(read_key_sequence): Set initial_idleness_start_time
[bpt/emacs.git] / src / ccl.c
CommitLineData
4ed46869 1/* CCL (Code Conversion Language) interpreter.
75c8c592 2 Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN.
41cd7d67 3 Copyright (C) 2001 Free Software Foundation, Inc.
75c8c592 4 Licensed to the Free Software Foundation.
4ed46869 5
369314dc
KH
6This file is part of GNU Emacs.
7
8GNU Emacs is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
4ed46869 12
369314dc
KH
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
4ed46869 17
369314dc
KH
18You should have received a copy of the GNU General Public License
19along with GNU Emacs; see the file COPYING. If not, write to
20the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
4ed46869 22
4ed46869 23#ifdef emacs
4ed46869 24#include <config.h>
dfcf069d
AS
25#endif
26
68c45bf0
PE
27#include <stdio.h>
28
29#ifdef emacs
30
4ed46869
KH
31#include "lisp.h"
32#include "charset.h"
33#include "ccl.h"
34#include "coding.h"
35
36#else /* not emacs */
37
38#include "mulelib.h"
39
40#endif /* not emacs */
41
20398ea4 42/* This contains all code conversion map available to CCL. */
8146262a 43Lisp_Object Vcode_conversion_map_vector;
e34b1164 44
4ed46869
KH
45/* Alist of fontname patterns vs corresponding CCL program. */
46Lisp_Object Vfont_ccl_encoder_alist;
47
6ae21908
KH
48/* This symbol is a property which assocates with ccl program vector.
49 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
e34b1164
KH
50Lisp_Object Qccl_program;
51
8146262a
KH
52/* These symbols are properties which associate with code conversion
53 map and their ID respectively. */
54Lisp_Object Qcode_conversion_map;
55Lisp_Object Qcode_conversion_map_id;
e34b1164 56
6ae21908
KH
57/* Symbols of ccl program have this property, a value of the property
58 is an index for Vccl_protram_table. */
59Lisp_Object Qccl_program_idx;
60
5232fa7b
KH
61/* Table of registered CCL programs. Each element is a vector of
62 NAME, CCL_PROG, and RESOLVEDP where NAME (symbol) is the name of
63 the program, CCL_PROG (vector) is the compiled code of the program,
64 RESOLVEDP (t or nil) is the flag to tell if symbols in CCL_PROG is
65 already resolved to index numbers or not. */
4ed46869
KH
66Lisp_Object Vccl_program_table;
67
68/* CCL (Code Conversion Language) is a simple language which has
69 operations on one input buffer, one output buffer, and 7 registers.
70 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
71 `ccl-compile' compiles a CCL program and produces a CCL code which
72 is a vector of integers. The structure of this vector is as
73 follows: The 1st element: buffer-magnification, a factor for the
74 size of output buffer compared with the size of input buffer. The
75 2nd element: address of CCL code to be executed when encountered
76 with end of input stream. The 3rd and the remaining elements: CCL
77 codes. */
78
79/* Header of CCL compiled code */
80#define CCL_HEADER_BUF_MAG 0
81#define CCL_HEADER_EOF 1
82#define CCL_HEADER_MAIN 2
83
84/* CCL code is a sequence of 28-bit non-negative integers (i.e. the
85 MSB is always 0), each contains CCL command and/or arguments in the
86 following format:
87
88 |----------------- integer (28-bit) ------------------|
89 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
90 |--constant argument--|-register-|-register-|-command-|
91 ccccccccccccccccc RRR rrr XXXXX
92 or
93 |------- relative address -------|-register-|-command-|
94 cccccccccccccccccccc rrr XXXXX
95 or
96 |------------- constant or other args ----------------|
97 cccccccccccccccccccccccccccc
98
99 where, `cc...c' is a non-negative integer indicating constant value
100 (the left most `c' is always 0) or an absolute jump address, `RRR'
101 and `rrr' are CCL register number, `XXXXX' is one of the following
102 CCL commands. */
103
104/* CCL commands
105
106 Each comment fields shows one or more lines for command syntax and
107 the following lines for semantics of the command. In semantics, IC
108 stands for Instruction Counter. */
109
110#define CCL_SetRegister 0x00 /* Set register a register value:
111 1:00000000000000000RRRrrrXXXXX
112 ------------------------------
113 reg[rrr] = reg[RRR];
114 */
115
116#define CCL_SetShortConst 0x01 /* Set register a short constant value:
117 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
118 ------------------------------
119 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
120 */
121
122#define CCL_SetConst 0x02 /* Set register a constant value:
123 1:00000000000000000000rrrXXXXX
124 2:CONSTANT
125 ------------------------------
126 reg[rrr] = CONSTANT;
127 IC++;
128 */
129
130#define CCL_SetArray 0x03 /* Set register an element of array:
131 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
132 2:ELEMENT[0]
133 3:ELEMENT[1]
134 ...
135 ------------------------------
136 if (0 <= reg[RRR] < CC..C)
137 reg[rrr] = ELEMENT[reg[RRR]];
138 IC += CC..C;
139 */
140
141#define CCL_Jump 0x04 /* Jump:
142 1:A--D--D--R--E--S--S-000XXXXX
143 ------------------------------
144 IC += ADDRESS;
145 */
146
147/* Note: If CC..C is greater than 0, the second code is omitted. */
148
149#define CCL_JumpCond 0x05 /* Jump conditional:
150 1:A--D--D--R--E--S--S-rrrXXXXX
151 ------------------------------
152 if (!reg[rrr])
153 IC += ADDRESS;
154 */
155
156
157#define CCL_WriteRegisterJump 0x06 /* Write register and jump:
158 1:A--D--D--R--E--S--S-rrrXXXXX
159 ------------------------------
160 write (reg[rrr]);
161 IC += ADDRESS;
162 */
163
164#define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
165 1:A--D--D--R--E--S--S-rrrXXXXX
166 2:A--D--D--R--E--S--S-rrrYYYYY
167 -----------------------------
168 write (reg[rrr]);
169 IC++;
170 read (reg[rrr]);
171 IC += ADDRESS;
172 */
173/* Note: If read is suspended, the resumed execution starts from the
174 second code (YYYYY == CCL_ReadJump). */
175
176#define CCL_WriteConstJump 0x08 /* Write constant and jump:
177 1:A--D--D--R--E--S--S-000XXXXX
178 2:CONST
179 ------------------------------
180 write (CONST);
181 IC += ADDRESS;
182 */
183
184#define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
185 1:A--D--D--R--E--S--S-rrrXXXXX
186 2:CONST
187 3:A--D--D--R--E--S--S-rrrYYYYY
188 -----------------------------
189 write (CONST);
190 IC += 2;
191 read (reg[rrr]);
192 IC += ADDRESS;
193 */
194/* Note: If read is suspended, the resumed execution starts from the
195 second code (YYYYY == CCL_ReadJump). */
196
197#define CCL_WriteStringJump 0x0A /* Write string and jump:
198 1:A--D--D--R--E--S--S-000XXXXX
199 2:LENGTH
200 3:0000STRIN[0]STRIN[1]STRIN[2]
201 ...
202 ------------------------------
203 write_string (STRING, LENGTH);
204 IC += ADDRESS;
205 */
206
207#define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
208 1:A--D--D--R--E--S--S-rrrXXXXX
209 2:LENGTH
210 3:ELEMENET[0]
211 4:ELEMENET[1]
212 ...
213 N:A--D--D--R--E--S--S-rrrYYYYY
214 ------------------------------
215 if (0 <= reg[rrr] < LENGTH)
216 write (ELEMENT[reg[rrr]]);
217 IC += LENGTH + 2; (... pointing at N+1)
218 read (reg[rrr]);
219 IC += ADDRESS;
220 */
221/* Note: If read is suspended, the resumed execution starts from the
887bfbd7 222 Nth code (YYYYY == CCL_ReadJump). */
4ed46869
KH
223
224#define CCL_ReadJump 0x0C /* Read and jump:
225 1:A--D--D--R--E--S--S-rrrYYYYY
226 -----------------------------
227 read (reg[rrr]);
228 IC += ADDRESS;
229 */
230
231#define CCL_Branch 0x0D /* Jump by branch table:
232 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
233 2:A--D--D--R--E-S-S[0]000XXXXX
234 3:A--D--D--R--E-S-S[1]000XXXXX
235 ...
236 ------------------------------
237 if (0 <= reg[rrr] < CC..C)
238 IC += ADDRESS[reg[rrr]];
239 else
240 IC += ADDRESS[CC..C];
241 */
242
243#define CCL_ReadRegister 0x0E /* Read bytes into registers:
244 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
245 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
246 ...
247 ------------------------------
248 while (CCC--)
249 read (reg[rrr]);
250 */
251
252#define CCL_WriteExprConst 0x0F /* write result of expression:
253 1:00000OPERATION000RRR000XXXXX
254 2:CONSTANT
255 ------------------------------
256 write (reg[RRR] OPERATION CONSTANT);
257 IC++;
258 */
259
260/* Note: If the Nth read is suspended, the resumed execution starts
261 from the Nth code. */
262
263#define CCL_ReadBranch 0x10 /* Read one byte into a register,
264 and jump by branch table:
265 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
266 2:A--D--D--R--E-S-S[0]000XXXXX
267 3:A--D--D--R--E-S-S[1]000XXXXX
268 ...
269 ------------------------------
270 read (read[rrr]);
271 if (0 <= reg[rrr] < CC..C)
272 IC += ADDRESS[reg[rrr]];
273 else
274 IC += ADDRESS[CC..C];
275 */
276
277#define CCL_WriteRegister 0x11 /* Write registers:
278 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
279 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
280 ...
281 ------------------------------
282 while (CCC--)
283 write (reg[rrr]);
284 ...
285 */
286
287/* Note: If the Nth write is suspended, the resumed execution
288 starts from the Nth code. */
289
290#define CCL_WriteExprRegister 0x12 /* Write result of expression
291 1:00000OPERATIONRrrRRR000XXXXX
292 ------------------------------
293 write (reg[RRR] OPERATION reg[Rrr]);
294 */
295
e34b1164 296#define CCL_Call 0x13 /* Call the CCL program whose ID is
5232fa7b
KH
297 CC..C or cc..c.
298 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
299 [2:00000000cccccccccccccccccccc]
4ed46869 300 ------------------------------
5232fa7b
KH
301 if (FFF)
302 call (cc..c)
303 IC++;
304 else
305 call (CC..C)
4ed46869
KH
306 */
307
308#define CCL_WriteConstString 0x14 /* Write a constant or a string:
309 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
310 [2:0000STRIN[0]STRIN[1]STRIN[2]]
311 [...]
312 -----------------------------
313 if (!rrr)
314 write (CC..C)
315 else
316 write_string (STRING, CC..C);
317 IC += (CC..C + 2) / 3;
318 */
319
320#define CCL_WriteArray 0x15 /* Write an element of array:
321 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
322 2:ELEMENT[0]
323 3:ELEMENT[1]
324 ...
325 ------------------------------
326 if (0 <= reg[rrr] < CC..C)
327 write (ELEMENT[reg[rrr]]);
328 IC += CC..C;
329 */
330
331#define CCL_End 0x16 /* Terminate:
332 1:00000000000000000000000XXXXX
333 ------------------------------
334 terminate ();
335 */
336
337/* The following two codes execute an assignment arithmetic/logical
338 operation. The form of the operation is like REG OP= OPERAND. */
339
340#define CCL_ExprSelfConst 0x17 /* REG OP= constant:
341 1:00000OPERATION000000rrrXXXXX
342 2:CONSTANT
343 ------------------------------
344 reg[rrr] OPERATION= CONSTANT;
345 */
346
347#define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
348 1:00000OPERATION000RRRrrrXXXXX
349 ------------------------------
350 reg[rrr] OPERATION= reg[RRR];
351 */
352
353/* The following codes execute an arithmetic/logical operation. The
354 form of the operation is like REG_X = REG_Y OP OPERAND2. */
355
356#define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
357 1:00000OPERATION000RRRrrrXXXXX
358 2:CONSTANT
359 ------------------------------
360 reg[rrr] = reg[RRR] OPERATION CONSTANT;
361 IC++;
362 */
363
364#define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
365 1:00000OPERATIONRrrRRRrrrXXXXX
366 ------------------------------
367 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
368 */
369
370#define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
371 an operation on constant:
372 1:A--D--D--R--E--S--S-rrrXXXXX
373 2:OPERATION
374 3:CONSTANT
375 -----------------------------
376 reg[7] = reg[rrr] OPERATION CONSTANT;
377 if (!(reg[7]))
378 IC += ADDRESS;
379 else
380 IC += 2
381 */
382
383#define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
384 an operation on register:
385 1:A--D--D--R--E--S--S-rrrXXXXX
386 2:OPERATION
387 3:RRR
388 -----------------------------
389 reg[7] = reg[rrr] OPERATION reg[RRR];
390 if (!reg[7])
391 IC += ADDRESS;
392 else
393 IC += 2;
394 */
395
396#define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
397 to an operation on constant:
398 1:A--D--D--R--E--S--S-rrrXXXXX
399 2:OPERATION
400 3:CONSTANT
401 -----------------------------
402 read (reg[rrr]);
403 reg[7] = reg[rrr] OPERATION CONSTANT;
404 if (!reg[7])
405 IC += ADDRESS;
406 else
407 IC += 2;
408 */
409
410#define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
411 to an operation on register:
412 1:A--D--D--R--E--S--S-rrrXXXXX
413 2:OPERATION
414 3:RRR
415 -----------------------------
416 read (reg[rrr]);
417 reg[7] = reg[rrr] OPERATION reg[RRR];
418 if (!reg[7])
419 IC += ADDRESS;
420 else
421 IC += 2;
422 */
423
450ed226 424#define CCL_Extension 0x1F /* Extended CCL code
4ed46869
KH
425 1:ExtendedCOMMNDRrrRRRrrrXXXXX
426 2:ARGUEMENT
427 3:...
428 ------------------------------
429 extended_command (rrr,RRR,Rrr,ARGS)
430 */
431
e34b1164 432/*
6ae21908 433 Here after, Extended CCL Instructions.
e34b1164 434 Bit length of extended command is 14.
6ae21908 435 Therefore, the instruction code range is 0..16384(0x3fff).
e34b1164
KH
436 */
437
6ae21908
KH
438/* Read a multibyte characeter.
439 A code point is stored into reg[rrr]. A charset ID is stored into
440 reg[RRR]. */
441
442#define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
443 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
444
445/* Write a multibyte character.
446 Write a character whose code point is reg[rrr] and the charset ID
447 is reg[RRR]. */
448
449#define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
450 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
451
8146262a 452/* Translate a character whose code point is reg[rrr] and the charset
f967223b 453 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
6ae21908 454
8146262a 455 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
456 (charset ID). */
457
8146262a 458#define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
6ae21908
KH
459 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
460
8146262a 461/* Translate a character whose code point is reg[rrr] and the charset
f967223b 462 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
6ae21908 463
8146262a 464 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
465 (charset ID). */
466
8146262a
KH
467#define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
468 1:ExtendedCOMMNDRrrRRRrrrXXXXX
469 2:ARGUMENT(Translation Table ID)
470 */
6ae21908 471
8146262a
KH
472/* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
473 reg[RRR]) MAP until some value is found.
6ae21908 474
8146262a 475 Each MAP is a Lisp vector whose element is number, nil, t, or
6ae21908 476 lambda.
8146262a 477 If the element is nil, ignore the map and proceed to the next map.
6ae21908
KH
478 If the element is t or lambda, finish without changing reg[rrr].
479 If the element is a number, set reg[rrr] to the number and finish.
480
8146262a
KH
481 Detail of the map structure is descibed in the comment for
482 CCL_MapMultiple below. */
6ae21908 483
8146262a 484#define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
6ae21908 485 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a
KH
486 2:NUMBER of MAPs
487 3:MAP-ID1
488 4:MAP-ID2
6ae21908
KH
489 ...
490 */
491
8146262a
KH
492/* Map the code in reg[rrr] by MAPs starting from the Nth (N =
493 reg[RRR]) map.
6ae21908 494
9b27b20d 495 MAPs are supplied in the succeeding CCL codes as follows:
6ae21908 496
8146262a
KH
497 When CCL program gives this nested structure of map to this command:
498 ((MAP-ID11
499 MAP-ID12
500 (MAP-ID121 MAP-ID122 MAP-ID123)
501 MAP-ID13)
502 (MAP-ID21
503 (MAP-ID211 (MAP-ID2111) MAP-ID212)
504 MAP-ID22)),
6ae21908 505 the compiled CCL codes has this sequence:
8146262a 506 CCL_MapMultiple (CCL code of this command)
9b27b20d
KH
507 16 (total number of MAPs and SEPARATORs)
508 -7 (1st SEPARATOR)
8146262a
KH
509 MAP-ID11
510 MAP-ID12
9b27b20d 511 -3 (2nd SEPARATOR)
8146262a
KH
512 MAP-ID121
513 MAP-ID122
514 MAP-ID123
515 MAP-ID13
9b27b20d 516 -7 (3rd SEPARATOR)
8146262a 517 MAP-ID21
9b27b20d 518 -4 (4th SEPARATOR)
8146262a 519 MAP-ID211
9b27b20d 520 -1 (5th SEPARATOR)
8146262a
KH
521 MAP_ID2111
522 MAP-ID212
523 MAP-ID22
6ae21908 524
9b27b20d 525 A value of each SEPARATOR follows this rule:
8146262a
KH
526 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
527 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
6ae21908 528
8146262a 529 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
6ae21908 530
8146262a
KH
531 When some map fails to map (i.e. it doesn't have a value for
532 reg[rrr]), the mapping is treated as identity.
6ae21908 533
8146262a 534 The mapping is iterated for all maps in each map set (set of maps
9b27b20d
KH
535 separated by SEPARATOR) except in the case that lambda is
536 encountered. More precisely, the mapping proceeds as below:
537
538 At first, VAL0 is set to reg[rrr], and it is translated by the
539 first map to VAL1. Then, VAL1 is translated by the next map to
540 VAL2. This mapping is iterated until the last map is used. The
54fa5bc1
KH
541 result of the mapping is the last value of VAL?. When the mapping
542 process reached to the end of the map set, it moves to the next
543 map set. If the next does not exit, the mapping process terminates,
544 and regard the last value as a result.
9b27b20d
KH
545
546 But, when VALm is mapped to VALn and VALn is not a number, the
547 mapping proceed as below:
548
549 If VALn is nil, the lastest map is ignored and the mapping of VALm
550 proceed to the next map.
551
552 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
553 proceed to the next map.
554
54fa5bc1
KH
555 If VALn is lambda, move to the next map set like reaching to the
556 end of the current map set.
557
558 If VALn is a symbol, call the CCL program refered by it.
559 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
560 Such special values are regarded as nil, t, and lambda respectively.
6ae21908 561
8146262a 562 Each map is a Lisp vector of the following format (a) or (b):
6ae21908
KH
563 (a)......[STARTPOINT VAL1 VAL2 ...]
564 (b)......[t VAL STARTPOINT ENDPOINT],
565 where
8146262a 566 STARTPOINT is an offset to be used for indexing a map,
9b27b20d 567 ENDPOINT is a maximum index number of a map,
6ae21908
KH
568 VAL and VALn is a number, nil, t, or lambda.
569
8146262a
KH
570 Valid index range of a map of type (a) is:
571 STARTPOINT <= index < STARTPOINT + map_size - 1
572 Valid index range of a map of type (b) is:
9b27b20d 573 STARTPOINT <= index < ENDPOINT */
6ae21908 574
8146262a 575#define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
6ae21908
KH
576 1:ExtendedCOMMNDXXXRRRrrrXXXXX
577 2:N-2
578 3:SEPARATOR_1 (< 0)
8146262a
KH
579 4:MAP-ID_1
580 5:MAP-ID_2
6ae21908
KH
581 ...
582 M:SEPARATOR_x (< 0)
8146262a 583 M+1:MAP-ID_y
6ae21908
KH
584 ...
585 N:SEPARATOR_z (< 0)
586 */
587
54fa5bc1 588#define MAX_MAP_SET_LEVEL 30
6ae21908
KH
589
590typedef struct
591{
592 int rest_length;
593 int orig_val;
594} tr_stack;
595
8146262a
KH
596static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
597static tr_stack *mapping_stack_pointer;
6ae21908 598
54fa5bc1
KH
599/* If this variable is non-zero, it indicates the stack_idx
600 of immediately called by CCL_MapMultiple. */
be57900b 601static int stack_idx_of_map_multiple;
54fa5bc1
KH
602
603#define PUSH_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
604do \
605 { \
54fa5bc1
KH
606 mapping_stack_pointer->rest_length = (restlen); \
607 mapping_stack_pointer->orig_val = (orig); \
608 mapping_stack_pointer++; \
a89f435d
PJ
609 } \
610while (0)
54fa5bc1
KH
611
612#define POP_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
613do \
614 { \
54fa5bc1
KH
615 mapping_stack_pointer--; \
616 (restlen) = mapping_stack_pointer->rest_length; \
617 (orig) = mapping_stack_pointer->orig_val; \
a89f435d
PJ
618 } \
619while (0)
6ae21908 620
54fa5bc1 621#define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
a89f435d 622do \
0ee1088b 623 { \
54fa5bc1
KH
624 struct ccl_program called_ccl; \
625 if (stack_idx >= 256 \
626 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
627 { \
628 if (stack_idx > 0) \
629 { \
630 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
631 ic = ccl_prog_stack_struct[0].ic; \
632 } \
633 CCL_INVALID_CMD; \
634 } \
635 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
636 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
637 stack_idx++; \
638 ccl_prog = called_ccl.prog; \
639 ic = CCL_HEADER_MAIN; \
640 goto ccl_repeat; \
0ee1088b 641 } \
a89f435d 642while (0)
6ae21908 643
8146262a 644#define CCL_MapSingle 0x12 /* Map by single code conversion map
6ae21908 645 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a 646 2:MAP-ID
6ae21908 647 ------------------------------
8146262a
KH
648 Map reg[rrr] by MAP-ID.
649 If some valid mapping is found,
6ae21908
KH
650 set reg[rrr] to the result,
651 else
652 set reg[RRR] to -1.
653 */
4ed46869
KH
654
655/* CCL arithmetic/logical operators. */
656#define CCL_PLUS 0x00 /* X = Y + Z */
657#define CCL_MINUS 0x01 /* X = Y - Z */
658#define CCL_MUL 0x02 /* X = Y * Z */
659#define CCL_DIV 0x03 /* X = Y / Z */
660#define CCL_MOD 0x04 /* X = Y % Z */
661#define CCL_AND 0x05 /* X = Y & Z */
662#define CCL_OR 0x06 /* X = Y | Z */
663#define CCL_XOR 0x07 /* X = Y ^ Z */
664#define CCL_LSH 0x08 /* X = Y << Z */
665#define CCL_RSH 0x09 /* X = Y >> Z */
666#define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
667#define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
668#define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
669#define CCL_LS 0x10 /* X = (X < Y) */
670#define CCL_GT 0x11 /* X = (X > Y) */
671#define CCL_EQ 0x12 /* X = (X == Y) */
672#define CCL_LE 0x13 /* X = (X <= Y) */
673#define CCL_GE 0x14 /* X = (X >= Y) */
674#define CCL_NE 0x15 /* X = (X != Y) */
675
51520e8a 676#define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
4ed46869 677 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
51520e8a
KH
678#define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
679 r[7] = LOWER_BYTE (SJIS (Y, Z) */
4ed46869 680
4ed46869 681/* Terminate CCL program successfully. */
0ee1088b 682#define CCL_SUCCESS \
a89f435d 683do \
0ee1088b 684 { \
4ed46869 685 ccl->status = CCL_STAT_SUCCESS; \
0ee1088b
KH
686 goto ccl_finish; \
687 } \
a89f435d 688while(0)
4ed46869
KH
689
690/* Suspend CCL program because of reading from empty input buffer or
691 writing to full output buffer. When this program is resumed, the
692 same I/O command is executed. */
e34b1164 693#define CCL_SUSPEND(stat) \
a89f435d 694do \
0ee1088b 695 { \
e34b1164
KH
696 ic--; \
697 ccl->status = stat; \
698 goto ccl_finish; \
0ee1088b 699 } \
a89f435d 700while (0)
4ed46869
KH
701
702/* Terminate CCL program because of invalid command. Should not occur
703 in the normal case. */
704#define CCL_INVALID_CMD \
a89f435d 705do \
0ee1088b 706 { \
4ed46869
KH
707 ccl->status = CCL_STAT_INVALID_CMD; \
708 goto ccl_error_handler; \
0ee1088b 709 } \
a89f435d 710while(0)
4ed46869
KH
711
712/* Encode one character CH to multibyte form and write to the current
887bfbd7 713 output buffer. If CH is less than 256, CH is written as is. */
a37520c6
KH
714#define CCL_WRITE_CHAR(ch) \
715 do { \
716 int bytes = SINGLE_BYTE_CHAR_P (ch) ? 1: CHAR_BYTES (ch); \
717 if (!dst) \
718 CCL_INVALID_CMD; \
719 else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
720 { \
721 if (bytes == 1) \
722 { \
723 *dst++ = (ch); \
724 if ((ch) >= 0x80 && (ch) < 0xA0) \
725 /* We may have to convert this eight-bit char to \
726 multibyte form later. */ \
727 extra_bytes++; \
728 } \
31165028 729 else if (CHAR_VALID_P (ch, 0)) \
a37520c6 730 dst += CHAR_STRING (ch, dst); \
31165028
KH
731 else \
732 CCL_INVALID_CMD; \
a37520c6
KH
733 } \
734 else \
735 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
4ed46869
KH
736 } while (0)
737
a8302ba3
KH
738/* Encode one character CH to multibyte form and write to the current
739 output buffer. The output bytes always forms a valid multibyte
740 sequence. */
741#define CCL_WRITE_MULTIBYTE_CHAR(ch) \
742 do { \
743 int bytes = CHAR_BYTES (ch); \
744 if (!dst) \
745 CCL_INVALID_CMD; \
746 else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
747 { \
748 if (CHAR_VALID_P ((ch), 0)) \
749 dst += CHAR_STRING ((ch), dst); \
750 else \
751 CCL_INVALID_CMD; \
752 } \
753 else \
754 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
755 } while (0)
756
4ed46869
KH
757/* Write a string at ccl_prog[IC] of length LEN to the current output
758 buffer. */
759#define CCL_WRITE_STRING(len) \
760 do { \
761 if (!dst) \
762 CCL_INVALID_CMD; \
e34b1164 763 else if (dst + len <= (dst_bytes ? dst_end : src)) \
4ed46869
KH
764 for (i = 0; i < len; i++) \
765 *dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
766 >> ((2 - (i % 3)) * 8)) & 0xFF; \
767 else \
e34b1164 768 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
4ed46869
KH
769 } while (0)
770
9977c491
KH
771/* Read one byte from the current input buffer into REGth register. */
772#define CCL_READ_CHAR(REG) \
17312e44
KH
773 do { \
774 if (!src) \
775 CCL_INVALID_CMD; \
776 else if (src < src_end) \
777 { \
9977c491
KH
778 REG = *src++; \
779 if (REG == '\n' \
17312e44
KH
780 && ccl->eol_type != CODING_EOL_LF) \
781 { \
782 /* We are encoding. */ \
783 if (ccl->eol_type == CODING_EOL_CRLF) \
784 { \
785 if (ccl->cr_consumed) \
786 ccl->cr_consumed = 0; \
787 else \
788 { \
789 ccl->cr_consumed = 1; \
9977c491 790 REG = '\r'; \
17312e44
KH
791 src--; \
792 } \
793 } \
794 else \
9977c491 795 REG = '\r'; \
17312e44 796 } \
9977c491 797 if (REG == LEADING_CODE_8_BIT_CONTROL \
17312e44 798 && ccl->multibyte) \
9977c491 799 REG = *src++ - 0x20; \
17312e44
KH
800 } \
801 else if (ccl->last_block) \
802 { \
803 ic = ccl->eof_ic; \
804 goto ccl_repeat; \
805 } \
806 else \
807 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
4ed46869
KH
808 } while (0)
809
810
4ffd4870
KH
811/* Set C to the character code made from CHARSET and CODE. This is
812 like MAKE_CHAR but check the validity of CHARSET and CODE. If they
813 are not valid, set C to (CODE & 0xFF) because that is usually the
814 case that CCL_ReadMultibyteChar2 read an invalid code and it set
815 CODE to that invalid byte. */
816
817#define CCL_MAKE_CHAR(charset, code, c) \
818 do { \
819 if (charset == CHARSET_ASCII) \
820 c = code & 0xFF; \
821 else if (CHARSET_DEFINED_P (charset) \
822 && (code & 0x7F) >= 32 \
823 && (code < 256 || ((code >> 7) & 0x7F) >= 32)) \
824 { \
825 int c1 = code & 0x7F, c2 = 0; \
826 \
827 if (code >= 256) \
828 c2 = c1, c1 = (code >> 7) & 0x7F; \
bd045987 829 c = MAKE_CHAR (charset, c1, c2); \
4ffd4870
KH
830 } \
831 else \
bd045987 832 c = code & 0xFF; \
4ffd4870
KH
833 } while (0)
834
835
4ed46869
KH
836/* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting
837 text goes to a place pointed by DESTINATION, the length of which
838 should not exceed DST_BYTES. The bytes actually processed is
839 returned as *CONSUMED. The return value is the length of the
840 resulting text. As a side effect, the contents of CCL registers
841 are updated. If SOURCE or DESTINATION is NULL, only operations on
842 registers are permitted. */
843
844#ifdef CCL_DEBUG
845#define CCL_DEBUG_BACKTRACE_LEN 256
846int ccl_backtrace_table[CCL_BACKTRACE_TABLE];
847int ccl_backtrace_idx;
848#endif
849
850struct ccl_prog_stack
851 {
a9f1cc19 852 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
4ed46869
KH
853 int ic; /* Instruction Counter. */
854 };
855
c13362d8
KH
856/* For the moment, we only support depth 256 of stack. */
857static struct ccl_prog_stack ccl_prog_stack_struct[256];
858
dfcf069d 859int
4ed46869
KH
860ccl_driver (ccl, source, destination, src_bytes, dst_bytes, consumed)
861 struct ccl_program *ccl;
862 unsigned char *source, *destination;
863 int src_bytes, dst_bytes;
864 int *consumed;
865{
866 register int *reg = ccl->reg;
867 register int ic = ccl->ic;
8a1ae4dd 868 register int code = 0, field1, field2;
e995085f 869 register Lisp_Object *ccl_prog = ccl->prog;
4ed46869
KH
870 unsigned char *src = source, *src_end = src + src_bytes;
871 unsigned char *dst = destination, *dst_end = dst + dst_bytes;
872 int jump_address;
8a1ae4dd 873 int i = 0, j, op;
c13362d8 874 int stack_idx = ccl->stack_idx;
519bf146 875 /* Instruction counter of the current CCL code. */
8a1ae4dd 876 int this_ic = 0;
a37520c6
KH
877 /* CCL_WRITE_CHAR will produce 8-bit code of range 0x80..0x9F. But,
878 each of them will be converted to multibyte form of 2-byte
879 sequence. For that conversion, we remember how many more bytes
880 we must keep in DESTINATION in this variable. */
881 int extra_bytes = 0;
4ed46869
KH
882
883 if (ic >= ccl->eof_ic)
884 ic = CCL_HEADER_MAIN;
885
8a1ae4dd 886 if (ccl->buf_magnification == 0) /* We can't produce any bytes. */
12abd7d1
KH
887 dst = NULL;
888
54fa5bc1
KH
889 /* Set mapping stack pointer. */
890 mapping_stack_pointer = mapping_stack;
891
4ed46869
KH
892#ifdef CCL_DEBUG
893 ccl_backtrace_idx = 0;
894#endif
895
896 for (;;)
897 {
4ccd0d4a 898 ccl_repeat:
4ed46869
KH
899#ifdef CCL_DEBUG
900 ccl_backtrace_table[ccl_backtrace_idx++] = ic;
901 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
902 ccl_backtrace_idx = 0;
903 ccl_backtrace_table[ccl_backtrace_idx] = 0;
904#endif
905
906 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
907 {
908 /* We can't just signal Qquit, instead break the loop as if
909 the whole data is processed. Don't reset Vquit_flag, it
910 must be handled later at a safer place. */
911 if (consumed)
912 src = source + src_bytes;
913 ccl->status = CCL_STAT_QUIT;
914 break;
915 }
916
519bf146 917 this_ic = ic;
4ed46869
KH
918 code = XINT (ccl_prog[ic]); ic++;
919 field1 = code >> 8;
920 field2 = (code & 0xFF) >> 5;
921
922#define rrr field2
923#define RRR (field1 & 7)
924#define Rrr ((field1 >> 3) & 7)
925#define ADDR field1
e34b1164 926#define EXCMD (field1 >> 6)
4ed46869
KH
927
928 switch (code & 0x1F)
929 {
930 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
931 reg[rrr] = reg[RRR];
932 break;
933
934 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
935 reg[rrr] = field1;
936 break;
937
938 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
939 reg[rrr] = XINT (ccl_prog[ic]);
940 ic++;
941 break;
942
943 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
944 i = reg[RRR];
945 j = field1 >> 3;
946 if ((unsigned int) i < j)
947 reg[rrr] = XINT (ccl_prog[ic + i]);
948 ic += j;
949 break;
950
951 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
952 ic += ADDR;
953 break;
954
955 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
956 if (!reg[rrr])
957 ic += ADDR;
958 break;
959
960 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
961 i = reg[rrr];
962 CCL_WRITE_CHAR (i);
963 ic += ADDR;
964 break;
965
966 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
967 i = reg[rrr];
968 CCL_WRITE_CHAR (i);
969 ic++;
970 CCL_READ_CHAR (reg[rrr]);
971 ic += ADDR - 1;
972 break;
973
974 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
975 i = XINT (ccl_prog[ic]);
976 CCL_WRITE_CHAR (i);
977 ic += ADDR;
978 break;
979
980 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
981 i = XINT (ccl_prog[ic]);
982 CCL_WRITE_CHAR (i);
983 ic++;
984 CCL_READ_CHAR (reg[rrr]);
985 ic += ADDR - 1;
986 break;
987
988 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
989 j = XINT (ccl_prog[ic]);
990 ic++;
991 CCL_WRITE_STRING (j);
992 ic += ADDR - 1;
993 break;
994
995 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
996 i = reg[rrr];
2e34157c 997 j = XINT (ccl_prog[ic]);
4ed46869
KH
998 if ((unsigned int) i < j)
999 {
887bfbd7 1000 i = XINT (ccl_prog[ic + 1 + i]);
4ed46869
KH
1001 CCL_WRITE_CHAR (i);
1002 }
887bfbd7 1003 ic += j + 2;
4ed46869
KH
1004 CCL_READ_CHAR (reg[rrr]);
1005 ic += ADDR - (j + 2);
1006 break;
1007
1008 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
1009 CCL_READ_CHAR (reg[rrr]);
1010 ic += ADDR;
1011 break;
1012
1013 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1014 CCL_READ_CHAR (reg[rrr]);
1015 /* fall through ... */
1016 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1017 if ((unsigned int) reg[rrr] < field1)
1018 ic += XINT (ccl_prog[ic + reg[rrr]]);
1019 else
1020 ic += XINT (ccl_prog[ic + field1]);
1021 break;
1022
1023 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1024 while (1)
1025 {
1026 CCL_READ_CHAR (reg[rrr]);
1027 if (!field1) break;
1028 code = XINT (ccl_prog[ic]); ic++;
1029 field1 = code >> 8;
1030 field2 = (code & 0xFF) >> 5;
1031 }
1032 break;
1033
1034 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
1035 rrr = 7;
1036 i = reg[RRR];
1037 j = XINT (ccl_prog[ic]);
1038 op = field1 >> 6;
25660570 1039 jump_address = ic + 1;
4ed46869
KH
1040 goto ccl_set_expr;
1041
1042 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1043 while (1)
1044 {
1045 i = reg[rrr];
1046 CCL_WRITE_CHAR (i);
1047 if (!field1) break;
1048 code = XINT (ccl_prog[ic]); ic++;
1049 field1 = code >> 8;
1050 field2 = (code & 0xFF) >> 5;
1051 }
1052 break;
1053
1054 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
1055 rrr = 7;
1056 i = reg[RRR];
1057 j = reg[Rrr];
1058 op = field1 >> 6;
25660570 1059 jump_address = ic;
4ed46869
KH
1060 goto ccl_set_expr;
1061
5232fa7b 1062 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
4ed46869
KH
1063 {
1064 Lisp_Object slot;
5232fa7b
KH
1065 int prog_id;
1066
1067 /* If FFF is nonzero, the CCL program ID is in the
1068 following code. */
1069 if (rrr)
1070 {
1071 prog_id = XINT (ccl_prog[ic]);
1072 ic++;
1073 }
1074 else
1075 prog_id = field1;
4ed46869
KH
1076
1077 if (stack_idx >= 256
5232fa7b 1078 || prog_id < 0
64ef2921
SM
1079 || prog_id >= ASIZE (Vccl_program_table)
1080 || (slot = AREF (Vccl_program_table, prog_id), !VECTORP (slot))
1081 || !VECTORP (AREF (slot, 1)))
4ed46869
KH
1082 {
1083 if (stack_idx > 0)
1084 {
1085 ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
1086 ic = ccl_prog_stack_struct[0].ic;
1087 }
1088 CCL_INVALID_CMD;
1089 }
1090
1091 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
1092 ccl_prog_stack_struct[stack_idx].ic = ic;
1093 stack_idx++;
64ef2921 1094 ccl_prog = XVECTOR (AREF (slot, 1))->contents;
4ed46869
KH
1095 ic = CCL_HEADER_MAIN;
1096 }
1097 break;
1098
1099 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1100 if (!rrr)
1101 CCL_WRITE_CHAR (field1);
1102 else
1103 {
1104 CCL_WRITE_STRING (field1);
1105 ic += (field1 + 2) / 3;
1106 }
1107 break;
1108
1109 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1110 i = reg[rrr];
1111 if ((unsigned int) i < field1)
1112 {
1113 j = XINT (ccl_prog[ic + i]);
1114 CCL_WRITE_CHAR (j);
1115 }
1116 ic += field1;
1117 break;
1118
1119 case CCL_End: /* 0000000000000000000000XXXXX */
d3a478e2 1120 if (stack_idx > 0)
4ed46869 1121 {
d3a478e2 1122 stack_idx--;
4ed46869
KH
1123 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
1124 ic = ccl_prog_stack_struct[stack_idx].ic;
1125 break;
1126 }
ad3d1b1d
KH
1127 if (src)
1128 src = src_end;
1129 /* ccl->ic should points to this command code again to
1130 suppress further processing. */
1131 ic--;
4ed46869
KH
1132 CCL_SUCCESS;
1133
1134 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
1135 i = XINT (ccl_prog[ic]);
1136 ic++;
1137 op = field1 >> 6;
1138 goto ccl_expr_self;
1139
1140 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
1141 i = reg[RRR];
1142 op = field1 >> 6;
1143
1144 ccl_expr_self:
1145 switch (op)
1146 {
1147 case CCL_PLUS: reg[rrr] += i; break;
1148 case CCL_MINUS: reg[rrr] -= i; break;
1149 case CCL_MUL: reg[rrr] *= i; break;
1150 case CCL_DIV: reg[rrr] /= i; break;
1151 case CCL_MOD: reg[rrr] %= i; break;
1152 case CCL_AND: reg[rrr] &= i; break;
1153 case CCL_OR: reg[rrr] |= i; break;
1154 case CCL_XOR: reg[rrr] ^= i; break;
1155 case CCL_LSH: reg[rrr] <<= i; break;
1156 case CCL_RSH: reg[rrr] >>= i; break;
1157 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
1158 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
1159 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
1160 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
1161 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
1162 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
1163 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
1164 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
1165 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
1166 default: CCL_INVALID_CMD;
1167 }
1168 break;
1169
1170 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
1171 i = reg[RRR];
1172 j = XINT (ccl_prog[ic]);
1173 op = field1 >> 6;
1174 jump_address = ++ic;
1175 goto ccl_set_expr;
1176
1177 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
1178 i = reg[RRR];
1179 j = reg[Rrr];
1180 op = field1 >> 6;
1181 jump_address = ic;
1182 goto ccl_set_expr;
1183
1184 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1185 CCL_READ_CHAR (reg[rrr]);
1186 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1187 i = reg[rrr];
1188 op = XINT (ccl_prog[ic]);
1189 jump_address = ic++ + ADDR;
1190 j = XINT (ccl_prog[ic]);
1191 ic++;
1192 rrr = 7;
1193 goto ccl_set_expr;
1194
1195 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
1196 CCL_READ_CHAR (reg[rrr]);
1197 case CCL_JumpCondExprReg:
1198 i = reg[rrr];
1199 op = XINT (ccl_prog[ic]);
1200 jump_address = ic++ + ADDR;
1201 j = reg[XINT (ccl_prog[ic])];
1202 ic++;
1203 rrr = 7;
1204
1205 ccl_set_expr:
1206 switch (op)
1207 {
1208 case CCL_PLUS: reg[rrr] = i + j; break;
1209 case CCL_MINUS: reg[rrr] = i - j; break;
1210 case CCL_MUL: reg[rrr] = i * j; break;
1211 case CCL_DIV: reg[rrr] = i / j; break;
1212 case CCL_MOD: reg[rrr] = i % j; break;
1213 case CCL_AND: reg[rrr] = i & j; break;
1214 case CCL_OR: reg[rrr] = i | j; break;
1215 case CCL_XOR: reg[rrr] = i ^ j;; break;
1216 case CCL_LSH: reg[rrr] = i << j; break;
1217 case CCL_RSH: reg[rrr] = i >> j; break;
1218 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
1219 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
1220 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
1221 case CCL_LS: reg[rrr] = i < j; break;
1222 case CCL_GT: reg[rrr] = i > j; break;
1223 case CCL_EQ: reg[rrr] = i == j; break;
1224 case CCL_LE: reg[rrr] = i <= j; break;
1225 case CCL_GE: reg[rrr] = i >= j; break;
1226 case CCL_NE: reg[rrr] = i != j; break;
4ed46869 1227 case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break;
51520e8a 1228 case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break;
4ed46869
KH
1229 default: CCL_INVALID_CMD;
1230 }
1231 code &= 0x1F;
1232 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
1233 {
1234 i = reg[rrr];
1235 CCL_WRITE_CHAR (i);
25660570 1236 ic = jump_address;
4ed46869
KH
1237 }
1238 else if (!reg[rrr])
1239 ic = jump_address;
1240 break;
1241
450ed226 1242 case CCL_Extension:
e34b1164
KH
1243 switch (EXCMD)
1244 {
6ae21908 1245 case CCL_ReadMultibyteChar2:
e34b1164
KH
1246 if (!src)
1247 CCL_INVALID_CMD;
60768428 1248
0ee1088b
KH
1249 if (src >= src_end)
1250 {
1251 src++;
1252 goto ccl_read_multibyte_character_suspend;
1253 }
e34b1164 1254
38b9ed6a
KH
1255 if (!ccl->multibyte)
1256 {
1257 int bytes;
1258 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
1259 {
1260 reg[RRR] = CHARSET_8_BIT_CONTROL;
1261 reg[rrr] = *src++;
1262 break;
1263 }
1264 }
0ee1088b
KH
1265 i = *src++;
1266 if (i == '\n' && ccl->eol_type != CODING_EOL_LF)
1267 {
1268 /* We are encoding. */
1269 if (ccl->eol_type == CODING_EOL_CRLF)
1270 {
1271 if (ccl->cr_consumed)
1272 ccl->cr_consumed = 0;
1273 else
1274 {
1275 ccl->cr_consumed = 1;
1276 i = '\r';
1277 src--;
1278 }
1279 }
1280 else
1281 i = '\r';
1282 reg[rrr] = i;
1283 reg[RRR] = CHARSET_ASCII;
1284 }
1285 else if (i < 0x80)
1286 {
1287 /* ASCII */
1288 reg[rrr] = i;
1289 reg[RRR] = CHARSET_ASCII;
1290 }
0ee1088b
KH
1291 else if (i <= MAX_CHARSET_OFFICIAL_DIMENSION2)
1292 {
0fc71a77
KH
1293 int dimension = BYTES_BY_CHAR_HEAD (i) - 1;
1294
1295 if (dimension == 0)
1296 {
1297 /* `i' is a leading code for an undefined charset. */
1298 reg[RRR] = CHARSET_8_BIT_GRAPHIC;
1299 reg[rrr] = i;
1300 }
1301 else if (src + dimension > src_end)
0ee1088b 1302 goto ccl_read_multibyte_character_suspend;
0fc71a77
KH
1303 else
1304 {
1305 reg[RRR] = i;
1306 i = (*src++ & 0x7F);
1307 if (dimension == 1)
1308 reg[rrr] = i;
1309 else
1310 reg[rrr] = ((i << 7) | (*src++ & 0x7F));
1311 }
0ee1088b
KH
1312 }
1313 else if ((i == LEADING_CODE_PRIVATE_11)
1314 || (i == LEADING_CODE_PRIVATE_12))
1315 {
1316 if ((src + 1) >= src_end)
1317 goto ccl_read_multibyte_character_suspend;
1318 reg[RRR] = *src++;
1319 reg[rrr] = (*src++ & 0x7F);
1320 }
1321 else if ((i == LEADING_CODE_PRIVATE_21)
1322 || (i == LEADING_CODE_PRIVATE_22))
1323 {
1324 if ((src + 2) >= src_end)
1325 goto ccl_read_multibyte_character_suspend;
1326 reg[RRR] = *src++;
1327 i = (*src++ & 0x7F);
1328 reg[rrr] = ((i << 7) | (*src & 0x7F));
1329 src++;
1330 }
1331 else if (i == LEADING_CODE_8_BIT_CONTROL)
1332 {
1333 if (src >= src_end)
1334 goto ccl_read_multibyte_character_suspend;
1335 reg[RRR] = CHARSET_8_BIT_CONTROL;
1336 reg[rrr] = (*src++ - 0x20);
1337 }
1338 else if (i >= 0xA0)
1339 {
1340 reg[RRR] = CHARSET_8_BIT_GRAPHIC;
1341 reg[rrr] = i;
1342 }
1343 else
1344 {
1345 /* INVALID CODE. Return a single byte character. */
1346 reg[RRR] = CHARSET_ASCII;
1347 reg[rrr] = i;
1348 }
e34b1164
KH
1349 break;
1350
1351 ccl_read_multibyte_character_suspend:
38b9ed6a
KH
1352 if (src <= src_end && !ccl->multibyte && ccl->last_block)
1353 {
1354 reg[RRR] = CHARSET_8_BIT_CONTROL;
1355 reg[rrr] = i;
1356 break;
1357 }
e34b1164
KH
1358 src--;
1359 if (ccl->last_block)
1360 {
1361 ic = ccl->eof_ic;
0db078dc 1362 goto ccl_repeat;
e34b1164
KH
1363 }
1364 else
1365 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);
1366
1367 break;
1368
6ae21908 1369 case CCL_WriteMultibyteChar2:
e34b1164 1370 i = reg[RRR]; /* charset */
5c464c4d
KH
1371 if (i == CHARSET_ASCII
1372 || i == CHARSET_8_BIT_CONTROL
1373 || i == CHARSET_8_BIT_GRAPHIC)
c13362d8 1374 i = reg[rrr] & 0xFF;
e34b1164
KH
1375 else if (CHARSET_DIMENSION (i) == 1)
1376 i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
1377 else if (i < MIN_CHARSET_PRIVATE_DIMENSION2)
1378 i = ((i - 0x8F) << 14) | reg[rrr];
1379 else
1380 i = ((i - 0xE0) << 14) | reg[rrr];
1381
a8302ba3 1382 CCL_WRITE_MULTIBYTE_CHAR (i);
e34b1164
KH
1383
1384 break;
1385
8146262a 1386 case CCL_TranslateCharacter:
4ffd4870 1387 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
8146262a
KH
1388 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]),
1389 i, -1, 0, 0);
e34b1164
KH
1390 SPLIT_CHAR (op, reg[RRR], i, j);
1391 if (j != -1)
1392 i = (i << 7) | j;
1393
1394 reg[rrr] = i;
1395 break;
1396
8146262a 1397 case CCL_TranslateCharacterConstTbl:
e34b1164
KH
1398 op = XINT (ccl_prog[ic]); /* table */
1399 ic++;
4ffd4870 1400 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
8146262a 1401 op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0);
e34b1164
KH
1402 SPLIT_CHAR (op, reg[RRR], i, j);
1403 if (j != -1)
1404 i = (i << 7) | j;
1405
1406 reg[rrr] = i;
1407 break;
1408
1409 case CCL_IterateMultipleMap:
1410 {
8146262a 1411 Lisp_Object map, content, attrib, value;
e34b1164
KH
1412 int point, size, fin_ic;
1413
8146262a 1414 j = XINT (ccl_prog[ic++]); /* number of maps. */
e34b1164
KH
1415 fin_ic = ic + j;
1416 op = reg[rrr];
1417 if ((j > reg[RRR]) && (j >= 0))
1418 {
1419 ic += reg[RRR];
1420 i = reg[RRR];
1421 }
1422 else
1423 {
1424 reg[RRR] = -1;
1425 ic = fin_ic;
1426 break;
1427 }
1428
1429 for (;i < j;i++)
1430 {
1431
64ef2921 1432 size = ASIZE (Vcode_conversion_map_vector);
d387866a 1433 point = XINT (ccl_prog[ic++]);
e34b1164 1434 if (point >= size) continue;
64ef2921 1435 map = AREF (Vcode_conversion_map_vector, point);
8146262a
KH
1436
1437 /* Check map varidity. */
1438 if (!CONSP (map)) continue;
03699b14 1439 map = XCDR (map);
8146262a 1440 if (!VECTORP (map)) continue;
64ef2921 1441 size = ASIZE (map);
e34b1164 1442 if (size <= 1) continue;
6ae21908 1443
64ef2921 1444 content = AREF (map, 0);
6ae21908 1445
8146262a 1446 /* check map type,
6ae21908
KH
1447 [STARTPOINT VAL1 VAL2 ...] or
1448 [t ELELMENT STARTPOINT ENDPOINT] */
1449 if (NUMBERP (content))
1450 {
1451 point = XUINT (content);
1452 point = op - point + 1;
1453 if (!((point >= 1) && (point < size))) continue;
64ef2921 1454 content = AREF (map, point);
6ae21908
KH
1455 }
1456 else if (EQ (content, Qt))
1457 {
1458 if (size != 4) continue;
64ef2921
SM
1459 if ((op >= XUINT (AREF (map, 2)))
1460 && (op < XUINT (AREF (map, 3))))
1461 content = AREF (map, 1);
6ae21908
KH
1462 else
1463 continue;
1464 }
1465 else
1466 continue;
e34b1164
KH
1467
1468 if (NILP (content))
1469 continue;
1470 else if (NUMBERP (content))
1471 {
1472 reg[RRR] = i;
6ae21908 1473 reg[rrr] = XINT(content);
e34b1164
KH
1474 break;
1475 }
1476 else if (EQ (content, Qt) || EQ (content, Qlambda))
1477 {
1478 reg[RRR] = i;
1479 break;
1480 }
1481 else if (CONSP (content))
1482 {
03699b14
KR
1483 attrib = XCAR (content);
1484 value = XCDR (content);
e34b1164
KH
1485 if (!NUMBERP (attrib) || !NUMBERP (value))
1486 continue;
1487 reg[RRR] = i;
6ae21908 1488 reg[rrr] = XUINT (value);
e34b1164
KH
1489 break;
1490 }
54fa5bc1
KH
1491 else if (SYMBOLP (content))
1492 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
1493 else
1494 CCL_INVALID_CMD;
e34b1164
KH
1495 }
1496 if (i == j)
1497 reg[RRR] = -1;
1498 ic = fin_ic;
1499 }
1500 break;
1501
8146262a 1502 case CCL_MapMultiple:
e34b1164 1503 {
8146262a
KH
1504 Lisp_Object map, content, attrib, value;
1505 int point, size, map_vector_size;
1506 int map_set_rest_length, fin_ic;
54fa5bc1
KH
1507 int current_ic = this_ic;
1508
1509 /* inhibit recursive call on MapMultiple. */
1510 if (stack_idx_of_map_multiple > 0)
1511 {
1512 if (stack_idx_of_map_multiple <= stack_idx)
1513 {
1514 stack_idx_of_map_multiple = 0;
1515 mapping_stack_pointer = mapping_stack;
1516 CCL_INVALID_CMD;
1517 }
1518 }
1519 else
1520 mapping_stack_pointer = mapping_stack;
1521 stack_idx_of_map_multiple = 0;
8146262a
KH
1522
1523 map_set_rest_length =
1524 XINT (ccl_prog[ic++]); /* number of maps and separators. */
1525 fin_ic = ic + map_set_rest_length;
54fa5bc1
KH
1526 op = reg[rrr];
1527
8146262a 1528 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
e34b1164
KH
1529 {
1530 ic += reg[RRR];
1531 i = reg[RRR];
8146262a 1532 map_set_rest_length -= i;
e34b1164
KH
1533 }
1534 else
1535 {
1536 ic = fin_ic;
1537 reg[RRR] = -1;
54fa5bc1 1538 mapping_stack_pointer = mapping_stack;
e34b1164
KH
1539 break;
1540 }
6ae21908 1541
54fa5bc1
KH
1542 if (mapping_stack_pointer <= (mapping_stack + 1))
1543 {
1544 /* Set up initial state. */
1545 mapping_stack_pointer = mapping_stack;
1546 PUSH_MAPPING_STACK (0, op);
1547 reg[RRR] = -1;
1548 }
1549 else
1550 {
1551 /* Recover after calling other ccl program. */
1552 int orig_op;
e34b1164 1553
54fa5bc1
KH
1554 POP_MAPPING_STACK (map_set_rest_length, orig_op);
1555 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1556 switch (op)
e34b1164 1557 {
54fa5bc1
KH
1558 case -1:
1559 /* Regard it as Qnil. */
1560 op = orig_op;
1561 i++;
1562 ic++;
1563 map_set_rest_length--;
1564 break;
1565 case -2:
1566 /* Regard it as Qt. */
e34b1164 1567 op = reg[rrr];
54fa5bc1
KH
1568 i++;
1569 ic++;
1570 map_set_rest_length--;
1571 break;
1572 case -3:
1573 /* Regard it as Qlambda. */
1574 op = orig_op;
1575 i += map_set_rest_length;
1576 ic += map_set_rest_length;
1577 map_set_rest_length = 0;
1578 break;
1579 default:
1580 /* Regard it as normal mapping. */
8146262a 1581 i += map_set_rest_length;
54fa5bc1 1582 ic += map_set_rest_length;
8146262a 1583 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
6ae21908
KH
1584 break;
1585 }
e34b1164 1586 }
64ef2921 1587 map_vector_size = ASIZE (Vcode_conversion_map_vector);
54fa5bc1
KH
1588
1589 do {
1590 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
1591 {
1592 point = XINT(ccl_prog[ic]);
1593 if (point < 0)
1594 {
1595 /* +1 is for including separator. */
1596 point = -point + 1;
1597 if (mapping_stack_pointer
1598 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1599 CCL_INVALID_CMD;
1600 PUSH_MAPPING_STACK (map_set_rest_length - point,
1601 reg[rrr]);
1602 map_set_rest_length = point;
1603 reg[rrr] = op;
1604 continue;
1605 }
1606
1607 if (point >= map_vector_size) continue;
64ef2921 1608 map = AREF (Vcode_conversion_map_vector, point);
54fa5bc1
KH
1609
1610 /* Check map varidity. */
1611 if (!CONSP (map)) continue;
1612 map = XCDR (map);
1613 if (!VECTORP (map)) continue;
64ef2921 1614 size = ASIZE (map);
54fa5bc1
KH
1615 if (size <= 1) continue;
1616
64ef2921 1617 content = AREF (map, 0);
54fa5bc1
KH
1618
1619 /* check map type,
1620 [STARTPOINT VAL1 VAL2 ...] or
1621 [t ELEMENT STARTPOINT ENDPOINT] */
1622 if (NUMBERP (content))
1623 {
1624 point = XUINT (content);
1625 point = op - point + 1;
1626 if (!((point >= 1) && (point < size))) continue;
64ef2921 1627 content = AREF (map, point);
54fa5bc1
KH
1628 }
1629 else if (EQ (content, Qt))
1630 {
1631 if (size != 4) continue;
64ef2921
SM
1632 if ((op >= XUINT (AREF (map, 2))) &&
1633 (op < XUINT (AREF (map, 3))))
1634 content = AREF (map, 1);
54fa5bc1
KH
1635 else
1636 continue;
1637 }
1638 else
1639 continue;
1640
1641 if (NILP (content))
1642 continue;
1643
1644 reg[RRR] = i;
1645 if (NUMBERP (content))
1646 {
1647 op = XINT (content);
1648 i += map_set_rest_length - 1;
1649 ic += map_set_rest_length - 1;
1650 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1651 map_set_rest_length++;
1652 }
1653 else if (CONSP (content))
1654 {
1655 attrib = XCAR (content);
1656 value = XCDR (content);
1657 if (!NUMBERP (attrib) || !NUMBERP (value))
1658 continue;
1659 op = XUINT (value);
1660 i += map_set_rest_length - 1;
1661 ic += map_set_rest_length - 1;
1662 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1663 map_set_rest_length++;
1664 }
1665 else if (EQ (content, Qt))
1666 {
1667 op = reg[rrr];
1668 }
1669 else if (EQ (content, Qlambda))
1670 {
1671 i += map_set_rest_length;
1672 ic += map_set_rest_length;
1673 break;
1674 }
1675 else if (SYMBOLP (content))
1676 {
1677 if (mapping_stack_pointer
1678 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1679 CCL_INVALID_CMD;
1680 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1681 PUSH_MAPPING_STACK (map_set_rest_length, op);
1682 stack_idx_of_map_multiple = stack_idx + 1;
1683 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
1684 }
1685 else
1686 CCL_INVALID_CMD;
1687 }
1688 if (mapping_stack_pointer <= (mapping_stack + 1))
1689 break;
1690 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1691 i += map_set_rest_length;
1692 ic += map_set_rest_length;
1693 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1694 } while (1);
1695
e34b1164
KH
1696 ic = fin_ic;
1697 }
1698 reg[rrr] = op;
1699 break;
1700
8146262a 1701 case CCL_MapSingle:
e34b1164 1702 {
8146262a 1703 Lisp_Object map, attrib, value, content;
e34b1164 1704 int size, point;
8146262a 1705 j = XINT (ccl_prog[ic++]); /* map_id */
e34b1164 1706 op = reg[rrr];
64ef2921 1707 if (j >= ASIZE (Vcode_conversion_map_vector))
e34b1164
KH
1708 {
1709 reg[RRR] = -1;
1710 break;
1711 }
64ef2921 1712 map = AREF (Vcode_conversion_map_vector, j);
8146262a 1713 if (!CONSP (map))
e34b1164
KH
1714 {
1715 reg[RRR] = -1;
1716 break;
1717 }
03699b14 1718 map = XCDR (map);
8146262a 1719 if (!VECTORP (map))
e34b1164
KH
1720 {
1721 reg[RRR] = -1;
1722 break;
1723 }
64ef2921
SM
1724 size = ASIZE (map);
1725 point = XUINT (AREF (map, 0));
e34b1164
KH
1726 point = op - point + 1;
1727 reg[RRR] = 0;
1728 if ((size <= 1) ||
1729 (!((point >= 1) && (point < size))))
1730 reg[RRR] = -1;
1731 else
1732 {
b1cab202 1733 reg[RRR] = 0;
64ef2921 1734 content = AREF (map, point);
e34b1164
KH
1735 if (NILP (content))
1736 reg[RRR] = -1;
1737 else if (NUMBERP (content))
6ae21908 1738 reg[rrr] = XINT (content);
b1cab202 1739 else if (EQ (content, Qt));
e34b1164
KH
1740 else if (CONSP (content))
1741 {
03699b14
KR
1742 attrib = XCAR (content);
1743 value = XCDR (content);
e34b1164
KH
1744 if (!NUMBERP (attrib) || !NUMBERP (value))
1745 continue;
1746 reg[rrr] = XUINT(value);
1747 break;
1748 }
54fa5bc1
KH
1749 else if (SYMBOLP (content))
1750 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
e34b1164
KH
1751 else
1752 reg[RRR] = -1;
1753 }
1754 }
1755 break;
1756
1757 default:
1758 CCL_INVALID_CMD;
1759 }
1760 break;
1761
4ed46869
KH
1762 default:
1763 CCL_INVALID_CMD;
1764 }
1765 }
1766
1767 ccl_error_handler:
0fb94c7f
EZ
1768 /* The suppress_error member is set when e.g. a CCL-based coding
1769 system is used for terminal output. */
1770 if (!ccl->suppress_error && destination)
4ed46869
KH
1771 {
1772 /* We can insert an error message only if DESTINATION is
1773 specified and we still have a room to store the message
1774 there. */
1775 char msg[256];
1776 int msglen;
1777
12abd7d1
KH
1778 if (!dst)
1779 dst = destination;
1780
4ed46869
KH
1781 switch (ccl->status)
1782 {
1783 case CCL_STAT_INVALID_CMD:
1784 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
519bf146 1785 code & 0x1F, code, this_ic);
4ed46869
KH
1786#ifdef CCL_DEBUG
1787 {
1788 int i = ccl_backtrace_idx - 1;
1789 int j;
1790
1791 msglen = strlen (msg);
12abd7d1 1792 if (dst + msglen <= (dst_bytes ? dst_end : src))
4ed46869
KH
1793 {
1794 bcopy (msg, dst, msglen);
1795 dst += msglen;
1796 }
1797
1798 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
1799 {
1800 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
1801 if (ccl_backtrace_table[i] == 0)
1802 break;
1803 sprintf(msg, " %d", ccl_backtrace_table[i]);
1804 msglen = strlen (msg);
12abd7d1 1805 if (dst + msglen > (dst_bytes ? dst_end : src))
4ed46869
KH
1806 break;
1807 bcopy (msg, dst, msglen);
1808 dst += msglen;
1809 }
12abd7d1 1810 goto ccl_finish;
4ed46869 1811 }
4ed46869 1812#endif
12abd7d1 1813 break;
4ed46869
KH
1814
1815 case CCL_STAT_QUIT:
1816 sprintf(msg, "\nCCL: Quited.");
1817 break;
1818
1819 default:
1820 sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status);
1821 }
1822
1823 msglen = strlen (msg);
12abd7d1 1824 if (dst + msglen <= (dst_bytes ? dst_end : src))
4ed46869
KH
1825 {
1826 bcopy (msg, dst, msglen);
1827 dst += msglen;
1828 }
8a1ae4dd 1829
31165028
KH
1830 if (ccl->status == CCL_STAT_INVALID_CMD)
1831 {
8a1ae4dd
GM
1832#if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1833 results in an invalid multibyte sequence. */
1834
31165028
KH
1835 /* Copy the remaining source data. */
1836 int i = src_end - src;
1837 if (dst_bytes && (dst_end - dst) < i)
1838 i = dst_end - dst;
1839 bcopy (src, dst, i);
1840 src += i;
1841 dst += i;
8a1ae4dd
GM
1842#else
1843 /* Signal that we've consumed everything. */
1844 src = src_end;
1845#endif
31165028 1846 }
4ed46869
KH
1847 }
1848
1849 ccl_finish:
1850 ccl->ic = ic;
c13362d8
KH
1851 ccl->stack_idx = stack_idx;
1852 ccl->prog = ccl_prog;
a8302ba3 1853 ccl->eight_bit_control = (extra_bytes > 0);
8a1ae4dd
GM
1854 if (consumed)
1855 *consumed = src - source;
12abd7d1 1856 return (dst ? dst - destination : 0);
4ed46869
KH
1857}
1858
5232fa7b
KH
1859/* Resolve symbols in the specified CCL code (Lisp vector). This
1860 function converts symbols of code conversion maps and character
1861 translation tables embeded in the CCL code into their ID numbers.
1862
1863 The return value is a vector (CCL itself or a new vector in which
1864 all symbols are resolved), Qt if resolving of some symbol failed,
1865 or nil if CCL contains invalid data. */
1866
1867static Lisp_Object
1868resolve_symbol_ccl_program (ccl)
1869 Lisp_Object ccl;
1870{
1871 int i, veclen, unresolved = 0;
1872 Lisp_Object result, contents, val;
1873
1874 result = ccl;
64ef2921 1875 veclen = ASIZE (result);
5232fa7b
KH
1876
1877 for (i = 0; i < veclen; i++)
1878 {
64ef2921 1879 contents = AREF (result, i);
5232fa7b
KH
1880 if (INTEGERP (contents))
1881 continue;
1882 else if (CONSP (contents)
03699b14
KR
1883 && SYMBOLP (XCAR (contents))
1884 && SYMBOLP (XCDR (contents)))
5232fa7b
KH
1885 {
1886 /* This is the new style for embedding symbols. The form is
1887 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1888 an index number. */
1889
1890 if (EQ (result, ccl))
1891 result = Fcopy_sequence (ccl);
1892
03699b14 1893 val = Fget (XCAR (contents), XCDR (contents));
5232fa7b 1894 if (NATNUMP (val))
64ef2921 1895 AREF (result, i) = val;
5232fa7b
KH
1896 else
1897 unresolved = 1;
1898 continue;
1899 }
1900 else if (SYMBOLP (contents))
1901 {
1902 /* This is the old style for embedding symbols. This style
1903 may lead to a bug if, for instance, a translation table
1904 and a code conversion map have the same name. */
1905 if (EQ (result, ccl))
1906 result = Fcopy_sequence (ccl);
1907
1908 val = Fget (contents, Qtranslation_table_id);
1909 if (NATNUMP (val))
64ef2921 1910 AREF (result, i) = val;
5232fa7b
KH
1911 else
1912 {
1913 val = Fget (contents, Qcode_conversion_map_id);
1914 if (NATNUMP (val))
64ef2921 1915 AREF (result, i) = val;
5232fa7b
KH
1916 else
1917 {
1918 val = Fget (contents, Qccl_program_idx);
1919 if (NATNUMP (val))
64ef2921 1920 AREF (result, i) = val;
5232fa7b
KH
1921 else
1922 unresolved = 1;
1923 }
1924 }
1925 continue;
1926 }
1927 return Qnil;
1928 }
1929
1930 return (unresolved ? Qt : result);
1931}
1932
1933/* Return the compiled code (vector) of CCL program CCL_PROG.
1934 CCL_PROG is a name (symbol) of the program or already compiled
1935 code. If necessary, resolve symbols in the compiled code to index
1936 numbers. If we failed to get the compiled code or to resolve
1937 symbols, return Qnil. */
1938
1939static Lisp_Object
1940ccl_get_compiled_code (ccl_prog)
1941 Lisp_Object ccl_prog;
1942{
1943 Lisp_Object val, slot;
1944
1945 if (VECTORP (ccl_prog))
1946 {
1947 val = resolve_symbol_ccl_program (ccl_prog);
1948 return (VECTORP (val) ? val : Qnil);
1949 }
1950 if (!SYMBOLP (ccl_prog))
1951 return Qnil;
1952
1953 val = Fget (ccl_prog, Qccl_program_idx);
1954 if (! NATNUMP (val)
64ef2921 1955 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 1956 return Qnil;
64ef2921 1957 slot = AREF (Vccl_program_table, XINT (val));
5232fa7b 1958 if (! VECTORP (slot)
64ef2921
SM
1959 || ASIZE (slot) != 3
1960 || ! VECTORP (AREF (slot, 1)))
5232fa7b 1961 return Qnil;
64ef2921 1962 if (NILP (AREF (slot, 2)))
5232fa7b 1963 {
64ef2921 1964 val = resolve_symbol_ccl_program (AREF (slot, 1));
5232fa7b
KH
1965 if (! VECTORP (val))
1966 return Qnil;
64ef2921
SM
1967 AREF (slot, 1) = val;
1968 AREF (slot, 2) = Qt;
5232fa7b 1969 }
64ef2921 1970 return AREF (slot, 1);
5232fa7b
KH
1971}
1972
4ed46869 1973/* Setup fields of the structure pointed by CCL appropriately for the
5232fa7b
KH
1974 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
1975 of the CCL program or the already compiled code (vector).
1976 Return 0 if we succeed this setup, else return -1.
1977
1978 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
1979int
1980setup_ccl_program (ccl, ccl_prog)
4ed46869 1981 struct ccl_program *ccl;
5232fa7b 1982 Lisp_Object ccl_prog;
4ed46869
KH
1983{
1984 int i;
1985
5232fa7b 1986 if (! NILP (ccl_prog))
ad3d1b1d 1987 {
5232fa7b 1988 struct Lisp_Vector *vp;
ad3d1b1d 1989
5232fa7b
KH
1990 ccl_prog = ccl_get_compiled_code (ccl_prog);
1991 if (! VECTORP (ccl_prog))
1992 return -1;
1993 vp = XVECTOR (ccl_prog);
ad3d1b1d
KH
1994 ccl->size = vp->size;
1995 ccl->prog = vp->contents;
1996 ccl->eof_ic = XINT (vp->contents[CCL_HEADER_EOF]);
1997 ccl->buf_magnification = XINT (vp->contents[CCL_HEADER_BUF_MAG]);
1998 }
4ed46869 1999 ccl->ic = CCL_HEADER_MAIN;
4ed46869
KH
2000 for (i = 0; i < 8; i++)
2001 ccl->reg[i] = 0;
2002 ccl->last_block = 0;
e34b1164 2003 ccl->private_state = 0;
4ed46869 2004 ccl->status = 0;
c13362d8 2005 ccl->stack_idx = 0;
5b8ca822 2006 ccl->eol_type = CODING_EOL_LF;
ae08ba36 2007 ccl->suppress_error = 0;
5232fa7b 2008 return 0;
4ed46869
KH
2009}
2010
5232fa7b 2011#ifdef emacs
6ae21908 2012
5232fa7b 2013DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
fdb82f93
PJ
2014 doc: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
2015See the documentation of `define-ccl-program' for the detail of CCL program. */)
2016 (object)
5232fa7b 2017 Lisp_Object object;
6ae21908 2018{
5232fa7b 2019 Lisp_Object val;
6ae21908 2020
5232fa7b 2021 if (VECTORP (object))
6ae21908 2022 {
5232fa7b
KH
2023 val = resolve_symbol_ccl_program (object);
2024 return (VECTORP (val) ? Qt : Qnil);
6ae21908 2025 }
5232fa7b
KH
2026 if (!SYMBOLP (object))
2027 return Qnil;
6ae21908 2028
5232fa7b
KH
2029 val = Fget (object, Qccl_program_idx);
2030 return ((! NATNUMP (val)
64ef2921 2031 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 2032 ? Qnil : Qt);
6ae21908
KH
2033}
2034
4ed46869 2035DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
fdb82f93
PJ
2036 doc: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
2037
2038CCL-PROGRAM is a CCL program name (symbol)
2039or compiled code generated by `ccl-compile' (for backward compatibility.
2040In the latter case, the execution overhead is bigger than in the former).
2041No I/O commands should appear in CCL-PROGRAM.
2042
2043REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
2044for the Nth register.
2045
2046As side effect, each element of REGISTERS holds the value of
2047the corresponding register after the execution.
2048
2049See the documentation of `define-ccl-program' for a definition of CCL
2050programs. */)
2051 (ccl_prog, reg)
4ed46869
KH
2052 Lisp_Object ccl_prog, reg;
2053{
2054 struct ccl_program ccl;
2055 int i;
2056
5232fa7b
KH
2057 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2058 error ("Invalid CCL program");
6ae21908 2059
b7826503 2060 CHECK_VECTOR (reg);
64ef2921 2061 if (ASIZE (reg) != 8)
d7e1fe1f 2062 error ("Length of vector REGISTERS is not 8");
4ed46869 2063
4ed46869 2064 for (i = 0; i < 8; i++)
64ef2921
SM
2065 ccl.reg[i] = (INTEGERP (AREF (reg, i))
2066 ? XINT (AREF (reg, i))
4ed46869
KH
2067 : 0);
2068
b428fdfd 2069 ccl_driver (&ccl, (unsigned char *)0, (unsigned char *)0, 0, 0, (int *)0);
4ed46869
KH
2070 QUIT;
2071 if (ccl.status != CCL_STAT_SUCCESS)
2072 error ("Error in CCL program at %dth code", ccl.ic);
2073
2074 for (i = 0; i < 8; i++)
64ef2921 2075 XSETINT (AREF (reg, i), ccl.reg[i]);
4ed46869
KH
2076 return Qnil;
2077}
2078
2079DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
39a68837 2080 3, 5, 0,
fdb82f93
PJ
2081 doc: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2082
2083CCL-PROGRAM is a symbol registered by register-ccl-program,
2084or a compiled code generated by `ccl-compile' (for backward compatibility,
2085in this case, the execution is slower).
2086
2087Read buffer is set to STRING, and write buffer is allocated automatically.
2088
2089STATUS is a vector of [R0 R1 ... R7 IC], where
2090 R0..R7 are initial values of corresponding registers,
2091 IC is the instruction counter specifying from where to start the program.
2092If R0..R7 are nil, they are initialized to 0.
2093If IC is nil, it is initialized to head of the CCL program.
2094
2095If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2096when read buffer is exausted, else, IC is always set to the end of
2097CCL-PROGRAM on exit.
2098
2099It returns the contents of write buffer as a string,
2100 and as side effect, STATUS is updated.
2101If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2102is a unibyte string. By default it is a multibyte string.
2103
2104See the documentation of `define-ccl-program' for the detail of CCL program. */)
2105 (ccl_prog, status, str, contin, unibyte_p)
39a68837 2106 Lisp_Object ccl_prog, status, str, contin, unibyte_p;
4ed46869
KH
2107{
2108 Lisp_Object val;
2109 struct ccl_program ccl;
2110 int i, produced;
2111 int outbufsize;
2112 char *outbuf;
5232fa7b 2113 struct gcpro gcpro1, gcpro2;
6ae21908 2114
5232fa7b
KH
2115 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2116 error ("Invalid CCL program");
4ed46869 2117
b7826503 2118 CHECK_VECTOR (status);
64ef2921 2119 if (ASIZE (status) != 9)
5232fa7b 2120 error ("Length of vector STATUS is not 9");
b7826503 2121 CHECK_STRING (str);
4ed46869 2122
5232fa7b
KH
2123 GCPRO2 (status, str);
2124
4ed46869
KH
2125 for (i = 0; i < 8; i++)
2126 {
64ef2921
SM
2127 if (NILP (AREF (status, i)))
2128 XSETINT (AREF (status, i), 0);
2129 if (INTEGERP (AREF (status, i)))
2130 ccl.reg[i] = XINT (AREF (status, i));
4ed46869 2131 }
64ef2921 2132 if (INTEGERP (AREF (status, i)))
4ed46869 2133 {
64ef2921 2134 i = XFASTINT (AREF (status, 8));
4ed46869
KH
2135 if (ccl.ic < i && i < ccl.size)
2136 ccl.ic = i;
2137 }
fc932ac6 2138 outbufsize = STRING_BYTES (XSTRING (str)) * ccl.buf_magnification + 256;
4ed46869 2139 outbuf = (char *) xmalloc (outbufsize);
cb5373dd 2140 ccl.last_block = NILP (contin);
7a837c89 2141 ccl.multibyte = STRING_MULTIBYTE (str);
4ed46869 2142 produced = ccl_driver (&ccl, XSTRING (str)->data, outbuf,
a3d8fcf2 2143 STRING_BYTES (XSTRING (str)), outbufsize, (int *) 0);
4ed46869 2144 for (i = 0; i < 8; i++)
64ef2921
SM
2145 XSET (AREF (status, i), Lisp_Int, ccl.reg[i]);
2146 XSETINT (AREF (status, 8), ccl.ic);
4ed46869
KH
2147 UNGCPRO;
2148
39a68837 2149 if (NILP (unibyte_p))
a3d8fcf2
KH
2150 {
2151 int nchars;
2152
2153 produced = str_as_multibyte (outbuf, outbufsize, produced, &nchars);
2154 val = make_multibyte_string (outbuf, nchars, produced);
2155 }
39a68837
KH
2156 else
2157 val = make_unibyte_string (outbuf, produced);
157f852b 2158 xfree (outbuf);
4ed46869 2159 QUIT;
a3d8fcf2
KH
2160 if (ccl.status == CCL_STAT_SUSPEND_BY_DST)
2161 error ("Output buffer for the CCL programs overflow");
4ed46869 2162 if (ccl.status != CCL_STAT_SUCCESS
a3d8fcf2 2163 && ccl.status != CCL_STAT_SUSPEND_BY_SRC)
4ed46869
KH
2164 error ("Error in CCL program at %dth code", ccl.ic);
2165
2166 return val;
2167}
2168
2169DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
2170 2, 2, 0,
fdb82f93
PJ
2171 doc: /* Register CCL program CCL_PROG as NAME in `ccl-program-table'.
2172CCL_PROG should be a compiled CCL program (vector), or nil.
2173If it is nil, just reserve NAME as a CCL program name.
2174Return index number of the registered CCL program. */)
2175 (name, ccl_prog)
4ed46869
KH
2176 Lisp_Object name, ccl_prog;
2177{
64ef2921 2178 int len = ASIZE (Vccl_program_table);
5232fa7b
KH
2179 int idx;
2180 Lisp_Object resolved;
4ed46869 2181
b7826503 2182 CHECK_SYMBOL (name);
5232fa7b 2183 resolved = Qnil;
4ed46869 2184 if (!NILP (ccl_prog))
6ae21908 2185 {
b7826503 2186 CHECK_VECTOR (ccl_prog);
5232fa7b 2187 resolved = resolve_symbol_ccl_program (ccl_prog);
4d247a1f
KH
2188 if (NILP (resolved))
2189 error ("Error in CCL program");
2190 if (VECTORP (resolved))
5232fa7b
KH
2191 {
2192 ccl_prog = resolved;
2193 resolved = Qt;
2194 }
4d247a1f
KH
2195 else
2196 resolved = Qnil;
6ae21908 2197 }
5232fa7b
KH
2198
2199 for (idx = 0; idx < len; idx++)
4ed46869 2200 {
5232fa7b 2201 Lisp_Object slot;
4ed46869 2202
64ef2921 2203 slot = AREF (Vccl_program_table, idx);
5232fa7b
KH
2204 if (!VECTORP (slot))
2205 /* This is the first unsed slot. Register NAME here. */
4ed46869
KH
2206 break;
2207
64ef2921 2208 if (EQ (name, AREF (slot, 0)))
4ed46869 2209 {
5232fa7b 2210 /* Update this slot. */
64ef2921
SM
2211 AREF (slot, 1) = ccl_prog;
2212 AREF (slot, 2) = resolved;
5232fa7b 2213 return make_number (idx);
4ed46869
KH
2214 }
2215 }
2216
5232fa7b 2217 if (idx == len)
4ed46869 2218 {
5232fa7b
KH
2219 /* Extend the table. */
2220 Lisp_Object new_table;
4ed46869
KH
2221 int j;
2222
5232fa7b 2223 new_table = Fmake_vector (make_number (len * 2), Qnil);
4ed46869 2224 for (j = 0; j < len; j++)
64ef2921
SM
2225 AREF (new_table, j)
2226 = AREF (Vccl_program_table, j);
4ed46869
KH
2227 Vccl_program_table = new_table;
2228 }
2229
5232fa7b
KH
2230 {
2231 Lisp_Object elt;
2232
2233 elt = Fmake_vector (make_number (3), Qnil);
64ef2921
SM
2234 AREF (elt, 0) = name;
2235 AREF (elt, 1) = ccl_prog;
2236 AREF (elt, 2) = resolved;
2237 AREF (Vccl_program_table, idx) = elt;
5232fa7b
KH
2238 }
2239
2240 Fput (name, Qccl_program_idx, make_number (idx));
2241 return make_number (idx);
4ed46869
KH
2242}
2243
8146262a
KH
2244/* Register code conversion map.
2245 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
d617f6df
DL
2246 The first element is the start code point.
2247 The other elements are mapped numbers.
8146262a
KH
2248 Symbol t means to map to an original number before mapping.
2249 Symbol nil means that the corresponding element is empty.
d617f6df 2250 Symbol lambda means to terminate mapping here.
e34b1164
KH
2251*/
2252
8146262a
KH
2253DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
2254 Sregister_code_conversion_map,
e34b1164 2255 2, 2, 0,
fdb82f93
PJ
2256 doc: /* Register SYMBOL as code conversion map MAP.
2257Return index number of the registered map. */)
2258 (symbol, map)
8146262a 2259 Lisp_Object symbol, map;
e34b1164 2260{
64ef2921 2261 int len = ASIZE (Vcode_conversion_map_vector);
e34b1164
KH
2262 int i;
2263 Lisp_Object index;
2264
b7826503
PJ
2265 CHECK_SYMBOL (symbol);
2266 CHECK_VECTOR (map);
e34b1164
KH
2267
2268 for (i = 0; i < len; i++)
2269 {
64ef2921 2270 Lisp_Object slot = AREF (Vcode_conversion_map_vector, i);
e34b1164
KH
2271
2272 if (!CONSP (slot))
2273 break;
2274
03699b14 2275 if (EQ (symbol, XCAR (slot)))
e34b1164
KH
2276 {
2277 index = make_number (i);
f3fbd155 2278 XSETCDR (slot, map);
8146262a
KH
2279 Fput (symbol, Qcode_conversion_map, map);
2280 Fput (symbol, Qcode_conversion_map_id, index);
e34b1164
KH
2281 return index;
2282 }
2283 }
2284
2285 if (i == len)
2286 {
2287 Lisp_Object new_vector = Fmake_vector (make_number (len * 2), Qnil);
2288 int j;
2289
2290 for (j = 0; j < len; j++)
64ef2921
SM
2291 AREF (new_vector, j)
2292 = AREF (Vcode_conversion_map_vector, j);
8146262a 2293 Vcode_conversion_map_vector = new_vector;
e34b1164
KH
2294 }
2295
2296 index = make_number (i);
8146262a
KH
2297 Fput (symbol, Qcode_conversion_map, map);
2298 Fput (symbol, Qcode_conversion_map_id, index);
64ef2921 2299 AREF (Vcode_conversion_map_vector, i) = Fcons (symbol, map);
e34b1164
KH
2300 return index;
2301}
2302
2303
dfcf069d 2304void
4ed46869
KH
2305syms_of_ccl ()
2306{
2307 staticpro (&Vccl_program_table);
6703ac4f 2308 Vccl_program_table = Fmake_vector (make_number (32), Qnil);
4ed46869 2309
6ae21908
KH
2310 Qccl_program = intern ("ccl-program");
2311 staticpro (&Qccl_program);
2312
2313 Qccl_program_idx = intern ("ccl-program-idx");
2314 staticpro (&Qccl_program_idx);
e34b1164 2315
8146262a
KH
2316 Qcode_conversion_map = intern ("code-conversion-map");
2317 staticpro (&Qcode_conversion_map);
6ae21908 2318
8146262a
KH
2319 Qcode_conversion_map_id = intern ("code-conversion-map-id");
2320 staticpro (&Qcode_conversion_map_id);
6ae21908 2321
8146262a 2322 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector,
fdb82f93 2323 doc: /* Vector of code conversion maps. */);
8146262a 2324 Vcode_conversion_map_vector = Fmake_vector (make_number (16), Qnil);
e34b1164 2325
4ed46869 2326 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist,
fdb82f93
PJ
2327 doc: /* Alist of fontname patterns vs corresponding CCL program.
2328Each element looks like (REGEXP . CCL-CODE),
2329 where CCL-CODE is a compiled CCL program.
2330When a font whose name matches REGEXP is used for displaying a character,
2331 CCL-CODE is executed to calculate the code point in the font
2332 from the charset number and position code(s) of the character which are set
2333 in CCL registers R0, R1, and R2 before the execution.
2334The code point in the font is set in CCL registers R1 and R2
2335 when the execution terminated.
2336 If the font is single-byte font, the register R2 is not used. */);
4ed46869
KH
2337 Vfont_ccl_encoder_alist = Qnil;
2338
5232fa7b 2339 defsubr (&Sccl_program_p);
4ed46869
KH
2340 defsubr (&Sccl_execute);
2341 defsubr (&Sccl_execute_on_string);
2342 defsubr (&Sregister_ccl_program);
8146262a 2343 defsubr (&Sregister_code_conversion_map);
4ed46869
KH
2344}
2345
2346#endif /* emacs */