(set-language-environment): Load subst tables if necessary.
[bpt/emacs.git] / src / ccl.c
CommitLineData
4ed46869 1/* CCL (Code Conversion Language) interpreter.
75c8c592 2 Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN.
d80dc57e 3 Copyright (C) 2001, 2002 Free Software Foundation, Inc.
75c8c592 4 Licensed to the Free Software Foundation.
4ed46869 5
369314dc
KH
6This file is part of GNU Emacs.
7
8GNU Emacs is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
4ed46869 12
369314dc
KH
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
4ed46869 17
369314dc
KH
18You should have received a copy of the GNU General Public License
19along with GNU Emacs; see the file COPYING. If not, write to
20the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
4ed46869 22
4ed46869 23#include <config.h>
dfcf069d 24
68c45bf0
PE
25#include <stdio.h>
26
4ed46869
KH
27#include "lisp.h"
28#include "charset.h"
29#include "ccl.h"
30#include "coding.h"
31
20398ea4 32/* This contains all code conversion map available to CCL. */
8146262a 33Lisp_Object Vcode_conversion_map_vector;
e34b1164 34
4ed46869
KH
35/* Alist of fontname patterns vs corresponding CCL program. */
36Lisp_Object Vfont_ccl_encoder_alist;
37
6ae21908
KH
38/* This symbol is a property which assocates with ccl program vector.
39 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
e34b1164
KH
40Lisp_Object Qccl_program;
41
8146262a
KH
42/* These symbols are properties which associate with code conversion
43 map and their ID respectively. */
44Lisp_Object Qcode_conversion_map;
45Lisp_Object Qcode_conversion_map_id;
e34b1164 46
6ae21908
KH
47/* Symbols of ccl program have this property, a value of the property
48 is an index for Vccl_protram_table. */
49Lisp_Object Qccl_program_idx;
50
5232fa7b
KH
51/* Table of registered CCL programs. Each element is a vector of
52 NAME, CCL_PROG, and RESOLVEDP where NAME (symbol) is the name of
53 the program, CCL_PROG (vector) is the compiled code of the program,
54 RESOLVEDP (t or nil) is the flag to tell if symbols in CCL_PROG is
55 already resolved to index numbers or not. */
4ed46869
KH
56Lisp_Object Vccl_program_table;
57
d80dc57e
DL
58/* Vector of registered hash tables for translation. */
59Lisp_Object Vtranslation_hash_table_vector;
60
61/* Return a hash table of id number ID. */
62#define GET_HASH_TABLE(id) \
63 (XHASH_TABLE (XCDR(XVECTOR(Vtranslation_hash_table_vector)->contents[(id)])))
d80dc57e 64
4ed46869
KH
65/* CCL (Code Conversion Language) is a simple language which has
66 operations on one input buffer, one output buffer, and 7 registers.
67 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
68 `ccl-compile' compiles a CCL program and produces a CCL code which
69 is a vector of integers. The structure of this vector is as
70 follows: The 1st element: buffer-magnification, a factor for the
71 size of output buffer compared with the size of input buffer. The
72 2nd element: address of CCL code to be executed when encountered
73 with end of input stream. The 3rd and the remaining elements: CCL
74 codes. */
75
76/* Header of CCL compiled code */
77#define CCL_HEADER_BUF_MAG 0
78#define CCL_HEADER_EOF 1
79#define CCL_HEADER_MAIN 2
80
81/* CCL code is a sequence of 28-bit non-negative integers (i.e. the
82 MSB is always 0), each contains CCL command and/or arguments in the
83 following format:
84
85 |----------------- integer (28-bit) ------------------|
86 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
87 |--constant argument--|-register-|-register-|-command-|
88 ccccccccccccccccc RRR rrr XXXXX
89 or
90 |------- relative address -------|-register-|-command-|
91 cccccccccccccccccccc rrr XXXXX
92 or
93 |------------- constant or other args ----------------|
94 cccccccccccccccccccccccccccc
95
96 where, `cc...c' is a non-negative integer indicating constant value
97 (the left most `c' is always 0) or an absolute jump address, `RRR'
98 and `rrr' are CCL register number, `XXXXX' is one of the following
99 CCL commands. */
100
101/* CCL commands
102
103 Each comment fields shows one or more lines for command syntax and
104 the following lines for semantics of the command. In semantics, IC
105 stands for Instruction Counter. */
106
107#define CCL_SetRegister 0x00 /* Set register a register value:
108 1:00000000000000000RRRrrrXXXXX
109 ------------------------------
110 reg[rrr] = reg[RRR];
111 */
112
113#define CCL_SetShortConst 0x01 /* Set register a short constant value:
114 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
115 ------------------------------
116 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
117 */
118
119#define CCL_SetConst 0x02 /* Set register a constant value:
120 1:00000000000000000000rrrXXXXX
121 2:CONSTANT
122 ------------------------------
123 reg[rrr] = CONSTANT;
124 IC++;
125 */
126
127#define CCL_SetArray 0x03 /* Set register an element of array:
128 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
129 2:ELEMENT[0]
130 3:ELEMENT[1]
131 ...
132 ------------------------------
133 if (0 <= reg[RRR] < CC..C)
134 reg[rrr] = ELEMENT[reg[RRR]];
135 IC += CC..C;
136 */
137
138#define CCL_Jump 0x04 /* Jump:
139 1:A--D--D--R--E--S--S-000XXXXX
140 ------------------------------
141 IC += ADDRESS;
142 */
143
144/* Note: If CC..C is greater than 0, the second code is omitted. */
145
146#define CCL_JumpCond 0x05 /* Jump conditional:
147 1:A--D--D--R--E--S--S-rrrXXXXX
148 ------------------------------
149 if (!reg[rrr])
150 IC += ADDRESS;
151 */
152
153
154#define CCL_WriteRegisterJump 0x06 /* Write register and jump:
155 1:A--D--D--R--E--S--S-rrrXXXXX
156 ------------------------------
157 write (reg[rrr]);
158 IC += ADDRESS;
159 */
160
161#define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
162 1:A--D--D--R--E--S--S-rrrXXXXX
163 2:A--D--D--R--E--S--S-rrrYYYYY
164 -----------------------------
165 write (reg[rrr]);
166 IC++;
167 read (reg[rrr]);
168 IC += ADDRESS;
169 */
170/* Note: If read is suspended, the resumed execution starts from the
171 second code (YYYYY == CCL_ReadJump). */
172
173#define CCL_WriteConstJump 0x08 /* Write constant and jump:
174 1:A--D--D--R--E--S--S-000XXXXX
175 2:CONST
176 ------------------------------
177 write (CONST);
178 IC += ADDRESS;
179 */
180
181#define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
182 1:A--D--D--R--E--S--S-rrrXXXXX
183 2:CONST
184 3:A--D--D--R--E--S--S-rrrYYYYY
185 -----------------------------
186 write (CONST);
187 IC += 2;
188 read (reg[rrr]);
189 IC += ADDRESS;
190 */
191/* Note: If read is suspended, the resumed execution starts from the
192 second code (YYYYY == CCL_ReadJump). */
193
194#define CCL_WriteStringJump 0x0A /* Write string and jump:
195 1:A--D--D--R--E--S--S-000XXXXX
196 2:LENGTH
197 3:0000STRIN[0]STRIN[1]STRIN[2]
198 ...
199 ------------------------------
200 write_string (STRING, LENGTH);
201 IC += ADDRESS;
202 */
203
204#define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
205 1:A--D--D--R--E--S--S-rrrXXXXX
206 2:LENGTH
207 3:ELEMENET[0]
208 4:ELEMENET[1]
209 ...
210 N:A--D--D--R--E--S--S-rrrYYYYY
211 ------------------------------
212 if (0 <= reg[rrr] < LENGTH)
213 write (ELEMENT[reg[rrr]]);
214 IC += LENGTH + 2; (... pointing at N+1)
215 read (reg[rrr]);
216 IC += ADDRESS;
217 */
218/* Note: If read is suspended, the resumed execution starts from the
887bfbd7 219 Nth code (YYYYY == CCL_ReadJump). */
4ed46869
KH
220
221#define CCL_ReadJump 0x0C /* Read and jump:
222 1:A--D--D--R--E--S--S-rrrYYYYY
223 -----------------------------
224 read (reg[rrr]);
225 IC += ADDRESS;
226 */
227
228#define CCL_Branch 0x0D /* Jump by branch table:
229 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
230 2:A--D--D--R--E-S-S[0]000XXXXX
231 3:A--D--D--R--E-S-S[1]000XXXXX
232 ...
233 ------------------------------
234 if (0 <= reg[rrr] < CC..C)
235 IC += ADDRESS[reg[rrr]];
236 else
237 IC += ADDRESS[CC..C];
238 */
239
240#define CCL_ReadRegister 0x0E /* Read bytes into registers:
241 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
242 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
243 ...
244 ------------------------------
245 while (CCC--)
246 read (reg[rrr]);
247 */
248
249#define CCL_WriteExprConst 0x0F /* write result of expression:
250 1:00000OPERATION000RRR000XXXXX
251 2:CONSTANT
252 ------------------------------
253 write (reg[RRR] OPERATION CONSTANT);
254 IC++;
255 */
256
257/* Note: If the Nth read is suspended, the resumed execution starts
258 from the Nth code. */
259
260#define CCL_ReadBranch 0x10 /* Read one byte into a register,
261 and jump by branch table:
262 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
263 2:A--D--D--R--E-S-S[0]000XXXXX
264 3:A--D--D--R--E-S-S[1]000XXXXX
265 ...
266 ------------------------------
267 read (read[rrr]);
268 if (0 <= reg[rrr] < CC..C)
269 IC += ADDRESS[reg[rrr]];
270 else
271 IC += ADDRESS[CC..C];
272 */
273
274#define CCL_WriteRegister 0x11 /* Write registers:
275 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
276 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
277 ...
278 ------------------------------
279 while (CCC--)
280 write (reg[rrr]);
281 ...
282 */
283
284/* Note: If the Nth write is suspended, the resumed execution
285 starts from the Nth code. */
286
287#define CCL_WriteExprRegister 0x12 /* Write result of expression
288 1:00000OPERATIONRrrRRR000XXXXX
289 ------------------------------
290 write (reg[RRR] OPERATION reg[Rrr]);
291 */
292
e34b1164 293#define CCL_Call 0x13 /* Call the CCL program whose ID is
5232fa7b
KH
294 CC..C or cc..c.
295 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
296 [2:00000000cccccccccccccccccccc]
4ed46869 297 ------------------------------
5232fa7b
KH
298 if (FFF)
299 call (cc..c)
300 IC++;
301 else
302 call (CC..C)
4ed46869
KH
303 */
304
305#define CCL_WriteConstString 0x14 /* Write a constant or a string:
306 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
307 [2:0000STRIN[0]STRIN[1]STRIN[2]]
308 [...]
309 -----------------------------
310 if (!rrr)
311 write (CC..C)
312 else
313 write_string (STRING, CC..C);
314 IC += (CC..C + 2) / 3;
315 */
316
317#define CCL_WriteArray 0x15 /* Write an element of array:
318 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
319 2:ELEMENT[0]
320 3:ELEMENT[1]
321 ...
322 ------------------------------
323 if (0 <= reg[rrr] < CC..C)
324 write (ELEMENT[reg[rrr]]);
325 IC += CC..C;
326 */
327
328#define CCL_End 0x16 /* Terminate:
329 1:00000000000000000000000XXXXX
330 ------------------------------
331 terminate ();
332 */
333
334/* The following two codes execute an assignment arithmetic/logical
335 operation. The form of the operation is like REG OP= OPERAND. */
336
337#define CCL_ExprSelfConst 0x17 /* REG OP= constant:
338 1:00000OPERATION000000rrrXXXXX
339 2:CONSTANT
340 ------------------------------
341 reg[rrr] OPERATION= CONSTANT;
342 */
343
344#define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
345 1:00000OPERATION000RRRrrrXXXXX
346 ------------------------------
347 reg[rrr] OPERATION= reg[RRR];
348 */
349
350/* The following codes execute an arithmetic/logical operation. The
351 form of the operation is like REG_X = REG_Y OP OPERAND2. */
352
353#define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
354 1:00000OPERATION000RRRrrrXXXXX
355 2:CONSTANT
356 ------------------------------
357 reg[rrr] = reg[RRR] OPERATION CONSTANT;
358 IC++;
359 */
360
361#define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
362 1:00000OPERATIONRrrRRRrrrXXXXX
363 ------------------------------
364 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
365 */
366
367#define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
368 an operation on constant:
369 1:A--D--D--R--E--S--S-rrrXXXXX
370 2:OPERATION
371 3:CONSTANT
372 -----------------------------
373 reg[7] = reg[rrr] OPERATION CONSTANT;
374 if (!(reg[7]))
375 IC += ADDRESS;
376 else
377 IC += 2
378 */
379
380#define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
381 an operation on register:
382 1:A--D--D--R--E--S--S-rrrXXXXX
383 2:OPERATION
384 3:RRR
385 -----------------------------
386 reg[7] = reg[rrr] OPERATION reg[RRR];
387 if (!reg[7])
388 IC += ADDRESS;
389 else
390 IC += 2;
391 */
392
393#define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
394 to an operation on constant:
395 1:A--D--D--R--E--S--S-rrrXXXXX
396 2:OPERATION
397 3:CONSTANT
398 -----------------------------
399 read (reg[rrr]);
400 reg[7] = reg[rrr] OPERATION CONSTANT;
401 if (!reg[7])
402 IC += ADDRESS;
403 else
404 IC += 2;
405 */
406
407#define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
408 to an operation on register:
409 1:A--D--D--R--E--S--S-rrrXXXXX
410 2:OPERATION
411 3:RRR
412 -----------------------------
413 read (reg[rrr]);
414 reg[7] = reg[rrr] OPERATION reg[RRR];
415 if (!reg[7])
416 IC += ADDRESS;
417 else
418 IC += 2;
419 */
420
450ed226 421#define CCL_Extension 0x1F /* Extended CCL code
4ed46869
KH
422 1:ExtendedCOMMNDRrrRRRrrrXXXXX
423 2:ARGUEMENT
424 3:...
425 ------------------------------
426 extended_command (rrr,RRR,Rrr,ARGS)
427 */
428
177c0ea7 429/*
6ae21908 430 Here after, Extended CCL Instructions.
e34b1164 431 Bit length of extended command is 14.
6ae21908 432 Therefore, the instruction code range is 0..16384(0x3fff).
e34b1164
KH
433 */
434
6ae21908
KH
435/* Read a multibyte characeter.
436 A code point is stored into reg[rrr]. A charset ID is stored into
437 reg[RRR]. */
438
439#define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
440 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
441
442/* Write a multibyte character.
443 Write a character whose code point is reg[rrr] and the charset ID
444 is reg[RRR]. */
445
446#define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
447 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
448
8146262a 449/* Translate a character whose code point is reg[rrr] and the charset
f967223b 450 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
6ae21908 451
8146262a 452 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
453 (charset ID). */
454
8146262a 455#define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
6ae21908
KH
456 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
457
8146262a 458/* Translate a character whose code point is reg[rrr] and the charset
f967223b 459 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
6ae21908 460
8146262a 461 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
462 (charset ID). */
463
8146262a
KH
464#define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
465 1:ExtendedCOMMNDRrrRRRrrrXXXXX
466 2:ARGUMENT(Translation Table ID)
467 */
6ae21908 468
8146262a
KH
469/* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
470 reg[RRR]) MAP until some value is found.
6ae21908 471
8146262a 472 Each MAP is a Lisp vector whose element is number, nil, t, or
6ae21908 473 lambda.
8146262a 474 If the element is nil, ignore the map and proceed to the next map.
6ae21908
KH
475 If the element is t or lambda, finish without changing reg[rrr].
476 If the element is a number, set reg[rrr] to the number and finish.
477
8146262a
KH
478 Detail of the map structure is descibed in the comment for
479 CCL_MapMultiple below. */
6ae21908 480
8146262a 481#define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
6ae21908 482 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a
KH
483 2:NUMBER of MAPs
484 3:MAP-ID1
485 4:MAP-ID2
6ae21908 486 ...
177c0ea7 487 */
6ae21908 488
8146262a
KH
489/* Map the code in reg[rrr] by MAPs starting from the Nth (N =
490 reg[RRR]) map.
6ae21908 491
9b27b20d 492 MAPs are supplied in the succeeding CCL codes as follows:
6ae21908 493
8146262a
KH
494 When CCL program gives this nested structure of map to this command:
495 ((MAP-ID11
496 MAP-ID12
497 (MAP-ID121 MAP-ID122 MAP-ID123)
498 MAP-ID13)
499 (MAP-ID21
500 (MAP-ID211 (MAP-ID2111) MAP-ID212)
501 MAP-ID22)),
6ae21908 502 the compiled CCL codes has this sequence:
8146262a 503 CCL_MapMultiple (CCL code of this command)
9b27b20d
KH
504 16 (total number of MAPs and SEPARATORs)
505 -7 (1st SEPARATOR)
8146262a
KH
506 MAP-ID11
507 MAP-ID12
9b27b20d 508 -3 (2nd SEPARATOR)
8146262a
KH
509 MAP-ID121
510 MAP-ID122
511 MAP-ID123
512 MAP-ID13
9b27b20d 513 -7 (3rd SEPARATOR)
8146262a 514 MAP-ID21
9b27b20d 515 -4 (4th SEPARATOR)
8146262a 516 MAP-ID211
9b27b20d 517 -1 (5th SEPARATOR)
8146262a
KH
518 MAP_ID2111
519 MAP-ID212
520 MAP-ID22
6ae21908 521
9b27b20d 522 A value of each SEPARATOR follows this rule:
8146262a
KH
523 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
524 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
6ae21908 525
8146262a 526 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
6ae21908 527
8146262a
KH
528 When some map fails to map (i.e. it doesn't have a value for
529 reg[rrr]), the mapping is treated as identity.
6ae21908 530
8146262a 531 The mapping is iterated for all maps in each map set (set of maps
9b27b20d
KH
532 separated by SEPARATOR) except in the case that lambda is
533 encountered. More precisely, the mapping proceeds as below:
534
535 At first, VAL0 is set to reg[rrr], and it is translated by the
536 first map to VAL1. Then, VAL1 is translated by the next map to
537 VAL2. This mapping is iterated until the last map is used. The
54fa5bc1
KH
538 result of the mapping is the last value of VAL?. When the mapping
539 process reached to the end of the map set, it moves to the next
540 map set. If the next does not exit, the mapping process terminates,
541 and regard the last value as a result.
9b27b20d
KH
542
543 But, when VALm is mapped to VALn and VALn is not a number, the
544 mapping proceed as below:
545
546 If VALn is nil, the lastest map is ignored and the mapping of VALm
547 proceed to the next map.
548
549 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
550 proceed to the next map.
551
54fa5bc1
KH
552 If VALn is lambda, move to the next map set like reaching to the
553 end of the current map set.
554
555 If VALn is a symbol, call the CCL program refered by it.
556 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
557 Such special values are regarded as nil, t, and lambda respectively.
6ae21908 558
8146262a 559 Each map is a Lisp vector of the following format (a) or (b):
6ae21908
KH
560 (a)......[STARTPOINT VAL1 VAL2 ...]
561 (b)......[t VAL STARTPOINT ENDPOINT],
562 where
8146262a 563 STARTPOINT is an offset to be used for indexing a map,
9b27b20d 564 ENDPOINT is a maximum index number of a map,
177c0ea7 565 VAL and VALn is a number, nil, t, or lambda.
6ae21908 566
8146262a
KH
567 Valid index range of a map of type (a) is:
568 STARTPOINT <= index < STARTPOINT + map_size - 1
569 Valid index range of a map of type (b) is:
9b27b20d 570 STARTPOINT <= index < ENDPOINT */
6ae21908 571
8146262a 572#define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
6ae21908
KH
573 1:ExtendedCOMMNDXXXRRRrrrXXXXX
574 2:N-2
575 3:SEPARATOR_1 (< 0)
8146262a
KH
576 4:MAP-ID_1
577 5:MAP-ID_2
6ae21908
KH
578 ...
579 M:SEPARATOR_x (< 0)
8146262a 580 M+1:MAP-ID_y
6ae21908
KH
581 ...
582 N:SEPARATOR_z (< 0)
583 */
584
54fa5bc1 585#define MAX_MAP_SET_LEVEL 30
6ae21908
KH
586
587typedef struct
588{
589 int rest_length;
590 int orig_val;
591} tr_stack;
592
8146262a
KH
593static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
594static tr_stack *mapping_stack_pointer;
6ae21908 595
54fa5bc1
KH
596/* If this variable is non-zero, it indicates the stack_idx
597 of immediately called by CCL_MapMultiple. */
be57900b 598static int stack_idx_of_map_multiple;
54fa5bc1
KH
599
600#define PUSH_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
601do \
602 { \
54fa5bc1
KH
603 mapping_stack_pointer->rest_length = (restlen); \
604 mapping_stack_pointer->orig_val = (orig); \
605 mapping_stack_pointer++; \
a89f435d
PJ
606 } \
607while (0)
54fa5bc1
KH
608
609#define POP_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
610do \
611 { \
54fa5bc1
KH
612 mapping_stack_pointer--; \
613 (restlen) = mapping_stack_pointer->rest_length; \
614 (orig) = mapping_stack_pointer->orig_val; \
a89f435d
PJ
615 } \
616while (0)
6ae21908 617
54fa5bc1 618#define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
a89f435d 619do \
0ee1088b 620 { \
54fa5bc1
KH
621 struct ccl_program called_ccl; \
622 if (stack_idx >= 256 \
623 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
624 { \
625 if (stack_idx > 0) \
626 { \
627 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
628 ic = ccl_prog_stack_struct[0].ic; \
629 } \
630 CCL_INVALID_CMD; \
631 } \
632 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
633 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
634 stack_idx++; \
635 ccl_prog = called_ccl.prog; \
636 ic = CCL_HEADER_MAIN; \
637 goto ccl_repeat; \
0ee1088b 638 } \
a89f435d 639while (0)
6ae21908 640
8146262a 641#define CCL_MapSingle 0x12 /* Map by single code conversion map
6ae21908 642 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a 643 2:MAP-ID
6ae21908 644 ------------------------------
8146262a
KH
645 Map reg[rrr] by MAP-ID.
646 If some valid mapping is found,
6ae21908
KH
647 set reg[rrr] to the result,
648 else
649 set reg[RRR] to -1.
650 */
4ed46869 651
d80dc57e
DL
652#define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
653 integer key. Afterwards R7 set
654 to 1 iff lookup succeeded.
655 1:ExtendedCOMMNDRrrRRRXXXXXXXX
656 2:ARGUMENT(Hash table ID) */
657
658#define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
659 character key. Afterwards R7 set
660 to 1 iff lookup succeeded.
661 1:ExtendedCOMMNDRrrRRRrrrXXXXX
662 2:ARGUMENT(Hash table ID) */
663
4ed46869
KH
664/* CCL arithmetic/logical operators. */
665#define CCL_PLUS 0x00 /* X = Y + Z */
666#define CCL_MINUS 0x01 /* X = Y - Z */
667#define CCL_MUL 0x02 /* X = Y * Z */
668#define CCL_DIV 0x03 /* X = Y / Z */
669#define CCL_MOD 0x04 /* X = Y % Z */
670#define CCL_AND 0x05 /* X = Y & Z */
671#define CCL_OR 0x06 /* X = Y | Z */
672#define CCL_XOR 0x07 /* X = Y ^ Z */
673#define CCL_LSH 0x08 /* X = Y << Z */
674#define CCL_RSH 0x09 /* X = Y >> Z */
675#define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
676#define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
677#define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
678#define CCL_LS 0x10 /* X = (X < Y) */
679#define CCL_GT 0x11 /* X = (X > Y) */
680#define CCL_EQ 0x12 /* X = (X == Y) */
681#define CCL_LE 0x13 /* X = (X <= Y) */
682#define CCL_GE 0x14 /* X = (X >= Y) */
683#define CCL_NE 0x15 /* X = (X != Y) */
684
51520e8a 685#define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
4ed46869 686 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
51520e8a
KH
687#define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
688 r[7] = LOWER_BYTE (SJIS (Y, Z) */
4ed46869 689
4ed46869 690/* Terminate CCL program successfully. */
0ee1088b 691#define CCL_SUCCESS \
a89f435d 692do \
0ee1088b 693 { \
4ed46869 694 ccl->status = CCL_STAT_SUCCESS; \
0ee1088b
KH
695 goto ccl_finish; \
696 } \
a89f435d 697while(0)
4ed46869
KH
698
699/* Suspend CCL program because of reading from empty input buffer or
700 writing to full output buffer. When this program is resumed, the
701 same I/O command is executed. */
e34b1164 702#define CCL_SUSPEND(stat) \
a89f435d 703do \
0ee1088b 704 { \
e34b1164
KH
705 ic--; \
706 ccl->status = stat; \
707 goto ccl_finish; \
0ee1088b 708 } \
a89f435d 709while (0)
4ed46869
KH
710
711/* Terminate CCL program because of invalid command. Should not occur
712 in the normal case. */
713#define CCL_INVALID_CMD \
a89f435d 714do \
0ee1088b 715 { \
4ed46869
KH
716 ccl->status = CCL_STAT_INVALID_CMD; \
717 goto ccl_error_handler; \
0ee1088b 718 } \
a89f435d 719while(0)
4ed46869
KH
720
721/* Encode one character CH to multibyte form and write to the current
887bfbd7 722 output buffer. If CH is less than 256, CH is written as is. */
a37520c6
KH
723#define CCL_WRITE_CHAR(ch) \
724 do { \
725 int bytes = SINGLE_BYTE_CHAR_P (ch) ? 1: CHAR_BYTES (ch); \
726 if (!dst) \
727 CCL_INVALID_CMD; \
728 else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
729 { \
730 if (bytes == 1) \
731 { \
732 *dst++ = (ch); \
fd40a25f 733 if (extra_bytes && (ch) >= 0x80 && (ch) < 0xA0) \
a37520c6
KH
734 /* We may have to convert this eight-bit char to \
735 multibyte form later. */ \
736 extra_bytes++; \
737 } \
31165028 738 else if (CHAR_VALID_P (ch, 0)) \
a37520c6 739 dst += CHAR_STRING (ch, dst); \
31165028
KH
740 else \
741 CCL_INVALID_CMD; \
a37520c6
KH
742 } \
743 else \
744 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
4ed46869
KH
745 } while (0)
746
a8302ba3
KH
747/* Encode one character CH to multibyte form and write to the current
748 output buffer. The output bytes always forms a valid multibyte
749 sequence. */
750#define CCL_WRITE_MULTIBYTE_CHAR(ch) \
751 do { \
752 int bytes = CHAR_BYTES (ch); \
753 if (!dst) \
754 CCL_INVALID_CMD; \
755 else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
756 { \
757 if (CHAR_VALID_P ((ch), 0)) \
758 dst += CHAR_STRING ((ch), dst); \
759 else \
760 CCL_INVALID_CMD; \
761 } \
762 else \
763 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
764 } while (0)
765
4ed46869
KH
766/* Write a string at ccl_prog[IC] of length LEN to the current output
767 buffer. */
768#define CCL_WRITE_STRING(len) \
769 do { \
770 if (!dst) \
771 CCL_INVALID_CMD; \
e34b1164 772 else if (dst + len <= (dst_bytes ? dst_end : src)) \
4ed46869
KH
773 for (i = 0; i < len; i++) \
774 *dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
775 >> ((2 - (i % 3)) * 8)) & 0xFF; \
776 else \
e34b1164 777 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
4ed46869
KH
778 } while (0)
779
9977c491
KH
780/* Read one byte from the current input buffer into REGth register. */
781#define CCL_READ_CHAR(REG) \
17312e44
KH
782 do { \
783 if (!src) \
784 CCL_INVALID_CMD; \
785 else if (src < src_end) \
786 { \
9977c491
KH
787 REG = *src++; \
788 if (REG == '\n' \
17312e44
KH
789 && ccl->eol_type != CODING_EOL_LF) \
790 { \
791 /* We are encoding. */ \
792 if (ccl->eol_type == CODING_EOL_CRLF) \
793 { \
794 if (ccl->cr_consumed) \
795 ccl->cr_consumed = 0; \
796 else \
797 { \
798 ccl->cr_consumed = 1; \
9977c491 799 REG = '\r'; \
17312e44
KH
800 src--; \
801 } \
802 } \
803 else \
9977c491 804 REG = '\r'; \
17312e44 805 } \
9977c491 806 if (REG == LEADING_CODE_8_BIT_CONTROL \
17312e44 807 && ccl->multibyte) \
9977c491 808 REG = *src++ - 0x20; \
17312e44
KH
809 } \
810 else if (ccl->last_block) \
811 { \
812 ic = ccl->eof_ic; \
813 goto ccl_repeat; \
814 } \
815 else \
816 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
4ed46869
KH
817 } while (0)
818
819
4ffd4870
KH
820/* Set C to the character code made from CHARSET and CODE. This is
821 like MAKE_CHAR but check the validity of CHARSET and CODE. If they
822 are not valid, set C to (CODE & 0xFF) because that is usually the
823 case that CCL_ReadMultibyteChar2 read an invalid code and it set
824 CODE to that invalid byte. */
825
826#define CCL_MAKE_CHAR(charset, code, c) \
827 do { \
828 if (charset == CHARSET_ASCII) \
829 c = code & 0xFF; \
830 else if (CHARSET_DEFINED_P (charset) \
831 && (code & 0x7F) >= 32 \
832 && (code < 256 || ((code >> 7) & 0x7F) >= 32)) \
833 { \
834 int c1 = code & 0x7F, c2 = 0; \
835 \
836 if (code >= 256) \
837 c2 = c1, c1 = (code >> 7) & 0x7F; \
bd045987 838 c = MAKE_CHAR (charset, c1, c2); \
4ffd4870
KH
839 } \
840 else \
bd045987 841 c = code & 0xFF; \
4ffd4870
KH
842 } while (0)
843
844
4ed46869
KH
845/* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting
846 text goes to a place pointed by DESTINATION, the length of which
847 should not exceed DST_BYTES. The bytes actually processed is
848 returned as *CONSUMED. The return value is the length of the
849 resulting text. As a side effect, the contents of CCL registers
850 are updated. If SOURCE or DESTINATION is NULL, only operations on
851 registers are permitted. */
852
853#ifdef CCL_DEBUG
854#define CCL_DEBUG_BACKTRACE_LEN 256
f9bd23fd 855int ccl_backtrace_table[CCL_DEBUG_BACKTRACE_LEN];
4ed46869
KH
856int ccl_backtrace_idx;
857#endif
858
859struct ccl_prog_stack
860 {
a9f1cc19 861 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
4ed46869
KH
862 int ic; /* Instruction Counter. */
863 };
864
177c0ea7 865/* For the moment, we only support depth 256 of stack. */
c13362d8
KH
866static struct ccl_prog_stack ccl_prog_stack_struct[256];
867
dfcf069d 868int
4ed46869
KH
869ccl_driver (ccl, source, destination, src_bytes, dst_bytes, consumed)
870 struct ccl_program *ccl;
871 unsigned char *source, *destination;
872 int src_bytes, dst_bytes;
873 int *consumed;
874{
875 register int *reg = ccl->reg;
876 register int ic = ccl->ic;
8a1ae4dd 877 register int code = 0, field1, field2;
e995085f 878 register Lisp_Object *ccl_prog = ccl->prog;
4ed46869
KH
879 unsigned char *src = source, *src_end = src + src_bytes;
880 unsigned char *dst = destination, *dst_end = dst + dst_bytes;
881 int jump_address;
8a1ae4dd 882 int i = 0, j, op;
c13362d8 883 int stack_idx = ccl->stack_idx;
519bf146 884 /* Instruction counter of the current CCL code. */
8a1ae4dd 885 int this_ic = 0;
a37520c6
KH
886 /* CCL_WRITE_CHAR will produce 8-bit code of range 0x80..0x9F. But,
887 each of them will be converted to multibyte form of 2-byte
888 sequence. For that conversion, we remember how many more bytes
889 we must keep in DESTINATION in this variable. */
fd40a25f 890 int extra_bytes = ccl->eight_bit_control;
4ed46869
KH
891
892 if (ic >= ccl->eof_ic)
893 ic = CCL_HEADER_MAIN;
894
8a1ae4dd 895 if (ccl->buf_magnification == 0) /* We can't produce any bytes. */
12abd7d1
KH
896 dst = NULL;
897
54fa5bc1
KH
898 /* Set mapping stack pointer. */
899 mapping_stack_pointer = mapping_stack;
900
4ed46869
KH
901#ifdef CCL_DEBUG
902 ccl_backtrace_idx = 0;
903#endif
904
905 for (;;)
906 {
4ccd0d4a 907 ccl_repeat:
4ed46869
KH
908#ifdef CCL_DEBUG
909 ccl_backtrace_table[ccl_backtrace_idx++] = ic;
910 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
911 ccl_backtrace_idx = 0;
912 ccl_backtrace_table[ccl_backtrace_idx] = 0;
913#endif
914
915 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
916 {
917 /* We can't just signal Qquit, instead break the loop as if
918 the whole data is processed. Don't reset Vquit_flag, it
919 must be handled later at a safer place. */
920 if (consumed)
921 src = source + src_bytes;
922 ccl->status = CCL_STAT_QUIT;
923 break;
924 }
925
519bf146 926 this_ic = ic;
4ed46869
KH
927 code = XINT (ccl_prog[ic]); ic++;
928 field1 = code >> 8;
929 field2 = (code & 0xFF) >> 5;
930
931#define rrr field2
932#define RRR (field1 & 7)
933#define Rrr ((field1 >> 3) & 7)
934#define ADDR field1
e34b1164 935#define EXCMD (field1 >> 6)
4ed46869
KH
936
937 switch (code & 0x1F)
938 {
939 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
940 reg[rrr] = reg[RRR];
941 break;
942
943 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
944 reg[rrr] = field1;
945 break;
946
947 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
948 reg[rrr] = XINT (ccl_prog[ic]);
949 ic++;
950 break;
951
952 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
953 i = reg[RRR];
954 j = field1 >> 3;
955 if ((unsigned int) i < j)
956 reg[rrr] = XINT (ccl_prog[ic + i]);
957 ic += j;
958 break;
959
960 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
961 ic += ADDR;
962 break;
963
964 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
965 if (!reg[rrr])
966 ic += ADDR;
967 break;
968
969 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
970 i = reg[rrr];
971 CCL_WRITE_CHAR (i);
972 ic += ADDR;
973 break;
974
975 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
976 i = reg[rrr];
977 CCL_WRITE_CHAR (i);
978 ic++;
979 CCL_READ_CHAR (reg[rrr]);
980 ic += ADDR - 1;
981 break;
982
983 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
984 i = XINT (ccl_prog[ic]);
985 CCL_WRITE_CHAR (i);
986 ic += ADDR;
987 break;
988
989 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
990 i = XINT (ccl_prog[ic]);
991 CCL_WRITE_CHAR (i);
992 ic++;
993 CCL_READ_CHAR (reg[rrr]);
994 ic += ADDR - 1;
995 break;
996
997 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
998 j = XINT (ccl_prog[ic]);
999 ic++;
1000 CCL_WRITE_STRING (j);
1001 ic += ADDR - 1;
1002 break;
1003
1004 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
1005 i = reg[rrr];
2e34157c 1006 j = XINT (ccl_prog[ic]);
4ed46869
KH
1007 if ((unsigned int) i < j)
1008 {
887bfbd7 1009 i = XINT (ccl_prog[ic + 1 + i]);
4ed46869
KH
1010 CCL_WRITE_CHAR (i);
1011 }
887bfbd7 1012 ic += j + 2;
4ed46869
KH
1013 CCL_READ_CHAR (reg[rrr]);
1014 ic += ADDR - (j + 2);
1015 break;
1016
1017 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
1018 CCL_READ_CHAR (reg[rrr]);
1019 ic += ADDR;
1020 break;
1021
1022 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1023 CCL_READ_CHAR (reg[rrr]);
1024 /* fall through ... */
1025 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1026 if ((unsigned int) reg[rrr] < field1)
1027 ic += XINT (ccl_prog[ic + reg[rrr]]);
1028 else
1029 ic += XINT (ccl_prog[ic + field1]);
1030 break;
1031
1032 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1033 while (1)
1034 {
1035 CCL_READ_CHAR (reg[rrr]);
1036 if (!field1) break;
1037 code = XINT (ccl_prog[ic]); ic++;
1038 field1 = code >> 8;
1039 field2 = (code & 0xFF) >> 5;
1040 }
1041 break;
1042
1043 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
1044 rrr = 7;
1045 i = reg[RRR];
1046 j = XINT (ccl_prog[ic]);
1047 op = field1 >> 6;
25660570 1048 jump_address = ic + 1;
4ed46869
KH
1049 goto ccl_set_expr;
1050
1051 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1052 while (1)
1053 {
1054 i = reg[rrr];
1055 CCL_WRITE_CHAR (i);
1056 if (!field1) break;
1057 code = XINT (ccl_prog[ic]); ic++;
1058 field1 = code >> 8;
1059 field2 = (code & 0xFF) >> 5;
1060 }
1061 break;
1062
1063 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
1064 rrr = 7;
1065 i = reg[RRR];
1066 j = reg[Rrr];
1067 op = field1 >> 6;
25660570 1068 jump_address = ic;
4ed46869
KH
1069 goto ccl_set_expr;
1070
5232fa7b 1071 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
4ed46869
KH
1072 {
1073 Lisp_Object slot;
5232fa7b
KH
1074 int prog_id;
1075
1076 /* If FFF is nonzero, the CCL program ID is in the
1077 following code. */
1078 if (rrr)
1079 {
1080 prog_id = XINT (ccl_prog[ic]);
1081 ic++;
1082 }
1083 else
1084 prog_id = field1;
4ed46869
KH
1085
1086 if (stack_idx >= 256
5232fa7b 1087 || prog_id < 0
64ef2921
SM
1088 || prog_id >= ASIZE (Vccl_program_table)
1089 || (slot = AREF (Vccl_program_table, prog_id), !VECTORP (slot))
1090 || !VECTORP (AREF (slot, 1)))
4ed46869
KH
1091 {
1092 if (stack_idx > 0)
1093 {
1094 ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
1095 ic = ccl_prog_stack_struct[0].ic;
1096 }
1097 CCL_INVALID_CMD;
1098 }
177c0ea7 1099
4ed46869
KH
1100 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
1101 ccl_prog_stack_struct[stack_idx].ic = ic;
1102 stack_idx++;
64ef2921 1103 ccl_prog = XVECTOR (AREF (slot, 1))->contents;
4ed46869
KH
1104 ic = CCL_HEADER_MAIN;
1105 }
1106 break;
1107
1108 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1109 if (!rrr)
1110 CCL_WRITE_CHAR (field1);
1111 else
1112 {
1113 CCL_WRITE_STRING (field1);
1114 ic += (field1 + 2) / 3;
1115 }
1116 break;
1117
1118 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1119 i = reg[rrr];
1120 if ((unsigned int) i < field1)
1121 {
1122 j = XINT (ccl_prog[ic + i]);
1123 CCL_WRITE_CHAR (j);
1124 }
1125 ic += field1;
1126 break;
1127
1128 case CCL_End: /* 0000000000000000000000XXXXX */
d3a478e2 1129 if (stack_idx > 0)
4ed46869 1130 {
d3a478e2 1131 stack_idx--;
4ed46869
KH
1132 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
1133 ic = ccl_prog_stack_struct[stack_idx].ic;
1134 break;
1135 }
ad3d1b1d
KH
1136 if (src)
1137 src = src_end;
1138 /* ccl->ic should points to this command code again to
1139 suppress further processing. */
1140 ic--;
4ed46869
KH
1141 CCL_SUCCESS;
1142
1143 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
1144 i = XINT (ccl_prog[ic]);
1145 ic++;
1146 op = field1 >> 6;
1147 goto ccl_expr_self;
1148
1149 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
1150 i = reg[RRR];
1151 op = field1 >> 6;
1152
1153 ccl_expr_self:
1154 switch (op)
1155 {
1156 case CCL_PLUS: reg[rrr] += i; break;
1157 case CCL_MINUS: reg[rrr] -= i; break;
1158 case CCL_MUL: reg[rrr] *= i; break;
1159 case CCL_DIV: reg[rrr] /= i; break;
1160 case CCL_MOD: reg[rrr] %= i; break;
1161 case CCL_AND: reg[rrr] &= i; break;
1162 case CCL_OR: reg[rrr] |= i; break;
1163 case CCL_XOR: reg[rrr] ^= i; break;
1164 case CCL_LSH: reg[rrr] <<= i; break;
1165 case CCL_RSH: reg[rrr] >>= i; break;
1166 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
1167 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
1168 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
1169 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
1170 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
1171 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
1172 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
1173 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
1174 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
1175 default: CCL_INVALID_CMD;
1176 }
1177 break;
1178
1179 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
1180 i = reg[RRR];
1181 j = XINT (ccl_prog[ic]);
1182 op = field1 >> 6;
1183 jump_address = ++ic;
1184 goto ccl_set_expr;
1185
1186 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
1187 i = reg[RRR];
1188 j = reg[Rrr];
1189 op = field1 >> 6;
1190 jump_address = ic;
1191 goto ccl_set_expr;
1192
1193 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1194 CCL_READ_CHAR (reg[rrr]);
1195 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1196 i = reg[rrr];
1197 op = XINT (ccl_prog[ic]);
1198 jump_address = ic++ + ADDR;
1199 j = XINT (ccl_prog[ic]);
1200 ic++;
1201 rrr = 7;
1202 goto ccl_set_expr;
1203
1204 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
1205 CCL_READ_CHAR (reg[rrr]);
1206 case CCL_JumpCondExprReg:
1207 i = reg[rrr];
1208 op = XINT (ccl_prog[ic]);
1209 jump_address = ic++ + ADDR;
1210 j = reg[XINT (ccl_prog[ic])];
1211 ic++;
1212 rrr = 7;
1213
1214 ccl_set_expr:
1215 switch (op)
1216 {
1217 case CCL_PLUS: reg[rrr] = i + j; break;
1218 case CCL_MINUS: reg[rrr] = i - j; break;
1219 case CCL_MUL: reg[rrr] = i * j; break;
1220 case CCL_DIV: reg[rrr] = i / j; break;
1221 case CCL_MOD: reg[rrr] = i % j; break;
1222 case CCL_AND: reg[rrr] = i & j; break;
1223 case CCL_OR: reg[rrr] = i | j; break;
1224 case CCL_XOR: reg[rrr] = i ^ j;; break;
1225 case CCL_LSH: reg[rrr] = i << j; break;
1226 case CCL_RSH: reg[rrr] = i >> j; break;
1227 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
1228 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
1229 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
1230 case CCL_LS: reg[rrr] = i < j; break;
1231 case CCL_GT: reg[rrr] = i > j; break;
1232 case CCL_EQ: reg[rrr] = i == j; break;
1233 case CCL_LE: reg[rrr] = i <= j; break;
1234 case CCL_GE: reg[rrr] = i >= j; break;
1235 case CCL_NE: reg[rrr] = i != j; break;
4ed46869 1236 case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break;
51520e8a 1237 case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break;
4ed46869
KH
1238 default: CCL_INVALID_CMD;
1239 }
1240 code &= 0x1F;
1241 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
1242 {
1243 i = reg[rrr];
1244 CCL_WRITE_CHAR (i);
25660570 1245 ic = jump_address;
4ed46869
KH
1246 }
1247 else if (!reg[rrr])
1248 ic = jump_address;
1249 break;
1250
450ed226 1251 case CCL_Extension:
e34b1164
KH
1252 switch (EXCMD)
1253 {
6ae21908 1254 case CCL_ReadMultibyteChar2:
e34b1164
KH
1255 if (!src)
1256 CCL_INVALID_CMD;
60768428 1257
0ee1088b
KH
1258 if (src >= src_end)
1259 {
1260 src++;
1261 goto ccl_read_multibyte_character_suspend;
1262 }
177c0ea7 1263
38b9ed6a
KH
1264 if (!ccl->multibyte)
1265 {
1266 int bytes;
1267 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
1268 {
1269 reg[RRR] = CHARSET_8_BIT_CONTROL;
1270 reg[rrr] = *src++;
1271 break;
1272 }
1273 }
0ee1088b
KH
1274 i = *src++;
1275 if (i == '\n' && ccl->eol_type != CODING_EOL_LF)
1276 {
177c0ea7 1277 /* We are encoding. */
0ee1088b
KH
1278 if (ccl->eol_type == CODING_EOL_CRLF)
1279 {
1280 if (ccl->cr_consumed)
1281 ccl->cr_consumed = 0;
1282 else
1283 {
1284 ccl->cr_consumed = 1;
1285 i = '\r';
1286 src--;
1287 }
1288 }
1289 else
1290 i = '\r';
1291 reg[rrr] = i;
1292 reg[RRR] = CHARSET_ASCII;
1293 }
1294 else if (i < 0x80)
1295 {
1296 /* ASCII */
1297 reg[rrr] = i;
1298 reg[RRR] = CHARSET_ASCII;
1299 }
0ee1088b
KH
1300 else if (i <= MAX_CHARSET_OFFICIAL_DIMENSION2)
1301 {
0fc71a77
KH
1302 int dimension = BYTES_BY_CHAR_HEAD (i) - 1;
1303
1304 if (dimension == 0)
1305 {
1306 /* `i' is a leading code for an undefined charset. */
1307 reg[RRR] = CHARSET_8_BIT_GRAPHIC;
1308 reg[rrr] = i;
1309 }
1310 else if (src + dimension > src_end)
0ee1088b 1311 goto ccl_read_multibyte_character_suspend;
0fc71a77
KH
1312 else
1313 {
1314 reg[RRR] = i;
1315 i = (*src++ & 0x7F);
1316 if (dimension == 1)
1317 reg[rrr] = i;
1318 else
1319 reg[rrr] = ((i << 7) | (*src++ & 0x7F));
1320 }
0ee1088b
KH
1321 }
1322 else if ((i == LEADING_CODE_PRIVATE_11)
1323 || (i == LEADING_CODE_PRIVATE_12))
1324 {
1325 if ((src + 1) >= src_end)
1326 goto ccl_read_multibyte_character_suspend;
1327 reg[RRR] = *src++;
1328 reg[rrr] = (*src++ & 0x7F);
1329 }
1330 else if ((i == LEADING_CODE_PRIVATE_21)
1331 || (i == LEADING_CODE_PRIVATE_22))
1332 {
1333 if ((src + 2) >= src_end)
1334 goto ccl_read_multibyte_character_suspend;
1335 reg[RRR] = *src++;
1336 i = (*src++ & 0x7F);
1337 reg[rrr] = ((i << 7) | (*src & 0x7F));
1338 src++;
1339 }
1340 else if (i == LEADING_CODE_8_BIT_CONTROL)
1341 {
1342 if (src >= src_end)
1343 goto ccl_read_multibyte_character_suspend;
1344 reg[RRR] = CHARSET_8_BIT_CONTROL;
1345 reg[rrr] = (*src++ - 0x20);
1346 }
1347 else if (i >= 0xA0)
1348 {
1349 reg[RRR] = CHARSET_8_BIT_GRAPHIC;
1350 reg[rrr] = i;
1351 }
1352 else
1353 {
1354 /* INVALID CODE. Return a single byte character. */
1355 reg[RRR] = CHARSET_ASCII;
1356 reg[rrr] = i;
1357 }
e34b1164
KH
1358 break;
1359
1360 ccl_read_multibyte_character_suspend:
38b9ed6a
KH
1361 if (src <= src_end && !ccl->multibyte && ccl->last_block)
1362 {
1363 reg[RRR] = CHARSET_8_BIT_CONTROL;
1364 reg[rrr] = i;
1365 break;
1366 }
e34b1164
KH
1367 src--;
1368 if (ccl->last_block)
1369 {
1370 ic = ccl->eof_ic;
0db078dc 1371 goto ccl_repeat;
e34b1164
KH
1372 }
1373 else
1374 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);
1375
1376 break;
1377
6ae21908 1378 case CCL_WriteMultibyteChar2:
e34b1164 1379 i = reg[RRR]; /* charset */
5c464c4d
KH
1380 if (i == CHARSET_ASCII
1381 || i == CHARSET_8_BIT_CONTROL
1382 || i == CHARSET_8_BIT_GRAPHIC)
c13362d8 1383 i = reg[rrr] & 0xFF;
e34b1164
KH
1384 else if (CHARSET_DIMENSION (i) == 1)
1385 i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
1386 else if (i < MIN_CHARSET_PRIVATE_DIMENSION2)
1387 i = ((i - 0x8F) << 14) | reg[rrr];
1388 else
1389 i = ((i - 0xE0) << 14) | reg[rrr];
1390
a8302ba3 1391 CCL_WRITE_MULTIBYTE_CHAR (i);
e34b1164
KH
1392
1393 break;
1394
8146262a 1395 case CCL_TranslateCharacter:
4ffd4870 1396 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
8146262a
KH
1397 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]),
1398 i, -1, 0, 0);
e34b1164
KH
1399 SPLIT_CHAR (op, reg[RRR], i, j);
1400 if (j != -1)
1401 i = (i << 7) | j;
177c0ea7 1402
e34b1164
KH
1403 reg[rrr] = i;
1404 break;
1405
8146262a 1406 case CCL_TranslateCharacterConstTbl:
e34b1164
KH
1407 op = XINT (ccl_prog[ic]); /* table */
1408 ic++;
4ffd4870 1409 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
8146262a 1410 op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0);
e34b1164
KH
1411 SPLIT_CHAR (op, reg[RRR], i, j);
1412 if (j != -1)
1413 i = (i << 7) | j;
177c0ea7 1414
e34b1164
KH
1415 reg[rrr] = i;
1416 break;
1417
d80dc57e
DL
1418 case CCL_LookupIntConstTbl:
1419 op = XINT (ccl_prog[ic]); /* table */
1420 ic++;
177c0ea7 1421 {
d80dc57e
DL
1422 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
1423
1424 op = hash_lookup (h, make_number (reg[RRR]), NULL);
1425 if (op >= 0)
1426 {
f9bd23fd
DL
1427 Lisp_Object opl;
1428 opl = HASH_VALUE (h, op);
1429 if (!CHAR_VALID_P (XINT (opl), 0))
d80dc57e 1430 CCL_INVALID_CMD;
f9bd23fd 1431 SPLIT_CHAR (XINT (opl), reg[RRR], i, j);
d80dc57e
DL
1432 if (j != -1)
1433 i = (i << 7) | j;
1434 reg[rrr] = i;
1435 reg[7] = 1; /* r7 true for success */
1436 }
1437 else
1438 reg[7] = 0;
1439 }
1440 break;
1441
1442 case CCL_LookupCharConstTbl:
1443 op = XINT (ccl_prog[ic]); /* table */
1444 ic++;
1445 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
177c0ea7 1446 {
d80dc57e
DL
1447 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
1448
1449 op = hash_lookup (h, make_number (i), NULL);
1450 if (op >= 0)
1451 {
f9bd23fd
DL
1452 Lisp_Object opl;
1453 opl = HASH_VALUE (h, op);
1454 if (!INTEGERP (opl))
d80dc57e 1455 CCL_INVALID_CMD;
f9bd23fd 1456 reg[RRR] = XINT (opl);
d80dc57e
DL
1457 reg[7] = 1; /* r7 true for success */
1458 }
1459 else
1460 reg[7] = 0;
1461 }
1462 break;
1463
e34b1164
KH
1464 case CCL_IterateMultipleMap:
1465 {
8146262a 1466 Lisp_Object map, content, attrib, value;
e34b1164
KH
1467 int point, size, fin_ic;
1468
8146262a 1469 j = XINT (ccl_prog[ic++]); /* number of maps. */
e34b1164
KH
1470 fin_ic = ic + j;
1471 op = reg[rrr];
1472 if ((j > reg[RRR]) && (j >= 0))
1473 {
1474 ic += reg[RRR];
1475 i = reg[RRR];
1476 }
1477 else
1478 {
1479 reg[RRR] = -1;
1480 ic = fin_ic;
1481 break;
1482 }
1483
1484 for (;i < j;i++)
1485 {
1486
64ef2921 1487 size = ASIZE (Vcode_conversion_map_vector);
d387866a 1488 point = XINT (ccl_prog[ic++]);
e34b1164 1489 if (point >= size) continue;
64ef2921 1490 map = AREF (Vcode_conversion_map_vector, point);
8146262a
KH
1491
1492 /* Check map varidity. */
1493 if (!CONSP (map)) continue;
03699b14 1494 map = XCDR (map);
8146262a 1495 if (!VECTORP (map)) continue;
64ef2921 1496 size = ASIZE (map);
e34b1164 1497 if (size <= 1) continue;
6ae21908 1498
64ef2921 1499 content = AREF (map, 0);
6ae21908 1500
8146262a 1501 /* check map type,
6ae21908
KH
1502 [STARTPOINT VAL1 VAL2 ...] or
1503 [t ELELMENT STARTPOINT ENDPOINT] */
1504 if (NUMBERP (content))
1505 {
1506 point = XUINT (content);
1507 point = op - point + 1;
1508 if (!((point >= 1) && (point < size))) continue;
64ef2921 1509 content = AREF (map, point);
6ae21908
KH
1510 }
1511 else if (EQ (content, Qt))
1512 {
1513 if (size != 4) continue;
64ef2921
SM
1514 if ((op >= XUINT (AREF (map, 2)))
1515 && (op < XUINT (AREF (map, 3))))
1516 content = AREF (map, 1);
6ae21908
KH
1517 else
1518 continue;
1519 }
177c0ea7 1520 else
6ae21908 1521 continue;
e34b1164
KH
1522
1523 if (NILP (content))
1524 continue;
1525 else if (NUMBERP (content))
1526 {
1527 reg[RRR] = i;
6ae21908 1528 reg[rrr] = XINT(content);
e34b1164
KH
1529 break;
1530 }
1531 else if (EQ (content, Qt) || EQ (content, Qlambda))
1532 {
1533 reg[RRR] = i;
1534 break;
1535 }
1536 else if (CONSP (content))
1537 {
03699b14
KR
1538 attrib = XCAR (content);
1539 value = XCDR (content);
e34b1164
KH
1540 if (!NUMBERP (attrib) || !NUMBERP (value))
1541 continue;
1542 reg[RRR] = i;
6ae21908 1543 reg[rrr] = XUINT (value);
e34b1164
KH
1544 break;
1545 }
54fa5bc1
KH
1546 else if (SYMBOLP (content))
1547 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
1548 else
1549 CCL_INVALID_CMD;
e34b1164
KH
1550 }
1551 if (i == j)
1552 reg[RRR] = -1;
1553 ic = fin_ic;
1554 }
1555 break;
177c0ea7 1556
8146262a 1557 case CCL_MapMultiple:
e34b1164 1558 {
8146262a
KH
1559 Lisp_Object map, content, attrib, value;
1560 int point, size, map_vector_size;
1561 int map_set_rest_length, fin_ic;
54fa5bc1
KH
1562 int current_ic = this_ic;
1563
1564 /* inhibit recursive call on MapMultiple. */
1565 if (stack_idx_of_map_multiple > 0)
1566 {
1567 if (stack_idx_of_map_multiple <= stack_idx)
1568 {
1569 stack_idx_of_map_multiple = 0;
1570 mapping_stack_pointer = mapping_stack;
1571 CCL_INVALID_CMD;
1572 }
1573 }
1574 else
1575 mapping_stack_pointer = mapping_stack;
1576 stack_idx_of_map_multiple = 0;
8146262a
KH
1577
1578 map_set_rest_length =
1579 XINT (ccl_prog[ic++]); /* number of maps and separators. */
1580 fin_ic = ic + map_set_rest_length;
54fa5bc1
KH
1581 op = reg[rrr];
1582
8146262a 1583 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
e34b1164
KH
1584 {
1585 ic += reg[RRR];
1586 i = reg[RRR];
8146262a 1587 map_set_rest_length -= i;
e34b1164
KH
1588 }
1589 else
1590 {
1591 ic = fin_ic;
1592 reg[RRR] = -1;
54fa5bc1 1593 mapping_stack_pointer = mapping_stack;
e34b1164
KH
1594 break;
1595 }
6ae21908 1596
54fa5bc1
KH
1597 if (mapping_stack_pointer <= (mapping_stack + 1))
1598 {
1599 /* Set up initial state. */
1600 mapping_stack_pointer = mapping_stack;
1601 PUSH_MAPPING_STACK (0, op);
1602 reg[RRR] = -1;
1603 }
1604 else
1605 {
1606 /* Recover after calling other ccl program. */
1607 int orig_op;
e34b1164 1608
54fa5bc1
KH
1609 POP_MAPPING_STACK (map_set_rest_length, orig_op);
1610 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1611 switch (op)
e34b1164 1612 {
54fa5bc1
KH
1613 case -1:
1614 /* Regard it as Qnil. */
1615 op = orig_op;
1616 i++;
1617 ic++;
1618 map_set_rest_length--;
1619 break;
1620 case -2:
1621 /* Regard it as Qt. */
e34b1164 1622 op = reg[rrr];
54fa5bc1
KH
1623 i++;
1624 ic++;
1625 map_set_rest_length--;
1626 break;
1627 case -3:
1628 /* Regard it as Qlambda. */
1629 op = orig_op;
1630 i += map_set_rest_length;
1631 ic += map_set_rest_length;
1632 map_set_rest_length = 0;
1633 break;
1634 default:
1635 /* Regard it as normal mapping. */
8146262a 1636 i += map_set_rest_length;
54fa5bc1 1637 ic += map_set_rest_length;
8146262a 1638 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
6ae21908
KH
1639 break;
1640 }
e34b1164 1641 }
64ef2921 1642 map_vector_size = ASIZE (Vcode_conversion_map_vector);
177c0ea7 1643
54fa5bc1
KH
1644 do {
1645 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
1646 {
1647 point = XINT(ccl_prog[ic]);
1648 if (point < 0)
1649 {
1650 /* +1 is for including separator. */
1651 point = -point + 1;
1652 if (mapping_stack_pointer
1653 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1654 CCL_INVALID_CMD;
1655 PUSH_MAPPING_STACK (map_set_rest_length - point,
1656 reg[rrr]);
1657 map_set_rest_length = point;
1658 reg[rrr] = op;
1659 continue;
1660 }
1661
1662 if (point >= map_vector_size) continue;
64ef2921 1663 map = AREF (Vcode_conversion_map_vector, point);
54fa5bc1
KH
1664
1665 /* Check map varidity. */
1666 if (!CONSP (map)) continue;
1667 map = XCDR (map);
1668 if (!VECTORP (map)) continue;
64ef2921 1669 size = ASIZE (map);
54fa5bc1
KH
1670 if (size <= 1) continue;
1671
64ef2921 1672 content = AREF (map, 0);
54fa5bc1
KH
1673
1674 /* check map type,
1675 [STARTPOINT VAL1 VAL2 ...] or
1676 [t ELEMENT STARTPOINT ENDPOINT] */
1677 if (NUMBERP (content))
1678 {
1679 point = XUINT (content);
1680 point = op - point + 1;
1681 if (!((point >= 1) && (point < size))) continue;
64ef2921 1682 content = AREF (map, point);
54fa5bc1
KH
1683 }
1684 else if (EQ (content, Qt))
1685 {
1686 if (size != 4) continue;
64ef2921
SM
1687 if ((op >= XUINT (AREF (map, 2))) &&
1688 (op < XUINT (AREF (map, 3))))
1689 content = AREF (map, 1);
54fa5bc1
KH
1690 else
1691 continue;
1692 }
177c0ea7 1693 else
54fa5bc1
KH
1694 continue;
1695
1696 if (NILP (content))
1697 continue;
1698
1699 reg[RRR] = i;
1700 if (NUMBERP (content))
1701 {
1702 op = XINT (content);
1703 i += map_set_rest_length - 1;
1704 ic += map_set_rest_length - 1;
1705 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1706 map_set_rest_length++;
1707 }
1708 else if (CONSP (content))
1709 {
1710 attrib = XCAR (content);
1711 value = XCDR (content);
1712 if (!NUMBERP (attrib) || !NUMBERP (value))
1713 continue;
1714 op = XUINT (value);
1715 i += map_set_rest_length - 1;
1716 ic += map_set_rest_length - 1;
1717 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1718 map_set_rest_length++;
1719 }
1720 else if (EQ (content, Qt))
1721 {
1722 op = reg[rrr];
1723 }
1724 else if (EQ (content, Qlambda))
1725 {
1726 i += map_set_rest_length;
1727 ic += map_set_rest_length;
1728 break;
1729 }
1730 else if (SYMBOLP (content))
1731 {
1732 if (mapping_stack_pointer
1733 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1734 CCL_INVALID_CMD;
1735 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1736 PUSH_MAPPING_STACK (map_set_rest_length, op);
1737 stack_idx_of_map_multiple = stack_idx + 1;
1738 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
1739 }
1740 else
1741 CCL_INVALID_CMD;
1742 }
1743 if (mapping_stack_pointer <= (mapping_stack + 1))
1744 break;
1745 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1746 i += map_set_rest_length;
1747 ic += map_set_rest_length;
1748 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1749 } while (1);
1750
e34b1164
KH
1751 ic = fin_ic;
1752 }
1753 reg[rrr] = op;
1754 break;
1755
8146262a 1756 case CCL_MapSingle:
e34b1164 1757 {
8146262a 1758 Lisp_Object map, attrib, value, content;
e34b1164 1759 int size, point;
8146262a 1760 j = XINT (ccl_prog[ic++]); /* map_id */
e34b1164 1761 op = reg[rrr];
64ef2921 1762 if (j >= ASIZE (Vcode_conversion_map_vector))
e34b1164
KH
1763 {
1764 reg[RRR] = -1;
1765 break;
1766 }
64ef2921 1767 map = AREF (Vcode_conversion_map_vector, j);
8146262a 1768 if (!CONSP (map))
e34b1164
KH
1769 {
1770 reg[RRR] = -1;
1771 break;
1772 }
03699b14 1773 map = XCDR (map);
8146262a 1774 if (!VECTORP (map))
e34b1164
KH
1775 {
1776 reg[RRR] = -1;
1777 break;
1778 }
64ef2921
SM
1779 size = ASIZE (map);
1780 point = XUINT (AREF (map, 0));
e34b1164
KH
1781 point = op - point + 1;
1782 reg[RRR] = 0;
1783 if ((size <= 1) ||
1784 (!((point >= 1) && (point < size))))
1785 reg[RRR] = -1;
1786 else
1787 {
b1cab202 1788 reg[RRR] = 0;
64ef2921 1789 content = AREF (map, point);
e34b1164
KH
1790 if (NILP (content))
1791 reg[RRR] = -1;
1792 else if (NUMBERP (content))
6ae21908 1793 reg[rrr] = XINT (content);
b1cab202 1794 else if (EQ (content, Qt));
e34b1164
KH
1795 else if (CONSP (content))
1796 {
03699b14
KR
1797 attrib = XCAR (content);
1798 value = XCDR (content);
e34b1164
KH
1799 if (!NUMBERP (attrib) || !NUMBERP (value))
1800 continue;
1801 reg[rrr] = XUINT(value);
1802 break;
1803 }
54fa5bc1
KH
1804 else if (SYMBOLP (content))
1805 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
e34b1164
KH
1806 else
1807 reg[RRR] = -1;
1808 }
1809 }
1810 break;
177c0ea7 1811
e34b1164
KH
1812 default:
1813 CCL_INVALID_CMD;
1814 }
1815 break;
1816
4ed46869
KH
1817 default:
1818 CCL_INVALID_CMD;
1819 }
1820 }
1821
1822 ccl_error_handler:
0fb94c7f
EZ
1823 /* The suppress_error member is set when e.g. a CCL-based coding
1824 system is used for terminal output. */
1825 if (!ccl->suppress_error && destination)
4ed46869
KH
1826 {
1827 /* We can insert an error message only if DESTINATION is
1828 specified and we still have a room to store the message
1829 there. */
1830 char msg[256];
1831 int msglen;
1832
12abd7d1
KH
1833 if (!dst)
1834 dst = destination;
1835
4ed46869
KH
1836 switch (ccl->status)
1837 {
1838 case CCL_STAT_INVALID_CMD:
1839 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
519bf146 1840 code & 0x1F, code, this_ic);
4ed46869
KH
1841#ifdef CCL_DEBUG
1842 {
1843 int i = ccl_backtrace_idx - 1;
1844 int j;
1845
1846 msglen = strlen (msg);
12abd7d1 1847 if (dst + msglen <= (dst_bytes ? dst_end : src))
4ed46869
KH
1848 {
1849 bcopy (msg, dst, msglen);
1850 dst += msglen;
1851 }
1852
1853 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
1854 {
1855 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
1856 if (ccl_backtrace_table[i] == 0)
1857 break;
1858 sprintf(msg, " %d", ccl_backtrace_table[i]);
1859 msglen = strlen (msg);
12abd7d1 1860 if (dst + msglen > (dst_bytes ? dst_end : src))
4ed46869
KH
1861 break;
1862 bcopy (msg, dst, msglen);
1863 dst += msglen;
1864 }
12abd7d1 1865 goto ccl_finish;
4ed46869 1866 }
4ed46869 1867#endif
12abd7d1 1868 break;
4ed46869
KH
1869
1870 case CCL_STAT_QUIT:
1871 sprintf(msg, "\nCCL: Quited.");
1872 break;
1873
1874 default:
7c402969 1875 sprintf(msg, "\nCCL: Unknown error type (%d)", ccl->status);
4ed46869
KH
1876 }
1877
1878 msglen = strlen (msg);
12abd7d1 1879 if (dst + msglen <= (dst_bytes ? dst_end : src))
4ed46869
KH
1880 {
1881 bcopy (msg, dst, msglen);
1882 dst += msglen;
1883 }
177c0ea7 1884
31165028
KH
1885 if (ccl->status == CCL_STAT_INVALID_CMD)
1886 {
8a1ae4dd
GM
1887#if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1888 results in an invalid multibyte sequence. */
1889
31165028
KH
1890 /* Copy the remaining source data. */
1891 int i = src_end - src;
1892 if (dst_bytes && (dst_end - dst) < i)
1893 i = dst_end - dst;
1894 bcopy (src, dst, i);
1895 src += i;
1896 dst += i;
8a1ae4dd
GM
1897#else
1898 /* Signal that we've consumed everything. */
1899 src = src_end;
1900#endif
31165028 1901 }
4ed46869
KH
1902 }
1903
1904 ccl_finish:
1905 ccl->ic = ic;
c13362d8
KH
1906 ccl->stack_idx = stack_idx;
1907 ccl->prog = ccl_prog;
fd40a25f 1908 ccl->eight_bit_control = (extra_bytes > 1);
8a1ae4dd
GM
1909 if (consumed)
1910 *consumed = src - source;
12abd7d1 1911 return (dst ? dst - destination : 0);
4ed46869
KH
1912}
1913
5232fa7b
KH
1914/* Resolve symbols in the specified CCL code (Lisp vector). This
1915 function converts symbols of code conversion maps and character
1916 translation tables embeded in the CCL code into their ID numbers.
1917
1918 The return value is a vector (CCL itself or a new vector in which
1919 all symbols are resolved), Qt if resolving of some symbol failed,
1920 or nil if CCL contains invalid data. */
1921
1922static Lisp_Object
1923resolve_symbol_ccl_program (ccl)
1924 Lisp_Object ccl;
1925{
1926 int i, veclen, unresolved = 0;
1927 Lisp_Object result, contents, val;
1928
1929 result = ccl;
64ef2921 1930 veclen = ASIZE (result);
5232fa7b
KH
1931
1932 for (i = 0; i < veclen; i++)
1933 {
64ef2921 1934 contents = AREF (result, i);
5232fa7b
KH
1935 if (INTEGERP (contents))
1936 continue;
1937 else if (CONSP (contents)
03699b14
KR
1938 && SYMBOLP (XCAR (contents))
1939 && SYMBOLP (XCDR (contents)))
5232fa7b
KH
1940 {
1941 /* This is the new style for embedding symbols. The form is
1942 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1943 an index number. */
1944
1945 if (EQ (result, ccl))
1946 result = Fcopy_sequence (ccl);
1947
03699b14 1948 val = Fget (XCAR (contents), XCDR (contents));
5232fa7b 1949 if (NATNUMP (val))
64ef2921 1950 AREF (result, i) = val;
5232fa7b
KH
1951 else
1952 unresolved = 1;
1953 continue;
1954 }
1955 else if (SYMBOLP (contents))
1956 {
1957 /* This is the old style for embedding symbols. This style
1958 may lead to a bug if, for instance, a translation table
1959 and a code conversion map have the same name. */
1960 if (EQ (result, ccl))
1961 result = Fcopy_sequence (ccl);
1962
1963 val = Fget (contents, Qtranslation_table_id);
1964 if (NATNUMP (val))
64ef2921 1965 AREF (result, i) = val;
5232fa7b
KH
1966 else
1967 {
1968 val = Fget (contents, Qcode_conversion_map_id);
1969 if (NATNUMP (val))
64ef2921 1970 AREF (result, i) = val;
5232fa7b
KH
1971 else
1972 {
1973 val = Fget (contents, Qccl_program_idx);
1974 if (NATNUMP (val))
64ef2921 1975 AREF (result, i) = val;
5232fa7b
KH
1976 else
1977 unresolved = 1;
1978 }
1979 }
1980 continue;
1981 }
1982 return Qnil;
1983 }
1984
1985 return (unresolved ? Qt : result);
1986}
1987
1988/* Return the compiled code (vector) of CCL program CCL_PROG.
1989 CCL_PROG is a name (symbol) of the program or already compiled
1990 code. If necessary, resolve symbols in the compiled code to index
1991 numbers. If we failed to get the compiled code or to resolve
1992 symbols, return Qnil. */
1993
1994static Lisp_Object
1995ccl_get_compiled_code (ccl_prog)
1996 Lisp_Object ccl_prog;
1997{
1998 Lisp_Object val, slot;
1999
2000 if (VECTORP (ccl_prog))
2001 {
2002 val = resolve_symbol_ccl_program (ccl_prog);
2003 return (VECTORP (val) ? val : Qnil);
2004 }
2005 if (!SYMBOLP (ccl_prog))
2006 return Qnil;
2007
2008 val = Fget (ccl_prog, Qccl_program_idx);
2009 if (! NATNUMP (val)
64ef2921 2010 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 2011 return Qnil;
64ef2921 2012 slot = AREF (Vccl_program_table, XINT (val));
5232fa7b 2013 if (! VECTORP (slot)
64ef2921
SM
2014 || ASIZE (slot) != 3
2015 || ! VECTORP (AREF (slot, 1)))
5232fa7b 2016 return Qnil;
64ef2921 2017 if (NILP (AREF (slot, 2)))
5232fa7b 2018 {
64ef2921 2019 val = resolve_symbol_ccl_program (AREF (slot, 1));
5232fa7b
KH
2020 if (! VECTORP (val))
2021 return Qnil;
64ef2921
SM
2022 AREF (slot, 1) = val;
2023 AREF (slot, 2) = Qt;
5232fa7b 2024 }
64ef2921 2025 return AREF (slot, 1);
5232fa7b
KH
2026}
2027
4ed46869 2028/* Setup fields of the structure pointed by CCL appropriately for the
5232fa7b
KH
2029 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
2030 of the CCL program or the already compiled code (vector).
2031 Return 0 if we succeed this setup, else return -1.
2032
2033 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
2034int
2035setup_ccl_program (ccl, ccl_prog)
4ed46869 2036 struct ccl_program *ccl;
5232fa7b 2037 Lisp_Object ccl_prog;
4ed46869
KH
2038{
2039 int i;
2040
5232fa7b 2041 if (! NILP (ccl_prog))
ad3d1b1d 2042 {
5232fa7b 2043 struct Lisp_Vector *vp;
ad3d1b1d 2044
5232fa7b
KH
2045 ccl_prog = ccl_get_compiled_code (ccl_prog);
2046 if (! VECTORP (ccl_prog))
2047 return -1;
2048 vp = XVECTOR (ccl_prog);
ad3d1b1d
KH
2049 ccl->size = vp->size;
2050 ccl->prog = vp->contents;
2051 ccl->eof_ic = XINT (vp->contents[CCL_HEADER_EOF]);
2052 ccl->buf_magnification = XINT (vp->contents[CCL_HEADER_BUF_MAG]);
2053 }
4ed46869 2054 ccl->ic = CCL_HEADER_MAIN;
4ed46869
KH
2055 for (i = 0; i < 8; i++)
2056 ccl->reg[i] = 0;
2057 ccl->last_block = 0;
e34b1164 2058 ccl->private_state = 0;
4ed46869 2059 ccl->status = 0;
c13362d8 2060 ccl->stack_idx = 0;
5b8ca822 2061 ccl->eol_type = CODING_EOL_LF;
ae08ba36 2062 ccl->suppress_error = 0;
fd40a25f 2063 ccl->eight_bit_control = 0;
5232fa7b 2064 return 0;
4ed46869
KH
2065}
2066
5232fa7b 2067DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
fdb82f93
PJ
2068 doc: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
2069See the documentation of `define-ccl-program' for the detail of CCL program. */)
2070 (object)
5232fa7b 2071 Lisp_Object object;
6ae21908 2072{
5232fa7b 2073 Lisp_Object val;
6ae21908 2074
5232fa7b 2075 if (VECTORP (object))
6ae21908 2076 {
5232fa7b
KH
2077 val = resolve_symbol_ccl_program (object);
2078 return (VECTORP (val) ? Qt : Qnil);
6ae21908 2079 }
5232fa7b
KH
2080 if (!SYMBOLP (object))
2081 return Qnil;
6ae21908 2082
5232fa7b
KH
2083 val = Fget (object, Qccl_program_idx);
2084 return ((! NATNUMP (val)
64ef2921 2085 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 2086 ? Qnil : Qt);
6ae21908
KH
2087}
2088
4ed46869 2089DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
fdb82f93
PJ
2090 doc: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
2091
2092CCL-PROGRAM is a CCL program name (symbol)
2093or compiled code generated by `ccl-compile' (for backward compatibility.
2094In the latter case, the execution overhead is bigger than in the former).
2095No I/O commands should appear in CCL-PROGRAM.
2096
2097REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
2098for the Nth register.
2099
2100As side effect, each element of REGISTERS holds the value of
2101the corresponding register after the execution.
2102
2103See the documentation of `define-ccl-program' for a definition of CCL
2104programs. */)
2105 (ccl_prog, reg)
4ed46869
KH
2106 Lisp_Object ccl_prog, reg;
2107{
2108 struct ccl_program ccl;
2109 int i;
2110
5232fa7b
KH
2111 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2112 error ("Invalid CCL program");
6ae21908 2113
b7826503 2114 CHECK_VECTOR (reg);
64ef2921 2115 if (ASIZE (reg) != 8)
d7e1fe1f 2116 error ("Length of vector REGISTERS is not 8");
4ed46869 2117
4ed46869 2118 for (i = 0; i < 8; i++)
64ef2921
SM
2119 ccl.reg[i] = (INTEGERP (AREF (reg, i))
2120 ? XINT (AREF (reg, i))
4ed46869
KH
2121 : 0);
2122
b428fdfd 2123 ccl_driver (&ccl, (unsigned char *)0, (unsigned char *)0, 0, 0, (int *)0);
4ed46869
KH
2124 QUIT;
2125 if (ccl.status != CCL_STAT_SUCCESS)
2126 error ("Error in CCL program at %dth code", ccl.ic);
2127
2128 for (i = 0; i < 8; i++)
64ef2921 2129 XSETINT (AREF (reg, i), ccl.reg[i]);
4ed46869
KH
2130 return Qnil;
2131}
2132
2133DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
39a68837 2134 3, 5, 0,
fdb82f93
PJ
2135 doc: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2136
2137CCL-PROGRAM is a symbol registered by register-ccl-program,
2138or a compiled code generated by `ccl-compile' (for backward compatibility,
2139in this case, the execution is slower).
2140
2141Read buffer is set to STRING, and write buffer is allocated automatically.
2142
2143STATUS is a vector of [R0 R1 ... R7 IC], where
2144 R0..R7 are initial values of corresponding registers,
2145 IC is the instruction counter specifying from where to start the program.
2146If R0..R7 are nil, they are initialized to 0.
2147If IC is nil, it is initialized to head of the CCL program.
2148
2149If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2150when read buffer is exausted, else, IC is always set to the end of
2151CCL-PROGRAM on exit.
2152
2153It returns the contents of write buffer as a string,
2154 and as side effect, STATUS is updated.
2155If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2156is a unibyte string. By default it is a multibyte string.
2157
2158See the documentation of `define-ccl-program' for the detail of CCL program. */)
2159 (ccl_prog, status, str, contin, unibyte_p)
39a68837 2160 Lisp_Object ccl_prog, status, str, contin, unibyte_p;
4ed46869
KH
2161{
2162 Lisp_Object val;
2163 struct ccl_program ccl;
2164 int i, produced;
2165 int outbufsize;
2166 char *outbuf;
5232fa7b 2167 struct gcpro gcpro1, gcpro2;
6ae21908 2168
5232fa7b
KH
2169 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2170 error ("Invalid CCL program");
4ed46869 2171
b7826503 2172 CHECK_VECTOR (status);
64ef2921 2173 if (ASIZE (status) != 9)
5232fa7b 2174 error ("Length of vector STATUS is not 9");
b7826503 2175 CHECK_STRING (str);
4ed46869 2176
5232fa7b
KH
2177 GCPRO2 (status, str);
2178
4ed46869
KH
2179 for (i = 0; i < 8; i++)
2180 {
64ef2921
SM
2181 if (NILP (AREF (status, i)))
2182 XSETINT (AREF (status, i), 0);
2183 if (INTEGERP (AREF (status, i)))
2184 ccl.reg[i] = XINT (AREF (status, i));
4ed46869 2185 }
64ef2921 2186 if (INTEGERP (AREF (status, i)))
4ed46869 2187 {
64ef2921 2188 i = XFASTINT (AREF (status, 8));
4ed46869
KH
2189 if (ccl.ic < i && i < ccl.size)
2190 ccl.ic = i;
2191 }
d5db4077 2192 outbufsize = SBYTES (str) * ccl.buf_magnification + 256;
4ed46869 2193 outbuf = (char *) xmalloc (outbufsize);
cb5373dd 2194 ccl.last_block = NILP (contin);
7a837c89 2195 ccl.multibyte = STRING_MULTIBYTE (str);
d5db4077
KR
2196 produced = ccl_driver (&ccl, SDATA (str), outbuf,
2197 SBYTES (str), outbufsize, (int *) 0);
4ed46869 2198 for (i = 0; i < 8; i++)
866ebf45
KH
2199 ASET (status, i, make_number (ccl.reg[i]));
2200 ASET (status, 8, make_number (ccl.ic));
4ed46869
KH
2201 UNGCPRO;
2202
39a68837 2203 if (NILP (unibyte_p))
a3d8fcf2
KH
2204 {
2205 int nchars;
2206
2207 produced = str_as_multibyte (outbuf, outbufsize, produced, &nchars);
2208 val = make_multibyte_string (outbuf, nchars, produced);
2209 }
39a68837
KH
2210 else
2211 val = make_unibyte_string (outbuf, produced);
157f852b 2212 xfree (outbuf);
4ed46869 2213 QUIT;
a3d8fcf2
KH
2214 if (ccl.status == CCL_STAT_SUSPEND_BY_DST)
2215 error ("Output buffer for the CCL programs overflow");
4ed46869 2216 if (ccl.status != CCL_STAT_SUCCESS
a3d8fcf2 2217 && ccl.status != CCL_STAT_SUSPEND_BY_SRC)
4ed46869
KH
2218 error ("Error in CCL program at %dth code", ccl.ic);
2219
2220 return val;
2221}
2222
2223DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
2224 2, 2, 0,
fdb82f93
PJ
2225 doc: /* Register CCL program CCL_PROG as NAME in `ccl-program-table'.
2226CCL_PROG should be a compiled CCL program (vector), or nil.
2227If it is nil, just reserve NAME as a CCL program name.
2228Return index number of the registered CCL program. */)
2229 (name, ccl_prog)
4ed46869
KH
2230 Lisp_Object name, ccl_prog;
2231{
64ef2921 2232 int len = ASIZE (Vccl_program_table);
5232fa7b
KH
2233 int idx;
2234 Lisp_Object resolved;
4ed46869 2235
b7826503 2236 CHECK_SYMBOL (name);
5232fa7b 2237 resolved = Qnil;
4ed46869 2238 if (!NILP (ccl_prog))
6ae21908 2239 {
b7826503 2240 CHECK_VECTOR (ccl_prog);
5232fa7b 2241 resolved = resolve_symbol_ccl_program (ccl_prog);
4d247a1f
KH
2242 if (NILP (resolved))
2243 error ("Error in CCL program");
2244 if (VECTORP (resolved))
5232fa7b
KH
2245 {
2246 ccl_prog = resolved;
2247 resolved = Qt;
2248 }
4d247a1f
KH
2249 else
2250 resolved = Qnil;
6ae21908 2251 }
5232fa7b
KH
2252
2253 for (idx = 0; idx < len; idx++)
4ed46869 2254 {
5232fa7b 2255 Lisp_Object slot;
4ed46869 2256
64ef2921 2257 slot = AREF (Vccl_program_table, idx);
5232fa7b
KH
2258 if (!VECTORP (slot))
2259 /* This is the first unsed slot. Register NAME here. */
4ed46869
KH
2260 break;
2261
64ef2921 2262 if (EQ (name, AREF (slot, 0)))
4ed46869 2263 {
5232fa7b 2264 /* Update this slot. */
64ef2921
SM
2265 AREF (slot, 1) = ccl_prog;
2266 AREF (slot, 2) = resolved;
5232fa7b 2267 return make_number (idx);
4ed46869
KH
2268 }
2269 }
2270
5232fa7b 2271 if (idx == len)
4ed46869 2272 {
5232fa7b
KH
2273 /* Extend the table. */
2274 Lisp_Object new_table;
4ed46869
KH
2275 int j;
2276
5232fa7b 2277 new_table = Fmake_vector (make_number (len * 2), Qnil);
4ed46869 2278 for (j = 0; j < len; j++)
64ef2921
SM
2279 AREF (new_table, j)
2280 = AREF (Vccl_program_table, j);
4ed46869
KH
2281 Vccl_program_table = new_table;
2282 }
2283
5232fa7b
KH
2284 {
2285 Lisp_Object elt;
2286
2287 elt = Fmake_vector (make_number (3), Qnil);
64ef2921
SM
2288 AREF (elt, 0) = name;
2289 AREF (elt, 1) = ccl_prog;
2290 AREF (elt, 2) = resolved;
2291 AREF (Vccl_program_table, idx) = elt;
5232fa7b
KH
2292 }
2293
2294 Fput (name, Qccl_program_idx, make_number (idx));
2295 return make_number (idx);
4ed46869
KH
2296}
2297
8146262a
KH
2298/* Register code conversion map.
2299 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
d617f6df
DL
2300 The first element is the start code point.
2301 The other elements are mapped numbers.
8146262a
KH
2302 Symbol t means to map to an original number before mapping.
2303 Symbol nil means that the corresponding element is empty.
d617f6df 2304 Symbol lambda means to terminate mapping here.
e34b1164
KH
2305*/
2306
8146262a
KH
2307DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
2308 Sregister_code_conversion_map,
e34b1164 2309 2, 2, 0,
fdb82f93
PJ
2310 doc: /* Register SYMBOL as code conversion map MAP.
2311Return index number of the registered map. */)
2312 (symbol, map)
8146262a 2313 Lisp_Object symbol, map;
e34b1164 2314{
64ef2921 2315 int len = ASIZE (Vcode_conversion_map_vector);
e34b1164
KH
2316 int i;
2317 Lisp_Object index;
2318
b7826503
PJ
2319 CHECK_SYMBOL (symbol);
2320 CHECK_VECTOR (map);
177c0ea7 2321
e34b1164
KH
2322 for (i = 0; i < len; i++)
2323 {
64ef2921 2324 Lisp_Object slot = AREF (Vcode_conversion_map_vector, i);
e34b1164
KH
2325
2326 if (!CONSP (slot))
2327 break;
2328
03699b14 2329 if (EQ (symbol, XCAR (slot)))
e34b1164
KH
2330 {
2331 index = make_number (i);
f3fbd155 2332 XSETCDR (slot, map);
8146262a
KH
2333 Fput (symbol, Qcode_conversion_map, map);
2334 Fput (symbol, Qcode_conversion_map_id, index);
e34b1164
KH
2335 return index;
2336 }
2337 }
2338
2339 if (i == len)
2340 {
2341 Lisp_Object new_vector = Fmake_vector (make_number (len * 2), Qnil);
2342 int j;
2343
2344 for (j = 0; j < len; j++)
64ef2921
SM
2345 AREF (new_vector, j)
2346 = AREF (Vcode_conversion_map_vector, j);
8146262a 2347 Vcode_conversion_map_vector = new_vector;
e34b1164
KH
2348 }
2349
2350 index = make_number (i);
8146262a
KH
2351 Fput (symbol, Qcode_conversion_map, map);
2352 Fput (symbol, Qcode_conversion_map_id, index);
64ef2921 2353 AREF (Vcode_conversion_map_vector, i) = Fcons (symbol, map);
e34b1164
KH
2354 return index;
2355}
2356
2357
dfcf069d 2358void
4ed46869
KH
2359syms_of_ccl ()
2360{
2361 staticpro (&Vccl_program_table);
6703ac4f 2362 Vccl_program_table = Fmake_vector (make_number (32), Qnil);
4ed46869 2363
6ae21908
KH
2364 Qccl_program = intern ("ccl-program");
2365 staticpro (&Qccl_program);
2366
2367 Qccl_program_idx = intern ("ccl-program-idx");
2368 staticpro (&Qccl_program_idx);
e34b1164 2369
8146262a
KH
2370 Qcode_conversion_map = intern ("code-conversion-map");
2371 staticpro (&Qcode_conversion_map);
6ae21908 2372
8146262a
KH
2373 Qcode_conversion_map_id = intern ("code-conversion-map-id");
2374 staticpro (&Qcode_conversion_map_id);
6ae21908 2375
8146262a 2376 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector,
fdb82f93 2377 doc: /* Vector of code conversion maps. */);
8146262a 2378 Vcode_conversion_map_vector = Fmake_vector (make_number (16), Qnil);
e34b1164 2379
4ed46869 2380 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist,
fdb82f93
PJ
2381 doc: /* Alist of fontname patterns vs corresponding CCL program.
2382Each element looks like (REGEXP . CCL-CODE),
2383 where CCL-CODE is a compiled CCL program.
2384When a font whose name matches REGEXP is used for displaying a character,
2385 CCL-CODE is executed to calculate the code point in the font
2386 from the charset number and position code(s) of the character which are set
2387 in CCL registers R0, R1, and R2 before the execution.
2388The code point in the font is set in CCL registers R1 and R2
2389 when the execution terminated.
2390 If the font is single-byte font, the register R2 is not used. */);
4ed46869
KH
2391 Vfont_ccl_encoder_alist = Qnil;
2392
d80dc57e
DL
2393 DEFVAR_LISP ("translation-hash-table-vector", &Vtranslation_hash_table_vector,
2394 doc: /* Vector containing all translation hash tables ever defined.
2395Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
2396to `define-translation-hash-table'. The vector is indexed by the table id
2397used by CCL. */);
2398 Vtranslation_hash_table_vector = Qnil;
2399
5232fa7b 2400 defsubr (&Sccl_program_p);
4ed46869
KH
2401 defsubr (&Sccl_execute);
2402 defsubr (&Sccl_execute_on_string);
2403 defsubr (&Sregister_ccl_program);
8146262a 2404 defsubr (&Sregister_code_conversion_map);
4ed46869 2405}
ab5796a9
MB
2406
2407/* arch-tag: bb9a37be-68ce-4576-8d3d-15d750e4a860
2408 (do not change this comment) */