Remove __P and P_ from .c and .m files and definition of P_
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
126f9c02 2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
114f9c96 3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
8cabe764 4 Free Software Foundation, Inc.
7146af97
JB
5
6This file is part of GNU Emacs.
7
9ec0b715 8GNU Emacs is free software: you can redistribute it and/or modify
7146af97 9it under the terms of the GNU General Public License as published by
9ec0b715
GM
10the Free Software Foundation, either version 3 of the License, or
11(at your option) any later version.
7146af97
JB
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
9ec0b715 19along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 20
18160b98 21#include <config.h>
e9b309ac 22#include <stdio.h>
ab6780cd 23#include <limits.h> /* For CHAR_BIT. */
d7306fe6 24#include <setjmp.h>
92939d31 25
4f27350a
EZ
26#ifdef STDC_HEADERS
27#include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28#endif
29
4455ad75
RS
30#ifdef ALLOC_DEBUG
31#undef INLINE
32#endif
33
68c45bf0 34#include <signal.h>
92939d31 35
aa477689
JD
36#ifdef HAVE_GTK_AND_PTHREAD
37#include <pthread.h>
38#endif
39
7539e11f
KR
40/* This file is part of the core Lisp implementation, and thus must
41 deal with the real data structures. If the Lisp implementation is
42 replaced, this file likely will not be used. */
2e471eb5 43
7539e11f 44#undef HIDE_LISP_IMPLEMENTATION
7146af97 45#include "lisp.h"
ece93c02 46#include "process.h"
d5e35230 47#include "intervals.h"
4c0be5f4 48#include "puresize.h"
7146af97
JB
49#include "buffer.h"
50#include "window.h"
2538fae4 51#include "keyboard.h"
502b9b64 52#include "frame.h"
9ac0d9e0 53#include "blockinput.h"
9d80e883 54#include "character.h"
e065a56e 55#include "syssignal.h"
4a729fd8 56#include "termhooks.h" /* For struct terminal. */
34400008 57#include <setjmp.h>
e065a56e 58
6b61353c
KH
59/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
60 memory. Can do this only if using gmalloc.c. */
61
62#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
63#undef GC_MALLOC_CHECK
64#endif
65
bf952fb6
DL
66#ifdef HAVE_UNISTD_H
67#include <unistd.h>
68#else
69extern POINTER_TYPE *sbrk ();
70#endif
ee1eea5c 71
de7124a7 72#ifdef HAVE_FCNTL_H
de7124a7
KS
73#include <fcntl.h>
74#endif
75#ifndef O_WRONLY
76#define O_WRONLY 1
77#endif
78
69666f77
EZ
79#ifdef WINDOWSNT
80#include <fcntl.h>
f892cf9c 81#include "w32.h"
69666f77
EZ
82#endif
83
d1658221 84#ifdef DOUG_LEA_MALLOC
2e471eb5 85
d1658221 86#include <malloc.h>
3e60b029
DL
87/* malloc.h #defines this as size_t, at least in glibc2. */
88#ifndef __malloc_size_t
d1658221 89#define __malloc_size_t int
3e60b029 90#endif
81d492d5 91
2e471eb5
GM
92/* Specify maximum number of areas to mmap. It would be nice to use a
93 value that explicitly means "no limit". */
94
81d492d5
RS
95#define MMAP_MAX_AREAS 100000000
96
2e471eb5
GM
97#else /* not DOUG_LEA_MALLOC */
98
276cbe5a
RS
99/* The following come from gmalloc.c. */
100
276cbe5a 101#define __malloc_size_t size_t
276cbe5a 102extern __malloc_size_t _bytes_used;
3e60b029 103extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
104
105#endif /* not DOUG_LEA_MALLOC */
276cbe5a 106
aa477689
JD
107#if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
108
f415cacd
JD
109/* When GTK uses the file chooser dialog, different backends can be loaded
110 dynamically. One such a backend is the Gnome VFS backend that gets loaded
111 if you run Gnome. That backend creates several threads and also allocates
112 memory with malloc.
113
114 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
115 functions below are called from malloc, there is a chance that one
116 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 117 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
118 that the backend handles concurrent access to malloc within its own threads
119 but Emacs code running in the main thread is not included in that control).
120
026cdede 121 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
122 happens in one of the backend threads we will have two threads that tries
123 to run Emacs code at once, and the code is not prepared for that.
124 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
125
aa477689 126static pthread_mutex_t alloc_mutex;
aa477689 127
959dc601
JD
128#define BLOCK_INPUT_ALLOC \
129 do \
130 { \
131 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 132 BLOCK_INPUT; \
959dc601
JD
133 pthread_mutex_lock (&alloc_mutex); \
134 } \
aa477689 135 while (0)
959dc601
JD
136#define UNBLOCK_INPUT_ALLOC \
137 do \
138 { \
139 pthread_mutex_unlock (&alloc_mutex); \
140 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 141 UNBLOCK_INPUT; \
959dc601 142 } \
aa477689
JD
143 while (0)
144
145#else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
146
147#define BLOCK_INPUT_ALLOC BLOCK_INPUT
148#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
149
150#endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
151
276cbe5a 152/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 153
276cbe5a
RS
154static __malloc_size_t bytes_used_when_full;
155
4d74a5fc
RS
156static __malloc_size_t bytes_used_when_reconsidered;
157
2e471eb5
GM
158/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
159 to a struct Lisp_String. */
160
7cdee936
SM
161#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
162#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 163#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 164
3ef06d12
SM
165#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
166#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
b059de99 167#define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
3ef06d12 168
2e471eb5
GM
169/* Value is the number of bytes/chars of S, a pointer to a struct
170 Lisp_String. This must be used instead of STRING_BYTES (S) or
171 S->size during GC, because S->size contains the mark bit for
172 strings. */
173
3ef06d12 174#define GC_STRING_BYTES(S) (STRING_BYTES (S))
7cdee936 175#define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
2e471eb5
GM
176
177/* Number of bytes of consing done since the last gc. */
178
7146af97
JB
179int consing_since_gc;
180
310ea200 181/* Count the amount of consing of various sorts of space. */
2e471eb5 182
31ade731
SM
183EMACS_INT cons_cells_consed;
184EMACS_INT floats_consed;
185EMACS_INT vector_cells_consed;
186EMACS_INT symbols_consed;
187EMACS_INT string_chars_consed;
188EMACS_INT misc_objects_consed;
189EMACS_INT intervals_consed;
190EMACS_INT strings_consed;
2e471eb5 191
974aae61
RS
192/* Minimum number of bytes of consing since GC before next GC. */
193
194EMACS_INT gc_cons_threshold;
195
196/* Similar minimum, computed from Vgc_cons_percentage. */
197
198EMACS_INT gc_relative_threshold;
310ea200 199
96f077ad 200static Lisp_Object Vgc_cons_percentage;
7146af97 201
24d8a105
RS
202/* Minimum number of bytes of consing since GC before next GC,
203 when memory is full. */
204
205EMACS_INT memory_full_cons_threshold;
206
2e471eb5
GM
207/* Nonzero during GC. */
208
7146af97
JB
209int gc_in_progress;
210
3de0effb
RS
211/* Nonzero means abort if try to GC.
212 This is for code which is written on the assumption that
213 no GC will happen, so as to verify that assumption. */
214
215int abort_on_gc;
216
299585ee 217/* Nonzero means display messages at beginning and end of GC. */
2e471eb5 218
299585ee
RS
219int garbage_collection_messages;
220
7146af97
JB
221#ifndef VIRT_ADDR_VARIES
222extern
223#endif /* VIRT_ADDR_VARIES */
2e471eb5 224int malloc_sbrk_used;
7146af97
JB
225
226#ifndef VIRT_ADDR_VARIES
227extern
228#endif /* VIRT_ADDR_VARIES */
2e471eb5 229int malloc_sbrk_unused;
7146af97 230
34400008
GM
231/* Number of live and free conses etc. */
232
233static int total_conses, total_markers, total_symbols, total_vector_size;
234static int total_free_conses, total_free_markers, total_free_symbols;
235static int total_free_floats, total_floats;
fd27a537 236
2e471eb5 237/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
238 out of memory. We keep one large block, four cons-blocks, and
239 two string blocks. */
2e471eb5 240
d3d47262 241static char *spare_memory[7];
276cbe5a 242
24d8a105 243/* Amount of spare memory to keep in large reserve block. */
2e471eb5 244
276cbe5a
RS
245#define SPARE_MEMORY (1 << 14)
246
247/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 248
276cbe5a
RS
249static int malloc_hysteresis;
250
2e471eb5
GM
251/* Non-nil means defun should do purecopy on the function definition. */
252
7146af97
JB
253Lisp_Object Vpurify_flag;
254
74a54b04
RS
255/* Non-nil means we are handling a memory-full error. */
256
257Lisp_Object Vmemory_full;
258
1b8950e5
RS
259/* Initialize it to a nonzero value to force it into data space
260 (rather than bss space). That way unexec will remap it into text
261 space (pure), on some systems. We have not implemented the
262 remapping on more recent systems because this is less important
263 nowadays than in the days of small memories and timesharing. */
2e471eb5 264
2c4685ee 265EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 266#define PUREBEG (char *) pure
2e471eb5 267
9e713715 268/* Pointer to the pure area, and its size. */
2e471eb5 269
9e713715
GM
270static char *purebeg;
271static size_t pure_size;
272
273/* Number of bytes of pure storage used before pure storage overflowed.
274 If this is non-zero, this implies that an overflow occurred. */
275
276static size_t pure_bytes_used_before_overflow;
7146af97 277
34400008
GM
278/* Value is non-zero if P points into pure space. */
279
280#define PURE_POINTER_P(P) \
281 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 282 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 283 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 284 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 285
e5bc14d4 286/* Total number of bytes allocated in pure storage. */
2e471eb5 287
31ade731 288EMACS_INT pure_bytes_used;
7146af97 289
e5bc14d4
YM
290/* Index in pure at which next pure Lisp object will be allocated.. */
291
292static EMACS_INT pure_bytes_used_lisp;
293
294/* Number of bytes allocated for non-Lisp objects in pure storage. */
295
296static EMACS_INT pure_bytes_used_non_lisp;
297
2e471eb5
GM
298/* If nonzero, this is a warning delivered by malloc and not yet
299 displayed. */
300
7146af97
JB
301char *pending_malloc_warning;
302
bcb61d60 303/* Pre-computed signal argument for use when memory is exhausted. */
2e471eb5 304
74a54b04 305Lisp_Object Vmemory_signal_data;
bcb61d60 306
7146af97
JB
307/* Maximum amount of C stack to save when a GC happens. */
308
309#ifndef MAX_SAVE_STACK
310#define MAX_SAVE_STACK 16000
311#endif
312
313/* Buffer in which we save a copy of the C stack at each GC. */
314
d3d47262
JB
315static char *stack_copy;
316static int stack_copy_size;
7146af97 317
2e471eb5
GM
318/* Non-zero means ignore malloc warnings. Set during initialization.
319 Currently not used. */
320
d3d47262 321static int ignore_warnings;
350273a4 322
a59de17b 323Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 324
9e713715
GM
325/* Hook run after GC has finished. */
326
327Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
328
2c5bd608
DL
329Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
330EMACS_INT gcs_done; /* accumulated GCs */
331
f57e2426
J
332static void mark_buffer (Lisp_Object);
333static void mark_terminals (void);
334extern void mark_kboards (void);
335extern void mark_ttys (void);
336extern void mark_backtrace (void);
337static void gc_sweep (void);
338static void mark_glyph_matrix (struct glyph_matrix *);
339static void mark_face_cache (struct face_cache *);
41c28a37
GM
340
341#ifdef HAVE_WINDOW_SYSTEM
f57e2426 342extern void mark_fringe_data (void);
41c28a37
GM
343#endif /* HAVE_WINDOW_SYSTEM */
344
f57e2426
J
345static struct Lisp_String *allocate_string (void);
346static void compact_small_strings (void);
347static void free_large_strings (void);
348static void sweep_strings (void);
7da0b0d3
RS
349
350extern int message_enable_multibyte;
34400008 351
34400008
GM
352/* When scanning the C stack for live Lisp objects, Emacs keeps track
353 of what memory allocated via lisp_malloc is intended for what
354 purpose. This enumeration specifies the type of memory. */
355
356enum mem_type
357{
358 MEM_TYPE_NON_LISP,
359 MEM_TYPE_BUFFER,
360 MEM_TYPE_CONS,
361 MEM_TYPE_STRING,
362 MEM_TYPE_MISC,
363 MEM_TYPE_SYMBOL,
364 MEM_TYPE_FLOAT,
9c545a55
SM
365 /* We used to keep separate mem_types for subtypes of vectors such as
366 process, hash_table, frame, terminal, and window, but we never made
367 use of the distinction, so it only caused source-code complexity
368 and runtime slowdown. Minor but pointless. */
369 MEM_TYPE_VECTORLIKE
34400008
GM
370};
371
f57e2426
J
372static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
373static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
225ccad6
RS
374void refill_memory_reserve ();
375
24d8a105 376
877935b1 377#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
378
379#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
380#include <stdio.h> /* For fprintf. */
381#endif
382
383/* A unique object in pure space used to make some Lisp objects
384 on free lists recognizable in O(1). */
385
d3d47262 386static Lisp_Object Vdead;
0b378936 387
877935b1
GM
388#ifdef GC_MALLOC_CHECK
389
390enum mem_type allocated_mem_type;
d3d47262 391static int dont_register_blocks;
877935b1
GM
392
393#endif /* GC_MALLOC_CHECK */
394
395/* A node in the red-black tree describing allocated memory containing
396 Lisp data. Each such block is recorded with its start and end
397 address when it is allocated, and removed from the tree when it
398 is freed.
399
400 A red-black tree is a balanced binary tree with the following
401 properties:
402
403 1. Every node is either red or black.
404 2. Every leaf is black.
405 3. If a node is red, then both of its children are black.
406 4. Every simple path from a node to a descendant leaf contains
407 the same number of black nodes.
408 5. The root is always black.
409
410 When nodes are inserted into the tree, or deleted from the tree,
411 the tree is "fixed" so that these properties are always true.
412
413 A red-black tree with N internal nodes has height at most 2
414 log(N+1). Searches, insertions and deletions are done in O(log N).
415 Please see a text book about data structures for a detailed
416 description of red-black trees. Any book worth its salt should
417 describe them. */
418
419struct mem_node
420{
9f7d9210
RS
421 /* Children of this node. These pointers are never NULL. When there
422 is no child, the value is MEM_NIL, which points to a dummy node. */
423 struct mem_node *left, *right;
424
425 /* The parent of this node. In the root node, this is NULL. */
426 struct mem_node *parent;
877935b1
GM
427
428 /* Start and end of allocated region. */
429 void *start, *end;
430
431 /* Node color. */
432 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 433
877935b1
GM
434 /* Memory type. */
435 enum mem_type type;
436};
437
438/* Base address of stack. Set in main. */
439
440Lisp_Object *stack_base;
441
442/* Root of the tree describing allocated Lisp memory. */
443
444static struct mem_node *mem_root;
445
ece93c02
GM
446/* Lowest and highest known address in the heap. */
447
448static void *min_heap_address, *max_heap_address;
449
877935b1
GM
450/* Sentinel node of the tree. */
451
452static struct mem_node mem_z;
453#define MEM_NIL &mem_z
454
f57e2426
J
455static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
456static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
457static void lisp_free (POINTER_TYPE *);
458static void mark_stack (void);
459static int live_vector_p (struct mem_node *, void *);
460static int live_buffer_p (struct mem_node *, void *);
461static int live_string_p (struct mem_node *, void *);
462static int live_cons_p (struct mem_node *, void *);
463static int live_symbol_p (struct mem_node *, void *);
464static int live_float_p (struct mem_node *, void *);
465static int live_misc_p (struct mem_node *, void *);
466static void mark_maybe_object (Lisp_Object);
467static void mark_memory (void *, void *, int);
468static void mem_init (void);
469static struct mem_node *mem_insert (void *, void *, enum mem_type);
470static void mem_insert_fixup (struct mem_node *);
471static void mem_rotate_left (struct mem_node *);
472static void mem_rotate_right (struct mem_node *);
473static void mem_delete (struct mem_node *);
474static void mem_delete_fixup (struct mem_node *);
475static INLINE struct mem_node *mem_find (void *);
34400008 476
34400008
GM
477
478#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 479static void check_gcpros (void);
34400008
GM
480#endif
481
877935b1 482#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 483
1f0b3fd2
GM
484/* Recording what needs to be marked for gc. */
485
486struct gcpro *gcprolist;
487
379b98b1
PE
488/* Addresses of staticpro'd variables. Initialize it to a nonzero
489 value; otherwise some compilers put it into BSS. */
1f0b3fd2 490
0078170f 491#define NSTATICS 0x640
d3d47262 492static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
493
494/* Index of next unused slot in staticvec. */
495
d3d47262 496static int staticidx = 0;
1f0b3fd2 497
f57e2426 498static POINTER_TYPE *pure_alloc (size_t, int);
1f0b3fd2
GM
499
500
501/* Value is SZ rounded up to the next multiple of ALIGNMENT.
502 ALIGNMENT must be a power of 2. */
503
ab6780cd
SM
504#define ALIGN(ptr, ALIGNMENT) \
505 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
506 & ~((ALIGNMENT) - 1)))
1f0b3fd2 507
ece93c02 508
7146af97 509\f
34400008
GM
510/************************************************************************
511 Malloc
512 ************************************************************************/
513
4455ad75 514/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
515
516void
7146af97
JB
517malloc_warning (str)
518 char *str;
519{
520 pending_malloc_warning = str;
521}
522
34400008 523
4455ad75 524/* Display an already-pending malloc warning. */
34400008 525
d457598b 526void
7146af97
JB
527display_malloc_warning ()
528{
4455ad75
RS
529 call3 (intern ("display-warning"),
530 intern ("alloc"),
531 build_string (pending_malloc_warning),
532 intern ("emergency"));
7146af97 533 pending_malloc_warning = 0;
7146af97
JB
534}
535
34400008 536
d1658221 537#ifdef DOUG_LEA_MALLOC
4d74a5fc 538# define BYTES_USED (mallinfo ().uordblks)
d1658221 539#else
1177ecf6 540# define BYTES_USED _bytes_used
d1658221 541#endif
49efed3a 542\f
276cbe5a
RS
543/* Called if we can't allocate relocatable space for a buffer. */
544
545void
546buffer_memory_full ()
547{
2e471eb5
GM
548 /* If buffers use the relocating allocator, no need to free
549 spare_memory, because we may have plenty of malloc space left
550 that we could get, and if we don't, the malloc that fails will
551 itself cause spare_memory to be freed. If buffers don't use the
552 relocating allocator, treat this like any other failing
553 malloc. */
276cbe5a
RS
554
555#ifndef REL_ALLOC
556 memory_full ();
557#endif
558
2e471eb5
GM
559 /* This used to call error, but if we've run out of memory, we could
560 get infinite recursion trying to build the string. */
9b306d37 561 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
562}
563
34400008 564
212f33f1
KS
565#ifdef XMALLOC_OVERRUN_CHECK
566
bdbed949
KS
567/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
568 and a 16 byte trailer around each block.
569
570 The header consists of 12 fixed bytes + a 4 byte integer contaning the
571 original block size, while the trailer consists of 16 fixed bytes.
572
573 The header is used to detect whether this block has been allocated
574 through these functions -- as it seems that some low-level libc
575 functions may bypass the malloc hooks.
576*/
577
578
212f33f1 579#define XMALLOC_OVERRUN_CHECK_SIZE 16
bdbed949 580
212f33f1
KS
581static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
582 { 0x9a, 0x9b, 0xae, 0xaf,
583 0xbf, 0xbe, 0xce, 0xcf,
584 0xea, 0xeb, 0xec, 0xed };
585
586static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
587 { 0xaa, 0xab, 0xac, 0xad,
588 0xba, 0xbb, 0xbc, 0xbd,
589 0xca, 0xcb, 0xcc, 0xcd,
590 0xda, 0xdb, 0xdc, 0xdd };
591
bdbed949
KS
592/* Macros to insert and extract the block size in the header. */
593
594#define XMALLOC_PUT_SIZE(ptr, size) \
595 (ptr[-1] = (size & 0xff), \
596 ptr[-2] = ((size >> 8) & 0xff), \
597 ptr[-3] = ((size >> 16) & 0xff), \
598 ptr[-4] = ((size >> 24) & 0xff))
599
600#define XMALLOC_GET_SIZE(ptr) \
601 (size_t)((unsigned)(ptr[-1]) | \
602 ((unsigned)(ptr[-2]) << 8) | \
603 ((unsigned)(ptr[-3]) << 16) | \
604 ((unsigned)(ptr[-4]) << 24))
605
606
d8f165a8
JD
607/* The call depth in overrun_check functions. For example, this might happen:
608 xmalloc()
609 overrun_check_malloc()
610 -> malloc -> (via hook)_-> emacs_blocked_malloc
611 -> overrun_check_malloc
612 call malloc (hooks are NULL, so real malloc is called).
613 malloc returns 10000.
614 add overhead, return 10016.
615 <- (back in overrun_check_malloc)
857ae68b 616 add overhead again, return 10032
d8f165a8 617 xmalloc returns 10032.
857ae68b
JD
618
619 (time passes).
620
d8f165a8
JD
621 xfree(10032)
622 overrun_check_free(10032)
623 decrease overhed
624 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b
JD
625
626static int check_depth;
627
bdbed949
KS
628/* Like malloc, but wraps allocated block with header and trailer. */
629
212f33f1
KS
630POINTER_TYPE *
631overrun_check_malloc (size)
632 size_t size;
633{
bdbed949 634 register unsigned char *val;
857ae68b 635 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1 636
857ae68b
JD
637 val = (unsigned char *) malloc (size + overhead);
638 if (val && check_depth == 1)
212f33f1
KS
639 {
640 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 641 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 642 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
643 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
644 }
857ae68b 645 --check_depth;
212f33f1
KS
646 return (POINTER_TYPE *)val;
647}
648
bdbed949
KS
649
650/* Like realloc, but checks old block for overrun, and wraps new block
651 with header and trailer. */
652
212f33f1
KS
653POINTER_TYPE *
654overrun_check_realloc (block, size)
655 POINTER_TYPE *block;
656 size_t size;
657{
bdbed949 658 register unsigned char *val = (unsigned char *)block;
857ae68b 659 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1
KS
660
661 if (val
857ae68b 662 && check_depth == 1
212f33f1
KS
663 && bcmp (xmalloc_overrun_check_header,
664 val - XMALLOC_OVERRUN_CHECK_SIZE,
665 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
666 {
bdbed949 667 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
668 if (bcmp (xmalloc_overrun_check_trailer,
669 val + osize,
670 XMALLOC_OVERRUN_CHECK_SIZE))
671 abort ();
bdbed949 672 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 673 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 674 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1
KS
675 }
676
857ae68b 677 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
212f33f1 678
857ae68b 679 if (val && check_depth == 1)
212f33f1
KS
680 {
681 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 682 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 683 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
684 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
685 }
857ae68b 686 --check_depth;
212f33f1
KS
687 return (POINTER_TYPE *)val;
688}
689
bdbed949
KS
690/* Like free, but checks block for overrun. */
691
212f33f1
KS
692void
693overrun_check_free (block)
694 POINTER_TYPE *block;
695{
bdbed949 696 unsigned char *val = (unsigned char *)block;
212f33f1 697
857ae68b 698 ++check_depth;
212f33f1 699 if (val
857ae68b 700 && check_depth == 1
212f33f1
KS
701 && bcmp (xmalloc_overrun_check_header,
702 val - XMALLOC_OVERRUN_CHECK_SIZE,
703 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
704 {
bdbed949 705 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
706 if (bcmp (xmalloc_overrun_check_trailer,
707 val + osize,
708 XMALLOC_OVERRUN_CHECK_SIZE))
709 abort ();
454d7973
KS
710#ifdef XMALLOC_CLEAR_FREE_MEMORY
711 val -= XMALLOC_OVERRUN_CHECK_SIZE;
712 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
713#else
bdbed949 714 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 715 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 716 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
454d7973 717#endif
212f33f1
KS
718 }
719
720 free (val);
857ae68b 721 --check_depth;
212f33f1
KS
722}
723
724#undef malloc
725#undef realloc
726#undef free
727#define malloc overrun_check_malloc
728#define realloc overrun_check_realloc
729#define free overrun_check_free
730#endif
731
dafc79fa
SM
732#ifdef SYNC_INPUT
733/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
734 there's no need to block input around malloc. */
735#define MALLOC_BLOCK_INPUT ((void)0)
736#define MALLOC_UNBLOCK_INPUT ((void)0)
737#else
738#define MALLOC_BLOCK_INPUT BLOCK_INPUT
739#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
740#endif
bdbed949 741
34400008 742/* Like malloc but check for no memory and block interrupt input.. */
7146af97 743
c971ff9a 744POINTER_TYPE *
7146af97 745xmalloc (size)
675d5130 746 size_t size;
7146af97 747{
c971ff9a 748 register POINTER_TYPE *val;
7146af97 749
dafc79fa 750 MALLOC_BLOCK_INPUT;
c971ff9a 751 val = (POINTER_TYPE *) malloc (size);
dafc79fa 752 MALLOC_UNBLOCK_INPUT;
7146af97 753
2e471eb5
GM
754 if (!val && size)
755 memory_full ();
7146af97
JB
756 return val;
757}
758
34400008
GM
759
760/* Like realloc but check for no memory and block interrupt input.. */
761
c971ff9a 762POINTER_TYPE *
7146af97 763xrealloc (block, size)
c971ff9a 764 POINTER_TYPE *block;
675d5130 765 size_t size;
7146af97 766{
c971ff9a 767 register POINTER_TYPE *val;
7146af97 768
dafc79fa 769 MALLOC_BLOCK_INPUT;
56d2031b
JB
770 /* We must call malloc explicitly when BLOCK is 0, since some
771 reallocs don't do this. */
772 if (! block)
c971ff9a 773 val = (POINTER_TYPE *) malloc (size);
f048679d 774 else
c971ff9a 775 val = (POINTER_TYPE *) realloc (block, size);
dafc79fa 776 MALLOC_UNBLOCK_INPUT;
7146af97
JB
777
778 if (!val && size) memory_full ();
779 return val;
780}
9ac0d9e0 781
34400008 782
005ca5c7 783/* Like free but block interrupt input. */
34400008 784
9ac0d9e0
JB
785void
786xfree (block)
c971ff9a 787 POINTER_TYPE *block;
9ac0d9e0 788{
70fdbb46
JM
789 if (!block)
790 return;
dafc79fa 791 MALLOC_BLOCK_INPUT;
9ac0d9e0 792 free (block);
dafc79fa 793 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
794 /* We don't call refill_memory_reserve here
795 because that duplicates doing so in emacs_blocked_free
796 and the criterion should go there. */
9ac0d9e0
JB
797}
798
c8099634 799
dca7c6a8
GM
800/* Like strdup, but uses xmalloc. */
801
802char *
803xstrdup (s)
943b873e 804 const char *s;
dca7c6a8 805{
675d5130 806 size_t len = strlen (s) + 1;
dca7c6a8
GM
807 char *p = (char *) xmalloc (len);
808 bcopy (s, p, len);
809 return p;
810}
811
812
f61bef8b
KS
813/* Unwind for SAFE_ALLOCA */
814
815Lisp_Object
816safe_alloca_unwind (arg)
817 Lisp_Object arg;
818{
b766f870
KS
819 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
820
821 p->dogc = 0;
822 xfree (p->pointer);
823 p->pointer = 0;
7b7990cc 824 free_misc (arg);
f61bef8b
KS
825 return Qnil;
826}
827
828
34400008
GM
829/* Like malloc but used for allocating Lisp data. NBYTES is the
830 number of bytes to allocate, TYPE describes the intended use of the
831 allcated memory block (for strings, for conses, ...). */
832
212f33f1 833#ifndef USE_LSB_TAG
918a23a7 834static void *lisp_malloc_loser;
212f33f1 835#endif
918a23a7 836
675d5130 837static POINTER_TYPE *
34400008 838lisp_malloc (nbytes, type)
675d5130 839 size_t nbytes;
34400008 840 enum mem_type type;
c8099634 841{
34400008 842 register void *val;
c8099634 843
dafc79fa 844 MALLOC_BLOCK_INPUT;
877935b1
GM
845
846#ifdef GC_MALLOC_CHECK
847 allocated_mem_type = type;
848#endif
177c0ea7 849
34400008 850 val = (void *) malloc (nbytes);
c8099634 851
6b61353c 852#ifndef USE_LSB_TAG
918a23a7
RS
853 /* If the memory just allocated cannot be addressed thru a Lisp
854 object's pointer, and it needs to be,
855 that's equivalent to running out of memory. */
856 if (val && type != MEM_TYPE_NON_LISP)
857 {
858 Lisp_Object tem;
859 XSETCONS (tem, (char *) val + nbytes - 1);
860 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
861 {
862 lisp_malloc_loser = val;
863 free (val);
864 val = 0;
865 }
866 }
6b61353c 867#endif
918a23a7 868
877935b1 869#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 870 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
871 mem_insert (val, (char *) val + nbytes, type);
872#endif
177c0ea7 873
dafc79fa 874 MALLOC_UNBLOCK_INPUT;
dca7c6a8
GM
875 if (!val && nbytes)
876 memory_full ();
c8099634
RS
877 return val;
878}
879
34400008
GM
880/* Free BLOCK. This must be called to free memory allocated with a
881 call to lisp_malloc. */
882
bf952fb6 883static void
c8099634 884lisp_free (block)
675d5130 885 POINTER_TYPE *block;
c8099634 886{
dafc79fa 887 MALLOC_BLOCK_INPUT;
c8099634 888 free (block);
877935b1 889#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
890 mem_delete (mem_find (block));
891#endif
dafc79fa 892 MALLOC_UNBLOCK_INPUT;
c8099634 893}
34400008 894
ab6780cd
SM
895/* Allocation of aligned blocks of memory to store Lisp data. */
896/* The entry point is lisp_align_malloc which returns blocks of at most */
897/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
898
349a4500
SM
899/* Use posix_memalloc if the system has it and we're using the system's
900 malloc (because our gmalloc.c routines don't have posix_memalign although
901 its memalloc could be used). */
b4181b01
KS
902#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
903#define USE_POSIX_MEMALIGN 1
904#endif
ab6780cd
SM
905
906/* BLOCK_ALIGN has to be a power of 2. */
907#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
908
909/* Padding to leave at the end of a malloc'd block. This is to give
910 malloc a chance to minimize the amount of memory wasted to alignment.
911 It should be tuned to the particular malloc library used.
19bcad1f
SM
912 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
913 posix_memalign on the other hand would ideally prefer a value of 4
914 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
915 In Emacs, testing shows that those 1020 can most of the time be
916 efficiently used by malloc to place other objects, so a value of 0 can
917 still preferable unless you have a lot of aligned blocks and virtually
918 nothing else. */
19bcad1f
SM
919#define BLOCK_PADDING 0
920#define BLOCK_BYTES \
f501ccb4 921 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
19bcad1f
SM
922
923/* Internal data structures and constants. */
924
ab6780cd
SM
925#define ABLOCKS_SIZE 16
926
927/* An aligned block of memory. */
928struct ablock
929{
930 union
931 {
932 char payload[BLOCK_BYTES];
933 struct ablock *next_free;
934 } x;
935 /* `abase' is the aligned base of the ablocks. */
936 /* It is overloaded to hold the virtual `busy' field that counts
937 the number of used ablock in the parent ablocks.
938 The first ablock has the `busy' field, the others have the `abase'
939 field. To tell the difference, we assume that pointers will have
940 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
941 is used to tell whether the real base of the parent ablocks is `abase'
942 (if not, the word before the first ablock holds a pointer to the
943 real base). */
944 struct ablocks *abase;
945 /* The padding of all but the last ablock is unused. The padding of
946 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
947#if BLOCK_PADDING
948 char padding[BLOCK_PADDING];
ebb8d410 949#endif
ab6780cd
SM
950};
951
952/* A bunch of consecutive aligned blocks. */
953struct ablocks
954{
955 struct ablock blocks[ABLOCKS_SIZE];
956};
957
958/* Size of the block requested from malloc or memalign. */
19bcad1f 959#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
960
961#define ABLOCK_ABASE(block) \
962 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
963 ? (struct ablocks *)(block) \
964 : (block)->abase)
965
966/* Virtual `busy' field. */
967#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
968
969/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 970#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
971#define ABLOCKS_BASE(abase) (abase)
972#else
ab6780cd 973#define ABLOCKS_BASE(abase) \
005ca5c7 974 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 975#endif
ab6780cd
SM
976
977/* The list of free ablock. */
978static struct ablock *free_ablock;
979
980/* Allocate an aligned block of nbytes.
981 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
982 smaller or equal to BLOCK_BYTES. */
983static POINTER_TYPE *
984lisp_align_malloc (nbytes, type)
985 size_t nbytes;
986 enum mem_type type;
987{
988 void *base, *val;
989 struct ablocks *abase;
990
991 eassert (nbytes <= BLOCK_BYTES);
992
dafc79fa 993 MALLOC_BLOCK_INPUT;
ab6780cd
SM
994
995#ifdef GC_MALLOC_CHECK
996 allocated_mem_type = type;
997#endif
998
999 if (!free_ablock)
1000 {
005ca5c7
DL
1001 int i;
1002 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1003
1004#ifdef DOUG_LEA_MALLOC
1005 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1006 because mapped region contents are not preserved in
1007 a dumped Emacs. */
1008 mallopt (M_MMAP_MAX, 0);
1009#endif
1010
349a4500 1011#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1012 {
1013 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1014 if (err)
1015 base = NULL;
1016 abase = base;
19bcad1f
SM
1017 }
1018#else
ab6780cd
SM
1019 base = malloc (ABLOCKS_BYTES);
1020 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1021#endif
1022
6b61353c
KH
1023 if (base == 0)
1024 {
dafc79fa 1025 MALLOC_UNBLOCK_INPUT;
6b61353c
KH
1026 memory_full ();
1027 }
ab6780cd
SM
1028
1029 aligned = (base == abase);
1030 if (!aligned)
1031 ((void**)abase)[-1] = base;
1032
1033#ifdef DOUG_LEA_MALLOC
1034 /* Back to a reasonable maximum of mmap'ed areas. */
1035 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1036#endif
1037
6b61353c 1038#ifndef USE_LSB_TAG
8f924df7
KH
1039 /* If the memory just allocated cannot be addressed thru a Lisp
1040 object's pointer, and it needs to be, that's equivalent to
1041 running out of memory. */
1042 if (type != MEM_TYPE_NON_LISP)
1043 {
1044 Lisp_Object tem;
1045 char *end = (char *) base + ABLOCKS_BYTES - 1;
1046 XSETCONS (tem, end);
1047 if ((char *) XCONS (tem) != end)
1048 {
1049 lisp_malloc_loser = base;
1050 free (base);
dafc79fa 1051 MALLOC_UNBLOCK_INPUT;
8f924df7
KH
1052 memory_full ();
1053 }
1054 }
6b61353c 1055#endif
8f924df7 1056
ab6780cd
SM
1057 /* Initialize the blocks and put them on the free list.
1058 Is `base' was not properly aligned, we can't use the last block. */
1059 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1060 {
1061 abase->blocks[i].abase = abase;
1062 abase->blocks[i].x.next_free = free_ablock;
1063 free_ablock = &abase->blocks[i];
1064 }
005ca5c7 1065 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
ab6780cd 1066
19bcad1f 1067 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
1068 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1069 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1070 eassert (ABLOCKS_BASE (abase) == base);
005ca5c7 1071 eassert (aligned == (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
1072 }
1073
1074 abase = ABLOCK_ABASE (free_ablock);
005ca5c7 1075 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
1076 val = free_ablock;
1077 free_ablock = free_ablock->x.next_free;
1078
ab6780cd
SM
1079#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1080 if (val && type != MEM_TYPE_NON_LISP)
1081 mem_insert (val, (char *) val + nbytes, type);
1082#endif
1083
dafc79fa 1084 MALLOC_UNBLOCK_INPUT;
ab6780cd
SM
1085 if (!val && nbytes)
1086 memory_full ();
1087
1088 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1089 return val;
1090}
1091
1092static void
1093lisp_align_free (block)
1094 POINTER_TYPE *block;
1095{
1096 struct ablock *ablock = block;
1097 struct ablocks *abase = ABLOCK_ABASE (ablock);
1098
dafc79fa 1099 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1100#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1101 mem_delete (mem_find (block));
1102#endif
1103 /* Put on free list. */
1104 ablock->x.next_free = free_ablock;
1105 free_ablock = ablock;
1106 /* Update busy count. */
005ca5c7 1107 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
d2db1c32 1108
005ca5c7 1109 if (2 > (long) ABLOCKS_BUSY (abase))
ab6780cd 1110 { /* All the blocks are free. */
005ca5c7 1111 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
ab6780cd
SM
1112 struct ablock **tem = &free_ablock;
1113 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1114
1115 while (*tem)
1116 {
1117 if (*tem >= (struct ablock *) abase && *tem < atop)
1118 {
1119 i++;
1120 *tem = (*tem)->x.next_free;
1121 }
1122 else
1123 tem = &(*tem)->x.next_free;
1124 }
1125 eassert ((aligned & 1) == aligned);
1126 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1127#ifdef USE_POSIX_MEMALIGN
cfb2f32e
SM
1128 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1129#endif
ab6780cd
SM
1130 free (ABLOCKS_BASE (abase));
1131 }
dafc79fa 1132 MALLOC_UNBLOCK_INPUT;
ab6780cd 1133}
3ef06d12
SM
1134
1135/* Return a new buffer structure allocated from the heap with
1136 a call to lisp_malloc. */
1137
1138struct buffer *
1139allocate_buffer ()
1140{
1141 struct buffer *b
1142 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1143 MEM_TYPE_BUFFER);
67ee9f6e
SM
1144 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1145 XSETPVECTYPE (b, PVEC_BUFFER);
3ef06d12
SM
1146 return b;
1147}
1148
9ac0d9e0 1149\f
026cdede
SM
1150#ifndef SYSTEM_MALLOC
1151
9ac0d9e0
JB
1152/* Arranging to disable input signals while we're in malloc.
1153
1154 This only works with GNU malloc. To help out systems which can't
1155 use GNU malloc, all the calls to malloc, realloc, and free
1156 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1157 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1158 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1159 using GNU malloc. Fortunately, most of the major operating systems
1160 can use GNU malloc. */
9ac0d9e0 1161
026cdede 1162#ifndef SYNC_INPUT
dafc79fa
SM
1163/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1164 there's no need to block input around malloc. */
026cdede 1165
b3303f74 1166#ifndef DOUG_LEA_MALLOC
f57e2426
J
1167extern void * (*__malloc_hook) (size_t, const void *);
1168extern void * (*__realloc_hook) (void *, size_t, const void *);
1169extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1170/* Else declared in malloc.h, perhaps with an extra arg. */
1171#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1172static void * (*old_malloc_hook) (size_t, const void *);
1173static void * (*old_realloc_hook) (void *, size_t, const void*);
1174static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1175
276cbe5a
RS
1176/* This function is used as the hook for free to call. */
1177
9ac0d9e0 1178static void
fa8459a3 1179emacs_blocked_free (ptr, ptr2)
9ac0d9e0 1180 void *ptr;
fa8459a3 1181 const void *ptr2;
9ac0d9e0 1182{
aa477689 1183 BLOCK_INPUT_ALLOC;
877935b1
GM
1184
1185#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1186 if (ptr)
1187 {
1188 struct mem_node *m;
177c0ea7 1189
a83fee2c
GM
1190 m = mem_find (ptr);
1191 if (m == MEM_NIL || m->start != ptr)
1192 {
1193 fprintf (stderr,
1194 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1195 abort ();
1196 }
1197 else
1198 {
1199 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1200 mem_delete (m);
1201 }
1202 }
877935b1 1203#endif /* GC_MALLOC_CHECK */
177c0ea7 1204
9ac0d9e0
JB
1205 __free_hook = old_free_hook;
1206 free (ptr);
177c0ea7 1207
276cbe5a
RS
1208 /* If we released our reserve (due to running out of memory),
1209 and we have a fair amount free once again,
1210 try to set aside another reserve in case we run out once more. */
24d8a105 1211 if (! NILP (Vmemory_full)
276cbe5a
RS
1212 /* Verify there is enough space that even with the malloc
1213 hysteresis this call won't run out again.
1214 The code here is correct as long as SPARE_MEMORY
1215 is substantially larger than the block size malloc uses. */
1216 && (bytes_used_when_full
4d74a5fc 1217 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1218 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1219 refill_memory_reserve ();
276cbe5a 1220
b0846f52 1221 __free_hook = emacs_blocked_free;
aa477689 1222 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1223}
1224
34400008 1225
276cbe5a
RS
1226/* This function is the malloc hook that Emacs uses. */
1227
9ac0d9e0 1228static void *
fa8459a3 1229emacs_blocked_malloc (size, ptr)
675d5130 1230 size_t size;
fa8459a3 1231 const void *ptr;
9ac0d9e0
JB
1232{
1233 void *value;
1234
aa477689 1235 BLOCK_INPUT_ALLOC;
9ac0d9e0 1236 __malloc_hook = old_malloc_hook;
1177ecf6 1237#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1238 /* Segfaults on my system. --lorentey */
1239 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1240#else
d1658221 1241 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1242#endif
877935b1 1243
2756d8ee 1244 value = (void *) malloc (size);
877935b1
GM
1245
1246#ifdef GC_MALLOC_CHECK
1247 {
1248 struct mem_node *m = mem_find (value);
1249 if (m != MEM_NIL)
1250 {
1251 fprintf (stderr, "Malloc returned %p which is already in use\n",
1252 value);
1253 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1254 m->start, m->end, (char *) m->end - (char *) m->start,
1255 m->type);
1256 abort ();
1257 }
1258
1259 if (!dont_register_blocks)
1260 {
1261 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1262 allocated_mem_type = MEM_TYPE_NON_LISP;
1263 }
1264 }
1265#endif /* GC_MALLOC_CHECK */
177c0ea7 1266
b0846f52 1267 __malloc_hook = emacs_blocked_malloc;
aa477689 1268 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1269
877935b1 1270 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1271 return value;
1272}
1273
34400008
GM
1274
1275/* This function is the realloc hook that Emacs uses. */
1276
9ac0d9e0 1277static void *
fa8459a3 1278emacs_blocked_realloc (ptr, size, ptr2)
9ac0d9e0 1279 void *ptr;
675d5130 1280 size_t size;
fa8459a3 1281 const void *ptr2;
9ac0d9e0
JB
1282{
1283 void *value;
1284
aa477689 1285 BLOCK_INPUT_ALLOC;
9ac0d9e0 1286 __realloc_hook = old_realloc_hook;
877935b1
GM
1287
1288#ifdef GC_MALLOC_CHECK
1289 if (ptr)
1290 {
1291 struct mem_node *m = mem_find (ptr);
1292 if (m == MEM_NIL || m->start != ptr)
1293 {
1294 fprintf (stderr,
1295 "Realloc of %p which wasn't allocated with malloc\n",
1296 ptr);
1297 abort ();
1298 }
1299
1300 mem_delete (m);
1301 }
177c0ea7 1302
877935b1 1303 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1304
877935b1
GM
1305 /* Prevent malloc from registering blocks. */
1306 dont_register_blocks = 1;
1307#endif /* GC_MALLOC_CHECK */
1308
2756d8ee 1309 value = (void *) realloc (ptr, size);
877935b1
GM
1310
1311#ifdef GC_MALLOC_CHECK
1312 dont_register_blocks = 0;
1313
1314 {
1315 struct mem_node *m = mem_find (value);
1316 if (m != MEM_NIL)
1317 {
1318 fprintf (stderr, "Realloc returns memory that is already in use\n");
1319 abort ();
1320 }
1321
1322 /* Can't handle zero size regions in the red-black tree. */
1323 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1324 }
177c0ea7 1325
877935b1
GM
1326 /* fprintf (stderr, "%p <- realloc\n", value); */
1327#endif /* GC_MALLOC_CHECK */
177c0ea7 1328
b0846f52 1329 __realloc_hook = emacs_blocked_realloc;
aa477689 1330 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1331
1332 return value;
1333}
1334
34400008 1335
aa477689
JD
1336#ifdef HAVE_GTK_AND_PTHREAD
1337/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1338 normal malloc. Some thread implementations need this as they call
1339 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1340 calls malloc because it is the first call, and we have an endless loop. */
1341
1342void
1343reset_malloc_hooks ()
1344{
4d580af2
AS
1345 __free_hook = old_free_hook;
1346 __malloc_hook = old_malloc_hook;
1347 __realloc_hook = old_realloc_hook;
aa477689
JD
1348}
1349#endif /* HAVE_GTK_AND_PTHREAD */
1350
1351
34400008
GM
1352/* Called from main to set up malloc to use our hooks. */
1353
9ac0d9e0
JB
1354void
1355uninterrupt_malloc ()
1356{
aa477689 1357#ifdef HAVE_GTK_AND_PTHREAD
a1b41389 1358#ifdef DOUG_LEA_MALLOC
aa477689
JD
1359 pthread_mutexattr_t attr;
1360
1361 /* GLIBC has a faster way to do this, but lets keep it portable.
1362 This is according to the Single UNIX Specification. */
1363 pthread_mutexattr_init (&attr);
1364 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1365 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1366#else /* !DOUG_LEA_MALLOC */
ce5b453a 1367 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1368 and the bundled gmalloc.c doesn't require it. */
1369 pthread_mutex_init (&alloc_mutex, NULL);
1370#endif /* !DOUG_LEA_MALLOC */
aa477689
JD
1371#endif /* HAVE_GTK_AND_PTHREAD */
1372
c8099634
RS
1373 if (__free_hook != emacs_blocked_free)
1374 old_free_hook = __free_hook;
b0846f52 1375 __free_hook = emacs_blocked_free;
9ac0d9e0 1376
c8099634
RS
1377 if (__malloc_hook != emacs_blocked_malloc)
1378 old_malloc_hook = __malloc_hook;
b0846f52 1379 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1380
c8099634
RS
1381 if (__realloc_hook != emacs_blocked_realloc)
1382 old_realloc_hook = __realloc_hook;
b0846f52 1383 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1384}
2e471eb5 1385
026cdede 1386#endif /* not SYNC_INPUT */
2e471eb5
GM
1387#endif /* not SYSTEM_MALLOC */
1388
1389
7146af97 1390\f
2e471eb5
GM
1391/***********************************************************************
1392 Interval Allocation
1393 ***********************************************************************/
1a4f1e2c 1394
34400008
GM
1395/* Number of intervals allocated in an interval_block structure.
1396 The 1020 is 1024 minus malloc overhead. */
1397
d5e35230
JA
1398#define INTERVAL_BLOCK_SIZE \
1399 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1400
34400008
GM
1401/* Intervals are allocated in chunks in form of an interval_block
1402 structure. */
1403
d5e35230 1404struct interval_block
2e471eb5 1405{
6b61353c 1406 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1407 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1408 struct interval_block *next;
2e471eb5 1409};
d5e35230 1410
34400008
GM
1411/* Current interval block. Its `next' pointer points to older
1412 blocks. */
1413
d3d47262 1414static struct interval_block *interval_block;
34400008
GM
1415
1416/* Index in interval_block above of the next unused interval
1417 structure. */
1418
d5e35230 1419static int interval_block_index;
34400008
GM
1420
1421/* Number of free and live intervals. */
1422
2e471eb5 1423static int total_free_intervals, total_intervals;
d5e35230 1424
34400008
GM
1425/* List of free intervals. */
1426
d5e35230
JA
1427INTERVAL interval_free_list;
1428
c8099634 1429/* Total number of interval blocks now in use. */
2e471eb5 1430
d3d47262 1431static int n_interval_blocks;
c8099634 1432
34400008
GM
1433
1434/* Initialize interval allocation. */
1435
d5e35230
JA
1436static void
1437init_intervals ()
1438{
005ca5c7
DL
1439 interval_block = NULL;
1440 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1441 interval_free_list = 0;
005ca5c7 1442 n_interval_blocks = 0;
d5e35230
JA
1443}
1444
34400008
GM
1445
1446/* Return a new interval. */
d5e35230
JA
1447
1448INTERVAL
1449make_interval ()
1450{
1451 INTERVAL val;
1452
e2984df0
CY
1453 /* eassert (!handling_signal); */
1454
dafc79fa 1455 MALLOC_BLOCK_INPUT;
cfb2f32e 1456
d5e35230
JA
1457 if (interval_free_list)
1458 {
1459 val = interval_free_list;
439d5cb4 1460 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1461 }
1462 else
1463 {
1464 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1465 {
3c06d205
KH
1466 register struct interval_block *newi;
1467
34400008
GM
1468 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1469 MEM_TYPE_NON_LISP);
d5e35230 1470
d5e35230
JA
1471 newi->next = interval_block;
1472 interval_block = newi;
1473 interval_block_index = 0;
c8099634 1474 n_interval_blocks++;
d5e35230
JA
1475 }
1476 val = &interval_block->intervals[interval_block_index++];
1477 }
e2984df0 1478
dafc79fa 1479 MALLOC_UNBLOCK_INPUT;
e2984df0 1480
d5e35230 1481 consing_since_gc += sizeof (struct interval);
310ea200 1482 intervals_consed++;
d5e35230 1483 RESET_INTERVAL (val);
2336fe58 1484 val->gcmarkbit = 0;
d5e35230
JA
1485 return val;
1486}
1487
34400008
GM
1488
1489/* Mark Lisp objects in interval I. */
d5e35230
JA
1490
1491static void
d393c068 1492mark_interval (i, dummy)
d5e35230 1493 register INTERVAL i;
d393c068 1494 Lisp_Object dummy;
d5e35230 1495{
2336fe58
SM
1496 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1497 i->gcmarkbit = 1;
49723c04 1498 mark_object (i->plist);
d5e35230
JA
1499}
1500
34400008
GM
1501
1502/* Mark the interval tree rooted in TREE. Don't call this directly;
1503 use the macro MARK_INTERVAL_TREE instead. */
1504
d5e35230
JA
1505static void
1506mark_interval_tree (tree)
1507 register INTERVAL tree;
1508{
e8720644
JB
1509 /* No need to test if this tree has been marked already; this
1510 function is always called through the MARK_INTERVAL_TREE macro,
1511 which takes care of that. */
1512
1e934989 1513 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1514}
1515
34400008
GM
1516
1517/* Mark the interval tree rooted in I. */
1518
e8720644
JB
1519#define MARK_INTERVAL_TREE(i) \
1520 do { \
2336fe58 1521 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1522 mark_interval_tree (i); \
1523 } while (0)
d5e35230 1524
34400008 1525
2e471eb5
GM
1526#define UNMARK_BALANCE_INTERVALS(i) \
1527 do { \
1528 if (! NULL_INTERVAL_P (i)) \
2336fe58 1529 (i) = balance_intervals (i); \
2e471eb5 1530 } while (0)
d5e35230 1531
cc2d8c6b 1532\f
6e5cb96f 1533/* Number support. If USE_LISP_UNION_TYPE is in effect, we
cc2d8c6b
KR
1534 can't create number objects in macros. */
1535#ifndef make_number
1536Lisp_Object
1537make_number (n)
217604da 1538 EMACS_INT n;
cc2d8c6b
KR
1539{
1540 Lisp_Object obj;
1541 obj.s.val = n;
1542 obj.s.type = Lisp_Int;
1543 return obj;
1544}
1545#endif
d5e35230 1546\f
2e471eb5
GM
1547/***********************************************************************
1548 String Allocation
1549 ***********************************************************************/
1a4f1e2c 1550
2e471eb5
GM
1551/* Lisp_Strings are allocated in string_block structures. When a new
1552 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1553 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1554 needed, it is taken from that list. During the sweep phase of GC,
1555 string_blocks that are entirely free are freed, except two which
1556 we keep.
7146af97 1557
2e471eb5
GM
1558 String data is allocated from sblock structures. Strings larger
1559 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1560 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1561
2e471eb5
GM
1562 Sblocks consist internally of sdata structures, one for each
1563 Lisp_String. The sdata structure points to the Lisp_String it
1564 belongs to. The Lisp_String points back to the `u.data' member of
1565 its sdata structure.
7146af97 1566
2e471eb5
GM
1567 When a Lisp_String is freed during GC, it is put back on
1568 string_free_list, and its `data' member and its sdata's `string'
1569 pointer is set to null. The size of the string is recorded in the
1570 `u.nbytes' member of the sdata. So, sdata structures that are no
1571 longer used, can be easily recognized, and it's easy to compact the
1572 sblocks of small strings which we do in compact_small_strings. */
7146af97 1573
2e471eb5
GM
1574/* Size in bytes of an sblock structure used for small strings. This
1575 is 8192 minus malloc overhead. */
7146af97 1576
2e471eb5 1577#define SBLOCK_SIZE 8188
c8099634 1578
2e471eb5
GM
1579/* Strings larger than this are considered large strings. String data
1580 for large strings is allocated from individual sblocks. */
7146af97 1581
2e471eb5
GM
1582#define LARGE_STRING_BYTES 1024
1583
1584/* Structure describing string memory sub-allocated from an sblock.
1585 This is where the contents of Lisp strings are stored. */
1586
1587struct sdata
7146af97 1588{
2e471eb5
GM
1589 /* Back-pointer to the string this sdata belongs to. If null, this
1590 structure is free, and the NBYTES member of the union below
34400008 1591 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1592 would return if STRING were non-null). If non-null, STRING_BYTES
1593 (STRING) is the size of the data, and DATA contains the string's
1594 contents. */
1595 struct Lisp_String *string;
7146af97 1596
31d929e5 1597#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1598
31d929e5
GM
1599 EMACS_INT nbytes;
1600 unsigned char data[1];
177c0ea7 1601
31d929e5
GM
1602#define SDATA_NBYTES(S) (S)->nbytes
1603#define SDATA_DATA(S) (S)->data
177c0ea7 1604
31d929e5
GM
1605#else /* not GC_CHECK_STRING_BYTES */
1606
2e471eb5
GM
1607 union
1608 {
1609 /* When STRING in non-null. */
1610 unsigned char data[1];
1611
1612 /* When STRING is null. */
1613 EMACS_INT nbytes;
1614 } u;
177c0ea7 1615
31d929e5
GM
1616
1617#define SDATA_NBYTES(S) (S)->u.nbytes
1618#define SDATA_DATA(S) (S)->u.data
1619
1620#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1621};
1622
31d929e5 1623
2e471eb5
GM
1624/* Structure describing a block of memory which is sub-allocated to
1625 obtain string data memory for strings. Blocks for small strings
1626 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1627 as large as needed. */
1628
1629struct sblock
7146af97 1630{
2e471eb5
GM
1631 /* Next in list. */
1632 struct sblock *next;
7146af97 1633
2e471eb5
GM
1634 /* Pointer to the next free sdata block. This points past the end
1635 of the sblock if there isn't any space left in this block. */
1636 struct sdata *next_free;
1637
1638 /* Start of data. */
1639 struct sdata first_data;
1640};
1641
1642/* Number of Lisp strings in a string_block structure. The 1020 is
1643 1024 minus malloc overhead. */
1644
19bcad1f 1645#define STRING_BLOCK_SIZE \
2e471eb5
GM
1646 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1647
1648/* Structure describing a block from which Lisp_String structures
1649 are allocated. */
1650
1651struct string_block
7146af97 1652{
6b61353c 1653 /* Place `strings' first, to preserve alignment. */
19bcad1f 1654 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1655 struct string_block *next;
2e471eb5 1656};
7146af97 1657
2e471eb5
GM
1658/* Head and tail of the list of sblock structures holding Lisp string
1659 data. We always allocate from current_sblock. The NEXT pointers
1660 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1661
2e471eb5 1662static struct sblock *oldest_sblock, *current_sblock;
7146af97 1663
2e471eb5 1664/* List of sblocks for large strings. */
7146af97 1665
2e471eb5 1666static struct sblock *large_sblocks;
7146af97 1667
2e471eb5 1668/* List of string_block structures, and how many there are. */
7146af97 1669
2e471eb5
GM
1670static struct string_block *string_blocks;
1671static int n_string_blocks;
7146af97 1672
2e471eb5 1673/* Free-list of Lisp_Strings. */
7146af97 1674
2e471eb5 1675static struct Lisp_String *string_free_list;
7146af97 1676
2e471eb5 1677/* Number of live and free Lisp_Strings. */
c8099634 1678
2e471eb5 1679static int total_strings, total_free_strings;
7146af97 1680
2e471eb5
GM
1681/* Number of bytes used by live strings. */
1682
1683static int total_string_size;
1684
1685/* Given a pointer to a Lisp_String S which is on the free-list
1686 string_free_list, return a pointer to its successor in the
1687 free-list. */
1688
1689#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1690
1691/* Return a pointer to the sdata structure belonging to Lisp string S.
1692 S must be live, i.e. S->data must not be null. S->data is actually
1693 a pointer to the `u.data' member of its sdata structure; the
1694 structure starts at a constant offset in front of that. */
177c0ea7 1695
31d929e5
GM
1696#ifdef GC_CHECK_STRING_BYTES
1697
1698#define SDATA_OF_STRING(S) \
1699 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1700 - sizeof (EMACS_INT)))
1701
1702#else /* not GC_CHECK_STRING_BYTES */
1703
2e471eb5
GM
1704#define SDATA_OF_STRING(S) \
1705 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1706
31d929e5
GM
1707#endif /* not GC_CHECK_STRING_BYTES */
1708
212f33f1
KS
1709
1710#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1711
1712/* We check for overrun in string data blocks by appending a small
1713 "cookie" after each allocated string data block, and check for the
8349069c 1714 presence of this cookie during GC. */
bdbed949
KS
1715
1716#define GC_STRING_OVERRUN_COOKIE_SIZE 4
1717static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1718 { 0xde, 0xad, 0xbe, 0xef };
1719
212f33f1 1720#else
bdbed949 1721#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1722#endif
1723
2e471eb5
GM
1724/* Value is the size of an sdata structure large enough to hold NBYTES
1725 bytes of string data. The value returned includes a terminating
1726 NUL byte, the size of the sdata structure, and padding. */
1727
31d929e5
GM
1728#ifdef GC_CHECK_STRING_BYTES
1729
2e471eb5
GM
1730#define SDATA_SIZE(NBYTES) \
1731 ((sizeof (struct Lisp_String *) \
1732 + (NBYTES) + 1 \
31d929e5 1733 + sizeof (EMACS_INT) \
2e471eb5
GM
1734 + sizeof (EMACS_INT) - 1) \
1735 & ~(sizeof (EMACS_INT) - 1))
1736
31d929e5
GM
1737#else /* not GC_CHECK_STRING_BYTES */
1738
1739#define SDATA_SIZE(NBYTES) \
1740 ((sizeof (struct Lisp_String *) \
1741 + (NBYTES) + 1 \
1742 + sizeof (EMACS_INT) - 1) \
1743 & ~(sizeof (EMACS_INT) - 1))
1744
1745#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1746
bdbed949
KS
1747/* Extra bytes to allocate for each string. */
1748
1749#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1750
2e471eb5 1751/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1752
d3d47262 1753static void
2e471eb5 1754init_strings ()
7146af97 1755{
2e471eb5
GM
1756 total_strings = total_free_strings = total_string_size = 0;
1757 oldest_sblock = current_sblock = large_sblocks = NULL;
1758 string_blocks = NULL;
1759 n_string_blocks = 0;
1760 string_free_list = NULL;
4d774b0f
JB
1761 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1762 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1763}
1764
2e471eb5 1765
361b097f
GM
1766#ifdef GC_CHECK_STRING_BYTES
1767
361b097f
GM
1768static int check_string_bytes_count;
1769
f57e2426
J
1770static void check_string_bytes (int);
1771static void check_sblock (struct sblock *);
676a7251
GM
1772
1773#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1774
1775
1776/* Like GC_STRING_BYTES, but with debugging check. */
1777
1778int
1779string_bytes (s)
1780 struct Lisp_String *s;
1781{
7cdee936 1782 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
676a7251
GM
1783 if (!PURE_POINTER_P (s)
1784 && s->data
1785 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1786 abort ();
1787 return nbytes;
1788}
177c0ea7 1789
2c5bd608 1790/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1791
d3d47262 1792static void
676a7251
GM
1793check_sblock (b)
1794 struct sblock *b;
361b097f 1795{
676a7251 1796 struct sdata *from, *end, *from_end;
177c0ea7 1797
676a7251 1798 end = b->next_free;
177c0ea7 1799
676a7251 1800 for (from = &b->first_data; from < end; from = from_end)
361b097f 1801 {
676a7251
GM
1802 /* Compute the next FROM here because copying below may
1803 overwrite data we need to compute it. */
1804 int nbytes;
177c0ea7 1805
676a7251
GM
1806 /* Check that the string size recorded in the string is the
1807 same as the one recorded in the sdata structure. */
1808 if (from->string)
1809 CHECK_STRING_BYTES (from->string);
177c0ea7 1810
676a7251
GM
1811 if (from->string)
1812 nbytes = GC_STRING_BYTES (from->string);
1813 else
1814 nbytes = SDATA_NBYTES (from);
177c0ea7 1815
676a7251 1816 nbytes = SDATA_SIZE (nbytes);
212f33f1 1817 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1818 }
1819}
361b097f 1820
676a7251
GM
1821
1822/* Check validity of Lisp strings' string_bytes member. ALL_P
1823 non-zero means check all strings, otherwise check only most
1824 recently allocated strings. Used for hunting a bug. */
1825
d3d47262 1826static void
676a7251
GM
1827check_string_bytes (all_p)
1828 int all_p;
1829{
1830 if (all_p)
1831 {
1832 struct sblock *b;
1833
1834 for (b = large_sblocks; b; b = b->next)
1835 {
1836 struct Lisp_String *s = b->first_data.string;
1837 if (s)
1838 CHECK_STRING_BYTES (s);
361b097f 1839 }
177c0ea7 1840
676a7251
GM
1841 for (b = oldest_sblock; b; b = b->next)
1842 check_sblock (b);
361b097f 1843 }
676a7251
GM
1844 else
1845 check_sblock (current_sblock);
361b097f
GM
1846}
1847
1848#endif /* GC_CHECK_STRING_BYTES */
1849
212f33f1
KS
1850#ifdef GC_CHECK_STRING_FREE_LIST
1851
bdbed949
KS
1852/* Walk through the string free list looking for bogus next pointers.
1853 This may catch buffer overrun from a previous string. */
1854
212f33f1
KS
1855static void
1856check_string_free_list ()
1857{
1858 struct Lisp_String *s;
1859
1860 /* Pop a Lisp_String off the free-list. */
1861 s = string_free_list;
1862 while (s != NULL)
1863 {
1864 if ((unsigned)s < 1024)
1865 abort();
1866 s = NEXT_FREE_LISP_STRING (s);
1867 }
1868}
1869#else
1870#define check_string_free_list()
1871#endif
361b097f 1872
2e471eb5
GM
1873/* Return a new Lisp_String. */
1874
1875static struct Lisp_String *
1876allocate_string ()
7146af97 1877{
2e471eb5 1878 struct Lisp_String *s;
7146af97 1879
e2984df0
CY
1880 /* eassert (!handling_signal); */
1881
dafc79fa 1882 MALLOC_BLOCK_INPUT;
cfb2f32e 1883
2e471eb5
GM
1884 /* If the free-list is empty, allocate a new string_block, and
1885 add all the Lisp_Strings in it to the free-list. */
1886 if (string_free_list == NULL)
7146af97 1887 {
2e471eb5
GM
1888 struct string_block *b;
1889 int i;
1890
34400008 1891 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1892 bzero (b, sizeof *b);
1893 b->next = string_blocks;
1894 string_blocks = b;
1895 ++n_string_blocks;
1896
19bcad1f 1897 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1898 {
2e471eb5
GM
1899 s = b->strings + i;
1900 NEXT_FREE_LISP_STRING (s) = string_free_list;
1901 string_free_list = s;
7146af97 1902 }
2e471eb5 1903
19bcad1f 1904 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1905 }
c0f51373 1906
bdbed949 1907 check_string_free_list ();
212f33f1 1908
2e471eb5
GM
1909 /* Pop a Lisp_String off the free-list. */
1910 s = string_free_list;
1911 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1912
dafc79fa 1913 MALLOC_UNBLOCK_INPUT;
e2984df0 1914
2e471eb5
GM
1915 /* Probably not strictly necessary, but play it safe. */
1916 bzero (s, sizeof *s);
c0f51373 1917
2e471eb5
GM
1918 --total_free_strings;
1919 ++total_strings;
1920 ++strings_consed;
1921 consing_since_gc += sizeof *s;
c0f51373 1922
361b097f 1923#ifdef GC_CHECK_STRING_BYTES
e39a993c 1924 if (!noninteractive)
361b097f 1925 {
676a7251
GM
1926 if (++check_string_bytes_count == 200)
1927 {
1928 check_string_bytes_count = 0;
1929 check_string_bytes (1);
1930 }
1931 else
1932 check_string_bytes (0);
361b097f 1933 }
676a7251 1934#endif /* GC_CHECK_STRING_BYTES */
361b097f 1935
2e471eb5 1936 return s;
c0f51373 1937}
7146af97 1938
7146af97 1939
2e471eb5
GM
1940/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1941 plus a NUL byte at the end. Allocate an sdata structure for S, and
1942 set S->data to its `u.data' member. Store a NUL byte at the end of
1943 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1944 S->data if it was initially non-null. */
7146af97 1945
2e471eb5
GM
1946void
1947allocate_string_data (s, nchars, nbytes)
1948 struct Lisp_String *s;
1949 int nchars, nbytes;
7146af97 1950{
5c5fecb3 1951 struct sdata *data, *old_data;
2e471eb5 1952 struct sblock *b;
5c5fecb3 1953 int needed, old_nbytes;
7146af97 1954
2e471eb5
GM
1955 /* Determine the number of bytes needed to store NBYTES bytes
1956 of string data. */
1957 needed = SDATA_SIZE (nbytes);
e2984df0
CY
1958 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1959 old_nbytes = GC_STRING_BYTES (s);
1960
dafc79fa 1961 MALLOC_BLOCK_INPUT;
7146af97 1962
2e471eb5
GM
1963 if (nbytes > LARGE_STRING_BYTES)
1964 {
675d5130 1965 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1966
1967#ifdef DOUG_LEA_MALLOC
f8608968
GM
1968 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1969 because mapped region contents are not preserved in
d36b182f
DL
1970 a dumped Emacs.
1971
1972 In case you think of allowing it in a dumped Emacs at the
1973 cost of not being able to re-dump, there's another reason:
1974 mmap'ed data typically have an address towards the top of the
1975 address space, which won't fit into an EMACS_INT (at least on
1976 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1977 mallopt (M_MMAP_MAX, 0);
1978#endif
1979
212f33f1 1980 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1981
2e471eb5
GM
1982#ifdef DOUG_LEA_MALLOC
1983 /* Back to a reasonable maximum of mmap'ed areas. */
1984 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1985#endif
177c0ea7 1986
2e471eb5
GM
1987 b->next_free = &b->first_data;
1988 b->first_data.string = NULL;
1989 b->next = large_sblocks;
1990 large_sblocks = b;
1991 }
1992 else if (current_sblock == NULL
1993 || (((char *) current_sblock + SBLOCK_SIZE
1994 - (char *) current_sblock->next_free)
212f33f1 1995 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
1996 {
1997 /* Not enough room in the current sblock. */
34400008 1998 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1999 b->next_free = &b->first_data;
2000 b->first_data.string = NULL;
2001 b->next = NULL;
2002
2003 if (current_sblock)
2004 current_sblock->next = b;
2005 else
2006 oldest_sblock = b;
2007 current_sblock = b;
2008 }
2009 else
2010 b = current_sblock;
5c5fecb3 2011
2e471eb5 2012 data = b->next_free;
a0b08700
CY
2013 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2014
dafc79fa 2015 MALLOC_UNBLOCK_INPUT;
e2984df0 2016
2e471eb5 2017 data->string = s;
31d929e5
GM
2018 s->data = SDATA_DATA (data);
2019#ifdef GC_CHECK_STRING_BYTES
2020 SDATA_NBYTES (data) = nbytes;
2021#endif
2e471eb5
GM
2022 s->size = nchars;
2023 s->size_byte = nbytes;
2024 s->data[nbytes] = '\0';
212f33f1 2025#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
2026 bcopy (string_overrun_cookie, (char *) data + needed,
2027 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 2028#endif
177c0ea7 2029
5c5fecb3
GM
2030 /* If S had already data assigned, mark that as free by setting its
2031 string back-pointer to null, and recording the size of the data
00c9c33c 2032 in it. */
5c5fecb3
GM
2033 if (old_data)
2034 {
31d929e5 2035 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
2036 old_data->string = NULL;
2037 }
2038
2e471eb5
GM
2039 consing_since_gc += needed;
2040}
2041
2042
2043/* Sweep and compact strings. */
2044
2045static void
2046sweep_strings ()
2047{
2048 struct string_block *b, *next;
2049 struct string_block *live_blocks = NULL;
177c0ea7 2050
2e471eb5
GM
2051 string_free_list = NULL;
2052 total_strings = total_free_strings = 0;
2053 total_string_size = 0;
2054
2055 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2056 for (b = string_blocks; b; b = next)
2057 {
2058 int i, nfree = 0;
2059 struct Lisp_String *free_list_before = string_free_list;
2060
2061 next = b->next;
2062
19bcad1f 2063 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2064 {
2065 struct Lisp_String *s = b->strings + i;
2066
2067 if (s->data)
2068 {
2069 /* String was not on free-list before. */
2070 if (STRING_MARKED_P (s))
2071 {
2072 /* String is live; unmark it and its intervals. */
2073 UNMARK_STRING (s);
177c0ea7 2074
2e471eb5
GM
2075 if (!NULL_INTERVAL_P (s->intervals))
2076 UNMARK_BALANCE_INTERVALS (s->intervals);
2077
2078 ++total_strings;
2079 total_string_size += STRING_BYTES (s);
2080 }
2081 else
2082 {
2083 /* String is dead. Put it on the free-list. */
2084 struct sdata *data = SDATA_OF_STRING (s);
2085
2086 /* Save the size of S in its sdata so that we know
2087 how large that is. Reset the sdata's string
2088 back-pointer so that we know it's free. */
31d929e5
GM
2089#ifdef GC_CHECK_STRING_BYTES
2090 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2091 abort ();
2092#else
2e471eb5 2093 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2094#endif
2e471eb5
GM
2095 data->string = NULL;
2096
2097 /* Reset the strings's `data' member so that we
2098 know it's free. */
2099 s->data = NULL;
2100
2101 /* Put the string on the free-list. */
2102 NEXT_FREE_LISP_STRING (s) = string_free_list;
2103 string_free_list = s;
2104 ++nfree;
2105 }
2106 }
2107 else
2108 {
2109 /* S was on the free-list before. Put it there again. */
2110 NEXT_FREE_LISP_STRING (s) = string_free_list;
2111 string_free_list = s;
2112 ++nfree;
2113 }
2114 }
2115
34400008 2116 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2117 the first two of them. */
19bcad1f
SM
2118 if (nfree == STRING_BLOCK_SIZE
2119 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2120 {
2121 lisp_free (b);
2122 --n_string_blocks;
2123 string_free_list = free_list_before;
2124 }
2125 else
2126 {
2127 total_free_strings += nfree;
2128 b->next = live_blocks;
2129 live_blocks = b;
2130 }
2131 }
2132
bdbed949 2133 check_string_free_list ();
212f33f1 2134
2e471eb5
GM
2135 string_blocks = live_blocks;
2136 free_large_strings ();
2137 compact_small_strings ();
212f33f1 2138
bdbed949 2139 check_string_free_list ();
2e471eb5
GM
2140}
2141
2142
2143/* Free dead large strings. */
2144
2145static void
2146free_large_strings ()
2147{
2148 struct sblock *b, *next;
2149 struct sblock *live_blocks = NULL;
177c0ea7 2150
2e471eb5
GM
2151 for (b = large_sblocks; b; b = next)
2152 {
2153 next = b->next;
2154
2155 if (b->first_data.string == NULL)
2156 lisp_free (b);
2157 else
2158 {
2159 b->next = live_blocks;
2160 live_blocks = b;
2161 }
2162 }
2163
2164 large_sblocks = live_blocks;
2165}
2166
2167
2168/* Compact data of small strings. Free sblocks that don't contain
2169 data of live strings after compaction. */
2170
2171static void
2172compact_small_strings ()
2173{
2174 struct sblock *b, *tb, *next;
2175 struct sdata *from, *to, *end, *tb_end;
2176 struct sdata *to_end, *from_end;
2177
2178 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2179 to, and TB_END is the end of TB. */
2180 tb = oldest_sblock;
2181 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2182 to = &tb->first_data;
2183
2184 /* Step through the blocks from the oldest to the youngest. We
2185 expect that old blocks will stabilize over time, so that less
2186 copying will happen this way. */
2187 for (b = oldest_sblock; b; b = b->next)
2188 {
2189 end = b->next_free;
2190 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2191
2e471eb5
GM
2192 for (from = &b->first_data; from < end; from = from_end)
2193 {
2194 /* Compute the next FROM here because copying below may
2195 overwrite data we need to compute it. */
2196 int nbytes;
2197
31d929e5
GM
2198#ifdef GC_CHECK_STRING_BYTES
2199 /* Check that the string size recorded in the string is the
2200 same as the one recorded in the sdata structure. */
2201 if (from->string
2202 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2203 abort ();
2204#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2205
2e471eb5
GM
2206 if (from->string)
2207 nbytes = GC_STRING_BYTES (from->string);
2208 else
31d929e5 2209 nbytes = SDATA_NBYTES (from);
177c0ea7 2210
212f33f1
KS
2211 if (nbytes > LARGE_STRING_BYTES)
2212 abort ();
212f33f1 2213
2e471eb5 2214 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2215 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2216
2217#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
2218 if (bcmp (string_overrun_cookie,
2219 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2220 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2221 abort ();
2222#endif
177c0ea7 2223
2e471eb5
GM
2224 /* FROM->string non-null means it's alive. Copy its data. */
2225 if (from->string)
2226 {
2227 /* If TB is full, proceed with the next sblock. */
212f33f1 2228 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2229 if (to_end > tb_end)
2230 {
2231 tb->next_free = to;
2232 tb = tb->next;
2233 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2234 to = &tb->first_data;
212f33f1 2235 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2236 }
177c0ea7 2237
2e471eb5
GM
2238 /* Copy, and update the string's `data' pointer. */
2239 if (from != to)
2240 {
a2407477 2241 xassert (tb != b || to <= from);
212f33f1 2242 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
31d929e5 2243 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2244 }
2245
2246 /* Advance past the sdata we copied to. */
2247 to = to_end;
2248 }
2249 }
2250 }
2251
2252 /* The rest of the sblocks following TB don't contain live data, so
2253 we can free them. */
2254 for (b = tb->next; b; b = next)
2255 {
2256 next = b->next;
2257 lisp_free (b);
2258 }
2259
2260 tb->next_free = to;
2261 tb->next = NULL;
2262 current_sblock = tb;
2263}
2264
2265
2266DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2267 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2268LENGTH must be an integer.
2269INIT must be an integer that represents a character. */)
7ee72033 2270 (length, init)
2e471eb5
GM
2271 Lisp_Object length, init;
2272{
2273 register Lisp_Object val;
2274 register unsigned char *p, *end;
2275 int c, nbytes;
2276
b7826503
PJ
2277 CHECK_NATNUM (length);
2278 CHECK_NUMBER (init);
2e471eb5
GM
2279
2280 c = XINT (init);
830ff83b 2281 if (ASCII_CHAR_P (c))
2e471eb5
GM
2282 {
2283 nbytes = XINT (length);
2284 val = make_uninit_string (nbytes);
d5db4077
KR
2285 p = SDATA (val);
2286 end = p + SCHARS (val);
2e471eb5
GM
2287 while (p != end)
2288 *p++ = c;
2289 }
2290 else
2291 {
d942b71c 2292 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5
GM
2293 int len = CHAR_STRING (c, str);
2294
2295 nbytes = len * XINT (length);
2296 val = make_uninit_multibyte_string (XINT (length), nbytes);
d5db4077 2297 p = SDATA (val);
2e471eb5
GM
2298 end = p + nbytes;
2299 while (p != end)
2300 {
2301 bcopy (str, p, len);
2302 p += len;
2303 }
2304 }
177c0ea7 2305
2e471eb5
GM
2306 *p = 0;
2307 return val;
2308}
2309
2310
2311DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2312 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033
MB
2313LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2314 (length, init)
2e471eb5
GM
2315 Lisp_Object length, init;
2316{
2317 register Lisp_Object val;
2318 struct Lisp_Bool_Vector *p;
2319 int real_init, i;
2320 int length_in_chars, length_in_elts, bits_per_value;
2321
b7826503 2322 CHECK_NATNUM (length);
2e471eb5 2323
a097329f 2324 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2325
2326 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
2327 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2328 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
2329
2330 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2331 slot `size' of the struct Lisp_Bool_Vector. */
2332 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
177c0ea7 2333
2e471eb5 2334 /* Get rid of any bits that would cause confusion. */
d2029e5b 2335 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
d0fdb6da 2336 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
d2029e5b
SM
2337 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2338
2339 p = XBOOL_VECTOR (val);
2e471eb5 2340 p->size = XFASTINT (length);
177c0ea7 2341
2e471eb5
GM
2342 real_init = (NILP (init) ? 0 : -1);
2343 for (i = 0; i < length_in_chars ; i++)
2344 p->data[i] = real_init;
177c0ea7 2345
2e471eb5 2346 /* Clear the extraneous bits in the last byte. */
a097329f 2347 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
d2029e5b 2348 p->data[length_in_chars - 1]
a097329f 2349 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
2350
2351 return val;
2352}
2353
2354
2355/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2356 of characters from the contents. This string may be unibyte or
2357 multibyte, depending on the contents. */
2358
2359Lisp_Object
2360make_string (contents, nbytes)
943b873e 2361 const char *contents;
2e471eb5
GM
2362 int nbytes;
2363{
2364 register Lisp_Object val;
9eac9d59
KH
2365 int nchars, multibyte_nbytes;
2366
2367 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
9eac9d59
KH
2368 if (nbytes == nchars || nbytes != multibyte_nbytes)
2369 /* CONTENTS contains no multibyte sequences or contains an invalid
2370 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2371 val = make_unibyte_string (contents, nbytes);
2372 else
2373 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2374 return val;
2375}
2376
2377
2378/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2379
2380Lisp_Object
2381make_unibyte_string (contents, length)
943b873e 2382 const char *contents;
2e471eb5
GM
2383 int length;
2384{
2385 register Lisp_Object val;
2386 val = make_uninit_string (length);
d5db4077
KR
2387 bcopy (contents, SDATA (val), length);
2388 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2389 return val;
2390}
2391
2392
2393/* Make a multibyte string from NCHARS characters occupying NBYTES
2394 bytes at CONTENTS. */
2395
2396Lisp_Object
2397make_multibyte_string (contents, nchars, nbytes)
943b873e 2398 const char *contents;
2e471eb5
GM
2399 int nchars, nbytes;
2400{
2401 register Lisp_Object val;
2402 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2403 bcopy (contents, SDATA (val), nbytes);
2e471eb5
GM
2404 return val;
2405}
2406
2407
2408/* Make a string from NCHARS characters occupying NBYTES bytes at
2409 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2410
2411Lisp_Object
2412make_string_from_bytes (contents, nchars, nbytes)
fcbb914b 2413 const char *contents;
2e471eb5
GM
2414 int nchars, nbytes;
2415{
2416 register Lisp_Object val;
2417 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077
KR
2418 bcopy (contents, SDATA (val), nbytes);
2419 if (SBYTES (val) == SCHARS (val))
2420 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2421 return val;
2422}
2423
2424
2425/* Make a string from NCHARS characters occupying NBYTES bytes at
2426 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2427 string as multibyte. If NCHARS is negative, it counts the number of
2428 characters by itself. */
2e471eb5
GM
2429
2430Lisp_Object
2431make_specified_string (contents, nchars, nbytes, multibyte)
fcbb914b 2432 const char *contents;
2e471eb5
GM
2433 int nchars, nbytes;
2434 int multibyte;
2435{
2436 register Lisp_Object val;
229b28c4
KH
2437
2438 if (nchars < 0)
2439 {
2440 if (multibyte)
2441 nchars = multibyte_chars_in_text (contents, nbytes);
2442 else
2443 nchars = nbytes;
2444 }
2e471eb5 2445 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2446 bcopy (contents, SDATA (val), nbytes);
2e471eb5 2447 if (!multibyte)
d5db4077 2448 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2449 return val;
2450}
2451
2452
2453/* Make a string from the data at STR, treating it as multibyte if the
2454 data warrants. */
2455
2456Lisp_Object
2457build_string (str)
943b873e 2458 const char *str;
2e471eb5
GM
2459{
2460 return make_string (str, strlen (str));
2461}
2462
2463
2464/* Return an unibyte Lisp_String set up to hold LENGTH characters
2465 occupying LENGTH bytes. */
2466
2467Lisp_Object
2468make_uninit_string (length)
2469 int length;
2470{
2471 Lisp_Object val;
4d774b0f
JB
2472
2473 if (!length)
2474 return empty_unibyte_string;
2e471eb5 2475 val = make_uninit_multibyte_string (length, length);
d5db4077 2476 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2477 return val;
2478}
2479
2480
2481/* Return a multibyte Lisp_String set up to hold NCHARS characters
2482 which occupy NBYTES bytes. */
2483
2484Lisp_Object
2485make_uninit_multibyte_string (nchars, nbytes)
2486 int nchars, nbytes;
2487{
2488 Lisp_Object string;
2489 struct Lisp_String *s;
2490
2491 if (nchars < 0)
2492 abort ();
4d774b0f
JB
2493 if (!nbytes)
2494 return empty_multibyte_string;
2e471eb5
GM
2495
2496 s = allocate_string ();
2497 allocate_string_data (s, nchars, nbytes);
2498 XSETSTRING (string, s);
2499 string_chars_consed += nbytes;
2500 return string;
2501}
2502
2503
2504\f
2505/***********************************************************************
2506 Float Allocation
2507 ***********************************************************************/
2508
2e471eb5
GM
2509/* We store float cells inside of float_blocks, allocating a new
2510 float_block with malloc whenever necessary. Float cells reclaimed
2511 by GC are put on a free list to be reallocated before allocating
ab6780cd 2512 any new float cells from the latest float_block. */
2e471eb5 2513
6b61353c
KH
2514#define FLOAT_BLOCK_SIZE \
2515 (((BLOCK_BYTES - sizeof (struct float_block *) \
2516 /* The compiler might add padding at the end. */ \
2517 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2518 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2519
2520#define GETMARKBIT(block,n) \
2521 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2522 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2523 & 1)
2524
2525#define SETMARKBIT(block,n) \
2526 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2527 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2528
2529#define UNSETMARKBIT(block,n) \
2530 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2531 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2532
2533#define FLOAT_BLOCK(fptr) \
2534 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2535
2536#define FLOAT_INDEX(fptr) \
2537 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2538
2539struct float_block
2540{
ab6780cd 2541 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2542 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2543 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2544 struct float_block *next;
2e471eb5
GM
2545};
2546
ab6780cd
SM
2547#define FLOAT_MARKED_P(fptr) \
2548 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2549
2550#define FLOAT_MARK(fptr) \
2551 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2552
2553#define FLOAT_UNMARK(fptr) \
2554 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2555
34400008
GM
2556/* Current float_block. */
2557
2e471eb5 2558struct float_block *float_block;
34400008
GM
2559
2560/* Index of first unused Lisp_Float in the current float_block. */
2561
2e471eb5
GM
2562int float_block_index;
2563
2564/* Total number of float blocks now in use. */
2565
2566int n_float_blocks;
2567
34400008
GM
2568/* Free-list of Lisp_Floats. */
2569
2e471eb5
GM
2570struct Lisp_Float *float_free_list;
2571
34400008 2572
966533c9 2573/* Initialize float allocation. */
34400008 2574
d3d47262 2575static void
2e471eb5
GM
2576init_float ()
2577{
08b7c2cb
SM
2578 float_block = NULL;
2579 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2580 float_free_list = 0;
08b7c2cb 2581 n_float_blocks = 0;
2e471eb5
GM
2582}
2583
34400008
GM
2584
2585/* Explicitly free a float cell by putting it on the free-list. */
2e471eb5 2586
d3d47262 2587static void
2e471eb5
GM
2588free_float (ptr)
2589 struct Lisp_Float *ptr;
2590{
28a099a4 2591 ptr->u.chain = float_free_list;
2e471eb5
GM
2592 float_free_list = ptr;
2593}
2594
34400008
GM
2595
2596/* Return a new float object with value FLOAT_VALUE. */
2597
2e471eb5
GM
2598Lisp_Object
2599make_float (float_value)
2600 double float_value;
2601{
2602 register Lisp_Object val;
2603
e2984df0
CY
2604 /* eassert (!handling_signal); */
2605
dafc79fa 2606 MALLOC_BLOCK_INPUT;
cfb2f32e 2607
2e471eb5
GM
2608 if (float_free_list)
2609 {
2610 /* We use the data field for chaining the free list
2611 so that we won't use the same field that has the mark bit. */
2612 XSETFLOAT (val, float_free_list);
28a099a4 2613 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2614 }
2615 else
2616 {
2617 if (float_block_index == FLOAT_BLOCK_SIZE)
2618 {
2619 register struct float_block *new;
2620
ab6780cd
SM
2621 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2622 MEM_TYPE_FLOAT);
2e471eb5 2623 new->next = float_block;
6b61353c 2624 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2625 float_block = new;
2626 float_block_index = 0;
2627 n_float_blocks++;
2628 }
6b61353c
KH
2629 XSETFLOAT (val, &float_block->floats[float_block_index]);
2630 float_block_index++;
2e471eb5 2631 }
177c0ea7 2632
dafc79fa 2633 MALLOC_UNBLOCK_INPUT;
e2984df0 2634
f601cdf3 2635 XFLOAT_INIT (val, float_value);
6b61353c 2636 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2637 consing_since_gc += sizeof (struct Lisp_Float);
2638 floats_consed++;
2639 return val;
2640}
2641
2e471eb5
GM
2642
2643\f
2644/***********************************************************************
2645 Cons Allocation
2646 ***********************************************************************/
2647
2648/* We store cons cells inside of cons_blocks, allocating a new
2649 cons_block with malloc whenever necessary. Cons cells reclaimed by
2650 GC are put on a free list to be reallocated before allocating
08b7c2cb 2651 any new cons cells from the latest cons_block. */
2e471eb5
GM
2652
2653#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2654 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2655 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2656
2657#define CONS_BLOCK(fptr) \
2658 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2659
2660#define CONS_INDEX(fptr) \
2661 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2662
2663struct cons_block
2664{
08b7c2cb 2665 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2666 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2667 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2668 struct cons_block *next;
2e471eb5
GM
2669};
2670
08b7c2cb
SM
2671#define CONS_MARKED_P(fptr) \
2672 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2673
2674#define CONS_MARK(fptr) \
2675 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2676
2677#define CONS_UNMARK(fptr) \
2678 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2679
34400008
GM
2680/* Current cons_block. */
2681
2e471eb5 2682struct cons_block *cons_block;
34400008
GM
2683
2684/* Index of first unused Lisp_Cons in the current block. */
2685
2e471eb5
GM
2686int cons_block_index;
2687
34400008
GM
2688/* Free-list of Lisp_Cons structures. */
2689
2e471eb5
GM
2690struct Lisp_Cons *cons_free_list;
2691
2692/* Total number of cons blocks now in use. */
2693
d3d47262 2694static int n_cons_blocks;
2e471eb5 2695
34400008
GM
2696
2697/* Initialize cons allocation. */
2698
d3d47262 2699static void
2e471eb5
GM
2700init_cons ()
2701{
08b7c2cb
SM
2702 cons_block = NULL;
2703 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2704 cons_free_list = 0;
08b7c2cb 2705 n_cons_blocks = 0;
2e471eb5
GM
2706}
2707
34400008
GM
2708
2709/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2710
2711void
2712free_cons (ptr)
2713 struct Lisp_Cons *ptr;
2714{
28a099a4 2715 ptr->u.chain = cons_free_list;
34400008
GM
2716#if GC_MARK_STACK
2717 ptr->car = Vdead;
2718#endif
2e471eb5
GM
2719 cons_free_list = ptr;
2720}
2721
2722DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2723 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
7ee72033 2724 (car, cdr)
2e471eb5
GM
2725 Lisp_Object car, cdr;
2726{
2727 register Lisp_Object val;
2728
e2984df0
CY
2729 /* eassert (!handling_signal); */
2730
dafc79fa 2731 MALLOC_BLOCK_INPUT;
cfb2f32e 2732
2e471eb5
GM
2733 if (cons_free_list)
2734 {
2735 /* We use the cdr for chaining the free list
2736 so that we won't use the same field that has the mark bit. */
2737 XSETCONS (val, cons_free_list);
28a099a4 2738 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2739 }
2740 else
2741 {
2742 if (cons_block_index == CONS_BLOCK_SIZE)
2743 {
2744 register struct cons_block *new;
08b7c2cb
SM
2745 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2746 MEM_TYPE_CONS);
6b61353c 2747 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2748 new->next = cons_block;
2749 cons_block = new;
2750 cons_block_index = 0;
2751 n_cons_blocks++;
2752 }
6b61353c
KH
2753 XSETCONS (val, &cons_block->conses[cons_block_index]);
2754 cons_block_index++;
2e471eb5 2755 }
177c0ea7 2756
dafc79fa 2757 MALLOC_UNBLOCK_INPUT;
e2984df0 2758
f3fbd155
KR
2759 XSETCAR (val, car);
2760 XSETCDR (val, cdr);
6b61353c 2761 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2762 consing_since_gc += sizeof (struct Lisp_Cons);
2763 cons_cells_consed++;
2764 return val;
2765}
2766
e3e56238
RS
2767/* Get an error now if there's any junk in the cons free list. */
2768void
2769check_cons_list ()
2770{
212f33f1 2771#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2772 struct Lisp_Cons *tail = cons_free_list;
2773
e3e56238 2774 while (tail)
28a099a4 2775 tail = tail->u.chain;
e3e56238
RS
2776#endif
2777}
34400008 2778
9b306d37
KS
2779/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2780
2781Lisp_Object
2782list1 (arg1)
2783 Lisp_Object arg1;
2784{
2785 return Fcons (arg1, Qnil);
2786}
2e471eb5
GM
2787
2788Lisp_Object
2789list2 (arg1, arg2)
2790 Lisp_Object arg1, arg2;
2791{
2792 return Fcons (arg1, Fcons (arg2, Qnil));
2793}
2794
34400008 2795
2e471eb5
GM
2796Lisp_Object
2797list3 (arg1, arg2, arg3)
2798 Lisp_Object arg1, arg2, arg3;
2799{
2800 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2801}
2802
34400008 2803
2e471eb5
GM
2804Lisp_Object
2805list4 (arg1, arg2, arg3, arg4)
2806 Lisp_Object arg1, arg2, arg3, arg4;
2807{
2808 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2809}
2810
34400008 2811
2e471eb5
GM
2812Lisp_Object
2813list5 (arg1, arg2, arg3, arg4, arg5)
2814 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2815{
2816 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2817 Fcons (arg5, Qnil)))));
2818}
2819
34400008 2820
2e471eb5 2821DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2822 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2823Any number of arguments, even zero arguments, are allowed.
2824usage: (list &rest OBJECTS) */)
7ee72033 2825 (nargs, args)
2e471eb5
GM
2826 int nargs;
2827 register Lisp_Object *args;
2828{
2829 register Lisp_Object val;
2830 val = Qnil;
2831
2832 while (nargs > 0)
2833 {
2834 nargs--;
2835 val = Fcons (args[nargs], val);
2836 }
2837 return val;
2838}
2839
34400008 2840
2e471eb5 2841DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2842 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
7ee72033 2843 (length, init)
2e471eb5
GM
2844 register Lisp_Object length, init;
2845{
2846 register Lisp_Object val;
2847 register int size;
2848
b7826503 2849 CHECK_NATNUM (length);
2e471eb5
GM
2850 size = XFASTINT (length);
2851
2852 val = Qnil;
ce070307
GM
2853 while (size > 0)
2854 {
2855 val = Fcons (init, val);
2856 --size;
2857
2858 if (size > 0)
2859 {
2860 val = Fcons (init, val);
2861 --size;
177c0ea7 2862
ce070307
GM
2863 if (size > 0)
2864 {
2865 val = Fcons (init, val);
2866 --size;
177c0ea7 2867
ce070307
GM
2868 if (size > 0)
2869 {
2870 val = Fcons (init, val);
2871 --size;
177c0ea7 2872
ce070307
GM
2873 if (size > 0)
2874 {
2875 val = Fcons (init, val);
2876 --size;
2877 }
2878 }
2879 }
2880 }
2881
2882 QUIT;
2883 }
177c0ea7 2884
7146af97
JB
2885 return val;
2886}
2e471eb5
GM
2887
2888
7146af97 2889\f
2e471eb5
GM
2890/***********************************************************************
2891 Vector Allocation
2892 ***********************************************************************/
7146af97 2893
34400008
GM
2894/* Singly-linked list of all vectors. */
2895
d3d47262 2896static struct Lisp_Vector *all_vectors;
7146af97 2897
2e471eb5
GM
2898/* Total number of vector-like objects now in use. */
2899
d3d47262 2900static int n_vectors;
c8099634 2901
34400008
GM
2902
2903/* Value is a pointer to a newly allocated Lisp_Vector structure
2904 with room for LEN Lisp_Objects. */
2905
ece93c02 2906static struct Lisp_Vector *
9c545a55 2907allocate_vectorlike (len)
1825c68d
KH
2908 EMACS_INT len;
2909{
2910 struct Lisp_Vector *p;
675d5130 2911 size_t nbytes;
1825c68d 2912
dafc79fa
SM
2913 MALLOC_BLOCK_INPUT;
2914
d1658221 2915#ifdef DOUG_LEA_MALLOC
f8608968
GM
2916 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2917 because mapped region contents are not preserved in
2918 a dumped Emacs. */
d1658221
RS
2919 mallopt (M_MMAP_MAX, 0);
2920#endif
177c0ea7 2921
cfb2f32e
SM
2922 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2923 /* eassert (!handling_signal); */
2924
34400008 2925 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
9c545a55 2926 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
177c0ea7 2927
d1658221 2928#ifdef DOUG_LEA_MALLOC
34400008 2929 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 2930 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 2931#endif
177c0ea7 2932
34400008 2933 consing_since_gc += nbytes;
310ea200 2934 vector_cells_consed += len;
1825c68d
KH
2935
2936 p->next = all_vectors;
2937 all_vectors = p;
e2984df0 2938
dafc79fa 2939 MALLOC_UNBLOCK_INPUT;
e2984df0 2940
34400008 2941 ++n_vectors;
1825c68d
KH
2942 return p;
2943}
2944
34400008 2945
ece93c02
GM
2946/* Allocate a vector with NSLOTS slots. */
2947
2948struct Lisp_Vector *
2949allocate_vector (nslots)
2950 EMACS_INT nslots;
2951{
9c545a55 2952 struct Lisp_Vector *v = allocate_vectorlike (nslots);
ece93c02
GM
2953 v->size = nslots;
2954 return v;
2955}
2956
2957
2958/* Allocate other vector-like structures. */
2959
30f95089 2960struct Lisp_Vector *
d2029e5b
SM
2961allocate_pseudovector (memlen, lisplen, tag)
2962 int memlen, lisplen;
2963 EMACS_INT tag;
ece93c02 2964{
d2029e5b 2965 struct Lisp_Vector *v = allocate_vectorlike (memlen);
ece93c02 2966 EMACS_INT i;
177c0ea7 2967
d2029e5b
SM
2968 /* Only the first lisplen slots will be traced normally by the GC. */
2969 v->size = lisplen;
2970 for (i = 0; i < lisplen; ++i)
ece93c02 2971 v->contents[i] = Qnil;
177c0ea7 2972
d2029e5b
SM
2973 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2974 return v;
2975}
d2029e5b 2976
ece93c02 2977struct Lisp_Hash_Table *
878f97ff 2978allocate_hash_table (void)
ece93c02 2979{
878f97ff 2980 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
2981}
2982
2983
2984struct window *
2985allocate_window ()
2986{
d2029e5b 2987 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
ece93c02 2988}
177c0ea7 2989
177c0ea7 2990
4a729fd8
SM
2991struct terminal *
2992allocate_terminal ()
2993{
d2029e5b
SM
2994 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2995 next_terminal, PVEC_TERMINAL);
2996 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2997 bzero (&(t->next_terminal),
2998 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
ece93c02 2999
d2029e5b 3000 return t;
4a729fd8 3001}
ece93c02
GM
3002
3003struct frame *
3004allocate_frame ()
3005{
d2029e5b
SM
3006 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3007 face_cache, PVEC_FRAME);
3008 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3009 bzero (&(f->face_cache),
3010 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3011 return f;
ece93c02
GM
3012}
3013
3014
3015struct Lisp_Process *
3016allocate_process ()
3017{
d2029e5b 3018 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
ece93c02
GM
3019}
3020
3021
7146af97 3022DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3023 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033
MB
3024See also the function `vector'. */)
3025 (length, init)
7146af97
JB
3026 register Lisp_Object length, init;
3027{
1825c68d
KH
3028 Lisp_Object vector;
3029 register EMACS_INT sizei;
3030 register int index;
7146af97
JB
3031 register struct Lisp_Vector *p;
3032
b7826503 3033 CHECK_NATNUM (length);
c9dad5ed 3034 sizei = XFASTINT (length);
7146af97 3035
ece93c02 3036 p = allocate_vector (sizei);
7146af97
JB
3037 for (index = 0; index < sizei; index++)
3038 p->contents[index] = init;
3039
1825c68d 3040 XSETVECTOR (vector, p);
7146af97
JB
3041 return vector;
3042}
3043
34400008 3044
7146af97 3045DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3046 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3047Any number of arguments, even zero arguments, are allowed.
3048usage: (vector &rest OBJECTS) */)
7ee72033 3049 (nargs, args)
7146af97
JB
3050 register int nargs;
3051 Lisp_Object *args;
3052{
3053 register Lisp_Object len, val;
3054 register int index;
3055 register struct Lisp_Vector *p;
3056
67ba9986 3057 XSETFASTINT (len, nargs);
7146af97
JB
3058 val = Fmake_vector (len, Qnil);
3059 p = XVECTOR (val);
3060 for (index = 0; index < nargs; index++)
3061 p->contents[index] = args[index];
3062 return val;
3063}
3064
34400008 3065
7146af97 3066DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3067 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
3068The arguments should be the arglist, bytecode-string, constant vector,
3069stack size, (optional) doc string, and (optional) interactive spec.
3070The first four arguments are required; at most six have any
ae8e8122 3071significance.
92cc28b2 3072usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
7ee72033 3073 (nargs, args)
7146af97
JB
3074 register int nargs;
3075 Lisp_Object *args;
3076{
3077 register Lisp_Object len, val;
3078 register int index;
3079 register struct Lisp_Vector *p;
3080
67ba9986 3081 XSETFASTINT (len, nargs);
265a9e55 3082 if (!NILP (Vpurify_flag))
5a053ea9 3083 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
3084 else
3085 val = Fmake_vector (len, Qnil);
9eac9d59
KH
3086
3087 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3088 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3089 earlier because they produced a raw 8-bit string for byte-code
3090 and now such a byte-code string is loaded as multibyte while
3091 raw 8-bit characters converted to multibyte form. Thus, now we
3092 must convert them back to the original unibyte form. */
3093 args[1] = Fstring_as_unibyte (args[1]);
3094
7146af97
JB
3095 p = XVECTOR (val);
3096 for (index = 0; index < nargs; index++)
3097 {
265a9e55 3098 if (!NILP (Vpurify_flag))
7146af97
JB
3099 args[index] = Fpurecopy (args[index]);
3100 p->contents[index] = args[index];
3101 }
d2029e5b 3102 XSETPVECTYPE (p, PVEC_COMPILED);
50aee051 3103 XSETCOMPILED (val, p);
7146af97
JB
3104 return val;
3105}
2e471eb5 3106
34400008 3107
7146af97 3108\f
2e471eb5
GM
3109/***********************************************************************
3110 Symbol Allocation
3111 ***********************************************************************/
7146af97 3112
2e471eb5
GM
3113/* Each symbol_block is just under 1020 bytes long, since malloc
3114 really allocates in units of powers of two and uses 4 bytes for its
3115 own overhead. */
7146af97
JB
3116
3117#define SYMBOL_BLOCK_SIZE \
3118 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3119
3120struct symbol_block
2e471eb5 3121{
6b61353c 3122 /* Place `symbols' first, to preserve alignment. */
2e471eb5 3123 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3124 struct symbol_block *next;
2e471eb5 3125};
7146af97 3126
34400008
GM
3127/* Current symbol block and index of first unused Lisp_Symbol
3128 structure in it. */
3129
d3d47262
JB
3130static struct symbol_block *symbol_block;
3131static int symbol_block_index;
7146af97 3132
34400008
GM
3133/* List of free symbols. */
3134
d3d47262 3135static struct Lisp_Symbol *symbol_free_list;
7146af97 3136
c8099634 3137/* Total number of symbol blocks now in use. */
2e471eb5 3138
d3d47262 3139static int n_symbol_blocks;
c8099634 3140
34400008
GM
3141
3142/* Initialize symbol allocation. */
3143
d3d47262 3144static void
7146af97
JB
3145init_symbol ()
3146{
005ca5c7
DL
3147 symbol_block = NULL;
3148 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3149 symbol_free_list = 0;
005ca5c7 3150 n_symbol_blocks = 0;
7146af97
JB
3151}
3152
34400008 3153
7146af97 3154DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3155 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033
MB
3156Its value and function definition are void, and its property list is nil. */)
3157 (name)
54ee42dd 3158 Lisp_Object name;
7146af97
JB
3159{
3160 register Lisp_Object val;
3161 register struct Lisp_Symbol *p;
3162
b7826503 3163 CHECK_STRING (name);
7146af97 3164
537407f0 3165 /* eassert (!handling_signal); */
cfb2f32e 3166
dafc79fa 3167 MALLOC_BLOCK_INPUT;
e2984df0 3168
7146af97
JB
3169 if (symbol_free_list)
3170 {
45d12a89 3171 XSETSYMBOL (val, symbol_free_list);
28a099a4 3172 symbol_free_list = symbol_free_list->next;
7146af97
JB
3173 }
3174 else
3175 {
3176 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3177 {
3c06d205 3178 struct symbol_block *new;
34400008
GM
3179 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3180 MEM_TYPE_SYMBOL);
7146af97
JB
3181 new->next = symbol_block;
3182 symbol_block = new;
3183 symbol_block_index = 0;
c8099634 3184 n_symbol_blocks++;
7146af97 3185 }
6b61353c
KH
3186 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3187 symbol_block_index++;
7146af97 3188 }
177c0ea7 3189
dafc79fa 3190 MALLOC_UNBLOCK_INPUT;
e2984df0 3191
7146af97 3192 p = XSYMBOL (val);
8fe5665d 3193 p->xname = name;
7146af97 3194 p->plist = Qnil;
ce5b453a
SM
3195 p->redirect = SYMBOL_PLAINVAL;
3196 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3197 p->function = Qunbound;
9e713715 3198 p->next = NULL;
2336fe58 3199 p->gcmarkbit = 0;
9e713715
GM
3200 p->interned = SYMBOL_UNINTERNED;
3201 p->constant = 0;
2e471eb5
GM
3202 consing_since_gc += sizeof (struct Lisp_Symbol);
3203 symbols_consed++;
7146af97
JB
3204 return val;
3205}
3206
3f25e183 3207
2e471eb5
GM
3208\f
3209/***********************************************************************
34400008 3210 Marker (Misc) Allocation
2e471eb5 3211 ***********************************************************************/
3f25e183 3212
2e471eb5
GM
3213/* Allocation of markers and other objects that share that structure.
3214 Works like allocation of conses. */
c0696668 3215
2e471eb5
GM
3216#define MARKER_BLOCK_SIZE \
3217 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3218
3219struct marker_block
c0696668 3220{
6b61353c 3221 /* Place `markers' first, to preserve alignment. */
2e471eb5 3222 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3223 struct marker_block *next;
2e471eb5 3224};
c0696668 3225
d3d47262
JB
3226static struct marker_block *marker_block;
3227static int marker_block_index;
c0696668 3228
d3d47262 3229static union Lisp_Misc *marker_free_list;
c0696668 3230
2e471eb5 3231/* Total number of marker blocks now in use. */
3f25e183 3232
d3d47262 3233static int n_marker_blocks;
2e471eb5 3234
d3d47262 3235static void
2e471eb5 3236init_marker ()
3f25e183 3237{
005ca5c7
DL
3238 marker_block = NULL;
3239 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3240 marker_free_list = 0;
005ca5c7 3241 n_marker_blocks = 0;
3f25e183
RS
3242}
3243
2e471eb5
GM
3244/* Return a newly allocated Lisp_Misc object, with no substructure. */
3245
3f25e183 3246Lisp_Object
2e471eb5 3247allocate_misc ()
7146af97 3248{
2e471eb5 3249 Lisp_Object val;
7146af97 3250
e2984df0
CY
3251 /* eassert (!handling_signal); */
3252
dafc79fa 3253 MALLOC_BLOCK_INPUT;
cfb2f32e 3254
2e471eb5 3255 if (marker_free_list)
7146af97 3256 {
2e471eb5
GM
3257 XSETMISC (val, marker_free_list);
3258 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3259 }
3260 else
7146af97 3261 {
2e471eb5
GM
3262 if (marker_block_index == MARKER_BLOCK_SIZE)
3263 {
3264 struct marker_block *new;
34400008
GM
3265 new = (struct marker_block *) lisp_malloc (sizeof *new,
3266 MEM_TYPE_MISC);
2e471eb5
GM
3267 new->next = marker_block;
3268 marker_block = new;
3269 marker_block_index = 0;
3270 n_marker_blocks++;
7b7990cc 3271 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3272 }
6b61353c
KH
3273 XSETMISC (val, &marker_block->markers[marker_block_index]);
3274 marker_block_index++;
7146af97 3275 }
177c0ea7 3276
dafc79fa 3277 MALLOC_UNBLOCK_INPUT;
e2984df0 3278
7b7990cc 3279 --total_free_markers;
2e471eb5
GM
3280 consing_since_gc += sizeof (union Lisp_Misc);
3281 misc_objects_consed++;
67ee9f6e 3282 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3283 return val;
3284}
3285
7b7990cc
KS
3286/* Free a Lisp_Misc object */
3287
3288void
3289free_misc (misc)
3290 Lisp_Object misc;
3291{
d314756e 3292 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3293 XMISC (misc)->u_free.chain = marker_free_list;
3294 marker_free_list = XMISC (misc);
3295
3296 total_free_markers++;
3297}
3298
42172a6b
RS
3299/* Return a Lisp_Misc_Save_Value object containing POINTER and
3300 INTEGER. This is used to package C values to call record_unwind_protect.
3301 The unwind function can get the C values back using XSAVE_VALUE. */
3302
3303Lisp_Object
3304make_save_value (pointer, integer)
3305 void *pointer;
3306 int integer;
3307{
3308 register Lisp_Object val;
3309 register struct Lisp_Save_Value *p;
3310
3311 val = allocate_misc ();
3312 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3313 p = XSAVE_VALUE (val);
3314 p->pointer = pointer;
3315 p->integer = integer;
b766f870 3316 p->dogc = 0;
42172a6b
RS
3317 return val;
3318}
3319
2e471eb5 3320DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3321 doc: /* Return a newly allocated marker which does not point at any place. */)
7ee72033 3322 ()
2e471eb5
GM
3323{
3324 register Lisp_Object val;
3325 register struct Lisp_Marker *p;
7146af97 3326
2e471eb5
GM
3327 val = allocate_misc ();
3328 XMISCTYPE (val) = Lisp_Misc_Marker;
3329 p = XMARKER (val);
3330 p->buffer = 0;
3331 p->bytepos = 0;
3332 p->charpos = 0;
ef89c2ce 3333 p->next = NULL;
2e471eb5 3334 p->insertion_type = 0;
7146af97
JB
3335 return val;
3336}
2e471eb5
GM
3337
3338/* Put MARKER back on the free list after using it temporarily. */
3339
3340void
3341free_marker (marker)
3342 Lisp_Object marker;
3343{
ef89c2ce 3344 unchain_marker (XMARKER (marker));
7b7990cc 3345 free_misc (marker);
2e471eb5
GM
3346}
3347
c0696668 3348\f
7146af97 3349/* Return a newly created vector or string with specified arguments as
736471d1
RS
3350 elements. If all the arguments are characters that can fit
3351 in a string of events, make a string; otherwise, make a vector.
3352
3353 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3354
3355Lisp_Object
736471d1 3356make_event_array (nargs, args)
7146af97
JB
3357 register int nargs;
3358 Lisp_Object *args;
3359{
3360 int i;
3361
3362 for (i = 0; i < nargs; i++)
736471d1 3363 /* The things that fit in a string
c9ca4659
RS
3364 are characters that are in 0...127,
3365 after discarding the meta bit and all the bits above it. */
e687453f 3366 if (!INTEGERP (args[i])
c9ca4659 3367 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3368 return Fvector (nargs, args);
3369
3370 /* Since the loop exited, we know that all the things in it are
3371 characters, so we can make a string. */
3372 {
c13ccad2 3373 Lisp_Object result;
177c0ea7 3374
50aee051 3375 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3376 for (i = 0; i < nargs; i++)
736471d1 3377 {
46e7e6b0 3378 SSET (result, i, XINT (args[i]));
736471d1
RS
3379 /* Move the meta bit to the right place for a string char. */
3380 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3381 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3382 }
177c0ea7 3383
7146af97
JB
3384 return result;
3385 }
3386}
2e471eb5
GM
3387
3388
7146af97 3389\f
24d8a105
RS
3390/************************************************************************
3391 Memory Full Handling
3392 ************************************************************************/
3393
3394
3395/* Called if malloc returns zero. */
3396
3397void
3398memory_full ()
3399{
3400 int i;
3401
3402 Vmemory_full = Qt;
3403
3404 memory_full_cons_threshold = sizeof (struct cons_block);
3405
3406 /* The first time we get here, free the spare memory. */
3407 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3408 if (spare_memory[i])
3409 {
3410 if (i == 0)
3411 free (spare_memory[i]);
3412 else if (i >= 1 && i <= 4)
3413 lisp_align_free (spare_memory[i]);
3414 else
3415 lisp_free (spare_memory[i]);
3416 spare_memory[i] = 0;
3417 }
3418
3419 /* Record the space now used. When it decreases substantially,
3420 we can refill the memory reserve. */
3421#ifndef SYSTEM_MALLOC
3422 bytes_used_when_full = BYTES_USED;
3423#endif
3424
3425 /* This used to call error, but if we've run out of memory, we could
3426 get infinite recursion trying to build the string. */
9b306d37 3427 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3428}
3429
3430/* If we released our reserve (due to running out of memory),
3431 and we have a fair amount free once again,
3432 try to set aside another reserve in case we run out once more.
3433
3434 This is called when a relocatable block is freed in ralloc.c,
3435 and also directly from this file, in case we're not using ralloc.c. */
3436
3437void
3438refill_memory_reserve ()
3439{
3440#ifndef SYSTEM_MALLOC
3441 if (spare_memory[0] == 0)
3442 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3443 if (spare_memory[1] == 0)
3444 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3445 MEM_TYPE_CONS);
3446 if (spare_memory[2] == 0)
3447 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3448 MEM_TYPE_CONS);
3449 if (spare_memory[3] == 0)
3450 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3451 MEM_TYPE_CONS);
3452 if (spare_memory[4] == 0)
3453 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3454 MEM_TYPE_CONS);
3455 if (spare_memory[5] == 0)
3456 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3457 MEM_TYPE_STRING);
3458 if (spare_memory[6] == 0)
3459 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3460 MEM_TYPE_STRING);
3461 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3462 Vmemory_full = Qnil;
3463#endif
3464}
3465\f
34400008
GM
3466/************************************************************************
3467 C Stack Marking
3468 ************************************************************************/
3469
13c844fb
GM
3470#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3471
71cf5fa0
GM
3472/* Conservative C stack marking requires a method to identify possibly
3473 live Lisp objects given a pointer value. We do this by keeping
3474 track of blocks of Lisp data that are allocated in a red-black tree
3475 (see also the comment of mem_node which is the type of nodes in
3476 that tree). Function lisp_malloc adds information for an allocated
3477 block to the red-black tree with calls to mem_insert, and function
3478 lisp_free removes it with mem_delete. Functions live_string_p etc
3479 call mem_find to lookup information about a given pointer in the
3480 tree, and use that to determine if the pointer points to a Lisp
3481 object or not. */
3482
34400008
GM
3483/* Initialize this part of alloc.c. */
3484
3485static void
3486mem_init ()
3487{
3488 mem_z.left = mem_z.right = MEM_NIL;
3489 mem_z.parent = NULL;
3490 mem_z.color = MEM_BLACK;
3491 mem_z.start = mem_z.end = NULL;
3492 mem_root = MEM_NIL;
3493}
3494
3495
3496/* Value is a pointer to the mem_node containing START. Value is
3497 MEM_NIL if there is no node in the tree containing START. */
3498
3499static INLINE struct mem_node *
3500mem_find (start)
3501 void *start;
3502{
3503 struct mem_node *p;
3504
ece93c02
GM
3505 if (start < min_heap_address || start > max_heap_address)
3506 return MEM_NIL;
3507
34400008
GM
3508 /* Make the search always successful to speed up the loop below. */
3509 mem_z.start = start;
3510 mem_z.end = (char *) start + 1;
3511
3512 p = mem_root;
3513 while (start < p->start || start >= p->end)
3514 p = start < p->start ? p->left : p->right;
3515 return p;
3516}
3517
3518
3519/* Insert a new node into the tree for a block of memory with start
3520 address START, end address END, and type TYPE. Value is a
3521 pointer to the node that was inserted. */
3522
3523static struct mem_node *
3524mem_insert (start, end, type)
3525 void *start, *end;
3526 enum mem_type type;
3527{
3528 struct mem_node *c, *parent, *x;
3529
add3c3ea 3530 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3531 min_heap_address = start;
add3c3ea 3532 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3533 max_heap_address = end;
3534
34400008
GM
3535 /* See where in the tree a node for START belongs. In this
3536 particular application, it shouldn't happen that a node is already
3537 present. For debugging purposes, let's check that. */
3538 c = mem_root;
3539 parent = NULL;
3540
3541#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3542
34400008
GM
3543 while (c != MEM_NIL)
3544 {
3545 if (start >= c->start && start < c->end)
3546 abort ();
3547 parent = c;
3548 c = start < c->start ? c->left : c->right;
3549 }
177c0ea7 3550
34400008 3551#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3552
34400008
GM
3553 while (c != MEM_NIL)
3554 {
3555 parent = c;
3556 c = start < c->start ? c->left : c->right;
3557 }
177c0ea7 3558
34400008
GM
3559#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3560
3561 /* Create a new node. */
877935b1
GM
3562#ifdef GC_MALLOC_CHECK
3563 x = (struct mem_node *) _malloc_internal (sizeof *x);
3564 if (x == NULL)
3565 abort ();
3566#else
34400008 3567 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3568#endif
34400008
GM
3569 x->start = start;
3570 x->end = end;
3571 x->type = type;
3572 x->parent = parent;
3573 x->left = x->right = MEM_NIL;
3574 x->color = MEM_RED;
3575
3576 /* Insert it as child of PARENT or install it as root. */
3577 if (parent)
3578 {
3579 if (start < parent->start)
3580 parent->left = x;
3581 else
3582 parent->right = x;
3583 }
177c0ea7 3584 else
34400008
GM
3585 mem_root = x;
3586
3587 /* Re-establish red-black tree properties. */
3588 mem_insert_fixup (x);
877935b1 3589
34400008
GM
3590 return x;
3591}
3592
3593
3594/* Re-establish the red-black properties of the tree, and thereby
3595 balance the tree, after node X has been inserted; X is always red. */
3596
3597static void
3598mem_insert_fixup (x)
3599 struct mem_node *x;
3600{
3601 while (x != mem_root && x->parent->color == MEM_RED)
3602 {
3603 /* X is red and its parent is red. This is a violation of
3604 red-black tree property #3. */
177c0ea7 3605
34400008
GM
3606 if (x->parent == x->parent->parent->left)
3607 {
3608 /* We're on the left side of our grandparent, and Y is our
3609 "uncle". */
3610 struct mem_node *y = x->parent->parent->right;
177c0ea7 3611
34400008
GM
3612 if (y->color == MEM_RED)
3613 {
3614 /* Uncle and parent are red but should be black because
3615 X is red. Change the colors accordingly and proceed
3616 with the grandparent. */
3617 x->parent->color = MEM_BLACK;
3618 y->color = MEM_BLACK;
3619 x->parent->parent->color = MEM_RED;
3620 x = x->parent->parent;
3621 }
3622 else
3623 {
3624 /* Parent and uncle have different colors; parent is
3625 red, uncle is black. */
3626 if (x == x->parent->right)
3627 {
3628 x = x->parent;
3629 mem_rotate_left (x);
3630 }
3631
3632 x->parent->color = MEM_BLACK;
3633 x->parent->parent->color = MEM_RED;
3634 mem_rotate_right (x->parent->parent);
3635 }
3636 }
3637 else
3638 {
3639 /* This is the symmetrical case of above. */
3640 struct mem_node *y = x->parent->parent->left;
177c0ea7 3641
34400008
GM
3642 if (y->color == MEM_RED)
3643 {
3644 x->parent->color = MEM_BLACK;
3645 y->color = MEM_BLACK;
3646 x->parent->parent->color = MEM_RED;
3647 x = x->parent->parent;
3648 }
3649 else
3650 {
3651 if (x == x->parent->left)
3652 {
3653 x = x->parent;
3654 mem_rotate_right (x);
3655 }
177c0ea7 3656
34400008
GM
3657 x->parent->color = MEM_BLACK;
3658 x->parent->parent->color = MEM_RED;
3659 mem_rotate_left (x->parent->parent);
3660 }
3661 }
3662 }
3663
3664 /* The root may have been changed to red due to the algorithm. Set
3665 it to black so that property #5 is satisfied. */
3666 mem_root->color = MEM_BLACK;
3667}
3668
3669
177c0ea7
JB
3670/* (x) (y)
3671 / \ / \
34400008
GM
3672 a (y) ===> (x) c
3673 / \ / \
3674 b c a b */
3675
3676static void
3677mem_rotate_left (x)
3678 struct mem_node *x;
3679{
3680 struct mem_node *y;
3681
3682 /* Turn y's left sub-tree into x's right sub-tree. */
3683 y = x->right;
3684 x->right = y->left;
3685 if (y->left != MEM_NIL)
3686 y->left->parent = x;
3687
3688 /* Y's parent was x's parent. */
3689 if (y != MEM_NIL)
3690 y->parent = x->parent;
3691
3692 /* Get the parent to point to y instead of x. */
3693 if (x->parent)
3694 {
3695 if (x == x->parent->left)
3696 x->parent->left = y;
3697 else
3698 x->parent->right = y;
3699 }
3700 else
3701 mem_root = y;
3702
3703 /* Put x on y's left. */
3704 y->left = x;
3705 if (x != MEM_NIL)
3706 x->parent = y;
3707}
3708
3709
177c0ea7
JB
3710/* (x) (Y)
3711 / \ / \
3712 (y) c ===> a (x)
3713 / \ / \
34400008
GM
3714 a b b c */
3715
3716static void
3717mem_rotate_right (x)
3718 struct mem_node *x;
3719{
3720 struct mem_node *y = x->left;
3721
3722 x->left = y->right;
3723 if (y->right != MEM_NIL)
3724 y->right->parent = x;
177c0ea7 3725
34400008
GM
3726 if (y != MEM_NIL)
3727 y->parent = x->parent;
3728 if (x->parent)
3729 {
3730 if (x == x->parent->right)
3731 x->parent->right = y;
3732 else
3733 x->parent->left = y;
3734 }
3735 else
3736 mem_root = y;
177c0ea7 3737
34400008
GM
3738 y->right = x;
3739 if (x != MEM_NIL)
3740 x->parent = y;
3741}
3742
3743
3744/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3745
3746static void
3747mem_delete (z)
3748 struct mem_node *z;
3749{
3750 struct mem_node *x, *y;
3751
3752 if (!z || z == MEM_NIL)
3753 return;
3754
3755 if (z->left == MEM_NIL || z->right == MEM_NIL)
3756 y = z;
3757 else
3758 {
3759 y = z->right;
3760 while (y->left != MEM_NIL)
3761 y = y->left;
3762 }
3763
3764 if (y->left != MEM_NIL)
3765 x = y->left;
3766 else
3767 x = y->right;
3768
3769 x->parent = y->parent;
3770 if (y->parent)
3771 {
3772 if (y == y->parent->left)
3773 y->parent->left = x;
3774 else
3775 y->parent->right = x;
3776 }
3777 else
3778 mem_root = x;
3779
3780 if (y != z)
3781 {
3782 z->start = y->start;
3783 z->end = y->end;
3784 z->type = y->type;
3785 }
177c0ea7 3786
34400008
GM
3787 if (y->color == MEM_BLACK)
3788 mem_delete_fixup (x);
877935b1
GM
3789
3790#ifdef GC_MALLOC_CHECK
3791 _free_internal (y);
3792#else
34400008 3793 xfree (y);
877935b1 3794#endif
34400008
GM
3795}
3796
3797
3798/* Re-establish the red-black properties of the tree, after a
3799 deletion. */
3800
3801static void
3802mem_delete_fixup (x)
3803 struct mem_node *x;
3804{
3805 while (x != mem_root && x->color == MEM_BLACK)
3806 {
3807 if (x == x->parent->left)
3808 {
3809 struct mem_node *w = x->parent->right;
177c0ea7 3810
34400008
GM
3811 if (w->color == MEM_RED)
3812 {
3813 w->color = MEM_BLACK;
3814 x->parent->color = MEM_RED;
3815 mem_rotate_left (x->parent);
3816 w = x->parent->right;
3817 }
177c0ea7 3818
34400008
GM
3819 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3820 {
3821 w->color = MEM_RED;
3822 x = x->parent;
3823 }
3824 else
3825 {
3826 if (w->right->color == MEM_BLACK)
3827 {
3828 w->left->color = MEM_BLACK;
3829 w->color = MEM_RED;
3830 mem_rotate_right (w);
3831 w = x->parent->right;
3832 }
3833 w->color = x->parent->color;
3834 x->parent->color = MEM_BLACK;
3835 w->right->color = MEM_BLACK;
3836 mem_rotate_left (x->parent);
3837 x = mem_root;
3838 }
3839 }
3840 else
3841 {
3842 struct mem_node *w = x->parent->left;
177c0ea7 3843
34400008
GM
3844 if (w->color == MEM_RED)
3845 {
3846 w->color = MEM_BLACK;
3847 x->parent->color = MEM_RED;
3848 mem_rotate_right (x->parent);
3849 w = x->parent->left;
3850 }
177c0ea7 3851
34400008
GM
3852 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3853 {
3854 w->color = MEM_RED;
3855 x = x->parent;
3856 }
3857 else
3858 {
3859 if (w->left->color == MEM_BLACK)
3860 {
3861 w->right->color = MEM_BLACK;
3862 w->color = MEM_RED;
3863 mem_rotate_left (w);
3864 w = x->parent->left;
3865 }
177c0ea7 3866
34400008
GM
3867 w->color = x->parent->color;
3868 x->parent->color = MEM_BLACK;
3869 w->left->color = MEM_BLACK;
3870 mem_rotate_right (x->parent);
3871 x = mem_root;
3872 }
3873 }
3874 }
177c0ea7 3875
34400008
GM
3876 x->color = MEM_BLACK;
3877}
3878
3879
3880/* Value is non-zero if P is a pointer to a live Lisp string on
3881 the heap. M is a pointer to the mem_block for P. */
3882
3883static INLINE int
3884live_string_p (m, p)
3885 struct mem_node *m;
3886 void *p;
3887{
3888 if (m->type == MEM_TYPE_STRING)
3889 {
3890 struct string_block *b = (struct string_block *) m->start;
3891 int offset = (char *) p - (char *) &b->strings[0];
3892
3893 /* P must point to the start of a Lisp_String structure, and it
3894 must not be on the free-list. */
176bc847
GM
3895 return (offset >= 0
3896 && offset % sizeof b->strings[0] == 0
6b61353c 3897 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3898 && ((struct Lisp_String *) p)->data != NULL);
3899 }
3900 else
3901 return 0;
3902}
3903
3904
3905/* Value is non-zero if P is a pointer to a live Lisp cons on
3906 the heap. M is a pointer to the mem_block for P. */
3907
3908static INLINE int
3909live_cons_p (m, p)
3910 struct mem_node *m;
3911 void *p;
3912{
3913 if (m->type == MEM_TYPE_CONS)
3914 {
3915 struct cons_block *b = (struct cons_block *) m->start;
3916 int offset = (char *) p - (char *) &b->conses[0];
3917
3918 /* P must point to the start of a Lisp_Cons, not be
3919 one of the unused cells in the current cons block,
3920 and not be on the free-list. */
176bc847
GM
3921 return (offset >= 0
3922 && offset % sizeof b->conses[0] == 0
6b61353c 3923 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3924 && (b != cons_block
3925 || offset / sizeof b->conses[0] < cons_block_index)
3926 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3927 }
3928 else
3929 return 0;
3930}
3931
3932
3933/* Value is non-zero if P is a pointer to a live Lisp symbol on
3934 the heap. M is a pointer to the mem_block for P. */
3935
3936static INLINE int
3937live_symbol_p (m, p)
3938 struct mem_node *m;
3939 void *p;
3940{
3941 if (m->type == MEM_TYPE_SYMBOL)
3942 {
3943 struct symbol_block *b = (struct symbol_block *) m->start;
3944 int offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3945
34400008
GM
3946 /* P must point to the start of a Lisp_Symbol, not be
3947 one of the unused cells in the current symbol block,
3948 and not be on the free-list. */
176bc847
GM
3949 return (offset >= 0
3950 && offset % sizeof b->symbols[0] == 0
6b61353c 3951 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3952 && (b != symbol_block
3953 || offset / sizeof b->symbols[0] < symbol_block_index)
3954 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3955 }
3956 else
3957 return 0;
3958}
3959
3960
3961/* Value is non-zero if P is a pointer to a live Lisp float on
3962 the heap. M is a pointer to the mem_block for P. */
3963
3964static INLINE int
3965live_float_p (m, p)
3966 struct mem_node *m;
3967 void *p;
3968{
3969 if (m->type == MEM_TYPE_FLOAT)
3970 {
3971 struct float_block *b = (struct float_block *) m->start;
3972 int offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3973
ab6780cd
SM
3974 /* P must point to the start of a Lisp_Float and not be
3975 one of the unused cells in the current float block. */
176bc847
GM
3976 return (offset >= 0
3977 && offset % sizeof b->floats[0] == 0
6b61353c 3978 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3979 && (b != float_block
ab6780cd 3980 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3981 }
3982 else
3983 return 0;
3984}
3985
3986
3987/* Value is non-zero if P is a pointer to a live Lisp Misc on
3988 the heap. M is a pointer to the mem_block for P. */
3989
3990static INLINE int
3991live_misc_p (m, p)
3992 struct mem_node *m;
3993 void *p;
3994{
3995 if (m->type == MEM_TYPE_MISC)
3996 {
3997 struct marker_block *b = (struct marker_block *) m->start;
3998 int offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3999
34400008
GM
4000 /* P must point to the start of a Lisp_Misc, not be
4001 one of the unused cells in the current misc block,
4002 and not be on the free-list. */
176bc847
GM
4003 return (offset >= 0
4004 && offset % sizeof b->markers[0] == 0
6b61353c 4005 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4006 && (b != marker_block
4007 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 4008 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
4009 }
4010 else
4011 return 0;
4012}
4013
4014
4015/* Value is non-zero if P is a pointer to a live vector-like object.
4016 M is a pointer to the mem_block for P. */
4017
4018static INLINE int
4019live_vector_p (m, p)
4020 struct mem_node *m;
4021 void *p;
4022{
9c545a55 4023 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
34400008
GM
4024}
4025
4026
2336fe58 4027/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4028 pointer to the mem_block for P. */
4029
4030static INLINE int
4031live_buffer_p (m, p)
4032 struct mem_node *m;
4033 void *p;
4034{
4035 /* P must point to the start of the block, and the buffer
4036 must not have been killed. */
4037 return (m->type == MEM_TYPE_BUFFER
4038 && p == m->start
4039 && !NILP (((struct buffer *) p)->name));
4040}
4041
13c844fb
GM
4042#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4043
4044#if GC_MARK_STACK
4045
34400008
GM
4046#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4047
4048/* Array of objects that are kept alive because the C stack contains
4049 a pattern that looks like a reference to them . */
4050
4051#define MAX_ZOMBIES 10
4052static Lisp_Object zombies[MAX_ZOMBIES];
4053
4054/* Number of zombie objects. */
4055
4056static int nzombies;
4057
4058/* Number of garbage collections. */
4059
4060static int ngcs;
4061
4062/* Average percentage of zombies per collection. */
4063
4064static double avg_zombies;
4065
4066/* Max. number of live and zombie objects. */
4067
4068static int max_live, max_zombies;
4069
4070/* Average number of live objects per GC. */
4071
4072static double avg_live;
4073
4074DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033
MB
4075 doc: /* Show information about live and zombie objects. */)
4076 ()
34400008 4077{
83fc9c63
DL
4078 Lisp_Object args[8], zombie_list = Qnil;
4079 int i;
4080 for (i = 0; i < nzombies; i++)
4081 zombie_list = Fcons (zombies[i], zombie_list);
4082 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4083 args[1] = make_number (ngcs);
4084 args[2] = make_float (avg_live);
4085 args[3] = make_float (avg_zombies);
4086 args[4] = make_float (avg_zombies / avg_live / 100);
4087 args[5] = make_number (max_live);
4088 args[6] = make_number (max_zombies);
83fc9c63
DL
4089 args[7] = zombie_list;
4090 return Fmessage (8, args);
34400008
GM
4091}
4092
4093#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4094
4095
182ff242
GM
4096/* Mark OBJ if we can prove it's a Lisp_Object. */
4097
4098static INLINE void
4099mark_maybe_object (obj)
4100 Lisp_Object obj;
4101{
4102 void *po = (void *) XPNTR (obj);
4103 struct mem_node *m = mem_find (po);
177c0ea7 4104
182ff242
GM
4105 if (m != MEM_NIL)
4106 {
4107 int mark_p = 0;
4108
8e50cc2d 4109 switch (XTYPE (obj))
182ff242
GM
4110 {
4111 case Lisp_String:
4112 mark_p = (live_string_p (m, po)
4113 && !STRING_MARKED_P ((struct Lisp_String *) po));
4114 break;
4115
4116 case Lisp_Cons:
08b7c2cb 4117 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4118 break;
4119
4120 case Lisp_Symbol:
2336fe58 4121 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4122 break;
4123
4124 case Lisp_Float:
ab6780cd 4125 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4126 break;
4127
4128 case Lisp_Vectorlike:
8e50cc2d 4129 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
4130 buffer because checking that dereferences the pointer
4131 PO which might point anywhere. */
4132 if (live_vector_p (m, po))
8e50cc2d 4133 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4134 else if (live_buffer_p (m, po))
8e50cc2d 4135 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4136 break;
4137
4138 case Lisp_Misc:
67ee9f6e 4139 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4140 break;
6bbd7a29 4141
2de9f71c 4142 default:
6bbd7a29 4143 break;
182ff242
GM
4144 }
4145
4146 if (mark_p)
4147 {
4148#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4149 if (nzombies < MAX_ZOMBIES)
83fc9c63 4150 zombies[nzombies] = obj;
182ff242
GM
4151 ++nzombies;
4152#endif
49723c04 4153 mark_object (obj);
182ff242
GM
4154 }
4155 }
4156}
ece93c02
GM
4157
4158
4159/* If P points to Lisp data, mark that as live if it isn't already
4160 marked. */
4161
4162static INLINE void
4163mark_maybe_pointer (p)
4164 void *p;
4165{
4166 struct mem_node *m;
4167
5045e68e
SM
4168 /* Quickly rule out some values which can't point to Lisp data. */
4169 if ((EMACS_INT) p %
4170#ifdef USE_LSB_TAG
4171 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4172#else
4173 2 /* We assume that Lisp data is aligned on even addresses. */
4174#endif
4175 )
ece93c02 4176 return;
177c0ea7 4177
ece93c02
GM
4178 m = mem_find (p);
4179 if (m != MEM_NIL)
4180 {
4181 Lisp_Object obj = Qnil;
177c0ea7 4182
ece93c02
GM
4183 switch (m->type)
4184 {
4185 case MEM_TYPE_NON_LISP:
2fe50224 4186 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4187 break;
177c0ea7 4188
ece93c02 4189 case MEM_TYPE_BUFFER:
3ef06d12 4190 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
4191 XSETVECTOR (obj, p);
4192 break;
177c0ea7 4193
ece93c02 4194 case MEM_TYPE_CONS:
08b7c2cb 4195 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4196 XSETCONS (obj, p);
4197 break;
177c0ea7 4198
ece93c02
GM
4199 case MEM_TYPE_STRING:
4200 if (live_string_p (m, p)
4201 && !STRING_MARKED_P ((struct Lisp_String *) p))
4202 XSETSTRING (obj, p);
4203 break;
4204
4205 case MEM_TYPE_MISC:
2336fe58
SM
4206 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4207 XSETMISC (obj, p);
ece93c02 4208 break;
177c0ea7 4209
ece93c02 4210 case MEM_TYPE_SYMBOL:
2336fe58 4211 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4212 XSETSYMBOL (obj, p);
4213 break;
177c0ea7 4214
ece93c02 4215 case MEM_TYPE_FLOAT:
ab6780cd 4216 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4217 XSETFLOAT (obj, p);
4218 break;
177c0ea7 4219
9c545a55 4220 case MEM_TYPE_VECTORLIKE:
ece93c02
GM
4221 if (live_vector_p (m, p))
4222 {
4223 Lisp_Object tem;
4224 XSETVECTOR (tem, p);
8e50cc2d 4225 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4226 obj = tem;
4227 }
4228 break;
4229
4230 default:
4231 abort ();
4232 }
4233
8e50cc2d 4234 if (!NILP (obj))
49723c04 4235 mark_object (obj);
ece93c02
GM
4236 }
4237}
4238
4239
55a314a5
YM
4240/* Mark Lisp objects referenced from the address range START+OFFSET..END
4241 or END+OFFSET..START. */
34400008 4242
177c0ea7 4243static void
55a314a5 4244mark_memory (start, end, offset)
34400008 4245 void *start, *end;
55a314a5 4246 int offset;
34400008
GM
4247{
4248 Lisp_Object *p;
ece93c02 4249 void **pp;
34400008
GM
4250
4251#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4252 nzombies = 0;
4253#endif
4254
4255 /* Make START the pointer to the start of the memory region,
4256 if it isn't already. */
4257 if (end < start)
4258 {
4259 void *tem = start;
4260 start = end;
4261 end = tem;
4262 }
ece93c02
GM
4263
4264 /* Mark Lisp_Objects. */
55a314a5 4265 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
182ff242 4266 mark_maybe_object (*p);
ece93c02
GM
4267
4268 /* Mark Lisp data pointed to. This is necessary because, in some
4269 situations, the C compiler optimizes Lisp objects away, so that
4270 only a pointer to them remains. Example:
4271
4272 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4273 ()
ece93c02
GM
4274 {
4275 Lisp_Object obj = build_string ("test");
4276 struct Lisp_String *s = XSTRING (obj);
4277 Fgarbage_collect ();
4278 fprintf (stderr, "test `%s'\n", s->data);
4279 return Qnil;
4280 }
4281
4282 Here, `obj' isn't really used, and the compiler optimizes it
4283 away. The only reference to the life string is through the
4284 pointer `s'. */
177c0ea7 4285
55a314a5 4286 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
ece93c02 4287 mark_maybe_pointer (*pp);
182ff242
GM
4288}
4289
30f637f8
DL
4290/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4291 the GCC system configuration. In gcc 3.2, the only systems for
4292 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4293 by others?) and ns32k-pc532-min. */
182ff242
GM
4294
4295#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4296
4297static int setjmp_tested_p, longjmps_done;
4298
4299#define SETJMP_WILL_LIKELY_WORK "\
4300\n\
4301Emacs garbage collector has been changed to use conservative stack\n\
4302marking. Emacs has determined that the method it uses to do the\n\
4303marking will likely work on your system, but this isn't sure.\n\
4304\n\
4305If you are a system-programmer, or can get the help of a local wizard\n\
4306who is, please take a look at the function mark_stack in alloc.c, and\n\
4307verify that the methods used are appropriate for your system.\n\
4308\n\
d191623b 4309Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4310"
4311
4312#define SETJMP_WILL_NOT_WORK "\
4313\n\
4314Emacs garbage collector has been changed to use conservative stack\n\
4315marking. Emacs has determined that the default method it uses to do the\n\
4316marking will not work on your system. We will need a system-dependent\n\
4317solution for your system.\n\
4318\n\
4319Please take a look at the function mark_stack in alloc.c, and\n\
4320try to find a way to make it work on your system.\n\
30f637f8
DL
4321\n\
4322Note that you may get false negatives, depending on the compiler.\n\
4323In particular, you need to use -O with GCC for this test.\n\
4324\n\
d191623b 4325Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4326"
4327
4328
4329/* Perform a quick check if it looks like setjmp saves registers in a
4330 jmp_buf. Print a message to stderr saying so. When this test
4331 succeeds, this is _not_ a proof that setjmp is sufficient for
4332 conservative stack marking. Only the sources or a disassembly
4333 can prove that. */
4334
4335static void
4336test_setjmp ()
4337{
4338 char buf[10];
4339 register int x;
4340 jmp_buf jbuf;
4341 int result = 0;
4342
4343 /* Arrange for X to be put in a register. */
4344 sprintf (buf, "1");
4345 x = strlen (buf);
4346 x = 2 * x - 1;
4347
4348 setjmp (jbuf);
4349 if (longjmps_done == 1)
34400008 4350 {
182ff242 4351 /* Came here after the longjmp at the end of the function.
34400008 4352
182ff242
GM
4353 If x == 1, the longjmp has restored the register to its
4354 value before the setjmp, and we can hope that setjmp
4355 saves all such registers in the jmp_buf, although that
4356 isn't sure.
34400008 4357
182ff242
GM
4358 For other values of X, either something really strange is
4359 taking place, or the setjmp just didn't save the register. */
4360
4361 if (x == 1)
4362 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4363 else
4364 {
4365 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4366 exit (1);
34400008
GM
4367 }
4368 }
182ff242
GM
4369
4370 ++longjmps_done;
4371 x = 2;
4372 if (longjmps_done == 1)
4373 longjmp (jbuf, 1);
34400008
GM
4374}
4375
182ff242
GM
4376#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4377
34400008
GM
4378
4379#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4380
4381/* Abort if anything GCPRO'd doesn't survive the GC. */
4382
4383static void
4384check_gcpros ()
4385{
4386 struct gcpro *p;
4387 int i;
4388
4389 for (p = gcprolist; p; p = p->next)
4390 for (i = 0; i < p->nvars; ++i)
4391 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4392 /* FIXME: It's not necessarily a bug. It might just be that the
4393 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4394 abort ();
4395}
4396
4397#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4398
4399static void
4400dump_zombies ()
4401{
4402 int i;
4403
4404 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4405 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4406 {
4407 fprintf (stderr, " %d = ", i);
4408 debug_print (zombies[i]);
4409 }
4410}
4411
4412#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4413
4414
182ff242
GM
4415/* Mark live Lisp objects on the C stack.
4416
4417 There are several system-dependent problems to consider when
4418 porting this to new architectures:
4419
4420 Processor Registers
4421
4422 We have to mark Lisp objects in CPU registers that can hold local
4423 variables or are used to pass parameters.
4424
4425 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4426 something that either saves relevant registers on the stack, or
4427 calls mark_maybe_object passing it each register's contents.
4428
4429 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4430 implementation assumes that calling setjmp saves registers we need
4431 to see in a jmp_buf which itself lies on the stack. This doesn't
4432 have to be true! It must be verified for each system, possibly
4433 by taking a look at the source code of setjmp.
4434
4435 Stack Layout
4436
4437 Architectures differ in the way their processor stack is organized.
4438 For example, the stack might look like this
4439
4440 +----------------+
4441 | Lisp_Object | size = 4
4442 +----------------+
4443 | something else | size = 2
4444 +----------------+
4445 | Lisp_Object | size = 4
4446 +----------------+
4447 | ... |
4448
4449 In such a case, not every Lisp_Object will be aligned equally. To
4450 find all Lisp_Object on the stack it won't be sufficient to walk
4451 the stack in steps of 4 bytes. Instead, two passes will be
4452 necessary, one starting at the start of the stack, and a second
4453 pass starting at the start of the stack + 2. Likewise, if the
4454 minimal alignment of Lisp_Objects on the stack is 1, four passes
4455 would be necessary, each one starting with one byte more offset
4456 from the stack start.
4457
4458 The current code assumes by default that Lisp_Objects are aligned
4459 equally on the stack. */
34400008
GM
4460
4461static void
4462mark_stack ()
4463{
630909a5 4464 int i;
55a314a5
YM
4465 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4466 union aligned_jmpbuf {
4467 Lisp_Object o;
4468 jmp_buf j;
4469 } j;
6bbd7a29 4470 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
34400008
GM
4471 void *end;
4472
4473 /* This trick flushes the register windows so that all the state of
4474 the process is contained in the stack. */
ab6780cd 4475 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4476 needed on ia64 too. See mach_dep.c, where it also says inline
4477 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4478#ifdef __sparc__
4d18a7a2
DN
4479#if defined (__sparc64__) && defined (__FreeBSD__)
4480 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4481 asm ("flushw");
4482#else
34400008 4483 asm ("ta 3");
4c1616be 4484#endif
34400008 4485#endif
177c0ea7 4486
34400008
GM
4487 /* Save registers that we need to see on the stack. We need to see
4488 registers used to hold register variables and registers used to
4489 pass parameters. */
4490#ifdef GC_SAVE_REGISTERS_ON_STACK
4491 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4492#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4493
182ff242
GM
4494#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4495 setjmp will definitely work, test it
4496 and print a message with the result
4497 of the test. */
4498 if (!setjmp_tested_p)
4499 {
4500 setjmp_tested_p = 1;
4501 test_setjmp ();
4502 }
4503#endif /* GC_SETJMP_WORKS */
177c0ea7 4504
55a314a5 4505 setjmp (j.j);
34400008 4506 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4507#endif /* not GC_SAVE_REGISTERS_ON_STACK */
34400008
GM
4508
4509 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4510 that's not the case, something has to be done here to iterate
4511 over the stack segments. */
630909a5 4512#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4513#ifdef __GNUC__
4514#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4515#else
630909a5 4516#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4517#endif
182ff242 4518#endif
24452cd5 4519 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
55a314a5 4520 mark_memory (stack_base, end, i);
4dec23ff
AS
4521 /* Allow for marking a secondary stack, like the register stack on the
4522 ia64. */
4523#ifdef GC_MARK_SECONDARY_STACK
4524 GC_MARK_SECONDARY_STACK ();
4525#endif
34400008
GM
4526
4527#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4528 check_gcpros ();
4529#endif
4530}
4531
34400008
GM
4532#endif /* GC_MARK_STACK != 0 */
4533
4534
7ffb6955 4535/* Determine whether it is safe to access memory at address P. */
d3d47262 4536static int
69b9efaa 4537valid_pointer_p (p)
7ffb6955
KS
4538 void *p;
4539{
f892cf9c
EZ
4540#ifdef WINDOWSNT
4541 return w32_valid_pointer_p (p, 16);
4542#else
7ffb6955
KS
4543 int fd;
4544
4545 /* Obviously, we cannot just access it (we would SEGV trying), so we
4546 trick the o/s to tell us whether p is a valid pointer.
4547 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4548 not validate p in that case. */
4549
4550 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4551 {
4552 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4553 emacs_close (fd);
4554 unlink ("__Valid__Lisp__Object__");
4555 return valid;
4556 }
4557
4558 return -1;
f892cf9c 4559#endif
7ffb6955 4560}
3cd55735
KS
4561
4562/* Return 1 if OBJ is a valid lisp object.
4563 Return 0 if OBJ is NOT a valid lisp object.
4564 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4565 This function can be quite slow,
4566 so it should only be used in code for manual debugging. */
3cd55735
KS
4567
4568int
4569valid_lisp_object_p (obj)
4570 Lisp_Object obj;
4571{
de7124a7 4572 void *p;
7ffb6955 4573#if GC_MARK_STACK
3cd55735 4574 struct mem_node *m;
de7124a7 4575#endif
3cd55735
KS
4576
4577 if (INTEGERP (obj))
4578 return 1;
4579
4580 p = (void *) XPNTR (obj);
3cd55735
KS
4581 if (PURE_POINTER_P (p))
4582 return 1;
4583
de7124a7 4584#if !GC_MARK_STACK
7ffb6955 4585 return valid_pointer_p (p);
de7124a7
KS
4586#else
4587
3cd55735
KS
4588 m = mem_find (p);
4589
4590 if (m == MEM_NIL)
7ffb6955
KS
4591 {
4592 int valid = valid_pointer_p (p);
4593 if (valid <= 0)
4594 return valid;
4595
4596 if (SUBRP (obj))
4597 return 1;
4598
4599 return 0;
4600 }
3cd55735
KS
4601
4602 switch (m->type)
4603 {
4604 case MEM_TYPE_NON_LISP:
4605 return 0;
4606
4607 case MEM_TYPE_BUFFER:
4608 return live_buffer_p (m, p);
4609
4610 case MEM_TYPE_CONS:
4611 return live_cons_p (m, p);
4612
4613 case MEM_TYPE_STRING:
4614 return live_string_p (m, p);
4615
4616 case MEM_TYPE_MISC:
4617 return live_misc_p (m, p);
4618
4619 case MEM_TYPE_SYMBOL:
4620 return live_symbol_p (m, p);
4621
4622 case MEM_TYPE_FLOAT:
4623 return live_float_p (m, p);
4624
9c545a55 4625 case MEM_TYPE_VECTORLIKE:
3cd55735
KS
4626 return live_vector_p (m, p);
4627
4628 default:
4629 break;
4630 }
4631
4632 return 0;
4633#endif
4634}
4635
4636
4637
34400008 4638\f
2e471eb5
GM
4639/***********************************************************************
4640 Pure Storage Management
4641 ***********************************************************************/
4642
1f0b3fd2
GM
4643/* Allocate room for SIZE bytes from pure Lisp storage and return a
4644 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 4645 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2
GM
4646
4647static POINTER_TYPE *
4648pure_alloc (size, type)
4649 size_t size;
4650 int type;
4651{
1f0b3fd2 4652 POINTER_TYPE *result;
6b61353c
KH
4653#ifdef USE_LSB_TAG
4654 size_t alignment = (1 << GCTYPEBITS);
4655#else
44117420 4656 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4657
4658 /* Give Lisp_Floats an extra alignment. */
4659 if (type == Lisp_Float)
4660 {
1f0b3fd2
GM
4661#if defined __GNUC__ && __GNUC__ >= 2
4662 alignment = __alignof (struct Lisp_Float);
4663#else
4664 alignment = sizeof (struct Lisp_Float);
4665#endif
9e713715 4666 }
6b61353c 4667#endif
1f0b3fd2 4668
44117420 4669 again:
e5bc14d4
YM
4670 if (type >= 0)
4671 {
4672 /* Allocate space for a Lisp object from the beginning of the free
4673 space with taking account of alignment. */
4674 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4675 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4676 }
4677 else
4678 {
4679 /* Allocate space for a non-Lisp object from the end of the free
4680 space. */
4681 pure_bytes_used_non_lisp += size;
4682 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4683 }
4684 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
4685
4686 if (pure_bytes_used <= pure_size)
4687 return result;
4688
4689 /* Don't allocate a large amount here,
4690 because it might get mmap'd and then its address
4691 might not be usable. */
4692 purebeg = (char *) xmalloc (10000);
4693 pure_size = 10000;
4694 pure_bytes_used_before_overflow += pure_bytes_used - size;
4695 pure_bytes_used = 0;
e5bc14d4 4696 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 4697 goto again;
1f0b3fd2
GM
4698}
4699
4700
852f8cdc 4701/* Print a warning if PURESIZE is too small. */
9e713715
GM
4702
4703void
4704check_pure_size ()
4705{
4706 if (pure_bytes_used_before_overflow)
2aee5ca3 4707 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
a4d35afd 4708 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4709}
4710
4711
79fd0489
YM
4712/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4713 the non-Lisp data pool of the pure storage, and return its start
4714 address. Return NULL if not found. */
4715
4716static char *
4717find_string_data_in_pure (data, nbytes)
2aff7c53 4718 const char *data;
79fd0489
YM
4719 int nbytes;
4720{
4721 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 4722 const unsigned char *p;
79fd0489
YM
4723 char *non_lisp_beg;
4724
4725 if (pure_bytes_used_non_lisp < nbytes + 1)
4726 return NULL;
4727
4728 /* Set up the Boyer-Moore table. */
4729 skip = nbytes + 1;
4730 for (i = 0; i < 256; i++)
4731 bm_skip[i] = skip;
4732
2aff7c53 4733 p = (const unsigned char *) data;
79fd0489
YM
4734 while (--skip > 0)
4735 bm_skip[*p++] = skip;
4736
4737 last_char_skip = bm_skip['\0'];
4738
4739 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4740 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4741
4742 /* See the comments in the function `boyer_moore' (search.c) for the
4743 use of `infinity'. */
4744 infinity = pure_bytes_used_non_lisp + 1;
4745 bm_skip['\0'] = infinity;
4746
2aff7c53 4747 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
4748 start = 0;
4749 do
4750 {
4751 /* Check the last character (== '\0'). */
4752 do
4753 {
4754 start += bm_skip[*(p + start)];
4755 }
4756 while (start <= start_max);
4757
4758 if (start < infinity)
4759 /* Couldn't find the last character. */
4760 return NULL;
4761
4762 /* No less than `infinity' means we could find the last
4763 character at `p[start - infinity]'. */
4764 start -= infinity;
4765
4766 /* Check the remaining characters. */
4767 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4768 /* Found. */
4769 return non_lisp_beg + start;
4770
4771 start += last_char_skip;
4772 }
4773 while (start <= start_max);
4774
4775 return NULL;
4776}
4777
4778
2e471eb5
GM
4779/* Return a string allocated in pure space. DATA is a buffer holding
4780 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4781 non-zero means make the result string multibyte.
1a4f1e2c 4782
2e471eb5
GM
4783 Must get an error if pure storage is full, since if it cannot hold
4784 a large string it may be able to hold conses that point to that
4785 string; then the string is not protected from gc. */
7146af97
JB
4786
4787Lisp_Object
2e471eb5 4788make_pure_string (data, nchars, nbytes, multibyte)
2aff7c53 4789 const char *data;
2e471eb5 4790 int nchars, nbytes;
c0696668 4791 int multibyte;
7146af97 4792{
2e471eb5
GM
4793 Lisp_Object string;
4794 struct Lisp_String *s;
c0696668 4795
1f0b3fd2 4796 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
79fd0489
YM
4797 s->data = find_string_data_in_pure (data, nbytes);
4798 if (s->data == NULL)
4799 {
4800 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4801 bcopy (data, s->data, nbytes);
4802 s->data[nbytes] = '\0';
4803 }
2e471eb5
GM
4804 s->size = nchars;
4805 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 4806 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4807 XSETSTRING (string, s);
4808 return string;
7146af97
JB
4809}
4810
a56eaaef
DN
4811/* Return a string a string allocated in pure space. Do not allocate
4812 the string data, just point to DATA. */
4813
4814Lisp_Object
4815make_pure_c_string (const char *data)
4816{
4817 Lisp_Object string;
4818 struct Lisp_String *s;
4819 int nchars = strlen (data);
4820
4821 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4822 s->size = nchars;
4823 s->size_byte = -1;
323637a2 4824 s->data = (unsigned char *) data;
a56eaaef
DN
4825 s->intervals = NULL_INTERVAL;
4826 XSETSTRING (string, s);
4827 return string;
4828}
2e471eb5 4829
34400008
GM
4830/* Return a cons allocated from pure space. Give it pure copies
4831 of CAR as car and CDR as cdr. */
4832
7146af97
JB
4833Lisp_Object
4834pure_cons (car, cdr)
4835 Lisp_Object car, cdr;
4836{
4837 register Lisp_Object new;
1f0b3fd2 4838 struct Lisp_Cons *p;
7146af97 4839
1f0b3fd2
GM
4840 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4841 XSETCONS (new, p);
f3fbd155
KR
4842 XSETCAR (new, Fpurecopy (car));
4843 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4844 return new;
4845}
4846
7146af97 4847
34400008
GM
4848/* Value is a float object with value NUM allocated from pure space. */
4849
d3d47262 4850static Lisp_Object
7146af97
JB
4851make_pure_float (num)
4852 double num;
4853{
4854 register Lisp_Object new;
1f0b3fd2 4855 struct Lisp_Float *p;
7146af97 4856
1f0b3fd2
GM
4857 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4858 XSETFLOAT (new, p);
f601cdf3 4859 XFLOAT_INIT (new, num);
7146af97
JB
4860 return new;
4861}
4862
34400008
GM
4863
4864/* Return a vector with room for LEN Lisp_Objects allocated from
4865 pure space. */
4866
7146af97
JB
4867Lisp_Object
4868make_pure_vector (len)
42607681 4869 EMACS_INT len;
7146af97 4870{
1f0b3fd2
GM
4871 Lisp_Object new;
4872 struct Lisp_Vector *p;
4873 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4874
1f0b3fd2
GM
4875 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4876 XSETVECTOR (new, p);
7146af97
JB
4877 XVECTOR (new)->size = len;
4878 return new;
4879}
4880
34400008 4881
7146af97 4882DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 4883 doc: /* Make a copy of object OBJ in pure storage.
228299fa 4884Recursively copies contents of vectors and cons cells.
7ee72033
MB
4885Does not copy symbols. Copies strings without text properties. */)
4886 (obj)
7146af97
JB
4887 register Lisp_Object obj;
4888{
265a9e55 4889 if (NILP (Vpurify_flag))
7146af97
JB
4890 return obj;
4891
1f0b3fd2 4892 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4893 return obj;
4894
e9515805
SM
4895 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4896 {
4897 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4898 if (!NILP (tmp))
4899 return tmp;
4900 }
4901
d6dd74bb 4902 if (CONSP (obj))
e9515805 4903 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4904 else if (FLOATP (obj))
e9515805 4905 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4906 else if (STRINGP (obj))
e9515805
SM
4907 obj = make_pure_string (SDATA (obj), SCHARS (obj),
4908 SBYTES (obj),
4909 STRING_MULTIBYTE (obj));
d6dd74bb
KH
4910 else if (COMPILEDP (obj) || VECTORP (obj))
4911 {
4912 register struct Lisp_Vector *vec;
6b61353c
KH
4913 register int i;
4914 EMACS_INT size;
d6dd74bb
KH
4915
4916 size = XVECTOR (obj)->size;
7d535c68
KH
4917 if (size & PSEUDOVECTOR_FLAG)
4918 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 4919 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4920 for (i = 0; i < size; i++)
4921 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4922 if (COMPILEDP (obj))
985773c9
MB
4923 {
4924 XSETPVECTYPE (vec, PVEC_COMPILED);
4925 XSETCOMPILED (obj, vec);
4926 }
d6dd74bb
KH
4927 else
4928 XSETVECTOR (obj, vec);
7146af97 4929 }
d6dd74bb
KH
4930 else if (MARKERP (obj))
4931 error ("Attempt to copy a marker to pure storage");
e9515805
SM
4932 else
4933 /* Not purified, don't hash-cons. */
4934 return obj;
4935
4936 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4937 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
4938
4939 return obj;
7146af97 4940}
2e471eb5 4941
34400008 4942
7146af97 4943\f
34400008
GM
4944/***********************************************************************
4945 Protection from GC
4946 ***********************************************************************/
4947
2e471eb5
GM
4948/* Put an entry in staticvec, pointing at the variable with address
4949 VARADDRESS. */
7146af97
JB
4950
4951void
4952staticpro (varaddress)
4953 Lisp_Object *varaddress;
4954{
4955 staticvec[staticidx++] = varaddress;
4956 if (staticidx >= NSTATICS)
4957 abort ();
4958}
4959
7146af97 4960\f
34400008
GM
4961/***********************************************************************
4962 Protection from GC
4963 ***********************************************************************/
1a4f1e2c 4964
e8197642
RS
4965/* Temporarily prevent garbage collection. */
4966
4967int
4968inhibit_garbage_collection ()
4969{
aed13378 4970 int count = SPECPDL_INDEX ();
54defd0d
AS
4971 int nbits = min (VALBITS, BITS_PER_INT);
4972
4973 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4974 return count;
4975}
4976
34400008 4977
7146af97 4978DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4979 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4980Garbage collection happens automatically if you cons more than
4981`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4982`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4983 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4984 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4985 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4986 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4987However, if there was overflow in pure space, `garbage-collect'
4988returns nil, because real GC can't be done. */)
7ee72033 4989 ()
7146af97 4990{
7146af97
JB
4991 register struct specbinding *bind;
4992 struct catchtag *catch;
4993 struct handler *handler;
7146af97
JB
4994 char stack_top_variable;
4995 register int i;
6efc7df7 4996 int message_p;
96117bc7 4997 Lisp_Object total[8];
331379bf 4998 int count = SPECPDL_INDEX ();
2c5bd608
DL
4999 EMACS_TIME t1, t2, t3;
5000
3de0effb
RS
5001 if (abort_on_gc)
5002 abort ();
5003
9e713715
GM
5004 /* Can't GC if pure storage overflowed because we can't determine
5005 if something is a pure object or not. */
5006 if (pure_bytes_used_before_overflow)
5007 return Qnil;
5008
bbc012e0
KS
5009 CHECK_CONS_LIST ();
5010
3c7e66a8
RS
5011 /* Don't keep undo information around forever.
5012 Do this early on, so it is no problem if the user quits. */
5013 {
5014 register struct buffer *nextb = all_buffers;
5015
5016 while (nextb)
5017 {
5018 /* If a buffer's undo list is Qt, that means that undo is
5019 turned off in that buffer. Calling truncate_undo_list on
5020 Qt tends to return NULL, which effectively turns undo back on.
5021 So don't call truncate_undo_list if undo_list is Qt. */
303b0412 5022 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
3c7e66a8
RS
5023 truncate_undo_list (nextb);
5024
5025 /* Shrink buffer gaps, but skip indirect and dead buffers. */
dc7b4525
KH
5026 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5027 && ! nextb->text->inhibit_shrinking)
3c7e66a8
RS
5028 {
5029 /* If a buffer's gap size is more than 10% of the buffer
5030 size, or larger than 2000 bytes, then shrink it
5031 accordingly. Keep a minimum size of 20 bytes. */
5032 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5033
5034 if (nextb->text->gap_size > size)
5035 {
5036 struct buffer *save_current = current_buffer;
5037 current_buffer = nextb;
5038 make_gap (-(nextb->text->gap_size - size));
5039 current_buffer = save_current;
5040 }
5041 }
5042
5043 nextb = nextb->next;
5044 }
5045 }
5046
5047 EMACS_GET_TIME (t1);
5048
58595309
KH
5049 /* In case user calls debug_print during GC,
5050 don't let that cause a recursive GC. */
5051 consing_since_gc = 0;
5052
6efc7df7
GM
5053 /* Save what's currently displayed in the echo area. */
5054 message_p = push_message ();
c55b0da6 5055 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 5056
7146af97
JB
5057 /* Save a copy of the contents of the stack, for debugging. */
5058#if MAX_SAVE_STACK > 0
265a9e55 5059 if (NILP (Vpurify_flag))
7146af97
JB
5060 {
5061 i = &stack_top_variable - stack_bottom;
5062 if (i < 0) i = -i;
5063 if (i < MAX_SAVE_STACK)
5064 {
5065 if (stack_copy == 0)
9ac0d9e0 5066 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 5067 else if (stack_copy_size < i)
9ac0d9e0 5068 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
5069 if (stack_copy)
5070 {
42607681 5071 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
7146af97
JB
5072 bcopy (stack_bottom, stack_copy, i);
5073 else
5074 bcopy (&stack_top_variable, stack_copy, i);
5075 }
5076 }
5077 }
5078#endif /* MAX_SAVE_STACK > 0 */
5079
299585ee 5080 if (garbage_collection_messages)
691c4285 5081 message1_nolog ("Garbage collecting...");
7146af97 5082
6e0fca1d
RS
5083 BLOCK_INPUT;
5084
eec7b73d
RS
5085 shrink_regexp_cache ();
5086
7146af97
JB
5087 gc_in_progress = 1;
5088
c23baf9f 5089 /* clear_marks (); */
7146af97 5090
005ca5c7 5091 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
5092
5093 for (i = 0; i < staticidx; i++)
49723c04 5094 mark_object (*staticvec[i]);
34400008 5095
126f9c02
SM
5096 for (bind = specpdl; bind != specpdl_ptr; bind++)
5097 {
5098 mark_object (bind->symbol);
5099 mark_object (bind->old_value);
5100 }
6ed8eeff 5101 mark_terminals ();
126f9c02 5102 mark_kboards ();
98a92e2d 5103 mark_ttys ();
126f9c02
SM
5104
5105#ifdef USE_GTK
5106 {
5107 extern void xg_mark_data ();
5108 xg_mark_data ();
5109 }
5110#endif
5111
34400008
GM
5112#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5113 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5114 mark_stack ();
5115#else
acf5f7d3
SM
5116 {
5117 register struct gcpro *tail;
5118 for (tail = gcprolist; tail; tail = tail->next)
5119 for (i = 0; i < tail->nvars; i++)
005ca5c7 5120 mark_object (tail->var[i]);
acf5f7d3 5121 }
34400008 5122#endif
177c0ea7 5123
630686c8 5124 mark_byte_stack ();
7146af97
JB
5125 for (catch = catchlist; catch; catch = catch->next)
5126 {
49723c04
SM
5127 mark_object (catch->tag);
5128 mark_object (catch->val);
177c0ea7 5129 }
7146af97
JB
5130 for (handler = handlerlist; handler; handler = handler->next)
5131 {
49723c04
SM
5132 mark_object (handler->handler);
5133 mark_object (handler->var);
177c0ea7 5134 }
b40ea20a 5135 mark_backtrace ();
7146af97 5136
454d7973
KS
5137#ifdef HAVE_WINDOW_SYSTEM
5138 mark_fringe_data ();
5139#endif
5140
74c35a48
SM
5141#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5142 mark_stack ();
5143#endif
5144
c37adf23
SM
5145 /* Everything is now marked, except for the things that require special
5146 finalization, i.e. the undo_list.
5147 Look thru every buffer's undo list
4c315bda
RS
5148 for elements that update markers that were not marked,
5149 and delete them. */
5150 {
5151 register struct buffer *nextb = all_buffers;
5152
5153 while (nextb)
5154 {
5155 /* If a buffer's undo list is Qt, that means that undo is
5156 turned off in that buffer. Calling truncate_undo_list on
5157 Qt tends to return NULL, which effectively turns undo back on.
5158 So don't call truncate_undo_list if undo_list is Qt. */
5159 if (! EQ (nextb->undo_list, Qt))
5160 {
5161 Lisp_Object tail, prev;
5162 tail = nextb->undo_list;
5163 prev = Qnil;
5164 while (CONSP (tail))
5165 {
8e50cc2d
SM
5166 if (CONSP (XCAR (tail))
5167 && MARKERP (XCAR (XCAR (tail)))
2336fe58 5168 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5169 {
5170 if (NILP (prev))
70949dac 5171 nextb->undo_list = tail = XCDR (tail);
4c315bda 5172 else
f3fbd155
KR
5173 {
5174 tail = XCDR (tail);
5175 XSETCDR (prev, tail);
5176 }
4c315bda
RS
5177 }
5178 else
5179 {
5180 prev = tail;
70949dac 5181 tail = XCDR (tail);
4c315bda
RS
5182 }
5183 }
5184 }
c37adf23
SM
5185 /* Now that we have stripped the elements that need not be in the
5186 undo_list any more, we can finally mark the list. */
5187 mark_object (nextb->undo_list);
4c315bda
RS
5188
5189 nextb = nextb->next;
5190 }
5191 }
5192
7146af97
JB
5193 gc_sweep ();
5194
5195 /* Clear the mark bits that we set in certain root slots. */
5196
033a5fa3 5197 unmark_byte_stack ();
3ef06d12
SM
5198 VECTOR_UNMARK (&buffer_defaults);
5199 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5200
34400008
GM
5201#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5202 dump_zombies ();
5203#endif
5204
6e0fca1d
RS
5205 UNBLOCK_INPUT;
5206
bbc012e0
KS
5207 CHECK_CONS_LIST ();
5208
c23baf9f 5209 /* clear_marks (); */
7146af97
JB
5210 gc_in_progress = 0;
5211
5212 consing_since_gc = 0;
5213 if (gc_cons_threshold < 10000)
5214 gc_cons_threshold = 10000;
5215
96f077ad
SM
5216 if (FLOATP (Vgc_cons_percentage))
5217 { /* Set gc_cons_combined_threshold. */
5218 EMACS_INT total = 0;
974aae61 5219
96f077ad
SM
5220 total += total_conses * sizeof (struct Lisp_Cons);
5221 total += total_symbols * sizeof (struct Lisp_Symbol);
5222 total += total_markers * sizeof (union Lisp_Misc);
5223 total += total_string_size;
5224 total += total_vector_size * sizeof (Lisp_Object);
5225 total += total_floats * sizeof (struct Lisp_Float);
5226 total += total_intervals * sizeof (struct interval);
5227 total += total_strings * sizeof (struct Lisp_String);
3cd55735 5228
974aae61 5229 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
96f077ad 5230 }
974aae61
RS
5231 else
5232 gc_relative_threshold = 0;
96f077ad 5233
299585ee
RS
5234 if (garbage_collection_messages)
5235 {
6efc7df7
GM
5236 if (message_p || minibuf_level > 0)
5237 restore_message ();
299585ee
RS
5238 else
5239 message1_nolog ("Garbage collecting...done");
5240 }
7146af97 5241
98edb5ff 5242 unbind_to (count, Qnil);
2e471eb5
GM
5243
5244 total[0] = Fcons (make_number (total_conses),
5245 make_number (total_free_conses));
5246 total[1] = Fcons (make_number (total_symbols),
5247 make_number (total_free_symbols));
5248 total[2] = Fcons (make_number (total_markers),
5249 make_number (total_free_markers));
96117bc7
GM
5250 total[3] = make_number (total_string_size);
5251 total[4] = make_number (total_vector_size);
5252 total[5] = Fcons (make_number (total_floats),
2e471eb5 5253 make_number (total_free_floats));
96117bc7 5254 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5255 make_number (total_free_intervals));
96117bc7 5256 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5257 make_number (total_free_strings));
5258
34400008 5259#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5260 {
34400008
GM
5261 /* Compute average percentage of zombies. */
5262 double nlive = 0;
177c0ea7 5263
34400008 5264 for (i = 0; i < 7; ++i)
83fc9c63
DL
5265 if (CONSP (total[i]))
5266 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5267
5268 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5269 max_live = max (nlive, max_live);
5270 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5271 max_zombies = max (nzombies, max_zombies);
5272 ++ngcs;
5273 }
5274#endif
7146af97 5275
9e713715
GM
5276 if (!NILP (Vpost_gc_hook))
5277 {
5278 int count = inhibit_garbage_collection ();
5279 safe_run_hooks (Qpost_gc_hook);
5280 unbind_to (count, Qnil);
5281 }
2c5bd608
DL
5282
5283 /* Accumulate statistics. */
5284 EMACS_GET_TIME (t2);
5285 EMACS_SUB_TIME (t3, t2, t1);
5286 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
5287 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5288 EMACS_SECS (t3) +
5289 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
5290 gcs_done++;
5291
96117bc7 5292 return Flist (sizeof total / sizeof *total, total);
7146af97 5293}
34400008 5294
41c28a37 5295
3770920e
GM
5296/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5297 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5298
5299static void
5300mark_glyph_matrix (matrix)
5301 struct glyph_matrix *matrix;
5302{
5303 struct glyph_row *row = matrix->rows;
5304 struct glyph_row *end = row + matrix->nrows;
5305
2e471eb5
GM
5306 for (; row < end; ++row)
5307 if (row->enabled_p)
5308 {
5309 int area;
5310 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5311 {
5312 struct glyph *glyph = row->glyphs[area];
5313 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5314
2e471eb5 5315 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5316 if (STRINGP (glyph->object)
2e471eb5 5317 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5318 mark_object (glyph->object);
2e471eb5
GM
5319 }
5320 }
41c28a37
GM
5321}
5322
34400008 5323
41c28a37
GM
5324/* Mark Lisp faces in the face cache C. */
5325
5326static void
5327mark_face_cache (c)
5328 struct face_cache *c;
5329{
5330 if (c)
5331 {
5332 int i, j;
5333 for (i = 0; i < c->used; ++i)
5334 {
5335 struct face *face = FACE_FROM_ID (c->f, i);
5336
5337 if (face)
5338 {
5339 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5340 mark_object (face->lface[j]);
41c28a37
GM
5341 }
5342 }
5343 }
5344}
5345
5346
7146af97 5347\f
1a4f1e2c 5348/* Mark reference to a Lisp_Object.
2e471eb5
GM
5349 If the object referred to has not been seen yet, recursively mark
5350 all the references contained in it. */
7146af97 5351
785cd37f 5352#define LAST_MARKED_SIZE 500
d3d47262 5353static Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
5354int last_marked_index;
5355
1342fc6f
RS
5356/* For debugging--call abort when we cdr down this many
5357 links of a list, in mark_object. In debugging,
5358 the call to abort will hit a breakpoint.
5359 Normally this is zero and the check never goes off. */
d3d47262 5360static int mark_object_loop_halt;
1342fc6f 5361
8f11f7ec 5362static void
d2029e5b
SM
5363mark_vectorlike (ptr)
5364 struct Lisp_Vector *ptr;
5365{
5366 register EMACS_INT size = ptr->size;
5367 register int i;
5368
8f11f7ec 5369 eassert (!VECTOR_MARKED_P (ptr));
d2029e5b
SM
5370 VECTOR_MARK (ptr); /* Else mark it */
5371 if (size & PSEUDOVECTOR_FLAG)
5372 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5373
d2029e5b
SM
5374 /* Note that this size is not the memory-footprint size, but only
5375 the number of Lisp_Object fields that we should trace.
5376 The distinction is used e.g. by Lisp_Process which places extra
5377 non-Lisp_Object fields at the end of the structure. */
5378 for (i = 0; i < size; i++) /* and then mark its elements */
5379 mark_object (ptr->contents[i]);
d2029e5b
SM
5380}
5381
58026347
KH
5382/* Like mark_vectorlike but optimized for char-tables (and
5383 sub-char-tables) assuming that the contents are mostly integers or
5384 symbols. */
5385
5386static void
5387mark_char_table (ptr)
5388 struct Lisp_Vector *ptr;
5389{
5390 register EMACS_INT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5391 register int i;
5392
8f11f7ec 5393 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5394 VECTOR_MARK (ptr);
5395 for (i = 0; i < size; i++)
5396 {
5397 Lisp_Object val = ptr->contents[i];
5398
5399 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5400 continue;
5401 if (SUB_CHAR_TABLE_P (val))
5402 {
5403 if (! VECTOR_MARKED_P (XVECTOR (val)))
5404 mark_char_table (XVECTOR (val));
5405 }
5406 else
5407 mark_object (val);
5408 }
5409}
5410
41c28a37 5411void
49723c04
SM
5412mark_object (arg)
5413 Lisp_Object arg;
7146af97 5414{
49723c04 5415 register Lisp_Object obj = arg;
4f5c1376
GM
5416#ifdef GC_CHECK_MARKED_OBJECTS
5417 void *po;
5418 struct mem_node *m;
5419#endif
1342fc6f 5420 int cdr_count = 0;
7146af97 5421
9149e743 5422 loop:
7146af97 5423
1f0b3fd2 5424 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5425 return;
5426
49723c04 5427 last_marked[last_marked_index++] = obj;
785cd37f
RS
5428 if (last_marked_index == LAST_MARKED_SIZE)
5429 last_marked_index = 0;
5430
4f5c1376
GM
5431 /* Perform some sanity checks on the objects marked here. Abort if
5432 we encounter an object we know is bogus. This increases GC time
5433 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5434#ifdef GC_CHECK_MARKED_OBJECTS
5435
5436 po = (void *) XPNTR (obj);
5437
5438 /* Check that the object pointed to by PO is known to be a Lisp
5439 structure allocated from the heap. */
5440#define CHECK_ALLOCATED() \
5441 do { \
5442 m = mem_find (po); \
5443 if (m == MEM_NIL) \
5444 abort (); \
5445 } while (0)
5446
5447 /* Check that the object pointed to by PO is live, using predicate
5448 function LIVEP. */
5449#define CHECK_LIVE(LIVEP) \
5450 do { \
5451 if (!LIVEP (m, po)) \
5452 abort (); \
5453 } while (0)
5454
5455 /* Check both of the above conditions. */
5456#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5457 do { \
5458 CHECK_ALLOCATED (); \
5459 CHECK_LIVE (LIVEP); \
5460 } while (0) \
177c0ea7 5461
4f5c1376 5462#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5463
4f5c1376
GM
5464#define CHECK_ALLOCATED() (void) 0
5465#define CHECK_LIVE(LIVEP) (void) 0
5466#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5467
4f5c1376
GM
5468#endif /* not GC_CHECK_MARKED_OBJECTS */
5469
8e50cc2d 5470 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5471 {
5472 case Lisp_String:
5473 {
5474 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5475 if (STRING_MARKED_P (ptr))
5476 break;
4f5c1376 5477 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5478 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5479 MARK_STRING (ptr);
361b097f 5480#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5481 /* Check that the string size recorded in the string is the
5482 same as the one recorded in the sdata structure. */
5483 CHECK_STRING_BYTES (ptr);
361b097f 5484#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5485 }
5486 break;
5487
76437631 5488 case Lisp_Vectorlike:
8f11f7ec
SM
5489 if (VECTOR_MARKED_P (XVECTOR (obj)))
5490 break;
4f5c1376
GM
5491#ifdef GC_CHECK_MARKED_OBJECTS
5492 m = mem_find (po);
8e50cc2d 5493 if (m == MEM_NIL && !SUBRP (obj)
4f5c1376
GM
5494 && po != &buffer_defaults
5495 && po != &buffer_local_symbols)
5496 abort ();
5497#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5498
8e50cc2d 5499 if (BUFFERP (obj))
6b552283 5500 {
4f5c1376 5501#ifdef GC_CHECK_MARKED_OBJECTS
8f11f7ec
SM
5502 if (po != &buffer_defaults && po != &buffer_local_symbols)
5503 {
5504 struct buffer *b;
5505 for (b = all_buffers; b && b != po; b = b->next)
5506 ;
5507 if (b == NULL)
5508 abort ();
4f5c1376 5509 }
8f11f7ec
SM
5510#endif /* GC_CHECK_MARKED_OBJECTS */
5511 mark_buffer (obj);
6b552283 5512 }
8e50cc2d 5513 else if (SUBRP (obj))
169ee243 5514 break;
8e50cc2d 5515 else if (COMPILEDP (obj))
2e471eb5
GM
5516 /* We could treat this just like a vector, but it is better to
5517 save the COMPILED_CONSTANTS element for last and avoid
5518 recursion there. */
169ee243
RS
5519 {
5520 register struct Lisp_Vector *ptr = XVECTOR (obj);
5521 register EMACS_INT size = ptr->size;
169ee243
RS
5522 register int i;
5523
4f5c1376 5524 CHECK_LIVE (live_vector_p);
3ef06d12 5525 VECTOR_MARK (ptr); /* Else mark it */
76437631 5526 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
5527 for (i = 0; i < size; i++) /* and then mark its elements */
5528 {
5529 if (i != COMPILED_CONSTANTS)
49723c04 5530 mark_object (ptr->contents[i]);
169ee243 5531 }
49723c04 5532 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5533 goto loop;
5534 }
8e50cc2d 5535 else if (FRAMEP (obj))
169ee243 5536 {
c70bbf06 5537 register struct frame *ptr = XFRAME (obj);
8f11f7ec
SM
5538 mark_vectorlike (XVECTOR (obj));
5539 mark_face_cache (ptr->face_cache);
707788bd 5540 }
8e50cc2d 5541 else if (WINDOWP (obj))
41c28a37
GM
5542 {
5543 register struct Lisp_Vector *ptr = XVECTOR (obj);
5544 struct window *w = XWINDOW (obj);
8f11f7ec
SM
5545 mark_vectorlike (ptr);
5546 /* Mark glyphs for leaf windows. Marking window matrices is
5547 sufficient because frame matrices use the same glyph
5548 memory. */
5549 if (NILP (w->hchild)
5550 && NILP (w->vchild)
5551 && w->current_matrix)
41c28a37 5552 {
8f11f7ec
SM
5553 mark_glyph_matrix (w->current_matrix);
5554 mark_glyph_matrix (w->desired_matrix);
41c28a37
GM
5555 }
5556 }
8e50cc2d 5557 else if (HASH_TABLE_P (obj))
41c28a37
GM
5558 {
5559 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
8f11f7ec
SM
5560 mark_vectorlike ((struct Lisp_Vector *)h);
5561 /* If hash table is not weak, mark all keys and values.
5562 For weak tables, mark only the vector. */
5563 if (NILP (h->weak))
5564 mark_object (h->key_and_value);
5565 else
5566 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5567 }
58026347 5568 else if (CHAR_TABLE_P (obj))
8f11f7ec 5569 mark_char_table (XVECTOR (obj));
04ff9756 5570 else
d2029e5b 5571 mark_vectorlike (XVECTOR (obj));
169ee243 5572 break;
7146af97 5573
7146af97
JB
5574 case Lisp_Symbol:
5575 {
c70bbf06 5576 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5577 struct Lisp_Symbol *ptrx;
5578
8f11f7ec
SM
5579 if (ptr->gcmarkbit)
5580 break;
4f5c1376 5581 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5582 ptr->gcmarkbit = 1;
49723c04
SM
5583 mark_object (ptr->function);
5584 mark_object (ptr->plist);
ce5b453a
SM
5585 switch (ptr->redirect)
5586 {
5587 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5588 case SYMBOL_VARALIAS:
5589 {
5590 Lisp_Object tem;
5591 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5592 mark_object (tem);
5593 break;
5594 }
5595 case SYMBOL_LOCALIZED:
5596 {
5597 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5598 /* If the value is forwarded to a buffer or keyboard field,
5599 these are marked when we see the corresponding object.
5600 And if it's forwarded to a C variable, either it's not
5601 a Lisp_Object var, or it's staticpro'd already. */
5602 mark_object (blv->where);
5603 mark_object (blv->valcell);
5604 mark_object (blv->defcell);
5605 break;
5606 }
5607 case SYMBOL_FORWARDED:
5608 /* If the value is forwarded to a buffer or keyboard field,
5609 these are marked when we see the corresponding object.
5610 And if it's forwarded to a C variable, either it's not
5611 a Lisp_Object var, or it's staticpro'd already. */
5612 break;
5613 default: abort ();
5614 }
8fe5665d
KR
5615 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5616 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5617 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5618
7146af97
JB
5619 ptr = ptr->next;
5620 if (ptr)
5621 {
b0846f52 5622 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 5623 XSETSYMBOL (obj, ptrx);
49723c04 5624 goto loop;
7146af97
JB
5625 }
5626 }
5627 break;
5628
a0a38eb7 5629 case Lisp_Misc:
4f5c1376 5630 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
67ee9f6e 5631 if (XMISCANY (obj)->gcmarkbit)
2336fe58 5632 break;
67ee9f6e 5633 XMISCANY (obj)->gcmarkbit = 1;
b766f870 5634
a5da44fe 5635 switch (XMISCTYPE (obj))
a0a38eb7 5636 {
465edf35 5637
2336fe58
SM
5638 case Lisp_Misc_Marker:
5639 /* DO NOT mark thru the marker's chain.
5640 The buffer's markers chain does not preserve markers from gc;
5641 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5642 break;
5643
8f924df7 5644 case Lisp_Misc_Save_Value:
9ea306d1 5645#if GC_MARK_STACK
b766f870
KS
5646 {
5647 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5648 /* If DOGC is set, POINTER is the address of a memory
5649 area containing INTEGER potential Lisp_Objects. */
5650 if (ptr->dogc)
5651 {
5652 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5653 int nelt;
5654 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5655 mark_maybe_object (*p);
5656 }
5657 }
9ea306d1 5658#endif
c8616056
KH
5659 break;
5660
e202fa34
KH
5661 case Lisp_Misc_Overlay:
5662 {
5663 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5664 mark_object (ptr->start);
5665 mark_object (ptr->end);
f54253ec
SM
5666 mark_object (ptr->plist);
5667 if (ptr->next)
5668 {
5669 XSETMISC (obj, ptr->next);
5670 goto loop;
5671 }
e202fa34
KH
5672 }
5673 break;
5674
a0a38eb7
KH
5675 default:
5676 abort ();
5677 }
7146af97
JB
5678 break;
5679
5680 case Lisp_Cons:
7146af97
JB
5681 {
5682 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
5683 if (CONS_MARKED_P (ptr))
5684 break;
4f5c1376 5685 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5686 CONS_MARK (ptr);
c54ca951 5687 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 5688 if (EQ (ptr->u.cdr, Qnil))
c54ca951 5689 {
49723c04 5690 obj = ptr->car;
1342fc6f 5691 cdr_count = 0;
c54ca951
RS
5692 goto loop;
5693 }
49723c04 5694 mark_object (ptr->car);
28a099a4 5695 obj = ptr->u.cdr;
1342fc6f
RS
5696 cdr_count++;
5697 if (cdr_count == mark_object_loop_halt)
5698 abort ();
7146af97
JB
5699 goto loop;
5700 }
5701
7146af97 5702 case Lisp_Float:
4f5c1376 5703 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5704 FLOAT_MARK (XFLOAT (obj));
7146af97 5705 break;
7146af97 5706
2de9f71c 5707 case_Lisp_Int:
7146af97
JB
5708 break;
5709
5710 default:
5711 abort ();
5712 }
4f5c1376
GM
5713
5714#undef CHECK_LIVE
5715#undef CHECK_ALLOCATED
5716#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5717}
5718
5719/* Mark the pointers in a buffer structure. */
5720
5721static void
5722mark_buffer (buf)
5723 Lisp_Object buf;
5724{
7146af97 5725 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5726 register Lisp_Object *ptr, tmp;
30e3190a 5727 Lisp_Object base_buffer;
7146af97 5728
8f11f7ec 5729 eassert (!VECTOR_MARKED_P (buffer));
3ef06d12 5730 VECTOR_MARK (buffer);
7146af97 5731
30e3190a 5732 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5733
c37adf23
SM
5734 /* For now, we just don't mark the undo_list. It's done later in
5735 a special way just before the sweep phase, and after stripping
5736 some of its elements that are not needed any more. */
4c315bda 5737
f54253ec
SM
5738 if (buffer->overlays_before)
5739 {
5740 XSETMISC (tmp, buffer->overlays_before);
5741 mark_object (tmp);
5742 }
5743 if (buffer->overlays_after)
5744 {
5745 XSETMISC (tmp, buffer->overlays_after);
5746 mark_object (tmp);
5747 }
5748
9ce376f9
SM
5749 /* buffer-local Lisp variables start at `undo_list',
5750 tho only the ones from `name' on are GC'd normally. */
3ef06d12 5751 for (ptr = &buffer->name;
7146af97
JB
5752 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5753 ptr++)
49723c04 5754 mark_object (*ptr);
30e3190a
RS
5755
5756 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5757 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5758 {
177c0ea7 5759 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5760 mark_buffer (base_buffer);
5761 }
7146af97 5762}
084b1a0c 5763
4a729fd8
SM
5764/* Mark the Lisp pointers in the terminal objects.
5765 Called by the Fgarbage_collector. */
5766
4a729fd8
SM
5767static void
5768mark_terminals (void)
5769{
5770 struct terminal *t;
5771 for (t = terminal_list; t; t = t->next_terminal)
5772 {
5773 eassert (t->name != NULL);
8f11f7ec
SM
5774 if (!VECTOR_MARKED_P (t))
5775 {
354884c4 5776#ifdef HAVE_WINDOW_SYSTEM
8f11f7ec 5777 mark_image_cache (t->image_cache);
354884c4 5778#endif /* HAVE_WINDOW_SYSTEM */
8f11f7ec
SM
5779 mark_vectorlike ((struct Lisp_Vector *)t);
5780 }
4a729fd8
SM
5781 }
5782}
5783
5784
084b1a0c 5785
41c28a37
GM
5786/* Value is non-zero if OBJ will survive the current GC because it's
5787 either marked or does not need to be marked to survive. */
5788
5789int
5790survives_gc_p (obj)
5791 Lisp_Object obj;
5792{
5793 int survives_p;
177c0ea7 5794
8e50cc2d 5795 switch (XTYPE (obj))
41c28a37 5796 {
2de9f71c 5797 case_Lisp_Int:
41c28a37
GM
5798 survives_p = 1;
5799 break;
5800
5801 case Lisp_Symbol:
2336fe58 5802 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5803 break;
5804
5805 case Lisp_Misc:
67ee9f6e 5806 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
5807 break;
5808
5809 case Lisp_String:
08b7c2cb 5810 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5811 break;
5812
5813 case Lisp_Vectorlike:
8e50cc2d 5814 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5815 break;
5816
5817 case Lisp_Cons:
08b7c2cb 5818 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5819 break;
5820
41c28a37 5821 case Lisp_Float:
ab6780cd 5822 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5823 break;
41c28a37
GM
5824
5825 default:
5826 abort ();
5827 }
5828
34400008 5829 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5830}
5831
5832
7146af97 5833\f
1a4f1e2c 5834/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5835
5836static void
5837gc_sweep ()
5838{
41c28a37
GM
5839 /* Remove or mark entries in weak hash tables.
5840 This must be done before any object is unmarked. */
5841 sweep_weak_hash_tables ();
5842
2e471eb5 5843 sweep_strings ();
676a7251
GM
5844#ifdef GC_CHECK_STRING_BYTES
5845 if (!noninteractive)
5846 check_string_bytes (1);
5847#endif
7146af97
JB
5848
5849 /* Put all unmarked conses on free list */
5850 {
5851 register struct cons_block *cblk;
6ca94ac9 5852 struct cons_block **cprev = &cons_block;
7146af97
JB
5853 register int lim = cons_block_index;
5854 register int num_free = 0, num_used = 0;
5855
5856 cons_free_list = 0;
177c0ea7 5857
6ca94ac9 5858 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 5859 {
3ae2e3a3 5860 register int i = 0;
6ca94ac9 5861 int this_free = 0;
3ae2e3a3
RS
5862 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5863
5864 /* Scan the mark bits an int at a time. */
5865 for (i = 0; i <= ilim; i++)
5866 {
5867 if (cblk->gcmarkbits[i] == -1)
5868 {
5869 /* Fast path - all cons cells for this int are marked. */
5870 cblk->gcmarkbits[i] = 0;
5871 num_used += BITS_PER_INT;
5872 }
5873 else
5874 {
5875 /* Some cons cells for this int are not marked.
5876 Find which ones, and free them. */
5877 int start, pos, stop;
5878
5879 start = i * BITS_PER_INT;
5880 stop = lim - start;
5881 if (stop > BITS_PER_INT)
5882 stop = BITS_PER_INT;
5883 stop += start;
5884
5885 for (pos = start; pos < stop; pos++)
5886 {
5887 if (!CONS_MARKED_P (&cblk->conses[pos]))
5888 {
5889 this_free++;
5890 cblk->conses[pos].u.chain = cons_free_list;
5891 cons_free_list = &cblk->conses[pos];
34400008 5892#if GC_MARK_STACK
3ae2e3a3 5893 cons_free_list->car = Vdead;
34400008 5894#endif
3ae2e3a3
RS
5895 }
5896 else
5897 {
5898 num_used++;
5899 CONS_UNMARK (&cblk->conses[pos]);
5900 }
5901 }
5902 }
5903 }
5904
7146af97 5905 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5906 /* If this block contains only free conses and we have already
5907 seen more than two blocks worth of free conses then deallocate
5908 this block. */
6feef451 5909 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5910 {
6ca94ac9
KH
5911 *cprev = cblk->next;
5912 /* Unhook from the free list. */
28a099a4 5913 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 5914 lisp_align_free (cblk);
c8099634 5915 n_cons_blocks--;
6ca94ac9
KH
5916 }
5917 else
6feef451
AS
5918 {
5919 num_free += this_free;
5920 cprev = &cblk->next;
5921 }
7146af97
JB
5922 }
5923 total_conses = num_used;
5924 total_free_conses = num_free;
5925 }
5926
7146af97
JB
5927 /* Put all unmarked floats on free list */
5928 {
5929 register struct float_block *fblk;
6ca94ac9 5930 struct float_block **fprev = &float_block;
7146af97
JB
5931 register int lim = float_block_index;
5932 register int num_free = 0, num_used = 0;
5933
5934 float_free_list = 0;
177c0ea7 5935
6ca94ac9 5936 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5937 {
5938 register int i;
6ca94ac9 5939 int this_free = 0;
7146af97 5940 for (i = 0; i < lim; i++)
ab6780cd 5941 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5942 {
6ca94ac9 5943 this_free++;
28a099a4 5944 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
5945 float_free_list = &fblk->floats[i];
5946 }
5947 else
5948 {
5949 num_used++;
ab6780cd 5950 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5951 }
5952 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5953 /* If this block contains only free floats and we have already
5954 seen more than two blocks worth of free floats then deallocate
5955 this block. */
6feef451 5956 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5957 {
6ca94ac9
KH
5958 *fprev = fblk->next;
5959 /* Unhook from the free list. */
28a099a4 5960 float_free_list = fblk->floats[0].u.chain;
ab6780cd 5961 lisp_align_free (fblk);
c8099634 5962 n_float_blocks--;
6ca94ac9
KH
5963 }
5964 else
6feef451
AS
5965 {
5966 num_free += this_free;
5967 fprev = &fblk->next;
5968 }
7146af97
JB
5969 }
5970 total_floats = num_used;
5971 total_free_floats = num_free;
5972 }
7146af97 5973
d5e35230
JA
5974 /* Put all unmarked intervals on free list */
5975 {
5976 register struct interval_block *iblk;
6ca94ac9 5977 struct interval_block **iprev = &interval_block;
d5e35230
JA
5978 register int lim = interval_block_index;
5979 register int num_free = 0, num_used = 0;
5980
5981 interval_free_list = 0;
5982
6ca94ac9 5983 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5984 {
5985 register int i;
6ca94ac9 5986 int this_free = 0;
d5e35230
JA
5987
5988 for (i = 0; i < lim; i++)
5989 {
2336fe58 5990 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5991 {
439d5cb4 5992 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5993 interval_free_list = &iblk->intervals[i];
6ca94ac9 5994 this_free++;
d5e35230
JA
5995 }
5996 else
5997 {
5998 num_used++;
2336fe58 5999 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
6000 }
6001 }
6002 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
6003 /* If this block contains only free intervals and we have already
6004 seen more than two blocks worth of free intervals then
6005 deallocate this block. */
6feef451 6006 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 6007 {
6ca94ac9
KH
6008 *iprev = iblk->next;
6009 /* Unhook from the free list. */
439d5cb4 6010 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
6011 lisp_free (iblk);
6012 n_interval_blocks--;
6ca94ac9
KH
6013 }
6014 else
6feef451
AS
6015 {
6016 num_free += this_free;
6017 iprev = &iblk->next;
6018 }
d5e35230
JA
6019 }
6020 total_intervals = num_used;
6021 total_free_intervals = num_free;
6022 }
d5e35230 6023
7146af97
JB
6024 /* Put all unmarked symbols on free list */
6025 {
6026 register struct symbol_block *sblk;
6ca94ac9 6027 struct symbol_block **sprev = &symbol_block;
7146af97
JB
6028 register int lim = symbol_block_index;
6029 register int num_free = 0, num_used = 0;
6030
d285b373 6031 symbol_free_list = NULL;
177c0ea7 6032
6ca94ac9 6033 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 6034 {
6ca94ac9 6035 int this_free = 0;
d285b373
GM
6036 struct Lisp_Symbol *sym = sblk->symbols;
6037 struct Lisp_Symbol *end = sym + lim;
6038
6039 for (; sym < end; ++sym)
6040 {
20035321
SM
6041 /* Check if the symbol was created during loadup. In such a case
6042 it might be pointed to by pure bytecode which we don't trace,
6043 so we conservatively assume that it is live. */
8fe5665d 6044 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 6045
2336fe58 6046 if (!sym->gcmarkbit && !pure_p)
d285b373 6047 {
ce5b453a
SM
6048 if (sym->redirect == SYMBOL_LOCALIZED)
6049 xfree (SYMBOL_BLV (sym));
28a099a4 6050 sym->next = symbol_free_list;
d285b373 6051 symbol_free_list = sym;
34400008 6052#if GC_MARK_STACK
d285b373 6053 symbol_free_list->function = Vdead;
34400008 6054#endif
d285b373
GM
6055 ++this_free;
6056 }
6057 else
6058 {
6059 ++num_used;
6060 if (!pure_p)
8fe5665d 6061 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 6062 sym->gcmarkbit = 0;
d285b373
GM
6063 }
6064 }
177c0ea7 6065
7146af97 6066 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6067 /* If this block contains only free symbols and we have already
6068 seen more than two blocks worth of free symbols then deallocate
6069 this block. */
6feef451 6070 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6071 {
6ca94ac9
KH
6072 *sprev = sblk->next;
6073 /* Unhook from the free list. */
28a099a4 6074 symbol_free_list = sblk->symbols[0].next;
c8099634
RS
6075 lisp_free (sblk);
6076 n_symbol_blocks--;
6ca94ac9
KH
6077 }
6078 else
6feef451
AS
6079 {
6080 num_free += this_free;
6081 sprev = &sblk->next;
6082 }
7146af97
JB
6083 }
6084 total_symbols = num_used;
6085 total_free_symbols = num_free;
6086 }
6087
a9faeabe
RS
6088 /* Put all unmarked misc's on free list.
6089 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6090 {
6091 register struct marker_block *mblk;
6ca94ac9 6092 struct marker_block **mprev = &marker_block;
7146af97
JB
6093 register int lim = marker_block_index;
6094 register int num_free = 0, num_used = 0;
6095
6096 marker_free_list = 0;
177c0ea7 6097
6ca94ac9 6098 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6099 {
6100 register int i;
6ca94ac9 6101 int this_free = 0;
fa05e253 6102
7146af97 6103 for (i = 0; i < lim; i++)
465edf35 6104 {
d314756e 6105 if (!mblk->markers[i].u_any.gcmarkbit)
465edf35 6106 {
d314756e 6107 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
ef89c2ce 6108 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
6109 /* Set the type of the freed object to Lisp_Misc_Free.
6110 We could leave the type alone, since nobody checks it,
465edf35 6111 but this might catch bugs faster. */
a5da44fe 6112 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
6113 mblk->markers[i].u_free.chain = marker_free_list;
6114 marker_free_list = &mblk->markers[i];
6ca94ac9 6115 this_free++;
465edf35
KH
6116 }
6117 else
6118 {
6119 num_used++;
d314756e 6120 mblk->markers[i].u_any.gcmarkbit = 0;
465edf35
KH
6121 }
6122 }
7146af97 6123 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6124 /* If this block contains only free markers and we have already
6125 seen more than two blocks worth of free markers then deallocate
6126 this block. */
6feef451 6127 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6128 {
6ca94ac9
KH
6129 *mprev = mblk->next;
6130 /* Unhook from the free list. */
6131 marker_free_list = mblk->markers[0].u_free.chain;
c8099634
RS
6132 lisp_free (mblk);
6133 n_marker_blocks--;
6ca94ac9
KH
6134 }
6135 else
6feef451
AS
6136 {
6137 num_free += this_free;
6138 mprev = &mblk->next;
6139 }
7146af97
JB
6140 }
6141
6142 total_markers = num_used;
6143 total_free_markers = num_free;
6144 }
6145
6146 /* Free all unmarked buffers */
6147 {
6148 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6149
6150 while (buffer)
3ef06d12 6151 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6152 {
6153 if (prev)
6154 prev->next = buffer->next;
6155 else
6156 all_buffers = buffer->next;
6157 next = buffer->next;
34400008 6158 lisp_free (buffer);
7146af97
JB
6159 buffer = next;
6160 }
6161 else
6162 {
3ef06d12 6163 VECTOR_UNMARK (buffer);
30e3190a 6164 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
6165 prev = buffer, buffer = buffer->next;
6166 }
6167 }
6168
7146af97
JB
6169 /* Free all unmarked vectors */
6170 {
6171 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6172 total_vector_size = 0;
6173
6174 while (vector)
3ef06d12 6175 if (!VECTOR_MARKED_P (vector))
7146af97
JB
6176 {
6177 if (prev)
6178 prev->next = vector->next;
6179 else
6180 all_vectors = vector->next;
6181 next = vector->next;
c8099634
RS
6182 lisp_free (vector);
6183 n_vectors--;
7146af97 6184 vector = next;
41c28a37 6185
7146af97
JB
6186 }
6187 else
6188 {
3ef06d12 6189 VECTOR_UNMARK (vector);
fa05e253
RS
6190 if (vector->size & PSEUDOVECTOR_FLAG)
6191 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6192 else
6193 total_vector_size += vector->size;
7146af97
JB
6194 prev = vector, vector = vector->next;
6195 }
6196 }
177c0ea7 6197
676a7251
GM
6198#ifdef GC_CHECK_STRING_BYTES
6199 if (!noninteractive)
6200 check_string_bytes (1);
6201#endif
7146af97 6202}
7146af97 6203
7146af97 6204
7146af97 6205
7146af97 6206\f
20d24714
JB
6207/* Debugging aids. */
6208
31ce1c91 6209DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6210 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6211This may be helpful in debugging Emacs's memory usage.
7ee72033
MB
6212We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6213 ()
20d24714
JB
6214{
6215 Lisp_Object end;
6216
45d12a89 6217 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
20d24714
JB
6218
6219 return end;
6220}
6221
310ea200 6222DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6223 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6224Each of these counters increments for a certain kind of object.
6225The counters wrap around from the largest positive integer to zero.
6226Garbage collection does not decrease them.
6227The elements of the value are as follows:
6228 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6229All are in units of 1 = one object consed
6230except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6231objects consed.
6232MISCS include overlays, markers, and some internal types.
6233Frames, windows, buffers, and subprocesses count as vectors
7ee72033
MB
6234 (but the contents of a buffer's text do not count here). */)
6235 ()
310ea200 6236{
2e471eb5 6237 Lisp_Object consed[8];
310ea200 6238
78e985eb
GM
6239 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6240 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6241 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6242 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6243 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6244 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6245 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6246 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6247
2e471eb5 6248 return Flist (8, consed);
310ea200 6249}
e0b8c689
KR
6250
6251int suppress_checking;
d3d47262 6252
e0b8c689
KR
6253void
6254die (msg, file, line)
6255 const char *msg;
6256 const char *file;
6257 int line;
6258{
67ee9f6e 6259 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6260 file, line, msg);
6261 abort ();
6262}
20d24714 6263\f
7146af97
JB
6264/* Initialization */
6265
dfcf069d 6266void
7146af97
JB
6267init_alloc_once ()
6268{
6269 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6270 purebeg = PUREBEG;
6271 pure_size = PURESIZE;
1f0b3fd2 6272 pure_bytes_used = 0;
e5bc14d4 6273 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
9e713715
GM
6274 pure_bytes_used_before_overflow = 0;
6275
ab6780cd
SM
6276 /* Initialize the list of free aligned blocks. */
6277 free_ablock = NULL;
6278
877935b1 6279#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6280 mem_init ();
6281 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6282#endif
9e713715 6283
7146af97
JB
6284 all_vectors = 0;
6285 ignore_warnings = 1;
d1658221
RS
6286#ifdef DOUG_LEA_MALLOC
6287 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6288 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6289 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6290#endif
7146af97
JB
6291 init_strings ();
6292 init_cons ();
6293 init_symbol ();
6294 init_marker ();
7146af97 6295 init_float ();
34400008 6296 init_intervals ();
5ac58e4c 6297 init_weak_hash_tables ();
d5e35230 6298
276cbe5a
RS
6299#ifdef REL_ALLOC
6300 malloc_hysteresis = 32;
6301#else
6302 malloc_hysteresis = 0;
6303#endif
6304
24d8a105 6305 refill_memory_reserve ();
276cbe5a 6306
7146af97
JB
6307 ignore_warnings = 0;
6308 gcprolist = 0;
630686c8 6309 byte_stack_list = 0;
7146af97
JB
6310 staticidx = 0;
6311 consing_since_gc = 0;
7d179cea 6312 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61
RS
6313 gc_relative_threshold = 0;
6314
7146af97
JB
6315#ifdef VIRT_ADDR_VARIES
6316 malloc_sbrk_unused = 1<<22; /* A large number */
6317 malloc_sbrk_used = 100000; /* as reasonable as any number */
6318#endif /* VIRT_ADDR_VARIES */
6319}
6320
dfcf069d 6321void
7146af97
JB
6322init_alloc ()
6323{
6324 gcprolist = 0;
630686c8 6325 byte_stack_list = 0;
182ff242
GM
6326#if GC_MARK_STACK
6327#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6328 setjmp_tested_p = longjmps_done = 0;
6329#endif
6330#endif
2c5bd608
DL
6331 Vgc_elapsed = make_float (0.0);
6332 gcs_done = 0;
7146af97
JB
6333}
6334
6335void
6336syms_of_alloc ()
6337{
7ee72033 6338 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
a6266d23 6339 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
6340Garbage collection can happen automatically once this many bytes have been
6341allocated since the last garbage collection. All data types count.
7146af97 6342
228299fa 6343Garbage collection happens automatically only when `eval' is called.
7146af97 6344
228299fa 6345By binding this temporarily to a large number, you can effectively
96f077ad
SM
6346prevent garbage collection during a part of the program.
6347See also `gc-cons-percentage'. */);
6348
6349 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6350 doc: /* *Portion of the heap used for allocation.
6351Garbage collection can happen automatically once this portion of the heap
6352has been allocated since the last garbage collection.
6353If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6354 Vgc_cons_percentage = make_float (0.1);
0819585c 6355
7ee72033 6356 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
a6266d23 6357 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 6358
7ee72033 6359 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
a6266d23 6360 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6361
7ee72033 6362 DEFVAR_INT ("floats-consed", &floats_consed,
a6266d23 6363 doc: /* Number of floats that have been consed so far. */);
0819585c 6364
7ee72033 6365 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
a6266d23 6366 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6367
7ee72033 6368 DEFVAR_INT ("symbols-consed", &symbols_consed,
a6266d23 6369 doc: /* Number of symbols that have been consed so far. */);
0819585c 6370
7ee72033 6371 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
a6266d23 6372 doc: /* Number of string characters that have been consed so far. */);
0819585c 6373
7ee72033 6374 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
a6266d23 6375 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 6376
7ee72033 6377 DEFVAR_INT ("intervals-consed", &intervals_consed,
a6266d23 6378 doc: /* Number of intervals that have been consed so far. */);
7146af97 6379
7ee72033 6380 DEFVAR_INT ("strings-consed", &strings_consed,
a6266d23 6381 doc: /* Number of strings that have been consed so far. */);
228299fa 6382
7ee72033 6383 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
a6266d23 6384 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6385This means that certain objects should be allocated in shared (pure) space.
6386It can also be set to a hash-table, in which case this table is used to
6387do hash-consing of the objects allocated to pure space. */);
228299fa 6388
7ee72033 6389 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
a6266d23 6390 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6391 garbage_collection_messages = 0;
6392
7ee72033 6393 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
a6266d23 6394 doc: /* Hook run after garbage collection has finished. */);
9e713715 6395 Vpost_gc_hook = Qnil;
d67b4f80 6396 Qpost_gc_hook = intern_c_string ("post-gc-hook");
9e713715
GM
6397 staticpro (&Qpost_gc_hook);
6398
74a54b04
RS
6399 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6400 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6401 /* We build this in advance because if we wait until we need it, we might
6402 not be able to allocate the memory to hold it. */
74a54b04 6403 Vmemory_signal_data
f4265f6c
DN
6404 = pure_cons (Qerror,
6405 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
74a54b04
RS
6406
6407 DEFVAR_LISP ("memory-full", &Vmemory_full,
24d8a105 6408 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6409 Vmemory_full = Qnil;
bcb61d60 6410
e8197642 6411 staticpro (&Qgc_cons_threshold);
d67b4f80 6412 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
e8197642 6413
a59de17b 6414 staticpro (&Qchar_table_extra_slots);
d67b4f80 6415 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
a59de17b 6416
2c5bd608
DL
6417 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6418 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6419The time is in seconds as a floating point value. */);
2c5bd608 6420 DEFVAR_INT ("gcs-done", &gcs_done,
e7415487 6421 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6422
7146af97
JB
6423 defsubr (&Scons);
6424 defsubr (&Slist);
6425 defsubr (&Svector);
6426 defsubr (&Smake_byte_code);
6427 defsubr (&Smake_list);
6428 defsubr (&Smake_vector);
6429 defsubr (&Smake_string);
7b07587b 6430 defsubr (&Smake_bool_vector);
7146af97
JB
6431 defsubr (&Smake_symbol);
6432 defsubr (&Smake_marker);
6433 defsubr (&Spurecopy);
6434 defsubr (&Sgarbage_collect);
20d24714 6435 defsubr (&Smemory_limit);
310ea200 6436 defsubr (&Smemory_use_counts);
34400008
GM
6437
6438#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6439 defsubr (&Sgc_status);
6440#endif
7146af97 6441}
005ca5c7
DL
6442
6443/* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6444 (do not change this comment) */