1875 }
1876
1877 /* The rest of the sblocks following TB don't contain live data, so
1878 we can free them. */
1879 for (b = tb->next; b; b = next)
1880 {
1881 next = b->next;
1882 lisp_free (b);
1883 }
1884
1885 tb->next_free = to;
1886 tb->next = NULL;
1887 current_sblock = tb;
1888}
1889
1890
1891DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
a6266d23 1892 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
7ee72033
MB
1893Both LENGTH and INIT must be numbers. */)
1894 (length, init)
2e471eb5
GM
1895 Lisp_Object length, init;
1896{
1897 register Lisp_Object val;
1898 register unsigned char *p, *end;
1899 int c, nbytes;
1900
b7826503
PJ
1901 CHECK_NATNUM (length);
1902 CHECK_NUMBER (init);
2e471eb5
GM
1903
1904 c = XINT (init);
1905 if (SINGLE_BYTE_CHAR_P (c))
1906 {
1907 nbytes = XINT (length);
1908 val = make_uninit_string (nbytes);
d5db4077
KR
1909 p = SDATA (val);
1910 end = p + SCHARS (val);
2e471eb5
GM
1911 while (p != end)
1912 *p++ = c;
1913 }
1914 else
1915 {
d942b71c 1916 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5
GM
1917 int len = CHAR_STRING (c, str);
1918
1919 nbytes = len * XINT (length);
1920 val = make_uninit_multibyte_string (XINT (length), nbytes);
d5db4077 1921 p = SDATA (val);
2e471eb5
GM
1922 end = p + nbytes;
1923 while (p != end)
1924 {
1925 bcopy (str, p, len);
1926 p += len;
1927 }
1928 }
177c0ea7 1929
2e471eb5
GM
1930 *p = 0;
1931 return val;
1932}
1933
1934
1935DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
a6266d23 1936 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
7ee72033
MB
1937LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1938 (length, init)
2e471eb5
GM
1939 Lisp_Object length, init;
1940{
1941 register Lisp_Object val;
1942 struct Lisp_Bool_Vector *p;
1943 int real_init, i;
1944 int length_in_chars, length_in_elts, bits_per_value;
1945
b7826503 1946 CHECK_NATNUM (length);
2e471eb5
GM
1947
1948 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1949
1950 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1951 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1952
1953 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1954 slot `size' of the struct Lisp_Bool_Vector. */
1955 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1956 p = XBOOL_VECTOR (val);
177c0ea7 1957
2e471eb5
GM
1958 /* Get rid of any bits that would cause confusion. */
1959 p->vector_size = 0;
1960 XSETBOOL_VECTOR (val, p);
1961 p->size = XFASTINT (length);
177c0ea7 1962
2e471eb5
GM
1963 real_init = (NILP (init) ? 0 : -1);
1964 for (i = 0; i < length_in_chars ; i++)
1965 p->data[i] = real_init;
177c0ea7 1966
2e471eb5
GM
1967 /* Clear the extraneous bits in the last byte. */
1968 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1969 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1970 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1971
1972 return val;
1973}
1974
1975
1976/* Make a string from NBYTES bytes at CONTENTS, and compute the number
1977 of characters from the contents. This string may be unibyte or
1978 multibyte, depending on the contents. */
1979
1980Lisp_Object
1981make_string (contents, nbytes)
943b873e 1982 const char *contents;
2e471eb5
GM
1983 int nbytes;
1984{
1985 register Lisp_Object val;
9eac9d59
KH
1986 int nchars, multibyte_nbytes;
1987
1988 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
9eac9d59
KH
1989 if (nbytes == nchars || nbytes != multibyte_nbytes)
1990 /* CONTENTS contains no multibyte sequences or contains an invalid
1991 multibyte sequence. We must make unibyte string. */
495a6df3
KH
1992 val = make_unibyte_string (contents, nbytes);
1993 else
1994 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
1995 return val;
1996}
1997
1998
1999/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2000
2001Lisp_Object
2002make_unibyte_string (contents, length)
943b873e 2003 const char *contents;
2e471eb5
GM
2004 int length;
2005{
2006 register Lisp_Object val;
2007 val = make_uninit_string (length);
d5db4077
KR
2008 bcopy (contents, SDATA (val), length);
2009 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2010 return val;
2011}
2012
2013
2014/* Make a multibyte string from NCHARS characters occupying NBYTES
2015 bytes at CONTENTS. */
2016
2017Lisp_Object
2018make_multibyte_string (contents, nchars, nbytes)
943b873e 2019 const char *contents;
2e471eb5
GM
2020 int nchars, nbytes;
2021{
2022 register Lisp_Object val;
2023 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2024 bcopy (contents, SDATA (val), nbytes);
2e471eb5
GM
2025 return val;
2026}
2027
2028
2029/* Make a string from NCHARS characters occupying NBYTES bytes at
2030 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2031
2032Lisp_Object
2033make_string_from_bytes (contents, nchars, nbytes)
fcbb914b 2034 const char *contents;
2e471eb5
GM
2035 int nchars, nbytes;
2036{
2037 register Lisp_Object val;
2038 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077
KR
2039 bcopy (contents, SDATA (val), nbytes);
2040 if (SBYTES (val) == SCHARS (val))
2041 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2042 return val;
2043}
2044
2045
2046/* Make a string from NCHARS characters occupying NBYTES bytes at
2047 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2048 string as multibyte. If NCHARS is negative, it counts the number of
2049 characters by itself. */
2e471eb5
GM
2050
2051Lisp_Object
2052make_specified_string (contents, nchars, nbytes, multibyte)
fcbb914b 2053 const char *contents;
2e471eb5
GM
2054 int nchars, nbytes;
2055 int multibyte;
2056{
2057 register Lisp_Object val;
229b28c4
KH
2058
2059 if (nchars < 0)
2060 {
2061 if (multibyte)
2062 nchars = multibyte_chars_in_text (contents, nbytes);
2063 else
2064 nchars = nbytes;
2065 }
2e471eb5 2066 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2067 bcopy (contents, SDATA (val), nbytes);
2e471eb5 2068 if (!multibyte)
d5db4077 2069 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2070 return val;
2071}
2072
2073
2074/* Make a string from the data at STR, treating it as multibyte if the
2075 data warrants. */
2076
2077Lisp_Object
2078build_string (str)
943b873e 2079 const char *str;
2e471eb5
GM
2080{
2081 return make_string (str, strlen (str));
2082}
2083
2084
2085/* Return an unibyte Lisp_String set up to hold LENGTH characters
2086 occupying LENGTH bytes. */
2087
2088Lisp_Object
2089make_uninit_string (length)
2090 int length;
2091{
2092 Lisp_Object val;
2093 val = make_uninit_multibyte_string (length, length);
d5db4077 2094 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2095 return val;
2096}
2097
2098
2099/* Return a multibyte Lisp_String set up to hold NCHARS characters
2100 which occupy NBYTES bytes. */
2101
2102Lisp_Object
2103make_uninit_multibyte_string (nchars, nbytes)
2104 int nchars, nbytes;
2105{
2106 Lisp_Object string;
2107 struct Lisp_String *s;
2108
2109 if (nchars < 0)
2110 abort ();
2111
2112 s = allocate_string ();
2113 allocate_string_data (s, nchars, nbytes);
2114 XSETSTRING (string, s);
2115 string_chars_consed += nbytes;
2116 return string;
2117}
2118
2119
2120\f
2121/***********************************************************************
2122 Float Allocation
2123 ***********************************************************************/
2124
2e471eb5
GM
2125/* We store float cells inside of float_blocks, allocating a new
2126 float_block with malloc whenever necessary. Float cells reclaimed
2127 by GC are put on a free list to be reallocated before allocating
ab6780cd 2128 any new float cells from the latest float_block. */
2e471eb5 2129
d05b383a
SM
2130#define FLOAT_BLOCK_SIZE \
2131 (((BLOCK_BYTES - sizeof (struct float_block *) \
2132 /* The compiler might add padding at the end. */ \
2133 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2134 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2135
2136#define GETMARKBIT(block,n) \
2137 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2138 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2139 & 1)
2140
2141#define SETMARKBIT(block,n) \
2142 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2143 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2144
2145#define UNSETMARKBIT(block,n) \
2146 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2147 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2148
2149#define FLOAT_BLOCK(fptr) \
2150 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2151
2152#define FLOAT_INDEX(fptr) \
2153 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2154
2155struct float_block
2156{
ab6780cd 2157 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2158 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2159 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2160 struct float_block *next;
2e471eb5
GM
2161};
2162
ab6780cd
SM
2163#define FLOAT_MARKED_P(fptr) \
2164 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2165
2166#define FLOAT_MARK(fptr) \
2167 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2168
2169#define FLOAT_UNMARK(fptr) \
2170 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2171
34400008
GM
2172/* Current float_block. */
2173
2e471eb5 2174struct float_block *float_block;
34400008
GM
2175
2176/* Index of first unused Lisp_Float in the current float_block. */
2177
2e471eb5
GM
2178int float_block_index;
2179
2180/* Total number of float blocks now in use. */
2181
2182int n_float_blocks;
2183
34400008
GM
2184/* Free-list of Lisp_Floats. */
2185
2e471eb5
GM
2186struct Lisp_Float *float_free_list;
2187
34400008 2188
966533c9 2189/* Initialize float allocation. */
34400008 2190
2e471eb5
GM
2191void
2192init_float ()
2193{
08b7c2cb
SM
2194 float_block = NULL;
2195 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2196 float_free_list = 0;
08b7c2cb 2197 n_float_blocks = 0;
2e471eb5
GM
2198}
2199
34400008
GM
2200
2201/* Explicitly free a float cell by putting it on the free-list. */
2e471eb5
GM
2202
2203void
2204free_float (ptr)
2205 struct Lisp_Float *ptr;
2206{
2207 *(struct Lisp_Float **)&ptr->data = float_free_list;
2208 float_free_list = ptr;
2209}
2210
34400008
GM
2211
2212/* Return a new float object with value FLOAT_VALUE. */
2213
2e471eb5
GM
2214Lisp_Object
2215make_float (float_value)
2216 double float_value;
2217{
2218 register Lisp_Object val;
2219
2220 if (float_free_list)
2221 {
2222 /* We use the data field for chaining the free list
2223 so that we won't use the same field that has the mark bit. */
2224 XSETFLOAT (val, float_free_list);
2225 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2226 }
2227 else
2228 {
2229 if (float_block_index == FLOAT_BLOCK_SIZE)
2230 {
2231 register struct float_block *new;
2232
ab6780cd
SM
2233 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2234 MEM_TYPE_FLOAT);
2e471eb5 2235 new->next = float_block;
a0668126 2236 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2237 float_block = new;
2238 float_block_index = 0;
2239 n_float_blocks++;
2240 }
a0668126
SM
2241 XSETFLOAT (val, &float_block->floats[float_block_index]);
2242 float_block_index++;
2e471eb5 2243 }
177c0ea7 2244
2e471eb5 2245 XFLOAT_DATA (val) = float_value;
a0668126 2246 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2247 consing_since_gc += sizeof (struct Lisp_Float);
2248 floats_consed++;
2249 return val;
2250}
2251
2e471eb5
GM
2252
2253\f
2254/***********************************************************************
2255 Cons Allocation
2256 ***********************************************************************/
2257
2258/* We store cons cells inside of cons_blocks, allocating a new
2259 cons_block with malloc whenever necessary. Cons cells reclaimed by
2260 GC are put on a free list to be reallocated before allocating
08b7c2cb 2261 any new cons cells from the latest cons_block. */
2e471eb5
GM
2262
2263#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2264 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2265 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2266
2267#define CONS_BLOCK(fptr) \
2268 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2269
2270#define CONS_INDEX(fptr) \
2271 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2272
2273struct cons_block
2274{
08b7c2cb 2275 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2276 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2277 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2278 struct cons_block *next;
2e471eb5
GM
2279};
2280
08b7c2cb
SM
2281#define CONS_MARKED_P(fptr) \
2282 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2283
2284#define CONS_MARK(fptr) \
2285 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2286
2287#define CONS_UNMARK(fptr) \
2288 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2289
34400008
GM
2290/* Current cons_block. */
2291
2e471eb5 2292struct cons_block *cons_block;
34400008
GM
2293
2294/* Index of first unused Lisp_Cons in the current block. */
2295
2e471eb5
GM
2296int cons_block_index;
2297
34400008
GM
2298/* Free-list of Lisp_Cons structures. */
2299
2e471eb5
GM
2300struct Lisp_Cons *cons_free_list;
2301
2302/* Total number of cons blocks now in use. */
2303
2304int n_cons_blocks;
2305
34400008
GM
2306
2307/* Initialize cons allocation. */
2308
2e471eb5
GM
2309void
2310init_cons ()
2311{
08b7c2cb
SM
2312 cons_block = NULL;
2313 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2314 cons_free_list = 0;
08b7c2cb 2315 n_cons_blocks = 0;
2e471eb5
GM
2316}
2317
34400008
GM
2318
2319/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2320
2321void
2322free_cons (ptr)
2323 struct Lisp_Cons *ptr;
2324{
2325 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
34400008
GM
2326#if GC_MARK_STACK
2327 ptr->car = Vdead;
2328#endif
2e471eb5
GM
2329 cons_free_list = ptr;
2330}
2331
34400008 2332
2e471eb5 2333DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2334 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
7ee72033 2335 (car, cdr)
2e471eb5
GM
2336 Lisp_Object car, cdr;
2337{
2338 register Lisp_Object val;
2339
2340 if (cons_free_list)
2341 {
2342 /* We use the cdr for chaining the free list
2343 so that we won't use the same field that has the mark bit. */
2344 XSETCONS (val, cons_free_list);
2345 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2346 }
2347 else
2348 {
2349 if (cons_block_index == CONS_BLOCK_SIZE)
2350 {
2351 register struct cons_block *new;
08b7c2cb
SM
2352 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2353 MEM_TYPE_CONS);
a0668126 2354 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2355 new->next = cons_block;
2356 cons_block = new;
2357 cons_block_index = 0;
2358 n_cons_blocks++;
2359 }
a0668126
SM
2360 XSETCONS (val, &cons_block->conses[cons_block_index]);
2361 cons_block_index++;
2e471eb5 2362 }
177c0ea7 2363
f3fbd155
KR
2364 XSETCAR (val, car);
2365 XSETCDR (val, cdr);
a0668126 2366 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2367 consing_since_gc += sizeof (struct Lisp_Cons);
2368 cons_cells_consed++;
2369 return val;
2370}
2371
34400008 2372
2e471eb5
GM
2373/* Make a list of 2, 3, 4 or 5 specified objects. */
2374
2375Lisp_Object
2376list2 (arg1, arg2)
2377 Lisp_Object arg1, arg2;
2378{
2379 return Fcons (arg1, Fcons (arg2, Qnil));
2380}
2381
34400008 2382
2e471eb5
GM
2383Lisp_Object
2384list3 (arg1, arg2, arg3)
2385 Lisp_Object arg1, arg2, arg3;
2386{
2387 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2388}
2389
34400008 2390
2e471eb5
GM
2391Lisp_Object
2392list4 (arg1, arg2, arg3, arg4)
2393 Lisp_Object arg1, arg2, arg3, arg4;
2394{
2395 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2396}
2397
34400008 2398
2e471eb5
GM
2399Lisp_Object
2400list5 (arg1, arg2, arg3, arg4, arg5)
2401 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2402{
2403 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2404 Fcons (arg5, Qnil)))));
2405}
2406
34400008 2407
2e471eb5 2408DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2409 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2410Any number of arguments, even zero arguments, are allowed.
2411usage: (list &rest OBJECTS) */)
7ee72033 2412 (nargs, args)
2e471eb5
GM
2413 int nargs;
2414 register Lisp_Object *args;
2415{
2416 register Lisp_Object val;
2417 val = Qnil;
2418
2419 while (nargs > 0)
2420 {
2421 nargs--;
2422 val = Fcons (args[nargs], val);
2423 }
2424 return val;
2425}
2426
34400008 2427
2e471eb5 2428DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2429 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
7ee72033 2430 (length, init)
2e471eb5
GM
2431 register Lisp_Object length, init;
2432{
2433 register Lisp_Object val;
2434 register int size;
2435
b7826503 2436 CHECK_NATNUM (length);
2e471eb5
GM
2437 size = XFASTINT (length);
2438
2439 val = Qnil;
ce070307
GM
2440 while (size > 0)
2441 {
2442 val = Fcons (init, val);
2443 --size;
2444
2445 if (size > 0)
2446 {
2447 val = Fcons (init, val);
2448 --size;
177c0ea7 2449
ce070307
GM
2450 if (size > 0)
2451 {
2452 val = Fcons (init, val);
2453 --size;
177c0ea7 2454
ce070307
GM
2455 if (size > 0)
2456 {
2457 val = Fcons (init, val);
2458 --size;
177c0ea7 2459
ce070307
GM
2460 if (size > 0)
2461 {
2462 val = Fcons (init, val);
2463 --size;
2464 }
2465 }
2466 }
2467 }
2468
2469 QUIT;
2470 }
177c0ea7 2471
7146af97
JB
2472 return val;
2473}
2e471eb5
GM
2474
2475
7146af97 2476\f
2e471eb5
GM
2477/***********************************************************************
2478 Vector Allocation
2479 ***********************************************************************/
7146af97 2480
34400008
GM
2481/* Singly-linked list of all vectors. */
2482
7146af97
JB
2483struct Lisp_Vector *all_vectors;
2484
2e471eb5
GM
2485/* Total number of vector-like objects now in use. */
2486
c8099634
RS
2487int n_vectors;
2488
34400008
GM
2489
2490/* Value is a pointer to a newly allocated Lisp_Vector structure
2491 with room for LEN Lisp_Objects. */
2492
ece93c02
GM
2493static struct Lisp_Vector *
2494allocate_vectorlike (len, type)
1825c68d 2495 EMACS_INT len;
ece93c02 2496 enum mem_type type;
1825c68d
KH
2497{
2498 struct Lisp_Vector *p;
675d5130 2499 size_t nbytes;
1825c68d 2500
d1658221 2501#ifdef DOUG_LEA_MALLOC
f8608968
GM
2502 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2503 because mapped region contents are not preserved in
2504 a dumped Emacs. */
de7515d6 2505 BLOCK_INPUT;
d1658221 2506 mallopt (M_MMAP_MAX, 0);
de7515d6 2507 UNBLOCK_INPUT;
d1658221 2508#endif
177c0ea7 2509
34400008 2510 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
ece93c02 2511 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
177c0ea7 2512
d1658221 2513#ifdef DOUG_LEA_MALLOC
34400008 2514 /* Back to a reasonable maximum of mmap'ed areas. */
de7515d6 2515 BLOCK_INPUT;
81d492d5 2516 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
de7515d6 2517 UNBLOCK_INPUT;
d1658221 2518#endif
177c0ea7 2519
34400008 2520 consing_since_gc += nbytes;
310ea200 2521 vector_cells_consed += len;
1825c68d
KH
2522
2523 p->next = all_vectors;
2524 all_vectors = p;
34400008 2525 ++n_vectors;
1825c68d
KH
2526 return p;
2527}
2528
34400008 2529
ece93c02
GM
2530/* Allocate a vector with NSLOTS slots. */
2531
2532struct Lisp_Vector *
2533allocate_vector (nslots)
2534 EMACS_INT nslots;
2535{
2536 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2537 v->size = nslots;
2538 return v;
2539}
2540
2541
2542/* Allocate other vector-like structures. */
2543
2544struct Lisp_Hash_Table *
2545allocate_hash_table ()
2546{
2547 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2548 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2549 EMACS_INT i;
177c0ea7 2550
ece93c02
GM
2551 v->size = len;
2552 for (i = 0; i < len; ++i)
2553 v->contents[i] = Qnil;
177c0ea7 2554
ece93c02
GM
2555 return (struct Lisp_Hash_Table *) v;
2556}
2557
2558
2559struct window *
2560allocate_window ()
2561{
2562 EMACS_INT len = VECSIZE (struct window);
2563 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2564 EMACS_INT i;
177c0ea7 2565
ece93c02
GM
2566 for (i = 0; i < len; ++i)
2567 v->contents[i] = Qnil;
2568 v->size = len;
177c0ea7 2569
ece93c02
GM
2570 return (struct window *) v;
2571}
2572
2573
2574struct frame *
2575allocate_frame ()
2576{
2577 EMACS_INT len = VECSIZE (struct frame);
2578 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2579 EMACS_INT i;
177c0ea7 2580
ece93c02
GM
2581 for (i = 0; i < len; ++i)
2582 v->contents[i] = make_number (0);
2583 v->size = len;
2584 return (struct frame *) v;
2585}
2586
2587
2588struct Lisp_Process *
2589allocate_process ()
2590{
2591 EMACS_INT len = VECSIZE (struct Lisp_Process);
2592 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2593 EMACS_INT i;
177c0ea7 2594
ece93c02
GM
2595 for (i = 0; i < len; ++i)
2596 v->contents[i] = Qnil;
2597 v->size = len;
177c0ea7 2598
ece93c02
GM
2599 return (struct Lisp_Process *) v;
2600}
2601
2602
2603struct Lisp_Vector *
2604allocate_other_vector (len)
2605 EMACS_INT len;
2606{
2607 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2608 EMACS_INT i;
177c0ea7 2609
ece93c02
GM
2610 for (i = 0; i < len; ++i)
2611 v->contents[i] = Qnil;
2612 v->size = len;
177c0ea7 2613
ece93c02
GM
2614 return v;
2615}
2616
2617
7146af97 2618DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 2619 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033
MB
2620See also the function `vector'. */)
2621 (length, init)
7146af97
JB
2622 register Lisp_Object length, init;
2623{
1825c68d
KH
2624 Lisp_Object vector;
2625 register EMACS_INT sizei;
2626 register int index;
7146af97
JB
2627 register struct Lisp_Vector *p;
2628
b7826503 2629 CHECK_NATNUM (length);
c9dad5ed 2630 sizei = XFASTINT (length);
7146af97 2631
ece93c02 2632 p = allocate_vector (sizei);
7146af97
JB
2633 for (index = 0; index < sizei; index++)
2634 p->contents[index] = init;
2635
1825c68d 2636 XSETVECTOR (vector, p);
7146af97
JB
2637 return vector;
2638}
2639
34400008 2640
a59de17b 2641DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
a6266d23 2642 doc: /* Return a newly created char-table, with purpose PURPOSE.
228299fa
GM
2643Each element is initialized to INIT, which defaults to nil.
2644PURPOSE should be a symbol which has a `char-table-extra-slots' property.
7ee72033
MB
2645The property's value should be an integer between 0 and 10. */)
2646 (purpose, init)
a59de17b 2647 register Lisp_Object purpose, init;
7b07587b
RS
2648{
2649 Lisp_Object vector;
a59de17b 2650 Lisp_Object n;
b7826503 2651 CHECK_SYMBOL (purpose);
0551bde3 2652 n = Fget (purpose, Qchar_table_extra_slots);
b7826503 2653 CHECK_NUMBER (n);
7b07587b
RS
2654 if (XINT (n) < 0 || XINT (n) > 10)
2655 args_out_of_range (n, Qnil);
2656 /* Add 2 to the size for the defalt and parent slots. */
2657 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2658 init);
0551bde3 2659 XCHAR_TABLE (vector)->top = Qt;
c96a008c 2660 XCHAR_TABLE (vector)->parent = Qnil;
a59de17b 2661 XCHAR_TABLE (vector)->purpose = purpose;
7b07587b
RS
2662 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2663 return vector;
2664}
2665
34400008 2666
0551bde3
KH
2667/* Return a newly created sub char table with default value DEFALT.
2668 Since a sub char table does not appear as a top level Emacs Lisp
2669 object, we don't need a Lisp interface to make it. */
2670
2671Lisp_Object
2672make_sub_char_table (defalt)
2673 Lisp_Object defalt;
2674{
2675 Lisp_Object vector
2676 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2677 XCHAR_TABLE (vector)->top = Qnil;
2678 XCHAR_TABLE (vector)->defalt = defalt;
2679 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2680 return vector;
2681}
2682
34400008 2683
7146af97 2684DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 2685 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
2686Any number of arguments, even zero arguments, are allowed.
2687usage: (vector &rest OBJECTS) */)
7ee72033 2688 (nargs, args)
7146af97
JB
2689 register int nargs;
2690 Lisp_Object *args;
2691{
2692 register Lisp_Object len, val;
2693 register int index;
2694 register struct Lisp_Vector *p;
2695
67ba9986 2696 XSETFASTINT (len, nargs);
7146af97
JB
2697 val = Fmake_vector (len, Qnil);
2698 p = XVECTOR (val);
2699 for (index = 0; index < nargs; index++)
2700 p->contents[index] = args[index];
2701 return val;
2702}
2703
34400008 2704
7146af97 2705DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 2706 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
2707The arguments should be the arglist, bytecode-string, constant vector,
2708stack size, (optional) doc string, and (optional) interactive spec.
2709The first four arguments are required; at most six have any
ae8e8122 2710significance.
92cc28b2 2711usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
7ee72033 2712 (nargs, args)
7146af97
JB
2713 register int nargs;
2714 Lisp_Object *args;
2715{
2716 register Lisp_Object len, val;
2717 register int index;
2718 register struct Lisp_Vector *p;
2719
67ba9986 2720 XSETFASTINT (len, nargs);
265a9e55 2721 if (!NILP (Vpurify_flag))
5a053ea9 2722 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
2723 else
2724 val = Fmake_vector (len, Qnil);
9eac9d59
KH
2725
2726 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2727 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2728 earlier because they produced a raw 8-bit string for byte-code
2729 and now such a byte-code string is loaded as multibyte while
2730 raw 8-bit characters converted to multibyte form. Thus, now we
2731 must convert them back to the original unibyte form. */
2732 args[1] = Fstring_as_unibyte (args[1]);
2733
7146af97
JB
2734 p = XVECTOR (val);
2735 for (index = 0; index < nargs; index++)
2736 {
265a9e55 2737 if (!NILP (Vpurify_flag))
7146af97
JB
2738 args[index] = Fpurecopy (args[index]);
2739 p->contents[index] = args[index];
2740 }
50aee051 2741 XSETCOMPILED (val, p);
7146af97
JB
2742 return val;
2743}
2e471eb5 2744
34400008 2745
7146af97 2746\f
2e471eb5
GM
2747/***********************************************************************
2748 Symbol Allocation
2749 ***********************************************************************/
7146af97 2750
2e471eb5
GM
2751/* Each symbol_block is just under 1020 bytes long, since malloc
2752 really allocates in units of powers of two and uses 4 bytes for its
2753 own overhead. */
7146af97
JB
2754
2755#define SYMBOL_BLOCK_SIZE \
2756 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2757
2758struct symbol_block
2e471eb5 2759{
d05b383a 2760 /* Place `symbols' first, to preserve alignment. */
2e471eb5 2761 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
d05b383a 2762 struct symbol_block *next;
2e471eb5 2763};
7146af97 2764
34400008
GM
2765/* Current symbol block and index of first unused Lisp_Symbol
2766 structure in it. */
2767
7146af97
JB
2768struct symbol_block *symbol_block;
2769int symbol_block_index;
2770
34400008
GM
2771/* List of free symbols. */
2772
7146af97
JB
2773struct Lisp_Symbol *symbol_free_list;
2774
c8099634 2775/* Total number of symbol blocks now in use. */
2e471eb5 2776
c8099634
RS
2777int n_symbol_blocks;
2778
34400008
GM
2779
2780/* Initialize symbol allocation. */
2781
7146af97
JB
2782void
2783init_symbol ()
2784{
0930c1a1
SM
2785 symbol_block = NULL;
2786 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 2787 symbol_free_list = 0;
0930c1a1 2788 n_symbol_blocks = 0;
7146af97
JB
2789}
2790
34400008 2791
7146af97 2792DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 2793 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033
MB
2794Its value and function definition are void, and its property list is nil. */)
2795 (name)
54ee42dd 2796 Lisp_Object name;
7146af97
JB
2797{
2798 register Lisp_Object val;
2799 register struct Lisp_Symbol *p;
2800
b7826503 2801 CHECK_STRING (name);
7146af97
JB
2802
2803 if (symbol_free_list)
2804 {
45d12a89 2805 XSETSYMBOL (val, symbol_free_list);
85481507 2806 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
7146af97
JB
2807 }
2808 else
2809 {
2810 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2811 {
3c06d205 2812 struct symbol_block *new;
34400008
GM
2813 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2814 MEM_TYPE_SYMBOL);
7146af97
JB
2815 new->next = symbol_block;
2816 symbol_block = new;
2817 symbol_block_index = 0;
c8099634 2818 n_symbol_blocks++;
7146af97 2819 }
a0668126
SM
2820 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2821 symbol_block_index++;
7146af97 2822 }
177c0ea7 2823
7146af97 2824 p = XSYMBOL (val);
8fe5665d 2825 p->xname = name;
7146af97 2826 p->plist = Qnil;
2e471eb5
GM
2827 p->value = Qunbound;
2828 p->function = Qunbound;
9e713715 2829 p->next = NULL;
2336fe58 2830 p->gcmarkbit = 0;
9e713715
GM
2831 p->interned = SYMBOL_UNINTERNED;
2832 p->constant = 0;
2833 p->indirect_variable = 0;
2e471eb5
GM
2834 consing_since_gc += sizeof (struct Lisp_Symbol);
2835 symbols_consed++;
7146af97
JB
2836 return val;
2837}
2838
3f25e183 2839
2e471eb5
GM
2840\f
2841/***********************************************************************
34400008 2842 Marker (Misc) Allocation
2e471eb5 2843 ***********************************************************************/
3f25e183 2844
2e471eb5
GM
2845/* Allocation of markers and other objects that share that structure.
2846 Works like allocation of conses. */
c0696668 2847
2e471eb5
GM
2848#define MARKER_BLOCK_SIZE \
2849 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2850
2851struct marker_block
c0696668 2852{
d05b383a 2853 /* Place `markers' first, to preserve alignment. */
2e471eb5 2854 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
d05b383a 2855 struct marker_block *next;
2e471eb5 2856};
c0696668 2857
2e471eb5
GM
2858struct marker_block *marker_block;
2859int marker_block_index;
c0696668 2860
2e471eb5 2861union Lisp_Misc *marker_free_list;
c0696668 2862
2e471eb5 2863/* Total number of marker blocks now in use. */
3f25e183 2864
2e471eb5
GM
2865int n_marker_blocks;
2866
2867void
2868init_marker ()
3f25e183 2869{
0930c1a1
SM
2870 marker_block = NULL;
2871 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 2872 marker_free_list = 0;
0930c1a1 2873 n_marker_blocks = 0;
3f25e183
RS
2874}
2875
2e471eb5
GM
2876/* Return a newly allocated Lisp_Misc object, with no substructure. */
2877
3f25e183 2878Lisp_Object
2e471eb5 2879allocate_misc ()
7146af97 2880{
2e471eb5 2881 Lisp_Object val;
7146af97 2882
2e471eb5 2883 if (marker_free_list)
7146af97 2884 {
2e471eb5
GM
2885 XSETMISC (val, marker_free_list);
2886 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
2887 }
2888 else
7146af97 2889 {
2e471eb5
GM
2890 if (marker_block_index == MARKER_BLOCK_SIZE)
2891 {
2892 struct marker_block *new;
34400008
GM
2893 new = (struct marker_block *) lisp_malloc (sizeof *new,
2894 MEM_TYPE_MISC);
2e471eb5
GM
2895 new->next = marker_block;
2896 marker_block = new;
2897 marker_block_index = 0;
2898 n_marker_blocks++;
2899 }
a0668126
SM
2900 XSETMISC (val, &marker_block->markers[marker_block_index]);
2901 marker_block_index++;
7146af97 2902 }
177c0ea7 2903
2e471eb5
GM
2904 consing_since_gc += sizeof (union Lisp_Misc);
2905 misc_objects_consed++;
2336fe58 2906 XMARKER (val)->gcmarkbit = 0;
2e471eb5
GM
2907 return val;
2908}
2909
42172a6b
RS
2910/* Return a Lisp_Misc_Save_Value object containing POINTER and
2911 INTEGER. This is used to package C values to call record_unwind_protect.
2912 The unwind function can get the C values back using XSAVE_VALUE. */
2913
2914Lisp_Object
2915make_save_value (pointer, integer)
2916 void *pointer;
2917 int integer;
2918{
2919 register Lisp_Object val;
2920 register struct Lisp_Save_Value *p;
2921
2922 val = allocate_misc ();
2923 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2924 p = XSAVE_VALUE (val);
2925 p->pointer = pointer;
2926 p->integer = integer;
2927 return val;
2928}
2929
2e471eb5 2930DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 2931 doc: /* Return a newly allocated marker which does not point at any place. */)
7ee72033 2932 ()
2e471eb5
GM
2933{
2934 register Lisp_Object val;
2935 register struct Lisp_Marker *p;
7146af97 2936
2e471eb5
GM
2937 val = allocate_misc ();
2938 XMISCTYPE (val) = Lisp_Misc_Marker;
2939 p = XMARKER (val);
2940 p->buffer = 0;
2941 p->bytepos = 0;
2942 p->charpos = 0;
ef89c2ce 2943 p->next = NULL;
2e471eb5 2944 p->insertion_type = 0;
7146af97
JB
2945 return val;
2946}
2e471eb5
GM
2947
2948/* Put MARKER back on the free list after using it temporarily. */
2949
2950void
2951free_marker (marker)
2952 Lisp_Object marker;
2953{
ef89c2ce 2954 unchain_marker (XMARKER (marker));
2e471eb5
GM
2955
2956 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2957 XMISC (marker)->u_free.chain = marker_free_list;
2958 marker_free_list = XMISC (marker);
2959
2960 total_free_markers++;
2961}
2962
c0696668 2963\f
7146af97 2964/* Return a newly created vector or string with specified arguments as
736471d1
RS
2965 elements. If all the arguments are characters that can fit
2966 in a string of events, make a string; otherwise, make a vector.
2967
2968 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
2969
2970Lisp_Object
736471d1 2971make_event_array (nargs, args)
7146af97
JB
2972 register int nargs;
2973 Lisp_Object *args;
2974{
2975 int i;
2976
2977 for (i = 0; i < nargs; i++)
736471d1 2978 /* The things that fit in a string
c9ca4659
RS
2979 are characters that are in 0...127,
2980 after discarding the meta bit and all the bits above it. */
e687453f 2981 if (!INTEGERP (args[i])
c9ca4659 2982 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
2983 return Fvector (nargs, args);
2984
2985 /* Since the loop exited, we know that all the things in it are
2986 characters, so we can make a string. */
2987 {
c13ccad2 2988 Lisp_Object result;
177c0ea7 2989
50aee051 2990 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 2991 for (i = 0; i < nargs; i++)
736471d1 2992 {
46e7e6b0 2993 SSET (result, i, XINT (args[i]));
736471d1
RS
2994 /* Move the meta bit to the right place for a string char. */
2995 if (XINT (args[i]) & CHAR_META)
46e7e6b0 2996 SSET (result, i, SREF (result, i) | 0x80);
736471d1 2997 }
177c0ea7 2998
7146af97
JB
2999 return result;
3000 }
3001}
2e471eb5
GM
3002
3003
7146af97 3004\f
34400008
GM
3005/************************************************************************
3006 C Stack Marking
3007 ************************************************************************/
3008
13c844fb
GM
3009#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3010
71cf5fa0
GM
3011/* Conservative C stack marking requires a method to identify possibly
3012 live Lisp objects given a pointer value. We do this by keeping
3013 track of blocks of Lisp data that are allocated in a red-black tree
3014 (see also the comment of mem_node which is the type of nodes in
3015 that tree). Function lisp_malloc adds information for an allocated
3016 block to the red-black tree with calls to mem_insert, and function
3017 lisp_free removes it with mem_delete. Functions live_string_p etc
3018 call mem_find to lookup information about a given pointer in the
3019 tree, and use that to determine if the pointer points to a Lisp
3020 object or not. */
3021
34400008
GM
3022/* Initialize this part of alloc.c. */
3023
3024static void
3025mem_init ()
3026{
3027 mem_z.left = mem_z.right = MEM_NIL;
3028 mem_z.parent = NULL;
3029 mem_z.color = MEM_BLACK;
3030 mem_z.start = mem_z.end = NULL;
3031 mem_root = MEM_NIL;
3032}
3033
3034
3035/* Value is a pointer to the mem_node containing START. Value is
3036 MEM_NIL if there is no node in the tree containing START. */
3037
3038static INLINE struct mem_node *
3039mem_find (start)
3040 void *start;
3041{
3042 struct mem_node *p;
3043
ece93c02
GM
3044 if (start < min_heap_address || start > max_heap_address)
3045 return MEM_NIL;
3046
34400008
GM
3047 /* Make the search always successful to speed up the loop below. */
3048 mem_z.start = start;
3049 mem_z.end = (char *) start + 1;
3050
3051 p = mem_root;
3052 while (start < p->start || start >= p->end)
3053 p = start < p->start ? p->left : p->right;
3054 return p;
3055}
3056
3057
3058/* Insert a new node into the tree for a block of memory with start
3059 address START, end address END, and type TYPE. Value is a
3060 pointer to the node that was inserted. */
3061
3062static struct mem_node *
3063mem_insert (start, end, type)
3064 void *start, *end;
3065 enum mem_type type;
3066{
3067 struct mem_node *c, *parent, *x;
3068
ece93c02
GM
3069 if (start < min_heap_address)
3070 min_heap_address = start;
3071 if (end > max_heap_address)
3072 max_heap_address = end;
3073
34400008
GM
3074 /* See where in the tree a node for START belongs. In this
3075 particular application, it shouldn't happen that a node is already
3076 present. For debugging purposes, let's check that. */
3077 c = mem_root;
3078 parent = NULL;
3079
3080#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3081
34400008
GM
3082 while (c != MEM_NIL)
3083 {
3084 if (start >= c->start && start < c->end)
3085 abort ();
3086 parent = c;
3087 c = start < c->start ? c->left : c->right;
3088 }
177c0ea7 3089
34400008 3090#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3091
34400008
GM
3092 while (c != MEM_NIL)
3093 {
3094 parent = c;
3095 c = start < c->start ? c->left : c->right;
3096 }
177c0ea7 3097
34400008
GM
3098#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3099
3100 /* Create a new node. */
877935b1
GM
3101#ifdef GC_MALLOC_CHECK
3102 x = (struct mem_node *) _malloc_internal (sizeof *x);
3103 if (x == NULL)
3104 abort ();
3105#else
34400008 3106 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3107#endif
34400008
GM
3108 x->start = start;
3109 x->end = end;
3110 x->type = type;
3111 x->parent = parent;
3112 x->left = x->right = MEM_NIL;
3113 x->color = MEM_RED;
3114
3115 /* Insert it as child of PARENT or install it as root. */
3116 if (parent)
3117 {
3118 if (start < parent->start)
3119 parent->left = x;
3120 else
3121 parent->right = x;
3122 }
177c0ea7 3123 else
34400008
GM
3124 mem_root = x;
3125
3126 /* Re-establish red-black tree properties. */
3127 mem_insert_fixup (x);
877935b1 3128
34400008
GM
3129 return x;
3130}
3131
3132
3133/* Re-establish the red-black properties of the tree, and thereby
3134 balance the tree, after node X has been inserted; X is always red. */
3135
3136static void
3137mem_insert_fixup (x)
3138 struct mem_node *x;
3139{
3140 while (x != mem_root && x->parent->color == MEM_RED)
3141 {
3142 /* X is red and its parent is red. This is a violation of
3143 red-black tree property #3. */
177c0ea7 3144
34400008
GM
3145 if (x->parent == x->parent->parent->left)
3146 {
3147 /* We're on the left side of our grandparent, and Y is our
3148 "uncle". */
3149 struct mem_node *y = x->parent->parent->right;
177c0ea7 3150
34400008
GM
3151 if (y->color == MEM_RED)
3152 {
3153 /* Uncle and parent are red but should be black because
3154 X is red. Change the colors accordingly and proceed
3155 with the grandparent. */
3156 x->parent->color = MEM_BLACK;
3157 y->color = MEM_BLACK;
3158 x->parent->parent->color = MEM_RED;
3159 x = x->parent->parent;
3160 }
3161 else
3162 {
3163 /* Parent and uncle have different colors; parent is
3164 red, uncle is black. */
3165 if (x == x->parent->right)
3166 {
3167 x = x->parent;
3168 mem_rotate_left (x);
3169 }
3170
3171 x->parent->color = MEM_BLACK;
3172 x->parent->parent->color = MEM_RED;
3173 mem_rotate_right (x->parent->parent);
3174 }
3175 }
3176 else
3177 {
3178 /* This is the symmetrical case of above. */
3179 struct mem_node *y = x->parent->parent->left;
177c0ea7 3180
34400008
GM
3181 if (y->color == MEM_RED)
3182 {
3183 x->parent->color = MEM_BLACK;
3184 y->color = MEM_BLACK;
3185 x->parent->parent->color = MEM_RED;
3186 x = x->parent->parent;
3187 }
3188 else
3189 {
3190 if (x == x->parent->left)
3191 {
3192 x = x->parent;
3193 mem_rotate_right (x);
3194 }
177c0ea7 3195
34400008
GM
3196 x->parent->color = MEM_BLACK;
3197 x->parent->parent->color = MEM_RED;
3198 mem_rotate_left (x->parent->parent);
3199 }
3200 }
3201 }
3202
3203 /* The root may have been changed to red due to the algorithm. Set
3204 it to black so that property #5 is satisfied. */
3205 mem_root->color = MEM_BLACK;
3206}
3207
3208
177c0ea7
JB
3209/* (x) (y)
3210 / \ / \
34400008
GM
3211 a (y) ===> (x) c
3212 / \ / \
3213 b c a b */
3214
3215static void
3216mem_rotate_left (x)
3217 struct mem_node *x;
3218{
3219 struct mem_node *y;
3220
3221 /* Turn y's left sub-tree into x's right sub-tree. */
3222 y = x->right;
3223 x->right = y->left;
3224 if (y->left != MEM_NIL)
3225 y->left->parent = x;
3226
3227 /* Y's parent was x's parent. */
3228 if (y != MEM_NIL)
3229 y->parent = x->parent;
3230
3231 /* Get the parent to point to y instead of x. */
3232 if (x->parent)
3233 {
3234 if (x == x->parent->left)
3235 x->parent->left = y;
3236 else
3237 x->parent->right = y;
3238 }
3239 else
3240 mem_root = y;
3241
3242 /* Put x on y's left. */
3243 y->left = x;
3244 if (x != MEM_NIL)
3245 x->parent = y;
3246}
3247
3248
177c0ea7
JB
3249/* (x) (Y)
3250 / \ / \
3251 (y) c ===> a (x)
3252 / \ / \
34400008
GM
3253 a b b c */
3254
3255static void
3256mem_rotate_right (x)
3257 struct mem_node *x;
3258{
3259 struct mem_node *y = x->left;
3260
3261 x->left = y->right;
3262 if (y->right != MEM_NIL)
3263 y->right->parent = x;
177c0ea7 3264
34400008
GM
3265 if (y != MEM_NIL)
3266 y->parent = x->parent;
3267 if (x->parent)
3268 {
3269 if (x == x->parent->right)
3270 x->parent->right = y;
3271 else
3272 x->parent->left = y;
3273 }
3274 else
3275 mem_root = y;
177c0ea7 3276
34400008
GM
3277 y->right = x;
3278 if (x != MEM_NIL)
3279 x->parent = y;
3280}
3281
3282
3283/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3284
3285static void
3286mem_delete (z)
3287 struct mem_node *z;
3288{
3289 struct mem_node *x, *y;
3290
3291 if (!z || z == MEM_NIL)
3292 return;
3293
3294 if (z->left == MEM_NIL || z->right == MEM_NIL)
3295 y = z;
3296 else
3297 {
3298 y = z->right;
3299 while (y->left != MEM_NIL)
3300 y = y->left;
3301 }
3302
3303 if (y->left != MEM_NIL)
3304 x = y->left;
3305 else
3306 x = y->right;
3307
3308 x->parent = y->parent;
3309 if (y->parent)
3310 {
3311 if (y == y->parent->left)
3312 y->parent->left = x;
3313 else
3314 y->parent->right = x;
3315 }
3316 else
3317 mem_root = x;
3318
3319 if (y != z)
3320 {
3321 z->start = y->start;
3322 z->end = y->end;
3323 z->type = y->type;
3324 }
177c0ea7 3325
34400008
GM
3326 if (y->color == MEM_BLACK)
3327 mem_delete_fixup (x);
877935b1
GM
3328
3329#ifdef GC_MALLOC_CHECK
3330 _free_internal (y);
3331#else
34400008 3332 xfree (y);
877935b1 3333#endif
34400008
GM
3334}
3335
3336
3337/* Re-establish the red-black properties of the tree, after a
3338 deletion. */
3339
3340static void
3341mem_delete_fixup (x)
3342 struct mem_node *x;
3343{
3344 while (x != mem_root && x->color == MEM_BLACK)
3345 {
3346 if (x == x->parent->left)
3347 {
3348 struct mem_node *w = x->parent->right;
177c0ea7 3349
34400008
GM
3350 if (w->color == MEM_RED)
3351 {
3352 w->color = MEM_BLACK;
3353 x->parent->color = MEM_RED;
3354 mem_rotate_left (x->parent);
3355 w = x->parent->right;
3356 }
177c0ea7 3357
34400008
GM
3358 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3359 {
3360 w->color = MEM_RED;
3361 x = x->parent;
3362 }
3363 else
3364 {
3365 if (w->right->color == MEM_BLACK)
3366 {
3367 w->left->color = MEM_BLACK;
3368 w->color = MEM_RED;
3369 mem_rotate_right (w);
3370 w = x->parent->right;
3371 }
3372 w->color = x->parent->color;
3373 x->parent->color = MEM_BLACK;
3374 w->right->color = MEM_BLACK;
3375 mem_rotate_left (x->parent);
3376 x = mem_root;
3377 }
3378 }
3379 else
3380 {
3381 struct mem_node *w = x->parent->left;
177c0ea7 3382
34400008
GM
3383 if (w->color == MEM_RED)
3384 {
3385 w->color = MEM_BLACK;
3386 x->parent->color = MEM_RED;
3387 mem_rotate_right (x->parent);
3388 w = x->parent->left;
3389 }
177c0ea7 3390
34400008
GM
3391 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3392 {
3393 w->color = MEM_RED;
3394 x = x->parent;
3395 }
3396 else
3397 {
3398 if (w->left->color == MEM_BLACK)
3399 {
3400 w->right->color = MEM_BLACK;
3401 w->color = MEM_RED;
3402 mem_rotate_left (w);
3403 w = x->parent->left;
3404 }
177c0ea7 3405
34400008
GM
3406 w->color = x->parent->color;
3407 x->parent->color = MEM_BLACK;
3408 w->left->color = MEM_BLACK;
3409 mem_rotate_right (x->parent);
3410 x = mem_root;
3411 }
3412 }
3413 }
177c0ea7 3414
34400008
GM
3415 x->color = MEM_BLACK;
3416}
3417
3418
3419/* Value is non-zero if P is a pointer to a live Lisp string on
3420 the heap. M is a pointer to the mem_block for P. */
3421
3422static INLINE int
3423live_string_p (m, p)
3424 struct mem_node *m;
3425 void *p;
3426{
3427 if (m->type == MEM_TYPE_STRING)
3428 {
3429 struct string_block *b = (struct string_block *) m->start;
3430 int offset = (char *) p - (char *) &b->strings[0];
3431
3432 /* P must point to the start of a Lisp_String structure, and it
3433 must not be on the free-list. */
176bc847
GM
3434 return (offset >= 0
3435 && offset % sizeof b->strings[0] == 0
d05b383a 3436 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3437 && ((struct Lisp_String *) p)->data != NULL);
3438 }
3439 else
3440 return 0;
3441}
3442
3443
3444/* Value is non-zero if P is a pointer to a live Lisp cons on
3445 the heap. M is a pointer to the mem_block for P. */
3446
3447static INLINE int
3448live_cons_p (m, p)
3449 struct mem_node *m;
3450 void *p;
3451{
3452 if (m->type == MEM_TYPE_CONS)
3453 {
3454 struct cons_block *b = (struct cons_block *) m->start;
3455 int offset = (char *) p - (char *) &b->conses[0];
3456
3457 /* P must point to the start of a Lisp_Cons, not be
3458 one of the unused cells in the current cons block,
3459 and not be on the free-list. */
176bc847
GM
3460 return (offset >= 0
3461 && offset % sizeof b->conses[0] == 0
d05b383a 3462 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3463 && (b != cons_block
3464 || offset / sizeof b->conses[0] < cons_block_index)
3465 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3466 }
3467 else
3468 return 0;
3469}
3470
3471
3472/* Value is non-zero if P is a pointer to a live Lisp symbol on
3473 the heap. M is a pointer to the mem_block for P. */
3474
3475static INLINE int
3476live_symbol_p (m, p)
3477 struct mem_node *m;
3478 void *p;
3479{
3480 if (m->type == MEM_TYPE_SYMBOL)
3481 {
3482 struct symbol_block *b = (struct symbol_block *) m->start;
3483 int offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3484
34400008
GM
3485 /* P must point to the start of a Lisp_Symbol, not be
3486 one of the unused cells in the current symbol block,
3487 and not be on the free-list. */
176bc847
GM
3488 return (offset >= 0
3489 && offset % sizeof b->symbols[0] == 0
d05b383a 3490 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3491 && (b != symbol_block
3492 || offset / sizeof b->symbols[0] < symbol_block_index)
3493 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3494 }
3495 else
3496 return 0;
3497}
3498
3499
3500/* Value is non-zero if P is a pointer to a live Lisp float on
3501 the heap. M is a pointer to the mem_block for P. */
3502
3503static INLINE int
3504live_float_p (m, p)
3505 struct mem_node *m;
3506 void *p;
3507{
3508 if (m->type == MEM_TYPE_FLOAT)
3509 {
3510 struct float_block *b = (struct float_block *) m->start;
3511 int offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3512
ab6780cd
SM
3513 /* P must point to the start of a Lisp_Float and not be
3514 one of the unused cells in the current float block. */
176bc847
GM
3515 return (offset >= 0
3516 && offset % sizeof b->floats[0] == 0
d05b383a 3517 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3518 && (b != float_block
ab6780cd 3519 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3520 }
3521 else
3522 return 0;
3523}
3524
3525
3526/* Value is non-zero if P is a pointer to a live Lisp Misc on
3527 the heap. M is a pointer to the mem_block for P. */
3528
3529static INLINE int
3530live_misc_p (m, p)
3531 struct mem_node *m;
3532 void *p;
3533{
3534 if (m->type == MEM_TYPE_MISC)
3535 {
3536 struct marker_block *b = (struct marker_block *) m->start;
3537 int offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3538
34400008
GM
3539 /* P must point to the start of a Lisp_Misc, not be
3540 one of the unused cells in the current misc block,
3541 and not be on the free-list. */
176bc847
GM
3542 return (offset >= 0
3543 && offset % sizeof b->markers[0] == 0
d05b383a 3544 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
3545 && (b != marker_block
3546 || offset / sizeof b->markers[0] < marker_block_index)
3547 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3548 }
3549 else
3550 return 0;
3551}
3552
3553
3554/* Value is non-zero if P is a pointer to a live vector-like object.
3555 M is a pointer to the mem_block for P. */
3556
3557static INLINE int
3558live_vector_p (m, p)
3559 struct mem_node *m;
3560 void *p;
3561{
ece93c02
GM
3562 return (p == m->start
3563 && m->type >= MEM_TYPE_VECTOR
3564 && m->type <= MEM_TYPE_WINDOW);
34400008
GM
3565}
3566
3567
2336fe58 3568/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
3569 pointer to the mem_block for P. */
3570
3571static INLINE int
3572live_buffer_p (m, p)
3573 struct mem_node *m;
3574 void *p;
3575{
3576 /* P must point to the start of the block, and the buffer
3577 must not have been killed. */
3578 return (m->type == MEM_TYPE_BUFFER
3579 && p == m->start
3580 && !NILP (((struct buffer *) p)->name));
3581}
3582
13c844fb
GM
3583#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3584
3585#if GC_MARK_STACK
3586
34400008
GM
3587#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3588
3589/* Array of objects that are kept alive because the C stack contains
3590 a pattern that looks like a reference to them . */
3591
3592#define MAX_ZOMBIES 10
3593static Lisp_Object zombies[MAX_ZOMBIES];
3594
3595/* Number of zombie objects. */
3596
3597static int nzombies;
3598
3599/* Number of garbage collections. */
3600
3601static int ngcs;
3602
3603/* Average percentage of zombies per collection. */
3604
3605static double avg_zombies;
3606
3607/* Max. number of live and zombie objects. */
3608
3609static int max_live, max_zombies;
3610
3611/* Average number of live objects per GC. */
3612
3613static double avg_live;
3614
3615DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033
MB
3616 doc: /* Show information about live and zombie objects. */)
3617 ()
34400008 3618{
83fc9c63
DL
3619 Lisp_Object args[8], zombie_list = Qnil;
3620 int i;
3621 for (i = 0; i < nzombies; i++)
3622 zombie_list = Fcons (zombies[i], zombie_list);
3623 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
3624 args[1] = make_number (ngcs);
3625 args[2] = make_float (avg_live);
3626 args[3] = make_float (avg_zombies);
3627 args[4] = make_float (avg_zombies / avg_live / 100);
3628 args[5] = make_number (max_live);
3629 args[6] = make_number (max_zombies);
83fc9c63
DL
3630 args[7] = zombie_list;
3631 return Fmessage (8, args);
34400008
GM
3632}
3633
3634#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3635
3636
182ff242
GM
3637/* Mark OBJ if we can prove it's a Lisp_Object. */
3638
3639static INLINE void
3640mark_maybe_object (obj)
3641 Lisp_Object obj;
3642{
3643 void *po = (void *) XPNTR (obj);
3644 struct mem_node *m = mem_find (po);
177c0ea7 3645
182ff242
GM
3646 if (m != MEM_NIL)
3647 {
3648 int mark_p = 0;
3649
3650 switch (XGCTYPE (obj))
3651 {
3652 case Lisp_String:
3653 mark_p = (live_string_p (m, po)
3654 && !STRING_MARKED_P ((struct Lisp_String *) po));
3655 break;
3656
3657 case Lisp_Cons:
08b7c2cb 3658 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
3659 break;
3660
3661 case Lisp_Symbol:
2336fe58 3662 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
3663 break;
3664
3665 case Lisp_Float:
ab6780cd 3666 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
3667 break;
3668
3669 case Lisp_Vectorlike:
3670 /* Note: can't check GC_BUFFERP before we know it's a
3671 buffer because checking that dereferences the pointer
3672 PO which might point anywhere. */
3673 if (live_vector_p (m, po))
3ef06d12 3674 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 3675 else if (live_buffer_p (m, po))
3ef06d12 3676 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
3677 break;
3678
3679 case Lisp_Misc:
2336fe58 3680 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
182ff242 3681 break;
6bbd7a29
GM
3682
3683 case Lisp_Int:
31d929e5 3684 case Lisp_Type_Limit:
6bbd7a29 3685 break;
182ff242
GM
3686 }
3687
3688 if (mark_p)
3689 {
3690#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3691 if (nzombies < MAX_ZOMBIES)
83fc9c63 3692 zombies[nzombies] = obj;
182ff242
GM
3693 ++nzombies;
3694#endif
49723c04 3695 mark_object (obj);
182ff242
GM
3696 }
3697 }
3698}
ece93c02
GM
3699
3700
3701/* If P points to Lisp data, mark that as live if it isn't already
3702 marked. */
3703
3704static INLINE void
3705mark_maybe_pointer (p)
3706 void *p;
3707{
3708 struct mem_node *m;
3709
3710 /* Quickly rule out some values which can't point to Lisp data. We
3711 assume that Lisp data is aligned on even addresses. */
3712 if ((EMACS_INT) p & 1)
3713 return;
177c0ea7 3714
ece93c02
GM
3715 m = mem_find (p);
3716 if (m != MEM_NIL)
3717 {
3718 Lisp_Object obj = Qnil;
177c0ea7 3719
ece93c02
GM
3720 switch (m->type)
3721 {
3722 case MEM_TYPE_NON_LISP:
2fe50224 3723 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 3724 break;
177c0ea7 3725
ece93c02 3726 case MEM_TYPE_BUFFER:
3ef06d12 3727 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
3728 XSETVECTOR (obj, p);
3729 break;
177c0ea7 3730
ece93c02 3731 case MEM_TYPE_CONS:
08b7c2cb 3732 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
3733 XSETCONS (obj, p);
3734 break;
177c0ea7 3735
ece93c02
GM
3736 case MEM_TYPE_STRING:
3737 if (live_string_p (m, p)
3738 && !STRING_MARKED_P ((struct Lisp_String *) p))
3739 XSETSTRING (obj, p);
3740 break;
3741
3742 case MEM_TYPE_MISC:
2336fe58
SM
3743 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3744 XSETMISC (obj, p);
ece93c02 3745 break;
177c0ea7 3746
ece93c02 3747 case MEM_TYPE_SYMBOL:
2336fe58 3748 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
3749 XSETSYMBOL (obj, p);
3750 break;
177c0ea7 3751
ece93c02 3752 case MEM_TYPE_FLOAT:
ab6780cd 3753 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
3754 XSETFLOAT (obj, p);
3755 break;
177c0ea7 3756
ece93c02
GM
3757 case MEM_TYPE_VECTOR:
3758 case MEM_TYPE_PROCESS:
3759 case MEM_TYPE_HASH_TABLE:
3760 case MEM_TYPE_FRAME:
3761 case MEM_TYPE_WINDOW:
3762 if (live_vector_p (m, p))
3763 {
3764 Lisp_Object tem;
3765 XSETVECTOR (tem, p);
3ef06d12 3766 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
3767 obj = tem;
3768 }
3769 break;
3770
3771 default:
3772 abort ();
3773 }
3774
3775 if (!GC_NILP (obj))
49723c04 3776 mark_object (obj);
ece93c02
GM
3777 }
3778}
3779
3780
3781/* Mark Lisp objects referenced from the address range START..END. */
34400008 3782
177c0ea7 3783static void
34400008
GM
3784mark_memory (start, end)
3785 void *start, *end;
3786{
3787 Lisp_Object *p;
ece93c02 3788 void **pp;
34400008
GM
3789
3790#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3791 nzombies = 0;
3792#endif
3793
3794 /* Make START the pointer to the start of the memory region,
3795 if it isn't already. */
3796 if (end < start)
3797 {
3798 void *tem = start;
3799 start = end;
3800 end = tem;
3801 }
ece93c02
GM
3802
3803 /* Mark Lisp_Objects. */
34400008 3804 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
182ff242 3805 mark_maybe_object (*p);
ece93c02
GM
3806
3807 /* Mark Lisp data pointed to. This is necessary because, in some
3808 situations, the C compiler optimizes Lisp objects away, so that
3809 only a pointer to them remains. Example:
3810
3811 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 3812 ()
ece93c02
GM
3813 {
3814 Lisp_Object obj = build_string ("test");
3815 struct Lisp_String *s = XSTRING (obj);
3816 Fgarbage_collect ();
3817 fprintf (stderr, "test `%s'\n", s->data);
3818 return Qnil;
3819 }
3820
3821 Here, `obj' isn't really used, and the compiler optimizes it
3822 away. The only reference to the life string is through the
3823 pointer `s'. */
177c0ea7 3824
ece93c02
GM
3825 for (pp = (void **) start; (void *) pp < end; ++pp)
3826 mark_maybe_pointer (*pp);
182ff242
GM
3827}
3828
30f637f8
DL
3829/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3830 the GCC system configuration. In gcc 3.2, the only systems for
3831 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3832 by others?) and ns32k-pc532-min. */
182ff242
GM
3833
3834#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3835
3836static int setjmp_tested_p, longjmps_done;
3837
3838#define SETJMP_WILL_LIKELY_WORK "\
3839\n\
3840Emacs garbage collector has been changed to use conservative stack\n\
3841marking. Emacs has determined that the method it uses to do the\n\
3842marking will likely work on your system, but this isn't sure.\n\
3843\n\
3844If you are a system-programmer, or can get the help of a local wizard\n\
3845who is, please take a look at the function mark_stack in alloc.c, and\n\
3846verify that the methods used are appropriate for your system.\n\
3847\n\
d191623b 3848Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
3849"
3850
3851#define SETJMP_WILL_NOT_WORK "\
3852\n\
3853Emacs garbage collector has been changed to use conservative stack\n\
3854marking. Emacs has determined that the default method it uses to do the\n\
3855marking will not work on your system. We will need a system-dependent\n\
3856solution for your system.\n\
3857\n\
3858Please take a look at the function mark_stack in alloc.c, and\n\
3859try to find a way to make it work on your system.\n\
30f637f8
DL
3860\n\
3861Note that you may get false negatives, depending on the compiler.\n\
3862In particular, you need to use -O with GCC for this test.\n\
3863\n\
d191623b 3864Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
3865"
3866
3867
3868/* Perform a quick check if it looks like setjmp saves registers in a
3869 jmp_buf. Print a message to stderr saying so. When this test
3870 succeeds, this is _not_ a proof that setjmp is sufficient for
3871 conservative stack marking. Only the sources or a disassembly
3872 can prove that. */
3873
3874static void
3875test_setjmp ()
3876{
3877 char buf[10];
3878 register int x;
3879 jmp_buf jbuf;
3880 int result = 0;
3881
3882 /* Arrange for X to be put in a register. */
3883 sprintf (buf, "1");
3884 x = strlen (buf);
3885 x = 2 * x - 1;
3886
3887 setjmp (jbuf);
3888 if (longjmps_done == 1)
34400008 3889 {
182ff242 3890 /* Came here after the longjmp at the end of the function.
34400008 3891
182ff242
GM
3892 If x == 1, the longjmp has restored the register to its
3893 value before the setjmp, and we can hope that setjmp
3894 saves all such registers in the jmp_buf, although that
3895 isn't sure.
34400008 3896
182ff242
GM
3897 For other values of X, either something really strange is
3898 taking place, or the setjmp just didn't save the register. */
3899
3900 if (x == 1)
3901 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3902 else
3903 {
3904 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3905 exit (1);
34400008
GM
3906 }
3907 }
182ff242
GM
3908
3909 ++longjmps_done;
3910 x = 2;
3911 if (longjmps_done == 1)
3912 longjmp (jbuf, 1);
34400008
GM
3913}
3914
182ff242
GM
3915#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3916
34400008
GM
3917
3918#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3919
3920/* Abort if anything GCPRO'd doesn't survive the GC. */
3921
3922static void
3923check_gcpros ()
3924{
3925 struct gcpro *p;
3926 int i;
3927
3928 for (p = gcprolist; p; p = p->next)
3929 for (i = 0; i < p->nvars; ++i)
3930 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
3931 /* FIXME: It's not necessarily a bug. It might just be that the
3932 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
3933 abort ();
3934}
3935
3936#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3937
3938static void
3939dump_zombies ()
3940{
3941 int i;
3942
3943 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3944 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3945 {
3946 fprintf (stderr, " %d = ", i);
3947 debug_print (zombies[i]);
3948 }
3949}
3950
3951#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3952
3953
182ff242
GM
3954/* Mark live Lisp objects on the C stack.
3955
3956 There are several system-dependent problems to consider when
3957 porting this to new architectures:
3958
3959 Processor Registers
3960
3961 We have to mark Lisp objects in CPU registers that can hold local
3962 variables or are used to pass parameters.
3963
3964 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3965 something that either saves relevant registers on the stack, or
3966 calls mark_maybe_object passing it each register's contents.
3967
3968 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3969 implementation assumes that calling setjmp saves registers we need
3970 to see in a jmp_buf which itself lies on the stack. This doesn't
3971 have to be true! It must be verified for each system, possibly
3972 by taking a look at the source code of setjmp.
3973
3974 Stack Layout
3975
3976 Architectures differ in the way their processor stack is organized.
3977 For example, the stack might look like this
3978
3979 +----------------+
3980 | Lisp_Object | size = 4
3981 +----------------+
3982 | something else | size = 2
3983 +----------------+
3984 | Lisp_Object | size = 4
3985 +----------------+
3986 | ... |
3987
3988 In such a case, not every Lisp_Object will be aligned equally. To
3989 find all Lisp_Object on the stack it won't be sufficient to walk
3990 the stack in steps of 4 bytes. Instead, two passes will be
3991 necessary, one starting at the start of the stack, and a second
3992 pass starting at the start of the stack + 2. Likewise, if the
3993 minimal alignment of Lisp_Objects on the stack is 1, four passes
3994 would be necessary, each one starting with one byte more offset
3995 from the stack start.
3996
3997 The current code assumes by default that Lisp_Objects are aligned
3998 equally on the stack. */
34400008
GM
3999
4000static void
4001mark_stack ()
4002{
630909a5 4003 int i;
34400008 4004 jmp_buf j;
6bbd7a29 4005 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
34400008
GM
4006 void *end;
4007
4008 /* This trick flushes the register windows so that all the state of
4009 the process is contained in the stack. */
ab6780cd 4010 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4011 needed on ia64 too. See mach_dep.c, where it also says inline
4012 assembler doesn't work with relevant proprietary compilers. */
34400008
GM
4013#ifdef sparc
4014 asm ("ta 3");
4015#endif
177c0ea7 4016
34400008
GM
4017 /* Save registers that we need to see on the stack. We need to see
4018 registers used to hold register variables and registers used to
4019 pass parameters. */
4020#ifdef GC_SAVE_REGISTERS_ON_STACK
4021 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4022#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4023
182ff242
GM
4024#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4025 setjmp will definitely work, test it
4026 and print a message with the result
4027 of the test. */
4028 if (!setjmp_tested_p)
4029 {
4030 setjmp_tested_p = 1;
4031 test_setjmp ();
4032 }
4033#endif /* GC_SETJMP_WORKS */
177c0ea7 4034
34400008
GM
4035 setjmp (j);
4036 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4037#endif /* not GC_SAVE_REGISTERS_ON_STACK */
34400008
GM
4038
4039 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4040 that's not the case, something has to be done here to iterate
4041 over the stack segments. */
630909a5 4042#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4043#ifdef __GNUC__
4044#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4045#else
630909a5 4046#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4047#endif
182ff242 4048#endif
24452cd5 4049 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
630909a5 4050 mark_memory ((char *) stack_base + i, end);
34400008
GM
4051
4052#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4053 check_gcpros ();
4054#endif
4055}
4056
4057
4058#endif /* GC_MARK_STACK != 0 */
4059
4060
4061\f
2e471eb5
GM
4062/***********************************************************************
4063 Pure Storage Management
4064 ***********************************************************************/
4065
1f0b3fd2
GM
4066/* Allocate room for SIZE bytes from pure Lisp storage and return a
4067 pointer to it. TYPE is the Lisp type for which the memory is
4068 allocated. TYPE < 0 means it's not used for a Lisp object.
4069
4070 If store_pure_type_info is set and TYPE is >= 0, the type of
4071 the allocated object is recorded in pure_types. */
4072
4073static POINTER_TYPE *
4074pure_alloc (size, type)
4075 size_t size;
4076 int type;
4077{
1f0b3fd2 4078 POINTER_TYPE *result;
44117420 4079 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4080
4081 /* Give Lisp_Floats an extra alignment. */
4082 if (type == Lisp_Float)
4083 {
1f0b3fd2
GM
4084#if defined __GNUC__ && __GNUC__ >= 2
4085 alignment = __alignof (struct Lisp_Float);
4086#else
4087 alignment = sizeof (struct Lisp_Float);
4088#endif
9e713715 4089 }
1f0b3fd2 4090
44117420 4091 again:
ab6780cd 4092 result = ALIGN (purebeg + pure_bytes_used, alignment);
44117420
KS
4093 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4094
4095 if (pure_bytes_used <= pure_size)
4096 return result;
4097
4098 /* Don't allocate a large amount here,
4099 because it might get mmap'd and then its address
4100 might not be usable. */
4101 purebeg = (char *) xmalloc (10000);
4102 pure_size = 10000;
4103 pure_bytes_used_before_overflow += pure_bytes_used - size;
4104 pure_bytes_used = 0;
4105 goto again;
1f0b3fd2
GM
4106}
4107
4108
852f8cdc 4109/* Print a warning if PURESIZE is too small. */
9e713715
GM
4110
4111void
4112check_pure_size ()
4113{
4114 if (pure_bytes_used_before_overflow)
a4d35afd
SM
4115 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4116 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4117}
4118
4119
2e471eb5
GM
4120/* Return a string allocated in pure space. DATA is a buffer holding
4121 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4122 non-zero means make the result string multibyte.
1a4f1e2c 4123
2e471eb5
GM
4124 Must get an error if pure storage is full, since if it cannot hold
4125 a large string it may be able to hold conses that point to that
4126 string; then the string is not protected from gc. */
7146af97
JB
4127
4128Lisp_Object
2e471eb5 4129make_pure_string (data, nchars, nbytes, multibyte)
7146af97 4130 char *data;
2e471eb5 4131 int nchars, nbytes;
c0696668 4132 int multibyte;
7146af97 4133{
2e471eb5
GM
4134 Lisp_Object string;
4135 struct Lisp_String *s;
c0696668 4136
1f0b3fd2
GM
4137 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4138 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
2e471eb5
GM
4139 s->size = nchars;
4140 s->size_byte = multibyte ? nbytes : -1;
4141 bcopy (data, s->data, nbytes);
4142 s->data[nbytes] = '\0';
4143 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4144 XSETSTRING (string, s);
4145 return string;
7146af97
JB
4146}
4147
2e471eb5 4148
34400008
GM
4149/* Return a cons allocated from pure space. Give it pure copies
4150 of CAR as car and CDR as cdr. */
4151
7146af97
JB
4152Lisp_Object
4153pure_cons (car, cdr)
4154 Lisp_Object car, cdr;
4155{
4156 register Lisp_Object new;
1f0b3fd2 4157 struct Lisp_Cons *p;
7146af97 4158
1f0b3fd2
GM
4159 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4160 XSETCONS (new, p);
f3fbd155
KR
4161 XSETCAR (new, Fpurecopy (car));
4162 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4163 return new;
4164}
4165
7146af97 4166
34400008
GM
4167/* Value is a float object with value NUM allocated from pure space. */
4168
7146af97
JB
4169Lisp_Object
4170make_pure_float (num)
4171 double num;
4172{
4173 register Lisp_Object new;
1f0b3fd2 4174 struct Lisp_Float *p;
7146af97 4175
1f0b3fd2
GM
4176 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4177 XSETFLOAT (new, p);
70949dac 4178 XFLOAT_DATA (new) = num;
7146af97
JB
4179 return new;
4180}
4181
34400008
GM
4182
4183/* Return a vector with room for LEN Lisp_Objects allocated from
4184 pure space. */
4185
7146af97
JB
4186Lisp_Object
4187make_pure_vector (len)
42607681 4188 EMACS_INT len;
7146af97 4189{
1f0b3fd2
GM
4190 Lisp_Object new;
4191 struct Lisp_Vector *p;
4192 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4193
1f0b3fd2
GM
4194 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4195 XSETVECTOR (new, p);
7146af97
JB
4196 XVECTOR (new)->size = len;
4197 return new;
4198}
4199
34400008 4200
7146af97 4201DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
7ee72033 4202 doc: /* Make a copy of OBJECT in pure storage.
228299fa 4203Recursively copies contents of vectors and cons cells.
7ee72033
MB
4204Does not copy symbols. Copies strings without text properties. */)
4205 (obj)
7146af97
JB
4206 register Lisp_Object obj;
4207{
265a9e55 4208 if (NILP (Vpurify_flag))
7146af97
JB
4209 return obj;
4210
1f0b3fd2 4211 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4212 return obj;
4213
d6dd74bb 4214 if (CONSP (obj))
70949dac 4215 return pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4216 else if (FLOATP (obj))
70949dac 4217 return make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4218 else if (STRINGP (obj))
d5db4077
KR
4219 return make_pure_string (SDATA (obj), SCHARS (obj),
4220 SBYTES (obj),
c0696668 4221 STRING_MULTIBYTE (obj));
d6dd74bb
KH
4222 else if (COMPILEDP (obj) || VECTORP (obj))
4223 {
4224 register struct Lisp_Vector *vec;
4225 register int i, size;
4226
4227 size = XVECTOR (obj)->size;
7d535c68
KH
4228 if (size & PSEUDOVECTOR_FLAG)
4229 size &= PSEUDOVECTOR_SIZE_MASK;
01a4d290 4230 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
d6dd74bb
KH
4231 for (i = 0; i < size; i++)
4232 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4233 if (COMPILEDP (obj))
4234 XSETCOMPILED (obj, vec);
4235 else
4236 XSETVECTOR (obj, vec);
7146af97
JB
4237 return obj;
4238 }
d6dd74bb
KH
4239 else if (MARKERP (obj))
4240 error ("Attempt to copy a marker to pure storage");
6bbd7a29
GM
4241
4242 return obj;
7146af97 4243}
2e471eb5 4244
34400008 4245
7146af97 4246\f
34400008
GM
4247/***********************************************************************
4248 Protection from GC
4249 ***********************************************************************/
4250
2e471eb5
GM
4251/* Put an entry in staticvec, pointing at the variable with address
4252 VARADDRESS. */
7146af97
JB
4253
4254void
4255staticpro (varaddress)
4256 Lisp_Object *varaddress;
4257{
4258 staticvec[staticidx++] = varaddress;
4259 if (staticidx >= NSTATICS)
4260 abort ();
4261}
4262
4263struct catchtag
2e471eb5 4264{
7146af97
JB
4265 Lisp_Object tag;
4266 Lisp_Object val;
4267 struct catchtag *next;
2e471eb5 4268};
7146af97
JB
4269
4270struct backtrace
2e471eb5
GM
4271{
4272 struct backtrace *next;
4273 Lisp_Object *function;
4274 Lisp_Object *args; /* Points to vector of args. */
4275 int nargs; /* Length of vector. */
4276 /* If nargs is UNEVALLED, args points to slot holding list of
4277 unevalled args. */
4278 char evalargs;
4279};
4280
34400008 4281
7146af97 4282\f
34400008
GM
4283/***********************************************************************
4284 Protection from GC
4285 ***********************************************************************/
1a4f1e2c 4286
e8197642
RS
4287/* Temporarily prevent garbage collection. */
4288
4289int
4290inhibit_garbage_collection ()
4291{
aed13378 4292 int count = SPECPDL_INDEX ();
54defd0d
AS
4293 int nbits = min (VALBITS, BITS_PER_INT);
4294
4295 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4296 return count;
4297}
4298
34400008 4299
7146af97 4300DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4301 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4302Garbage collection happens automatically if you cons more than
4303`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4304`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4305 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4306 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4307 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4308 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4309However, if there was overflow in pure space, `garbage-collect'
4310returns nil, because real GC can't be done. */)
7ee72033 4311 ()
7146af97 4312{
7146af97
JB
4313 register struct specbinding *bind;
4314 struct catchtag *catch;
4315 struct handler *handler;
4316 register struct backtrace *backlist;
7146af97
JB
4317 char stack_top_variable;
4318 register int i;
6efc7df7 4319 int message_p;
96117bc7 4320 Lisp_Object total[8];
331379bf 4321 int count = SPECPDL_INDEX ();
2c5bd608
DL
4322 EMACS_TIME t1, t2, t3;
4323
3de0effb
RS
4324 if (abort_on_gc)
4325 abort ();
4326
2c5bd608 4327 EMACS_GET_TIME (t1);
7146af97 4328
9e713715
GM
4329 /* Can't GC if pure storage overflowed because we can't determine
4330 if something is a pure object or not. */
4331 if (pure_bytes_used_before_overflow)
4332 return Qnil;
4333
58595309
KH
4334 /* In case user calls debug_print during GC,
4335 don't let that cause a recursive GC. */
4336 consing_since_gc = 0;
4337
6efc7df7
GM
4338 /* Save what's currently displayed in the echo area. */
4339 message_p = push_message ();
c55b0da6 4340 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 4341
7146af97
JB
4342 /* Save a copy of the contents of the stack, for debugging. */
4343#if MAX_SAVE_STACK > 0
265a9e55 4344 if (NILP (Vpurify_flag))
7146af97
JB
4345 {
4346 i = &stack_top_variable - stack_bottom;
4347 if (i < 0) i = -i;
4348 if (i < MAX_SAVE_STACK)
4349 {
4350 if (stack_copy == 0)
9ac0d9e0 4351 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 4352 else if (stack_copy_size < i)
9ac0d9e0 4353 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
4354 if (stack_copy)
4355 {
42607681 4356 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
7146af97
JB
4357 bcopy (stack_bottom, stack_copy, i);
4358 else
4359 bcopy (&stack_top_variable, stack_copy, i);
4360 }
4361 }
4362 }
4363#endif /* MAX_SAVE_STACK > 0 */
4364
299585ee 4365 if (garbage_collection_messages)
691c4285 4366 message1_nolog ("Garbage collecting...");
7146af97 4367
6e0fca1d
RS
4368 BLOCK_INPUT;
4369
eec7b73d
RS
4370 shrink_regexp_cache ();
4371
4929a878 4372 /* Don't keep undo information around forever. */
7146af97
JB
4373 {
4374 register struct buffer *nextb = all_buffers;
4375
4376 while (nextb)
4377 {
ffd56f97
JB
4378 /* If a buffer's undo list is Qt, that means that undo is
4379 turned off in that buffer. Calling truncate_undo_list on
4380 Qt tends to return NULL, which effectively turns undo back on.
4381 So don't call truncate_undo_list if undo_list is Qt. */
4382 if (! EQ (nextb->undo_list, Qt))
177c0ea7 4383 nextb->undo_list
502b9b64
JB
4384 = truncate_undo_list (nextb->undo_list, undo_limit,
4385 undo_strong_limit);
e0fead5d
AI
4386
4387 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4388 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4389 {
4390 /* If a buffer's gap size is more than 10% of the buffer
4391 size, or larger than 2000 bytes, then shrink it
4392 accordingly. Keep a minimum size of 20 bytes. */
4393 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4394
4395 if (nextb->text->gap_size > size)
4396 {
4397 struct buffer *save_current = current_buffer;
4398 current_buffer = nextb;
4399 make_gap (-(nextb->text->gap_size - size));
4400 current_buffer = save_current;
4401 }
4402 }
4403
7146af97
JB
4404 nextb = nextb->next;
4405 }
4406 }
4407
4408 gc_in_progress = 1;
4409
c23baf9f 4410 /* clear_marks (); */
7146af97 4411
0930c1a1 4412 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
4413
4414 for (i = 0; i < staticidx; i++)
49723c04 4415 mark_object (*staticvec[i]);
34400008
GM
4416
4417#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4418 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4419 mark_stack ();
4420#else
acf5f7d3
SM
4421 {
4422 register struct gcpro *tail;
4423 for (tail = gcprolist; tail; tail = tail->next)
4424 for (i = 0; i < tail->nvars; i++)
0930c1a1 4425 mark_object (tail->var[i]);
acf5f7d3 4426 }
34400008 4427#endif
177c0ea7 4428
630686c8 4429 mark_byte_stack ();
7146af97
JB
4430 for (bind = specpdl; bind != specpdl_ptr; bind++)
4431 {
49723c04
SM
4432 mark_object (bind->symbol);
4433 mark_object (bind->old_value);
7146af97
JB
4434 }
4435 for (catch = catchlist; catch; catch = catch->next)
4436 {
49723c04
SM
4437 mark_object (catch->tag);
4438 mark_object (catch->val);
177c0ea7 4439 }
7146af97
JB
4440 for (handler = handlerlist; handler; handler = handler->next)
4441 {
49723c04
SM
4442 mark_object (handler->handler);
4443 mark_object (handler->var);
177c0ea7 4444 }
7146af97
JB
4445 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4446 {
0930c1a1
SM
4447 mark_object (*backlist->function);
4448
7146af97
JB
4449 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4450 i = 0;
4451 else
4452 i = backlist->nargs - 1;
4453 for (; i >= 0; i--)
0930c1a1 4454 mark_object (backlist->args[i]);
177c0ea7 4455 }
b875d3f7 4456 mark_kboards ();
7146af97 4457
4c315bda
RS
4458 /* Look thru every buffer's undo list
4459 for elements that update markers that were not marked,
4460 and delete them. */
4461 {
4462 register struct buffer *nextb = all_buffers;
4463
4464 while (nextb)
4465 {
4466 /* If a buffer's undo list is Qt, that means that undo is
4467 turned off in that buffer. Calling truncate_undo_list on
4468 Qt tends to return NULL, which effectively turns undo back on.
4469 So don't call truncate_undo_list if undo_list is Qt. */
4470 if (! EQ (nextb->undo_list, Qt))
4471 {
4472 Lisp_Object tail, prev;
4473 tail = nextb->undo_list;
4474 prev = Qnil;
4475 while (CONSP (tail))
4476 {
70949dac
KR
4477 if (GC_CONSP (XCAR (tail))
4478 && GC_MARKERP (XCAR (XCAR (tail)))
2336fe58 4479 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
4480 {
4481 if (NILP (prev))
70949dac 4482 nextb->undo_list = tail = XCDR (tail);
4c315bda 4483 else
f3fbd155
KR
4484 {
4485 tail = XCDR (tail);
4486 XSETCDR (prev, tail);
4487 }
4c315bda
RS
4488 }
4489 else
4490 {
4491 prev = tail;
70949dac 4492 tail = XCDR (tail);
4c315bda
RS
4493 }
4494 }
4495 }
4496
4497 nextb = nextb->next;
4498 }
4499 }
4500
34400008
GM
4501#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4502 mark_stack ();
4503#endif
4504
488dd4c4
JD
4505#ifdef USE_GTK
4506 {
4507 extern void xg_mark_data ();
4508 xg_mark_data ();
4509 }
4510#endif
4511
7146af97
JB
4512 gc_sweep ();
4513
4514 /* Clear the mark bits that we set in certain root slots. */
4515
033a5fa3 4516 unmark_byte_stack ();
3ef06d12
SM
4517 VECTOR_UNMARK (&buffer_defaults);
4518 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 4519
34400008
GM
4520#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4521 dump_zombies ();
4522#endif
4523
6e0fca1d
RS
4524 UNBLOCK_INPUT;
4525
c23baf9f 4526 /* clear_marks (); */
7146af97
JB
4527 gc_in_progress = 0;
4528
4529 consing_since_gc = 0;
4530 if (gc_cons_threshold < 10000)
4531 gc_cons_threshold = 10000;
4532
299585ee
RS
4533 if (garbage_collection_messages)
4534 {
6efc7df7
GM
4535 if (message_p || minibuf_level > 0)
4536 restore_message ();
299585ee
RS
4537 else
4538 message1_nolog ("Garbage collecting...done");
4539 }
7146af97 4540
98edb5ff 4541 unbind_to (count, Qnil);
2e471eb5
GM
4542
4543 total[0] = Fcons (make_number (total_conses),
4544 make_number (total_free_conses));
4545 total[1] = Fcons (make_number (total_symbols),
4546 make_number (total_free_symbols));
4547 total[2] = Fcons (make_number (total_markers),
4548 make_number (total_free_markers));
96117bc7
GM
4549 total[3] = make_number (total_string_size);
4550 total[4] = make_number (total_vector_size);
4551 total[5] = Fcons (make_number (total_floats),
2e471eb5 4552 make_number (total_free_floats));
96117bc7 4553 total[6] = Fcons (make_number (total_intervals),
2e471eb5 4554 make_number (total_free_intervals));
96117bc7 4555 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
4556 make_number (total_free_strings));
4557
34400008 4558#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 4559 {
34400008
GM
4560 /* Compute average percentage of zombies. */
4561 double nlive = 0;
177c0ea7 4562
34400008 4563 for (i = 0; i < 7; ++i)
83fc9c63
DL
4564 if (CONSP (total[i]))
4565 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
4566
4567 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4568 max_live = max (nlive, max_live);
4569 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4570 max_zombies = max (nzombies, max_zombies);
4571 ++ngcs;
4572 }
4573#endif
7146af97 4574
9e713715
GM
4575 if (!NILP (Vpost_gc_hook))
4576 {
4577 int count = inhibit_garbage_collection ();
4578 safe_run_hooks (Qpost_gc_hook);
4579 unbind_to (count, Qnil);
4580 }
2c5bd608
DL
4581
4582 /* Accumulate statistics. */
4583 EMACS_GET_TIME (t2);
4584 EMACS_SUB_TIME (t3, t2, t1);
4585 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
4586 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4587 EMACS_SECS (t3) +
4588 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
4589 gcs_done++;
4590
96117bc7 4591 return Flist (sizeof total / sizeof *total, total);
7146af97 4592}
34400008 4593
41c28a37 4594
3770920e
GM
4595/* Mark Lisp objects in glyph matrix MATRIX. Currently the
4596 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
4597
4598static void
4599mark_glyph_matrix (matrix)
4600 struct glyph_matrix *matrix;
4601{
4602 struct glyph_row *row = matrix->rows;
4603 struct glyph_row *end = row + matrix->nrows;
4604
2e471eb5
GM
4605 for (; row < end; ++row)
4606 if (row->enabled_p)
4607 {
4608 int area;
4609 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4610 {
4611 struct glyph *glyph = row->glyphs[area];
4612 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 4613
2e471eb5
GM
4614 for (; glyph < end_glyph; ++glyph)
4615 if (GC_STRINGP (glyph->object)
4616 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 4617 mark_object (glyph->object);
2e471eb5
GM
4618 }
4619 }
41c28a37
GM
4620}
4621
34400008 4622
41c28a37
GM
4623/* Mark Lisp faces in the face cache C. */
4624
4625static void
4626mark_face_cache (c)
4627 struct face_cache *c;
4628{
4629 if (c)
4630 {
4631 int i, j;
4632 for (i = 0; i < c->used; ++i)
4633 {
4634 struct face *face = FACE_FROM_ID (c->f, i);
4635
4636 if (face)
4637 {
4638 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 4639 mark_object (face->lface[j]);
41c28a37
GM
4640 }
4641 }
4642 }
4643}
4644
4645
4646#ifdef HAVE_WINDOW_SYSTEM
4647
4648/* Mark Lisp objects in image IMG. */
4649
4650static void
4651mark_image (img)
4652 struct image *img;
4653{
49723c04 4654 mark_object (img->spec);
177c0ea7 4655
3e60b029 4656 if (!NILP (img->data.lisp_val))
49723c04 4657 mark_object (img->data.lisp_val);
41c28a37
GM
4658}
4659
4660
4661/* Mark Lisp objects in image cache of frame F. It's done this way so
4662 that we don't have to include xterm.h here. */
4663
4664static void
4665mark_image_cache (f)
4666 struct frame *f;
4667{
4668 forall_images_in_image_cache (f, mark_image);
4669}
4670
4671#endif /* HAVE_X_WINDOWS */
4672
4673
7146af97 4674\f
1a4f1e2c 4675/* Mark reference to a Lisp_Object.
2e471eb5
GM
4676 If the object referred to has not been seen yet, recursively mark
4677 all the references contained in it. */
7146af97 4678
785cd37f 4679#define LAST_MARKED_SIZE 500
49723c04 4680Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
4681int last_marked_index;
4682
1342fc6f
RS
4683/* For debugging--call abort when we cdr down this many
4684 links of a list, in mark_object. In debugging,
4685 the call to abort will hit a breakpoint.
4686 Normally this is zero and the check never goes off. */
4687int mark_object_loop_halt;
4688
41c28a37 4689void
49723c04
SM
4690mark_object (arg)
4691 Lisp_Object arg;
7146af97 4692{
49723c04 4693 register Lisp_Object obj = arg;
4f5c1376
GM
4694#ifdef GC_CHECK_MARKED_OBJECTS
4695 void *po;
4696 struct mem_node *m;
4697#endif
1342fc6f 4698 int cdr_count = 0;
7146af97 4699
9149e743 4700 loop:
7146af97 4701
1f0b3fd2 4702 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4703 return;
4704
49723c04 4705 last_marked[last_marked_index++] = obj;
785cd37f
RS
4706 if (last_marked_index == LAST_MARKED_SIZE)
4707 last_marked_index = 0;
4708
4f5c1376
GM
4709 /* Perform some sanity checks on the objects marked here. Abort if
4710 we encounter an object we know is bogus. This increases GC time
4711 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4712#ifdef GC_CHECK_MARKED_OBJECTS
4713
4714 po = (void *) XPNTR (obj);
4715
4716 /* Check that the object pointed to by PO is known to be a Lisp
4717 structure allocated from the heap. */
4718#define CHECK_ALLOCATED() \
4719 do { \
4720 m = mem_find (po); \
4721 if (m == MEM_NIL) \
4722 abort (); \
4723 } while (0)
4724
4725 /* Check that the object pointed to by PO is live, using predicate
4726 function LIVEP. */
4727#define CHECK_LIVE(LIVEP) \
4728 do { \
4729 if (!LIVEP (m, po)) \
4730 abort (); \
4731 } while (0)
4732
4733 /* Check both of the above conditions. */
4734#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4735 do { \
4736 CHECK_ALLOCATED (); \
4737 CHECK_LIVE (LIVEP); \
4738 } while (0) \
177c0ea7 4739
4f5c1376 4740#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 4741
4f5c1376
GM
4742#define CHECK_ALLOCATED() (void) 0
4743#define CHECK_LIVE(LIVEP) (void) 0
4744#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 4745
4f5c1376
GM
4746#endif /* not GC_CHECK_MARKED_OBJECTS */
4747
0220c518 4748 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
7146af97
JB
4749 {
4750 case Lisp_String:
4751 {
4752 register struct Lisp_String *ptr = XSTRING (obj);
4f5c1376 4753 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 4754 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 4755 MARK_STRING (ptr);
361b097f 4756#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
4757 /* Check that the string size recorded in the string is the
4758 same as the one recorded in the sdata structure. */
4759 CHECK_STRING_BYTES (ptr);
361b097f 4760#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
4761 }
4762 break;
4763
76437631 4764 case Lisp_Vectorlike:
4f5c1376
GM
4765#ifdef GC_CHECK_MARKED_OBJECTS
4766 m = mem_find (po);
4767 if (m == MEM_NIL && !GC_SUBRP (obj)
4768 && po != &buffer_defaults
4769 && po != &buffer_local_symbols)
4770 abort ();
4771#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 4772
30e3190a 4773 if (GC_BUFFERP (obj))
6b552283 4774 {
3ef06d12 4775 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4f5c1376
GM
4776 {
4777#ifdef GC_CHECK_MARKED_OBJECTS
4778 if (po != &buffer_defaults && po != &buffer_local_symbols)
4779 {
4780 struct buffer *b;
4781 for (b = all_buffers; b && b != po; b = b->next)
4782 ;
4783 if (b == NULL)
4784 abort ();
4785 }
4786#endif /* GC_CHECK_MARKED_OBJECTS */
4787 mark_buffer (obj);
4788 }
6b552283 4789 }
30e3190a 4790 else if (GC_SUBRP (obj))
169ee243
RS
4791 break;
4792 else if (GC_COMPILEDP (obj))
2e471eb5
GM
4793 /* We could treat this just like a vector, but it is better to
4794 save the COMPILED_CONSTANTS element for last and avoid
4795 recursion there. */
169ee243
RS
4796 {
4797 register struct Lisp_Vector *ptr = XVECTOR (obj);
4798 register EMACS_INT size = ptr->size;
169ee243
RS
4799 register int i;
4800
3ef06d12 4801 if (VECTOR_MARKED_P (ptr))
169ee243 4802 break; /* Already marked */
177c0ea7 4803
4f5c1376 4804 CHECK_LIVE (live_vector_p);
3ef06d12 4805 VECTOR_MARK (ptr); /* Else mark it */
76437631 4806 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
4807 for (i = 0; i < size; i++) /* and then mark its elements */
4808 {
4809 if (i != COMPILED_CONSTANTS)
49723c04 4810 mark_object (ptr->contents[i]);
169ee243 4811 }
49723c04 4812 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
4813 goto loop;
4814 }
169ee243
RS
4815 else if (GC_FRAMEP (obj))
4816 {
c70bbf06 4817 register struct frame *ptr = XFRAME (obj);
169ee243 4818
3ef06d12
SM
4819 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4820 VECTOR_MARK (ptr); /* Else mark it */
169ee243 4821
4f5c1376 4822 CHECK_LIVE (live_vector_p);
49723c04
SM
4823 mark_object (ptr->name);
4824 mark_object (ptr->icon_name);
4825 mark_object (ptr->title);
4826 mark_object (ptr->focus_frame);
4827 mark_object (ptr->selected_window);
4828 mark_object (ptr->minibuffer_window);
4829 mark_object (ptr->param_alist);
4830 mark_object (ptr->scroll_bars);
4831 mark_object (ptr->condemned_scroll_bars);
4832 mark_object (ptr->menu_bar_items);
4833 mark_object (ptr->face_alist);
4834 mark_object (ptr->menu_bar_vector);
4835 mark_object (ptr->buffer_predicate);
4836 mark_object (ptr->buffer_list);
4837 mark_object (ptr->menu_bar_window);
4838 mark_object (ptr->tool_bar_window);
41c28a37
GM
4839 mark_face_cache (ptr->face_cache);
4840#ifdef HAVE_WINDOW_SYSTEM
4841 mark_image_cache (ptr);
49723c04
SM
4842 mark_object (ptr->tool_bar_items);
4843 mark_object (ptr->desired_tool_bar_string);
4844 mark_object (ptr->current_tool_bar_string);
41c28a37 4845#endif /* HAVE_WINDOW_SYSTEM */
169ee243 4846 }
7b07587b 4847 else if (GC_BOOL_VECTOR_P (obj))
707788bd
RS
4848 {
4849 register struct Lisp_Vector *ptr = XVECTOR (obj);
4850
3ef06d12 4851 if (VECTOR_MARKED_P (ptr))
707788bd 4852 break; /* Already marked */
4f5c1376 4853 CHECK_LIVE (live_vector_p);
3ef06d12 4854 VECTOR_MARK (ptr); /* Else mark it */
707788bd 4855 }
41c28a37
GM
4856 else if (GC_WINDOWP (obj))
4857 {
4858 register struct Lisp_Vector *ptr = XVECTOR (obj);
4859 struct window *w = XWINDOW (obj);
41c28a37
GM
4860 register int i;
4861
4862 /* Stop if already marked. */
3ef06d12 4863 if (VECTOR_MARKED_P (ptr))
41c28a37
GM
4864 break;
4865
4866 /* Mark it. */
4f5c1376 4867 CHECK_LIVE (live_vector_p);
3ef06d12 4868 VECTOR_MARK (ptr);
41c28a37
GM
4869
4870 /* There is no Lisp data above The member CURRENT_MATRIX in
4871 struct WINDOW. Stop marking when that slot is reached. */
4872 for (i = 0;
c70bbf06 4873 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
41c28a37 4874 i++)
49723c04 4875 mark_object (ptr->contents[i]);
41c28a37
GM
4876
4877 /* Mark glyphs for leaf windows. Marking window matrices is
4878 sufficient because frame matrices use the same glyph
4879 memory. */
4880 if (NILP (w->hchild)
4881 && NILP (w->vchild)
4882 && w->current_matrix)
4883 {
4884 mark_glyph_matrix (w->current_matrix);
4885 mark_glyph_matrix (w->desired_matrix);
4886 }
4887 }
4888 else if (GC_HASH_TABLE_P (obj))
4889 {
4890 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
177c0ea7 4891
41c28a37 4892 /* Stop if already marked. */
3ef06d12 4893 if (VECTOR_MARKED_P (h))
41c28a37 4894 break;
177c0ea7 4895
41c28a37 4896 /* Mark it. */
4f5c1376 4897 CHECK_LIVE (live_vector_p);
3ef06d12 4898 VECTOR_MARK (h);
41c28a37
GM
4899
4900 /* Mark contents. */
94a877ef 4901 /* Do not mark next_free or next_weak.
177c0ea7 4902 Being in the next_weak chain
94a877ef
RS
4903 should not keep the hash table alive.
4904 No need to mark `count' since it is an integer. */
49723c04
SM
4905 mark_object (h->test);
4906 mark_object (h->weak);
4907 mark_object (h->rehash_size);
4908 mark_object (h->rehash_threshold);
4909 mark_object (h->hash);
4910 mark_object (h->next);
4911 mark_object (h->index);
4912 mark_object (h->user_hash_function);
4913 mark_object (h->user_cmp_function);
41c28a37
GM
4914
4915 /* If hash table is not weak, mark all keys and values.
4916 For weak tables, mark only the vector. */
4917 if (GC_NILP (h->weak))
49723c04 4918 mark_object (h->key_and_value);
41c28a37 4919 else
3ef06d12 4920 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 4921 }
04ff9756 4922 else
169ee243
RS
4923 {
4924 register struct Lisp_Vector *ptr = XVECTOR (obj);
4925 register EMACS_INT size = ptr->size;
169ee243
RS
4926 register int i;
4927
3ef06d12 4928 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4f5c1376 4929 CHECK_LIVE (live_vector_p);
3ef06d12 4930 VECTOR_MARK (ptr); /* Else mark it */
169ee243
RS
4931 if (size & PSEUDOVECTOR_FLAG)
4932 size &= PSEUDOVECTOR_SIZE_MASK;
41c28a37 4933
169ee243 4934 for (i = 0; i < size; i++) /* and then mark its elements */
49723c04 4935 mark_object (ptr->contents[i]);
169ee243
RS
4936 }
4937 break;
7146af97 4938
7146af97
JB
4939 case Lisp_Symbol:
4940 {
c70bbf06 4941 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
4942 struct Lisp_Symbol *ptrx;
4943
2336fe58 4944 if (ptr->gcmarkbit) break;
4f5c1376 4945 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 4946 ptr->gcmarkbit = 1;
49723c04
SM
4947 mark_object (ptr->value);
4948 mark_object (ptr->function);
4949 mark_object (ptr->plist);
34400008 4950
8fe5665d
KR
4951 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4952 MARK_STRING (XSTRING (ptr->xname));
d5db4077 4953 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 4954
1c6bb482
RS
4955 /* Note that we do not mark the obarray of the symbol.
4956 It is safe not to do so because nothing accesses that
4957 slot except to check whether it is nil. */
7146af97
JB
4958 ptr = ptr->next;
4959 if (ptr)
4960 {
b0846f52 4961 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 4962 XSETSYMBOL (obj, ptrx);
49723c04 4963 goto loop;
7146af97
JB
4964 }
4965 }
4966 break;
4967
a0a38eb7 4968 case Lisp_Misc:
4f5c1376 4969 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
2336fe58
SM
4970 if (XMARKER (obj)->gcmarkbit)
4971 break;
4972 XMARKER (obj)->gcmarkbit = 1;
a5da44fe 4973 switch (XMISCTYPE (obj))
a0a38eb7 4974 {
465edf35
KH
4975 case Lisp_Misc_Buffer_Local_Value:
4976 case Lisp_Misc_Some_Buffer_Local_Value:
4977 {
4978 register struct Lisp_Buffer_Local_Value *ptr
4979 = XBUFFER_LOCAL_VALUE (obj);
465edf35
KH
4980 /* If the cdr is nil, avoid recursion for the car. */
4981 if (EQ (ptr->cdr, Qnil))
4982 {
49723c04 4983 obj = ptr->realvalue;
465edf35
KH
4984 goto loop;
4985 }
49723c04
SM
4986 mark_object (ptr->realvalue);
4987 mark_object (ptr->buffer);
4988 mark_object (ptr->frame);
4989 obj = ptr->cdr;
465edf35
KH
4990 goto loop;
4991 }
4992
2336fe58
SM
4993 case Lisp_Misc_Marker:
4994 /* DO NOT mark thru the marker's chain.
4995 The buffer's markers chain does not preserve markers from gc;
4996 instead, markers are removed from the chain when freed by gc. */
c8616056
KH
4997 case Lisp_Misc_Intfwd:
4998 case Lisp_Misc_Boolfwd:
4999 case Lisp_Misc_Objfwd:
5000 case Lisp_Misc_Buffer_Objfwd:
b875d3f7 5001 case Lisp_Misc_Kboard_Objfwd:
c8616056
KH
5002 /* Don't bother with Lisp_Buffer_Objfwd,
5003 since all markable slots in current buffer marked anyway. */
5004 /* Don't need to do Lisp_Objfwd, since the places they point
5005 are protected with staticpro. */
f29181dc 5006 case Lisp_Misc_Save_Value:
c8616056
KH
5007 break;
5008
e202fa34
KH
5009 case Lisp_Misc_Overlay:
5010 {
5011 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5012 mark_object (ptr->start);
5013 mark_object (ptr->end);
f54253ec
SM
5014 mark_object (ptr->plist);
5015 if (ptr->next)
5016 {
5017 XSETMISC (obj, ptr->next);
5018 goto loop;
5019 }
e202fa34
KH
5020 }
5021 break;
5022
a0a38eb7
KH
5023 default:
5024 abort ();
5025 }
7146af97
JB
5026 break;
5027
5028 case Lisp_Cons:
7146af97
JB
5029 {
5030 register struct Lisp_Cons *ptr = XCONS (obj);
08b7c2cb 5031 if (CONS_MARKED_P (ptr)) break;
4f5c1376 5032 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5033 CONS_MARK (ptr);
c54ca951
RS
5034 /* If the cdr is nil, avoid recursion for the car. */
5035 if (EQ (ptr->cdr, Qnil))
5036 {
49723c04 5037 obj = ptr->car;
1342fc6f 5038 cdr_count = 0;
c54ca951
RS
5039 goto loop;
5040 }
49723c04
SM
5041 mark_object (ptr->car);
5042 obj = ptr->cdr;
1342fc6f
RS
5043 cdr_count++;
5044 if (cdr_count == mark_object_loop_halt)
5045 abort ();
7146af97
JB
5046 goto loop;
5047 }
5048
7146af97 5049 case Lisp_Float:
4f5c1376 5050 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5051 FLOAT_MARK (XFLOAT (obj));
7146af97 5052 break;
7146af97 5053
7146af97 5054 case Lisp_Int:
7146af97
JB
5055 break;
5056
5057 default:
5058 abort ();
5059 }
4f5c1376
GM
5060
5061#undef CHECK_LIVE
5062#undef CHECK_ALLOCATED
5063#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5064}
5065
5066/* Mark the pointers in a buffer structure. */
5067
5068static void
5069mark_buffer (buf)
5070 Lisp_Object buf;
5071{
7146af97 5072 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5073 register Lisp_Object *ptr, tmp;
30e3190a 5074 Lisp_Object base_buffer;
7146af97 5075
3ef06d12 5076 VECTOR_MARK (buffer);
7146af97 5077
30e3190a 5078 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5079
4c315bda
RS
5080 if (CONSP (buffer->undo_list))
5081 {
5082 Lisp_Object tail;
5083 tail = buffer->undo_list;
5084
2336fe58
SM
5085 /* We mark the undo list specially because
5086 its pointers to markers should be weak. */
5087
4c315bda
RS
5088 while (CONSP (tail))
5089 {
5090 register struct Lisp_Cons *ptr = XCONS (tail);
5091
08b7c2cb 5092 if (CONS_MARKED_P (ptr))
4c315bda 5093 break;
08b7c2cb 5094 CONS_MARK (ptr);
4c315bda 5095 if (GC_CONSP (ptr->car)
08b7c2cb 5096 && !CONS_MARKED_P (XCONS (ptr->car))
70949dac 5097 && GC_MARKERP (XCAR (ptr->car)))
4c315bda 5098 {
08b7c2cb 5099 CONS_MARK (XCONS (ptr->car));
49723c04 5100 mark_object (XCDR (ptr->car));
4c315bda
RS
5101 }
5102 else
49723c04 5103 mark_object (ptr->car);
4c315bda
RS
5104
5105 if (CONSP (ptr->cdr))
5106 tail = ptr->cdr;
5107 else
5108 break;
5109 }
5110
49723c04 5111 mark_object (XCDR (tail));
4c315bda
RS
5112 }
5113 else
49723c04 5114 mark_object (buffer->undo_list);
4c315bda 5115
f54253ec
SM
5116 if (buffer->overlays_before)
5117 {
5118 XSETMISC (tmp, buffer->overlays_before);
5119 mark_object (tmp);
5120 }
5121 if (buffer->overlays_after)
5122 {
5123 XSETMISC (tmp, buffer->overlays_after);
5124 mark_object (tmp);
5125 }
5126
3ef06d12 5127 for (ptr = &buffer->name;
7146af97
JB
5128 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5129 ptr++)
49723c04 5130 mark_object (*ptr);
30e3190a
RS
5131
5132 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5133 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5134 {
177c0ea7 5135 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5136 mark_buffer (base_buffer);
5137 }
7146af97 5138}
084b1a0c
KH
5139
5140
41c28a37
GM
5141/* Value is non-zero if OBJ will survive the current GC because it's
5142 either marked or does not need to be marked to survive. */
5143
5144int
5145survives_gc_p (obj)
5146 Lisp_Object obj;
5147{
5148 int survives_p;
177c0ea7 5149
41c28a37
GM
5150 switch (XGCTYPE (obj))
5151 {
5152 case Lisp_Int:
5153 survives_p = 1;
5154 break;
5155
5156 case Lisp_Symbol:
2336fe58 5157 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5158 break;
5159
5160 case Lisp_Misc:
ef89c2ce 5161 survives_p = XMARKER (obj)->gcmarkbit;
41c28a37
GM
5162 break;
5163
5164 case Lisp_String:
08b7c2cb 5165 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5166 break;
5167
5168 case Lisp_Vectorlike:
08b7c2cb 5169 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5170 break;
5171
5172 case Lisp_Cons:
08b7c2cb 5173 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5174 break;
5175
41c28a37 5176 case Lisp_Float:
ab6780cd 5177 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5178 break;
41c28a37
GM
5179
5180 default:
5181 abort ();
5182 }
5183
34400008 5184 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5185}
5186
5187
7146af97 5188\f
1a4f1e2c 5189/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5190
5191static void
5192gc_sweep ()
5193{
41c28a37
GM
5194 /* Remove or mark entries in weak hash tables.
5195 This must be done before any object is unmarked. */
5196 sweep_weak_hash_tables ();
5197
2e471eb5 5198 sweep_strings ();
676a7251
GM
5199#ifdef GC_CHECK_STRING_BYTES
5200 if (!noninteractive)
5201 check_string_bytes (1);
5202#endif
7146af97
JB
5203
5204 /* Put all unmarked conses on free list */
5205 {
5206 register struct cons_block *cblk;
6ca94ac9 5207 struct cons_block **cprev = &cons_block;
7146af97
JB
5208 register int lim = cons_block_index;
5209 register int num_free = 0, num_used = 0;
5210
5211 cons_free_list = 0;
177c0ea7 5212
6ca94ac9 5213 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97
JB
5214 {
5215 register int i;
6ca94ac9 5216 int this_free = 0;
7146af97 5217 for (i = 0; i < lim; i++)
08b7c2cb 5218 if (!CONS_MARKED_P (&cblk->conses[i]))
7146af97 5219 {
6ca94ac9 5220 this_free++;
1cd5fe6a 5221 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
7146af97 5222 cons_free_list = &cblk->conses[i];
34400008
GM
5223#if GC_MARK_STACK
5224 cons_free_list->car = Vdead;
5225#endif
7146af97
JB
5226 }
5227 else
5228 {
5229 num_used++;
08b7c2cb 5230 CONS_UNMARK (&cblk->conses[i]);
7146af97
JB
5231 }
5232 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5233 /* If this block contains only free conses and we have already
5234 seen more than two blocks worth of free conses then deallocate
5235 this block. */
6feef451 5236 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5237 {
6ca94ac9
KH
5238 *cprev = cblk->next;
5239 /* Unhook from the free list. */
5240 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
08b7c2cb 5241 lisp_align_free (cblk);
c8099634 5242 n_cons_blocks--;
6ca94ac9
KH
5243 }
5244 else
6feef451
AS
5245 {
5246 num_free += this_free;
5247 cprev = &cblk->next;
5248 }
7146af97
JB
5249 }
5250 total_conses = num_used;
5251 total_free_conses = num_free;
5252 }
5253
7146af97
JB
5254 /* Put all unmarked floats on free list */
5255 {
5256 register struct float_block *fblk;
6ca94ac9 5257 struct float_block **fprev = &float_block;
7146af97
JB
5258 register int lim = float_block_index;
5259 register int num_free = 0, num_used = 0;
5260
5261 float_free_list = 0;
177c0ea7 5262
6ca94ac9 5263 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5264 {
5265 register int i;
6ca94ac9 5266 int this_free = 0;
7146af97 5267 for (i = 0; i < lim; i++)
ab6780cd 5268 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5269 {
6ca94ac9 5270 this_free++;
1cd5fe6a 5271 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
7146af97
JB
5272 float_free_list = &fblk->floats[i];
5273 }
5274 else
5275 {
5276 num_used++;
ab6780cd 5277 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5278 }
5279 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5280 /* If this block contains only free floats and we have already
5281 seen more than two blocks worth of free floats then deallocate
5282 this block. */
6feef451 5283 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5284 {
6ca94ac9
KH
5285 *fprev = fblk->next;
5286 /* Unhook from the free list. */
5287 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
ab6780cd 5288 lisp_align_free (fblk);
c8099634 5289 n_float_blocks--;
6ca94ac9
KH
5290 }
5291 else
6feef451
AS
5292 {
5293 num_free += this_free;
5294 fprev = &fblk->next;
5295 }
7146af97
JB
5296 }
5297 total_floats = num_used;
5298 total_free_floats = num_free;
5299 }
7146af97 5300
d5e35230
JA
5301 /* Put all unmarked intervals on free list */
5302 {
5303 register struct interval_block *iblk;
6ca94ac9 5304 struct interval_block **iprev = &interval_block;
d5e35230
JA
5305 register int lim = interval_block_index;
5306 register int num_free = 0, num_used = 0;
5307
5308 interval_free_list = 0;
5309
6ca94ac9 5310 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5311 {
5312 register int i;
6ca94ac9 5313 int this_free = 0;
d5e35230
JA
5314
5315 for (i = 0; i < lim; i++)
5316 {
2336fe58 5317 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5318 {
439d5cb4 5319 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5320 interval_free_list = &iblk->intervals[i];
6ca94ac9 5321 this_free++;
d5e35230
JA
5322 }
5323 else
5324 {
5325 num_used++;
2336fe58 5326 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5327 }
5328 }
5329 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5330 /* If this block contains only free intervals and we have already
5331 seen more than two blocks worth of free intervals then
5332 deallocate this block. */
6feef451 5333 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5334 {
6ca94ac9
KH
5335 *iprev = iblk->next;
5336 /* Unhook from the free list. */
439d5cb4 5337 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
5338 lisp_free (iblk);
5339 n_interval_blocks--;
6ca94ac9
KH
5340 }
5341 else
6feef451
AS
5342 {
5343 num_free += this_free;
5344 iprev = &iblk->next;
5345 }
d5e35230
JA
5346 }
5347 total_intervals = num_used;
5348 total_free_intervals = num_free;
5349 }
d5e35230 5350
7146af97
JB
5351 /* Put all unmarked symbols on free list */
5352 {
5353 register struct symbol_block *sblk;
6ca94ac9 5354 struct symbol_block **sprev = &symbol_block;
7146af97
JB
5355 register int lim = symbol_block_index;
5356 register int num_free = 0, num_used = 0;
5357
d285b373 5358 symbol_free_list = NULL;
177c0ea7 5359
6ca94ac9 5360 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5361 {
6ca94ac9 5362 int this_free = 0;
d285b373
GM
5363 struct Lisp_Symbol *sym = sblk->symbols;
5364 struct Lisp_Symbol *end = sym + lim;
5365
5366 for (; sym < end; ++sym)
5367 {
20035321
SM
5368 /* Check if the symbol was created during loadup. In such a case
5369 it might be pointed to by pure bytecode which we don't trace,
5370 so we conservatively assume that it is live. */
8fe5665d 5371 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 5372
2336fe58 5373 if (!sym->gcmarkbit && !pure_p)
d285b373
GM
5374 {
5375 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5376 symbol_free_list = sym;
34400008 5377#if GC_MARK_STACK
d285b373 5378 symbol_free_list->function = Vdead;
34400008 5379#endif
d285b373
GM
5380 ++this_free;
5381 }
5382 else
5383 {
5384 ++num_used;
5385 if (!pure_p)
8fe5665d 5386 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 5387 sym->gcmarkbit = 0;
d285b373
GM
5388 }
5389 }
177c0ea7 5390
7146af97 5391 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
5392 /* If this block contains only free symbols and we have already
5393 seen more than two blocks worth of free symbols then deallocate
5394 this block. */
6feef451 5395 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 5396 {
6ca94ac9
KH
5397 *sprev = sblk->next;
5398 /* Unhook from the free list. */
5399 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
c8099634
RS
5400 lisp_free (sblk);
5401 n_symbol_blocks--;
6ca94ac9
KH
5402 }
5403 else
6feef451
AS
5404 {
5405 num_free += this_free;
5406 sprev = &sblk->next;
5407 }
7146af97
JB
5408 }
5409 total_symbols = num_used;
5410 total_free_symbols = num_free;
5411 }
5412
a9faeabe
RS
5413 /* Put all unmarked misc's on free list.
5414 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
5415 {
5416 register struct marker_block *mblk;
6ca94ac9 5417 struct marker_block **mprev = &marker_block;
7146af97
JB
5418 register int lim = marker_block_index;
5419 register int num_free = 0, num_used = 0;
5420
5421 marker_free_list = 0;
177c0ea7 5422
6ca94ac9 5423 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
5424 {
5425 register int i;
6ca94ac9 5426 int this_free = 0;
fa05e253 5427
7146af97 5428 for (i = 0; i < lim; i++)
465edf35 5429 {
2336fe58 5430 if (!mblk->markers[i].u_marker.gcmarkbit)
465edf35 5431 {
a5da44fe 5432 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
ef89c2ce 5433 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
5434 /* Set the type of the freed object to Lisp_Misc_Free.
5435 We could leave the type alone, since nobody checks it,
465edf35 5436 but this might catch bugs faster. */
a5da44fe 5437 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
5438 mblk->markers[i].u_free.chain = marker_free_list;
5439 marker_free_list = &mblk->markers[i];
6ca94ac9 5440 this_free++;
465edf35
KH
5441 }
5442 else
5443 {
5444 num_used++;
2336fe58 5445 mblk->markers[i].u_marker.gcmarkbit = 0;
465edf35
KH
5446 }
5447 }
7146af97 5448 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
5449 /* If this block contains only free markers and we have already
5450 seen more than two blocks worth of free markers then deallocate
5451 this block. */
6feef451 5452 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 5453 {
6ca94ac9
KH
5454 *mprev = mblk->next;
5455 /* Unhook from the free list. */
5456 marker_free_list = mblk->markers[0].u_free.chain;
c8099634
RS
5457 lisp_free (mblk);
5458 n_marker_blocks--;
6ca94ac9
KH
5459 }
5460 else
6feef451
AS
5461 {
5462 num_free += this_free;
5463 mprev = &mblk->next;
5464 }
7146af97
JB
5465 }
5466
5467 total_markers = num_used;
5468 total_free_markers = num_free;
5469 }
5470
5471 /* Free all unmarked buffers */
5472 {
5473 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5474
5475 while (buffer)
3ef06d12 5476 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
5477 {
5478 if (prev)
5479 prev->next = buffer->next;
5480 else
5481 all_buffers = buffer->next;
5482 next = buffer->next;
34400008 5483 lisp_free (buffer);
7146af97
JB
5484 buffer = next;
5485 }
5486 else
5487 {
3ef06d12 5488 VECTOR_UNMARK (buffer);
30e3190a 5489 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
5490 prev = buffer, buffer = buffer->next;
5491 }
5492 }
5493
7146af97
JB
5494 /* Free all unmarked vectors */
5495 {
5496 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5497 total_vector_size = 0;
5498
5499 while (vector)
3ef06d12 5500 if (!VECTOR_MARKED_P (vector))
7146af97
JB
5501 {
5502 if (prev)
5503 prev->next = vector->next;
5504 else
5505 all_vectors = vector->next;
5506 next = vector->next;
c8099634
RS
5507 lisp_free (vector);
5508 n_vectors--;
7146af97 5509 vector = next;
41c28a37 5510
7146af97
JB
5511 }
5512 else
5513 {
3ef06d12 5514 VECTOR_UNMARK (vector);
fa05e253
RS
5515 if (vector->size & PSEUDOVECTOR_FLAG)
5516 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5517 else
5518 total_vector_size += vector->size;
7146af97
JB
5519 prev = vector, vector = vector->next;
5520 }
5521 }
177c0ea7 5522
676a7251
GM
5523#ifdef GC_CHECK_STRING_BYTES
5524 if (!noninteractive)
5525 check_string_bytes (1);
5526#endif
7146af97 5527}
7146af97 5528
7146af97 5529
7146af97 5530
7146af97 5531\f
20d24714
JB
5532/* Debugging aids. */
5533
31ce1c91 5534DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 5535 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 5536This may be helpful in debugging Emacs's memory usage.
7ee72033
MB
5537We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5538 ()
20d24714
JB
5539{
5540 Lisp_Object end;
5541
45d12a89 5542 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
20d24714
JB
5543
5544 return end;
5545}
5546
310ea200 5547DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 5548 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
5549Each of these counters increments for a certain kind of object.
5550The counters wrap around from the largest positive integer to zero.
5551Garbage collection does not decrease them.
5552The elements of the value are as follows:
5553 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5554All are in units of 1 = one object consed
5555except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5556objects consed.
5557MISCS include overlays, markers, and some internal types.
5558Frames, windows, buffers, and subprocesses count as vectors
7ee72033
MB
5559 (but the contents of a buffer's text do not count here). */)
5560 ()
310ea200 5561{
2e471eb5 5562 Lisp_Object consed[8];
310ea200 5563
78e985eb
GM
5564 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5565 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5566 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5567 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5568 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5569 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5570 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5571 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 5572
2e471eb5 5573 return Flist (8, consed);
310ea200 5574}
e0b8c689
KR
5575
5576int suppress_checking;
5577void
5578die (msg, file, line)
5579 const char *msg;
5580 const char *file;
5581 int line;
5582{
5583 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5584 file, line, msg);
5585 abort ();
5586}
20d24714 5587\f
7146af97
JB
5588/* Initialization */
5589
dfcf069d 5590void
7146af97
JB
5591init_alloc_once ()
5592{
5593 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
5594 purebeg = PUREBEG;
5595 pure_size = PURESIZE;
1f0b3fd2 5596 pure_bytes_used = 0;
9e713715
GM
5597 pure_bytes_used_before_overflow = 0;
5598
ab6780cd
SM
5599 /* Initialize the list of free aligned blocks. */
5600 free_ablock = NULL;
5601
877935b1 5602#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
5603 mem_init ();
5604 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5605#endif
9e713715 5606
7146af97
JB
5607 all_vectors = 0;
5608 ignore_warnings = 1;
d1658221
RS
5609#ifdef DOUG_LEA_MALLOC
5610 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5611 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 5612 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 5613#endif
7146af97
JB
5614 init_strings ();
5615 init_cons ();
5616 init_symbol ();
5617 init_marker ();
7146af97 5618 init_float ();
34400008 5619 init_intervals ();
d5e35230 5620
276cbe5a
RS
5621#ifdef REL_ALLOC
5622 malloc_hysteresis = 32;
5623#else
5624 malloc_hysteresis = 0;
5625#endif
5626
5627 spare_memory = (char *) malloc (SPARE_MEMORY);
5628
7146af97
JB
5629 ignore_warnings = 0;
5630 gcprolist = 0;
630686c8 5631 byte_stack_list = 0;
7146af97
JB
5632 staticidx = 0;
5633 consing_since_gc = 0;
7d179cea 5634 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
7146af97
JB
5635#ifdef VIRT_ADDR_VARIES
5636 malloc_sbrk_unused = 1<<22; /* A large number */
5637 malloc_sbrk_used = 100000; /* as reasonable as any number */
5638#endif /* VIRT_ADDR_VARIES */
5639}
5640
dfcf069d 5641void
7146af97
JB
5642init_alloc ()
5643{
5644 gcprolist = 0;
630686c8 5645 byte_stack_list = 0;
182ff242
GM
5646#if GC_MARK_STACK
5647#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5648 setjmp_tested_p = longjmps_done = 0;
5649#endif
5650#endif
2c5bd608
DL
5651 Vgc_elapsed = make_float (0.0);
5652 gcs_done = 0;
7146af97
JB
5653}
5654
5655void
5656syms_of_alloc ()
5657{
7ee72033 5658 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
a6266d23 5659 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
5660Garbage collection can happen automatically once this many bytes have been
5661allocated since the last garbage collection. All data types count.
7146af97 5662
228299fa 5663Garbage collection happens automatically only when `eval' is called.
7146af97 5664
228299fa
GM
5665By binding this temporarily to a large number, you can effectively
5666prevent garbage collection during a part of the program. */);
0819585c 5667
7ee72033 5668 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
a6266d23 5669 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 5670
7ee72033 5671 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
a6266d23 5672 doc: /* Number of cons cells that have been consed so far. */);
0819585c 5673
7ee72033 5674 DEFVAR_INT ("floats-consed", &floats_consed,
a6266d23 5675 doc: /* Number of floats that have been consed so far. */);
0819585c 5676
7ee72033 5677 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
a6266d23 5678 doc: /* Number of vector cells that have been consed so far. */);
0819585c 5679
7ee72033 5680 DEFVAR_INT ("symbols-consed", &symbols_consed,
a6266d23 5681 doc: /* Number of symbols that have been consed so far. */);
0819585c 5682
7ee72033 5683 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
a6266d23 5684 doc: /* Number of string characters that have been consed so far. */);
0819585c 5685
7ee72033 5686 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
a6266d23 5687 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 5688
7ee72033 5689 DEFVAR_INT ("intervals-consed", &intervals_consed,
a6266d23 5690 doc: /* Number of intervals that have been consed so far. */);
7146af97 5691
7ee72033 5692 DEFVAR_INT ("strings-consed", &strings_consed,
a6266d23 5693 doc: /* Number of strings that have been consed so far. */);
228299fa 5694
7ee72033 5695 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
a6266d23 5696 doc: /* Non-nil means loading Lisp code in order to dump an executable.
228299fa
GM
5697This means that certain objects should be allocated in shared (pure) space. */);
5698
7ee72033 5699 DEFVAR_INT ("undo-limit", &undo_limit,
a6266d23 5700 doc: /* Keep no more undo information once it exceeds this size.
228299fa
GM
5701This limit is applied when garbage collection happens.
5702The size is counted as the number of bytes occupied,
5703which includes both saved text and other data. */);
502b9b64 5704 undo_limit = 20000;
7146af97 5705
7ee72033 5706 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
a6266d23 5707 doc: /* Don't keep more than this much size of undo information.
228299fa
GM
5708A command which pushes past this size is itself forgotten.
5709This limit is applied when garbage collection happens.
5710The size is counted as the number of bytes occupied,
5711which includes both saved text and other data. */);
502b9b64 5712 undo_strong_limit = 30000;
7146af97 5713
7ee72033 5714 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
a6266d23 5715 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
5716 garbage_collection_messages = 0;
5717
7ee72033 5718 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
a6266d23 5719 doc: /* Hook run after garbage collection has finished. */);
9e713715
GM
5720 Vpost_gc_hook = Qnil;
5721 Qpost_gc_hook = intern ("post-gc-hook");
5722 staticpro (&Qpost_gc_hook);
5723
74a54b04
RS
5724 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5725 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
5726 /* We build this in advance because if we wait until we need it, we might
5727 not be able to allocate the memory to hold it. */
74a54b04
RS
5728 Vmemory_signal_data
5729 = list2 (Qerror,
5730 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5731
5732 DEFVAR_LISP ("memory-full", &Vmemory_full,
5733 doc: /* Non-nil means we are handling a memory-full error. */);
5734 Vmemory_full = Qnil;
bcb61d60 5735
e8197642
RS
5736 staticpro (&Qgc_cons_threshold);
5737 Qgc_cons_threshold = intern ("gc-cons-threshold");
5738
a59de17b
RS
5739 staticpro (&Qchar_table_extra_slots);
5740 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5741
2c5bd608
DL
5742 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5743 doc: /* Accumulated time elapsed in garbage collections.
e7415487 5744The time is in seconds as a floating point value. */);
2c5bd608 5745 DEFVAR_INT ("gcs-done", &gcs_done,
e7415487 5746 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 5747
7146af97
JB
5748 defsubr (&Scons);
5749 defsubr (&Slist);
5750 defsubr (&Svector);
5751 defsubr (&Smake_byte_code);
5752 defsubr (&Smake_list);
5753 defsubr (&Smake_vector);
7b07587b 5754 defsubr (&Smake_char_table);
7146af97 5755 defsubr (&Smake_string);
7b07587b 5756 defsubr (&Smake_bool_vector);
7146af97
JB
5757 defsubr (&Smake_symbol);
5758 defsubr (&Smake_marker);
5759 defsubr (&Spurecopy);
5760 defsubr (&Sgarbage_collect);
20d24714 5761 defsubr (&Smemory_limit);
310ea200 5762 defsubr (&Smemory_use_counts);
34400008
GM
5763
5764#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5765 defsubr (&Sgc_status);
5766#endif
7146af97 5767}
ab5796a9
MB
5768
5769/* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5770 (do not change this comment) */