Changes from arch/CVS synchronization
[bpt/emacs.git] / src / ccl.c
CommitLineData
4ed46869 1/* CCL (Code Conversion Language) interpreter.
aaef169d
TTN
2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
3 2006 Free Software Foundation, Inc.
ce03bf76
KH
4 Copyright (C) 1995, 1997, 1998, 2003, 2004, 2005
5 National Institute of Advanced Industrial Science and Technology (AIST)
6 Registration Number H14PRO021
8f924df7 7 Copyright (C) 2003
c10842ea
KH
8 National Institute of Advanced Industrial Science and Technology (AIST)
9 Registration Number H13PRO009
4ed46869 10
369314dc
KH
11This file is part of GNU Emacs.
12
13GNU Emacs is free software; you can redistribute it and/or modify
14it under the terms of the GNU General Public License as published by
15the Free Software Foundation; either version 2, or (at your option)
16any later version.
4ed46869 17
369314dc
KH
18GNU Emacs is distributed in the hope that it will be useful,
19but WITHOUT ANY WARRANTY; without even the implied warranty of
20MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21GNU General Public License for more details.
4ed46869 22
369314dc
KH
23You should have received a copy of the GNU General Public License
24along with GNU Emacs; see the file COPYING. If not, write to
4fc5845f
LK
25the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
26Boston, MA 02110-1301, USA. */
4ed46869 27
4ed46869 28#include <config.h>
dfcf069d 29
68c45bf0
PE
30#include <stdio.h>
31
4ed46869 32#include "lisp.h"
c10842ea 33#include "character.h"
4ed46869
KH
34#include "charset.h"
35#include "ccl.h"
36#include "coding.h"
37
c10842ea
KH
38Lisp_Object Qccl, Qcclp;
39
20398ea4 40/* This contains all code conversion map available to CCL. */
8146262a 41Lisp_Object Vcode_conversion_map_vector;
e34b1164 42
4ed46869
KH
43/* Alist of fontname patterns vs corresponding CCL program. */
44Lisp_Object Vfont_ccl_encoder_alist;
45
6ae21908
KH
46/* This symbol is a property which assocates with ccl program vector.
47 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
e34b1164
KH
48Lisp_Object Qccl_program;
49
8146262a
KH
50/* These symbols are properties which associate with code conversion
51 map and their ID respectively. */
52Lisp_Object Qcode_conversion_map;
53Lisp_Object Qcode_conversion_map_id;
e34b1164 54
6ae21908
KH
55/* Symbols of ccl program have this property, a value of the property
56 is an index for Vccl_protram_table. */
57Lisp_Object Qccl_program_idx;
58
5232fa7b 59/* Table of registered CCL programs. Each element is a vector of
2a69c66e
KH
60 NAME, CCL_PROG, RESOLVEDP, and UPDATEDP, where NAME (symbol) is the
61 name of the program, CCL_PROG (vector) is the compiled code of the
62 program, RESOLVEDP (t or nil) is the flag to tell if symbols in
63 CCL_PROG is already resolved to index numbers or not, UPDATEDP (t
64 or nil) is the flat to tell if the CCL program is updated after it
65 was once used. */
4ed46869
KH
66Lisp_Object Vccl_program_table;
67
d80dc57e
DL
68/* Vector of registered hash tables for translation. */
69Lisp_Object Vtranslation_hash_table_vector;
70
71/* Return a hash table of id number ID. */
72#define GET_HASH_TABLE(id) \
73 (XHASH_TABLE (XCDR(XVECTOR(Vtranslation_hash_table_vector)->contents[(id)])))
d80dc57e 74
d325055a
DL
75extern int charset_unicode;
76
4ed46869
KH
77/* CCL (Code Conversion Language) is a simple language which has
78 operations on one input buffer, one output buffer, and 7 registers.
79 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
80 `ccl-compile' compiles a CCL program and produces a CCL code which
81 is a vector of integers. The structure of this vector is as
82 follows: The 1st element: buffer-magnification, a factor for the
83 size of output buffer compared with the size of input buffer. The
84 2nd element: address of CCL code to be executed when encountered
85 with end of input stream. The 3rd and the remaining elements: CCL
86 codes. */
87
88/* Header of CCL compiled code */
89#define CCL_HEADER_BUF_MAG 0
90#define CCL_HEADER_EOF 1
91#define CCL_HEADER_MAIN 2
92
93/* CCL code is a sequence of 28-bit non-negative integers (i.e. the
94 MSB is always 0), each contains CCL command and/or arguments in the
95 following format:
96
97 |----------------- integer (28-bit) ------------------|
98 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
99 |--constant argument--|-register-|-register-|-command-|
100 ccccccccccccccccc RRR rrr XXXXX
101 or
102 |------- relative address -------|-register-|-command-|
103 cccccccccccccccccccc rrr XXXXX
104 or
105 |------------- constant or other args ----------------|
106 cccccccccccccccccccccccccccc
107
108 where, `cc...c' is a non-negative integer indicating constant value
109 (the left most `c' is always 0) or an absolute jump address, `RRR'
110 and `rrr' are CCL register number, `XXXXX' is one of the following
111 CCL commands. */
112
113/* CCL commands
114
115 Each comment fields shows one or more lines for command syntax and
116 the following lines for semantics of the command. In semantics, IC
117 stands for Instruction Counter. */
118
119#define CCL_SetRegister 0x00 /* Set register a register value:
120 1:00000000000000000RRRrrrXXXXX
121 ------------------------------
122 reg[rrr] = reg[RRR];
123 */
124
125#define CCL_SetShortConst 0x01 /* Set register a short constant value:
126 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
127 ------------------------------
128 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
129 */
130
131#define CCL_SetConst 0x02 /* Set register a constant value:
132 1:00000000000000000000rrrXXXXX
133 2:CONSTANT
134 ------------------------------
135 reg[rrr] = CONSTANT;
136 IC++;
137 */
138
139#define CCL_SetArray 0x03 /* Set register an element of array:
140 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
141 2:ELEMENT[0]
142 3:ELEMENT[1]
143 ...
144 ------------------------------
145 if (0 <= reg[RRR] < CC..C)
146 reg[rrr] = ELEMENT[reg[RRR]];
147 IC += CC..C;
148 */
149
150#define CCL_Jump 0x04 /* Jump:
151 1:A--D--D--R--E--S--S-000XXXXX
152 ------------------------------
153 IC += ADDRESS;
154 */
155
156/* Note: If CC..C is greater than 0, the second code is omitted. */
157
158#define CCL_JumpCond 0x05 /* Jump conditional:
159 1:A--D--D--R--E--S--S-rrrXXXXX
160 ------------------------------
161 if (!reg[rrr])
162 IC += ADDRESS;
163 */
164
165
166#define CCL_WriteRegisterJump 0x06 /* Write register and jump:
167 1:A--D--D--R--E--S--S-rrrXXXXX
168 ------------------------------
169 write (reg[rrr]);
170 IC += ADDRESS;
171 */
172
173#define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
174 1:A--D--D--R--E--S--S-rrrXXXXX
175 2:A--D--D--R--E--S--S-rrrYYYYY
176 -----------------------------
177 write (reg[rrr]);
178 IC++;
179 read (reg[rrr]);
180 IC += ADDRESS;
181 */
182/* Note: If read is suspended, the resumed execution starts from the
183 second code (YYYYY == CCL_ReadJump). */
184
185#define CCL_WriteConstJump 0x08 /* Write constant and jump:
186 1:A--D--D--R--E--S--S-000XXXXX
187 2:CONST
188 ------------------------------
189 write (CONST);
190 IC += ADDRESS;
191 */
192
193#define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
194 1:A--D--D--R--E--S--S-rrrXXXXX
195 2:CONST
196 3:A--D--D--R--E--S--S-rrrYYYYY
197 -----------------------------
198 write (CONST);
199 IC += 2;
200 read (reg[rrr]);
201 IC += ADDRESS;
202 */
203/* Note: If read is suspended, the resumed execution starts from the
204 second code (YYYYY == CCL_ReadJump). */
205
206#define CCL_WriteStringJump 0x0A /* Write string and jump:
207 1:A--D--D--R--E--S--S-000XXXXX
208 2:LENGTH
c6589bbd 209 3:000MSTRIN[0]STRIN[1]STRIN[2]
4ed46869
KH
210 ...
211 ------------------------------
c6589bbd
KH
212 if (M)
213 write_multibyte_string (STRING, LENGTH);
214 else
215 write_string (STRING, LENGTH);
4ed46869
KH
216 IC += ADDRESS;
217 */
218
219#define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
220 1:A--D--D--R--E--S--S-rrrXXXXX
221 2:LENGTH
222 3:ELEMENET[0]
223 4:ELEMENET[1]
224 ...
225 N:A--D--D--R--E--S--S-rrrYYYYY
226 ------------------------------
227 if (0 <= reg[rrr] < LENGTH)
228 write (ELEMENT[reg[rrr]]);
229 IC += LENGTH + 2; (... pointing at N+1)
230 read (reg[rrr]);
231 IC += ADDRESS;
232 */
233/* Note: If read is suspended, the resumed execution starts from the
887bfbd7 234 Nth code (YYYYY == CCL_ReadJump). */
4ed46869
KH
235
236#define CCL_ReadJump 0x0C /* Read and jump:
237 1:A--D--D--R--E--S--S-rrrYYYYY
238 -----------------------------
239 read (reg[rrr]);
240 IC += ADDRESS;
241 */
242
243#define CCL_Branch 0x0D /* Jump by branch table:
244 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
245 2:A--D--D--R--E-S-S[0]000XXXXX
246 3:A--D--D--R--E-S-S[1]000XXXXX
247 ...
248 ------------------------------
249 if (0 <= reg[rrr] < CC..C)
250 IC += ADDRESS[reg[rrr]];
251 else
252 IC += ADDRESS[CC..C];
253 */
254
255#define CCL_ReadRegister 0x0E /* Read bytes into registers:
256 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
257 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
258 ...
259 ------------------------------
260 while (CCC--)
261 read (reg[rrr]);
262 */
263
264#define CCL_WriteExprConst 0x0F /* write result of expression:
265 1:00000OPERATION000RRR000XXXXX
266 2:CONSTANT
267 ------------------------------
268 write (reg[RRR] OPERATION CONSTANT);
269 IC++;
270 */
271
272/* Note: If the Nth read is suspended, the resumed execution starts
273 from the Nth code. */
274
275#define CCL_ReadBranch 0x10 /* Read one byte into a register,
276 and jump by branch table:
277 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
278 2:A--D--D--R--E-S-S[0]000XXXXX
279 3:A--D--D--R--E-S-S[1]000XXXXX
280 ...
281 ------------------------------
282 read (read[rrr]);
283 if (0 <= reg[rrr] < CC..C)
284 IC += ADDRESS[reg[rrr]];
285 else
286 IC += ADDRESS[CC..C];
287 */
288
289#define CCL_WriteRegister 0x11 /* Write registers:
290 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
291 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
292 ...
293 ------------------------------
294 while (CCC--)
295 write (reg[rrr]);
296 ...
297 */
298
299/* Note: If the Nth write is suspended, the resumed execution
300 starts from the Nth code. */
301
302#define CCL_WriteExprRegister 0x12 /* Write result of expression
303 1:00000OPERATIONRrrRRR000XXXXX
304 ------------------------------
305 write (reg[RRR] OPERATION reg[Rrr]);
306 */
307
e34b1164 308#define CCL_Call 0x13 /* Call the CCL program whose ID is
5232fa7b
KH
309 CC..C or cc..c.
310 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
311 [2:00000000cccccccccccccccccccc]
4ed46869 312 ------------------------------
5232fa7b
KH
313 if (FFF)
314 call (cc..c)
315 IC++;
316 else
317 call (CC..C)
4ed46869
KH
318 */
319
320#define CCL_WriteConstString 0x14 /* Write a constant or a string:
321 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
c6589bbd 322 [2:000MSTRIN[0]STRIN[1]STRIN[2]]
4ed46869
KH
323 [...]
324 -----------------------------
325 if (!rrr)
326 write (CC..C)
327 else
c6589bbd
KH
328 if (M)
329 write_multibyte_string (STRING, CC..C);
330 else
331 write_string (STRING, CC..C);
4ed46869
KH
332 IC += (CC..C + 2) / 3;
333 */
334
335#define CCL_WriteArray 0x15 /* Write an element of array:
336 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
337 2:ELEMENT[0]
338 3:ELEMENT[1]
339 ...
340 ------------------------------
341 if (0 <= reg[rrr] < CC..C)
342 write (ELEMENT[reg[rrr]]);
343 IC += CC..C;
344 */
345
346#define CCL_End 0x16 /* Terminate:
347 1:00000000000000000000000XXXXX
348 ------------------------------
349 terminate ();
350 */
351
352/* The following two codes execute an assignment arithmetic/logical
353 operation. The form of the operation is like REG OP= OPERAND. */
354
355#define CCL_ExprSelfConst 0x17 /* REG OP= constant:
356 1:00000OPERATION000000rrrXXXXX
357 2:CONSTANT
358 ------------------------------
359 reg[rrr] OPERATION= CONSTANT;
360 */
361
362#define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
363 1:00000OPERATION000RRRrrrXXXXX
364 ------------------------------
365 reg[rrr] OPERATION= reg[RRR];
366 */
367
368/* The following codes execute an arithmetic/logical operation. The
369 form of the operation is like REG_X = REG_Y OP OPERAND2. */
370
371#define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
372 1:00000OPERATION000RRRrrrXXXXX
373 2:CONSTANT
374 ------------------------------
375 reg[rrr] = reg[RRR] OPERATION CONSTANT;
376 IC++;
377 */
378
379#define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
380 1:00000OPERATIONRrrRRRrrrXXXXX
381 ------------------------------
382 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
383 */
384
385#define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
386 an operation on constant:
387 1:A--D--D--R--E--S--S-rrrXXXXX
388 2:OPERATION
389 3:CONSTANT
390 -----------------------------
391 reg[7] = reg[rrr] OPERATION CONSTANT;
392 if (!(reg[7]))
393 IC += ADDRESS;
394 else
395 IC += 2
396 */
397
398#define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
399 an operation on register:
400 1:A--D--D--R--E--S--S-rrrXXXXX
401 2:OPERATION
402 3:RRR
403 -----------------------------
404 reg[7] = reg[rrr] OPERATION reg[RRR];
405 if (!reg[7])
406 IC += ADDRESS;
407 else
408 IC += 2;
409 */
410
411#define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
412 to an operation on constant:
413 1:A--D--D--R--E--S--S-rrrXXXXX
414 2:OPERATION
415 3:CONSTANT
416 -----------------------------
417 read (reg[rrr]);
418 reg[7] = reg[rrr] OPERATION CONSTANT;
419 if (!reg[7])
420 IC += ADDRESS;
421 else
422 IC += 2;
423 */
424
425#define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
426 to an operation on register:
427 1:A--D--D--R--E--S--S-rrrXXXXX
428 2:OPERATION
429 3:RRR
430 -----------------------------
431 read (reg[rrr]);
432 reg[7] = reg[rrr] OPERATION reg[RRR];
433 if (!reg[7])
434 IC += ADDRESS;
435 else
436 IC += 2;
437 */
438
450ed226 439#define CCL_Extension 0x1F /* Extended CCL code
4ed46869
KH
440 1:ExtendedCOMMNDRrrRRRrrrXXXXX
441 2:ARGUEMENT
442 3:...
443 ------------------------------
444 extended_command (rrr,RRR,Rrr,ARGS)
445 */
446
177c0ea7 447/*
6ae21908 448 Here after, Extended CCL Instructions.
e34b1164 449 Bit length of extended command is 14.
6ae21908 450 Therefore, the instruction code range is 0..16384(0x3fff).
e34b1164
KH
451 */
452
6ae21908
KH
453/* Read a multibyte characeter.
454 A code point is stored into reg[rrr]. A charset ID is stored into
455 reg[RRR]. */
456
457#define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
458 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
459
460/* Write a multibyte character.
461 Write a character whose code point is reg[rrr] and the charset ID
462 is reg[RRR]. */
463
464#define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
465 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
466
8146262a 467/* Translate a character whose code point is reg[rrr] and the charset
f967223b 468 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
6ae21908 469
8146262a 470 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
471 (charset ID). */
472
8146262a 473#define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
6ae21908
KH
474 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
475
8146262a 476/* Translate a character whose code point is reg[rrr] and the charset
f967223b 477 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
6ae21908 478
8146262a 479 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
480 (charset ID). */
481
8146262a
KH
482#define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
483 1:ExtendedCOMMNDRrrRRRrrrXXXXX
484 2:ARGUMENT(Translation Table ID)
485 */
6ae21908 486
8146262a
KH
487/* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
488 reg[RRR]) MAP until some value is found.
6ae21908 489
8146262a 490 Each MAP is a Lisp vector whose element is number, nil, t, or
6ae21908 491 lambda.
8146262a 492 If the element is nil, ignore the map and proceed to the next map.
6ae21908
KH
493 If the element is t or lambda, finish without changing reg[rrr].
494 If the element is a number, set reg[rrr] to the number and finish.
495
8146262a
KH
496 Detail of the map structure is descibed in the comment for
497 CCL_MapMultiple below. */
6ae21908 498
8146262a 499#define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
6ae21908 500 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a
KH
501 2:NUMBER of MAPs
502 3:MAP-ID1
503 4:MAP-ID2
6ae21908 504 ...
177c0ea7 505 */
6ae21908 506
8146262a
KH
507/* Map the code in reg[rrr] by MAPs starting from the Nth (N =
508 reg[RRR]) map.
6ae21908 509
9b27b20d 510 MAPs are supplied in the succeeding CCL codes as follows:
6ae21908 511
8146262a
KH
512 When CCL program gives this nested structure of map to this command:
513 ((MAP-ID11
514 MAP-ID12
515 (MAP-ID121 MAP-ID122 MAP-ID123)
516 MAP-ID13)
517 (MAP-ID21
518 (MAP-ID211 (MAP-ID2111) MAP-ID212)
519 MAP-ID22)),
6ae21908 520 the compiled CCL codes has this sequence:
8146262a 521 CCL_MapMultiple (CCL code of this command)
9b27b20d
KH
522 16 (total number of MAPs and SEPARATORs)
523 -7 (1st SEPARATOR)
8146262a
KH
524 MAP-ID11
525 MAP-ID12
9b27b20d 526 -3 (2nd SEPARATOR)
8146262a
KH
527 MAP-ID121
528 MAP-ID122
529 MAP-ID123
530 MAP-ID13
9b27b20d 531 -7 (3rd SEPARATOR)
8146262a 532 MAP-ID21
9b27b20d 533 -4 (4th SEPARATOR)
8146262a 534 MAP-ID211
9b27b20d 535 -1 (5th SEPARATOR)
8146262a
KH
536 MAP_ID2111
537 MAP-ID212
538 MAP-ID22
6ae21908 539
9b27b20d 540 A value of each SEPARATOR follows this rule:
8146262a
KH
541 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
542 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
6ae21908 543
8146262a 544 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
6ae21908 545
8146262a
KH
546 When some map fails to map (i.e. it doesn't have a value for
547 reg[rrr]), the mapping is treated as identity.
6ae21908 548
8146262a 549 The mapping is iterated for all maps in each map set (set of maps
9b27b20d
KH
550 separated by SEPARATOR) except in the case that lambda is
551 encountered. More precisely, the mapping proceeds as below:
552
553 At first, VAL0 is set to reg[rrr], and it is translated by the
554 first map to VAL1. Then, VAL1 is translated by the next map to
555 VAL2. This mapping is iterated until the last map is used. The
54fa5bc1
KH
556 result of the mapping is the last value of VAL?. When the mapping
557 process reached to the end of the map set, it moves to the next
558 map set. If the next does not exit, the mapping process terminates,
559 and regard the last value as a result.
9b27b20d
KH
560
561 But, when VALm is mapped to VALn and VALn is not a number, the
562 mapping proceed as below:
563
564 If VALn is nil, the lastest map is ignored and the mapping of VALm
565 proceed to the next map.
566
567 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
568 proceed to the next map.
569
54fa5bc1
KH
570 If VALn is lambda, move to the next map set like reaching to the
571 end of the current map set.
572
573 If VALn is a symbol, call the CCL program refered by it.
574 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
575 Such special values are regarded as nil, t, and lambda respectively.
6ae21908 576
8146262a 577 Each map is a Lisp vector of the following format (a) or (b):
6ae21908
KH
578 (a)......[STARTPOINT VAL1 VAL2 ...]
579 (b)......[t VAL STARTPOINT ENDPOINT],
580 where
8146262a 581 STARTPOINT is an offset to be used for indexing a map,
9b27b20d 582 ENDPOINT is a maximum index number of a map,
177c0ea7 583 VAL and VALn is a number, nil, t, or lambda.
6ae21908 584
8146262a
KH
585 Valid index range of a map of type (a) is:
586 STARTPOINT <= index < STARTPOINT + map_size - 1
587 Valid index range of a map of type (b) is:
9b27b20d 588 STARTPOINT <= index < ENDPOINT */
6ae21908 589
8146262a 590#define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
6ae21908
KH
591 1:ExtendedCOMMNDXXXRRRrrrXXXXX
592 2:N-2
593 3:SEPARATOR_1 (< 0)
8146262a
KH
594 4:MAP-ID_1
595 5:MAP-ID_2
6ae21908
KH
596 ...
597 M:SEPARATOR_x (< 0)
8146262a 598 M+1:MAP-ID_y
6ae21908
KH
599 ...
600 N:SEPARATOR_z (< 0)
601 */
602
54fa5bc1 603#define MAX_MAP_SET_LEVEL 30
6ae21908
KH
604
605typedef struct
606{
607 int rest_length;
608 int orig_val;
609} tr_stack;
610
8146262a
KH
611static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
612static tr_stack *mapping_stack_pointer;
6ae21908 613
54fa5bc1
KH
614/* If this variable is non-zero, it indicates the stack_idx
615 of immediately called by CCL_MapMultiple. */
be57900b 616static int stack_idx_of_map_multiple;
54fa5bc1
KH
617
618#define PUSH_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
619do \
620 { \
54fa5bc1
KH
621 mapping_stack_pointer->rest_length = (restlen); \
622 mapping_stack_pointer->orig_val = (orig); \
623 mapping_stack_pointer++; \
a89f435d
PJ
624 } \
625while (0)
54fa5bc1
KH
626
627#define POP_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
628do \
629 { \
54fa5bc1
KH
630 mapping_stack_pointer--; \
631 (restlen) = mapping_stack_pointer->rest_length; \
632 (orig) = mapping_stack_pointer->orig_val; \
a89f435d
PJ
633 } \
634while (0)
6ae21908 635
54fa5bc1 636#define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
a89f435d 637do \
0ee1088b 638 { \
54fa5bc1
KH
639 struct ccl_program called_ccl; \
640 if (stack_idx >= 256 \
641 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
642 { \
643 if (stack_idx > 0) \
644 { \
645 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
646 ic = ccl_prog_stack_struct[0].ic; \
9eaa8e65 647 eof_ic = ccl_prog_stack_struct[0].eof_ic; \
54fa5bc1
KH
648 } \
649 CCL_INVALID_CMD; \
650 } \
651 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
652 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
9eaa8e65 653 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \
54fa5bc1
KH
654 stack_idx++; \
655 ccl_prog = called_ccl.prog; \
656 ic = CCL_HEADER_MAIN; \
9eaa8e65 657 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]); \
54fa5bc1 658 goto ccl_repeat; \
0ee1088b 659 } \
a89f435d 660while (0)
6ae21908 661
8146262a 662#define CCL_MapSingle 0x12 /* Map by single code conversion map
6ae21908 663 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a 664 2:MAP-ID
6ae21908 665 ------------------------------
8146262a
KH
666 Map reg[rrr] by MAP-ID.
667 If some valid mapping is found,
6ae21908
KH
668 set reg[rrr] to the result,
669 else
670 set reg[RRR] to -1.
671 */
4ed46869 672
d80dc57e
DL
673#define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
674 integer key. Afterwards R7 set
675 to 1 iff lookup succeeded.
676 1:ExtendedCOMMNDRrrRRRXXXXXXXX
677 2:ARGUMENT(Hash table ID) */
678
679#define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
680 character key. Afterwards R7 set
681 to 1 iff lookup succeeded.
682 1:ExtendedCOMMNDRrrRRRrrrXXXXX
683 2:ARGUMENT(Hash table ID) */
684
4ed46869
KH
685/* CCL arithmetic/logical operators. */
686#define CCL_PLUS 0x00 /* X = Y + Z */
687#define CCL_MINUS 0x01 /* X = Y - Z */
688#define CCL_MUL 0x02 /* X = Y * Z */
689#define CCL_DIV 0x03 /* X = Y / Z */
690#define CCL_MOD 0x04 /* X = Y % Z */
691#define CCL_AND 0x05 /* X = Y & Z */
692#define CCL_OR 0x06 /* X = Y | Z */
693#define CCL_XOR 0x07 /* X = Y ^ Z */
694#define CCL_LSH 0x08 /* X = Y << Z */
695#define CCL_RSH 0x09 /* X = Y >> Z */
696#define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
697#define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
698#define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
699#define CCL_LS 0x10 /* X = (X < Y) */
700#define CCL_GT 0x11 /* X = (X > Y) */
701#define CCL_EQ 0x12 /* X = (X == Y) */
702#define CCL_LE 0x13 /* X = (X <= Y) */
703#define CCL_GE 0x14 /* X = (X >= Y) */
704#define CCL_NE 0x15 /* X = (X != Y) */
705
51520e8a 706#define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
4ed46869 707 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
51520e8a
KH
708#define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
709 r[7] = LOWER_BYTE (SJIS (Y, Z) */
4ed46869 710
4ed46869 711/* Terminate CCL program successfully. */
0ee1088b 712#define CCL_SUCCESS \
a89f435d 713do \
0ee1088b 714 { \
4ed46869 715 ccl->status = CCL_STAT_SUCCESS; \
0ee1088b
KH
716 goto ccl_finish; \
717 } \
a89f435d 718while(0)
4ed46869
KH
719
720/* Suspend CCL program because of reading from empty input buffer or
721 writing to full output buffer. When this program is resumed, the
722 same I/O command is executed. */
e34b1164 723#define CCL_SUSPEND(stat) \
a89f435d 724do \
0ee1088b 725 { \
e34b1164
KH
726 ic--; \
727 ccl->status = stat; \
728 goto ccl_finish; \
0ee1088b 729 } \
a89f435d 730while (0)
4ed46869
KH
731
732/* Terminate CCL program because of invalid command. Should not occur
733 in the normal case. */
9eaa8e65
KH
734#ifndef CCL_DEBUG
735
4ed46869 736#define CCL_INVALID_CMD \
a89f435d 737do \
0ee1088b 738 { \
4ed46869
KH
739 ccl->status = CCL_STAT_INVALID_CMD; \
740 goto ccl_error_handler; \
0ee1088b 741 } \
a89f435d 742while(0)
4ed46869 743
9eaa8e65
KH
744#else
745
4ed46869 746#define CCL_INVALID_CMD \
a89f435d 747do \
0ee1088b 748 { \
9eaa8e65 749 ccl_debug_hook (this_ic); \
4ed46869
KH
750 ccl->status = CCL_STAT_INVALID_CMD; \
751 goto ccl_error_handler; \
0ee1088b 752 } \
a89f435d 753while(0)
4ed46869 754
9eaa8e65
KH
755#endif
756
4ed46869 757/* Encode one character CH to multibyte form and write to the current
887bfbd7 758 output buffer. If CH is less than 256, CH is written as is. */
c10842ea
KH
759#define CCL_WRITE_CHAR(ch) \
760 do { \
761 if (! dst) \
762 CCL_INVALID_CMD; \
763 else if (dst < dst_end) \
764 *dst++ = (ch); \
765 else \
766 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
a8302ba3
KH
767 } while (0)
768
4ed46869
KH
769/* Write a string at ccl_prog[IC] of length LEN to the current output
770 buffer. */
c6589bbd
KH
771#define CCL_WRITE_STRING(len) \
772 do { \
773 int i; \
774 if (!dst) \
775 CCL_INVALID_CMD; \
776 else if (dst + len <= dst_end) \
777 { \
778 if (XFASTINT (ccl_prog[ic]) & 0x1000000) \
779 for (i = 0; i < len; i++) \
780 *dst++ = XFASTINT (ccl_prog[ic + i]) & 0xFFFFFF; \
781 else \
782 for (i = 0; i < len; i++) \
783 *dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
784 >> ((2 - (i % 3)) * 8)) & 0xFF; \
785 } \
786 else \
787 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
4ed46869
KH
788 } while (0)
789
c10842ea
KH
790/* Read one byte from the current input buffer into Rth register. */
791#define CCL_READ_CHAR(r) \
792 do { \
793 if (! src) \
794 CCL_INVALID_CMD; \
795 else if (src < src_end) \
796 r = *src++; \
797 else if (ccl->last_block) \
798 { \
327719ee 799 r = -1; \
c10842ea
KH
800 ic = ccl->eof_ic; \
801 goto ccl_repeat; \
802 } \
803 else \
804 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
805 } while (0)
806
bda731af
KH
807/* Decode CODE by a charset whose id is ID. If ID is 0, return CODE
808 as is for backward compatibility. Assume that we can use the
809 variable `charset'. */
810
811#define CCL_DECODE_CHAR(id, code) \
812 ((id) == 0 ? (code) \
813 : (charset = CHARSET_FROM_ID ((id)), DECODE_CHAR (charset, (code))))
814
bda731af
KH
815/* Encode character C by some of charsets in CHARSET_LIST. Set ID to
816 the id of the used charset, ENCODED to the resulf of encoding.
817 Assume that we can use the variable `charset'. */
818
8f924df7 819#define CCL_ENCODE_CHAR(c, charset_list, id, encoded) \
4ffd4870 820 do { \
8f924df7 821 unsigned code; \
4ffd4870 822 \
8f924df7
KH
823 charset = char_charset ((c), (charset_list), &code); \
824 if (! charset && ! NILP (charset_list)) \
825 charset = char_charset ((c), Qnil, &code); \
826 if (charset) \
827 { \
828 (id) = CHARSET_ID (charset); \
829 (encoded) = code; \
4ffd4870 830 } \
8f924df7 831 } while (0)
4ffd4870 832
c10842ea
KH
833/* Execute CCL code on characters at SOURCE (length SRC_SIZE). The
834 resulting text goes to a place pointed by DESTINATION, the length
835 of which should not exceed DST_SIZE. As a side effect, how many
836 characters are consumed and produced are recorded in CCL->consumed
837 and CCL->produced, and the contents of CCL registers are updated.
838 If SOURCE or DESTINATION is NULL, only operations on registers are
839 permitted. */
4ed46869
KH
840
841#ifdef CCL_DEBUG
842#define CCL_DEBUG_BACKTRACE_LEN 256
f9bd23fd 843int ccl_backtrace_table[CCL_DEBUG_BACKTRACE_LEN];
4ed46869 844int ccl_backtrace_idx;
9eaa8e65
KH
845
846int
847ccl_debug_hook (int ic)
848{
849 return ic;
850}
851
4ed46869
KH
852#endif
853
854struct ccl_prog_stack
855 {
a9f1cc19 856 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
4ed46869 857 int ic; /* Instruction Counter. */
9eaa8e65 858 int eof_ic; /* Instruction Counter to jump on EOF. */
4ed46869
KH
859 };
860
177c0ea7 861/* For the moment, we only support depth 256 of stack. */
c13362d8
KH
862static struct ccl_prog_stack ccl_prog_stack_struct[256];
863
c10842ea 864void
bda731af 865ccl_driver (ccl, source, destination, src_size, dst_size, charset_list)
4ed46869 866 struct ccl_program *ccl;
c10842ea
KH
867 int *source, *destination;
868 int src_size, dst_size;
bda731af 869 Lisp_Object charset_list;
4ed46869
KH
870{
871 register int *reg = ccl->reg;
872 register int ic = ccl->ic;
8a1ae4dd 873 register int code = 0, field1, field2;
e995085f 874 register Lisp_Object *ccl_prog = ccl->prog;
c10842ea
KH
875 int *src = source, *src_end = src + src_size;
876 int *dst = destination, *dst_end = dst + dst_size;
4ed46869 877 int jump_address;
8a1ae4dd 878 int i = 0, j, op;
c13362d8 879 int stack_idx = ccl->stack_idx;
519bf146 880 /* Instruction counter of the current CCL code. */
8a1ae4dd 881 int this_ic = 0;
c10842ea 882 struct charset *charset;
9eaa8e65
KH
883 int eof_ic = ccl->eof_ic;
884 int eof_hit = 0;
4ed46869 885
9eaa8e65 886 if (ic >= eof_ic)
4ed46869
KH
887 ic = CCL_HEADER_MAIN;
888
c10842ea 889 if (ccl->buf_magnification == 0) /* We can't read/produce any bytes. */
12abd7d1
KH
890 dst = NULL;
891
54fa5bc1
KH
892 /* Set mapping stack pointer. */
893 mapping_stack_pointer = mapping_stack;
894
4ed46869
KH
895#ifdef CCL_DEBUG
896 ccl_backtrace_idx = 0;
897#endif
898
899 for (;;)
900 {
4ccd0d4a 901 ccl_repeat:
4ed46869
KH
902#ifdef CCL_DEBUG
903 ccl_backtrace_table[ccl_backtrace_idx++] = ic;
904 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
905 ccl_backtrace_idx = 0;
906 ccl_backtrace_table[ccl_backtrace_idx] = 0;
907#endif
908
909 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
910 {
911 /* We can't just signal Qquit, instead break the loop as if
912 the whole data is processed. Don't reset Vquit_flag, it
913 must be handled later at a safer place. */
c10842ea
KH
914 if (src)
915 src = source + src_size;
4ed46869
KH
916 ccl->status = CCL_STAT_QUIT;
917 break;
918 }
919
519bf146 920 this_ic = ic;
4ed46869
KH
921 code = XINT (ccl_prog[ic]); ic++;
922 field1 = code >> 8;
923 field2 = (code & 0xFF) >> 5;
924
925#define rrr field2
926#define RRR (field1 & 7)
927#define Rrr ((field1 >> 3) & 7)
928#define ADDR field1
e34b1164 929#define EXCMD (field1 >> 6)
4ed46869
KH
930
931 switch (code & 0x1F)
932 {
933 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
934 reg[rrr] = reg[RRR];
935 break;
936
937 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
938 reg[rrr] = field1;
939 break;
940
941 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
942 reg[rrr] = XINT (ccl_prog[ic]);
943 ic++;
944 break;
945
946 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
947 i = reg[RRR];
948 j = field1 >> 3;
949 if ((unsigned int) i < j)
950 reg[rrr] = XINT (ccl_prog[ic + i]);
951 ic += j;
952 break;
953
954 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
955 ic += ADDR;
956 break;
957
958 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
959 if (!reg[rrr])
960 ic += ADDR;
961 break;
962
963 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
964 i = reg[rrr];
965 CCL_WRITE_CHAR (i);
966 ic += ADDR;
967 break;
968
969 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
970 i = reg[rrr];
971 CCL_WRITE_CHAR (i);
972 ic++;
973 CCL_READ_CHAR (reg[rrr]);
974 ic += ADDR - 1;
975 break;
976
977 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
978 i = XINT (ccl_prog[ic]);
979 CCL_WRITE_CHAR (i);
980 ic += ADDR;
981 break;
982
983 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
984 i = XINT (ccl_prog[ic]);
985 CCL_WRITE_CHAR (i);
986 ic++;
987 CCL_READ_CHAR (reg[rrr]);
988 ic += ADDR - 1;
989 break;
990
991 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
992 j = XINT (ccl_prog[ic]);
993 ic++;
994 CCL_WRITE_STRING (j);
995 ic += ADDR - 1;
996 break;
997
998 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
999 i = reg[rrr];
2e34157c 1000 j = XINT (ccl_prog[ic]);
4ed46869
KH
1001 if ((unsigned int) i < j)
1002 {
887bfbd7 1003 i = XINT (ccl_prog[ic + 1 + i]);
4ed46869
KH
1004 CCL_WRITE_CHAR (i);
1005 }
887bfbd7 1006 ic += j + 2;
4ed46869
KH
1007 CCL_READ_CHAR (reg[rrr]);
1008 ic += ADDR - (j + 2);
1009 break;
1010
1011 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
1012 CCL_READ_CHAR (reg[rrr]);
1013 ic += ADDR;
1014 break;
1015
1016 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1017 CCL_READ_CHAR (reg[rrr]);
1018 /* fall through ... */
1019 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1020 if ((unsigned int) reg[rrr] < field1)
1021 ic += XINT (ccl_prog[ic + reg[rrr]]);
1022 else
1023 ic += XINT (ccl_prog[ic + field1]);
1024 break;
1025
1026 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1027 while (1)
1028 {
1029 CCL_READ_CHAR (reg[rrr]);
1030 if (!field1) break;
1031 code = XINT (ccl_prog[ic]); ic++;
1032 field1 = code >> 8;
1033 field2 = (code & 0xFF) >> 5;
1034 }
1035 break;
1036
1037 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
1038 rrr = 7;
1039 i = reg[RRR];
1040 j = XINT (ccl_prog[ic]);
1041 op = field1 >> 6;
25660570 1042 jump_address = ic + 1;
4ed46869
KH
1043 goto ccl_set_expr;
1044
1045 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1046 while (1)
1047 {
1048 i = reg[rrr];
1049 CCL_WRITE_CHAR (i);
1050 if (!field1) break;
1051 code = XINT (ccl_prog[ic]); ic++;
1052 field1 = code >> 8;
1053 field2 = (code & 0xFF) >> 5;
1054 }
1055 break;
1056
1057 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
1058 rrr = 7;
1059 i = reg[RRR];
1060 j = reg[Rrr];
1061 op = field1 >> 6;
25660570 1062 jump_address = ic;
4ed46869
KH
1063 goto ccl_set_expr;
1064
5232fa7b 1065 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
4ed46869
KH
1066 {
1067 Lisp_Object slot;
5232fa7b
KH
1068 int prog_id;
1069
1070 /* If FFF is nonzero, the CCL program ID is in the
1071 following code. */
1072 if (rrr)
1073 {
1074 prog_id = XINT (ccl_prog[ic]);
1075 ic++;
1076 }
1077 else
1078 prog_id = field1;
4ed46869
KH
1079
1080 if (stack_idx >= 256
5232fa7b 1081 || prog_id < 0
64ef2921
SM
1082 || prog_id >= ASIZE (Vccl_program_table)
1083 || (slot = AREF (Vccl_program_table, prog_id), !VECTORP (slot))
1084 || !VECTORP (AREF (slot, 1)))
4ed46869
KH
1085 {
1086 if (stack_idx > 0)
1087 {
1088 ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
1089 ic = ccl_prog_stack_struct[0].ic;
9eaa8e65 1090 eof_ic = ccl_prog_stack_struct[0].eof_ic;
4ed46869
KH
1091 }
1092 CCL_INVALID_CMD;
1093 }
177c0ea7 1094
4ed46869
KH
1095 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
1096 ccl_prog_stack_struct[stack_idx].ic = ic;
9eaa8e65 1097 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic;
4ed46869 1098 stack_idx++;
64ef2921 1099 ccl_prog = XVECTOR (AREF (slot, 1))->contents;
4ed46869 1100 ic = CCL_HEADER_MAIN;
9eaa8e65 1101 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]);
4ed46869
KH
1102 }
1103 break;
1104
1105 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1106 if (!rrr)
1107 CCL_WRITE_CHAR (field1);
1108 else
1109 {
1110 CCL_WRITE_STRING (field1);
1111 ic += (field1 + 2) / 3;
1112 }
1113 break;
1114
1115 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1116 i = reg[rrr];
1117 if ((unsigned int) i < field1)
1118 {
1119 j = XINT (ccl_prog[ic + i]);
1120 CCL_WRITE_CHAR (j);
1121 }
1122 ic += field1;
1123 break;
1124
1125 case CCL_End: /* 0000000000000000000000XXXXX */
d3a478e2 1126 if (stack_idx > 0)
4ed46869 1127 {
d3a478e2 1128 stack_idx--;
4ed46869
KH
1129 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
1130 ic = ccl_prog_stack_struct[stack_idx].ic;
9eaa8e65
KH
1131 eof_ic = ccl_prog_stack_struct[stack_idx].eof_ic;
1132 if (eof_hit)
1133 ic = eof_ic;
4ed46869
KH
1134 break;
1135 }
ad3d1b1d
KH
1136 if (src)
1137 src = src_end;
1138 /* ccl->ic should points to this command code again to
1139 suppress further processing. */
1140 ic--;
4ed46869
KH
1141 CCL_SUCCESS;
1142
1143 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
1144 i = XINT (ccl_prog[ic]);
1145 ic++;
1146 op = field1 >> 6;
1147 goto ccl_expr_self;
1148
1149 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
1150 i = reg[RRR];
1151 op = field1 >> 6;
1152
1153 ccl_expr_self:
1154 switch (op)
1155 {
1156 case CCL_PLUS: reg[rrr] += i; break;
1157 case CCL_MINUS: reg[rrr] -= i; break;
1158 case CCL_MUL: reg[rrr] *= i; break;
1159 case CCL_DIV: reg[rrr] /= i; break;
1160 case CCL_MOD: reg[rrr] %= i; break;
1161 case CCL_AND: reg[rrr] &= i; break;
1162 case CCL_OR: reg[rrr] |= i; break;
1163 case CCL_XOR: reg[rrr] ^= i; break;
1164 case CCL_LSH: reg[rrr] <<= i; break;
1165 case CCL_RSH: reg[rrr] >>= i; break;
1166 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
1167 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
1168 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
1169 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
1170 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
1171 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
1172 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
1173 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
1174 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
1175 default: CCL_INVALID_CMD;
1176 }
1177 break;
1178
1179 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
1180 i = reg[RRR];
1181 j = XINT (ccl_prog[ic]);
1182 op = field1 >> 6;
1183 jump_address = ++ic;
1184 goto ccl_set_expr;
1185
1186 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
1187 i = reg[RRR];
1188 j = reg[Rrr];
1189 op = field1 >> 6;
1190 jump_address = ic;
1191 goto ccl_set_expr;
1192
1193 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1194 CCL_READ_CHAR (reg[rrr]);
1195 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1196 i = reg[rrr];
1197 op = XINT (ccl_prog[ic]);
1198 jump_address = ic++ + ADDR;
1199 j = XINT (ccl_prog[ic]);
1200 ic++;
1201 rrr = 7;
1202 goto ccl_set_expr;
1203
1204 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
1205 CCL_READ_CHAR (reg[rrr]);
1206 case CCL_JumpCondExprReg:
1207 i = reg[rrr];
1208 op = XINT (ccl_prog[ic]);
1209 jump_address = ic++ + ADDR;
1210 j = reg[XINT (ccl_prog[ic])];
1211 ic++;
1212 rrr = 7;
1213
1214 ccl_set_expr:
1215 switch (op)
1216 {
1217 case CCL_PLUS: reg[rrr] = i + j; break;
1218 case CCL_MINUS: reg[rrr] = i - j; break;
1219 case CCL_MUL: reg[rrr] = i * j; break;
1220 case CCL_DIV: reg[rrr] = i / j; break;
1221 case CCL_MOD: reg[rrr] = i % j; break;
1222 case CCL_AND: reg[rrr] = i & j; break;
1223 case CCL_OR: reg[rrr] = i | j; break;
1224 case CCL_XOR: reg[rrr] = i ^ j;; break;
1225 case CCL_LSH: reg[rrr] = i << j; break;
1226 case CCL_RSH: reg[rrr] = i >> j; break;
1227 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
1228 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
1229 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
1230 case CCL_LS: reg[rrr] = i < j; break;
1231 case CCL_GT: reg[rrr] = i > j; break;
1232 case CCL_EQ: reg[rrr] = i == j; break;
1233 case CCL_LE: reg[rrr] = i <= j; break;
1234 case CCL_GE: reg[rrr] = i >= j; break;
1235 case CCL_NE: reg[rrr] = i != j; break;
c10842ea
KH
1236 case CCL_DECODE_SJIS:
1237 {
1238 i = (i << 8) | j;
1239 SJIS_TO_JIS (i);
1240 reg[rrr] = i >> 8;
1241 reg[7] = i & 0xFF;
1242 break;
1243 }
1244 case CCL_ENCODE_SJIS:
1245 {
1246 i = (i << 8) | j;
1247 JIS_TO_SJIS (i);
1248 reg[rrr] = i >> 8;
1249 reg[7] = i & 0xFF;
1250 break;
1251 }
4ed46869
KH
1252 default: CCL_INVALID_CMD;
1253 }
1254 code &= 0x1F;
1255 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
1256 {
1257 i = reg[rrr];
1258 CCL_WRITE_CHAR (i);
25660570 1259 ic = jump_address;
4ed46869
KH
1260 }
1261 else if (!reg[rrr])
1262 ic = jump_address;
1263 break;
1264
450ed226 1265 case CCL_Extension:
e34b1164
KH
1266 switch (EXCMD)
1267 {
6ae21908 1268 case CCL_ReadMultibyteChar2:
e34b1164
KH
1269 if (!src)
1270 CCL_INVALID_CMD;
c10842ea 1271 CCL_READ_CHAR (i);
bda731af 1272 CCL_ENCODE_CHAR (i, charset_list, reg[RRR], reg[rrr]);
e34b1164
KH
1273 break;
1274
6ae21908 1275 case CCL_WriteMultibyteChar2:
c10842ea
KH
1276 if (! dst)
1277 CCL_INVALID_CMD;
bda731af 1278 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
c10842ea 1279 CCL_WRITE_CHAR (i);
e34b1164
KH
1280 break;
1281
8146262a 1282 case CCL_TranslateCharacter:
bda731af 1283 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
c10842ea 1284 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), i);
bda731af 1285 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
e34b1164
KH
1286 break;
1287
8146262a 1288 case CCL_TranslateCharacterConstTbl:
e34b1164
KH
1289 op = XINT (ccl_prog[ic]); /* table */
1290 ic++;
bda731af 1291 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
c10842ea 1292 op = translate_char (GET_TRANSLATION_TABLE (op), i);
bda731af 1293 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
e34b1164
KH
1294 break;
1295
d80dc57e
DL
1296 case CCL_LookupIntConstTbl:
1297 op = XINT (ccl_prog[ic]); /* table */
1298 ic++;
177c0ea7 1299 {
d80dc57e
DL
1300 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
1301
1302 op = hash_lookup (h, make_number (reg[RRR]), NULL);
1303 if (op >= 0)
1304 {
f9bd23fd
DL
1305 Lisp_Object opl;
1306 opl = HASH_VALUE (h, op);
0bc6bafd 1307 if (! CHARACTERP (opl))
d80dc57e 1308 CCL_INVALID_CMD;
bda731af
KH
1309 reg[RRR] = charset_unicode;
1310 reg[rrr] = op;
d80dc57e
DL
1311 reg[7] = 1; /* r7 true for success */
1312 }
1313 else
1314 reg[7] = 0;
1315 }
1316 break;
1317
1318 case CCL_LookupCharConstTbl:
1319 op = XINT (ccl_prog[ic]); /* table */
1320 ic++;
bda731af 1321 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
177c0ea7 1322 {
d80dc57e
DL
1323 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
1324
1325 op = hash_lookup (h, make_number (i), NULL);
1326 if (op >= 0)
1327 {
f9bd23fd
DL
1328 Lisp_Object opl;
1329 opl = HASH_VALUE (h, op);
1330 if (!INTEGERP (opl))
d80dc57e 1331 CCL_INVALID_CMD;
f9bd23fd 1332 reg[RRR] = XINT (opl);
d80dc57e
DL
1333 reg[7] = 1; /* r7 true for success */
1334 }
1335 else
1336 reg[7] = 0;
1337 }
1338 break;
1339
e34b1164
KH
1340 case CCL_IterateMultipleMap:
1341 {
8146262a 1342 Lisp_Object map, content, attrib, value;
e34b1164
KH
1343 int point, size, fin_ic;
1344
8146262a 1345 j = XINT (ccl_prog[ic++]); /* number of maps. */
e34b1164
KH
1346 fin_ic = ic + j;
1347 op = reg[rrr];
1348 if ((j > reg[RRR]) && (j >= 0))
1349 {
1350 ic += reg[RRR];
1351 i = reg[RRR];
1352 }
1353 else
1354 {
1355 reg[RRR] = -1;
1356 ic = fin_ic;
1357 break;
1358 }
1359
1360 for (;i < j;i++)
1361 {
1362
64ef2921 1363 size = ASIZE (Vcode_conversion_map_vector);
d387866a 1364 point = XINT (ccl_prog[ic++]);
e34b1164 1365 if (point >= size) continue;
64ef2921 1366 map = AREF (Vcode_conversion_map_vector, point);
8146262a
KH
1367
1368 /* Check map varidity. */
1369 if (!CONSP (map)) continue;
03699b14 1370 map = XCDR (map);
8146262a 1371 if (!VECTORP (map)) continue;
64ef2921 1372 size = ASIZE (map);
e34b1164 1373 if (size <= 1) continue;
6ae21908 1374
64ef2921 1375 content = AREF (map, 0);
6ae21908 1376
8146262a 1377 /* check map type,
6ae21908
KH
1378 [STARTPOINT VAL1 VAL2 ...] or
1379 [t ELELMENT STARTPOINT ENDPOINT] */
1380 if (NUMBERP (content))
1381 {
1382 point = XUINT (content);
1383 point = op - point + 1;
1384 if (!((point >= 1) && (point < size))) continue;
64ef2921 1385 content = AREF (map, point);
6ae21908
KH
1386 }
1387 else if (EQ (content, Qt))
1388 {
1389 if (size != 4) continue;
64ef2921
SM
1390 if ((op >= XUINT (AREF (map, 2)))
1391 && (op < XUINT (AREF (map, 3))))
1392 content = AREF (map, 1);
6ae21908
KH
1393 else
1394 continue;
1395 }
177c0ea7 1396 else
6ae21908 1397 continue;
e34b1164
KH
1398
1399 if (NILP (content))
1400 continue;
1401 else if (NUMBERP (content))
1402 {
1403 reg[RRR] = i;
6ae21908 1404 reg[rrr] = XINT(content);
e34b1164
KH
1405 break;
1406 }
1407 else if (EQ (content, Qt) || EQ (content, Qlambda))
1408 {
1409 reg[RRR] = i;
1410 break;
1411 }
1412 else if (CONSP (content))
1413 {
03699b14
KR
1414 attrib = XCAR (content);
1415 value = XCDR (content);
e34b1164
KH
1416 if (!NUMBERP (attrib) || !NUMBERP (value))
1417 continue;
1418 reg[RRR] = i;
6ae21908 1419 reg[rrr] = XUINT (value);
e34b1164
KH
1420 break;
1421 }
54fa5bc1
KH
1422 else if (SYMBOLP (content))
1423 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
1424 else
1425 CCL_INVALID_CMD;
e34b1164
KH
1426 }
1427 if (i == j)
1428 reg[RRR] = -1;
1429 ic = fin_ic;
1430 }
1431 break;
177c0ea7 1432
8146262a 1433 case CCL_MapMultiple:
e34b1164 1434 {
8146262a
KH
1435 Lisp_Object map, content, attrib, value;
1436 int point, size, map_vector_size;
1437 int map_set_rest_length, fin_ic;
54fa5bc1
KH
1438 int current_ic = this_ic;
1439
1440 /* inhibit recursive call on MapMultiple. */
1441 if (stack_idx_of_map_multiple > 0)
1442 {
1443 if (stack_idx_of_map_multiple <= stack_idx)
1444 {
1445 stack_idx_of_map_multiple = 0;
1446 mapping_stack_pointer = mapping_stack;
1447 CCL_INVALID_CMD;
1448 }
1449 }
1450 else
1451 mapping_stack_pointer = mapping_stack;
1452 stack_idx_of_map_multiple = 0;
8146262a
KH
1453
1454 map_set_rest_length =
1455 XINT (ccl_prog[ic++]); /* number of maps and separators. */
1456 fin_ic = ic + map_set_rest_length;
54fa5bc1
KH
1457 op = reg[rrr];
1458
8146262a 1459 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
e34b1164
KH
1460 {
1461 ic += reg[RRR];
1462 i = reg[RRR];
8146262a 1463 map_set_rest_length -= i;
e34b1164
KH
1464 }
1465 else
1466 {
1467 ic = fin_ic;
1468 reg[RRR] = -1;
54fa5bc1 1469 mapping_stack_pointer = mapping_stack;
e34b1164
KH
1470 break;
1471 }
6ae21908 1472
54fa5bc1
KH
1473 if (mapping_stack_pointer <= (mapping_stack + 1))
1474 {
1475 /* Set up initial state. */
1476 mapping_stack_pointer = mapping_stack;
1477 PUSH_MAPPING_STACK (0, op);
1478 reg[RRR] = -1;
1479 }
1480 else
1481 {
1482 /* Recover after calling other ccl program. */
1483 int orig_op;
e34b1164 1484
54fa5bc1
KH
1485 POP_MAPPING_STACK (map_set_rest_length, orig_op);
1486 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1487 switch (op)
e34b1164 1488 {
54fa5bc1
KH
1489 case -1:
1490 /* Regard it as Qnil. */
1491 op = orig_op;
1492 i++;
1493 ic++;
1494 map_set_rest_length--;
1495 break;
1496 case -2:
1497 /* Regard it as Qt. */
e34b1164 1498 op = reg[rrr];
54fa5bc1
KH
1499 i++;
1500 ic++;
1501 map_set_rest_length--;
1502 break;
1503 case -3:
1504 /* Regard it as Qlambda. */
1505 op = orig_op;
1506 i += map_set_rest_length;
1507 ic += map_set_rest_length;
1508 map_set_rest_length = 0;
1509 break;
1510 default:
1511 /* Regard it as normal mapping. */
8146262a 1512 i += map_set_rest_length;
54fa5bc1 1513 ic += map_set_rest_length;
8146262a 1514 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
6ae21908
KH
1515 break;
1516 }
e34b1164 1517 }
64ef2921 1518 map_vector_size = ASIZE (Vcode_conversion_map_vector);
177c0ea7 1519
54fa5bc1
KH
1520 do {
1521 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
1522 {
1523 point = XINT(ccl_prog[ic]);
1524 if (point < 0)
1525 {
1526 /* +1 is for including separator. */
1527 point = -point + 1;
1528 if (mapping_stack_pointer
1529 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1530 CCL_INVALID_CMD;
1531 PUSH_MAPPING_STACK (map_set_rest_length - point,
1532 reg[rrr]);
1533 map_set_rest_length = point;
1534 reg[rrr] = op;
1535 continue;
1536 }
1537
1538 if (point >= map_vector_size) continue;
64ef2921 1539 map = AREF (Vcode_conversion_map_vector, point);
54fa5bc1
KH
1540
1541 /* Check map varidity. */
1542 if (!CONSP (map)) continue;
1543 map = XCDR (map);
1544 if (!VECTORP (map)) continue;
64ef2921 1545 size = ASIZE (map);
54fa5bc1
KH
1546 if (size <= 1) continue;
1547
64ef2921 1548 content = AREF (map, 0);
54fa5bc1
KH
1549
1550 /* check map type,
1551 [STARTPOINT VAL1 VAL2 ...] or
1552 [t ELEMENT STARTPOINT ENDPOINT] */
1553 if (NUMBERP (content))
1554 {
1555 point = XUINT (content);
1556 point = op - point + 1;
1557 if (!((point >= 1) && (point < size))) continue;
64ef2921 1558 content = AREF (map, point);
54fa5bc1
KH
1559 }
1560 else if (EQ (content, Qt))
1561 {
1562 if (size != 4) continue;
64ef2921
SM
1563 if ((op >= XUINT (AREF (map, 2))) &&
1564 (op < XUINT (AREF (map, 3))))
1565 content = AREF (map, 1);
54fa5bc1
KH
1566 else
1567 continue;
1568 }
177c0ea7 1569 else
54fa5bc1
KH
1570 continue;
1571
1572 if (NILP (content))
1573 continue;
1574
1575 reg[RRR] = i;
1576 if (NUMBERP (content))
1577 {
1578 op = XINT (content);
1579 i += map_set_rest_length - 1;
1580 ic += map_set_rest_length - 1;
1581 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1582 map_set_rest_length++;
1583 }
1584 else if (CONSP (content))
1585 {
1586 attrib = XCAR (content);
1587 value = XCDR (content);
1588 if (!NUMBERP (attrib) || !NUMBERP (value))
1589 continue;
1590 op = XUINT (value);
1591 i += map_set_rest_length - 1;
1592 ic += map_set_rest_length - 1;
1593 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1594 map_set_rest_length++;
1595 }
1596 else if (EQ (content, Qt))
1597 {
1598 op = reg[rrr];
1599 }
1600 else if (EQ (content, Qlambda))
1601 {
1602 i += map_set_rest_length;
1603 ic += map_set_rest_length;
1604 break;
1605 }
1606 else if (SYMBOLP (content))
1607 {
1608 if (mapping_stack_pointer
1609 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1610 CCL_INVALID_CMD;
1611 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1612 PUSH_MAPPING_STACK (map_set_rest_length, op);
1613 stack_idx_of_map_multiple = stack_idx + 1;
1614 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
1615 }
1616 else
1617 CCL_INVALID_CMD;
1618 }
1619 if (mapping_stack_pointer <= (mapping_stack + 1))
1620 break;
1621 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1622 i += map_set_rest_length;
1623 ic += map_set_rest_length;
1624 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1625 } while (1);
1626
e34b1164
KH
1627 ic = fin_ic;
1628 }
1629 reg[rrr] = op;
1630 break;
1631
8146262a 1632 case CCL_MapSingle:
e34b1164 1633 {
8146262a 1634 Lisp_Object map, attrib, value, content;
e34b1164 1635 int size, point;
8146262a 1636 j = XINT (ccl_prog[ic++]); /* map_id */
e34b1164 1637 op = reg[rrr];
64ef2921 1638 if (j >= ASIZE (Vcode_conversion_map_vector))
e34b1164
KH
1639 {
1640 reg[RRR] = -1;
1641 break;
1642 }
64ef2921 1643 map = AREF (Vcode_conversion_map_vector, j);
8146262a 1644 if (!CONSP (map))
e34b1164
KH
1645 {
1646 reg[RRR] = -1;
1647 break;
1648 }
03699b14 1649 map = XCDR (map);
8146262a 1650 if (!VECTORP (map))
e34b1164
KH
1651 {
1652 reg[RRR] = -1;
1653 break;
1654 }
64ef2921
SM
1655 size = ASIZE (map);
1656 point = XUINT (AREF (map, 0));
e34b1164
KH
1657 point = op - point + 1;
1658 reg[RRR] = 0;
1659 if ((size <= 1) ||
1660 (!((point >= 1) && (point < size))))
1661 reg[RRR] = -1;
1662 else
1663 {
b1cab202 1664 reg[RRR] = 0;
64ef2921 1665 content = AREF (map, point);
e34b1164
KH
1666 if (NILP (content))
1667 reg[RRR] = -1;
1668 else if (NUMBERP (content))
6ae21908 1669 reg[rrr] = XINT (content);
b1cab202 1670 else if (EQ (content, Qt));
e34b1164
KH
1671 else if (CONSP (content))
1672 {
03699b14
KR
1673 attrib = XCAR (content);
1674 value = XCDR (content);
e34b1164
KH
1675 if (!NUMBERP (attrib) || !NUMBERP (value))
1676 continue;
1677 reg[rrr] = XUINT(value);
1678 break;
1679 }
54fa5bc1
KH
1680 else if (SYMBOLP (content))
1681 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
e34b1164
KH
1682 else
1683 reg[RRR] = -1;
1684 }
1685 }
1686 break;
177c0ea7 1687
e34b1164
KH
1688 default:
1689 CCL_INVALID_CMD;
1690 }
1691 break;
1692
4ed46869
KH
1693 default:
1694 CCL_INVALID_CMD;
1695 }
1696 }
1697
1698 ccl_error_handler:
0fb94c7f
EZ
1699 /* The suppress_error member is set when e.g. a CCL-based coding
1700 system is used for terminal output. */
1701 if (!ccl->suppress_error && destination)
4ed46869
KH
1702 {
1703 /* We can insert an error message only if DESTINATION is
1704 specified and we still have a room to store the message
1705 there. */
1706 char msg[256];
1707 int msglen;
1708
12abd7d1
KH
1709 if (!dst)
1710 dst = destination;
1711
4ed46869
KH
1712 switch (ccl->status)
1713 {
1714 case CCL_STAT_INVALID_CMD:
1715 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
519bf146 1716 code & 0x1F, code, this_ic);
4ed46869
KH
1717#ifdef CCL_DEBUG
1718 {
1719 int i = ccl_backtrace_idx - 1;
1720 int j;
1721
1722 msglen = strlen (msg);
12abd7d1 1723 if (dst + msglen <= (dst_bytes ? dst_end : src))
4ed46869
KH
1724 {
1725 bcopy (msg, dst, msglen);
1726 dst += msglen;
1727 }
1728
1729 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
1730 {
1731 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
1732 if (ccl_backtrace_table[i] == 0)
1733 break;
1734 sprintf(msg, " %d", ccl_backtrace_table[i]);
1735 msglen = strlen (msg);
12abd7d1 1736 if (dst + msglen > (dst_bytes ? dst_end : src))
4ed46869
KH
1737 break;
1738 bcopy (msg, dst, msglen);
1739 dst += msglen;
1740 }
12abd7d1 1741 goto ccl_finish;
4ed46869 1742 }
4ed46869 1743#endif
12abd7d1 1744 break;
4ed46869
KH
1745
1746 case CCL_STAT_QUIT:
1747 sprintf(msg, "\nCCL: Quited.");
1748 break;
1749
1750 default:
6b61353c 1751 sprintf(msg, "\nCCL: Unknown error type (%d)", ccl->status);
4ed46869
KH
1752 }
1753
1754 msglen = strlen (msg);
c10842ea 1755 if (dst + msglen <= dst_end)
4ed46869 1756 {
c10842ea
KH
1757 for (i = 0; i < msglen; i++)
1758 *dst++ = msg[i];
4ed46869 1759 }
177c0ea7 1760
31165028
KH
1761 if (ccl->status == CCL_STAT_INVALID_CMD)
1762 {
8a1ae4dd
GM
1763#if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1764 results in an invalid multibyte sequence. */
1765
31165028
KH
1766 /* Copy the remaining source data. */
1767 int i = src_end - src;
1768 if (dst_bytes && (dst_end - dst) < i)
1769 i = dst_end - dst;
1770 bcopy (src, dst, i);
1771 src += i;
1772 dst += i;
8a1ae4dd
GM
1773#else
1774 /* Signal that we've consumed everything. */
1775 src = src_end;
1776#endif
31165028 1777 }
4ed46869
KH
1778 }
1779
1780 ccl_finish:
1781 ccl->ic = ic;
c13362d8
KH
1782 ccl->stack_idx = stack_idx;
1783 ccl->prog = ccl_prog;
c10842ea
KH
1784 ccl->consumed = src - source;
1785 ccl->produced = dst - destination;
4ed46869
KH
1786}
1787
5232fa7b
KH
1788/* Resolve symbols in the specified CCL code (Lisp vector). This
1789 function converts symbols of code conversion maps and character
1790 translation tables embeded in the CCL code into their ID numbers.
1791
1792 The return value is a vector (CCL itself or a new vector in which
1793 all symbols are resolved), Qt if resolving of some symbol failed,
1794 or nil if CCL contains invalid data. */
1795
1796static Lisp_Object
1797resolve_symbol_ccl_program (ccl)
1798 Lisp_Object ccl;
1799{
1800 int i, veclen, unresolved = 0;
1801 Lisp_Object result, contents, val;
1802
1803 result = ccl;
64ef2921 1804 veclen = ASIZE (result);
5232fa7b
KH
1805
1806 for (i = 0; i < veclen; i++)
1807 {
64ef2921 1808 contents = AREF (result, i);
5232fa7b
KH
1809 if (INTEGERP (contents))
1810 continue;
1811 else if (CONSP (contents)
03699b14
KR
1812 && SYMBOLP (XCAR (contents))
1813 && SYMBOLP (XCDR (contents)))
5232fa7b
KH
1814 {
1815 /* This is the new style for embedding symbols. The form is
1816 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1817 an index number. */
1818
1819 if (EQ (result, ccl))
1820 result = Fcopy_sequence (ccl);
1821
03699b14 1822 val = Fget (XCAR (contents), XCDR (contents));
5232fa7b 1823 if (NATNUMP (val))
64ef2921 1824 AREF (result, i) = val;
5232fa7b
KH
1825 else
1826 unresolved = 1;
1827 continue;
1828 }
1829 else if (SYMBOLP (contents))
1830 {
1831 /* This is the old style for embedding symbols. This style
1832 may lead to a bug if, for instance, a translation table
1833 and a code conversion map have the same name. */
1834 if (EQ (result, ccl))
1835 result = Fcopy_sequence (ccl);
1836
1837 val = Fget (contents, Qtranslation_table_id);
1838 if (NATNUMP (val))
64ef2921 1839 AREF (result, i) = val;
5232fa7b
KH
1840 else
1841 {
1842 val = Fget (contents, Qcode_conversion_map_id);
1843 if (NATNUMP (val))
64ef2921 1844 AREF (result, i) = val;
5232fa7b
KH
1845 else
1846 {
1847 val = Fget (contents, Qccl_program_idx);
1848 if (NATNUMP (val))
64ef2921 1849 AREF (result, i) = val;
5232fa7b
KH
1850 else
1851 unresolved = 1;
1852 }
1853 }
1854 continue;
1855 }
1856 return Qnil;
1857 }
1858
1859 return (unresolved ? Qt : result);
1860}
1861
1862/* Return the compiled code (vector) of CCL program CCL_PROG.
1863 CCL_PROG is a name (symbol) of the program or already compiled
1864 code. If necessary, resolve symbols in the compiled code to index
1865 numbers. If we failed to get the compiled code or to resolve
1866 symbols, return Qnil. */
1867
1868static Lisp_Object
2a69c66e 1869ccl_get_compiled_code (ccl_prog, idx)
5232fa7b 1870 Lisp_Object ccl_prog;
2a69c66e 1871 int *idx;
5232fa7b
KH
1872{
1873 Lisp_Object val, slot;
1874
1875 if (VECTORP (ccl_prog))
1876 {
1877 val = resolve_symbol_ccl_program (ccl_prog);
2a69c66e 1878 *idx = -1;
5232fa7b
KH
1879 return (VECTORP (val) ? val : Qnil);
1880 }
1881 if (!SYMBOLP (ccl_prog))
1882 return Qnil;
1883
1884 val = Fget (ccl_prog, Qccl_program_idx);
1885 if (! NATNUMP (val)
64ef2921 1886 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 1887 return Qnil;
64ef2921 1888 slot = AREF (Vccl_program_table, XINT (val));
5232fa7b 1889 if (! VECTORP (slot)
2a69c66e 1890 || ASIZE (slot) != 4
64ef2921 1891 || ! VECTORP (AREF (slot, 1)))
5232fa7b 1892 return Qnil;
2a69c66e 1893 *idx = XINT (val);
64ef2921 1894 if (NILP (AREF (slot, 2)))
5232fa7b 1895 {
64ef2921 1896 val = resolve_symbol_ccl_program (AREF (slot, 1));
5232fa7b
KH
1897 if (! VECTORP (val))
1898 return Qnil;
64ef2921
SM
1899 AREF (slot, 1) = val;
1900 AREF (slot, 2) = Qt;
5232fa7b 1901 }
64ef2921 1902 return AREF (slot, 1);
5232fa7b
KH
1903}
1904
4ed46869 1905/* Setup fields of the structure pointed by CCL appropriately for the
5232fa7b
KH
1906 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
1907 of the CCL program or the already compiled code (vector).
1908 Return 0 if we succeed this setup, else return -1.
1909
1910 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
1911int
1912setup_ccl_program (ccl, ccl_prog)
4ed46869 1913 struct ccl_program *ccl;
5232fa7b 1914 Lisp_Object ccl_prog;
4ed46869
KH
1915{
1916 int i;
1917
5232fa7b 1918 if (! NILP (ccl_prog))
ad3d1b1d 1919 {
5232fa7b 1920 struct Lisp_Vector *vp;
ad3d1b1d 1921
2a69c66e 1922 ccl_prog = ccl_get_compiled_code (ccl_prog, &ccl->idx);
5232fa7b
KH
1923 if (! VECTORP (ccl_prog))
1924 return -1;
1925 vp = XVECTOR (ccl_prog);
ad3d1b1d
KH
1926 ccl->size = vp->size;
1927 ccl->prog = vp->contents;
1928 ccl->eof_ic = XINT (vp->contents[CCL_HEADER_EOF]);
1929 ccl->buf_magnification = XINT (vp->contents[CCL_HEADER_BUF_MAG]);
2a69c66e
KH
1930 if (ccl->idx >= 0)
1931 {
1932 Lisp_Object slot;
1933
1934 slot = AREF (Vccl_program_table, ccl->idx);
1935 ASET (slot, 3, Qnil);
1936 }
ad3d1b1d 1937 }
4ed46869 1938 ccl->ic = CCL_HEADER_MAIN;
4ed46869
KH
1939 for (i = 0; i < 8; i++)
1940 ccl->reg[i] = 0;
1941 ccl->last_block = 0;
e34b1164 1942 ccl->private_state = 0;
4ed46869 1943 ccl->status = 0;
c13362d8 1944 ccl->stack_idx = 0;
ae08ba36 1945 ccl->suppress_error = 0;
fd40a25f 1946 ccl->eight_bit_control = 0;
5232fa7b 1947 return 0;
4ed46869
KH
1948}
1949
2a69c66e
KH
1950
1951/* Check if CCL is updated or not. If not, re-setup members of CCL. */
1952
1953int
1954check_ccl_update (ccl)
1955 struct ccl_program *ccl;
1956{
2a69c66e
KH
1957 Lisp_Object slot, ccl_prog;
1958
1959 if (ccl->idx < 0)
1960 return 0;
1961 slot = AREF (Vccl_program_table, ccl->idx);
1962 if (NILP (AREF (slot, 3)))
1963 return 0;
1964 ccl_prog = ccl_get_compiled_code (AREF (slot, 0), &ccl->idx);
1965 if (! VECTORP (ccl_prog))
1966 return -1;
1967 ccl->size = ASIZE (ccl_prog);
1968 ccl->prog = XVECTOR (ccl_prog)->contents;
1969 ccl->eof_ic = XINT (AREF (ccl_prog, CCL_HEADER_EOF));
1970 ccl->buf_magnification = XINT (AREF (ccl_prog, CCL_HEADER_BUF_MAG));
1971 ASET (slot, 3, Qnil);
1972 return 0;
1973}
1974
1975
5232fa7b 1976DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
fdb82f93
PJ
1977 doc: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
1978See the documentation of `define-ccl-program' for the detail of CCL program. */)
1979 (object)
5232fa7b 1980 Lisp_Object object;
6ae21908 1981{
5232fa7b 1982 Lisp_Object val;
6ae21908 1983
5232fa7b 1984 if (VECTORP (object))
6ae21908 1985 {
5232fa7b
KH
1986 val = resolve_symbol_ccl_program (object);
1987 return (VECTORP (val) ? Qt : Qnil);
6ae21908 1988 }
5232fa7b
KH
1989 if (!SYMBOLP (object))
1990 return Qnil;
6ae21908 1991
5232fa7b
KH
1992 val = Fget (object, Qccl_program_idx);
1993 return ((! NATNUMP (val)
64ef2921 1994 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 1995 ? Qnil : Qt);
6ae21908
KH
1996}
1997
4ed46869 1998DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
fdb82f93
PJ
1999 doc: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
2000
2001CCL-PROGRAM is a CCL program name (symbol)
2002or compiled code generated by `ccl-compile' (for backward compatibility.
2003In the latter case, the execution overhead is bigger than in the former).
2004No I/O commands should appear in CCL-PROGRAM.
2005
2006REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
2007for the Nth register.
2008
2009As side effect, each element of REGISTERS holds the value of
2010the corresponding register after the execution.
2011
2012See the documentation of `define-ccl-program' for a definition of CCL
2013programs. */)
2014 (ccl_prog, reg)
4ed46869
KH
2015 Lisp_Object ccl_prog, reg;
2016{
2017 struct ccl_program ccl;
2018 int i;
2019
5232fa7b
KH
2020 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2021 error ("Invalid CCL program");
6ae21908 2022
b7826503 2023 CHECK_VECTOR (reg);
64ef2921 2024 if (ASIZE (reg) != 8)
d7e1fe1f 2025 error ("Length of vector REGISTERS is not 8");
4ed46869 2026
4ed46869 2027 for (i = 0; i < 8; i++)
64ef2921
SM
2028 ccl.reg[i] = (INTEGERP (AREF (reg, i))
2029 ? XINT (AREF (reg, i))
4ed46869
KH
2030 : 0);
2031
bda731af 2032 ccl_driver (&ccl, NULL, NULL, 0, 0, Qnil);
4ed46869
KH
2033 QUIT;
2034 if (ccl.status != CCL_STAT_SUCCESS)
2035 error ("Error in CCL program at %dth code", ccl.ic);
2036
2037 for (i = 0; i < 8; i++)
64ef2921 2038 XSETINT (AREF (reg, i), ccl.reg[i]);
4ed46869
KH
2039 return Qnil;
2040}
2041
2042DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
39a68837 2043 3, 5, 0,
fdb82f93
PJ
2044 doc: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2045
2a0bd758 2046CCL-PROGRAM is a symbol registered by `register-ccl-program',
fdb82f93
PJ
2047or a compiled code generated by `ccl-compile' (for backward compatibility,
2048in this case, the execution is slower).
2049
2050Read buffer is set to STRING, and write buffer is allocated automatically.
2051
2052STATUS is a vector of [R0 R1 ... R7 IC], where
2053 R0..R7 are initial values of corresponding registers,
2054 IC is the instruction counter specifying from where to start the program.
2055If R0..R7 are nil, they are initialized to 0.
2056If IC is nil, it is initialized to head of the CCL program.
2057
2058If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2059when read buffer is exausted, else, IC is always set to the end of
2060CCL-PROGRAM on exit.
2061
2062It returns the contents of write buffer as a string,
2063 and as side effect, STATUS is updated.
2064If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2065is a unibyte string. By default it is a multibyte string.
2066
2a0bd758
JB
2067See the documentation of `define-ccl-program' for the detail of CCL program.
2068usage: (ccl-execute-on-string CCL-PROGRAM STATUS STRING &optional CONTINUE UNIBYTE-P) */)
fdb82f93 2069 (ccl_prog, status, str, contin, unibyte_p)
39a68837 2070 Lisp_Object ccl_prog, status, str, contin, unibyte_p;
4ed46869
KH
2071{
2072 Lisp_Object val;
2073 struct ccl_program ccl;
c10842ea 2074 int i;
4ed46869 2075 int outbufsize;
c10842ea
KH
2076 unsigned char *outbuf, *outp;
2077 int str_chars, str_bytes;
2078#define CCL_EXECUTE_BUF_SIZE 1024
2079 int source[CCL_EXECUTE_BUF_SIZE], destination[CCL_EXECUTE_BUF_SIZE];
2080 int consumed_chars, consumed_bytes, produced_chars;
6ae21908 2081
5232fa7b
KH
2082 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2083 error ("Invalid CCL program");
4ed46869 2084
b7826503 2085 CHECK_VECTOR (status);
64ef2921 2086 if (ASIZE (status) != 9)
5232fa7b 2087 error ("Length of vector STATUS is not 9");
b7826503 2088 CHECK_STRING (str);
4ed46869 2089
8f924df7
KH
2090 str_chars = SCHARS (str);
2091 str_bytes = SBYTES (str);
5232fa7b 2092
4ed46869
KH
2093 for (i = 0; i < 8; i++)
2094 {
64ef2921
SM
2095 if (NILP (AREF (status, i)))
2096 XSETINT (AREF (status, i), 0);
2097 if (INTEGERP (AREF (status, i)))
2098 ccl.reg[i] = XINT (AREF (status, i));
4ed46869 2099 }
64ef2921 2100 if (INTEGERP (AREF (status, i)))
4ed46869 2101 {
64ef2921 2102 i = XFASTINT (AREF (status, 8));
4ed46869
KH
2103 if (ccl.ic < i && i < ccl.size)
2104 ccl.ic = i;
2105 }
4ed46869 2106
c10842ea
KH
2107 outbufsize = (ccl.buf_magnification
2108 ? str_bytes * ccl.buf_magnification + 256
2109 : str_bytes + 256);
2110 outp = outbuf = (unsigned char *) xmalloc (outbufsize);
2111
2112 consumed_chars = consumed_bytes = 0;
2113 produced_chars = 0;
99e293b5 2114 while (1)
a3d8fcf2 2115 {
8f924df7
KH
2116 const unsigned char *p = SDATA (str) + consumed_bytes;
2117 const unsigned char *endp = SDATA (str) + str_bytes;
c10842ea
KH
2118 int i = 0;
2119 int *src, src_size;
2120
2121 if (endp - p == str_chars - consumed_chars)
2122 while (i < CCL_EXECUTE_BUF_SIZE && p < endp)
2123 source[i++] = *p++;
2124 else
2125 while (i < CCL_EXECUTE_BUF_SIZE && p < endp)
2126 source[i++] = STRING_CHAR_ADVANCE (p);
2127 consumed_chars += i;
8f924df7 2128 consumed_bytes = p - SDATA (str);
c10842ea
KH
2129
2130 if (consumed_bytes == str_bytes)
2131 ccl.last_block = NILP (contin);
2132 src = source;
2133 src_size = i;
2134 while (1)
2135 {
bda731af
KH
2136 ccl_driver (&ccl, src, destination, src_size, CCL_EXECUTE_BUF_SIZE,
2137 Qnil);
c10842ea
KH
2138 produced_chars += ccl.produced;
2139 if (NILP (unibyte_p))
2140 {
2141 if (outp - outbuf + MAX_MULTIBYTE_LENGTH * ccl.produced
2142 > outbufsize)
2143 {
2144 int offset = outp - outbuf;
2145 outbufsize += MAX_MULTIBYTE_LENGTH * ccl.produced;
2146 outbuf = (unsigned char *) xrealloc (outbuf, outbufsize);
2147 outp = outbuf + offset;
2148 }
2149 for (i = 0; i < ccl.produced; i++)
2150 CHAR_STRING_ADVANCE (destination[i], outp);
2151 }
2152 else
2153 {
2154 if (outp - outbuf + ccl.produced > outbufsize)
2155 {
2156 int offset = outp - outbuf;
2157 outbufsize += ccl.produced;
2158 outbuf = (unsigned char *) xrealloc (outbuf, outbufsize);
2159 outp = outbuf + offset;
2160 }
2161 for (i = 0; i < ccl.produced; i++)
2162 *outp++ = destination[i];
2163 }
2164 src += ccl.consumed;
2165 src_size -= ccl.consumed;
99e293b5
KH
2166 if (ccl.status != CCL_STAT_SUSPEND_BY_DST)
2167 break;
c10842ea 2168 }
a3d8fcf2 2169
edeef421
KH
2170 if (ccl.status != CCL_STAT_SUSPEND_BY_SRC
2171 || str_chars == consumed_chars)
c10842ea 2172 break;
a3d8fcf2 2173 }
a3d8fcf2 2174
edeef421 2175 if (ccl.status == CCL_STAT_INVALID_CMD)
4ed46869 2176 error ("Error in CCL program at %dth code", ccl.ic);
edeef421
KH
2177 if (ccl.status == CCL_STAT_QUIT)
2178 error ("CCL program interrupted at %dth code", ccl.ic);
4ed46869 2179
c10842ea 2180 for (i = 0; i < 8; i++)
c6589bbd
KH
2181 ASET (status, i, make_number (ccl.reg[i]));
2182 ASET (status, 8, make_number (ccl.ic));
c10842ea
KH
2183
2184 if (NILP (unibyte_p))
2185 val = make_multibyte_string ((char *) outbuf, produced_chars,
2186 outp - outbuf);
2187 else
2188 val = make_unibyte_string ((char *) outbuf, produced_chars);
2189 xfree (outbuf);
4ed46869
KH
2190
2191 return val;
2192}
2193
2194DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
2195 2, 2, 0,
2a0bd758
JB
2196 doc: /* Register CCL program CCL-PROG as NAME in `ccl-program-table'.
2197CCL-PROG should be a compiled CCL program (vector), or nil.
fdb82f93
PJ
2198If it is nil, just reserve NAME as a CCL program name.
2199Return index number of the registered CCL program. */)
2200 (name, ccl_prog)
4ed46869
KH
2201 Lisp_Object name, ccl_prog;
2202{
64ef2921 2203 int len = ASIZE (Vccl_program_table);
5232fa7b
KH
2204 int idx;
2205 Lisp_Object resolved;
4ed46869 2206
b7826503 2207 CHECK_SYMBOL (name);
5232fa7b 2208 resolved = Qnil;
4ed46869 2209 if (!NILP (ccl_prog))
6ae21908 2210 {
b7826503 2211 CHECK_VECTOR (ccl_prog);
5232fa7b 2212 resolved = resolve_symbol_ccl_program (ccl_prog);
4d247a1f
KH
2213 if (NILP (resolved))
2214 error ("Error in CCL program");
2215 if (VECTORP (resolved))
5232fa7b
KH
2216 {
2217 ccl_prog = resolved;
2218 resolved = Qt;
2219 }
4d247a1f
KH
2220 else
2221 resolved = Qnil;
6ae21908 2222 }
5232fa7b
KH
2223
2224 for (idx = 0; idx < len; idx++)
4ed46869 2225 {
5232fa7b 2226 Lisp_Object slot;
4ed46869 2227
64ef2921 2228 slot = AREF (Vccl_program_table, idx);
5232fa7b
KH
2229 if (!VECTORP (slot))
2230 /* This is the first unsed slot. Register NAME here. */
4ed46869
KH
2231 break;
2232
64ef2921 2233 if (EQ (name, AREF (slot, 0)))
4ed46869 2234 {
5232fa7b 2235 /* Update this slot. */
2a69c66e
KH
2236 ASET (slot, 1, ccl_prog);
2237 ASET (slot, 2, resolved);
2238 ASET (slot, 3, Qt);
5232fa7b 2239 return make_number (idx);
4ed46869
KH
2240 }
2241 }
2242
5232fa7b 2243 if (idx == len)
4ed46869 2244 {
5232fa7b
KH
2245 /* Extend the table. */
2246 Lisp_Object new_table;
4ed46869
KH
2247 int j;
2248
5232fa7b 2249 new_table = Fmake_vector (make_number (len * 2), Qnil);
4ed46869 2250 for (j = 0; j < len; j++)
2a69c66e 2251 ASET (new_table, j, AREF (Vccl_program_table, j));
4ed46869
KH
2252 Vccl_program_table = new_table;
2253 }
2254
5232fa7b
KH
2255 {
2256 Lisp_Object elt;
2257
2a69c66e
KH
2258 elt = Fmake_vector (make_number (4), Qnil);
2259 ASET (elt, 0, name);
2260 ASET (elt, 1, ccl_prog);
2261 ASET (elt, 2, resolved);
2262 ASET (elt, 3, Qt);
2263 ASET (Vccl_program_table, idx, elt);
5232fa7b
KH
2264 }
2265
2266 Fput (name, Qccl_program_idx, make_number (idx));
2267 return make_number (idx);
4ed46869
KH
2268}
2269
8146262a
KH
2270/* Register code conversion map.
2271 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
d617f6df
DL
2272 The first element is the start code point.
2273 The other elements are mapped numbers.
8146262a
KH
2274 Symbol t means to map to an original number before mapping.
2275 Symbol nil means that the corresponding element is empty.
d617f6df 2276 Symbol lambda means to terminate mapping here.
e34b1164
KH
2277*/
2278
8146262a
KH
2279DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
2280 Sregister_code_conversion_map,
e34b1164 2281 2, 2, 0,
fdb82f93
PJ
2282 doc: /* Register SYMBOL as code conversion map MAP.
2283Return index number of the registered map. */)
2284 (symbol, map)
8146262a 2285 Lisp_Object symbol, map;
e34b1164 2286{
64ef2921 2287 int len = ASIZE (Vcode_conversion_map_vector);
e34b1164
KH
2288 int i;
2289 Lisp_Object index;
2290
b7826503
PJ
2291 CHECK_SYMBOL (symbol);
2292 CHECK_VECTOR (map);
177c0ea7 2293
e34b1164
KH
2294 for (i = 0; i < len; i++)
2295 {
64ef2921 2296 Lisp_Object slot = AREF (Vcode_conversion_map_vector, i);
e34b1164
KH
2297
2298 if (!CONSP (slot))
2299 break;
2300
03699b14 2301 if (EQ (symbol, XCAR (slot)))
e34b1164
KH
2302 {
2303 index = make_number (i);
f3fbd155 2304 XSETCDR (slot, map);
8146262a
KH
2305 Fput (symbol, Qcode_conversion_map, map);
2306 Fput (symbol, Qcode_conversion_map_id, index);
e34b1164
KH
2307 return index;
2308 }
2309 }
2310
2311 if (i == len)
2312 {
2313 Lisp_Object new_vector = Fmake_vector (make_number (len * 2), Qnil);
2314 int j;
2315
2316 for (j = 0; j < len; j++)
64ef2921
SM
2317 AREF (new_vector, j)
2318 = AREF (Vcode_conversion_map_vector, j);
8146262a 2319 Vcode_conversion_map_vector = new_vector;
e34b1164
KH
2320 }
2321
2322 index = make_number (i);
8146262a
KH
2323 Fput (symbol, Qcode_conversion_map, map);
2324 Fput (symbol, Qcode_conversion_map_id, index);
64ef2921 2325 AREF (Vcode_conversion_map_vector, i) = Fcons (symbol, map);
e34b1164
KH
2326 return index;
2327}
2328
2329
dfcf069d 2330void
4ed46869
KH
2331syms_of_ccl ()
2332{
2333 staticpro (&Vccl_program_table);
6703ac4f 2334 Vccl_program_table = Fmake_vector (make_number (32), Qnil);
4ed46869 2335
c10842ea
KH
2336 Qccl = intern ("ccl");
2337 staticpro (&Qccl);
2338
2339 Qcclp = intern ("cclp");
2340 staticpro (&Qcclp);
2341
6ae21908
KH
2342 Qccl_program = intern ("ccl-program");
2343 staticpro (&Qccl_program);
2344
2345 Qccl_program_idx = intern ("ccl-program-idx");
2346 staticpro (&Qccl_program_idx);
e34b1164 2347
8146262a
KH
2348 Qcode_conversion_map = intern ("code-conversion-map");
2349 staticpro (&Qcode_conversion_map);
6ae21908 2350
8146262a
KH
2351 Qcode_conversion_map_id = intern ("code-conversion-map-id");
2352 staticpro (&Qcode_conversion_map_id);
6ae21908 2353
8146262a 2354 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector,
fdb82f93 2355 doc: /* Vector of code conversion maps. */);
8146262a 2356 Vcode_conversion_map_vector = Fmake_vector (make_number (16), Qnil);
e34b1164 2357
4ed46869 2358 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist,
fdb82f93
PJ
2359 doc: /* Alist of fontname patterns vs corresponding CCL program.
2360Each element looks like (REGEXP . CCL-CODE),
2361 where CCL-CODE is a compiled CCL program.
2362When a font whose name matches REGEXP is used for displaying a character,
2363 CCL-CODE is executed to calculate the code point in the font
2364 from the charset number and position code(s) of the character which are set
2365 in CCL registers R0, R1, and R2 before the execution.
2366The code point in the font is set in CCL registers R1 and R2
2367 when the execution terminated.
2368 If the font is single-byte font, the register R2 is not used. */);
4ed46869
KH
2369 Vfont_ccl_encoder_alist = Qnil;
2370
d80dc57e
DL
2371 DEFVAR_LISP ("translation-hash-table-vector", &Vtranslation_hash_table_vector,
2372 doc: /* Vector containing all translation hash tables ever defined.
2373Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
2374to `define-translation-hash-table'. The vector is indexed by the table id
2375used by CCL. */);
2376 Vtranslation_hash_table_vector = Qnil;
2377
5232fa7b 2378 defsubr (&Sccl_program_p);
4ed46869
KH
2379 defsubr (&Sccl_execute);
2380 defsubr (&Sccl_execute_on_string);
2381 defsubr (&Sregister_ccl_program);
8146262a 2382 defsubr (&Sregister_code_conversion_map);
4ed46869 2383}
6b61353c
KH
2384
2385/* arch-tag: bb9a37be-68ce-4576-8d3d-15d750e4a860
2386 (do not change this comment) */