Properly handle C_WARNINGS_SWITCH, PROFILING_CFLAGS, PROFILING_LDFLAGS
[bpt/emacs.git] / src / ccl.c
CommitLineData
4ed46869 1/* CCL (Code Conversion Language) interpreter.
aaef169d 2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
114f9c96 3 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
7976eda0 4 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
114f9c96 5 2005, 2006, 2007, 2008, 2009, 2010
ce03bf76
KH
6 National Institute of Advanced Industrial Science and Technology (AIST)
7 Registration Number H14PRO021
8f924df7 8 Copyright (C) 2003
c10842ea
KH
9 National Institute of Advanced Industrial Science and Technology (AIST)
10 Registration Number H13PRO009
4ed46869 11
369314dc
KH
12This file is part of GNU Emacs.
13
9ec0b715 14GNU Emacs is free software: you can redistribute it and/or modify
369314dc 15it under the terms of the GNU General Public License as published by
9ec0b715
GM
16the Free Software Foundation, either version 3 of the License, or
17(at your option) any later version.
4ed46869 18
369314dc
KH
19GNU Emacs is distributed in the hope that it will be useful,
20but WITHOUT ANY WARRANTY; without even the implied warranty of
21MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22GNU General Public License for more details.
4ed46869 23
369314dc 24You should have received a copy of the GNU General Public License
9ec0b715 25along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
4ed46869 26
4ed46869 27#include <config.h>
dfcf069d 28
68c45bf0 29#include <stdio.h>
d7306fe6 30#include <setjmp.h>
68c45bf0 31
4ed46869 32#include "lisp.h"
c10842ea 33#include "character.h"
4ed46869
KH
34#include "charset.h"
35#include "ccl.h"
36#include "coding.h"
37
c10842ea
KH
38Lisp_Object Qccl, Qcclp;
39
20398ea4 40/* This contains all code conversion map available to CCL. */
8146262a 41Lisp_Object Vcode_conversion_map_vector;
e34b1164 42
4ed46869
KH
43/* Alist of fontname patterns vs corresponding CCL program. */
44Lisp_Object Vfont_ccl_encoder_alist;
45
737b5223 46/* This symbol is a property which associates with ccl program vector.
6ae21908 47 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
e34b1164
KH
48Lisp_Object Qccl_program;
49
8146262a
KH
50/* These symbols are properties which associate with code conversion
51 map and their ID respectively. */
52Lisp_Object Qcode_conversion_map;
53Lisp_Object Qcode_conversion_map_id;
e34b1164 54
6ae21908
KH
55/* Symbols of ccl program have this property, a value of the property
56 is an index for Vccl_protram_table. */
57Lisp_Object Qccl_program_idx;
58
5232fa7b 59/* Table of registered CCL programs. Each element is a vector of
2a69c66e
KH
60 NAME, CCL_PROG, RESOLVEDP, and UPDATEDP, where NAME (symbol) is the
61 name of the program, CCL_PROG (vector) is the compiled code of the
62 program, RESOLVEDP (t or nil) is the flag to tell if symbols in
63 CCL_PROG is already resolved to index numbers or not, UPDATEDP (t
64 or nil) is the flat to tell if the CCL program is updated after it
65 was once used. */
4ed46869
KH
66Lisp_Object Vccl_program_table;
67
d80dc57e
DL
68/* Vector of registered hash tables for translation. */
69Lisp_Object Vtranslation_hash_table_vector;
70
71/* Return a hash table of id number ID. */
72#define GET_HASH_TABLE(id) \
73 (XHASH_TABLE (XCDR(XVECTOR(Vtranslation_hash_table_vector)->contents[(id)])))
d80dc57e 74
d325055a
DL
75extern int charset_unicode;
76
4ed46869
KH
77/* CCL (Code Conversion Language) is a simple language which has
78 operations on one input buffer, one output buffer, and 7 registers.
79 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
80 `ccl-compile' compiles a CCL program and produces a CCL code which
81 is a vector of integers. The structure of this vector is as
82 follows: The 1st element: buffer-magnification, a factor for the
83 size of output buffer compared with the size of input buffer. The
84 2nd element: address of CCL code to be executed when encountered
85 with end of input stream. The 3rd and the remaining elements: CCL
86 codes. */
87
88/* Header of CCL compiled code */
89#define CCL_HEADER_BUF_MAG 0
90#define CCL_HEADER_EOF 1
91#define CCL_HEADER_MAIN 2
92
93/* CCL code is a sequence of 28-bit non-negative integers (i.e. the
94 MSB is always 0), each contains CCL command and/or arguments in the
95 following format:
96
97 |----------------- integer (28-bit) ------------------|
98 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
99 |--constant argument--|-register-|-register-|-command-|
100 ccccccccccccccccc RRR rrr XXXXX
101 or
102 |------- relative address -------|-register-|-command-|
103 cccccccccccccccccccc rrr XXXXX
104 or
105 |------------- constant or other args ----------------|
106 cccccccccccccccccccccccccccc
107
108 where, `cc...c' is a non-negative integer indicating constant value
109 (the left most `c' is always 0) or an absolute jump address, `RRR'
110 and `rrr' are CCL register number, `XXXXX' is one of the following
111 CCL commands. */
112
113/* CCL commands
114
115 Each comment fields shows one or more lines for command syntax and
116 the following lines for semantics of the command. In semantics, IC
117 stands for Instruction Counter. */
118
119#define CCL_SetRegister 0x00 /* Set register a register value:
120 1:00000000000000000RRRrrrXXXXX
121 ------------------------------
122 reg[rrr] = reg[RRR];
123 */
124
125#define CCL_SetShortConst 0x01 /* Set register a short constant value:
126 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
127 ------------------------------
128 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
129 */
130
131#define CCL_SetConst 0x02 /* Set register a constant value:
132 1:00000000000000000000rrrXXXXX
133 2:CONSTANT
134 ------------------------------
135 reg[rrr] = CONSTANT;
136 IC++;
137 */
138
139#define CCL_SetArray 0x03 /* Set register an element of array:
140 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
141 2:ELEMENT[0]
142 3:ELEMENT[1]
143 ...
144 ------------------------------
145 if (0 <= reg[RRR] < CC..C)
146 reg[rrr] = ELEMENT[reg[RRR]];
147 IC += CC..C;
148 */
149
150#define CCL_Jump 0x04 /* Jump:
151 1:A--D--D--R--E--S--S-000XXXXX
152 ------------------------------
153 IC += ADDRESS;
154 */
155
156/* Note: If CC..C is greater than 0, the second code is omitted. */
157
158#define CCL_JumpCond 0x05 /* Jump conditional:
159 1:A--D--D--R--E--S--S-rrrXXXXX
160 ------------------------------
161 if (!reg[rrr])
162 IC += ADDRESS;
163 */
164
165
166#define CCL_WriteRegisterJump 0x06 /* Write register and jump:
167 1:A--D--D--R--E--S--S-rrrXXXXX
168 ------------------------------
169 write (reg[rrr]);
170 IC += ADDRESS;
171 */
172
173#define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
174 1:A--D--D--R--E--S--S-rrrXXXXX
175 2:A--D--D--R--E--S--S-rrrYYYYY
176 -----------------------------
177 write (reg[rrr]);
178 IC++;
179 read (reg[rrr]);
180 IC += ADDRESS;
181 */
182/* Note: If read is suspended, the resumed execution starts from the
183 second code (YYYYY == CCL_ReadJump). */
184
185#define CCL_WriteConstJump 0x08 /* Write constant and jump:
186 1:A--D--D--R--E--S--S-000XXXXX
187 2:CONST
188 ------------------------------
189 write (CONST);
190 IC += ADDRESS;
191 */
192
193#define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
194 1:A--D--D--R--E--S--S-rrrXXXXX
195 2:CONST
196 3:A--D--D--R--E--S--S-rrrYYYYY
197 -----------------------------
198 write (CONST);
199 IC += 2;
200 read (reg[rrr]);
201 IC += ADDRESS;
202 */
203/* Note: If read is suspended, the resumed execution starts from the
204 second code (YYYYY == CCL_ReadJump). */
205
206#define CCL_WriteStringJump 0x0A /* Write string and jump:
207 1:A--D--D--R--E--S--S-000XXXXX
208 2:LENGTH
c6589bbd 209 3:000MSTRIN[0]STRIN[1]STRIN[2]
4ed46869
KH
210 ...
211 ------------------------------
c6589bbd
KH
212 if (M)
213 write_multibyte_string (STRING, LENGTH);
214 else
215 write_string (STRING, LENGTH);
4ed46869
KH
216 IC += ADDRESS;
217 */
218
219#define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
220 1:A--D--D--R--E--S--S-rrrXXXXX
221 2:LENGTH
222 3:ELEMENET[0]
223 4:ELEMENET[1]
224 ...
225 N:A--D--D--R--E--S--S-rrrYYYYY
226 ------------------------------
227 if (0 <= reg[rrr] < LENGTH)
228 write (ELEMENT[reg[rrr]]);
229 IC += LENGTH + 2; (... pointing at N+1)
230 read (reg[rrr]);
231 IC += ADDRESS;
232 */
233/* Note: If read is suspended, the resumed execution starts from the
887bfbd7 234 Nth code (YYYYY == CCL_ReadJump). */
4ed46869
KH
235
236#define CCL_ReadJump 0x0C /* Read and jump:
237 1:A--D--D--R--E--S--S-rrrYYYYY
238 -----------------------------
239 read (reg[rrr]);
240 IC += ADDRESS;
241 */
242
243#define CCL_Branch 0x0D /* Jump by branch table:
244 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
245 2:A--D--D--R--E-S-S[0]000XXXXX
246 3:A--D--D--R--E-S-S[1]000XXXXX
247 ...
248 ------------------------------
249 if (0 <= reg[rrr] < CC..C)
250 IC += ADDRESS[reg[rrr]];
251 else
252 IC += ADDRESS[CC..C];
253 */
254
255#define CCL_ReadRegister 0x0E /* Read bytes into registers:
256 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
257 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
258 ...
259 ------------------------------
260 while (CCC--)
261 read (reg[rrr]);
262 */
263
264#define CCL_WriteExprConst 0x0F /* write result of expression:
265 1:00000OPERATION000RRR000XXXXX
266 2:CONSTANT
267 ------------------------------
268 write (reg[RRR] OPERATION CONSTANT);
269 IC++;
270 */
271
272/* Note: If the Nth read is suspended, the resumed execution starts
273 from the Nth code. */
274
275#define CCL_ReadBranch 0x10 /* Read one byte into a register,
276 and jump by branch table:
277 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
278 2:A--D--D--R--E-S-S[0]000XXXXX
279 3:A--D--D--R--E-S-S[1]000XXXXX
280 ...
281 ------------------------------
282 read (read[rrr]);
283 if (0 <= reg[rrr] < CC..C)
284 IC += ADDRESS[reg[rrr]];
285 else
286 IC += ADDRESS[CC..C];
287 */
288
289#define CCL_WriteRegister 0x11 /* Write registers:
290 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
291 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
292 ...
293 ------------------------------
294 while (CCC--)
295 write (reg[rrr]);
296 ...
297 */
298
299/* Note: If the Nth write is suspended, the resumed execution
300 starts from the Nth code. */
301
302#define CCL_WriteExprRegister 0x12 /* Write result of expression
303 1:00000OPERATIONRrrRRR000XXXXX
304 ------------------------------
305 write (reg[RRR] OPERATION reg[Rrr]);
306 */
307
e34b1164 308#define CCL_Call 0x13 /* Call the CCL program whose ID is
5232fa7b
KH
309 CC..C or cc..c.
310 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
311 [2:00000000cccccccccccccccccccc]
4ed46869 312 ------------------------------
5232fa7b
KH
313 if (FFF)
314 call (cc..c)
315 IC++;
316 else
317 call (CC..C)
4ed46869
KH
318 */
319
320#define CCL_WriteConstString 0x14 /* Write a constant or a string:
321 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
c6589bbd 322 [2:000MSTRIN[0]STRIN[1]STRIN[2]]
4ed46869
KH
323 [...]
324 -----------------------------
325 if (!rrr)
326 write (CC..C)
327 else
c6589bbd
KH
328 if (M)
329 write_multibyte_string (STRING, CC..C);
330 else
331 write_string (STRING, CC..C);
4ed46869
KH
332 IC += (CC..C + 2) / 3;
333 */
334
335#define CCL_WriteArray 0x15 /* Write an element of array:
336 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
337 2:ELEMENT[0]
338 3:ELEMENT[1]
339 ...
340 ------------------------------
341 if (0 <= reg[rrr] < CC..C)
342 write (ELEMENT[reg[rrr]]);
343 IC += CC..C;
344 */
345
346#define CCL_End 0x16 /* Terminate:
347 1:00000000000000000000000XXXXX
348 ------------------------------
349 terminate ();
350 */
351
352/* The following two codes execute an assignment arithmetic/logical
353 operation. The form of the operation is like REG OP= OPERAND. */
354
355#define CCL_ExprSelfConst 0x17 /* REG OP= constant:
356 1:00000OPERATION000000rrrXXXXX
357 2:CONSTANT
358 ------------------------------
359 reg[rrr] OPERATION= CONSTANT;
360 */
361
362#define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
363 1:00000OPERATION000RRRrrrXXXXX
364 ------------------------------
365 reg[rrr] OPERATION= reg[RRR];
366 */
367
368/* The following codes execute an arithmetic/logical operation. The
369 form of the operation is like REG_X = REG_Y OP OPERAND2. */
370
371#define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
372 1:00000OPERATION000RRRrrrXXXXX
373 2:CONSTANT
374 ------------------------------
375 reg[rrr] = reg[RRR] OPERATION CONSTANT;
376 IC++;
377 */
378
379#define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
380 1:00000OPERATIONRrrRRRrrrXXXXX
381 ------------------------------
382 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
383 */
384
385#define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
386 an operation on constant:
387 1:A--D--D--R--E--S--S-rrrXXXXX
388 2:OPERATION
389 3:CONSTANT
390 -----------------------------
391 reg[7] = reg[rrr] OPERATION CONSTANT;
392 if (!(reg[7]))
393 IC += ADDRESS;
394 else
395 IC += 2
396 */
397
398#define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
399 an operation on register:
400 1:A--D--D--R--E--S--S-rrrXXXXX
401 2:OPERATION
402 3:RRR
403 -----------------------------
404 reg[7] = reg[rrr] OPERATION reg[RRR];
405 if (!reg[7])
406 IC += ADDRESS;
407 else
408 IC += 2;
409 */
410
411#define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
412 to an operation on constant:
413 1:A--D--D--R--E--S--S-rrrXXXXX
414 2:OPERATION
415 3:CONSTANT
416 -----------------------------
417 read (reg[rrr]);
418 reg[7] = reg[rrr] OPERATION CONSTANT;
419 if (!reg[7])
420 IC += ADDRESS;
421 else
422 IC += 2;
423 */
424
425#define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
426 to an operation on register:
427 1:A--D--D--R--E--S--S-rrrXXXXX
428 2:OPERATION
429 3:RRR
430 -----------------------------
431 read (reg[rrr]);
432 reg[7] = reg[rrr] OPERATION reg[RRR];
433 if (!reg[7])
434 IC += ADDRESS;
435 else
436 IC += 2;
437 */
438
450ed226 439#define CCL_Extension 0x1F /* Extended CCL code
4ed46869
KH
440 1:ExtendedCOMMNDRrrRRRrrrXXXXX
441 2:ARGUEMENT
442 3:...
443 ------------------------------
444 extended_command (rrr,RRR,Rrr,ARGS)
445 */
446
177c0ea7 447/*
6ae21908 448 Here after, Extended CCL Instructions.
e34b1164 449 Bit length of extended command is 14.
6ae21908 450 Therefore, the instruction code range is 0..16384(0x3fff).
e34b1164
KH
451 */
452
6ae21908
KH
453/* Read a multibyte characeter.
454 A code point is stored into reg[rrr]. A charset ID is stored into
455 reg[RRR]. */
456
457#define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
458 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
459
460/* Write a multibyte character.
461 Write a character whose code point is reg[rrr] and the charset ID
462 is reg[RRR]. */
463
464#define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
465 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
466
8146262a 467/* Translate a character whose code point is reg[rrr] and the charset
f967223b 468 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
6ae21908 469
8146262a 470 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
471 (charset ID). */
472
8146262a 473#define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
6ae21908
KH
474 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
475
8146262a 476/* Translate a character whose code point is reg[rrr] and the charset
f967223b 477 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
6ae21908 478
8146262a 479 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
480 (charset ID). */
481
8146262a
KH
482#define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
483 1:ExtendedCOMMNDRrrRRRrrrXXXXX
484 2:ARGUMENT(Translation Table ID)
485 */
6ae21908 486
8146262a
KH
487/* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
488 reg[RRR]) MAP until some value is found.
6ae21908 489
8146262a 490 Each MAP is a Lisp vector whose element is number, nil, t, or
6ae21908 491 lambda.
8146262a 492 If the element is nil, ignore the map and proceed to the next map.
6ae21908
KH
493 If the element is t or lambda, finish without changing reg[rrr].
494 If the element is a number, set reg[rrr] to the number and finish.
495
8146262a
KH
496 Detail of the map structure is descibed in the comment for
497 CCL_MapMultiple below. */
6ae21908 498
8146262a 499#define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
6ae21908 500 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a
KH
501 2:NUMBER of MAPs
502 3:MAP-ID1
503 4:MAP-ID2
6ae21908 504 ...
177c0ea7 505 */
6ae21908 506
8146262a
KH
507/* Map the code in reg[rrr] by MAPs starting from the Nth (N =
508 reg[RRR]) map.
6ae21908 509
9b27b20d 510 MAPs are supplied in the succeeding CCL codes as follows:
6ae21908 511
8146262a
KH
512 When CCL program gives this nested structure of map to this command:
513 ((MAP-ID11
514 MAP-ID12
515 (MAP-ID121 MAP-ID122 MAP-ID123)
516 MAP-ID13)
517 (MAP-ID21
518 (MAP-ID211 (MAP-ID2111) MAP-ID212)
519 MAP-ID22)),
6ae21908 520 the compiled CCL codes has this sequence:
8146262a 521 CCL_MapMultiple (CCL code of this command)
9b27b20d
KH
522 16 (total number of MAPs and SEPARATORs)
523 -7 (1st SEPARATOR)
8146262a
KH
524 MAP-ID11
525 MAP-ID12
9b27b20d 526 -3 (2nd SEPARATOR)
8146262a
KH
527 MAP-ID121
528 MAP-ID122
529 MAP-ID123
530 MAP-ID13
9b27b20d 531 -7 (3rd SEPARATOR)
8146262a 532 MAP-ID21
9b27b20d 533 -4 (4th SEPARATOR)
8146262a 534 MAP-ID211
9b27b20d 535 -1 (5th SEPARATOR)
8146262a
KH
536 MAP_ID2111
537 MAP-ID212
538 MAP-ID22
6ae21908 539
9b27b20d 540 A value of each SEPARATOR follows this rule:
8146262a
KH
541 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
542 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
6ae21908 543
8146262a 544 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
6ae21908 545
8146262a
KH
546 When some map fails to map (i.e. it doesn't have a value for
547 reg[rrr]), the mapping is treated as identity.
6ae21908 548
8146262a 549 The mapping is iterated for all maps in each map set (set of maps
9b27b20d
KH
550 separated by SEPARATOR) except in the case that lambda is
551 encountered. More precisely, the mapping proceeds as below:
552
553 At first, VAL0 is set to reg[rrr], and it is translated by the
554 first map to VAL1. Then, VAL1 is translated by the next map to
555 VAL2. This mapping is iterated until the last map is used. The
54fa5bc1
KH
556 result of the mapping is the last value of VAL?. When the mapping
557 process reached to the end of the map set, it moves to the next
558 map set. If the next does not exit, the mapping process terminates,
559 and regard the last value as a result.
9b27b20d
KH
560
561 But, when VALm is mapped to VALn and VALn is not a number, the
562 mapping proceed as below:
563
564 If VALn is nil, the lastest map is ignored and the mapping of VALm
565 proceed to the next map.
566
567 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
568 proceed to the next map.
569
54fa5bc1
KH
570 If VALn is lambda, move to the next map set like reaching to the
571 end of the current map set.
572
573 If VALn is a symbol, call the CCL program refered by it.
574 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
575 Such special values are regarded as nil, t, and lambda respectively.
6ae21908 576
8146262a 577 Each map is a Lisp vector of the following format (a) or (b):
6ae21908
KH
578 (a)......[STARTPOINT VAL1 VAL2 ...]
579 (b)......[t VAL STARTPOINT ENDPOINT],
580 where
8146262a 581 STARTPOINT is an offset to be used for indexing a map,
9b27b20d 582 ENDPOINT is a maximum index number of a map,
177c0ea7 583 VAL and VALn is a number, nil, t, or lambda.
6ae21908 584
8146262a
KH
585 Valid index range of a map of type (a) is:
586 STARTPOINT <= index < STARTPOINT + map_size - 1
587 Valid index range of a map of type (b) is:
9b27b20d 588 STARTPOINT <= index < ENDPOINT */
6ae21908 589
8146262a 590#define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
6ae21908
KH
591 1:ExtendedCOMMNDXXXRRRrrrXXXXX
592 2:N-2
593 3:SEPARATOR_1 (< 0)
8146262a
KH
594 4:MAP-ID_1
595 5:MAP-ID_2
6ae21908
KH
596 ...
597 M:SEPARATOR_x (< 0)
8146262a 598 M+1:MAP-ID_y
6ae21908
KH
599 ...
600 N:SEPARATOR_z (< 0)
601 */
602
54fa5bc1 603#define MAX_MAP_SET_LEVEL 30
6ae21908
KH
604
605typedef struct
606{
607 int rest_length;
608 int orig_val;
609} tr_stack;
610
8146262a
KH
611static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
612static tr_stack *mapping_stack_pointer;
6ae21908 613
54fa5bc1
KH
614/* If this variable is non-zero, it indicates the stack_idx
615 of immediately called by CCL_MapMultiple. */
be57900b 616static int stack_idx_of_map_multiple;
54fa5bc1
KH
617
618#define PUSH_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
619do \
620 { \
54fa5bc1
KH
621 mapping_stack_pointer->rest_length = (restlen); \
622 mapping_stack_pointer->orig_val = (orig); \
623 mapping_stack_pointer++; \
a89f435d
PJ
624 } \
625while (0)
54fa5bc1
KH
626
627#define POP_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
628do \
629 { \
54fa5bc1
KH
630 mapping_stack_pointer--; \
631 (restlen) = mapping_stack_pointer->rest_length; \
632 (orig) = mapping_stack_pointer->orig_val; \
a89f435d
PJ
633 } \
634while (0)
6ae21908 635
54fa5bc1 636#define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
a89f435d 637do \
0ee1088b 638 { \
54fa5bc1
KH
639 struct ccl_program called_ccl; \
640 if (stack_idx >= 256 \
641 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
642 { \
643 if (stack_idx > 0) \
644 { \
645 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
646 ic = ccl_prog_stack_struct[0].ic; \
9eaa8e65 647 eof_ic = ccl_prog_stack_struct[0].eof_ic; \
54fa5bc1
KH
648 } \
649 CCL_INVALID_CMD; \
650 } \
651 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
652 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
9eaa8e65 653 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \
54fa5bc1
KH
654 stack_idx++; \
655 ccl_prog = called_ccl.prog; \
656 ic = CCL_HEADER_MAIN; \
9eaa8e65 657 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]); \
54fa5bc1 658 goto ccl_repeat; \
0ee1088b 659 } \
a89f435d 660while (0)
6ae21908 661
8146262a 662#define CCL_MapSingle 0x12 /* Map by single code conversion map
6ae21908 663 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a 664 2:MAP-ID
6ae21908 665 ------------------------------
8146262a
KH
666 Map reg[rrr] by MAP-ID.
667 If some valid mapping is found,
6ae21908
KH
668 set reg[rrr] to the result,
669 else
670 set reg[RRR] to -1.
671 */
4ed46869 672
d80dc57e
DL
673#define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
674 integer key. Afterwards R7 set
e0f24100 675 to 1 if lookup succeeded.
d80dc57e
DL
676 1:ExtendedCOMMNDRrrRRRXXXXXXXX
677 2:ARGUMENT(Hash table ID) */
678
679#define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
680 character key. Afterwards R7 set
e0f24100 681 to 1 if lookup succeeded.
d80dc57e
DL
682 1:ExtendedCOMMNDRrrRRRrrrXXXXX
683 2:ARGUMENT(Hash table ID) */
684
4ed46869
KH
685/* CCL arithmetic/logical operators. */
686#define CCL_PLUS 0x00 /* X = Y + Z */
687#define CCL_MINUS 0x01 /* X = Y - Z */
688#define CCL_MUL 0x02 /* X = Y * Z */
689#define CCL_DIV 0x03 /* X = Y / Z */
690#define CCL_MOD 0x04 /* X = Y % Z */
691#define CCL_AND 0x05 /* X = Y & Z */
692#define CCL_OR 0x06 /* X = Y | Z */
693#define CCL_XOR 0x07 /* X = Y ^ Z */
694#define CCL_LSH 0x08 /* X = Y << Z */
695#define CCL_RSH 0x09 /* X = Y >> Z */
696#define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
697#define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
698#define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
699#define CCL_LS 0x10 /* X = (X < Y) */
700#define CCL_GT 0x11 /* X = (X > Y) */
701#define CCL_EQ 0x12 /* X = (X == Y) */
702#define CCL_LE 0x13 /* X = (X <= Y) */
703#define CCL_GE 0x14 /* X = (X >= Y) */
704#define CCL_NE 0x15 /* X = (X != Y) */
705
51520e8a 706#define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
4ed46869 707 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
51520e8a
KH
708#define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
709 r[7] = LOWER_BYTE (SJIS (Y, Z) */
4ed46869 710
4ed46869 711/* Terminate CCL program successfully. */
0ee1088b 712#define CCL_SUCCESS \
a89f435d 713do \
0ee1088b 714 { \
4ed46869 715 ccl->status = CCL_STAT_SUCCESS; \
0ee1088b
KH
716 goto ccl_finish; \
717 } \
a89f435d 718while(0)
4ed46869
KH
719
720/* Suspend CCL program because of reading from empty input buffer or
721 writing to full output buffer. When this program is resumed, the
722 same I/O command is executed. */
e34b1164 723#define CCL_SUSPEND(stat) \
a89f435d 724do \
0ee1088b 725 { \
e34b1164
KH
726 ic--; \
727 ccl->status = stat; \
728 goto ccl_finish; \
0ee1088b 729 } \
a89f435d 730while (0)
4ed46869
KH
731
732/* Terminate CCL program because of invalid command. Should not occur
733 in the normal case. */
9eaa8e65
KH
734#ifndef CCL_DEBUG
735
4ed46869 736#define CCL_INVALID_CMD \
a89f435d 737do \
0ee1088b 738 { \
4ed46869
KH
739 ccl->status = CCL_STAT_INVALID_CMD; \
740 goto ccl_error_handler; \
0ee1088b 741 } \
a89f435d 742while(0)
4ed46869 743
9eaa8e65
KH
744#else
745
4ed46869 746#define CCL_INVALID_CMD \
a89f435d 747do \
0ee1088b 748 { \
9eaa8e65 749 ccl_debug_hook (this_ic); \
4ed46869
KH
750 ccl->status = CCL_STAT_INVALID_CMD; \
751 goto ccl_error_handler; \
0ee1088b 752 } \
a89f435d 753while(0)
4ed46869 754
9eaa8e65
KH
755#endif
756
4ed46869 757/* Encode one character CH to multibyte form and write to the current
887bfbd7 758 output buffer. If CH is less than 256, CH is written as is. */
c10842ea
KH
759#define CCL_WRITE_CHAR(ch) \
760 do { \
761 if (! dst) \
762 CCL_INVALID_CMD; \
763 else if (dst < dst_end) \
764 *dst++ = (ch); \
765 else \
766 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
a8302ba3
KH
767 } while (0)
768
4ed46869
KH
769/* Write a string at ccl_prog[IC] of length LEN to the current output
770 buffer. */
c6589bbd
KH
771#define CCL_WRITE_STRING(len) \
772 do { \
773 int i; \
774 if (!dst) \
775 CCL_INVALID_CMD; \
776 else if (dst + len <= dst_end) \
777 { \
778 if (XFASTINT (ccl_prog[ic]) & 0x1000000) \
779 for (i = 0; i < len; i++) \
780 *dst++ = XFASTINT (ccl_prog[ic + i]) & 0xFFFFFF; \
781 else \
782 for (i = 0; i < len; i++) \
783 *dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
784 >> ((2 - (i % 3)) * 8)) & 0xFF; \
785 } \
786 else \
787 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
4ed46869
KH
788 } while (0)
789
c10842ea
KH
790/* Read one byte from the current input buffer into Rth register. */
791#define CCL_READ_CHAR(r) \
792 do { \
793 if (! src) \
794 CCL_INVALID_CMD; \
795 else if (src < src_end) \
796 r = *src++; \
797 else if (ccl->last_block) \
798 { \
327719ee 799 r = -1; \
c10842ea
KH
800 ic = ccl->eof_ic; \
801 goto ccl_repeat; \
802 } \
803 else \
804 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
805 } while (0)
806
bda731af
KH
807/* Decode CODE by a charset whose id is ID. If ID is 0, return CODE
808 as is for backward compatibility. Assume that we can use the
809 variable `charset'. */
810
811#define CCL_DECODE_CHAR(id, code) \
812 ((id) == 0 ? (code) \
813 : (charset = CHARSET_FROM_ID ((id)), DECODE_CHAR (charset, (code))))
814
bda731af
KH
815/* Encode character C by some of charsets in CHARSET_LIST. Set ID to
816 the id of the used charset, ENCODED to the resulf of encoding.
817 Assume that we can use the variable `charset'. */
818
8f924df7 819#define CCL_ENCODE_CHAR(c, charset_list, id, encoded) \
4ffd4870 820 do { \
8f924df7 821 unsigned code; \
4ffd4870 822 \
8f924df7
KH
823 charset = char_charset ((c), (charset_list), &code); \
824 if (! charset && ! NILP (charset_list)) \
825 charset = char_charset ((c), Qnil, &code); \
826 if (charset) \
827 { \
828 (id) = CHARSET_ID (charset); \
829 (encoded) = code; \
4ffd4870 830 } \
8f924df7 831 } while (0)
4ffd4870 832
c10842ea
KH
833/* Execute CCL code on characters at SOURCE (length SRC_SIZE). The
834 resulting text goes to a place pointed by DESTINATION, the length
835 of which should not exceed DST_SIZE. As a side effect, how many
836 characters are consumed and produced are recorded in CCL->consumed
837 and CCL->produced, and the contents of CCL registers are updated.
838 If SOURCE or DESTINATION is NULL, only operations on registers are
839 permitted. */
4ed46869
KH
840
841#ifdef CCL_DEBUG
842#define CCL_DEBUG_BACKTRACE_LEN 256
f9bd23fd 843int ccl_backtrace_table[CCL_DEBUG_BACKTRACE_LEN];
4ed46869 844int ccl_backtrace_idx;
9eaa8e65
KH
845
846int
847ccl_debug_hook (int ic)
848{
849 return ic;
850}
851
4ed46869
KH
852#endif
853
854struct ccl_prog_stack
855 {
a9f1cc19 856 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
4ed46869 857 int ic; /* Instruction Counter. */
9eaa8e65 858 int eof_ic; /* Instruction Counter to jump on EOF. */
4ed46869
KH
859 };
860
177c0ea7 861/* For the moment, we only support depth 256 of stack. */
c13362d8
KH
862static struct ccl_prog_stack ccl_prog_stack_struct[256];
863
c10842ea 864void
971de7fb 865ccl_driver (struct ccl_program *ccl, int *source, int *destination, int src_size, int dst_size, Lisp_Object charset_list)
4ed46869
KH
866{
867 register int *reg = ccl->reg;
868 register int ic = ccl->ic;
8a1ae4dd 869 register int code = 0, field1, field2;
e995085f 870 register Lisp_Object *ccl_prog = ccl->prog;
c10842ea
KH
871 int *src = source, *src_end = src + src_size;
872 int *dst = destination, *dst_end = dst + dst_size;
4ed46869 873 int jump_address;
8a1ae4dd 874 int i = 0, j, op;
c13362d8 875 int stack_idx = ccl->stack_idx;
519bf146 876 /* Instruction counter of the current CCL code. */
8a1ae4dd 877 int this_ic = 0;
c10842ea 878 struct charset *charset;
9eaa8e65
KH
879 int eof_ic = ccl->eof_ic;
880 int eof_hit = 0;
4ed46869 881
c10842ea 882 if (ccl->buf_magnification == 0) /* We can't read/produce any bytes. */
12abd7d1
KH
883 dst = NULL;
884
54fa5bc1
KH
885 /* Set mapping stack pointer. */
886 mapping_stack_pointer = mapping_stack;
887
4ed46869
KH
888#ifdef CCL_DEBUG
889 ccl_backtrace_idx = 0;
890#endif
891
892 for (;;)
893 {
4ccd0d4a 894 ccl_repeat:
4ed46869
KH
895#ifdef CCL_DEBUG
896 ccl_backtrace_table[ccl_backtrace_idx++] = ic;
897 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
898 ccl_backtrace_idx = 0;
899 ccl_backtrace_table[ccl_backtrace_idx] = 0;
900#endif
901
902 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
903 {
904 /* We can't just signal Qquit, instead break the loop as if
905 the whole data is processed. Don't reset Vquit_flag, it
906 must be handled later at a safer place. */
c10842ea
KH
907 if (src)
908 src = source + src_size;
4ed46869
KH
909 ccl->status = CCL_STAT_QUIT;
910 break;
911 }
912
519bf146 913 this_ic = ic;
4ed46869
KH
914 code = XINT (ccl_prog[ic]); ic++;
915 field1 = code >> 8;
916 field2 = (code & 0xFF) >> 5;
917
918#define rrr field2
919#define RRR (field1 & 7)
920#define Rrr ((field1 >> 3) & 7)
921#define ADDR field1
e34b1164 922#define EXCMD (field1 >> 6)
4ed46869
KH
923
924 switch (code & 0x1F)
925 {
926 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
927 reg[rrr] = reg[RRR];
928 break;
929
930 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
931 reg[rrr] = field1;
932 break;
933
934 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
935 reg[rrr] = XINT (ccl_prog[ic]);
936 ic++;
937 break;
938
939 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
940 i = reg[RRR];
941 j = field1 >> 3;
942 if ((unsigned int) i < j)
943 reg[rrr] = XINT (ccl_prog[ic + i]);
944 ic += j;
945 break;
946
947 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
948 ic += ADDR;
949 break;
950
951 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
952 if (!reg[rrr])
953 ic += ADDR;
954 break;
955
956 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
957 i = reg[rrr];
958 CCL_WRITE_CHAR (i);
959 ic += ADDR;
960 break;
961
962 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
963 i = reg[rrr];
964 CCL_WRITE_CHAR (i);
965 ic++;
966 CCL_READ_CHAR (reg[rrr]);
967 ic += ADDR - 1;
968 break;
969
970 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
971 i = XINT (ccl_prog[ic]);
972 CCL_WRITE_CHAR (i);
973 ic += ADDR;
974 break;
975
976 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
977 i = XINT (ccl_prog[ic]);
978 CCL_WRITE_CHAR (i);
979 ic++;
980 CCL_READ_CHAR (reg[rrr]);
981 ic += ADDR - 1;
982 break;
983
984 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
985 j = XINT (ccl_prog[ic]);
986 ic++;
987 CCL_WRITE_STRING (j);
988 ic += ADDR - 1;
989 break;
990
991 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
992 i = reg[rrr];
2e34157c 993 j = XINT (ccl_prog[ic]);
4ed46869
KH
994 if ((unsigned int) i < j)
995 {
887bfbd7 996 i = XINT (ccl_prog[ic + 1 + i]);
4ed46869
KH
997 CCL_WRITE_CHAR (i);
998 }
887bfbd7 999 ic += j + 2;
4ed46869
KH
1000 CCL_READ_CHAR (reg[rrr]);
1001 ic += ADDR - (j + 2);
1002 break;
1003
1004 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
1005 CCL_READ_CHAR (reg[rrr]);
1006 ic += ADDR;
1007 break;
1008
1009 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1010 CCL_READ_CHAR (reg[rrr]);
1011 /* fall through ... */
1012 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1013 if ((unsigned int) reg[rrr] < field1)
1014 ic += XINT (ccl_prog[ic + reg[rrr]]);
1015 else
1016 ic += XINT (ccl_prog[ic + field1]);
1017 break;
1018
1019 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1020 while (1)
1021 {
1022 CCL_READ_CHAR (reg[rrr]);
1023 if (!field1) break;
1024 code = XINT (ccl_prog[ic]); ic++;
1025 field1 = code >> 8;
1026 field2 = (code & 0xFF) >> 5;
1027 }
1028 break;
1029
1030 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
1031 rrr = 7;
1032 i = reg[RRR];
1033 j = XINT (ccl_prog[ic]);
1034 op = field1 >> 6;
25660570 1035 jump_address = ic + 1;
4ed46869
KH
1036 goto ccl_set_expr;
1037
1038 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1039 while (1)
1040 {
1041 i = reg[rrr];
1042 CCL_WRITE_CHAR (i);
1043 if (!field1) break;
1044 code = XINT (ccl_prog[ic]); ic++;
1045 field1 = code >> 8;
1046 field2 = (code & 0xFF) >> 5;
1047 }
1048 break;
1049
1050 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
1051 rrr = 7;
1052 i = reg[RRR];
1053 j = reg[Rrr];
1054 op = field1 >> 6;
25660570 1055 jump_address = ic;
4ed46869
KH
1056 goto ccl_set_expr;
1057
5232fa7b 1058 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
4ed46869
KH
1059 {
1060 Lisp_Object slot;
5232fa7b
KH
1061 int prog_id;
1062
1063 /* If FFF is nonzero, the CCL program ID is in the
1064 following code. */
1065 if (rrr)
1066 {
1067 prog_id = XINT (ccl_prog[ic]);
1068 ic++;
1069 }
1070 else
1071 prog_id = field1;
4ed46869
KH
1072
1073 if (stack_idx >= 256
5232fa7b 1074 || prog_id < 0
64ef2921
SM
1075 || prog_id >= ASIZE (Vccl_program_table)
1076 || (slot = AREF (Vccl_program_table, prog_id), !VECTORP (slot))
1077 || !VECTORP (AREF (slot, 1)))
4ed46869
KH
1078 {
1079 if (stack_idx > 0)
1080 {
1081 ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
1082 ic = ccl_prog_stack_struct[0].ic;
9eaa8e65 1083 eof_ic = ccl_prog_stack_struct[0].eof_ic;
4ed46869
KH
1084 }
1085 CCL_INVALID_CMD;
1086 }
177c0ea7 1087
4ed46869
KH
1088 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
1089 ccl_prog_stack_struct[stack_idx].ic = ic;
9eaa8e65 1090 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic;
4ed46869 1091 stack_idx++;
64ef2921 1092 ccl_prog = XVECTOR (AREF (slot, 1))->contents;
4ed46869 1093 ic = CCL_HEADER_MAIN;
9eaa8e65 1094 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]);
4ed46869
KH
1095 }
1096 break;
1097
1098 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1099 if (!rrr)
1100 CCL_WRITE_CHAR (field1);
1101 else
1102 {
1103 CCL_WRITE_STRING (field1);
1104 ic += (field1 + 2) / 3;
1105 }
1106 break;
1107
1108 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1109 i = reg[rrr];
1110 if ((unsigned int) i < field1)
1111 {
1112 j = XINT (ccl_prog[ic + i]);
1113 CCL_WRITE_CHAR (j);
1114 }
1115 ic += field1;
1116 break;
1117
1118 case CCL_End: /* 0000000000000000000000XXXXX */
d3a478e2 1119 if (stack_idx > 0)
4ed46869 1120 {
d3a478e2 1121 stack_idx--;
4ed46869
KH
1122 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
1123 ic = ccl_prog_stack_struct[stack_idx].ic;
9eaa8e65
KH
1124 eof_ic = ccl_prog_stack_struct[stack_idx].eof_ic;
1125 if (eof_hit)
1126 ic = eof_ic;
4ed46869
KH
1127 break;
1128 }
ad3d1b1d
KH
1129 if (src)
1130 src = src_end;
1131 /* ccl->ic should points to this command code again to
1132 suppress further processing. */
1133 ic--;
4ed46869
KH
1134 CCL_SUCCESS;
1135
1136 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
1137 i = XINT (ccl_prog[ic]);
1138 ic++;
1139 op = field1 >> 6;
1140 goto ccl_expr_self;
1141
1142 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
1143 i = reg[RRR];
1144 op = field1 >> 6;
1145
1146 ccl_expr_self:
1147 switch (op)
1148 {
1149 case CCL_PLUS: reg[rrr] += i; break;
1150 case CCL_MINUS: reg[rrr] -= i; break;
1151 case CCL_MUL: reg[rrr] *= i; break;
1152 case CCL_DIV: reg[rrr] /= i; break;
1153 case CCL_MOD: reg[rrr] %= i; break;
1154 case CCL_AND: reg[rrr] &= i; break;
1155 case CCL_OR: reg[rrr] |= i; break;
1156 case CCL_XOR: reg[rrr] ^= i; break;
1157 case CCL_LSH: reg[rrr] <<= i; break;
1158 case CCL_RSH: reg[rrr] >>= i; break;
1159 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
1160 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
1161 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
1162 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
1163 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
1164 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
1165 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
1166 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
1167 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
1168 default: CCL_INVALID_CMD;
1169 }
1170 break;
1171
1172 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
1173 i = reg[RRR];
1174 j = XINT (ccl_prog[ic]);
1175 op = field1 >> 6;
1176 jump_address = ++ic;
1177 goto ccl_set_expr;
1178
1179 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
1180 i = reg[RRR];
1181 j = reg[Rrr];
1182 op = field1 >> 6;
1183 jump_address = ic;
1184 goto ccl_set_expr;
1185
1186 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1187 CCL_READ_CHAR (reg[rrr]);
1188 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1189 i = reg[rrr];
1190 op = XINT (ccl_prog[ic]);
1191 jump_address = ic++ + ADDR;
1192 j = XINT (ccl_prog[ic]);
1193 ic++;
1194 rrr = 7;
1195 goto ccl_set_expr;
1196
1197 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
1198 CCL_READ_CHAR (reg[rrr]);
1199 case CCL_JumpCondExprReg:
1200 i = reg[rrr];
1201 op = XINT (ccl_prog[ic]);
1202 jump_address = ic++ + ADDR;
1203 j = reg[XINT (ccl_prog[ic])];
1204 ic++;
1205 rrr = 7;
1206
1207 ccl_set_expr:
1208 switch (op)
1209 {
1210 case CCL_PLUS: reg[rrr] = i + j; break;
1211 case CCL_MINUS: reg[rrr] = i - j; break;
1212 case CCL_MUL: reg[rrr] = i * j; break;
1213 case CCL_DIV: reg[rrr] = i / j; break;
1214 case CCL_MOD: reg[rrr] = i % j; break;
1215 case CCL_AND: reg[rrr] = i & j; break;
1216 case CCL_OR: reg[rrr] = i | j; break;
3b8c0c70 1217 case CCL_XOR: reg[rrr] = i ^ j; break;
4ed46869
KH
1218 case CCL_LSH: reg[rrr] = i << j; break;
1219 case CCL_RSH: reg[rrr] = i >> j; break;
1220 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
1221 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
1222 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
1223 case CCL_LS: reg[rrr] = i < j; break;
1224 case CCL_GT: reg[rrr] = i > j; break;
1225 case CCL_EQ: reg[rrr] = i == j; break;
1226 case CCL_LE: reg[rrr] = i <= j; break;
1227 case CCL_GE: reg[rrr] = i >= j; break;
1228 case CCL_NE: reg[rrr] = i != j; break;
c10842ea
KH
1229 case CCL_DECODE_SJIS:
1230 {
1231 i = (i << 8) | j;
1232 SJIS_TO_JIS (i);
1233 reg[rrr] = i >> 8;
1234 reg[7] = i & 0xFF;
1235 break;
1236 }
1237 case CCL_ENCODE_SJIS:
1238 {
1239 i = (i << 8) | j;
1240 JIS_TO_SJIS (i);
1241 reg[rrr] = i >> 8;
1242 reg[7] = i & 0xFF;
1243 break;
1244 }
4ed46869
KH
1245 default: CCL_INVALID_CMD;
1246 }
1247 code &= 0x1F;
1248 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
1249 {
1250 i = reg[rrr];
1251 CCL_WRITE_CHAR (i);
25660570 1252 ic = jump_address;
4ed46869
KH
1253 }
1254 else if (!reg[rrr])
1255 ic = jump_address;
1256 break;
1257
450ed226 1258 case CCL_Extension:
e34b1164
KH
1259 switch (EXCMD)
1260 {
6ae21908 1261 case CCL_ReadMultibyteChar2:
e34b1164
KH
1262 if (!src)
1263 CCL_INVALID_CMD;
c10842ea 1264 CCL_READ_CHAR (i);
bda731af 1265 CCL_ENCODE_CHAR (i, charset_list, reg[RRR], reg[rrr]);
e34b1164
KH
1266 break;
1267
6ae21908 1268 case CCL_WriteMultibyteChar2:
c10842ea
KH
1269 if (! dst)
1270 CCL_INVALID_CMD;
bda731af 1271 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
c10842ea 1272 CCL_WRITE_CHAR (i);
e34b1164
KH
1273 break;
1274
8146262a 1275 case CCL_TranslateCharacter:
bda731af 1276 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
c10842ea 1277 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), i);
bda731af 1278 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
e34b1164
KH
1279 break;
1280
8146262a 1281 case CCL_TranslateCharacterConstTbl:
e34b1164
KH
1282 op = XINT (ccl_prog[ic]); /* table */
1283 ic++;
bda731af 1284 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
c10842ea 1285 op = translate_char (GET_TRANSLATION_TABLE (op), i);
bda731af 1286 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
e34b1164
KH
1287 break;
1288
d80dc57e
DL
1289 case CCL_LookupIntConstTbl:
1290 op = XINT (ccl_prog[ic]); /* table */
1291 ic++;
177c0ea7 1292 {
d80dc57e
DL
1293 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
1294
1295 op = hash_lookup (h, make_number (reg[RRR]), NULL);
1296 if (op >= 0)
1297 {
f9bd23fd
DL
1298 Lisp_Object opl;
1299 opl = HASH_VALUE (h, op);
0bc6bafd 1300 if (! CHARACTERP (opl))
d80dc57e 1301 CCL_INVALID_CMD;
bda731af
KH
1302 reg[RRR] = charset_unicode;
1303 reg[rrr] = op;
d80dc57e
DL
1304 reg[7] = 1; /* r7 true for success */
1305 }
1306 else
1307 reg[7] = 0;
1308 }
1309 break;
1310
1311 case CCL_LookupCharConstTbl:
1312 op = XINT (ccl_prog[ic]); /* table */
1313 ic++;
bda731af 1314 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
177c0ea7 1315 {
d80dc57e
DL
1316 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
1317
1318 op = hash_lookup (h, make_number (i), NULL);
1319 if (op >= 0)
1320 {
f9bd23fd
DL
1321 Lisp_Object opl;
1322 opl = HASH_VALUE (h, op);
1323 if (!INTEGERP (opl))
d80dc57e 1324 CCL_INVALID_CMD;
f9bd23fd 1325 reg[RRR] = XINT (opl);
d80dc57e
DL
1326 reg[7] = 1; /* r7 true for success */
1327 }
1328 else
1329 reg[7] = 0;
1330 }
1331 break;
1332
e34b1164
KH
1333 case CCL_IterateMultipleMap:
1334 {
8146262a 1335 Lisp_Object map, content, attrib, value;
e34b1164
KH
1336 int point, size, fin_ic;
1337
8146262a 1338 j = XINT (ccl_prog[ic++]); /* number of maps. */
e34b1164
KH
1339 fin_ic = ic + j;
1340 op = reg[rrr];
1341 if ((j > reg[RRR]) && (j >= 0))
1342 {
1343 ic += reg[RRR];
1344 i = reg[RRR];
1345 }
1346 else
1347 {
1348 reg[RRR] = -1;
1349 ic = fin_ic;
1350 break;
1351 }
1352
1353 for (;i < j;i++)
1354 {
1355
64ef2921 1356 size = ASIZE (Vcode_conversion_map_vector);
d387866a 1357 point = XINT (ccl_prog[ic++]);
e34b1164 1358 if (point >= size) continue;
64ef2921 1359 map = AREF (Vcode_conversion_map_vector, point);
8146262a 1360
78edd3b7 1361 /* Check map validity. */
8146262a 1362 if (!CONSP (map)) continue;
03699b14 1363 map = XCDR (map);
8146262a 1364 if (!VECTORP (map)) continue;
64ef2921 1365 size = ASIZE (map);
e34b1164 1366 if (size <= 1) continue;
6ae21908 1367
64ef2921 1368 content = AREF (map, 0);
6ae21908 1369
8146262a 1370 /* check map type,
6ae21908 1371 [STARTPOINT VAL1 VAL2 ...] or
78edd3b7 1372 [t ELEMENT STARTPOINT ENDPOINT] */
6ae21908
KH
1373 if (NUMBERP (content))
1374 {
1375 point = XUINT (content);
1376 point = op - point + 1;
1377 if (!((point >= 1) && (point < size))) continue;
64ef2921 1378 content = AREF (map, point);
6ae21908
KH
1379 }
1380 else if (EQ (content, Qt))
1381 {
1382 if (size != 4) continue;
64ef2921
SM
1383 if ((op >= XUINT (AREF (map, 2)))
1384 && (op < XUINT (AREF (map, 3))))
1385 content = AREF (map, 1);
6ae21908
KH
1386 else
1387 continue;
1388 }
177c0ea7 1389 else
6ae21908 1390 continue;
e34b1164
KH
1391
1392 if (NILP (content))
1393 continue;
1394 else if (NUMBERP (content))
1395 {
1396 reg[RRR] = i;
6ae21908 1397 reg[rrr] = XINT(content);
e34b1164
KH
1398 break;
1399 }
1400 else if (EQ (content, Qt) || EQ (content, Qlambda))
1401 {
1402 reg[RRR] = i;
1403 break;
1404 }
1405 else if (CONSP (content))
1406 {
03699b14
KR
1407 attrib = XCAR (content);
1408 value = XCDR (content);
e34b1164
KH
1409 if (!NUMBERP (attrib) || !NUMBERP (value))
1410 continue;
1411 reg[RRR] = i;
6ae21908 1412 reg[rrr] = XUINT (value);
e34b1164
KH
1413 break;
1414 }
54fa5bc1
KH
1415 else if (SYMBOLP (content))
1416 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
1417 else
1418 CCL_INVALID_CMD;
e34b1164
KH
1419 }
1420 if (i == j)
1421 reg[RRR] = -1;
1422 ic = fin_ic;
1423 }
1424 break;
177c0ea7 1425
8146262a 1426 case CCL_MapMultiple:
e34b1164 1427 {
8146262a
KH
1428 Lisp_Object map, content, attrib, value;
1429 int point, size, map_vector_size;
1430 int map_set_rest_length, fin_ic;
54fa5bc1
KH
1431 int current_ic = this_ic;
1432
1433 /* inhibit recursive call on MapMultiple. */
1434 if (stack_idx_of_map_multiple > 0)
1435 {
1436 if (stack_idx_of_map_multiple <= stack_idx)
1437 {
1438 stack_idx_of_map_multiple = 0;
1439 mapping_stack_pointer = mapping_stack;
1440 CCL_INVALID_CMD;
1441 }
1442 }
1443 else
1444 mapping_stack_pointer = mapping_stack;
1445 stack_idx_of_map_multiple = 0;
8146262a
KH
1446
1447 map_set_rest_length =
1448 XINT (ccl_prog[ic++]); /* number of maps and separators. */
1449 fin_ic = ic + map_set_rest_length;
54fa5bc1
KH
1450 op = reg[rrr];
1451
8146262a 1452 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
e34b1164
KH
1453 {
1454 ic += reg[RRR];
1455 i = reg[RRR];
8146262a 1456 map_set_rest_length -= i;
e34b1164
KH
1457 }
1458 else
1459 {
1460 ic = fin_ic;
1461 reg[RRR] = -1;
54fa5bc1 1462 mapping_stack_pointer = mapping_stack;
e34b1164
KH
1463 break;
1464 }
6ae21908 1465
54fa5bc1
KH
1466 if (mapping_stack_pointer <= (mapping_stack + 1))
1467 {
1468 /* Set up initial state. */
1469 mapping_stack_pointer = mapping_stack;
1470 PUSH_MAPPING_STACK (0, op);
1471 reg[RRR] = -1;
1472 }
1473 else
1474 {
1475 /* Recover after calling other ccl program. */
1476 int orig_op;
e34b1164 1477
54fa5bc1
KH
1478 POP_MAPPING_STACK (map_set_rest_length, orig_op);
1479 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1480 switch (op)
e34b1164 1481 {
54fa5bc1
KH
1482 case -1:
1483 /* Regard it as Qnil. */
1484 op = orig_op;
1485 i++;
1486 ic++;
1487 map_set_rest_length--;
1488 break;
1489 case -2:
1490 /* Regard it as Qt. */
e34b1164 1491 op = reg[rrr];
54fa5bc1
KH
1492 i++;
1493 ic++;
1494 map_set_rest_length--;
1495 break;
1496 case -3:
1497 /* Regard it as Qlambda. */
1498 op = orig_op;
1499 i += map_set_rest_length;
1500 ic += map_set_rest_length;
1501 map_set_rest_length = 0;
1502 break;
1503 default:
1504 /* Regard it as normal mapping. */
8146262a 1505 i += map_set_rest_length;
54fa5bc1 1506 ic += map_set_rest_length;
8146262a 1507 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
6ae21908
KH
1508 break;
1509 }
e34b1164 1510 }
64ef2921 1511 map_vector_size = ASIZE (Vcode_conversion_map_vector);
177c0ea7 1512
54fa5bc1
KH
1513 do {
1514 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
1515 {
1516 point = XINT(ccl_prog[ic]);
1517 if (point < 0)
1518 {
1519 /* +1 is for including separator. */
1520 point = -point + 1;
1521 if (mapping_stack_pointer
1522 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1523 CCL_INVALID_CMD;
1524 PUSH_MAPPING_STACK (map_set_rest_length - point,
1525 reg[rrr]);
1526 map_set_rest_length = point;
1527 reg[rrr] = op;
1528 continue;
1529 }
1530
1531 if (point >= map_vector_size) continue;
64ef2921 1532 map = AREF (Vcode_conversion_map_vector, point);
54fa5bc1 1533
78edd3b7 1534 /* Check map validity. */
54fa5bc1
KH
1535 if (!CONSP (map)) continue;
1536 map = XCDR (map);
1537 if (!VECTORP (map)) continue;
64ef2921 1538 size = ASIZE (map);
54fa5bc1
KH
1539 if (size <= 1) continue;
1540
64ef2921 1541 content = AREF (map, 0);
54fa5bc1
KH
1542
1543 /* check map type,
1544 [STARTPOINT VAL1 VAL2 ...] or
1545 [t ELEMENT STARTPOINT ENDPOINT] */
1546 if (NUMBERP (content))
1547 {
1548 point = XUINT (content);
1549 point = op - point + 1;
1550 if (!((point >= 1) && (point < size))) continue;
64ef2921 1551 content = AREF (map, point);
54fa5bc1
KH
1552 }
1553 else if (EQ (content, Qt))
1554 {
1555 if (size != 4) continue;
64ef2921
SM
1556 if ((op >= XUINT (AREF (map, 2))) &&
1557 (op < XUINT (AREF (map, 3))))
1558 content = AREF (map, 1);
54fa5bc1
KH
1559 else
1560 continue;
1561 }
177c0ea7 1562 else
54fa5bc1
KH
1563 continue;
1564
1565 if (NILP (content))
1566 continue;
1567
1568 reg[RRR] = i;
1569 if (NUMBERP (content))
1570 {
1571 op = XINT (content);
1572 i += map_set_rest_length - 1;
1573 ic += map_set_rest_length - 1;
1574 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1575 map_set_rest_length++;
1576 }
1577 else if (CONSP (content))
1578 {
1579 attrib = XCAR (content);
1580 value = XCDR (content);
1581 if (!NUMBERP (attrib) || !NUMBERP (value))
1582 continue;
1583 op = XUINT (value);
1584 i += map_set_rest_length - 1;
1585 ic += map_set_rest_length - 1;
1586 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1587 map_set_rest_length++;
1588 }
1589 else if (EQ (content, Qt))
1590 {
1591 op = reg[rrr];
1592 }
1593 else if (EQ (content, Qlambda))
1594 {
1595 i += map_set_rest_length;
1596 ic += map_set_rest_length;
1597 break;
1598 }
1599 else if (SYMBOLP (content))
1600 {
1601 if (mapping_stack_pointer
1602 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1603 CCL_INVALID_CMD;
1604 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1605 PUSH_MAPPING_STACK (map_set_rest_length, op);
1606 stack_idx_of_map_multiple = stack_idx + 1;
1607 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
1608 }
1609 else
1610 CCL_INVALID_CMD;
1611 }
1612 if (mapping_stack_pointer <= (mapping_stack + 1))
1613 break;
1614 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1615 i += map_set_rest_length;
1616 ic += map_set_rest_length;
1617 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1618 } while (1);
1619
e34b1164
KH
1620 ic = fin_ic;
1621 }
1622 reg[rrr] = op;
1623 break;
1624
8146262a 1625 case CCL_MapSingle:
e34b1164 1626 {
8146262a 1627 Lisp_Object map, attrib, value, content;
e34b1164 1628 int size, point;
8146262a 1629 j = XINT (ccl_prog[ic++]); /* map_id */
e34b1164 1630 op = reg[rrr];
64ef2921 1631 if (j >= ASIZE (Vcode_conversion_map_vector))
e34b1164
KH
1632 {
1633 reg[RRR] = -1;
1634 break;
1635 }
64ef2921 1636 map = AREF (Vcode_conversion_map_vector, j);
8146262a 1637 if (!CONSP (map))
e34b1164
KH
1638 {
1639 reg[RRR] = -1;
1640 break;
1641 }
03699b14 1642 map = XCDR (map);
8146262a 1643 if (!VECTORP (map))
e34b1164
KH
1644 {
1645 reg[RRR] = -1;
1646 break;
1647 }
64ef2921
SM
1648 size = ASIZE (map);
1649 point = XUINT (AREF (map, 0));
e34b1164
KH
1650 point = op - point + 1;
1651 reg[RRR] = 0;
1652 if ((size <= 1) ||
1653 (!((point >= 1) && (point < size))))
1654 reg[RRR] = -1;
1655 else
1656 {
b1cab202 1657 reg[RRR] = 0;
64ef2921 1658 content = AREF (map, point);
e34b1164
KH
1659 if (NILP (content))
1660 reg[RRR] = -1;
1661 else if (NUMBERP (content))
6ae21908 1662 reg[rrr] = XINT (content);
b1cab202 1663 else if (EQ (content, Qt));
e34b1164
KH
1664 else if (CONSP (content))
1665 {
03699b14
KR
1666 attrib = XCAR (content);
1667 value = XCDR (content);
e34b1164
KH
1668 if (!NUMBERP (attrib) || !NUMBERP (value))
1669 continue;
1670 reg[rrr] = XUINT(value);
1671 break;
1672 }
54fa5bc1
KH
1673 else if (SYMBOLP (content))
1674 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
e34b1164
KH
1675 else
1676 reg[RRR] = -1;
1677 }
1678 }
1679 break;
177c0ea7 1680
e34b1164
KH
1681 default:
1682 CCL_INVALID_CMD;
1683 }
1684 break;
1685
4ed46869
KH
1686 default:
1687 CCL_INVALID_CMD;
1688 }
1689 }
1690
1691 ccl_error_handler:
0fb94c7f
EZ
1692 /* The suppress_error member is set when e.g. a CCL-based coding
1693 system is used for terminal output. */
1694 if (!ccl->suppress_error && destination)
4ed46869
KH
1695 {
1696 /* We can insert an error message only if DESTINATION is
1697 specified and we still have a room to store the message
1698 there. */
1699 char msg[256];
1700 int msglen;
1701
12abd7d1
KH
1702 if (!dst)
1703 dst = destination;
1704
4ed46869
KH
1705 switch (ccl->status)
1706 {
1707 case CCL_STAT_INVALID_CMD:
1708 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
519bf146 1709 code & 0x1F, code, this_ic);
4ed46869
KH
1710#ifdef CCL_DEBUG
1711 {
1712 int i = ccl_backtrace_idx - 1;
1713 int j;
1714
1715 msglen = strlen (msg);
12abd7d1 1716 if (dst + msglen <= (dst_bytes ? dst_end : src))
4ed46869 1717 {
72af86bd 1718 memcpy (dst, msg, msglen);
4ed46869
KH
1719 dst += msglen;
1720 }
1721
1722 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
1723 {
1724 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
1725 if (ccl_backtrace_table[i] == 0)
1726 break;
1727 sprintf(msg, " %d", ccl_backtrace_table[i]);
1728 msglen = strlen (msg);
12abd7d1 1729 if (dst + msglen > (dst_bytes ? dst_end : src))
4ed46869 1730 break;
72af86bd 1731 memcpy (dst, msg, msglen);
4ed46869
KH
1732 dst += msglen;
1733 }
12abd7d1 1734 goto ccl_finish;
4ed46869 1735 }
4ed46869 1736#endif
12abd7d1 1737 break;
4ed46869
KH
1738
1739 case CCL_STAT_QUIT:
74215b55
KH
1740 if (! ccl->quit_silently)
1741 sprintf(msg, "\nCCL: Quited.");
4ed46869
KH
1742 break;
1743
1744 default:
6b61353c 1745 sprintf(msg, "\nCCL: Unknown error type (%d)", ccl->status);
4ed46869
KH
1746 }
1747
1748 msglen = strlen (msg);
c10842ea 1749 if (dst + msglen <= dst_end)
4ed46869 1750 {
c10842ea
KH
1751 for (i = 0; i < msglen; i++)
1752 *dst++ = msg[i];
4ed46869 1753 }
177c0ea7 1754
31165028
KH
1755 if (ccl->status == CCL_STAT_INVALID_CMD)
1756 {
8a1ae4dd
GM
1757#if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1758 results in an invalid multibyte sequence. */
1759
31165028
KH
1760 /* Copy the remaining source data. */
1761 int i = src_end - src;
1762 if (dst_bytes && (dst_end - dst) < i)
1763 i = dst_end - dst;
72af86bd 1764 memcpy (dst, src, i);
31165028
KH
1765 src += i;
1766 dst += i;
8a1ae4dd
GM
1767#else
1768 /* Signal that we've consumed everything. */
1769 src = src_end;
1770#endif
31165028 1771 }
4ed46869
KH
1772 }
1773
1774 ccl_finish:
1775 ccl->ic = ic;
c13362d8
KH
1776 ccl->stack_idx = stack_idx;
1777 ccl->prog = ccl_prog;
c10842ea 1778 ccl->consumed = src - source;
4e3bb4f3
KH
1779 if (dst != NULL)
1780 ccl->produced = dst - destination;
1781 else
1782 ccl->produced = 0;
4ed46869
KH
1783}
1784
5232fa7b
KH
1785/* Resolve symbols in the specified CCL code (Lisp vector). This
1786 function converts symbols of code conversion maps and character
1787 translation tables embeded in the CCL code into their ID numbers.
1788
1789 The return value is a vector (CCL itself or a new vector in which
1790 all symbols are resolved), Qt if resolving of some symbol failed,
1791 or nil if CCL contains invalid data. */
1792
1793static Lisp_Object
971de7fb 1794resolve_symbol_ccl_program (Lisp_Object ccl)
5232fa7b
KH
1795{
1796 int i, veclen, unresolved = 0;
1797 Lisp_Object result, contents, val;
1798
1799 result = ccl;
64ef2921 1800 veclen = ASIZE (result);
5232fa7b
KH
1801
1802 for (i = 0; i < veclen; i++)
1803 {
64ef2921 1804 contents = AREF (result, i);
5232fa7b
KH
1805 if (INTEGERP (contents))
1806 continue;
1807 else if (CONSP (contents)
03699b14
KR
1808 && SYMBOLP (XCAR (contents))
1809 && SYMBOLP (XCDR (contents)))
5232fa7b
KH
1810 {
1811 /* This is the new style for embedding symbols. The form is
1812 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1813 an index number. */
1814
1815 if (EQ (result, ccl))
1816 result = Fcopy_sequence (ccl);
1817
03699b14 1818 val = Fget (XCAR (contents), XCDR (contents));
5232fa7b 1819 if (NATNUMP (val))
3ae565b3 1820 ASET (result, i, val);
5232fa7b
KH
1821 else
1822 unresolved = 1;
1823 continue;
1824 }
1825 else if (SYMBOLP (contents))
1826 {
1827 /* This is the old style for embedding symbols. This style
1828 may lead to a bug if, for instance, a translation table
1829 and a code conversion map have the same name. */
1830 if (EQ (result, ccl))
1831 result = Fcopy_sequence (ccl);
1832
1833 val = Fget (contents, Qtranslation_table_id);
1834 if (NATNUMP (val))
3ae565b3 1835 ASET (result, i, val);
5232fa7b
KH
1836 else
1837 {
1838 val = Fget (contents, Qcode_conversion_map_id);
1839 if (NATNUMP (val))
3ae565b3 1840 ASET (result, i, val);
5232fa7b
KH
1841 else
1842 {
1843 val = Fget (contents, Qccl_program_idx);
1844 if (NATNUMP (val))
3ae565b3 1845 ASET (result, i, val);
5232fa7b
KH
1846 else
1847 unresolved = 1;
1848 }
1849 }
1850 continue;
1851 }
1852 return Qnil;
1853 }
1854
1855 return (unresolved ? Qt : result);
1856}
1857
1858/* Return the compiled code (vector) of CCL program CCL_PROG.
1859 CCL_PROG is a name (symbol) of the program or already compiled
1860 code. If necessary, resolve symbols in the compiled code to index
1861 numbers. If we failed to get the compiled code or to resolve
1862 symbols, return Qnil. */
1863
1864static Lisp_Object
971de7fb 1865ccl_get_compiled_code (Lisp_Object ccl_prog, int *idx)
5232fa7b
KH
1866{
1867 Lisp_Object val, slot;
1868
1869 if (VECTORP (ccl_prog))
1870 {
1871 val = resolve_symbol_ccl_program (ccl_prog);
2a69c66e 1872 *idx = -1;
5232fa7b
KH
1873 return (VECTORP (val) ? val : Qnil);
1874 }
1875 if (!SYMBOLP (ccl_prog))
1876 return Qnil;
1877
1878 val = Fget (ccl_prog, Qccl_program_idx);
1879 if (! NATNUMP (val)
64ef2921 1880 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 1881 return Qnil;
64ef2921 1882 slot = AREF (Vccl_program_table, XINT (val));
5232fa7b 1883 if (! VECTORP (slot)
2a69c66e 1884 || ASIZE (slot) != 4
64ef2921 1885 || ! VECTORP (AREF (slot, 1)))
5232fa7b 1886 return Qnil;
2a69c66e 1887 *idx = XINT (val);
64ef2921 1888 if (NILP (AREF (slot, 2)))
5232fa7b 1889 {
64ef2921 1890 val = resolve_symbol_ccl_program (AREF (slot, 1));
5232fa7b
KH
1891 if (! VECTORP (val))
1892 return Qnil;
3ae565b3
SM
1893 ASET (slot, 1, val);
1894 ASET (slot, 2, Qt);
5232fa7b 1895 }
64ef2921 1896 return AREF (slot, 1);
5232fa7b
KH
1897}
1898
4ed46869 1899/* Setup fields of the structure pointed by CCL appropriately for the
5232fa7b
KH
1900 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
1901 of the CCL program or the already compiled code (vector).
1902 Return 0 if we succeed this setup, else return -1.
1903
1904 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
1905int
971de7fb 1906setup_ccl_program (struct ccl_program *ccl, Lisp_Object ccl_prog)
4ed46869
KH
1907{
1908 int i;
1909
5232fa7b 1910 if (! NILP (ccl_prog))
ad3d1b1d 1911 {
5232fa7b 1912 struct Lisp_Vector *vp;
ad3d1b1d 1913
2a69c66e 1914 ccl_prog = ccl_get_compiled_code (ccl_prog, &ccl->idx);
5232fa7b
KH
1915 if (! VECTORP (ccl_prog))
1916 return -1;
1917 vp = XVECTOR (ccl_prog);
ad3d1b1d
KH
1918 ccl->size = vp->size;
1919 ccl->prog = vp->contents;
1920 ccl->eof_ic = XINT (vp->contents[CCL_HEADER_EOF]);
1921 ccl->buf_magnification = XINT (vp->contents[CCL_HEADER_BUF_MAG]);
2a69c66e
KH
1922 if (ccl->idx >= 0)
1923 {
1924 Lisp_Object slot;
1925
1926 slot = AREF (Vccl_program_table, ccl->idx);
1927 ASET (slot, 3, Qnil);
1928 }
ad3d1b1d 1929 }
4ed46869 1930 ccl->ic = CCL_HEADER_MAIN;
4ed46869
KH
1931 for (i = 0; i < 8; i++)
1932 ccl->reg[i] = 0;
1933 ccl->last_block = 0;
e34b1164 1934 ccl->private_state = 0;
4ed46869 1935 ccl->status = 0;
c13362d8 1936 ccl->stack_idx = 0;
ae08ba36 1937 ccl->suppress_error = 0;
fd40a25f 1938 ccl->eight_bit_control = 0;
74215b55 1939 ccl->quit_silently = 0;
5232fa7b 1940 return 0;
4ed46869
KH
1941}
1942
2a69c66e
KH
1943
1944/* Check if CCL is updated or not. If not, re-setup members of CCL. */
1945
1946int
971de7fb 1947check_ccl_update (struct ccl_program *ccl)
2a69c66e 1948{
2a69c66e
KH
1949 Lisp_Object slot, ccl_prog;
1950
1951 if (ccl->idx < 0)
1952 return 0;
1953 slot = AREF (Vccl_program_table, ccl->idx);
1954 if (NILP (AREF (slot, 3)))
1955 return 0;
1956 ccl_prog = ccl_get_compiled_code (AREF (slot, 0), &ccl->idx);
1957 if (! VECTORP (ccl_prog))
1958 return -1;
1959 ccl->size = ASIZE (ccl_prog);
1960 ccl->prog = XVECTOR (ccl_prog)->contents;
1961 ccl->eof_ic = XINT (AREF (ccl_prog, CCL_HEADER_EOF));
1962 ccl->buf_magnification = XINT (AREF (ccl_prog, CCL_HEADER_BUF_MAG));
1963 ASET (slot, 3, Qnil);
1964 return 0;
1965}
1966
1967
5232fa7b 1968DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
fdb82f93 1969 doc: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
78edd3b7 1970See the documentation of `define-ccl-program' for the detail of CCL program. */)
fdb82f93 1971 (object)
5232fa7b 1972 Lisp_Object object;
6ae21908 1973{
5232fa7b 1974 Lisp_Object val;
6ae21908 1975
5232fa7b 1976 if (VECTORP (object))
6ae21908 1977 {
5232fa7b
KH
1978 val = resolve_symbol_ccl_program (object);
1979 return (VECTORP (val) ? Qt : Qnil);
6ae21908 1980 }
5232fa7b
KH
1981 if (!SYMBOLP (object))
1982 return Qnil;
6ae21908 1983
5232fa7b
KH
1984 val = Fget (object, Qccl_program_idx);
1985 return ((! NATNUMP (val)
64ef2921 1986 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 1987 ? Qnil : Qt);
6ae21908
KH
1988}
1989
4ed46869 1990DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
fdb82f93
PJ
1991 doc: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
1992
1993CCL-PROGRAM is a CCL program name (symbol)
1994or compiled code generated by `ccl-compile' (for backward compatibility.
1995In the latter case, the execution overhead is bigger than in the former).
1996No I/O commands should appear in CCL-PROGRAM.
1997
1998REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
1999for the Nth register.
2000
2001As side effect, each element of REGISTERS holds the value of
2002the corresponding register after the execution.
2003
2004See the documentation of `define-ccl-program' for a definition of CCL
2005programs. */)
2006 (ccl_prog, reg)
4ed46869
KH
2007 Lisp_Object ccl_prog, reg;
2008{
2009 struct ccl_program ccl;
2010 int i;
2011
5232fa7b
KH
2012 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2013 error ("Invalid CCL program");
6ae21908 2014
b7826503 2015 CHECK_VECTOR (reg);
64ef2921 2016 if (ASIZE (reg) != 8)
d7e1fe1f 2017 error ("Length of vector REGISTERS is not 8");
4ed46869 2018
4ed46869 2019 for (i = 0; i < 8; i++)
64ef2921
SM
2020 ccl.reg[i] = (INTEGERP (AREF (reg, i))
2021 ? XINT (AREF (reg, i))
4ed46869
KH
2022 : 0);
2023
bda731af 2024 ccl_driver (&ccl, NULL, NULL, 0, 0, Qnil);
4ed46869
KH
2025 QUIT;
2026 if (ccl.status != CCL_STAT_SUCCESS)
2027 error ("Error in CCL program at %dth code", ccl.ic);
2028
2029 for (i = 0; i < 8; i++)
3ae565b3 2030 ASET (reg, i, make_number (ccl.reg[i]));
4ed46869
KH
2031 return Qnil;
2032}
2033
2034DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
39a68837 2035 3, 5, 0,
fdb82f93
PJ
2036 doc: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2037
2a0bd758 2038CCL-PROGRAM is a symbol registered by `register-ccl-program',
fdb82f93
PJ
2039or a compiled code generated by `ccl-compile' (for backward compatibility,
2040in this case, the execution is slower).
2041
2042Read buffer is set to STRING, and write buffer is allocated automatically.
2043
2044STATUS is a vector of [R0 R1 ... R7 IC], where
2045 R0..R7 are initial values of corresponding registers,
2046 IC is the instruction counter specifying from where to start the program.
2047If R0..R7 are nil, they are initialized to 0.
2048If IC is nil, it is initialized to head of the CCL program.
2049
2050If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2051when read buffer is exausted, else, IC is always set to the end of
2052CCL-PROGRAM on exit.
2053
2054It returns the contents of write buffer as a string,
2055 and as side effect, STATUS is updated.
2056If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2057is a unibyte string. By default it is a multibyte string.
2058
2a0bd758
JB
2059See the documentation of `define-ccl-program' for the detail of CCL program.
2060usage: (ccl-execute-on-string CCL-PROGRAM STATUS STRING &optional CONTINUE UNIBYTE-P) */)
fdb82f93 2061 (ccl_prog, status, str, contin, unibyte_p)
39a68837 2062 Lisp_Object ccl_prog, status, str, contin, unibyte_p;
4ed46869
KH
2063{
2064 Lisp_Object val;
2065 struct ccl_program ccl;
c10842ea 2066 int i;
4ed46869 2067 int outbufsize;
c10842ea
KH
2068 unsigned char *outbuf, *outp;
2069 int str_chars, str_bytes;
2070#define CCL_EXECUTE_BUF_SIZE 1024
2071 int source[CCL_EXECUTE_BUF_SIZE], destination[CCL_EXECUTE_BUF_SIZE];
2072 int consumed_chars, consumed_bytes, produced_chars;
6ae21908 2073
5232fa7b
KH
2074 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2075 error ("Invalid CCL program");
4ed46869 2076
b7826503 2077 CHECK_VECTOR (status);
64ef2921 2078 if (ASIZE (status) != 9)
5232fa7b 2079 error ("Length of vector STATUS is not 9");
b7826503 2080 CHECK_STRING (str);
4ed46869 2081
8f924df7
KH
2082 str_chars = SCHARS (str);
2083 str_bytes = SBYTES (str);
5232fa7b 2084
4ed46869
KH
2085 for (i = 0; i < 8; i++)
2086 {
64ef2921 2087 if (NILP (AREF (status, i)))
3ae565b3 2088 ASET (status, i, make_number (0));
64ef2921
SM
2089 if (INTEGERP (AREF (status, i)))
2090 ccl.reg[i] = XINT (AREF (status, i));
4ed46869 2091 }
64ef2921 2092 if (INTEGERP (AREF (status, i)))
4ed46869 2093 {
64ef2921 2094 i = XFASTINT (AREF (status, 8));
4ed46869
KH
2095 if (ccl.ic < i && i < ccl.size)
2096 ccl.ic = i;
2097 }
4ed46869 2098
c10842ea
KH
2099 outbufsize = (ccl.buf_magnification
2100 ? str_bytes * ccl.buf_magnification + 256
2101 : str_bytes + 256);
2102 outp = outbuf = (unsigned char *) xmalloc (outbufsize);
2103
2104 consumed_chars = consumed_bytes = 0;
2105 produced_chars = 0;
99e293b5 2106 while (1)
a3d8fcf2 2107 {
8f924df7
KH
2108 const unsigned char *p = SDATA (str) + consumed_bytes;
2109 const unsigned char *endp = SDATA (str) + str_bytes;
c10842ea
KH
2110 int i = 0;
2111 int *src, src_size;
2112
2113 if (endp - p == str_chars - consumed_chars)
2114 while (i < CCL_EXECUTE_BUF_SIZE && p < endp)
2115 source[i++] = *p++;
2116 else
2117 while (i < CCL_EXECUTE_BUF_SIZE && p < endp)
2118 source[i++] = STRING_CHAR_ADVANCE (p);
2119 consumed_chars += i;
8f924df7 2120 consumed_bytes = p - SDATA (str);
c10842ea
KH
2121
2122 if (consumed_bytes == str_bytes)
2123 ccl.last_block = NILP (contin);
2124 src = source;
2125 src_size = i;
2126 while (1)
2127 {
bda731af
KH
2128 ccl_driver (&ccl, src, destination, src_size, CCL_EXECUTE_BUF_SIZE,
2129 Qnil);
c10842ea
KH
2130 produced_chars += ccl.produced;
2131 if (NILP (unibyte_p))
2132 {
2133 if (outp - outbuf + MAX_MULTIBYTE_LENGTH * ccl.produced
2134 > outbufsize)
2135 {
2136 int offset = outp - outbuf;
2137 outbufsize += MAX_MULTIBYTE_LENGTH * ccl.produced;
2138 outbuf = (unsigned char *) xrealloc (outbuf, outbufsize);
2139 outp = outbuf + offset;
2140 }
2141 for (i = 0; i < ccl.produced; i++)
2142 CHAR_STRING_ADVANCE (destination[i], outp);
2143 }
2144 else
2145 {
2146 if (outp - outbuf + ccl.produced > outbufsize)
2147 {
2148 int offset = outp - outbuf;
2149 outbufsize += ccl.produced;
2150 outbuf = (unsigned char *) xrealloc (outbuf, outbufsize);
2151 outp = outbuf + offset;
2152 }
2153 for (i = 0; i < ccl.produced; i++)
2154 *outp++ = destination[i];
2155 }
2156 src += ccl.consumed;
2157 src_size -= ccl.consumed;
99e293b5
KH
2158 if (ccl.status != CCL_STAT_SUSPEND_BY_DST)
2159 break;
c10842ea 2160 }
a3d8fcf2 2161
edeef421
KH
2162 if (ccl.status != CCL_STAT_SUSPEND_BY_SRC
2163 || str_chars == consumed_chars)
c10842ea 2164 break;
a3d8fcf2 2165 }
a3d8fcf2 2166
edeef421 2167 if (ccl.status == CCL_STAT_INVALID_CMD)
4ed46869 2168 error ("Error in CCL program at %dth code", ccl.ic);
edeef421
KH
2169 if (ccl.status == CCL_STAT_QUIT)
2170 error ("CCL program interrupted at %dth code", ccl.ic);
4ed46869 2171
c10842ea 2172 for (i = 0; i < 8; i++)
c6589bbd
KH
2173 ASET (status, i, make_number (ccl.reg[i]));
2174 ASET (status, 8, make_number (ccl.ic));
c10842ea
KH
2175
2176 if (NILP (unibyte_p))
2177 val = make_multibyte_string ((char *) outbuf, produced_chars,
2178 outp - outbuf);
2179 else
2180 val = make_unibyte_string ((char *) outbuf, produced_chars);
2181 xfree (outbuf);
4ed46869
KH
2182
2183 return val;
2184}
2185
2186DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
2187 2, 2, 0,
2a0bd758
JB
2188 doc: /* Register CCL program CCL-PROG as NAME in `ccl-program-table'.
2189CCL-PROG should be a compiled CCL program (vector), or nil.
fdb82f93
PJ
2190If it is nil, just reserve NAME as a CCL program name.
2191Return index number of the registered CCL program. */)
2192 (name, ccl_prog)
4ed46869
KH
2193 Lisp_Object name, ccl_prog;
2194{
64ef2921 2195 int len = ASIZE (Vccl_program_table);
5232fa7b
KH
2196 int idx;
2197 Lisp_Object resolved;
4ed46869 2198
b7826503 2199 CHECK_SYMBOL (name);
5232fa7b 2200 resolved = Qnil;
4ed46869 2201 if (!NILP (ccl_prog))
6ae21908 2202 {
b7826503 2203 CHECK_VECTOR (ccl_prog);
5232fa7b 2204 resolved = resolve_symbol_ccl_program (ccl_prog);
4d247a1f
KH
2205 if (NILP (resolved))
2206 error ("Error in CCL program");
2207 if (VECTORP (resolved))
5232fa7b
KH
2208 {
2209 ccl_prog = resolved;
2210 resolved = Qt;
2211 }
4d247a1f
KH
2212 else
2213 resolved = Qnil;
6ae21908 2214 }
5232fa7b
KH
2215
2216 for (idx = 0; idx < len; idx++)
4ed46869 2217 {
5232fa7b 2218 Lisp_Object slot;
4ed46869 2219
64ef2921 2220 slot = AREF (Vccl_program_table, idx);
5232fa7b 2221 if (!VECTORP (slot))
78edd3b7 2222 /* This is the first unused slot. Register NAME here. */
4ed46869
KH
2223 break;
2224
64ef2921 2225 if (EQ (name, AREF (slot, 0)))
4ed46869 2226 {
5232fa7b 2227 /* Update this slot. */
2a69c66e
KH
2228 ASET (slot, 1, ccl_prog);
2229 ASET (slot, 2, resolved);
2230 ASET (slot, 3, Qt);
5232fa7b 2231 return make_number (idx);
4ed46869
KH
2232 }
2233 }
2234
5232fa7b 2235 if (idx == len)
1d153206
EZ
2236 /* Extend the table. */
2237 Vccl_program_table = larger_vector (Vccl_program_table, len * 2, Qnil);
4ed46869 2238
5232fa7b
KH
2239 {
2240 Lisp_Object elt;
2241
2a69c66e
KH
2242 elt = Fmake_vector (make_number (4), Qnil);
2243 ASET (elt, 0, name);
2244 ASET (elt, 1, ccl_prog);
2245 ASET (elt, 2, resolved);
2246 ASET (elt, 3, Qt);
2247 ASET (Vccl_program_table, idx, elt);
5232fa7b
KH
2248 }
2249
2250 Fput (name, Qccl_program_idx, make_number (idx));
2251 return make_number (idx);
4ed46869
KH
2252}
2253
8146262a
KH
2254/* Register code conversion map.
2255 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
d617f6df
DL
2256 The first element is the start code point.
2257 The other elements are mapped numbers.
8146262a
KH
2258 Symbol t means to map to an original number before mapping.
2259 Symbol nil means that the corresponding element is empty.
d617f6df 2260 Symbol lambda means to terminate mapping here.
e34b1164
KH
2261*/
2262
8146262a
KH
2263DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
2264 Sregister_code_conversion_map,
e34b1164 2265 2, 2, 0,
fdb82f93
PJ
2266 doc: /* Register SYMBOL as code conversion map MAP.
2267Return index number of the registered map. */)
2268 (symbol, map)
8146262a 2269 Lisp_Object symbol, map;
e34b1164 2270{
64ef2921 2271 int len = ASIZE (Vcode_conversion_map_vector);
e34b1164
KH
2272 int i;
2273 Lisp_Object index;
2274
b7826503
PJ
2275 CHECK_SYMBOL (symbol);
2276 CHECK_VECTOR (map);
177c0ea7 2277
e34b1164
KH
2278 for (i = 0; i < len; i++)
2279 {
64ef2921 2280 Lisp_Object slot = AREF (Vcode_conversion_map_vector, i);
e34b1164
KH
2281
2282 if (!CONSP (slot))
2283 break;
2284
03699b14 2285 if (EQ (symbol, XCAR (slot)))
e34b1164
KH
2286 {
2287 index = make_number (i);
f3fbd155 2288 XSETCDR (slot, map);
8146262a
KH
2289 Fput (symbol, Qcode_conversion_map, map);
2290 Fput (symbol, Qcode_conversion_map_id, index);
e34b1164
KH
2291 return index;
2292 }
2293 }
2294
2295 if (i == len)
2a1aad57
EZ
2296 Vcode_conversion_map_vector = larger_vector (Vcode_conversion_map_vector,
2297 len * 2, Qnil);
e34b1164
KH
2298
2299 index = make_number (i);
8146262a
KH
2300 Fput (symbol, Qcode_conversion_map, map);
2301 Fput (symbol, Qcode_conversion_map_id, index);
3ae565b3 2302 ASET (Vcode_conversion_map_vector, i, Fcons (symbol, map));
e34b1164
KH
2303 return index;
2304}
2305
2306
dfcf069d 2307void
971de7fb 2308syms_of_ccl (void)
4ed46869
KH
2309{
2310 staticpro (&Vccl_program_table);
6703ac4f 2311 Vccl_program_table = Fmake_vector (make_number (32), Qnil);
4ed46869 2312
d67b4f80 2313 Qccl = intern_c_string ("ccl");
c10842ea
KH
2314 staticpro (&Qccl);
2315
d67b4f80 2316 Qcclp = intern_c_string ("cclp");
c10842ea
KH
2317 staticpro (&Qcclp);
2318
d67b4f80 2319 Qccl_program = intern_c_string ("ccl-program");
6ae21908
KH
2320 staticpro (&Qccl_program);
2321
d67b4f80 2322 Qccl_program_idx = intern_c_string ("ccl-program-idx");
6ae21908 2323 staticpro (&Qccl_program_idx);
e34b1164 2324
d67b4f80 2325 Qcode_conversion_map = intern_c_string ("code-conversion-map");
8146262a 2326 staticpro (&Qcode_conversion_map);
6ae21908 2327
d67b4f80 2328 Qcode_conversion_map_id = intern_c_string ("code-conversion-map-id");
8146262a 2329 staticpro (&Qcode_conversion_map_id);
6ae21908 2330
8146262a 2331 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector,
fdb82f93 2332 doc: /* Vector of code conversion maps. */);
8146262a 2333 Vcode_conversion_map_vector = Fmake_vector (make_number (16), Qnil);
e34b1164 2334
4ed46869 2335 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist,
fdb82f93
PJ
2336 doc: /* Alist of fontname patterns vs corresponding CCL program.
2337Each element looks like (REGEXP . CCL-CODE),
2338 where CCL-CODE is a compiled CCL program.
2339When a font whose name matches REGEXP is used for displaying a character,
2340 CCL-CODE is executed to calculate the code point in the font
2341 from the charset number and position code(s) of the character which are set
2342 in CCL registers R0, R1, and R2 before the execution.
2343The code point in the font is set in CCL registers R1 and R2
2344 when the execution terminated.
2345 If the font is single-byte font, the register R2 is not used. */);
4ed46869
KH
2346 Vfont_ccl_encoder_alist = Qnil;
2347
d80dc57e
DL
2348 DEFVAR_LISP ("translation-hash-table-vector", &Vtranslation_hash_table_vector,
2349 doc: /* Vector containing all translation hash tables ever defined.
2350Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
2351to `define-translation-hash-table'. The vector is indexed by the table id
2352used by CCL. */);
2353 Vtranslation_hash_table_vector = Qnil;
2354
5232fa7b 2355 defsubr (&Sccl_program_p);
4ed46869
KH
2356 defsubr (&Sccl_execute);
2357 defsubr (&Sccl_execute_on_string);
2358 defsubr (&Sregister_ccl_program);
8146262a 2359 defsubr (&Sregister_code_conversion_map);
4ed46869 2360}
6b61353c
KH
2361
2362/* arch-tag: bb9a37be-68ce-4576-8d3d-15d750e4a860
2363 (do not change this comment) */