Move systime.h include after lisp.h.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
126f9c02 2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
f501ccb4 3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
7c299e7a 9the Free Software Foundation; either version 2, or (at your option)
7146af97
JB
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
4fc5845f
LK
19the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA. */
7146af97 21
18160b98 22#include <config.h>
e9b309ac 23#include <stdio.h>
ab6780cd 24#include <limits.h> /* For CHAR_BIT. */
92939d31 25
4455ad75
RS
26#ifdef ALLOC_DEBUG
27#undef INLINE
28#endif
29
68c45bf0 30/* Note that this declares bzero on OSF/1. How dumb. */
2e471eb5 31
68c45bf0 32#include <signal.h>
92939d31 33
aa477689
JD
34#ifdef HAVE_GTK_AND_PTHREAD
35#include <pthread.h>
36#endif
37
7539e11f
KR
38/* This file is part of the core Lisp implementation, and thus must
39 deal with the real data structures. If the Lisp implementation is
40 replaced, this file likely will not be used. */
2e471eb5 41
7539e11f 42#undef HIDE_LISP_IMPLEMENTATION
7146af97 43#include "lisp.h"
ece93c02 44#include "process.h"
d5e35230 45#include "intervals.h"
4c0be5f4 46#include "puresize.h"
7146af97
JB
47#include "buffer.h"
48#include "window.h"
2538fae4 49#include "keyboard.h"
502b9b64 50#include "frame.h"
9ac0d9e0 51#include "blockinput.h"
e54daa22 52#include "charset.h"
e065a56e 53#include "syssignal.h"
34400008 54#include <setjmp.h>
e065a56e 55
ad5f3636
DL
56/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c. */
58
59#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
60#undef GC_MALLOC_CHECK
61#endif
62
bf952fb6
DL
63#ifdef HAVE_UNISTD_H
64#include <unistd.h>
65#else
66extern POINTER_TYPE *sbrk ();
67#endif
ee1eea5c 68
d1658221 69#ifdef DOUG_LEA_MALLOC
2e471eb5 70
d1658221 71#include <malloc.h>
3e60b029
DL
72/* malloc.h #defines this as size_t, at least in glibc2. */
73#ifndef __malloc_size_t
d1658221 74#define __malloc_size_t int
3e60b029 75#endif
81d492d5 76
2e471eb5
GM
77/* Specify maximum number of areas to mmap. It would be nice to use a
78 value that explicitly means "no limit". */
79
81d492d5
RS
80#define MMAP_MAX_AREAS 100000000
81
2e471eb5
GM
82#else /* not DOUG_LEA_MALLOC */
83
276cbe5a
RS
84/* The following come from gmalloc.c. */
85
276cbe5a 86#define __malloc_size_t size_t
276cbe5a 87extern __malloc_size_t _bytes_used;
3e60b029 88extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
89
90#endif /* not DOUG_LEA_MALLOC */
276cbe5a 91
aa477689
JD
92#if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
93
f415cacd
JD
94/* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
98
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 102 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
105
026cdede 106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
110
aa477689 111static pthread_mutex_t alloc_mutex;
aa477689
JD
112
113#define BLOCK_INPUT_ALLOC \
114 do \
115 { \
116 pthread_mutex_lock (&alloc_mutex); \
117 if (pthread_self () == main_thread) \
118 BLOCK_INPUT; \
119 } \
120 while (0)
121#define UNBLOCK_INPUT_ALLOC \
122 do \
123 { \
124 if (pthread_self () == main_thread) \
125 UNBLOCK_INPUT; \
126 pthread_mutex_unlock (&alloc_mutex); \
127 } \
128 while (0)
129
130#else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
131
132#define BLOCK_INPUT_ALLOC BLOCK_INPUT
133#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
134
135#endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
136
276cbe5a 137/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 138
276cbe5a
RS
139static __malloc_size_t bytes_used_when_full;
140
2e471eb5
GM
141/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
142 to a struct Lisp_String. */
143
7cdee936
SM
144#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
145#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 146#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 147
3ef06d12
SM
148#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
149#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
b059de99 150#define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
3ef06d12 151
2e471eb5
GM
152/* Value is the number of bytes/chars of S, a pointer to a struct
153 Lisp_String. This must be used instead of STRING_BYTES (S) or
154 S->size during GC, because S->size contains the mark bit for
155 strings. */
156
3ef06d12 157#define GC_STRING_BYTES(S) (STRING_BYTES (S))
7cdee936 158#define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
2e471eb5
GM
159
160/* Number of bytes of consing done since the last gc. */
161
7146af97
JB
162int consing_since_gc;
163
310ea200 164/* Count the amount of consing of various sorts of space. */
2e471eb5 165
31ade731
SM
166EMACS_INT cons_cells_consed;
167EMACS_INT floats_consed;
168EMACS_INT vector_cells_consed;
169EMACS_INT symbols_consed;
170EMACS_INT string_chars_consed;
171EMACS_INT misc_objects_consed;
172EMACS_INT intervals_consed;
173EMACS_INT strings_consed;
2e471eb5 174
974aae61
RS
175/* Minimum number of bytes of consing since GC before next GC. */
176
177EMACS_INT gc_cons_threshold;
178
179/* Similar minimum, computed from Vgc_cons_percentage. */
180
181EMACS_INT gc_relative_threshold;
310ea200 182
96f077ad 183static Lisp_Object Vgc_cons_percentage;
7146af97 184
2e471eb5
GM
185/* Nonzero during GC. */
186
7146af97
JB
187int gc_in_progress;
188
3de0effb
RS
189/* Nonzero means abort if try to GC.
190 This is for code which is written on the assumption that
191 no GC will happen, so as to verify that assumption. */
192
193int abort_on_gc;
194
299585ee 195/* Nonzero means display messages at beginning and end of GC. */
2e471eb5 196
299585ee
RS
197int garbage_collection_messages;
198
7146af97
JB
199#ifndef VIRT_ADDR_VARIES
200extern
201#endif /* VIRT_ADDR_VARIES */
2e471eb5 202int malloc_sbrk_used;
7146af97
JB
203
204#ifndef VIRT_ADDR_VARIES
205extern
206#endif /* VIRT_ADDR_VARIES */
2e471eb5 207int malloc_sbrk_unused;
7146af97 208
34400008
GM
209/* Number of live and free conses etc. */
210
211static int total_conses, total_markers, total_symbols, total_vector_size;
212static int total_free_conses, total_free_markers, total_free_symbols;
213static int total_free_floats, total_floats;
fd27a537 214
2e471eb5
GM
215/* Points to memory space allocated as "spare", to be freed if we run
216 out of memory. */
217
276cbe5a
RS
218static char *spare_memory;
219
220/* Amount of spare memory to keep in reserve. */
2e471eb5 221
276cbe5a
RS
222#define SPARE_MEMORY (1 << 14)
223
224/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 225
276cbe5a
RS
226static int malloc_hysteresis;
227
2e471eb5
GM
228/* Non-nil means defun should do purecopy on the function definition. */
229
7146af97
JB
230Lisp_Object Vpurify_flag;
231
74a54b04
RS
232/* Non-nil means we are handling a memory-full error. */
233
234Lisp_Object Vmemory_full;
235
7146af97 236#ifndef HAVE_SHM
2e471eb5 237
1b8950e5
RS
238/* Initialize it to a nonzero value to force it into data space
239 (rather than bss space). That way unexec will remap it into text
240 space (pure), on some systems. We have not implemented the
241 remapping on more recent systems because this is less important
242 nowadays than in the days of small memories and timesharing. */
2e471eb5 243
379b98b1 244EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
7146af97 245#define PUREBEG (char *) pure
2e471eb5 246
9e713715 247#else /* HAVE_SHM */
2e471eb5 248
7146af97
JB
249#define pure PURE_SEG_BITS /* Use shared memory segment */
250#define PUREBEG (char *)PURE_SEG_BITS
4c0be5f4 251
9e713715 252#endif /* HAVE_SHM */
2e471eb5 253
9e713715 254/* Pointer to the pure area, and its size. */
2e471eb5 255
9e713715
GM
256static char *purebeg;
257static size_t pure_size;
258
259/* Number of bytes of pure storage used before pure storage overflowed.
260 If this is non-zero, this implies that an overflow occurred. */
261
262static size_t pure_bytes_used_before_overflow;
7146af97 263
34400008
GM
264/* Value is non-zero if P points into pure space. */
265
266#define PURE_POINTER_P(P) \
267 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 268 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 269 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 270 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 271
2e471eb5
GM
272/* Index in pure at which next pure object will be allocated.. */
273
31ade731 274EMACS_INT pure_bytes_used;
7146af97 275
2e471eb5
GM
276/* If nonzero, this is a warning delivered by malloc and not yet
277 displayed. */
278
7146af97
JB
279char *pending_malloc_warning;
280
bcb61d60 281/* Pre-computed signal argument for use when memory is exhausted. */
2e471eb5 282
74a54b04 283Lisp_Object Vmemory_signal_data;
bcb61d60 284
7146af97
JB
285/* Maximum amount of C stack to save when a GC happens. */
286
287#ifndef MAX_SAVE_STACK
288#define MAX_SAVE_STACK 16000
289#endif
290
291/* Buffer in which we save a copy of the C stack at each GC. */
292
293char *stack_copy;
294int stack_copy_size;
295
2e471eb5
GM
296/* Non-zero means ignore malloc warnings. Set during initialization.
297 Currently not used. */
298
7146af97 299int ignore_warnings;
350273a4 300
a59de17b 301Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 302
9e713715
GM
303/* Hook run after GC has finished. */
304
305Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
306
2c5bd608
DL
307Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
308EMACS_INT gcs_done; /* accumulated GCs */
309
2e471eb5 310static void mark_buffer P_ ((Lisp_Object));
6793bc63 311extern void mark_kboards P_ ((void));
b40ea20a 312extern void mark_backtrace P_ ((void));
2e471eb5 313static void gc_sweep P_ ((void));
41c28a37
GM
314static void mark_glyph_matrix P_ ((struct glyph_matrix *));
315static void mark_face_cache P_ ((struct face_cache *));
316
317#ifdef HAVE_WINDOW_SYSTEM
454d7973 318extern void mark_fringe_data P_ ((void));
41c28a37
GM
319static void mark_image P_ ((struct image *));
320static void mark_image_cache P_ ((struct frame *));
321#endif /* HAVE_WINDOW_SYSTEM */
322
2e471eb5
GM
323static struct Lisp_String *allocate_string P_ ((void));
324static void compact_small_strings P_ ((void));
325static void free_large_strings P_ ((void));
326static void sweep_strings P_ ((void));
7da0b0d3
RS
327
328extern int message_enable_multibyte;
34400008 329
34400008
GM
330/* When scanning the C stack for live Lisp objects, Emacs keeps track
331 of what memory allocated via lisp_malloc is intended for what
332 purpose. This enumeration specifies the type of memory. */
333
334enum mem_type
335{
336 MEM_TYPE_NON_LISP,
337 MEM_TYPE_BUFFER,
338 MEM_TYPE_CONS,
339 MEM_TYPE_STRING,
340 MEM_TYPE_MISC,
341 MEM_TYPE_SYMBOL,
342 MEM_TYPE_FLOAT,
ece93c02
GM
343 /* Keep the following vector-like types together, with
344 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
345 first. Or change the code of live_vector_p, for instance. */
346 MEM_TYPE_VECTOR,
347 MEM_TYPE_PROCESS,
348 MEM_TYPE_HASH_TABLE,
349 MEM_TYPE_FRAME,
350 MEM_TYPE_WINDOW
34400008
GM
351};
352
877935b1 353#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
354
355#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
356#include <stdio.h> /* For fprintf. */
357#endif
358
359/* A unique object in pure space used to make some Lisp objects
360 on free lists recognizable in O(1). */
361
362Lisp_Object Vdead;
363
877935b1
GM
364#ifdef GC_MALLOC_CHECK
365
366enum mem_type allocated_mem_type;
367int dont_register_blocks;
368
369#endif /* GC_MALLOC_CHECK */
370
371/* A node in the red-black tree describing allocated memory containing
372 Lisp data. Each such block is recorded with its start and end
373 address when it is allocated, and removed from the tree when it
374 is freed.
375
376 A red-black tree is a balanced binary tree with the following
377 properties:
378
379 1. Every node is either red or black.
380 2. Every leaf is black.
381 3. If a node is red, then both of its children are black.
382 4. Every simple path from a node to a descendant leaf contains
383 the same number of black nodes.
384 5. The root is always black.
385
386 When nodes are inserted into the tree, or deleted from the tree,
387 the tree is "fixed" so that these properties are always true.
388
389 A red-black tree with N internal nodes has height at most 2
390 log(N+1). Searches, insertions and deletions are done in O(log N).
391 Please see a text book about data structures for a detailed
392 description of red-black trees. Any book worth its salt should
393 describe them. */
394
395struct mem_node
396{
9f7d9210
RS
397 /* Children of this node. These pointers are never NULL. When there
398 is no child, the value is MEM_NIL, which points to a dummy node. */
399 struct mem_node *left, *right;
400
401 /* The parent of this node. In the root node, this is NULL. */
402 struct mem_node *parent;
877935b1
GM
403
404 /* Start and end of allocated region. */
405 void *start, *end;
406
407 /* Node color. */
408 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 409
877935b1
GM
410 /* Memory type. */
411 enum mem_type type;
412};
413
414/* Base address of stack. Set in main. */
415
416Lisp_Object *stack_base;
417
418/* Root of the tree describing allocated Lisp memory. */
419
420static struct mem_node *mem_root;
421
ece93c02
GM
422/* Lowest and highest known address in the heap. */
423
424static void *min_heap_address, *max_heap_address;
425
877935b1
GM
426/* Sentinel node of the tree. */
427
428static struct mem_node mem_z;
429#define MEM_NIL &mem_z
430
b3303f74 431static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
ece93c02 432static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
bf952fb6 433static void lisp_free P_ ((POINTER_TYPE *));
34400008 434static void mark_stack P_ ((void));
34400008
GM
435static int live_vector_p P_ ((struct mem_node *, void *));
436static int live_buffer_p P_ ((struct mem_node *, void *));
437static int live_string_p P_ ((struct mem_node *, void *));
438static int live_cons_p P_ ((struct mem_node *, void *));
439static int live_symbol_p P_ ((struct mem_node *, void *));
440static int live_float_p P_ ((struct mem_node *, void *));
441static int live_misc_p P_ ((struct mem_node *, void *));
182ff242 442static void mark_maybe_object P_ ((Lisp_Object));
34400008
GM
443static void mark_memory P_ ((void *, void *));
444static void mem_init P_ ((void));
445static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
446static void mem_insert_fixup P_ ((struct mem_node *));
447static void mem_rotate_left P_ ((struct mem_node *));
448static void mem_rotate_right P_ ((struct mem_node *));
449static void mem_delete P_ ((struct mem_node *));
450static void mem_delete_fixup P_ ((struct mem_node *));
451static INLINE struct mem_node *mem_find P_ ((void *));
452
453#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
454static void check_gcpros P_ ((void));
455#endif
456
877935b1 457#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 458
1f0b3fd2
GM
459/* Recording what needs to be marked for gc. */
460
461struct gcpro *gcprolist;
462
379b98b1
PE
463/* Addresses of staticpro'd variables. Initialize it to a nonzero
464 value; otherwise some compilers put it into BSS. */
1f0b3fd2 465
382d38fa 466#define NSTATICS 1280
379b98b1 467Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
468
469/* Index of next unused slot in staticvec. */
470
471int staticidx = 0;
472
473static POINTER_TYPE *pure_alloc P_ ((size_t, int));
474
475
476/* Value is SZ rounded up to the next multiple of ALIGNMENT.
477 ALIGNMENT must be a power of 2. */
478
ab6780cd
SM
479#define ALIGN(ptr, ALIGNMENT) \
480 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
481 & ~((ALIGNMENT) - 1)))
1f0b3fd2 482
ece93c02 483
7146af97 484\f
34400008
GM
485/************************************************************************
486 Malloc
487 ************************************************************************/
488
4455ad75 489/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
490
491void
7146af97
JB
492malloc_warning (str)
493 char *str;
494{
495 pending_malloc_warning = str;
496}
497
34400008 498
4455ad75 499/* Display an already-pending malloc warning. */
34400008 500
d457598b 501void
7146af97
JB
502display_malloc_warning ()
503{
4455ad75
RS
504 call3 (intern ("display-warning"),
505 intern ("alloc"),
506 build_string (pending_malloc_warning),
507 intern ("emergency"));
7146af97 508 pending_malloc_warning = 0;
7146af97
JB
509}
510
34400008 511
d1658221 512#ifdef DOUG_LEA_MALLOC
1177ecf6 513# define BYTES_USED (mallinfo ().arena)
d1658221 514#else
1177ecf6 515# define BYTES_USED _bytes_used
d1658221
RS
516#endif
517
34400008 518
2e471eb5 519/* Called if malloc returns zero. */
276cbe5a 520
d457598b 521void
7146af97
JB
522memory_full ()
523{
74a54b04
RS
524 Vmemory_full = Qt;
525
276cbe5a 526#ifndef SYSTEM_MALLOC
d1658221 527 bytes_used_when_full = BYTES_USED;
276cbe5a
RS
528#endif
529
530 /* The first time we get here, free the spare memory. */
531 if (spare_memory)
532 {
533 free (spare_memory);
534 spare_memory = 0;
535 }
536
2e471eb5
GM
537 /* This used to call error, but if we've run out of memory, we could
538 get infinite recursion trying to build the string. */
276cbe5a 539 while (1)
74a54b04 540 Fsignal (Qnil, Vmemory_signal_data);
276cbe5a
RS
541}
542
8a4c9dc4
RS
543DEFUN ("memory-full-p", Fmemory_full_p, Smemory_full_p, 0, 0, 0,
544 doc: /* t if memory is nearly full, nil otherwise. */)
545 ()
546{
547 return (spare_memory ? Qnil : Qt);
548}
34400008 549
276cbe5a
RS
550/* Called if we can't allocate relocatable space for a buffer. */
551
552void
553buffer_memory_full ()
554{
2e471eb5
GM
555 /* If buffers use the relocating allocator, no need to free
556 spare_memory, because we may have plenty of malloc space left
557 that we could get, and if we don't, the malloc that fails will
558 itself cause spare_memory to be freed. If buffers don't use the
559 relocating allocator, treat this like any other failing
560 malloc. */
276cbe5a
RS
561
562#ifndef REL_ALLOC
563 memory_full ();
564#endif
565
74a54b04
RS
566 Vmemory_full = Qt;
567
2e471eb5
GM
568 /* This used to call error, but if we've run out of memory, we could
569 get infinite recursion trying to build the string. */
bcb61d60 570 while (1)
74a54b04 571 Fsignal (Qnil, Vmemory_signal_data);
7146af97
JB
572}
573
34400008 574
212f33f1
KS
575#ifdef XMALLOC_OVERRUN_CHECK
576
bdbed949
KS
577/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
578 and a 16 byte trailer around each block.
579
580 The header consists of 12 fixed bytes + a 4 byte integer contaning the
581 original block size, while the trailer consists of 16 fixed bytes.
582
583 The header is used to detect whether this block has been allocated
584 through these functions -- as it seems that some low-level libc
585 functions may bypass the malloc hooks.
586*/
587
588
212f33f1 589#define XMALLOC_OVERRUN_CHECK_SIZE 16
bdbed949 590
212f33f1
KS
591static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
592 { 0x9a, 0x9b, 0xae, 0xaf,
593 0xbf, 0xbe, 0xce, 0xcf,
594 0xea, 0xeb, 0xec, 0xed };
595
596static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
597 { 0xaa, 0xab, 0xac, 0xad,
598 0xba, 0xbb, 0xbc, 0xbd,
599 0xca, 0xcb, 0xcc, 0xcd,
600 0xda, 0xdb, 0xdc, 0xdd };
601
bdbed949
KS
602/* Macros to insert and extract the block size in the header. */
603
604#define XMALLOC_PUT_SIZE(ptr, size) \
605 (ptr[-1] = (size & 0xff), \
606 ptr[-2] = ((size >> 8) & 0xff), \
607 ptr[-3] = ((size >> 16) & 0xff), \
608 ptr[-4] = ((size >> 24) & 0xff))
609
610#define XMALLOC_GET_SIZE(ptr) \
611 (size_t)((unsigned)(ptr[-1]) | \
612 ((unsigned)(ptr[-2]) << 8) | \
613 ((unsigned)(ptr[-3]) << 16) | \
614 ((unsigned)(ptr[-4]) << 24))
615
616
d8f165a8
JD
617/* The call depth in overrun_check functions. For example, this might happen:
618 xmalloc()
619 overrun_check_malloc()
620 -> malloc -> (via hook)_-> emacs_blocked_malloc
621 -> overrun_check_malloc
622 call malloc (hooks are NULL, so real malloc is called).
623 malloc returns 10000.
624 add overhead, return 10016.
625 <- (back in overrun_check_malloc)
857ae68b 626 add overhead again, return 10032
d8f165a8 627 xmalloc returns 10032.
857ae68b
JD
628
629 (time passes).
630
d8f165a8
JD
631 xfree(10032)
632 overrun_check_free(10032)
633 decrease overhed
634 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b
JD
635
636static int check_depth;
637
bdbed949
KS
638/* Like malloc, but wraps allocated block with header and trailer. */
639
212f33f1
KS
640POINTER_TYPE *
641overrun_check_malloc (size)
642 size_t size;
643{
bdbed949 644 register unsigned char *val;
857ae68b 645 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1 646
857ae68b
JD
647 val = (unsigned char *) malloc (size + overhead);
648 if (val && check_depth == 1)
212f33f1
KS
649 {
650 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 651 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 652 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
653 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
654 }
857ae68b 655 --check_depth;
212f33f1
KS
656 return (POINTER_TYPE *)val;
657}
658
bdbed949
KS
659
660/* Like realloc, but checks old block for overrun, and wraps new block
661 with header and trailer. */
662
212f33f1
KS
663POINTER_TYPE *
664overrun_check_realloc (block, size)
665 POINTER_TYPE *block;
666 size_t size;
667{
bdbed949 668 register unsigned char *val = (unsigned char *)block;
857ae68b 669 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1
KS
670
671 if (val
857ae68b 672 && check_depth == 1
212f33f1
KS
673 && bcmp (xmalloc_overrun_check_header,
674 val - XMALLOC_OVERRUN_CHECK_SIZE,
675 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
676 {
bdbed949 677 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
678 if (bcmp (xmalloc_overrun_check_trailer,
679 val + osize,
680 XMALLOC_OVERRUN_CHECK_SIZE))
681 abort ();
bdbed949 682 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 683 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 684 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1
KS
685 }
686
857ae68b 687 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
212f33f1 688
857ae68b 689 if (val && check_depth == 1)
212f33f1
KS
690 {
691 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 692 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 693 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
694 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
695 }
857ae68b 696 --check_depth;
212f33f1
KS
697 return (POINTER_TYPE *)val;
698}
699
bdbed949
KS
700/* Like free, but checks block for overrun. */
701
212f33f1
KS
702void
703overrun_check_free (block)
704 POINTER_TYPE *block;
705{
bdbed949 706 unsigned char *val = (unsigned char *)block;
212f33f1 707
857ae68b 708 ++check_depth;
212f33f1 709 if (val
857ae68b 710 && check_depth == 1
212f33f1
KS
711 && bcmp (xmalloc_overrun_check_header,
712 val - XMALLOC_OVERRUN_CHECK_SIZE,
713 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
714 {
bdbed949 715 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
716 if (bcmp (xmalloc_overrun_check_trailer,
717 val + osize,
718 XMALLOC_OVERRUN_CHECK_SIZE))
719 abort ();
454d7973
KS
720#ifdef XMALLOC_CLEAR_FREE_MEMORY
721 val -= XMALLOC_OVERRUN_CHECK_SIZE;
722 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
723#else
bdbed949 724 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 726 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
454d7973 727#endif
212f33f1
KS
728 }
729
730 free (val);
857ae68b 731 --check_depth;
212f33f1
KS
732}
733
734#undef malloc
735#undef realloc
736#undef free
737#define malloc overrun_check_malloc
738#define realloc overrun_check_realloc
739#define free overrun_check_free
740#endif
741
bdbed949
KS
742
743/* Like malloc but check for no memory and block interrupt input.. */
744
c971ff9a 745POINTER_TYPE *
7146af97 746xmalloc (size)
675d5130 747 size_t size;
7146af97 748{
c971ff9a 749 register POINTER_TYPE *val;
7146af97 750
9ac0d9e0 751 BLOCK_INPUT;
c971ff9a 752 val = (POINTER_TYPE *) malloc (size);
9ac0d9e0 753 UNBLOCK_INPUT;
7146af97 754
2e471eb5
GM
755 if (!val && size)
756 memory_full ();
7146af97
JB
757 return val;
758}
759
34400008
GM
760
761/* Like realloc but check for no memory and block interrupt input.. */
762
c971ff9a 763POINTER_TYPE *
7146af97 764xrealloc (block, size)
c971ff9a 765 POINTER_TYPE *block;
675d5130 766 size_t size;
7146af97 767{
c971ff9a 768 register POINTER_TYPE *val;
7146af97 769
9ac0d9e0 770 BLOCK_INPUT;
56d2031b
JB
771 /* We must call malloc explicitly when BLOCK is 0, since some
772 reallocs don't do this. */
773 if (! block)
c971ff9a 774 val = (POINTER_TYPE *) malloc (size);
f048679d 775 else
c971ff9a 776 val = (POINTER_TYPE *) realloc (block, size);
9ac0d9e0 777 UNBLOCK_INPUT;
7146af97
JB
778
779 if (!val && size) memory_full ();
780 return val;
781}
9ac0d9e0 782
34400008 783
d7489312 784/* Like free but block interrupt input. */
34400008 785
9ac0d9e0
JB
786void
787xfree (block)
c971ff9a 788 POINTER_TYPE *block;
9ac0d9e0
JB
789{
790 BLOCK_INPUT;
791 free (block);
792 UNBLOCK_INPUT;
793}
794
c8099634 795
dca7c6a8
GM
796/* Like strdup, but uses xmalloc. */
797
798char *
799xstrdup (s)
943b873e 800 const char *s;
dca7c6a8 801{
675d5130 802 size_t len = strlen (s) + 1;
dca7c6a8
GM
803 char *p = (char *) xmalloc (len);
804 bcopy (s, p, len);
805 return p;
806}
807
808
f61bef8b
KS
809/* Unwind for SAFE_ALLOCA */
810
811Lisp_Object
812safe_alloca_unwind (arg)
813 Lisp_Object arg;
814{
b766f870
KS
815 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
816
817 p->dogc = 0;
818 xfree (p->pointer);
819 p->pointer = 0;
7b7990cc 820 free_misc (arg);
f61bef8b
KS
821 return Qnil;
822}
823
824
34400008
GM
825/* Like malloc but used for allocating Lisp data. NBYTES is the
826 number of bytes to allocate, TYPE describes the intended use of the
827 allcated memory block (for strings, for conses, ...). */
828
212f33f1 829#ifndef USE_LSB_TAG
918a23a7 830static void *lisp_malloc_loser;
212f33f1 831#endif
918a23a7 832
675d5130 833static POINTER_TYPE *
34400008 834lisp_malloc (nbytes, type)
675d5130 835 size_t nbytes;
34400008 836 enum mem_type type;
c8099634 837{
34400008 838 register void *val;
c8099634
RS
839
840 BLOCK_INPUT;
877935b1
GM
841
842#ifdef GC_MALLOC_CHECK
843 allocated_mem_type = type;
844#endif
177c0ea7 845
34400008 846 val = (void *) malloc (nbytes);
c8099634 847
831b476c 848#ifndef USE_LSB_TAG
918a23a7
RS
849 /* If the memory just allocated cannot be addressed thru a Lisp
850 object's pointer, and it needs to be,
851 that's equivalent to running out of memory. */
852 if (val && type != MEM_TYPE_NON_LISP)
853 {
854 Lisp_Object tem;
855 XSETCONS (tem, (char *) val + nbytes - 1);
856 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
857 {
858 lisp_malloc_loser = val;
859 free (val);
860 val = 0;
861 }
862 }
831b476c 863#endif
918a23a7 864
877935b1 865#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 866 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
867 mem_insert (val, (char *) val + nbytes, type);
868#endif
177c0ea7 869
dca7c6a8
GM
870 UNBLOCK_INPUT;
871 if (!val && nbytes)
872 memory_full ();
c8099634
RS
873 return val;
874}
875
34400008
GM
876/* Free BLOCK. This must be called to free memory allocated with a
877 call to lisp_malloc. */
878
bf952fb6 879static void
c8099634 880lisp_free (block)
675d5130 881 POINTER_TYPE *block;
c8099634
RS
882{
883 BLOCK_INPUT;
c8099634 884 free (block);
877935b1 885#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
886 mem_delete (mem_find (block));
887#endif
c8099634
RS
888 UNBLOCK_INPUT;
889}
34400008 890
ab6780cd
SM
891/* Allocation of aligned blocks of memory to store Lisp data. */
892/* The entry point is lisp_align_malloc which returns blocks of at most */
893/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
894
895
896/* BLOCK_ALIGN has to be a power of 2. */
897#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
898
899/* Padding to leave at the end of a malloc'd block. This is to give
900 malloc a chance to minimize the amount of memory wasted to alignment.
901 It should be tuned to the particular malloc library used.
19bcad1f
SM
902 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
903 posix_memalign on the other hand would ideally prefer a value of 4
904 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
905 In Emacs, testing shows that those 1020 can most of the time be
906 efficiently used by malloc to place other objects, so a value of 0 can
907 still preferable unless you have a lot of aligned blocks and virtually
908 nothing else. */
19bcad1f
SM
909#define BLOCK_PADDING 0
910#define BLOCK_BYTES \
f501ccb4 911 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
19bcad1f
SM
912
913/* Internal data structures and constants. */
914
ab6780cd
SM
915#define ABLOCKS_SIZE 16
916
917/* An aligned block of memory. */
918struct ablock
919{
920 union
921 {
922 char payload[BLOCK_BYTES];
923 struct ablock *next_free;
924 } x;
925 /* `abase' is the aligned base of the ablocks. */
926 /* It is overloaded to hold the virtual `busy' field that counts
927 the number of used ablock in the parent ablocks.
928 The first ablock has the `busy' field, the others have the `abase'
929 field. To tell the difference, we assume that pointers will have
930 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
931 is used to tell whether the real base of the parent ablocks is `abase'
932 (if not, the word before the first ablock holds a pointer to the
933 real base). */
934 struct ablocks *abase;
935 /* The padding of all but the last ablock is unused. The padding of
936 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
937#if BLOCK_PADDING
938 char padding[BLOCK_PADDING];
ebb8d410 939#endif
ab6780cd
SM
940};
941
942/* A bunch of consecutive aligned blocks. */
943struct ablocks
944{
945 struct ablock blocks[ABLOCKS_SIZE];
946};
947
948/* Size of the block requested from malloc or memalign. */
19bcad1f 949#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
950
951#define ABLOCK_ABASE(block) \
952 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
953 ? (struct ablocks *)(block) \
954 : (block)->abase)
955
956/* Virtual `busy' field. */
957#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
958
959/* Pointer to the (not necessarily aligned) malloc block. */
19bcad1f
SM
960#ifdef HAVE_POSIX_MEMALIGN
961#define ABLOCKS_BASE(abase) (abase)
962#else
ab6780cd 963#define ABLOCKS_BASE(abase) \
03bb6a06 964 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 965#endif
ab6780cd
SM
966
967/* The list of free ablock. */
968static struct ablock *free_ablock;
969
970/* Allocate an aligned block of nbytes.
971 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
972 smaller or equal to BLOCK_BYTES. */
973static POINTER_TYPE *
974lisp_align_malloc (nbytes, type)
975 size_t nbytes;
976 enum mem_type type;
977{
978 void *base, *val;
979 struct ablocks *abase;
980
981 eassert (nbytes <= BLOCK_BYTES);
982
983 BLOCK_INPUT;
984
985#ifdef GC_MALLOC_CHECK
986 allocated_mem_type = type;
987#endif
988
989 if (!free_ablock)
990 {
d7489312
DL
991 int i;
992 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
993
994#ifdef DOUG_LEA_MALLOC
995 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
996 because mapped region contents are not preserved in
997 a dumped Emacs. */
998 mallopt (M_MMAP_MAX, 0);
999#endif
1000
19bcad1f
SM
1001#ifdef HAVE_POSIX_MEMALIGN
1002 {
1003 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1004 if (err)
1005 base = NULL;
1006 abase = base;
19bcad1f
SM
1007 }
1008#else
ab6780cd
SM
1009 base = malloc (ABLOCKS_BYTES);
1010 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1011#endif
1012
4532fdde
RS
1013 if (base == 0)
1014 {
1015 UNBLOCK_INPUT;
1016 memory_full ();
1017 }
ab6780cd
SM
1018
1019 aligned = (base == abase);
1020 if (!aligned)
1021 ((void**)abase)[-1] = base;
1022
1023#ifdef DOUG_LEA_MALLOC
1024 /* Back to a reasonable maximum of mmap'ed areas. */
1025 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1026#endif
1027
831b476c 1028#ifndef USE_LSB_TAG
f4446bbf
GM
1029 /* If the memory just allocated cannot be addressed thru a Lisp
1030 object's pointer, and it needs to be, that's equivalent to
1031 running out of memory. */
1032 if (type != MEM_TYPE_NON_LISP)
1033 {
1034 Lisp_Object tem;
1035 char *end = (char *) base + ABLOCKS_BYTES - 1;
1036 XSETCONS (tem, end);
1037 if ((char *) XCONS (tem) != end)
1038 {
1039 lisp_malloc_loser = base;
1040 free (base);
1041 UNBLOCK_INPUT;
1042 memory_full ();
1043 }
1044 }
831b476c 1045#endif
f4446bbf 1046
ab6780cd
SM
1047 /* Initialize the blocks and put them on the free list.
1048 Is `base' was not properly aligned, we can't use the last block. */
1049 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1050 {
1051 abase->blocks[i].abase = abase;
1052 abase->blocks[i].x.next_free = free_ablock;
1053 free_ablock = &abase->blocks[i];
1054 }
03bb6a06 1055 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
ab6780cd 1056
19bcad1f 1057 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
1058 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1059 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1060 eassert (ABLOCKS_BASE (abase) == base);
03bb6a06 1061 eassert (aligned == (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
1062 }
1063
1064 abase = ABLOCK_ABASE (free_ablock);
03bb6a06 1065 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
1066 val = free_ablock;
1067 free_ablock = free_ablock->x.next_free;
1068
ab6780cd
SM
1069#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1070 if (val && type != MEM_TYPE_NON_LISP)
1071 mem_insert (val, (char *) val + nbytes, type);
1072#endif
1073
1074 UNBLOCK_INPUT;
1075 if (!val && nbytes)
1076 memory_full ();
1077
1078 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1079 return val;
1080}
1081
1082static void
1083lisp_align_free (block)
1084 POINTER_TYPE *block;
1085{
1086 struct ablock *ablock = block;
1087 struct ablocks *abase = ABLOCK_ABASE (ablock);
1088
1089 BLOCK_INPUT;
1090#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1091 mem_delete (mem_find (block));
1092#endif
1093 /* Put on free list. */
1094 ablock->x.next_free = free_ablock;
1095 free_ablock = ablock;
1096 /* Update busy count. */
03bb6a06 1097 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
d2db1c32 1098
03bb6a06 1099 if (2 > (long) ABLOCKS_BUSY (abase))
ab6780cd 1100 { /* All the blocks are free. */
03bb6a06 1101 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
ab6780cd
SM
1102 struct ablock **tem = &free_ablock;
1103 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1104
1105 while (*tem)
1106 {
1107 if (*tem >= (struct ablock *) abase && *tem < atop)
1108 {
1109 i++;
1110 *tem = (*tem)->x.next_free;
1111 }
1112 else
1113 tem = &(*tem)->x.next_free;
1114 }
1115 eassert ((aligned & 1) == aligned);
1116 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1117 free (ABLOCKS_BASE (abase));
1118 }
1119 UNBLOCK_INPUT;
1120}
3ef06d12
SM
1121
1122/* Return a new buffer structure allocated from the heap with
1123 a call to lisp_malloc. */
1124
1125struct buffer *
1126allocate_buffer ()
1127{
1128 struct buffer *b
1129 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1130 MEM_TYPE_BUFFER);
1131 return b;
1132}
1133
9ac0d9e0 1134\f
026cdede
SM
1135#ifndef SYSTEM_MALLOC
1136
1137/* If we released our reserve (due to running out of memory),
1138 and we have a fair amount free once again,
1139 try to set aside another reserve in case we run out once more.
1140
1141 This is called when a relocatable block is freed in ralloc.c. */
1142
1143void
1144refill_memory_reserve ()
1145{
1146 if (spare_memory == 0)
1147 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1148}
1149
1150\f
9ac0d9e0
JB
1151/* Arranging to disable input signals while we're in malloc.
1152
1153 This only works with GNU malloc. To help out systems which can't
1154 use GNU malloc, all the calls to malloc, realloc, and free
1155 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1156 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1157 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1158 using GNU malloc. Fortunately, most of the major operating systems
1159 can use GNU malloc. */
9ac0d9e0 1160
026cdede
SM
1161#ifndef SYNC_INPUT
1162
b3303f74
DL
1163#ifndef DOUG_LEA_MALLOC
1164extern void * (*__malloc_hook) P_ ((size_t));
1165extern void * (*__realloc_hook) P_ ((void *, size_t));
1166extern void (*__free_hook) P_ ((void *));
1167/* Else declared in malloc.h, perhaps with an extra arg. */
1168#endif /* DOUG_LEA_MALLOC */
b0846f52 1169static void * (*old_malloc_hook) ();
b0846f52 1170static void * (*old_realloc_hook) ();
b0846f52 1171static void (*old_free_hook) ();
9ac0d9e0 1172
276cbe5a
RS
1173/* This function is used as the hook for free to call. */
1174
9ac0d9e0
JB
1175static void
1176emacs_blocked_free (ptr)
1177 void *ptr;
1178{
aa477689 1179 BLOCK_INPUT_ALLOC;
877935b1
GM
1180
1181#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1182 if (ptr)
1183 {
1184 struct mem_node *m;
177c0ea7 1185
a83fee2c
GM
1186 m = mem_find (ptr);
1187 if (m == MEM_NIL || m->start != ptr)
1188 {
1189 fprintf (stderr,
1190 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1191 abort ();
1192 }
1193 else
1194 {
1195 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1196 mem_delete (m);
1197 }
1198 }
877935b1 1199#endif /* GC_MALLOC_CHECK */
177c0ea7 1200
9ac0d9e0
JB
1201 __free_hook = old_free_hook;
1202 free (ptr);
177c0ea7 1203
276cbe5a
RS
1204 /* If we released our reserve (due to running out of memory),
1205 and we have a fair amount free once again,
1206 try to set aside another reserve in case we run out once more. */
1207 if (spare_memory == 0
1208 /* Verify there is enough space that even with the malloc
1209 hysteresis this call won't run out again.
1210 The code here is correct as long as SPARE_MEMORY
1211 is substantially larger than the block size malloc uses. */
1212 && (bytes_used_when_full
d1658221 1213 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
675d5130 1214 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a 1215
b0846f52 1216 __free_hook = emacs_blocked_free;
aa477689 1217 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1218}
1219
34400008 1220
276cbe5a
RS
1221/* This function is the malloc hook that Emacs uses. */
1222
9ac0d9e0
JB
1223static void *
1224emacs_blocked_malloc (size)
675d5130 1225 size_t size;
9ac0d9e0
JB
1226{
1227 void *value;
1228
aa477689 1229 BLOCK_INPUT_ALLOC;
9ac0d9e0 1230 __malloc_hook = old_malloc_hook;
1177ecf6 1231#ifdef DOUG_LEA_MALLOC
d1658221 1232 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1177ecf6 1233#else
d1658221 1234 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1235#endif
877935b1 1236
2756d8ee 1237 value = (void *) malloc (size);
877935b1
GM
1238
1239#ifdef GC_MALLOC_CHECK
1240 {
1241 struct mem_node *m = mem_find (value);
1242 if (m != MEM_NIL)
1243 {
1244 fprintf (stderr, "Malloc returned %p which is already in use\n",
1245 value);
1246 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1247 m->start, m->end, (char *) m->end - (char *) m->start,
1248 m->type);
1249 abort ();
1250 }
1251
1252 if (!dont_register_blocks)
1253 {
1254 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1255 allocated_mem_type = MEM_TYPE_NON_LISP;
1256 }
1257 }
1258#endif /* GC_MALLOC_CHECK */
177c0ea7 1259
b0846f52 1260 __malloc_hook = emacs_blocked_malloc;
aa477689 1261 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1262
877935b1 1263 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1264 return value;
1265}
1266
34400008
GM
1267
1268/* This function is the realloc hook that Emacs uses. */
1269
9ac0d9e0
JB
1270static void *
1271emacs_blocked_realloc (ptr, size)
1272 void *ptr;
675d5130 1273 size_t size;
9ac0d9e0
JB
1274{
1275 void *value;
1276
aa477689 1277 BLOCK_INPUT_ALLOC;
9ac0d9e0 1278 __realloc_hook = old_realloc_hook;
877935b1
GM
1279
1280#ifdef GC_MALLOC_CHECK
1281 if (ptr)
1282 {
1283 struct mem_node *m = mem_find (ptr);
1284 if (m == MEM_NIL || m->start != ptr)
1285 {
1286 fprintf (stderr,
1287 "Realloc of %p which wasn't allocated with malloc\n",
1288 ptr);
1289 abort ();
1290 }
1291
1292 mem_delete (m);
1293 }
177c0ea7 1294
877935b1 1295 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1296
877935b1
GM
1297 /* Prevent malloc from registering blocks. */
1298 dont_register_blocks = 1;
1299#endif /* GC_MALLOC_CHECK */
1300
2756d8ee 1301 value = (void *) realloc (ptr, size);
877935b1
GM
1302
1303#ifdef GC_MALLOC_CHECK
1304 dont_register_blocks = 0;
1305
1306 {
1307 struct mem_node *m = mem_find (value);
1308 if (m != MEM_NIL)
1309 {
1310 fprintf (stderr, "Realloc returns memory that is already in use\n");
1311 abort ();
1312 }
1313
1314 /* Can't handle zero size regions in the red-black tree. */
1315 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1316 }
177c0ea7 1317
877935b1
GM
1318 /* fprintf (stderr, "%p <- realloc\n", value); */
1319#endif /* GC_MALLOC_CHECK */
177c0ea7 1320
b0846f52 1321 __realloc_hook = emacs_blocked_realloc;
aa477689 1322 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1323
1324 return value;
1325}
1326
34400008 1327
aa477689
JD
1328#ifdef HAVE_GTK_AND_PTHREAD
1329/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1330 normal malloc. Some thread implementations need this as they call
1331 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1332 calls malloc because it is the first call, and we have an endless loop. */
1333
1334void
1335reset_malloc_hooks ()
1336{
1337 __free_hook = 0;
1338 __malloc_hook = 0;
1339 __realloc_hook = 0;
1340}
1341#endif /* HAVE_GTK_AND_PTHREAD */
1342
1343
34400008
GM
1344/* Called from main to set up malloc to use our hooks. */
1345
9ac0d9e0
JB
1346void
1347uninterrupt_malloc ()
1348{
aa477689
JD
1349#ifdef HAVE_GTK_AND_PTHREAD
1350 pthread_mutexattr_t attr;
1351
1352 /* GLIBC has a faster way to do this, but lets keep it portable.
1353 This is according to the Single UNIX Specification. */
1354 pthread_mutexattr_init (&attr);
1355 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1356 pthread_mutex_init (&alloc_mutex, &attr);
aa477689
JD
1357#endif /* HAVE_GTK_AND_PTHREAD */
1358
c8099634
RS
1359 if (__free_hook != emacs_blocked_free)
1360 old_free_hook = __free_hook;
b0846f52 1361 __free_hook = emacs_blocked_free;
9ac0d9e0 1362
c8099634
RS
1363 if (__malloc_hook != emacs_blocked_malloc)
1364 old_malloc_hook = __malloc_hook;
b0846f52 1365 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1366
c8099634
RS
1367 if (__realloc_hook != emacs_blocked_realloc)
1368 old_realloc_hook = __realloc_hook;
b0846f52 1369 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1370}
2e471eb5 1371
026cdede 1372#endif /* not SYNC_INPUT */
2e471eb5
GM
1373#endif /* not SYSTEM_MALLOC */
1374
1375
7146af97 1376\f
2e471eb5
GM
1377/***********************************************************************
1378 Interval Allocation
1379 ***********************************************************************/
1a4f1e2c 1380
34400008
GM
1381/* Number of intervals allocated in an interval_block structure.
1382 The 1020 is 1024 minus malloc overhead. */
1383
d5e35230
JA
1384#define INTERVAL_BLOCK_SIZE \
1385 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1386
34400008
GM
1387/* Intervals are allocated in chunks in form of an interval_block
1388 structure. */
1389
d5e35230 1390struct interval_block
2e471eb5 1391{
d05b383a 1392 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1393 struct interval intervals[INTERVAL_BLOCK_SIZE];
d05b383a 1394 struct interval_block *next;
2e471eb5 1395};
d5e35230 1396
34400008
GM
1397/* Current interval block. Its `next' pointer points to older
1398 blocks. */
1399
d5e35230 1400struct interval_block *interval_block;
34400008
GM
1401
1402/* Index in interval_block above of the next unused interval
1403 structure. */
1404
d5e35230 1405static int interval_block_index;
34400008
GM
1406
1407/* Number of free and live intervals. */
1408
2e471eb5 1409static int total_free_intervals, total_intervals;
d5e35230 1410
34400008
GM
1411/* List of free intervals. */
1412
d5e35230
JA
1413INTERVAL interval_free_list;
1414
c8099634 1415/* Total number of interval blocks now in use. */
2e471eb5 1416
c8099634
RS
1417int n_interval_blocks;
1418
34400008
GM
1419
1420/* Initialize interval allocation. */
1421
d5e35230
JA
1422static void
1423init_intervals ()
1424{
0930c1a1
SM
1425 interval_block = NULL;
1426 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1427 interval_free_list = 0;
0930c1a1 1428 n_interval_blocks = 0;
d5e35230
JA
1429}
1430
34400008
GM
1431
1432/* Return a new interval. */
d5e35230
JA
1433
1434INTERVAL
1435make_interval ()
1436{
1437 INTERVAL val;
1438
1439 if (interval_free_list)
1440 {
1441 val = interval_free_list;
439d5cb4 1442 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1443 }
1444 else
1445 {
1446 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1447 {
3c06d205
KH
1448 register struct interval_block *newi;
1449
34400008
GM
1450 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1451 MEM_TYPE_NON_LISP);
d5e35230 1452
d5e35230
JA
1453 newi->next = interval_block;
1454 interval_block = newi;
1455 interval_block_index = 0;
c8099634 1456 n_interval_blocks++;
d5e35230
JA
1457 }
1458 val = &interval_block->intervals[interval_block_index++];
1459 }
1460 consing_since_gc += sizeof (struct interval);
310ea200 1461 intervals_consed++;
d5e35230 1462 RESET_INTERVAL (val);
2336fe58 1463 val->gcmarkbit = 0;
d5e35230
JA
1464 return val;
1465}
1466
34400008
GM
1467
1468/* Mark Lisp objects in interval I. */
d5e35230
JA
1469
1470static void
d393c068 1471mark_interval (i, dummy)
d5e35230 1472 register INTERVAL i;
d393c068 1473 Lisp_Object dummy;
d5e35230 1474{
2336fe58
SM
1475 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1476 i->gcmarkbit = 1;
49723c04 1477 mark_object (i->plist);
d5e35230
JA
1478}
1479
34400008
GM
1480
1481/* Mark the interval tree rooted in TREE. Don't call this directly;
1482 use the macro MARK_INTERVAL_TREE instead. */
1483
d5e35230
JA
1484static void
1485mark_interval_tree (tree)
1486 register INTERVAL tree;
1487{
e8720644
JB
1488 /* No need to test if this tree has been marked already; this
1489 function is always called through the MARK_INTERVAL_TREE macro,
1490 which takes care of that. */
1491
1e934989 1492 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1493}
1494
34400008
GM
1495
1496/* Mark the interval tree rooted in I. */
1497
e8720644
JB
1498#define MARK_INTERVAL_TREE(i) \
1499 do { \
2336fe58 1500 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1501 mark_interval_tree (i); \
1502 } while (0)
d5e35230 1503
34400008 1504
2e471eb5
GM
1505#define UNMARK_BALANCE_INTERVALS(i) \
1506 do { \
1507 if (! NULL_INTERVAL_P (i)) \
2336fe58 1508 (i) = balance_intervals (i); \
2e471eb5 1509 } while (0)
d5e35230 1510
cc2d8c6b
KR
1511\f
1512/* Number support. If NO_UNION_TYPE isn't in effect, we
1513 can't create number objects in macros. */
1514#ifndef make_number
1515Lisp_Object
1516make_number (n)
217604da 1517 EMACS_INT n;
cc2d8c6b
KR
1518{
1519 Lisp_Object obj;
1520 obj.s.val = n;
1521 obj.s.type = Lisp_Int;
1522 return obj;
1523}
1524#endif
d5e35230 1525\f
2e471eb5
GM
1526/***********************************************************************
1527 String Allocation
1528 ***********************************************************************/
1a4f1e2c 1529
2e471eb5
GM
1530/* Lisp_Strings are allocated in string_block structures. When a new
1531 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1532 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1533 needed, it is taken from that list. During the sweep phase of GC,
1534 string_blocks that are entirely free are freed, except two which
1535 we keep.
7146af97 1536
2e471eb5
GM
1537 String data is allocated from sblock structures. Strings larger
1538 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1539 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1540
2e471eb5
GM
1541 Sblocks consist internally of sdata structures, one for each
1542 Lisp_String. The sdata structure points to the Lisp_String it
1543 belongs to. The Lisp_String points back to the `u.data' member of
1544 its sdata structure.
7146af97 1545
2e471eb5
GM
1546 When a Lisp_String is freed during GC, it is put back on
1547 string_free_list, and its `data' member and its sdata's `string'
1548 pointer is set to null. The size of the string is recorded in the
1549 `u.nbytes' member of the sdata. So, sdata structures that are no
1550 longer used, can be easily recognized, and it's easy to compact the
1551 sblocks of small strings which we do in compact_small_strings. */
7146af97 1552
2e471eb5
GM
1553/* Size in bytes of an sblock structure used for small strings. This
1554 is 8192 minus malloc overhead. */
7146af97 1555
2e471eb5 1556#define SBLOCK_SIZE 8188
c8099634 1557
2e471eb5
GM
1558/* Strings larger than this are considered large strings. String data
1559 for large strings is allocated from individual sblocks. */
7146af97 1560
2e471eb5
GM
1561#define LARGE_STRING_BYTES 1024
1562
1563/* Structure describing string memory sub-allocated from an sblock.
1564 This is where the contents of Lisp strings are stored. */
1565
1566struct sdata
7146af97 1567{
2e471eb5
GM
1568 /* Back-pointer to the string this sdata belongs to. If null, this
1569 structure is free, and the NBYTES member of the union below
34400008 1570 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1571 would return if STRING were non-null). If non-null, STRING_BYTES
1572 (STRING) is the size of the data, and DATA contains the string's
1573 contents. */
1574 struct Lisp_String *string;
7146af97 1575
31d929e5 1576#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1577
31d929e5
GM
1578 EMACS_INT nbytes;
1579 unsigned char data[1];
177c0ea7 1580
31d929e5
GM
1581#define SDATA_NBYTES(S) (S)->nbytes
1582#define SDATA_DATA(S) (S)->data
177c0ea7 1583
31d929e5
GM
1584#else /* not GC_CHECK_STRING_BYTES */
1585
2e471eb5
GM
1586 union
1587 {
1588 /* When STRING in non-null. */
1589 unsigned char data[1];
1590
1591 /* When STRING is null. */
1592 EMACS_INT nbytes;
1593 } u;
177c0ea7 1594
31d929e5
GM
1595
1596#define SDATA_NBYTES(S) (S)->u.nbytes
1597#define SDATA_DATA(S) (S)->u.data
1598
1599#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1600};
1601
31d929e5 1602
2e471eb5
GM
1603/* Structure describing a block of memory which is sub-allocated to
1604 obtain string data memory for strings. Blocks for small strings
1605 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1606 as large as needed. */
1607
1608struct sblock
7146af97 1609{
2e471eb5
GM
1610 /* Next in list. */
1611 struct sblock *next;
7146af97 1612
2e471eb5
GM
1613 /* Pointer to the next free sdata block. This points past the end
1614 of the sblock if there isn't any space left in this block. */
1615 struct sdata *next_free;
1616
1617 /* Start of data. */
1618 struct sdata first_data;
1619};
1620
1621/* Number of Lisp strings in a string_block structure. The 1020 is
1622 1024 minus malloc overhead. */
1623
19bcad1f 1624#define STRING_BLOCK_SIZE \
2e471eb5
GM
1625 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1626
1627/* Structure describing a block from which Lisp_String structures
1628 are allocated. */
1629
1630struct string_block
7146af97 1631{
d05b383a 1632 /* Place `strings' first, to preserve alignment. */
19bcad1f 1633 struct Lisp_String strings[STRING_BLOCK_SIZE];
d05b383a 1634 struct string_block *next;
2e471eb5 1635};
7146af97 1636
2e471eb5
GM
1637/* Head and tail of the list of sblock structures holding Lisp string
1638 data. We always allocate from current_sblock. The NEXT pointers
1639 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1640
2e471eb5 1641static struct sblock *oldest_sblock, *current_sblock;
7146af97 1642
2e471eb5 1643/* List of sblocks for large strings. */
7146af97 1644
2e471eb5 1645static struct sblock *large_sblocks;
7146af97 1646
2e471eb5 1647/* List of string_block structures, and how many there are. */
7146af97 1648
2e471eb5
GM
1649static struct string_block *string_blocks;
1650static int n_string_blocks;
7146af97 1651
2e471eb5 1652/* Free-list of Lisp_Strings. */
7146af97 1653
2e471eb5 1654static struct Lisp_String *string_free_list;
7146af97 1655
2e471eb5 1656/* Number of live and free Lisp_Strings. */
c8099634 1657
2e471eb5 1658static int total_strings, total_free_strings;
7146af97 1659
2e471eb5
GM
1660/* Number of bytes used by live strings. */
1661
1662static int total_string_size;
1663
1664/* Given a pointer to a Lisp_String S which is on the free-list
1665 string_free_list, return a pointer to its successor in the
1666 free-list. */
1667
1668#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1669
1670/* Return a pointer to the sdata structure belonging to Lisp string S.
1671 S must be live, i.e. S->data must not be null. S->data is actually
1672 a pointer to the `u.data' member of its sdata structure; the
1673 structure starts at a constant offset in front of that. */
177c0ea7 1674
31d929e5
GM
1675#ifdef GC_CHECK_STRING_BYTES
1676
1677#define SDATA_OF_STRING(S) \
1678 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1679 - sizeof (EMACS_INT)))
1680
1681#else /* not GC_CHECK_STRING_BYTES */
1682
2e471eb5
GM
1683#define SDATA_OF_STRING(S) \
1684 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1685
31d929e5
GM
1686#endif /* not GC_CHECK_STRING_BYTES */
1687
212f33f1
KS
1688
1689#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1690
1691/* We check for overrun in string data blocks by appending a small
1692 "cookie" after each allocated string data block, and check for the
8349069c 1693 presence of this cookie during GC. */
bdbed949
KS
1694
1695#define GC_STRING_OVERRUN_COOKIE_SIZE 4
1696static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1697 { 0xde, 0xad, 0xbe, 0xef };
1698
212f33f1 1699#else
bdbed949 1700#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1701#endif
1702
2e471eb5
GM
1703/* Value is the size of an sdata structure large enough to hold NBYTES
1704 bytes of string data. The value returned includes a terminating
1705 NUL byte, the size of the sdata structure, and padding. */
1706
31d929e5
GM
1707#ifdef GC_CHECK_STRING_BYTES
1708
2e471eb5
GM
1709#define SDATA_SIZE(NBYTES) \
1710 ((sizeof (struct Lisp_String *) \
1711 + (NBYTES) + 1 \
31d929e5 1712 + sizeof (EMACS_INT) \
2e471eb5
GM
1713 + sizeof (EMACS_INT) - 1) \
1714 & ~(sizeof (EMACS_INT) - 1))
1715
31d929e5
GM
1716#else /* not GC_CHECK_STRING_BYTES */
1717
1718#define SDATA_SIZE(NBYTES) \
1719 ((sizeof (struct Lisp_String *) \
1720 + (NBYTES) + 1 \
1721 + sizeof (EMACS_INT) - 1) \
1722 & ~(sizeof (EMACS_INT) - 1))
1723
1724#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1725
bdbed949
KS
1726/* Extra bytes to allocate for each string. */
1727
1728#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1729
2e471eb5 1730/* Initialize string allocation. Called from init_alloc_once. */
d457598b
AS
1731
1732void
2e471eb5 1733init_strings ()
7146af97 1734{
2e471eb5
GM
1735 total_strings = total_free_strings = total_string_size = 0;
1736 oldest_sblock = current_sblock = large_sblocks = NULL;
1737 string_blocks = NULL;
1738 n_string_blocks = 0;
1739 string_free_list = NULL;
7146af97
JB
1740}
1741
2e471eb5 1742
361b097f
GM
1743#ifdef GC_CHECK_STRING_BYTES
1744
361b097f
GM
1745static int check_string_bytes_count;
1746
676a7251
GM
1747void check_string_bytes P_ ((int));
1748void check_sblock P_ ((struct sblock *));
1749
1750#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1751
1752
1753/* Like GC_STRING_BYTES, but with debugging check. */
1754
1755int
1756string_bytes (s)
1757 struct Lisp_String *s;
1758{
7cdee936 1759 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
676a7251
GM
1760 if (!PURE_POINTER_P (s)
1761 && s->data
1762 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1763 abort ();
1764 return nbytes;
1765}
177c0ea7 1766
2c5bd608 1767/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1768
361b097f 1769void
676a7251
GM
1770check_sblock (b)
1771 struct sblock *b;
361b097f 1772{
676a7251 1773 struct sdata *from, *end, *from_end;
177c0ea7 1774
676a7251 1775 end = b->next_free;
177c0ea7 1776
676a7251 1777 for (from = &b->first_data; from < end; from = from_end)
361b097f 1778 {
676a7251
GM
1779 /* Compute the next FROM here because copying below may
1780 overwrite data we need to compute it. */
1781 int nbytes;
177c0ea7 1782
676a7251
GM
1783 /* Check that the string size recorded in the string is the
1784 same as the one recorded in the sdata structure. */
1785 if (from->string)
1786 CHECK_STRING_BYTES (from->string);
177c0ea7 1787
676a7251
GM
1788 if (from->string)
1789 nbytes = GC_STRING_BYTES (from->string);
1790 else
1791 nbytes = SDATA_NBYTES (from);
177c0ea7 1792
676a7251 1793 nbytes = SDATA_SIZE (nbytes);
212f33f1 1794 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1795 }
1796}
361b097f 1797
676a7251
GM
1798
1799/* Check validity of Lisp strings' string_bytes member. ALL_P
1800 non-zero means check all strings, otherwise check only most
1801 recently allocated strings. Used for hunting a bug. */
1802
1803void
1804check_string_bytes (all_p)
1805 int all_p;
1806{
1807 if (all_p)
1808 {
1809 struct sblock *b;
1810
1811 for (b = large_sblocks; b; b = b->next)
1812 {
1813 struct Lisp_String *s = b->first_data.string;
1814 if (s)
1815 CHECK_STRING_BYTES (s);
361b097f 1816 }
177c0ea7 1817
676a7251
GM
1818 for (b = oldest_sblock; b; b = b->next)
1819 check_sblock (b);
361b097f 1820 }
676a7251
GM
1821 else
1822 check_sblock (current_sblock);
361b097f
GM
1823}
1824
1825#endif /* GC_CHECK_STRING_BYTES */
1826
212f33f1
KS
1827#ifdef GC_CHECK_STRING_FREE_LIST
1828
bdbed949
KS
1829/* Walk through the string free list looking for bogus next pointers.
1830 This may catch buffer overrun from a previous string. */
1831
212f33f1
KS
1832static void
1833check_string_free_list ()
1834{
1835 struct Lisp_String *s;
1836
1837 /* Pop a Lisp_String off the free-list. */
1838 s = string_free_list;
1839 while (s != NULL)
1840 {
1841 if ((unsigned)s < 1024)
1842 abort();
1843 s = NEXT_FREE_LISP_STRING (s);
1844 }
1845}
1846#else
1847#define check_string_free_list()
1848#endif
361b097f 1849
2e471eb5
GM
1850/* Return a new Lisp_String. */
1851
1852static struct Lisp_String *
1853allocate_string ()
7146af97 1854{
2e471eb5 1855 struct Lisp_String *s;
7146af97 1856
2e471eb5
GM
1857 /* If the free-list is empty, allocate a new string_block, and
1858 add all the Lisp_Strings in it to the free-list. */
1859 if (string_free_list == NULL)
7146af97 1860 {
2e471eb5
GM
1861 struct string_block *b;
1862 int i;
1863
34400008 1864 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1865 bzero (b, sizeof *b);
1866 b->next = string_blocks;
1867 string_blocks = b;
1868 ++n_string_blocks;
1869
19bcad1f 1870 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1871 {
2e471eb5
GM
1872 s = b->strings + i;
1873 NEXT_FREE_LISP_STRING (s) = string_free_list;
1874 string_free_list = s;
7146af97 1875 }
2e471eb5 1876
19bcad1f 1877 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1878 }
c0f51373 1879
bdbed949 1880 check_string_free_list ();
212f33f1 1881
2e471eb5
GM
1882 /* Pop a Lisp_String off the free-list. */
1883 s = string_free_list;
1884 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1885
2e471eb5
GM
1886 /* Probably not strictly necessary, but play it safe. */
1887 bzero (s, sizeof *s);
c0f51373 1888
2e471eb5
GM
1889 --total_free_strings;
1890 ++total_strings;
1891 ++strings_consed;
1892 consing_since_gc += sizeof *s;
c0f51373 1893
361b097f 1894#ifdef GC_CHECK_STRING_BYTES
83a96b4d 1895 if (!noninteractive
e0f712ba 1896#ifdef MAC_OS8
83a96b4d
AC
1897 && current_sblock
1898#endif
1899 )
361b097f 1900 {
676a7251
GM
1901 if (++check_string_bytes_count == 200)
1902 {
1903 check_string_bytes_count = 0;
1904 check_string_bytes (1);
1905 }
1906 else
1907 check_string_bytes (0);
361b097f 1908 }
676a7251 1909#endif /* GC_CHECK_STRING_BYTES */
361b097f 1910
2e471eb5 1911 return s;
c0f51373 1912}
7146af97 1913
7146af97 1914
2e471eb5
GM
1915/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1916 plus a NUL byte at the end. Allocate an sdata structure for S, and
1917 set S->data to its `u.data' member. Store a NUL byte at the end of
1918 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1919 S->data if it was initially non-null. */
7146af97 1920
2e471eb5
GM
1921void
1922allocate_string_data (s, nchars, nbytes)
1923 struct Lisp_String *s;
1924 int nchars, nbytes;
7146af97 1925{
5c5fecb3 1926 struct sdata *data, *old_data;
2e471eb5 1927 struct sblock *b;
5c5fecb3 1928 int needed, old_nbytes;
7146af97 1929
2e471eb5
GM
1930 /* Determine the number of bytes needed to store NBYTES bytes
1931 of string data. */
1932 needed = SDATA_SIZE (nbytes);
7146af97 1933
2e471eb5
GM
1934 if (nbytes > LARGE_STRING_BYTES)
1935 {
675d5130 1936 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1937
1938#ifdef DOUG_LEA_MALLOC
f8608968
GM
1939 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1940 because mapped region contents are not preserved in
d36b182f
DL
1941 a dumped Emacs.
1942
1943 In case you think of allowing it in a dumped Emacs at the
1944 cost of not being able to re-dump, there's another reason:
1945 mmap'ed data typically have an address towards the top of the
1946 address space, which won't fit into an EMACS_INT (at least on
1947 32-bit systems with the current tagging scheme). --fx */
1673df2e 1948 BLOCK_INPUT;
2e471eb5 1949 mallopt (M_MMAP_MAX, 0);
1673df2e 1950 UNBLOCK_INPUT;
2e471eb5
GM
1951#endif
1952
212f33f1 1953 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1954
2e471eb5
GM
1955#ifdef DOUG_LEA_MALLOC
1956 /* Back to a reasonable maximum of mmap'ed areas. */
1673df2e 1957 BLOCK_INPUT;
2e471eb5 1958 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1673df2e 1959 UNBLOCK_INPUT;
2e471eb5 1960#endif
177c0ea7 1961
2e471eb5
GM
1962 b->next_free = &b->first_data;
1963 b->first_data.string = NULL;
1964 b->next = large_sblocks;
1965 large_sblocks = b;
1966 }
1967 else if (current_sblock == NULL
1968 || (((char *) current_sblock + SBLOCK_SIZE
1969 - (char *) current_sblock->next_free)
212f33f1 1970 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
1971 {
1972 /* Not enough room in the current sblock. */
34400008 1973 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1974 b->next_free = &b->first_data;
1975 b->first_data.string = NULL;
1976 b->next = NULL;
1977
1978 if (current_sblock)
1979 current_sblock->next = b;
1980 else
1981 oldest_sblock = b;
1982 current_sblock = b;
1983 }
1984 else
1985 b = current_sblock;
5c5fecb3
GM
1986
1987 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1988 old_nbytes = GC_STRING_BYTES (s);
177c0ea7 1989
2e471eb5
GM
1990 data = b->next_free;
1991 data->string = s;
31d929e5
GM
1992 s->data = SDATA_DATA (data);
1993#ifdef GC_CHECK_STRING_BYTES
1994 SDATA_NBYTES (data) = nbytes;
1995#endif
2e471eb5
GM
1996 s->size = nchars;
1997 s->size_byte = nbytes;
1998 s->data[nbytes] = '\0';
212f33f1 1999#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
2000 bcopy (string_overrun_cookie, (char *) data + needed,
2001 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1
KS
2002#endif
2003 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
177c0ea7 2004
5c5fecb3
GM
2005 /* If S had already data assigned, mark that as free by setting its
2006 string back-pointer to null, and recording the size of the data
00c9c33c 2007 in it. */
5c5fecb3
GM
2008 if (old_data)
2009 {
31d929e5 2010 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
2011 old_data->string = NULL;
2012 }
2013
2e471eb5
GM
2014 consing_since_gc += needed;
2015}
2016
2017
2018/* Sweep and compact strings. */
2019
2020static void
2021sweep_strings ()
2022{
2023 struct string_block *b, *next;
2024 struct string_block *live_blocks = NULL;
177c0ea7 2025
2e471eb5
GM
2026 string_free_list = NULL;
2027 total_strings = total_free_strings = 0;
2028 total_string_size = 0;
2029
2030 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2031 for (b = string_blocks; b; b = next)
2032 {
2033 int i, nfree = 0;
2034 struct Lisp_String *free_list_before = string_free_list;
2035
2036 next = b->next;
2037
19bcad1f 2038 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2039 {
2040 struct Lisp_String *s = b->strings + i;
2041
2042 if (s->data)
2043 {
2044 /* String was not on free-list before. */
2045 if (STRING_MARKED_P (s))
2046 {
2047 /* String is live; unmark it and its intervals. */
2048 UNMARK_STRING (s);
177c0ea7 2049
2e471eb5
GM
2050 if (!NULL_INTERVAL_P (s->intervals))
2051 UNMARK_BALANCE_INTERVALS (s->intervals);
2052
2053 ++total_strings;
2054 total_string_size += STRING_BYTES (s);
2055 }
2056 else
2057 {
2058 /* String is dead. Put it on the free-list. */
2059 struct sdata *data = SDATA_OF_STRING (s);
2060
2061 /* Save the size of S in its sdata so that we know
2062 how large that is. Reset the sdata's string
2063 back-pointer so that we know it's free. */
31d929e5
GM
2064#ifdef GC_CHECK_STRING_BYTES
2065 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2066 abort ();
2067#else
2e471eb5 2068 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2069#endif
2e471eb5
GM
2070 data->string = NULL;
2071
2072 /* Reset the strings's `data' member so that we
2073 know it's free. */
2074 s->data = NULL;
2075
2076 /* Put the string on the free-list. */
2077 NEXT_FREE_LISP_STRING (s) = string_free_list;
2078 string_free_list = s;
2079 ++nfree;
2080 }
2081 }
2082 else
2083 {
2084 /* S was on the free-list before. Put it there again. */
2085 NEXT_FREE_LISP_STRING (s) = string_free_list;
2086 string_free_list = s;
2087 ++nfree;
2088 }
2089 }
2090
34400008 2091 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2092 the first two of them. */
19bcad1f
SM
2093 if (nfree == STRING_BLOCK_SIZE
2094 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2095 {
2096 lisp_free (b);
2097 --n_string_blocks;
2098 string_free_list = free_list_before;
2099 }
2100 else
2101 {
2102 total_free_strings += nfree;
2103 b->next = live_blocks;
2104 live_blocks = b;
2105 }
2106 }
2107
bdbed949 2108 check_string_free_list ();
212f33f1 2109
2e471eb5
GM
2110 string_blocks = live_blocks;
2111 free_large_strings ();
2112 compact_small_strings ();
212f33f1 2113
bdbed949 2114 check_string_free_list ();
2e471eb5
GM
2115}
2116
2117
2118/* Free dead large strings. */
2119
2120static void
2121free_large_strings ()
2122{
2123 struct sblock *b, *next;
2124 struct sblock *live_blocks = NULL;
177c0ea7 2125
2e471eb5
GM
2126 for (b = large_sblocks; b; b = next)
2127 {
2128 next = b->next;
2129
2130 if (b->first_data.string == NULL)
2131 lisp_free (b);
2132 else
2133 {
2134 b->next = live_blocks;
2135 live_blocks = b;
2136 }
2137 }
2138
2139 large_sblocks = live_blocks;
2140}
2141
2142
2143/* Compact data of small strings. Free sblocks that don't contain
2144 data of live strings after compaction. */
2145
2146static void
2147compact_small_strings ()
2148{
2149 struct sblock *b, *tb, *next;
2150 struct sdata *from, *to, *end, *tb_end;
2151 struct sdata *to_end, *from_end;
2152
2153 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2154 to, and TB_END is the end of TB. */
2155 tb = oldest_sblock;
2156 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2157 to = &tb->first_data;
2158
2159 /* Step through the blocks from the oldest to the youngest. We
2160 expect that old blocks will stabilize over time, so that less
2161 copying will happen this way. */
2162 for (b = oldest_sblock; b; b = b->next)
2163 {
2164 end = b->next_free;
2165 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2166
2e471eb5
GM
2167 for (from = &b->first_data; from < end; from = from_end)
2168 {
2169 /* Compute the next FROM here because copying below may
2170 overwrite data we need to compute it. */
2171 int nbytes;
2172
31d929e5
GM
2173#ifdef GC_CHECK_STRING_BYTES
2174 /* Check that the string size recorded in the string is the
2175 same as the one recorded in the sdata structure. */
2176 if (from->string
2177 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2178 abort ();
2179#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2180
2e471eb5
GM
2181 if (from->string)
2182 nbytes = GC_STRING_BYTES (from->string);
2183 else
31d929e5 2184 nbytes = SDATA_NBYTES (from);
177c0ea7 2185
212f33f1
KS
2186 if (nbytes > LARGE_STRING_BYTES)
2187 abort ();
212f33f1 2188
2e471eb5 2189 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2190 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2191
2192#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
2193 if (bcmp (string_overrun_cookie,
2194 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2195 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2196 abort ();
2197#endif
177c0ea7 2198
2e471eb5
GM
2199 /* FROM->string non-null means it's alive. Copy its data. */
2200 if (from->string)
2201 {
2202 /* If TB is full, proceed with the next sblock. */
212f33f1 2203 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2204 if (to_end > tb_end)
2205 {
2206 tb->next_free = to;
2207 tb = tb->next;
2208 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2209 to = &tb->first_data;
212f33f1 2210 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2211 }
177c0ea7 2212
2e471eb5
GM
2213 /* Copy, and update the string's `data' pointer. */
2214 if (from != to)
2215 {
a2407477 2216 xassert (tb != b || to <= from);
212f33f1 2217 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
31d929e5 2218 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2219 }
2220
2221 /* Advance past the sdata we copied to. */
2222 to = to_end;
2223 }
2224 }
2225 }
2226
2227 /* The rest of the sblocks following TB don't contain live data, so
2228 we can free them. */
2229 for (b = tb->next; b; b = next)
2230 {
2231 next = b->next;
2232 lisp_free (b);
2233 }
2234
2235 tb->next_free = to;
2236 tb->next = NULL;
2237 current_sblock = tb;
2238}
2239
2240
2241DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2242 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2243LENGTH must be an integer.
2244INIT must be an integer that represents a character. */)
7ee72033 2245 (length, init)
2e471eb5
GM
2246 Lisp_Object length, init;
2247{
2248 register Lisp_Object val;
2249 register unsigned char *p, *end;
2250 int c, nbytes;
2251
b7826503
PJ
2252 CHECK_NATNUM (length);
2253 CHECK_NUMBER (init);
2e471eb5
GM
2254
2255 c = XINT (init);
2256 if (SINGLE_BYTE_CHAR_P (c))
2257 {
2258 nbytes = XINT (length);
2259 val = make_uninit_string (nbytes);
d5db4077
KR
2260 p = SDATA (val);
2261 end = p + SCHARS (val);
2e471eb5
GM
2262 while (p != end)
2263 *p++ = c;
2264 }
2265 else
2266 {
d942b71c 2267 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5
GM
2268 int len = CHAR_STRING (c, str);
2269
2270 nbytes = len * XINT (length);
2271 val = make_uninit_multibyte_string (XINT (length), nbytes);
d5db4077 2272 p = SDATA (val);
2e471eb5
GM
2273 end = p + nbytes;
2274 while (p != end)
2275 {
2276 bcopy (str, p, len);
2277 p += len;
2278 }
2279 }
177c0ea7 2280
2e471eb5
GM
2281 *p = 0;
2282 return val;
2283}
2284
2285
2286DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
a6266d23 2287 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
7ee72033
MB
2288LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2289 (length, init)
2e471eb5
GM
2290 Lisp_Object length, init;
2291{
2292 register Lisp_Object val;
2293 struct Lisp_Bool_Vector *p;
2294 int real_init, i;
2295 int length_in_chars, length_in_elts, bits_per_value;
2296
b7826503 2297 CHECK_NATNUM (length);
2e471eb5 2298
a097329f 2299 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2300
2301 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
2302 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2303 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
2304
2305 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2306 slot `size' of the struct Lisp_Bool_Vector. */
2307 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2308 p = XBOOL_VECTOR (val);
177c0ea7 2309
2e471eb5
GM
2310 /* Get rid of any bits that would cause confusion. */
2311 p->vector_size = 0;
2312 XSETBOOL_VECTOR (val, p);
2313 p->size = XFASTINT (length);
177c0ea7 2314
2e471eb5
GM
2315 real_init = (NILP (init) ? 0 : -1);
2316 for (i = 0; i < length_in_chars ; i++)
2317 p->data[i] = real_init;
177c0ea7 2318
2e471eb5 2319 /* Clear the extraneous bits in the last byte. */
a097329f 2320 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2e471eb5 2321 XBOOL_VECTOR (val)->data[length_in_chars - 1]
a097329f 2322 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
2323
2324 return val;
2325}
2326
2327
2328/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2329 of characters from the contents. This string may be unibyte or
2330 multibyte, depending on the contents. */
2331
2332Lisp_Object
2333make_string (contents, nbytes)
943b873e 2334 const char *contents;
2e471eb5
GM
2335 int nbytes;
2336{
2337 register Lisp_Object val;
9eac9d59
KH
2338 int nchars, multibyte_nbytes;
2339
2340 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
9eac9d59
KH
2341 if (nbytes == nchars || nbytes != multibyte_nbytes)
2342 /* CONTENTS contains no multibyte sequences or contains an invalid
2343 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2344 val = make_unibyte_string (contents, nbytes);
2345 else
2346 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2347 return val;
2348}
2349
2350
2351/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2352
2353Lisp_Object
2354make_unibyte_string (contents, length)
943b873e 2355 const char *contents;
2e471eb5
GM
2356 int length;
2357{
2358 register Lisp_Object val;
2359 val = make_uninit_string (length);
d5db4077
KR
2360 bcopy (contents, SDATA (val), length);
2361 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2362 return val;
2363}
2364
2365
2366/* Make a multibyte string from NCHARS characters occupying NBYTES
2367 bytes at CONTENTS. */
2368
2369Lisp_Object
2370make_multibyte_string (contents, nchars, nbytes)
943b873e 2371 const char *contents;
2e471eb5
GM
2372 int nchars, nbytes;
2373{
2374 register Lisp_Object val;
2375 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2376 bcopy (contents, SDATA (val), nbytes);
2e471eb5
GM
2377 return val;
2378}
2379
2380
2381/* Make a string from NCHARS characters occupying NBYTES bytes at
2382 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2383
2384Lisp_Object
2385make_string_from_bytes (contents, nchars, nbytes)
fcbb914b 2386 const char *contents;
2e471eb5
GM
2387 int nchars, nbytes;
2388{
2389 register Lisp_Object val;
2390 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077
KR
2391 bcopy (contents, SDATA (val), nbytes);
2392 if (SBYTES (val) == SCHARS (val))
2393 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2394 return val;
2395}
2396
2397
2398/* Make a string from NCHARS characters occupying NBYTES bytes at
2399 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2400 string as multibyte. If NCHARS is negative, it counts the number of
2401 characters by itself. */
2e471eb5
GM
2402
2403Lisp_Object
2404make_specified_string (contents, nchars, nbytes, multibyte)
fcbb914b 2405 const char *contents;
2e471eb5
GM
2406 int nchars, nbytes;
2407 int multibyte;
2408{
2409 register Lisp_Object val;
229b28c4
KH
2410
2411 if (nchars < 0)
2412 {
2413 if (multibyte)
2414 nchars = multibyte_chars_in_text (contents, nbytes);
2415 else
2416 nchars = nbytes;
2417 }
2e471eb5 2418 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2419 bcopy (contents, SDATA (val), nbytes);
2e471eb5 2420 if (!multibyte)
d5db4077 2421 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2422 return val;
2423}
2424
2425
2426/* Make a string from the data at STR, treating it as multibyte if the
2427 data warrants. */
2428
2429Lisp_Object
2430build_string (str)
943b873e 2431 const char *str;
2e471eb5
GM
2432{
2433 return make_string (str, strlen (str));
2434}
2435
2436
2437/* Return an unibyte Lisp_String set up to hold LENGTH characters
2438 occupying LENGTH bytes. */
2439
2440Lisp_Object
2441make_uninit_string (length)
2442 int length;
2443{
2444 Lisp_Object val;
2445 val = make_uninit_multibyte_string (length, length);
d5db4077 2446 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2447 return val;
2448}
2449
2450
2451/* Return a multibyte Lisp_String set up to hold NCHARS characters
2452 which occupy NBYTES bytes. */
2453
2454Lisp_Object
2455make_uninit_multibyte_string (nchars, nbytes)
2456 int nchars, nbytes;
2457{
2458 Lisp_Object string;
2459 struct Lisp_String *s;
2460
2461 if (nchars < 0)
2462 abort ();
2463
2464 s = allocate_string ();
2465 allocate_string_data (s, nchars, nbytes);
2466 XSETSTRING (string, s);
2467 string_chars_consed += nbytes;
2468 return string;
2469}
2470
2471
2472\f
2473/***********************************************************************
2474 Float Allocation
2475 ***********************************************************************/
2476
2e471eb5
GM
2477/* We store float cells inside of float_blocks, allocating a new
2478 float_block with malloc whenever necessary. Float cells reclaimed
2479 by GC are put on a free list to be reallocated before allocating
ab6780cd 2480 any new float cells from the latest float_block. */
2e471eb5 2481
d05b383a
SM
2482#define FLOAT_BLOCK_SIZE \
2483 (((BLOCK_BYTES - sizeof (struct float_block *) \
2484 /* The compiler might add padding at the end. */ \
2485 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2486 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2487
2488#define GETMARKBIT(block,n) \
2489 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2490 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2491 & 1)
2492
2493#define SETMARKBIT(block,n) \
2494 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2495 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2496
2497#define UNSETMARKBIT(block,n) \
2498 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2499 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2500
2501#define FLOAT_BLOCK(fptr) \
2502 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2503
2504#define FLOAT_INDEX(fptr) \
2505 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2506
2507struct float_block
2508{
ab6780cd 2509 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2510 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2511 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2512 struct float_block *next;
2e471eb5
GM
2513};
2514
ab6780cd
SM
2515#define FLOAT_MARKED_P(fptr) \
2516 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2517
2518#define FLOAT_MARK(fptr) \
2519 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2520
2521#define FLOAT_UNMARK(fptr) \
2522 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2523
34400008
GM
2524/* Current float_block. */
2525
2e471eb5 2526struct float_block *float_block;
34400008
GM
2527
2528/* Index of first unused Lisp_Float in the current float_block. */
2529
2e471eb5
GM
2530int float_block_index;
2531
2532/* Total number of float blocks now in use. */
2533
2534int n_float_blocks;
2535
34400008
GM
2536/* Free-list of Lisp_Floats. */
2537
2e471eb5
GM
2538struct Lisp_Float *float_free_list;
2539
34400008 2540
966533c9 2541/* Initialize float allocation. */
34400008 2542
2e471eb5
GM
2543void
2544init_float ()
2545{
08b7c2cb
SM
2546 float_block = NULL;
2547 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2548 float_free_list = 0;
08b7c2cb 2549 n_float_blocks = 0;
2e471eb5
GM
2550}
2551
34400008
GM
2552
2553/* Explicitly free a float cell by putting it on the free-list. */
2e471eb5
GM
2554
2555void
2556free_float (ptr)
2557 struct Lisp_Float *ptr;
2558{
2559 *(struct Lisp_Float **)&ptr->data = float_free_list;
2560 float_free_list = ptr;
2561}
2562
34400008
GM
2563
2564/* Return a new float object with value FLOAT_VALUE. */
2565
2e471eb5
GM
2566Lisp_Object
2567make_float (float_value)
2568 double float_value;
2569{
2570 register Lisp_Object val;
2571
2572 if (float_free_list)
2573 {
2574 /* We use the data field for chaining the free list
2575 so that we won't use the same field that has the mark bit. */
2576 XSETFLOAT (val, float_free_list);
2577 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2578 }
2579 else
2580 {
2581 if (float_block_index == FLOAT_BLOCK_SIZE)
2582 {
2583 register struct float_block *new;
2584
ab6780cd
SM
2585 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2586 MEM_TYPE_FLOAT);
2e471eb5 2587 new->next = float_block;
a0668126 2588 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2589 float_block = new;
2590 float_block_index = 0;
2591 n_float_blocks++;
2592 }
a0668126
SM
2593 XSETFLOAT (val, &float_block->floats[float_block_index]);
2594 float_block_index++;
2e471eb5 2595 }
177c0ea7 2596
2e471eb5 2597 XFLOAT_DATA (val) = float_value;
a0668126 2598 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2599 consing_since_gc += sizeof (struct Lisp_Float);
2600 floats_consed++;
2601 return val;
2602}
2603
2e471eb5
GM
2604
2605\f
2606/***********************************************************************
2607 Cons Allocation
2608 ***********************************************************************/
2609
2610/* We store cons cells inside of cons_blocks, allocating a new
2611 cons_block with malloc whenever necessary. Cons cells reclaimed by
2612 GC are put on a free list to be reallocated before allocating
08b7c2cb 2613 any new cons cells from the latest cons_block. */
2e471eb5
GM
2614
2615#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2616 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2617 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2618
2619#define CONS_BLOCK(fptr) \
2620 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2621
2622#define CONS_INDEX(fptr) \
2623 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2624
2625struct cons_block
2626{
08b7c2cb 2627 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2628 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2629 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2630 struct cons_block *next;
2e471eb5
GM
2631};
2632
08b7c2cb
SM
2633#define CONS_MARKED_P(fptr) \
2634 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2635
2636#define CONS_MARK(fptr) \
2637 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2638
2639#define CONS_UNMARK(fptr) \
2640 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2641
34400008
GM
2642/* Current cons_block. */
2643
2e471eb5 2644struct cons_block *cons_block;
34400008
GM
2645
2646/* Index of first unused Lisp_Cons in the current block. */
2647
2e471eb5
GM
2648int cons_block_index;
2649
34400008
GM
2650/* Free-list of Lisp_Cons structures. */
2651
2e471eb5
GM
2652struct Lisp_Cons *cons_free_list;
2653
2654/* Total number of cons blocks now in use. */
2655
2656int n_cons_blocks;
2657
34400008
GM
2658
2659/* Initialize cons allocation. */
2660
2e471eb5
GM
2661void
2662init_cons ()
2663{
08b7c2cb
SM
2664 cons_block = NULL;
2665 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2666 cons_free_list = 0;
08b7c2cb 2667 n_cons_blocks = 0;
2e471eb5
GM
2668}
2669
34400008
GM
2670
2671/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2672
2673void
2674free_cons (ptr)
2675 struct Lisp_Cons *ptr;
2676{
2677 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
34400008
GM
2678#if GC_MARK_STACK
2679 ptr->car = Vdead;
2680#endif
2e471eb5
GM
2681 cons_free_list = ptr;
2682}
2683
2684DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2685 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
7ee72033 2686 (car, cdr)
2e471eb5
GM
2687 Lisp_Object car, cdr;
2688{
2689 register Lisp_Object val;
2690
2691 if (cons_free_list)
2692 {
2693 /* We use the cdr for chaining the free list
2694 so that we won't use the same field that has the mark bit. */
2695 XSETCONS (val, cons_free_list);
2696 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2697 }
2698 else
2699 {
2700 if (cons_block_index == CONS_BLOCK_SIZE)
2701 {
2702 register struct cons_block *new;
08b7c2cb
SM
2703 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2704 MEM_TYPE_CONS);
a0668126 2705 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2706 new->next = cons_block;
2707 cons_block = new;
2708 cons_block_index = 0;
2709 n_cons_blocks++;
2710 }
a0668126
SM
2711 XSETCONS (val, &cons_block->conses[cons_block_index]);
2712 cons_block_index++;
2e471eb5 2713 }
177c0ea7 2714
f3fbd155
KR
2715 XSETCAR (val, car);
2716 XSETCDR (val, cdr);
a0668126 2717 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2718 consing_since_gc += sizeof (struct Lisp_Cons);
2719 cons_cells_consed++;
2720 return val;
2721}
2722
e3e56238
RS
2723/* Get an error now if there's any junk in the cons free list. */
2724void
2725check_cons_list ()
2726{
212f33f1 2727#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2728 struct Lisp_Cons *tail = cons_free_list;
2729
e3e56238
RS
2730 while (tail)
2731 tail = *(struct Lisp_Cons **)&tail->cdr;
2732#endif
2733}
34400008 2734
2e471eb5
GM
2735/* Make a list of 2, 3, 4 or 5 specified objects. */
2736
2737Lisp_Object
2738list2 (arg1, arg2)
2739 Lisp_Object arg1, arg2;
2740{
2741 return Fcons (arg1, Fcons (arg2, Qnil));
2742}
2743
34400008 2744
2e471eb5
GM
2745Lisp_Object
2746list3 (arg1, arg2, arg3)
2747 Lisp_Object arg1, arg2, arg3;
2748{
2749 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2750}
2751
34400008 2752
2e471eb5
GM
2753Lisp_Object
2754list4 (arg1, arg2, arg3, arg4)
2755 Lisp_Object arg1, arg2, arg3, arg4;
2756{
2757 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2758}
2759
34400008 2760
2e471eb5
GM
2761Lisp_Object
2762list5 (arg1, arg2, arg3, arg4, arg5)
2763 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2764{
2765 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2766 Fcons (arg5, Qnil)))));
2767}
2768
34400008 2769
2e471eb5 2770DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2771 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2772Any number of arguments, even zero arguments, are allowed.
2773usage: (list &rest OBJECTS) */)
7ee72033 2774 (nargs, args)
2e471eb5
GM
2775 int nargs;
2776 register Lisp_Object *args;
2777{
2778 register Lisp_Object val;
2779 val = Qnil;
2780
2781 while (nargs > 0)
2782 {
2783 nargs--;
2784 val = Fcons (args[nargs], val);
2785 }
2786 return val;
2787}
2788
34400008 2789
2e471eb5 2790DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2791 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
7ee72033 2792 (length, init)
2e471eb5
GM
2793 register Lisp_Object length, init;
2794{
2795 register Lisp_Object val;
2796 register int size;
2797
b7826503 2798 CHECK_NATNUM (length);
2e471eb5
GM
2799 size = XFASTINT (length);
2800
2801 val = Qnil;
ce070307
GM
2802 while (size > 0)
2803 {
2804 val = Fcons (init, val);
2805 --size;
2806
2807 if (size > 0)
2808 {
2809 val = Fcons (init, val);
2810 --size;
177c0ea7 2811
ce070307
GM
2812 if (size > 0)
2813 {
2814 val = Fcons (init, val);
2815 --size;
177c0ea7 2816
ce070307
GM
2817 if (size > 0)
2818 {
2819 val = Fcons (init, val);
2820 --size;
177c0ea7 2821
ce070307
GM
2822 if (size > 0)
2823 {
2824 val = Fcons (init, val);
2825 --size;
2826 }
2827 }
2828 }
2829 }
2830
2831 QUIT;
2832 }
177c0ea7 2833
7146af97
JB
2834 return val;
2835}
2e471eb5
GM
2836
2837
7146af97 2838\f
2e471eb5
GM
2839/***********************************************************************
2840 Vector Allocation
2841 ***********************************************************************/
7146af97 2842
34400008
GM
2843/* Singly-linked list of all vectors. */
2844
7146af97
JB
2845struct Lisp_Vector *all_vectors;
2846
2e471eb5
GM
2847/* Total number of vector-like objects now in use. */
2848
c8099634
RS
2849int n_vectors;
2850
34400008
GM
2851
2852/* Value is a pointer to a newly allocated Lisp_Vector structure
2853 with room for LEN Lisp_Objects. */
2854
ece93c02
GM
2855static struct Lisp_Vector *
2856allocate_vectorlike (len, type)
1825c68d 2857 EMACS_INT len;
ece93c02 2858 enum mem_type type;
1825c68d
KH
2859{
2860 struct Lisp_Vector *p;
675d5130 2861 size_t nbytes;
1825c68d 2862
d1658221 2863#ifdef DOUG_LEA_MALLOC
f8608968
GM
2864 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2865 because mapped region contents are not preserved in
2866 a dumped Emacs. */
de7515d6 2867 BLOCK_INPUT;
d1658221 2868 mallopt (M_MMAP_MAX, 0);
de7515d6 2869 UNBLOCK_INPUT;
d1658221 2870#endif
177c0ea7 2871
34400008 2872 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
ece93c02 2873 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
177c0ea7 2874
d1658221 2875#ifdef DOUG_LEA_MALLOC
34400008 2876 /* Back to a reasonable maximum of mmap'ed areas. */
de7515d6 2877 BLOCK_INPUT;
81d492d5 2878 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
de7515d6 2879 UNBLOCK_INPUT;
d1658221 2880#endif
177c0ea7 2881
34400008 2882 consing_since_gc += nbytes;
310ea200 2883 vector_cells_consed += len;
1825c68d
KH
2884
2885 p->next = all_vectors;
2886 all_vectors = p;
34400008 2887 ++n_vectors;
1825c68d
KH
2888 return p;
2889}
2890
34400008 2891
ece93c02
GM
2892/* Allocate a vector with NSLOTS slots. */
2893
2894struct Lisp_Vector *
2895allocate_vector (nslots)
2896 EMACS_INT nslots;
2897{
2898 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2899 v->size = nslots;
2900 return v;
2901}
2902
2903
2904/* Allocate other vector-like structures. */
2905
2906struct Lisp_Hash_Table *
2907allocate_hash_table ()
2908{
2909 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2910 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2911 EMACS_INT i;
177c0ea7 2912
ece93c02
GM
2913 v->size = len;
2914 for (i = 0; i < len; ++i)
2915 v->contents[i] = Qnil;
177c0ea7 2916
ece93c02
GM
2917 return (struct Lisp_Hash_Table *) v;
2918}
2919
2920
2921struct window *
2922allocate_window ()
2923{
2924 EMACS_INT len = VECSIZE (struct window);
2925 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2926 EMACS_INT i;
177c0ea7 2927
ece93c02
GM
2928 for (i = 0; i < len; ++i)
2929 v->contents[i] = Qnil;
2930 v->size = len;
177c0ea7 2931
ece93c02
GM
2932 return (struct window *) v;
2933}
2934
2935
2936struct frame *
2937allocate_frame ()
2938{
2939 EMACS_INT len = VECSIZE (struct frame);
2940 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2941 EMACS_INT i;
177c0ea7 2942
ece93c02
GM
2943 for (i = 0; i < len; ++i)
2944 v->contents[i] = make_number (0);
2945 v->size = len;
2946 return (struct frame *) v;
2947}
2948
2949
2950struct Lisp_Process *
2951allocate_process ()
2952{
2953 EMACS_INT len = VECSIZE (struct Lisp_Process);
2954 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2955 EMACS_INT i;
177c0ea7 2956
ece93c02
GM
2957 for (i = 0; i < len; ++i)
2958 v->contents[i] = Qnil;
2959 v->size = len;
177c0ea7 2960
ece93c02
GM
2961 return (struct Lisp_Process *) v;
2962}
2963
2964
2965struct Lisp_Vector *
2966allocate_other_vector (len)
2967 EMACS_INT len;
2968{
2969 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2970 EMACS_INT i;
177c0ea7 2971
ece93c02
GM
2972 for (i = 0; i < len; ++i)
2973 v->contents[i] = Qnil;
2974 v->size = len;
177c0ea7 2975
ece93c02
GM
2976 return v;
2977}
2978
2979
7146af97 2980DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 2981 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033
MB
2982See also the function `vector'. */)
2983 (length, init)
7146af97
JB
2984 register Lisp_Object length, init;
2985{
1825c68d
KH
2986 Lisp_Object vector;
2987 register EMACS_INT sizei;
2988 register int index;
7146af97
JB
2989 register struct Lisp_Vector *p;
2990
b7826503 2991 CHECK_NATNUM (length);
c9dad5ed 2992 sizei = XFASTINT (length);
7146af97 2993
ece93c02 2994 p = allocate_vector (sizei);
7146af97
JB
2995 for (index = 0; index < sizei; index++)
2996 p->contents[index] = init;
2997
1825c68d 2998 XSETVECTOR (vector, p);
7146af97
JB
2999 return vector;
3000}
3001
34400008 3002
a59de17b 3003DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
a6266d23 3004 doc: /* Return a newly created char-table, with purpose PURPOSE.
228299fa
GM
3005Each element is initialized to INIT, which defaults to nil.
3006PURPOSE should be a symbol which has a `char-table-extra-slots' property.
7ee72033
MB
3007The property's value should be an integer between 0 and 10. */)
3008 (purpose, init)
a59de17b 3009 register Lisp_Object purpose, init;
7b07587b
RS
3010{
3011 Lisp_Object vector;
a59de17b 3012 Lisp_Object n;
b7826503 3013 CHECK_SYMBOL (purpose);
0551bde3 3014 n = Fget (purpose, Qchar_table_extra_slots);
b7826503 3015 CHECK_NUMBER (n);
7b07587b
RS
3016 if (XINT (n) < 0 || XINT (n) > 10)
3017 args_out_of_range (n, Qnil);
3018 /* Add 2 to the size for the defalt and parent slots. */
3019 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3020 init);
0551bde3 3021 XCHAR_TABLE (vector)->top = Qt;
c96a008c 3022 XCHAR_TABLE (vector)->parent = Qnil;
a59de17b 3023 XCHAR_TABLE (vector)->purpose = purpose;
7b07587b
RS
3024 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3025 return vector;
3026}
3027
34400008 3028
2a7a8e99 3029/* Return a newly created sub char table with slots initialized by INIT.
0551bde3
KH
3030 Since a sub char table does not appear as a top level Emacs Lisp
3031 object, we don't need a Lisp interface to make it. */
3032
3033Lisp_Object
2a7a8e99
KH
3034make_sub_char_table (init)
3035 Lisp_Object init;
0551bde3
KH
3036{
3037 Lisp_Object vector
2a7a8e99 3038 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
0551bde3 3039 XCHAR_TABLE (vector)->top = Qnil;
2a7a8e99 3040 XCHAR_TABLE (vector)->defalt = Qnil;
0551bde3
KH
3041 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3042 return vector;
3043}
3044
34400008 3045
7146af97 3046DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3047 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3048Any number of arguments, even zero arguments, are allowed.
3049usage: (vector &rest OBJECTS) */)
7ee72033 3050 (nargs, args)
7146af97
JB
3051 register int nargs;
3052 Lisp_Object *args;
3053{
3054 register Lisp_Object len, val;
3055 register int index;
3056 register struct Lisp_Vector *p;
3057
67ba9986 3058 XSETFASTINT (len, nargs);
7146af97
JB
3059 val = Fmake_vector (len, Qnil);
3060 p = XVECTOR (val);
3061 for (index = 0; index < nargs; index++)
3062 p->contents[index] = args[index];
3063 return val;
3064}
3065
34400008 3066
7146af97 3067DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3068 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
3069The arguments should be the arglist, bytecode-string, constant vector,
3070stack size, (optional) doc string, and (optional) interactive spec.
3071The first four arguments are required; at most six have any
ae8e8122 3072significance.
92cc28b2 3073usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
7ee72033 3074 (nargs, args)
7146af97
JB
3075 register int nargs;
3076 Lisp_Object *args;
3077{
3078 register Lisp_Object len, val;
3079 register int index;
3080 register struct Lisp_Vector *p;
3081
67ba9986 3082 XSETFASTINT (len, nargs);
265a9e55 3083 if (!NILP (Vpurify_flag))
5a053ea9 3084 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
3085 else
3086 val = Fmake_vector (len, Qnil);
9eac9d59
KH
3087
3088 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3089 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3090 earlier because they produced a raw 8-bit string for byte-code
3091 and now such a byte-code string is loaded as multibyte while
3092 raw 8-bit characters converted to multibyte form. Thus, now we
3093 must convert them back to the original unibyte form. */
3094 args[1] = Fstring_as_unibyte (args[1]);
3095
7146af97
JB
3096 p = XVECTOR (val);
3097 for (index = 0; index < nargs; index++)
3098 {
265a9e55 3099 if (!NILP (Vpurify_flag))
7146af97
JB
3100 args[index] = Fpurecopy (args[index]);
3101 p->contents[index] = args[index];
3102 }
50aee051 3103 XSETCOMPILED (val, p);
7146af97
JB
3104 return val;
3105}
2e471eb5 3106
34400008 3107
7146af97 3108\f
2e471eb5
GM
3109/***********************************************************************
3110 Symbol Allocation
3111 ***********************************************************************/
7146af97 3112
2e471eb5
GM
3113/* Each symbol_block is just under 1020 bytes long, since malloc
3114 really allocates in units of powers of two and uses 4 bytes for its
3115 own overhead. */
7146af97
JB
3116
3117#define SYMBOL_BLOCK_SIZE \
3118 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3119
3120struct symbol_block
2e471eb5 3121{
d05b383a 3122 /* Place `symbols' first, to preserve alignment. */
2e471eb5 3123 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
d05b383a 3124 struct symbol_block *next;
2e471eb5 3125};
7146af97 3126
34400008
GM
3127/* Current symbol block and index of first unused Lisp_Symbol
3128 structure in it. */
3129
7146af97
JB
3130struct symbol_block *symbol_block;
3131int symbol_block_index;
3132
34400008
GM
3133/* List of free symbols. */
3134
7146af97
JB
3135struct Lisp_Symbol *symbol_free_list;
3136
c8099634 3137/* Total number of symbol blocks now in use. */
2e471eb5 3138
c8099634
RS
3139int n_symbol_blocks;
3140
34400008
GM
3141
3142/* Initialize symbol allocation. */
3143
7146af97
JB
3144void
3145init_symbol ()
3146{
0930c1a1
SM
3147 symbol_block = NULL;
3148 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3149 symbol_free_list = 0;
0930c1a1 3150 n_symbol_blocks = 0;
7146af97
JB
3151}
3152
34400008 3153
7146af97 3154DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3155 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033
MB
3156Its value and function definition are void, and its property list is nil. */)
3157 (name)
54ee42dd 3158 Lisp_Object name;
7146af97
JB
3159{
3160 register Lisp_Object val;
3161 register struct Lisp_Symbol *p;
3162
b7826503 3163 CHECK_STRING (name);
7146af97
JB
3164
3165 if (symbol_free_list)
3166 {
45d12a89 3167 XSETSYMBOL (val, symbol_free_list);
85481507 3168 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
7146af97
JB
3169 }
3170 else
3171 {
3172 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3173 {
3c06d205 3174 struct symbol_block *new;
34400008
GM
3175 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3176 MEM_TYPE_SYMBOL);
7146af97
JB
3177 new->next = symbol_block;
3178 symbol_block = new;
3179 symbol_block_index = 0;
c8099634 3180 n_symbol_blocks++;
7146af97 3181 }
a0668126
SM
3182 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3183 symbol_block_index++;
7146af97 3184 }
177c0ea7 3185
7146af97 3186 p = XSYMBOL (val);
8fe5665d 3187 p->xname = name;
7146af97 3188 p->plist = Qnil;
2e471eb5
GM
3189 p->value = Qunbound;
3190 p->function = Qunbound;
9e713715 3191 p->next = NULL;
2336fe58 3192 p->gcmarkbit = 0;
9e713715
GM
3193 p->interned = SYMBOL_UNINTERNED;
3194 p->constant = 0;
3195 p->indirect_variable = 0;
2e471eb5
GM
3196 consing_since_gc += sizeof (struct Lisp_Symbol);
3197 symbols_consed++;
7146af97
JB
3198 return val;
3199}
3200
3f25e183 3201
2e471eb5
GM
3202\f
3203/***********************************************************************
34400008 3204 Marker (Misc) Allocation
2e471eb5 3205 ***********************************************************************/
3f25e183 3206
2e471eb5
GM
3207/* Allocation of markers and other objects that share that structure.
3208 Works like allocation of conses. */
c0696668 3209
2e471eb5
GM
3210#define MARKER_BLOCK_SIZE \
3211 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3212
3213struct marker_block
c0696668 3214{
d05b383a 3215 /* Place `markers' first, to preserve alignment. */
2e471eb5 3216 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
d05b383a 3217 struct marker_block *next;
2e471eb5 3218};
c0696668 3219
2e471eb5
GM
3220struct marker_block *marker_block;
3221int marker_block_index;
c0696668 3222
2e471eb5 3223union Lisp_Misc *marker_free_list;
c0696668 3224
2e471eb5 3225/* Total number of marker blocks now in use. */
3f25e183 3226
2e471eb5
GM
3227int n_marker_blocks;
3228
3229void
3230init_marker ()
3f25e183 3231{
0930c1a1
SM
3232 marker_block = NULL;
3233 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3234 marker_free_list = 0;
0930c1a1 3235 n_marker_blocks = 0;
3f25e183
RS
3236}
3237
2e471eb5
GM
3238/* Return a newly allocated Lisp_Misc object, with no substructure. */
3239
3f25e183 3240Lisp_Object
2e471eb5 3241allocate_misc ()
7146af97 3242{
2e471eb5 3243 Lisp_Object val;
7146af97 3244
2e471eb5 3245 if (marker_free_list)
7146af97 3246 {
2e471eb5
GM
3247 XSETMISC (val, marker_free_list);
3248 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3249 }
3250 else
7146af97 3251 {
2e471eb5
GM
3252 if (marker_block_index == MARKER_BLOCK_SIZE)
3253 {
3254 struct marker_block *new;
34400008
GM
3255 new = (struct marker_block *) lisp_malloc (sizeof *new,
3256 MEM_TYPE_MISC);
2e471eb5
GM
3257 new->next = marker_block;
3258 marker_block = new;
3259 marker_block_index = 0;
3260 n_marker_blocks++;
7b7990cc 3261 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3262 }
a0668126
SM
3263 XSETMISC (val, &marker_block->markers[marker_block_index]);
3264 marker_block_index++;
7146af97 3265 }
177c0ea7 3266
7b7990cc 3267 --total_free_markers;
2e471eb5
GM
3268 consing_since_gc += sizeof (union Lisp_Misc);
3269 misc_objects_consed++;
2336fe58 3270 XMARKER (val)->gcmarkbit = 0;
2e471eb5
GM
3271 return val;
3272}
3273
7b7990cc
KS
3274/* Free a Lisp_Misc object */
3275
3276void
3277free_misc (misc)
3278 Lisp_Object misc;
3279{
3280 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3281 XMISC (misc)->u_free.chain = marker_free_list;
3282 marker_free_list = XMISC (misc);
3283
3284 total_free_markers++;
3285}
3286
42172a6b
RS
3287/* Return a Lisp_Misc_Save_Value object containing POINTER and
3288 INTEGER. This is used to package C values to call record_unwind_protect.
3289 The unwind function can get the C values back using XSAVE_VALUE. */
3290
3291Lisp_Object
3292make_save_value (pointer, integer)
3293 void *pointer;
3294 int integer;
3295{
3296 register Lisp_Object val;
3297 register struct Lisp_Save_Value *p;
3298
3299 val = allocate_misc ();
3300 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3301 p = XSAVE_VALUE (val);
3302 p->pointer = pointer;
3303 p->integer = integer;
b766f870 3304 p->dogc = 0;
42172a6b
RS
3305 return val;
3306}
3307
2e471eb5 3308DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3309 doc: /* Return a newly allocated marker which does not point at any place. */)
7ee72033 3310 ()
2e471eb5
GM
3311{
3312 register Lisp_Object val;
3313 register struct Lisp_Marker *p;
7146af97 3314
2e471eb5
GM
3315 val = allocate_misc ();
3316 XMISCTYPE (val) = Lisp_Misc_Marker;
3317 p = XMARKER (val);
3318 p->buffer = 0;
3319 p->bytepos = 0;
3320 p->charpos = 0;
ef89c2ce 3321 p->next = NULL;
2e471eb5 3322 p->insertion_type = 0;
7146af97
JB
3323 return val;
3324}
2e471eb5
GM
3325
3326/* Put MARKER back on the free list after using it temporarily. */
3327
3328void
3329free_marker (marker)
3330 Lisp_Object marker;
3331{
ef89c2ce 3332 unchain_marker (XMARKER (marker));
7b7990cc 3333 free_misc (marker);
2e471eb5
GM
3334}
3335
c0696668 3336\f
7146af97 3337/* Return a newly created vector or string with specified arguments as
736471d1
RS
3338 elements. If all the arguments are characters that can fit
3339 in a string of events, make a string; otherwise, make a vector.
3340
3341 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3342
3343Lisp_Object
736471d1 3344make_event_array (nargs, args)
7146af97
JB
3345 register int nargs;
3346 Lisp_Object *args;
3347{
3348 int i;
3349
3350 for (i = 0; i < nargs; i++)
736471d1 3351 /* The things that fit in a string
c9ca4659
RS
3352 are characters that are in 0...127,
3353 after discarding the meta bit and all the bits above it. */
e687453f 3354 if (!INTEGERP (args[i])
c9ca4659 3355 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3356 return Fvector (nargs, args);
3357
3358 /* Since the loop exited, we know that all the things in it are
3359 characters, so we can make a string. */
3360 {
c13ccad2 3361 Lisp_Object result;
177c0ea7 3362
50aee051 3363 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3364 for (i = 0; i < nargs; i++)
736471d1 3365 {
46e7e6b0 3366 SSET (result, i, XINT (args[i]));
736471d1
RS
3367 /* Move the meta bit to the right place for a string char. */
3368 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3369 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3370 }
177c0ea7 3371
7146af97
JB
3372 return result;
3373 }
3374}
2e471eb5
GM
3375
3376
7146af97 3377\f
34400008
GM
3378/************************************************************************
3379 C Stack Marking
3380 ************************************************************************/
3381
13c844fb
GM
3382#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3383
71cf5fa0
GM
3384/* Conservative C stack marking requires a method to identify possibly
3385 live Lisp objects given a pointer value. We do this by keeping
3386 track of blocks of Lisp data that are allocated in a red-black tree
3387 (see also the comment of mem_node which is the type of nodes in
3388 that tree). Function lisp_malloc adds information for an allocated
3389 block to the red-black tree with calls to mem_insert, and function
3390 lisp_free removes it with mem_delete. Functions live_string_p etc
3391 call mem_find to lookup information about a given pointer in the
3392 tree, and use that to determine if the pointer points to a Lisp
3393 object or not. */
3394
34400008
GM
3395/* Initialize this part of alloc.c. */
3396
3397static void
3398mem_init ()
3399{
3400 mem_z.left = mem_z.right = MEM_NIL;
3401 mem_z.parent = NULL;
3402 mem_z.color = MEM_BLACK;
3403 mem_z.start = mem_z.end = NULL;
3404 mem_root = MEM_NIL;
3405}
3406
3407
3408/* Value is a pointer to the mem_node containing START. Value is
3409 MEM_NIL if there is no node in the tree containing START. */
3410
3411static INLINE struct mem_node *
3412mem_find (start)
3413 void *start;
3414{
3415 struct mem_node *p;
3416
ece93c02
GM
3417 if (start < min_heap_address || start > max_heap_address)
3418 return MEM_NIL;
3419
34400008
GM
3420 /* Make the search always successful to speed up the loop below. */
3421 mem_z.start = start;
3422 mem_z.end = (char *) start + 1;
3423
3424 p = mem_root;
3425 while (start < p->start || start >= p->end)
3426 p = start < p->start ? p->left : p->right;
3427 return p;
3428}
3429
3430
3431/* Insert a new node into the tree for a block of memory with start
3432 address START, end address END, and type TYPE. Value is a
3433 pointer to the node that was inserted. */
3434
3435static struct mem_node *
3436mem_insert (start, end, type)
3437 void *start, *end;
3438 enum mem_type type;
3439{
3440 struct mem_node *c, *parent, *x;
3441
ece93c02
GM
3442 if (start < min_heap_address)
3443 min_heap_address = start;
3444 if (end > max_heap_address)
3445 max_heap_address = end;
3446
34400008
GM
3447 /* See where in the tree a node for START belongs. In this
3448 particular application, it shouldn't happen that a node is already
3449 present. For debugging purposes, let's check that. */
3450 c = mem_root;
3451 parent = NULL;
3452
3453#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3454
34400008
GM
3455 while (c != MEM_NIL)
3456 {
3457 if (start >= c->start && start < c->end)
3458 abort ();
3459 parent = c;
3460 c = start < c->start ? c->left : c->right;
3461 }
177c0ea7 3462
34400008 3463#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3464
34400008
GM
3465 while (c != MEM_NIL)
3466 {
3467 parent = c;
3468 c = start < c->start ? c->left : c->right;
3469 }
177c0ea7 3470
34400008
GM
3471#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3472
3473 /* Create a new node. */
877935b1
GM
3474#ifdef GC_MALLOC_CHECK
3475 x = (struct mem_node *) _malloc_internal (sizeof *x);
3476 if (x == NULL)
3477 abort ();
3478#else
34400008 3479 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3480#endif
34400008
GM
3481 x->start = start;
3482 x->end = end;
3483 x->type = type;
3484 x->parent = parent;
3485 x->left = x->right = MEM_NIL;
3486 x->color = MEM_RED;
3487
3488 /* Insert it as child of PARENT or install it as root. */
3489 if (parent)
3490 {
3491 if (start < parent->start)
3492 parent->left = x;
3493 else
3494 parent->right = x;
3495 }
177c0ea7 3496 else
34400008
GM
3497 mem_root = x;
3498
3499 /* Re-establish red-black tree properties. */
3500 mem_insert_fixup (x);
877935b1 3501
34400008
GM
3502 return x;
3503}
3504
3505
3506/* Re-establish the red-black properties of the tree, and thereby
3507 balance the tree, after node X has been inserted; X is always red. */
3508
3509static void
3510mem_insert_fixup (x)
3511 struct mem_node *x;
3512{
3513 while (x != mem_root && x->parent->color == MEM_RED)
3514 {
3515 /* X is red and its parent is red. This is a violation of
3516 red-black tree property #3. */
177c0ea7 3517
34400008
GM
3518 if (x->parent == x->parent->parent->left)
3519 {
3520 /* We're on the left side of our grandparent, and Y is our
3521 "uncle". */
3522 struct mem_node *y = x->parent->parent->right;
177c0ea7 3523
34400008
GM
3524 if (y->color == MEM_RED)
3525 {
3526 /* Uncle and parent are red but should be black because
3527 X is red. Change the colors accordingly and proceed
3528 with the grandparent. */
3529 x->parent->color = MEM_BLACK;
3530 y->color = MEM_BLACK;
3531 x->parent->parent->color = MEM_RED;
3532 x = x->parent->parent;
3533 }
3534 else
3535 {
3536 /* Parent and uncle have different colors; parent is
3537 red, uncle is black. */
3538 if (x == x->parent->right)
3539 {
3540 x = x->parent;
3541 mem_rotate_left (x);
3542 }
3543
3544 x->parent->color = MEM_BLACK;
3545 x->parent->parent->color = MEM_RED;
3546 mem_rotate_right (x->parent->parent);
3547 }
3548 }
3549 else
3550 {
3551 /* This is the symmetrical case of above. */
3552 struct mem_node *y = x->parent->parent->left;
177c0ea7 3553
34400008
GM
3554 if (y->color == MEM_RED)
3555 {
3556 x->parent->color = MEM_BLACK;
3557 y->color = MEM_BLACK;
3558 x->parent->parent->color = MEM_RED;
3559 x = x->parent->parent;
3560 }
3561 else
3562 {
3563 if (x == x->parent->left)
3564 {
3565 x = x->parent;
3566 mem_rotate_right (x);
3567 }
177c0ea7 3568
34400008
GM
3569 x->parent->color = MEM_BLACK;
3570 x->parent->parent->color = MEM_RED;
3571 mem_rotate_left (x->parent->parent);
3572 }
3573 }
3574 }
3575
3576 /* The root may have been changed to red due to the algorithm. Set
3577 it to black so that property #5 is satisfied. */
3578 mem_root->color = MEM_BLACK;
3579}
3580
3581
177c0ea7
JB
3582/* (x) (y)
3583 / \ / \
34400008
GM
3584 a (y) ===> (x) c
3585 / \ / \
3586 b c a b */
3587
3588static void
3589mem_rotate_left (x)
3590 struct mem_node *x;
3591{
3592 struct mem_node *y;
3593
3594 /* Turn y's left sub-tree into x's right sub-tree. */
3595 y = x->right;
3596 x->right = y->left;
3597 if (y->left != MEM_NIL)
3598 y->left->parent = x;
3599
3600 /* Y's parent was x's parent. */
3601 if (y != MEM_NIL)
3602 y->parent = x->parent;
3603
3604 /* Get the parent to point to y instead of x. */
3605 if (x->parent)
3606 {
3607 if (x == x->parent->left)
3608 x->parent->left = y;
3609 else
3610 x->parent->right = y;
3611 }
3612 else
3613 mem_root = y;
3614
3615 /* Put x on y's left. */
3616 y->left = x;
3617 if (x != MEM_NIL)
3618 x->parent = y;
3619}
3620
3621
177c0ea7
JB
3622/* (x) (Y)
3623 / \ / \
3624 (y) c ===> a (x)
3625 / \ / \
34400008
GM
3626 a b b c */
3627
3628static void
3629mem_rotate_right (x)
3630 struct mem_node *x;
3631{
3632 struct mem_node *y = x->left;
3633
3634 x->left = y->right;
3635 if (y->right != MEM_NIL)
3636 y->right->parent = x;
177c0ea7 3637
34400008
GM
3638 if (y != MEM_NIL)
3639 y->parent = x->parent;
3640 if (x->parent)
3641 {
3642 if (x == x->parent->right)
3643 x->parent->right = y;
3644 else
3645 x->parent->left = y;
3646 }
3647 else
3648 mem_root = y;
177c0ea7 3649
34400008
GM
3650 y->right = x;
3651 if (x != MEM_NIL)
3652 x->parent = y;
3653}
3654
3655
3656/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3657
3658static void
3659mem_delete (z)
3660 struct mem_node *z;
3661{
3662 struct mem_node *x, *y;
3663
3664 if (!z || z == MEM_NIL)
3665 return;
3666
3667 if (z->left == MEM_NIL || z->right == MEM_NIL)
3668 y = z;
3669 else
3670 {
3671 y = z->right;
3672 while (y->left != MEM_NIL)
3673 y = y->left;
3674 }
3675
3676 if (y->left != MEM_NIL)
3677 x = y->left;
3678 else
3679 x = y->right;
3680
3681 x->parent = y->parent;
3682 if (y->parent)
3683 {
3684 if (y == y->parent->left)
3685 y->parent->left = x;
3686 else
3687 y->parent->right = x;
3688 }
3689 else
3690 mem_root = x;
3691
3692 if (y != z)
3693 {
3694 z->start = y->start;
3695 z->end = y->end;
3696 z->type = y->type;
3697 }
177c0ea7 3698
34400008
GM
3699 if (y->color == MEM_BLACK)
3700 mem_delete_fixup (x);
877935b1
GM
3701
3702#ifdef GC_MALLOC_CHECK
3703 _free_internal (y);
3704#else
34400008 3705 xfree (y);
877935b1 3706#endif
34400008
GM
3707}
3708
3709
3710/* Re-establish the red-black properties of the tree, after a
3711 deletion. */
3712
3713static void
3714mem_delete_fixup (x)
3715 struct mem_node *x;
3716{
3717 while (x != mem_root && x->color == MEM_BLACK)
3718 {
3719 if (x == x->parent->left)
3720 {
3721 struct mem_node *w = x->parent->right;
177c0ea7 3722
34400008
GM
3723 if (w->color == MEM_RED)
3724 {
3725 w->color = MEM_BLACK;
3726 x->parent->color = MEM_RED;
3727 mem_rotate_left (x->parent);
3728 w = x->parent->right;
3729 }
177c0ea7 3730
34400008
GM
3731 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3732 {
3733 w->color = MEM_RED;
3734 x = x->parent;
3735 }
3736 else
3737 {
3738 if (w->right->color == MEM_BLACK)
3739 {
3740 w->left->color = MEM_BLACK;
3741 w->color = MEM_RED;
3742 mem_rotate_right (w);
3743 w = x->parent->right;
3744 }
3745 w->color = x->parent->color;
3746 x->parent->color = MEM_BLACK;
3747 w->right->color = MEM_BLACK;
3748 mem_rotate_left (x->parent);
3749 x = mem_root;
3750 }
3751 }
3752 else
3753 {
3754 struct mem_node *w = x->parent->left;
177c0ea7 3755
34400008
GM
3756 if (w->color == MEM_RED)
3757 {
3758 w->color = MEM_BLACK;
3759 x->parent->color = MEM_RED;
3760 mem_rotate_right (x->parent);
3761 w = x->parent->left;
3762 }
177c0ea7 3763
34400008
GM
3764 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3765 {
3766 w->color = MEM_RED;
3767 x = x->parent;
3768 }
3769 else
3770 {
3771 if (w->left->color == MEM_BLACK)
3772 {
3773 w->right->color = MEM_BLACK;
3774 w->color = MEM_RED;
3775 mem_rotate_left (w);
3776 w = x->parent->left;
3777 }
177c0ea7 3778
34400008
GM
3779 w->color = x->parent->color;
3780 x->parent->color = MEM_BLACK;
3781 w->left->color = MEM_BLACK;
3782 mem_rotate_right (x->parent);
3783 x = mem_root;
3784 }
3785 }
3786 }
177c0ea7 3787
34400008
GM
3788 x->color = MEM_BLACK;
3789}
3790
3791
3792/* Value is non-zero if P is a pointer to a live Lisp string on
3793 the heap. M is a pointer to the mem_block for P. */
3794
3795static INLINE int
3796live_string_p (m, p)
3797 struct mem_node *m;
3798 void *p;
3799{
3800 if (m->type == MEM_TYPE_STRING)
3801 {
3802 struct string_block *b = (struct string_block *) m->start;
3803 int offset = (char *) p - (char *) &b->strings[0];
3804
3805 /* P must point to the start of a Lisp_String structure, and it
3806 must not be on the free-list. */
176bc847
GM
3807 return (offset >= 0
3808 && offset % sizeof b->strings[0] == 0
d05b383a 3809 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3810 && ((struct Lisp_String *) p)->data != NULL);
3811 }
3812 else
3813 return 0;
3814}
3815
3816
3817/* Value is non-zero if P is a pointer to a live Lisp cons on
3818 the heap. M is a pointer to the mem_block for P. */
3819
3820static INLINE int
3821live_cons_p (m, p)
3822 struct mem_node *m;
3823 void *p;
3824{
3825 if (m->type == MEM_TYPE_CONS)
3826 {
3827 struct cons_block *b = (struct cons_block *) m->start;
3828 int offset = (char *) p - (char *) &b->conses[0];
3829
3830 /* P must point to the start of a Lisp_Cons, not be
3831 one of the unused cells in the current cons block,
3832 and not be on the free-list. */
176bc847
GM
3833 return (offset >= 0
3834 && offset % sizeof b->conses[0] == 0
d05b383a 3835 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3836 && (b != cons_block
3837 || offset / sizeof b->conses[0] < cons_block_index)
3838 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3839 }
3840 else
3841 return 0;
3842}
3843
3844
3845/* Value is non-zero if P is a pointer to a live Lisp symbol on
3846 the heap. M is a pointer to the mem_block for P. */
3847
3848static INLINE int
3849live_symbol_p (m, p)
3850 struct mem_node *m;
3851 void *p;
3852{
3853 if (m->type == MEM_TYPE_SYMBOL)
3854 {
3855 struct symbol_block *b = (struct symbol_block *) m->start;
3856 int offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3857
34400008
GM
3858 /* P must point to the start of a Lisp_Symbol, not be
3859 one of the unused cells in the current symbol block,
3860 and not be on the free-list. */
176bc847
GM
3861 return (offset >= 0
3862 && offset % sizeof b->symbols[0] == 0
d05b383a 3863 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3864 && (b != symbol_block
3865 || offset / sizeof b->symbols[0] < symbol_block_index)
3866 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3867 }
3868 else
3869 return 0;
3870}
3871
3872
3873/* Value is non-zero if P is a pointer to a live Lisp float on
3874 the heap. M is a pointer to the mem_block for P. */
3875
3876static INLINE int
3877live_float_p (m, p)
3878 struct mem_node *m;
3879 void *p;
3880{
3881 if (m->type == MEM_TYPE_FLOAT)
3882 {
3883 struct float_block *b = (struct float_block *) m->start;
3884 int offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3885
ab6780cd
SM
3886 /* P must point to the start of a Lisp_Float and not be
3887 one of the unused cells in the current float block. */
176bc847
GM
3888 return (offset >= 0
3889 && offset % sizeof b->floats[0] == 0
d05b383a 3890 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3891 && (b != float_block
ab6780cd 3892 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3893 }
3894 else
3895 return 0;
3896}
3897
3898
3899/* Value is non-zero if P is a pointer to a live Lisp Misc on
3900 the heap. M is a pointer to the mem_block for P. */
3901
3902static INLINE int
3903live_misc_p (m, p)
3904 struct mem_node *m;
3905 void *p;
3906{
3907 if (m->type == MEM_TYPE_MISC)
3908 {
3909 struct marker_block *b = (struct marker_block *) m->start;
3910 int offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3911
34400008
GM
3912 /* P must point to the start of a Lisp_Misc, not be
3913 one of the unused cells in the current misc block,
3914 and not be on the free-list. */
176bc847
GM
3915 return (offset >= 0
3916 && offset % sizeof b->markers[0] == 0
d05b383a 3917 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
3918 && (b != marker_block
3919 || offset / sizeof b->markers[0] < marker_block_index)
3920 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3921 }
3922 else
3923 return 0;
3924}
3925
3926
3927/* Value is non-zero if P is a pointer to a live vector-like object.
3928 M is a pointer to the mem_block for P. */
3929
3930static INLINE int
3931live_vector_p (m, p)
3932 struct mem_node *m;
3933 void *p;
3934{
ece93c02
GM
3935 return (p == m->start
3936 && m->type >= MEM_TYPE_VECTOR
3937 && m->type <= MEM_TYPE_WINDOW);
34400008
GM
3938}
3939
3940
2336fe58 3941/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
3942 pointer to the mem_block for P. */
3943
3944static INLINE int
3945live_buffer_p (m, p)
3946 struct mem_node *m;
3947 void *p;
3948{
3949 /* P must point to the start of the block, and the buffer
3950 must not have been killed. */
3951 return (m->type == MEM_TYPE_BUFFER
3952 && p == m->start
3953 && !NILP (((struct buffer *) p)->name));
3954}
3955
13c844fb
GM
3956#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3957
3958#if GC_MARK_STACK
3959
34400008
GM
3960#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3961
3962/* Array of objects that are kept alive because the C stack contains
3963 a pattern that looks like a reference to them . */
3964
3965#define MAX_ZOMBIES 10
3966static Lisp_Object zombies[MAX_ZOMBIES];
3967
3968/* Number of zombie objects. */
3969
3970static int nzombies;
3971
3972/* Number of garbage collections. */
3973
3974static int ngcs;
3975
3976/* Average percentage of zombies per collection. */
3977
3978static double avg_zombies;
3979
3980/* Max. number of live and zombie objects. */
3981
3982static int max_live, max_zombies;
3983
3984/* Average number of live objects per GC. */
3985
3986static double avg_live;
3987
3988DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033
MB
3989 doc: /* Show information about live and zombie objects. */)
3990 ()
34400008 3991{
83fc9c63
DL
3992 Lisp_Object args[8], zombie_list = Qnil;
3993 int i;
3994 for (i = 0; i < nzombies; i++)
3995 zombie_list = Fcons (zombies[i], zombie_list);
3996 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
3997 args[1] = make_number (ngcs);
3998 args[2] = make_float (avg_live);
3999 args[3] = make_float (avg_zombies);
4000 args[4] = make_float (avg_zombies / avg_live / 100);
4001 args[5] = make_number (max_live);
4002 args[6] = make_number (max_zombies);
83fc9c63
DL
4003 args[7] = zombie_list;
4004 return Fmessage (8, args);
34400008
GM
4005}
4006
4007#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4008
4009
182ff242
GM
4010/* Mark OBJ if we can prove it's a Lisp_Object. */
4011
4012static INLINE void
4013mark_maybe_object (obj)
4014 Lisp_Object obj;
4015{
4016 void *po = (void *) XPNTR (obj);
4017 struct mem_node *m = mem_find (po);
177c0ea7 4018
182ff242
GM
4019 if (m != MEM_NIL)
4020 {
4021 int mark_p = 0;
4022
4023 switch (XGCTYPE (obj))
4024 {
4025 case Lisp_String:
4026 mark_p = (live_string_p (m, po)
4027 && !STRING_MARKED_P ((struct Lisp_String *) po));
4028 break;
4029
4030 case Lisp_Cons:
08b7c2cb 4031 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4032 break;
4033
4034 case Lisp_Symbol:
2336fe58 4035 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4036 break;
4037
4038 case Lisp_Float:
ab6780cd 4039 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4040 break;
4041
4042 case Lisp_Vectorlike:
4043 /* Note: can't check GC_BUFFERP before we know it's a
4044 buffer because checking that dereferences the pointer
4045 PO which might point anywhere. */
4046 if (live_vector_p (m, po))
3ef06d12 4047 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4048 else if (live_buffer_p (m, po))
3ef06d12 4049 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4050 break;
4051
4052 case Lisp_Misc:
2336fe58 4053 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
182ff242 4054 break;
6bbd7a29
GM
4055
4056 case Lisp_Int:
31d929e5 4057 case Lisp_Type_Limit:
6bbd7a29 4058 break;
182ff242
GM
4059 }
4060
4061 if (mark_p)
4062 {
4063#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4064 if (nzombies < MAX_ZOMBIES)
83fc9c63 4065 zombies[nzombies] = obj;
182ff242
GM
4066 ++nzombies;
4067#endif
49723c04 4068 mark_object (obj);
182ff242
GM
4069 }
4070 }
4071}
ece93c02
GM
4072
4073
4074/* If P points to Lisp data, mark that as live if it isn't already
4075 marked. */
4076
4077static INLINE void
4078mark_maybe_pointer (p)
4079 void *p;
4080{
4081 struct mem_node *m;
4082
4083 /* Quickly rule out some values which can't point to Lisp data. We
4084 assume that Lisp data is aligned on even addresses. */
4085 if ((EMACS_INT) p & 1)
4086 return;
177c0ea7 4087
ece93c02
GM
4088 m = mem_find (p);
4089 if (m != MEM_NIL)
4090 {
4091 Lisp_Object obj = Qnil;
177c0ea7 4092
ece93c02
GM
4093 switch (m->type)
4094 {
4095 case MEM_TYPE_NON_LISP:
2fe50224 4096 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4097 break;
177c0ea7 4098
ece93c02 4099 case MEM_TYPE_BUFFER:
3ef06d12 4100 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
4101 XSETVECTOR (obj, p);
4102 break;
177c0ea7 4103
ece93c02 4104 case MEM_TYPE_CONS:
08b7c2cb 4105 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4106 XSETCONS (obj, p);
4107 break;
177c0ea7 4108
ece93c02
GM
4109 case MEM_TYPE_STRING:
4110 if (live_string_p (m, p)
4111 && !STRING_MARKED_P ((struct Lisp_String *) p))
4112 XSETSTRING (obj, p);
4113 break;
4114
4115 case MEM_TYPE_MISC:
2336fe58
SM
4116 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4117 XSETMISC (obj, p);
ece93c02 4118 break;
177c0ea7 4119
ece93c02 4120 case MEM_TYPE_SYMBOL:
2336fe58 4121 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4122 XSETSYMBOL (obj, p);
4123 break;
177c0ea7 4124
ece93c02 4125 case MEM_TYPE_FLOAT:
ab6780cd 4126 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4127 XSETFLOAT (obj, p);
4128 break;
177c0ea7 4129
ece93c02
GM
4130 case MEM_TYPE_VECTOR:
4131 case MEM_TYPE_PROCESS:
4132 case MEM_TYPE_HASH_TABLE:
4133 case MEM_TYPE_FRAME:
4134 case MEM_TYPE_WINDOW:
4135 if (live_vector_p (m, p))
4136 {
4137 Lisp_Object tem;
4138 XSETVECTOR (tem, p);
3ef06d12 4139 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4140 obj = tem;
4141 }
4142 break;
4143
4144 default:
4145 abort ();
4146 }
4147
4148 if (!GC_NILP (obj))
49723c04 4149 mark_object (obj);
ece93c02
GM
4150 }
4151}
4152
4153
4154/* Mark Lisp objects referenced from the address range START..END. */
34400008 4155
177c0ea7 4156static void
34400008
GM
4157mark_memory (start, end)
4158 void *start, *end;
4159{
4160 Lisp_Object *p;
ece93c02 4161 void **pp;
34400008
GM
4162
4163#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4164 nzombies = 0;
4165#endif
4166
4167 /* Make START the pointer to the start of the memory region,
4168 if it isn't already. */
4169 if (end < start)
4170 {
4171 void *tem = start;
4172 start = end;
4173 end = tem;
4174 }
ece93c02
GM
4175
4176 /* Mark Lisp_Objects. */
34400008 4177 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
182ff242 4178 mark_maybe_object (*p);
ece93c02
GM
4179
4180 /* Mark Lisp data pointed to. This is necessary because, in some
4181 situations, the C compiler optimizes Lisp objects away, so that
4182 only a pointer to them remains. Example:
4183
4184 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4185 ()
ece93c02
GM
4186 {
4187 Lisp_Object obj = build_string ("test");
4188 struct Lisp_String *s = XSTRING (obj);
4189 Fgarbage_collect ();
4190 fprintf (stderr, "test `%s'\n", s->data);
4191 return Qnil;
4192 }
4193
4194 Here, `obj' isn't really used, and the compiler optimizes it
4195 away. The only reference to the life string is through the
4196 pointer `s'. */
177c0ea7 4197
ece93c02
GM
4198 for (pp = (void **) start; (void *) pp < end; ++pp)
4199 mark_maybe_pointer (*pp);
182ff242
GM
4200}
4201
30f637f8
DL
4202/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4203 the GCC system configuration. In gcc 3.2, the only systems for
4204 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4205 by others?) and ns32k-pc532-min. */
182ff242
GM
4206
4207#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4208
4209static int setjmp_tested_p, longjmps_done;
4210
4211#define SETJMP_WILL_LIKELY_WORK "\
4212\n\
4213Emacs garbage collector has been changed to use conservative stack\n\
4214marking. Emacs has determined that the method it uses to do the\n\
4215marking will likely work on your system, but this isn't sure.\n\
4216\n\
4217If you are a system-programmer, or can get the help of a local wizard\n\
4218who is, please take a look at the function mark_stack in alloc.c, and\n\
4219verify that the methods used are appropriate for your system.\n\
4220\n\
d191623b 4221Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4222"
4223
4224#define SETJMP_WILL_NOT_WORK "\
4225\n\
4226Emacs garbage collector has been changed to use conservative stack\n\
4227marking. Emacs has determined that the default method it uses to do the\n\
4228marking will not work on your system. We will need a system-dependent\n\
4229solution for your system.\n\
4230\n\
4231Please take a look at the function mark_stack in alloc.c, and\n\
4232try to find a way to make it work on your system.\n\
30f637f8
DL
4233\n\
4234Note that you may get false negatives, depending on the compiler.\n\
4235In particular, you need to use -O with GCC for this test.\n\
4236\n\
d191623b 4237Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4238"
4239
4240
4241/* Perform a quick check if it looks like setjmp saves registers in a
4242 jmp_buf. Print a message to stderr saying so. When this test
4243 succeeds, this is _not_ a proof that setjmp is sufficient for
4244 conservative stack marking. Only the sources or a disassembly
4245 can prove that. */
4246
4247static void
4248test_setjmp ()
4249{
4250 char buf[10];
4251 register int x;
4252 jmp_buf jbuf;
4253 int result = 0;
4254
4255 /* Arrange for X to be put in a register. */
4256 sprintf (buf, "1");
4257 x = strlen (buf);
4258 x = 2 * x - 1;
4259
4260 setjmp (jbuf);
4261 if (longjmps_done == 1)
34400008 4262 {
182ff242 4263 /* Came here after the longjmp at the end of the function.
34400008 4264
182ff242
GM
4265 If x == 1, the longjmp has restored the register to its
4266 value before the setjmp, and we can hope that setjmp
4267 saves all such registers in the jmp_buf, although that
4268 isn't sure.
34400008 4269
182ff242
GM
4270 For other values of X, either something really strange is
4271 taking place, or the setjmp just didn't save the register. */
4272
4273 if (x == 1)
4274 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4275 else
4276 {
4277 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4278 exit (1);
34400008
GM
4279 }
4280 }
182ff242
GM
4281
4282 ++longjmps_done;
4283 x = 2;
4284 if (longjmps_done == 1)
4285 longjmp (jbuf, 1);
34400008
GM
4286}
4287
182ff242
GM
4288#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4289
34400008
GM
4290
4291#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4292
4293/* Abort if anything GCPRO'd doesn't survive the GC. */
4294
4295static void
4296check_gcpros ()
4297{
4298 struct gcpro *p;
4299 int i;
4300
4301 for (p = gcprolist; p; p = p->next)
4302 for (i = 0; i < p->nvars; ++i)
4303 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4304 /* FIXME: It's not necessarily a bug. It might just be that the
4305 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4306 abort ();
4307}
4308
4309#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4310
4311static void
4312dump_zombies ()
4313{
4314 int i;
4315
4316 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4317 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4318 {
4319 fprintf (stderr, " %d = ", i);
4320 debug_print (zombies[i]);
4321 }
4322}
4323
4324#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4325
4326
182ff242
GM
4327/* Mark live Lisp objects on the C stack.
4328
4329 There are several system-dependent problems to consider when
4330 porting this to new architectures:
4331
4332 Processor Registers
4333
4334 We have to mark Lisp objects in CPU registers that can hold local
4335 variables or are used to pass parameters.
4336
4337 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4338 something that either saves relevant registers on the stack, or
4339 calls mark_maybe_object passing it each register's contents.
4340
4341 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4342 implementation assumes that calling setjmp saves registers we need
4343 to see in a jmp_buf which itself lies on the stack. This doesn't
4344 have to be true! It must be verified for each system, possibly
4345 by taking a look at the source code of setjmp.
4346
4347 Stack Layout
4348
4349 Architectures differ in the way their processor stack is organized.
4350 For example, the stack might look like this
4351
4352 +----------------+
4353 | Lisp_Object | size = 4
4354 +----------------+
4355 | something else | size = 2
4356 +----------------+
4357 | Lisp_Object | size = 4
4358 +----------------+
4359 | ... |
4360
4361 In such a case, not every Lisp_Object will be aligned equally. To
4362 find all Lisp_Object on the stack it won't be sufficient to walk
4363 the stack in steps of 4 bytes. Instead, two passes will be
4364 necessary, one starting at the start of the stack, and a second
4365 pass starting at the start of the stack + 2. Likewise, if the
4366 minimal alignment of Lisp_Objects on the stack is 1, four passes
4367 would be necessary, each one starting with one byte more offset
4368 from the stack start.
4369
4370 The current code assumes by default that Lisp_Objects are aligned
4371 equally on the stack. */
34400008
GM
4372
4373static void
4374mark_stack ()
4375{
630909a5 4376 int i;
34400008 4377 jmp_buf j;
6bbd7a29 4378 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
34400008
GM
4379 void *end;
4380
4381 /* This trick flushes the register windows so that all the state of
4382 the process is contained in the stack. */
ab6780cd 4383 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4384 needed on ia64 too. See mach_dep.c, where it also says inline
4385 assembler doesn't work with relevant proprietary compilers. */
34400008
GM
4386#ifdef sparc
4387 asm ("ta 3");
4388#endif
177c0ea7 4389
34400008
GM
4390 /* Save registers that we need to see on the stack. We need to see
4391 registers used to hold register variables and registers used to
4392 pass parameters. */
4393#ifdef GC_SAVE_REGISTERS_ON_STACK
4394 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4395#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4396
182ff242
GM
4397#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4398 setjmp will definitely work, test it
4399 and print a message with the result
4400 of the test. */
4401 if (!setjmp_tested_p)
4402 {
4403 setjmp_tested_p = 1;
4404 test_setjmp ();
4405 }
4406#endif /* GC_SETJMP_WORKS */
177c0ea7 4407
34400008
GM
4408 setjmp (j);
4409 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4410#endif /* not GC_SAVE_REGISTERS_ON_STACK */
34400008
GM
4411
4412 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4413 that's not the case, something has to be done here to iterate
4414 over the stack segments. */
630909a5 4415#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4416#ifdef __GNUC__
4417#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4418#else
630909a5 4419#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4420#endif
182ff242 4421#endif
24452cd5 4422 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
630909a5 4423 mark_memory ((char *) stack_base + i, end);
4dec23ff
AS
4424 /* Allow for marking a secondary stack, like the register stack on the
4425 ia64. */
4426#ifdef GC_MARK_SECONDARY_STACK
4427 GC_MARK_SECONDARY_STACK ();
4428#endif
34400008
GM
4429
4430#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4431 check_gcpros ();
4432#endif
4433}
4434
4435
4436#endif /* GC_MARK_STACK != 0 */
4437
4438
4439\f
2e471eb5
GM
4440/***********************************************************************
4441 Pure Storage Management
4442 ***********************************************************************/
4443
1f0b3fd2
GM
4444/* Allocate room for SIZE bytes from pure Lisp storage and return a
4445 pointer to it. TYPE is the Lisp type for which the memory is
4446 allocated. TYPE < 0 means it's not used for a Lisp object.
4447
4448 If store_pure_type_info is set and TYPE is >= 0, the type of
4449 the allocated object is recorded in pure_types. */
4450
4451static POINTER_TYPE *
4452pure_alloc (size, type)
4453 size_t size;
4454 int type;
4455{
1f0b3fd2 4456 POINTER_TYPE *result;
831b476c
SM
4457#ifdef USE_LSB_TAG
4458 size_t alignment = (1 << GCTYPEBITS);
4459#else
44117420 4460 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4461
4462 /* Give Lisp_Floats an extra alignment. */
4463 if (type == Lisp_Float)
4464 {
1f0b3fd2
GM
4465#if defined __GNUC__ && __GNUC__ >= 2
4466 alignment = __alignof (struct Lisp_Float);
4467#else
4468 alignment = sizeof (struct Lisp_Float);
4469#endif
9e713715 4470 }
831b476c 4471#endif
1f0b3fd2 4472
44117420 4473 again:
ab6780cd 4474 result = ALIGN (purebeg + pure_bytes_used, alignment);
44117420
KS
4475 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4476
4477 if (pure_bytes_used <= pure_size)
4478 return result;
4479
4480 /* Don't allocate a large amount here,
4481 because it might get mmap'd and then its address
4482 might not be usable. */
4483 purebeg = (char *) xmalloc (10000);
4484 pure_size = 10000;
4485 pure_bytes_used_before_overflow += pure_bytes_used - size;
4486 pure_bytes_used = 0;
4487 goto again;
1f0b3fd2
GM
4488}
4489
4490
852f8cdc 4491/* Print a warning if PURESIZE is too small. */
9e713715
GM
4492
4493void
4494check_pure_size ()
4495{
4496 if (pure_bytes_used_before_overflow)
a4d35afd
SM
4497 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4498 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4499}
4500
4501
2e471eb5
GM
4502/* Return a string allocated in pure space. DATA is a buffer holding
4503 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4504 non-zero means make the result string multibyte.
1a4f1e2c 4505
2e471eb5
GM
4506 Must get an error if pure storage is full, since if it cannot hold
4507 a large string it may be able to hold conses that point to that
4508 string; then the string is not protected from gc. */
7146af97
JB
4509
4510Lisp_Object
2e471eb5 4511make_pure_string (data, nchars, nbytes, multibyte)
7146af97 4512 char *data;
2e471eb5 4513 int nchars, nbytes;
c0696668 4514 int multibyte;
7146af97 4515{
2e471eb5
GM
4516 Lisp_Object string;
4517 struct Lisp_String *s;
c0696668 4518
1f0b3fd2
GM
4519 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4520 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
2e471eb5
GM
4521 s->size = nchars;
4522 s->size_byte = multibyte ? nbytes : -1;
4523 bcopy (data, s->data, nbytes);
4524 s->data[nbytes] = '\0';
4525 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4526 XSETSTRING (string, s);
4527 return string;
7146af97
JB
4528}
4529
2e471eb5 4530
34400008
GM
4531/* Return a cons allocated from pure space. Give it pure copies
4532 of CAR as car and CDR as cdr. */
4533
7146af97
JB
4534Lisp_Object
4535pure_cons (car, cdr)
4536 Lisp_Object car, cdr;
4537{
4538 register Lisp_Object new;
1f0b3fd2 4539 struct Lisp_Cons *p;
7146af97 4540
1f0b3fd2
GM
4541 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4542 XSETCONS (new, p);
f3fbd155
KR
4543 XSETCAR (new, Fpurecopy (car));
4544 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4545 return new;
4546}
4547
7146af97 4548
34400008
GM
4549/* Value is a float object with value NUM allocated from pure space. */
4550
7146af97
JB
4551Lisp_Object
4552make_pure_float (num)
4553 double num;
4554{
4555 register Lisp_Object new;
1f0b3fd2 4556 struct Lisp_Float *p;
7146af97 4557
1f0b3fd2
GM
4558 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4559 XSETFLOAT (new, p);
70949dac 4560 XFLOAT_DATA (new) = num;
7146af97
JB
4561 return new;
4562}
4563
34400008
GM
4564
4565/* Return a vector with room for LEN Lisp_Objects allocated from
4566 pure space. */
4567
7146af97
JB
4568Lisp_Object
4569make_pure_vector (len)
42607681 4570 EMACS_INT len;
7146af97 4571{
1f0b3fd2
GM
4572 Lisp_Object new;
4573 struct Lisp_Vector *p;
4574 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4575
1f0b3fd2
GM
4576 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4577 XSETVECTOR (new, p);
7146af97
JB
4578 XVECTOR (new)->size = len;
4579 return new;
4580}
4581
34400008 4582
7146af97 4583DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
7ee72033 4584 doc: /* Make a copy of OBJECT in pure storage.
228299fa 4585Recursively copies contents of vectors and cons cells.
7ee72033
MB
4586Does not copy symbols. Copies strings without text properties. */)
4587 (obj)
7146af97
JB
4588 register Lisp_Object obj;
4589{
265a9e55 4590 if (NILP (Vpurify_flag))
7146af97
JB
4591 return obj;
4592
1f0b3fd2 4593 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4594 return obj;
4595
d6dd74bb 4596 if (CONSP (obj))
70949dac 4597 return pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4598 else if (FLOATP (obj))
70949dac 4599 return make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4600 else if (STRINGP (obj))
d5db4077
KR
4601 return make_pure_string (SDATA (obj), SCHARS (obj),
4602 SBYTES (obj),
c0696668 4603 STRING_MULTIBYTE (obj));
d6dd74bb
KH
4604 else if (COMPILEDP (obj) || VECTORP (obj))
4605 {
4606 register struct Lisp_Vector *vec;
41b867ea
AS
4607 register int i;
4608 EMACS_INT size;
d6dd74bb
KH
4609
4610 size = XVECTOR (obj)->size;
7d535c68
KH
4611 if (size & PSEUDOVECTOR_FLAG)
4612 size &= PSEUDOVECTOR_SIZE_MASK;
41b867ea 4613 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4614 for (i = 0; i < size; i++)
4615 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4616 if (COMPILEDP (obj))
4617 XSETCOMPILED (obj, vec);
4618 else
4619 XSETVECTOR (obj, vec);
7146af97
JB
4620 return obj;
4621 }
d6dd74bb
KH
4622 else if (MARKERP (obj))
4623 error ("Attempt to copy a marker to pure storage");
6bbd7a29
GM
4624
4625 return obj;
7146af97 4626}
2e471eb5 4627
34400008 4628
7146af97 4629\f
34400008
GM
4630/***********************************************************************
4631 Protection from GC
4632 ***********************************************************************/
4633
2e471eb5
GM
4634/* Put an entry in staticvec, pointing at the variable with address
4635 VARADDRESS. */
7146af97
JB
4636
4637void
4638staticpro (varaddress)
4639 Lisp_Object *varaddress;
4640{
4641 staticvec[staticidx++] = varaddress;
4642 if (staticidx >= NSTATICS)
4643 abort ();
4644}
4645
4646struct catchtag
2e471eb5 4647{
7146af97
JB
4648 Lisp_Object tag;
4649 Lisp_Object val;
4650 struct catchtag *next;
2e471eb5 4651};
7146af97 4652
7146af97 4653\f
34400008
GM
4654/***********************************************************************
4655 Protection from GC
4656 ***********************************************************************/
1a4f1e2c 4657
e8197642
RS
4658/* Temporarily prevent garbage collection. */
4659
4660int
4661inhibit_garbage_collection ()
4662{
aed13378 4663 int count = SPECPDL_INDEX ();
54defd0d
AS
4664 int nbits = min (VALBITS, BITS_PER_INT);
4665
4666 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4667 return count;
4668}
4669
34400008 4670
7146af97 4671DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4672 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4673Garbage collection happens automatically if you cons more than
4674`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4675`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4676 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4677 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4678 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4679 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4680However, if there was overflow in pure space, `garbage-collect'
4681returns nil, because real GC can't be done. */)
7ee72033 4682 ()
7146af97 4683{
7146af97
JB
4684 register struct specbinding *bind;
4685 struct catchtag *catch;
4686 struct handler *handler;
7146af97
JB
4687 char stack_top_variable;
4688 register int i;
6efc7df7 4689 int message_p;
96117bc7 4690 Lisp_Object total[8];
331379bf 4691 int count = SPECPDL_INDEX ();
2c5bd608
DL
4692 EMACS_TIME t1, t2, t3;
4693
3de0effb
RS
4694 if (abort_on_gc)
4695 abort ();
4696
9e713715
GM
4697 /* Can't GC if pure storage overflowed because we can't determine
4698 if something is a pure object or not. */
4699 if (pure_bytes_used_before_overflow)
4700 return Qnil;
4701
bbc012e0
KS
4702 CHECK_CONS_LIST ();
4703
3c7e66a8
RS
4704 /* Don't keep undo information around forever.
4705 Do this early on, so it is no problem if the user quits. */
4706 {
4707 register struct buffer *nextb = all_buffers;
4708
4709 while (nextb)
4710 {
4711 /* If a buffer's undo list is Qt, that means that undo is
4712 turned off in that buffer. Calling truncate_undo_list on
4713 Qt tends to return NULL, which effectively turns undo back on.
4714 So don't call truncate_undo_list if undo_list is Qt. */
303b0412 4715 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
3c7e66a8
RS
4716 truncate_undo_list (nextb);
4717
4718 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4719 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4720 {
4721 /* If a buffer's gap size is more than 10% of the buffer
4722 size, or larger than 2000 bytes, then shrink it
4723 accordingly. Keep a minimum size of 20 bytes. */
4724 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4725
4726 if (nextb->text->gap_size > size)
4727 {
4728 struct buffer *save_current = current_buffer;
4729 current_buffer = nextb;
4730 make_gap (-(nextb->text->gap_size - size));
4731 current_buffer = save_current;
4732 }
4733 }
4734
4735 nextb = nextb->next;
4736 }
4737 }
4738
4739 EMACS_GET_TIME (t1);
4740
58595309
KH
4741 /* In case user calls debug_print during GC,
4742 don't let that cause a recursive GC. */
4743 consing_since_gc = 0;
4744
6efc7df7
GM
4745 /* Save what's currently displayed in the echo area. */
4746 message_p = push_message ();
c55b0da6 4747 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 4748
7146af97
JB
4749 /* Save a copy of the contents of the stack, for debugging. */
4750#if MAX_SAVE_STACK > 0
265a9e55 4751 if (NILP (Vpurify_flag))
7146af97
JB
4752 {
4753 i = &stack_top_variable - stack_bottom;
4754 if (i < 0) i = -i;
4755 if (i < MAX_SAVE_STACK)
4756 {
4757 if (stack_copy == 0)
9ac0d9e0 4758 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 4759 else if (stack_copy_size < i)
9ac0d9e0 4760 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
4761 if (stack_copy)
4762 {
42607681 4763 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
7146af97
JB
4764 bcopy (stack_bottom, stack_copy, i);
4765 else
4766 bcopy (&stack_top_variable, stack_copy, i);
4767 }
4768 }
4769 }
4770#endif /* MAX_SAVE_STACK > 0 */
4771
299585ee 4772 if (garbage_collection_messages)
691c4285 4773 message1_nolog ("Garbage collecting...");
7146af97 4774
6e0fca1d
RS
4775 BLOCK_INPUT;
4776
eec7b73d
RS
4777 shrink_regexp_cache ();
4778
7146af97
JB
4779 gc_in_progress = 1;
4780
c23baf9f 4781 /* clear_marks (); */
7146af97 4782
0930c1a1 4783 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
4784
4785 for (i = 0; i < staticidx; i++)
49723c04 4786 mark_object (*staticvec[i]);
34400008 4787
126f9c02
SM
4788 for (bind = specpdl; bind != specpdl_ptr; bind++)
4789 {
4790 mark_object (bind->symbol);
4791 mark_object (bind->old_value);
4792 }
4793 mark_kboards ();
4794
4795#ifdef USE_GTK
4796 {
4797 extern void xg_mark_data ();
4798 xg_mark_data ();
4799 }
4800#endif
4801
34400008
GM
4802#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4803 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4804 mark_stack ();
4805#else
acf5f7d3
SM
4806 {
4807 register struct gcpro *tail;
4808 for (tail = gcprolist; tail; tail = tail->next)
4809 for (i = 0; i < tail->nvars; i++)
0930c1a1 4810 mark_object (tail->var[i]);
acf5f7d3 4811 }
34400008 4812#endif
177c0ea7 4813
630686c8 4814 mark_byte_stack ();
7146af97
JB
4815 for (catch = catchlist; catch; catch = catch->next)
4816 {
49723c04
SM
4817 mark_object (catch->tag);
4818 mark_object (catch->val);
177c0ea7 4819 }
7146af97
JB
4820 for (handler = handlerlist; handler; handler = handler->next)
4821 {
49723c04
SM
4822 mark_object (handler->handler);
4823 mark_object (handler->var);
177c0ea7 4824 }
b40ea20a 4825 mark_backtrace ();
7146af97 4826
454d7973
KS
4827#ifdef HAVE_WINDOW_SYSTEM
4828 mark_fringe_data ();
4829#endif
4830
74c35a48
SM
4831#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4832 mark_stack ();
4833#endif
4834
c37adf23
SM
4835 /* Everything is now marked, except for the things that require special
4836 finalization, i.e. the undo_list.
4837 Look thru every buffer's undo list
4838 for elements that update markers that were not marked,
4839 and delete them. */
4c315bda
RS
4840 {
4841 register struct buffer *nextb = all_buffers;
4842
4843 while (nextb)
4844 {
4845 /* If a buffer's undo list is Qt, that means that undo is
c37adf23
SM
4846 turned off in that buffer. Calling truncate_undo_list on
4847 Qt tends to return NULL, which effectively turns undo back on.
4848 So don't call truncate_undo_list if undo_list is Qt. */
4c315bda
RS
4849 if (! EQ (nextb->undo_list, Qt))
4850 {
c37adf23 4851 Lisp_Object tail, prev;
4c315bda
RS
4852 tail = nextb->undo_list;
4853 prev = Qnil;
4854 while (CONSP (tail))
4855 {
c37adf23
SM
4856 if (GC_CONSP (XCAR (tail))
4857 && GC_MARKERP (XCAR (XCAR (tail)))
4858 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
4859 {
4860 if (NILP (prev))
c37adf23 4861 nextb->undo_list = tail = XCDR (tail);
4c315bda 4862 else
f3fbd155 4863 {
c37adf23 4864 tail = XCDR (tail);
f3fbd155
KR
4865 XSETCDR (prev, tail);
4866 }
4c315bda
RS
4867 }
4868 else
4869 {
4870 prev = tail;
70949dac 4871 tail = XCDR (tail);
4c315bda
RS
4872 }
4873 }
4874 }
c37adf23
SM
4875 /* Now that we have stripped the elements that need not be in the
4876 undo_list any more, we can finally mark the list. */
4877 mark_object (nextb->undo_list);
4c315bda
RS
4878
4879 nextb = nextb->next;
4880 }
4881 }
4882
c37adf23 4883 gc_sweep ();
6b67a518 4884
7146af97
JB
4885 /* Clear the mark bits that we set in certain root slots. */
4886
033a5fa3 4887 unmark_byte_stack ();
3ef06d12
SM
4888 VECTOR_UNMARK (&buffer_defaults);
4889 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 4890
34400008
GM
4891#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4892 dump_zombies ();
4893#endif
4894
6e0fca1d
RS
4895 UNBLOCK_INPUT;
4896
bbc012e0
KS
4897 CHECK_CONS_LIST ();
4898
c23baf9f 4899 /* clear_marks (); */
7146af97
JB
4900 gc_in_progress = 0;
4901
4902 consing_since_gc = 0;
4903 if (gc_cons_threshold < 10000)
4904 gc_cons_threshold = 10000;
4905
96f077ad
SM
4906 if (FLOATP (Vgc_cons_percentage))
4907 { /* Set gc_cons_combined_threshold. */
4908 EMACS_INT total = 0;
974aae61 4909
96f077ad
SM
4910 total += total_conses * sizeof (struct Lisp_Cons);
4911 total += total_symbols * sizeof (struct Lisp_Symbol);
4912 total += total_markers * sizeof (union Lisp_Misc);
4913 total += total_string_size;
4914 total += total_vector_size * sizeof (Lisp_Object);
4915 total += total_floats * sizeof (struct Lisp_Float);
4916 total += total_intervals * sizeof (struct interval);
4917 total += total_strings * sizeof (struct Lisp_String);
4918
974aae61 4919 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
96f077ad 4920 }
974aae61
RS
4921 else
4922 gc_relative_threshold = 0;
96f077ad 4923
299585ee
RS
4924 if (garbage_collection_messages)
4925 {
6efc7df7
GM
4926 if (message_p || minibuf_level > 0)
4927 restore_message ();
299585ee
RS
4928 else
4929 message1_nolog ("Garbage collecting...done");
4930 }
7146af97 4931
98edb5ff 4932 unbind_to (count, Qnil);
2e471eb5
GM
4933
4934 total[0] = Fcons (make_number (total_conses),
4935 make_number (total_free_conses));
4936 total[1] = Fcons (make_number (total_symbols),
4937 make_number (total_free_symbols));
4938 total[2] = Fcons (make_number (total_markers),
4939 make_number (total_free_markers));
96117bc7
GM
4940 total[3] = make_number (total_string_size);
4941 total[4] = make_number (total_vector_size);
4942 total[5] = Fcons (make_number (total_floats),
2e471eb5 4943 make_number (total_free_floats));
96117bc7 4944 total[6] = Fcons (make_number (total_intervals),
2e471eb5 4945 make_number (total_free_intervals));
96117bc7 4946 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
4947 make_number (total_free_strings));
4948
34400008 4949#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 4950 {
34400008
GM
4951 /* Compute average percentage of zombies. */
4952 double nlive = 0;
177c0ea7 4953
34400008 4954 for (i = 0; i < 7; ++i)
83fc9c63
DL
4955 if (CONSP (total[i]))
4956 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
4957
4958 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4959 max_live = max (nlive, max_live);
4960 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4961 max_zombies = max (nzombies, max_zombies);
4962 ++ngcs;
4963 }
4964#endif
7146af97 4965
9e713715
GM
4966 if (!NILP (Vpost_gc_hook))
4967 {
4968 int count = inhibit_garbage_collection ();
4969 safe_run_hooks (Qpost_gc_hook);
4970 unbind_to (count, Qnil);
4971 }
2c5bd608
DL
4972
4973 /* Accumulate statistics. */
4974 EMACS_GET_TIME (t2);
4975 EMACS_SUB_TIME (t3, t2, t1);
4976 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
4977 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4978 EMACS_SECS (t3) +
4979 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
4980 gcs_done++;
4981
96117bc7 4982 return Flist (sizeof total / sizeof *total, total);
7146af97 4983}
34400008 4984
41c28a37 4985
3770920e
GM
4986/* Mark Lisp objects in glyph matrix MATRIX. Currently the
4987 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
4988
4989static void
4990mark_glyph_matrix (matrix)
4991 struct glyph_matrix *matrix;
4992{
4993 struct glyph_row *row = matrix->rows;
4994 struct glyph_row *end = row + matrix->nrows;
4995
2e471eb5
GM
4996 for (; row < end; ++row)
4997 if (row->enabled_p)
4998 {
4999 int area;
5000 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5001 {
5002 struct glyph *glyph = row->glyphs[area];
5003 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5004
2e471eb5
GM
5005 for (; glyph < end_glyph; ++glyph)
5006 if (GC_STRINGP (glyph->object)
5007 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5008 mark_object (glyph->object);
2e471eb5
GM
5009 }
5010 }
41c28a37
GM
5011}
5012
34400008 5013
41c28a37
GM
5014/* Mark Lisp faces in the face cache C. */
5015
5016static void
5017mark_face_cache (c)
5018 struct face_cache *c;
5019{
5020 if (c)
5021 {
5022 int i, j;
5023 for (i = 0; i < c->used; ++i)
5024 {
5025 struct face *face = FACE_FROM_ID (c->f, i);
5026
5027 if (face)
5028 {
5029 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5030 mark_object (face->lface[j]);
41c28a37
GM
5031 }
5032 }
5033 }
5034}
5035
5036
5037#ifdef HAVE_WINDOW_SYSTEM
5038
5039/* Mark Lisp objects in image IMG. */
5040
5041static void
5042mark_image (img)
5043 struct image *img;
5044{
49723c04 5045 mark_object (img->spec);
177c0ea7 5046
3e60b029 5047 if (!NILP (img->data.lisp_val))
49723c04 5048 mark_object (img->data.lisp_val);
41c28a37
GM
5049}
5050
5051
5052/* Mark Lisp objects in image cache of frame F. It's done this way so
5053 that we don't have to include xterm.h here. */
5054
5055static void
5056mark_image_cache (f)
5057 struct frame *f;
5058{
5059 forall_images_in_image_cache (f, mark_image);
5060}
5061
5062#endif /* HAVE_X_WINDOWS */
5063
5064
7146af97 5065\f
1a4f1e2c 5066/* Mark reference to a Lisp_Object.
2e471eb5
GM
5067 If the object referred to has not been seen yet, recursively mark
5068 all the references contained in it. */
7146af97 5069
785cd37f 5070#define LAST_MARKED_SIZE 500
49723c04 5071Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
5072int last_marked_index;
5073
1342fc6f
RS
5074/* For debugging--call abort when we cdr down this many
5075 links of a list, in mark_object. In debugging,
5076 the call to abort will hit a breakpoint.
5077 Normally this is zero and the check never goes off. */
5078int mark_object_loop_halt;
5079
41c28a37 5080void
49723c04
SM
5081mark_object (arg)
5082 Lisp_Object arg;
7146af97 5083{
49723c04 5084 register Lisp_Object obj = arg;
4f5c1376
GM
5085#ifdef GC_CHECK_MARKED_OBJECTS
5086 void *po;
5087 struct mem_node *m;
5088#endif
1342fc6f 5089 int cdr_count = 0;
7146af97 5090
9149e743 5091 loop:
7146af97 5092
1f0b3fd2 5093 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5094 return;
5095
49723c04 5096 last_marked[last_marked_index++] = obj;
785cd37f
RS
5097 if (last_marked_index == LAST_MARKED_SIZE)
5098 last_marked_index = 0;
5099
4f5c1376
GM
5100 /* Perform some sanity checks on the objects marked here. Abort if
5101 we encounter an object we know is bogus. This increases GC time
5102 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5103#ifdef GC_CHECK_MARKED_OBJECTS
5104
5105 po = (void *) XPNTR (obj);
5106
5107 /* Check that the object pointed to by PO is known to be a Lisp
5108 structure allocated from the heap. */
5109#define CHECK_ALLOCATED() \
5110 do { \
5111 m = mem_find (po); \
5112 if (m == MEM_NIL) \
5113 abort (); \
5114 } while (0)
5115
5116 /* Check that the object pointed to by PO is live, using predicate
5117 function LIVEP. */
5118#define CHECK_LIVE(LIVEP) \
5119 do { \
5120 if (!LIVEP (m, po)) \
5121 abort (); \
5122 } while (0)
5123
5124 /* Check both of the above conditions. */
5125#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5126 do { \
5127 CHECK_ALLOCATED (); \
5128 CHECK_LIVE (LIVEP); \
5129 } while (0) \
177c0ea7 5130
4f5c1376 5131#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5132
4f5c1376
GM
5133#define CHECK_ALLOCATED() (void) 0
5134#define CHECK_LIVE(LIVEP) (void) 0
5135#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5136
4f5c1376
GM
5137#endif /* not GC_CHECK_MARKED_OBJECTS */
5138
0220c518 5139 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
7146af97
JB
5140 {
5141 case Lisp_String:
5142 {
5143 register struct Lisp_String *ptr = XSTRING (obj);
4f5c1376 5144 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5145 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5146 MARK_STRING (ptr);
361b097f 5147#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5148 /* Check that the string size recorded in the string is the
5149 same as the one recorded in the sdata structure. */
5150 CHECK_STRING_BYTES (ptr);
361b097f 5151#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5152 }
5153 break;
5154
76437631 5155 case Lisp_Vectorlike:
4f5c1376
GM
5156#ifdef GC_CHECK_MARKED_OBJECTS
5157 m = mem_find (po);
5158 if (m == MEM_NIL && !GC_SUBRP (obj)
5159 && po != &buffer_defaults
5160 && po != &buffer_local_symbols)
5161 abort ();
5162#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5163
30e3190a 5164 if (GC_BUFFERP (obj))
6b552283 5165 {
3ef06d12 5166 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4f5c1376
GM
5167 {
5168#ifdef GC_CHECK_MARKED_OBJECTS
5169 if (po != &buffer_defaults && po != &buffer_local_symbols)
5170 {
5171 struct buffer *b;
5172 for (b = all_buffers; b && b != po; b = b->next)
5173 ;
5174 if (b == NULL)
5175 abort ();
5176 }
5177#endif /* GC_CHECK_MARKED_OBJECTS */
5178 mark_buffer (obj);
5179 }
6b552283 5180 }
30e3190a 5181 else if (GC_SUBRP (obj))
169ee243
RS
5182 break;
5183 else if (GC_COMPILEDP (obj))
2e471eb5
GM
5184 /* We could treat this just like a vector, but it is better to
5185 save the COMPILED_CONSTANTS element for last and avoid
5186 recursion there. */
169ee243
RS
5187 {
5188 register struct Lisp_Vector *ptr = XVECTOR (obj);
5189 register EMACS_INT size = ptr->size;
169ee243
RS
5190 register int i;
5191
3ef06d12 5192 if (VECTOR_MARKED_P (ptr))
169ee243 5193 break; /* Already marked */
177c0ea7 5194
4f5c1376 5195 CHECK_LIVE (live_vector_p);
3ef06d12 5196 VECTOR_MARK (ptr); /* Else mark it */
76437631 5197 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
5198 for (i = 0; i < size; i++) /* and then mark its elements */
5199 {
5200 if (i != COMPILED_CONSTANTS)
49723c04 5201 mark_object (ptr->contents[i]);
169ee243 5202 }
49723c04 5203 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5204 goto loop;
5205 }
169ee243
RS
5206 else if (GC_FRAMEP (obj))
5207 {
c70bbf06 5208 register struct frame *ptr = XFRAME (obj);
169ee243 5209
3ef06d12
SM
5210 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5211 VECTOR_MARK (ptr); /* Else mark it */
169ee243 5212
4f5c1376 5213 CHECK_LIVE (live_vector_p);
49723c04
SM
5214 mark_object (ptr->name);
5215 mark_object (ptr->icon_name);
5216 mark_object (ptr->title);
5217 mark_object (ptr->focus_frame);
5218 mark_object (ptr->selected_window);
5219 mark_object (ptr->minibuffer_window);
5220 mark_object (ptr->param_alist);
5221 mark_object (ptr->scroll_bars);
5222 mark_object (ptr->condemned_scroll_bars);
5223 mark_object (ptr->menu_bar_items);
5224 mark_object (ptr->face_alist);
5225 mark_object (ptr->menu_bar_vector);
5226 mark_object (ptr->buffer_predicate);
5227 mark_object (ptr->buffer_list);
5228 mark_object (ptr->menu_bar_window);
5229 mark_object (ptr->tool_bar_window);
41c28a37
GM
5230 mark_face_cache (ptr->face_cache);
5231#ifdef HAVE_WINDOW_SYSTEM
5232 mark_image_cache (ptr);
49723c04
SM
5233 mark_object (ptr->tool_bar_items);
5234 mark_object (ptr->desired_tool_bar_string);
5235 mark_object (ptr->current_tool_bar_string);
41c28a37 5236#endif /* HAVE_WINDOW_SYSTEM */
169ee243 5237 }
7b07587b 5238 else if (GC_BOOL_VECTOR_P (obj))
707788bd
RS
5239 {
5240 register struct Lisp_Vector *ptr = XVECTOR (obj);
5241
3ef06d12 5242 if (VECTOR_MARKED_P (ptr))
707788bd 5243 break; /* Already marked */
4f5c1376 5244 CHECK_LIVE (live_vector_p);
3ef06d12 5245 VECTOR_MARK (ptr); /* Else mark it */
707788bd 5246 }
41c28a37
GM
5247 else if (GC_WINDOWP (obj))
5248 {
5249 register struct Lisp_Vector *ptr = XVECTOR (obj);
5250 struct window *w = XWINDOW (obj);
41c28a37
GM
5251 register int i;
5252
5253 /* Stop if already marked. */
3ef06d12 5254 if (VECTOR_MARKED_P (ptr))
41c28a37
GM
5255 break;
5256
5257 /* Mark it. */
4f5c1376 5258 CHECK_LIVE (live_vector_p);
3ef06d12 5259 VECTOR_MARK (ptr);
41c28a37
GM
5260
5261 /* There is no Lisp data above The member CURRENT_MATRIX in
5262 struct WINDOW. Stop marking when that slot is reached. */
5263 for (i = 0;
c70bbf06 5264 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
41c28a37 5265 i++)
49723c04 5266 mark_object (ptr->contents[i]);
41c28a37
GM
5267
5268 /* Mark glyphs for leaf windows. Marking window matrices is
5269 sufficient because frame matrices use the same glyph
5270 memory. */
5271 if (NILP (w->hchild)
5272 && NILP (w->vchild)
5273 && w->current_matrix)
5274 {
5275 mark_glyph_matrix (w->current_matrix);
5276 mark_glyph_matrix (w->desired_matrix);
5277 }
5278 }
5279 else if (GC_HASH_TABLE_P (obj))
5280 {
5281 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
177c0ea7 5282
41c28a37 5283 /* Stop if already marked. */
3ef06d12 5284 if (VECTOR_MARKED_P (h))
41c28a37 5285 break;
177c0ea7 5286
41c28a37 5287 /* Mark it. */
4f5c1376 5288 CHECK_LIVE (live_vector_p);
3ef06d12 5289 VECTOR_MARK (h);
41c28a37
GM
5290
5291 /* Mark contents. */
94a877ef 5292 /* Do not mark next_free or next_weak.
177c0ea7 5293 Being in the next_weak chain
94a877ef
RS
5294 should not keep the hash table alive.
5295 No need to mark `count' since it is an integer. */
49723c04
SM
5296 mark_object (h->test);
5297 mark_object (h->weak);
5298 mark_object (h->rehash_size);
5299 mark_object (h->rehash_threshold);
5300 mark_object (h->hash);
5301 mark_object (h->next);
5302 mark_object (h->index);
5303 mark_object (h->user_hash_function);
5304 mark_object (h->user_cmp_function);
41c28a37
GM
5305
5306 /* If hash table is not weak, mark all keys and values.
5307 For weak tables, mark only the vector. */
5308 if (GC_NILP (h->weak))
49723c04 5309 mark_object (h->key_and_value);
41c28a37 5310 else
3ef06d12 5311 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5312 }
04ff9756 5313 else
169ee243
RS
5314 {
5315 register struct Lisp_Vector *ptr = XVECTOR (obj);
5316 register EMACS_INT size = ptr->size;
169ee243
RS
5317 register int i;
5318
3ef06d12 5319 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4f5c1376 5320 CHECK_LIVE (live_vector_p);
3ef06d12 5321 VECTOR_MARK (ptr); /* Else mark it */
169ee243
RS
5322 if (size & PSEUDOVECTOR_FLAG)
5323 size &= PSEUDOVECTOR_SIZE_MASK;
41c28a37 5324
169ee243 5325 for (i = 0; i < size; i++) /* and then mark its elements */
49723c04 5326 mark_object (ptr->contents[i]);
169ee243
RS
5327 }
5328 break;
7146af97 5329
7146af97
JB
5330 case Lisp_Symbol:
5331 {
c70bbf06 5332 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5333 struct Lisp_Symbol *ptrx;
5334
2336fe58 5335 if (ptr->gcmarkbit) break;
4f5c1376 5336 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5337 ptr->gcmarkbit = 1;
49723c04
SM
5338 mark_object (ptr->value);
5339 mark_object (ptr->function);
5340 mark_object (ptr->plist);
34400008 5341
8fe5665d
KR
5342 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5343 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5344 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5345
1c6bb482
RS
5346 /* Note that we do not mark the obarray of the symbol.
5347 It is safe not to do so because nothing accesses that
5348 slot except to check whether it is nil. */
7146af97
JB
5349 ptr = ptr->next;
5350 if (ptr)
5351 {
b0846f52 5352 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 5353 XSETSYMBOL (obj, ptrx);
49723c04 5354 goto loop;
7146af97
JB
5355 }
5356 }
5357 break;
5358
a0a38eb7 5359 case Lisp_Misc:
4f5c1376 5360 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
2336fe58
SM
5361 if (XMARKER (obj)->gcmarkbit)
5362 break;
5363 XMARKER (obj)->gcmarkbit = 1;
b766f870 5364
a5da44fe 5365 switch (XMISCTYPE (obj))
a0a38eb7 5366 {
465edf35
KH
5367 case Lisp_Misc_Buffer_Local_Value:
5368 case Lisp_Misc_Some_Buffer_Local_Value:
5369 {
5370 register struct Lisp_Buffer_Local_Value *ptr
5371 = XBUFFER_LOCAL_VALUE (obj);
465edf35
KH
5372 /* If the cdr is nil, avoid recursion for the car. */
5373 if (EQ (ptr->cdr, Qnil))
5374 {
49723c04 5375 obj = ptr->realvalue;
465edf35
KH
5376 goto loop;
5377 }
49723c04
SM
5378 mark_object (ptr->realvalue);
5379 mark_object (ptr->buffer);
5380 mark_object (ptr->frame);
5381 obj = ptr->cdr;
465edf35
KH
5382 goto loop;
5383 }
5384
2336fe58
SM
5385 case Lisp_Misc_Marker:
5386 /* DO NOT mark thru the marker's chain.
5387 The buffer's markers chain does not preserve markers from gc;
5388 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5389 break;
5390
c8616056
KH
5391 case Lisp_Misc_Intfwd:
5392 case Lisp_Misc_Boolfwd:
5393 case Lisp_Misc_Objfwd:
5394 case Lisp_Misc_Buffer_Objfwd:
b875d3f7 5395 case Lisp_Misc_Kboard_Objfwd:
c8616056
KH
5396 /* Don't bother with Lisp_Buffer_Objfwd,
5397 since all markable slots in current buffer marked anyway. */
5398 /* Don't need to do Lisp_Objfwd, since the places they point
5399 are protected with staticpro. */
b766f870
KS
5400 break;
5401
f29181dc 5402 case Lisp_Misc_Save_Value:
9ea306d1 5403#if GC_MARK_STACK
b766f870
KS
5404 {
5405 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5406 /* If DOGC is set, POINTER is the address of a memory
5407 area containing INTEGER potential Lisp_Objects. */
5408 if (ptr->dogc)
5409 {
5410 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5411 int nelt;
5412 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5413 mark_maybe_object (*p);
5414 }
5415 }
9ea306d1 5416#endif
c8616056
KH
5417 break;
5418
e202fa34
KH
5419 case Lisp_Misc_Overlay:
5420 {
5421 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5422 mark_object (ptr->start);
5423 mark_object (ptr->end);
f54253ec
SM
5424 mark_object (ptr->plist);
5425 if (ptr->next)
5426 {
5427 XSETMISC (obj, ptr->next);
5428 goto loop;
5429 }
e202fa34
KH
5430 }
5431 break;
5432
a0a38eb7
KH
5433 default:
5434 abort ();
5435 }
7146af97
JB
5436 break;
5437
5438 case Lisp_Cons:
7146af97
JB
5439 {
5440 register struct Lisp_Cons *ptr = XCONS (obj);
08b7c2cb 5441 if (CONS_MARKED_P (ptr)) break;
4f5c1376 5442 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5443 CONS_MARK (ptr);
c54ca951
RS
5444 /* If the cdr is nil, avoid recursion for the car. */
5445 if (EQ (ptr->cdr, Qnil))
5446 {
49723c04 5447 obj = ptr->car;
1342fc6f 5448 cdr_count = 0;
c54ca951
RS
5449 goto loop;
5450 }
49723c04
SM
5451 mark_object (ptr->car);
5452 obj = ptr->cdr;
1342fc6f
RS
5453 cdr_count++;
5454 if (cdr_count == mark_object_loop_halt)
5455 abort ();
7146af97
JB
5456 goto loop;
5457 }
5458
7146af97 5459 case Lisp_Float:
4f5c1376 5460 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5461 FLOAT_MARK (XFLOAT (obj));
7146af97 5462 break;
7146af97 5463
7146af97 5464 case Lisp_Int:
7146af97
JB
5465 break;
5466
5467 default:
5468 abort ();
5469 }
4f5c1376
GM
5470
5471#undef CHECK_LIVE
5472#undef CHECK_ALLOCATED
5473#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5474}
5475
5476/* Mark the pointers in a buffer structure. */
5477
5478static void
5479mark_buffer (buf)
5480 Lisp_Object buf;
5481{
7146af97 5482 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5483 register Lisp_Object *ptr, tmp;
30e3190a 5484 Lisp_Object base_buffer;
7146af97 5485
3ef06d12 5486 VECTOR_MARK (buffer);
7146af97 5487
30e3190a 5488 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5489
c37adf23
SM
5490 /* For now, we just don't mark the undo_list. It's done later in
5491 a special way just before the sweep phase, and after stripping
5492 some of its elements that are not needed any more. */
4c315bda 5493
f54253ec
SM
5494 if (buffer->overlays_before)
5495 {
5496 XSETMISC (tmp, buffer->overlays_before);
5497 mark_object (tmp);
5498 }
5499 if (buffer->overlays_after)
5500 {
5501 XSETMISC (tmp, buffer->overlays_after);
5502 mark_object (tmp);
5503 }
5504
3ef06d12 5505 for (ptr = &buffer->name;
7146af97
JB
5506 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5507 ptr++)
49723c04 5508 mark_object (*ptr);
30e3190a
RS
5509
5510 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5511 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5512 {
177c0ea7 5513 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5514 mark_buffer (base_buffer);
5515 }
7146af97 5516}
084b1a0c
KH
5517
5518
41c28a37
GM
5519/* Value is non-zero if OBJ will survive the current GC because it's
5520 either marked or does not need to be marked to survive. */
5521
5522int
5523survives_gc_p (obj)
5524 Lisp_Object obj;
5525{
5526 int survives_p;
177c0ea7 5527
41c28a37
GM
5528 switch (XGCTYPE (obj))
5529 {
5530 case Lisp_Int:
5531 survives_p = 1;
5532 break;
5533
5534 case Lisp_Symbol:
2336fe58 5535 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5536 break;
5537
5538 case Lisp_Misc:
ef89c2ce 5539 survives_p = XMARKER (obj)->gcmarkbit;
41c28a37
GM
5540 break;
5541
5542 case Lisp_String:
08b7c2cb 5543 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5544 break;
5545
5546 case Lisp_Vectorlike:
08b7c2cb 5547 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5548 break;
5549
5550 case Lisp_Cons:
08b7c2cb 5551 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5552 break;
5553
41c28a37 5554 case Lisp_Float:
ab6780cd 5555 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5556 break;
41c28a37
GM
5557
5558 default:
5559 abort ();
5560 }
5561
34400008 5562 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5563}
5564
5565
7146af97 5566\f
1a4f1e2c 5567/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5568
5569static void
5570gc_sweep ()
5571{
c37adf23
SM
5572 /* Remove or mark entries in weak hash tables.
5573 This must be done before any object is unmarked. */
5574 sweep_weak_hash_tables ();
5575
5576 sweep_strings ();
5577#ifdef GC_CHECK_STRING_BYTES
5578 if (!noninteractive)
5579 check_string_bytes (1);
5580#endif
5581
7146af97
JB
5582 /* Put all unmarked conses on free list */
5583 {
5584 register struct cons_block *cblk;
6ca94ac9 5585 struct cons_block **cprev = &cons_block;
7146af97
JB
5586 register int lim = cons_block_index;
5587 register int num_free = 0, num_used = 0;
5588
5589 cons_free_list = 0;
177c0ea7 5590
6ca94ac9 5591 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97
JB
5592 {
5593 register int i;
6ca94ac9 5594 int this_free = 0;
7146af97 5595 for (i = 0; i < lim; i++)
08b7c2cb 5596 if (!CONS_MARKED_P (&cblk->conses[i]))
7146af97 5597 {
6ca94ac9 5598 this_free++;
1cd5fe6a 5599 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
7146af97 5600 cons_free_list = &cblk->conses[i];
34400008
GM
5601#if GC_MARK_STACK
5602 cons_free_list->car = Vdead;
5603#endif
7146af97
JB
5604 }
5605 else
5606 {
5607 num_used++;
08b7c2cb 5608 CONS_UNMARK (&cblk->conses[i]);
7146af97
JB
5609 }
5610 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5611 /* If this block contains only free conses and we have already
5612 seen more than two blocks worth of free conses then deallocate
5613 this block. */
6feef451 5614 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5615 {
6ca94ac9
KH
5616 *cprev = cblk->next;
5617 /* Unhook from the free list. */
5618 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
08b7c2cb 5619 lisp_align_free (cblk);
c8099634 5620 n_cons_blocks--;
6ca94ac9
KH
5621 }
5622 else
6feef451
AS
5623 {
5624 num_free += this_free;
5625 cprev = &cblk->next;
5626 }
7146af97
JB
5627 }
5628 total_conses = num_used;
5629 total_free_conses = num_free;
5630 }
5631
7146af97
JB
5632 /* Put all unmarked floats on free list */
5633 {
5634 register struct float_block *fblk;
6ca94ac9 5635 struct float_block **fprev = &float_block;
7146af97
JB
5636 register int lim = float_block_index;
5637 register int num_free = 0, num_used = 0;
5638
5639 float_free_list = 0;
177c0ea7 5640
6ca94ac9 5641 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5642 {
5643 register int i;
6ca94ac9 5644 int this_free = 0;
7146af97 5645 for (i = 0; i < lim; i++)
ab6780cd 5646 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5647 {
6ca94ac9 5648 this_free++;
1cd5fe6a 5649 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
7146af97
JB
5650 float_free_list = &fblk->floats[i];
5651 }
5652 else
5653 {
5654 num_used++;
ab6780cd 5655 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5656 }
5657 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5658 /* If this block contains only free floats and we have already
5659 seen more than two blocks worth of free floats then deallocate
5660 this block. */
6feef451 5661 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5662 {
6ca94ac9
KH
5663 *fprev = fblk->next;
5664 /* Unhook from the free list. */
5665 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
ab6780cd 5666 lisp_align_free (fblk);
c8099634 5667 n_float_blocks--;
6ca94ac9
KH
5668 }
5669 else
6feef451
AS
5670 {
5671 num_free += this_free;
5672 fprev = &fblk->next;
5673 }
7146af97
JB
5674 }
5675 total_floats = num_used;
5676 total_free_floats = num_free;
5677 }
7146af97 5678
d5e35230
JA
5679 /* Put all unmarked intervals on free list */
5680 {
5681 register struct interval_block *iblk;
6ca94ac9 5682 struct interval_block **iprev = &interval_block;
d5e35230
JA
5683 register int lim = interval_block_index;
5684 register int num_free = 0, num_used = 0;
5685
5686 interval_free_list = 0;
5687
6ca94ac9 5688 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5689 {
5690 register int i;
6ca94ac9 5691 int this_free = 0;
d5e35230
JA
5692
5693 for (i = 0; i < lim; i++)
5694 {
2336fe58 5695 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5696 {
439d5cb4 5697 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5698 interval_free_list = &iblk->intervals[i];
6ca94ac9 5699 this_free++;
d5e35230
JA
5700 }
5701 else
5702 {
5703 num_used++;
2336fe58 5704 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5705 }
5706 }
5707 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5708 /* If this block contains only free intervals and we have already
5709 seen more than two blocks worth of free intervals then
5710 deallocate this block. */
6feef451 5711 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5712 {
6ca94ac9
KH
5713 *iprev = iblk->next;
5714 /* Unhook from the free list. */
439d5cb4 5715 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
5716 lisp_free (iblk);
5717 n_interval_blocks--;
6ca94ac9
KH
5718 }
5719 else
6feef451
AS
5720 {
5721 num_free += this_free;
5722 iprev = &iblk->next;
5723 }
d5e35230
JA
5724 }
5725 total_intervals = num_used;
5726 total_free_intervals = num_free;
5727 }
d5e35230 5728
7146af97
JB
5729 /* Put all unmarked symbols on free list */
5730 {
5731 register struct symbol_block *sblk;
6ca94ac9 5732 struct symbol_block **sprev = &symbol_block;
7146af97
JB
5733 register int lim = symbol_block_index;
5734 register int num_free = 0, num_used = 0;
5735
d285b373 5736 symbol_free_list = NULL;
177c0ea7 5737
6ca94ac9 5738 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5739 {
6ca94ac9 5740 int this_free = 0;
d285b373
GM
5741 struct Lisp_Symbol *sym = sblk->symbols;
5742 struct Lisp_Symbol *end = sym + lim;
5743
5744 for (; sym < end; ++sym)
5745 {
20035321
SM
5746 /* Check if the symbol was created during loadup. In such a case
5747 it might be pointed to by pure bytecode which we don't trace,
5748 so we conservatively assume that it is live. */
8fe5665d 5749 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 5750
2336fe58 5751 if (!sym->gcmarkbit && !pure_p)
d285b373
GM
5752 {
5753 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5754 symbol_free_list = sym;
34400008 5755#if GC_MARK_STACK
d285b373 5756 symbol_free_list->function = Vdead;
34400008 5757#endif
d285b373
GM
5758 ++this_free;
5759 }
5760 else
5761 {
5762 ++num_used;
5763 if (!pure_p)
8fe5665d 5764 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 5765 sym->gcmarkbit = 0;
d285b373
GM
5766 }
5767 }
177c0ea7 5768
7146af97 5769 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
5770 /* If this block contains only free symbols and we have already
5771 seen more than two blocks worth of free symbols then deallocate
5772 this block. */
6feef451 5773 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 5774 {
6ca94ac9
KH
5775 *sprev = sblk->next;
5776 /* Unhook from the free list. */
5777 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
c8099634
RS
5778 lisp_free (sblk);
5779 n_symbol_blocks--;
6ca94ac9
KH
5780 }
5781 else
6feef451
AS
5782 {
5783 num_free += this_free;
5784 sprev = &sblk->next;
5785 }
7146af97
JB
5786 }
5787 total_symbols = num_used;
5788 total_free_symbols = num_free;
5789 }
5790
a9faeabe
RS
5791 /* Put all unmarked misc's on free list.
5792 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
5793 {
5794 register struct marker_block *mblk;
6ca94ac9 5795 struct marker_block **mprev = &marker_block;
7146af97
JB
5796 register int lim = marker_block_index;
5797 register int num_free = 0, num_used = 0;
5798
5799 marker_free_list = 0;
177c0ea7 5800
6ca94ac9 5801 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
5802 {
5803 register int i;
6ca94ac9 5804 int this_free = 0;
fa05e253 5805
7146af97 5806 for (i = 0; i < lim; i++)
465edf35 5807 {
2336fe58 5808 if (!mblk->markers[i].u_marker.gcmarkbit)
465edf35 5809 {
a5da44fe 5810 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
ef89c2ce 5811 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
5812 /* Set the type of the freed object to Lisp_Misc_Free.
5813 We could leave the type alone, since nobody checks it,
465edf35 5814 but this might catch bugs faster. */
a5da44fe 5815 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
5816 mblk->markers[i].u_free.chain = marker_free_list;
5817 marker_free_list = &mblk->markers[i];
6ca94ac9 5818 this_free++;
465edf35
KH
5819 }
5820 else
5821 {
5822 num_used++;
2336fe58 5823 mblk->markers[i].u_marker.gcmarkbit = 0;
465edf35
KH
5824 }
5825 }
7146af97 5826 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
5827 /* If this block contains only free markers and we have already
5828 seen more than two blocks worth of free markers then deallocate
5829 this block. */
6feef451 5830 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 5831 {
6ca94ac9
KH
5832 *mprev = mblk->next;
5833 /* Unhook from the free list. */
5834 marker_free_list = mblk->markers[0].u_free.chain;
c37adf23 5835 lisp_free (mblk);
c8099634 5836 n_marker_blocks--;
6ca94ac9
KH
5837 }
5838 else
6feef451
AS
5839 {
5840 num_free += this_free;
5841 mprev = &mblk->next;
5842 }
7146af97
JB
5843 }
5844
5845 total_markers = num_used;
5846 total_free_markers = num_free;
5847 }
5848
5849 /* Free all unmarked buffers */
5850 {
5851 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5852
5853 while (buffer)
3ef06d12 5854 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
5855 {
5856 if (prev)
5857 prev->next = buffer->next;
5858 else
5859 all_buffers = buffer->next;
5860 next = buffer->next;
34400008 5861 lisp_free (buffer);
7146af97
JB
5862 buffer = next;
5863 }
5864 else
5865 {
3ef06d12 5866 VECTOR_UNMARK (buffer);
30e3190a 5867 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
5868 prev = buffer, buffer = buffer->next;
5869 }
5870 }
5871
7146af97
JB
5872 /* Free all unmarked vectors */
5873 {
5874 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5875 total_vector_size = 0;
5876
5877 while (vector)
3ef06d12 5878 if (!VECTOR_MARKED_P (vector))
7146af97
JB
5879 {
5880 if (prev)
5881 prev->next = vector->next;
5882 else
5883 all_vectors = vector->next;
5884 next = vector->next;
c8099634
RS
5885 lisp_free (vector);
5886 n_vectors--;
7146af97 5887 vector = next;
41c28a37 5888
7146af97
JB
5889 }
5890 else
5891 {
3ef06d12 5892 VECTOR_UNMARK (vector);
fa05e253
RS
5893 if (vector->size & PSEUDOVECTOR_FLAG)
5894 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5895 else
5896 total_vector_size += vector->size;
7146af97
JB
5897 prev = vector, vector = vector->next;
5898 }
5899 }
177c0ea7 5900
676a7251
GM
5901#ifdef GC_CHECK_STRING_BYTES
5902 if (!noninteractive)
5903 check_string_bytes (1);
5904#endif
7146af97 5905}
7146af97 5906
7146af97 5907
7146af97 5908
7146af97 5909\f
20d24714
JB
5910/* Debugging aids. */
5911
31ce1c91 5912DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 5913 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 5914This may be helpful in debugging Emacs's memory usage.
7ee72033
MB
5915We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5916 ()
20d24714
JB
5917{
5918 Lisp_Object end;
5919
45d12a89 5920 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
20d24714
JB
5921
5922 return end;
5923}
5924
310ea200 5925DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 5926 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
5927Each of these counters increments for a certain kind of object.
5928The counters wrap around from the largest positive integer to zero.
5929Garbage collection does not decrease them.
5930The elements of the value are as follows:
5931 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5932All are in units of 1 = one object consed
5933except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5934objects consed.
5935MISCS include overlays, markers, and some internal types.
5936Frames, windows, buffers, and subprocesses count as vectors
7ee72033
MB
5937 (but the contents of a buffer's text do not count here). */)
5938 ()
310ea200 5939{
2e471eb5 5940 Lisp_Object consed[8];
310ea200 5941
78e985eb
GM
5942 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5943 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5944 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5945 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5946 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5947 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5948 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5949 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 5950
2e471eb5 5951 return Flist (8, consed);
310ea200 5952}
e0b8c689
KR
5953
5954int suppress_checking;
5955void
5956die (msg, file, line)
5957 const char *msg;
5958 const char *file;
5959 int line;
5960{
5961 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5962 file, line, msg);
5963 abort ();
5964}
20d24714 5965\f
7146af97
JB
5966/* Initialization */
5967
dfcf069d 5968void
7146af97
JB
5969init_alloc_once ()
5970{
5971 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
5972 purebeg = PUREBEG;
5973 pure_size = PURESIZE;
1f0b3fd2 5974 pure_bytes_used = 0;
9e713715
GM
5975 pure_bytes_used_before_overflow = 0;
5976
ab6780cd
SM
5977 /* Initialize the list of free aligned blocks. */
5978 free_ablock = NULL;
5979
877935b1 5980#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
5981 mem_init ();
5982 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5983#endif
9e713715 5984
7146af97
JB
5985 all_vectors = 0;
5986 ignore_warnings = 1;
d1658221
RS
5987#ifdef DOUG_LEA_MALLOC
5988 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5989 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 5990 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 5991#endif
7146af97
JB
5992 init_strings ();
5993 init_cons ();
5994 init_symbol ();
5995 init_marker ();
7146af97 5996 init_float ();
34400008 5997 init_intervals ();
d5e35230 5998
276cbe5a
RS
5999#ifdef REL_ALLOC
6000 malloc_hysteresis = 32;
6001#else
6002 malloc_hysteresis = 0;
6003#endif
6004
6005 spare_memory = (char *) malloc (SPARE_MEMORY);
6006
7146af97
JB
6007 ignore_warnings = 0;
6008 gcprolist = 0;
630686c8 6009 byte_stack_list = 0;
7146af97
JB
6010 staticidx = 0;
6011 consing_since_gc = 0;
7d179cea 6012 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61
RS
6013 gc_relative_threshold = 0;
6014
7146af97
JB
6015#ifdef VIRT_ADDR_VARIES
6016 malloc_sbrk_unused = 1<<22; /* A large number */
6017 malloc_sbrk_used = 100000; /* as reasonable as any number */
6018#endif /* VIRT_ADDR_VARIES */
6019}
6020
dfcf069d 6021void
7146af97
JB
6022init_alloc ()
6023{
6024 gcprolist = 0;
630686c8 6025 byte_stack_list = 0;
182ff242
GM
6026#if GC_MARK_STACK
6027#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6028 setjmp_tested_p = longjmps_done = 0;
6029#endif
6030#endif
2c5bd608
DL
6031 Vgc_elapsed = make_float (0.0);
6032 gcs_done = 0;
7146af97
JB
6033}
6034
6035void
6036syms_of_alloc ()
6037{
7ee72033 6038 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
a6266d23 6039 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
6040Garbage collection can happen automatically once this many bytes have been
6041allocated since the last garbage collection. All data types count.
7146af97 6042
228299fa 6043Garbage collection happens automatically only when `eval' is called.
7146af97 6044
228299fa 6045By binding this temporarily to a large number, you can effectively
96f077ad
SM
6046prevent garbage collection during a part of the program.
6047See also `gc-cons-percentage'. */);
6048
6049 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6050 doc: /* *Portion of the heap used for allocation.
6051Garbage collection can happen automatically once this portion of the heap
6052has been allocated since the last garbage collection.
6053If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6054 Vgc_cons_percentage = make_float (0.1);
0819585c 6055
7ee72033 6056 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
a6266d23 6057 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 6058
7ee72033 6059 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
a6266d23 6060 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6061
7ee72033 6062 DEFVAR_INT ("floats-consed", &floats_consed,
a6266d23 6063 doc: /* Number of floats that have been consed so far. */);
0819585c 6064
7ee72033 6065 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
a6266d23 6066 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6067
7ee72033 6068 DEFVAR_INT ("symbols-consed", &symbols_consed,
a6266d23 6069 doc: /* Number of symbols that have been consed so far. */);
0819585c 6070
7ee72033 6071 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
a6266d23 6072 doc: /* Number of string characters that have been consed so far. */);
0819585c 6073
7ee72033 6074 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
a6266d23 6075 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 6076
7ee72033 6077 DEFVAR_INT ("intervals-consed", &intervals_consed,
a6266d23 6078 doc: /* Number of intervals that have been consed so far. */);
7146af97 6079
7ee72033 6080 DEFVAR_INT ("strings-consed", &strings_consed,
a6266d23 6081 doc: /* Number of strings that have been consed so far. */);
228299fa 6082
7ee72033 6083 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
a6266d23 6084 doc: /* Non-nil means loading Lisp code in order to dump an executable.
228299fa
GM
6085This means that certain objects should be allocated in shared (pure) space. */);
6086
7ee72033 6087 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
a6266d23 6088 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6089 garbage_collection_messages = 0;
6090
7ee72033 6091 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
a6266d23 6092 doc: /* Hook run after garbage collection has finished. */);
9e713715
GM
6093 Vpost_gc_hook = Qnil;
6094 Qpost_gc_hook = intern ("post-gc-hook");
6095 staticpro (&Qpost_gc_hook);
6096
74a54b04
RS
6097 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6098 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6099 /* We build this in advance because if we wait until we need it, we might
6100 not be able to allocate the memory to hold it. */
74a54b04
RS
6101 Vmemory_signal_data
6102 = list2 (Qerror,
6103 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6104
6105 DEFVAR_LISP ("memory-full", &Vmemory_full,
6106 doc: /* Non-nil means we are handling a memory-full error. */);
6107 Vmemory_full = Qnil;
bcb61d60 6108
e8197642
RS
6109 staticpro (&Qgc_cons_threshold);
6110 Qgc_cons_threshold = intern ("gc-cons-threshold");
6111
a59de17b
RS
6112 staticpro (&Qchar_table_extra_slots);
6113 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6114
2c5bd608
DL
6115 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6116 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6117The time is in seconds as a floating point value. */);
2c5bd608 6118 DEFVAR_INT ("gcs-done", &gcs_done,
e7415487 6119 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6120
8a4c9dc4 6121 defsubr (&Smemory_full_p);
7146af97
JB
6122 defsubr (&Scons);
6123 defsubr (&Slist);
6124 defsubr (&Svector);
6125 defsubr (&Smake_byte_code);
6126 defsubr (&Smake_list);
6127 defsubr (&Smake_vector);
7b07587b 6128 defsubr (&Smake_char_table);
7146af97 6129 defsubr (&Smake_string);
7b07587b 6130 defsubr (&Smake_bool_vector);
7146af97
JB
6131 defsubr (&Smake_symbol);
6132 defsubr (&Smake_marker);
6133 defsubr (&Spurecopy);
6134 defsubr (&Sgarbage_collect);
20d24714 6135 defsubr (&Smemory_limit);
310ea200 6136 defsubr (&Smemory_use_counts);
34400008
GM
6137
6138#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6139 defsubr (&Sgc_status);
6140#endif
7146af97 6141}
ab5796a9
MB
6142
6143/* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6144 (do not change this comment) */