Add cyrillic-iso8859-5 characters in the encoding table of
[bpt/emacs.git] / src / ccl.c
CommitLineData
4ed46869 1/* CCL (Code Conversion Language) interpreter.
75c8c592 2 Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN.
d80dc57e 3 Copyright (C) 2001, 2002 Free Software Foundation, Inc.
75c8c592 4 Licensed to the Free Software Foundation.
4ed46869 5
369314dc
KH
6This file is part of GNU Emacs.
7
8GNU Emacs is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
4ed46869 12
369314dc
KH
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
4ed46869 17
369314dc
KH
18You should have received a copy of the GNU General Public License
19along with GNU Emacs; see the file COPYING. If not, write to
20the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
4ed46869 22
4ed46869 23#include <config.h>
dfcf069d 24
68c45bf0
PE
25#include <stdio.h>
26
4ed46869
KH
27#include "lisp.h"
28#include "charset.h"
29#include "ccl.h"
30#include "coding.h"
31
20398ea4 32/* This contains all code conversion map available to CCL. */
8146262a 33Lisp_Object Vcode_conversion_map_vector;
e34b1164 34
4ed46869
KH
35/* Alist of fontname patterns vs corresponding CCL program. */
36Lisp_Object Vfont_ccl_encoder_alist;
37
6ae21908
KH
38/* This symbol is a property which assocates with ccl program vector.
39 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
e34b1164
KH
40Lisp_Object Qccl_program;
41
8146262a
KH
42/* These symbols are properties which associate with code conversion
43 map and their ID respectively. */
44Lisp_Object Qcode_conversion_map;
45Lisp_Object Qcode_conversion_map_id;
e34b1164 46
6ae21908
KH
47/* Symbols of ccl program have this property, a value of the property
48 is an index for Vccl_protram_table. */
49Lisp_Object Qccl_program_idx;
50
5232fa7b
KH
51/* Table of registered CCL programs. Each element is a vector of
52 NAME, CCL_PROG, and RESOLVEDP where NAME (symbol) is the name of
53 the program, CCL_PROG (vector) is the compiled code of the program,
54 RESOLVEDP (t or nil) is the flag to tell if symbols in CCL_PROG is
55 already resolved to index numbers or not. */
4ed46869
KH
56Lisp_Object Vccl_program_table;
57
d80dc57e
DL
58/* Vector of registered hash tables for translation. */
59Lisp_Object Vtranslation_hash_table_vector;
60
61/* Return a hash table of id number ID. */
62#define GET_HASH_TABLE(id) \
63 (XHASH_TABLE (XCDR(XVECTOR(Vtranslation_hash_table_vector)->contents[(id)])))
d80dc57e 64
4ed46869
KH
65/* CCL (Code Conversion Language) is a simple language which has
66 operations on one input buffer, one output buffer, and 7 registers.
67 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
68 `ccl-compile' compiles a CCL program and produces a CCL code which
69 is a vector of integers. The structure of this vector is as
70 follows: The 1st element: buffer-magnification, a factor for the
71 size of output buffer compared with the size of input buffer. The
72 2nd element: address of CCL code to be executed when encountered
73 with end of input stream. The 3rd and the remaining elements: CCL
74 codes. */
75
76/* Header of CCL compiled code */
77#define CCL_HEADER_BUF_MAG 0
78#define CCL_HEADER_EOF 1
79#define CCL_HEADER_MAIN 2
80
81/* CCL code is a sequence of 28-bit non-negative integers (i.e. the
82 MSB is always 0), each contains CCL command and/or arguments in the
83 following format:
84
85 |----------------- integer (28-bit) ------------------|
86 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
87 |--constant argument--|-register-|-register-|-command-|
88 ccccccccccccccccc RRR rrr XXXXX
89 or
90 |------- relative address -------|-register-|-command-|
91 cccccccccccccccccccc rrr XXXXX
92 or
93 |------------- constant or other args ----------------|
94 cccccccccccccccccccccccccccc
95
96 where, `cc...c' is a non-negative integer indicating constant value
97 (the left most `c' is always 0) or an absolute jump address, `RRR'
98 and `rrr' are CCL register number, `XXXXX' is one of the following
99 CCL commands. */
100
101/* CCL commands
102
103 Each comment fields shows one or more lines for command syntax and
104 the following lines for semantics of the command. In semantics, IC
105 stands for Instruction Counter. */
106
107#define CCL_SetRegister 0x00 /* Set register a register value:
108 1:00000000000000000RRRrrrXXXXX
109 ------------------------------
110 reg[rrr] = reg[RRR];
111 */
112
113#define CCL_SetShortConst 0x01 /* Set register a short constant value:
114 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
115 ------------------------------
116 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
117 */
118
119#define CCL_SetConst 0x02 /* Set register a constant value:
120 1:00000000000000000000rrrXXXXX
121 2:CONSTANT
122 ------------------------------
123 reg[rrr] = CONSTANT;
124 IC++;
125 */
126
127#define CCL_SetArray 0x03 /* Set register an element of array:
128 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
129 2:ELEMENT[0]
130 3:ELEMENT[1]
131 ...
132 ------------------------------
133 if (0 <= reg[RRR] < CC..C)
134 reg[rrr] = ELEMENT[reg[RRR]];
135 IC += CC..C;
136 */
137
138#define CCL_Jump 0x04 /* Jump:
139 1:A--D--D--R--E--S--S-000XXXXX
140 ------------------------------
141 IC += ADDRESS;
142 */
143
144/* Note: If CC..C is greater than 0, the second code is omitted. */
145
146#define CCL_JumpCond 0x05 /* Jump conditional:
147 1:A--D--D--R--E--S--S-rrrXXXXX
148 ------------------------------
149 if (!reg[rrr])
150 IC += ADDRESS;
151 */
152
153
154#define CCL_WriteRegisterJump 0x06 /* Write register and jump:
155 1:A--D--D--R--E--S--S-rrrXXXXX
156 ------------------------------
157 write (reg[rrr]);
158 IC += ADDRESS;
159 */
160
161#define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
162 1:A--D--D--R--E--S--S-rrrXXXXX
163 2:A--D--D--R--E--S--S-rrrYYYYY
164 -----------------------------
165 write (reg[rrr]);
166 IC++;
167 read (reg[rrr]);
168 IC += ADDRESS;
169 */
170/* Note: If read is suspended, the resumed execution starts from the
171 second code (YYYYY == CCL_ReadJump). */
172
173#define CCL_WriteConstJump 0x08 /* Write constant and jump:
174 1:A--D--D--R--E--S--S-000XXXXX
175 2:CONST
176 ------------------------------
177 write (CONST);
178 IC += ADDRESS;
179 */
180
181#define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
182 1:A--D--D--R--E--S--S-rrrXXXXX
183 2:CONST
184 3:A--D--D--R--E--S--S-rrrYYYYY
185 -----------------------------
186 write (CONST);
187 IC += 2;
188 read (reg[rrr]);
189 IC += ADDRESS;
190 */
191/* Note: If read is suspended, the resumed execution starts from the
192 second code (YYYYY == CCL_ReadJump). */
193
194#define CCL_WriteStringJump 0x0A /* Write string and jump:
195 1:A--D--D--R--E--S--S-000XXXXX
196 2:LENGTH
197 3:0000STRIN[0]STRIN[1]STRIN[2]
198 ...
199 ------------------------------
200 write_string (STRING, LENGTH);
201 IC += ADDRESS;
202 */
203
204#define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
205 1:A--D--D--R--E--S--S-rrrXXXXX
206 2:LENGTH
207 3:ELEMENET[0]
208 4:ELEMENET[1]
209 ...
210 N:A--D--D--R--E--S--S-rrrYYYYY
211 ------------------------------
212 if (0 <= reg[rrr] < LENGTH)
213 write (ELEMENT[reg[rrr]]);
214 IC += LENGTH + 2; (... pointing at N+1)
215 read (reg[rrr]);
216 IC += ADDRESS;
217 */
218/* Note: If read is suspended, the resumed execution starts from the
887bfbd7 219 Nth code (YYYYY == CCL_ReadJump). */
4ed46869
KH
220
221#define CCL_ReadJump 0x0C /* Read and jump:
222 1:A--D--D--R--E--S--S-rrrYYYYY
223 -----------------------------
224 read (reg[rrr]);
225 IC += ADDRESS;
226 */
227
228#define CCL_Branch 0x0D /* Jump by branch table:
229 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
230 2:A--D--D--R--E-S-S[0]000XXXXX
231 3:A--D--D--R--E-S-S[1]000XXXXX
232 ...
233 ------------------------------
234 if (0 <= reg[rrr] < CC..C)
235 IC += ADDRESS[reg[rrr]];
236 else
237 IC += ADDRESS[CC..C];
238 */
239
240#define CCL_ReadRegister 0x0E /* Read bytes into registers:
241 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
242 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
243 ...
244 ------------------------------
245 while (CCC--)
246 read (reg[rrr]);
247 */
248
249#define CCL_WriteExprConst 0x0F /* write result of expression:
250 1:00000OPERATION000RRR000XXXXX
251 2:CONSTANT
252 ------------------------------
253 write (reg[RRR] OPERATION CONSTANT);
254 IC++;
255 */
256
257/* Note: If the Nth read is suspended, the resumed execution starts
258 from the Nth code. */
259
260#define CCL_ReadBranch 0x10 /* Read one byte into a register,
261 and jump by branch table:
262 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
263 2:A--D--D--R--E-S-S[0]000XXXXX
264 3:A--D--D--R--E-S-S[1]000XXXXX
265 ...
266 ------------------------------
267 read (read[rrr]);
268 if (0 <= reg[rrr] < CC..C)
269 IC += ADDRESS[reg[rrr]];
270 else
271 IC += ADDRESS[CC..C];
272 */
273
274#define CCL_WriteRegister 0x11 /* Write registers:
275 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
276 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
277 ...
278 ------------------------------
279 while (CCC--)
280 write (reg[rrr]);
281 ...
282 */
283
284/* Note: If the Nth write is suspended, the resumed execution
285 starts from the Nth code. */
286
287#define CCL_WriteExprRegister 0x12 /* Write result of expression
288 1:00000OPERATIONRrrRRR000XXXXX
289 ------------------------------
290 write (reg[RRR] OPERATION reg[Rrr]);
291 */
292
e34b1164 293#define CCL_Call 0x13 /* Call the CCL program whose ID is
5232fa7b
KH
294 CC..C or cc..c.
295 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
296 [2:00000000cccccccccccccccccccc]
4ed46869 297 ------------------------------
5232fa7b
KH
298 if (FFF)
299 call (cc..c)
300 IC++;
301 else
302 call (CC..C)
4ed46869
KH
303 */
304
305#define CCL_WriteConstString 0x14 /* Write a constant or a string:
306 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
307 [2:0000STRIN[0]STRIN[1]STRIN[2]]
308 [...]
309 -----------------------------
310 if (!rrr)
311 write (CC..C)
312 else
313 write_string (STRING, CC..C);
314 IC += (CC..C + 2) / 3;
315 */
316
317#define CCL_WriteArray 0x15 /* Write an element of array:
318 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
319 2:ELEMENT[0]
320 3:ELEMENT[1]
321 ...
322 ------------------------------
323 if (0 <= reg[rrr] < CC..C)
324 write (ELEMENT[reg[rrr]]);
325 IC += CC..C;
326 */
327
328#define CCL_End 0x16 /* Terminate:
329 1:00000000000000000000000XXXXX
330 ------------------------------
331 terminate ();
332 */
333
334/* The following two codes execute an assignment arithmetic/logical
335 operation. The form of the operation is like REG OP= OPERAND. */
336
337#define CCL_ExprSelfConst 0x17 /* REG OP= constant:
338 1:00000OPERATION000000rrrXXXXX
339 2:CONSTANT
340 ------------------------------
341 reg[rrr] OPERATION= CONSTANT;
342 */
343
344#define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
345 1:00000OPERATION000RRRrrrXXXXX
346 ------------------------------
347 reg[rrr] OPERATION= reg[RRR];
348 */
349
350/* The following codes execute an arithmetic/logical operation. The
351 form of the operation is like REG_X = REG_Y OP OPERAND2. */
352
353#define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
354 1:00000OPERATION000RRRrrrXXXXX
355 2:CONSTANT
356 ------------------------------
357 reg[rrr] = reg[RRR] OPERATION CONSTANT;
358 IC++;
359 */
360
361#define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
362 1:00000OPERATIONRrrRRRrrrXXXXX
363 ------------------------------
364 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
365 */
366
367#define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
368 an operation on constant:
369 1:A--D--D--R--E--S--S-rrrXXXXX
370 2:OPERATION
371 3:CONSTANT
372 -----------------------------
373 reg[7] = reg[rrr] OPERATION CONSTANT;
374 if (!(reg[7]))
375 IC += ADDRESS;
376 else
377 IC += 2
378 */
379
380#define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
381 an operation on register:
382 1:A--D--D--R--E--S--S-rrrXXXXX
383 2:OPERATION
384 3:RRR
385 -----------------------------
386 reg[7] = reg[rrr] OPERATION reg[RRR];
387 if (!reg[7])
388 IC += ADDRESS;
389 else
390 IC += 2;
391 */
392
393#define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
394 to an operation on constant:
395 1:A--D--D--R--E--S--S-rrrXXXXX
396 2:OPERATION
397 3:CONSTANT
398 -----------------------------
399 read (reg[rrr]);
400 reg[7] = reg[rrr] OPERATION CONSTANT;
401 if (!reg[7])
402 IC += ADDRESS;
403 else
404 IC += 2;
405 */
406
407#define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
408 to an operation on register:
409 1:A--D--D--R--E--S--S-rrrXXXXX
410 2:OPERATION
411 3:RRR
412 -----------------------------
413 read (reg[rrr]);
414 reg[7] = reg[rrr] OPERATION reg[RRR];
415 if (!reg[7])
416 IC += ADDRESS;
417 else
418 IC += 2;
419 */
420
450ed226 421#define CCL_Extension 0x1F /* Extended CCL code
4ed46869
KH
422 1:ExtendedCOMMNDRrrRRRrrrXXXXX
423 2:ARGUEMENT
424 3:...
425 ------------------------------
426 extended_command (rrr,RRR,Rrr,ARGS)
427 */
428
177c0ea7 429/*
6ae21908 430 Here after, Extended CCL Instructions.
e34b1164 431 Bit length of extended command is 14.
6ae21908 432 Therefore, the instruction code range is 0..16384(0x3fff).
e34b1164
KH
433 */
434
6ae21908
KH
435/* Read a multibyte characeter.
436 A code point is stored into reg[rrr]. A charset ID is stored into
437 reg[RRR]. */
438
439#define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
440 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
441
442/* Write a multibyte character.
443 Write a character whose code point is reg[rrr] and the charset ID
444 is reg[RRR]. */
445
446#define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
447 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
448
8146262a 449/* Translate a character whose code point is reg[rrr] and the charset
f967223b 450 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
6ae21908 451
8146262a 452 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
453 (charset ID). */
454
8146262a 455#define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
6ae21908
KH
456 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
457
8146262a 458/* Translate a character whose code point is reg[rrr] and the charset
f967223b 459 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
6ae21908 460
8146262a 461 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
462 (charset ID). */
463
8146262a
KH
464#define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
465 1:ExtendedCOMMNDRrrRRRrrrXXXXX
466 2:ARGUMENT(Translation Table ID)
467 */
6ae21908 468
8146262a
KH
469/* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
470 reg[RRR]) MAP until some value is found.
6ae21908 471
8146262a 472 Each MAP is a Lisp vector whose element is number, nil, t, or
6ae21908 473 lambda.
8146262a 474 If the element is nil, ignore the map and proceed to the next map.
6ae21908
KH
475 If the element is t or lambda, finish without changing reg[rrr].
476 If the element is a number, set reg[rrr] to the number and finish.
477
8146262a
KH
478 Detail of the map structure is descibed in the comment for
479 CCL_MapMultiple below. */
6ae21908 480
8146262a 481#define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
6ae21908 482 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a
KH
483 2:NUMBER of MAPs
484 3:MAP-ID1
485 4:MAP-ID2
6ae21908 486 ...
177c0ea7 487 */
6ae21908 488
8146262a
KH
489/* Map the code in reg[rrr] by MAPs starting from the Nth (N =
490 reg[RRR]) map.
6ae21908 491
9b27b20d 492 MAPs are supplied in the succeeding CCL codes as follows:
6ae21908 493
8146262a
KH
494 When CCL program gives this nested structure of map to this command:
495 ((MAP-ID11
496 MAP-ID12
497 (MAP-ID121 MAP-ID122 MAP-ID123)
498 MAP-ID13)
499 (MAP-ID21
500 (MAP-ID211 (MAP-ID2111) MAP-ID212)
501 MAP-ID22)),
6ae21908 502 the compiled CCL codes has this sequence:
8146262a 503 CCL_MapMultiple (CCL code of this command)
9b27b20d
KH
504 16 (total number of MAPs and SEPARATORs)
505 -7 (1st SEPARATOR)
8146262a
KH
506 MAP-ID11
507 MAP-ID12
9b27b20d 508 -3 (2nd SEPARATOR)
8146262a
KH
509 MAP-ID121
510 MAP-ID122
511 MAP-ID123
512 MAP-ID13
9b27b20d 513 -7 (3rd SEPARATOR)
8146262a 514 MAP-ID21
9b27b20d 515 -4 (4th SEPARATOR)
8146262a 516 MAP-ID211
9b27b20d 517 -1 (5th SEPARATOR)
8146262a
KH
518 MAP_ID2111
519 MAP-ID212
520 MAP-ID22
6ae21908 521
9b27b20d 522 A value of each SEPARATOR follows this rule:
8146262a
KH
523 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
524 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
6ae21908 525
8146262a 526 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
6ae21908 527
8146262a
KH
528 When some map fails to map (i.e. it doesn't have a value for
529 reg[rrr]), the mapping is treated as identity.
6ae21908 530
8146262a 531 The mapping is iterated for all maps in each map set (set of maps
9b27b20d
KH
532 separated by SEPARATOR) except in the case that lambda is
533 encountered. More precisely, the mapping proceeds as below:
534
535 At first, VAL0 is set to reg[rrr], and it is translated by the
536 first map to VAL1. Then, VAL1 is translated by the next map to
537 VAL2. This mapping is iterated until the last map is used. The
54fa5bc1
KH
538 result of the mapping is the last value of VAL?. When the mapping
539 process reached to the end of the map set, it moves to the next
540 map set. If the next does not exit, the mapping process terminates,
541 and regard the last value as a result.
9b27b20d
KH
542
543 But, when VALm is mapped to VALn and VALn is not a number, the
544 mapping proceed as below:
545
546 If VALn is nil, the lastest map is ignored and the mapping of VALm
547 proceed to the next map.
548
549 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
550 proceed to the next map.
551
54fa5bc1
KH
552 If VALn is lambda, move to the next map set like reaching to the
553 end of the current map set.
554
555 If VALn is a symbol, call the CCL program refered by it.
556 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
557 Such special values are regarded as nil, t, and lambda respectively.
6ae21908 558
8146262a 559 Each map is a Lisp vector of the following format (a) or (b):
6ae21908
KH
560 (a)......[STARTPOINT VAL1 VAL2 ...]
561 (b)......[t VAL STARTPOINT ENDPOINT],
562 where
8146262a 563 STARTPOINT is an offset to be used for indexing a map,
9b27b20d 564 ENDPOINT is a maximum index number of a map,
177c0ea7 565 VAL and VALn is a number, nil, t, or lambda.
6ae21908 566
8146262a
KH
567 Valid index range of a map of type (a) is:
568 STARTPOINT <= index < STARTPOINT + map_size - 1
569 Valid index range of a map of type (b) is:
9b27b20d 570 STARTPOINT <= index < ENDPOINT */
6ae21908 571
8146262a 572#define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
6ae21908
KH
573 1:ExtendedCOMMNDXXXRRRrrrXXXXX
574 2:N-2
575 3:SEPARATOR_1 (< 0)
8146262a
KH
576 4:MAP-ID_1
577 5:MAP-ID_2
6ae21908
KH
578 ...
579 M:SEPARATOR_x (< 0)
8146262a 580 M+1:MAP-ID_y
6ae21908
KH
581 ...
582 N:SEPARATOR_z (< 0)
583 */
584
54fa5bc1 585#define MAX_MAP_SET_LEVEL 30
6ae21908
KH
586
587typedef struct
588{
589 int rest_length;
590 int orig_val;
591} tr_stack;
592
8146262a
KH
593static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
594static tr_stack *mapping_stack_pointer;
6ae21908 595
54fa5bc1
KH
596/* If this variable is non-zero, it indicates the stack_idx
597 of immediately called by CCL_MapMultiple. */
be57900b 598static int stack_idx_of_map_multiple;
54fa5bc1
KH
599
600#define PUSH_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
601do \
602 { \
54fa5bc1
KH
603 mapping_stack_pointer->rest_length = (restlen); \
604 mapping_stack_pointer->orig_val = (orig); \
605 mapping_stack_pointer++; \
a89f435d
PJ
606 } \
607while (0)
54fa5bc1
KH
608
609#define POP_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
610do \
611 { \
54fa5bc1
KH
612 mapping_stack_pointer--; \
613 (restlen) = mapping_stack_pointer->rest_length; \
614 (orig) = mapping_stack_pointer->orig_val; \
a89f435d
PJ
615 } \
616while (0)
6ae21908 617
54fa5bc1 618#define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
a89f435d 619do \
0ee1088b 620 { \
54fa5bc1
KH
621 struct ccl_program called_ccl; \
622 if (stack_idx >= 256 \
623 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
624 { \
625 if (stack_idx > 0) \
626 { \
627 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
628 ic = ccl_prog_stack_struct[0].ic; \
9eaa8e65 629 eof_ic = ccl_prog_stack_struct[0].eof_ic; \
54fa5bc1
KH
630 } \
631 CCL_INVALID_CMD; \
632 } \
633 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
634 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
9eaa8e65 635 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \
54fa5bc1
KH
636 stack_idx++; \
637 ccl_prog = called_ccl.prog; \
638 ic = CCL_HEADER_MAIN; \
9eaa8e65 639 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]); \
54fa5bc1 640 goto ccl_repeat; \
0ee1088b 641 } \
a89f435d 642while (0)
6ae21908 643
8146262a 644#define CCL_MapSingle 0x12 /* Map by single code conversion map
6ae21908 645 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a 646 2:MAP-ID
6ae21908 647 ------------------------------
8146262a
KH
648 Map reg[rrr] by MAP-ID.
649 If some valid mapping is found,
6ae21908
KH
650 set reg[rrr] to the result,
651 else
652 set reg[RRR] to -1.
653 */
4ed46869 654
d80dc57e
DL
655#define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
656 integer key. Afterwards R7 set
657 to 1 iff lookup succeeded.
658 1:ExtendedCOMMNDRrrRRRXXXXXXXX
659 2:ARGUMENT(Hash table ID) */
660
661#define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
662 character key. Afterwards R7 set
663 to 1 iff lookup succeeded.
664 1:ExtendedCOMMNDRrrRRRrrrXXXXX
665 2:ARGUMENT(Hash table ID) */
666
4ed46869
KH
667/* CCL arithmetic/logical operators. */
668#define CCL_PLUS 0x00 /* X = Y + Z */
669#define CCL_MINUS 0x01 /* X = Y - Z */
670#define CCL_MUL 0x02 /* X = Y * Z */
671#define CCL_DIV 0x03 /* X = Y / Z */
672#define CCL_MOD 0x04 /* X = Y % Z */
673#define CCL_AND 0x05 /* X = Y & Z */
674#define CCL_OR 0x06 /* X = Y | Z */
675#define CCL_XOR 0x07 /* X = Y ^ Z */
676#define CCL_LSH 0x08 /* X = Y << Z */
677#define CCL_RSH 0x09 /* X = Y >> Z */
678#define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
679#define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
680#define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
681#define CCL_LS 0x10 /* X = (X < Y) */
682#define CCL_GT 0x11 /* X = (X > Y) */
683#define CCL_EQ 0x12 /* X = (X == Y) */
684#define CCL_LE 0x13 /* X = (X <= Y) */
685#define CCL_GE 0x14 /* X = (X >= Y) */
686#define CCL_NE 0x15 /* X = (X != Y) */
687
51520e8a 688#define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
4ed46869 689 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
51520e8a
KH
690#define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
691 r[7] = LOWER_BYTE (SJIS (Y, Z) */
4ed46869 692
4ed46869 693/* Terminate CCL program successfully. */
0ee1088b 694#define CCL_SUCCESS \
a89f435d 695do \
0ee1088b 696 { \
4ed46869 697 ccl->status = CCL_STAT_SUCCESS; \
0ee1088b
KH
698 goto ccl_finish; \
699 } \
a89f435d 700while(0)
4ed46869
KH
701
702/* Suspend CCL program because of reading from empty input buffer or
703 writing to full output buffer. When this program is resumed, the
704 same I/O command is executed. */
e34b1164 705#define CCL_SUSPEND(stat) \
a89f435d 706do \
0ee1088b 707 { \
e34b1164
KH
708 ic--; \
709 ccl->status = stat; \
710 goto ccl_finish; \
0ee1088b 711 } \
a89f435d 712while (0)
4ed46869
KH
713
714/* Terminate CCL program because of invalid command. Should not occur
715 in the normal case. */
9eaa8e65
KH
716#ifndef CCL_DEBUG
717
718#define CCL_INVALID_CMD \
719do \
720 { \
721 ccl->status = CCL_STAT_INVALID_CMD; \
722 goto ccl_error_handler; \
723 } \
724while(0)
725
726#else
727
4ed46869 728#define CCL_INVALID_CMD \
a89f435d 729do \
0ee1088b 730 { \
9eaa8e65 731 ccl_debug_hook (this_ic); \
4ed46869
KH
732 ccl->status = CCL_STAT_INVALID_CMD; \
733 goto ccl_error_handler; \
0ee1088b 734 } \
a89f435d 735while(0)
4ed46869 736
9eaa8e65
KH
737#endif
738
4ed46869 739/* Encode one character CH to multibyte form and write to the current
887bfbd7 740 output buffer. If CH is less than 256, CH is written as is. */
a37520c6
KH
741#define CCL_WRITE_CHAR(ch) \
742 do { \
743 int bytes = SINGLE_BYTE_CHAR_P (ch) ? 1: CHAR_BYTES (ch); \
744 if (!dst) \
745 CCL_INVALID_CMD; \
746 else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
747 { \
748 if (bytes == 1) \
749 { \
750 *dst++ = (ch); \
fd40a25f 751 if (extra_bytes && (ch) >= 0x80 && (ch) < 0xA0) \
a37520c6
KH
752 /* We may have to convert this eight-bit char to \
753 multibyte form later. */ \
754 extra_bytes++; \
755 } \
31165028 756 else if (CHAR_VALID_P (ch, 0)) \
a37520c6 757 dst += CHAR_STRING (ch, dst); \
31165028
KH
758 else \
759 CCL_INVALID_CMD; \
a37520c6
KH
760 } \
761 else \
762 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
4ed46869
KH
763 } while (0)
764
a8302ba3
KH
765/* Encode one character CH to multibyte form and write to the current
766 output buffer. The output bytes always forms a valid multibyte
767 sequence. */
768#define CCL_WRITE_MULTIBYTE_CHAR(ch) \
769 do { \
770 int bytes = CHAR_BYTES (ch); \
771 if (!dst) \
772 CCL_INVALID_CMD; \
773 else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
774 { \
775 if (CHAR_VALID_P ((ch), 0)) \
776 dst += CHAR_STRING ((ch), dst); \
777 else \
778 CCL_INVALID_CMD; \
779 } \
780 else \
781 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
782 } while (0)
783
4ed46869
KH
784/* Write a string at ccl_prog[IC] of length LEN to the current output
785 buffer. */
786#define CCL_WRITE_STRING(len) \
787 do { \
788 if (!dst) \
789 CCL_INVALID_CMD; \
e34b1164 790 else if (dst + len <= (dst_bytes ? dst_end : src)) \
4ed46869
KH
791 for (i = 0; i < len; i++) \
792 *dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
793 >> ((2 - (i % 3)) * 8)) & 0xFF; \
794 else \
e34b1164 795 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
4ed46869
KH
796 } while (0)
797
9977c491
KH
798/* Read one byte from the current input buffer into REGth register. */
799#define CCL_READ_CHAR(REG) \
17312e44
KH
800 do { \
801 if (!src) \
802 CCL_INVALID_CMD; \
803 else if (src < src_end) \
804 { \
9977c491
KH
805 REG = *src++; \
806 if (REG == '\n' \
17312e44
KH
807 && ccl->eol_type != CODING_EOL_LF) \
808 { \
809 /* We are encoding. */ \
810 if (ccl->eol_type == CODING_EOL_CRLF) \
811 { \
812 if (ccl->cr_consumed) \
813 ccl->cr_consumed = 0; \
814 else \
815 { \
816 ccl->cr_consumed = 1; \
9977c491 817 REG = '\r'; \
17312e44
KH
818 src--; \
819 } \
820 } \
821 else \
9977c491 822 REG = '\r'; \
17312e44 823 } \
9977c491 824 if (REG == LEADING_CODE_8_BIT_CONTROL \
17312e44 825 && ccl->multibyte) \
9977c491 826 REG = *src++ - 0x20; \
17312e44
KH
827 } \
828 else if (ccl->last_block) \
829 { \
fd9c3a97 830 REG = -1; \
9eaa8e65 831 ic = eof_ic; \
17312e44
KH
832 goto ccl_repeat; \
833 } \
834 else \
835 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
4ed46869
KH
836 } while (0)
837
838
4ffd4870
KH
839/* Set C to the character code made from CHARSET and CODE. This is
840 like MAKE_CHAR but check the validity of CHARSET and CODE. If they
841 are not valid, set C to (CODE & 0xFF) because that is usually the
842 case that CCL_ReadMultibyteChar2 read an invalid code and it set
843 CODE to that invalid byte. */
844
845#define CCL_MAKE_CHAR(charset, code, c) \
846 do { \
847 if (charset == CHARSET_ASCII) \
848 c = code & 0xFF; \
849 else if (CHARSET_DEFINED_P (charset) \
850 && (code & 0x7F) >= 32 \
851 && (code < 256 || ((code >> 7) & 0x7F) >= 32)) \
852 { \
853 int c1 = code & 0x7F, c2 = 0; \
854 \
855 if (code >= 256) \
856 c2 = c1, c1 = (code >> 7) & 0x7F; \
bd045987 857 c = MAKE_CHAR (charset, c1, c2); \
4ffd4870
KH
858 } \
859 else \
bd045987 860 c = code & 0xFF; \
4ffd4870
KH
861 } while (0)
862
863
4ed46869
KH
864/* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting
865 text goes to a place pointed by DESTINATION, the length of which
866 should not exceed DST_BYTES. The bytes actually processed is
867 returned as *CONSUMED. The return value is the length of the
868 resulting text. As a side effect, the contents of CCL registers
869 are updated. If SOURCE or DESTINATION is NULL, only operations on
870 registers are permitted. */
871
872#ifdef CCL_DEBUG
873#define CCL_DEBUG_BACKTRACE_LEN 256
f9bd23fd 874int ccl_backtrace_table[CCL_DEBUG_BACKTRACE_LEN];
4ed46869 875int ccl_backtrace_idx;
9eaa8e65
KH
876
877int
878ccl_debug_hook (int ic)
879{
880 return ic;
881}
882
4ed46869
KH
883#endif
884
885struct ccl_prog_stack
886 {
a9f1cc19 887 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
4ed46869 888 int ic; /* Instruction Counter. */
9eaa8e65 889 int eof_ic; /* Instruction Counter to jump on EOF. */
4ed46869
KH
890 };
891
177c0ea7 892/* For the moment, we only support depth 256 of stack. */
c13362d8
KH
893static struct ccl_prog_stack ccl_prog_stack_struct[256];
894
dfcf069d 895int
4ed46869
KH
896ccl_driver (ccl, source, destination, src_bytes, dst_bytes, consumed)
897 struct ccl_program *ccl;
898 unsigned char *source, *destination;
899 int src_bytes, dst_bytes;
900 int *consumed;
901{
902 register int *reg = ccl->reg;
903 register int ic = ccl->ic;
8a1ae4dd 904 register int code = 0, field1, field2;
e995085f 905 register Lisp_Object *ccl_prog = ccl->prog;
4ed46869
KH
906 unsigned char *src = source, *src_end = src + src_bytes;
907 unsigned char *dst = destination, *dst_end = dst + dst_bytes;
908 int jump_address;
8a1ae4dd 909 int i = 0, j, op;
c13362d8 910 int stack_idx = ccl->stack_idx;
519bf146 911 /* Instruction counter of the current CCL code. */
8a1ae4dd 912 int this_ic = 0;
a37520c6
KH
913 /* CCL_WRITE_CHAR will produce 8-bit code of range 0x80..0x9F. But,
914 each of them will be converted to multibyte form of 2-byte
915 sequence. For that conversion, we remember how many more bytes
916 we must keep in DESTINATION in this variable. */
fd40a25f 917 int extra_bytes = ccl->eight_bit_control;
9eaa8e65
KH
918 int eof_ic = ccl->eof_ic;
919 int eof_hit = 0;
4ed46869 920
9eaa8e65 921 if (ic >= eof_ic)
4ed46869
KH
922 ic = CCL_HEADER_MAIN;
923
8a1ae4dd 924 if (ccl->buf_magnification == 0) /* We can't produce any bytes. */
12abd7d1
KH
925 dst = NULL;
926
54fa5bc1
KH
927 /* Set mapping stack pointer. */
928 mapping_stack_pointer = mapping_stack;
929
4ed46869
KH
930#ifdef CCL_DEBUG
931 ccl_backtrace_idx = 0;
932#endif
933
934 for (;;)
935 {
4ccd0d4a 936 ccl_repeat:
4ed46869
KH
937#ifdef CCL_DEBUG
938 ccl_backtrace_table[ccl_backtrace_idx++] = ic;
939 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
940 ccl_backtrace_idx = 0;
941 ccl_backtrace_table[ccl_backtrace_idx] = 0;
942#endif
943
944 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
945 {
946 /* We can't just signal Qquit, instead break the loop as if
947 the whole data is processed. Don't reset Vquit_flag, it
948 must be handled later at a safer place. */
949 if (consumed)
950 src = source + src_bytes;
951 ccl->status = CCL_STAT_QUIT;
952 break;
953 }
954
519bf146 955 this_ic = ic;
4ed46869
KH
956 code = XINT (ccl_prog[ic]); ic++;
957 field1 = code >> 8;
958 field2 = (code & 0xFF) >> 5;
959
960#define rrr field2
961#define RRR (field1 & 7)
962#define Rrr ((field1 >> 3) & 7)
963#define ADDR field1
e34b1164 964#define EXCMD (field1 >> 6)
4ed46869
KH
965
966 switch (code & 0x1F)
967 {
968 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
969 reg[rrr] = reg[RRR];
970 break;
971
972 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
973 reg[rrr] = field1;
974 break;
975
976 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
977 reg[rrr] = XINT (ccl_prog[ic]);
978 ic++;
979 break;
980
981 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
982 i = reg[RRR];
983 j = field1 >> 3;
984 if ((unsigned int) i < j)
985 reg[rrr] = XINT (ccl_prog[ic + i]);
986 ic += j;
987 break;
988
989 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
990 ic += ADDR;
991 break;
992
993 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
994 if (!reg[rrr])
995 ic += ADDR;
996 break;
997
998 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
999 i = reg[rrr];
1000 CCL_WRITE_CHAR (i);
1001 ic += ADDR;
1002 break;
1003
1004 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
1005 i = reg[rrr];
1006 CCL_WRITE_CHAR (i);
1007 ic++;
1008 CCL_READ_CHAR (reg[rrr]);
1009 ic += ADDR - 1;
1010 break;
1011
1012 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
1013 i = XINT (ccl_prog[ic]);
1014 CCL_WRITE_CHAR (i);
1015 ic += ADDR;
1016 break;
1017
1018 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
1019 i = XINT (ccl_prog[ic]);
1020 CCL_WRITE_CHAR (i);
1021 ic++;
1022 CCL_READ_CHAR (reg[rrr]);
1023 ic += ADDR - 1;
1024 break;
1025
1026 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
1027 j = XINT (ccl_prog[ic]);
1028 ic++;
1029 CCL_WRITE_STRING (j);
1030 ic += ADDR - 1;
1031 break;
1032
1033 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
1034 i = reg[rrr];
2e34157c 1035 j = XINT (ccl_prog[ic]);
4ed46869
KH
1036 if ((unsigned int) i < j)
1037 {
887bfbd7 1038 i = XINT (ccl_prog[ic + 1 + i]);
4ed46869
KH
1039 CCL_WRITE_CHAR (i);
1040 }
887bfbd7 1041 ic += j + 2;
4ed46869
KH
1042 CCL_READ_CHAR (reg[rrr]);
1043 ic += ADDR - (j + 2);
1044 break;
1045
1046 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
1047 CCL_READ_CHAR (reg[rrr]);
1048 ic += ADDR;
1049 break;
1050
1051 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1052 CCL_READ_CHAR (reg[rrr]);
1053 /* fall through ... */
1054 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1055 if ((unsigned int) reg[rrr] < field1)
1056 ic += XINT (ccl_prog[ic + reg[rrr]]);
1057 else
1058 ic += XINT (ccl_prog[ic + field1]);
1059 break;
1060
1061 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1062 while (1)
1063 {
1064 CCL_READ_CHAR (reg[rrr]);
1065 if (!field1) break;
1066 code = XINT (ccl_prog[ic]); ic++;
1067 field1 = code >> 8;
1068 field2 = (code & 0xFF) >> 5;
1069 }
1070 break;
1071
1072 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
1073 rrr = 7;
1074 i = reg[RRR];
1075 j = XINT (ccl_prog[ic]);
1076 op = field1 >> 6;
25660570 1077 jump_address = ic + 1;
4ed46869
KH
1078 goto ccl_set_expr;
1079
1080 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1081 while (1)
1082 {
1083 i = reg[rrr];
1084 CCL_WRITE_CHAR (i);
1085 if (!field1) break;
1086 code = XINT (ccl_prog[ic]); ic++;
1087 field1 = code >> 8;
1088 field2 = (code & 0xFF) >> 5;
1089 }
1090 break;
1091
1092 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
1093 rrr = 7;
1094 i = reg[RRR];
1095 j = reg[Rrr];
1096 op = field1 >> 6;
25660570 1097 jump_address = ic;
4ed46869
KH
1098 goto ccl_set_expr;
1099
5232fa7b 1100 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
4ed46869
KH
1101 {
1102 Lisp_Object slot;
5232fa7b
KH
1103 int prog_id;
1104
1105 /* If FFF is nonzero, the CCL program ID is in the
1106 following code. */
1107 if (rrr)
1108 {
1109 prog_id = XINT (ccl_prog[ic]);
1110 ic++;
1111 }
1112 else
1113 prog_id = field1;
4ed46869
KH
1114
1115 if (stack_idx >= 256
5232fa7b 1116 || prog_id < 0
64ef2921
SM
1117 || prog_id >= ASIZE (Vccl_program_table)
1118 || (slot = AREF (Vccl_program_table, prog_id), !VECTORP (slot))
1119 || !VECTORP (AREF (slot, 1)))
4ed46869
KH
1120 {
1121 if (stack_idx > 0)
1122 {
1123 ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
1124 ic = ccl_prog_stack_struct[0].ic;
9eaa8e65 1125 eof_ic = ccl_prog_stack_struct[0].eof_ic;
4ed46869
KH
1126 }
1127 CCL_INVALID_CMD;
1128 }
177c0ea7 1129
4ed46869
KH
1130 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
1131 ccl_prog_stack_struct[stack_idx].ic = ic;
9eaa8e65 1132 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic;
4ed46869 1133 stack_idx++;
64ef2921 1134 ccl_prog = XVECTOR (AREF (slot, 1))->contents;
4ed46869 1135 ic = CCL_HEADER_MAIN;
9eaa8e65 1136 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]);
4ed46869
KH
1137 }
1138 break;
1139
1140 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1141 if (!rrr)
1142 CCL_WRITE_CHAR (field1);
1143 else
1144 {
1145 CCL_WRITE_STRING (field1);
1146 ic += (field1 + 2) / 3;
1147 }
1148 break;
1149
1150 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1151 i = reg[rrr];
1152 if ((unsigned int) i < field1)
1153 {
1154 j = XINT (ccl_prog[ic + i]);
1155 CCL_WRITE_CHAR (j);
1156 }
1157 ic += field1;
1158 break;
1159
1160 case CCL_End: /* 0000000000000000000000XXXXX */
d3a478e2 1161 if (stack_idx > 0)
4ed46869 1162 {
d3a478e2 1163 stack_idx--;
4ed46869
KH
1164 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
1165 ic = ccl_prog_stack_struct[stack_idx].ic;
9eaa8e65
KH
1166 eof_ic = ccl_prog_stack_struct[stack_idx].eof_ic;
1167 if (eof_hit)
1168 ic = eof_ic;
4ed46869
KH
1169 break;
1170 }
ad3d1b1d
KH
1171 if (src)
1172 src = src_end;
1173 /* ccl->ic should points to this command code again to
1174 suppress further processing. */
1175 ic--;
4ed46869
KH
1176 CCL_SUCCESS;
1177
1178 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
1179 i = XINT (ccl_prog[ic]);
1180 ic++;
1181 op = field1 >> 6;
1182 goto ccl_expr_self;
1183
1184 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
1185 i = reg[RRR];
1186 op = field1 >> 6;
1187
1188 ccl_expr_self:
1189 switch (op)
1190 {
1191 case CCL_PLUS: reg[rrr] += i; break;
1192 case CCL_MINUS: reg[rrr] -= i; break;
1193 case CCL_MUL: reg[rrr] *= i; break;
1194 case CCL_DIV: reg[rrr] /= i; break;
1195 case CCL_MOD: reg[rrr] %= i; break;
1196 case CCL_AND: reg[rrr] &= i; break;
1197 case CCL_OR: reg[rrr] |= i; break;
1198 case CCL_XOR: reg[rrr] ^= i; break;
1199 case CCL_LSH: reg[rrr] <<= i; break;
1200 case CCL_RSH: reg[rrr] >>= i; break;
1201 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
1202 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
1203 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
1204 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
1205 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
1206 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
1207 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
1208 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
1209 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
1210 default: CCL_INVALID_CMD;
1211 }
1212 break;
1213
1214 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
1215 i = reg[RRR];
1216 j = XINT (ccl_prog[ic]);
1217 op = field1 >> 6;
1218 jump_address = ++ic;
1219 goto ccl_set_expr;
1220
1221 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
1222 i = reg[RRR];
1223 j = reg[Rrr];
1224 op = field1 >> 6;
1225 jump_address = ic;
1226 goto ccl_set_expr;
1227
1228 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1229 CCL_READ_CHAR (reg[rrr]);
1230 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1231 i = reg[rrr];
1232 op = XINT (ccl_prog[ic]);
1233 jump_address = ic++ + ADDR;
1234 j = XINT (ccl_prog[ic]);
1235 ic++;
1236 rrr = 7;
1237 goto ccl_set_expr;
1238
1239 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
1240 CCL_READ_CHAR (reg[rrr]);
1241 case CCL_JumpCondExprReg:
1242 i = reg[rrr];
1243 op = XINT (ccl_prog[ic]);
1244 jump_address = ic++ + ADDR;
1245 j = reg[XINT (ccl_prog[ic])];
1246 ic++;
1247 rrr = 7;
1248
1249 ccl_set_expr:
1250 switch (op)
1251 {
1252 case CCL_PLUS: reg[rrr] = i + j; break;
1253 case CCL_MINUS: reg[rrr] = i - j; break;
1254 case CCL_MUL: reg[rrr] = i * j; break;
1255 case CCL_DIV: reg[rrr] = i / j; break;
1256 case CCL_MOD: reg[rrr] = i % j; break;
1257 case CCL_AND: reg[rrr] = i & j; break;
1258 case CCL_OR: reg[rrr] = i | j; break;
1259 case CCL_XOR: reg[rrr] = i ^ j;; break;
1260 case CCL_LSH: reg[rrr] = i << j; break;
1261 case CCL_RSH: reg[rrr] = i >> j; break;
1262 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
1263 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
1264 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
1265 case CCL_LS: reg[rrr] = i < j; break;
1266 case CCL_GT: reg[rrr] = i > j; break;
1267 case CCL_EQ: reg[rrr] = i == j; break;
1268 case CCL_LE: reg[rrr] = i <= j; break;
1269 case CCL_GE: reg[rrr] = i >= j; break;
1270 case CCL_NE: reg[rrr] = i != j; break;
4ed46869 1271 case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break;
51520e8a 1272 case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break;
4ed46869
KH
1273 default: CCL_INVALID_CMD;
1274 }
1275 code &= 0x1F;
1276 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
1277 {
1278 i = reg[rrr];
1279 CCL_WRITE_CHAR (i);
25660570 1280 ic = jump_address;
4ed46869
KH
1281 }
1282 else if (!reg[rrr])
1283 ic = jump_address;
1284 break;
1285
450ed226 1286 case CCL_Extension:
e34b1164
KH
1287 switch (EXCMD)
1288 {
6ae21908 1289 case CCL_ReadMultibyteChar2:
e34b1164
KH
1290 if (!src)
1291 CCL_INVALID_CMD;
60768428 1292
0ee1088b
KH
1293 if (src >= src_end)
1294 {
1295 src++;
1296 goto ccl_read_multibyte_character_suspend;
1297 }
177c0ea7 1298
38b9ed6a
KH
1299 if (!ccl->multibyte)
1300 {
1301 int bytes;
1302 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
1303 {
1304 reg[RRR] = CHARSET_8_BIT_CONTROL;
1305 reg[rrr] = *src++;
1306 break;
1307 }
1308 }
0ee1088b
KH
1309 i = *src++;
1310 if (i == '\n' && ccl->eol_type != CODING_EOL_LF)
1311 {
177c0ea7 1312 /* We are encoding. */
0ee1088b
KH
1313 if (ccl->eol_type == CODING_EOL_CRLF)
1314 {
1315 if (ccl->cr_consumed)
1316 ccl->cr_consumed = 0;
1317 else
1318 {
1319 ccl->cr_consumed = 1;
1320 i = '\r';
1321 src--;
1322 }
1323 }
1324 else
1325 i = '\r';
1326 reg[rrr] = i;
1327 reg[RRR] = CHARSET_ASCII;
1328 }
1329 else if (i < 0x80)
1330 {
1331 /* ASCII */
1332 reg[rrr] = i;
1333 reg[RRR] = CHARSET_ASCII;
1334 }
0ee1088b
KH
1335 else if (i <= MAX_CHARSET_OFFICIAL_DIMENSION2)
1336 {
0fc71a77
KH
1337 int dimension = BYTES_BY_CHAR_HEAD (i) - 1;
1338
1339 if (dimension == 0)
1340 {
1341 /* `i' is a leading code for an undefined charset. */
1342 reg[RRR] = CHARSET_8_BIT_GRAPHIC;
1343 reg[rrr] = i;
1344 }
1345 else if (src + dimension > src_end)
0ee1088b 1346 goto ccl_read_multibyte_character_suspend;
0fc71a77
KH
1347 else
1348 {
1349 reg[RRR] = i;
1350 i = (*src++ & 0x7F);
1351 if (dimension == 1)
1352 reg[rrr] = i;
1353 else
1354 reg[rrr] = ((i << 7) | (*src++ & 0x7F));
1355 }
0ee1088b
KH
1356 }
1357 else if ((i == LEADING_CODE_PRIVATE_11)
1358 || (i == LEADING_CODE_PRIVATE_12))
1359 {
1360 if ((src + 1) >= src_end)
1361 goto ccl_read_multibyte_character_suspend;
1362 reg[RRR] = *src++;
1363 reg[rrr] = (*src++ & 0x7F);
1364 }
1365 else if ((i == LEADING_CODE_PRIVATE_21)
1366 || (i == LEADING_CODE_PRIVATE_22))
1367 {
1368 if ((src + 2) >= src_end)
1369 goto ccl_read_multibyte_character_suspend;
1370 reg[RRR] = *src++;
1371 i = (*src++ & 0x7F);
1372 reg[rrr] = ((i << 7) | (*src & 0x7F));
1373 src++;
1374 }
1375 else if (i == LEADING_CODE_8_BIT_CONTROL)
1376 {
1377 if (src >= src_end)
1378 goto ccl_read_multibyte_character_suspend;
1379 reg[RRR] = CHARSET_8_BIT_CONTROL;
1380 reg[rrr] = (*src++ - 0x20);
1381 }
1382 else if (i >= 0xA0)
1383 {
1384 reg[RRR] = CHARSET_8_BIT_GRAPHIC;
1385 reg[rrr] = i;
1386 }
1387 else
1388 {
1389 /* INVALID CODE. Return a single byte character. */
1390 reg[RRR] = CHARSET_ASCII;
1391 reg[rrr] = i;
1392 }
e34b1164
KH
1393 break;
1394
1395 ccl_read_multibyte_character_suspend:
38b9ed6a
KH
1396 if (src <= src_end && !ccl->multibyte && ccl->last_block)
1397 {
1398 reg[RRR] = CHARSET_8_BIT_CONTROL;
1399 reg[rrr] = i;
1400 break;
1401 }
e34b1164
KH
1402 src--;
1403 if (ccl->last_block)
1404 {
9eaa8e65
KH
1405 ic = eof_ic;
1406 eof_hit = 1;
0db078dc 1407 goto ccl_repeat;
e34b1164
KH
1408 }
1409 else
1410 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);
1411
1412 break;
1413
6ae21908 1414 case CCL_WriteMultibyteChar2:
e34b1164 1415 i = reg[RRR]; /* charset */
5c464c4d
KH
1416 if (i == CHARSET_ASCII
1417 || i == CHARSET_8_BIT_CONTROL
1418 || i == CHARSET_8_BIT_GRAPHIC)
c13362d8 1419 i = reg[rrr] & 0xFF;
e34b1164
KH
1420 else if (CHARSET_DIMENSION (i) == 1)
1421 i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
1422 else if (i < MIN_CHARSET_PRIVATE_DIMENSION2)
1423 i = ((i - 0x8F) << 14) | reg[rrr];
1424 else
1425 i = ((i - 0xE0) << 14) | reg[rrr];
1426
a8302ba3 1427 CCL_WRITE_MULTIBYTE_CHAR (i);
e34b1164
KH
1428
1429 break;
1430
8146262a 1431 case CCL_TranslateCharacter:
4ffd4870 1432 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
8146262a
KH
1433 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]),
1434 i, -1, 0, 0);
e34b1164
KH
1435 SPLIT_CHAR (op, reg[RRR], i, j);
1436 if (j != -1)
1437 i = (i << 7) | j;
177c0ea7 1438
e34b1164
KH
1439 reg[rrr] = i;
1440 break;
1441
8146262a 1442 case CCL_TranslateCharacterConstTbl:
e34b1164
KH
1443 op = XINT (ccl_prog[ic]); /* table */
1444 ic++;
4ffd4870 1445 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
8146262a 1446 op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0);
e34b1164
KH
1447 SPLIT_CHAR (op, reg[RRR], i, j);
1448 if (j != -1)
1449 i = (i << 7) | j;
177c0ea7 1450
e34b1164
KH
1451 reg[rrr] = i;
1452 break;
1453
d80dc57e
DL
1454 case CCL_LookupIntConstTbl:
1455 op = XINT (ccl_prog[ic]); /* table */
1456 ic++;
177c0ea7 1457 {
d80dc57e
DL
1458 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
1459
1460 op = hash_lookup (h, make_number (reg[RRR]), NULL);
1461 if (op >= 0)
1462 {
f9bd23fd
DL
1463 Lisp_Object opl;
1464 opl = HASH_VALUE (h, op);
1465 if (!CHAR_VALID_P (XINT (opl), 0))
d80dc57e 1466 CCL_INVALID_CMD;
f9bd23fd 1467 SPLIT_CHAR (XINT (opl), reg[RRR], i, j);
d80dc57e
DL
1468 if (j != -1)
1469 i = (i << 7) | j;
1470 reg[rrr] = i;
1471 reg[7] = 1; /* r7 true for success */
1472 }
1473 else
1474 reg[7] = 0;
1475 }
1476 break;
1477
1478 case CCL_LookupCharConstTbl:
1479 op = XINT (ccl_prog[ic]); /* table */
1480 ic++;
1481 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
177c0ea7 1482 {
d80dc57e
DL
1483 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
1484
1485 op = hash_lookup (h, make_number (i), NULL);
1486 if (op >= 0)
1487 {
f9bd23fd
DL
1488 Lisp_Object opl;
1489 opl = HASH_VALUE (h, op);
1490 if (!INTEGERP (opl))
d80dc57e 1491 CCL_INVALID_CMD;
f9bd23fd 1492 reg[RRR] = XINT (opl);
d80dc57e
DL
1493 reg[7] = 1; /* r7 true for success */
1494 }
1495 else
1496 reg[7] = 0;
1497 }
1498 break;
1499
e34b1164
KH
1500 case CCL_IterateMultipleMap:
1501 {
8146262a 1502 Lisp_Object map, content, attrib, value;
e34b1164
KH
1503 int point, size, fin_ic;
1504
8146262a 1505 j = XINT (ccl_prog[ic++]); /* number of maps. */
e34b1164
KH
1506 fin_ic = ic + j;
1507 op = reg[rrr];
1508 if ((j > reg[RRR]) && (j >= 0))
1509 {
1510 ic += reg[RRR];
1511 i = reg[RRR];
1512 }
1513 else
1514 {
1515 reg[RRR] = -1;
1516 ic = fin_ic;
1517 break;
1518 }
1519
1520 for (;i < j;i++)
1521 {
1522
64ef2921 1523 size = ASIZE (Vcode_conversion_map_vector);
d387866a 1524 point = XINT (ccl_prog[ic++]);
e34b1164 1525 if (point >= size) continue;
64ef2921 1526 map = AREF (Vcode_conversion_map_vector, point);
8146262a
KH
1527
1528 /* Check map varidity. */
1529 if (!CONSP (map)) continue;
03699b14 1530 map = XCDR (map);
8146262a 1531 if (!VECTORP (map)) continue;
64ef2921 1532 size = ASIZE (map);
e34b1164 1533 if (size <= 1) continue;
6ae21908 1534
64ef2921 1535 content = AREF (map, 0);
6ae21908 1536
8146262a 1537 /* check map type,
6ae21908
KH
1538 [STARTPOINT VAL1 VAL2 ...] or
1539 [t ELELMENT STARTPOINT ENDPOINT] */
1540 if (NUMBERP (content))
1541 {
1542 point = XUINT (content);
1543 point = op - point + 1;
1544 if (!((point >= 1) && (point < size))) continue;
64ef2921 1545 content = AREF (map, point);
6ae21908
KH
1546 }
1547 else if (EQ (content, Qt))
1548 {
1549 if (size != 4) continue;
64ef2921
SM
1550 if ((op >= XUINT (AREF (map, 2)))
1551 && (op < XUINT (AREF (map, 3))))
1552 content = AREF (map, 1);
6ae21908
KH
1553 else
1554 continue;
1555 }
177c0ea7 1556 else
6ae21908 1557 continue;
e34b1164
KH
1558
1559 if (NILP (content))
1560 continue;
1561 else if (NUMBERP (content))
1562 {
1563 reg[RRR] = i;
6ae21908 1564 reg[rrr] = XINT(content);
e34b1164
KH
1565 break;
1566 }
1567 else if (EQ (content, Qt) || EQ (content, Qlambda))
1568 {
1569 reg[RRR] = i;
1570 break;
1571 }
1572 else if (CONSP (content))
1573 {
03699b14
KR
1574 attrib = XCAR (content);
1575 value = XCDR (content);
e34b1164
KH
1576 if (!NUMBERP (attrib) || !NUMBERP (value))
1577 continue;
1578 reg[RRR] = i;
6ae21908 1579 reg[rrr] = XUINT (value);
e34b1164
KH
1580 break;
1581 }
54fa5bc1
KH
1582 else if (SYMBOLP (content))
1583 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
1584 else
1585 CCL_INVALID_CMD;
e34b1164
KH
1586 }
1587 if (i == j)
1588 reg[RRR] = -1;
1589 ic = fin_ic;
1590 }
1591 break;
177c0ea7 1592
8146262a 1593 case CCL_MapMultiple:
e34b1164 1594 {
8146262a
KH
1595 Lisp_Object map, content, attrib, value;
1596 int point, size, map_vector_size;
1597 int map_set_rest_length, fin_ic;
54fa5bc1
KH
1598 int current_ic = this_ic;
1599
1600 /* inhibit recursive call on MapMultiple. */
1601 if (stack_idx_of_map_multiple > 0)
1602 {
1603 if (stack_idx_of_map_multiple <= stack_idx)
1604 {
1605 stack_idx_of_map_multiple = 0;
1606 mapping_stack_pointer = mapping_stack;
1607 CCL_INVALID_CMD;
1608 }
1609 }
1610 else
1611 mapping_stack_pointer = mapping_stack;
1612 stack_idx_of_map_multiple = 0;
8146262a
KH
1613
1614 map_set_rest_length =
1615 XINT (ccl_prog[ic++]); /* number of maps and separators. */
1616 fin_ic = ic + map_set_rest_length;
54fa5bc1
KH
1617 op = reg[rrr];
1618
8146262a 1619 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
e34b1164
KH
1620 {
1621 ic += reg[RRR];
1622 i = reg[RRR];
8146262a 1623 map_set_rest_length -= i;
e34b1164
KH
1624 }
1625 else
1626 {
1627 ic = fin_ic;
1628 reg[RRR] = -1;
54fa5bc1 1629 mapping_stack_pointer = mapping_stack;
e34b1164
KH
1630 break;
1631 }
6ae21908 1632
54fa5bc1
KH
1633 if (mapping_stack_pointer <= (mapping_stack + 1))
1634 {
1635 /* Set up initial state. */
1636 mapping_stack_pointer = mapping_stack;
1637 PUSH_MAPPING_STACK (0, op);
1638 reg[RRR] = -1;
1639 }
1640 else
1641 {
1642 /* Recover after calling other ccl program. */
1643 int orig_op;
e34b1164 1644
54fa5bc1
KH
1645 POP_MAPPING_STACK (map_set_rest_length, orig_op);
1646 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1647 switch (op)
e34b1164 1648 {
54fa5bc1
KH
1649 case -1:
1650 /* Regard it as Qnil. */
1651 op = orig_op;
1652 i++;
1653 ic++;
1654 map_set_rest_length--;
1655 break;
1656 case -2:
1657 /* Regard it as Qt. */
e34b1164 1658 op = reg[rrr];
54fa5bc1
KH
1659 i++;
1660 ic++;
1661 map_set_rest_length--;
1662 break;
1663 case -3:
1664 /* Regard it as Qlambda. */
1665 op = orig_op;
1666 i += map_set_rest_length;
1667 ic += map_set_rest_length;
1668 map_set_rest_length = 0;
1669 break;
1670 default:
1671 /* Regard it as normal mapping. */
8146262a 1672 i += map_set_rest_length;
54fa5bc1 1673 ic += map_set_rest_length;
8146262a 1674 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
6ae21908
KH
1675 break;
1676 }
e34b1164 1677 }
64ef2921 1678 map_vector_size = ASIZE (Vcode_conversion_map_vector);
177c0ea7 1679
54fa5bc1
KH
1680 do {
1681 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
1682 {
1683 point = XINT(ccl_prog[ic]);
1684 if (point < 0)
1685 {
1686 /* +1 is for including separator. */
1687 point = -point + 1;
1688 if (mapping_stack_pointer
1689 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1690 CCL_INVALID_CMD;
1691 PUSH_MAPPING_STACK (map_set_rest_length - point,
1692 reg[rrr]);
1693 map_set_rest_length = point;
1694 reg[rrr] = op;
1695 continue;
1696 }
1697
1698 if (point >= map_vector_size) continue;
64ef2921 1699 map = AREF (Vcode_conversion_map_vector, point);
54fa5bc1
KH
1700
1701 /* Check map varidity. */
1702 if (!CONSP (map)) continue;
1703 map = XCDR (map);
1704 if (!VECTORP (map)) continue;
64ef2921 1705 size = ASIZE (map);
54fa5bc1
KH
1706 if (size <= 1) continue;
1707
64ef2921 1708 content = AREF (map, 0);
54fa5bc1
KH
1709
1710 /* check map type,
1711 [STARTPOINT VAL1 VAL2 ...] or
1712 [t ELEMENT STARTPOINT ENDPOINT] */
1713 if (NUMBERP (content))
1714 {
1715 point = XUINT (content);
1716 point = op - point + 1;
1717 if (!((point >= 1) && (point < size))) continue;
64ef2921 1718 content = AREF (map, point);
54fa5bc1
KH
1719 }
1720 else if (EQ (content, Qt))
1721 {
1722 if (size != 4) continue;
64ef2921
SM
1723 if ((op >= XUINT (AREF (map, 2))) &&
1724 (op < XUINT (AREF (map, 3))))
1725 content = AREF (map, 1);
54fa5bc1
KH
1726 else
1727 continue;
1728 }
177c0ea7 1729 else
54fa5bc1
KH
1730 continue;
1731
1732 if (NILP (content))
1733 continue;
1734
1735 reg[RRR] = i;
1736 if (NUMBERP (content))
1737 {
1738 op = XINT (content);
1739 i += map_set_rest_length - 1;
1740 ic += map_set_rest_length - 1;
1741 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1742 map_set_rest_length++;
1743 }
1744 else if (CONSP (content))
1745 {
1746 attrib = XCAR (content);
1747 value = XCDR (content);
1748 if (!NUMBERP (attrib) || !NUMBERP (value))
1749 continue;
1750 op = XUINT (value);
1751 i += map_set_rest_length - 1;
1752 ic += map_set_rest_length - 1;
1753 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1754 map_set_rest_length++;
1755 }
1756 else if (EQ (content, Qt))
1757 {
1758 op = reg[rrr];
1759 }
1760 else if (EQ (content, Qlambda))
1761 {
1762 i += map_set_rest_length;
1763 ic += map_set_rest_length;
1764 break;
1765 }
1766 else if (SYMBOLP (content))
1767 {
1768 if (mapping_stack_pointer
1769 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1770 CCL_INVALID_CMD;
1771 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1772 PUSH_MAPPING_STACK (map_set_rest_length, op);
1773 stack_idx_of_map_multiple = stack_idx + 1;
1774 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
1775 }
1776 else
1777 CCL_INVALID_CMD;
1778 }
1779 if (mapping_stack_pointer <= (mapping_stack + 1))
1780 break;
1781 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1782 i += map_set_rest_length;
1783 ic += map_set_rest_length;
1784 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1785 } while (1);
1786
e34b1164
KH
1787 ic = fin_ic;
1788 }
1789 reg[rrr] = op;
1790 break;
1791
8146262a 1792 case CCL_MapSingle:
e34b1164 1793 {
8146262a 1794 Lisp_Object map, attrib, value, content;
e34b1164 1795 int size, point;
8146262a 1796 j = XINT (ccl_prog[ic++]); /* map_id */
e34b1164 1797 op = reg[rrr];
64ef2921 1798 if (j >= ASIZE (Vcode_conversion_map_vector))
e34b1164
KH
1799 {
1800 reg[RRR] = -1;
1801 break;
1802 }
64ef2921 1803 map = AREF (Vcode_conversion_map_vector, j);
8146262a 1804 if (!CONSP (map))
e34b1164
KH
1805 {
1806 reg[RRR] = -1;
1807 break;
1808 }
03699b14 1809 map = XCDR (map);
8146262a 1810 if (!VECTORP (map))
e34b1164
KH
1811 {
1812 reg[RRR] = -1;
1813 break;
1814 }
64ef2921
SM
1815 size = ASIZE (map);
1816 point = XUINT (AREF (map, 0));
e34b1164
KH
1817 point = op - point + 1;
1818 reg[RRR] = 0;
1819 if ((size <= 1) ||
1820 (!((point >= 1) && (point < size))))
1821 reg[RRR] = -1;
1822 else
1823 {
b1cab202 1824 reg[RRR] = 0;
64ef2921 1825 content = AREF (map, point);
e34b1164
KH
1826 if (NILP (content))
1827 reg[RRR] = -1;
1828 else if (NUMBERP (content))
6ae21908 1829 reg[rrr] = XINT (content);
b1cab202 1830 else if (EQ (content, Qt));
e34b1164
KH
1831 else if (CONSP (content))
1832 {
03699b14
KR
1833 attrib = XCAR (content);
1834 value = XCDR (content);
e34b1164
KH
1835 if (!NUMBERP (attrib) || !NUMBERP (value))
1836 continue;
1837 reg[rrr] = XUINT(value);
1838 break;
1839 }
54fa5bc1
KH
1840 else if (SYMBOLP (content))
1841 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
e34b1164
KH
1842 else
1843 reg[RRR] = -1;
1844 }
1845 }
1846 break;
177c0ea7 1847
e34b1164
KH
1848 default:
1849 CCL_INVALID_CMD;
1850 }
1851 break;
1852
4ed46869
KH
1853 default:
1854 CCL_INVALID_CMD;
1855 }
1856 }
1857
1858 ccl_error_handler:
0fb94c7f
EZ
1859 /* The suppress_error member is set when e.g. a CCL-based coding
1860 system is used for terminal output. */
1861 if (!ccl->suppress_error && destination)
4ed46869
KH
1862 {
1863 /* We can insert an error message only if DESTINATION is
1864 specified and we still have a room to store the message
1865 there. */
1866 char msg[256];
1867 int msglen;
1868
12abd7d1
KH
1869 if (!dst)
1870 dst = destination;
1871
4ed46869
KH
1872 switch (ccl->status)
1873 {
1874 case CCL_STAT_INVALID_CMD:
1875 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
519bf146 1876 code & 0x1F, code, this_ic);
4ed46869
KH
1877#ifdef CCL_DEBUG
1878 {
1879 int i = ccl_backtrace_idx - 1;
1880 int j;
1881
1882 msglen = strlen (msg);
12abd7d1 1883 if (dst + msglen <= (dst_bytes ? dst_end : src))
4ed46869
KH
1884 {
1885 bcopy (msg, dst, msglen);
1886 dst += msglen;
1887 }
1888
1889 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
1890 {
1891 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
1892 if (ccl_backtrace_table[i] == 0)
1893 break;
1894 sprintf(msg, " %d", ccl_backtrace_table[i]);
1895 msglen = strlen (msg);
12abd7d1 1896 if (dst + msglen > (dst_bytes ? dst_end : src))
4ed46869
KH
1897 break;
1898 bcopy (msg, dst, msglen);
1899 dst += msglen;
1900 }
12abd7d1 1901 goto ccl_finish;
4ed46869 1902 }
4ed46869 1903#endif
12abd7d1 1904 break;
4ed46869
KH
1905
1906 case CCL_STAT_QUIT:
1907 sprintf(msg, "\nCCL: Quited.");
1908 break;
1909
1910 default:
7c402969 1911 sprintf(msg, "\nCCL: Unknown error type (%d)", ccl->status);
4ed46869
KH
1912 }
1913
1914 msglen = strlen (msg);
12abd7d1 1915 if (dst + msglen <= (dst_bytes ? dst_end : src))
4ed46869
KH
1916 {
1917 bcopy (msg, dst, msglen);
1918 dst += msglen;
1919 }
177c0ea7 1920
31165028
KH
1921 if (ccl->status == CCL_STAT_INVALID_CMD)
1922 {
8a1ae4dd
GM
1923#if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1924 results in an invalid multibyte sequence. */
1925
31165028
KH
1926 /* Copy the remaining source data. */
1927 int i = src_end - src;
1928 if (dst_bytes && (dst_end - dst) < i)
1929 i = dst_end - dst;
1930 bcopy (src, dst, i);
1931 src += i;
1932 dst += i;
8a1ae4dd
GM
1933#else
1934 /* Signal that we've consumed everything. */
1935 src = src_end;
1936#endif
31165028 1937 }
4ed46869
KH
1938 }
1939
1940 ccl_finish:
1941 ccl->ic = ic;
c13362d8
KH
1942 ccl->stack_idx = stack_idx;
1943 ccl->prog = ccl_prog;
fd40a25f 1944 ccl->eight_bit_control = (extra_bytes > 1);
8a1ae4dd
GM
1945 if (consumed)
1946 *consumed = src - source;
12abd7d1 1947 return (dst ? dst - destination : 0);
4ed46869
KH
1948}
1949
5232fa7b
KH
1950/* Resolve symbols in the specified CCL code (Lisp vector). This
1951 function converts symbols of code conversion maps and character
1952 translation tables embeded in the CCL code into their ID numbers.
1953
1954 The return value is a vector (CCL itself or a new vector in which
1955 all symbols are resolved), Qt if resolving of some symbol failed,
1956 or nil if CCL contains invalid data. */
1957
1958static Lisp_Object
1959resolve_symbol_ccl_program (ccl)
1960 Lisp_Object ccl;
1961{
1962 int i, veclen, unresolved = 0;
1963 Lisp_Object result, contents, val;
1964
1965 result = ccl;
64ef2921 1966 veclen = ASIZE (result);
5232fa7b
KH
1967
1968 for (i = 0; i < veclen; i++)
1969 {
64ef2921 1970 contents = AREF (result, i);
5232fa7b
KH
1971 if (INTEGERP (contents))
1972 continue;
1973 else if (CONSP (contents)
03699b14
KR
1974 && SYMBOLP (XCAR (contents))
1975 && SYMBOLP (XCDR (contents)))
5232fa7b
KH
1976 {
1977 /* This is the new style for embedding symbols. The form is
1978 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1979 an index number. */
1980
1981 if (EQ (result, ccl))
1982 result = Fcopy_sequence (ccl);
1983
03699b14 1984 val = Fget (XCAR (contents), XCDR (contents));
5232fa7b 1985 if (NATNUMP (val))
64ef2921 1986 AREF (result, i) = val;
5232fa7b
KH
1987 else
1988 unresolved = 1;
1989 continue;
1990 }
1991 else if (SYMBOLP (contents))
1992 {
1993 /* This is the old style for embedding symbols. This style
1994 may lead to a bug if, for instance, a translation table
1995 and a code conversion map have the same name. */
1996 if (EQ (result, ccl))
1997 result = Fcopy_sequence (ccl);
1998
1999 val = Fget (contents, Qtranslation_table_id);
2000 if (NATNUMP (val))
64ef2921 2001 AREF (result, i) = val;
5232fa7b
KH
2002 else
2003 {
2004 val = Fget (contents, Qcode_conversion_map_id);
2005 if (NATNUMP (val))
64ef2921 2006 AREF (result, i) = val;
5232fa7b
KH
2007 else
2008 {
2009 val = Fget (contents, Qccl_program_idx);
2010 if (NATNUMP (val))
64ef2921 2011 AREF (result, i) = val;
5232fa7b
KH
2012 else
2013 unresolved = 1;
2014 }
2015 }
2016 continue;
2017 }
2018 return Qnil;
2019 }
2020
2021 return (unresolved ? Qt : result);
2022}
2023
2024/* Return the compiled code (vector) of CCL program CCL_PROG.
2025 CCL_PROG is a name (symbol) of the program or already compiled
2026 code. If necessary, resolve symbols in the compiled code to index
2027 numbers. If we failed to get the compiled code or to resolve
2028 symbols, return Qnil. */
2029
2030static Lisp_Object
2031ccl_get_compiled_code (ccl_prog)
2032 Lisp_Object ccl_prog;
2033{
2034 Lisp_Object val, slot;
2035
2036 if (VECTORP (ccl_prog))
2037 {
2038 val = resolve_symbol_ccl_program (ccl_prog);
2039 return (VECTORP (val) ? val : Qnil);
2040 }
2041 if (!SYMBOLP (ccl_prog))
2042 return Qnil;
2043
2044 val = Fget (ccl_prog, Qccl_program_idx);
2045 if (! NATNUMP (val)
64ef2921 2046 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 2047 return Qnil;
64ef2921 2048 slot = AREF (Vccl_program_table, XINT (val));
5232fa7b 2049 if (! VECTORP (slot)
64ef2921
SM
2050 || ASIZE (slot) != 3
2051 || ! VECTORP (AREF (slot, 1)))
5232fa7b 2052 return Qnil;
64ef2921 2053 if (NILP (AREF (slot, 2)))
5232fa7b 2054 {
64ef2921 2055 val = resolve_symbol_ccl_program (AREF (slot, 1));
5232fa7b
KH
2056 if (! VECTORP (val))
2057 return Qnil;
64ef2921
SM
2058 AREF (slot, 1) = val;
2059 AREF (slot, 2) = Qt;
5232fa7b 2060 }
64ef2921 2061 return AREF (slot, 1);
5232fa7b
KH
2062}
2063
4ed46869 2064/* Setup fields of the structure pointed by CCL appropriately for the
5232fa7b
KH
2065 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
2066 of the CCL program or the already compiled code (vector).
2067 Return 0 if we succeed this setup, else return -1.
2068
2069 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
2070int
2071setup_ccl_program (ccl, ccl_prog)
4ed46869 2072 struct ccl_program *ccl;
5232fa7b 2073 Lisp_Object ccl_prog;
4ed46869
KH
2074{
2075 int i;
2076
5232fa7b 2077 if (! NILP (ccl_prog))
ad3d1b1d 2078 {
5232fa7b 2079 struct Lisp_Vector *vp;
ad3d1b1d 2080
5232fa7b
KH
2081 ccl_prog = ccl_get_compiled_code (ccl_prog);
2082 if (! VECTORP (ccl_prog))
2083 return -1;
2084 vp = XVECTOR (ccl_prog);
ad3d1b1d
KH
2085 ccl->size = vp->size;
2086 ccl->prog = vp->contents;
2087 ccl->eof_ic = XINT (vp->contents[CCL_HEADER_EOF]);
2088 ccl->buf_magnification = XINT (vp->contents[CCL_HEADER_BUF_MAG]);
2089 }
4ed46869 2090 ccl->ic = CCL_HEADER_MAIN;
4ed46869
KH
2091 for (i = 0; i < 8; i++)
2092 ccl->reg[i] = 0;
2093 ccl->last_block = 0;
e34b1164 2094 ccl->private_state = 0;
4ed46869 2095 ccl->status = 0;
c13362d8 2096 ccl->stack_idx = 0;
5b8ca822 2097 ccl->eol_type = CODING_EOL_LF;
ae08ba36 2098 ccl->suppress_error = 0;
fd40a25f 2099 ccl->eight_bit_control = 0;
5232fa7b 2100 return 0;
4ed46869
KH
2101}
2102
5232fa7b 2103DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
fdb82f93
PJ
2104 doc: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
2105See the documentation of `define-ccl-program' for the detail of CCL program. */)
2106 (object)
5232fa7b 2107 Lisp_Object object;
6ae21908 2108{
5232fa7b 2109 Lisp_Object val;
6ae21908 2110
5232fa7b 2111 if (VECTORP (object))
6ae21908 2112 {
5232fa7b
KH
2113 val = resolve_symbol_ccl_program (object);
2114 return (VECTORP (val) ? Qt : Qnil);
6ae21908 2115 }
5232fa7b
KH
2116 if (!SYMBOLP (object))
2117 return Qnil;
6ae21908 2118
5232fa7b
KH
2119 val = Fget (object, Qccl_program_idx);
2120 return ((! NATNUMP (val)
64ef2921 2121 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 2122 ? Qnil : Qt);
6ae21908
KH
2123}
2124
4ed46869 2125DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
fdb82f93
PJ
2126 doc: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
2127
2128CCL-PROGRAM is a CCL program name (symbol)
2129or compiled code generated by `ccl-compile' (for backward compatibility.
2130In the latter case, the execution overhead is bigger than in the former).
2131No I/O commands should appear in CCL-PROGRAM.
2132
2133REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
2134for the Nth register.
2135
2136As side effect, each element of REGISTERS holds the value of
2137the corresponding register after the execution.
2138
2139See the documentation of `define-ccl-program' for a definition of CCL
2140programs. */)
2141 (ccl_prog, reg)
4ed46869
KH
2142 Lisp_Object ccl_prog, reg;
2143{
2144 struct ccl_program ccl;
2145 int i;
2146
5232fa7b
KH
2147 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2148 error ("Invalid CCL program");
6ae21908 2149
b7826503 2150 CHECK_VECTOR (reg);
64ef2921 2151 if (ASIZE (reg) != 8)
d7e1fe1f 2152 error ("Length of vector REGISTERS is not 8");
4ed46869 2153
4ed46869 2154 for (i = 0; i < 8; i++)
64ef2921
SM
2155 ccl.reg[i] = (INTEGERP (AREF (reg, i))
2156 ? XINT (AREF (reg, i))
4ed46869
KH
2157 : 0);
2158
b428fdfd 2159 ccl_driver (&ccl, (unsigned char *)0, (unsigned char *)0, 0, 0, (int *)0);
4ed46869
KH
2160 QUIT;
2161 if (ccl.status != CCL_STAT_SUCCESS)
2162 error ("Error in CCL program at %dth code", ccl.ic);
2163
2164 for (i = 0; i < 8; i++)
64ef2921 2165 XSETINT (AREF (reg, i), ccl.reg[i]);
4ed46869
KH
2166 return Qnil;
2167}
2168
2169DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
39a68837 2170 3, 5, 0,
fdb82f93
PJ
2171 doc: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2172
2173CCL-PROGRAM is a symbol registered by register-ccl-program,
2174or a compiled code generated by `ccl-compile' (for backward compatibility,
2175in this case, the execution is slower).
2176
2177Read buffer is set to STRING, and write buffer is allocated automatically.
2178
2179STATUS is a vector of [R0 R1 ... R7 IC], where
2180 R0..R7 are initial values of corresponding registers,
2181 IC is the instruction counter specifying from where to start the program.
2182If R0..R7 are nil, they are initialized to 0.
2183If IC is nil, it is initialized to head of the CCL program.
2184
2185If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2186when read buffer is exausted, else, IC is always set to the end of
2187CCL-PROGRAM on exit.
2188
2189It returns the contents of write buffer as a string,
2190 and as side effect, STATUS is updated.
2191If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2192is a unibyte string. By default it is a multibyte string.
2193
2194See the documentation of `define-ccl-program' for the detail of CCL program. */)
2195 (ccl_prog, status, str, contin, unibyte_p)
39a68837 2196 Lisp_Object ccl_prog, status, str, contin, unibyte_p;
4ed46869
KH
2197{
2198 Lisp_Object val;
2199 struct ccl_program ccl;
2200 int i, produced;
2201 int outbufsize;
2202 char *outbuf;
5232fa7b 2203 struct gcpro gcpro1, gcpro2;
6ae21908 2204
5232fa7b
KH
2205 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2206 error ("Invalid CCL program");
4ed46869 2207
b7826503 2208 CHECK_VECTOR (status);
64ef2921 2209 if (ASIZE (status) != 9)
5232fa7b 2210 error ("Length of vector STATUS is not 9");
b7826503 2211 CHECK_STRING (str);
4ed46869 2212
5232fa7b
KH
2213 GCPRO2 (status, str);
2214
4ed46869
KH
2215 for (i = 0; i < 8; i++)
2216 {
64ef2921
SM
2217 if (NILP (AREF (status, i)))
2218 XSETINT (AREF (status, i), 0);
2219 if (INTEGERP (AREF (status, i)))
2220 ccl.reg[i] = XINT (AREF (status, i));
4ed46869 2221 }
64ef2921 2222 if (INTEGERP (AREF (status, i)))
4ed46869 2223 {
64ef2921 2224 i = XFASTINT (AREF (status, 8));
4ed46869
KH
2225 if (ccl.ic < i && i < ccl.size)
2226 ccl.ic = i;
2227 }
d5db4077 2228 outbufsize = SBYTES (str) * ccl.buf_magnification + 256;
4ed46869 2229 outbuf = (char *) xmalloc (outbufsize);
cb5373dd 2230 ccl.last_block = NILP (contin);
7a837c89 2231 ccl.multibyte = STRING_MULTIBYTE (str);
d5db4077
KR
2232 produced = ccl_driver (&ccl, SDATA (str), outbuf,
2233 SBYTES (str), outbufsize, (int *) 0);
4ed46869 2234 for (i = 0; i < 8; i++)
866ebf45
KH
2235 ASET (status, i, make_number (ccl.reg[i]));
2236 ASET (status, 8, make_number (ccl.ic));
4ed46869
KH
2237 UNGCPRO;
2238
39a68837 2239 if (NILP (unibyte_p))
a3d8fcf2
KH
2240 {
2241 int nchars;
2242
2243 produced = str_as_multibyte (outbuf, outbufsize, produced, &nchars);
2244 val = make_multibyte_string (outbuf, nchars, produced);
2245 }
39a68837
KH
2246 else
2247 val = make_unibyte_string (outbuf, produced);
157f852b 2248 xfree (outbuf);
4ed46869 2249 QUIT;
a3d8fcf2
KH
2250 if (ccl.status == CCL_STAT_SUSPEND_BY_DST)
2251 error ("Output buffer for the CCL programs overflow");
4ed46869 2252 if (ccl.status != CCL_STAT_SUCCESS
a3d8fcf2 2253 && ccl.status != CCL_STAT_SUSPEND_BY_SRC)
4ed46869
KH
2254 error ("Error in CCL program at %dth code", ccl.ic);
2255
2256 return val;
2257}
2258
2259DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
2260 2, 2, 0,
fdb82f93
PJ
2261 doc: /* Register CCL program CCL_PROG as NAME in `ccl-program-table'.
2262CCL_PROG should be a compiled CCL program (vector), or nil.
2263If it is nil, just reserve NAME as a CCL program name.
2264Return index number of the registered CCL program. */)
2265 (name, ccl_prog)
4ed46869
KH
2266 Lisp_Object name, ccl_prog;
2267{
64ef2921 2268 int len = ASIZE (Vccl_program_table);
5232fa7b
KH
2269 int idx;
2270 Lisp_Object resolved;
4ed46869 2271
b7826503 2272 CHECK_SYMBOL (name);
5232fa7b 2273 resolved = Qnil;
4ed46869 2274 if (!NILP (ccl_prog))
6ae21908 2275 {
b7826503 2276 CHECK_VECTOR (ccl_prog);
5232fa7b 2277 resolved = resolve_symbol_ccl_program (ccl_prog);
4d247a1f
KH
2278 if (NILP (resolved))
2279 error ("Error in CCL program");
2280 if (VECTORP (resolved))
5232fa7b
KH
2281 {
2282 ccl_prog = resolved;
2283 resolved = Qt;
2284 }
4d247a1f
KH
2285 else
2286 resolved = Qnil;
6ae21908 2287 }
5232fa7b
KH
2288
2289 for (idx = 0; idx < len; idx++)
4ed46869 2290 {
5232fa7b 2291 Lisp_Object slot;
4ed46869 2292
64ef2921 2293 slot = AREF (Vccl_program_table, idx);
5232fa7b
KH
2294 if (!VECTORP (slot))
2295 /* This is the first unsed slot. Register NAME here. */
4ed46869
KH
2296 break;
2297
64ef2921 2298 if (EQ (name, AREF (slot, 0)))
4ed46869 2299 {
5232fa7b 2300 /* Update this slot. */
64ef2921
SM
2301 AREF (slot, 1) = ccl_prog;
2302 AREF (slot, 2) = resolved;
5232fa7b 2303 return make_number (idx);
4ed46869
KH
2304 }
2305 }
2306
5232fa7b 2307 if (idx == len)
4ed46869 2308 {
5232fa7b
KH
2309 /* Extend the table. */
2310 Lisp_Object new_table;
4ed46869
KH
2311 int j;
2312
5232fa7b 2313 new_table = Fmake_vector (make_number (len * 2), Qnil);
4ed46869 2314 for (j = 0; j < len; j++)
64ef2921
SM
2315 AREF (new_table, j)
2316 = AREF (Vccl_program_table, j);
4ed46869
KH
2317 Vccl_program_table = new_table;
2318 }
2319
5232fa7b
KH
2320 {
2321 Lisp_Object elt;
2322
2323 elt = Fmake_vector (make_number (3), Qnil);
64ef2921
SM
2324 AREF (elt, 0) = name;
2325 AREF (elt, 1) = ccl_prog;
2326 AREF (elt, 2) = resolved;
2327 AREF (Vccl_program_table, idx) = elt;
5232fa7b
KH
2328 }
2329
2330 Fput (name, Qccl_program_idx, make_number (idx));
2331 return make_number (idx);
4ed46869
KH
2332}
2333
8146262a
KH
2334/* Register code conversion map.
2335 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
d617f6df
DL
2336 The first element is the start code point.
2337 The other elements are mapped numbers.
8146262a
KH
2338 Symbol t means to map to an original number before mapping.
2339 Symbol nil means that the corresponding element is empty.
d617f6df 2340 Symbol lambda means to terminate mapping here.
e34b1164
KH
2341*/
2342
8146262a
KH
2343DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
2344 Sregister_code_conversion_map,
e34b1164 2345 2, 2, 0,
fdb82f93
PJ
2346 doc: /* Register SYMBOL as code conversion map MAP.
2347Return index number of the registered map. */)
2348 (symbol, map)
8146262a 2349 Lisp_Object symbol, map;
e34b1164 2350{
64ef2921 2351 int len = ASIZE (Vcode_conversion_map_vector);
e34b1164
KH
2352 int i;
2353 Lisp_Object index;
2354
b7826503
PJ
2355 CHECK_SYMBOL (symbol);
2356 CHECK_VECTOR (map);
177c0ea7 2357
e34b1164
KH
2358 for (i = 0; i < len; i++)
2359 {
64ef2921 2360 Lisp_Object slot = AREF (Vcode_conversion_map_vector, i);
e34b1164
KH
2361
2362 if (!CONSP (slot))
2363 break;
2364
03699b14 2365 if (EQ (symbol, XCAR (slot)))
e34b1164
KH
2366 {
2367 index = make_number (i);
f3fbd155 2368 XSETCDR (slot, map);
8146262a
KH
2369 Fput (symbol, Qcode_conversion_map, map);
2370 Fput (symbol, Qcode_conversion_map_id, index);
e34b1164
KH
2371 return index;
2372 }
2373 }
2374
2375 if (i == len)
2376 {
2377 Lisp_Object new_vector = Fmake_vector (make_number (len * 2), Qnil);
2378 int j;
2379
2380 for (j = 0; j < len; j++)
64ef2921
SM
2381 AREF (new_vector, j)
2382 = AREF (Vcode_conversion_map_vector, j);
8146262a 2383 Vcode_conversion_map_vector = new_vector;
e34b1164
KH
2384 }
2385
2386 index = make_number (i);
8146262a
KH
2387 Fput (symbol, Qcode_conversion_map, map);
2388 Fput (symbol, Qcode_conversion_map_id, index);
64ef2921 2389 AREF (Vcode_conversion_map_vector, i) = Fcons (symbol, map);
e34b1164
KH
2390 return index;
2391}
2392
2393
dfcf069d 2394void
4ed46869
KH
2395syms_of_ccl ()
2396{
2397 staticpro (&Vccl_program_table);
6703ac4f 2398 Vccl_program_table = Fmake_vector (make_number (32), Qnil);
4ed46869 2399
6ae21908
KH
2400 Qccl_program = intern ("ccl-program");
2401 staticpro (&Qccl_program);
2402
2403 Qccl_program_idx = intern ("ccl-program-idx");
2404 staticpro (&Qccl_program_idx);
e34b1164 2405
8146262a
KH
2406 Qcode_conversion_map = intern ("code-conversion-map");
2407 staticpro (&Qcode_conversion_map);
6ae21908 2408
8146262a
KH
2409 Qcode_conversion_map_id = intern ("code-conversion-map-id");
2410 staticpro (&Qcode_conversion_map_id);
6ae21908 2411
8146262a 2412 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector,
fdb82f93 2413 doc: /* Vector of code conversion maps. */);
8146262a 2414 Vcode_conversion_map_vector = Fmake_vector (make_number (16), Qnil);
e34b1164 2415
4ed46869 2416 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist,
fdb82f93
PJ
2417 doc: /* Alist of fontname patterns vs corresponding CCL program.
2418Each element looks like (REGEXP . CCL-CODE),
2419 where CCL-CODE is a compiled CCL program.
2420When a font whose name matches REGEXP is used for displaying a character,
2421 CCL-CODE is executed to calculate the code point in the font
2422 from the charset number and position code(s) of the character which are set
2423 in CCL registers R0, R1, and R2 before the execution.
2424The code point in the font is set in CCL registers R1 and R2
2425 when the execution terminated.
2426 If the font is single-byte font, the register R2 is not used. */);
4ed46869
KH
2427 Vfont_ccl_encoder_alist = Qnil;
2428
d80dc57e
DL
2429 DEFVAR_LISP ("translation-hash-table-vector", &Vtranslation_hash_table_vector,
2430 doc: /* Vector containing all translation hash tables ever defined.
2431Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
2432to `define-translation-hash-table'. The vector is indexed by the table id
2433used by CCL. */);
2434 Vtranslation_hash_table_vector = Qnil;
2435
5232fa7b 2436 defsubr (&Sccl_program_p);
4ed46869
KH
2437 defsubr (&Sccl_execute);
2438 defsubr (&Sccl_execute_on_string);
2439 defsubr (&Sregister_ccl_program);
8146262a 2440 defsubr (&Sregister_code_conversion_map);
4ed46869 2441}
ab5796a9
MB
2442
2443/* arch-tag: bb9a37be-68ce-4576-8d3d-15d750e4a860
2444 (do not change this comment) */