(mouse-drag-region-1): When remapping mouse-1 to mouse-2, go back to
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
0b5538bd
TTN
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
bc78d348 7
fa9a63c5
RM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
4fc5845f 20 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
25fe55af 21 USA. */
fa9a63c5 22
6df42991 23/* TODO:
505bde11 24 - structure the opcode space into opcode+flag.
dc1e502d 25 - merge with glibc's regex.[ch].
01618498 26 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
27 need to modify the compiled regexp so that re_match can be reentrant.
28 - get rid of on_failure_jump_smart by doing the optimization in re_comp
29 rather than at run-time, so that re_match can be reentrant.
01618498 30*/
505bde11 31
fa9a63c5 32/* AIX requires this to be the first thing in the file. */
0b32bf0e 33#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
34 #pragma alloca
35#endif
36
fa9a63c5 37#ifdef HAVE_CONFIG_H
0b32bf0e 38# include <config.h>
fa9a63c5
RM
39#endif
40
4bb91c68
SM
41#if defined STDC_HEADERS && !defined emacs
42# include <stddef.h>
43#else
44/* We need this for `regex.h', and perhaps for the Emacs include files. */
45# include <sys/types.h>
46#endif
fa9a63c5 47
14473664
SM
48/* Whether to use ISO C Amendment 1 wide char functions.
49 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
50#if defined _LIBC
51#define WIDE_CHAR_SUPPORT 1
52#else
14473664 53#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
54 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
55#endif
14473664
SM
56
57/* For platform which support the ISO C amendement 1 functionality we
58 support user defined character classes. */
a0ad02f7 59#if WIDE_CHAR_SUPPORT
14473664
SM
60/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
61# include <wchar.h>
62# include <wctype.h>
63#endif
64
c0f9ea08
SM
65#ifdef _LIBC
66/* We have to keep the namespace clean. */
67# define regfree(preg) __regfree (preg)
68# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
69# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
70# define regerror(errcode, preg, errbuf, errbuf_size) \
71 __regerror(errcode, preg, errbuf, errbuf_size)
72# define re_set_registers(bu, re, nu, st, en) \
73 __re_set_registers (bu, re, nu, st, en)
74# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
75 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
76# define re_match(bufp, string, size, pos, regs) \
77 __re_match (bufp, string, size, pos, regs)
78# define re_search(bufp, string, size, startpos, range, regs) \
79 __re_search (bufp, string, size, startpos, range, regs)
80# define re_compile_pattern(pattern, length, bufp) \
81 __re_compile_pattern (pattern, length, bufp)
82# define re_set_syntax(syntax) __re_set_syntax (syntax)
83# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
84 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
85# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86
14473664
SM
87/* Make sure we call libc's function even if the user overrides them. */
88# define btowc __btowc
89# define iswctype __iswctype
90# define wctype __wctype
91
c0f9ea08
SM
92# define WEAK_ALIAS(a,b) weak_alias (a, b)
93
94/* We are also using some library internals. */
95# include <locale/localeinfo.h>
96# include <locale/elem-hash.h>
97# include <langinfo.h>
98#else
99# define WEAK_ALIAS(a,b)
100#endif
101
4bb91c68 102/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 103#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
104# include <libintl.h>
105#else
106# define gettext(msgid) (msgid)
107#endif
108
5e69f11e
RM
109#ifndef gettext_noop
110/* This define is so xgettext can find the internationalizable
111 strings. */
0b32bf0e 112# define gettext_noop(String) String
5e69f11e
RM
113#endif
114
fa9a63c5
RM
115/* The `emacs' switch turns on certain matching commands
116 that make sense only in Emacs. */
117#ifdef emacs
118
0b32bf0e
SM
119# include "lisp.h"
120# include "buffer.h"
b18215fc
RS
121
122/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 123# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 124
0b32bf0e
SM
125# include "syntax.h"
126# include "charset.h"
127# include "category.h"
fa9a63c5 128
7689ef0b
EZ
129# ifdef malloc
130# undef malloc
131# endif
0b32bf0e 132# define malloc xmalloc
7689ef0b
EZ
133# ifdef realloc
134# undef realloc
135# endif
0b32bf0e 136# define realloc xrealloc
7689ef0b
EZ
137# ifdef free
138# undef free
139# endif
0b32bf0e 140# define free xfree
9abbd165 141
0b32bf0e
SM
142/* Converts the pointer to the char to BEG-based offset from the start. */
143# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
144# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
145
146# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
147# define RE_STRING_CHAR(p, s) \
4e8a9132 148 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
0b32bf0e 149# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
2d1675e4
SM
150 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
151
152/* Set C a (possibly multibyte) character before P. P points into a
153 string which is the virtual concatenation of STR1 (which ends at
154 END1) or STR2 (which ends at END2). */
0b32bf0e 155# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
2d1675e4
SM
156 do { \
157 if (multibyte) \
158 { \
0b32bf0e
SM
159 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
160 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
70806df6
KH
161 re_char *d0 = dtemp; \
162 PREV_CHAR_BOUNDARY (d0, dlimit); \
163 c = STRING_CHAR (d0, dtemp - d0); \
2d1675e4
SM
164 } \
165 else \
166 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
167 } while (0)
168
4e8a9132 169
fa9a63c5
RM
170#else /* not emacs */
171
172/* If we are not linking with Emacs proper,
173 we can't use the relocating allocator
174 even if config.h says that we can. */
0b32bf0e 175# undef REL_ALLOC
fa9a63c5 176
0b32bf0e
SM
177# if defined STDC_HEADERS || defined _LIBC
178# include <stdlib.h>
179# else
fa9a63c5
RM
180char *malloc ();
181char *realloc ();
0b32bf0e 182# endif
fa9a63c5 183
9e4ecb26 184/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 185 If nothing else has been done, use the method below. */
0b32bf0e
SM
186# ifdef INHIBIT_STRING_HEADER
187# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
188# if !defined bzero && !defined bcopy
189# undef INHIBIT_STRING_HEADER
190# endif
191# endif
192# endif
9e4ecb26 193
4bb91c68 194/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
195 This is used in most programs--a few other programs avoid this
196 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
197# ifndef INHIBIT_STRING_HEADER
198# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
199# include <string.h>
0b32bf0e 200# ifndef bzero
4bb91c68
SM
201# ifndef _LIBC
202# define bzero(s, n) (memset (s, '\0', n), (s))
203# else
204# define bzero(s, n) __bzero (s, n)
205# endif
0b32bf0e
SM
206# endif
207# else
208# include <strings.h>
4bb91c68
SM
209# ifndef memcmp
210# define memcmp(s1, s2, n) bcmp (s1, s2, n)
211# endif
212# ifndef memcpy
213# define memcpy(d, s, n) (bcopy (s, d, n), (d))
214# endif
0b32bf0e
SM
215# endif
216# endif
fa9a63c5
RM
217
218/* Define the syntax stuff for \<, \>, etc. */
219
990b2375 220/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 221enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 222
0b32bf0e
SM
223# ifdef SWITCH_ENUM_BUG
224# define SWITCH_ENUM_CAST(x) ((int)(x))
225# else
226# define SWITCH_ENUM_CAST(x) (x)
227# endif
fa9a63c5 228
e934739e 229/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
230# define BASE_LEADING_CODE_P(c) (0)
231# define CHAR_CHARSET(c) 0
232# define CHARSET_LEADING_CODE_BASE(c) 0
233# define MAX_MULTIBYTE_LENGTH 1
234# define RE_MULTIBYTE_P(x) 0
235# define WORD_BOUNDARY_P(c1, c2) (0)
236# define CHAR_HEAD_P(p) (1)
237# define SINGLE_BYTE_CHAR_P(c) (1)
238# define SAME_CHARSET_P(c1, c2) (1)
239# define MULTIBYTE_FORM_LENGTH(p, s) (1)
70806df6 240# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
0b32bf0e
SM
241# define STRING_CHAR(p, s) (*(p))
242# define RE_STRING_CHAR STRING_CHAR
243# define CHAR_STRING(c, s) (*(s) = (c), 1)
244# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
245# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
246# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 247 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
0b32bf0e 248# define MAKE_CHAR(charset, c1, c2) (c1)
fa9a63c5 249#endif /* not emacs */
4e8a9132
SM
250
251#ifndef RE_TRANSLATE
0b32bf0e
SM
252# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
253# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 254#endif
fa9a63c5
RM
255\f
256/* Get the interface, including the syntax bits. */
257#include "regex.h"
258
f71b19b6
DL
259/* isalpha etc. are used for the character classes. */
260#include <ctype.h>
fa9a63c5 261
f71b19b6 262#ifdef emacs
fa9a63c5 263
f71b19b6 264/* 1 if C is an ASCII character. */
0b32bf0e 265# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 266
f71b19b6 267/* 1 if C is a unibyte character. */
0b32bf0e 268# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 269
f71b19b6 270/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 271
f71b19b6 272/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
273# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
274# define ISCNTRL(c) ((c) < ' ')
275# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
276 || ((c) >= 'a' && (c) <= 'f') \
277 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
278
279/* This is only used for single-byte characters. */
0b32bf0e 280# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
281
282/* The rest must handle multibyte characters. */
283
0b32bf0e 284# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 285 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
286 : 1)
287
14473664 288# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 289 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
290 : 1)
291
0b32bf0e 292# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
293 ? (((c) >= 'a' && (c) <= 'z') \
294 || ((c) >= 'A' && (c) <= 'Z') \
295 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
296 : SYNTAX (c) == Sword)
297
0b32bf0e 298# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
299 ? (((c) >= 'a' && (c) <= 'z') \
300 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
301 : SYNTAX (c) == Sword)
302
0b32bf0e 303# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 304
0b32bf0e 305# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
306 ? ((c) > ' ' && (c) < 0177 \
307 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
308 || ((c) >= 'A' && (c) <= 'Z') \
309 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
310 : SYNTAX (c) != Sword)
311
0b32bf0e 312# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 313
0b32bf0e 314# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 315
0b32bf0e 316# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
317
318#else /* not emacs */
319
f71b19b6
DL
320/* Jim Meyering writes:
321
322 "... Some ctype macros are valid only for character codes that
323 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
324 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 325 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
326 STDC_HEADERS is defined, then autoconf has verified that the ctype
327 macros don't need to be guarded with references to isascii. ...
328 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
329 eliminate the && through constant folding."
330 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 331
4bb91c68 332# undef ISASCII
0b32bf0e
SM
333# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
334# define ISASCII(c) 1
335# else
336# define ISASCII(c) isascii(c)
337# endif
f71b19b6
DL
338
339/* 1 if C is an ASCII character. */
0b32bf0e 340# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
341
342/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
343# define ISUNIBYTE(c) 1
344
345# ifdef isblank
346# define ISBLANK(c) (ISASCII (c) && isblank (c))
347# else
348# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
349# endif
350# ifdef isgraph
351# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
352# else
353# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
354# endif
355
4bb91c68 356# undef ISPRINT
0b32bf0e
SM
357# define ISPRINT(c) (ISASCII (c) && isprint (c))
358# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
359# define ISALNUM(c) (ISASCII (c) && isalnum (c))
360# define ISALPHA(c) (ISASCII (c) && isalpha (c))
361# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
362# define ISLOWER(c) (ISASCII (c) && islower (c))
363# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
364# define ISSPACE(c) (ISASCII (c) && isspace (c))
365# define ISUPPER(c) (ISASCII (c) && isupper (c))
366# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
367
368# define ISWORD(c) ISALPHA(c)
369
4bb91c68
SM
370# ifdef _tolower
371# define TOLOWER(c) _tolower(c)
372# else
373# define TOLOWER(c) tolower(c)
374# endif
375
376/* How many characters in the character set. */
377# define CHAR_SET_SIZE 256
378
0b32bf0e 379# ifdef SYNTAX_TABLE
f71b19b6 380
0b32bf0e 381extern char *re_syntax_table;
f71b19b6 382
0b32bf0e
SM
383# else /* not SYNTAX_TABLE */
384
0b32bf0e
SM
385static char re_syntax_table[CHAR_SET_SIZE];
386
387static void
388init_syntax_once ()
389{
390 register int c;
391 static int done = 0;
392
393 if (done)
394 return;
395
396 bzero (re_syntax_table, sizeof re_syntax_table);
397
4bb91c68
SM
398 for (c = 0; c < CHAR_SET_SIZE; ++c)
399 if (ISALNUM (c))
400 re_syntax_table[c] = Sword;
fa9a63c5 401
669fa600 402 re_syntax_table['_'] = Ssymbol;
fa9a63c5 403
0b32bf0e
SM
404 done = 1;
405}
406
407# endif /* not SYNTAX_TABLE */
96cc36cc 408
4bb91c68
SM
409# define SYNTAX(c) re_syntax_table[(c)]
410
96cc36cc
RS
411#endif /* not emacs */
412\f
fa9a63c5 413#ifndef NULL
0b32bf0e 414# define NULL (void *)0
fa9a63c5
RM
415#endif
416
417/* We remove any previous definition of `SIGN_EXTEND_CHAR',
418 since ours (we hope) works properly with all combinations of
419 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 420 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
421#undef SIGN_EXTEND_CHAR
422#if __STDC__
0b32bf0e 423# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
424#else /* not __STDC__ */
425/* As in Harbison and Steele. */
0b32bf0e 426# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
427#endif
428\f
429/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
430 use `alloca' instead of `malloc'. This is because using malloc in
431 re_search* or re_match* could cause memory leaks when C-g is used in
432 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
433 the other hand, malloc is more portable, and easier to debug.
434
fa9a63c5
RM
435 Because we sometimes use alloca, some routines have to be macros,
436 not functions -- `alloca'-allocated space disappears at the end of the
437 function it is called in. */
438
439#ifdef REGEX_MALLOC
440
0b32bf0e
SM
441# define REGEX_ALLOCATE malloc
442# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
443# define REGEX_FREE free
fa9a63c5
RM
444
445#else /* not REGEX_MALLOC */
446
447/* Emacs already defines alloca, sometimes. */
0b32bf0e 448# ifndef alloca
fa9a63c5
RM
449
450/* Make alloca work the best possible way. */
0b32bf0e
SM
451# ifdef __GNUC__
452# define alloca __builtin_alloca
453# else /* not __GNUC__ */
454# if HAVE_ALLOCA_H
455# include <alloca.h>
456# endif /* HAVE_ALLOCA_H */
457# endif /* not __GNUC__ */
fa9a63c5 458
0b32bf0e 459# endif /* not alloca */
fa9a63c5 460
0b32bf0e 461# define REGEX_ALLOCATE alloca
fa9a63c5
RM
462
463/* Assumes a `char *destination' variable. */
0b32bf0e 464# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 465 (destination = (char *) alloca (nsize), \
4bb91c68 466 memcpy (destination, source, osize))
fa9a63c5
RM
467
468/* No need to do anything to free, after alloca. */
0b32bf0e 469# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
470
471#endif /* not REGEX_MALLOC */
472
473/* Define how to allocate the failure stack. */
474
0b32bf0e 475#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 476
0b32bf0e 477# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 478 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 479# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 480 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 481# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
482 r_alloc_free (&failure_stack_ptr)
483
4297555e 484#else /* not using relocating allocator */
fa9a63c5 485
0b32bf0e 486# ifdef REGEX_MALLOC
fa9a63c5 487
0b32bf0e
SM
488# define REGEX_ALLOCATE_STACK malloc
489# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
490# define REGEX_FREE_STACK free
fa9a63c5 491
0b32bf0e 492# else /* not REGEX_MALLOC */
fa9a63c5 493
0b32bf0e 494# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 495
0b32bf0e 496# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 497 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 498/* No need to explicitly free anything. */
0b32bf0e 499# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 500
0b32bf0e 501# endif /* not REGEX_MALLOC */
4297555e 502#endif /* not using relocating allocator */
fa9a63c5
RM
503
504
505/* True if `size1' is non-NULL and PTR is pointing anywhere inside
506 `string1' or just past its end. This works if PTR is NULL, which is
507 a good thing. */
25fe55af 508#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
509 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
510
511/* (Re)Allocate N items of type T using malloc, or fail. */
512#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
513#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
514#define RETALLOC_IF(addr, n, t) \
515 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
516#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
517
4bb91c68 518#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
519
520#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
521
522#undef MAX
523#undef MIN
524#define MAX(a, b) ((a) > (b) ? (a) : (b))
525#define MIN(a, b) ((a) < (b) ? (a) : (b))
526
6470ea05
SM
527/* Type of source-pattern and string chars. */
528typedef const unsigned char re_char;
529
fa9a63c5
RM
530typedef char boolean;
531#define false 0
532#define true 1
533
4bb91c68
SM
534static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
535 re_char *string1, int size1,
536 re_char *string2, int size2,
537 int pos,
538 struct re_registers *regs,
539 int stop));
fa9a63c5
RM
540\f
541/* These are the command codes that appear in compiled regular
4bb91c68 542 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
543 command code can specify any interpretation whatsoever for its
544 arguments. Zero bytes may appear in the compiled regular expression. */
545
546typedef enum
547{
548 no_op = 0,
549
4bb91c68 550 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
551 succeed,
552
25fe55af 553 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
554 exactn,
555
25fe55af 556 /* Matches any (more or less) character. */
fa9a63c5
RM
557 anychar,
558
25fe55af
RS
559 /* Matches any one char belonging to specified set. First
560 following byte is number of bitmap bytes. Then come bytes
561 for a bitmap saying which chars are in. Bits in each byte
562 are ordered low-bit-first. A character is in the set if its
563 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
564 automatically not in the set.
565
566 If the length byte has the 0x80 bit set, then that stuff
567 is followed by a range table:
568 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 569 See RANGE_TABLE_WORK_BITS below.
01618498 570 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 571 pairs, each 2 multibyte characters,
0b32bf0e 572 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
573 charset,
574
25fe55af 575 /* Same parameters as charset, but match any character that is
4bb91c68 576 not one of those specified. */
fa9a63c5
RM
577 charset_not,
578
25fe55af
RS
579 /* Start remembering the text that is matched, for storing in a
580 register. Followed by one byte with the register number, in
581 the range 0 to one less than the pattern buffer's re_nsub
505bde11 582 field. */
fa9a63c5
RM
583 start_memory,
584
25fe55af
RS
585 /* Stop remembering the text that is matched and store it in a
586 memory register. Followed by one byte with the register
587 number, in the range 0 to one less than `re_nsub' in the
505bde11 588 pattern buffer. */
fa9a63c5
RM
589 stop_memory,
590
25fe55af 591 /* Match a duplicate of something remembered. Followed by one
4bb91c68 592 byte containing the register number. */
fa9a63c5
RM
593 duplicate,
594
25fe55af 595 /* Fail unless at beginning of line. */
fa9a63c5
RM
596 begline,
597
4bb91c68 598 /* Fail unless at end of line. */
fa9a63c5
RM
599 endline,
600
25fe55af
RS
601 /* Succeeds if at beginning of buffer (if emacs) or at beginning
602 of string to be matched (if not). */
fa9a63c5
RM
603 begbuf,
604
25fe55af 605 /* Analogously, for end of buffer/string. */
fa9a63c5 606 endbuf,
5e69f11e 607
25fe55af 608 /* Followed by two byte relative address to which to jump. */
5e69f11e 609 jump,
fa9a63c5 610
25fe55af
RS
611 /* Followed by two-byte relative address of place to resume at
612 in case of failure. */
fa9a63c5 613 on_failure_jump,
5e69f11e 614
25fe55af
RS
615 /* Like on_failure_jump, but pushes a placeholder instead of the
616 current string position when executed. */
fa9a63c5 617 on_failure_keep_string_jump,
5e69f11e 618
505bde11
SM
619 /* Just like `on_failure_jump', except that it checks that we
620 don't get stuck in an infinite loop (matching an empty string
621 indefinitely). */
622 on_failure_jump_loop,
623
0683b6fa
SM
624 /* Just like `on_failure_jump_loop', except that it checks for
625 a different kind of loop (the kind that shows up with non-greedy
626 operators). This operation has to be immediately preceded
627 by a `no_op'. */
628 on_failure_jump_nastyloop,
629
0b32bf0e 630 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
631 It analyses the loop before which it is put and if the
632 loop does not require backtracking, it changes itself to
4e8a9132
SM
633 `on_failure_keep_string_jump' and short-circuits the loop,
634 else it just defaults to changing itself into `on_failure_jump'.
635 It assumes that it is pointing to just past a `jump'. */
505bde11 636 on_failure_jump_smart,
fa9a63c5 637
25fe55af 638 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
639 After matching N times, jump to the address upon failure.
640 Does not work if N starts at 0: use on_failure_jump_loop
641 instead. */
fa9a63c5
RM
642 succeed_n,
643
25fe55af
RS
644 /* Followed by two-byte relative address, and two-byte number n.
645 Jump to the address N times, then fail. */
fa9a63c5
RM
646 jump_n,
647
25fe55af
RS
648 /* Set the following two-byte relative address to the
649 subsequent two-byte number. The address *includes* the two
650 bytes of number. */
fa9a63c5
RM
651 set_number_at,
652
fa9a63c5
RM
653 wordbeg, /* Succeeds if at word beginning. */
654 wordend, /* Succeeds if at word end. */
655
656 wordbound, /* Succeeds if at a word boundary. */
1fb352e0 657 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 658
669fa600
SM
659 symbeg, /* Succeeds if at symbol beginning. */
660 symend, /* Succeeds if at symbol end. */
661
fa9a63c5 662 /* Matches any character whose syntax is specified. Followed by
25fe55af 663 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
664 syntaxspec,
665
666 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
667 notsyntaxspec
668
669#ifdef emacs
670 ,before_dot, /* Succeeds if before point. */
671 at_dot, /* Succeeds if at point. */
672 after_dot, /* Succeeds if after point. */
b18215fc
RS
673
674 /* Matches any character whose category-set contains the specified
25fe55af
RS
675 category. The operator is followed by a byte which contains a
676 category code (mnemonic ASCII character). */
b18215fc
RS
677 categoryspec,
678
679 /* Matches any character whose category-set does not contain the
680 specified category. The operator is followed by a byte which
681 contains the category code (mnemonic ASCII character). */
682 notcategoryspec
fa9a63c5
RM
683#endif /* emacs */
684} re_opcode_t;
685\f
686/* Common operations on the compiled pattern. */
687
688/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
689
690#define STORE_NUMBER(destination, number) \
691 do { \
692 (destination)[0] = (number) & 0377; \
693 (destination)[1] = (number) >> 8; \
694 } while (0)
695
696/* Same as STORE_NUMBER, except increment DESTINATION to
697 the byte after where the number is stored. Therefore, DESTINATION
698 must be an lvalue. */
699
700#define STORE_NUMBER_AND_INCR(destination, number) \
701 do { \
702 STORE_NUMBER (destination, number); \
703 (destination) += 2; \
704 } while (0)
705
706/* Put into DESTINATION a number stored in two contiguous bytes starting
707 at SOURCE. */
708
709#define EXTRACT_NUMBER(destination, source) \
710 do { \
711 (destination) = *(source) & 0377; \
712 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
713 } while (0)
714
715#ifdef DEBUG
4bb91c68 716static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
717static void
718extract_number (dest, source)
719 int *dest;
01618498 720 re_char *source;
fa9a63c5 721{
5e69f11e 722 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
723 *dest = *source & 0377;
724 *dest += temp << 8;
725}
726
4bb91c68 727# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
728# undef EXTRACT_NUMBER
729# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
730# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
731
732#endif /* DEBUG */
733
734/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
735 SOURCE must be an lvalue. */
736
737#define EXTRACT_NUMBER_AND_INCR(destination, source) \
738 do { \
739 EXTRACT_NUMBER (destination, source); \
25fe55af 740 (source) += 2; \
fa9a63c5
RM
741 } while (0)
742
743#ifdef DEBUG
4bb91c68
SM
744static void extract_number_and_incr _RE_ARGS ((int *destination,
745 re_char **source));
fa9a63c5
RM
746static void
747extract_number_and_incr (destination, source)
748 int *destination;
01618498 749 re_char **source;
5e69f11e 750{
fa9a63c5
RM
751 extract_number (destination, *source);
752 *source += 2;
753}
754
0b32bf0e
SM
755# ifndef EXTRACT_MACROS
756# undef EXTRACT_NUMBER_AND_INCR
757# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 758 extract_number_and_incr (&dest, &src)
0b32bf0e 759# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
760
761#endif /* DEBUG */
762\f
b18215fc
RS
763/* Store a multibyte character in three contiguous bytes starting
764 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 765 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
766
767#define STORE_CHARACTER_AND_INCR(destination, character) \
768 do { \
769 (destination)[0] = (character) & 0377; \
770 (destination)[1] = ((character) >> 8) & 0377; \
771 (destination)[2] = (character) >> 16; \
772 (destination) += 3; \
773 } while (0)
774
775/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 776 starting at SOURCE. */
b18215fc
RS
777
778#define EXTRACT_CHARACTER(destination, source) \
779 do { \
780 (destination) = ((source)[0] \
781 | ((source)[1] << 8) \
782 | ((source)[2] << 16)); \
783 } while (0)
784
785
786/* Macros for charset. */
787
788/* Size of bitmap of charset P in bytes. P is a start of charset,
789 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
790#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
791
792/* Nonzero if charset P has range table. */
25fe55af 793#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
794
795/* Return the address of range table of charset P. But not the start
796 of table itself, but the before where the number of ranges is
96cc36cc
RS
797 stored. `2 +' means to skip re_opcode_t and size of bitmap,
798 and the 2 bytes of flags at the start of the range table. */
799#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
800
801/* Extract the bit flags that start a range table. */
802#define CHARSET_RANGE_TABLE_BITS(p) \
803 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
804 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
805
806/* Test if C is listed in the bitmap of charset P. */
807#define CHARSET_LOOKUP_BITMAP(p, c) \
808 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
809 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
810
811/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
812 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
813 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
814 and end. */
815#define CHARSET_RANGE_TABLE_END(range_table, count) \
816 ((range_table) + (count) * 2 * 3)
817
25fe55af 818/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
819 COUNT is number of ranges in RANGE_TABLE. */
820#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
821 do \
822 { \
01618498
SM
823 re_wchar_t range_start, range_end; \
824 re_char *p; \
825 re_char *range_table_end \
b18215fc
RS
826 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
827 \
828 for (p = (range_table); p < range_table_end; p += 2 * 3) \
829 { \
830 EXTRACT_CHARACTER (range_start, p); \
831 EXTRACT_CHARACTER (range_end, p + 3); \
832 \
833 if (range_start <= (c) && (c) <= range_end) \
834 { \
835 (not) = !(not); \
836 break; \
837 } \
838 } \
839 } \
840 while (0)
841
842/* Test if C is in range table of CHARSET. The flag NOT is negated if
843 C is listed in it. */
844#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
845 do \
846 { \
847 /* Number of ranges in range table. */ \
848 int count; \
01618498
SM
849 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
850 \
b18215fc
RS
851 EXTRACT_NUMBER_AND_INCR (count, range_table); \
852 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
853 } \
854 while (0)
855\f
fa9a63c5
RM
856/* If DEBUG is defined, Regex prints many voluminous messages about what
857 it is doing (if the variable `debug' is nonzero). If linked with the
858 main program in `iregex.c', you can enter patterns and strings
859 interactively. And if linked with the main program in `main.c' and
4bb91c68 860 the other test files, you can run the already-written tests. */
fa9a63c5
RM
861
862#ifdef DEBUG
863
864/* We use standard I/O for debugging. */
0b32bf0e 865# include <stdio.h>
fa9a63c5
RM
866
867/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 868# include <assert.h>
fa9a63c5 869
99633e97 870static int debug = -100000;
fa9a63c5 871
0b32bf0e
SM
872# define DEBUG_STATEMENT(e) e
873# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
874# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
875# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
876# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
877# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 878 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 879# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 880 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
881
882
883/* Print the fastmap in human-readable form. */
884
885void
886print_fastmap (fastmap)
887 char *fastmap;
888{
889 unsigned was_a_range = 0;
5e69f11e
RM
890 unsigned i = 0;
891
fa9a63c5
RM
892 while (i < (1 << BYTEWIDTH))
893 {
894 if (fastmap[i++])
895 {
896 was_a_range = 0;
25fe55af
RS
897 putchar (i - 1);
898 while (i < (1 << BYTEWIDTH) && fastmap[i])
899 {
900 was_a_range = 1;
901 i++;
902 }
fa9a63c5 903 if (was_a_range)
25fe55af
RS
904 {
905 printf ("-");
906 putchar (i - 1);
907 }
908 }
fa9a63c5 909 }
5e69f11e 910 putchar ('\n');
fa9a63c5
RM
911}
912
913
914/* Print a compiled pattern string in human-readable form, starting at
915 the START pointer into it and ending just before the pointer END. */
916
917void
918print_partial_compiled_pattern (start, end)
01618498
SM
919 re_char *start;
920 re_char *end;
fa9a63c5
RM
921{
922 int mcnt, mcnt2;
01618498
SM
923 re_char *p = start;
924 re_char *pend = end;
fa9a63c5
RM
925
926 if (start == NULL)
927 {
a1a052df 928 fprintf (stderr, "(null)\n");
fa9a63c5
RM
929 return;
930 }
5e69f11e 931
fa9a63c5
RM
932 /* Loop over pattern commands. */
933 while (p < pend)
934 {
a1a052df 935 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
936
937 switch ((re_opcode_t) *p++)
938 {
25fe55af 939 case no_op:
a1a052df 940 fprintf (stderr, "/no_op");
25fe55af 941 break;
fa9a63c5 942
99633e97 943 case succeed:
a1a052df 944 fprintf (stderr, "/succeed");
99633e97
SM
945 break;
946
fa9a63c5
RM
947 case exactn:
948 mcnt = *p++;
a1a052df 949 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 950 do
fa9a63c5 951 {
a1a052df 952 fprintf (stderr, "/%c", *p++);
25fe55af
RS
953 }
954 while (--mcnt);
955 break;
fa9a63c5
RM
956
957 case start_memory:
a1a052df 958 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 959 break;
fa9a63c5
RM
960
961 case stop_memory:
a1a052df 962 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 963 break;
fa9a63c5
RM
964
965 case duplicate:
a1a052df 966 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
967 break;
968
969 case anychar:
a1a052df 970 fprintf (stderr, "/anychar");
fa9a63c5
RM
971 break;
972
973 case charset:
25fe55af
RS
974 case charset_not:
975 {
976 register int c, last = -100;
fa9a63c5 977 register int in_range = 0;
99633e97
SM
978 int length = CHARSET_BITMAP_SIZE (p - 1);
979 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 980
a1a052df 981 fprintf (stderr, "/charset [%s",
275a3409 982 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 983
275a3409
RS
984 if (p + *p >= pend)
985 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 986
25fe55af 987 for (c = 0; c < 256; c++)
96cc36cc 988 if (c / 8 < length
fa9a63c5
RM
989 && (p[1 + (c/8)] & (1 << (c % 8))))
990 {
991 /* Are we starting a range? */
992 if (last + 1 == c && ! in_range)
993 {
a1a052df 994 fprintf (stderr, "-");
fa9a63c5
RM
995 in_range = 1;
996 }
997 /* Have we broken a range? */
998 else if (last + 1 != c && in_range)
96cc36cc 999 {
a1a052df 1000 fprintf (stderr, "%c", last);
fa9a63c5
RM
1001 in_range = 0;
1002 }
5e69f11e 1003
fa9a63c5 1004 if (! in_range)
a1a052df 1005 fprintf (stderr, "%c", c);
fa9a63c5
RM
1006
1007 last = c;
25fe55af 1008 }
fa9a63c5
RM
1009
1010 if (in_range)
a1a052df 1011 fprintf (stderr, "%c", last);
fa9a63c5 1012
a1a052df 1013 fprintf (stderr, "]");
fa9a63c5 1014
99633e97 1015 p += 1 + length;
96cc36cc 1016
96cc36cc 1017 if (has_range_table)
99633e97
SM
1018 {
1019 int count;
a1a052df 1020 fprintf (stderr, "has-range-table");
99633e97
SM
1021
1022 /* ??? Should print the range table; for now, just skip it. */
1023 p += 2; /* skip range table bits */
1024 EXTRACT_NUMBER_AND_INCR (count, p);
1025 p = CHARSET_RANGE_TABLE_END (p, count);
1026 }
fa9a63c5
RM
1027 }
1028 break;
1029
1030 case begline:
a1a052df 1031 fprintf (stderr, "/begline");
25fe55af 1032 break;
fa9a63c5
RM
1033
1034 case endline:
a1a052df 1035 fprintf (stderr, "/endline");
25fe55af 1036 break;
fa9a63c5
RM
1037
1038 case on_failure_jump:
25fe55af 1039 extract_number_and_incr (&mcnt, &p);
a1a052df 1040 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1041 break;
fa9a63c5
RM
1042
1043 case on_failure_keep_string_jump:
25fe55af 1044 extract_number_and_incr (&mcnt, &p);
a1a052df 1045 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1046 break;
fa9a63c5 1047
0683b6fa
SM
1048 case on_failure_jump_nastyloop:
1049 extract_number_and_incr (&mcnt, &p);
a1a052df 1050 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1051 break;
1052
505bde11 1053 case on_failure_jump_loop:
fa9a63c5 1054 extract_number_and_incr (&mcnt, &p);
a1a052df 1055 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1056 break;
1057
505bde11 1058 case on_failure_jump_smart:
fa9a63c5 1059 extract_number_and_incr (&mcnt, &p);
a1a052df 1060 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1061 break;
1062
25fe55af 1063 case jump:
fa9a63c5 1064 extract_number_and_incr (&mcnt, &p);
a1a052df 1065 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1066 break;
1067
25fe55af
RS
1068 case succeed_n:
1069 extract_number_and_incr (&mcnt, &p);
1070 extract_number_and_incr (&mcnt2, &p);
a1a052df 1071 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1072 break;
5e69f11e 1073
25fe55af
RS
1074 case jump_n:
1075 extract_number_and_incr (&mcnt, &p);
1076 extract_number_and_incr (&mcnt2, &p);
a1a052df 1077 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1078 break;
5e69f11e 1079
25fe55af
RS
1080 case set_number_at:
1081 extract_number_and_incr (&mcnt, &p);
1082 extract_number_and_incr (&mcnt2, &p);
a1a052df 1083 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1084 break;
5e69f11e 1085
25fe55af 1086 case wordbound:
a1a052df 1087 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1088 break;
1089
1090 case notwordbound:
a1a052df 1091 fprintf (stderr, "/notwordbound");
25fe55af 1092 break;
fa9a63c5
RM
1093
1094 case wordbeg:
a1a052df 1095 fprintf (stderr, "/wordbeg");
fa9a63c5 1096 break;
5e69f11e 1097
fa9a63c5 1098 case wordend:
a1a052df 1099 fprintf (stderr, "/wordend");
e2543b02 1100 break;
5e69f11e 1101
669fa600 1102 case symbeg:
e2543b02 1103 fprintf (stderr, "/symbeg");
669fa600
SM
1104 break;
1105
1106 case symend:
e2543b02 1107 fprintf (stderr, "/symend");
669fa600
SM
1108 break;
1109
1fb352e0 1110 case syntaxspec:
a1a052df 1111 fprintf (stderr, "/syntaxspec");
1fb352e0 1112 mcnt = *p++;
a1a052df 1113 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1114 break;
1115
1116 case notsyntaxspec:
a1a052df 1117 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1118 mcnt = *p++;
a1a052df 1119 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1120 break;
1121
0b32bf0e 1122# ifdef emacs
fa9a63c5 1123 case before_dot:
a1a052df 1124 fprintf (stderr, "/before_dot");
25fe55af 1125 break;
fa9a63c5
RM
1126
1127 case at_dot:
a1a052df 1128 fprintf (stderr, "/at_dot");
25fe55af 1129 break;
fa9a63c5
RM
1130
1131 case after_dot:
a1a052df 1132 fprintf (stderr, "/after_dot");
25fe55af 1133 break;
fa9a63c5 1134
1fb352e0 1135 case categoryspec:
a1a052df 1136 fprintf (stderr, "/categoryspec");
fa9a63c5 1137 mcnt = *p++;
a1a052df 1138 fprintf (stderr, "/%d", mcnt);
25fe55af 1139 break;
5e69f11e 1140
1fb352e0 1141 case notcategoryspec:
a1a052df 1142 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1143 mcnt = *p++;
a1a052df 1144 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1145 break;
0b32bf0e 1146# endif /* emacs */
fa9a63c5 1147
fa9a63c5 1148 case begbuf:
a1a052df 1149 fprintf (stderr, "/begbuf");
25fe55af 1150 break;
fa9a63c5
RM
1151
1152 case endbuf:
a1a052df 1153 fprintf (stderr, "/endbuf");
25fe55af 1154 break;
fa9a63c5 1155
25fe55af 1156 default:
a1a052df 1157 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1158 }
1159
a1a052df 1160 fprintf (stderr, "\n");
fa9a63c5
RM
1161 }
1162
a1a052df 1163 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1164}
1165
1166
1167void
1168print_compiled_pattern (bufp)
1169 struct re_pattern_buffer *bufp;
1170{
01618498 1171 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1172
1173 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1174 printf ("%ld bytes used/%ld bytes allocated.\n",
1175 bufp->used, bufp->allocated);
fa9a63c5
RM
1176
1177 if (bufp->fastmap_accurate && bufp->fastmap)
1178 {
1179 printf ("fastmap: ");
1180 print_fastmap (bufp->fastmap);
1181 }
1182
1183 printf ("re_nsub: %d\t", bufp->re_nsub);
1184 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1185 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1186 printf ("no_sub: %d\t", bufp->no_sub);
1187 printf ("not_bol: %d\t", bufp->not_bol);
1188 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1189 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1190 fflush (stdout);
fa9a63c5
RM
1191 /* Perhaps we should print the translate table? */
1192}
1193
1194
1195void
1196print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1197 re_char *where;
1198 re_char *string1;
1199 re_char *string2;
fa9a63c5
RM
1200 int size1;
1201 int size2;
1202{
4bb91c68 1203 int this_char;
5e69f11e 1204
fa9a63c5
RM
1205 if (where == NULL)
1206 printf ("(null)");
1207 else
1208 {
1209 if (FIRST_STRING_P (where))
25fe55af
RS
1210 {
1211 for (this_char = where - string1; this_char < size1; this_char++)
1212 putchar (string1[this_char]);
fa9a63c5 1213
25fe55af
RS
1214 where = string2;
1215 }
fa9a63c5
RM
1216
1217 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1218 putchar (string2[this_char]);
fa9a63c5
RM
1219 }
1220}
1221
1222#else /* not DEBUG */
1223
0b32bf0e
SM
1224# undef assert
1225# define assert(e)
fa9a63c5 1226
0b32bf0e
SM
1227# define DEBUG_STATEMENT(e)
1228# define DEBUG_PRINT1(x)
1229# define DEBUG_PRINT2(x1, x2)
1230# define DEBUG_PRINT3(x1, x2, x3)
1231# define DEBUG_PRINT4(x1, x2, x3, x4)
1232# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1233# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1234
1235#endif /* not DEBUG */
1236\f
1237/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1238 also be assigned to arbitrarily: each pattern buffer stores its own
1239 syntax, so it can be changed between regex compilations. */
1240/* This has no initializer because initialized variables in Emacs
1241 become read-only after dumping. */
1242reg_syntax_t re_syntax_options;
1243
1244
1245/* Specify the precise syntax of regexps for compilation. This provides
1246 for compatibility for various utilities which historically have
1247 different, incompatible syntaxes.
1248
1249 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1250 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1251
1252reg_syntax_t
1253re_set_syntax (syntax)
f9b0fd99 1254 reg_syntax_t syntax;
fa9a63c5
RM
1255{
1256 reg_syntax_t ret = re_syntax_options;
5e69f11e 1257
fa9a63c5
RM
1258 re_syntax_options = syntax;
1259 return ret;
1260}
c0f9ea08 1261WEAK_ALIAS (__re_set_syntax, re_set_syntax)
f9b0fd99
RS
1262
1263/* Regexp to use to replace spaces, or NULL meaning don't. */
1264static re_char *whitespace_regexp;
1265
1266void
1267re_set_whitespace_regexp (regexp)
6470ea05 1268 const char *regexp;
f9b0fd99 1269{
6470ea05 1270 whitespace_regexp = (re_char *) regexp;
f9b0fd99
RS
1271}
1272WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1273\f
1274/* This table gives an error message for each of the error codes listed
4bb91c68 1275 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1276 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1277 but why not be nice? */
fa9a63c5
RM
1278
1279static const char *re_error_msgid[] =
5e69f11e
RM
1280 {
1281 gettext_noop ("Success"), /* REG_NOERROR */
1282 gettext_noop ("No match"), /* REG_NOMATCH */
1283 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1284 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1285 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1286 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1287 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1288 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1289 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1290 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1291 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1292 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1293 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1294 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1295 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1296 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1297 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
b3e4c897 1298 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
fa9a63c5
RM
1299 };
1300\f
4bb91c68 1301/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1302
1303/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1304 searching and matching functions should not call alloca. On some
1305 systems, alloca is implemented in terms of malloc, and if we're
1306 using the relocating allocator routines, then malloc could cause a
1307 relocation, which might (if the strings being searched are in the
1308 ralloc heap) shift the data out from underneath the regexp
1309 routines.
1310
5e69f11e 1311 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1312 processes input from X in a signal handler; processing X input may
1313 call malloc; if input arrives while a matching routine is calling
1314 malloc, then we're scrod. But Emacs can't just block input while
1315 calling matching routines; then we don't notice interrupts when
1316 they come in. So, Emacs blocks input around all regexp calls
1317 except the matching calls, which it leaves unprotected, in the
1318 faith that they will not malloc. */
1319
1320/* Normally, this is fine. */
1321#define MATCH_MAY_ALLOCATE
1322
1323/* When using GNU C, we are not REALLY using the C alloca, no matter
1324 what config.h may say. So don't take precautions for it. */
1325#ifdef __GNUC__
0b32bf0e 1326# undef C_ALLOCA
fa9a63c5
RM
1327#endif
1328
1329/* The match routines may not allocate if (1) they would do it with malloc
1330 and (2) it's not safe for them to use malloc.
1331 Note that if REL_ALLOC is defined, matching would not use malloc for the
1332 failure stack, but we would still use it for the register vectors;
4bb91c68 1333 so REL_ALLOC should not affect this. */
0b32bf0e
SM
1334#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1335# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1336#endif
1337
1338\f
1339/* Failure stack declarations and macros; both re_compile_fastmap and
1340 re_match_2 use a failure stack. These have to be macros because of
1341 REGEX_ALLOCATE_STACK. */
5e69f11e 1342
fa9a63c5 1343
320a2a73 1344/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1345 when matching. If this number is exceeded, we allocate more
1346 space, so it is not a hard limit. */
1347#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1348# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1349#endif
1350
1351/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1352 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1353 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1354 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1355 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1356# if defined MATCH_MAY_ALLOCATE
1357/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1358 whose default stack limit is 2mb. In order for a larger
1359 value to work reliably, you have to try to make it accord
1360 with the process stack limit. */
c0f9ea08
SM
1361size_t re_max_failures = 40000;
1362# else
1363size_t re_max_failures = 4000;
1364# endif
fa9a63c5
RM
1365
1366union fail_stack_elt
1367{
01618498 1368 re_char *pointer;
c0f9ea08
SM
1369 /* This should be the biggest `int' that's no bigger than a pointer. */
1370 long integer;
fa9a63c5
RM
1371};
1372
1373typedef union fail_stack_elt fail_stack_elt_t;
1374
1375typedef struct
1376{
1377 fail_stack_elt_t *stack;
c0f9ea08
SM
1378 size_t size;
1379 size_t avail; /* Offset of next open position. */
1380 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1381} fail_stack_type;
1382
505bde11 1383#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1384#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1385
1386
1387/* Define macros to initialize and free the failure stack.
1388 Do `return -2' if the alloc fails. */
1389
1390#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1391# define INIT_FAIL_STACK() \
fa9a63c5
RM
1392 do { \
1393 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1394 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1395 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1396 \
1397 if (fail_stack.stack == NULL) \
1398 return -2; \
1399 \
1400 fail_stack.size = INIT_FAILURE_ALLOC; \
1401 fail_stack.avail = 0; \
505bde11 1402 fail_stack.frame = 0; \
fa9a63c5
RM
1403 } while (0)
1404
0b32bf0e 1405# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1406#else
0b32bf0e 1407# define INIT_FAIL_STACK() \
fa9a63c5
RM
1408 do { \
1409 fail_stack.avail = 0; \
505bde11 1410 fail_stack.frame = 0; \
fa9a63c5
RM
1411 } while (0)
1412
0b32bf0e 1413# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1414#endif
1415
1416
320a2a73
KH
1417/* Double the size of FAIL_STACK, up to a limit
1418 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1419
1420 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1421 allocating space for it or it was already too large.
1422
4bb91c68 1423 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1424
320a2a73
KH
1425/* Factor to increase the failure stack size by
1426 when we increase it.
1427 This used to be 2, but 2 was too wasteful
1428 because the old discarded stacks added up to as much space
1429 were as ultimate, maximum-size stack. */
1430#define FAIL_STACK_GROWTH_FACTOR 4
1431
1432#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1433 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1434 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1435 ? 0 \
320a2a73
KH
1436 : ((fail_stack).stack \
1437 = (fail_stack_elt_t *) \
25fe55af
RS
1438 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1439 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1440 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1441 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1442 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1443 \
1444 (fail_stack).stack == NULL \
1445 ? 0 \
6453db45
KH
1446 : ((fail_stack).size \
1447 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1448 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1449 * FAIL_STACK_GROWTH_FACTOR)) \
1450 / sizeof (fail_stack_elt_t)), \
25fe55af 1451 1)))
fa9a63c5
RM
1452
1453
fa9a63c5
RM
1454/* Push a pointer value onto the failure stack.
1455 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1456 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1457#define PUSH_FAILURE_POINTER(item) \
01618498 1458 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1459
1460/* This pushes an integer-valued item onto the failure stack.
1461 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1462 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1463#define PUSH_FAILURE_INT(item) \
1464 fail_stack.stack[fail_stack.avail++].integer = (item)
1465
1466/* Push a fail_stack_elt_t value onto the failure stack.
1467 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1468 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1469#define PUSH_FAILURE_ELT(item) \
1470 fail_stack.stack[fail_stack.avail++] = (item)
1471
1472/* These three POP... operations complement the three PUSH... operations.
1473 All assume that `fail_stack' is nonempty. */
1474#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1475#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1476#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1477
505bde11
SM
1478/* Individual items aside from the registers. */
1479#define NUM_NONREG_ITEMS 3
1480
1481/* Used to examine the stack (to detect infinite loops). */
1482#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1483#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1484#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1485#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1486
1487
505bde11
SM
1488#define ENSURE_FAIL_STACK(space) \
1489while (REMAINING_AVAIL_SLOTS <= space) { \
1490 if (!GROW_FAIL_STACK (fail_stack)) \
1491 return -2; \
1492 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1493 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1494}
1495
1496/* Push register NUM onto the stack. */
1497#define PUSH_FAILURE_REG(num) \
1498do { \
1499 char *destination; \
1500 ENSURE_FAIL_STACK(3); \
1501 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1502 num, regstart[num], regend[num]); \
1503 PUSH_FAILURE_POINTER (regstart[num]); \
1504 PUSH_FAILURE_POINTER (regend[num]); \
1505 PUSH_FAILURE_INT (num); \
1506} while (0)
1507
01618498
SM
1508/* Change the counter's value to VAL, but make sure that it will
1509 be reset when backtracking. */
1510#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1511do { \
1512 char *destination; \
1513 int c; \
1514 ENSURE_FAIL_STACK(3); \
1515 EXTRACT_NUMBER (c, ptr); \
01618498 1516 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1517 PUSH_FAILURE_INT (c); \
1518 PUSH_FAILURE_POINTER (ptr); \
1519 PUSH_FAILURE_INT (-1); \
01618498 1520 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1521} while (0)
1522
505bde11 1523/* Pop a saved register off the stack. */
dc1e502d 1524#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1525do { \
1526 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1527 if (reg == -1) \
1528 { \
1529 /* It's a counter. */ \
6dcf2d0e
SM
1530 /* Here, we discard `const', making re_match non-reentrant. */ \
1531 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1532 reg = POP_FAILURE_INT (); \
1533 STORE_NUMBER (ptr, reg); \
1534 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1535 } \
1536 else \
1537 { \
1538 regend[reg] = POP_FAILURE_POINTER (); \
1539 regstart[reg] = POP_FAILURE_POINTER (); \
1540 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1541 reg, regstart[reg], regend[reg]); \
1542 } \
505bde11
SM
1543} while (0)
1544
1545/* Check that we are not stuck in an infinite loop. */
1546#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1547do { \
f6df485f 1548 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1549 /* Check for infinite matching loops */ \
f6df485f
RS
1550 while (failure > 0 \
1551 && (FAILURE_STR (failure) == string_place \
1552 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1553 { \
1554 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1555 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1556 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1557 { \
6df42991
SM
1558 cycle = 1; \
1559 break; \
f6df485f 1560 } \
66f0296e 1561 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1562 failure = NEXT_FAILURE_HANDLE(failure); \
1563 } \
1564 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1565} while (0)
6df42991 1566
fa9a63c5 1567/* Push the information about the state we will need
5e69f11e
RM
1568 if we ever fail back to it.
1569
505bde11 1570 Requires variables fail_stack, regstart, regend and
320a2a73 1571 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1572 declared.
5e69f11e 1573
fa9a63c5
RM
1574 Does `return FAILURE_CODE' if runs out of memory. */
1575
505bde11
SM
1576#define PUSH_FAILURE_POINT(pattern, string_place) \
1577do { \
1578 char *destination; \
1579 /* Must be int, so when we don't save any registers, the arithmetic \
1580 of 0 + -1 isn't done as unsigned. */ \
1581 \
505bde11 1582 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1583 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1584 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1585 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1586 \
1587 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1588 \
1589 DEBUG_PRINT1 ("\n"); \
1590 \
1591 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1592 PUSH_FAILURE_INT (fail_stack.frame); \
1593 \
1594 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1595 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1596 DEBUG_PRINT1 ("'\n"); \
1597 PUSH_FAILURE_POINTER (string_place); \
1598 \
1599 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1600 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1601 PUSH_FAILURE_POINTER (pattern); \
1602 \
1603 /* Close the frame by moving the frame pointer past it. */ \
1604 fail_stack.frame = fail_stack.avail; \
1605} while (0)
fa9a63c5 1606
320a2a73
KH
1607/* Estimate the size of data pushed by a typical failure stack entry.
1608 An estimate is all we need, because all we use this for
1609 is to choose a limit for how big to make the failure stack. */
ada30c0e 1610/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1611#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1612
fa9a63c5
RM
1613/* How many items can still be added to the stack without overflowing it. */
1614#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1615
1616
1617/* Pops what PUSH_FAIL_STACK pushes.
1618
1619 We restore into the parameters, all of which should be lvalues:
1620 STR -- the saved data position.
1621 PAT -- the saved pattern position.
fa9a63c5 1622 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1623
fa9a63c5 1624 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1625 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1626
505bde11
SM
1627#define POP_FAILURE_POINT(str, pat) \
1628do { \
fa9a63c5
RM
1629 assert (!FAIL_STACK_EMPTY ()); \
1630 \
1631 /* Remove failure points and point to how many regs pushed. */ \
1632 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1633 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1634 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1635 \
505bde11
SM
1636 /* Pop the saved registers. */ \
1637 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1638 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1639 \
01618498 1640 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1641 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1642 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1643 \
1644 /* If the saved string location is NULL, it came from an \
1645 on_failure_keep_string_jump opcode, and we want to throw away the \
1646 saved NULL, thus retaining our current position in the string. */ \
01618498 1647 str = POP_FAILURE_POINTER (); \
505bde11 1648 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1649 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1650 DEBUG_PRINT1 ("'\n"); \
1651 \
505bde11
SM
1652 fail_stack.frame = POP_FAILURE_INT (); \
1653 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1654 \
505bde11
SM
1655 assert (fail_stack.avail >= 0); \
1656 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1657 \
fa9a63c5 1658 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1659} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1660
1661
1662\f
fa9a63c5 1663/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1664#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1665\f
1666/* Subroutine declarations and macros for regex_compile. */
1667
4bb91c68
SM
1668static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1669 reg_syntax_t syntax,
1670 struct re_pattern_buffer *bufp));
1671static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1672static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1673 int arg1, int arg2));
1674static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1675 int arg, unsigned char *end));
1676static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1677 int arg1, int arg2, unsigned char *end));
01618498
SM
1678static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1679 re_char *p,
4bb91c68 1680 reg_syntax_t syntax));
01618498
SM
1681static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1682 re_char *pend,
4bb91c68 1683 reg_syntax_t syntax));
01618498
SM
1684static re_char *skip_one_char _RE_ARGS ((re_char *p));
1685static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1686 char *fastmap, const int multibyte));
fa9a63c5 1687
fa9a63c5 1688/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1689 translation. */
36595814 1690#define PATFETCH(c) \
2d1675e4
SM
1691 do { \
1692 int len; \
1693 if (p == pend) return REG_EEND; \
1694 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1695 p += len; \
fa9a63c5
RM
1696 } while (0)
1697
fa9a63c5
RM
1698
1699/* If `translate' is non-null, return translate[D], else just D. We
1700 cast the subscript to translate because some data is declared as
1701 `char *', to avoid warnings when a string constant is passed. But
1702 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1703#ifndef TRANSLATE
0b32bf0e 1704# define TRANSLATE(d) \
66f0296e 1705 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1706#endif
fa9a63c5
RM
1707
1708
1709/* Macros for outputting the compiled pattern into `buffer'. */
1710
1711/* If the buffer isn't allocated when it comes in, use this. */
1712#define INIT_BUF_SIZE 32
1713
4bb91c68 1714/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1715#define GET_BUFFER_SPACE(n) \
01618498 1716 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1717 EXTEND_BUFFER ()
1718
1719/* Make sure we have one more byte of buffer space and then add C to it. */
1720#define BUF_PUSH(c) \
1721 do { \
1722 GET_BUFFER_SPACE (1); \
1723 *b++ = (unsigned char) (c); \
1724 } while (0)
1725
1726
1727/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1728#define BUF_PUSH_2(c1, c2) \
1729 do { \
1730 GET_BUFFER_SPACE (2); \
1731 *b++ = (unsigned char) (c1); \
1732 *b++ = (unsigned char) (c2); \
1733 } while (0)
1734
1735
4bb91c68 1736/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1737#define BUF_PUSH_3(c1, c2, c3) \
1738 do { \
1739 GET_BUFFER_SPACE (3); \
1740 *b++ = (unsigned char) (c1); \
1741 *b++ = (unsigned char) (c2); \
1742 *b++ = (unsigned char) (c3); \
1743 } while (0)
1744
1745
1746/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1747 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1748#define STORE_JUMP(op, loc, to) \
1749 store_op1 (op, loc, (to) - (loc) - 3)
1750
1751/* Likewise, for a two-argument jump. */
1752#define STORE_JUMP2(op, loc, to, arg) \
1753 store_op2 (op, loc, (to) - (loc) - 3, arg)
1754
4bb91c68 1755/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1756#define INSERT_JUMP(op, loc, to) \
1757 insert_op1 (op, loc, (to) - (loc) - 3, b)
1758
1759/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1760#define INSERT_JUMP2(op, loc, to, arg) \
1761 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1762
1763
1764/* This is not an arbitrary limit: the arguments which represent offsets
275a3409 1765 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1766 be too small, many things would have to change. */
275a3409
RS
1767# define MAX_BUF_SIZE (1L << 15)
1768
1769#if 0 /* This is when we thought it could be 2^16 bytes. */
4bb91c68
SM
1770/* Any other compiler which, like MSC, has allocation limit below 2^16
1771 bytes will have to use approach similar to what was done below for
1772 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1773 reallocating to 0 bytes. Such thing is not going to work too well.
1774 You have been warned!! */
1775#if defined _MSC_VER && !defined WIN32
1776/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1777# define MAX_BUF_SIZE 65500L
1778#else
1779# define MAX_BUF_SIZE (1L << 16)
1780#endif
275a3409 1781#endif /* 0 */
fa9a63c5
RM
1782
1783/* Extend the buffer by twice its current size via realloc and
1784 reset the pointers that pointed into the old block to point to the
1785 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1786 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1787#if __BOUNDED_POINTERS__
1788# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1789# define MOVE_BUFFER_POINTER(P) \
1790 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1791# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1792 else \
1793 { \
1794 SET_HIGH_BOUND (b); \
1795 SET_HIGH_BOUND (begalt); \
1796 if (fixup_alt_jump) \
1797 SET_HIGH_BOUND (fixup_alt_jump); \
1798 if (laststart) \
1799 SET_HIGH_BOUND (laststart); \
1800 if (pending_exact) \
1801 SET_HIGH_BOUND (pending_exact); \
1802 }
1803#else
1804# define MOVE_BUFFER_POINTER(P) (P) += incr
1805# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1806#endif
fa9a63c5 1807#define EXTEND_BUFFER() \
25fe55af 1808 do { \
01618498 1809 re_char *old_buffer = bufp->buffer; \
25fe55af 1810 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1811 return REG_ESIZE; \
1812 bufp->allocated <<= 1; \
1813 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1814 bufp->allocated = MAX_BUF_SIZE; \
01618498 1815 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1816 if (bufp->buffer == NULL) \
1817 return REG_ESPACE; \
1818 /* If the buffer moved, move all the pointers into it. */ \
1819 if (old_buffer != bufp->buffer) \
1820 { \
4bb91c68
SM
1821 int incr = bufp->buffer - old_buffer; \
1822 MOVE_BUFFER_POINTER (b); \
1823 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1824 if (fixup_alt_jump) \
4bb91c68 1825 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1826 if (laststart) \
4bb91c68 1827 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1828 if (pending_exact) \
4bb91c68 1829 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1830 } \
4bb91c68 1831 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1832 } while (0)
1833
1834
1835/* Since we have one byte reserved for the register number argument to
1836 {start,stop}_memory, the maximum number of groups we can report
1837 things about is what fits in that byte. */
1838#define MAX_REGNUM 255
1839
1840/* But patterns can have more than `MAX_REGNUM' registers. We just
1841 ignore the excess. */
098d42af 1842typedef int regnum_t;
fa9a63c5
RM
1843
1844
1845/* Macros for the compile stack. */
1846
1847/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1848 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1849/* int may be not enough when sizeof(int) == 2. */
1850typedef long pattern_offset_t;
fa9a63c5
RM
1851
1852typedef struct
1853{
1854 pattern_offset_t begalt_offset;
1855 pattern_offset_t fixup_alt_jump;
5e69f11e 1856 pattern_offset_t laststart_offset;
fa9a63c5
RM
1857 regnum_t regnum;
1858} compile_stack_elt_t;
1859
1860
1861typedef struct
1862{
1863 compile_stack_elt_t *stack;
1864 unsigned size;
1865 unsigned avail; /* Offset of next open position. */
1866} compile_stack_type;
1867
1868
1869#define INIT_COMPILE_STACK_SIZE 32
1870
1871#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1872#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1873
4bb91c68 1874/* The next available element. */
fa9a63c5
RM
1875#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1876
77d11aec
RS
1877/* Explicit quit checking is only used on NTemacs. */
1878#if defined WINDOWSNT && defined emacs && defined QUIT
1879extern int immediate_quit;
1880# define IMMEDIATE_QUIT_CHECK \
1881 do { \
1882 if (immediate_quit) QUIT; \
1883 } while (0)
1884#else
1885# define IMMEDIATE_QUIT_CHECK ((void)0)
1886#endif
1887\f
b18215fc
RS
1888/* Structure to manage work area for range table. */
1889struct range_table_work_area
1890{
1891 int *table; /* actual work area. */
1892 int allocated; /* allocated size for work area in bytes. */
25fe55af 1893 int used; /* actually used size in words. */
96cc36cc 1894 int bits; /* flag to record character classes */
b18215fc
RS
1895};
1896
77d11aec
RS
1897/* Make sure that WORK_AREA can hold more N multibyte characters.
1898 This is used only in set_image_of_range and set_image_of_range_1.
1899 It expects WORK_AREA to be a pointer.
1900 If it can't get the space, it returns from the surrounding function. */
1901
1902#define EXTEND_RANGE_TABLE(work_area, n) \
1903 do { \
1904 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1905 { \
1906 extend_range_table_work_area (work_area); \
1907 if ((work_area)->table == 0) \
1908 return (REG_ESPACE); \
1909 } \
b18215fc
RS
1910 } while (0)
1911
96cc36cc
RS
1912#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1913 (work_area).bits |= (bit)
1914
14473664
SM
1915/* Bits used to implement the multibyte-part of the various character classes
1916 such as [:alnum:] in a charset's range table. */
1917#define BIT_WORD 0x1
1918#define BIT_LOWER 0x2
1919#define BIT_PUNCT 0x4
1920#define BIT_SPACE 0x8
1921#define BIT_UPPER 0x10
1922#define BIT_MULTIBYTE 0x20
96cc36cc 1923
36595814
SM
1924/* Set a range START..END to WORK_AREA.
1925 The range is passed through TRANSLATE, so START and END
1926 should be untranslated. */
77d11aec
RS
1927#define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1928 do { \
1929 int tem; \
1930 tem = set_image_of_range (&work_area, start, end, translate); \
1931 if (tem > 0) \
1932 FREE_STACK_RETURN (tem); \
b18215fc
RS
1933 } while (0)
1934
25fe55af 1935/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1936#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1937 do { \
1938 if ((work_area).table) \
1939 free ((work_area).table); \
1940 } while (0)
1941
96cc36cc 1942#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1943#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1944#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 1945#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 1946\f
b18215fc 1947
fa9a63c5 1948/* Set the bit for character C in a list. */
01618498 1949#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1950
1951
1952/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1953#define GET_UNSIGNED_NUMBER(num) \
c72b0edd
SM
1954 do { \
1955 if (p == pend) \
1956 FREE_STACK_RETURN (REG_EBRACE); \
1957 else \
1958 { \
1959 PATFETCH (c); \
1960 while ('0' <= c && c <= '9') \
1961 { \
1962 int prev; \
1963 if (num < 0) \
1964 num = 0; \
1965 prev = num; \
1966 num = num * 10 + c - '0'; \
1967 if (num / 10 != prev) \
1968 FREE_STACK_RETURN (REG_BADBR); \
1969 if (p == pend) \
1970 FREE_STACK_RETURN (REG_EBRACE); \
1971 PATFETCH (c); \
1972 } \
1973 } \
1974 } while (0)
77d11aec 1975\f
1fdab503 1976#if ! WIDE_CHAR_SUPPORT
01618498 1977
14473664 1978/* Map a string to the char class it names (if any). */
1fdab503 1979re_wctype_t
ada30c0e
SM
1980re_wctype (str)
1981 re_char *str;
14473664 1982{
ada30c0e 1983 const char *string = str;
14473664
SM
1984 if (STREQ (string, "alnum")) return RECC_ALNUM;
1985 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1986 else if (STREQ (string, "word")) return RECC_WORD;
1987 else if (STREQ (string, "ascii")) return RECC_ASCII;
1988 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1989 else if (STREQ (string, "graph")) return RECC_GRAPH;
1990 else if (STREQ (string, "lower")) return RECC_LOWER;
1991 else if (STREQ (string, "print")) return RECC_PRINT;
1992 else if (STREQ (string, "punct")) return RECC_PUNCT;
1993 else if (STREQ (string, "space")) return RECC_SPACE;
1994 else if (STREQ (string, "upper")) return RECC_UPPER;
1995 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1996 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
1997 else if (STREQ (string, "digit")) return RECC_DIGIT;
1998 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
1999 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2000 else if (STREQ (string, "blank")) return RECC_BLANK;
2001 else return 0;
2002}
2003
2004/* True iff CH is in the char class CC. */
1fdab503 2005boolean
14473664
SM
2006re_iswctype (ch, cc)
2007 int ch;
2008 re_wctype_t cc;
2009{
2010 switch (cc)
2011 {
0cdd06f8
SM
2012 case RECC_ALNUM: return ISALNUM (ch);
2013 case RECC_ALPHA: return ISALPHA (ch);
2014 case RECC_BLANK: return ISBLANK (ch);
2015 case RECC_CNTRL: return ISCNTRL (ch);
2016 case RECC_DIGIT: return ISDIGIT (ch);
2017 case RECC_GRAPH: return ISGRAPH (ch);
2018 case RECC_LOWER: return ISLOWER (ch);
2019 case RECC_PRINT: return ISPRINT (ch);
2020 case RECC_PUNCT: return ISPUNCT (ch);
2021 case RECC_SPACE: return ISSPACE (ch);
2022 case RECC_UPPER: return ISUPPER (ch);
2023 case RECC_XDIGIT: return ISXDIGIT (ch);
2024 case RECC_ASCII: return IS_REAL_ASCII (ch);
2025 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2026 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2027 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2028 case RECC_WORD: return ISWORD (ch);
2029 case RECC_ERROR: return false;
2030 default:
2031 abort();
14473664
SM
2032 }
2033}
fa9a63c5 2034
14473664
SM
2035/* Return a bit-pattern to use in the range-table bits to match multibyte
2036 chars of class CC. */
2037static int
2038re_wctype_to_bit (cc)
2039 re_wctype_t cc;
2040{
2041 switch (cc)
2042 {
2043 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2044 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2045 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2046 case RECC_LOWER: return BIT_LOWER;
2047 case RECC_UPPER: return BIT_UPPER;
2048 case RECC_PUNCT: return BIT_PUNCT;
2049 case RECC_SPACE: return BIT_SPACE;
14473664 2050 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2051 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2052 default:
2053 abort();
14473664
SM
2054 }
2055}
2056#endif
77d11aec
RS
2057\f
2058/* Filling in the work area of a range. */
2059
2060/* Actually extend the space in WORK_AREA. */
2061
2062static void
2063extend_range_table_work_area (work_area)
2064 struct range_table_work_area *work_area;
177c0ea7 2065{
77d11aec
RS
2066 work_area->allocated += 16 * sizeof (int);
2067 if (work_area->table)
2068 work_area->table
2069 = (int *) realloc (work_area->table, work_area->allocated);
2070 else
2071 work_area->table
2072 = (int *) malloc (work_area->allocated);
2073}
2074
2075#ifdef emacs
2076
2077/* Carefully find the ranges of codes that are equivalent
2078 under case conversion to the range start..end when passed through
2079 TRANSLATE. Handle the case where non-letters can come in between
2080 two upper-case letters (which happens in Latin-1).
2081 Also handle the case of groups of more than 2 case-equivalent chars.
2082
2083 The basic method is to look at consecutive characters and see
2084 if they can form a run that can be handled as one.
2085
2086 Returns -1 if successful, REG_ESPACE if ran out of space. */
2087
2088static int
2089set_image_of_range_1 (work_area, start, end, translate)
2090 RE_TRANSLATE_TYPE translate;
2091 struct range_table_work_area *work_area;
2092 re_wchar_t start, end;
2093{
2094 /* `one_case' indicates a character, or a run of characters,
2095 each of which is an isolate (no case-equivalents).
2096 This includes all ASCII non-letters.
2097
2098 `two_case' indicates a character, or a run of characters,
2099 each of which has two case-equivalent forms.
2100 This includes all ASCII letters.
2101
2102 `strange' indicates a character that has more than one
2103 case-equivalent. */
177c0ea7 2104
77d11aec
RS
2105 enum case_type {one_case, two_case, strange};
2106
2107 /* Describe the run that is in progress,
2108 which the next character can try to extend.
2109 If run_type is strange, that means there really is no run.
2110 If run_type is one_case, then run_start...run_end is the run.
2111 If run_type is two_case, then the run is run_start...run_end,
2112 and the case-equivalents end at run_eqv_end. */
2113
2114 enum case_type run_type = strange;
2115 int run_start, run_end, run_eqv_end;
2116
2117 Lisp_Object eqv_table;
2118
2119 if (!RE_TRANSLATE_P (translate))
2120 {
b7c12565 2121 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2122 work_area->table[work_area->used++] = (start);
2123 work_area->table[work_area->used++] = (end);
b7c12565 2124 return -1;
77d11aec
RS
2125 }
2126
2127 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2128
77d11aec
RS
2129 for (; start <= end; start++)
2130 {
2131 enum case_type this_type;
2132 int eqv = RE_TRANSLATE (eqv_table, start);
2133 int minchar, maxchar;
2134
2135 /* Classify this character */
2136 if (eqv == start)
2137 this_type = one_case;
2138 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2139 this_type = two_case;
2140 else
2141 this_type = strange;
2142
2143 if (start < eqv)
2144 minchar = start, maxchar = eqv;
2145 else
2146 minchar = eqv, maxchar = start;
2147
2148 /* Can this character extend the run in progress? */
2149 if (this_type == strange || this_type != run_type
2150 || !(minchar == run_end + 1
2151 && (run_type == two_case
2152 ? maxchar == run_eqv_end + 1 : 1)))
2153 {
2154 /* No, end the run.
2155 Record each of its equivalent ranges. */
2156 if (run_type == one_case)
2157 {
2158 EXTEND_RANGE_TABLE (work_area, 2);
2159 work_area->table[work_area->used++] = run_start;
2160 work_area->table[work_area->used++] = run_end;
2161 }
2162 else if (run_type == two_case)
2163 {
2164 EXTEND_RANGE_TABLE (work_area, 4);
2165 work_area->table[work_area->used++] = run_start;
2166 work_area->table[work_area->used++] = run_end;
2167 work_area->table[work_area->used++]
2168 = RE_TRANSLATE (eqv_table, run_start);
2169 work_area->table[work_area->used++]
2170 = RE_TRANSLATE (eqv_table, run_end);
2171 }
2172 run_type = strange;
2173 }
177c0ea7 2174
77d11aec
RS
2175 if (this_type == strange)
2176 {
2177 /* For a strange character, add each of its equivalents, one
2178 by one. Don't start a range. */
2179 do
2180 {
2181 EXTEND_RANGE_TABLE (work_area, 2);
2182 work_area->table[work_area->used++] = eqv;
2183 work_area->table[work_area->used++] = eqv;
2184 eqv = RE_TRANSLATE (eqv_table, eqv);
2185 }
2186 while (eqv != start);
2187 }
2188
2189 /* Add this char to the run, or start a new run. */
2190 else if (run_type == strange)
2191 {
2192 /* Initialize a new range. */
2193 run_type = this_type;
2194 run_start = start;
2195 run_end = start;
2196 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2197 }
2198 else
2199 {
2200 /* Extend a running range. */
2201 run_end = minchar;
2202 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2203 }
2204 }
2205
2206 /* If a run is still in progress at the end, finish it now
2207 by recording its equivalent ranges. */
2208 if (run_type == one_case)
2209 {
2210 EXTEND_RANGE_TABLE (work_area, 2);
2211 work_area->table[work_area->used++] = run_start;
2212 work_area->table[work_area->used++] = run_end;
2213 }
2214 else if (run_type == two_case)
2215 {
2216 EXTEND_RANGE_TABLE (work_area, 4);
2217 work_area->table[work_area->used++] = run_start;
2218 work_area->table[work_area->used++] = run_end;
2219 work_area->table[work_area->used++]
2220 = RE_TRANSLATE (eqv_table, run_start);
2221 work_area->table[work_area->used++]
2222 = RE_TRANSLATE (eqv_table, run_end);
2223 }
2224
2225 return -1;
2226}
36595814 2227
77d11aec 2228#endif /* emacs */
36595814 2229
b7c12565 2230/* Record the the image of the range start..end when passed through
36595814
SM
2231 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2232 and is not even necessarily contiguous.
b7c12565
RS
2233 Normally we approximate it with the smallest contiguous range that contains
2234 all the chars we need. However, for Latin-1 we go to extra effort
2235 to do a better job.
2236
2237 This function is not called for ASCII ranges.
77d11aec
RS
2238
2239 Returns -1 if successful, REG_ESPACE if ran out of space. */
2240
2241static int
36595814
SM
2242set_image_of_range (work_area, start, end, translate)
2243 RE_TRANSLATE_TYPE translate;
2244 struct range_table_work_area *work_area;
2245 re_wchar_t start, end;
2246{
77d11aec
RS
2247 re_wchar_t cmin, cmax;
2248
2249#ifdef emacs
2250 /* For Latin-1 ranges, use set_image_of_range_1
2251 to get proper handling of ranges that include letters and nonletters.
b7c12565 2252 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2253 For other character sets, we don't bother to get this right. */
b7c12565
RS
2254 if (RE_TRANSLATE_P (translate) && start < 04400
2255 && !(start < 04200 && end >= 04377))
77d11aec 2256 {
b7c12565 2257 int newend;
77d11aec 2258 int tem;
b7c12565
RS
2259 newend = end;
2260 if (newend > 04377)
2261 newend = 04377;
2262 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2263 if (tem > 0)
2264 return tem;
2265
2266 start = 04400;
2267 if (end < 04400)
2268 return -1;
2269 }
2270#endif
2271
b7c12565
RS
2272 EXTEND_RANGE_TABLE (work_area, 2);
2273 work_area->table[work_area->used++] = (start);
2274 work_area->table[work_area->used++] = (end);
2275
2276 cmin = -1, cmax = -1;
77d11aec 2277
36595814 2278 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2279 {
2280 int ch;
77d11aec 2281
b7c12565
RS
2282 for (ch = start; ch <= end; ch++)
2283 {
2284 re_wchar_t c = TRANSLATE (ch);
2285 if (! (start <= c && c <= end))
2286 {
2287 if (cmin == -1)
2288 cmin = c, cmax = c;
2289 else
2290 {
2291 cmin = MIN (cmin, c);
2292 cmax = MAX (cmax, c);
2293 }
2294 }
2295 }
2296
2297 if (cmin != -1)
2298 {
2299 EXTEND_RANGE_TABLE (work_area, 2);
2300 work_area->table[work_area->used++] = (cmin);
2301 work_area->table[work_area->used++] = (cmax);
2302 }
2303 }
36595814 2304
77d11aec
RS
2305 return -1;
2306}
fa9a63c5
RM
2307\f
2308#ifndef MATCH_MAY_ALLOCATE
2309
2310/* If we cannot allocate large objects within re_match_2_internal,
2311 we make the fail stack and register vectors global.
2312 The fail stack, we grow to the maximum size when a regexp
2313 is compiled.
2314 The register vectors, we adjust in size each time we
2315 compile a regexp, according to the number of registers it needs. */
2316
2317static fail_stack_type fail_stack;
2318
2319/* Size with which the following vectors are currently allocated.
2320 That is so we can make them bigger as needed,
4bb91c68 2321 but never make them smaller. */
fa9a63c5
RM
2322static int regs_allocated_size;
2323
66f0296e
SM
2324static re_char ** regstart, ** regend;
2325static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2326
2327/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2328 but don't make them smaller. */
fa9a63c5
RM
2329
2330static
2331regex_grow_registers (num_regs)
2332 int num_regs;
2333{
2334 if (num_regs > regs_allocated_size)
2335 {
66f0296e
SM
2336 RETALLOC_IF (regstart, num_regs, re_char *);
2337 RETALLOC_IF (regend, num_regs, re_char *);
2338 RETALLOC_IF (best_regstart, num_regs, re_char *);
2339 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2340
2341 regs_allocated_size = num_regs;
2342 }
2343}
2344
2345#endif /* not MATCH_MAY_ALLOCATE */
2346\f
99633e97
SM
2347static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2348 compile_stack,
2349 regnum_t regnum));
2350
fa9a63c5
RM
2351/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2352 Returns one of error codes defined in `regex.h', or zero for success.
2353
2354 Assumes the `allocated' (and perhaps `buffer') and `translate'
2355 fields are set in BUFP on entry.
2356
2357 If it succeeds, results are put in BUFP (if it returns an error, the
2358 contents of BUFP are undefined):
2359 `buffer' is the compiled pattern;
2360 `syntax' is set to SYNTAX;
2361 `used' is set to the length of the compiled pattern;
2362 `fastmap_accurate' is zero;
2363 `re_nsub' is the number of subexpressions in PATTERN;
2364 `not_bol' and `not_eol' are zero;
5e69f11e 2365
c0f9ea08 2366 The `fastmap' field is neither examined nor set. */
fa9a63c5 2367
505bde11
SM
2368/* Insert the `jump' from the end of last alternative to "here".
2369 The space for the jump has already been allocated. */
2370#define FIXUP_ALT_JUMP() \
2371do { \
2372 if (fixup_alt_jump) \
2373 STORE_JUMP (jump, fixup_alt_jump, b); \
2374} while (0)
2375
2376
fa9a63c5
RM
2377/* Return, freeing storage we allocated. */
2378#define FREE_STACK_RETURN(value) \
b18215fc
RS
2379 do { \
2380 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2381 free (compile_stack.stack); \
2382 return value; \
2383 } while (0)
fa9a63c5
RM
2384
2385static reg_errcode_t
2386regex_compile (pattern, size, syntax, bufp)
66f0296e 2387 re_char *pattern;
4bb91c68 2388 size_t size;
fa9a63c5
RM
2389 reg_syntax_t syntax;
2390 struct re_pattern_buffer *bufp;
2391{
01618498
SM
2392 /* We fetch characters from PATTERN here. */
2393 register re_wchar_t c, c1;
5e69f11e 2394
fa9a63c5 2395 /* A random temporary spot in PATTERN. */
66f0296e 2396 re_char *p1;
fa9a63c5
RM
2397
2398 /* Points to the end of the buffer, where we should append. */
2399 register unsigned char *b;
5e69f11e 2400
fa9a63c5
RM
2401 /* Keeps track of unclosed groups. */
2402 compile_stack_type compile_stack;
2403
2404 /* Points to the current (ending) position in the pattern. */
22336245
RS
2405#ifdef AIX
2406 /* `const' makes AIX compiler fail. */
66f0296e 2407 unsigned char *p = pattern;
22336245 2408#else
66f0296e 2409 re_char *p = pattern;
22336245 2410#endif
66f0296e 2411 re_char *pend = pattern + size;
5e69f11e 2412
fa9a63c5 2413 /* How to translate the characters in the pattern. */
6676cb1c 2414 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2415
2416 /* Address of the count-byte of the most recently inserted `exactn'
2417 command. This makes it possible to tell if a new exact-match
2418 character can be added to that command or if the character requires
2419 a new `exactn' command. */
2420 unsigned char *pending_exact = 0;
2421
2422 /* Address of start of the most recently finished expression.
2423 This tells, e.g., postfix * where to find the start of its
2424 operand. Reset at the beginning of groups and alternatives. */
2425 unsigned char *laststart = 0;
2426
2427 /* Address of beginning of regexp, or inside of last group. */
2428 unsigned char *begalt;
2429
2430 /* Place in the uncompiled pattern (i.e., the {) to
2431 which to go back if the interval is invalid. */
66f0296e 2432 re_char *beg_interval;
5e69f11e 2433
fa9a63c5 2434 /* Address of the place where a forward jump should go to the end of
25fe55af 2435 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2436 last -- ends with a forward jump of this sort. */
2437 unsigned char *fixup_alt_jump = 0;
2438
2439 /* Counts open-groups as they are encountered. Remembered for the
2440 matching close-group on the compile stack, so the same register
2441 number is put in the stop_memory as the start_memory. */
2442 regnum_t regnum = 0;
2443
b18215fc
RS
2444 /* Work area for range table of charset. */
2445 struct range_table_work_area range_table_work;
2446
2d1675e4
SM
2447 /* If the object matched can contain multibyte characters. */
2448 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2449
f9b0fd99
RS
2450 /* Nonzero if we have pushed down into a subpattern. */
2451 int in_subpattern = 0;
2452
2453 /* These hold the values of p, pattern, and pend from the main
2454 pattern when we have pushed into a subpattern. */
2455 re_char *main_p;
2456 re_char *main_pattern;
2457 re_char *main_pend;
2458
fa9a63c5 2459#ifdef DEBUG
99633e97 2460 debug++;
fa9a63c5 2461 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2462 if (debug > 0)
fa9a63c5
RM
2463 {
2464 unsigned debug_count;
5e69f11e 2465
fa9a63c5 2466 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2467 putchar (pattern[debug_count]);
fa9a63c5
RM
2468 putchar ('\n');
2469 }
2470#endif /* DEBUG */
2471
2472 /* Initialize the compile stack. */
2473 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2474 if (compile_stack.stack == NULL)
2475 return REG_ESPACE;
2476
2477 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2478 compile_stack.avail = 0;
2479
b18215fc
RS
2480 range_table_work.table = 0;
2481 range_table_work.allocated = 0;
2482
fa9a63c5
RM
2483 /* Initialize the pattern buffer. */
2484 bufp->syntax = syntax;
2485 bufp->fastmap_accurate = 0;
2486 bufp->not_bol = bufp->not_eol = 0;
2487
2488 /* Set `used' to zero, so that if we return an error, the pattern
2489 printer (for debugging) will think there's no pattern. We reset it
2490 at the end. */
2491 bufp->used = 0;
5e69f11e 2492
fa9a63c5 2493 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2494 bufp->re_nsub = 0;
fa9a63c5 2495
0b32bf0e 2496#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2497 /* Initialize the syntax table. */
2498 init_syntax_once ();
2499#endif
2500
2501 if (bufp->allocated == 0)
2502 {
2503 if (bufp->buffer)
2504 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
2505 enough space. This loses if buffer's address is bogus, but
2506 that is the user's responsibility. */
2507 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2508 }
fa9a63c5 2509 else
25fe55af
RS
2510 { /* Caller did not allocate a buffer. Do it for them. */
2511 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2512 }
fa9a63c5
RM
2513 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2514
2515 bufp->allocated = INIT_BUF_SIZE;
2516 }
2517
2518 begalt = b = bufp->buffer;
2519
2520 /* Loop through the uncompiled pattern until we're at the end. */
f9b0fd99 2521 while (1)
fa9a63c5 2522 {
f9b0fd99
RS
2523 if (p == pend)
2524 {
2525 /* If this is the end of an included regexp,
2526 pop back to the main regexp and try again. */
2527 if (in_subpattern)
2528 {
2529 in_subpattern = 0;
2530 pattern = main_pattern;
2531 p = main_p;
2532 pend = main_pend;
2533 continue;
2534 }
2535 /* If this is the end of the main regexp, we are done. */
2536 break;
2537 }
2538
fa9a63c5
RM
2539 PATFETCH (c);
2540
2541 switch (c)
25fe55af 2542 {
f9b0fd99
RS
2543 case ' ':
2544 {
2545 re_char *p1 = p;
2546
2547 /* If there's no special whitespace regexp, treat
4fb680cd
RS
2548 spaces normally. And don't try to do this recursively. */
2549 if (!whitespace_regexp || in_subpattern)
f9b0fd99
RS
2550 goto normal_char;
2551
2552 /* Peek past following spaces. */
2553 while (p1 != pend)
2554 {
2555 if (*p1 != ' ')
2556 break;
2557 p1++;
2558 }
2559 /* If the spaces are followed by a repetition op,
2560 treat them normally. */
c721eee5
RS
2561 if (p1 != pend
2562 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
f9b0fd99
RS
2563 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2564 goto normal_char;
2565
2566 /* Replace the spaces with the whitespace regexp. */
2567 in_subpattern = 1;
2568 main_p = p1;
2569 main_pend = pend;
2570 main_pattern = pattern;
2571 p = pattern = whitespace_regexp;
2572 pend = p + strlen (p);
2573 break;
2574 }
2575
25fe55af
RS
2576 case '^':
2577 {
2578 if ( /* If at start of pattern, it's an operator. */
2579 p == pattern + 1
2580 /* If context independent, it's an operator. */
2581 || syntax & RE_CONTEXT_INDEP_ANCHORS
2582 /* Otherwise, depends on what's come before. */
2583 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2584 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2585 else
2586 goto normal_char;
2587 }
2588 break;
2589
2590
2591 case '$':
2592 {
2593 if ( /* If at end of pattern, it's an operator. */
2594 p == pend
2595 /* If context independent, it's an operator. */
2596 || syntax & RE_CONTEXT_INDEP_ANCHORS
2597 /* Otherwise, depends on what's next. */
2598 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2599 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2600 else
2601 goto normal_char;
2602 }
2603 break;
fa9a63c5
RM
2604
2605
2606 case '+':
25fe55af
RS
2607 case '?':
2608 if ((syntax & RE_BK_PLUS_QM)
2609 || (syntax & RE_LIMITED_OPS))
2610 goto normal_char;
2611 handle_plus:
2612 case '*':
2613 /* If there is no previous pattern... */
2614 if (!laststart)
2615 {
2616 if (syntax & RE_CONTEXT_INVALID_OPS)
2617 FREE_STACK_RETURN (REG_BADRPT);
2618 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2619 goto normal_char;
2620 }
2621
2622 {
25fe55af 2623 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2624 boolean zero_times_ok = 0, many_times_ok = 0;
2625 boolean greedy = 1;
25fe55af
RS
2626
2627 /* If there is a sequence of repetition chars, collapse it
2628 down to just one (the right one). We can't combine
2629 interval operators with these because of, e.g., `a{2}*',
2630 which should only match an even number of `a's. */
2631
2632 for (;;)
2633 {
0b32bf0e 2634 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2635 && c == '?' && (zero_times_ok || many_times_ok))
2636 greedy = 0;
2637 else
2638 {
2639 zero_times_ok |= c != '+';
2640 many_times_ok |= c != '?';
2641 }
25fe55af
RS
2642
2643 if (p == pend)
2644 break;
ed0767d8
SM
2645 else if (*p == '*'
2646 || (!(syntax & RE_BK_PLUS_QM)
2647 && (*p == '+' || *p == '?')))
25fe55af 2648 ;
ed0767d8 2649 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2650 {
ed0767d8
SM
2651 if (p+1 == pend)
2652 FREE_STACK_RETURN (REG_EESCAPE);
2653 if (p[1] == '+' || p[1] == '?')
2654 PATFETCH (c); /* Gobble up the backslash. */
2655 else
2656 break;
25fe55af
RS
2657 }
2658 else
ed0767d8 2659 break;
25fe55af 2660 /* If we get here, we found another repeat character. */
ed0767d8
SM
2661 PATFETCH (c);
2662 }
25fe55af
RS
2663
2664 /* Star, etc. applied to an empty pattern is equivalent
2665 to an empty pattern. */
4e8a9132 2666 if (!laststart || laststart == b)
25fe55af
RS
2667 break;
2668
2669 /* Now we know whether or not zero matches is allowed
2670 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2671 if (greedy)
2672 {
99633e97 2673 if (many_times_ok)
4e8a9132
SM
2674 {
2675 boolean simple = skip_one_char (laststart) == b;
2676 unsigned int startoffset = 0;
f6a3f532 2677 re_opcode_t ofj =
01618498 2678 /* Check if the loop can match the empty string. */
6df42991
SM
2679 (simple || !analyse_first (laststart, b, NULL, 0))
2680 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2681 assert (skip_one_char (laststart) <= b);
177c0ea7 2682
4e8a9132
SM
2683 if (!zero_times_ok && simple)
2684 { /* Since simple * loops can be made faster by using
2685 on_failure_keep_string_jump, we turn simple P+
2686 into PP* if P is simple. */
2687 unsigned char *p1, *p2;
2688 startoffset = b - laststart;
2689 GET_BUFFER_SPACE (startoffset);
2690 p1 = b; p2 = laststart;
2691 while (p2 < p1)
2692 *b++ = *p2++;
2693 zero_times_ok = 1;
99633e97 2694 }
4e8a9132
SM
2695
2696 GET_BUFFER_SPACE (6);
2697 if (!zero_times_ok)
2698 /* A + loop. */
f6a3f532 2699 STORE_JUMP (ofj, b, b + 6);
99633e97 2700 else
4e8a9132
SM
2701 /* Simple * loops can use on_failure_keep_string_jump
2702 depending on what follows. But since we don't know
2703 that yet, we leave the decision up to
2704 on_failure_jump_smart. */
f6a3f532 2705 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2706 laststart + startoffset, b + 6);
99633e97 2707 b += 3;
4e8a9132 2708 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2709 b += 3;
2710 }
2711 else
2712 {
4e8a9132
SM
2713 /* A simple ? pattern. */
2714 assert (zero_times_ok);
2715 GET_BUFFER_SPACE (3);
2716 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2717 b += 3;
2718 }
1c8c6d39
DL
2719 }
2720 else /* not greedy */
2721 { /* I wish the greedy and non-greedy cases could be merged. */
2722
0683b6fa 2723 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2724 if (many_times_ok)
2725 {
f6a3f532
SM
2726 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2727
6df42991
SM
2728 /* The non-greedy multiple match looks like
2729 a repeat..until: we only need a conditional jump
2730 at the end of the loop. */
f6a3f532
SM
2731 if (emptyp) BUF_PUSH (no_op);
2732 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2733 : on_failure_jump, b, laststart);
1c8c6d39
DL
2734 b += 3;
2735 if (zero_times_ok)
2736 {
2737 /* The repeat...until naturally matches one or more.
2738 To also match zero times, we need to first jump to
6df42991 2739 the end of the loop (its conditional jump). */
1c8c6d39
DL
2740 INSERT_JUMP (jump, laststart, b);
2741 b += 3;
2742 }
2743 }
2744 else
2745 {
2746 /* non-greedy a?? */
1c8c6d39
DL
2747 INSERT_JUMP (jump, laststart, b + 3);
2748 b += 3;
2749 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2750 b += 3;
2751 }
2752 }
2753 }
4e8a9132 2754 pending_exact = 0;
fa9a63c5
RM
2755 break;
2756
2757
2758 case '.':
25fe55af
RS
2759 laststart = b;
2760 BUF_PUSH (anychar);
2761 break;
fa9a63c5
RM
2762
2763
25fe55af
RS
2764 case '[':
2765 {
b18215fc 2766 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2767
25fe55af 2768 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2769
25fe55af
RS
2770 /* Ensure that we have enough space to push a charset: the
2771 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2772 GET_BUFFER_SPACE (34);
2773
25fe55af 2774 laststart = b;
e318085a 2775
25fe55af
RS
2776 /* We test `*p == '^' twice, instead of using an if
2777 statement, so we only need one BUF_PUSH. */
2778 BUF_PUSH (*p == '^' ? charset_not : charset);
2779 if (*p == '^')
2780 p++;
e318085a 2781
25fe55af
RS
2782 /* Remember the first position in the bracket expression. */
2783 p1 = p;
e318085a 2784
25fe55af
RS
2785 /* Push the number of bytes in the bitmap. */
2786 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2787
25fe55af
RS
2788 /* Clear the whole map. */
2789 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2790
25fe55af
RS
2791 /* charset_not matches newline according to a syntax bit. */
2792 if ((re_opcode_t) b[-2] == charset_not
2793 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2794 SET_LIST_BIT ('\n');
fa9a63c5 2795
25fe55af
RS
2796 /* Read in characters and ranges, setting map bits. */
2797 for (;;)
2798 {
b18215fc 2799 boolean escaped_char = false;
2d1675e4 2800 const unsigned char *p2 = p;
e318085a 2801
25fe55af 2802 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2803
36595814
SM
2804 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2805 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2806 So the translation is done later in a loop. Example:
2807 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2808 PATFETCH (c);
e318085a 2809
25fe55af
RS
2810 /* \ might escape characters inside [...] and [^...]. */
2811 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2812 {
2813 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2814
2815 PATFETCH (c);
b18215fc 2816 escaped_char = true;
25fe55af 2817 }
b18215fc
RS
2818 else
2819 {
657fcfbd
RS
2820 /* Could be the end of the bracket expression. If it's
2821 not (i.e., when the bracket expression is `[]' so
2822 far), the ']' character bit gets set way below. */
2d1675e4 2823 if (c == ']' && p2 != p1)
657fcfbd 2824 break;
25fe55af 2825 }
b18215fc 2826
b18215fc
RS
2827 /* What should we do for the character which is
2828 greater than 0x7F, but not BASE_LEADING_CODE_P?
2829 XXX */
2830
25fe55af
RS
2831 /* See if we're at the beginning of a possible character
2832 class. */
b18215fc 2833
2d1675e4
SM
2834 if (!escaped_char &&
2835 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2836 {
2837 /* Leave room for the null. */
14473664 2838 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2839 const unsigned char *class_beg;
b18215fc 2840
25fe55af
RS
2841 PATFETCH (c);
2842 c1 = 0;
ed0767d8 2843 class_beg = p;
b18215fc 2844
25fe55af
RS
2845 /* If pattern is `[[:'. */
2846 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2847
25fe55af
RS
2848 for (;;)
2849 {
14473664
SM
2850 PATFETCH (c);
2851 if ((c == ':' && *p == ']') || p == pend)
2852 break;
2853 if (c1 < CHAR_CLASS_MAX_LENGTH)
2854 str[c1++] = c;
2855 else
2856 /* This is in any case an invalid class name. */
2857 str[0] = '\0';
25fe55af
RS
2858 }
2859 str[c1] = '\0';
b18215fc
RS
2860
2861 /* If isn't a word bracketed by `[:' and `:]':
2862 undo the ending character, the letters, and
2863 leave the leading `:' and `[' (but set bits for
2864 them). */
25fe55af
RS
2865 if (c == ':' && *p == ']')
2866 {
36595814 2867 re_wchar_t ch;
14473664
SM
2868 re_wctype_t cc;
2869
2870 cc = re_wctype (str);
2871
2872 if (cc == 0)
fa9a63c5
RM
2873 FREE_STACK_RETURN (REG_ECTYPE);
2874
14473664
SM
2875 /* Throw away the ] at the end of the character
2876 class. */
2877 PATFETCH (c);
fa9a63c5 2878
14473664 2879 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2880
96cc36cc
RS
2881 /* Most character classes in a multibyte match
2882 just set a flag. Exceptions are is_blank,
2883 is_digit, is_cntrl, and is_xdigit, since
2884 they can only match ASCII characters. We
14473664
SM
2885 don't need to handle them for multibyte.
2886 They are distinguished by a negative wctype. */
96cc36cc 2887
2d1675e4 2888 if (multibyte)
14473664
SM
2889 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2890 re_wctype_to_bit (cc));
96cc36cc 2891
14473664 2892 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
25fe55af 2893 {
7ae68633 2894 int translated = TRANSLATE (ch);
14473664 2895 if (re_iswctype (btowc (ch), cc))
96cc36cc 2896 SET_LIST_BIT (translated);
25fe55af 2897 }
b18215fc
RS
2898
2899 /* Repeat the loop. */
2900 continue;
25fe55af
RS
2901 }
2902 else
2903 {
ed0767d8
SM
2904 /* Go back to right after the "[:". */
2905 p = class_beg;
25fe55af 2906 SET_LIST_BIT ('[');
b18215fc
RS
2907
2908 /* Because the `:' may starts the range, we
2909 can't simply set bit and repeat the loop.
25fe55af 2910 Instead, just set it to C and handle below. */
b18215fc 2911 c = ':';
25fe55af
RS
2912 }
2913 }
b18215fc
RS
2914
2915 if (p < pend && p[0] == '-' && p[1] != ']')
2916 {
2917
2918 /* Discard the `-'. */
2919 PATFETCH (c1);
2920
2921 /* Fetch the character which ends the range. */
2922 PATFETCH (c1);
b18215fc 2923
b54f61ed 2924 if (SINGLE_BYTE_CHAR_P (c))
e934739e 2925 {
b54f61ed
KH
2926 if (! SINGLE_BYTE_CHAR_P (c1))
2927 {
3ff2446d
KH
2928 /* Handle a range starting with a
2929 character of less than 256, and ending
2930 with a character of not less than 256.
2931 Split that into two ranges, the low one
2932 ending at 0377, and the high one
2933 starting at the smallest character in
2934 the charset of C1 and ending at C1. */
b54f61ed 2935 int charset = CHAR_CHARSET (c1);
36595814
SM
2936 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2937
b54f61ed
KH
2938 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2939 c2, c1);
333526e0 2940 c1 = 0377;
b54f61ed 2941 }
e934739e
RS
2942 }
2943 else if (!SAME_CHARSET_P (c, c1))
b3e4c897 2944 FREE_STACK_RETURN (REG_ERANGEX);
e318085a 2945 }
25fe55af 2946 else
b18215fc
RS
2947 /* Range from C to C. */
2948 c1 = c;
2949
2950 /* Set the range ... */
2951 if (SINGLE_BYTE_CHAR_P (c))
2952 /* ... into bitmap. */
25fe55af 2953 {
01618498 2954 re_wchar_t this_char;
36595814 2955 re_wchar_t range_start = c, range_end = c1;
b18215fc
RS
2956
2957 /* If the start is after the end, the range is empty. */
2958 if (range_start > range_end)
2959 {
2960 if (syntax & RE_NO_EMPTY_RANGES)
2961 FREE_STACK_RETURN (REG_ERANGE);
2962 /* Else, repeat the loop. */
2963 }
2964 else
2965 {
2966 for (this_char = range_start; this_char <= range_end;
2967 this_char++)
2968 SET_LIST_BIT (TRANSLATE (this_char));
e934739e 2969 }
25fe55af 2970 }
e318085a 2971 else
b18215fc
RS
2972 /* ... into range table. */
2973 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2974 }
2975
25fe55af
RS
2976 /* Discard any (non)matching list bytes that are all 0 at the
2977 end of the map. Decrease the map-length byte too. */
2978 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2979 b[-1]--;
2980 b += b[-1];
fa9a63c5 2981
96cc36cc
RS
2982 /* Build real range table from work area. */
2983 if (RANGE_TABLE_WORK_USED (range_table_work)
2984 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
2985 {
2986 int i;
2987 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2988
b18215fc 2989 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
2990 bytes for flags, two for COUNT, and three bytes for
2991 each character. */
2992 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 2993
b18215fc
RS
2994 /* Indicate the existence of range table. */
2995 laststart[1] |= 0x80;
fa9a63c5 2996
96cc36cc
RS
2997 /* Store the character class flag bits into the range table.
2998 If not in emacs, these flag bits are always 0. */
2999 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3000 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3001
b18215fc
RS
3002 STORE_NUMBER_AND_INCR (b, used / 2);
3003 for (i = 0; i < used; i++)
3004 STORE_CHARACTER_AND_INCR
3005 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3006 }
25fe55af
RS
3007 }
3008 break;
fa9a63c5
RM
3009
3010
b18215fc 3011 case '(':
25fe55af
RS
3012 if (syntax & RE_NO_BK_PARENS)
3013 goto handle_open;
3014 else
3015 goto normal_char;
fa9a63c5
RM
3016
3017
25fe55af
RS
3018 case ')':
3019 if (syntax & RE_NO_BK_PARENS)
3020 goto handle_close;
3021 else
3022 goto normal_char;
e318085a
RS
3023
3024
25fe55af
RS
3025 case '\n':
3026 if (syntax & RE_NEWLINE_ALT)
3027 goto handle_alt;
3028 else
3029 goto normal_char;
e318085a
RS
3030
3031
b18215fc 3032 case '|':
25fe55af
RS
3033 if (syntax & RE_NO_BK_VBAR)
3034 goto handle_alt;
3035 else
3036 goto normal_char;
3037
3038
3039 case '{':
3040 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3041 goto handle_interval;
3042 else
3043 goto normal_char;
3044
3045
3046 case '\\':
3047 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3048
3049 /* Do not translate the character after the \, so that we can
3050 distinguish, e.g., \B from \b, even if we normally would
3051 translate, e.g., B to b. */
36595814 3052 PATFETCH (c);
25fe55af
RS
3053
3054 switch (c)
3055 {
3056 case '(':
3057 if (syntax & RE_NO_BK_PARENS)
3058 goto normal_backslash;
3059
3060 handle_open:
505bde11
SM
3061 {
3062 int shy = 0;
3063 if (p+1 < pend)
3064 {
3065 /* Look for a special (?...) construct */
ed0767d8 3066 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3067 {
ed0767d8 3068 PATFETCH (c); /* Gobble up the '?'. */
505bde11
SM
3069 PATFETCH (c);
3070 switch (c)
3071 {
3072 case ':': shy = 1; break;
3073 default:
3074 /* Only (?:...) is supported right now. */
3075 FREE_STACK_RETURN (REG_BADPAT);
3076 }
3077 }
505bde11
SM
3078 }
3079
3080 if (!shy)
3081 {
3082 bufp->re_nsub++;
3083 regnum++;
3084 }
25fe55af 3085
99633e97
SM
3086 if (COMPILE_STACK_FULL)
3087 {
3088 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3089 compile_stack_elt_t);
3090 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3091
99633e97
SM
3092 compile_stack.size <<= 1;
3093 }
25fe55af 3094
99633e97
SM
3095 /* These are the values to restore when we hit end of this
3096 group. They are all relative offsets, so that if the
3097 whole pattern moves because of realloc, they will still
3098 be valid. */
3099 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3100 COMPILE_STACK_TOP.fixup_alt_jump
3101 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3102 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3103 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3104
3105 /* Do not push a
3106 start_memory for groups beyond the last one we can
3107 represent in the compiled pattern. */
3108 if (regnum <= MAX_REGNUM && !shy)
3109 BUF_PUSH_2 (start_memory, regnum);
3110
3111 compile_stack.avail++;
3112
3113 fixup_alt_jump = 0;
3114 laststart = 0;
3115 begalt = b;
3116 /* If we've reached MAX_REGNUM groups, then this open
3117 won't actually generate any code, so we'll have to
3118 clear pending_exact explicitly. */
3119 pending_exact = 0;
3120 break;
505bde11 3121 }
25fe55af
RS
3122
3123 case ')':
3124 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3125
3126 if (COMPILE_STACK_EMPTY)
505bde11
SM
3127 {
3128 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3129 goto normal_backslash;
3130 else
3131 FREE_STACK_RETURN (REG_ERPAREN);
3132 }
25fe55af
RS
3133
3134 handle_close:
505bde11 3135 FIXUP_ALT_JUMP ();
25fe55af
RS
3136
3137 /* See similar code for backslashed left paren above. */
3138 if (COMPILE_STACK_EMPTY)
505bde11
SM
3139 {
3140 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3141 goto normal_char;
3142 else
3143 FREE_STACK_RETURN (REG_ERPAREN);
3144 }
25fe55af
RS
3145
3146 /* Since we just checked for an empty stack above, this
3147 ``can't happen''. */
3148 assert (compile_stack.avail != 0);
3149 {
3150 /* We don't just want to restore into `regnum', because
3151 later groups should continue to be numbered higher,
3152 as in `(ab)c(de)' -- the second group is #2. */
3153 regnum_t this_group_regnum;
3154
3155 compile_stack.avail--;
3156 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3157 fixup_alt_jump
3158 = COMPILE_STACK_TOP.fixup_alt_jump
3159 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3160 : 0;
3161 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3162 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3163 /* If we've reached MAX_REGNUM groups, then this open
3164 won't actually generate any code, so we'll have to
3165 clear pending_exact explicitly. */
3166 pending_exact = 0;
e318085a 3167
25fe55af
RS
3168 /* We're at the end of the group, so now we know how many
3169 groups were inside this one. */
505bde11
SM
3170 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3171 BUF_PUSH_2 (stop_memory, this_group_regnum);
25fe55af
RS
3172 }
3173 break;
3174
3175
3176 case '|': /* `\|'. */
3177 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3178 goto normal_backslash;
3179 handle_alt:
3180 if (syntax & RE_LIMITED_OPS)
3181 goto normal_char;
3182
3183 /* Insert before the previous alternative a jump which
3184 jumps to this alternative if the former fails. */
3185 GET_BUFFER_SPACE (3);
3186 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3187 pending_exact = 0;
3188 b += 3;
3189
3190 /* The alternative before this one has a jump after it
3191 which gets executed if it gets matched. Adjust that
3192 jump so it will jump to this alternative's analogous
3193 jump (put in below, which in turn will jump to the next
3194 (if any) alternative's such jump, etc.). The last such
3195 jump jumps to the correct final destination. A picture:
3196 _____ _____
3197 | | | |
3198 | v | v
3199 a | b | c
3200
3201 If we are at `b', then fixup_alt_jump right now points to a
3202 three-byte space after `a'. We'll put in the jump, set
3203 fixup_alt_jump to right after `b', and leave behind three
3204 bytes which we'll fill in when we get to after `c'. */
3205
505bde11 3206 FIXUP_ALT_JUMP ();
25fe55af
RS
3207
3208 /* Mark and leave space for a jump after this alternative,
3209 to be filled in later either by next alternative or
3210 when know we're at the end of a series of alternatives. */
3211 fixup_alt_jump = b;
3212 GET_BUFFER_SPACE (3);
3213 b += 3;
3214
3215 laststart = 0;
3216 begalt = b;
3217 break;
3218
3219
3220 case '{':
3221 /* If \{ is a literal. */
3222 if (!(syntax & RE_INTERVALS)
3223 /* If we're at `\{' and it's not the open-interval
3224 operator. */
4bb91c68 3225 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3226 goto normal_backslash;
3227
3228 handle_interval:
3229 {
3230 /* If got here, then the syntax allows intervals. */
3231
3232 /* At least (most) this many matches must be made. */
99633e97 3233 int lower_bound = 0, upper_bound = -1;
25fe55af 3234
ed0767d8 3235 beg_interval = p;
25fe55af 3236
25fe55af
RS
3237 GET_UNSIGNED_NUMBER (lower_bound);
3238
3239 if (c == ',')
ed0767d8 3240 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3241 else
3242 /* Interval such as `{1}' => match exactly once. */
3243 upper_bound = lower_bound;
3244
3245 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3246 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3247 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3248
3249 if (!(syntax & RE_NO_BK_BRACES))
3250 {
4bb91c68
SM
3251 if (c != '\\')
3252 FREE_STACK_RETURN (REG_BADBR);
c72b0edd
SM
3253 if (p == pend)
3254 FREE_STACK_RETURN (REG_EESCAPE);
25fe55af
RS
3255 PATFETCH (c);
3256 }
3257
3258 if (c != '}')
4bb91c68 3259 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3260
3261 /* We just parsed a valid interval. */
3262
3263 /* If it's invalid to have no preceding re. */
3264 if (!laststart)
3265 {
3266 if (syntax & RE_CONTEXT_INVALID_OPS)
3267 FREE_STACK_RETURN (REG_BADRPT);
3268 else if (syntax & RE_CONTEXT_INDEP_OPS)
3269 laststart = b;
3270 else
3271 goto unfetch_interval;
3272 }
3273
6df42991
SM
3274 if (upper_bound == 0)
3275 /* If the upper bound is zero, just drop the sub pattern
3276 altogether. */
3277 b = laststart;
3278 else if (lower_bound == 1 && upper_bound == 1)
3279 /* Just match it once: nothing to do here. */
3280 ;
3281
3282 /* Otherwise, we have a nontrivial interval. When
3283 we're all done, the pattern will look like:
3284 set_number_at <jump count> <upper bound>
3285 set_number_at <succeed_n count> <lower bound>
3286 succeed_n <after jump addr> <succeed_n count>
3287 <body of loop>
3288 jump_n <succeed_n addr> <jump count>
3289 (The upper bound and `jump_n' are omitted if
3290 `upper_bound' is 1, though.) */
3291 else
3292 { /* If the upper bound is > 1, we need to insert
3293 more at the end of the loop. */
3294 unsigned int nbytes = (upper_bound < 0 ? 3
3295 : upper_bound > 1 ? 5 : 0);
3296 unsigned int startoffset = 0;
3297
3298 GET_BUFFER_SPACE (20); /* We might use less. */
3299
3300 if (lower_bound == 0)
3301 {
3302 /* A succeed_n that starts with 0 is really a
3303 a simple on_failure_jump_loop. */
3304 INSERT_JUMP (on_failure_jump_loop, laststart,
3305 b + 3 + nbytes);
3306 b += 3;
3307 }
3308 else
3309 {
3310 /* Initialize lower bound of the `succeed_n', even
3311 though it will be set during matching by its
3312 attendant `set_number_at' (inserted next),
3313 because `re_compile_fastmap' needs to know.
3314 Jump to the `jump_n' we might insert below. */
3315 INSERT_JUMP2 (succeed_n, laststart,
3316 b + 5 + nbytes,
3317 lower_bound);
3318 b += 5;
3319
3320 /* Code to initialize the lower bound. Insert
3321 before the `succeed_n'. The `5' is the last two
3322 bytes of this `set_number_at', plus 3 bytes of
3323 the following `succeed_n'. */
3324 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3325 b += 5;
3326 startoffset += 5;
3327 }
3328
3329 if (upper_bound < 0)
3330 {
3331 /* A negative upper bound stands for infinity,
3332 in which case it degenerates to a plain jump. */
3333 STORE_JUMP (jump, b, laststart + startoffset);
3334 b += 3;
3335 }
3336 else if (upper_bound > 1)
3337 { /* More than one repetition is allowed, so
3338 append a backward jump to the `succeed_n'
3339 that starts this interval.
3340
3341 When we've reached this during matching,
3342 we'll have matched the interval once, so
3343 jump back only `upper_bound - 1' times. */
3344 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3345 upper_bound - 1);
3346 b += 5;
3347
3348 /* The location we want to set is the second
3349 parameter of the `jump_n'; that is `b-2' as
3350 an absolute address. `laststart' will be
3351 the `set_number_at' we're about to insert;
3352 `laststart+3' the number to set, the source
3353 for the relative address. But we are
3354 inserting into the middle of the pattern --
3355 so everything is getting moved up by 5.
3356 Conclusion: (b - 2) - (laststart + 3) + 5,
3357 i.e., b - laststart.
3358
3359 We insert this at the beginning of the loop
3360 so that if we fail during matching, we'll
3361 reinitialize the bounds. */
3362 insert_op2 (set_number_at, laststart, b - laststart,
3363 upper_bound - 1, b);
3364 b += 5;
3365 }
3366 }
25fe55af
RS
3367 pending_exact = 0;
3368 beg_interval = NULL;
3369 }
3370 break;
3371
3372 unfetch_interval:
3373 /* If an invalid interval, match the characters as literals. */
3374 assert (beg_interval);
3375 p = beg_interval;
3376 beg_interval = NULL;
3377
3378 /* normal_char and normal_backslash need `c'. */
ed0767d8 3379 c = '{';
25fe55af
RS
3380
3381 if (!(syntax & RE_NO_BK_BRACES))
3382 {
ed0767d8
SM
3383 assert (p > pattern && p[-1] == '\\');
3384 goto normal_backslash;
25fe55af 3385 }
ed0767d8
SM
3386 else
3387 goto normal_char;
e318085a 3388
b18215fc 3389#ifdef emacs
25fe55af
RS
3390 /* There is no way to specify the before_dot and after_dot
3391 operators. rms says this is ok. --karl */
3392 case '=':
3393 BUF_PUSH (at_dot);
3394 break;
3395
3396 case 's':
3397 laststart = b;
3398 PATFETCH (c);
3399 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3400 break;
3401
3402 case 'S':
3403 laststart = b;
3404 PATFETCH (c);
3405 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3406 break;
b18215fc
RS
3407
3408 case 'c':
3409 laststart = b;
36595814 3410 PATFETCH (c);
b18215fc
RS
3411 BUF_PUSH_2 (categoryspec, c);
3412 break;
e318085a 3413
b18215fc
RS
3414 case 'C':
3415 laststart = b;
36595814 3416 PATFETCH (c);
b18215fc
RS
3417 BUF_PUSH_2 (notcategoryspec, c);
3418 break;
3419#endif /* emacs */
e318085a 3420
e318085a 3421
25fe55af 3422 case 'w':
4bb91c68
SM
3423 if (syntax & RE_NO_GNU_OPS)
3424 goto normal_char;
25fe55af 3425 laststart = b;
1fb352e0 3426 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3427 break;
e318085a 3428
e318085a 3429
25fe55af 3430 case 'W':
4bb91c68
SM
3431 if (syntax & RE_NO_GNU_OPS)
3432 goto normal_char;
25fe55af 3433 laststart = b;
1fb352e0 3434 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3435 break;
e318085a
RS
3436
3437
25fe55af 3438 case '<':
4bb91c68
SM
3439 if (syntax & RE_NO_GNU_OPS)
3440 goto normal_char;
25fe55af
RS
3441 BUF_PUSH (wordbeg);
3442 break;
e318085a 3443
25fe55af 3444 case '>':
4bb91c68
SM
3445 if (syntax & RE_NO_GNU_OPS)
3446 goto normal_char;
25fe55af
RS
3447 BUF_PUSH (wordend);
3448 break;
e318085a 3449
669fa600
SM
3450 case '_':
3451 if (syntax & RE_NO_GNU_OPS)
3452 goto normal_char;
3453 laststart = b;
3454 PATFETCH (c);
3455 if (c == '<')
3456 BUF_PUSH (symbeg);
3457 else if (c == '>')
3458 BUF_PUSH (symend);
3459 else
3460 FREE_STACK_RETURN (REG_BADPAT);
3461 break;
3462
25fe55af 3463 case 'b':
4bb91c68
SM
3464 if (syntax & RE_NO_GNU_OPS)
3465 goto normal_char;
25fe55af
RS
3466 BUF_PUSH (wordbound);
3467 break;
e318085a 3468
25fe55af 3469 case 'B':
4bb91c68
SM
3470 if (syntax & RE_NO_GNU_OPS)
3471 goto normal_char;
25fe55af
RS
3472 BUF_PUSH (notwordbound);
3473 break;
fa9a63c5 3474
25fe55af 3475 case '`':
4bb91c68
SM
3476 if (syntax & RE_NO_GNU_OPS)
3477 goto normal_char;
25fe55af
RS
3478 BUF_PUSH (begbuf);
3479 break;
e318085a 3480
25fe55af 3481 case '\'':
4bb91c68
SM
3482 if (syntax & RE_NO_GNU_OPS)
3483 goto normal_char;
25fe55af
RS
3484 BUF_PUSH (endbuf);
3485 break;
e318085a 3486
25fe55af
RS
3487 case '1': case '2': case '3': case '4': case '5':
3488 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3489 {
3490 regnum_t reg;
e318085a 3491
0cdd06f8
SM
3492 if (syntax & RE_NO_BK_REFS)
3493 goto normal_backslash;
e318085a 3494
0cdd06f8 3495 reg = c - '0';
e318085a 3496
0cdd06f8
SM
3497 /* Can't back reference to a subexpression before its end. */
3498 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3499 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3500
0cdd06f8
SM
3501 laststart = b;
3502 BUF_PUSH_2 (duplicate, reg);
3503 }
25fe55af 3504 break;
e318085a 3505
e318085a 3506
25fe55af
RS
3507 case '+':
3508 case '?':
3509 if (syntax & RE_BK_PLUS_QM)
3510 goto handle_plus;
3511 else
3512 goto normal_backslash;
3513
3514 default:
3515 normal_backslash:
3516 /* You might think it would be useful for \ to mean
3517 not to translate; but if we don't translate it
4bb91c68 3518 it will never match anything. */
25fe55af
RS
3519 goto normal_char;
3520 }
3521 break;
fa9a63c5
RM
3522
3523
3524 default:
25fe55af 3525 /* Expects the character in `c'. */
fa9a63c5 3526 normal_char:
36595814 3527 /* If no exactn currently being built. */
25fe55af 3528 if (!pending_exact
fa9a63c5 3529
25fe55af
RS
3530 /* If last exactn not at current position. */
3531 || pending_exact + *pending_exact + 1 != b
5e69f11e 3532
25fe55af 3533 /* We have only one byte following the exactn for the count. */
2d1675e4 3534 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3535
25fe55af 3536 /* If followed by a repetition operator. */
9d99031f 3537 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3538 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3539 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3540 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3541 || ((syntax & RE_INTERVALS)
25fe55af 3542 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3543 ? p != pend && *p == '{'
3544 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3545 {
3546 /* Start building a new exactn. */
5e69f11e 3547
25fe55af 3548 laststart = b;
fa9a63c5
RM
3549
3550 BUF_PUSH_2 (exactn, 0);
3551 pending_exact = b - 1;
25fe55af 3552 }
5e69f11e 3553
2d1675e4
SM
3554 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3555 {
e0277a47
KH
3556 int len;
3557
36595814 3558 c = TRANSLATE (c);
e0277a47
KH
3559 if (multibyte)
3560 len = CHAR_STRING (c, b);
3561 else
3562 *b = c, len = 1;
2d1675e4
SM
3563 b += len;
3564 (*pending_exact) += len;
3565 }
3566
fa9a63c5 3567 break;
25fe55af 3568 } /* switch (c) */
fa9a63c5
RM
3569 } /* while p != pend */
3570
5e69f11e 3571
fa9a63c5 3572 /* Through the pattern now. */
5e69f11e 3573
505bde11 3574 FIXUP_ALT_JUMP ();
fa9a63c5 3575
5e69f11e 3576 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3577 FREE_STACK_RETURN (REG_EPAREN);
3578
3579 /* If we don't want backtracking, force success
3580 the first time we reach the end of the compiled pattern. */
3581 if (syntax & RE_NO_POSIX_BACKTRACKING)
3582 BUF_PUSH (succeed);
3583
fa9a63c5
RM
3584 /* We have succeeded; set the length of the buffer. */
3585 bufp->used = b - bufp->buffer;
3586
3587#ifdef DEBUG
99633e97 3588 if (debug > 0)
fa9a63c5 3589 {
505bde11 3590 re_compile_fastmap (bufp);
fa9a63c5
RM
3591 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3592 print_compiled_pattern (bufp);
3593 }
99633e97 3594 debug--;
fa9a63c5
RM
3595#endif /* DEBUG */
3596
3597#ifndef MATCH_MAY_ALLOCATE
3598 /* Initialize the failure stack to the largest possible stack. This
3599 isn't necessary unless we're trying to avoid calling alloca in
3600 the search and match routines. */
3601 {
3602 int num_regs = bufp->re_nsub + 1;
3603
320a2a73 3604 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3605 {
a26f4ccd 3606 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3607
fa9a63c5
RM
3608 if (! fail_stack.stack)
3609 fail_stack.stack
5e69f11e 3610 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3611 * sizeof (fail_stack_elt_t));
3612 else
3613 fail_stack.stack
3614 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3615 (fail_stack.size
3616 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3617 }
3618
3619 regex_grow_registers (num_regs);
3620 }
3621#endif /* not MATCH_MAY_ALLOCATE */
3622
7c67c9f6 3623 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3624} /* regex_compile */
3625\f
3626/* Subroutines for `regex_compile'. */
3627
25fe55af 3628/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3629
3630static void
3631store_op1 (op, loc, arg)
3632 re_opcode_t op;
3633 unsigned char *loc;
3634 int arg;
3635{
3636 *loc = (unsigned char) op;
3637 STORE_NUMBER (loc + 1, arg);
3638}
3639
3640
3641/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3642
3643static void
3644store_op2 (op, loc, arg1, arg2)
3645 re_opcode_t op;
3646 unsigned char *loc;
3647 int arg1, arg2;
3648{
3649 *loc = (unsigned char) op;
3650 STORE_NUMBER (loc + 1, arg1);
3651 STORE_NUMBER (loc + 3, arg2);
3652}
3653
3654
3655/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3656 for OP followed by two-byte integer parameter ARG. */
3657
3658static void
3659insert_op1 (op, loc, arg, end)
3660 re_opcode_t op;
3661 unsigned char *loc;
3662 int arg;
5e69f11e 3663 unsigned char *end;
fa9a63c5
RM
3664{
3665 register unsigned char *pfrom = end;
3666 register unsigned char *pto = end + 3;
3667
3668 while (pfrom != loc)
3669 *--pto = *--pfrom;
5e69f11e 3670
fa9a63c5
RM
3671 store_op1 (op, loc, arg);
3672}
3673
3674
3675/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3676
3677static void
3678insert_op2 (op, loc, arg1, arg2, end)
3679 re_opcode_t op;
3680 unsigned char *loc;
3681 int arg1, arg2;
5e69f11e 3682 unsigned char *end;
fa9a63c5
RM
3683{
3684 register unsigned char *pfrom = end;
3685 register unsigned char *pto = end + 5;
3686
3687 while (pfrom != loc)
3688 *--pto = *--pfrom;
5e69f11e 3689
fa9a63c5
RM
3690 store_op2 (op, loc, arg1, arg2);
3691}
3692
3693
3694/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3695 after an alternative or a begin-subexpression. We assume there is at
3696 least one character before the ^. */
3697
3698static boolean
3699at_begline_loc_p (pattern, p, syntax)
01618498 3700 re_char *pattern, *p;
fa9a63c5
RM
3701 reg_syntax_t syntax;
3702{
01618498 3703 re_char *prev = p - 2;
fa9a63c5 3704 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3705
fa9a63c5
RM
3706 return
3707 /* After a subexpression? */
3708 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3709 /* After an alternative? */
d2af47df
SM
3710 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3711 /* After a shy subexpression? */
3712 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3713 && prev[-1] == '?' && prev[-2] == '('
3714 && (syntax & RE_NO_BK_PARENS
3715 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3716}
3717
3718
3719/* The dual of at_begline_loc_p. This one is for $. We assume there is
3720 at least one character after the $, i.e., `P < PEND'. */
3721
3722static boolean
3723at_endline_loc_p (p, pend, syntax)
01618498 3724 re_char *p, *pend;
99633e97 3725 reg_syntax_t syntax;
fa9a63c5 3726{
01618498 3727 re_char *next = p;
fa9a63c5 3728 boolean next_backslash = *next == '\\';
01618498 3729 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3730
fa9a63c5
RM
3731 return
3732 /* Before a subexpression? */
3733 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3734 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3735 /* Before an alternative? */
3736 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3737 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3738}
3739
3740
5e69f11e 3741/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3742 false if it's not. */
3743
3744static boolean
3745group_in_compile_stack (compile_stack, regnum)
3746 compile_stack_type compile_stack;
3747 regnum_t regnum;
3748{
3749 int this_element;
3750
5e69f11e
RM
3751 for (this_element = compile_stack.avail - 1;
3752 this_element >= 0;
fa9a63c5
RM
3753 this_element--)
3754 if (compile_stack.stack[this_element].regnum == regnum)
3755 return true;
3756
3757 return false;
3758}
fa9a63c5 3759\f
f6a3f532
SM
3760/* analyse_first.
3761 If fastmap is non-NULL, go through the pattern and fill fastmap
3762 with all the possible leading chars. If fastmap is NULL, don't
3763 bother filling it up (obviously) and only return whether the
3764 pattern could potentially match the empty string.
3765
3766 Return 1 if p..pend might match the empty string.
3767 Return 0 if p..pend matches at least one char.
01618498 3768 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3769
3770static int
3771analyse_first (p, pend, fastmap, multibyte)
01618498 3772 re_char *p, *pend;
f6a3f532
SM
3773 char *fastmap;
3774 const int multibyte;
fa9a63c5 3775{
505bde11 3776 int j, k;
1fb352e0 3777 boolean not;
fa9a63c5 3778
b18215fc 3779 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3780 flag is set true. */
b18215fc
RS
3781 boolean match_any_multibyte_characters = false;
3782
f6a3f532 3783 assert (p);
5e69f11e 3784
505bde11
SM
3785 /* The loop below works as follows:
3786 - It has a working-list kept in the PATTERN_STACK and which basically
3787 starts by only containing a pointer to the first operation.
3788 - If the opcode we're looking at is a match against some set of
3789 chars, then we add those chars to the fastmap and go on to the
3790 next work element from the worklist (done via `break').
3791 - If the opcode is a control operator on the other hand, we either
3792 ignore it (if it's meaningless at this point, such as `start_memory')
3793 or execute it (if it's a jump). If the jump has several destinations
3794 (i.e. `on_failure_jump'), then we push the other destination onto the
3795 worklist.
3796 We guarantee termination by ignoring backward jumps (more or less),
3797 so that `p' is monotonically increasing. More to the point, we
3798 never set `p' (or push) anything `<= p1'. */
3799
01618498 3800 while (p < pend)
fa9a63c5 3801 {
505bde11
SM
3802 /* `p1' is used as a marker of how far back a `on_failure_jump'
3803 can go without being ignored. It is normally equal to `p'
3804 (which prevents any backward `on_failure_jump') except right
3805 after a plain `jump', to allow patterns such as:
3806 0: jump 10
3807 3..9: <body>
3808 10: on_failure_jump 3
3809 as used for the *? operator. */
01618498 3810 re_char *p1 = p;
5e69f11e 3811
fa9a63c5
RM
3812 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3813 {
f6a3f532 3814 case succeed:
01618498 3815 return 1;
f6a3f532 3816 continue;
fa9a63c5 3817
fa9a63c5 3818 case duplicate:
505bde11
SM
3819 /* If the first character has to match a backreference, that means
3820 that the group was empty (since it already matched). Since this
3821 is the only case that interests us here, we can assume that the
3822 backreference must match the empty string. */
3823 p++;
3824 continue;
fa9a63c5
RM
3825
3826
3827 /* Following are the cases which match a character. These end
25fe55af 3828 with `break'. */
fa9a63c5
RM
3829
3830 case exactn:
e0277a47
KH
3831 if (fastmap)
3832 {
3833 int c = RE_STRING_CHAR (p + 1, pend - p);
3834
3835 if (SINGLE_BYTE_CHAR_P (c))
3836 fastmap[c] = 1;
3837 else
3838 fastmap[p[1]] = 1;
3839 }
fa9a63c5
RM
3840 break;
3841
3842
1fb352e0
SM
3843 case anychar:
3844 /* We could put all the chars except for \n (and maybe \0)
3845 but we don't bother since it is generally not worth it. */
f6a3f532 3846 if (!fastmap) break;
01618498 3847 return -1;
fa9a63c5
RM
3848
3849
b18215fc 3850 case charset_not:
ba5c004d
RS
3851 /* Chars beyond end of bitmap are possible matches.
3852 All the single-byte codes can occur in multibyte buffers.
3853 So any that are not listed in the charset
3854 are possible matches, even in multibyte buffers. */
1fb352e0 3855 if (!fastmap) break;
b18215fc 3856 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
1fb352e0 3857 j < (1 << BYTEWIDTH); j++)
b18215fc 3858 fastmap[j] = 1;
1fb352e0
SM
3859 /* Fallthrough */
3860 case charset:
3861 if (!fastmap) break;
3862 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3863 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3864 j >= 0; j--)
1fb352e0 3865 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
b18215fc
RS
3866 fastmap[j] = 1;
3867
1fb352e0
SM
3868 if ((not && multibyte)
3869 /* Any character set can possibly contain a character
3870 which doesn't match the specified set of characters. */
3871 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3872 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3873 /* If we can match a character class, we can match
3874 any character set. */
b18215fc
RS
3875 {
3876 set_fastmap_for_multibyte_characters:
3877 if (match_any_multibyte_characters == false)
3878 {
3879 for (j = 0x80; j < 0xA0; j++) /* XXX */
3880 if (BASE_LEADING_CODE_P (j))
3881 fastmap[j] = 1;
3882 match_any_multibyte_characters = true;
3883 }
3884 }
b18215fc 3885
1fb352e0
SM
3886 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3887 && match_any_multibyte_characters == false)
3888 {
3889 /* Set fastmap[I] 1 where I is a base leading code of each
3890 multibyte character in the range table. */
3891 int c, count;
b18215fc 3892
1fb352e0 3893 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 3894 bits for a character class. */
1fb352e0 3895 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 3896
1fb352e0
SM
3897 /* Extract the number of ranges in range table into COUNT. */
3898 EXTRACT_NUMBER_AND_INCR (count, p);
3899 for (; count > 0; count--, p += 2 * 3) /* XXX */
3900 {
3901 /* Extract the start of each range. */
3902 EXTRACT_CHARACTER (c, p);
3903 j = CHAR_CHARSET (c);
3904 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3905 }
3906 }
b18215fc
RS
3907 break;
3908
1fb352e0
SM
3909 case syntaxspec:
3910 case notsyntaxspec:
3911 if (!fastmap) break;
3912#ifndef emacs
3913 not = (re_opcode_t)p[-1] == notsyntaxspec;
3914 k = *p++;
3915 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 3916 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 3917 fastmap[j] = 1;
b18215fc 3918 break;
1fb352e0 3919#else /* emacs */
b18215fc
RS
3920 /* This match depends on text properties. These end with
3921 aborting optimizations. */
01618498 3922 return -1;
b18215fc
RS
3923
3924 case categoryspec:
b18215fc 3925 case notcategoryspec:
1fb352e0
SM
3926 if (!fastmap) break;
3927 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 3928 k = *p++;
1fb352e0
SM
3929 for (j = 0; j < (1 << BYTEWIDTH); j++)
3930 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
3931 fastmap[j] = 1;
3932
1fb352e0 3933 if (multibyte)
b18215fc 3934 /* Any character set can possibly contain a character
1fb352e0 3935 whose category is K (or not). */
b18215fc
RS
3936 goto set_fastmap_for_multibyte_characters;
3937 break;
3938
fa9a63c5 3939 /* All cases after this match the empty string. These end with
25fe55af 3940 `continue'. */
fa9a63c5 3941
fa9a63c5
RM
3942 case before_dot:
3943 case at_dot:
3944 case after_dot:
1fb352e0 3945#endif /* !emacs */
25fe55af
RS
3946 case no_op:
3947 case begline:
3948 case endline:
fa9a63c5
RM
3949 case begbuf:
3950 case endbuf:
3951 case wordbound:
3952 case notwordbound:
3953 case wordbeg:
3954 case wordend:
669fa600
SM
3955 case symbeg:
3956 case symend:
25fe55af 3957 continue;
fa9a63c5
RM
3958
3959
fa9a63c5 3960 case jump:
25fe55af 3961 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
3962 if (j < 0)
3963 /* Backward jumps can only go back to code that we've already
3964 visited. `re_compile' should make sure this is true. */
3965 break;
25fe55af 3966 p += j;
505bde11
SM
3967 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3968 {
3969 case on_failure_jump:
3970 case on_failure_keep_string_jump:
505bde11 3971 case on_failure_jump_loop:
0683b6fa 3972 case on_failure_jump_nastyloop:
505bde11
SM
3973 case on_failure_jump_smart:
3974 p++;
3975 break;
3976 default:
3977 continue;
3978 };
3979 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3980 to jump back to "just after here". */
3981 /* Fallthrough */
fa9a63c5 3982
25fe55af
RS
3983 case on_failure_jump:
3984 case on_failure_keep_string_jump:
0683b6fa 3985 case on_failure_jump_nastyloop:
505bde11
SM
3986 case on_failure_jump_loop:
3987 case on_failure_jump_smart:
25fe55af 3988 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 3989 if (p + j <= p1)
ed0767d8 3990 ; /* Backward jump to be ignored. */
01618498
SM
3991 else
3992 { /* We have to look down both arms.
3993 We first go down the "straight" path so as to minimize
3994 stack usage when going through alternatives. */
3995 int r = analyse_first (p, pend, fastmap, multibyte);
3996 if (r) return r;
3997 p += j;
3998 }
25fe55af 3999 continue;
fa9a63c5
RM
4000
4001
ed0767d8
SM
4002 case jump_n:
4003 /* This code simply does not properly handle forward jump_n. */
4004 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4005 p += 4;
4006 /* jump_n can either jump or fall through. The (backward) jump
4007 case has already been handled, so we only need to look at the
4008 fallthrough case. */
4009 continue;
177c0ea7 4010
fa9a63c5 4011 case succeed_n:
ed0767d8
SM
4012 /* If N == 0, it should be an on_failure_jump_loop instead. */
4013 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4014 p += 4;
4015 /* We only care about one iteration of the loop, so we don't
4016 need to consider the case where this behaves like an
4017 on_failure_jump. */
25fe55af 4018 continue;
fa9a63c5
RM
4019
4020
4021 case set_number_at:
25fe55af
RS
4022 p += 4;
4023 continue;
fa9a63c5
RM
4024
4025
4026 case start_memory:
25fe55af 4027 case stop_memory:
505bde11 4028 p += 1;
fa9a63c5
RM
4029 continue;
4030
4031
4032 default:
25fe55af
RS
4033 abort (); /* We have listed all the cases. */
4034 } /* switch *p++ */
fa9a63c5
RM
4035
4036 /* Getting here means we have found the possible starting
25fe55af 4037 characters for one path of the pattern -- and that the empty
01618498
SM
4038 string does not match. We need not follow this path further. */
4039 return 0;
fa9a63c5
RM
4040 } /* while p */
4041
01618498
SM
4042 /* We reached the end without matching anything. */
4043 return 1;
4044
f6a3f532
SM
4045} /* analyse_first */
4046\f
4047/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4048 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4049 characters can start a string that matches the pattern. This fastmap
4050 is used by re_search to skip quickly over impossible starting points.
4051
4052 Character codes above (1 << BYTEWIDTH) are not represented in the
4053 fastmap, but the leading codes are represented. Thus, the fastmap
4054 indicates which character sets could start a match.
4055
4056 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4057 area as BUFP->fastmap.
4058
4059 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4060 the pattern buffer.
4061
4062 Returns 0 if we succeed, -2 if an internal error. */
4063
4064int
4065re_compile_fastmap (bufp)
4066 struct re_pattern_buffer *bufp;
4067{
4068 char *fastmap = bufp->fastmap;
4069 int analysis;
4070
4071 assert (fastmap && bufp->buffer);
4072
4073 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4074 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4075
4076 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4077 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4078 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4079 return 0;
4080} /* re_compile_fastmap */
4081\f
4082/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4083 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4084 this memory for recording register information. STARTS and ENDS
4085 must be allocated using the malloc library routine, and must each
4086 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4087
4088 If NUM_REGS == 0, then subsequent matches should allocate their own
4089 register data.
4090
4091 Unless this function is called, the first search or match using
4092 PATTERN_BUFFER will allocate its own register data, without
4093 freeing the old data. */
4094
4095void
4096re_set_registers (bufp, regs, num_regs, starts, ends)
4097 struct re_pattern_buffer *bufp;
4098 struct re_registers *regs;
4099 unsigned num_regs;
4100 regoff_t *starts, *ends;
4101{
4102 if (num_regs)
4103 {
4104 bufp->regs_allocated = REGS_REALLOCATE;
4105 regs->num_regs = num_regs;
4106 regs->start = starts;
4107 regs->end = ends;
4108 }
4109 else
4110 {
4111 bufp->regs_allocated = REGS_UNALLOCATED;
4112 regs->num_regs = 0;
4113 regs->start = regs->end = (regoff_t *) 0;
4114 }
4115}
c0f9ea08 4116WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4117\f
25fe55af 4118/* Searching routines. */
fa9a63c5
RM
4119
4120/* Like re_search_2, below, but only one string is specified, and
4121 doesn't let you say where to stop matching. */
4122
4123int
4124re_search (bufp, string, size, startpos, range, regs)
4125 struct re_pattern_buffer *bufp;
4126 const char *string;
4127 int size, startpos, range;
4128 struct re_registers *regs;
4129{
5e69f11e 4130 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4131 regs, size);
4132}
c0f9ea08 4133WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4134
70806df6
KH
4135/* Head address of virtual concatenation of string. */
4136#define HEAD_ADDR_VSTRING(P) \
4137 (((P) >= size1 ? string2 : string1))
4138
b18215fc
RS
4139/* End address of virtual concatenation of string. */
4140#define STOP_ADDR_VSTRING(P) \
4141 (((P) >= size1 ? string2 + size2 : string1 + size1))
4142
4143/* Address of POS in the concatenation of virtual string. */
4144#define POS_ADDR_VSTRING(POS) \
4145 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4146
4147/* Using the compiled pattern in BUFP->buffer, first tries to match the
4148 virtual concatenation of STRING1 and STRING2, starting first at index
4149 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4150
fa9a63c5 4151 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4152
fa9a63c5
RM
4153 RANGE is how far to scan while trying to match. RANGE = 0 means try
4154 only at STARTPOS; in general, the last start tried is STARTPOS +
4155 RANGE.
5e69f11e 4156
fa9a63c5
RM
4157 In REGS, return the indices of the virtual concatenation of STRING1
4158 and STRING2 that matched the entire BUFP->buffer and its contained
4159 subexpressions.
5e69f11e 4160
fa9a63c5
RM
4161 Do not consider matching one past the index STOP in the virtual
4162 concatenation of STRING1 and STRING2.
4163
4164 We return either the position in the strings at which the match was
4165 found, -1 if no match, or -2 if error (such as failure
4166 stack overflow). */
4167
4168int
66f0296e 4169re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4170 struct re_pattern_buffer *bufp;
66f0296e 4171 const char *str1, *str2;
fa9a63c5
RM
4172 int size1, size2;
4173 int startpos;
4174 int range;
4175 struct re_registers *regs;
4176 int stop;
4177{
4178 int val;
66f0296e
SM
4179 re_char *string1 = (re_char*) str1;
4180 re_char *string2 = (re_char*) str2;
fa9a63c5 4181 register char *fastmap = bufp->fastmap;
6676cb1c 4182 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4183 int total_size = size1 + size2;
4184 int endpos = startpos + range;
c0f9ea08 4185 boolean anchored_start;
fa9a63c5 4186
25fe55af 4187 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4188 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4189
fa9a63c5
RM
4190 /* Check for out-of-range STARTPOS. */
4191 if (startpos < 0 || startpos > total_size)
4192 return -1;
5e69f11e 4193
fa9a63c5 4194 /* Fix up RANGE if it might eventually take us outside
34597fa9 4195 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4196 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4197 if (endpos < 0)
4198 range = 0 - startpos;
fa9a63c5
RM
4199 else if (endpos > total_size)
4200 range = total_size - startpos;
4201
4202 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4203 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4204 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4205 {
4206 if (startpos > 0)
4207 return -1;
4208 else
7b140fd7 4209 range = 0;
fa9a63c5
RM
4210 }
4211
ae4788a8
RS
4212#ifdef emacs
4213 /* In a forward search for something that starts with \=.
4214 don't keep searching past point. */
4215 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4216 {
7b140fd7
RS
4217 range = PT_BYTE - BEGV_BYTE - startpos;
4218 if (range < 0)
ae4788a8
RS
4219 return -1;
4220 }
4221#endif /* emacs */
4222
fa9a63c5
RM
4223 /* Update the fastmap now if not correct already. */
4224 if (fastmap && !bufp->fastmap_accurate)
01618498 4225 re_compile_fastmap (bufp);
5e69f11e 4226
c8499ba5 4227 /* See whether the pattern is anchored. */
c0f9ea08 4228 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4229
b18215fc 4230#ifdef emacs
cc9b4df2
KH
4231 gl_state.object = re_match_object;
4232 {
99633e97 4233 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4234
4235 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4236 }
b18215fc
RS
4237#endif
4238
fa9a63c5
RM
4239 /* Loop through the string, looking for a place to start matching. */
4240 for (;;)
5e69f11e 4241 {
c8499ba5
RS
4242 /* If the pattern is anchored,
4243 skip quickly past places we cannot match.
4244 We don't bother to treat startpos == 0 specially
4245 because that case doesn't repeat. */
4246 if (anchored_start && startpos > 0)
4247 {
c0f9ea08
SM
4248 if (! ((startpos <= size1 ? string1[startpos - 1]
4249 : string2[startpos - size1 - 1])
4250 == '\n'))
c8499ba5
RS
4251 goto advance;
4252 }
4253
fa9a63c5 4254 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4255 cannot be the start of a match. If the pattern can match the
4256 null string, however, we don't need to skip characters; we want
4257 the first null string. */
fa9a63c5
RM
4258 if (fastmap && startpos < total_size && !bufp->can_be_null)
4259 {
66f0296e 4260 register re_char *d;
01618498 4261 register re_wchar_t buf_ch;
e934739e
RS
4262
4263 d = POS_ADDR_VSTRING (startpos);
4264
25fe55af 4265 if (range > 0) /* Searching forwards. */
fa9a63c5 4266 {
fa9a63c5
RM
4267 register int lim = 0;
4268 int irange = range;
4269
25fe55af
RS
4270 if (startpos < size1 && startpos + range >= size1)
4271 lim = range - (size1 - startpos);
fa9a63c5 4272
25fe55af
RS
4273 /* Written out as an if-else to avoid testing `translate'
4274 inside the loop. */
28ae27ae
AS
4275 if (RE_TRANSLATE_P (translate))
4276 {
e934739e
RS
4277 if (multibyte)
4278 while (range > lim)
4279 {
4280 int buf_charlen;
4281
4282 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4283 buf_charlen);
4284
4285 buf_ch = RE_TRANSLATE (translate, buf_ch);
4286 if (buf_ch >= 0400
4287 || fastmap[buf_ch])
4288 break;
4289
4290 range -= buf_charlen;
4291 d += buf_charlen;
4292 }
4293 else
cf1982d9
EZ
4294 {
4295 /* Convert *d to integer to shut up GCC's
4296 whining about comparison that is always
4297 true. */
4298 int di = *d;
4299
4300 while (range > lim
4301 && !fastmap[RE_TRANSLATE (translate, di)])
4302 {
4303 di = *(++d);
4304 range--;
4305 }
4306 }
e934739e 4307 }
fa9a63c5 4308 else
66f0296e 4309 while (range > lim && !fastmap[*d])
33c46939
RS
4310 {
4311 d++;
4312 range--;
4313 }
fa9a63c5
RM
4314
4315 startpos += irange - range;
4316 }
25fe55af 4317 else /* Searching backwards. */
fa9a63c5 4318 {
2d1675e4
SM
4319 int room = (startpos >= size1
4320 ? size2 + size1 - startpos
4321 : size1 - startpos);
4322 buf_ch = RE_STRING_CHAR (d, room);
4323 buf_ch = TRANSLATE (buf_ch);
fa9a63c5 4324
e934739e
RS
4325 if (! (buf_ch >= 0400
4326 || fastmap[buf_ch]))
fa9a63c5
RM
4327 goto advance;
4328 }
4329 }
4330
4331 /* If can't match the null string, and that's all we have left, fail. */
4332 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4333 && !bufp->can_be_null)
fa9a63c5
RM
4334 return -1;
4335
4336 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4337 startpos, regs, stop);
4338#ifndef REGEX_MALLOC
0b32bf0e 4339# ifdef C_ALLOCA
fa9a63c5 4340 alloca (0);
0b32bf0e 4341# endif
fa9a63c5
RM
4342#endif
4343
4344 if (val >= 0)
4345 return startpos;
5e69f11e 4346
fa9a63c5
RM
4347 if (val == -2)
4348 return -2;
4349
4350 advance:
5e69f11e 4351 if (!range)
25fe55af 4352 break;
5e69f11e 4353 else if (range > 0)
25fe55af 4354 {
b18215fc
RS
4355 /* Update STARTPOS to the next character boundary. */
4356 if (multibyte)
4357 {
66f0296e
SM
4358 re_char *p = POS_ADDR_VSTRING (startpos);
4359 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4360 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4361
4362 range -= len;
4363 if (range < 0)
4364 break;
4365 startpos += len;
4366 }
4367 else
4368 {
b560c397
RS
4369 range--;
4370 startpos++;
4371 }
e318085a 4372 }
fa9a63c5 4373 else
25fe55af
RS
4374 {
4375 range++;
4376 startpos--;
b18215fc
RS
4377
4378 /* Update STARTPOS to the previous character boundary. */
4379 if (multibyte)
4380 {
70806df6
KH
4381 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4382 re_char *p0 = p;
4383 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4384
4385 /* Find the head of multibyte form. */
70806df6
KH
4386 PREV_CHAR_BOUNDARY (p, phead);
4387 range += p0 - 1 - p;
4388 if (range > 0)
4389 break;
b18215fc 4390
70806df6 4391 startpos -= p0 - 1 - p;
b18215fc 4392 }
25fe55af 4393 }
fa9a63c5
RM
4394 }
4395 return -1;
4396} /* re_search_2 */
c0f9ea08 4397WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4398\f
4399/* Declarations and macros for re_match_2. */
4400
2d1675e4
SM
4401static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4402 register int len,
4403 RE_TRANSLATE_TYPE translate,
4404 const int multibyte));
fa9a63c5
RM
4405
4406/* This converts PTR, a pointer into one of the search strings `string1'
4407 and `string2' into an offset from the beginning of that string. */
4408#define POINTER_TO_OFFSET(ptr) \
4409 (FIRST_STRING_P (ptr) \
4410 ? ((regoff_t) ((ptr) - string1)) \
4411 : ((regoff_t) ((ptr) - string2 + size1)))
4412
fa9a63c5 4413/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4414 string2 if necessary.
4415 Check re_match_2_internal for a discussion of why end_match_2 might
4416 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4417#define PREFETCH() \
25fe55af 4418 while (d == dend) \
fa9a63c5
RM
4419 { \
4420 /* End of string2 => fail. */ \
25fe55af
RS
4421 if (dend == end_match_2) \
4422 goto fail; \
4bb91c68 4423 /* End of string1 => advance to string2. */ \
25fe55af 4424 d = string2; \
fa9a63c5
RM
4425 dend = end_match_2; \
4426 }
4427
f1ad044f
SM
4428/* Call before fetching a char with *d if you already checked other limits.
4429 This is meant for use in lookahead operations like wordend, etc..
4430 where we might need to look at parts of the string that might be
4431 outside of the LIMITs (i.e past `stop'). */
4432#define PREFETCH_NOLIMIT() \
4433 if (d == end1) \
4434 { \
4435 d = string2; \
4436 dend = end_match_2; \
4437 } \
fa9a63c5
RM
4438
4439/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 4440 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4441#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4442#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4443
4444
4445/* Test if D points to a character which is word-constituent. We have
4446 two special cases to check for: if past the end of string1, look at
4447 the first character in string2; and if before the beginning of
4448 string2, look at the last character in string1. */
4449#define WORDCHAR_P(d) \
4450 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4451 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4452 == Sword)
4453
9121ca40 4454/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4455
4456/* The comment at case wordbound is following one, but we don't use
4457 AT_WORD_BOUNDARY anymore to support multibyte form.
4458
4459 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
4460 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4461 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4462 macro and introducing temporary variables works around the bug. */
4463
9121ca40 4464#if 0
fa9a63c5
RM
4465/* Test if the character before D and the one at D differ with respect
4466 to being word-constituent. */
4467#define AT_WORD_BOUNDARY(d) \
4468 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4469 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4470#endif
fa9a63c5
RM
4471
4472/* Free everything we malloc. */
4473#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4474# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4475# define FREE_VARIABLES() \
fa9a63c5
RM
4476 do { \
4477 REGEX_FREE_STACK (fail_stack.stack); \
4478 FREE_VAR (regstart); \
4479 FREE_VAR (regend); \
fa9a63c5
RM
4480 FREE_VAR (best_regstart); \
4481 FREE_VAR (best_regend); \
fa9a63c5
RM
4482 } while (0)
4483#else
0b32bf0e 4484# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4485#endif /* not MATCH_MAY_ALLOCATE */
4486
505bde11
SM
4487\f
4488/* Optimization routines. */
4489
4e8a9132
SM
4490/* If the operation is a match against one or more chars,
4491 return a pointer to the next operation, else return NULL. */
01618498 4492static re_char *
4e8a9132 4493skip_one_char (p)
01618498 4494 re_char *p;
4e8a9132
SM
4495{
4496 switch (SWITCH_ENUM_CAST (*p++))
4497 {
4498 case anychar:
4499 break;
177c0ea7 4500
4e8a9132
SM
4501 case exactn:
4502 p += *p + 1;
4503 break;
4504
4505 case charset_not:
4506 case charset:
4507 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4508 {
4509 int mcnt;
4510 p = CHARSET_RANGE_TABLE (p - 1);
4511 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4512 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4513 }
4514 else
4515 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4516 break;
177c0ea7 4517
4e8a9132
SM
4518 case syntaxspec:
4519 case notsyntaxspec:
1fb352e0 4520#ifdef emacs
4e8a9132
SM
4521 case categoryspec:
4522 case notcategoryspec:
4523#endif /* emacs */
4524 p++;
4525 break;
4526
4527 default:
4528 p = NULL;
4529 }
4530 return p;
4531}
4532
4533
505bde11 4534/* Jump over non-matching operations. */
275a3409 4535static re_char *
4e8a9132 4536skip_noops (p, pend)
275a3409 4537 re_char *p, *pend;
505bde11
SM
4538{
4539 int mcnt;
4540 while (p < pend)
4541 {
4542 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4543 {
4544 case start_memory:
505bde11
SM
4545 case stop_memory:
4546 p += 2; break;
4547 case no_op:
4548 p += 1; break;
4549 case jump:
4550 p += 1;
4551 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4552 p += mcnt;
4553 break;
4554 default:
4555 return p;
4556 }
4557 }
4558 assert (p == pend);
4559 return p;
4560}
4561
4562/* Non-zero if "p1 matches something" implies "p2 fails". */
4563static int
4564mutually_exclusive_p (bufp, p1, p2)
4565 struct re_pattern_buffer *bufp;
275a3409 4566 re_char *p1, *p2;
505bde11 4567{
4e8a9132 4568 re_opcode_t op2;
2d1675e4 4569 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4570 unsigned char *pend = bufp->buffer + bufp->used;
4571
4e8a9132 4572 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4573 && p2 >= bufp->buffer && p2 <= pend);
4574
4575 /* Skip over open/close-group commands.
4576 If what follows this loop is a ...+ construct,
4577 look at what begins its body, since we will have to
4578 match at least one of that. */
4e8a9132
SM
4579 p2 = skip_noops (p2, pend);
4580 /* The same skip can be done for p1, except that this function
4581 is only used in the case where p1 is a simple match operator. */
4582 /* p1 = skip_noops (p1, pend); */
4583
4584 assert (p1 >= bufp->buffer && p1 < pend
4585 && p2 >= bufp->buffer && p2 <= pend);
4586
4587 op2 = p2 == pend ? succeed : *p2;
4588
4589 switch (SWITCH_ENUM_CAST (op2))
505bde11 4590 {
4e8a9132
SM
4591 case succeed:
4592 case endbuf:
4593 /* If we're at the end of the pattern, we can change. */
4594 if (skip_one_char (p1))
505bde11 4595 {
505bde11
SM
4596 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4597 return 1;
505bde11 4598 }
4e8a9132 4599 break;
177c0ea7 4600
4e8a9132 4601 case endline:
4e8a9132
SM
4602 case exactn:
4603 {
01618498 4604 register re_wchar_t c
4e8a9132 4605 = (re_opcode_t) *p2 == endline ? '\n'
411e4203 4606 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
505bde11 4607
4e8a9132
SM
4608 if ((re_opcode_t) *p1 == exactn)
4609 {
4610 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4611 {
4612 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4613 return 1;
4614 }
4615 }
505bde11 4616
4e8a9132
SM
4617 else if ((re_opcode_t) *p1 == charset
4618 || (re_opcode_t) *p1 == charset_not)
4619 {
4620 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4621
4e8a9132
SM
4622 /* Test if C is listed in charset (or charset_not)
4623 at `p1'. */
4624 if (SINGLE_BYTE_CHAR_P (c))
4625 {
4626 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4627 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4628 not = !not;
4629 }
4630 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4631 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4632
4e8a9132
SM
4633 /* `not' is equal to 1 if c would match, which means
4634 that we can't change to pop_failure_jump. */
4635 if (!not)
4636 {
4637 DEBUG_PRINT1 (" No match => fast loop.\n");
4638 return 1;
4639 }
4640 }
4641 else if ((re_opcode_t) *p1 == anychar
4642 && c == '\n')
4643 {
4644 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4645 return 1;
4646 }
4647 }
4648 break;
505bde11 4649
4e8a9132 4650 case charset:
4e8a9132
SM
4651 {
4652 if ((re_opcode_t) *p1 == exactn)
4653 /* Reuse the code above. */
4654 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4655
505bde11
SM
4656 /* It is hard to list up all the character in charset
4657 P2 if it includes multibyte character. Give up in
4658 such case. */
4659 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4660 {
4661 /* Now, we are sure that P2 has no range table.
4662 So, for the size of bitmap in P2, `p2[1]' is
4663 enough. But P1 may have range table, so the
4664 size of bitmap table of P1 is extracted by
4665 using macro `CHARSET_BITMAP_SIZE'.
4666
4667 Since we know that all the character listed in
4668 P2 is ASCII, it is enough to test only bitmap
4669 table of P1. */
4670
411e4203 4671 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4672 {
4673 int idx;
4674 /* We win if the charset inside the loop
4675 has no overlap with the one after the loop. */
4676 for (idx = 0;
4677 (idx < (int) p2[1]
4678 && idx < CHARSET_BITMAP_SIZE (p1));
4679 idx++)
4680 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4681 break;
4682
4683 if (idx == p2[1]
4684 || idx == CHARSET_BITMAP_SIZE (p1))
4685 {
4686 DEBUG_PRINT1 (" No match => fast loop.\n");
4687 return 1;
4688 }
4689 }
411e4203 4690 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4691 {
4692 int idx;
4693 /* We win if the charset_not inside the loop lists
4694 every character listed in the charset after. */
4695 for (idx = 0; idx < (int) p2[1]; idx++)
4696 if (! (p2[2 + idx] == 0
4697 || (idx < CHARSET_BITMAP_SIZE (p1)
4698 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4699 break;
4700
4e8a9132
SM
4701 if (idx == p2[1])
4702 {
4703 DEBUG_PRINT1 (" No match => fast loop.\n");
4704 return 1;
4705 }
4706 }
4707 }
4708 }
609b757a 4709 break;
177c0ea7 4710
411e4203
SM
4711 case charset_not:
4712 switch (SWITCH_ENUM_CAST (*p1))
4713 {
4714 case exactn:
4715 case charset:
4716 /* Reuse the code above. */
4717 return mutually_exclusive_p (bufp, p2, p1);
4718 case charset_not:
4719 /* When we have two charset_not, it's very unlikely that
4720 they don't overlap. The union of the two sets of excluded
4721 chars should cover all possible chars, which, as a matter of
4722 fact, is virtually impossible in multibyte buffers. */
36595814 4723 break;
411e4203
SM
4724 }
4725 break;
4726
4e8a9132 4727 case wordend:
669fa600
SM
4728 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4729 case symend:
4e8a9132 4730 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
4731 && (p1[1] == Ssymbol || p1[1] == Sword));
4732 case notsyntaxspec:
4733 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4734
4735 case wordbeg:
669fa600
SM
4736 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4737 case symbeg:
4e8a9132 4738 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
4739 && (p1[1] == Ssymbol || p1[1] == Sword));
4740 case syntaxspec:
4741 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4742
4743 case wordbound:
4744 return (((re_opcode_t) *p1 == notsyntaxspec
4745 || (re_opcode_t) *p1 == syntaxspec)
4746 && p1[1] == Sword);
4747
1fb352e0 4748#ifdef emacs
4e8a9132
SM
4749 case categoryspec:
4750 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4751 case notcategoryspec:
4752 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4753#endif /* emacs */
4754
4755 default:
4756 ;
505bde11
SM
4757 }
4758
4759 /* Safe default. */
4760 return 0;
4761}
4762
fa9a63c5
RM
4763\f
4764/* Matching routines. */
4765
25fe55af 4766#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4767/* re_match is like re_match_2 except it takes only a single string. */
4768
4769int
4770re_match (bufp, string, size, pos, regs)
4771 struct re_pattern_buffer *bufp;
4772 const char *string;
4773 int size, pos;
4774 struct re_registers *regs;
4775{
4bb91c68 4776 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 4777 pos, regs, size);
0b32bf0e 4778# if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4779 alloca (0);
0b32bf0e 4780# endif
fa9a63c5
RM
4781 return result;
4782}
c0f9ea08 4783WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4784#endif /* not emacs */
4785
b18215fc
RS
4786#ifdef emacs
4787/* In Emacs, this is the string or buffer in which we
25fe55af 4788 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4789Lisp_Object re_match_object;
4790#endif
fa9a63c5
RM
4791
4792/* re_match_2 matches the compiled pattern in BUFP against the
4793 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4794 and SIZE2, respectively). We start matching at POS, and stop
4795 matching at STOP.
5e69f11e 4796
fa9a63c5 4797 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4798 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4799 documentation for exactly how many groups we fill.
4800
4801 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4802 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4803 matched substring. */
4804
4805int
4806re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4807 struct re_pattern_buffer *bufp;
4808 const char *string1, *string2;
4809 int size1, size2;
4810 int pos;
4811 struct re_registers *regs;
4812 int stop;
4813{
b18215fc 4814 int result;
25fe55af 4815
b18215fc 4816#ifdef emacs
cc9b4df2
KH
4817 int charpos;
4818 gl_state.object = re_match_object;
99633e97 4819 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4820 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4821#endif
4822
4bb91c68
SM
4823 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4824 (re_char*) string2, size2,
cc9b4df2 4825 pos, regs, stop);
0b32bf0e 4826#if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4827 alloca (0);
a60198e5 4828#endif
fa9a63c5
RM
4829 return result;
4830}
c0f9ea08 4831WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5
RM
4832
4833/* This is a separate function so that we can force an alloca cleanup
25fe55af 4834 afterwards. */
fa9a63c5
RM
4835static int
4836re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4837 struct re_pattern_buffer *bufp;
66f0296e 4838 re_char *string1, *string2;
fa9a63c5
RM
4839 int size1, size2;
4840 int pos;
4841 struct re_registers *regs;
4842 int stop;
4843{
4844 /* General temporaries. */
4845 int mcnt;
01618498 4846 size_t reg;
66f0296e 4847 boolean not;
fa9a63c5
RM
4848
4849 /* Just past the end of the corresponding string. */
66f0296e 4850 re_char *end1, *end2;
fa9a63c5
RM
4851
4852 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4853 each to consider matching. */
66f0296e 4854 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4855
4856 /* Where we are in the data, and the end of the current string. */
66f0296e 4857 re_char *d, *dend;
5e69f11e 4858
99633e97
SM
4859 /* Used sometimes to remember where we were before starting matching
4860 an operator so that we can go back in case of failure. This "atomic"
4861 behavior of matching opcodes is indispensable to the correctness
4862 of the on_failure_keep_string_jump optimization. */
4863 re_char *dfail;
4864
fa9a63c5 4865 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
4866 re_char *p = bufp->buffer;
4867 re_char *pend = p + bufp->used;
fa9a63c5 4868
25fe55af 4869 /* We use this to map every character in the string. */
6676cb1c 4870 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4871
25fe55af 4872 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4873 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4874
fa9a63c5
RM
4875 /* Failure point stack. Each place that can handle a failure further
4876 down the line pushes a failure point on this stack. It consists of
505bde11 4877 regstart, and regend for all registers corresponding to
fa9a63c5
RM
4878 the subexpressions we're currently inside, plus the number of such
4879 registers, and, finally, two char *'s. The first char * is where
4880 to resume scanning the pattern; the second one is where to resume
505bde11 4881 scanning the strings. */
25fe55af 4882#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4883 fail_stack_type fail_stack;
4884#endif
4885#ifdef DEBUG
fa9a63c5
RM
4886 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4887#endif
4888
0b32bf0e 4889#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
4890 /* This holds the pointer to the failure stack, when
4891 it is allocated relocatably. */
4892 fail_stack_elt_t *failure_stack_ptr;
99633e97 4893#endif
fa9a63c5
RM
4894
4895 /* We fill all the registers internally, independent of what we
25fe55af 4896 return, for use in backreferences. The number here includes
fa9a63c5 4897 an element for register zero. */
4bb91c68 4898 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 4899
fa9a63c5
RM
4900 /* Information on the contents of registers. These are pointers into
4901 the input strings; they record just what was matched (on this
4902 attempt) by a subexpression part of the pattern, that is, the
4903 regnum-th regstart pointer points to where in the pattern we began
4904 matching and the regnum-th regend points to right after where we
4905 stopped matching the regnum-th subexpression. (The zeroth register
4906 keeps track of what the whole pattern matches.) */
4907#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4908 re_char **regstart, **regend;
fa9a63c5
RM
4909#endif
4910
fa9a63c5 4911 /* The following record the register info as found in the above
5e69f11e 4912 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4913 This happens as we backtrack through the failure points, which in
4914 turn happens only if we have not yet matched the entire string. */
4915 unsigned best_regs_set = false;
4916#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4917 re_char **best_regstart, **best_regend;
fa9a63c5 4918#endif
5e69f11e 4919
fa9a63c5
RM
4920 /* Logically, this is `best_regend[0]'. But we don't want to have to
4921 allocate space for that if we're not allocating space for anything
25fe55af 4922 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4923 any of the other register vectors, and it seems rather a kludge to
4924 treat `best_regend' differently than the rest. So we keep track of
4925 the end of the best match so far in a separate variable. We
4926 initialize this to NULL so that when we backtrack the first time
4927 and need to test it, it's not garbage. */
66f0296e 4928 re_char *match_end = NULL;
fa9a63c5 4929
fa9a63c5
RM
4930#ifdef DEBUG
4931 /* Counts the total number of registers pushed. */
5e69f11e 4932 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4933#endif
4934
4935 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4936
fa9a63c5 4937 INIT_FAIL_STACK ();
5e69f11e 4938
fa9a63c5
RM
4939#ifdef MATCH_MAY_ALLOCATE
4940 /* Do not bother to initialize all the register variables if there are
4941 no groups in the pattern, as it takes a fair amount of time. If
4942 there are groups, we include space for register 0 (the whole
4943 pattern), even though we never use it, since it simplifies the
4944 array indexing. We should fix this. */
4945 if (bufp->re_nsub)
4946 {
66f0296e
SM
4947 regstart = REGEX_TALLOC (num_regs, re_char *);
4948 regend = REGEX_TALLOC (num_regs, re_char *);
4949 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4950 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 4951
505bde11 4952 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
4953 {
4954 FREE_VARIABLES ();
4955 return -2;
4956 }
fa9a63c5
RM
4957 }
4958 else
4959 {
4960 /* We must initialize all our variables to NULL, so that
25fe55af 4961 `FREE_VARIABLES' doesn't try to free them. */
505bde11 4962 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
4963 }
4964#endif /* MATCH_MAY_ALLOCATE */
4965
4966 /* The starting position is bogus. */
4967 if (pos < 0 || pos > size1 + size2)
4968 {
4969 FREE_VARIABLES ();
4970 return -1;
4971 }
5e69f11e 4972
fa9a63c5
RM
4973 /* Initialize subexpression text positions to -1 to mark ones that no
4974 start_memory/stop_memory has been seen for. Also initialize the
4975 register information struct. */
01618498
SM
4976 for (reg = 1; reg < num_regs; reg++)
4977 regstart[reg] = regend[reg] = NULL;
99633e97 4978
fa9a63c5 4979 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4980 `string1' is null. */
fa9a63c5
RM
4981 if (size2 == 0 && string1 != NULL)
4982 {
4983 string2 = string1;
4984 size2 = size1;
4985 string1 = 0;
4986 size1 = 0;
4987 }
4988 end1 = string1 + size1;
4989 end2 = string2 + size2;
4990
5e69f11e 4991 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4992 `dend' is the end of the input string that `d' points within. `d'
4993 is advanced into the following input string whenever necessary, but
4994 this happens before fetching; therefore, at the beginning of the
4995 loop, `d' can be pointing at the end of a string, but it cannot
4996 equal `string2'. */
419d1c74 4997 if (pos >= size1)
fa9a63c5 4998 {
419d1c74
SM
4999 /* Only match within string2. */
5000 d = string2 + pos - size1;
5001 dend = end_match_2 = string2 + stop - size1;
5002 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
5003 }
5004 else
5005 {
f1ad044f 5006 if (stop < size1)
419d1c74
SM
5007 {
5008 /* Only match within string1. */
5009 end_match_1 = string1 + stop;
5010 /* BEWARE!
5011 When we reach end_match_1, PREFETCH normally switches to string2.
5012 But in the present case, this means that just doing a PREFETCH
5013 makes us jump from `stop' to `gap' within the string.
5014 What we really want here is for the search to stop as
5015 soon as we hit end_match_1. That's why we set end_match_2
5016 to end_match_1 (since PREFETCH fails as soon as we hit
5017 end_match_2). */
5018 end_match_2 = end_match_1;
5019 }
5020 else
f1ad044f
SM
5021 { /* It's important to use this code when stop == size so that
5022 moving `d' from end1 to string2 will not prevent the d == dend
5023 check from catching the end of string. */
419d1c74
SM
5024 end_match_1 = end1;
5025 end_match_2 = string2 + stop - size1;
5026 }
5027 d = string1 + pos;
5028 dend = end_match_1;
fa9a63c5
RM
5029 }
5030
5031 DEBUG_PRINT1 ("The compiled pattern is: ");
5032 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5033 DEBUG_PRINT1 ("The string to match is: `");
5034 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5035 DEBUG_PRINT1 ("'\n");
5e69f11e 5036
25fe55af 5037 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
5038 function if the match is complete, or it drops through if the match
5039 fails at this starting point in the input data. */
5040 for (;;)
5041 {
505bde11 5042 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
5043
5044 if (p == pend)
5045 { /* End of pattern means we might have succeeded. */
25fe55af 5046 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 5047
fa9a63c5 5048 /* If we haven't matched the entire string, and we want the
25fe55af
RS
5049 longest match, try backtracking. */
5050 if (d != end_match_2)
fa9a63c5
RM
5051 {
5052 /* 1 if this match ends in the same string (string1 or string2)
5053 as the best previous match. */
5e69f11e 5054 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 5055 == FIRST_STRING_P (d));
fa9a63c5
RM
5056 /* 1 if this match is the best seen so far. */
5057 boolean best_match_p;
5058
5059 /* AIX compiler got confused when this was combined
25fe55af 5060 with the previous declaration. */
fa9a63c5
RM
5061 if (same_str_p)
5062 best_match_p = d > match_end;
5063 else
99633e97 5064 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 5065
25fe55af
RS
5066 DEBUG_PRINT1 ("backtracking.\n");
5067
5068 if (!FAIL_STACK_EMPTY ())
5069 { /* More failure points to try. */
5070
5071 /* If exceeds best match so far, save it. */
5072 if (!best_regs_set || best_match_p)
5073 {
5074 best_regs_set = true;
5075 match_end = d;
5076
5077 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5078
01618498 5079 for (reg = 1; reg < num_regs; reg++)
25fe55af 5080 {
01618498
SM
5081 best_regstart[reg] = regstart[reg];
5082 best_regend[reg] = regend[reg];
25fe55af
RS
5083 }
5084 }
5085 goto fail;
5086 }
5087
5088 /* If no failure points, don't restore garbage. And if
5089 last match is real best match, don't restore second
5090 best one. */
5091 else if (best_regs_set && !best_match_p)
5092 {
5093 restore_best_regs:
5094 /* Restore best match. It may happen that `dend ==
5095 end_match_1' while the restored d is in string2.
5096 For example, the pattern `x.*y.*z' against the
5097 strings `x-' and `y-z-', if the two strings are
5098 not consecutive in memory. */
5099 DEBUG_PRINT1 ("Restoring best registers.\n");
5100
5101 d = match_end;
5102 dend = ((d >= string1 && d <= end1)
5103 ? end_match_1 : end_match_2);
fa9a63c5 5104
01618498 5105 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5106 {
01618498
SM
5107 regstart[reg] = best_regstart[reg];
5108 regend[reg] = best_regend[reg];
fa9a63c5 5109 }
25fe55af
RS
5110 }
5111 } /* d != end_match_2 */
fa9a63c5
RM
5112
5113 succeed_label:
25fe55af 5114 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5115
25fe55af
RS
5116 /* If caller wants register contents data back, do it. */
5117 if (regs && !bufp->no_sub)
fa9a63c5 5118 {
25fe55af
RS
5119 /* Have the register data arrays been allocated? */
5120 if (bufp->regs_allocated == REGS_UNALLOCATED)
5121 { /* No. So allocate them with malloc. We need one
5122 extra element beyond `num_regs' for the `-1' marker
5123 GNU code uses. */
5124 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5125 regs->start = TALLOC (regs->num_regs, regoff_t);
5126 regs->end = TALLOC (regs->num_regs, regoff_t);
5127 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5128 {
5129 FREE_VARIABLES ();
5130 return -2;
5131 }
25fe55af
RS
5132 bufp->regs_allocated = REGS_REALLOCATE;
5133 }
5134 else if (bufp->regs_allocated == REGS_REALLOCATE)
5135 { /* Yes. If we need more elements than were already
5136 allocated, reallocate them. If we need fewer, just
5137 leave it alone. */
5138 if (regs->num_regs < num_regs + 1)
5139 {
5140 regs->num_regs = num_regs + 1;
5141 RETALLOC (regs->start, regs->num_regs, regoff_t);
5142 RETALLOC (regs->end, regs->num_regs, regoff_t);
5143 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5144 {
5145 FREE_VARIABLES ();
5146 return -2;
5147 }
25fe55af
RS
5148 }
5149 }
5150 else
fa9a63c5
RM
5151 {
5152 /* These braces fend off a "empty body in an else-statement"
25fe55af 5153 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5154 assert (bufp->regs_allocated == REGS_FIXED);
5155 }
5156
25fe55af
RS
5157 /* Convert the pointer data in `regstart' and `regend' to
5158 indices. Register zero has to be set differently,
5159 since we haven't kept track of any info for it. */
5160 if (regs->num_regs > 0)
5161 {
5162 regs->start[0] = pos;
99633e97 5163 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5164 }
5e69f11e 5165
25fe55af
RS
5166 /* Go through the first `min (num_regs, regs->num_regs)'
5167 registers, since that is all we initialized. */
01618498 5168 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5169 {
01618498
SM
5170 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5171 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5172 else
5173 {
01618498
SM
5174 regs->start[reg]
5175 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5176 regs->end[reg]
5177 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5178 }
fa9a63c5 5179 }
5e69f11e 5180
25fe55af
RS
5181 /* If the regs structure we return has more elements than
5182 were in the pattern, set the extra elements to -1. If
5183 we (re)allocated the registers, this is the case,
5184 because we always allocate enough to have at least one
5185 -1 at the end. */
01618498
SM
5186 for (reg = num_regs; reg < regs->num_regs; reg++)
5187 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5188 } /* regs && !bufp->no_sub */
5189
25fe55af
RS
5190 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5191 nfailure_points_pushed, nfailure_points_popped,
5192 nfailure_points_pushed - nfailure_points_popped);
5193 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5194
99633e97 5195 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5196
25fe55af 5197 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5198
25fe55af
RS
5199 FREE_VARIABLES ();
5200 return mcnt;
5201 }
fa9a63c5 5202
25fe55af 5203 /* Otherwise match next pattern command. */
fa9a63c5
RM
5204 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5205 {
25fe55af
RS
5206 /* Ignore these. Used to ignore the n of succeed_n's which
5207 currently have n == 0. */
5208 case no_op:
5209 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5210 break;
fa9a63c5
RM
5211
5212 case succeed:
25fe55af 5213 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5214 goto succeed_label;
5215
25fe55af
RS
5216 /* Match the next n pattern characters exactly. The following
5217 byte in the pattern defines n, and the n bytes after that
5218 are the characters to match. */
fa9a63c5
RM
5219 case exactn:
5220 mcnt = *p++;
25fe55af 5221 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5222
99633e97
SM
5223 /* Remember the start point to rollback upon failure. */
5224 dfail = d;
5225
25fe55af
RS
5226 /* This is written out as an if-else so we don't waste time
5227 testing `translate' inside the loop. */
28703c16 5228 if (RE_TRANSLATE_P (translate))
fa9a63c5 5229 {
e934739e
RS
5230 if (multibyte)
5231 do
5232 {
5233 int pat_charlen, buf_charlen;
e71b1971 5234 unsigned int pat_ch, buf_ch;
e934739e
RS
5235
5236 PREFETCH ();
5237 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5238 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5239
5240 if (RE_TRANSLATE (translate, buf_ch)
5241 != pat_ch)
99633e97
SM
5242 {
5243 d = dfail;
5244 goto fail;
5245 }
e934739e
RS
5246
5247 p += pat_charlen;
5248 d += buf_charlen;
5249 mcnt -= pat_charlen;
5250 }
5251 while (mcnt > 0);
5252 else
e934739e
RS
5253 do
5254 {
cf1982d9
EZ
5255 /* Avoid compiler whining about comparison being
5256 always true. */
5257 int di;
5258
e934739e 5259 PREFETCH ();
cf1982d9
EZ
5260 di = *d;
5261 if (RE_TRANSLATE (translate, di) != *p++)
99633e97
SM
5262 {
5263 d = dfail;
5264 goto fail;
5265 }
33c46939 5266 d++;
e934739e
RS
5267 }
5268 while (--mcnt);
fa9a63c5
RM
5269 }
5270 else
5271 {
5272 do
5273 {
5274 PREFETCH ();
99633e97
SM
5275 if (*d++ != *p++)
5276 {
5277 d = dfail;
5278 goto fail;
5279 }
fa9a63c5
RM
5280 }
5281 while (--mcnt);
5282 }
25fe55af 5283 break;
fa9a63c5
RM
5284
5285
25fe55af 5286 /* Match any character except possibly a newline or a null. */
fa9a63c5 5287 case anychar:
e934739e
RS
5288 {
5289 int buf_charlen;
01618498 5290 re_wchar_t buf_ch;
fa9a63c5 5291
e934739e 5292 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5293
e934739e 5294 PREFETCH ();
2d1675e4 5295 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
5296 buf_ch = TRANSLATE (buf_ch);
5297
5298 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5299 && buf_ch == '\n')
5300 || ((bufp->syntax & RE_DOT_NOT_NULL)
5301 && buf_ch == '\000'))
5302 goto fail;
5303
e934739e
RS
5304 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5305 d += buf_charlen;
5306 }
fa9a63c5
RM
5307 break;
5308
5309
5310 case charset:
5311 case charset_not:
5312 {
b18215fc 5313 register unsigned int c;
fa9a63c5 5314 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5315 int len;
5316
5317 /* Start of actual range_table, or end of bitmap if there is no
5318 range table. */
01618498 5319 re_char *range_table;
b18215fc 5320
96cc36cc 5321 /* Nonzero if there is a range table. */
b18215fc
RS
5322 int range_table_exists;
5323
96cc36cc
RS
5324 /* Number of ranges of range table. This is not included
5325 in the initial byte-length of the command. */
5326 int count = 0;
fa9a63c5 5327
25fe55af 5328 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5329
b18215fc 5330 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5331
b18215fc 5332 if (range_table_exists)
96cc36cc
RS
5333 {
5334 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5335 EXTRACT_NUMBER_AND_INCR (count, range_table);
5336 }
b18215fc 5337
2d1675e4
SM
5338 PREFETCH ();
5339 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5340 c = TRANSLATE (c); /* The character to match. */
b18215fc
RS
5341
5342 if (SINGLE_BYTE_CHAR_P (c))
5343 { /* Lookup bitmap. */
b18215fc
RS
5344 /* Cast to `unsigned' instead of `unsigned char' in
5345 case the bit list is a full 32 bytes long. */
5346 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5347 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5348 not = !not;
b18215fc 5349 }
96cc36cc 5350#ifdef emacs
b18215fc 5351 else if (range_table_exists)
96cc36cc
RS
5352 {
5353 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5354
14473664
SM
5355 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5356 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5357 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5358 | (class_bits & BIT_SPACE && ISSPACE (c))
5359 | (class_bits & BIT_UPPER && ISUPPER (c))
5360 | (class_bits & BIT_WORD && ISWORD (c)))
5361 not = !not;
5362 else
5363 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5364 }
5365#endif /* emacs */
fa9a63c5 5366
96cc36cc
RS
5367 if (range_table_exists)
5368 p = CHARSET_RANGE_TABLE_END (range_table, count);
5369 else
5370 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5371
5372 if (!not) goto fail;
5e69f11e 5373
b18215fc 5374 d += len;
fa9a63c5
RM
5375 break;
5376 }
5377
5378
25fe55af 5379 /* The beginning of a group is represented by start_memory.
505bde11 5380 The argument is the register number. The text
25fe55af
RS
5381 matched within the group is recorded (in the internal
5382 registers data structure) under the register number. */
5383 case start_memory:
505bde11
SM
5384 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5385
5386 /* In case we need to undo this operation (via backtracking). */
5387 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5388
25fe55af 5389 regstart[*p] = d;
4bb91c68 5390 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5391 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5392
25fe55af 5393 /* Move past the register number and inner group count. */
505bde11 5394 p += 1;
25fe55af 5395 break;
fa9a63c5
RM
5396
5397
25fe55af 5398 /* The stop_memory opcode represents the end of a group. Its
505bde11 5399 argument is the same as start_memory's: the register number. */
fa9a63c5 5400 case stop_memory:
505bde11
SM
5401 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5402
5403 assert (!REG_UNSET (regstart[*p]));
5404 /* Strictly speaking, there should be code such as:
177c0ea7 5405
0b32bf0e 5406 assert (REG_UNSET (regend[*p]));
505bde11
SM
5407 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5408
5409 But the only info to be pushed is regend[*p] and it is known to
5410 be UNSET, so there really isn't anything to push.
5411 Not pushing anything, on the other hand deprives us from the
5412 guarantee that regend[*p] is UNSET since undoing this operation
5413 will not reset its value properly. This is not important since
5414 the value will only be read on the next start_memory or at
5415 the very end and both events can only happen if this stop_memory
5416 is *not* undone. */
fa9a63c5 5417
25fe55af 5418 regend[*p] = d;
fa9a63c5
RM
5419 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5420
25fe55af 5421 /* Move past the register number and the inner group count. */
505bde11 5422 p += 1;
25fe55af 5423 break;
fa9a63c5
RM
5424
5425
5426 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5427 followed by the numeric value of <digit> as the register number. */
5428 case duplicate:
fa9a63c5 5429 {
66f0296e 5430 register re_char *d2, *dend2;
25fe55af 5431 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5432 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5433
25fe55af
RS
5434 /* Can't back reference a group which we've never matched. */
5435 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5436 goto fail;
5e69f11e 5437
25fe55af
RS
5438 /* Where in input to try to start matching. */
5439 d2 = regstart[regno];
5e69f11e 5440
99633e97
SM
5441 /* Remember the start point to rollback upon failure. */
5442 dfail = d;
5443
25fe55af
RS
5444 /* Where to stop matching; if both the place to start and
5445 the place to stop matching are in the same string, then
5446 set to the place to stop, otherwise, for now have to use
5447 the end of the first string. */
fa9a63c5 5448
25fe55af 5449 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5450 == FIRST_STRING_P (regend[regno]))
5451 ? regend[regno] : end_match_1);
5452 for (;;)
5453 {
5454 /* If necessary, advance to next segment in register
25fe55af 5455 contents. */
fa9a63c5
RM
5456 while (d2 == dend2)
5457 {
5458 if (dend2 == end_match_2) break;
5459 if (dend2 == regend[regno]) break;
5460
25fe55af
RS
5461 /* End of string1 => advance to string2. */
5462 d2 = string2;
5463 dend2 = regend[regno];
fa9a63c5
RM
5464 }
5465 /* At end of register contents => success */
5466 if (d2 == dend2) break;
5467
5468 /* If necessary, advance to next segment in data. */
5469 PREFETCH ();
5470
5471 /* How many characters left in this segment to match. */
5472 mcnt = dend - d;
5e69f11e 5473
fa9a63c5 5474 /* Want how many consecutive characters we can match in
25fe55af
RS
5475 one shot, so, if necessary, adjust the count. */
5476 if (mcnt > dend2 - d2)
fa9a63c5 5477 mcnt = dend2 - d2;
5e69f11e 5478
fa9a63c5 5479 /* Compare that many; failure if mismatch, else move
25fe55af 5480 past them. */
28703c16 5481 if (RE_TRANSLATE_P (translate)
2d1675e4 5482 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4bb91c68 5483 : memcmp (d, d2, mcnt))
99633e97
SM
5484 {
5485 d = dfail;
5486 goto fail;
5487 }
fa9a63c5 5488 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5489 }
5490 }
5491 break;
5492
5493
25fe55af 5494 /* begline matches the empty string at the beginning of the string
c0f9ea08 5495 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5496 case begline:
25fe55af 5497 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5498
25fe55af
RS
5499 if (AT_STRINGS_BEG (d))
5500 {
5501 if (!bufp->not_bol) break;
5502 }
419d1c74 5503 else
25fe55af 5504 {
419d1c74
SM
5505 unsigned char c;
5506 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5507 if (c == '\n')
419d1c74 5508 break;
25fe55af
RS
5509 }
5510 /* In all other cases, we fail. */
5511 goto fail;
fa9a63c5
RM
5512
5513
25fe55af 5514 /* endline is the dual of begline. */
fa9a63c5 5515 case endline:
25fe55af 5516 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5517
25fe55af
RS
5518 if (AT_STRINGS_END (d))
5519 {
5520 if (!bufp->not_eol) break;
5521 }
f1ad044f 5522 else
25fe55af 5523 {
f1ad044f 5524 PREFETCH_NOLIMIT ();
c0f9ea08 5525 if (*d == '\n')
f1ad044f 5526 break;
25fe55af
RS
5527 }
5528 goto fail;
fa9a63c5
RM
5529
5530
5531 /* Match at the very beginning of the data. */
25fe55af
RS
5532 case begbuf:
5533 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5534 if (AT_STRINGS_BEG (d))
5535 break;
5536 goto fail;
fa9a63c5
RM
5537
5538
5539 /* Match at the very end of the data. */
25fe55af
RS
5540 case endbuf:
5541 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5542 if (AT_STRINGS_END (d))
5543 break;
25fe55af 5544 goto fail;
5e69f11e 5545
5e69f11e 5546
25fe55af
RS
5547 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5548 pushes NULL as the value for the string on the stack. Then
505bde11 5549 `POP_FAILURE_POINT' will keep the current value for the
25fe55af
RS
5550 string, instead of restoring it. To see why, consider
5551 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5552 then the . fails against the \n. But the next thing we want
5553 to do is match the \n against the \n; if we restored the
5554 string value, we would be back at the foo.
5555
5556 Because this is used only in specific cases, we don't need to
5557 check all the things that `on_failure_jump' does, to make
5558 sure the right things get saved on the stack. Hence we don't
5559 share its code. The only reason to push anything on the
5560 stack at all is that otherwise we would have to change
5561 `anychar's code to do something besides goto fail in this
5562 case; that seems worse than this. */
5563 case on_failure_keep_string_jump:
505bde11
SM
5564 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5565 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5566 mcnt, p + mcnt);
fa9a63c5 5567
505bde11
SM
5568 PUSH_FAILURE_POINT (p - 3, NULL);
5569 break;
5570
0683b6fa
SM
5571 /* A nasty loop is introduced by the non-greedy *? and +?.
5572 With such loops, the stack only ever contains one failure point
5573 at a time, so that a plain on_failure_jump_loop kind of
5574 cycle detection cannot work. Worse yet, such a detection
5575 can not only fail to detect a cycle, but it can also wrongly
5576 detect a cycle (between different instantiations of the same
6df42991 5577 loop).
0683b6fa
SM
5578 So the method used for those nasty loops is a little different:
5579 We use a special cycle-detection-stack-frame which is pushed
5580 when the on_failure_jump_nastyloop failure-point is *popped*.
5581 This special frame thus marks the beginning of one iteration
5582 through the loop and we can hence easily check right here
5583 whether something matched between the beginning and the end of
5584 the loop. */
5585 case on_failure_jump_nastyloop:
5586 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5587 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5588 mcnt, p + mcnt);
5589
5590 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5591 {
5592 int cycle = 0;
5593 CHECK_INFINITE_LOOP (p - 4, d);
5594 if (!cycle)
5595 /* If there's a cycle, just continue without pushing
5596 this failure point. The failure point is the "try again"
5597 option, which shouldn't be tried.
5598 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5599 PUSH_FAILURE_POINT (p - 3, d);
5600 }
0683b6fa
SM
5601 break;
5602
4e8a9132
SM
5603 /* Simple loop detecting on_failure_jump: just check on the
5604 failure stack if the same spot was already hit earlier. */
505bde11
SM
5605 case on_failure_jump_loop:
5606 on_failure:
5607 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5608 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5609 mcnt, p + mcnt);
6df42991
SM
5610 {
5611 int cycle = 0;
5612 CHECK_INFINITE_LOOP (p - 3, d);
5613 if (cycle)
5614 /* If there's a cycle, get out of the loop, as if the matching
5615 had failed. We used to just `goto fail' here, but that was
5616 aborting the search a bit too early: we want to keep the
5617 empty-loop-match and keep matching after the loop.
5618 We want (x?)*y\1z to match both xxyz and xxyxz. */
5619 p += mcnt;
5620 else
5621 PUSH_FAILURE_POINT (p - 3, d);
5622 }
25fe55af 5623 break;
fa9a63c5
RM
5624
5625
5626 /* Uses of on_failure_jump:
5e69f11e 5627
25fe55af
RS
5628 Each alternative starts with an on_failure_jump that points
5629 to the beginning of the next alternative. Each alternative
5630 except the last ends with a jump that in effect jumps past
5631 the rest of the alternatives. (They really jump to the
5632 ending jump of the following alternative, because tensioning
5633 these jumps is a hassle.)
fa9a63c5 5634
25fe55af
RS
5635 Repeats start with an on_failure_jump that points past both
5636 the repetition text and either the following jump or
5637 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5638 case on_failure_jump:
5b370c2b 5639 IMMEDIATE_QUIT_CHECK;
25fe55af 5640 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5641 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5642 mcnt, p + mcnt);
25fe55af 5643
505bde11 5644 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5645 break;
5646
4e8a9132 5647 /* This operation is used for greedy *.
505bde11
SM
5648 Compare the beginning of the repeat with what in the
5649 pattern follows its end. If we can establish that there
5650 is nothing that they would both match, i.e., that we
5651 would have to backtrack because of (as in, e.g., `a*a')
5652 then we can use a non-backtracking loop based on
4e8a9132 5653 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5654 case on_failure_jump_smart:
5b370c2b 5655 IMMEDIATE_QUIT_CHECK;
25fe55af 5656 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5657 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5658 mcnt, p + mcnt);
25fe55af 5659 {
01618498 5660 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5661 /* Here, we discard `const', making re_match non-reentrant. */
5662 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5663 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5664
505bde11
SM
5665 p -= 3; /* Reset so that we will re-execute the
5666 instruction once it's been changed. */
fa9a63c5 5667
4e8a9132
SM
5668 EXTRACT_NUMBER (mcnt, p2 - 2);
5669
5670 /* Ensure this is a indeed the trivial kind of loop
5671 we are expecting. */
5672 assert (skip_one_char (p1) == p2 - 3);
5673 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5674 DEBUG_STATEMENT (debug += 2);
505bde11 5675 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5676 {
505bde11 5677 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5678 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5679 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5680 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5681 }
505bde11 5682 else
fa9a63c5 5683 {
505bde11
SM
5684 /* Default to a safe `on_failure_jump' loop. */
5685 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5686 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5687 }
99633e97 5688 DEBUG_STATEMENT (debug -= 2);
25fe55af 5689 }
505bde11 5690 break;
25fe55af
RS
5691
5692 /* Unconditionally jump (without popping any failure points). */
5693 case jump:
fa9a63c5 5694 unconditional_jump:
5b370c2b 5695 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5696 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5697 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5698 p += mcnt; /* Do the jump. */
505bde11 5699 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5700 break;
5701
5702
25fe55af
RS
5703 /* Have to succeed matching what follows at least n times.
5704 After that, handle like `on_failure_jump'. */
5705 case succeed_n:
01618498 5706 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5707 EXTRACT_NUMBER (mcnt, p + 2);
5708 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5709
dc1e502d
SM
5710 /* Originally, mcnt is how many times we HAVE to succeed. */
5711 if (mcnt != 0)
25fe55af 5712 {
6dcf2d0e
SM
5713 /* Here, we discard `const', making re_match non-reentrant. */
5714 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5715 mcnt--;
01618498
SM
5716 p += 4;
5717 PUSH_NUMBER (p2, mcnt);
25fe55af 5718 }
dc1e502d
SM
5719 else
5720 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5721 goto on_failure;
25fe55af
RS
5722 break;
5723
5724 case jump_n:
01618498 5725 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5726 EXTRACT_NUMBER (mcnt, p + 2);
5727 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5728
5729 /* Originally, this is how many times we CAN jump. */
dc1e502d 5730 if (mcnt != 0)
25fe55af 5731 {
6dcf2d0e
SM
5732 /* Here, we discard `const', making re_match non-reentrant. */
5733 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5734 mcnt--;
01618498 5735 PUSH_NUMBER (p2, mcnt);
dc1e502d 5736 goto unconditional_jump;
25fe55af
RS
5737 }
5738 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5739 else
5740 p += 4;
25fe55af 5741 break;
5e69f11e 5742
fa9a63c5
RM
5743 case set_number_at:
5744 {
01618498 5745 unsigned char *p2; /* Location of the counter. */
25fe55af 5746 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5747
25fe55af 5748 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5749 /* Here, we discard `const', making re_match non-reentrant. */
5750 p2 = (unsigned char*) p + mcnt;
01618498 5751 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5752 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5753 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5754 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5755 break;
5756 }
9121ca40
KH
5757
5758 case wordbound:
66f0296e
SM
5759 case notwordbound:
5760 not = (re_opcode_t) *(p - 1) == notwordbound;
5761 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5762
99633e97 5763 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5764
b18215fc 5765 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5766 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5767 not = !not;
b18215fc
RS
5768 else
5769 {
5770 /* C1 is the character before D, S1 is the syntax of C1, C2
5771 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5772 re_wchar_t c1, c2;
5773 int s1, s2;
b18215fc 5774#ifdef emacs
2d1675e4
SM
5775 int offset = PTR_TO_OFFSET (d - 1);
5776 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5777 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5778#endif
66f0296e 5779 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5780 s1 = SYNTAX (c1);
5781#ifdef emacs
5d967c7a 5782 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5783#endif
f1ad044f 5784 PREFETCH_NOLIMIT ();
2d1675e4 5785 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc
RS
5786 s2 = SYNTAX (c2);
5787
5788 if (/* Case 2: Only one of S1 and S2 is Sword. */
5789 ((s1 == Sword) != (s2 == Sword))
5790 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5791 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5792 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5793 not = !not;
5794 }
5795 if (not)
9121ca40 5796 break;
b18215fc 5797 else
9121ca40 5798 goto fail;
fa9a63c5
RM
5799
5800 case wordbeg:
25fe55af 5801 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5802
b18215fc
RS
5803 /* We FAIL in one of the following cases: */
5804
25fe55af 5805 /* Case 1: D is at the end of string. */
b18215fc 5806 if (AT_STRINGS_END (d))
99633e97 5807 goto fail;
b18215fc
RS
5808 else
5809 {
5810 /* C1 is the character before D, S1 is the syntax of C1, C2
5811 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5812 re_wchar_t c1, c2;
5813 int s1, s2;
fa9a63c5 5814#ifdef emacs
2d1675e4
SM
5815 int offset = PTR_TO_OFFSET (d);
5816 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5817 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5818#endif
99633e97 5819 PREFETCH ();
2d1675e4 5820 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc 5821 s2 = SYNTAX (c2);
177c0ea7 5822
b18215fc
RS
5823 /* Case 2: S2 is not Sword. */
5824 if (s2 != Sword)
5825 goto fail;
5826
5827 /* Case 3: D is not at the beginning of string ... */
5828 if (!AT_STRINGS_BEG (d))
5829 {
5830 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5831#ifdef emacs
5d967c7a 5832 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5833#endif
b18215fc
RS
5834 s1 = SYNTAX (c1);
5835
5836 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5837 returns 0. */
b18215fc
RS
5838 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5839 goto fail;
5840 }
5841 }
e318085a
RS
5842 break;
5843
b18215fc 5844 case wordend:
25fe55af 5845 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5846
5847 /* We FAIL in one of the following cases: */
5848
5849 /* Case 1: D is at the beginning of string. */
5850 if (AT_STRINGS_BEG (d))
e318085a 5851 goto fail;
b18215fc
RS
5852 else
5853 {
5854 /* C1 is the character before D, S1 is the syntax of C1, C2
5855 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5856 re_wchar_t c1, c2;
5857 int s1, s2;
5d967c7a 5858#ifdef emacs
2d1675e4
SM
5859 int offset = PTR_TO_OFFSET (d) - 1;
5860 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5861 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5862#endif
99633e97 5863 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5864 s1 = SYNTAX (c1);
5865
5866 /* Case 2: S1 is not Sword. */
5867 if (s1 != Sword)
5868 goto fail;
5869
5870 /* Case 3: D is not at the end of string ... */
5871 if (!AT_STRINGS_END (d))
5872 {
f1ad044f 5873 PREFETCH_NOLIMIT ();
2d1675e4 5874 c2 = RE_STRING_CHAR (d, dend - d);
5d967c7a 5875#ifdef emacs
134579f2 5876 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5d967c7a 5877#endif
b18215fc
RS
5878 s2 = SYNTAX (c2);
5879
5880 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5881 returns 0. */
b18215fc 5882 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5883 goto fail;
b18215fc
RS
5884 }
5885 }
e318085a
RS
5886 break;
5887
669fa600
SM
5888 case symbeg:
5889 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5890
5891 /* We FAIL in one of the following cases: */
5892
5893 /* Case 1: D is at the end of string. */
5894 if (AT_STRINGS_END (d))
5895 goto fail;
5896 else
5897 {
5898 /* C1 is the character before D, S1 is the syntax of C1, C2
5899 is the character at D, and S2 is the syntax of C2. */
5900 re_wchar_t c1, c2;
5901 int s1, s2;
5902#ifdef emacs
5903 int offset = PTR_TO_OFFSET (d);
5904 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5905 UPDATE_SYNTAX_TABLE (charpos);
5906#endif
5907 PREFETCH ();
5908 c2 = RE_STRING_CHAR (d, dend - d);
5909 s2 = SYNTAX (c2);
5910
5911 /* Case 2: S2 is neither Sword nor Ssymbol. */
5912 if (s2 != Sword && s2 != Ssymbol)
5913 goto fail;
5914
5915 /* Case 3: D is not at the beginning of string ... */
5916 if (!AT_STRINGS_BEG (d))
5917 {
5918 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5919#ifdef emacs
5920 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5921#endif
5922 s1 = SYNTAX (c1);
5923
5924 /* ... and S1 is Sword or Ssymbol. */
5925 if (s1 == Sword || s1 == Ssymbol)
5926 goto fail;
5927 }
5928 }
5929 break;
5930
5931 case symend:
5932 DEBUG_PRINT1 ("EXECUTING symend.\n");
5933
5934 /* We FAIL in one of the following cases: */
5935
5936 /* Case 1: D is at the beginning of string. */
5937 if (AT_STRINGS_BEG (d))
5938 goto fail;
5939 else
5940 {
5941 /* C1 is the character before D, S1 is the syntax of C1, C2
5942 is the character at D, and S2 is the syntax of C2. */
5943 re_wchar_t c1, c2;
5944 int s1, s2;
5945#ifdef emacs
5946 int offset = PTR_TO_OFFSET (d) - 1;
5947 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5948 UPDATE_SYNTAX_TABLE (charpos);
5949#endif
5950 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5951 s1 = SYNTAX (c1);
5952
5953 /* Case 2: S1 is neither Ssymbol nor Sword. */
5954 if (s1 != Sword && s1 != Ssymbol)
5955 goto fail;
5956
5957 /* Case 3: D is not at the end of string ... */
5958 if (!AT_STRINGS_END (d))
5959 {
5960 PREFETCH_NOLIMIT ();
5961 c2 = RE_STRING_CHAR (d, dend - d);
5962#ifdef emacs
134579f2 5963 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
669fa600
SM
5964#endif
5965 s2 = SYNTAX (c2);
5966
5967 /* ... and S2 is Sword or Ssymbol. */
5968 if (s2 == Sword || s2 == Ssymbol)
5969 goto fail;
5970 }
5971 }
5972 break;
5973
fa9a63c5 5974 case syntaxspec:
1fb352e0
SM
5975 case notsyntaxspec:
5976 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 5977 mcnt = *p++;
1fb352e0 5978 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 5979 PREFETCH ();
b18215fc
RS
5980#ifdef emacs
5981 {
2d1675e4
SM
5982 int offset = PTR_TO_OFFSET (d);
5983 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
5984 UPDATE_SYNTAX_TABLE (pos1);
5985 }
25fe55af 5986#endif
b18215fc 5987 {
01618498
SM
5988 int len;
5989 re_wchar_t c;
b18215fc 5990
2d1675e4 5991 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5992
990b2375 5993 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 5994 goto fail;
b18215fc
RS
5995 d += len;
5996 }
fa9a63c5
RM
5997 break;
5998
b18215fc 5999#ifdef emacs
1fb352e0
SM
6000 case before_dot:
6001 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6002 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 6003 goto fail;
b18215fc
RS
6004 break;
6005
1fb352e0
SM
6006 case at_dot:
6007 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6008 if (PTR_BYTE_POS (d) != PT_BYTE)
6009 goto fail;
6010 break;
b18215fc 6011
1fb352e0
SM
6012 case after_dot:
6013 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6014 if (PTR_BYTE_POS (d) <= PT_BYTE)
6015 goto fail;
e318085a 6016 break;
fa9a63c5 6017
1fb352e0 6018 case categoryspec:
b18215fc 6019 case notcategoryspec:
1fb352e0 6020 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 6021 mcnt = *p++;
1fb352e0 6022 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
6023 PREFETCH ();
6024 {
01618498
SM
6025 int len;
6026 re_wchar_t c;
6027
2d1675e4 6028 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 6029
1fb352e0 6030 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
6031 goto fail;
6032 d += len;
6033 }
fa9a63c5 6034 break;
5e69f11e 6035
1fb352e0 6036#endif /* emacs */
5e69f11e 6037
0b32bf0e
SM
6038 default:
6039 abort ();
fa9a63c5 6040 }
b18215fc 6041 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
6042
6043
6044 /* We goto here if a matching operation fails. */
6045 fail:
5b370c2b 6046 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6047 if (!FAIL_STACK_EMPTY ())
505bde11 6048 {
01618498 6049 re_char *str, *pat;
505bde11 6050 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
6051 DEBUG_PRINT1 ("\nFAIL:\n");
6052 POP_FAILURE_POINT (str, pat);
505bde11
SM
6053 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6054 {
6055 case on_failure_keep_string_jump:
6056 assert (str == NULL);
6057 goto continue_failure_jump;
6058
0683b6fa
SM
6059 case on_failure_jump_nastyloop:
6060 assert ((re_opcode_t)pat[-2] == no_op);
6061 PUSH_FAILURE_POINT (pat - 2, str);
6062 /* Fallthrough */
6063
505bde11
SM
6064 case on_failure_jump_loop:
6065 case on_failure_jump:
6066 case succeed_n:
6067 d = str;
6068 continue_failure_jump:
6069 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6070 p = pat + mcnt;
6071 break;
b18215fc 6072
0683b6fa
SM
6073 case no_op:
6074 /* A special frame used for nastyloops. */
6075 goto fail;
6076
505bde11
SM
6077 default:
6078 abort();
6079 }
fa9a63c5 6080
505bde11 6081 assert (p >= bufp->buffer && p <= pend);
b18215fc 6082
0b32bf0e 6083 if (d >= string1 && d <= end1)
fa9a63c5 6084 dend = end_match_1;
0b32bf0e 6085 }
fa9a63c5 6086 else
0b32bf0e 6087 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6088 } /* for (;;) */
6089
6090 if (best_regs_set)
6091 goto restore_best_regs;
6092
6093 FREE_VARIABLES ();
6094
b18215fc 6095 return -1; /* Failure to match. */
fa9a63c5
RM
6096} /* re_match_2 */
6097\f
6098/* Subroutine definitions for re_match_2. */
6099
fa9a63c5
RM
6100/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6101 bytes; nonzero otherwise. */
5e69f11e 6102
fa9a63c5 6103static int
2d1675e4
SM
6104bcmp_translate (s1, s2, len, translate, multibyte)
6105 re_char *s1, *s2;
fa9a63c5 6106 register int len;
6676cb1c 6107 RE_TRANSLATE_TYPE translate;
2d1675e4 6108 const int multibyte;
fa9a63c5 6109{
2d1675e4
SM
6110 register re_char *p1 = s1, *p2 = s2;
6111 re_char *p1_end = s1 + len;
6112 re_char *p2_end = s2 + len;
e934739e 6113
4bb91c68
SM
6114 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6115 different lengths, but relying on a single `len' would break this. -sm */
6116 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6117 {
e934739e 6118 int p1_charlen, p2_charlen;
01618498 6119 re_wchar_t p1_ch, p2_ch;
e934739e 6120
2d1675e4
SM
6121 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6122 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
e934739e
RS
6123
6124 if (RE_TRANSLATE (translate, p1_ch)
6125 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6126 return 1;
e934739e
RS
6127
6128 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6129 }
e934739e
RS
6130
6131 if (p1 != p1_end || p2 != p2_end)
6132 return 1;
6133
fa9a63c5
RM
6134 return 0;
6135}
6136\f
6137/* Entry points for GNU code. */
6138
6139/* re_compile_pattern is the GNU regular expression compiler: it
6140 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6141 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6142
fa9a63c5
RM
6143 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6144 are set in BUFP on entry.
5e69f11e 6145
b18215fc 6146 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6147
6148const char *
6149re_compile_pattern (pattern, length, bufp)
6150 const char *pattern;
0b32bf0e 6151 size_t length;
fa9a63c5
RM
6152 struct re_pattern_buffer *bufp;
6153{
6154 reg_errcode_t ret;
5e69f11e 6155
fa9a63c5
RM
6156 /* GNU code is written to assume at least RE_NREGS registers will be set
6157 (and at least one extra will be -1). */
6158 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6159
fa9a63c5
RM
6160 /* And GNU code determines whether or not to get register information
6161 by passing null for the REGS argument to re_match, etc., not by
6162 setting no_sub. */
6163 bufp->no_sub = 0;
5e69f11e 6164
4bb91c68 6165 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6166
6167 if (!ret)
6168 return NULL;
6169 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6170}
c0f9ea08 6171WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6172\f
b18215fc
RS
6173/* Entry points compatible with 4.2 BSD regex library. We don't define
6174 them unless specifically requested. */
fa9a63c5 6175
0b32bf0e 6176#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6177
6178/* BSD has one and only one pattern buffer. */
6179static struct re_pattern_buffer re_comp_buf;
6180
6181char *
0b32bf0e 6182# ifdef _LIBC
48afdd44
RM
6183/* Make these definitions weak in libc, so POSIX programs can redefine
6184 these names if they don't use our functions, and still use
6185 regcomp/regexec below without link errors. */
6186weak_function
0b32bf0e 6187# endif
fa9a63c5
RM
6188re_comp (s)
6189 const char *s;
6190{
6191 reg_errcode_t ret;
5e69f11e 6192
fa9a63c5
RM
6193 if (!s)
6194 {
6195 if (!re_comp_buf.buffer)
0b32bf0e 6196 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6197 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6198 return 0;
6199 }
6200
6201 if (!re_comp_buf.buffer)
6202 {
6203 re_comp_buf.buffer = (unsigned char *) malloc (200);
6204 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6205 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6206 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6207 re_comp_buf.allocated = 200;
6208
6209 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6210 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6211 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6212 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6213 }
6214
6215 /* Since `re_exec' always passes NULL for the `regs' argument, we
6216 don't need to initialize the pattern buffer fields which affect it. */
6217
fa9a63c5 6218 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6219
fa9a63c5
RM
6220 if (!ret)
6221 return NULL;
6222
6223 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6224 return (char *) gettext (re_error_msgid[(int) ret]);
6225}
6226
6227
6228int
0b32bf0e 6229# ifdef _LIBC
48afdd44 6230weak_function
0b32bf0e 6231# endif
fa9a63c5
RM
6232re_exec (s)
6233 const char *s;
6234{
6235 const int len = strlen (s);
6236 return
6237 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6238}
6239#endif /* _REGEX_RE_COMP */
6240\f
6241/* POSIX.2 functions. Don't define these for Emacs. */
6242
6243#ifndef emacs
6244
6245/* regcomp takes a regular expression as a string and compiles it.
6246
b18215fc 6247 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6248 since POSIX says we shouldn't. Thus, we set
6249
6250 `buffer' to the compiled pattern;
6251 `used' to the length of the compiled pattern;
6252 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6253 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6254 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6255 `fastmap' to an allocated space for the fastmap;
6256 `fastmap_accurate' to zero;
fa9a63c5
RM
6257 `re_nsub' to the number of subexpressions in PATTERN.
6258
6259 PATTERN is the address of the pattern string.
6260
6261 CFLAGS is a series of bits which affect compilation.
6262
6263 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6264 use POSIX basic syntax.
6265
6266 If REG_NEWLINE is set, then . and [^...] don't match newline.
6267 Also, regexec will try a match beginning after every newline.
6268
6269 If REG_ICASE is set, then we considers upper- and lowercase
6270 versions of letters to be equivalent when matching.
6271
6272 If REG_NOSUB is set, then when PREG is passed to regexec, that
6273 routine will report only success or failure, and nothing about the
6274 registers.
6275
b18215fc 6276 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6277 the return codes and their meanings.) */
6278
6279int
6280regcomp (preg, pattern, cflags)
ada30c0e
SM
6281 regex_t *__restrict preg;
6282 const char *__restrict pattern;
fa9a63c5
RM
6283 int cflags;
6284{
6285 reg_errcode_t ret;
4bb91c68 6286 reg_syntax_t syntax
fa9a63c5
RM
6287 = (cflags & REG_EXTENDED) ?
6288 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6289
6290 /* regex_compile will allocate the space for the compiled pattern. */
6291 preg->buffer = 0;
6292 preg->allocated = 0;
6293 preg->used = 0;
5e69f11e 6294
c0f9ea08
SM
6295 /* Try to allocate space for the fastmap. */
6296 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6297
fa9a63c5
RM
6298 if (cflags & REG_ICASE)
6299 {
6300 unsigned i;
5e69f11e 6301
6676cb1c
RS
6302 preg->translate
6303 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6304 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6305 if (preg->translate == NULL)
0b32bf0e 6306 return (int) REG_ESPACE;
fa9a63c5
RM
6307
6308 /* Map uppercase characters to corresponding lowercase ones. */
6309 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6310 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6311 }
6312 else
6313 preg->translate = NULL;
6314
6315 /* If REG_NEWLINE is set, newlines are treated differently. */
6316 if (cflags & REG_NEWLINE)
6317 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6318 syntax &= ~RE_DOT_NEWLINE;
6319 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6320 }
6321 else
c0f9ea08 6322 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6323
6324 preg->no_sub = !!(cflags & REG_NOSUB);
6325
5e69f11e 6326 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6327 can use strlen here in compiling the pattern. */
4bb91c68 6328 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6329
fa9a63c5
RM
6330 /* POSIX doesn't distinguish between an unmatched open-group and an
6331 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6332 if (ret == REG_ERPAREN)
6333 ret = REG_EPAREN;
6334
6335 if (ret == REG_NOERROR && preg->fastmap)
6336 { /* Compute the fastmap now, since regexec cannot modify the pattern
6337 buffer. */
6338 re_compile_fastmap (preg);
6339 if (preg->can_be_null)
6340 { /* The fastmap can't be used anyway. */
6341 free (preg->fastmap);
6342 preg->fastmap = NULL;
6343 }
6344 }
fa9a63c5
RM
6345 return (int) ret;
6346}
c0f9ea08 6347WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6348
6349
6350/* regexec searches for a given pattern, specified by PREG, in the
6351 string STRING.
5e69f11e 6352
fa9a63c5 6353 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6354 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6355 least NMATCH elements, and we set them to the offsets of the
6356 corresponding matched substrings.
5e69f11e 6357
fa9a63c5
RM
6358 EFLAGS specifies `execution flags' which affect matching: if
6359 REG_NOTBOL is set, then ^ does not match at the beginning of the
6360 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6361
fa9a63c5
RM
6362 We return 0 if we find a match and REG_NOMATCH if not. */
6363
6364int
6365regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6366 const regex_t *__restrict preg;
6367 const char *__restrict string;
5e69f11e 6368 size_t nmatch;
9f2dbe01 6369 regmatch_t pmatch[__restrict_arr];
fa9a63c5
RM
6370 int eflags;
6371{
6372 int ret;
6373 struct re_registers regs;
6374 regex_t private_preg;
6375 int len = strlen (string);
c0f9ea08 6376 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6377
6378 private_preg = *preg;
5e69f11e 6379
fa9a63c5
RM
6380 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6381 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6382
fa9a63c5
RM
6383 /* The user has told us exactly how many registers to return
6384 information about, via `nmatch'. We have to pass that on to the
b18215fc 6385 matching routines. */
fa9a63c5 6386 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6387
fa9a63c5
RM
6388 if (want_reg_info)
6389 {
6390 regs.num_regs = nmatch;
4bb91c68
SM
6391 regs.start = TALLOC (nmatch * 2, regoff_t);
6392 if (regs.start == NULL)
0b32bf0e 6393 return (int) REG_NOMATCH;
4bb91c68 6394 regs.end = regs.start + nmatch;
fa9a63c5
RM
6395 }
6396
c0f9ea08
SM
6397 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6398 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6399 was a little bit longer but still only matching the real part.
6400 This works because the `endline' will check for a '\n' and will find a
6401 '\0', correctly deciding that this is not the end of a line.
6402 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6403 a convenient '\0' there. For all we know, the string could be preceded
6404 by '\n' which would throw things off. */
6405
fa9a63c5
RM
6406 /* Perform the searching operation. */
6407 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6408 /* start: */ 0, /* range: */ len,
6409 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6410
fa9a63c5
RM
6411 /* Copy the register information to the POSIX structure. */
6412 if (want_reg_info)
6413 {
6414 if (ret >= 0)
0b32bf0e
SM
6415 {
6416 unsigned r;
fa9a63c5 6417
0b32bf0e
SM
6418 for (r = 0; r < nmatch; r++)
6419 {
6420 pmatch[r].rm_so = regs.start[r];
6421 pmatch[r].rm_eo = regs.end[r];
6422 }
6423 }
fa9a63c5 6424
b18215fc 6425 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6426 free (regs.start);
fa9a63c5
RM
6427 }
6428
6429 /* We want zero return to mean success, unlike `re_search'. */
6430 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6431}
c0f9ea08 6432WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6433
6434
6435/* Returns a message corresponding to an error code, ERRCODE, returned
6436 from either regcomp or regexec. We don't use PREG here. */
6437
6438size_t
6439regerror (errcode, preg, errbuf, errbuf_size)
6440 int errcode;
6441 const regex_t *preg;
6442 char *errbuf;
6443 size_t errbuf_size;
6444{
6445 const char *msg;
6446 size_t msg_size;
6447
6448 if (errcode < 0
6449 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6450 /* Only error codes returned by the rest of the code should be passed
b18215fc 6451 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6452 code generates an invalid error code, then the program has a bug.
6453 Dump core so we can fix it. */
6454 abort ();
6455
6456 msg = gettext (re_error_msgid[errcode]);
6457
6458 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6459
fa9a63c5
RM
6460 if (errbuf_size != 0)
6461 {
6462 if (msg_size > errbuf_size)
0b32bf0e
SM
6463 {
6464 strncpy (errbuf, msg, errbuf_size - 1);
6465 errbuf[errbuf_size - 1] = 0;
6466 }
fa9a63c5 6467 else
0b32bf0e 6468 strcpy (errbuf, msg);
fa9a63c5
RM
6469 }
6470
6471 return msg_size;
6472}
c0f9ea08 6473WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6474
6475
6476/* Free dynamically allocated space used by PREG. */
6477
6478void
6479regfree (preg)
6480 regex_t *preg;
6481{
6482 if (preg->buffer != NULL)
6483 free (preg->buffer);
6484 preg->buffer = NULL;
5e69f11e 6485
fa9a63c5
RM
6486 preg->allocated = 0;
6487 preg->used = 0;
6488
6489 if (preg->fastmap != NULL)
6490 free (preg->fastmap);
6491 preg->fastmap = NULL;
6492 preg->fastmap_accurate = 0;
6493
6494 if (preg->translate != NULL)
6495 free (preg->translate);
6496 preg->translate = NULL;
6497}
c0f9ea08 6498WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6499
6500#endif /* not emacs */
ab5796a9
MB
6501
6502/* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6503 (do not change this comment) */