(detect_coding_mask): Fix previous change.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
0b5538bd 5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
64be3a42
GM
6 2002, 2003, 2004, 2005, 2006, 2007
7 Free Software Foundation, Inc.
bc78d348 8
fa9a63c5
RM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
64be3a42 11 the Free Software Foundation; either version 3, or (at your option)
fa9a63c5
RM
12 any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
7814e705 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
4fc5845f 21 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
7814e705 22 USA. */
fa9a63c5 23
6df42991 24/* TODO:
505bde11 25 - structure the opcode space into opcode+flag.
dc1e502d 26 - merge with glibc's regex.[ch].
01618498 27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
01618498 31*/
505bde11 32
fa9a63c5 33/* AIX requires this to be the first thing in the file. */
0b32bf0e 34#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
35 #pragma alloca
36#endif
37
fa9a63c5 38#ifdef HAVE_CONFIG_H
0b32bf0e 39# include <config.h>
fa9a63c5
RM
40#endif
41
4bb91c68
SM
42#if defined STDC_HEADERS && !defined emacs
43# include <stddef.h>
44#else
45/* We need this for `regex.h', and perhaps for the Emacs include files. */
46# include <sys/types.h>
47#endif
fa9a63c5 48
14473664
SM
49/* Whether to use ISO C Amendment 1 wide char functions.
50 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
51#if defined _LIBC
52#define WIDE_CHAR_SUPPORT 1
53#else
14473664 54#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
55 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
56#endif
14473664
SM
57
58/* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
a0ad02f7 60#if WIDE_CHAR_SUPPORT
14473664
SM
61/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
62# include <wchar.h>
63# include <wctype.h>
64#endif
65
c0f9ea08
SM
66#ifdef _LIBC
67/* We have to keep the namespace clean. */
68# define regfree(preg) __regfree (preg)
69# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
ec869672
JR
71# define regerror(err_code, preg, errbuf, errbuf_size) \
72 __regerror(err_code, preg, errbuf, errbuf_size)
c0f9ea08
SM
73# define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77# define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79# define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81# define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83# define re_set_syntax(syntax) __re_set_syntax (syntax)
84# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87
14473664
SM
88/* Make sure we call libc's function even if the user overrides them. */
89# define btowc __btowc
90# define iswctype __iswctype
91# define wctype __wctype
92
c0f9ea08
SM
93# define WEAK_ALIAS(a,b) weak_alias (a, b)
94
95/* We are also using some library internals. */
96# include <locale/localeinfo.h>
97# include <locale/elem-hash.h>
98# include <langinfo.h>
99#else
100# define WEAK_ALIAS(a,b)
101#endif
102
4bb91c68 103/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 104#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
105# include <libintl.h>
106#else
107# define gettext(msgid) (msgid)
108#endif
109
5e69f11e
RM
110#ifndef gettext_noop
111/* This define is so xgettext can find the internationalizable
112 strings. */
0b32bf0e 113# define gettext_noop(String) String
5e69f11e
RM
114#endif
115
fa9a63c5
RM
116/* The `emacs' switch turns on certain matching commands
117 that make sense only in Emacs. */
118#ifdef emacs
119
0b32bf0e
SM
120# include "lisp.h"
121# include "buffer.h"
b18215fc
RS
122
123/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 124# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 125
0b32bf0e
SM
126# include "syntax.h"
127# include "charset.h"
128# include "category.h"
fa9a63c5 129
7689ef0b
EZ
130# ifdef malloc
131# undef malloc
132# endif
0b32bf0e 133# define malloc xmalloc
7689ef0b
EZ
134# ifdef realloc
135# undef realloc
136# endif
0b32bf0e 137# define realloc xrealloc
7689ef0b
EZ
138# ifdef free
139# undef free
140# endif
0b32bf0e 141# define free xfree
9abbd165 142
7814e705 143/* Converts the pointer to the char to BEG-based offset from the start. */
0b32bf0e
SM
144# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
145# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
146
147# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
148# define RE_STRING_CHAR(p, s) \
4e8a9132 149 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
0b32bf0e 150# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
2d1675e4
SM
151 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
152
153/* Set C a (possibly multibyte) character before P. P points into a
154 string which is the virtual concatenation of STR1 (which ends at
155 END1) or STR2 (which ends at END2). */
0b32bf0e 156# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
2d1675e4
SM
157 do { \
158 if (multibyte) \
159 { \
0b32bf0e
SM
160 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
161 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
70806df6
KH
162 re_char *d0 = dtemp; \
163 PREV_CHAR_BOUNDARY (d0, dlimit); \
164 c = STRING_CHAR (d0, dtemp - d0); \
2d1675e4
SM
165 } \
166 else \
167 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
168 } while (0)
169
4e8a9132 170
fa9a63c5
RM
171#else /* not emacs */
172
173/* If we are not linking with Emacs proper,
174 we can't use the relocating allocator
175 even if config.h says that we can. */
0b32bf0e 176# undef REL_ALLOC
fa9a63c5 177
0b32bf0e
SM
178# if defined STDC_HEADERS || defined _LIBC
179# include <stdlib.h>
180# else
fa9a63c5
RM
181char *malloc ();
182char *realloc ();
0b32bf0e 183# endif
fa9a63c5 184
a77f947b
CY
185/* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
186
187void *
188xmalloc (size)
189 size_t size;
190{
191 register void *val;
192 val = (void *) malloc (size);
193 if (!val && size)
194 {
195 write (2, "virtual memory exhausted\n", 25);
196 exit (1);
197 }
198 return val;
199}
200
201void *
202xrealloc (block, size)
203 void *block;
204 size_t size;
205{
206 register void *val;
207 /* We must call malloc explicitly when BLOCK is 0, since some
208 reallocs don't do this. */
209 if (! block)
210 val = (void *) malloc (size);
211 else
212 val = (void *) realloc (block, size);
213 if (!val && size)
214 {
215 write (2, "virtual memory exhausted\n", 25);
216 exit (1);
217 }
218 return val;
219}
220
a073faa6
CY
221# ifdef malloc
222# undef malloc
223# endif
224# define malloc xmalloc
225# ifdef realloc
226# undef realloc
227# endif
228# define realloc xrealloc
229
9e4ecb26 230/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 231 If nothing else has been done, use the method below. */
0b32bf0e
SM
232# ifdef INHIBIT_STRING_HEADER
233# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
234# if !defined bzero && !defined bcopy
235# undef INHIBIT_STRING_HEADER
236# endif
237# endif
238# endif
9e4ecb26 239
4bb91c68 240/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
241 This is used in most programs--a few other programs avoid this
242 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
243# ifndef INHIBIT_STRING_HEADER
244# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
245# include <string.h>
0b32bf0e 246# ifndef bzero
4bb91c68
SM
247# ifndef _LIBC
248# define bzero(s, n) (memset (s, '\0', n), (s))
249# else
250# define bzero(s, n) __bzero (s, n)
251# endif
0b32bf0e
SM
252# endif
253# else
254# include <strings.h>
4bb91c68
SM
255# ifndef memcmp
256# define memcmp(s1, s2, n) bcmp (s1, s2, n)
257# endif
258# ifndef memcpy
259# define memcpy(d, s, n) (bcopy (s, d, n), (d))
260# endif
0b32bf0e
SM
261# endif
262# endif
fa9a63c5
RM
263
264/* Define the syntax stuff for \<, \>, etc. */
265
990b2375 266/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 267enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 268
0b32bf0e
SM
269# ifdef SWITCH_ENUM_BUG
270# define SWITCH_ENUM_CAST(x) ((int)(x))
271# else
272# define SWITCH_ENUM_CAST(x) (x)
273# endif
fa9a63c5 274
e934739e 275/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
276# define BASE_LEADING_CODE_P(c) (0)
277# define CHAR_CHARSET(c) 0
278# define CHARSET_LEADING_CODE_BASE(c) 0
279# define MAX_MULTIBYTE_LENGTH 1
280# define RE_MULTIBYTE_P(x) 0
281# define WORD_BOUNDARY_P(c1, c2) (0)
282# define CHAR_HEAD_P(p) (1)
283# define SINGLE_BYTE_CHAR_P(c) (1)
284# define SAME_CHARSET_P(c1, c2) (1)
285# define MULTIBYTE_FORM_LENGTH(p, s) (1)
70806df6 286# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
0b32bf0e
SM
287# define STRING_CHAR(p, s) (*(p))
288# define RE_STRING_CHAR STRING_CHAR
289# define CHAR_STRING(c, s) (*(s) = (c), 1)
290# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
291# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
292# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 293 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
0b32bf0e 294# define MAKE_CHAR(charset, c1, c2) (c1)
fa9a63c5 295#endif /* not emacs */
4e8a9132
SM
296
297#ifndef RE_TRANSLATE
0b32bf0e
SM
298# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
299# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 300#endif
fa9a63c5
RM
301\f
302/* Get the interface, including the syntax bits. */
303#include "regex.h"
304
f71b19b6
DL
305/* isalpha etc. are used for the character classes. */
306#include <ctype.h>
fa9a63c5 307
f71b19b6 308#ifdef emacs
fa9a63c5 309
f71b19b6 310/* 1 if C is an ASCII character. */
0b32bf0e 311# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 312
f71b19b6 313/* 1 if C is a unibyte character. */
0b32bf0e 314# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 315
f71b19b6 316/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 317
f71b19b6 318/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
319# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
320# define ISCNTRL(c) ((c) < ' ')
321# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
322 || ((c) >= 'a' && (c) <= 'f') \
323 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
324
325/* This is only used for single-byte characters. */
0b32bf0e 326# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
327
328/* The rest must handle multibyte characters. */
329
0b32bf0e 330# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 331 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
332 : 1)
333
14473664 334# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 335 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
336 : 1)
337
0b32bf0e 338# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
339 ? (((c) >= 'a' && (c) <= 'z') \
340 || ((c) >= 'A' && (c) <= 'Z') \
341 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
342 : SYNTAX (c) == Sword)
343
0b32bf0e 344# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
345 ? (((c) >= 'a' && (c) <= 'z') \
346 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
347 : SYNTAX (c) == Sword)
348
0b32bf0e 349# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 350
0b32bf0e 351# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
352 ? ((c) > ' ' && (c) < 0177 \
353 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
354 || ((c) >= 'A' && (c) <= 'Z') \
355 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
356 : SYNTAX (c) != Sword)
357
0b32bf0e 358# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 359
0b32bf0e 360# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 361
0b32bf0e 362# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
363
364#else /* not emacs */
365
f71b19b6
DL
366/* Jim Meyering writes:
367
368 "... Some ctype macros are valid only for character codes that
369 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
370 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 371 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
372 STDC_HEADERS is defined, then autoconf has verified that the ctype
373 macros don't need to be guarded with references to isascii. ...
374 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
375 eliminate the && through constant folding."
376 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 377
4bb91c68 378# undef ISASCII
0b32bf0e
SM
379# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
380# define ISASCII(c) 1
381# else
382# define ISASCII(c) isascii(c)
383# endif
f71b19b6
DL
384
385/* 1 if C is an ASCII character. */
0b32bf0e 386# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
387
388/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
389# define ISUNIBYTE(c) 1
390
391# ifdef isblank
392# define ISBLANK(c) (ISASCII (c) && isblank (c))
393# else
394# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
395# endif
396# ifdef isgraph
397# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
398# else
399# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
400# endif
401
4bb91c68 402# undef ISPRINT
0b32bf0e
SM
403# define ISPRINT(c) (ISASCII (c) && isprint (c))
404# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
405# define ISALNUM(c) (ISASCII (c) && isalnum (c))
406# define ISALPHA(c) (ISASCII (c) && isalpha (c))
407# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
408# define ISLOWER(c) (ISASCII (c) && islower (c))
409# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
410# define ISSPACE(c) (ISASCII (c) && isspace (c))
411# define ISUPPER(c) (ISASCII (c) && isupper (c))
412# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
413
414# define ISWORD(c) ISALPHA(c)
415
4bb91c68
SM
416# ifdef _tolower
417# define TOLOWER(c) _tolower(c)
418# else
419# define TOLOWER(c) tolower(c)
420# endif
421
422/* How many characters in the character set. */
423# define CHAR_SET_SIZE 256
424
0b32bf0e 425# ifdef SYNTAX_TABLE
f71b19b6 426
0b32bf0e 427extern char *re_syntax_table;
f71b19b6 428
0b32bf0e
SM
429# else /* not SYNTAX_TABLE */
430
0b32bf0e
SM
431static char re_syntax_table[CHAR_SET_SIZE];
432
433static void
434init_syntax_once ()
435{
436 register int c;
437 static int done = 0;
438
439 if (done)
440 return;
441
442 bzero (re_syntax_table, sizeof re_syntax_table);
443
4bb91c68
SM
444 for (c = 0; c < CHAR_SET_SIZE; ++c)
445 if (ISALNUM (c))
446 re_syntax_table[c] = Sword;
fa9a63c5 447
669fa600 448 re_syntax_table['_'] = Ssymbol;
fa9a63c5 449
0b32bf0e
SM
450 done = 1;
451}
452
453# endif /* not SYNTAX_TABLE */
96cc36cc 454
4bb91c68
SM
455# define SYNTAX(c) re_syntax_table[(c)]
456
96cc36cc
RS
457#endif /* not emacs */
458\f
fa9a63c5 459#ifndef NULL
0b32bf0e 460# define NULL (void *)0
fa9a63c5
RM
461#endif
462
463/* We remove any previous definition of `SIGN_EXTEND_CHAR',
464 since ours (we hope) works properly with all combinations of
465 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 466 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
467#undef SIGN_EXTEND_CHAR
468#if __STDC__
0b32bf0e 469# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
470#else /* not __STDC__ */
471/* As in Harbison and Steele. */
0b32bf0e 472# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
473#endif
474\f
475/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
476 use `alloca' instead of `malloc'. This is because using malloc in
477 re_search* or re_match* could cause memory leaks when C-g is used in
478 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
479 the other hand, malloc is more portable, and easier to debug.
480
fa9a63c5
RM
481 Because we sometimes use alloca, some routines have to be macros,
482 not functions -- `alloca'-allocated space disappears at the end of the
483 function it is called in. */
484
485#ifdef REGEX_MALLOC
486
0b32bf0e
SM
487# define REGEX_ALLOCATE malloc
488# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
489# define REGEX_FREE free
fa9a63c5
RM
490
491#else /* not REGEX_MALLOC */
492
493/* Emacs already defines alloca, sometimes. */
0b32bf0e 494# ifndef alloca
fa9a63c5
RM
495
496/* Make alloca work the best possible way. */
0b32bf0e
SM
497# ifdef __GNUC__
498# define alloca __builtin_alloca
499# else /* not __GNUC__ */
500# if HAVE_ALLOCA_H
501# include <alloca.h>
502# endif /* HAVE_ALLOCA_H */
503# endif /* not __GNUC__ */
fa9a63c5 504
0b32bf0e 505# endif /* not alloca */
fa9a63c5 506
0b32bf0e 507# define REGEX_ALLOCATE alloca
fa9a63c5
RM
508
509/* Assumes a `char *destination' variable. */
0b32bf0e 510# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 511 (destination = (char *) alloca (nsize), \
4bb91c68 512 memcpy (destination, source, osize))
fa9a63c5
RM
513
514/* No need to do anything to free, after alloca. */
0b32bf0e 515# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
516
517#endif /* not REGEX_MALLOC */
518
519/* Define how to allocate the failure stack. */
520
0b32bf0e 521#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 522
0b32bf0e 523# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 524 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 525# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 526 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 527# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
528 r_alloc_free (&failure_stack_ptr)
529
4297555e 530#else /* not using relocating allocator */
fa9a63c5 531
0b32bf0e 532# ifdef REGEX_MALLOC
fa9a63c5 533
0b32bf0e
SM
534# define REGEX_ALLOCATE_STACK malloc
535# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
536# define REGEX_FREE_STACK free
fa9a63c5 537
0b32bf0e 538# else /* not REGEX_MALLOC */
fa9a63c5 539
0b32bf0e 540# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 541
0b32bf0e 542# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 543 REGEX_REALLOCATE (source, osize, nsize)
7814e705 544/* No need to explicitly free anything. */
0b32bf0e 545# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 546
0b32bf0e 547# endif /* not REGEX_MALLOC */
4297555e 548#endif /* not using relocating allocator */
fa9a63c5
RM
549
550
551/* True if `size1' is non-NULL and PTR is pointing anywhere inside
552 `string1' or just past its end. This works if PTR is NULL, which is
553 a good thing. */
25fe55af 554#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
555 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
556
557/* (Re)Allocate N items of type T using malloc, or fail. */
558#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
559#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
560#define RETALLOC_IF(addr, n, t) \
561 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
562#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
563
4bb91c68 564#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
565
566#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
567
568#undef MAX
569#undef MIN
570#define MAX(a, b) ((a) > (b) ? (a) : (b))
571#define MIN(a, b) ((a) < (b) ? (a) : (b))
572
6470ea05
SM
573/* Type of source-pattern and string chars. */
574typedef const unsigned char re_char;
575
fa9a63c5
RM
576typedef char boolean;
577#define false 0
578#define true 1
579
4bb91c68
SM
580static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
581 re_char *string1, int size1,
582 re_char *string2, int size2,
583 int pos,
584 struct re_registers *regs,
585 int stop));
fa9a63c5
RM
586\f
587/* These are the command codes that appear in compiled regular
4bb91c68 588 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
589 command code can specify any interpretation whatsoever for its
590 arguments. Zero bytes may appear in the compiled regular expression. */
591
592typedef enum
593{
594 no_op = 0,
595
4bb91c68 596 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
597 succeed,
598
25fe55af 599 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
600 exactn,
601
25fe55af 602 /* Matches any (more or less) character. */
fa9a63c5
RM
603 anychar,
604
25fe55af
RS
605 /* Matches any one char belonging to specified set. First
606 following byte is number of bitmap bytes. Then come bytes
607 for a bitmap saying which chars are in. Bits in each byte
608 are ordered low-bit-first. A character is in the set if its
609 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
610 automatically not in the set.
611
612 If the length byte has the 0x80 bit set, then that stuff
613 is followed by a range table:
614 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 615 See RANGE_TABLE_WORK_BITS below.
01618498 616 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 617 pairs, each 2 multibyte characters,
0b32bf0e 618 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
619 charset,
620
25fe55af 621 /* Same parameters as charset, but match any character that is
4bb91c68 622 not one of those specified. */
fa9a63c5
RM
623 charset_not,
624
25fe55af
RS
625 /* Start remembering the text that is matched, for storing in a
626 register. Followed by one byte with the register number, in
627 the range 0 to one less than the pattern buffer's re_nsub
505bde11 628 field. */
fa9a63c5
RM
629 start_memory,
630
25fe55af
RS
631 /* Stop remembering the text that is matched and store it in a
632 memory register. Followed by one byte with the register
633 number, in the range 0 to one less than `re_nsub' in the
505bde11 634 pattern buffer. */
fa9a63c5
RM
635 stop_memory,
636
25fe55af 637 /* Match a duplicate of something remembered. Followed by one
4bb91c68 638 byte containing the register number. */
fa9a63c5
RM
639 duplicate,
640
25fe55af 641 /* Fail unless at beginning of line. */
fa9a63c5
RM
642 begline,
643
4bb91c68 644 /* Fail unless at end of line. */
fa9a63c5
RM
645 endline,
646
25fe55af
RS
647 /* Succeeds if at beginning of buffer (if emacs) or at beginning
648 of string to be matched (if not). */
fa9a63c5
RM
649 begbuf,
650
25fe55af 651 /* Analogously, for end of buffer/string. */
fa9a63c5 652 endbuf,
5e69f11e 653
25fe55af 654 /* Followed by two byte relative address to which to jump. */
5e69f11e 655 jump,
fa9a63c5 656
25fe55af 657 /* Followed by two-byte relative address of place to resume at
7814e705 658 in case of failure. */
fa9a63c5 659 on_failure_jump,
5e69f11e 660
25fe55af
RS
661 /* Like on_failure_jump, but pushes a placeholder instead of the
662 current string position when executed. */
fa9a63c5 663 on_failure_keep_string_jump,
5e69f11e 664
505bde11
SM
665 /* Just like `on_failure_jump', except that it checks that we
666 don't get stuck in an infinite loop (matching an empty string
667 indefinitely). */
668 on_failure_jump_loop,
669
0683b6fa
SM
670 /* Just like `on_failure_jump_loop', except that it checks for
671 a different kind of loop (the kind that shows up with non-greedy
672 operators). This operation has to be immediately preceded
673 by a `no_op'. */
674 on_failure_jump_nastyloop,
675
0b32bf0e 676 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
677 It analyses the loop before which it is put and if the
678 loop does not require backtracking, it changes itself to
4e8a9132
SM
679 `on_failure_keep_string_jump' and short-circuits the loop,
680 else it just defaults to changing itself into `on_failure_jump'.
681 It assumes that it is pointing to just past a `jump'. */
505bde11 682 on_failure_jump_smart,
fa9a63c5 683
25fe55af 684 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
685 After matching N times, jump to the address upon failure.
686 Does not work if N starts at 0: use on_failure_jump_loop
687 instead. */
fa9a63c5
RM
688 succeed_n,
689
25fe55af
RS
690 /* Followed by two-byte relative address, and two-byte number n.
691 Jump to the address N times, then fail. */
fa9a63c5
RM
692 jump_n,
693
25fe55af 694 /* Set the following two-byte relative address to the
7814e705 695 subsequent two-byte number. The address *includes* the two
25fe55af 696 bytes of number. */
fa9a63c5
RM
697 set_number_at,
698
fa9a63c5
RM
699 wordbeg, /* Succeeds if at word beginning. */
700 wordend, /* Succeeds if at word end. */
701
702 wordbound, /* Succeeds if at a word boundary. */
7814e705 703 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 704
669fa600
SM
705 symbeg, /* Succeeds if at symbol beginning. */
706 symend, /* Succeeds if at symbol end. */
707
fa9a63c5 708 /* Matches any character whose syntax is specified. Followed by
25fe55af 709 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
710 syntaxspec,
711
712 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
713 notsyntaxspec
714
715#ifdef emacs
716 ,before_dot, /* Succeeds if before point. */
717 at_dot, /* Succeeds if at point. */
718 after_dot, /* Succeeds if after point. */
b18215fc
RS
719
720 /* Matches any character whose category-set contains the specified
7814e705
JB
721 category. The operator is followed by a byte which contains a
722 category code (mnemonic ASCII character). */
b18215fc
RS
723 categoryspec,
724
725 /* Matches any character whose category-set does not contain the
726 specified category. The operator is followed by a byte which
727 contains the category code (mnemonic ASCII character). */
728 notcategoryspec
fa9a63c5
RM
729#endif /* emacs */
730} re_opcode_t;
731\f
732/* Common operations on the compiled pattern. */
733
734/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
735
736#define STORE_NUMBER(destination, number) \
737 do { \
738 (destination)[0] = (number) & 0377; \
739 (destination)[1] = (number) >> 8; \
740 } while (0)
741
742/* Same as STORE_NUMBER, except increment DESTINATION to
743 the byte after where the number is stored. Therefore, DESTINATION
744 must be an lvalue. */
745
746#define STORE_NUMBER_AND_INCR(destination, number) \
747 do { \
748 STORE_NUMBER (destination, number); \
749 (destination) += 2; \
750 } while (0)
751
752/* Put into DESTINATION a number stored in two contiguous bytes starting
753 at SOURCE. */
754
755#define EXTRACT_NUMBER(destination, source) \
756 do { \
757 (destination) = *(source) & 0377; \
758 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
759 } while (0)
760
761#ifdef DEBUG
4bb91c68 762static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
763static void
764extract_number (dest, source)
765 int *dest;
01618498 766 re_char *source;
fa9a63c5 767{
5e69f11e 768 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
769 *dest = *source & 0377;
770 *dest += temp << 8;
771}
772
4bb91c68 773# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
774# undef EXTRACT_NUMBER
775# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
776# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
777
778#endif /* DEBUG */
779
780/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
781 SOURCE must be an lvalue. */
782
783#define EXTRACT_NUMBER_AND_INCR(destination, source) \
784 do { \
785 EXTRACT_NUMBER (destination, source); \
25fe55af 786 (source) += 2; \
fa9a63c5
RM
787 } while (0)
788
789#ifdef DEBUG
4bb91c68
SM
790static void extract_number_and_incr _RE_ARGS ((int *destination,
791 re_char **source));
fa9a63c5
RM
792static void
793extract_number_and_incr (destination, source)
794 int *destination;
01618498 795 re_char **source;
5e69f11e 796{
fa9a63c5
RM
797 extract_number (destination, *source);
798 *source += 2;
799}
800
0b32bf0e
SM
801# ifndef EXTRACT_MACROS
802# undef EXTRACT_NUMBER_AND_INCR
803# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 804 extract_number_and_incr (&dest, &src)
0b32bf0e 805# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
806
807#endif /* DEBUG */
808\f
b18215fc
RS
809/* Store a multibyte character in three contiguous bytes starting
810 DESTINATION, and increment DESTINATION to the byte after where the
7814e705 811 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
812
813#define STORE_CHARACTER_AND_INCR(destination, character) \
814 do { \
815 (destination)[0] = (character) & 0377; \
816 (destination)[1] = ((character) >> 8) & 0377; \
817 (destination)[2] = (character) >> 16; \
818 (destination) += 3; \
819 } while (0)
820
821/* Put into DESTINATION a character stored in three contiguous bytes
7814e705 822 starting at SOURCE. */
b18215fc
RS
823
824#define EXTRACT_CHARACTER(destination, source) \
825 do { \
826 (destination) = ((source)[0] \
827 | ((source)[1] << 8) \
828 | ((source)[2] << 16)); \
829 } while (0)
830
831
832/* Macros for charset. */
833
834/* Size of bitmap of charset P in bytes. P is a start of charset,
835 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
836#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
837
838/* Nonzero if charset P has range table. */
25fe55af 839#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
840
841/* Return the address of range table of charset P. But not the start
842 of table itself, but the before where the number of ranges is
96cc36cc
RS
843 stored. `2 +' means to skip re_opcode_t and size of bitmap,
844 and the 2 bytes of flags at the start of the range table. */
845#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
846
847/* Extract the bit flags that start a range table. */
848#define CHARSET_RANGE_TABLE_BITS(p) \
849 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
850 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
851
852/* Test if C is listed in the bitmap of charset P. */
853#define CHARSET_LOOKUP_BITMAP(p, c) \
854 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
855 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
856
857/* Return the address of end of RANGE_TABLE. COUNT is number of
7814e705
JB
858 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
859 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
860 and end. */
861#define CHARSET_RANGE_TABLE_END(range_table, count) \
862 ((range_table) + (count) * 2 * 3)
863
7814e705 864/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
865 COUNT is number of ranges in RANGE_TABLE. */
866#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
867 do \
868 { \
01618498
SM
869 re_wchar_t range_start, range_end; \
870 re_char *p; \
871 re_char *range_table_end \
b18215fc
RS
872 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
873 \
874 for (p = (range_table); p < range_table_end; p += 2 * 3) \
875 { \
876 EXTRACT_CHARACTER (range_start, p); \
877 EXTRACT_CHARACTER (range_end, p + 3); \
878 \
879 if (range_start <= (c) && (c) <= range_end) \
880 { \
881 (not) = !(not); \
882 break; \
883 } \
884 } \
885 } \
886 while (0)
887
888/* Test if C is in range table of CHARSET. The flag NOT is negated if
889 C is listed in it. */
890#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
891 do \
892 { \
893 /* Number of ranges in range table. */ \
894 int count; \
01618498
SM
895 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
896 \
b18215fc
RS
897 EXTRACT_NUMBER_AND_INCR (count, range_table); \
898 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
899 } \
900 while (0)
901\f
fa9a63c5
RM
902/* If DEBUG is defined, Regex prints many voluminous messages about what
903 it is doing (if the variable `debug' is nonzero). If linked with the
904 main program in `iregex.c', you can enter patterns and strings
905 interactively. And if linked with the main program in `main.c' and
4bb91c68 906 the other test files, you can run the already-written tests. */
fa9a63c5
RM
907
908#ifdef DEBUG
909
910/* We use standard I/O for debugging. */
0b32bf0e 911# include <stdio.h>
fa9a63c5
RM
912
913/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 914# include <assert.h>
fa9a63c5 915
99633e97 916static int debug = -100000;
fa9a63c5 917
0b32bf0e
SM
918# define DEBUG_STATEMENT(e) e
919# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
920# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
921# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
922# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
923# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 924 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 925# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 926 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
927
928
929/* Print the fastmap in human-readable form. */
930
931void
932print_fastmap (fastmap)
933 char *fastmap;
934{
935 unsigned was_a_range = 0;
5e69f11e
RM
936 unsigned i = 0;
937
fa9a63c5
RM
938 while (i < (1 << BYTEWIDTH))
939 {
940 if (fastmap[i++])
941 {
942 was_a_range = 0;
25fe55af
RS
943 putchar (i - 1);
944 while (i < (1 << BYTEWIDTH) && fastmap[i])
945 {
946 was_a_range = 1;
947 i++;
948 }
fa9a63c5 949 if (was_a_range)
25fe55af
RS
950 {
951 printf ("-");
952 putchar (i - 1);
953 }
954 }
fa9a63c5 955 }
5e69f11e 956 putchar ('\n');
fa9a63c5
RM
957}
958
959
960/* Print a compiled pattern string in human-readable form, starting at
961 the START pointer into it and ending just before the pointer END. */
962
963void
964print_partial_compiled_pattern (start, end)
01618498
SM
965 re_char *start;
966 re_char *end;
fa9a63c5
RM
967{
968 int mcnt, mcnt2;
01618498
SM
969 re_char *p = start;
970 re_char *pend = end;
fa9a63c5
RM
971
972 if (start == NULL)
973 {
a1a052df 974 fprintf (stderr, "(null)\n");
fa9a63c5
RM
975 return;
976 }
5e69f11e 977
fa9a63c5
RM
978 /* Loop over pattern commands. */
979 while (p < pend)
980 {
a1a052df 981 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
982
983 switch ((re_opcode_t) *p++)
984 {
25fe55af 985 case no_op:
a1a052df 986 fprintf (stderr, "/no_op");
25fe55af 987 break;
fa9a63c5 988
99633e97 989 case succeed:
a1a052df 990 fprintf (stderr, "/succeed");
99633e97
SM
991 break;
992
fa9a63c5
RM
993 case exactn:
994 mcnt = *p++;
a1a052df 995 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 996 do
fa9a63c5 997 {
a1a052df 998 fprintf (stderr, "/%c", *p++);
25fe55af
RS
999 }
1000 while (--mcnt);
1001 break;
fa9a63c5
RM
1002
1003 case start_memory:
a1a052df 1004 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 1005 break;
fa9a63c5
RM
1006
1007 case stop_memory:
a1a052df 1008 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 1009 break;
fa9a63c5
RM
1010
1011 case duplicate:
a1a052df 1012 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
1013 break;
1014
1015 case anychar:
a1a052df 1016 fprintf (stderr, "/anychar");
fa9a63c5
RM
1017 break;
1018
1019 case charset:
25fe55af
RS
1020 case charset_not:
1021 {
1022 register int c, last = -100;
fa9a63c5 1023 register int in_range = 0;
99633e97
SM
1024 int length = CHARSET_BITMAP_SIZE (p - 1);
1025 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 1026
a1a052df 1027 fprintf (stderr, "/charset [%s",
275a3409 1028 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 1029
275a3409
RS
1030 if (p + *p >= pend)
1031 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 1032
25fe55af 1033 for (c = 0; c < 256; c++)
96cc36cc 1034 if (c / 8 < length
fa9a63c5
RM
1035 && (p[1 + (c/8)] & (1 << (c % 8))))
1036 {
1037 /* Are we starting a range? */
1038 if (last + 1 == c && ! in_range)
1039 {
a1a052df 1040 fprintf (stderr, "-");
fa9a63c5
RM
1041 in_range = 1;
1042 }
1043 /* Have we broken a range? */
1044 else if (last + 1 != c && in_range)
96cc36cc 1045 {
a1a052df 1046 fprintf (stderr, "%c", last);
fa9a63c5
RM
1047 in_range = 0;
1048 }
5e69f11e 1049
fa9a63c5 1050 if (! in_range)
a1a052df 1051 fprintf (stderr, "%c", c);
fa9a63c5
RM
1052
1053 last = c;
25fe55af 1054 }
fa9a63c5
RM
1055
1056 if (in_range)
a1a052df 1057 fprintf (stderr, "%c", last);
fa9a63c5 1058
a1a052df 1059 fprintf (stderr, "]");
fa9a63c5 1060
99633e97 1061 p += 1 + length;
96cc36cc 1062
96cc36cc 1063 if (has_range_table)
99633e97
SM
1064 {
1065 int count;
a1a052df 1066 fprintf (stderr, "has-range-table");
99633e97
SM
1067
1068 /* ??? Should print the range table; for now, just skip it. */
1069 p += 2; /* skip range table bits */
1070 EXTRACT_NUMBER_AND_INCR (count, p);
1071 p = CHARSET_RANGE_TABLE_END (p, count);
1072 }
fa9a63c5
RM
1073 }
1074 break;
1075
1076 case begline:
a1a052df 1077 fprintf (stderr, "/begline");
25fe55af 1078 break;
fa9a63c5
RM
1079
1080 case endline:
a1a052df 1081 fprintf (stderr, "/endline");
25fe55af 1082 break;
fa9a63c5
RM
1083
1084 case on_failure_jump:
25fe55af 1085 extract_number_and_incr (&mcnt, &p);
a1a052df 1086 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1087 break;
fa9a63c5
RM
1088
1089 case on_failure_keep_string_jump:
25fe55af 1090 extract_number_and_incr (&mcnt, &p);
a1a052df 1091 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1092 break;
fa9a63c5 1093
0683b6fa
SM
1094 case on_failure_jump_nastyloop:
1095 extract_number_and_incr (&mcnt, &p);
a1a052df 1096 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1097 break;
1098
505bde11 1099 case on_failure_jump_loop:
fa9a63c5 1100 extract_number_and_incr (&mcnt, &p);
a1a052df 1101 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1102 break;
1103
505bde11 1104 case on_failure_jump_smart:
fa9a63c5 1105 extract_number_and_incr (&mcnt, &p);
a1a052df 1106 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1107 break;
1108
25fe55af 1109 case jump:
fa9a63c5 1110 extract_number_and_incr (&mcnt, &p);
a1a052df 1111 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1112 break;
1113
25fe55af
RS
1114 case succeed_n:
1115 extract_number_and_incr (&mcnt, &p);
1116 extract_number_and_incr (&mcnt2, &p);
a1a052df 1117 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1118 break;
5e69f11e 1119
25fe55af
RS
1120 case jump_n:
1121 extract_number_and_incr (&mcnt, &p);
1122 extract_number_and_incr (&mcnt2, &p);
a1a052df 1123 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1124 break;
5e69f11e 1125
25fe55af
RS
1126 case set_number_at:
1127 extract_number_and_incr (&mcnt, &p);
1128 extract_number_and_incr (&mcnt2, &p);
a1a052df 1129 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1130 break;
5e69f11e 1131
25fe55af 1132 case wordbound:
a1a052df 1133 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1134 break;
1135
1136 case notwordbound:
a1a052df 1137 fprintf (stderr, "/notwordbound");
25fe55af 1138 break;
fa9a63c5
RM
1139
1140 case wordbeg:
a1a052df 1141 fprintf (stderr, "/wordbeg");
fa9a63c5 1142 break;
5e69f11e 1143
fa9a63c5 1144 case wordend:
a1a052df 1145 fprintf (stderr, "/wordend");
e2543b02 1146 break;
5e69f11e 1147
669fa600 1148 case symbeg:
e2543b02 1149 fprintf (stderr, "/symbeg");
669fa600
SM
1150 break;
1151
1152 case symend:
e2543b02 1153 fprintf (stderr, "/symend");
669fa600
SM
1154 break;
1155
1fb352e0 1156 case syntaxspec:
a1a052df 1157 fprintf (stderr, "/syntaxspec");
1fb352e0 1158 mcnt = *p++;
a1a052df 1159 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1160 break;
1161
1162 case notsyntaxspec:
a1a052df 1163 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1164 mcnt = *p++;
a1a052df 1165 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1166 break;
1167
0b32bf0e 1168# ifdef emacs
fa9a63c5 1169 case before_dot:
a1a052df 1170 fprintf (stderr, "/before_dot");
25fe55af 1171 break;
fa9a63c5
RM
1172
1173 case at_dot:
a1a052df 1174 fprintf (stderr, "/at_dot");
25fe55af 1175 break;
fa9a63c5
RM
1176
1177 case after_dot:
a1a052df 1178 fprintf (stderr, "/after_dot");
25fe55af 1179 break;
fa9a63c5 1180
1fb352e0 1181 case categoryspec:
a1a052df 1182 fprintf (stderr, "/categoryspec");
fa9a63c5 1183 mcnt = *p++;
a1a052df 1184 fprintf (stderr, "/%d", mcnt);
25fe55af 1185 break;
5e69f11e 1186
1fb352e0 1187 case notcategoryspec:
a1a052df 1188 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1189 mcnt = *p++;
a1a052df 1190 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1191 break;
0b32bf0e 1192# endif /* emacs */
fa9a63c5 1193
fa9a63c5 1194 case begbuf:
a1a052df 1195 fprintf (stderr, "/begbuf");
25fe55af 1196 break;
fa9a63c5
RM
1197
1198 case endbuf:
a1a052df 1199 fprintf (stderr, "/endbuf");
25fe55af 1200 break;
fa9a63c5 1201
25fe55af 1202 default:
a1a052df 1203 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1204 }
1205
a1a052df 1206 fprintf (stderr, "\n");
fa9a63c5
RM
1207 }
1208
a1a052df 1209 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1210}
1211
1212
1213void
1214print_compiled_pattern (bufp)
1215 struct re_pattern_buffer *bufp;
1216{
01618498 1217 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1218
1219 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1220 printf ("%ld bytes used/%ld bytes allocated.\n",
1221 bufp->used, bufp->allocated);
fa9a63c5
RM
1222
1223 if (bufp->fastmap_accurate && bufp->fastmap)
1224 {
1225 printf ("fastmap: ");
1226 print_fastmap (bufp->fastmap);
1227 }
1228
1229 printf ("re_nsub: %d\t", bufp->re_nsub);
1230 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1231 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1232 printf ("no_sub: %d\t", bufp->no_sub);
1233 printf ("not_bol: %d\t", bufp->not_bol);
1234 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1235 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1236 fflush (stdout);
fa9a63c5
RM
1237 /* Perhaps we should print the translate table? */
1238}
1239
1240
1241void
1242print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1243 re_char *where;
1244 re_char *string1;
1245 re_char *string2;
fa9a63c5
RM
1246 int size1;
1247 int size2;
1248{
4bb91c68 1249 int this_char;
5e69f11e 1250
fa9a63c5
RM
1251 if (where == NULL)
1252 printf ("(null)");
1253 else
1254 {
1255 if (FIRST_STRING_P (where))
25fe55af
RS
1256 {
1257 for (this_char = where - string1; this_char < size1; this_char++)
1258 putchar (string1[this_char]);
fa9a63c5 1259
25fe55af
RS
1260 where = string2;
1261 }
fa9a63c5
RM
1262
1263 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1264 putchar (string2[this_char]);
fa9a63c5
RM
1265 }
1266}
1267
1268#else /* not DEBUG */
1269
0b32bf0e
SM
1270# undef assert
1271# define assert(e)
fa9a63c5 1272
0b32bf0e
SM
1273# define DEBUG_STATEMENT(e)
1274# define DEBUG_PRINT1(x)
1275# define DEBUG_PRINT2(x1, x2)
1276# define DEBUG_PRINT3(x1, x2, x3)
1277# define DEBUG_PRINT4(x1, x2, x3, x4)
1278# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1279# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1280
1281#endif /* not DEBUG */
1282\f
1283/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1284 also be assigned to arbitrarily: each pattern buffer stores its own
1285 syntax, so it can be changed between regex compilations. */
1286/* This has no initializer because initialized variables in Emacs
1287 become read-only after dumping. */
1288reg_syntax_t re_syntax_options;
1289
1290
1291/* Specify the precise syntax of regexps for compilation. This provides
1292 for compatibility for various utilities which historically have
1293 different, incompatible syntaxes.
1294
1295 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1296 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1297
1298reg_syntax_t
1299re_set_syntax (syntax)
f9b0fd99 1300 reg_syntax_t syntax;
fa9a63c5
RM
1301{
1302 reg_syntax_t ret = re_syntax_options;
5e69f11e 1303
fa9a63c5
RM
1304 re_syntax_options = syntax;
1305 return ret;
1306}
c0f9ea08 1307WEAK_ALIAS (__re_set_syntax, re_set_syntax)
f9b0fd99
RS
1308
1309/* Regexp to use to replace spaces, or NULL meaning don't. */
1310static re_char *whitespace_regexp;
1311
1312void
1313re_set_whitespace_regexp (regexp)
6470ea05 1314 const char *regexp;
f9b0fd99 1315{
6470ea05 1316 whitespace_regexp = (re_char *) regexp;
f9b0fd99
RS
1317}
1318WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1319\f
1320/* This table gives an error message for each of the error codes listed
4bb91c68 1321 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1322 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1323 but why not be nice? */
fa9a63c5
RM
1324
1325static const char *re_error_msgid[] =
5e69f11e
RM
1326 {
1327 gettext_noop ("Success"), /* REG_NOERROR */
1328 gettext_noop ("No match"), /* REG_NOMATCH */
1329 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1330 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1331 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1332 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1333 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1334 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1335 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1336 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1337 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1338 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1339 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1340 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1341 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1342 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1343 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
b3e4c897 1344 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
fa9a63c5
RM
1345 };
1346\f
4bb91c68 1347/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1348
1349/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1350 searching and matching functions should not call alloca. On some
1351 systems, alloca is implemented in terms of malloc, and if we're
1352 using the relocating allocator routines, then malloc could cause a
1353 relocation, which might (if the strings being searched are in the
1354 ralloc heap) shift the data out from underneath the regexp
1355 routines.
1356
5e69f11e 1357 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1358 processes input from X in a signal handler; processing X input may
1359 call malloc; if input arrives while a matching routine is calling
1360 malloc, then we're scrod. But Emacs can't just block input while
1361 calling matching routines; then we don't notice interrupts when
1362 they come in. So, Emacs blocks input around all regexp calls
1363 except the matching calls, which it leaves unprotected, in the
1364 faith that they will not malloc. */
1365
1366/* Normally, this is fine. */
1367#define MATCH_MAY_ALLOCATE
1368
fa9a63c5
RM
1369/* The match routines may not allocate if (1) they would do it with malloc
1370 and (2) it's not safe for them to use malloc.
1371 Note that if REL_ALLOC is defined, matching would not use malloc for the
1372 failure stack, but we would still use it for the register vectors;
4bb91c68 1373 so REL_ALLOC should not affect this. */
b588157e 1374#if defined REGEX_MALLOC && defined emacs
0b32bf0e 1375# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1376#endif
1377
1378\f
1379/* Failure stack declarations and macros; both re_compile_fastmap and
1380 re_match_2 use a failure stack. These have to be macros because of
1381 REGEX_ALLOCATE_STACK. */
5e69f11e 1382
fa9a63c5 1383
320a2a73 1384/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1385 when matching. If this number is exceeded, we allocate more
1386 space, so it is not a hard limit. */
1387#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1388# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1389#endif
1390
1391/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1392 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1393 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1394 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1395 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1396# if defined MATCH_MAY_ALLOCATE
1397/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1398 whose default stack limit is 2mb. In order for a larger
1399 value to work reliably, you have to try to make it accord
1400 with the process stack limit. */
c0f9ea08
SM
1401size_t re_max_failures = 40000;
1402# else
1403size_t re_max_failures = 4000;
1404# endif
fa9a63c5
RM
1405
1406union fail_stack_elt
1407{
01618498 1408 re_char *pointer;
c0f9ea08
SM
1409 /* This should be the biggest `int' that's no bigger than a pointer. */
1410 long integer;
fa9a63c5
RM
1411};
1412
1413typedef union fail_stack_elt fail_stack_elt_t;
1414
1415typedef struct
1416{
1417 fail_stack_elt_t *stack;
c0f9ea08
SM
1418 size_t size;
1419 size_t avail; /* Offset of next open position. */
1420 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1421} fail_stack_type;
1422
505bde11 1423#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1424#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1425
1426
1427/* Define macros to initialize and free the failure stack.
1428 Do `return -2' if the alloc fails. */
1429
1430#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1431# define INIT_FAIL_STACK() \
fa9a63c5
RM
1432 do { \
1433 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1434 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1435 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1436 \
1437 if (fail_stack.stack == NULL) \
1438 return -2; \
1439 \
1440 fail_stack.size = INIT_FAILURE_ALLOC; \
1441 fail_stack.avail = 0; \
505bde11 1442 fail_stack.frame = 0; \
fa9a63c5
RM
1443 } while (0)
1444
0b32bf0e 1445# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1446#else
0b32bf0e 1447# define INIT_FAIL_STACK() \
fa9a63c5
RM
1448 do { \
1449 fail_stack.avail = 0; \
505bde11 1450 fail_stack.frame = 0; \
fa9a63c5
RM
1451 } while (0)
1452
0b32bf0e 1453# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1454#endif
1455
1456
320a2a73
KH
1457/* Double the size of FAIL_STACK, up to a limit
1458 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1459
1460 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1461 allocating space for it or it was already too large.
1462
4bb91c68 1463 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1464
320a2a73
KH
1465/* Factor to increase the failure stack size by
1466 when we increase it.
1467 This used to be 2, but 2 was too wasteful
1468 because the old discarded stacks added up to as much space
1469 were as ultimate, maximum-size stack. */
1470#define FAIL_STACK_GROWTH_FACTOR 4
1471
1472#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1473 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1474 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1475 ? 0 \
320a2a73
KH
1476 : ((fail_stack).stack \
1477 = (fail_stack_elt_t *) \
25fe55af
RS
1478 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1479 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1480 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1481 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1482 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1483 \
1484 (fail_stack).stack == NULL \
1485 ? 0 \
6453db45
KH
1486 : ((fail_stack).size \
1487 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1488 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1489 * FAIL_STACK_GROWTH_FACTOR)) \
1490 / sizeof (fail_stack_elt_t)), \
25fe55af 1491 1)))
fa9a63c5
RM
1492
1493
fa9a63c5
RM
1494/* Push a pointer value onto the failure stack.
1495 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1496 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1497#define PUSH_FAILURE_POINTER(item) \
01618498 1498 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1499
1500/* This pushes an integer-valued item onto the failure stack.
1501 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1502 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1503#define PUSH_FAILURE_INT(item) \
1504 fail_stack.stack[fail_stack.avail++].integer = (item)
1505
1506/* Push a fail_stack_elt_t value onto the failure stack.
1507 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1508 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1509#define PUSH_FAILURE_ELT(item) \
1510 fail_stack.stack[fail_stack.avail++] = (item)
1511
1512/* These three POP... operations complement the three PUSH... operations.
1513 All assume that `fail_stack' is nonempty. */
1514#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1515#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1516#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1517
505bde11
SM
1518/* Individual items aside from the registers. */
1519#define NUM_NONREG_ITEMS 3
1520
1521/* Used to examine the stack (to detect infinite loops). */
1522#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1523#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1524#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1525#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1526
1527
505bde11
SM
1528#define ENSURE_FAIL_STACK(space) \
1529while (REMAINING_AVAIL_SLOTS <= space) { \
1530 if (!GROW_FAIL_STACK (fail_stack)) \
1531 return -2; \
1532 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1533 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1534}
1535
1536/* Push register NUM onto the stack. */
1537#define PUSH_FAILURE_REG(num) \
1538do { \
1539 char *destination; \
1540 ENSURE_FAIL_STACK(3); \
1541 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1542 num, regstart[num], regend[num]); \
1543 PUSH_FAILURE_POINTER (regstart[num]); \
1544 PUSH_FAILURE_POINTER (regend[num]); \
1545 PUSH_FAILURE_INT (num); \
1546} while (0)
1547
01618498
SM
1548/* Change the counter's value to VAL, but make sure that it will
1549 be reset when backtracking. */
1550#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1551do { \
1552 char *destination; \
1553 int c; \
1554 ENSURE_FAIL_STACK(3); \
1555 EXTRACT_NUMBER (c, ptr); \
01618498 1556 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1557 PUSH_FAILURE_INT (c); \
1558 PUSH_FAILURE_POINTER (ptr); \
1559 PUSH_FAILURE_INT (-1); \
01618498 1560 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1561} while (0)
1562
505bde11 1563/* Pop a saved register off the stack. */
dc1e502d 1564#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1565do { \
1566 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1567 if (reg == -1) \
1568 { \
1569 /* It's a counter. */ \
6dcf2d0e
SM
1570 /* Here, we discard `const', making re_match non-reentrant. */ \
1571 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1572 reg = POP_FAILURE_INT (); \
1573 STORE_NUMBER (ptr, reg); \
1574 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1575 } \
1576 else \
1577 { \
1578 regend[reg] = POP_FAILURE_POINTER (); \
1579 regstart[reg] = POP_FAILURE_POINTER (); \
1580 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1581 reg, regstart[reg], regend[reg]); \
1582 } \
505bde11
SM
1583} while (0)
1584
1585/* Check that we are not stuck in an infinite loop. */
1586#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1587do { \
f6df485f 1588 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1589 /* Check for infinite matching loops */ \
f6df485f
RS
1590 while (failure > 0 \
1591 && (FAILURE_STR (failure) == string_place \
1592 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1593 { \
1594 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1595 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1596 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1597 { \
6df42991
SM
1598 cycle = 1; \
1599 break; \
f6df485f 1600 } \
66f0296e 1601 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1602 failure = NEXT_FAILURE_HANDLE(failure); \
1603 } \
1604 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1605} while (0)
6df42991 1606
fa9a63c5 1607/* Push the information about the state we will need
5e69f11e
RM
1608 if we ever fail back to it.
1609
505bde11 1610 Requires variables fail_stack, regstart, regend and
320a2a73 1611 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1612 declared.
5e69f11e 1613
fa9a63c5
RM
1614 Does `return FAILURE_CODE' if runs out of memory. */
1615
505bde11
SM
1616#define PUSH_FAILURE_POINT(pattern, string_place) \
1617do { \
1618 char *destination; \
1619 /* Must be int, so when we don't save any registers, the arithmetic \
1620 of 0 + -1 isn't done as unsigned. */ \
1621 \
505bde11 1622 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1623 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1624 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1625 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1626 \
1627 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1628 \
1629 DEBUG_PRINT1 ("\n"); \
1630 \
1631 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1632 PUSH_FAILURE_INT (fail_stack.frame); \
1633 \
1634 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1635 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1636 DEBUG_PRINT1 ("'\n"); \
1637 PUSH_FAILURE_POINTER (string_place); \
1638 \
1639 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1640 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1641 PUSH_FAILURE_POINTER (pattern); \
1642 \
1643 /* Close the frame by moving the frame pointer past it. */ \
1644 fail_stack.frame = fail_stack.avail; \
1645} while (0)
fa9a63c5 1646
320a2a73
KH
1647/* Estimate the size of data pushed by a typical failure stack entry.
1648 An estimate is all we need, because all we use this for
1649 is to choose a limit for how big to make the failure stack. */
ada30c0e 1650/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1651#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1652
fa9a63c5
RM
1653/* How many items can still be added to the stack without overflowing it. */
1654#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1655
1656
1657/* Pops what PUSH_FAIL_STACK pushes.
1658
1659 We restore into the parameters, all of which should be lvalues:
1660 STR -- the saved data position.
1661 PAT -- the saved pattern position.
fa9a63c5 1662 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1663
fa9a63c5 1664 Also assumes the variables `fail_stack' and (if debugging), `bufp',
7814e705 1665 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1666
505bde11
SM
1667#define POP_FAILURE_POINT(str, pat) \
1668do { \
fa9a63c5
RM
1669 assert (!FAIL_STACK_EMPTY ()); \
1670 \
1671 /* Remove failure points and point to how many regs pushed. */ \
1672 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1673 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1674 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1675 \
505bde11
SM
1676 /* Pop the saved registers. */ \
1677 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1678 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1679 \
01618498 1680 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1681 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1682 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1683 \
1684 /* If the saved string location is NULL, it came from an \
1685 on_failure_keep_string_jump opcode, and we want to throw away the \
1686 saved NULL, thus retaining our current position in the string. */ \
01618498 1687 str = POP_FAILURE_POINTER (); \
505bde11 1688 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1689 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1690 DEBUG_PRINT1 ("'\n"); \
1691 \
505bde11
SM
1692 fail_stack.frame = POP_FAILURE_INT (); \
1693 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1694 \
505bde11
SM
1695 assert (fail_stack.avail >= 0); \
1696 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1697 \
fa9a63c5 1698 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1699} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1700
1701
1702\f
fa9a63c5 1703/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1704#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1705\f
1706/* Subroutine declarations and macros for regex_compile. */
1707
4bb91c68
SM
1708static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1709 reg_syntax_t syntax,
1710 struct re_pattern_buffer *bufp));
1711static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1712static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1713 int arg1, int arg2));
1714static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1715 int arg, unsigned char *end));
1716static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1717 int arg1, int arg2, unsigned char *end));
01618498
SM
1718static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1719 re_char *p,
4bb91c68 1720 reg_syntax_t syntax));
01618498
SM
1721static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1722 re_char *pend,
4bb91c68 1723 reg_syntax_t syntax));
01618498
SM
1724static re_char *skip_one_char _RE_ARGS ((re_char *p));
1725static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1726 char *fastmap, const int multibyte));
fa9a63c5 1727
fa9a63c5 1728/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1729 translation. */
36595814 1730#define PATFETCH(c) \
2d1675e4
SM
1731 do { \
1732 int len; \
1733 if (p == pend) return REG_EEND; \
1734 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1735 p += len; \
fa9a63c5
RM
1736 } while (0)
1737
fa9a63c5
RM
1738
1739/* If `translate' is non-null, return translate[D], else just D. We
1740 cast the subscript to translate because some data is declared as
1741 `char *', to avoid warnings when a string constant is passed. But
1742 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1743#ifndef TRANSLATE
0b32bf0e 1744# define TRANSLATE(d) \
66f0296e 1745 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1746#endif
fa9a63c5
RM
1747
1748
1749/* Macros for outputting the compiled pattern into `buffer'. */
1750
1751/* If the buffer isn't allocated when it comes in, use this. */
1752#define INIT_BUF_SIZE 32
1753
4bb91c68 1754/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1755#define GET_BUFFER_SPACE(n) \
01618498 1756 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1757 EXTEND_BUFFER ()
1758
1759/* Make sure we have one more byte of buffer space and then add C to it. */
1760#define BUF_PUSH(c) \
1761 do { \
1762 GET_BUFFER_SPACE (1); \
1763 *b++ = (unsigned char) (c); \
1764 } while (0)
1765
1766
1767/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1768#define BUF_PUSH_2(c1, c2) \
1769 do { \
1770 GET_BUFFER_SPACE (2); \
1771 *b++ = (unsigned char) (c1); \
1772 *b++ = (unsigned char) (c2); \
1773 } while (0)
1774
1775
4bb91c68 1776/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1777#define BUF_PUSH_3(c1, c2, c3) \
1778 do { \
1779 GET_BUFFER_SPACE (3); \
1780 *b++ = (unsigned char) (c1); \
1781 *b++ = (unsigned char) (c2); \
1782 *b++ = (unsigned char) (c3); \
1783 } while (0)
1784
1785
1786/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1787 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1788#define STORE_JUMP(op, loc, to) \
1789 store_op1 (op, loc, (to) - (loc) - 3)
1790
1791/* Likewise, for a two-argument jump. */
1792#define STORE_JUMP2(op, loc, to, arg) \
1793 store_op2 (op, loc, (to) - (loc) - 3, arg)
1794
4bb91c68 1795/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1796#define INSERT_JUMP(op, loc, to) \
1797 insert_op1 (op, loc, (to) - (loc) - 3, b)
1798
1799/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1800#define INSERT_JUMP2(op, loc, to, arg) \
1801 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1802
1803
1804/* This is not an arbitrary limit: the arguments which represent offsets
275a3409 1805 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1806 be too small, many things would have to change. */
275a3409
RS
1807# define MAX_BUF_SIZE (1L << 15)
1808
1809#if 0 /* This is when we thought it could be 2^16 bytes. */
4bb91c68
SM
1810/* Any other compiler which, like MSC, has allocation limit below 2^16
1811 bytes will have to use approach similar to what was done below for
1812 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1813 reallocating to 0 bytes. Such thing is not going to work too well.
1814 You have been warned!! */
1815#if defined _MSC_VER && !defined WIN32
1816/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1817# define MAX_BUF_SIZE 65500L
1818#else
1819# define MAX_BUF_SIZE (1L << 16)
1820#endif
275a3409 1821#endif /* 0 */
fa9a63c5
RM
1822
1823/* Extend the buffer by twice its current size via realloc and
1824 reset the pointers that pointed into the old block to point to the
1825 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1826 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1827#if __BOUNDED_POINTERS__
1828# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1829# define MOVE_BUFFER_POINTER(P) \
1830 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1831# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1832 else \
1833 { \
1834 SET_HIGH_BOUND (b); \
1835 SET_HIGH_BOUND (begalt); \
1836 if (fixup_alt_jump) \
1837 SET_HIGH_BOUND (fixup_alt_jump); \
1838 if (laststart) \
1839 SET_HIGH_BOUND (laststart); \
1840 if (pending_exact) \
1841 SET_HIGH_BOUND (pending_exact); \
1842 }
1843#else
1844# define MOVE_BUFFER_POINTER(P) (P) += incr
1845# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1846#endif
fa9a63c5 1847#define EXTEND_BUFFER() \
25fe55af 1848 do { \
01618498 1849 re_char *old_buffer = bufp->buffer; \
25fe55af 1850 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1851 return REG_ESIZE; \
1852 bufp->allocated <<= 1; \
1853 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1854 bufp->allocated = MAX_BUF_SIZE; \
01618498 1855 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1856 if (bufp->buffer == NULL) \
1857 return REG_ESPACE; \
1858 /* If the buffer moved, move all the pointers into it. */ \
1859 if (old_buffer != bufp->buffer) \
1860 { \
4bb91c68
SM
1861 int incr = bufp->buffer - old_buffer; \
1862 MOVE_BUFFER_POINTER (b); \
1863 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1864 if (fixup_alt_jump) \
4bb91c68 1865 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1866 if (laststart) \
4bb91c68 1867 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1868 if (pending_exact) \
4bb91c68 1869 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1870 } \
4bb91c68 1871 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1872 } while (0)
1873
1874
1875/* Since we have one byte reserved for the register number argument to
1876 {start,stop}_memory, the maximum number of groups we can report
1877 things about is what fits in that byte. */
1878#define MAX_REGNUM 255
1879
1880/* But patterns can have more than `MAX_REGNUM' registers. We just
1881 ignore the excess. */
098d42af 1882typedef int regnum_t;
fa9a63c5
RM
1883
1884
1885/* Macros for the compile stack. */
1886
1887/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1888 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1889/* int may be not enough when sizeof(int) == 2. */
1890typedef long pattern_offset_t;
fa9a63c5
RM
1891
1892typedef struct
1893{
1894 pattern_offset_t begalt_offset;
1895 pattern_offset_t fixup_alt_jump;
5e69f11e 1896 pattern_offset_t laststart_offset;
fa9a63c5
RM
1897 regnum_t regnum;
1898} compile_stack_elt_t;
1899
1900
1901typedef struct
1902{
1903 compile_stack_elt_t *stack;
1904 unsigned size;
1905 unsigned avail; /* Offset of next open position. */
1906} compile_stack_type;
1907
1908
1909#define INIT_COMPILE_STACK_SIZE 32
1910
1911#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1912#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1913
4bb91c68 1914/* The next available element. */
fa9a63c5
RM
1915#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1916
1cee1e27
SM
1917/* Explicit quit checking is only used on NTemacs and whenever we
1918 use polling to process input events. */
1919#if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
77d11aec
RS
1920extern int immediate_quit;
1921# define IMMEDIATE_QUIT_CHECK \
1922 do { \
1923 if (immediate_quit) QUIT; \
1924 } while (0)
1925#else
1926# define IMMEDIATE_QUIT_CHECK ((void)0)
1927#endif
1928\f
b18215fc
RS
1929/* Structure to manage work area for range table. */
1930struct range_table_work_area
1931{
1932 int *table; /* actual work area. */
1933 int allocated; /* allocated size for work area in bytes. */
7814e705 1934 int used; /* actually used size in words. */
96cc36cc 1935 int bits; /* flag to record character classes */
b18215fc
RS
1936};
1937
77d11aec
RS
1938/* Make sure that WORK_AREA can hold more N multibyte characters.
1939 This is used only in set_image_of_range and set_image_of_range_1.
1940 It expects WORK_AREA to be a pointer.
1941 If it can't get the space, it returns from the surrounding function. */
1942
1943#define EXTEND_RANGE_TABLE(work_area, n) \
1944 do { \
1945 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1946 { \
1947 extend_range_table_work_area (work_area); \
1948 if ((work_area)->table == 0) \
1949 return (REG_ESPACE); \
1950 } \
b18215fc
RS
1951 } while (0)
1952
96cc36cc
RS
1953#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1954 (work_area).bits |= (bit)
1955
14473664
SM
1956/* Bits used to implement the multibyte-part of the various character classes
1957 such as [:alnum:] in a charset's range table. */
1958#define BIT_WORD 0x1
1959#define BIT_LOWER 0x2
1960#define BIT_PUNCT 0x4
1961#define BIT_SPACE 0x8
1962#define BIT_UPPER 0x10
1963#define BIT_MULTIBYTE 0x20
96cc36cc 1964
36595814
SM
1965/* Set a range START..END to WORK_AREA.
1966 The range is passed through TRANSLATE, so START and END
1967 should be untranslated. */
77d11aec
RS
1968#define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1969 do { \
1970 int tem; \
1971 tem = set_image_of_range (&work_area, start, end, translate); \
1972 if (tem > 0) \
1973 FREE_STACK_RETURN (tem); \
b18215fc
RS
1974 } while (0)
1975
7814e705 1976/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1977#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1978 do { \
1979 if ((work_area).table) \
1980 free ((work_area).table); \
1981 } while (0)
1982
96cc36cc 1983#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1984#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1985#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 1986#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 1987\f
b18215fc 1988
fa9a63c5 1989/* Set the bit for character C in a list. */
01618498 1990#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1991
1992
1993/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1994#define GET_UNSIGNED_NUMBER(num) \
c72b0edd
SM
1995 do { \
1996 if (p == pend) \
1997 FREE_STACK_RETURN (REG_EBRACE); \
1998 else \
1999 { \
2000 PATFETCH (c); \
2001 while ('0' <= c && c <= '9') \
2002 { \
2003 int prev; \
2004 if (num < 0) \
2005 num = 0; \
2006 prev = num; \
2007 num = num * 10 + c - '0'; \
2008 if (num / 10 != prev) \
2009 FREE_STACK_RETURN (REG_BADBR); \
2010 if (p == pend) \
2011 FREE_STACK_RETURN (REG_EBRACE); \
2012 PATFETCH (c); \
2013 } \
2014 } \
2015 } while (0)
77d11aec 2016\f
1fdab503 2017#if ! WIDE_CHAR_SUPPORT
01618498 2018
14473664 2019/* Map a string to the char class it names (if any). */
1fdab503 2020re_wctype_t
ada30c0e
SM
2021re_wctype (str)
2022 re_char *str;
14473664 2023{
ada30c0e 2024 const char *string = str;
14473664
SM
2025 if (STREQ (string, "alnum")) return RECC_ALNUM;
2026 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2027 else if (STREQ (string, "word")) return RECC_WORD;
2028 else if (STREQ (string, "ascii")) return RECC_ASCII;
2029 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2030 else if (STREQ (string, "graph")) return RECC_GRAPH;
2031 else if (STREQ (string, "lower")) return RECC_LOWER;
2032 else if (STREQ (string, "print")) return RECC_PRINT;
2033 else if (STREQ (string, "punct")) return RECC_PUNCT;
2034 else if (STREQ (string, "space")) return RECC_SPACE;
2035 else if (STREQ (string, "upper")) return RECC_UPPER;
2036 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2037 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2038 else if (STREQ (string, "digit")) return RECC_DIGIT;
2039 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2040 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2041 else if (STREQ (string, "blank")) return RECC_BLANK;
2042 else return 0;
2043}
2044
e0f24100 2045/* True if CH is in the char class CC. */
1fdab503 2046boolean
14473664
SM
2047re_iswctype (ch, cc)
2048 int ch;
2049 re_wctype_t cc;
2050{
2051 switch (cc)
2052 {
0cdd06f8
SM
2053 case RECC_ALNUM: return ISALNUM (ch);
2054 case RECC_ALPHA: return ISALPHA (ch);
2055 case RECC_BLANK: return ISBLANK (ch);
2056 case RECC_CNTRL: return ISCNTRL (ch);
2057 case RECC_DIGIT: return ISDIGIT (ch);
2058 case RECC_GRAPH: return ISGRAPH (ch);
2059 case RECC_LOWER: return ISLOWER (ch);
2060 case RECC_PRINT: return ISPRINT (ch);
2061 case RECC_PUNCT: return ISPUNCT (ch);
2062 case RECC_SPACE: return ISSPACE (ch);
2063 case RECC_UPPER: return ISUPPER (ch);
2064 case RECC_XDIGIT: return ISXDIGIT (ch);
2065 case RECC_ASCII: return IS_REAL_ASCII (ch);
2066 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2067 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2068 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2069 case RECC_WORD: return ISWORD (ch);
2070 case RECC_ERROR: return false;
2071 default:
2072 abort();
14473664
SM
2073 }
2074}
fa9a63c5 2075
14473664
SM
2076/* Return a bit-pattern to use in the range-table bits to match multibyte
2077 chars of class CC. */
2078static int
2079re_wctype_to_bit (cc)
2080 re_wctype_t cc;
2081{
2082 switch (cc)
2083 {
2084 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2085 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2086 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2087 case RECC_LOWER: return BIT_LOWER;
2088 case RECC_UPPER: return BIT_UPPER;
2089 case RECC_PUNCT: return BIT_PUNCT;
2090 case RECC_SPACE: return BIT_SPACE;
14473664 2091 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2092 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2093 default:
2094 abort();
14473664
SM
2095 }
2096}
2097#endif
77d11aec
RS
2098\f
2099/* Filling in the work area of a range. */
2100
2101/* Actually extend the space in WORK_AREA. */
2102
2103static void
2104extend_range_table_work_area (work_area)
2105 struct range_table_work_area *work_area;
177c0ea7 2106{
77d11aec
RS
2107 work_area->allocated += 16 * sizeof (int);
2108 if (work_area->table)
2109 work_area->table
a073faa6 2110 = (int *) realloc (work_area->table, work_area->allocated);
77d11aec
RS
2111 else
2112 work_area->table
a073faa6 2113 = (int *) malloc (work_area->allocated);
77d11aec
RS
2114}
2115
2116#ifdef emacs
2117
2118/* Carefully find the ranges of codes that are equivalent
2119 under case conversion to the range start..end when passed through
2120 TRANSLATE. Handle the case where non-letters can come in between
2121 two upper-case letters (which happens in Latin-1).
2122 Also handle the case of groups of more than 2 case-equivalent chars.
2123
2124 The basic method is to look at consecutive characters and see
2125 if they can form a run that can be handled as one.
2126
2127 Returns -1 if successful, REG_ESPACE if ran out of space. */
2128
2129static int
2130set_image_of_range_1 (work_area, start, end, translate)
2131 RE_TRANSLATE_TYPE translate;
2132 struct range_table_work_area *work_area;
2133 re_wchar_t start, end;
2134{
2135 /* `one_case' indicates a character, or a run of characters,
2136 each of which is an isolate (no case-equivalents).
2137 This includes all ASCII non-letters.
2138
2139 `two_case' indicates a character, or a run of characters,
2140 each of which has two case-equivalent forms.
2141 This includes all ASCII letters.
2142
2143 `strange' indicates a character that has more than one
2144 case-equivalent. */
177c0ea7 2145
77d11aec
RS
2146 enum case_type {one_case, two_case, strange};
2147
2148 /* Describe the run that is in progress,
2149 which the next character can try to extend.
2150 If run_type is strange, that means there really is no run.
2151 If run_type is one_case, then run_start...run_end is the run.
2152 If run_type is two_case, then the run is run_start...run_end,
2153 and the case-equivalents end at run_eqv_end. */
2154
2155 enum case_type run_type = strange;
2156 int run_start, run_end, run_eqv_end;
2157
2158 Lisp_Object eqv_table;
2159
2160 if (!RE_TRANSLATE_P (translate))
2161 {
b7c12565 2162 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2163 work_area->table[work_area->used++] = (start);
2164 work_area->table[work_area->used++] = (end);
b7c12565 2165 return -1;
77d11aec
RS
2166 }
2167
2168 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2169
77d11aec
RS
2170 for (; start <= end; start++)
2171 {
2172 enum case_type this_type;
2173 int eqv = RE_TRANSLATE (eqv_table, start);
2174 int minchar, maxchar;
2175
2176 /* Classify this character */
2177 if (eqv == start)
2178 this_type = one_case;
2179 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2180 this_type = two_case;
2181 else
2182 this_type = strange;
2183
2184 if (start < eqv)
2185 minchar = start, maxchar = eqv;
2186 else
2187 minchar = eqv, maxchar = start;
2188
2189 /* Can this character extend the run in progress? */
2190 if (this_type == strange || this_type != run_type
2191 || !(minchar == run_end + 1
2192 && (run_type == two_case
2193 ? maxchar == run_eqv_end + 1 : 1)))
2194 {
2195 /* No, end the run.
2196 Record each of its equivalent ranges. */
2197 if (run_type == one_case)
2198 {
2199 EXTEND_RANGE_TABLE (work_area, 2);
2200 work_area->table[work_area->used++] = run_start;
2201 work_area->table[work_area->used++] = run_end;
2202 }
2203 else if (run_type == two_case)
2204 {
2205 EXTEND_RANGE_TABLE (work_area, 4);
2206 work_area->table[work_area->used++] = run_start;
2207 work_area->table[work_area->used++] = run_end;
2208 work_area->table[work_area->used++]
2209 = RE_TRANSLATE (eqv_table, run_start);
2210 work_area->table[work_area->used++]
2211 = RE_TRANSLATE (eqv_table, run_end);
2212 }
2213 run_type = strange;
2214 }
177c0ea7 2215
77d11aec
RS
2216 if (this_type == strange)
2217 {
2218 /* For a strange character, add each of its equivalents, one
2219 by one. Don't start a range. */
2220 do
2221 {
2222 EXTEND_RANGE_TABLE (work_area, 2);
2223 work_area->table[work_area->used++] = eqv;
2224 work_area->table[work_area->used++] = eqv;
2225 eqv = RE_TRANSLATE (eqv_table, eqv);
2226 }
2227 while (eqv != start);
2228 }
2229
2230 /* Add this char to the run, or start a new run. */
2231 else if (run_type == strange)
2232 {
2233 /* Initialize a new range. */
2234 run_type = this_type;
2235 run_start = start;
2236 run_end = start;
2237 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2238 }
2239 else
2240 {
2241 /* Extend a running range. */
2242 run_end = minchar;
2243 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2244 }
2245 }
2246
2247 /* If a run is still in progress at the end, finish it now
2248 by recording its equivalent ranges. */
2249 if (run_type == one_case)
2250 {
2251 EXTEND_RANGE_TABLE (work_area, 2);
2252 work_area->table[work_area->used++] = run_start;
2253 work_area->table[work_area->used++] = run_end;
2254 }
2255 else if (run_type == two_case)
2256 {
2257 EXTEND_RANGE_TABLE (work_area, 4);
2258 work_area->table[work_area->used++] = run_start;
2259 work_area->table[work_area->used++] = run_end;
2260 work_area->table[work_area->used++]
2261 = RE_TRANSLATE (eqv_table, run_start);
2262 work_area->table[work_area->used++]
2263 = RE_TRANSLATE (eqv_table, run_end);
2264 }
2265
2266 return -1;
2267}
36595814 2268
77d11aec 2269#endif /* emacs */
36595814 2270
b7c12565 2271/* Record the the image of the range start..end when passed through
36595814
SM
2272 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2273 and is not even necessarily contiguous.
b7c12565
RS
2274 Normally we approximate it with the smallest contiguous range that contains
2275 all the chars we need. However, for Latin-1 we go to extra effort
2276 to do a better job.
2277
2278 This function is not called for ASCII ranges.
77d11aec
RS
2279
2280 Returns -1 if successful, REG_ESPACE if ran out of space. */
2281
2282static int
36595814
SM
2283set_image_of_range (work_area, start, end, translate)
2284 RE_TRANSLATE_TYPE translate;
2285 struct range_table_work_area *work_area;
2286 re_wchar_t start, end;
2287{
77d11aec
RS
2288 re_wchar_t cmin, cmax;
2289
2290#ifdef emacs
2291 /* For Latin-1 ranges, use set_image_of_range_1
2292 to get proper handling of ranges that include letters and nonletters.
b7c12565 2293 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2294 For other character sets, we don't bother to get this right. */
b7c12565
RS
2295 if (RE_TRANSLATE_P (translate) && start < 04400
2296 && !(start < 04200 && end >= 04377))
77d11aec 2297 {
b7c12565 2298 int newend;
77d11aec 2299 int tem;
b7c12565
RS
2300 newend = end;
2301 if (newend > 04377)
2302 newend = 04377;
2303 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2304 if (tem > 0)
2305 return tem;
2306
2307 start = 04400;
2308 if (end < 04400)
2309 return -1;
2310 }
2311#endif
2312
b7c12565
RS
2313 EXTEND_RANGE_TABLE (work_area, 2);
2314 work_area->table[work_area->used++] = (start);
2315 work_area->table[work_area->used++] = (end);
2316
2317 cmin = -1, cmax = -1;
77d11aec 2318
36595814 2319 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2320 {
2321 int ch;
77d11aec 2322
b7c12565
RS
2323 for (ch = start; ch <= end; ch++)
2324 {
2325 re_wchar_t c = TRANSLATE (ch);
2326 if (! (start <= c && c <= end))
2327 {
2328 if (cmin == -1)
2329 cmin = c, cmax = c;
2330 else
2331 {
2332 cmin = MIN (cmin, c);
2333 cmax = MAX (cmax, c);
2334 }
2335 }
2336 }
2337
2338 if (cmin != -1)
2339 {
2340 EXTEND_RANGE_TABLE (work_area, 2);
2341 work_area->table[work_area->used++] = (cmin);
2342 work_area->table[work_area->used++] = (cmax);
2343 }
2344 }
36595814 2345
77d11aec
RS
2346 return -1;
2347}
fa9a63c5
RM
2348\f
2349#ifndef MATCH_MAY_ALLOCATE
2350
2351/* If we cannot allocate large objects within re_match_2_internal,
2352 we make the fail stack and register vectors global.
2353 The fail stack, we grow to the maximum size when a regexp
2354 is compiled.
2355 The register vectors, we adjust in size each time we
2356 compile a regexp, according to the number of registers it needs. */
2357
2358static fail_stack_type fail_stack;
2359
2360/* Size with which the following vectors are currently allocated.
2361 That is so we can make them bigger as needed,
4bb91c68 2362 but never make them smaller. */
fa9a63c5
RM
2363static int regs_allocated_size;
2364
66f0296e
SM
2365static re_char ** regstart, ** regend;
2366static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2367
2368/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2369 but don't make them smaller. */
fa9a63c5
RM
2370
2371static
2372regex_grow_registers (num_regs)
2373 int num_regs;
2374{
2375 if (num_regs > regs_allocated_size)
2376 {
66f0296e
SM
2377 RETALLOC_IF (regstart, num_regs, re_char *);
2378 RETALLOC_IF (regend, num_regs, re_char *);
2379 RETALLOC_IF (best_regstart, num_regs, re_char *);
2380 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2381
2382 regs_allocated_size = num_regs;
2383 }
2384}
2385
2386#endif /* not MATCH_MAY_ALLOCATE */
2387\f
99633e97
SM
2388static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2389 compile_stack,
2390 regnum_t regnum));
2391
fa9a63c5
RM
2392/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2393 Returns one of error codes defined in `regex.h', or zero for success.
2394
2395 Assumes the `allocated' (and perhaps `buffer') and `translate'
2396 fields are set in BUFP on entry.
2397
2398 If it succeeds, results are put in BUFP (if it returns an error, the
2399 contents of BUFP are undefined):
2400 `buffer' is the compiled pattern;
2401 `syntax' is set to SYNTAX;
2402 `used' is set to the length of the compiled pattern;
2403 `fastmap_accurate' is zero;
2404 `re_nsub' is the number of subexpressions in PATTERN;
2405 `not_bol' and `not_eol' are zero;
5e69f11e 2406
c0f9ea08 2407 The `fastmap' field is neither examined nor set. */
fa9a63c5 2408
505bde11
SM
2409/* Insert the `jump' from the end of last alternative to "here".
2410 The space for the jump has already been allocated. */
2411#define FIXUP_ALT_JUMP() \
2412do { \
2413 if (fixup_alt_jump) \
2414 STORE_JUMP (jump, fixup_alt_jump, b); \
2415} while (0)
2416
2417
fa9a63c5
RM
2418/* Return, freeing storage we allocated. */
2419#define FREE_STACK_RETURN(value) \
b18215fc
RS
2420 do { \
2421 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2422 free (compile_stack.stack); \
2423 return value; \
2424 } while (0)
fa9a63c5
RM
2425
2426static reg_errcode_t
2427regex_compile (pattern, size, syntax, bufp)
66f0296e 2428 re_char *pattern;
4bb91c68 2429 size_t size;
fa9a63c5
RM
2430 reg_syntax_t syntax;
2431 struct re_pattern_buffer *bufp;
2432{
01618498
SM
2433 /* We fetch characters from PATTERN here. */
2434 register re_wchar_t c, c1;
5e69f11e 2435
fa9a63c5 2436 /* A random temporary spot in PATTERN. */
66f0296e 2437 re_char *p1;
fa9a63c5
RM
2438
2439 /* Points to the end of the buffer, where we should append. */
2440 register unsigned char *b;
5e69f11e 2441
fa9a63c5
RM
2442 /* Keeps track of unclosed groups. */
2443 compile_stack_type compile_stack;
2444
2445 /* Points to the current (ending) position in the pattern. */
22336245
RS
2446#ifdef AIX
2447 /* `const' makes AIX compiler fail. */
66f0296e 2448 unsigned char *p = pattern;
22336245 2449#else
66f0296e 2450 re_char *p = pattern;
22336245 2451#endif
66f0296e 2452 re_char *pend = pattern + size;
5e69f11e 2453
fa9a63c5 2454 /* How to translate the characters in the pattern. */
6676cb1c 2455 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2456
2457 /* Address of the count-byte of the most recently inserted `exactn'
2458 command. This makes it possible to tell if a new exact-match
2459 character can be added to that command or if the character requires
2460 a new `exactn' command. */
2461 unsigned char *pending_exact = 0;
2462
2463 /* Address of start of the most recently finished expression.
2464 This tells, e.g., postfix * where to find the start of its
2465 operand. Reset at the beginning of groups and alternatives. */
2466 unsigned char *laststart = 0;
2467
2468 /* Address of beginning of regexp, or inside of last group. */
2469 unsigned char *begalt;
2470
2471 /* Place in the uncompiled pattern (i.e., the {) to
2472 which to go back if the interval is invalid. */
66f0296e 2473 re_char *beg_interval;
5e69f11e 2474
fa9a63c5 2475 /* Address of the place where a forward jump should go to the end of
7814e705 2476 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2477 last -- ends with a forward jump of this sort. */
2478 unsigned char *fixup_alt_jump = 0;
2479
b18215fc
RS
2480 /* Work area for range table of charset. */
2481 struct range_table_work_area range_table_work;
2482
2d1675e4
SM
2483 /* If the object matched can contain multibyte characters. */
2484 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2485
f9b0fd99
RS
2486 /* Nonzero if we have pushed down into a subpattern. */
2487 int in_subpattern = 0;
2488
2489 /* These hold the values of p, pattern, and pend from the main
2490 pattern when we have pushed into a subpattern. */
2491 re_char *main_p;
2492 re_char *main_pattern;
2493 re_char *main_pend;
2494
fa9a63c5 2495#ifdef DEBUG
99633e97 2496 debug++;
fa9a63c5 2497 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2498 if (debug > 0)
fa9a63c5
RM
2499 {
2500 unsigned debug_count;
5e69f11e 2501
fa9a63c5 2502 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2503 putchar (pattern[debug_count]);
fa9a63c5
RM
2504 putchar ('\n');
2505 }
2506#endif /* DEBUG */
2507
2508 /* Initialize the compile stack. */
2509 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2510 if (compile_stack.stack == NULL)
2511 return REG_ESPACE;
2512
2513 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2514 compile_stack.avail = 0;
2515
b18215fc
RS
2516 range_table_work.table = 0;
2517 range_table_work.allocated = 0;
2518
fa9a63c5
RM
2519 /* Initialize the pattern buffer. */
2520 bufp->syntax = syntax;
2521 bufp->fastmap_accurate = 0;
2522 bufp->not_bol = bufp->not_eol = 0;
6224b623 2523 bufp->used_syntax = 0;
fa9a63c5
RM
2524
2525 /* Set `used' to zero, so that if we return an error, the pattern
2526 printer (for debugging) will think there's no pattern. We reset it
2527 at the end. */
2528 bufp->used = 0;
5e69f11e 2529
fa9a63c5 2530 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2531 bufp->re_nsub = 0;
fa9a63c5 2532
0b32bf0e 2533#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2534 /* Initialize the syntax table. */
2535 init_syntax_once ();
2536#endif
2537
2538 if (bufp->allocated == 0)
2539 {
2540 if (bufp->buffer)
2541 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af 2542 enough space. This loses if buffer's address is bogus, but
7814e705 2543 that is the user's responsibility. */
25fe55af
RS
2544 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2545 }
fa9a63c5 2546 else
7814e705 2547 { /* Caller did not allocate a buffer. Do it for them. */
25fe55af
RS
2548 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2549 }
fa9a63c5
RM
2550 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2551
2552 bufp->allocated = INIT_BUF_SIZE;
2553 }
2554
2555 begalt = b = bufp->buffer;
2556
2557 /* Loop through the uncompiled pattern until we're at the end. */
f9b0fd99 2558 while (1)
fa9a63c5 2559 {
f9b0fd99
RS
2560 if (p == pend)
2561 {
2562 /* If this is the end of an included regexp,
2563 pop back to the main regexp and try again. */
2564 if (in_subpattern)
2565 {
2566 in_subpattern = 0;
2567 pattern = main_pattern;
2568 p = main_p;
2569 pend = main_pend;
2570 continue;
2571 }
2572 /* If this is the end of the main regexp, we are done. */
2573 break;
2574 }
2575
fa9a63c5
RM
2576 PATFETCH (c);
2577
2578 switch (c)
25fe55af 2579 {
f9b0fd99
RS
2580 case ' ':
2581 {
2582 re_char *p1 = p;
2583
2584 /* If there's no special whitespace regexp, treat
4fb680cd
RS
2585 spaces normally. And don't try to do this recursively. */
2586 if (!whitespace_regexp || in_subpattern)
f9b0fd99
RS
2587 goto normal_char;
2588
2589 /* Peek past following spaces. */
2590 while (p1 != pend)
2591 {
2592 if (*p1 != ' ')
2593 break;
2594 p1++;
2595 }
2596 /* If the spaces are followed by a repetition op,
2597 treat them normally. */
c721eee5
RS
2598 if (p1 != pend
2599 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
f9b0fd99
RS
2600 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2601 goto normal_char;
2602
2603 /* Replace the spaces with the whitespace regexp. */
2604 in_subpattern = 1;
2605 main_p = p1;
2606 main_pend = pend;
2607 main_pattern = pattern;
2608 p = pattern = whitespace_regexp;
2609 pend = p + strlen (p);
2610 break;
7814e705 2611 }
f9b0fd99 2612
25fe55af
RS
2613 case '^':
2614 {
7814e705 2615 if ( /* If at start of pattern, it's an operator. */
25fe55af 2616 p == pattern + 1
7814e705 2617 /* If context independent, it's an operator. */
25fe55af 2618 || syntax & RE_CONTEXT_INDEP_ANCHORS
7814e705 2619 /* Otherwise, depends on what's come before. */
25fe55af 2620 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2621 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2622 else
2623 goto normal_char;
2624 }
2625 break;
2626
2627
2628 case '$':
2629 {
2630 if ( /* If at end of pattern, it's an operator. */
2631 p == pend
7814e705 2632 /* If context independent, it's an operator. */
25fe55af
RS
2633 || syntax & RE_CONTEXT_INDEP_ANCHORS
2634 /* Otherwise, depends on what's next. */
2635 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2636 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2637 else
2638 goto normal_char;
2639 }
2640 break;
fa9a63c5
RM
2641
2642
2643 case '+':
25fe55af
RS
2644 case '?':
2645 if ((syntax & RE_BK_PLUS_QM)
2646 || (syntax & RE_LIMITED_OPS))
2647 goto normal_char;
2648 handle_plus:
2649 case '*':
2650 /* If there is no previous pattern... */
2651 if (!laststart)
2652 {
2653 if (syntax & RE_CONTEXT_INVALID_OPS)
2654 FREE_STACK_RETURN (REG_BADRPT);
2655 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2656 goto normal_char;
2657 }
2658
2659 {
7814e705 2660 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2661 boolean zero_times_ok = 0, many_times_ok = 0;
2662 boolean greedy = 1;
25fe55af
RS
2663
2664 /* If there is a sequence of repetition chars, collapse it
2665 down to just one (the right one). We can't combine
2666 interval operators with these because of, e.g., `a{2}*',
7814e705 2667 which should only match an even number of `a's. */
25fe55af
RS
2668
2669 for (;;)
2670 {
0b32bf0e 2671 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2672 && c == '?' && (zero_times_ok || many_times_ok))
2673 greedy = 0;
2674 else
2675 {
2676 zero_times_ok |= c != '+';
2677 many_times_ok |= c != '?';
2678 }
25fe55af
RS
2679
2680 if (p == pend)
2681 break;
ed0767d8
SM
2682 else if (*p == '*'
2683 || (!(syntax & RE_BK_PLUS_QM)
2684 && (*p == '+' || *p == '?')))
25fe55af 2685 ;
ed0767d8 2686 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2687 {
ed0767d8
SM
2688 if (p+1 == pend)
2689 FREE_STACK_RETURN (REG_EESCAPE);
2690 if (p[1] == '+' || p[1] == '?')
2691 PATFETCH (c); /* Gobble up the backslash. */
2692 else
2693 break;
25fe55af
RS
2694 }
2695 else
ed0767d8 2696 break;
25fe55af 2697 /* If we get here, we found another repeat character. */
ed0767d8
SM
2698 PATFETCH (c);
2699 }
25fe55af
RS
2700
2701 /* Star, etc. applied to an empty pattern is equivalent
2702 to an empty pattern. */
4e8a9132 2703 if (!laststart || laststart == b)
25fe55af
RS
2704 break;
2705
2706 /* Now we know whether or not zero matches is allowed
7814e705 2707 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2708 if (greedy)
2709 {
99633e97 2710 if (many_times_ok)
4e8a9132
SM
2711 {
2712 boolean simple = skip_one_char (laststart) == b;
2713 unsigned int startoffset = 0;
f6a3f532 2714 re_opcode_t ofj =
01618498 2715 /* Check if the loop can match the empty string. */
6df42991
SM
2716 (simple || !analyse_first (laststart, b, NULL, 0))
2717 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2718 assert (skip_one_char (laststart) <= b);
177c0ea7 2719
4e8a9132
SM
2720 if (!zero_times_ok && simple)
2721 { /* Since simple * loops can be made faster by using
2722 on_failure_keep_string_jump, we turn simple P+
2723 into PP* if P is simple. */
2724 unsigned char *p1, *p2;
2725 startoffset = b - laststart;
2726 GET_BUFFER_SPACE (startoffset);
2727 p1 = b; p2 = laststart;
2728 while (p2 < p1)
2729 *b++ = *p2++;
2730 zero_times_ok = 1;
99633e97 2731 }
4e8a9132
SM
2732
2733 GET_BUFFER_SPACE (6);
2734 if (!zero_times_ok)
2735 /* A + loop. */
f6a3f532 2736 STORE_JUMP (ofj, b, b + 6);
99633e97 2737 else
4e8a9132
SM
2738 /* Simple * loops can use on_failure_keep_string_jump
2739 depending on what follows. But since we don't know
2740 that yet, we leave the decision up to
2741 on_failure_jump_smart. */
f6a3f532 2742 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2743 laststart + startoffset, b + 6);
99633e97 2744 b += 3;
4e8a9132 2745 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2746 b += 3;
2747 }
2748 else
2749 {
4e8a9132
SM
2750 /* A simple ? pattern. */
2751 assert (zero_times_ok);
2752 GET_BUFFER_SPACE (3);
2753 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2754 b += 3;
2755 }
1c8c6d39
DL
2756 }
2757 else /* not greedy */
2758 { /* I wish the greedy and non-greedy cases could be merged. */
2759
0683b6fa 2760 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2761 if (many_times_ok)
2762 {
f6a3f532
SM
2763 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2764
6df42991
SM
2765 /* The non-greedy multiple match looks like
2766 a repeat..until: we only need a conditional jump
2767 at the end of the loop. */
f6a3f532
SM
2768 if (emptyp) BUF_PUSH (no_op);
2769 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2770 : on_failure_jump, b, laststart);
1c8c6d39
DL
2771 b += 3;
2772 if (zero_times_ok)
2773 {
2774 /* The repeat...until naturally matches one or more.
2775 To also match zero times, we need to first jump to
6df42991 2776 the end of the loop (its conditional jump). */
1c8c6d39
DL
2777 INSERT_JUMP (jump, laststart, b);
2778 b += 3;
2779 }
2780 }
2781 else
2782 {
2783 /* non-greedy a?? */
1c8c6d39
DL
2784 INSERT_JUMP (jump, laststart, b + 3);
2785 b += 3;
2786 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2787 b += 3;
2788 }
2789 }
2790 }
4e8a9132 2791 pending_exact = 0;
fa9a63c5
RM
2792 break;
2793
2794
2795 case '.':
25fe55af
RS
2796 laststart = b;
2797 BUF_PUSH (anychar);
2798 break;
fa9a63c5
RM
2799
2800
25fe55af
RS
2801 case '[':
2802 {
b18215fc 2803 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2804
25fe55af 2805 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2806
25fe55af
RS
2807 /* Ensure that we have enough space to push a charset: the
2808 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2809 GET_BUFFER_SPACE (34);
2810
25fe55af 2811 laststart = b;
e318085a 2812
25fe55af 2813 /* We test `*p == '^' twice, instead of using an if
7814e705 2814 statement, so we only need one BUF_PUSH. */
25fe55af
RS
2815 BUF_PUSH (*p == '^' ? charset_not : charset);
2816 if (*p == '^')
2817 p++;
e318085a 2818
25fe55af
RS
2819 /* Remember the first position in the bracket expression. */
2820 p1 = p;
e318085a 2821
7814e705 2822 /* Push the number of bytes in the bitmap. */
25fe55af 2823 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2824
25fe55af
RS
2825 /* Clear the whole map. */
2826 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2827
25fe55af
RS
2828 /* charset_not matches newline according to a syntax bit. */
2829 if ((re_opcode_t) b[-2] == charset_not
2830 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2831 SET_LIST_BIT ('\n');
fa9a63c5 2832
7814e705 2833 /* Read in characters and ranges, setting map bits. */
25fe55af
RS
2834 for (;;)
2835 {
b18215fc 2836 boolean escaped_char = false;
2d1675e4 2837 const unsigned char *p2 = p;
e318085a 2838
25fe55af 2839 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2840
36595814
SM
2841 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2842 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2843 So the translation is done later in a loop. Example:
2844 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2845 PATFETCH (c);
e318085a 2846
25fe55af
RS
2847 /* \ might escape characters inside [...] and [^...]. */
2848 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2849 {
2850 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2851
2852 PATFETCH (c);
b18215fc 2853 escaped_char = true;
25fe55af 2854 }
b18215fc
RS
2855 else
2856 {
7814e705 2857 /* Could be the end of the bracket expression. If it's
657fcfbd
RS
2858 not (i.e., when the bracket expression is `[]' so
2859 far), the ']' character bit gets set way below. */
2d1675e4 2860 if (c == ']' && p2 != p1)
657fcfbd 2861 break;
25fe55af 2862 }
b18215fc 2863
b18215fc
RS
2864 /* What should we do for the character which is
2865 greater than 0x7F, but not BASE_LEADING_CODE_P?
2866 XXX */
2867
25fe55af
RS
2868 /* See if we're at the beginning of a possible character
2869 class. */
b18215fc 2870
2d1675e4
SM
2871 if (!escaped_char &&
2872 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd 2873 {
7814e705 2874 /* Leave room for the null. */
14473664 2875 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2876 const unsigned char *class_beg;
b18215fc 2877
25fe55af
RS
2878 PATFETCH (c);
2879 c1 = 0;
ed0767d8 2880 class_beg = p;
b18215fc 2881
25fe55af
RS
2882 /* If pattern is `[[:'. */
2883 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2884
25fe55af
RS
2885 for (;;)
2886 {
14473664
SM
2887 PATFETCH (c);
2888 if ((c == ':' && *p == ']') || p == pend)
2889 break;
2890 if (c1 < CHAR_CLASS_MAX_LENGTH)
2891 str[c1++] = c;
2892 else
2893 /* This is in any case an invalid class name. */
2894 str[0] = '\0';
25fe55af
RS
2895 }
2896 str[c1] = '\0';
b18215fc
RS
2897
2898 /* If isn't a word bracketed by `[:' and `:]':
2899 undo the ending character, the letters, and
2900 leave the leading `:' and `[' (but set bits for
2901 them). */
25fe55af
RS
2902 if (c == ':' && *p == ']')
2903 {
36595814 2904 re_wchar_t ch;
14473664
SM
2905 re_wctype_t cc;
2906
2907 cc = re_wctype (str);
2908
2909 if (cc == 0)
fa9a63c5
RM
2910 FREE_STACK_RETURN (REG_ECTYPE);
2911
14473664
SM
2912 /* Throw away the ] at the end of the character
2913 class. */
2914 PATFETCH (c);
fa9a63c5 2915
14473664 2916 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2917
96cc36cc
RS
2918 /* Most character classes in a multibyte match
2919 just set a flag. Exceptions are is_blank,
2920 is_digit, is_cntrl, and is_xdigit, since
2921 they can only match ASCII characters. We
14473664
SM
2922 don't need to handle them for multibyte.
2923 They are distinguished by a negative wctype. */
96cc36cc 2924
2d1675e4 2925 if (multibyte)
14473664
SM
2926 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2927 re_wctype_to_bit (cc));
96cc36cc 2928
14473664 2929 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
25fe55af 2930 {
7ae68633 2931 int translated = TRANSLATE (ch);
151ccb74 2932 if (translated < (1 << BYTEWIDTH)
6358f8b2 2933 && re_iswctype (btowc (ch), cc))
96cc36cc 2934 SET_LIST_BIT (translated);
25fe55af 2935 }
b18215fc 2936
6224b623
SM
2937 /* In most cases the matching rule for char classes
2938 only uses the syntax table for multibyte chars,
2939 so that the content of the syntax-table it is not
2940 hardcoded in the range_table. SPACE and WORD are
2941 the two exceptions. */
2942 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
2943 bufp->used_syntax = 1;
2944
b18215fc
RS
2945 /* Repeat the loop. */
2946 continue;
25fe55af
RS
2947 }
2948 else
2949 {
ed0767d8
SM
2950 /* Go back to right after the "[:". */
2951 p = class_beg;
25fe55af 2952 SET_LIST_BIT ('[');
b18215fc
RS
2953
2954 /* Because the `:' may starts the range, we
2955 can't simply set bit and repeat the loop.
7814e705 2956 Instead, just set it to C and handle below. */
b18215fc 2957 c = ':';
25fe55af
RS
2958 }
2959 }
b18215fc
RS
2960
2961 if (p < pend && p[0] == '-' && p[1] != ']')
2962 {
2963
2964 /* Discard the `-'. */
2965 PATFETCH (c1);
2966
2967 /* Fetch the character which ends the range. */
2968 PATFETCH (c1);
b18215fc 2969
b54f61ed 2970 if (SINGLE_BYTE_CHAR_P (c))
e934739e 2971 {
b54f61ed
KH
2972 if (! SINGLE_BYTE_CHAR_P (c1))
2973 {
3ff2446d
KH
2974 /* Handle a range starting with a
2975 character of less than 256, and ending
2976 with a character of not less than 256.
2977 Split that into two ranges, the low one
2978 ending at 0377, and the high one
2979 starting at the smallest character in
2980 the charset of C1 and ending at C1. */
b54f61ed 2981 int charset = CHAR_CHARSET (c1);
36595814
SM
2982 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2983
b54f61ed
KH
2984 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2985 c2, c1);
333526e0 2986 c1 = 0377;
b54f61ed 2987 }
e934739e
RS
2988 }
2989 else if (!SAME_CHARSET_P (c, c1))
b3e4c897 2990 FREE_STACK_RETURN (REG_ERANGEX);
e318085a 2991 }
25fe55af 2992 else
b18215fc
RS
2993 /* Range from C to C. */
2994 c1 = c;
2995
2996 /* Set the range ... */
2997 if (SINGLE_BYTE_CHAR_P (c))
2998 /* ... into bitmap. */
25fe55af 2999 {
01618498 3000 re_wchar_t this_char;
36595814 3001 re_wchar_t range_start = c, range_end = c1;
b18215fc
RS
3002
3003 /* If the start is after the end, the range is empty. */
3004 if (range_start > range_end)
3005 {
3006 if (syntax & RE_NO_EMPTY_RANGES)
3007 FREE_STACK_RETURN (REG_ERANGE);
3008 /* Else, repeat the loop. */
3009 }
3010 else
3011 {
3012 for (this_char = range_start; this_char <= range_end;
3013 this_char++)
3aaab9a0
KH
3014 {
3015 int translated = TRANSLATE (this_char);
3016 if (translated < (1 << BYTEWIDTH))
3017 SET_LIST_BIT (translated);
3018 else
3019 SET_RANGE_TABLE_WORK_AREA
3020 (range_table_work, translated, translated);
3021 }
e934739e 3022 }
25fe55af 3023 }
e318085a 3024 else
b18215fc
RS
3025 /* ... into range table. */
3026 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
3027 }
3028
25fe55af 3029 /* Discard any (non)matching list bytes that are all 0 at the
7814e705 3030 end of the map. Decrease the map-length byte too. */
25fe55af
RS
3031 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3032 b[-1]--;
3033 b += b[-1];
fa9a63c5 3034
96cc36cc
RS
3035 /* Build real range table from work area. */
3036 if (RANGE_TABLE_WORK_USED (range_table_work)
3037 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
3038 {
3039 int i;
3040 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 3041
b18215fc 3042 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
3043 bytes for flags, two for COUNT, and three bytes for
3044 each character. */
3045 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 3046
b18215fc
RS
3047 /* Indicate the existence of range table. */
3048 laststart[1] |= 0x80;
fa9a63c5 3049
96cc36cc
RS
3050 /* Store the character class flag bits into the range table.
3051 If not in emacs, these flag bits are always 0. */
3052 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3053 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3054
b18215fc
RS
3055 STORE_NUMBER_AND_INCR (b, used / 2);
3056 for (i = 0; i < used; i++)
3057 STORE_CHARACTER_AND_INCR
3058 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3059 }
25fe55af
RS
3060 }
3061 break;
fa9a63c5
RM
3062
3063
b18215fc 3064 case '(':
25fe55af
RS
3065 if (syntax & RE_NO_BK_PARENS)
3066 goto handle_open;
3067 else
3068 goto normal_char;
fa9a63c5
RM
3069
3070
25fe55af
RS
3071 case ')':
3072 if (syntax & RE_NO_BK_PARENS)
3073 goto handle_close;
3074 else
3075 goto normal_char;
e318085a
RS
3076
3077
25fe55af
RS
3078 case '\n':
3079 if (syntax & RE_NEWLINE_ALT)
3080 goto handle_alt;
3081 else
3082 goto normal_char;
e318085a
RS
3083
3084
b18215fc 3085 case '|':
25fe55af
RS
3086 if (syntax & RE_NO_BK_VBAR)
3087 goto handle_alt;
3088 else
3089 goto normal_char;
3090
3091
3092 case '{':
3093 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3094 goto handle_interval;
3095 else
3096 goto normal_char;
3097
3098
3099 case '\\':
3100 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3101
3102 /* Do not translate the character after the \, so that we can
3103 distinguish, e.g., \B from \b, even if we normally would
3104 translate, e.g., B to b. */
36595814 3105 PATFETCH (c);
25fe55af
RS
3106
3107 switch (c)
3108 {
3109 case '(':
3110 if (syntax & RE_NO_BK_PARENS)
3111 goto normal_backslash;
3112
3113 handle_open:
505bde11
SM
3114 {
3115 int shy = 0;
c69b0314 3116 regnum_t regnum = 0;
505bde11
SM
3117 if (p+1 < pend)
3118 {
3119 /* Look for a special (?...) construct */
ed0767d8 3120 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3121 {
ed0767d8 3122 PATFETCH (c); /* Gobble up the '?'. */
c69b0314 3123 while (!shy)
505bde11 3124 {
c69b0314
SM
3125 PATFETCH (c);
3126 switch (c)
3127 {
3128 case ':': shy = 1; break;
3129 case '0':
3130 /* An explicitly specified regnum must start
3131 with non-0. */
3132 if (regnum == 0)
3133 FREE_STACK_RETURN (REG_BADPAT);
3134 case '1': case '2': case '3': case '4':
3135 case '5': case '6': case '7': case '8': case '9':
3136 regnum = 10*regnum + (c - '0'); break;
3137 default:
3138 /* Only (?:...) is supported right now. */
3139 FREE_STACK_RETURN (REG_BADPAT);
3140 }
505bde11
SM
3141 }
3142 }
505bde11
SM
3143 }
3144
3145 if (!shy)
c69b0314
SM
3146 regnum = ++bufp->re_nsub;
3147 else if (regnum)
3148 { /* It's actually not shy, but explicitly numbered. */
3149 shy = 0;
3150 if (regnum > bufp->re_nsub)
3151 bufp->re_nsub = regnum;
3152 else if (regnum > bufp->re_nsub
3153 /* Ideally, we'd want to check that the specified
3154 group can't have matched (i.e. all subgroups
3155 using the same regnum are in other branches of
3156 OR patterns), but we don't currently keep track
3157 of enough info to do that easily. */
3158 || group_in_compile_stack (compile_stack, regnum))
3159 FREE_STACK_RETURN (REG_BADPAT);
505bde11 3160 }
c69b0314
SM
3161 else
3162 /* It's really shy. */
3163 regnum = - bufp->re_nsub;
25fe55af 3164
99633e97
SM
3165 if (COMPILE_STACK_FULL)
3166 {
3167 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3168 compile_stack_elt_t);
3169 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3170
99633e97
SM
3171 compile_stack.size <<= 1;
3172 }
25fe55af 3173
99633e97 3174 /* These are the values to restore when we hit end of this
7814e705 3175 group. They are all relative offsets, so that if the
99633e97
SM
3176 whole pattern moves because of realloc, they will still
3177 be valid. */
3178 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3179 COMPILE_STACK_TOP.fixup_alt_jump
3180 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3181 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
c69b0314 3182 COMPILE_STACK_TOP.regnum = regnum;
99633e97 3183
c69b0314
SM
3184 /* Do not push a start_memory for groups beyond the last one
3185 we can represent in the compiled pattern. */
3186 if (regnum <= MAX_REGNUM && regnum > 0)
99633e97
SM
3187 BUF_PUSH_2 (start_memory, regnum);
3188
3189 compile_stack.avail++;
3190
3191 fixup_alt_jump = 0;
3192 laststart = 0;
3193 begalt = b;
3194 /* If we've reached MAX_REGNUM groups, then this open
3195 won't actually generate any code, so we'll have to
3196 clear pending_exact explicitly. */
3197 pending_exact = 0;
3198 break;
505bde11 3199 }
25fe55af
RS
3200
3201 case ')':
3202 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3203
3204 if (COMPILE_STACK_EMPTY)
505bde11
SM
3205 {
3206 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3207 goto normal_backslash;
3208 else
3209 FREE_STACK_RETURN (REG_ERPAREN);
3210 }
25fe55af
RS
3211
3212 handle_close:
505bde11 3213 FIXUP_ALT_JUMP ();
25fe55af
RS
3214
3215 /* See similar code for backslashed left paren above. */
3216 if (COMPILE_STACK_EMPTY)
505bde11
SM
3217 {
3218 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3219 goto normal_char;
3220 else
3221 FREE_STACK_RETURN (REG_ERPAREN);
3222 }
25fe55af
RS
3223
3224 /* Since we just checked for an empty stack above, this
3225 ``can't happen''. */
3226 assert (compile_stack.avail != 0);
3227 {
3228 /* We don't just want to restore into `regnum', because
3229 later groups should continue to be numbered higher,
7814e705 3230 as in `(ab)c(de)' -- the second group is #2. */
c69b0314 3231 regnum_t regnum;
25fe55af
RS
3232
3233 compile_stack.avail--;
3234 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3235 fixup_alt_jump
3236 = COMPILE_STACK_TOP.fixup_alt_jump
3237 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3238 : 0;
3239 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
c69b0314 3240 regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3241 /* If we've reached MAX_REGNUM groups, then this open
3242 won't actually generate any code, so we'll have to
3243 clear pending_exact explicitly. */
3244 pending_exact = 0;
e318085a 3245
25fe55af 3246 /* We're at the end of the group, so now we know how many
7814e705 3247 groups were inside this one. */
c69b0314
SM
3248 if (regnum <= MAX_REGNUM && regnum > 0)
3249 BUF_PUSH_2 (stop_memory, regnum);
25fe55af
RS
3250 }
3251 break;
3252
3253
3254 case '|': /* `\|'. */
3255 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3256 goto normal_backslash;
3257 handle_alt:
3258 if (syntax & RE_LIMITED_OPS)
3259 goto normal_char;
3260
3261 /* Insert before the previous alternative a jump which
7814e705 3262 jumps to this alternative if the former fails. */
25fe55af
RS
3263 GET_BUFFER_SPACE (3);
3264 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3265 pending_exact = 0;
3266 b += 3;
3267
3268 /* The alternative before this one has a jump after it
3269 which gets executed if it gets matched. Adjust that
3270 jump so it will jump to this alternative's analogous
3271 jump (put in below, which in turn will jump to the next
3272 (if any) alternative's such jump, etc.). The last such
3273 jump jumps to the correct final destination. A picture:
3274 _____ _____
3275 | | | |
3276 | v | v
3277 a | b | c
3278
3279 If we are at `b', then fixup_alt_jump right now points to a
3280 three-byte space after `a'. We'll put in the jump, set
3281 fixup_alt_jump to right after `b', and leave behind three
3282 bytes which we'll fill in when we get to after `c'. */
3283
505bde11 3284 FIXUP_ALT_JUMP ();
25fe55af
RS
3285
3286 /* Mark and leave space for a jump after this alternative,
3287 to be filled in later either by next alternative or
3288 when know we're at the end of a series of alternatives. */
3289 fixup_alt_jump = b;
3290 GET_BUFFER_SPACE (3);
3291 b += 3;
3292
3293 laststart = 0;
3294 begalt = b;
3295 break;
3296
3297
3298 case '{':
3299 /* If \{ is a literal. */
3300 if (!(syntax & RE_INTERVALS)
3301 /* If we're at `\{' and it's not the open-interval
3302 operator. */
4bb91c68 3303 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3304 goto normal_backslash;
3305
3306 handle_interval:
3307 {
3308 /* If got here, then the syntax allows intervals. */
3309
3310 /* At least (most) this many matches must be made. */
99633e97 3311 int lower_bound = 0, upper_bound = -1;
25fe55af 3312
ed0767d8 3313 beg_interval = p;
25fe55af 3314
25fe55af
RS
3315 GET_UNSIGNED_NUMBER (lower_bound);
3316
3317 if (c == ',')
ed0767d8 3318 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3319 else
3320 /* Interval such as `{1}' => match exactly once. */
3321 upper_bound = lower_bound;
3322
3323 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3324 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3325 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3326
3327 if (!(syntax & RE_NO_BK_BRACES))
3328 {
4bb91c68
SM
3329 if (c != '\\')
3330 FREE_STACK_RETURN (REG_BADBR);
c72b0edd
SM
3331 if (p == pend)
3332 FREE_STACK_RETURN (REG_EESCAPE);
25fe55af
RS
3333 PATFETCH (c);
3334 }
3335
3336 if (c != '}')
4bb91c68 3337 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3338
3339 /* We just parsed a valid interval. */
3340
3341 /* If it's invalid to have no preceding re. */
3342 if (!laststart)
3343 {
3344 if (syntax & RE_CONTEXT_INVALID_OPS)
3345 FREE_STACK_RETURN (REG_BADRPT);
3346 else if (syntax & RE_CONTEXT_INDEP_OPS)
3347 laststart = b;
3348 else
3349 goto unfetch_interval;
3350 }
3351
6df42991
SM
3352 if (upper_bound == 0)
3353 /* If the upper bound is zero, just drop the sub pattern
3354 altogether. */
3355 b = laststart;
3356 else if (lower_bound == 1 && upper_bound == 1)
3357 /* Just match it once: nothing to do here. */
3358 ;
3359
3360 /* Otherwise, we have a nontrivial interval. When
3361 we're all done, the pattern will look like:
3362 set_number_at <jump count> <upper bound>
3363 set_number_at <succeed_n count> <lower bound>
3364 succeed_n <after jump addr> <succeed_n count>
3365 <body of loop>
3366 jump_n <succeed_n addr> <jump count>
3367 (The upper bound and `jump_n' are omitted if
3368 `upper_bound' is 1, though.) */
3369 else
3370 { /* If the upper bound is > 1, we need to insert
3371 more at the end of the loop. */
3372 unsigned int nbytes = (upper_bound < 0 ? 3
3373 : upper_bound > 1 ? 5 : 0);
3374 unsigned int startoffset = 0;
3375
3376 GET_BUFFER_SPACE (20); /* We might use less. */
3377
3378 if (lower_bound == 0)
3379 {
3380 /* A succeed_n that starts with 0 is really a
3381 a simple on_failure_jump_loop. */
3382 INSERT_JUMP (on_failure_jump_loop, laststart,
3383 b + 3 + nbytes);
3384 b += 3;
3385 }
3386 else
3387 {
3388 /* Initialize lower bound of the `succeed_n', even
3389 though it will be set during matching by its
3390 attendant `set_number_at' (inserted next),
3391 because `re_compile_fastmap' needs to know.
3392 Jump to the `jump_n' we might insert below. */
3393 INSERT_JUMP2 (succeed_n, laststart,
3394 b + 5 + nbytes,
3395 lower_bound);
3396 b += 5;
3397
3398 /* Code to initialize the lower bound. Insert
7814e705 3399 before the `succeed_n'. The `5' is the last two
6df42991
SM
3400 bytes of this `set_number_at', plus 3 bytes of
3401 the following `succeed_n'. */
3402 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3403 b += 5;
3404 startoffset += 5;
3405 }
3406
3407 if (upper_bound < 0)
3408 {
3409 /* A negative upper bound stands for infinity,
3410 in which case it degenerates to a plain jump. */
3411 STORE_JUMP (jump, b, laststart + startoffset);
3412 b += 3;
3413 }
3414 else if (upper_bound > 1)
3415 { /* More than one repetition is allowed, so
3416 append a backward jump to the `succeed_n'
3417 that starts this interval.
3418
3419 When we've reached this during matching,
3420 we'll have matched the interval once, so
3421 jump back only `upper_bound - 1' times. */
3422 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3423 upper_bound - 1);
3424 b += 5;
3425
3426 /* The location we want to set is the second
3427 parameter of the `jump_n'; that is `b-2' as
3428 an absolute address. `laststart' will be
3429 the `set_number_at' we're about to insert;
3430 `laststart+3' the number to set, the source
3431 for the relative address. But we are
3432 inserting into the middle of the pattern --
3433 so everything is getting moved up by 5.
3434 Conclusion: (b - 2) - (laststart + 3) + 5,
3435 i.e., b - laststart.
3436
3437 We insert this at the beginning of the loop
3438 so that if we fail during matching, we'll
3439 reinitialize the bounds. */
3440 insert_op2 (set_number_at, laststart, b - laststart,
3441 upper_bound - 1, b);
3442 b += 5;
3443 }
3444 }
25fe55af
RS
3445 pending_exact = 0;
3446 beg_interval = NULL;
3447 }
3448 break;
3449
3450 unfetch_interval:
3451 /* If an invalid interval, match the characters as literals. */
3452 assert (beg_interval);
3453 p = beg_interval;
3454 beg_interval = NULL;
3455
3456 /* normal_char and normal_backslash need `c'. */
ed0767d8 3457 c = '{';
25fe55af
RS
3458
3459 if (!(syntax & RE_NO_BK_BRACES))
3460 {
ed0767d8
SM
3461 assert (p > pattern && p[-1] == '\\');
3462 goto normal_backslash;
25fe55af 3463 }
ed0767d8
SM
3464 else
3465 goto normal_char;
e318085a 3466
b18215fc 3467#ifdef emacs
25fe55af 3468 /* There is no way to specify the before_dot and after_dot
7814e705 3469 operators. rms says this is ok. --karl */
25fe55af
RS
3470 case '=':
3471 BUF_PUSH (at_dot);
3472 break;
3473
3474 case 's':
3475 laststart = b;
3476 PATFETCH (c);
3477 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3478 break;
3479
3480 case 'S':
3481 laststart = b;
3482 PATFETCH (c);
3483 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3484 break;
b18215fc
RS
3485
3486 case 'c':
3487 laststart = b;
36595814 3488 PATFETCH (c);
b18215fc
RS
3489 BUF_PUSH_2 (categoryspec, c);
3490 break;
e318085a 3491
b18215fc
RS
3492 case 'C':
3493 laststart = b;
36595814 3494 PATFETCH (c);
b18215fc
RS
3495 BUF_PUSH_2 (notcategoryspec, c);
3496 break;
3497#endif /* emacs */
e318085a 3498
e318085a 3499
25fe55af 3500 case 'w':
4bb91c68
SM
3501 if (syntax & RE_NO_GNU_OPS)
3502 goto normal_char;
25fe55af 3503 laststart = b;
1fb352e0 3504 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3505 break;
e318085a 3506
e318085a 3507
25fe55af 3508 case 'W':
4bb91c68
SM
3509 if (syntax & RE_NO_GNU_OPS)
3510 goto normal_char;
25fe55af 3511 laststart = b;
1fb352e0 3512 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3513 break;
e318085a
RS
3514
3515
25fe55af 3516 case '<':
4bb91c68
SM
3517 if (syntax & RE_NO_GNU_OPS)
3518 goto normal_char;
25fe55af
RS
3519 BUF_PUSH (wordbeg);
3520 break;
e318085a 3521
25fe55af 3522 case '>':
4bb91c68
SM
3523 if (syntax & RE_NO_GNU_OPS)
3524 goto normal_char;
25fe55af
RS
3525 BUF_PUSH (wordend);
3526 break;
e318085a 3527
669fa600
SM
3528 case '_':
3529 if (syntax & RE_NO_GNU_OPS)
3530 goto normal_char;
3531 laststart = b;
3532 PATFETCH (c);
3533 if (c == '<')
3534 BUF_PUSH (symbeg);
3535 else if (c == '>')
3536 BUF_PUSH (symend);
3537 else
3538 FREE_STACK_RETURN (REG_BADPAT);
3539 break;
3540
25fe55af 3541 case 'b':
4bb91c68
SM
3542 if (syntax & RE_NO_GNU_OPS)
3543 goto normal_char;
25fe55af
RS
3544 BUF_PUSH (wordbound);
3545 break;
e318085a 3546
25fe55af 3547 case 'B':
4bb91c68
SM
3548 if (syntax & RE_NO_GNU_OPS)
3549 goto normal_char;
25fe55af
RS
3550 BUF_PUSH (notwordbound);
3551 break;
fa9a63c5 3552
25fe55af 3553 case '`':
4bb91c68
SM
3554 if (syntax & RE_NO_GNU_OPS)
3555 goto normal_char;
25fe55af
RS
3556 BUF_PUSH (begbuf);
3557 break;
e318085a 3558
25fe55af 3559 case '\'':
4bb91c68
SM
3560 if (syntax & RE_NO_GNU_OPS)
3561 goto normal_char;
25fe55af
RS
3562 BUF_PUSH (endbuf);
3563 break;
e318085a 3564
25fe55af
RS
3565 case '1': case '2': case '3': case '4': case '5':
3566 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3567 {
3568 regnum_t reg;
e318085a 3569
0cdd06f8
SM
3570 if (syntax & RE_NO_BK_REFS)
3571 goto normal_backslash;
e318085a 3572
0cdd06f8 3573 reg = c - '0';
e318085a 3574
c69b0314
SM
3575 if (reg > bufp->re_nsub || reg < 1
3576 /* Can't back reference to a subexp before its end. */
3577 || group_in_compile_stack (compile_stack, reg))
0cdd06f8 3578 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3579
0cdd06f8
SM
3580 laststart = b;
3581 BUF_PUSH_2 (duplicate, reg);
3582 }
25fe55af 3583 break;
e318085a 3584
e318085a 3585
25fe55af
RS
3586 case '+':
3587 case '?':
3588 if (syntax & RE_BK_PLUS_QM)
3589 goto handle_plus;
3590 else
3591 goto normal_backslash;
3592
3593 default:
3594 normal_backslash:
3595 /* You might think it would be useful for \ to mean
3596 not to translate; but if we don't translate it
4bb91c68 3597 it will never match anything. */
25fe55af
RS
3598 goto normal_char;
3599 }
3600 break;
fa9a63c5
RM
3601
3602
3603 default:
25fe55af 3604 /* Expects the character in `c'. */
fa9a63c5 3605 normal_char:
36595814 3606 /* If no exactn currently being built. */
25fe55af 3607 if (!pending_exact
fa9a63c5 3608
25fe55af
RS
3609 /* If last exactn not at current position. */
3610 || pending_exact + *pending_exact + 1 != b
5e69f11e 3611
25fe55af 3612 /* We have only one byte following the exactn for the count. */
2d1675e4 3613 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3614
7814e705 3615 /* If followed by a repetition operator. */
9d99031f 3616 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3617 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3618 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3619 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3620 || ((syntax & RE_INTERVALS)
25fe55af 3621 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3622 ? p != pend && *p == '{'
3623 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3624 {
3625 /* Start building a new exactn. */
5e69f11e 3626
25fe55af 3627 laststart = b;
fa9a63c5
RM
3628
3629 BUF_PUSH_2 (exactn, 0);
3630 pending_exact = b - 1;
25fe55af 3631 }
5e69f11e 3632
2d1675e4
SM
3633 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3634 {
e0277a47
KH
3635 int len;
3636
36595814 3637 c = TRANSLATE (c);
e0277a47
KH
3638 if (multibyte)
3639 len = CHAR_STRING (c, b);
3640 else
3641 *b = c, len = 1;
2d1675e4
SM
3642 b += len;
3643 (*pending_exact) += len;
3644 }
3645
fa9a63c5 3646 break;
25fe55af 3647 } /* switch (c) */
fa9a63c5
RM
3648 } /* while p != pend */
3649
5e69f11e 3650
fa9a63c5 3651 /* Through the pattern now. */
5e69f11e 3652
505bde11 3653 FIXUP_ALT_JUMP ();
fa9a63c5 3654
5e69f11e 3655 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3656 FREE_STACK_RETURN (REG_EPAREN);
3657
3658 /* If we don't want backtracking, force success
3659 the first time we reach the end of the compiled pattern. */
3660 if (syntax & RE_NO_POSIX_BACKTRACKING)
3661 BUF_PUSH (succeed);
3662
fa9a63c5
RM
3663 /* We have succeeded; set the length of the buffer. */
3664 bufp->used = b - bufp->buffer;
3665
3666#ifdef DEBUG
99633e97 3667 if (debug > 0)
fa9a63c5 3668 {
505bde11 3669 re_compile_fastmap (bufp);
fa9a63c5
RM
3670 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3671 print_compiled_pattern (bufp);
3672 }
99633e97 3673 debug--;
fa9a63c5
RM
3674#endif /* DEBUG */
3675
3676#ifndef MATCH_MAY_ALLOCATE
3677 /* Initialize the failure stack to the largest possible stack. This
3678 isn't necessary unless we're trying to avoid calling alloca in
3679 the search and match routines. */
3680 {
3681 int num_regs = bufp->re_nsub + 1;
3682
320a2a73 3683 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3684 {
a26f4ccd 3685 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3686
fa9a63c5
RM
3687 if (! fail_stack.stack)
3688 fail_stack.stack
a073faa6 3689 = (fail_stack_elt_t *) malloc (fail_stack.size
8ea094cf 3690 * sizeof (fail_stack_elt_t));
fa9a63c5
RM
3691 else
3692 fail_stack.stack
a073faa6 3693 = (fail_stack_elt_t *) realloc (fail_stack.stack,
8ea094cf
AS
3694 (fail_stack.size
3695 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3696 }
3697
3698 regex_grow_registers (num_regs);
3699 }
3700#endif /* not MATCH_MAY_ALLOCATE */
3701
7c67c9f6 3702 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3703} /* regex_compile */
3704\f
3705/* Subroutines for `regex_compile'. */
3706
7814e705 3707/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3708
3709static void
3710store_op1 (op, loc, arg)
3711 re_opcode_t op;
3712 unsigned char *loc;
3713 int arg;
3714{
3715 *loc = (unsigned char) op;
3716 STORE_NUMBER (loc + 1, arg);
3717}
3718
3719
3720/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3721
3722static void
3723store_op2 (op, loc, arg1, arg2)
3724 re_opcode_t op;
3725 unsigned char *loc;
3726 int arg1, arg2;
3727{
3728 *loc = (unsigned char) op;
3729 STORE_NUMBER (loc + 1, arg1);
3730 STORE_NUMBER (loc + 3, arg2);
3731}
3732
3733
3734/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3735 for OP followed by two-byte integer parameter ARG. */
3736
3737static void
3738insert_op1 (op, loc, arg, end)
3739 re_opcode_t op;
3740 unsigned char *loc;
3741 int arg;
5e69f11e 3742 unsigned char *end;
fa9a63c5
RM
3743{
3744 register unsigned char *pfrom = end;
3745 register unsigned char *pto = end + 3;
3746
3747 while (pfrom != loc)
3748 *--pto = *--pfrom;
5e69f11e 3749
fa9a63c5
RM
3750 store_op1 (op, loc, arg);
3751}
3752
3753
3754/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3755
3756static void
3757insert_op2 (op, loc, arg1, arg2, end)
3758 re_opcode_t op;
3759 unsigned char *loc;
3760 int arg1, arg2;
5e69f11e 3761 unsigned char *end;
fa9a63c5
RM
3762{
3763 register unsigned char *pfrom = end;
3764 register unsigned char *pto = end + 5;
3765
3766 while (pfrom != loc)
3767 *--pto = *--pfrom;
5e69f11e 3768
fa9a63c5
RM
3769 store_op2 (op, loc, arg1, arg2);
3770}
3771
3772
3773/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3774 after an alternative or a begin-subexpression. We assume there is at
3775 least one character before the ^. */
3776
3777static boolean
3778at_begline_loc_p (pattern, p, syntax)
01618498 3779 re_char *pattern, *p;
fa9a63c5
RM
3780 reg_syntax_t syntax;
3781{
01618498 3782 re_char *prev = p - 2;
fa9a63c5 3783 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3784
fa9a63c5
RM
3785 return
3786 /* After a subexpression? */
3787 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3788 /* After an alternative? */
d2af47df
SM
3789 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3790 /* After a shy subexpression? */
3791 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3792 && prev[-1] == '?' && prev[-2] == '('
3793 && (syntax & RE_NO_BK_PARENS
3794 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3795}
3796
3797
3798/* The dual of at_begline_loc_p. This one is for $. We assume there is
3799 at least one character after the $, i.e., `P < PEND'. */
3800
3801static boolean
3802at_endline_loc_p (p, pend, syntax)
01618498 3803 re_char *p, *pend;
99633e97 3804 reg_syntax_t syntax;
fa9a63c5 3805{
01618498 3806 re_char *next = p;
fa9a63c5 3807 boolean next_backslash = *next == '\\';
01618498 3808 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3809
fa9a63c5
RM
3810 return
3811 /* Before a subexpression? */
3812 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3813 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3814 /* Before an alternative? */
3815 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3816 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3817}
3818
3819
5e69f11e 3820/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3821 false if it's not. */
3822
3823static boolean
3824group_in_compile_stack (compile_stack, regnum)
3825 compile_stack_type compile_stack;
3826 regnum_t regnum;
3827{
3828 int this_element;
3829
5e69f11e
RM
3830 for (this_element = compile_stack.avail - 1;
3831 this_element >= 0;
fa9a63c5
RM
3832 this_element--)
3833 if (compile_stack.stack[this_element].regnum == regnum)
3834 return true;
3835
3836 return false;
3837}
fa9a63c5 3838\f
f6a3f532
SM
3839/* analyse_first.
3840 If fastmap is non-NULL, go through the pattern and fill fastmap
3841 with all the possible leading chars. If fastmap is NULL, don't
3842 bother filling it up (obviously) and only return whether the
3843 pattern could potentially match the empty string.
3844
3845 Return 1 if p..pend might match the empty string.
3846 Return 0 if p..pend matches at least one char.
01618498 3847 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3848
3849static int
3850analyse_first (p, pend, fastmap, multibyte)
01618498 3851 re_char *p, *pend;
f6a3f532
SM
3852 char *fastmap;
3853 const int multibyte;
fa9a63c5 3854{
505bde11 3855 int j, k;
1fb352e0 3856 boolean not;
fa9a63c5 3857
b18215fc 3858 /* If all elements for base leading-codes in fastmap is set, this
7814e705 3859 flag is set true. */
b18215fc
RS
3860 boolean match_any_multibyte_characters = false;
3861
f6a3f532 3862 assert (p);
5e69f11e 3863
505bde11
SM
3864 /* The loop below works as follows:
3865 - It has a working-list kept in the PATTERN_STACK and which basically
3866 starts by only containing a pointer to the first operation.
3867 - If the opcode we're looking at is a match against some set of
3868 chars, then we add those chars to the fastmap and go on to the
3869 next work element from the worklist (done via `break').
3870 - If the opcode is a control operator on the other hand, we either
3871 ignore it (if it's meaningless at this point, such as `start_memory')
3872 or execute it (if it's a jump). If the jump has several destinations
3873 (i.e. `on_failure_jump'), then we push the other destination onto the
3874 worklist.
3875 We guarantee termination by ignoring backward jumps (more or less),
3876 so that `p' is monotonically increasing. More to the point, we
3877 never set `p' (or push) anything `<= p1'. */
3878
01618498 3879 while (p < pend)
fa9a63c5 3880 {
505bde11
SM
3881 /* `p1' is used as a marker of how far back a `on_failure_jump'
3882 can go without being ignored. It is normally equal to `p'
3883 (which prevents any backward `on_failure_jump') except right
3884 after a plain `jump', to allow patterns such as:
3885 0: jump 10
3886 3..9: <body>
3887 10: on_failure_jump 3
3888 as used for the *? operator. */
01618498 3889 re_char *p1 = p;
5e69f11e 3890
fa9a63c5
RM
3891 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3892 {
f6a3f532 3893 case succeed:
01618498 3894 return 1;
f6a3f532 3895 continue;
fa9a63c5 3896
fa9a63c5 3897 case duplicate:
505bde11
SM
3898 /* If the first character has to match a backreference, that means
3899 that the group was empty (since it already matched). Since this
3900 is the only case that interests us here, we can assume that the
3901 backreference must match the empty string. */
3902 p++;
3903 continue;
fa9a63c5
RM
3904
3905
3906 /* Following are the cases which match a character. These end
7814e705 3907 with `break'. */
fa9a63c5
RM
3908
3909 case exactn:
e0277a47
KH
3910 if (fastmap)
3911 {
3912 int c = RE_STRING_CHAR (p + 1, pend - p);
4560a582
SM
3913 /* When fast-scanning, the fastmap can be indexed either with
3914 a char (smaller than 256) or with the first byte of
3915 a char's byte sequence. So we have to conservatively add
3916 both to the table. */
e0277a47
KH
3917 if (SINGLE_BYTE_CHAR_P (c))
3918 fastmap[c] = 1;
4560a582 3919 fastmap[p[1]] = 1;
e0277a47 3920 }
fa9a63c5
RM
3921 break;
3922
3923
1fb352e0
SM
3924 case anychar:
3925 /* We could put all the chars except for \n (and maybe \0)
3926 but we don't bother since it is generally not worth it. */
f6a3f532 3927 if (!fastmap) break;
01618498 3928 return -1;
fa9a63c5
RM
3929
3930
b18215fc 3931 case charset_not:
ba5c004d
RS
3932 /* Chars beyond end of bitmap are possible matches.
3933 All the single-byte codes can occur in multibyte buffers.
3934 So any that are not listed in the charset
3935 are possible matches, even in multibyte buffers. */
1fb352e0 3936 if (!fastmap) break;
4560a582
SM
3937 /* We don't need to mark LEADING_CODE_8_BIT_CONTROL specially
3938 because it will automatically be set when needed by virtue of
3939 being larger than the highest char of its charset (0xbf) but
3940 smaller than (1<<BYTEWIDTH). */
b18215fc 3941 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
1fb352e0 3942 j < (1 << BYTEWIDTH); j++)
b18215fc 3943 fastmap[j] = 1;
1fb352e0
SM
3944 /* Fallthrough */
3945 case charset:
3946 if (!fastmap) break;
3947 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3948 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3949 j >= 0; j--)
1fb352e0 3950 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
4560a582
SM
3951 {
3952 fastmap[j] = 1;
3953#ifdef emacs
3954 if (j >= 0x80 && j < 0xa0)
3955 fastmap[LEADING_CODE_8_BIT_CONTROL] = 1;
3956#endif
3957 }
b18215fc 3958
1fb352e0
SM
3959 if ((not && multibyte)
3960 /* Any character set can possibly contain a character
3961 which doesn't match the specified set of characters. */
3962 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3963 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3964 /* If we can match a character class, we can match
3965 any character set. */
b18215fc
RS
3966 {
3967 set_fastmap_for_multibyte_characters:
3968 if (match_any_multibyte_characters == false)
3969 {
3970 for (j = 0x80; j < 0xA0; j++) /* XXX */
3971 if (BASE_LEADING_CODE_P (j))
3972 fastmap[j] = 1;
3973 match_any_multibyte_characters = true;
3974 }
3975 }
b18215fc 3976
1fb352e0
SM
3977 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3978 && match_any_multibyte_characters == false)
3979 {
3980 /* Set fastmap[I] 1 where I is a base leading code of each
3981 multibyte character in the range table. */
3982 int c, count;
b18215fc 3983
1fb352e0 3984 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 3985 bits for a character class. */
1fb352e0 3986 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 3987
1fb352e0
SM
3988 /* Extract the number of ranges in range table into COUNT. */
3989 EXTRACT_NUMBER_AND_INCR (count, p);
3990 for (; count > 0; count--, p += 2 * 3) /* XXX */
3991 {
3992 /* Extract the start of each range. */
3993 EXTRACT_CHARACTER (c, p);
3994 j = CHAR_CHARSET (c);
3995 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3996 }
3997 }
b18215fc
RS
3998 break;
3999
1fb352e0
SM
4000 case syntaxspec:
4001 case notsyntaxspec:
4002 if (!fastmap) break;
4003#ifndef emacs
4004 not = (re_opcode_t)p[-1] == notsyntaxspec;
4005 k = *p++;
4006 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 4007 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 4008 fastmap[j] = 1;
b18215fc 4009 break;
1fb352e0 4010#else /* emacs */
b18215fc
RS
4011 /* This match depends on text properties. These end with
4012 aborting optimizations. */
01618498 4013 return -1;
b18215fc
RS
4014
4015 case categoryspec:
b18215fc 4016 case notcategoryspec:
1fb352e0
SM
4017 if (!fastmap) break;
4018 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 4019 k = *p++;
1fb352e0
SM
4020 for (j = 0; j < (1 << BYTEWIDTH); j++)
4021 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
4022 fastmap[j] = 1;
4023
1fb352e0 4024 if (multibyte)
b18215fc 4025 /* Any character set can possibly contain a character
1fb352e0 4026 whose category is K (or not). */
b18215fc
RS
4027 goto set_fastmap_for_multibyte_characters;
4028 break;
4029
fa9a63c5 4030 /* All cases after this match the empty string. These end with
25fe55af 4031 `continue'. */
fa9a63c5 4032
fa9a63c5
RM
4033 case before_dot:
4034 case at_dot:
4035 case after_dot:
1fb352e0 4036#endif /* !emacs */
25fe55af
RS
4037 case no_op:
4038 case begline:
4039 case endline:
fa9a63c5
RM
4040 case begbuf:
4041 case endbuf:
4042 case wordbound:
4043 case notwordbound:
4044 case wordbeg:
4045 case wordend:
669fa600
SM
4046 case symbeg:
4047 case symend:
25fe55af 4048 continue;
fa9a63c5
RM
4049
4050
fa9a63c5 4051 case jump:
25fe55af 4052 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
4053 if (j < 0)
4054 /* Backward jumps can only go back to code that we've already
4055 visited. `re_compile' should make sure this is true. */
4056 break;
25fe55af 4057 p += j;
505bde11
SM
4058 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4059 {
4060 case on_failure_jump:
4061 case on_failure_keep_string_jump:
505bde11 4062 case on_failure_jump_loop:
0683b6fa 4063 case on_failure_jump_nastyloop:
505bde11
SM
4064 case on_failure_jump_smart:
4065 p++;
4066 break;
4067 default:
4068 continue;
4069 };
4070 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4071 to jump back to "just after here". */
4072 /* Fallthrough */
fa9a63c5 4073
25fe55af
RS
4074 case on_failure_jump:
4075 case on_failure_keep_string_jump:
0683b6fa 4076 case on_failure_jump_nastyloop:
505bde11
SM
4077 case on_failure_jump_loop:
4078 case on_failure_jump_smart:
25fe55af 4079 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 4080 if (p + j <= p1)
ed0767d8 4081 ; /* Backward jump to be ignored. */
01618498
SM
4082 else
4083 { /* We have to look down both arms.
4084 We first go down the "straight" path so as to minimize
4085 stack usage when going through alternatives. */
4086 int r = analyse_first (p, pend, fastmap, multibyte);
4087 if (r) return r;
4088 p += j;
4089 }
25fe55af 4090 continue;
fa9a63c5
RM
4091
4092
ed0767d8
SM
4093 case jump_n:
4094 /* This code simply does not properly handle forward jump_n. */
4095 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4096 p += 4;
4097 /* jump_n can either jump or fall through. The (backward) jump
4098 case has already been handled, so we only need to look at the
4099 fallthrough case. */
4100 continue;
177c0ea7 4101
fa9a63c5 4102 case succeed_n:
ed0767d8
SM
4103 /* If N == 0, it should be an on_failure_jump_loop instead. */
4104 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4105 p += 4;
4106 /* We only care about one iteration of the loop, so we don't
4107 need to consider the case where this behaves like an
4108 on_failure_jump. */
25fe55af 4109 continue;
fa9a63c5
RM
4110
4111
4112 case set_number_at:
25fe55af
RS
4113 p += 4;
4114 continue;
fa9a63c5
RM
4115
4116
4117 case start_memory:
25fe55af 4118 case stop_memory:
505bde11 4119 p += 1;
fa9a63c5
RM
4120 continue;
4121
4122
4123 default:
25fe55af
RS
4124 abort (); /* We have listed all the cases. */
4125 } /* switch *p++ */
fa9a63c5
RM
4126
4127 /* Getting here means we have found the possible starting
25fe55af 4128 characters for one path of the pattern -- and that the empty
7814e705 4129 string does not match. We need not follow this path further. */
01618498 4130 return 0;
fa9a63c5
RM
4131 } /* while p */
4132
01618498
SM
4133 /* We reached the end without matching anything. */
4134 return 1;
4135
f6a3f532
SM
4136} /* analyse_first */
4137\f
4138/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4139 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4140 characters can start a string that matches the pattern. This fastmap
4141 is used by re_search to skip quickly over impossible starting points.
4142
4143 Character codes above (1 << BYTEWIDTH) are not represented in the
4144 fastmap, but the leading codes are represented. Thus, the fastmap
4145 indicates which character sets could start a match.
4146
4147 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4148 area as BUFP->fastmap.
4149
4150 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4151 the pattern buffer.
4152
4153 Returns 0 if we succeed, -2 if an internal error. */
4154
4155int
4156re_compile_fastmap (bufp)
4157 struct re_pattern_buffer *bufp;
4158{
4159 char *fastmap = bufp->fastmap;
4160 int analysis;
4161
4162 assert (fastmap && bufp->buffer);
4163
7814e705 4164 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
f6a3f532
SM
4165 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4166
4167 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4168 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4169 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4170 return 0;
4171} /* re_compile_fastmap */
4172\f
4173/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4174 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4175 this memory for recording register information. STARTS and ENDS
4176 must be allocated using the malloc library routine, and must each
4177 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4178
4179 If NUM_REGS == 0, then subsequent matches should allocate their own
4180 register data.
4181
4182 Unless this function is called, the first search or match using
4183 PATTERN_BUFFER will allocate its own register data, without
4184 freeing the old data. */
4185
4186void
4187re_set_registers (bufp, regs, num_regs, starts, ends)
4188 struct re_pattern_buffer *bufp;
4189 struct re_registers *regs;
4190 unsigned num_regs;
4191 regoff_t *starts, *ends;
4192{
4193 if (num_regs)
4194 {
4195 bufp->regs_allocated = REGS_REALLOCATE;
4196 regs->num_regs = num_regs;
4197 regs->start = starts;
4198 regs->end = ends;
4199 }
4200 else
4201 {
4202 bufp->regs_allocated = REGS_UNALLOCATED;
4203 regs->num_regs = 0;
4204 regs->start = regs->end = (regoff_t *) 0;
4205 }
4206}
c0f9ea08 4207WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4208\f
7814e705 4209/* Searching routines. */
fa9a63c5
RM
4210
4211/* Like re_search_2, below, but only one string is specified, and
4212 doesn't let you say where to stop matching. */
4213
4214int
4215re_search (bufp, string, size, startpos, range, regs)
4216 struct re_pattern_buffer *bufp;
4217 const char *string;
4218 int size, startpos, range;
4219 struct re_registers *regs;
4220{
5e69f11e 4221 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4222 regs, size);
4223}
c0f9ea08 4224WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4225
70806df6
KH
4226/* Head address of virtual concatenation of string. */
4227#define HEAD_ADDR_VSTRING(P) \
4228 (((P) >= size1 ? string2 : string1))
4229
b18215fc
RS
4230/* End address of virtual concatenation of string. */
4231#define STOP_ADDR_VSTRING(P) \
4232 (((P) >= size1 ? string2 + size2 : string1 + size1))
4233
4234/* Address of POS in the concatenation of virtual string. */
4235#define POS_ADDR_VSTRING(POS) \
4236 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4237
4238/* Using the compiled pattern in BUFP->buffer, first tries to match the
4239 virtual concatenation of STRING1 and STRING2, starting first at index
4240 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4241
fa9a63c5 4242 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4243
fa9a63c5
RM
4244 RANGE is how far to scan while trying to match. RANGE = 0 means try
4245 only at STARTPOS; in general, the last start tried is STARTPOS +
4246 RANGE.
5e69f11e 4247
fa9a63c5
RM
4248 In REGS, return the indices of the virtual concatenation of STRING1
4249 and STRING2 that matched the entire BUFP->buffer and its contained
4250 subexpressions.
5e69f11e 4251
fa9a63c5
RM
4252 Do not consider matching one past the index STOP in the virtual
4253 concatenation of STRING1 and STRING2.
4254
4255 We return either the position in the strings at which the match was
4256 found, -1 if no match, or -2 if error (such as failure
4257 stack overflow). */
4258
4259int
66f0296e 4260re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4261 struct re_pattern_buffer *bufp;
66f0296e 4262 const char *str1, *str2;
fa9a63c5
RM
4263 int size1, size2;
4264 int startpos;
4265 int range;
4266 struct re_registers *regs;
4267 int stop;
4268{
4269 int val;
66f0296e
SM
4270 re_char *string1 = (re_char*) str1;
4271 re_char *string2 = (re_char*) str2;
fa9a63c5 4272 register char *fastmap = bufp->fastmap;
6676cb1c 4273 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4274 int total_size = size1 + size2;
4275 int endpos = startpos + range;
c0f9ea08 4276 boolean anchored_start;
fa9a63c5 4277
7814e705 4278 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4279 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4280
fa9a63c5
RM
4281 /* Check for out-of-range STARTPOS. */
4282 if (startpos < 0 || startpos > total_size)
4283 return -1;
5e69f11e 4284
fa9a63c5 4285 /* Fix up RANGE if it might eventually take us outside
34597fa9 4286 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4287 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4288 if (endpos < 0)
4289 range = 0 - startpos;
fa9a63c5
RM
4290 else if (endpos > total_size)
4291 range = total_size - startpos;
4292
4293 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4294 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4295 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4296 {
4297 if (startpos > 0)
4298 return -1;
4299 else
7b140fd7 4300 range = 0;
fa9a63c5
RM
4301 }
4302
ae4788a8
RS
4303#ifdef emacs
4304 /* In a forward search for something that starts with \=.
4305 don't keep searching past point. */
4306 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4307 {
7b140fd7
RS
4308 range = PT_BYTE - BEGV_BYTE - startpos;
4309 if (range < 0)
ae4788a8
RS
4310 return -1;
4311 }
4312#endif /* emacs */
4313
fa9a63c5
RM
4314 /* Update the fastmap now if not correct already. */
4315 if (fastmap && !bufp->fastmap_accurate)
01618498 4316 re_compile_fastmap (bufp);
5e69f11e 4317
c8499ba5 4318 /* See whether the pattern is anchored. */
c0f9ea08 4319 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4320
b18215fc 4321#ifdef emacs
cc9b4df2
KH
4322 gl_state.object = re_match_object;
4323 {
99633e97 4324 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4325
4326 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4327 }
b18215fc
RS
4328#endif
4329
fa9a63c5
RM
4330 /* Loop through the string, looking for a place to start matching. */
4331 for (;;)
5e69f11e 4332 {
c8499ba5
RS
4333 /* If the pattern is anchored,
4334 skip quickly past places we cannot match.
4335 We don't bother to treat startpos == 0 specially
4336 because that case doesn't repeat. */
4337 if (anchored_start && startpos > 0)
4338 {
c0f9ea08
SM
4339 if (! ((startpos <= size1 ? string1[startpos - 1]
4340 : string2[startpos - size1 - 1])
4341 == '\n'))
c8499ba5
RS
4342 goto advance;
4343 }
4344
fa9a63c5 4345 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4346 cannot be the start of a match. If the pattern can match the
4347 null string, however, we don't need to skip characters; we want
7814e705 4348 the first null string. */
fa9a63c5
RM
4349 if (fastmap && startpos < total_size && !bufp->can_be_null)
4350 {
66f0296e 4351 register re_char *d;
01618498 4352 register re_wchar_t buf_ch;
e934739e
RS
4353
4354 d = POS_ADDR_VSTRING (startpos);
4355
7814e705 4356 if (range > 0) /* Searching forwards. */
fa9a63c5 4357 {
fa9a63c5
RM
4358 register int lim = 0;
4359 int irange = range;
4360
25fe55af
RS
4361 if (startpos < size1 && startpos + range >= size1)
4362 lim = range - (size1 - startpos);
fa9a63c5 4363
25fe55af
RS
4364 /* Written out as an if-else to avoid testing `translate'
4365 inside the loop. */
28ae27ae
AS
4366 if (RE_TRANSLATE_P (translate))
4367 {
e934739e
RS
4368 if (multibyte)
4369 while (range > lim)
4370 {
4371 int buf_charlen;
4372
4373 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4374 buf_charlen);
4375
4376 buf_ch = RE_TRANSLATE (translate, buf_ch);
4377 if (buf_ch >= 0400
4378 || fastmap[buf_ch])
4379 break;
4380
4381 range -= buf_charlen;
4382 d += buf_charlen;
4383 }
4384 else
cf1982d9
EZ
4385 {
4386 /* Convert *d to integer to shut up GCC's
4387 whining about comparison that is always
4388 true. */
4389 int di = *d;
4390
4391 while (range > lim
4392 && !fastmap[RE_TRANSLATE (translate, di)])
4393 {
4394 di = *(++d);
4395 range--;
4396 }
4397 }
e934739e 4398 }
fa9a63c5 4399 else
4560a582 4400 do
33c46939 4401 {
4560a582
SM
4402 re_char *d_start = d;
4403 while (range > lim && !fastmap[*d])
4404 {
4405 d++;
4406 range--;
4407 }
4408#ifdef emacs
4409 if (multibyte && range > lim)
4410 {
4411 /* Check that we are at the beginning of a char. */
4412 int at_boundary;
4413 AT_CHAR_BOUNDARY_P (at_boundary, d, d_start);
4414 if (at_boundary)
4415 break;
4416 else
4417 { /* We have matched an internal byte of a char
4418 rather than the leading byte, so it's a false
4419 positive: we should keep scanning. */
4420 d++; range--;
4421 }
4422 }
4423 else
4424#endif
4425 break;
4426 } while (1);
fa9a63c5
RM
4427
4428 startpos += irange - range;
4429 }
7814e705 4430 else /* Searching backwards. */
fa9a63c5 4431 {
2d1675e4
SM
4432 int room = (startpos >= size1
4433 ? size2 + size1 - startpos
4434 : size1 - startpos);
4435 buf_ch = RE_STRING_CHAR (d, room);
4436 buf_ch = TRANSLATE (buf_ch);
fa9a63c5 4437
e934739e
RS
4438 if (! (buf_ch >= 0400
4439 || fastmap[buf_ch]))
fa9a63c5
RM
4440 goto advance;
4441 }
4442 }
4443
4444 /* If can't match the null string, and that's all we have left, fail. */
4445 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4446 && !bufp->can_be_null)
fa9a63c5
RM
4447 return -1;
4448
4449 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4450 startpos, regs, stop);
fa9a63c5
RM
4451
4452 if (val >= 0)
4453 return startpos;
5e69f11e 4454
fa9a63c5
RM
4455 if (val == -2)
4456 return -2;
4457
4458 advance:
5e69f11e 4459 if (!range)
25fe55af 4460 break;
5e69f11e 4461 else if (range > 0)
25fe55af 4462 {
b18215fc
RS
4463 /* Update STARTPOS to the next character boundary. */
4464 if (multibyte)
4465 {
66f0296e
SM
4466 re_char *p = POS_ADDR_VSTRING (startpos);
4467 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4468 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4469
4470 range -= len;
4471 if (range < 0)
4472 break;
4473 startpos += len;
4474 }
4475 else
4476 {
b560c397
RS
4477 range--;
4478 startpos++;
4479 }
e318085a 4480 }
fa9a63c5 4481 else
25fe55af
RS
4482 {
4483 range++;
4484 startpos--;
b18215fc
RS
4485
4486 /* Update STARTPOS to the previous character boundary. */
4487 if (multibyte)
4488 {
70806df6
KH
4489 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4490 re_char *p0 = p;
4491 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4492
4493 /* Find the head of multibyte form. */
70806df6
KH
4494 PREV_CHAR_BOUNDARY (p, phead);
4495 range += p0 - 1 - p;
4496 if (range > 0)
4497 break;
b18215fc 4498
70806df6 4499 startpos -= p0 - 1 - p;
b18215fc 4500 }
25fe55af 4501 }
fa9a63c5
RM
4502 }
4503 return -1;
4504} /* re_search_2 */
c0f9ea08 4505WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4506\f
4507/* Declarations and macros for re_match_2. */
4508
2d1675e4
SM
4509static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4510 register int len,
4511 RE_TRANSLATE_TYPE translate,
4512 const int multibyte));
fa9a63c5
RM
4513
4514/* This converts PTR, a pointer into one of the search strings `string1'
4515 and `string2' into an offset from the beginning of that string. */
4516#define POINTER_TO_OFFSET(ptr) \
4517 (FIRST_STRING_P (ptr) \
4518 ? ((regoff_t) ((ptr) - string1)) \
4519 : ((regoff_t) ((ptr) - string2 + size1)))
4520
fa9a63c5 4521/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4522 string2 if necessary.
4523 Check re_match_2_internal for a discussion of why end_match_2 might
4524 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4525#define PREFETCH() \
25fe55af 4526 while (d == dend) \
fa9a63c5
RM
4527 { \
4528 /* End of string2 => fail. */ \
25fe55af
RS
4529 if (dend == end_match_2) \
4530 goto fail; \
4bb91c68 4531 /* End of string1 => advance to string2. */ \
25fe55af 4532 d = string2; \
fa9a63c5
RM
4533 dend = end_match_2; \
4534 }
4535
f1ad044f
SM
4536/* Call before fetching a char with *d if you already checked other limits.
4537 This is meant for use in lookahead operations like wordend, etc..
4538 where we might need to look at parts of the string that might be
4539 outside of the LIMITs (i.e past `stop'). */
4540#define PREFETCH_NOLIMIT() \
4541 if (d == end1) \
4542 { \
4543 d = string2; \
4544 dend = end_match_2; \
4545 } \
fa9a63c5
RM
4546
4547/* Test if at very beginning or at very end of the virtual concatenation
7814e705 4548 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4549#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4550#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4551
4552
4553/* Test if D points to a character which is word-constituent. We have
4554 two special cases to check for: if past the end of string1, look at
4555 the first character in string2; and if before the beginning of
4556 string2, look at the last character in string1. */
4557#define WORDCHAR_P(d) \
4558 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4559 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4560 == Sword)
4561
9121ca40 4562/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4563
4564/* The comment at case wordbound is following one, but we don't use
4565 AT_WORD_BOUNDARY anymore to support multibyte form.
4566
4567 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af 4568 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7814e705 4569 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4570 macro and introducing temporary variables works around the bug. */
4571
9121ca40 4572#if 0
fa9a63c5
RM
4573/* Test if the character before D and the one at D differ with respect
4574 to being word-constituent. */
4575#define AT_WORD_BOUNDARY(d) \
4576 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4577 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4578#endif
fa9a63c5
RM
4579
4580/* Free everything we malloc. */
4581#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4582# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4583# define FREE_VARIABLES() \
fa9a63c5
RM
4584 do { \
4585 REGEX_FREE_STACK (fail_stack.stack); \
4586 FREE_VAR (regstart); \
4587 FREE_VAR (regend); \
fa9a63c5
RM
4588 FREE_VAR (best_regstart); \
4589 FREE_VAR (best_regend); \
fa9a63c5
RM
4590 } while (0)
4591#else
0b32bf0e 4592# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4593#endif /* not MATCH_MAY_ALLOCATE */
4594
505bde11
SM
4595\f
4596/* Optimization routines. */
4597
4e8a9132
SM
4598/* If the operation is a match against one or more chars,
4599 return a pointer to the next operation, else return NULL. */
01618498 4600static re_char *
4e8a9132 4601skip_one_char (p)
01618498 4602 re_char *p;
4e8a9132
SM
4603{
4604 switch (SWITCH_ENUM_CAST (*p++))
4605 {
4606 case anychar:
4607 break;
177c0ea7 4608
4e8a9132
SM
4609 case exactn:
4610 p += *p + 1;
4611 break;
4612
4613 case charset_not:
4614 case charset:
4615 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4616 {
4617 int mcnt;
4618 p = CHARSET_RANGE_TABLE (p - 1);
4619 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4620 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4621 }
4622 else
4623 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4624 break;
177c0ea7 4625
4e8a9132
SM
4626 case syntaxspec:
4627 case notsyntaxspec:
1fb352e0 4628#ifdef emacs
4e8a9132
SM
4629 case categoryspec:
4630 case notcategoryspec:
4631#endif /* emacs */
4632 p++;
4633 break;
4634
4635 default:
4636 p = NULL;
4637 }
4638 return p;
4639}
4640
4641
505bde11 4642/* Jump over non-matching operations. */
275a3409 4643static re_char *
4e8a9132 4644skip_noops (p, pend)
275a3409 4645 re_char *p, *pend;
505bde11
SM
4646{
4647 int mcnt;
4648 while (p < pend)
4649 {
4650 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4651 {
4652 case start_memory:
505bde11
SM
4653 case stop_memory:
4654 p += 2; break;
4655 case no_op:
4656 p += 1; break;
4657 case jump:
4658 p += 1;
4659 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4660 p += mcnt;
4661 break;
4662 default:
4663 return p;
4664 }
4665 }
4666 assert (p == pend);
4667 return p;
4668}
4669
4670/* Non-zero if "p1 matches something" implies "p2 fails". */
4671static int
4672mutually_exclusive_p (bufp, p1, p2)
4673 struct re_pattern_buffer *bufp;
275a3409 4674 re_char *p1, *p2;
505bde11 4675{
4e8a9132 4676 re_opcode_t op2;
2d1675e4 4677 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4678 unsigned char *pend = bufp->buffer + bufp->used;
4679
4e8a9132 4680 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4681 && p2 >= bufp->buffer && p2 <= pend);
4682
4683 /* Skip over open/close-group commands.
4684 If what follows this loop is a ...+ construct,
4685 look at what begins its body, since we will have to
4686 match at least one of that. */
4e8a9132
SM
4687 p2 = skip_noops (p2, pend);
4688 /* The same skip can be done for p1, except that this function
4689 is only used in the case where p1 is a simple match operator. */
4690 /* p1 = skip_noops (p1, pend); */
4691
4692 assert (p1 >= bufp->buffer && p1 < pend
4693 && p2 >= bufp->buffer && p2 <= pend);
4694
4695 op2 = p2 == pend ? succeed : *p2;
4696
4697 switch (SWITCH_ENUM_CAST (op2))
505bde11 4698 {
4e8a9132
SM
4699 case succeed:
4700 case endbuf:
4701 /* If we're at the end of the pattern, we can change. */
4702 if (skip_one_char (p1))
505bde11 4703 {
505bde11
SM
4704 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4705 return 1;
505bde11 4706 }
4e8a9132 4707 break;
177c0ea7 4708
4e8a9132 4709 case endline:
4e8a9132
SM
4710 case exactn:
4711 {
01618498 4712 register re_wchar_t c
4e8a9132 4713 = (re_opcode_t) *p2 == endline ? '\n'
411e4203 4714 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
505bde11 4715
4e8a9132
SM
4716 if ((re_opcode_t) *p1 == exactn)
4717 {
4718 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4719 {
4720 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4721 return 1;
4722 }
4723 }
505bde11 4724
4e8a9132
SM
4725 else if ((re_opcode_t) *p1 == charset
4726 || (re_opcode_t) *p1 == charset_not)
4727 {
4728 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4729
4e8a9132
SM
4730 /* Test if C is listed in charset (or charset_not)
4731 at `p1'. */
4732 if (SINGLE_BYTE_CHAR_P (c))
4733 {
4734 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4735 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4736 not = !not;
4737 }
4738 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4739 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4740
4e8a9132
SM
4741 /* `not' is equal to 1 if c would match, which means
4742 that we can't change to pop_failure_jump. */
4743 if (!not)
4744 {
4745 DEBUG_PRINT1 (" No match => fast loop.\n");
4746 return 1;
4747 }
4748 }
4749 else if ((re_opcode_t) *p1 == anychar
4750 && c == '\n')
4751 {
4752 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4753 return 1;
4754 }
4755 }
4756 break;
505bde11 4757
4e8a9132 4758 case charset:
4e8a9132
SM
4759 {
4760 if ((re_opcode_t) *p1 == exactn)
4761 /* Reuse the code above. */
4762 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4763
505bde11
SM
4764 /* It is hard to list up all the character in charset
4765 P2 if it includes multibyte character. Give up in
4766 such case. */
4767 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4768 {
4769 /* Now, we are sure that P2 has no range table.
4770 So, for the size of bitmap in P2, `p2[1]' is
7814e705 4771 enough. But P1 may have range table, so the
505bde11
SM
4772 size of bitmap table of P1 is extracted by
4773 using macro `CHARSET_BITMAP_SIZE'.
4774
4775 Since we know that all the character listed in
4776 P2 is ASCII, it is enough to test only bitmap
4777 table of P1. */
4778
411e4203 4779 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4780 {
4781 int idx;
4782 /* We win if the charset inside the loop
4783 has no overlap with the one after the loop. */
4784 for (idx = 0;
4785 (idx < (int) p2[1]
4786 && idx < CHARSET_BITMAP_SIZE (p1));
4787 idx++)
4788 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4789 break;
4790
4791 if (idx == p2[1]
4792 || idx == CHARSET_BITMAP_SIZE (p1))
4793 {
4794 DEBUG_PRINT1 (" No match => fast loop.\n");
4795 return 1;
4796 }
4797 }
411e4203 4798 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4799 {
4800 int idx;
4801 /* We win if the charset_not inside the loop lists
7814e705 4802 every character listed in the charset after. */
505bde11
SM
4803 for (idx = 0; idx < (int) p2[1]; idx++)
4804 if (! (p2[2 + idx] == 0
4805 || (idx < CHARSET_BITMAP_SIZE (p1)
4806 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4807 break;
4808
4e8a9132
SM
4809 if (idx == p2[1])
4810 {
4811 DEBUG_PRINT1 (" No match => fast loop.\n");
4812 return 1;
4813 }
4814 }
4815 }
4816 }
609b757a 4817 break;
177c0ea7 4818
411e4203
SM
4819 case charset_not:
4820 switch (SWITCH_ENUM_CAST (*p1))
4821 {
4822 case exactn:
4823 case charset:
4824 /* Reuse the code above. */
4825 return mutually_exclusive_p (bufp, p2, p1);
4826 case charset_not:
4827 /* When we have two charset_not, it's very unlikely that
4828 they don't overlap. The union of the two sets of excluded
4829 chars should cover all possible chars, which, as a matter of
4830 fact, is virtually impossible in multibyte buffers. */
36595814 4831 break;
411e4203
SM
4832 }
4833 break;
4834
4e8a9132 4835 case wordend:
669fa600
SM
4836 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4837 case symend:
4e8a9132 4838 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
4839 && (p1[1] == Ssymbol || p1[1] == Sword));
4840 case notsyntaxspec:
4841 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4842
4843 case wordbeg:
669fa600
SM
4844 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4845 case symbeg:
4e8a9132 4846 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
4847 && (p1[1] == Ssymbol || p1[1] == Sword));
4848 case syntaxspec:
4849 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4850
4851 case wordbound:
4852 return (((re_opcode_t) *p1 == notsyntaxspec
4853 || (re_opcode_t) *p1 == syntaxspec)
4854 && p1[1] == Sword);
4855
1fb352e0 4856#ifdef emacs
4e8a9132
SM
4857 case categoryspec:
4858 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4859 case notcategoryspec:
4860 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4861#endif /* emacs */
4862
4863 default:
4864 ;
505bde11
SM
4865 }
4866
4867 /* Safe default. */
4868 return 0;
4869}
4870
fa9a63c5
RM
4871\f
4872/* Matching routines. */
4873
25fe55af 4874#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4875/* re_match is like re_match_2 except it takes only a single string. */
4876
4877int
4878re_match (bufp, string, size, pos, regs)
4879 struct re_pattern_buffer *bufp;
4880 const char *string;
4881 int size, pos;
4882 struct re_registers *regs;
4883{
4bb91c68 4884 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 4885 pos, regs, size);
fa9a63c5
RM
4886 return result;
4887}
c0f9ea08 4888WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4889#endif /* not emacs */
4890
b18215fc
RS
4891#ifdef emacs
4892/* In Emacs, this is the string or buffer in which we
7814e705 4893 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4894Lisp_Object re_match_object;
4895#endif
fa9a63c5
RM
4896
4897/* re_match_2 matches the compiled pattern in BUFP against the
4898 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4899 and SIZE2, respectively). We start matching at POS, and stop
4900 matching at STOP.
5e69f11e 4901
fa9a63c5 4902 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
7814e705 4903 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4904 documentation for exactly how many groups we fill.
4905
4906 We return -1 if no match, -2 if an internal error (such as the
7814e705 4907 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4908 matched substring. */
4909
4910int
4911re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4912 struct re_pattern_buffer *bufp;
4913 const char *string1, *string2;
4914 int size1, size2;
4915 int pos;
4916 struct re_registers *regs;
4917 int stop;
4918{
b18215fc 4919 int result;
25fe55af 4920
b18215fc 4921#ifdef emacs
cc9b4df2
KH
4922 int charpos;
4923 gl_state.object = re_match_object;
99633e97 4924 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4925 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4926#endif
4927
4bb91c68
SM
4928 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4929 (re_char*) string2, size2,
cc9b4df2 4930 pos, regs, stop);
fa9a63c5
RM
4931 return result;
4932}
c0f9ea08 4933WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5
RM
4934
4935/* This is a separate function so that we can force an alloca cleanup
7814e705 4936 afterwards. */
fa9a63c5
RM
4937static int
4938re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4939 struct re_pattern_buffer *bufp;
66f0296e 4940 re_char *string1, *string2;
fa9a63c5
RM
4941 int size1, size2;
4942 int pos;
4943 struct re_registers *regs;
4944 int stop;
4945{
4946 /* General temporaries. */
4947 int mcnt;
01618498 4948 size_t reg;
66f0296e 4949 boolean not;
fa9a63c5
RM
4950
4951 /* Just past the end of the corresponding string. */
66f0296e 4952 re_char *end1, *end2;
fa9a63c5
RM
4953
4954 /* Pointers into string1 and string2, just past the last characters in
7814e705 4955 each to consider matching. */
66f0296e 4956 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4957
4958 /* Where we are in the data, and the end of the current string. */
66f0296e 4959 re_char *d, *dend;
5e69f11e 4960
99633e97
SM
4961 /* Used sometimes to remember where we were before starting matching
4962 an operator so that we can go back in case of failure. This "atomic"
4963 behavior of matching opcodes is indispensable to the correctness
4964 of the on_failure_keep_string_jump optimization. */
4965 re_char *dfail;
4966
fa9a63c5 4967 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
4968 re_char *p = bufp->buffer;
4969 re_char *pend = p + bufp->used;
fa9a63c5 4970
7814e705 4971 /* We use this to map every character in the string. */
6676cb1c 4972 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4973
46ac3660 4974 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4975 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4976
fa9a63c5
RM
4977 /* Failure point stack. Each place that can handle a failure further
4978 down the line pushes a failure point on this stack. It consists of
505bde11 4979 regstart, and regend for all registers corresponding to
fa9a63c5
RM
4980 the subexpressions we're currently inside, plus the number of such
4981 registers, and, finally, two char *'s. The first char * is where
4982 to resume scanning the pattern; the second one is where to resume
7814e705
JB
4983 scanning the strings. */
4984#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4985 fail_stack_type fail_stack;
4986#endif
4987#ifdef DEBUG
fa9a63c5
RM
4988 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4989#endif
4990
0b32bf0e 4991#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
4992 /* This holds the pointer to the failure stack, when
4993 it is allocated relocatably. */
4994 fail_stack_elt_t *failure_stack_ptr;
99633e97 4995#endif
fa9a63c5
RM
4996
4997 /* We fill all the registers internally, independent of what we
7814e705 4998 return, for use in backreferences. The number here includes
fa9a63c5 4999 an element for register zero. */
4bb91c68 5000 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 5001
fa9a63c5
RM
5002 /* Information on the contents of registers. These are pointers into
5003 the input strings; they record just what was matched (on this
5004 attempt) by a subexpression part of the pattern, that is, the
5005 regnum-th regstart pointer points to where in the pattern we began
5006 matching and the regnum-th regend points to right after where we
5007 stopped matching the regnum-th subexpression. (The zeroth register
5008 keeps track of what the whole pattern matches.) */
5009#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5010 re_char **regstart, **regend;
fa9a63c5
RM
5011#endif
5012
fa9a63c5 5013 /* The following record the register info as found in the above
5e69f11e 5014 variables when we find a match better than any we've seen before.
fa9a63c5
RM
5015 This happens as we backtrack through the failure points, which in
5016 turn happens only if we have not yet matched the entire string. */
5017 unsigned best_regs_set = false;
5018#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5019 re_char **best_regstart, **best_regend;
fa9a63c5 5020#endif
5e69f11e 5021
fa9a63c5
RM
5022 /* Logically, this is `best_regend[0]'. But we don't want to have to
5023 allocate space for that if we're not allocating space for anything
7814e705 5024 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
5025 any of the other register vectors, and it seems rather a kludge to
5026 treat `best_regend' differently than the rest. So we keep track of
5027 the end of the best match so far in a separate variable. We
5028 initialize this to NULL so that when we backtrack the first time
5029 and need to test it, it's not garbage. */
66f0296e 5030 re_char *match_end = NULL;
fa9a63c5 5031
fa9a63c5
RM
5032#ifdef DEBUG
5033 /* Counts the total number of registers pushed. */
5e69f11e 5034 unsigned num_regs_pushed = 0;
fa9a63c5
RM
5035#endif
5036
5037 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 5038
fa9a63c5 5039 INIT_FAIL_STACK ();
5e69f11e 5040
fa9a63c5
RM
5041#ifdef MATCH_MAY_ALLOCATE
5042 /* Do not bother to initialize all the register variables if there are
5043 no groups in the pattern, as it takes a fair amount of time. If
5044 there are groups, we include space for register 0 (the whole
5045 pattern), even though we never use it, since it simplifies the
5046 array indexing. We should fix this. */
5047 if (bufp->re_nsub)
5048 {
66f0296e
SM
5049 regstart = REGEX_TALLOC (num_regs, re_char *);
5050 regend = REGEX_TALLOC (num_regs, re_char *);
5051 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5052 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 5053
505bde11 5054 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
5055 {
5056 FREE_VARIABLES ();
5057 return -2;
5058 }
fa9a63c5
RM
5059 }
5060 else
5061 {
5062 /* We must initialize all our variables to NULL, so that
25fe55af 5063 `FREE_VARIABLES' doesn't try to free them. */
505bde11 5064 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
5065 }
5066#endif /* MATCH_MAY_ALLOCATE */
5067
5068 /* The starting position is bogus. */
5069 if (pos < 0 || pos > size1 + size2)
5070 {
5071 FREE_VARIABLES ();
5072 return -1;
5073 }
5e69f11e 5074
fa9a63c5
RM
5075 /* Initialize subexpression text positions to -1 to mark ones that no
5076 start_memory/stop_memory has been seen for. Also initialize the
5077 register information struct. */
01618498
SM
5078 for (reg = 1; reg < num_regs; reg++)
5079 regstart[reg] = regend[reg] = NULL;
99633e97 5080
fa9a63c5 5081 /* We move `string1' into `string2' if the latter's empty -- but not if
7814e705 5082 `string1' is null. */
fa9a63c5
RM
5083 if (size2 == 0 && string1 != NULL)
5084 {
5085 string2 = string1;
5086 size2 = size1;
5087 string1 = 0;
5088 size1 = 0;
5089 }
5090 end1 = string1 + size1;
5091 end2 = string2 + size2;
5092
5e69f11e 5093 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
5094 `dend' is the end of the input string that `d' points within. `d'
5095 is advanced into the following input string whenever necessary, but
5096 this happens before fetching; therefore, at the beginning of the
5097 loop, `d' can be pointing at the end of a string, but it cannot
5098 equal `string2'. */
419d1c74 5099 if (pos >= size1)
fa9a63c5 5100 {
419d1c74
SM
5101 /* Only match within string2. */
5102 d = string2 + pos - size1;
5103 dend = end_match_2 = string2 + stop - size1;
5104 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
5105 }
5106 else
5107 {
f1ad044f 5108 if (stop < size1)
419d1c74
SM
5109 {
5110 /* Only match within string1. */
5111 end_match_1 = string1 + stop;
5112 /* BEWARE!
5113 When we reach end_match_1, PREFETCH normally switches to string2.
5114 But in the present case, this means that just doing a PREFETCH
5115 makes us jump from `stop' to `gap' within the string.
5116 What we really want here is for the search to stop as
5117 soon as we hit end_match_1. That's why we set end_match_2
5118 to end_match_1 (since PREFETCH fails as soon as we hit
5119 end_match_2). */
5120 end_match_2 = end_match_1;
5121 }
5122 else
f1ad044f
SM
5123 { /* It's important to use this code when stop == size so that
5124 moving `d' from end1 to string2 will not prevent the d == dend
5125 check from catching the end of string. */
419d1c74
SM
5126 end_match_1 = end1;
5127 end_match_2 = string2 + stop - size1;
5128 }
5129 d = string1 + pos;
5130 dend = end_match_1;
fa9a63c5
RM
5131 }
5132
5133 DEBUG_PRINT1 ("The compiled pattern is: ");
5134 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5135 DEBUG_PRINT1 ("The string to match is: `");
5136 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5137 DEBUG_PRINT1 ("'\n");
5e69f11e 5138
7814e705 5139 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
5140 function if the match is complete, or it drops through if the match
5141 fails at this starting point in the input data. */
5142 for (;;)
5143 {
505bde11 5144 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
5145
5146 if (p == pend)
5147 { /* End of pattern means we might have succeeded. */
25fe55af 5148 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 5149
fa9a63c5 5150 /* If we haven't matched the entire string, and we want the
25fe55af
RS
5151 longest match, try backtracking. */
5152 if (d != end_match_2)
fa9a63c5
RM
5153 {
5154 /* 1 if this match ends in the same string (string1 or string2)
5155 as the best previous match. */
5e69f11e 5156 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 5157 == FIRST_STRING_P (d));
fa9a63c5
RM
5158 /* 1 if this match is the best seen so far. */
5159 boolean best_match_p;
5160
5161 /* AIX compiler got confused when this was combined
7814e705 5162 with the previous declaration. */
fa9a63c5
RM
5163 if (same_str_p)
5164 best_match_p = d > match_end;
5165 else
99633e97 5166 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 5167
25fe55af
RS
5168 DEBUG_PRINT1 ("backtracking.\n");
5169
5170 if (!FAIL_STACK_EMPTY ())
5171 { /* More failure points to try. */
5172
5173 /* If exceeds best match so far, save it. */
5174 if (!best_regs_set || best_match_p)
5175 {
5176 best_regs_set = true;
5177 match_end = d;
5178
5179 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5180
01618498 5181 for (reg = 1; reg < num_regs; reg++)
25fe55af 5182 {
01618498
SM
5183 best_regstart[reg] = regstart[reg];
5184 best_regend[reg] = regend[reg];
25fe55af
RS
5185 }
5186 }
5187 goto fail;
5188 }
5189
5190 /* If no failure points, don't restore garbage. And if
5191 last match is real best match, don't restore second
5192 best one. */
5193 else if (best_regs_set && !best_match_p)
5194 {
5195 restore_best_regs:
5196 /* Restore best match. It may happen that `dend ==
5197 end_match_1' while the restored d is in string2.
5198 For example, the pattern `x.*y.*z' against the
5199 strings `x-' and `y-z-', if the two strings are
7814e705 5200 not consecutive in memory. */
25fe55af
RS
5201 DEBUG_PRINT1 ("Restoring best registers.\n");
5202
5203 d = match_end;
5204 dend = ((d >= string1 && d <= end1)
5205 ? end_match_1 : end_match_2);
fa9a63c5 5206
01618498 5207 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5208 {
01618498
SM
5209 regstart[reg] = best_regstart[reg];
5210 regend[reg] = best_regend[reg];
fa9a63c5 5211 }
25fe55af
RS
5212 }
5213 } /* d != end_match_2 */
fa9a63c5
RM
5214
5215 succeed_label:
25fe55af 5216 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5217
25fe55af
RS
5218 /* If caller wants register contents data back, do it. */
5219 if (regs && !bufp->no_sub)
fa9a63c5 5220 {
25fe55af
RS
5221 /* Have the register data arrays been allocated? */
5222 if (bufp->regs_allocated == REGS_UNALLOCATED)
7814e705 5223 { /* No. So allocate them with malloc. We need one
25fe55af
RS
5224 extra element beyond `num_regs' for the `-1' marker
5225 GNU code uses. */
5226 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5227 regs->start = TALLOC (regs->num_regs, regoff_t);
5228 regs->end = TALLOC (regs->num_regs, regoff_t);
5229 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5230 {
5231 FREE_VARIABLES ();
5232 return -2;
5233 }
25fe55af
RS
5234 bufp->regs_allocated = REGS_REALLOCATE;
5235 }
5236 else if (bufp->regs_allocated == REGS_REALLOCATE)
5237 { /* Yes. If we need more elements than were already
5238 allocated, reallocate them. If we need fewer, just
5239 leave it alone. */
5240 if (regs->num_regs < num_regs + 1)
5241 {
5242 regs->num_regs = num_regs + 1;
5243 RETALLOC (regs->start, regs->num_regs, regoff_t);
5244 RETALLOC (regs->end, regs->num_regs, regoff_t);
5245 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5246 {
5247 FREE_VARIABLES ();
5248 return -2;
5249 }
25fe55af
RS
5250 }
5251 }
5252 else
fa9a63c5
RM
5253 {
5254 /* These braces fend off a "empty body in an else-statement"
7814e705 5255 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5256 assert (bufp->regs_allocated == REGS_FIXED);
5257 }
5258
25fe55af
RS
5259 /* Convert the pointer data in `regstart' and `regend' to
5260 indices. Register zero has to be set differently,
5261 since we haven't kept track of any info for it. */
5262 if (regs->num_regs > 0)
5263 {
5264 regs->start[0] = pos;
99633e97 5265 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5266 }
5e69f11e 5267
25fe55af
RS
5268 /* Go through the first `min (num_regs, regs->num_regs)'
5269 registers, since that is all we initialized. */
01618498 5270 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5271 {
01618498
SM
5272 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5273 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5274 else
5275 {
01618498
SM
5276 regs->start[reg]
5277 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5278 regs->end[reg]
5279 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5280 }
fa9a63c5 5281 }
5e69f11e 5282
25fe55af
RS
5283 /* If the regs structure we return has more elements than
5284 were in the pattern, set the extra elements to -1. If
5285 we (re)allocated the registers, this is the case,
5286 because we always allocate enough to have at least one
7814e705 5287 -1 at the end. */
01618498
SM
5288 for (reg = num_regs; reg < regs->num_regs; reg++)
5289 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5290 } /* regs && !bufp->no_sub */
5291
25fe55af
RS
5292 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5293 nfailure_points_pushed, nfailure_points_popped,
5294 nfailure_points_pushed - nfailure_points_popped);
5295 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5296
99633e97 5297 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5298
25fe55af 5299 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5300
25fe55af
RS
5301 FREE_VARIABLES ();
5302 return mcnt;
5303 }
fa9a63c5 5304
7814e705 5305 /* Otherwise match next pattern command. */
fa9a63c5
RM
5306 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5307 {
25fe55af
RS
5308 /* Ignore these. Used to ignore the n of succeed_n's which
5309 currently have n == 0. */
5310 case no_op:
5311 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5312 break;
fa9a63c5
RM
5313
5314 case succeed:
25fe55af 5315 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5316 goto succeed_label;
5317
7814e705 5318 /* Match the next n pattern characters exactly. The following
25fe55af 5319 byte in the pattern defines n, and the n bytes after that
7814e705 5320 are the characters to match. */
fa9a63c5
RM
5321 case exactn:
5322 mcnt = *p++;
25fe55af 5323 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5324
99633e97
SM
5325 /* Remember the start point to rollback upon failure. */
5326 dfail = d;
5327
25fe55af
RS
5328 /* This is written out as an if-else so we don't waste time
5329 testing `translate' inside the loop. */
28703c16 5330 if (RE_TRANSLATE_P (translate))
fa9a63c5 5331 {
e934739e
RS
5332 if (multibyte)
5333 do
5334 {
5335 int pat_charlen, buf_charlen;
e71b1971 5336 unsigned int pat_ch, buf_ch;
e934739e
RS
5337
5338 PREFETCH ();
5339 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5340 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5341
5342 if (RE_TRANSLATE (translate, buf_ch)
5343 != pat_ch)
99633e97
SM
5344 {
5345 d = dfail;
5346 goto fail;
5347 }
e934739e
RS
5348
5349 p += pat_charlen;
5350 d += buf_charlen;
5351 mcnt -= pat_charlen;
5352 }
5353 while (mcnt > 0);
5354 else
e934739e
RS
5355 do
5356 {
cf1982d9
EZ
5357 /* Avoid compiler whining about comparison being
5358 always true. */
5359 int di;
5360
e934739e 5361 PREFETCH ();
cf1982d9
EZ
5362 di = *d;
5363 if (RE_TRANSLATE (translate, di) != *p++)
99633e97
SM
5364 {
5365 d = dfail;
5366 goto fail;
5367 }
33c46939 5368 d++;
e934739e
RS
5369 }
5370 while (--mcnt);
fa9a63c5
RM
5371 }
5372 else
5373 {
5374 do
5375 {
5376 PREFETCH ();
99633e97
SM
5377 if (*d++ != *p++)
5378 {
5379 d = dfail;
5380 goto fail;
5381 }
fa9a63c5
RM
5382 }
5383 while (--mcnt);
5384 }
25fe55af 5385 break;
fa9a63c5
RM
5386
5387
25fe55af 5388 /* Match any character except possibly a newline or a null. */
fa9a63c5 5389 case anychar:
e934739e
RS
5390 {
5391 int buf_charlen;
01618498 5392 re_wchar_t buf_ch;
fa9a63c5 5393
e934739e 5394 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5395
e934739e 5396 PREFETCH ();
2d1675e4 5397 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
5398 buf_ch = TRANSLATE (buf_ch);
5399
5400 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5401 && buf_ch == '\n')
5402 || ((bufp->syntax & RE_DOT_NOT_NULL)
5403 && buf_ch == '\000'))
5404 goto fail;
5405
e934739e
RS
5406 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5407 d += buf_charlen;
5408 }
fa9a63c5
RM
5409 break;
5410
5411
5412 case charset:
5413 case charset_not:
5414 {
b18215fc 5415 register unsigned int c;
fa9a63c5 5416 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5417 int len;
5418
5419 /* Start of actual range_table, or end of bitmap if there is no
5420 range table. */
01618498 5421 re_char *range_table;
b18215fc 5422
96cc36cc 5423 /* Nonzero if there is a range table. */
b18215fc
RS
5424 int range_table_exists;
5425
96cc36cc
RS
5426 /* Number of ranges of range table. This is not included
5427 in the initial byte-length of the command. */
5428 int count = 0;
fa9a63c5 5429
25fe55af 5430 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5431
b18215fc 5432 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5433
b18215fc 5434 if (range_table_exists)
96cc36cc
RS
5435 {
5436 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5437 EXTRACT_NUMBER_AND_INCR (count, range_table);
5438 }
b18215fc 5439
2d1675e4
SM
5440 PREFETCH ();
5441 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5442 c = TRANSLATE (c); /* The character to match. */
b18215fc
RS
5443
5444 if (SINGLE_BYTE_CHAR_P (c))
5445 { /* Lookup bitmap. */
b18215fc
RS
5446 /* Cast to `unsigned' instead of `unsigned char' in
5447 case the bit list is a full 32 bytes long. */
5448 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5449 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5450 not = !not;
b18215fc 5451 }
96cc36cc 5452#ifdef emacs
b18215fc 5453 else if (range_table_exists)
96cc36cc
RS
5454 {
5455 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5456
14473664
SM
5457 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5458 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5459 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5460 | (class_bits & BIT_SPACE && ISSPACE (c))
5461 | (class_bits & BIT_UPPER && ISUPPER (c))
5462 | (class_bits & BIT_WORD && ISWORD (c)))
5463 not = !not;
5464 else
5465 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5466 }
5467#endif /* emacs */
fa9a63c5 5468
96cc36cc
RS
5469 if (range_table_exists)
5470 p = CHARSET_RANGE_TABLE_END (range_table, count);
5471 else
5472 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5473
5474 if (!not) goto fail;
5e69f11e 5475
b18215fc 5476 d += len;
fa9a63c5
RM
5477 break;
5478 }
5479
5480
25fe55af 5481 /* The beginning of a group is represented by start_memory.
505bde11 5482 The argument is the register number. The text
25fe55af 5483 matched within the group is recorded (in the internal
7814e705 5484 registers data structure) under the register number. */
25fe55af 5485 case start_memory:
505bde11
SM
5486 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5487
5488 /* In case we need to undo this operation (via backtracking). */
5489 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5490
25fe55af 5491 regstart[*p] = d;
4bb91c68 5492 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5493 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5494
25fe55af 5495 /* Move past the register number and inner group count. */
505bde11 5496 p += 1;
25fe55af 5497 break;
fa9a63c5
RM
5498
5499
25fe55af 5500 /* The stop_memory opcode represents the end of a group. Its
505bde11 5501 argument is the same as start_memory's: the register number. */
fa9a63c5 5502 case stop_memory:
505bde11
SM
5503 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5504
5505 assert (!REG_UNSET (regstart[*p]));
5506 /* Strictly speaking, there should be code such as:
177c0ea7 5507
0b32bf0e 5508 assert (REG_UNSET (regend[*p]));
505bde11
SM
5509 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5510
5511 But the only info to be pushed is regend[*p] and it is known to
5512 be UNSET, so there really isn't anything to push.
5513 Not pushing anything, on the other hand deprives us from the
5514 guarantee that regend[*p] is UNSET since undoing this operation
5515 will not reset its value properly. This is not important since
5516 the value will only be read on the next start_memory or at
5517 the very end and both events can only happen if this stop_memory
5518 is *not* undone. */
fa9a63c5 5519
25fe55af 5520 regend[*p] = d;
fa9a63c5
RM
5521 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5522
25fe55af 5523 /* Move past the register number and the inner group count. */
505bde11 5524 p += 1;
25fe55af 5525 break;
fa9a63c5
RM
5526
5527
5528 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5529 followed by the numeric value of <digit> as the register number. */
5530 case duplicate:
fa9a63c5 5531 {
66f0296e 5532 register re_char *d2, *dend2;
7814e705 5533 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5534 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5535
7814e705 5536 /* Can't back reference a group which we've never matched. */
25fe55af
RS
5537 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5538 goto fail;
5e69f11e 5539
7814e705 5540 /* Where in input to try to start matching. */
25fe55af 5541 d2 = regstart[regno];
5e69f11e 5542
99633e97
SM
5543 /* Remember the start point to rollback upon failure. */
5544 dfail = d;
5545
25fe55af
RS
5546 /* Where to stop matching; if both the place to start and
5547 the place to stop matching are in the same string, then
5548 set to the place to stop, otherwise, for now have to use
5549 the end of the first string. */
fa9a63c5 5550
25fe55af 5551 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5552 == FIRST_STRING_P (regend[regno]))
5553 ? regend[regno] : end_match_1);
5554 for (;;)
5555 {
5556 /* If necessary, advance to next segment in register
25fe55af 5557 contents. */
fa9a63c5
RM
5558 while (d2 == dend2)
5559 {
5560 if (dend2 == end_match_2) break;
5561 if (dend2 == regend[regno]) break;
5562
25fe55af
RS
5563 /* End of string1 => advance to string2. */
5564 d2 = string2;
5565 dend2 = regend[regno];
fa9a63c5
RM
5566 }
5567 /* At end of register contents => success */
5568 if (d2 == dend2) break;
5569
5570 /* If necessary, advance to next segment in data. */
5571 PREFETCH ();
5572
5573 /* How many characters left in this segment to match. */
5574 mcnt = dend - d;
5e69f11e 5575
fa9a63c5 5576 /* Want how many consecutive characters we can match in
25fe55af
RS
5577 one shot, so, if necessary, adjust the count. */
5578 if (mcnt > dend2 - d2)
fa9a63c5 5579 mcnt = dend2 - d2;
5e69f11e 5580
fa9a63c5 5581 /* Compare that many; failure if mismatch, else move
25fe55af 5582 past them. */
28703c16 5583 if (RE_TRANSLATE_P (translate)
2d1675e4 5584 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4bb91c68 5585 : memcmp (d, d2, mcnt))
99633e97
SM
5586 {
5587 d = dfail;
5588 goto fail;
5589 }
fa9a63c5 5590 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5591 }
5592 }
5593 break;
5594
5595
25fe55af 5596 /* begline matches the empty string at the beginning of the string
c0f9ea08 5597 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5598 case begline:
25fe55af 5599 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5600
25fe55af
RS
5601 if (AT_STRINGS_BEG (d))
5602 {
5603 if (!bufp->not_bol) break;
5604 }
419d1c74 5605 else
25fe55af 5606 {
419d1c74
SM
5607 unsigned char c;
5608 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5609 if (c == '\n')
419d1c74 5610 break;
25fe55af
RS
5611 }
5612 /* In all other cases, we fail. */
5613 goto fail;
fa9a63c5
RM
5614
5615
25fe55af 5616 /* endline is the dual of begline. */
fa9a63c5 5617 case endline:
25fe55af 5618 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5619
25fe55af
RS
5620 if (AT_STRINGS_END (d))
5621 {
5622 if (!bufp->not_eol) break;
5623 }
f1ad044f 5624 else
25fe55af 5625 {
f1ad044f 5626 PREFETCH_NOLIMIT ();
c0f9ea08 5627 if (*d == '\n')
f1ad044f 5628 break;
25fe55af
RS
5629 }
5630 goto fail;
fa9a63c5
RM
5631
5632
5633 /* Match at the very beginning of the data. */
25fe55af
RS
5634 case begbuf:
5635 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5636 if (AT_STRINGS_BEG (d))
5637 break;
5638 goto fail;
fa9a63c5
RM
5639
5640
5641 /* Match at the very end of the data. */
25fe55af
RS
5642 case endbuf:
5643 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5644 if (AT_STRINGS_END (d))
5645 break;
25fe55af 5646 goto fail;
5e69f11e 5647
5e69f11e 5648
25fe55af
RS
5649 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5650 pushes NULL as the value for the string on the stack. Then
505bde11 5651 `POP_FAILURE_POINT' will keep the current value for the
25fe55af 5652 string, instead of restoring it. To see why, consider
7814e705 5653 matching `foo\nbar' against `.*\n'. The .* matches the foo;
25fe55af
RS
5654 then the . fails against the \n. But the next thing we want
5655 to do is match the \n against the \n; if we restored the
5656 string value, we would be back at the foo.
5657
5658 Because this is used only in specific cases, we don't need to
5659 check all the things that `on_failure_jump' does, to make
5660 sure the right things get saved on the stack. Hence we don't
5661 share its code. The only reason to push anything on the
5662 stack at all is that otherwise we would have to change
5663 `anychar's code to do something besides goto fail in this
5664 case; that seems worse than this. */
5665 case on_failure_keep_string_jump:
505bde11
SM
5666 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5667 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5668 mcnt, p + mcnt);
fa9a63c5 5669
505bde11
SM
5670 PUSH_FAILURE_POINT (p - 3, NULL);
5671 break;
5672
0683b6fa
SM
5673 /* A nasty loop is introduced by the non-greedy *? and +?.
5674 With such loops, the stack only ever contains one failure point
5675 at a time, so that a plain on_failure_jump_loop kind of
5676 cycle detection cannot work. Worse yet, such a detection
5677 can not only fail to detect a cycle, but it can also wrongly
5678 detect a cycle (between different instantiations of the same
6df42991 5679 loop).
0683b6fa
SM
5680 So the method used for those nasty loops is a little different:
5681 We use a special cycle-detection-stack-frame which is pushed
5682 when the on_failure_jump_nastyloop failure-point is *popped*.
5683 This special frame thus marks the beginning of one iteration
5684 through the loop and we can hence easily check right here
5685 whether something matched between the beginning and the end of
5686 the loop. */
5687 case on_failure_jump_nastyloop:
5688 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5689 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5690 mcnt, p + mcnt);
5691
5692 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5693 {
5694 int cycle = 0;
5695 CHECK_INFINITE_LOOP (p - 4, d);
5696 if (!cycle)
5697 /* If there's a cycle, just continue without pushing
5698 this failure point. The failure point is the "try again"
5699 option, which shouldn't be tried.
5700 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5701 PUSH_FAILURE_POINT (p - 3, d);
5702 }
0683b6fa
SM
5703 break;
5704
4e8a9132
SM
5705 /* Simple loop detecting on_failure_jump: just check on the
5706 failure stack if the same spot was already hit earlier. */
505bde11
SM
5707 case on_failure_jump_loop:
5708 on_failure:
5709 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5710 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5711 mcnt, p + mcnt);
6df42991
SM
5712 {
5713 int cycle = 0;
5714 CHECK_INFINITE_LOOP (p - 3, d);
5715 if (cycle)
5716 /* If there's a cycle, get out of the loop, as if the matching
5717 had failed. We used to just `goto fail' here, but that was
5718 aborting the search a bit too early: we want to keep the
5719 empty-loop-match and keep matching after the loop.
5720 We want (x?)*y\1z to match both xxyz and xxyxz. */
5721 p += mcnt;
5722 else
5723 PUSH_FAILURE_POINT (p - 3, d);
5724 }
25fe55af 5725 break;
fa9a63c5
RM
5726
5727
5728 /* Uses of on_failure_jump:
5e69f11e 5729
25fe55af
RS
5730 Each alternative starts with an on_failure_jump that points
5731 to the beginning of the next alternative. Each alternative
5732 except the last ends with a jump that in effect jumps past
5733 the rest of the alternatives. (They really jump to the
5734 ending jump of the following alternative, because tensioning
5735 these jumps is a hassle.)
fa9a63c5 5736
25fe55af
RS
5737 Repeats start with an on_failure_jump that points past both
5738 the repetition text and either the following jump or
5739 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5740 case on_failure_jump:
25fe55af 5741 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5742 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5743 mcnt, p + mcnt);
25fe55af 5744
505bde11 5745 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5746 break;
5747
4e8a9132 5748 /* This operation is used for greedy *.
505bde11
SM
5749 Compare the beginning of the repeat with what in the
5750 pattern follows its end. If we can establish that there
5751 is nothing that they would both match, i.e., that we
5752 would have to backtrack because of (as in, e.g., `a*a')
5753 then we can use a non-backtracking loop based on
4e8a9132 5754 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5755 case on_failure_jump_smart:
25fe55af 5756 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5757 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5758 mcnt, p + mcnt);
25fe55af 5759 {
01618498 5760 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5761 /* Here, we discard `const', making re_match non-reentrant. */
5762 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5763 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5764
505bde11
SM
5765 p -= 3; /* Reset so that we will re-execute the
5766 instruction once it's been changed. */
fa9a63c5 5767
4e8a9132
SM
5768 EXTRACT_NUMBER (mcnt, p2 - 2);
5769
5770 /* Ensure this is a indeed the trivial kind of loop
5771 we are expecting. */
5772 assert (skip_one_char (p1) == p2 - 3);
5773 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5774 DEBUG_STATEMENT (debug += 2);
505bde11 5775 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5776 {
505bde11 5777 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5778 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5779 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5780 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5781 }
505bde11 5782 else
fa9a63c5 5783 {
505bde11
SM
5784 /* Default to a safe `on_failure_jump' loop. */
5785 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5786 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5787 }
99633e97 5788 DEBUG_STATEMENT (debug -= 2);
25fe55af 5789 }
505bde11 5790 break;
25fe55af
RS
5791
5792 /* Unconditionally jump (without popping any failure points). */
5793 case jump:
fa9a63c5 5794 unconditional_jump:
5b370c2b 5795 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5796 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af 5797 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7814e705 5798 p += mcnt; /* Do the jump. */
505bde11 5799 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5800 break;
5801
5802
25fe55af
RS
5803 /* Have to succeed matching what follows at least n times.
5804 After that, handle like `on_failure_jump'. */
5805 case succeed_n:
01618498 5806 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5807 EXTRACT_NUMBER (mcnt, p + 2);
5808 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5809
dc1e502d
SM
5810 /* Originally, mcnt is how many times we HAVE to succeed. */
5811 if (mcnt != 0)
25fe55af 5812 {
6dcf2d0e
SM
5813 /* Here, we discard `const', making re_match non-reentrant. */
5814 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5815 mcnt--;
01618498
SM
5816 p += 4;
5817 PUSH_NUMBER (p2, mcnt);
25fe55af 5818 }
dc1e502d
SM
5819 else
5820 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5821 goto on_failure;
25fe55af
RS
5822 break;
5823
5824 case jump_n:
01618498 5825 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5826 EXTRACT_NUMBER (mcnt, p + 2);
5827 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5828
5829 /* Originally, this is how many times we CAN jump. */
dc1e502d 5830 if (mcnt != 0)
25fe55af 5831 {
6dcf2d0e
SM
5832 /* Here, we discard `const', making re_match non-reentrant. */
5833 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5834 mcnt--;
01618498 5835 PUSH_NUMBER (p2, mcnt);
dc1e502d 5836 goto unconditional_jump;
25fe55af
RS
5837 }
5838 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5839 else
5840 p += 4;
25fe55af 5841 break;
5e69f11e 5842
fa9a63c5
RM
5843 case set_number_at:
5844 {
01618498 5845 unsigned char *p2; /* Location of the counter. */
25fe55af 5846 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5847
25fe55af 5848 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5849 /* Here, we discard `const', making re_match non-reentrant. */
5850 p2 = (unsigned char*) p + mcnt;
01618498 5851 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5852 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5853 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5854 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5855 break;
5856 }
9121ca40
KH
5857
5858 case wordbound:
66f0296e
SM
5859 case notwordbound:
5860 not = (re_opcode_t) *(p - 1) == notwordbound;
5861 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5862
99633e97 5863 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5864
b18215fc 5865 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5866 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5867 not = !not;
b18215fc
RS
5868 else
5869 {
5870 /* C1 is the character before D, S1 is the syntax of C1, C2
5871 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5872 re_wchar_t c1, c2;
5873 int s1, s2;
b18215fc 5874#ifdef emacs
2d1675e4
SM
5875 int offset = PTR_TO_OFFSET (d - 1);
5876 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5877 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5878#endif
66f0296e 5879 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5880 s1 = SYNTAX (c1);
5881#ifdef emacs
5d967c7a 5882 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5883#endif
f1ad044f 5884 PREFETCH_NOLIMIT ();
2d1675e4 5885 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc
RS
5886 s2 = SYNTAX (c2);
5887
5888 if (/* Case 2: Only one of S1 and S2 is Sword. */
5889 ((s1 == Sword) != (s2 == Sword))
5890 /* Case 3: Both of S1 and S2 are Sword, and macro
7814e705 5891 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5892 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5893 not = !not;
5894 }
5895 if (not)
9121ca40 5896 break;
b18215fc 5897 else
9121ca40 5898 goto fail;
fa9a63c5
RM
5899
5900 case wordbeg:
25fe55af 5901 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5902
b18215fc
RS
5903 /* We FAIL in one of the following cases: */
5904
7814e705 5905 /* Case 1: D is at the end of string. */
b18215fc 5906 if (AT_STRINGS_END (d))
99633e97 5907 goto fail;
b18215fc
RS
5908 else
5909 {
5910 /* C1 is the character before D, S1 is the syntax of C1, C2
5911 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5912 re_wchar_t c1, c2;
5913 int s1, s2;
fa9a63c5 5914#ifdef emacs
2d1675e4
SM
5915 int offset = PTR_TO_OFFSET (d);
5916 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5917 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5918#endif
99633e97 5919 PREFETCH ();
2d1675e4 5920 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc 5921 s2 = SYNTAX (c2);
177c0ea7 5922
b18215fc
RS
5923 /* Case 2: S2 is not Sword. */
5924 if (s2 != Sword)
5925 goto fail;
5926
5927 /* Case 3: D is not at the beginning of string ... */
5928 if (!AT_STRINGS_BEG (d))
5929 {
5930 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5931#ifdef emacs
5d967c7a 5932 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5933#endif
b18215fc
RS
5934 s1 = SYNTAX (c1);
5935
5936 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 5937 returns 0. */
b18215fc
RS
5938 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5939 goto fail;
5940 }
5941 }
e318085a
RS
5942 break;
5943
b18215fc 5944 case wordend:
25fe55af 5945 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5946
5947 /* We FAIL in one of the following cases: */
5948
5949 /* Case 1: D is at the beginning of string. */
5950 if (AT_STRINGS_BEG (d))
e318085a 5951 goto fail;
b18215fc
RS
5952 else
5953 {
5954 /* C1 is the character before D, S1 is the syntax of C1, C2
5955 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5956 re_wchar_t c1, c2;
5957 int s1, s2;
5d967c7a 5958#ifdef emacs
2d1675e4
SM
5959 int offset = PTR_TO_OFFSET (d) - 1;
5960 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5961 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5962#endif
99633e97 5963 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5964 s1 = SYNTAX (c1);
5965
5966 /* Case 2: S1 is not Sword. */
5967 if (s1 != Sword)
5968 goto fail;
5969
5970 /* Case 3: D is not at the end of string ... */
5971 if (!AT_STRINGS_END (d))
5972 {
f1ad044f 5973 PREFETCH_NOLIMIT ();
2d1675e4 5974 c2 = RE_STRING_CHAR (d, dend - d);
5d967c7a 5975#ifdef emacs
134579f2 5976 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5d967c7a 5977#endif
b18215fc
RS
5978 s2 = SYNTAX (c2);
5979
5980 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 5981 returns 0. */
b18215fc 5982 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5983 goto fail;
b18215fc
RS
5984 }
5985 }
e318085a
RS
5986 break;
5987
669fa600
SM
5988 case symbeg:
5989 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5990
5991 /* We FAIL in one of the following cases: */
5992
7814e705 5993 /* Case 1: D is at the end of string. */
669fa600
SM
5994 if (AT_STRINGS_END (d))
5995 goto fail;
5996 else
5997 {
5998 /* C1 is the character before D, S1 is the syntax of C1, C2
5999 is the character at D, and S2 is the syntax of C2. */
6000 re_wchar_t c1, c2;
6001 int s1, s2;
6002#ifdef emacs
6003 int offset = PTR_TO_OFFSET (d);
6004 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6005 UPDATE_SYNTAX_TABLE (charpos);
6006#endif
6007 PREFETCH ();
6008 c2 = RE_STRING_CHAR (d, dend - d);
6009 s2 = SYNTAX (c2);
7814e705 6010
669fa600
SM
6011 /* Case 2: S2 is neither Sword nor Ssymbol. */
6012 if (s2 != Sword && s2 != Ssymbol)
6013 goto fail;
6014
6015 /* Case 3: D is not at the beginning of string ... */
6016 if (!AT_STRINGS_BEG (d))
6017 {
6018 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6019#ifdef emacs
6020 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6021#endif
6022 s1 = SYNTAX (c1);
6023
6024 /* ... and S1 is Sword or Ssymbol. */
6025 if (s1 == Sword || s1 == Ssymbol)
6026 goto fail;
6027 }
6028 }
6029 break;
6030
6031 case symend:
6032 DEBUG_PRINT1 ("EXECUTING symend.\n");
6033
6034 /* We FAIL in one of the following cases: */
6035
6036 /* Case 1: D is at the beginning of string. */
6037 if (AT_STRINGS_BEG (d))
6038 goto fail;
6039 else
6040 {
6041 /* C1 is the character before D, S1 is the syntax of C1, C2
6042 is the character at D, and S2 is the syntax of C2. */
6043 re_wchar_t c1, c2;
6044 int s1, s2;
6045#ifdef emacs
6046 int offset = PTR_TO_OFFSET (d) - 1;
6047 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6048 UPDATE_SYNTAX_TABLE (charpos);
6049#endif
6050 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6051 s1 = SYNTAX (c1);
6052
6053 /* Case 2: S1 is neither Ssymbol nor Sword. */
6054 if (s1 != Sword && s1 != Ssymbol)
6055 goto fail;
6056
6057 /* Case 3: D is not at the end of string ... */
6058 if (!AT_STRINGS_END (d))
6059 {
6060 PREFETCH_NOLIMIT ();
6061 c2 = RE_STRING_CHAR (d, dend - d);
6062#ifdef emacs
134579f2 6063 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
669fa600
SM
6064#endif
6065 s2 = SYNTAX (c2);
6066
6067 /* ... and S2 is Sword or Ssymbol. */
6068 if (s2 == Sword || s2 == Ssymbol)
6069 goto fail;
6070 }
6071 }
6072 break;
6073
fa9a63c5 6074 case syntaxspec:
1fb352e0
SM
6075 case notsyntaxspec:
6076 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 6077 mcnt = *p++;
1fb352e0 6078 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 6079 PREFETCH ();
b18215fc
RS
6080#ifdef emacs
6081 {
2d1675e4
SM
6082 int offset = PTR_TO_OFFSET (d);
6083 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
6084 UPDATE_SYNTAX_TABLE (pos1);
6085 }
25fe55af 6086#endif
b18215fc 6087 {
01618498
SM
6088 int len;
6089 re_wchar_t c;
b18215fc 6090
2d1675e4 6091 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 6092
990b2375 6093 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 6094 goto fail;
b18215fc
RS
6095 d += len;
6096 }
fa9a63c5
RM
6097 break;
6098
b18215fc 6099#ifdef emacs
1fb352e0
SM
6100 case before_dot:
6101 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6102 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 6103 goto fail;
b18215fc
RS
6104 break;
6105
1fb352e0
SM
6106 case at_dot:
6107 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6108 if (PTR_BYTE_POS (d) != PT_BYTE)
6109 goto fail;
6110 break;
b18215fc 6111
1fb352e0
SM
6112 case after_dot:
6113 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6114 if (PTR_BYTE_POS (d) <= PT_BYTE)
6115 goto fail;
e318085a 6116 break;
fa9a63c5 6117
1fb352e0 6118 case categoryspec:
b18215fc 6119 case notcategoryspec:
1fb352e0 6120 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 6121 mcnt = *p++;
1fb352e0 6122 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
6123 PREFETCH ();
6124 {
01618498
SM
6125 int len;
6126 re_wchar_t c;
6127
2d1675e4 6128 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 6129
1fb352e0 6130 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
6131 goto fail;
6132 d += len;
6133 }
fa9a63c5 6134 break;
5e69f11e 6135
1fb352e0 6136#endif /* emacs */
5e69f11e 6137
0b32bf0e
SM
6138 default:
6139 abort ();
fa9a63c5 6140 }
b18215fc 6141 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
6142
6143
6144 /* We goto here if a matching operation fails. */
6145 fail:
5b370c2b 6146 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6147 if (!FAIL_STACK_EMPTY ())
505bde11 6148 {
01618498 6149 re_char *str, *pat;
505bde11 6150 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
6151 DEBUG_PRINT1 ("\nFAIL:\n");
6152 POP_FAILURE_POINT (str, pat);
505bde11
SM
6153 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6154 {
6155 case on_failure_keep_string_jump:
6156 assert (str == NULL);
6157 goto continue_failure_jump;
6158
0683b6fa
SM
6159 case on_failure_jump_nastyloop:
6160 assert ((re_opcode_t)pat[-2] == no_op);
6161 PUSH_FAILURE_POINT (pat - 2, str);
6162 /* Fallthrough */
6163
505bde11
SM
6164 case on_failure_jump_loop:
6165 case on_failure_jump:
6166 case succeed_n:
6167 d = str;
6168 continue_failure_jump:
6169 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6170 p = pat + mcnt;
6171 break;
b18215fc 6172
0683b6fa
SM
6173 case no_op:
6174 /* A special frame used for nastyloops. */
6175 goto fail;
6176
505bde11
SM
6177 default:
6178 abort();
6179 }
fa9a63c5 6180
505bde11 6181 assert (p >= bufp->buffer && p <= pend);
b18215fc 6182
0b32bf0e 6183 if (d >= string1 && d <= end1)
fa9a63c5 6184 dend = end_match_1;
0b32bf0e 6185 }
fa9a63c5 6186 else
0b32bf0e 6187 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6188 } /* for (;;) */
6189
6190 if (best_regs_set)
6191 goto restore_best_regs;
6192
6193 FREE_VARIABLES ();
6194
b18215fc 6195 return -1; /* Failure to match. */
fa9a63c5
RM
6196} /* re_match_2 */
6197\f
6198/* Subroutine definitions for re_match_2. */
6199
fa9a63c5
RM
6200/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6201 bytes; nonzero otherwise. */
5e69f11e 6202
fa9a63c5 6203static int
2d1675e4
SM
6204bcmp_translate (s1, s2, len, translate, multibyte)
6205 re_char *s1, *s2;
fa9a63c5 6206 register int len;
6676cb1c 6207 RE_TRANSLATE_TYPE translate;
2d1675e4 6208 const int multibyte;
fa9a63c5 6209{
2d1675e4
SM
6210 register re_char *p1 = s1, *p2 = s2;
6211 re_char *p1_end = s1 + len;
6212 re_char *p2_end = s2 + len;
e934739e 6213
4bb91c68
SM
6214 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6215 different lengths, but relying on a single `len' would break this. -sm */
6216 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6217 {
e934739e 6218 int p1_charlen, p2_charlen;
01618498 6219 re_wchar_t p1_ch, p2_ch;
e934739e 6220
2d1675e4
SM
6221 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6222 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
e934739e
RS
6223
6224 if (RE_TRANSLATE (translate, p1_ch)
6225 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6226 return 1;
e934739e
RS
6227
6228 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6229 }
e934739e
RS
6230
6231 if (p1 != p1_end || p2 != p2_end)
6232 return 1;
6233
fa9a63c5
RM
6234 return 0;
6235}
6236\f
6237/* Entry points for GNU code. */
6238
6239/* re_compile_pattern is the GNU regular expression compiler: it
6240 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6241 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6242
fa9a63c5
RM
6243 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6244 are set in BUFP on entry.
5e69f11e 6245
b18215fc 6246 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6247
6248const char *
6249re_compile_pattern (pattern, length, bufp)
6250 const char *pattern;
0b32bf0e 6251 size_t length;
fa9a63c5
RM
6252 struct re_pattern_buffer *bufp;
6253{
6254 reg_errcode_t ret;
5e69f11e 6255
1208f11a
RS
6256#ifdef emacs
6257 gl_state.current_syntax_table = current_buffer->syntax_table;
6258#endif
6259
fa9a63c5
RM
6260 /* GNU code is written to assume at least RE_NREGS registers will be set
6261 (and at least one extra will be -1). */
6262 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6263
fa9a63c5
RM
6264 /* And GNU code determines whether or not to get register information
6265 by passing null for the REGS argument to re_match, etc., not by
6266 setting no_sub. */
6267 bufp->no_sub = 0;
5e69f11e 6268
4bb91c68 6269 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6270
6271 if (!ret)
6272 return NULL;
6273 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6274}
c0f9ea08 6275WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6276\f
b18215fc
RS
6277/* Entry points compatible with 4.2 BSD regex library. We don't define
6278 them unless specifically requested. */
fa9a63c5 6279
0b32bf0e 6280#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6281
6282/* BSD has one and only one pattern buffer. */
6283static struct re_pattern_buffer re_comp_buf;
6284
6285char *
0b32bf0e 6286# ifdef _LIBC
48afdd44
RM
6287/* Make these definitions weak in libc, so POSIX programs can redefine
6288 these names if they don't use our functions, and still use
6289 regcomp/regexec below without link errors. */
6290weak_function
0b32bf0e 6291# endif
fa9a63c5
RM
6292re_comp (s)
6293 const char *s;
6294{
6295 reg_errcode_t ret;
5e69f11e 6296
fa9a63c5
RM
6297 if (!s)
6298 {
6299 if (!re_comp_buf.buffer)
0b32bf0e 6300 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6301 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6302 return 0;
6303 }
6304
6305 if (!re_comp_buf.buffer)
6306 {
6307 re_comp_buf.buffer = (unsigned char *) malloc (200);
6308 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6309 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6310 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6311 re_comp_buf.allocated = 200;
6312
6313 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6314 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6315 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6316 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6317 }
6318
6319 /* Since `re_exec' always passes NULL for the `regs' argument, we
6320 don't need to initialize the pattern buffer fields which affect it. */
6321
fa9a63c5 6322 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6323
fa9a63c5
RM
6324 if (!ret)
6325 return NULL;
6326
6327 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6328 return (char *) gettext (re_error_msgid[(int) ret]);
6329}
6330
6331
6332int
0b32bf0e 6333# ifdef _LIBC
48afdd44 6334weak_function
0b32bf0e 6335# endif
fa9a63c5
RM
6336re_exec (s)
6337 const char *s;
6338{
6339 const int len = strlen (s);
6340 return
6341 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6342}
6343#endif /* _REGEX_RE_COMP */
6344\f
6345/* POSIX.2 functions. Don't define these for Emacs. */
6346
6347#ifndef emacs
6348
6349/* regcomp takes a regular expression as a string and compiles it.
6350
b18215fc 6351 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6352 since POSIX says we shouldn't. Thus, we set
6353
6354 `buffer' to the compiled pattern;
6355 `used' to the length of the compiled pattern;
6356 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6357 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6358 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6359 `fastmap' to an allocated space for the fastmap;
6360 `fastmap_accurate' to zero;
fa9a63c5
RM
6361 `re_nsub' to the number of subexpressions in PATTERN.
6362
6363 PATTERN is the address of the pattern string.
6364
6365 CFLAGS is a series of bits which affect compilation.
6366
6367 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6368 use POSIX basic syntax.
6369
6370 If REG_NEWLINE is set, then . and [^...] don't match newline.
6371 Also, regexec will try a match beginning after every newline.
6372
6373 If REG_ICASE is set, then we considers upper- and lowercase
6374 versions of letters to be equivalent when matching.
6375
6376 If REG_NOSUB is set, then when PREG is passed to regexec, that
6377 routine will report only success or failure, and nothing about the
6378 registers.
6379
b18215fc 6380 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6381 the return codes and their meanings.) */
6382
6383int
6384regcomp (preg, pattern, cflags)
ada30c0e
SM
6385 regex_t *__restrict preg;
6386 const char *__restrict pattern;
fa9a63c5
RM
6387 int cflags;
6388{
6389 reg_errcode_t ret;
4bb91c68 6390 reg_syntax_t syntax
fa9a63c5
RM
6391 = (cflags & REG_EXTENDED) ?
6392 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6393
6394 /* regex_compile will allocate the space for the compiled pattern. */
6395 preg->buffer = 0;
6396 preg->allocated = 0;
6397 preg->used = 0;
5e69f11e 6398
c0f9ea08 6399 /* Try to allocate space for the fastmap. */
a073faa6 6400 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6401
fa9a63c5
RM
6402 if (cflags & REG_ICASE)
6403 {
6404 unsigned i;
5e69f11e 6405
6676cb1c 6406 preg->translate
a073faa6 6407 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
8ea094cf 6408 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6409 if (preg->translate == NULL)
0b32bf0e 6410 return (int) REG_ESPACE;
fa9a63c5
RM
6411
6412 /* Map uppercase characters to corresponding lowercase ones. */
6413 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6414 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6415 }
6416 else
6417 preg->translate = NULL;
6418
6419 /* If REG_NEWLINE is set, newlines are treated differently. */
6420 if (cflags & REG_NEWLINE)
6421 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6422 syntax &= ~RE_DOT_NEWLINE;
6423 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6424 }
6425 else
c0f9ea08 6426 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6427
6428 preg->no_sub = !!(cflags & REG_NOSUB);
6429
5e69f11e 6430 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6431 can use strlen here in compiling the pattern. */
4bb91c68 6432 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6433
fa9a63c5
RM
6434 /* POSIX doesn't distinguish between an unmatched open-group and an
6435 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6436 if (ret == REG_ERPAREN)
6437 ret = REG_EPAREN;
6438
6439 if (ret == REG_NOERROR && preg->fastmap)
6440 { /* Compute the fastmap now, since regexec cannot modify the pattern
6441 buffer. */
6442 re_compile_fastmap (preg);
6443 if (preg->can_be_null)
6444 { /* The fastmap can't be used anyway. */
6445 free (preg->fastmap);
6446 preg->fastmap = NULL;
6447 }
6448 }
fa9a63c5
RM
6449 return (int) ret;
6450}
c0f9ea08 6451WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6452
6453
6454/* regexec searches for a given pattern, specified by PREG, in the
6455 string STRING.
5e69f11e 6456
fa9a63c5 6457 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6458 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6459 least NMATCH elements, and we set them to the offsets of the
6460 corresponding matched substrings.
5e69f11e 6461
fa9a63c5
RM
6462 EFLAGS specifies `execution flags' which affect matching: if
6463 REG_NOTBOL is set, then ^ does not match at the beginning of the
6464 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6465
fa9a63c5
RM
6466 We return 0 if we find a match and REG_NOMATCH if not. */
6467
6468int
6469regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6470 const regex_t *__restrict preg;
6471 const char *__restrict string;
5e69f11e 6472 size_t nmatch;
9f2dbe01 6473 regmatch_t pmatch[__restrict_arr];
fa9a63c5
RM
6474 int eflags;
6475{
6476 int ret;
6477 struct re_registers regs;
6478 regex_t private_preg;
6479 int len = strlen (string);
c0f9ea08 6480 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6481
6482 private_preg = *preg;
5e69f11e 6483
fa9a63c5
RM
6484 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6485 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6486
fa9a63c5
RM
6487 /* The user has told us exactly how many registers to return
6488 information about, via `nmatch'. We have to pass that on to the
b18215fc 6489 matching routines. */
fa9a63c5 6490 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6491
fa9a63c5
RM
6492 if (want_reg_info)
6493 {
6494 regs.num_regs = nmatch;
4bb91c68
SM
6495 regs.start = TALLOC (nmatch * 2, regoff_t);
6496 if (regs.start == NULL)
0b32bf0e 6497 return (int) REG_NOMATCH;
4bb91c68 6498 regs.end = regs.start + nmatch;
fa9a63c5
RM
6499 }
6500
c0f9ea08
SM
6501 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6502 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6503 was a little bit longer but still only matching the real part.
6504 This works because the `endline' will check for a '\n' and will find a
6505 '\0', correctly deciding that this is not the end of a line.
6506 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6507 a convenient '\0' there. For all we know, the string could be preceded
6508 by '\n' which would throw things off. */
6509
fa9a63c5
RM
6510 /* Perform the searching operation. */
6511 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6512 /* start: */ 0, /* range: */ len,
6513 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6514
fa9a63c5
RM
6515 /* Copy the register information to the POSIX structure. */
6516 if (want_reg_info)
6517 {
6518 if (ret >= 0)
0b32bf0e
SM
6519 {
6520 unsigned r;
fa9a63c5 6521
0b32bf0e
SM
6522 for (r = 0; r < nmatch; r++)
6523 {
6524 pmatch[r].rm_so = regs.start[r];
6525 pmatch[r].rm_eo = regs.end[r];
6526 }
6527 }
fa9a63c5 6528
b18215fc 6529 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6530 free (regs.start);
fa9a63c5
RM
6531 }
6532
6533 /* We want zero return to mean success, unlike `re_search'. */
6534 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6535}
c0f9ea08 6536WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6537
6538
ec869672
JR
6539/* Returns a message corresponding to an error code, ERR_CODE, returned
6540 from either regcomp or regexec. We don't use PREG here.
6541
6542 ERR_CODE was previously called ERRCODE, but that name causes an
6543 error with msvc8 compiler. */
fa9a63c5
RM
6544
6545size_t
ec869672
JR
6546regerror (err_code, preg, errbuf, errbuf_size)
6547 int err_code;
fa9a63c5
RM
6548 const regex_t *preg;
6549 char *errbuf;
6550 size_t errbuf_size;
6551{
6552 const char *msg;
6553 size_t msg_size;
6554
ec869672
JR
6555 if (err_code < 0
6556 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6557 /* Only error codes returned by the rest of the code should be passed
b18215fc 6558 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6559 code generates an invalid error code, then the program has a bug.
6560 Dump core so we can fix it. */
6561 abort ();
6562
ec869672 6563 msg = gettext (re_error_msgid[err_code]);
fa9a63c5
RM
6564
6565 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6566
fa9a63c5
RM
6567 if (errbuf_size != 0)
6568 {
6569 if (msg_size > errbuf_size)
0b32bf0e
SM
6570 {
6571 strncpy (errbuf, msg, errbuf_size - 1);
6572 errbuf[errbuf_size - 1] = 0;
6573 }
fa9a63c5 6574 else
0b32bf0e 6575 strcpy (errbuf, msg);
fa9a63c5
RM
6576 }
6577
6578 return msg_size;
6579}
c0f9ea08 6580WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6581
6582
6583/* Free dynamically allocated space used by PREG. */
6584
6585void
6586regfree (preg)
6587 regex_t *preg;
6588{
6589 if (preg->buffer != NULL)
6590 free (preg->buffer);
6591 preg->buffer = NULL;
5e69f11e 6592
fa9a63c5
RM
6593 preg->allocated = 0;
6594 preg->used = 0;
6595
6596 if (preg->fastmap != NULL)
6597 free (preg->fastmap);
6598 preg->fastmap = NULL;
6599 preg->fastmap_accurate = 0;
6600
6601 if (preg->translate != NULL)
6602 free (preg->translate);
6603 preg->translate = NULL;
6604}
c0f9ea08 6605WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6606
6607#endif /* not emacs */
ab5796a9
MB
6608
6609/* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6610 (do not change this comment) */