*** empty log message ***
[bpt/emacs.git] / src / ccl.c
CommitLineData
4ed46869 1/* CCL (Code Conversion Language) interpreter.
aaef169d 2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
8cabe764 3 2006, 2007, 2008 Free Software Foundation, Inc.
7976eda0 4 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
8cabe764 5 2005, 2006, 2007, 2008
ce03bf76
KH
6 National Institute of Advanced Industrial Science and Technology (AIST)
7 Registration Number H14PRO021
8f924df7 8 Copyright (C) 2003
c10842ea
KH
9 National Institute of Advanced Industrial Science and Technology (AIST)
10 Registration Number H13PRO009
4ed46869 11
369314dc
KH
12This file is part of GNU Emacs.
13
14GNU Emacs is free software; you can redistribute it and/or modify
15it under the terms of the GNU General Public License as published by
1427aa65 16the Free Software Foundation; either version 3, or (at your option)
369314dc 17any later version.
4ed46869 18
369314dc
KH
19GNU Emacs is distributed in the hope that it will be useful,
20but WITHOUT ANY WARRANTY; without even the implied warranty of
21MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22GNU General Public License for more details.
4ed46869 23
369314dc
KH
24You should have received a copy of the GNU General Public License
25along with GNU Emacs; see the file COPYING. If not, write to
4fc5845f
LK
26the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
27Boston, MA 02110-1301, USA. */
4ed46869 28
4ed46869 29#include <config.h>
dfcf069d 30
68c45bf0
PE
31#include <stdio.h>
32
4ed46869 33#include "lisp.h"
c10842ea 34#include "character.h"
4ed46869
KH
35#include "charset.h"
36#include "ccl.h"
37#include "coding.h"
38
c10842ea
KH
39Lisp_Object Qccl, Qcclp;
40
20398ea4 41/* This contains all code conversion map available to CCL. */
8146262a 42Lisp_Object Vcode_conversion_map_vector;
e34b1164 43
4ed46869
KH
44/* Alist of fontname patterns vs corresponding CCL program. */
45Lisp_Object Vfont_ccl_encoder_alist;
46
6ae21908
KH
47/* This symbol is a property which assocates with ccl program vector.
48 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
e34b1164
KH
49Lisp_Object Qccl_program;
50
8146262a
KH
51/* These symbols are properties which associate with code conversion
52 map and their ID respectively. */
53Lisp_Object Qcode_conversion_map;
54Lisp_Object Qcode_conversion_map_id;
e34b1164 55
6ae21908
KH
56/* Symbols of ccl program have this property, a value of the property
57 is an index for Vccl_protram_table. */
58Lisp_Object Qccl_program_idx;
59
5232fa7b 60/* Table of registered CCL programs. Each element is a vector of
2a69c66e
KH
61 NAME, CCL_PROG, RESOLVEDP, and UPDATEDP, where NAME (symbol) is the
62 name of the program, CCL_PROG (vector) is the compiled code of the
63 program, RESOLVEDP (t or nil) is the flag to tell if symbols in
64 CCL_PROG is already resolved to index numbers or not, UPDATEDP (t
65 or nil) is the flat to tell if the CCL program is updated after it
66 was once used. */
4ed46869
KH
67Lisp_Object Vccl_program_table;
68
d80dc57e
DL
69/* Vector of registered hash tables for translation. */
70Lisp_Object Vtranslation_hash_table_vector;
71
72/* Return a hash table of id number ID. */
73#define GET_HASH_TABLE(id) \
74 (XHASH_TABLE (XCDR(XVECTOR(Vtranslation_hash_table_vector)->contents[(id)])))
d80dc57e 75
d325055a
DL
76extern int charset_unicode;
77
4ed46869
KH
78/* CCL (Code Conversion Language) is a simple language which has
79 operations on one input buffer, one output buffer, and 7 registers.
80 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
81 `ccl-compile' compiles a CCL program and produces a CCL code which
82 is a vector of integers. The structure of this vector is as
83 follows: The 1st element: buffer-magnification, a factor for the
84 size of output buffer compared with the size of input buffer. The
85 2nd element: address of CCL code to be executed when encountered
86 with end of input stream. The 3rd and the remaining elements: CCL
87 codes. */
88
89/* Header of CCL compiled code */
90#define CCL_HEADER_BUF_MAG 0
91#define CCL_HEADER_EOF 1
92#define CCL_HEADER_MAIN 2
93
94/* CCL code is a sequence of 28-bit non-negative integers (i.e. the
95 MSB is always 0), each contains CCL command and/or arguments in the
96 following format:
97
98 |----------------- integer (28-bit) ------------------|
99 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
100 |--constant argument--|-register-|-register-|-command-|
101 ccccccccccccccccc RRR rrr XXXXX
102 or
103 |------- relative address -------|-register-|-command-|
104 cccccccccccccccccccc rrr XXXXX
105 or
106 |------------- constant or other args ----------------|
107 cccccccccccccccccccccccccccc
108
109 where, `cc...c' is a non-negative integer indicating constant value
110 (the left most `c' is always 0) or an absolute jump address, `RRR'
111 and `rrr' are CCL register number, `XXXXX' is one of the following
112 CCL commands. */
113
114/* CCL commands
115
116 Each comment fields shows one or more lines for command syntax and
117 the following lines for semantics of the command. In semantics, IC
118 stands for Instruction Counter. */
119
120#define CCL_SetRegister 0x00 /* Set register a register value:
121 1:00000000000000000RRRrrrXXXXX
122 ------------------------------
123 reg[rrr] = reg[RRR];
124 */
125
126#define CCL_SetShortConst 0x01 /* Set register a short constant value:
127 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
128 ------------------------------
129 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
130 */
131
132#define CCL_SetConst 0x02 /* Set register a constant value:
133 1:00000000000000000000rrrXXXXX
134 2:CONSTANT
135 ------------------------------
136 reg[rrr] = CONSTANT;
137 IC++;
138 */
139
140#define CCL_SetArray 0x03 /* Set register an element of array:
141 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
142 2:ELEMENT[0]
143 3:ELEMENT[1]
144 ...
145 ------------------------------
146 if (0 <= reg[RRR] < CC..C)
147 reg[rrr] = ELEMENT[reg[RRR]];
148 IC += CC..C;
149 */
150
151#define CCL_Jump 0x04 /* Jump:
152 1:A--D--D--R--E--S--S-000XXXXX
153 ------------------------------
154 IC += ADDRESS;
155 */
156
157/* Note: If CC..C is greater than 0, the second code is omitted. */
158
159#define CCL_JumpCond 0x05 /* Jump conditional:
160 1:A--D--D--R--E--S--S-rrrXXXXX
161 ------------------------------
162 if (!reg[rrr])
163 IC += ADDRESS;
164 */
165
166
167#define CCL_WriteRegisterJump 0x06 /* Write register and jump:
168 1:A--D--D--R--E--S--S-rrrXXXXX
169 ------------------------------
170 write (reg[rrr]);
171 IC += ADDRESS;
172 */
173
174#define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
175 1:A--D--D--R--E--S--S-rrrXXXXX
176 2:A--D--D--R--E--S--S-rrrYYYYY
177 -----------------------------
178 write (reg[rrr]);
179 IC++;
180 read (reg[rrr]);
181 IC += ADDRESS;
182 */
183/* Note: If read is suspended, the resumed execution starts from the
184 second code (YYYYY == CCL_ReadJump). */
185
186#define CCL_WriteConstJump 0x08 /* Write constant and jump:
187 1:A--D--D--R--E--S--S-000XXXXX
188 2:CONST
189 ------------------------------
190 write (CONST);
191 IC += ADDRESS;
192 */
193
194#define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
195 1:A--D--D--R--E--S--S-rrrXXXXX
196 2:CONST
197 3:A--D--D--R--E--S--S-rrrYYYYY
198 -----------------------------
199 write (CONST);
200 IC += 2;
201 read (reg[rrr]);
202 IC += ADDRESS;
203 */
204/* Note: If read is suspended, the resumed execution starts from the
205 second code (YYYYY == CCL_ReadJump). */
206
207#define CCL_WriteStringJump 0x0A /* Write string and jump:
208 1:A--D--D--R--E--S--S-000XXXXX
209 2:LENGTH
c6589bbd 210 3:000MSTRIN[0]STRIN[1]STRIN[2]
4ed46869
KH
211 ...
212 ------------------------------
c6589bbd
KH
213 if (M)
214 write_multibyte_string (STRING, LENGTH);
215 else
216 write_string (STRING, LENGTH);
4ed46869
KH
217 IC += ADDRESS;
218 */
219
220#define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
221 1:A--D--D--R--E--S--S-rrrXXXXX
222 2:LENGTH
223 3:ELEMENET[0]
224 4:ELEMENET[1]
225 ...
226 N:A--D--D--R--E--S--S-rrrYYYYY
227 ------------------------------
228 if (0 <= reg[rrr] < LENGTH)
229 write (ELEMENT[reg[rrr]]);
230 IC += LENGTH + 2; (... pointing at N+1)
231 read (reg[rrr]);
232 IC += ADDRESS;
233 */
234/* Note: If read is suspended, the resumed execution starts from the
887bfbd7 235 Nth code (YYYYY == CCL_ReadJump). */
4ed46869
KH
236
237#define CCL_ReadJump 0x0C /* Read and jump:
238 1:A--D--D--R--E--S--S-rrrYYYYY
239 -----------------------------
240 read (reg[rrr]);
241 IC += ADDRESS;
242 */
243
244#define CCL_Branch 0x0D /* Jump by branch table:
245 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
246 2:A--D--D--R--E-S-S[0]000XXXXX
247 3:A--D--D--R--E-S-S[1]000XXXXX
248 ...
249 ------------------------------
250 if (0 <= reg[rrr] < CC..C)
251 IC += ADDRESS[reg[rrr]];
252 else
253 IC += ADDRESS[CC..C];
254 */
255
256#define CCL_ReadRegister 0x0E /* Read bytes into registers:
257 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
258 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
259 ...
260 ------------------------------
261 while (CCC--)
262 read (reg[rrr]);
263 */
264
265#define CCL_WriteExprConst 0x0F /* write result of expression:
266 1:00000OPERATION000RRR000XXXXX
267 2:CONSTANT
268 ------------------------------
269 write (reg[RRR] OPERATION CONSTANT);
270 IC++;
271 */
272
273/* Note: If the Nth read is suspended, the resumed execution starts
274 from the Nth code. */
275
276#define CCL_ReadBranch 0x10 /* Read one byte into a register,
277 and jump by branch table:
278 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
279 2:A--D--D--R--E-S-S[0]000XXXXX
280 3:A--D--D--R--E-S-S[1]000XXXXX
281 ...
282 ------------------------------
283 read (read[rrr]);
284 if (0 <= reg[rrr] < CC..C)
285 IC += ADDRESS[reg[rrr]];
286 else
287 IC += ADDRESS[CC..C];
288 */
289
290#define CCL_WriteRegister 0x11 /* Write registers:
291 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
292 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
293 ...
294 ------------------------------
295 while (CCC--)
296 write (reg[rrr]);
297 ...
298 */
299
300/* Note: If the Nth write is suspended, the resumed execution
301 starts from the Nth code. */
302
303#define CCL_WriteExprRegister 0x12 /* Write result of expression
304 1:00000OPERATIONRrrRRR000XXXXX
305 ------------------------------
306 write (reg[RRR] OPERATION reg[Rrr]);
307 */
308
e34b1164 309#define CCL_Call 0x13 /* Call the CCL program whose ID is
5232fa7b
KH
310 CC..C or cc..c.
311 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
312 [2:00000000cccccccccccccccccccc]
4ed46869 313 ------------------------------
5232fa7b
KH
314 if (FFF)
315 call (cc..c)
316 IC++;
317 else
318 call (CC..C)
4ed46869
KH
319 */
320
321#define CCL_WriteConstString 0x14 /* Write a constant or a string:
322 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
c6589bbd 323 [2:000MSTRIN[0]STRIN[1]STRIN[2]]
4ed46869
KH
324 [...]
325 -----------------------------
326 if (!rrr)
327 write (CC..C)
328 else
c6589bbd
KH
329 if (M)
330 write_multibyte_string (STRING, CC..C);
331 else
332 write_string (STRING, CC..C);
4ed46869
KH
333 IC += (CC..C + 2) / 3;
334 */
335
336#define CCL_WriteArray 0x15 /* Write an element of array:
337 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
338 2:ELEMENT[0]
339 3:ELEMENT[1]
340 ...
341 ------------------------------
342 if (0 <= reg[rrr] < CC..C)
343 write (ELEMENT[reg[rrr]]);
344 IC += CC..C;
345 */
346
347#define CCL_End 0x16 /* Terminate:
348 1:00000000000000000000000XXXXX
349 ------------------------------
350 terminate ();
351 */
352
353/* The following two codes execute an assignment arithmetic/logical
354 operation. The form of the operation is like REG OP= OPERAND. */
355
356#define CCL_ExprSelfConst 0x17 /* REG OP= constant:
357 1:00000OPERATION000000rrrXXXXX
358 2:CONSTANT
359 ------------------------------
360 reg[rrr] OPERATION= CONSTANT;
361 */
362
363#define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
364 1:00000OPERATION000RRRrrrXXXXX
365 ------------------------------
366 reg[rrr] OPERATION= reg[RRR];
367 */
368
369/* The following codes execute an arithmetic/logical operation. The
370 form of the operation is like REG_X = REG_Y OP OPERAND2. */
371
372#define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
373 1:00000OPERATION000RRRrrrXXXXX
374 2:CONSTANT
375 ------------------------------
376 reg[rrr] = reg[RRR] OPERATION CONSTANT;
377 IC++;
378 */
379
380#define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
381 1:00000OPERATIONRrrRRRrrrXXXXX
382 ------------------------------
383 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
384 */
385
386#define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
387 an operation on constant:
388 1:A--D--D--R--E--S--S-rrrXXXXX
389 2:OPERATION
390 3:CONSTANT
391 -----------------------------
392 reg[7] = reg[rrr] OPERATION CONSTANT;
393 if (!(reg[7]))
394 IC += ADDRESS;
395 else
396 IC += 2
397 */
398
399#define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
400 an operation on register:
401 1:A--D--D--R--E--S--S-rrrXXXXX
402 2:OPERATION
403 3:RRR
404 -----------------------------
405 reg[7] = reg[rrr] OPERATION reg[RRR];
406 if (!reg[7])
407 IC += ADDRESS;
408 else
409 IC += 2;
410 */
411
412#define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
413 to an operation on constant:
414 1:A--D--D--R--E--S--S-rrrXXXXX
415 2:OPERATION
416 3:CONSTANT
417 -----------------------------
418 read (reg[rrr]);
419 reg[7] = reg[rrr] OPERATION CONSTANT;
420 if (!reg[7])
421 IC += ADDRESS;
422 else
423 IC += 2;
424 */
425
426#define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
427 to an operation on register:
428 1:A--D--D--R--E--S--S-rrrXXXXX
429 2:OPERATION
430 3:RRR
431 -----------------------------
432 read (reg[rrr]);
433 reg[7] = reg[rrr] OPERATION reg[RRR];
434 if (!reg[7])
435 IC += ADDRESS;
436 else
437 IC += 2;
438 */
439
450ed226 440#define CCL_Extension 0x1F /* Extended CCL code
4ed46869
KH
441 1:ExtendedCOMMNDRrrRRRrrrXXXXX
442 2:ARGUEMENT
443 3:...
444 ------------------------------
445 extended_command (rrr,RRR,Rrr,ARGS)
446 */
447
177c0ea7 448/*
6ae21908 449 Here after, Extended CCL Instructions.
e34b1164 450 Bit length of extended command is 14.
6ae21908 451 Therefore, the instruction code range is 0..16384(0x3fff).
e34b1164
KH
452 */
453
6ae21908
KH
454/* Read a multibyte characeter.
455 A code point is stored into reg[rrr]. A charset ID is stored into
456 reg[RRR]. */
457
458#define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
459 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
460
461/* Write a multibyte character.
462 Write a character whose code point is reg[rrr] and the charset ID
463 is reg[RRR]. */
464
465#define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
466 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
467
8146262a 468/* Translate a character whose code point is reg[rrr] and the charset
f967223b 469 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
6ae21908 470
8146262a 471 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
472 (charset ID). */
473
8146262a 474#define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
6ae21908
KH
475 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
476
8146262a 477/* Translate a character whose code point is reg[rrr] and the charset
f967223b 478 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
6ae21908 479
8146262a 480 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
481 (charset ID). */
482
8146262a
KH
483#define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
484 1:ExtendedCOMMNDRrrRRRrrrXXXXX
485 2:ARGUMENT(Translation Table ID)
486 */
6ae21908 487
8146262a
KH
488/* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
489 reg[RRR]) MAP until some value is found.
6ae21908 490
8146262a 491 Each MAP is a Lisp vector whose element is number, nil, t, or
6ae21908 492 lambda.
8146262a 493 If the element is nil, ignore the map and proceed to the next map.
6ae21908
KH
494 If the element is t or lambda, finish without changing reg[rrr].
495 If the element is a number, set reg[rrr] to the number and finish.
496
8146262a
KH
497 Detail of the map structure is descibed in the comment for
498 CCL_MapMultiple below. */
6ae21908 499
8146262a 500#define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
6ae21908 501 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a
KH
502 2:NUMBER of MAPs
503 3:MAP-ID1
504 4:MAP-ID2
6ae21908 505 ...
177c0ea7 506 */
6ae21908 507
8146262a
KH
508/* Map the code in reg[rrr] by MAPs starting from the Nth (N =
509 reg[RRR]) map.
6ae21908 510
9b27b20d 511 MAPs are supplied in the succeeding CCL codes as follows:
6ae21908 512
8146262a
KH
513 When CCL program gives this nested structure of map to this command:
514 ((MAP-ID11
515 MAP-ID12
516 (MAP-ID121 MAP-ID122 MAP-ID123)
517 MAP-ID13)
518 (MAP-ID21
519 (MAP-ID211 (MAP-ID2111) MAP-ID212)
520 MAP-ID22)),
6ae21908 521 the compiled CCL codes has this sequence:
8146262a 522 CCL_MapMultiple (CCL code of this command)
9b27b20d
KH
523 16 (total number of MAPs and SEPARATORs)
524 -7 (1st SEPARATOR)
8146262a
KH
525 MAP-ID11
526 MAP-ID12
9b27b20d 527 -3 (2nd SEPARATOR)
8146262a
KH
528 MAP-ID121
529 MAP-ID122
530 MAP-ID123
531 MAP-ID13
9b27b20d 532 -7 (3rd SEPARATOR)
8146262a 533 MAP-ID21
9b27b20d 534 -4 (4th SEPARATOR)
8146262a 535 MAP-ID211
9b27b20d 536 -1 (5th SEPARATOR)
8146262a
KH
537 MAP_ID2111
538 MAP-ID212
539 MAP-ID22
6ae21908 540
9b27b20d 541 A value of each SEPARATOR follows this rule:
8146262a
KH
542 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
543 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
6ae21908 544
8146262a 545 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
6ae21908 546
8146262a
KH
547 When some map fails to map (i.e. it doesn't have a value for
548 reg[rrr]), the mapping is treated as identity.
6ae21908 549
8146262a 550 The mapping is iterated for all maps in each map set (set of maps
9b27b20d
KH
551 separated by SEPARATOR) except in the case that lambda is
552 encountered. More precisely, the mapping proceeds as below:
553
554 At first, VAL0 is set to reg[rrr], and it is translated by the
555 first map to VAL1. Then, VAL1 is translated by the next map to
556 VAL2. This mapping is iterated until the last map is used. The
54fa5bc1
KH
557 result of the mapping is the last value of VAL?. When the mapping
558 process reached to the end of the map set, it moves to the next
559 map set. If the next does not exit, the mapping process terminates,
560 and regard the last value as a result.
9b27b20d
KH
561
562 But, when VALm is mapped to VALn and VALn is not a number, the
563 mapping proceed as below:
564
565 If VALn is nil, the lastest map is ignored and the mapping of VALm
566 proceed to the next map.
567
568 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
569 proceed to the next map.
570
54fa5bc1
KH
571 If VALn is lambda, move to the next map set like reaching to the
572 end of the current map set.
573
574 If VALn is a symbol, call the CCL program refered by it.
575 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
576 Such special values are regarded as nil, t, and lambda respectively.
6ae21908 577
8146262a 578 Each map is a Lisp vector of the following format (a) or (b):
6ae21908
KH
579 (a)......[STARTPOINT VAL1 VAL2 ...]
580 (b)......[t VAL STARTPOINT ENDPOINT],
581 where
8146262a 582 STARTPOINT is an offset to be used for indexing a map,
9b27b20d 583 ENDPOINT is a maximum index number of a map,
177c0ea7 584 VAL and VALn is a number, nil, t, or lambda.
6ae21908 585
8146262a
KH
586 Valid index range of a map of type (a) is:
587 STARTPOINT <= index < STARTPOINT + map_size - 1
588 Valid index range of a map of type (b) is:
9b27b20d 589 STARTPOINT <= index < ENDPOINT */
6ae21908 590
8146262a 591#define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
6ae21908
KH
592 1:ExtendedCOMMNDXXXRRRrrrXXXXX
593 2:N-2
594 3:SEPARATOR_1 (< 0)
8146262a
KH
595 4:MAP-ID_1
596 5:MAP-ID_2
6ae21908
KH
597 ...
598 M:SEPARATOR_x (< 0)
8146262a 599 M+1:MAP-ID_y
6ae21908
KH
600 ...
601 N:SEPARATOR_z (< 0)
602 */
603
54fa5bc1 604#define MAX_MAP_SET_LEVEL 30
6ae21908
KH
605
606typedef struct
607{
608 int rest_length;
609 int orig_val;
610} tr_stack;
611
8146262a
KH
612static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
613static tr_stack *mapping_stack_pointer;
6ae21908 614
54fa5bc1
KH
615/* If this variable is non-zero, it indicates the stack_idx
616 of immediately called by CCL_MapMultiple. */
be57900b 617static int stack_idx_of_map_multiple;
54fa5bc1
KH
618
619#define PUSH_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
620do \
621 { \
54fa5bc1
KH
622 mapping_stack_pointer->rest_length = (restlen); \
623 mapping_stack_pointer->orig_val = (orig); \
624 mapping_stack_pointer++; \
a89f435d
PJ
625 } \
626while (0)
54fa5bc1
KH
627
628#define POP_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
629do \
630 { \
54fa5bc1
KH
631 mapping_stack_pointer--; \
632 (restlen) = mapping_stack_pointer->rest_length; \
633 (orig) = mapping_stack_pointer->orig_val; \
a89f435d
PJ
634 } \
635while (0)
6ae21908 636
54fa5bc1 637#define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
a89f435d 638do \
0ee1088b 639 { \
54fa5bc1
KH
640 struct ccl_program called_ccl; \
641 if (stack_idx >= 256 \
642 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
643 { \
644 if (stack_idx > 0) \
645 { \
646 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
647 ic = ccl_prog_stack_struct[0].ic; \
9eaa8e65 648 eof_ic = ccl_prog_stack_struct[0].eof_ic; \
54fa5bc1
KH
649 } \
650 CCL_INVALID_CMD; \
651 } \
652 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
653 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
9eaa8e65 654 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \
54fa5bc1
KH
655 stack_idx++; \
656 ccl_prog = called_ccl.prog; \
657 ic = CCL_HEADER_MAIN; \
9eaa8e65 658 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]); \
54fa5bc1 659 goto ccl_repeat; \
0ee1088b 660 } \
a89f435d 661while (0)
6ae21908 662
8146262a 663#define CCL_MapSingle 0x12 /* Map by single code conversion map
6ae21908 664 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a 665 2:MAP-ID
6ae21908 666 ------------------------------
8146262a
KH
667 Map reg[rrr] by MAP-ID.
668 If some valid mapping is found,
6ae21908
KH
669 set reg[rrr] to the result,
670 else
671 set reg[RRR] to -1.
672 */
4ed46869 673
d80dc57e
DL
674#define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
675 integer key. Afterwards R7 set
e0f24100 676 to 1 if lookup succeeded.
d80dc57e
DL
677 1:ExtendedCOMMNDRrrRRRXXXXXXXX
678 2:ARGUMENT(Hash table ID) */
679
680#define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
681 character key. Afterwards R7 set
e0f24100 682 to 1 if lookup succeeded.
d80dc57e
DL
683 1:ExtendedCOMMNDRrrRRRrrrXXXXX
684 2:ARGUMENT(Hash table ID) */
685
4ed46869
KH
686/* CCL arithmetic/logical operators. */
687#define CCL_PLUS 0x00 /* X = Y + Z */
688#define CCL_MINUS 0x01 /* X = Y - Z */
689#define CCL_MUL 0x02 /* X = Y * Z */
690#define CCL_DIV 0x03 /* X = Y / Z */
691#define CCL_MOD 0x04 /* X = Y % Z */
692#define CCL_AND 0x05 /* X = Y & Z */
693#define CCL_OR 0x06 /* X = Y | Z */
694#define CCL_XOR 0x07 /* X = Y ^ Z */
695#define CCL_LSH 0x08 /* X = Y << Z */
696#define CCL_RSH 0x09 /* X = Y >> Z */
697#define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
698#define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
699#define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
700#define CCL_LS 0x10 /* X = (X < Y) */
701#define CCL_GT 0x11 /* X = (X > Y) */
702#define CCL_EQ 0x12 /* X = (X == Y) */
703#define CCL_LE 0x13 /* X = (X <= Y) */
704#define CCL_GE 0x14 /* X = (X >= Y) */
705#define CCL_NE 0x15 /* X = (X != Y) */
706
51520e8a 707#define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
4ed46869 708 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
51520e8a
KH
709#define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
710 r[7] = LOWER_BYTE (SJIS (Y, Z) */
4ed46869 711
4ed46869 712/* Terminate CCL program successfully. */
0ee1088b 713#define CCL_SUCCESS \
a89f435d 714do \
0ee1088b 715 { \
4ed46869 716 ccl->status = CCL_STAT_SUCCESS; \
0ee1088b
KH
717 goto ccl_finish; \
718 } \
a89f435d 719while(0)
4ed46869
KH
720
721/* Suspend CCL program because of reading from empty input buffer or
722 writing to full output buffer. When this program is resumed, the
723 same I/O command is executed. */
e34b1164 724#define CCL_SUSPEND(stat) \
a89f435d 725do \
0ee1088b 726 { \
e34b1164
KH
727 ic--; \
728 ccl->status = stat; \
729 goto ccl_finish; \
0ee1088b 730 } \
a89f435d 731while (0)
4ed46869
KH
732
733/* Terminate CCL program because of invalid command. Should not occur
734 in the normal case. */
9eaa8e65
KH
735#ifndef CCL_DEBUG
736
4ed46869 737#define CCL_INVALID_CMD \
a89f435d 738do \
0ee1088b 739 { \
4ed46869
KH
740 ccl->status = CCL_STAT_INVALID_CMD; \
741 goto ccl_error_handler; \
0ee1088b 742 } \
a89f435d 743while(0)
4ed46869 744
9eaa8e65
KH
745#else
746
4ed46869 747#define CCL_INVALID_CMD \
a89f435d 748do \
0ee1088b 749 { \
9eaa8e65 750 ccl_debug_hook (this_ic); \
4ed46869
KH
751 ccl->status = CCL_STAT_INVALID_CMD; \
752 goto ccl_error_handler; \
0ee1088b 753 } \
a89f435d 754while(0)
4ed46869 755
9eaa8e65
KH
756#endif
757
4ed46869 758/* Encode one character CH to multibyte form and write to the current
887bfbd7 759 output buffer. If CH is less than 256, CH is written as is. */
c10842ea
KH
760#define CCL_WRITE_CHAR(ch) \
761 do { \
762 if (! dst) \
763 CCL_INVALID_CMD; \
764 else if (dst < dst_end) \
765 *dst++ = (ch); \
766 else \
767 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
a8302ba3
KH
768 } while (0)
769
4ed46869
KH
770/* Write a string at ccl_prog[IC] of length LEN to the current output
771 buffer. */
c6589bbd
KH
772#define CCL_WRITE_STRING(len) \
773 do { \
774 int i; \
775 if (!dst) \
776 CCL_INVALID_CMD; \
777 else if (dst + len <= dst_end) \
778 { \
779 if (XFASTINT (ccl_prog[ic]) & 0x1000000) \
780 for (i = 0; i < len; i++) \
781 *dst++ = XFASTINT (ccl_prog[ic + i]) & 0xFFFFFF; \
782 else \
783 for (i = 0; i < len; i++) \
784 *dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
785 >> ((2 - (i % 3)) * 8)) & 0xFF; \
786 } \
787 else \
788 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
4ed46869
KH
789 } while (0)
790
c10842ea
KH
791/* Read one byte from the current input buffer into Rth register. */
792#define CCL_READ_CHAR(r) \
793 do { \
794 if (! src) \
795 CCL_INVALID_CMD; \
796 else if (src < src_end) \
797 r = *src++; \
798 else if (ccl->last_block) \
799 { \
327719ee 800 r = -1; \
c10842ea
KH
801 ic = ccl->eof_ic; \
802 goto ccl_repeat; \
803 } \
804 else \
805 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
806 } while (0)
807
bda731af
KH
808/* Decode CODE by a charset whose id is ID. If ID is 0, return CODE
809 as is for backward compatibility. Assume that we can use the
810 variable `charset'. */
811
812#define CCL_DECODE_CHAR(id, code) \
813 ((id) == 0 ? (code) \
814 : (charset = CHARSET_FROM_ID ((id)), DECODE_CHAR (charset, (code))))
815
bda731af
KH
816/* Encode character C by some of charsets in CHARSET_LIST. Set ID to
817 the id of the used charset, ENCODED to the resulf of encoding.
818 Assume that we can use the variable `charset'. */
819
8f924df7 820#define CCL_ENCODE_CHAR(c, charset_list, id, encoded) \
4ffd4870 821 do { \
8f924df7 822 unsigned code; \
4ffd4870 823 \
8f924df7
KH
824 charset = char_charset ((c), (charset_list), &code); \
825 if (! charset && ! NILP (charset_list)) \
826 charset = char_charset ((c), Qnil, &code); \
827 if (charset) \
828 { \
829 (id) = CHARSET_ID (charset); \
830 (encoded) = code; \
4ffd4870 831 } \
8f924df7 832 } while (0)
4ffd4870 833
c10842ea
KH
834/* Execute CCL code on characters at SOURCE (length SRC_SIZE). The
835 resulting text goes to a place pointed by DESTINATION, the length
836 of which should not exceed DST_SIZE. As a side effect, how many
837 characters are consumed and produced are recorded in CCL->consumed
838 and CCL->produced, and the contents of CCL registers are updated.
839 If SOURCE or DESTINATION is NULL, only operations on registers are
840 permitted. */
4ed46869
KH
841
842#ifdef CCL_DEBUG
843#define CCL_DEBUG_BACKTRACE_LEN 256
f9bd23fd 844int ccl_backtrace_table[CCL_DEBUG_BACKTRACE_LEN];
4ed46869 845int ccl_backtrace_idx;
9eaa8e65
KH
846
847int
848ccl_debug_hook (int ic)
849{
850 return ic;
851}
852
4ed46869
KH
853#endif
854
855struct ccl_prog_stack
856 {
a9f1cc19 857 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
4ed46869 858 int ic; /* Instruction Counter. */
9eaa8e65 859 int eof_ic; /* Instruction Counter to jump on EOF. */
4ed46869
KH
860 };
861
177c0ea7 862/* For the moment, we only support depth 256 of stack. */
c13362d8
KH
863static struct ccl_prog_stack ccl_prog_stack_struct[256];
864
c10842ea 865void
bda731af 866ccl_driver (ccl, source, destination, src_size, dst_size, charset_list)
4ed46869 867 struct ccl_program *ccl;
c10842ea
KH
868 int *source, *destination;
869 int src_size, dst_size;
bda731af 870 Lisp_Object charset_list;
4ed46869
KH
871{
872 register int *reg = ccl->reg;
873 register int ic = ccl->ic;
8a1ae4dd 874 register int code = 0, field1, field2;
e995085f 875 register Lisp_Object *ccl_prog = ccl->prog;
c10842ea
KH
876 int *src = source, *src_end = src + src_size;
877 int *dst = destination, *dst_end = dst + dst_size;
4ed46869 878 int jump_address;
8a1ae4dd 879 int i = 0, j, op;
c13362d8 880 int stack_idx = ccl->stack_idx;
519bf146 881 /* Instruction counter of the current CCL code. */
8a1ae4dd 882 int this_ic = 0;
c10842ea 883 struct charset *charset;
9eaa8e65
KH
884 int eof_ic = ccl->eof_ic;
885 int eof_hit = 0;
4ed46869 886
9eaa8e65 887 if (ic >= eof_ic)
4ed46869
KH
888 ic = CCL_HEADER_MAIN;
889
c10842ea 890 if (ccl->buf_magnification == 0) /* We can't read/produce any bytes. */
12abd7d1
KH
891 dst = NULL;
892
54fa5bc1
KH
893 /* Set mapping stack pointer. */
894 mapping_stack_pointer = mapping_stack;
895
4ed46869
KH
896#ifdef CCL_DEBUG
897 ccl_backtrace_idx = 0;
898#endif
899
900 for (;;)
901 {
4ccd0d4a 902 ccl_repeat:
4ed46869
KH
903#ifdef CCL_DEBUG
904 ccl_backtrace_table[ccl_backtrace_idx++] = ic;
905 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
906 ccl_backtrace_idx = 0;
907 ccl_backtrace_table[ccl_backtrace_idx] = 0;
908#endif
909
910 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
911 {
912 /* We can't just signal Qquit, instead break the loop as if
913 the whole data is processed. Don't reset Vquit_flag, it
914 must be handled later at a safer place. */
c10842ea
KH
915 if (src)
916 src = source + src_size;
4ed46869
KH
917 ccl->status = CCL_STAT_QUIT;
918 break;
919 }
920
519bf146 921 this_ic = ic;
4ed46869
KH
922 code = XINT (ccl_prog[ic]); ic++;
923 field1 = code >> 8;
924 field2 = (code & 0xFF) >> 5;
925
926#define rrr field2
927#define RRR (field1 & 7)
928#define Rrr ((field1 >> 3) & 7)
929#define ADDR field1
e34b1164 930#define EXCMD (field1 >> 6)
4ed46869
KH
931
932 switch (code & 0x1F)
933 {
934 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
935 reg[rrr] = reg[RRR];
936 break;
937
938 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
939 reg[rrr] = field1;
940 break;
941
942 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
943 reg[rrr] = XINT (ccl_prog[ic]);
944 ic++;
945 break;
946
947 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
948 i = reg[RRR];
949 j = field1 >> 3;
950 if ((unsigned int) i < j)
951 reg[rrr] = XINT (ccl_prog[ic + i]);
952 ic += j;
953 break;
954
955 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
956 ic += ADDR;
957 break;
958
959 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
960 if (!reg[rrr])
961 ic += ADDR;
962 break;
963
964 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
965 i = reg[rrr];
966 CCL_WRITE_CHAR (i);
967 ic += ADDR;
968 break;
969
970 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
971 i = reg[rrr];
972 CCL_WRITE_CHAR (i);
973 ic++;
974 CCL_READ_CHAR (reg[rrr]);
975 ic += ADDR - 1;
976 break;
977
978 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
979 i = XINT (ccl_prog[ic]);
980 CCL_WRITE_CHAR (i);
981 ic += ADDR;
982 break;
983
984 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
985 i = XINT (ccl_prog[ic]);
986 CCL_WRITE_CHAR (i);
987 ic++;
988 CCL_READ_CHAR (reg[rrr]);
989 ic += ADDR - 1;
990 break;
991
992 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
993 j = XINT (ccl_prog[ic]);
994 ic++;
995 CCL_WRITE_STRING (j);
996 ic += ADDR - 1;
997 break;
998
999 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
1000 i = reg[rrr];
2e34157c 1001 j = XINT (ccl_prog[ic]);
4ed46869
KH
1002 if ((unsigned int) i < j)
1003 {
887bfbd7 1004 i = XINT (ccl_prog[ic + 1 + i]);
4ed46869
KH
1005 CCL_WRITE_CHAR (i);
1006 }
887bfbd7 1007 ic += j + 2;
4ed46869
KH
1008 CCL_READ_CHAR (reg[rrr]);
1009 ic += ADDR - (j + 2);
1010 break;
1011
1012 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
1013 CCL_READ_CHAR (reg[rrr]);
1014 ic += ADDR;
1015 break;
1016
1017 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1018 CCL_READ_CHAR (reg[rrr]);
1019 /* fall through ... */
1020 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1021 if ((unsigned int) reg[rrr] < field1)
1022 ic += XINT (ccl_prog[ic + reg[rrr]]);
1023 else
1024 ic += XINT (ccl_prog[ic + field1]);
1025 break;
1026
1027 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1028 while (1)
1029 {
1030 CCL_READ_CHAR (reg[rrr]);
1031 if (!field1) break;
1032 code = XINT (ccl_prog[ic]); ic++;
1033 field1 = code >> 8;
1034 field2 = (code & 0xFF) >> 5;
1035 }
1036 break;
1037
1038 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
1039 rrr = 7;
1040 i = reg[RRR];
1041 j = XINT (ccl_prog[ic]);
1042 op = field1 >> 6;
25660570 1043 jump_address = ic + 1;
4ed46869
KH
1044 goto ccl_set_expr;
1045
1046 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1047 while (1)
1048 {
1049 i = reg[rrr];
1050 CCL_WRITE_CHAR (i);
1051 if (!field1) break;
1052 code = XINT (ccl_prog[ic]); ic++;
1053 field1 = code >> 8;
1054 field2 = (code & 0xFF) >> 5;
1055 }
1056 break;
1057
1058 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
1059 rrr = 7;
1060 i = reg[RRR];
1061 j = reg[Rrr];
1062 op = field1 >> 6;
25660570 1063 jump_address = ic;
4ed46869
KH
1064 goto ccl_set_expr;
1065
5232fa7b 1066 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
4ed46869
KH
1067 {
1068 Lisp_Object slot;
5232fa7b
KH
1069 int prog_id;
1070
1071 /* If FFF is nonzero, the CCL program ID is in the
1072 following code. */
1073 if (rrr)
1074 {
1075 prog_id = XINT (ccl_prog[ic]);
1076 ic++;
1077 }
1078 else
1079 prog_id = field1;
4ed46869
KH
1080
1081 if (stack_idx >= 256
5232fa7b 1082 || prog_id < 0
64ef2921
SM
1083 || prog_id >= ASIZE (Vccl_program_table)
1084 || (slot = AREF (Vccl_program_table, prog_id), !VECTORP (slot))
1085 || !VECTORP (AREF (slot, 1)))
4ed46869
KH
1086 {
1087 if (stack_idx > 0)
1088 {
1089 ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
1090 ic = ccl_prog_stack_struct[0].ic;
9eaa8e65 1091 eof_ic = ccl_prog_stack_struct[0].eof_ic;
4ed46869
KH
1092 }
1093 CCL_INVALID_CMD;
1094 }
177c0ea7 1095
4ed46869
KH
1096 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
1097 ccl_prog_stack_struct[stack_idx].ic = ic;
9eaa8e65 1098 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic;
4ed46869 1099 stack_idx++;
64ef2921 1100 ccl_prog = XVECTOR (AREF (slot, 1))->contents;
4ed46869 1101 ic = CCL_HEADER_MAIN;
9eaa8e65 1102 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]);
4ed46869
KH
1103 }
1104 break;
1105
1106 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1107 if (!rrr)
1108 CCL_WRITE_CHAR (field1);
1109 else
1110 {
1111 CCL_WRITE_STRING (field1);
1112 ic += (field1 + 2) / 3;
1113 }
1114 break;
1115
1116 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1117 i = reg[rrr];
1118 if ((unsigned int) i < field1)
1119 {
1120 j = XINT (ccl_prog[ic + i]);
1121 CCL_WRITE_CHAR (j);
1122 }
1123 ic += field1;
1124 break;
1125
1126 case CCL_End: /* 0000000000000000000000XXXXX */
d3a478e2 1127 if (stack_idx > 0)
4ed46869 1128 {
d3a478e2 1129 stack_idx--;
4ed46869
KH
1130 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
1131 ic = ccl_prog_stack_struct[stack_idx].ic;
9eaa8e65
KH
1132 eof_ic = ccl_prog_stack_struct[stack_idx].eof_ic;
1133 if (eof_hit)
1134 ic = eof_ic;
4ed46869
KH
1135 break;
1136 }
ad3d1b1d
KH
1137 if (src)
1138 src = src_end;
1139 /* ccl->ic should points to this command code again to
1140 suppress further processing. */
1141 ic--;
4ed46869
KH
1142 CCL_SUCCESS;
1143
1144 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
1145 i = XINT (ccl_prog[ic]);
1146 ic++;
1147 op = field1 >> 6;
1148 goto ccl_expr_self;
1149
1150 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
1151 i = reg[RRR];
1152 op = field1 >> 6;
1153
1154 ccl_expr_self:
1155 switch (op)
1156 {
1157 case CCL_PLUS: reg[rrr] += i; break;
1158 case CCL_MINUS: reg[rrr] -= i; break;
1159 case CCL_MUL: reg[rrr] *= i; break;
1160 case CCL_DIV: reg[rrr] /= i; break;
1161 case CCL_MOD: reg[rrr] %= i; break;
1162 case CCL_AND: reg[rrr] &= i; break;
1163 case CCL_OR: reg[rrr] |= i; break;
1164 case CCL_XOR: reg[rrr] ^= i; break;
1165 case CCL_LSH: reg[rrr] <<= i; break;
1166 case CCL_RSH: reg[rrr] >>= i; break;
1167 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
1168 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
1169 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
1170 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
1171 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
1172 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
1173 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
1174 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
1175 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
1176 default: CCL_INVALID_CMD;
1177 }
1178 break;
1179
1180 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
1181 i = reg[RRR];
1182 j = XINT (ccl_prog[ic]);
1183 op = field1 >> 6;
1184 jump_address = ++ic;
1185 goto ccl_set_expr;
1186
1187 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
1188 i = reg[RRR];
1189 j = reg[Rrr];
1190 op = field1 >> 6;
1191 jump_address = ic;
1192 goto ccl_set_expr;
1193
1194 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1195 CCL_READ_CHAR (reg[rrr]);
1196 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1197 i = reg[rrr];
1198 op = XINT (ccl_prog[ic]);
1199 jump_address = ic++ + ADDR;
1200 j = XINT (ccl_prog[ic]);
1201 ic++;
1202 rrr = 7;
1203 goto ccl_set_expr;
1204
1205 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
1206 CCL_READ_CHAR (reg[rrr]);
1207 case CCL_JumpCondExprReg:
1208 i = reg[rrr];
1209 op = XINT (ccl_prog[ic]);
1210 jump_address = ic++ + ADDR;
1211 j = reg[XINT (ccl_prog[ic])];
1212 ic++;
1213 rrr = 7;
1214
1215 ccl_set_expr:
1216 switch (op)
1217 {
1218 case CCL_PLUS: reg[rrr] = i + j; break;
1219 case CCL_MINUS: reg[rrr] = i - j; break;
1220 case CCL_MUL: reg[rrr] = i * j; break;
1221 case CCL_DIV: reg[rrr] = i / j; break;
1222 case CCL_MOD: reg[rrr] = i % j; break;
1223 case CCL_AND: reg[rrr] = i & j; break;
1224 case CCL_OR: reg[rrr] = i | j; break;
3b8c0c70 1225 case CCL_XOR: reg[rrr] = i ^ j; break;
4ed46869
KH
1226 case CCL_LSH: reg[rrr] = i << j; break;
1227 case CCL_RSH: reg[rrr] = i >> j; break;
1228 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
1229 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
1230 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
1231 case CCL_LS: reg[rrr] = i < j; break;
1232 case CCL_GT: reg[rrr] = i > j; break;
1233 case CCL_EQ: reg[rrr] = i == j; break;
1234 case CCL_LE: reg[rrr] = i <= j; break;
1235 case CCL_GE: reg[rrr] = i >= j; break;
1236 case CCL_NE: reg[rrr] = i != j; break;
c10842ea
KH
1237 case CCL_DECODE_SJIS:
1238 {
1239 i = (i << 8) | j;
1240 SJIS_TO_JIS (i);
1241 reg[rrr] = i >> 8;
1242 reg[7] = i & 0xFF;
1243 break;
1244 }
1245 case CCL_ENCODE_SJIS:
1246 {
1247 i = (i << 8) | j;
1248 JIS_TO_SJIS (i);
1249 reg[rrr] = i >> 8;
1250 reg[7] = i & 0xFF;
1251 break;
1252 }
4ed46869
KH
1253 default: CCL_INVALID_CMD;
1254 }
1255 code &= 0x1F;
1256 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
1257 {
1258 i = reg[rrr];
1259 CCL_WRITE_CHAR (i);
25660570 1260 ic = jump_address;
4ed46869
KH
1261 }
1262 else if (!reg[rrr])
1263 ic = jump_address;
1264 break;
1265
450ed226 1266 case CCL_Extension:
e34b1164
KH
1267 switch (EXCMD)
1268 {
6ae21908 1269 case CCL_ReadMultibyteChar2:
e34b1164
KH
1270 if (!src)
1271 CCL_INVALID_CMD;
c10842ea 1272 CCL_READ_CHAR (i);
bda731af 1273 CCL_ENCODE_CHAR (i, charset_list, reg[RRR], reg[rrr]);
e34b1164
KH
1274 break;
1275
6ae21908 1276 case CCL_WriteMultibyteChar2:
c10842ea
KH
1277 if (! dst)
1278 CCL_INVALID_CMD;
bda731af 1279 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
c10842ea 1280 CCL_WRITE_CHAR (i);
e34b1164
KH
1281 break;
1282
8146262a 1283 case CCL_TranslateCharacter:
bda731af 1284 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
c10842ea 1285 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), i);
bda731af 1286 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
e34b1164
KH
1287 break;
1288
8146262a 1289 case CCL_TranslateCharacterConstTbl:
e34b1164
KH
1290 op = XINT (ccl_prog[ic]); /* table */
1291 ic++;
bda731af 1292 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
c10842ea 1293 op = translate_char (GET_TRANSLATION_TABLE (op), i);
bda731af 1294 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
e34b1164
KH
1295 break;
1296
d80dc57e
DL
1297 case CCL_LookupIntConstTbl:
1298 op = XINT (ccl_prog[ic]); /* table */
1299 ic++;
177c0ea7 1300 {
d80dc57e
DL
1301 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
1302
1303 op = hash_lookup (h, make_number (reg[RRR]), NULL);
1304 if (op >= 0)
1305 {
f9bd23fd
DL
1306 Lisp_Object opl;
1307 opl = HASH_VALUE (h, op);
0bc6bafd 1308 if (! CHARACTERP (opl))
d80dc57e 1309 CCL_INVALID_CMD;
bda731af
KH
1310 reg[RRR] = charset_unicode;
1311 reg[rrr] = op;
d80dc57e
DL
1312 reg[7] = 1; /* r7 true for success */
1313 }
1314 else
1315 reg[7] = 0;
1316 }
1317 break;
1318
1319 case CCL_LookupCharConstTbl:
1320 op = XINT (ccl_prog[ic]); /* table */
1321 ic++;
bda731af 1322 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
177c0ea7 1323 {
d80dc57e
DL
1324 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
1325
1326 op = hash_lookup (h, make_number (i), NULL);
1327 if (op >= 0)
1328 {
f9bd23fd
DL
1329 Lisp_Object opl;
1330 opl = HASH_VALUE (h, op);
1331 if (!INTEGERP (opl))
d80dc57e 1332 CCL_INVALID_CMD;
f9bd23fd 1333 reg[RRR] = XINT (opl);
d80dc57e
DL
1334 reg[7] = 1; /* r7 true for success */
1335 }
1336 else
1337 reg[7] = 0;
1338 }
1339 break;
1340
e34b1164
KH
1341 case CCL_IterateMultipleMap:
1342 {
8146262a 1343 Lisp_Object map, content, attrib, value;
e34b1164
KH
1344 int point, size, fin_ic;
1345
8146262a 1346 j = XINT (ccl_prog[ic++]); /* number of maps. */
e34b1164
KH
1347 fin_ic = ic + j;
1348 op = reg[rrr];
1349 if ((j > reg[RRR]) && (j >= 0))
1350 {
1351 ic += reg[RRR];
1352 i = reg[RRR];
1353 }
1354 else
1355 {
1356 reg[RRR] = -1;
1357 ic = fin_ic;
1358 break;
1359 }
1360
1361 for (;i < j;i++)
1362 {
1363
64ef2921 1364 size = ASIZE (Vcode_conversion_map_vector);
d387866a 1365 point = XINT (ccl_prog[ic++]);
e34b1164 1366 if (point >= size) continue;
64ef2921 1367 map = AREF (Vcode_conversion_map_vector, point);
8146262a
KH
1368
1369 /* Check map varidity. */
1370 if (!CONSP (map)) continue;
03699b14 1371 map = XCDR (map);
8146262a 1372 if (!VECTORP (map)) continue;
64ef2921 1373 size = ASIZE (map);
e34b1164 1374 if (size <= 1) continue;
6ae21908 1375
64ef2921 1376 content = AREF (map, 0);
6ae21908 1377
8146262a 1378 /* check map type,
6ae21908
KH
1379 [STARTPOINT VAL1 VAL2 ...] or
1380 [t ELELMENT STARTPOINT ENDPOINT] */
1381 if (NUMBERP (content))
1382 {
1383 point = XUINT (content);
1384 point = op - point + 1;
1385 if (!((point >= 1) && (point < size))) continue;
64ef2921 1386 content = AREF (map, point);
6ae21908
KH
1387 }
1388 else if (EQ (content, Qt))
1389 {
1390 if (size != 4) continue;
64ef2921
SM
1391 if ((op >= XUINT (AREF (map, 2)))
1392 && (op < XUINT (AREF (map, 3))))
1393 content = AREF (map, 1);
6ae21908
KH
1394 else
1395 continue;
1396 }
177c0ea7 1397 else
6ae21908 1398 continue;
e34b1164
KH
1399
1400 if (NILP (content))
1401 continue;
1402 else if (NUMBERP (content))
1403 {
1404 reg[RRR] = i;
6ae21908 1405 reg[rrr] = XINT(content);
e34b1164
KH
1406 break;
1407 }
1408 else if (EQ (content, Qt) || EQ (content, Qlambda))
1409 {
1410 reg[RRR] = i;
1411 break;
1412 }
1413 else if (CONSP (content))
1414 {
03699b14
KR
1415 attrib = XCAR (content);
1416 value = XCDR (content);
e34b1164
KH
1417 if (!NUMBERP (attrib) || !NUMBERP (value))
1418 continue;
1419 reg[RRR] = i;
6ae21908 1420 reg[rrr] = XUINT (value);
e34b1164
KH
1421 break;
1422 }
54fa5bc1
KH
1423 else if (SYMBOLP (content))
1424 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
1425 else
1426 CCL_INVALID_CMD;
e34b1164
KH
1427 }
1428 if (i == j)
1429 reg[RRR] = -1;
1430 ic = fin_ic;
1431 }
1432 break;
177c0ea7 1433
8146262a 1434 case CCL_MapMultiple:
e34b1164 1435 {
8146262a
KH
1436 Lisp_Object map, content, attrib, value;
1437 int point, size, map_vector_size;
1438 int map_set_rest_length, fin_ic;
54fa5bc1
KH
1439 int current_ic = this_ic;
1440
1441 /* inhibit recursive call on MapMultiple. */
1442 if (stack_idx_of_map_multiple > 0)
1443 {
1444 if (stack_idx_of_map_multiple <= stack_idx)
1445 {
1446 stack_idx_of_map_multiple = 0;
1447 mapping_stack_pointer = mapping_stack;
1448 CCL_INVALID_CMD;
1449 }
1450 }
1451 else
1452 mapping_stack_pointer = mapping_stack;
1453 stack_idx_of_map_multiple = 0;
8146262a
KH
1454
1455 map_set_rest_length =
1456 XINT (ccl_prog[ic++]); /* number of maps and separators. */
1457 fin_ic = ic + map_set_rest_length;
54fa5bc1
KH
1458 op = reg[rrr];
1459
8146262a 1460 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
e34b1164
KH
1461 {
1462 ic += reg[RRR];
1463 i = reg[RRR];
8146262a 1464 map_set_rest_length -= i;
e34b1164
KH
1465 }
1466 else
1467 {
1468 ic = fin_ic;
1469 reg[RRR] = -1;
54fa5bc1 1470 mapping_stack_pointer = mapping_stack;
e34b1164
KH
1471 break;
1472 }
6ae21908 1473
54fa5bc1
KH
1474 if (mapping_stack_pointer <= (mapping_stack + 1))
1475 {
1476 /* Set up initial state. */
1477 mapping_stack_pointer = mapping_stack;
1478 PUSH_MAPPING_STACK (0, op);
1479 reg[RRR] = -1;
1480 }
1481 else
1482 {
1483 /* Recover after calling other ccl program. */
1484 int orig_op;
e34b1164 1485
54fa5bc1
KH
1486 POP_MAPPING_STACK (map_set_rest_length, orig_op);
1487 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1488 switch (op)
e34b1164 1489 {
54fa5bc1
KH
1490 case -1:
1491 /* Regard it as Qnil. */
1492 op = orig_op;
1493 i++;
1494 ic++;
1495 map_set_rest_length--;
1496 break;
1497 case -2:
1498 /* Regard it as Qt. */
e34b1164 1499 op = reg[rrr];
54fa5bc1
KH
1500 i++;
1501 ic++;
1502 map_set_rest_length--;
1503 break;
1504 case -3:
1505 /* Regard it as Qlambda. */
1506 op = orig_op;
1507 i += map_set_rest_length;
1508 ic += map_set_rest_length;
1509 map_set_rest_length = 0;
1510 break;
1511 default:
1512 /* Regard it as normal mapping. */
8146262a 1513 i += map_set_rest_length;
54fa5bc1 1514 ic += map_set_rest_length;
8146262a 1515 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
6ae21908
KH
1516 break;
1517 }
e34b1164 1518 }
64ef2921 1519 map_vector_size = ASIZE (Vcode_conversion_map_vector);
177c0ea7 1520
54fa5bc1
KH
1521 do {
1522 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
1523 {
1524 point = XINT(ccl_prog[ic]);
1525 if (point < 0)
1526 {
1527 /* +1 is for including separator. */
1528 point = -point + 1;
1529 if (mapping_stack_pointer
1530 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1531 CCL_INVALID_CMD;
1532 PUSH_MAPPING_STACK (map_set_rest_length - point,
1533 reg[rrr]);
1534 map_set_rest_length = point;
1535 reg[rrr] = op;
1536 continue;
1537 }
1538
1539 if (point >= map_vector_size) continue;
64ef2921 1540 map = AREF (Vcode_conversion_map_vector, point);
54fa5bc1
KH
1541
1542 /* Check map varidity. */
1543 if (!CONSP (map)) continue;
1544 map = XCDR (map);
1545 if (!VECTORP (map)) continue;
64ef2921 1546 size = ASIZE (map);
54fa5bc1
KH
1547 if (size <= 1) continue;
1548
64ef2921 1549 content = AREF (map, 0);
54fa5bc1
KH
1550
1551 /* check map type,
1552 [STARTPOINT VAL1 VAL2 ...] or
1553 [t ELEMENT STARTPOINT ENDPOINT] */
1554 if (NUMBERP (content))
1555 {
1556 point = XUINT (content);
1557 point = op - point + 1;
1558 if (!((point >= 1) && (point < size))) continue;
64ef2921 1559 content = AREF (map, point);
54fa5bc1
KH
1560 }
1561 else if (EQ (content, Qt))
1562 {
1563 if (size != 4) continue;
64ef2921
SM
1564 if ((op >= XUINT (AREF (map, 2))) &&
1565 (op < XUINT (AREF (map, 3))))
1566 content = AREF (map, 1);
54fa5bc1
KH
1567 else
1568 continue;
1569 }
177c0ea7 1570 else
54fa5bc1
KH
1571 continue;
1572
1573 if (NILP (content))
1574 continue;
1575
1576 reg[RRR] = i;
1577 if (NUMBERP (content))
1578 {
1579 op = XINT (content);
1580 i += map_set_rest_length - 1;
1581 ic += map_set_rest_length - 1;
1582 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1583 map_set_rest_length++;
1584 }
1585 else if (CONSP (content))
1586 {
1587 attrib = XCAR (content);
1588 value = XCDR (content);
1589 if (!NUMBERP (attrib) || !NUMBERP (value))
1590 continue;
1591 op = XUINT (value);
1592 i += map_set_rest_length - 1;
1593 ic += map_set_rest_length - 1;
1594 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1595 map_set_rest_length++;
1596 }
1597 else if (EQ (content, Qt))
1598 {
1599 op = reg[rrr];
1600 }
1601 else if (EQ (content, Qlambda))
1602 {
1603 i += map_set_rest_length;
1604 ic += map_set_rest_length;
1605 break;
1606 }
1607 else if (SYMBOLP (content))
1608 {
1609 if (mapping_stack_pointer
1610 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1611 CCL_INVALID_CMD;
1612 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1613 PUSH_MAPPING_STACK (map_set_rest_length, op);
1614 stack_idx_of_map_multiple = stack_idx + 1;
1615 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
1616 }
1617 else
1618 CCL_INVALID_CMD;
1619 }
1620 if (mapping_stack_pointer <= (mapping_stack + 1))
1621 break;
1622 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1623 i += map_set_rest_length;
1624 ic += map_set_rest_length;
1625 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1626 } while (1);
1627
e34b1164
KH
1628 ic = fin_ic;
1629 }
1630 reg[rrr] = op;
1631 break;
1632
8146262a 1633 case CCL_MapSingle:
e34b1164 1634 {
8146262a 1635 Lisp_Object map, attrib, value, content;
e34b1164 1636 int size, point;
8146262a 1637 j = XINT (ccl_prog[ic++]); /* map_id */
e34b1164 1638 op = reg[rrr];
64ef2921 1639 if (j >= ASIZE (Vcode_conversion_map_vector))
e34b1164
KH
1640 {
1641 reg[RRR] = -1;
1642 break;
1643 }
64ef2921 1644 map = AREF (Vcode_conversion_map_vector, j);
8146262a 1645 if (!CONSP (map))
e34b1164
KH
1646 {
1647 reg[RRR] = -1;
1648 break;
1649 }
03699b14 1650 map = XCDR (map);
8146262a 1651 if (!VECTORP (map))
e34b1164
KH
1652 {
1653 reg[RRR] = -1;
1654 break;
1655 }
64ef2921
SM
1656 size = ASIZE (map);
1657 point = XUINT (AREF (map, 0));
e34b1164
KH
1658 point = op - point + 1;
1659 reg[RRR] = 0;
1660 if ((size <= 1) ||
1661 (!((point >= 1) && (point < size))))
1662 reg[RRR] = -1;
1663 else
1664 {
b1cab202 1665 reg[RRR] = 0;
64ef2921 1666 content = AREF (map, point);
e34b1164
KH
1667 if (NILP (content))
1668 reg[RRR] = -1;
1669 else if (NUMBERP (content))
6ae21908 1670 reg[rrr] = XINT (content);
b1cab202 1671 else if (EQ (content, Qt));
e34b1164
KH
1672 else if (CONSP (content))
1673 {
03699b14
KR
1674 attrib = XCAR (content);
1675 value = XCDR (content);
e34b1164
KH
1676 if (!NUMBERP (attrib) || !NUMBERP (value))
1677 continue;
1678 reg[rrr] = XUINT(value);
1679 break;
1680 }
54fa5bc1
KH
1681 else if (SYMBOLP (content))
1682 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
e34b1164
KH
1683 else
1684 reg[RRR] = -1;
1685 }
1686 }
1687 break;
177c0ea7 1688
e34b1164
KH
1689 default:
1690 CCL_INVALID_CMD;
1691 }
1692 break;
1693
4ed46869
KH
1694 default:
1695 CCL_INVALID_CMD;
1696 }
1697 }
1698
1699 ccl_error_handler:
0fb94c7f
EZ
1700 /* The suppress_error member is set when e.g. a CCL-based coding
1701 system is used for terminal output. */
1702 if (!ccl->suppress_error && destination)
4ed46869
KH
1703 {
1704 /* We can insert an error message only if DESTINATION is
1705 specified and we still have a room to store the message
1706 there. */
1707 char msg[256];
1708 int msglen;
1709
12abd7d1
KH
1710 if (!dst)
1711 dst = destination;
1712
4ed46869
KH
1713 switch (ccl->status)
1714 {
1715 case CCL_STAT_INVALID_CMD:
1716 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
519bf146 1717 code & 0x1F, code, this_ic);
4ed46869
KH
1718#ifdef CCL_DEBUG
1719 {
1720 int i = ccl_backtrace_idx - 1;
1721 int j;
1722
1723 msglen = strlen (msg);
12abd7d1 1724 if (dst + msglen <= (dst_bytes ? dst_end : src))
4ed46869
KH
1725 {
1726 bcopy (msg, dst, msglen);
1727 dst += msglen;
1728 }
1729
1730 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
1731 {
1732 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
1733 if (ccl_backtrace_table[i] == 0)
1734 break;
1735 sprintf(msg, " %d", ccl_backtrace_table[i]);
1736 msglen = strlen (msg);
12abd7d1 1737 if (dst + msglen > (dst_bytes ? dst_end : src))
4ed46869
KH
1738 break;
1739 bcopy (msg, dst, msglen);
1740 dst += msglen;
1741 }
12abd7d1 1742 goto ccl_finish;
4ed46869 1743 }
4ed46869 1744#endif
12abd7d1 1745 break;
4ed46869
KH
1746
1747 case CCL_STAT_QUIT:
1748 sprintf(msg, "\nCCL: Quited.");
1749 break;
1750
1751 default:
6b61353c 1752 sprintf(msg, "\nCCL: Unknown error type (%d)", ccl->status);
4ed46869
KH
1753 }
1754
1755 msglen = strlen (msg);
c10842ea 1756 if (dst + msglen <= dst_end)
4ed46869 1757 {
c10842ea
KH
1758 for (i = 0; i < msglen; i++)
1759 *dst++ = msg[i];
4ed46869 1760 }
177c0ea7 1761
31165028
KH
1762 if (ccl->status == CCL_STAT_INVALID_CMD)
1763 {
8a1ae4dd
GM
1764#if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1765 results in an invalid multibyte sequence. */
1766
31165028
KH
1767 /* Copy the remaining source data. */
1768 int i = src_end - src;
1769 if (dst_bytes && (dst_end - dst) < i)
1770 i = dst_end - dst;
1771 bcopy (src, dst, i);
1772 src += i;
1773 dst += i;
8a1ae4dd
GM
1774#else
1775 /* Signal that we've consumed everything. */
1776 src = src_end;
1777#endif
31165028 1778 }
4ed46869
KH
1779 }
1780
1781 ccl_finish:
1782 ccl->ic = ic;
c13362d8
KH
1783 ccl->stack_idx = stack_idx;
1784 ccl->prog = ccl_prog;
c10842ea 1785 ccl->consumed = src - source;
4e3bb4f3
KH
1786 if (dst != NULL)
1787 ccl->produced = dst - destination;
1788 else
1789 ccl->produced = 0;
4ed46869
KH
1790}
1791
5232fa7b
KH
1792/* Resolve symbols in the specified CCL code (Lisp vector). This
1793 function converts symbols of code conversion maps and character
1794 translation tables embeded in the CCL code into their ID numbers.
1795
1796 The return value is a vector (CCL itself or a new vector in which
1797 all symbols are resolved), Qt if resolving of some symbol failed,
1798 or nil if CCL contains invalid data. */
1799
1800static Lisp_Object
1801resolve_symbol_ccl_program (ccl)
1802 Lisp_Object ccl;
1803{
1804 int i, veclen, unresolved = 0;
1805 Lisp_Object result, contents, val;
1806
1807 result = ccl;
64ef2921 1808 veclen = ASIZE (result);
5232fa7b
KH
1809
1810 for (i = 0; i < veclen; i++)
1811 {
64ef2921 1812 contents = AREF (result, i);
5232fa7b
KH
1813 if (INTEGERP (contents))
1814 continue;
1815 else if (CONSP (contents)
03699b14
KR
1816 && SYMBOLP (XCAR (contents))
1817 && SYMBOLP (XCDR (contents)))
5232fa7b
KH
1818 {
1819 /* This is the new style for embedding symbols. The form is
1820 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1821 an index number. */
1822
1823 if (EQ (result, ccl))
1824 result = Fcopy_sequence (ccl);
1825
03699b14 1826 val = Fget (XCAR (contents), XCDR (contents));
5232fa7b 1827 if (NATNUMP (val))
64ef2921 1828 AREF (result, i) = val;
5232fa7b
KH
1829 else
1830 unresolved = 1;
1831 continue;
1832 }
1833 else if (SYMBOLP (contents))
1834 {
1835 /* This is the old style for embedding symbols. This style
1836 may lead to a bug if, for instance, a translation table
1837 and a code conversion map have the same name. */
1838 if (EQ (result, ccl))
1839 result = Fcopy_sequence (ccl);
1840
1841 val = Fget (contents, Qtranslation_table_id);
1842 if (NATNUMP (val))
64ef2921 1843 AREF (result, i) = val;
5232fa7b
KH
1844 else
1845 {
1846 val = Fget (contents, Qcode_conversion_map_id);
1847 if (NATNUMP (val))
64ef2921 1848 AREF (result, i) = val;
5232fa7b
KH
1849 else
1850 {
1851 val = Fget (contents, Qccl_program_idx);
1852 if (NATNUMP (val))
64ef2921 1853 AREF (result, i) = val;
5232fa7b
KH
1854 else
1855 unresolved = 1;
1856 }
1857 }
1858 continue;
1859 }
1860 return Qnil;
1861 }
1862
1863 return (unresolved ? Qt : result);
1864}
1865
1866/* Return the compiled code (vector) of CCL program CCL_PROG.
1867 CCL_PROG is a name (symbol) of the program or already compiled
1868 code. If necessary, resolve symbols in the compiled code to index
1869 numbers. If we failed to get the compiled code or to resolve
1870 symbols, return Qnil. */
1871
1872static Lisp_Object
2a69c66e 1873ccl_get_compiled_code (ccl_prog, idx)
5232fa7b 1874 Lisp_Object ccl_prog;
2a69c66e 1875 int *idx;
5232fa7b
KH
1876{
1877 Lisp_Object val, slot;
1878
1879 if (VECTORP (ccl_prog))
1880 {
1881 val = resolve_symbol_ccl_program (ccl_prog);
2a69c66e 1882 *idx = -1;
5232fa7b
KH
1883 return (VECTORP (val) ? val : Qnil);
1884 }
1885 if (!SYMBOLP (ccl_prog))
1886 return Qnil;
1887
1888 val = Fget (ccl_prog, Qccl_program_idx);
1889 if (! NATNUMP (val)
64ef2921 1890 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 1891 return Qnil;
64ef2921 1892 slot = AREF (Vccl_program_table, XINT (val));
5232fa7b 1893 if (! VECTORP (slot)
2a69c66e 1894 || ASIZE (slot) != 4
64ef2921 1895 || ! VECTORP (AREF (slot, 1)))
5232fa7b 1896 return Qnil;
2a69c66e 1897 *idx = XINT (val);
64ef2921 1898 if (NILP (AREF (slot, 2)))
5232fa7b 1899 {
64ef2921 1900 val = resolve_symbol_ccl_program (AREF (slot, 1));
5232fa7b
KH
1901 if (! VECTORP (val))
1902 return Qnil;
64ef2921
SM
1903 AREF (slot, 1) = val;
1904 AREF (slot, 2) = Qt;
5232fa7b 1905 }
64ef2921 1906 return AREF (slot, 1);
5232fa7b
KH
1907}
1908
4ed46869 1909/* Setup fields of the structure pointed by CCL appropriately for the
5232fa7b
KH
1910 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
1911 of the CCL program or the already compiled code (vector).
1912 Return 0 if we succeed this setup, else return -1.
1913
1914 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
1915int
1916setup_ccl_program (ccl, ccl_prog)
4ed46869 1917 struct ccl_program *ccl;
5232fa7b 1918 Lisp_Object ccl_prog;
4ed46869
KH
1919{
1920 int i;
1921
5232fa7b 1922 if (! NILP (ccl_prog))
ad3d1b1d 1923 {
5232fa7b 1924 struct Lisp_Vector *vp;
ad3d1b1d 1925
2a69c66e 1926 ccl_prog = ccl_get_compiled_code (ccl_prog, &ccl->idx);
5232fa7b
KH
1927 if (! VECTORP (ccl_prog))
1928 return -1;
1929 vp = XVECTOR (ccl_prog);
ad3d1b1d
KH
1930 ccl->size = vp->size;
1931 ccl->prog = vp->contents;
1932 ccl->eof_ic = XINT (vp->contents[CCL_HEADER_EOF]);
1933 ccl->buf_magnification = XINT (vp->contents[CCL_HEADER_BUF_MAG]);
2a69c66e
KH
1934 if (ccl->idx >= 0)
1935 {
1936 Lisp_Object slot;
1937
1938 slot = AREF (Vccl_program_table, ccl->idx);
1939 ASET (slot, 3, Qnil);
1940 }
ad3d1b1d 1941 }
4ed46869 1942 ccl->ic = CCL_HEADER_MAIN;
4ed46869
KH
1943 for (i = 0; i < 8; i++)
1944 ccl->reg[i] = 0;
1945 ccl->last_block = 0;
e34b1164 1946 ccl->private_state = 0;
4ed46869 1947 ccl->status = 0;
c13362d8 1948 ccl->stack_idx = 0;
ae08ba36 1949 ccl->suppress_error = 0;
fd40a25f 1950 ccl->eight_bit_control = 0;
5232fa7b 1951 return 0;
4ed46869
KH
1952}
1953
2a69c66e
KH
1954
1955/* Check if CCL is updated or not. If not, re-setup members of CCL. */
1956
1957int
1958check_ccl_update (ccl)
1959 struct ccl_program *ccl;
1960{
2a69c66e
KH
1961 Lisp_Object slot, ccl_prog;
1962
1963 if (ccl->idx < 0)
1964 return 0;
1965 slot = AREF (Vccl_program_table, ccl->idx);
1966 if (NILP (AREF (slot, 3)))
1967 return 0;
1968 ccl_prog = ccl_get_compiled_code (AREF (slot, 0), &ccl->idx);
1969 if (! VECTORP (ccl_prog))
1970 return -1;
1971 ccl->size = ASIZE (ccl_prog);
1972 ccl->prog = XVECTOR (ccl_prog)->contents;
1973 ccl->eof_ic = XINT (AREF (ccl_prog, CCL_HEADER_EOF));
1974 ccl->buf_magnification = XINT (AREF (ccl_prog, CCL_HEADER_BUF_MAG));
1975 ASET (slot, 3, Qnil);
1976 return 0;
1977}
1978
1979
5232fa7b 1980DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
fdb82f93
PJ
1981 doc: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
1982See the documentation of `define-ccl-program' for the detail of CCL program. */)
1983 (object)
5232fa7b 1984 Lisp_Object object;
6ae21908 1985{
5232fa7b 1986 Lisp_Object val;
6ae21908 1987
5232fa7b 1988 if (VECTORP (object))
6ae21908 1989 {
5232fa7b
KH
1990 val = resolve_symbol_ccl_program (object);
1991 return (VECTORP (val) ? Qt : Qnil);
6ae21908 1992 }
5232fa7b
KH
1993 if (!SYMBOLP (object))
1994 return Qnil;
6ae21908 1995
5232fa7b
KH
1996 val = Fget (object, Qccl_program_idx);
1997 return ((! NATNUMP (val)
64ef2921 1998 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 1999 ? Qnil : Qt);
6ae21908
KH
2000}
2001
4ed46869 2002DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
fdb82f93
PJ
2003 doc: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
2004
2005CCL-PROGRAM is a CCL program name (symbol)
2006or compiled code generated by `ccl-compile' (for backward compatibility.
2007In the latter case, the execution overhead is bigger than in the former).
2008No I/O commands should appear in CCL-PROGRAM.
2009
2010REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
2011for the Nth register.
2012
2013As side effect, each element of REGISTERS holds the value of
2014the corresponding register after the execution.
2015
2016See the documentation of `define-ccl-program' for a definition of CCL
2017programs. */)
2018 (ccl_prog, reg)
4ed46869
KH
2019 Lisp_Object ccl_prog, reg;
2020{
2021 struct ccl_program ccl;
2022 int i;
2023
5232fa7b
KH
2024 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2025 error ("Invalid CCL program");
6ae21908 2026
b7826503 2027 CHECK_VECTOR (reg);
64ef2921 2028 if (ASIZE (reg) != 8)
d7e1fe1f 2029 error ("Length of vector REGISTERS is not 8");
4ed46869 2030
4ed46869 2031 for (i = 0; i < 8; i++)
64ef2921
SM
2032 ccl.reg[i] = (INTEGERP (AREF (reg, i))
2033 ? XINT (AREF (reg, i))
4ed46869
KH
2034 : 0);
2035
bda731af 2036 ccl_driver (&ccl, NULL, NULL, 0, 0, Qnil);
4ed46869
KH
2037 QUIT;
2038 if (ccl.status != CCL_STAT_SUCCESS)
2039 error ("Error in CCL program at %dth code", ccl.ic);
2040
2041 for (i = 0; i < 8; i++)
64ef2921 2042 XSETINT (AREF (reg, i), ccl.reg[i]);
4ed46869
KH
2043 return Qnil;
2044}
2045
2046DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
39a68837 2047 3, 5, 0,
fdb82f93
PJ
2048 doc: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2049
2a0bd758 2050CCL-PROGRAM is a symbol registered by `register-ccl-program',
fdb82f93
PJ
2051or a compiled code generated by `ccl-compile' (for backward compatibility,
2052in this case, the execution is slower).
2053
2054Read buffer is set to STRING, and write buffer is allocated automatically.
2055
2056STATUS is a vector of [R0 R1 ... R7 IC], where
2057 R0..R7 are initial values of corresponding registers,
2058 IC is the instruction counter specifying from where to start the program.
2059If R0..R7 are nil, they are initialized to 0.
2060If IC is nil, it is initialized to head of the CCL program.
2061
2062If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2063when read buffer is exausted, else, IC is always set to the end of
2064CCL-PROGRAM on exit.
2065
2066It returns the contents of write buffer as a string,
2067 and as side effect, STATUS is updated.
2068If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2069is a unibyte string. By default it is a multibyte string.
2070
2a0bd758
JB
2071See the documentation of `define-ccl-program' for the detail of CCL program.
2072usage: (ccl-execute-on-string CCL-PROGRAM STATUS STRING &optional CONTINUE UNIBYTE-P) */)
fdb82f93 2073 (ccl_prog, status, str, contin, unibyte_p)
39a68837 2074 Lisp_Object ccl_prog, status, str, contin, unibyte_p;
4ed46869
KH
2075{
2076 Lisp_Object val;
2077 struct ccl_program ccl;
c10842ea 2078 int i;
4ed46869 2079 int outbufsize;
c10842ea
KH
2080 unsigned char *outbuf, *outp;
2081 int str_chars, str_bytes;
2082#define CCL_EXECUTE_BUF_SIZE 1024
2083 int source[CCL_EXECUTE_BUF_SIZE], destination[CCL_EXECUTE_BUF_SIZE];
2084 int consumed_chars, consumed_bytes, produced_chars;
6ae21908 2085
5232fa7b
KH
2086 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2087 error ("Invalid CCL program");
4ed46869 2088
b7826503 2089 CHECK_VECTOR (status);
64ef2921 2090 if (ASIZE (status) != 9)
5232fa7b 2091 error ("Length of vector STATUS is not 9");
b7826503 2092 CHECK_STRING (str);
4ed46869 2093
8f924df7
KH
2094 str_chars = SCHARS (str);
2095 str_bytes = SBYTES (str);
5232fa7b 2096
4ed46869
KH
2097 for (i = 0; i < 8; i++)
2098 {
64ef2921
SM
2099 if (NILP (AREF (status, i)))
2100 XSETINT (AREF (status, i), 0);
2101 if (INTEGERP (AREF (status, i)))
2102 ccl.reg[i] = XINT (AREF (status, i));
4ed46869 2103 }
64ef2921 2104 if (INTEGERP (AREF (status, i)))
4ed46869 2105 {
64ef2921 2106 i = XFASTINT (AREF (status, 8));
4ed46869
KH
2107 if (ccl.ic < i && i < ccl.size)
2108 ccl.ic = i;
2109 }
4ed46869 2110
c10842ea
KH
2111 outbufsize = (ccl.buf_magnification
2112 ? str_bytes * ccl.buf_magnification + 256
2113 : str_bytes + 256);
2114 outp = outbuf = (unsigned char *) xmalloc (outbufsize);
2115
2116 consumed_chars = consumed_bytes = 0;
2117 produced_chars = 0;
99e293b5 2118 while (1)
a3d8fcf2 2119 {
8f924df7
KH
2120 const unsigned char *p = SDATA (str) + consumed_bytes;
2121 const unsigned char *endp = SDATA (str) + str_bytes;
c10842ea
KH
2122 int i = 0;
2123 int *src, src_size;
2124
2125 if (endp - p == str_chars - consumed_chars)
2126 while (i < CCL_EXECUTE_BUF_SIZE && p < endp)
2127 source[i++] = *p++;
2128 else
2129 while (i < CCL_EXECUTE_BUF_SIZE && p < endp)
2130 source[i++] = STRING_CHAR_ADVANCE (p);
2131 consumed_chars += i;
8f924df7 2132 consumed_bytes = p - SDATA (str);
c10842ea
KH
2133
2134 if (consumed_bytes == str_bytes)
2135 ccl.last_block = NILP (contin);
2136 src = source;
2137 src_size = i;
2138 while (1)
2139 {
bda731af
KH
2140 ccl_driver (&ccl, src, destination, src_size, CCL_EXECUTE_BUF_SIZE,
2141 Qnil);
c10842ea
KH
2142 produced_chars += ccl.produced;
2143 if (NILP (unibyte_p))
2144 {
2145 if (outp - outbuf + MAX_MULTIBYTE_LENGTH * ccl.produced
2146 > outbufsize)
2147 {
2148 int offset = outp - outbuf;
2149 outbufsize += MAX_MULTIBYTE_LENGTH * ccl.produced;
2150 outbuf = (unsigned char *) xrealloc (outbuf, outbufsize);
2151 outp = outbuf + offset;
2152 }
2153 for (i = 0; i < ccl.produced; i++)
2154 CHAR_STRING_ADVANCE (destination[i], outp);
2155 }
2156 else
2157 {
2158 if (outp - outbuf + ccl.produced > outbufsize)
2159 {
2160 int offset = outp - outbuf;
2161 outbufsize += ccl.produced;
2162 outbuf = (unsigned char *) xrealloc (outbuf, outbufsize);
2163 outp = outbuf + offset;
2164 }
2165 for (i = 0; i < ccl.produced; i++)
2166 *outp++ = destination[i];
2167 }
2168 src += ccl.consumed;
2169 src_size -= ccl.consumed;
99e293b5
KH
2170 if (ccl.status != CCL_STAT_SUSPEND_BY_DST)
2171 break;
c10842ea 2172 }
a3d8fcf2 2173
edeef421
KH
2174 if (ccl.status != CCL_STAT_SUSPEND_BY_SRC
2175 || str_chars == consumed_chars)
c10842ea 2176 break;
a3d8fcf2 2177 }
a3d8fcf2 2178
edeef421 2179 if (ccl.status == CCL_STAT_INVALID_CMD)
4ed46869 2180 error ("Error in CCL program at %dth code", ccl.ic);
edeef421
KH
2181 if (ccl.status == CCL_STAT_QUIT)
2182 error ("CCL program interrupted at %dth code", ccl.ic);
4ed46869 2183
c10842ea 2184 for (i = 0; i < 8; i++)
c6589bbd
KH
2185 ASET (status, i, make_number (ccl.reg[i]));
2186 ASET (status, 8, make_number (ccl.ic));
c10842ea
KH
2187
2188 if (NILP (unibyte_p))
2189 val = make_multibyte_string ((char *) outbuf, produced_chars,
2190 outp - outbuf);
2191 else
2192 val = make_unibyte_string ((char *) outbuf, produced_chars);
2193 xfree (outbuf);
4ed46869
KH
2194
2195 return val;
2196}
2197
2198DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
2199 2, 2, 0,
2a0bd758
JB
2200 doc: /* Register CCL program CCL-PROG as NAME in `ccl-program-table'.
2201CCL-PROG should be a compiled CCL program (vector), or nil.
fdb82f93
PJ
2202If it is nil, just reserve NAME as a CCL program name.
2203Return index number of the registered CCL program. */)
2204 (name, ccl_prog)
4ed46869
KH
2205 Lisp_Object name, ccl_prog;
2206{
64ef2921 2207 int len = ASIZE (Vccl_program_table);
5232fa7b
KH
2208 int idx;
2209 Lisp_Object resolved;
4ed46869 2210
b7826503 2211 CHECK_SYMBOL (name);
5232fa7b 2212 resolved = Qnil;
4ed46869 2213 if (!NILP (ccl_prog))
6ae21908 2214 {
b7826503 2215 CHECK_VECTOR (ccl_prog);
5232fa7b 2216 resolved = resolve_symbol_ccl_program (ccl_prog);
4d247a1f
KH
2217 if (NILP (resolved))
2218 error ("Error in CCL program");
2219 if (VECTORP (resolved))
5232fa7b
KH
2220 {
2221 ccl_prog = resolved;
2222 resolved = Qt;
2223 }
4d247a1f
KH
2224 else
2225 resolved = Qnil;
6ae21908 2226 }
5232fa7b
KH
2227
2228 for (idx = 0; idx < len; idx++)
4ed46869 2229 {
5232fa7b 2230 Lisp_Object slot;
4ed46869 2231
64ef2921 2232 slot = AREF (Vccl_program_table, idx);
5232fa7b
KH
2233 if (!VECTORP (slot))
2234 /* This is the first unsed slot. Register NAME here. */
4ed46869
KH
2235 break;
2236
64ef2921 2237 if (EQ (name, AREF (slot, 0)))
4ed46869 2238 {
5232fa7b 2239 /* Update this slot. */
2a69c66e
KH
2240 ASET (slot, 1, ccl_prog);
2241 ASET (slot, 2, resolved);
2242 ASET (slot, 3, Qt);
5232fa7b 2243 return make_number (idx);
4ed46869
KH
2244 }
2245 }
2246
5232fa7b 2247 if (idx == len)
1d153206
EZ
2248 /* Extend the table. */
2249 Vccl_program_table = larger_vector (Vccl_program_table, len * 2, Qnil);
4ed46869 2250
5232fa7b
KH
2251 {
2252 Lisp_Object elt;
2253
2a69c66e
KH
2254 elt = Fmake_vector (make_number (4), Qnil);
2255 ASET (elt, 0, name);
2256 ASET (elt, 1, ccl_prog);
2257 ASET (elt, 2, resolved);
2258 ASET (elt, 3, Qt);
2259 ASET (Vccl_program_table, idx, elt);
5232fa7b
KH
2260 }
2261
2262 Fput (name, Qccl_program_idx, make_number (idx));
2263 return make_number (idx);
4ed46869
KH
2264}
2265
8146262a
KH
2266/* Register code conversion map.
2267 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
d617f6df
DL
2268 The first element is the start code point.
2269 The other elements are mapped numbers.
8146262a
KH
2270 Symbol t means to map to an original number before mapping.
2271 Symbol nil means that the corresponding element is empty.
d617f6df 2272 Symbol lambda means to terminate mapping here.
e34b1164
KH
2273*/
2274
8146262a
KH
2275DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
2276 Sregister_code_conversion_map,
e34b1164 2277 2, 2, 0,
fdb82f93
PJ
2278 doc: /* Register SYMBOL as code conversion map MAP.
2279Return index number of the registered map. */)
2280 (symbol, map)
8146262a 2281 Lisp_Object symbol, map;
e34b1164 2282{
64ef2921 2283 int len = ASIZE (Vcode_conversion_map_vector);
e34b1164
KH
2284 int i;
2285 Lisp_Object index;
2286
b7826503
PJ
2287 CHECK_SYMBOL (symbol);
2288 CHECK_VECTOR (map);
177c0ea7 2289
e34b1164
KH
2290 for (i = 0; i < len; i++)
2291 {
64ef2921 2292 Lisp_Object slot = AREF (Vcode_conversion_map_vector, i);
e34b1164
KH
2293
2294 if (!CONSP (slot))
2295 break;
2296
03699b14 2297 if (EQ (symbol, XCAR (slot)))
e34b1164
KH
2298 {
2299 index = make_number (i);
f3fbd155 2300 XSETCDR (slot, map);
8146262a
KH
2301 Fput (symbol, Qcode_conversion_map, map);
2302 Fput (symbol, Qcode_conversion_map_id, index);
e34b1164
KH
2303 return index;
2304 }
2305 }
2306
2307 if (i == len)
2a1aad57
EZ
2308 Vcode_conversion_map_vector = larger_vector (Vcode_conversion_map_vector,
2309 len * 2, Qnil);
e34b1164
KH
2310
2311 index = make_number (i);
8146262a
KH
2312 Fput (symbol, Qcode_conversion_map, map);
2313 Fput (symbol, Qcode_conversion_map_id, index);
64ef2921 2314 AREF (Vcode_conversion_map_vector, i) = Fcons (symbol, map);
e34b1164
KH
2315 return index;
2316}
2317
2318
dfcf069d 2319void
4ed46869
KH
2320syms_of_ccl ()
2321{
2322 staticpro (&Vccl_program_table);
6703ac4f 2323 Vccl_program_table = Fmake_vector (make_number (32), Qnil);
4ed46869 2324
c10842ea
KH
2325 Qccl = intern ("ccl");
2326 staticpro (&Qccl);
2327
2328 Qcclp = intern ("cclp");
2329 staticpro (&Qcclp);
2330
6ae21908
KH
2331 Qccl_program = intern ("ccl-program");
2332 staticpro (&Qccl_program);
2333
2334 Qccl_program_idx = intern ("ccl-program-idx");
2335 staticpro (&Qccl_program_idx);
e34b1164 2336
8146262a
KH
2337 Qcode_conversion_map = intern ("code-conversion-map");
2338 staticpro (&Qcode_conversion_map);
6ae21908 2339
8146262a
KH
2340 Qcode_conversion_map_id = intern ("code-conversion-map-id");
2341 staticpro (&Qcode_conversion_map_id);
6ae21908 2342
8146262a 2343 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector,
fdb82f93 2344 doc: /* Vector of code conversion maps. */);
8146262a 2345 Vcode_conversion_map_vector = Fmake_vector (make_number (16), Qnil);
e34b1164 2346
4ed46869 2347 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist,
fdb82f93
PJ
2348 doc: /* Alist of fontname patterns vs corresponding CCL program.
2349Each element looks like (REGEXP . CCL-CODE),
2350 where CCL-CODE is a compiled CCL program.
2351When a font whose name matches REGEXP is used for displaying a character,
2352 CCL-CODE is executed to calculate the code point in the font
2353 from the charset number and position code(s) of the character which are set
2354 in CCL registers R0, R1, and R2 before the execution.
2355The code point in the font is set in CCL registers R1 and R2
2356 when the execution terminated.
2357 If the font is single-byte font, the register R2 is not used. */);
4ed46869
KH
2358 Vfont_ccl_encoder_alist = Qnil;
2359
d80dc57e
DL
2360 DEFVAR_LISP ("translation-hash-table-vector", &Vtranslation_hash_table_vector,
2361 doc: /* Vector containing all translation hash tables ever defined.
2362Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
2363to `define-translation-hash-table'. The vector is indexed by the table id
2364used by CCL. */);
2365 Vtranslation_hash_table_vector = Qnil;
2366
5232fa7b 2367 defsubr (&Sccl_program_p);
4ed46869
KH
2368 defsubr (&Sccl_execute);
2369 defsubr (&Sccl_execute_on_string);
2370 defsubr (&Sregister_ccl_program);
8146262a 2371 defsubr (&Sregister_code_conversion_map);
4ed46869 2372}
6b61353c
KH
2373
2374/* arch-tag: bb9a37be-68ce-4576-8d3d-15d750e4a860
2375 (do not change this comment) */