Remove duplicate ChangeLog entry.
[bpt/emacs.git] / src / ccl.c
CommitLineData
4ed46869 1/* CCL (Code Conversion Language) interpreter.
aaef169d 2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
114f9c96 3 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
7976eda0 4 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
114f9c96 5 2005, 2006, 2007, 2008, 2009, 2010
ce03bf76
KH
6 National Institute of Advanced Industrial Science and Technology (AIST)
7 Registration Number H14PRO021
8f924df7 8 Copyright (C) 2003
c10842ea
KH
9 National Institute of Advanced Industrial Science and Technology (AIST)
10 Registration Number H13PRO009
4ed46869 11
369314dc
KH
12This file is part of GNU Emacs.
13
9ec0b715 14GNU Emacs is free software: you can redistribute it and/or modify
369314dc 15it under the terms of the GNU General Public License as published by
9ec0b715
GM
16the Free Software Foundation, either version 3 of the License, or
17(at your option) any later version.
4ed46869 18
369314dc
KH
19GNU Emacs is distributed in the hope that it will be useful,
20but WITHOUT ANY WARRANTY; without even the implied warranty of
21MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22GNU General Public License for more details.
4ed46869 23
369314dc 24You should have received a copy of the GNU General Public License
9ec0b715 25along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
4ed46869 26
4ed46869 27#include <config.h>
dfcf069d 28
68c45bf0 29#include <stdio.h>
d7306fe6 30#include <setjmp.h>
68c45bf0 31
4ed46869 32#include "lisp.h"
c10842ea 33#include "character.h"
4ed46869
KH
34#include "charset.h"
35#include "ccl.h"
36#include "coding.h"
37
c10842ea
KH
38Lisp_Object Qccl, Qcclp;
39
20398ea4 40/* This contains all code conversion map available to CCL. */
8146262a 41Lisp_Object Vcode_conversion_map_vector;
e34b1164 42
4ed46869
KH
43/* Alist of fontname patterns vs corresponding CCL program. */
44Lisp_Object Vfont_ccl_encoder_alist;
45
737b5223 46/* This symbol is a property which associates with ccl program vector.
6ae21908 47 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
e34b1164
KH
48Lisp_Object Qccl_program;
49
8146262a
KH
50/* These symbols are properties which associate with code conversion
51 map and their ID respectively. */
52Lisp_Object Qcode_conversion_map;
53Lisp_Object Qcode_conversion_map_id;
e34b1164 54
6ae21908
KH
55/* Symbols of ccl program have this property, a value of the property
56 is an index for Vccl_protram_table. */
57Lisp_Object Qccl_program_idx;
58
5232fa7b 59/* Table of registered CCL programs. Each element is a vector of
2a69c66e
KH
60 NAME, CCL_PROG, RESOLVEDP, and UPDATEDP, where NAME (symbol) is the
61 name of the program, CCL_PROG (vector) is the compiled code of the
62 program, RESOLVEDP (t or nil) is the flag to tell if symbols in
63 CCL_PROG is already resolved to index numbers or not, UPDATEDP (t
64 or nil) is the flat to tell if the CCL program is updated after it
65 was once used. */
4ed46869
KH
66Lisp_Object Vccl_program_table;
67
d80dc57e
DL
68/* Vector of registered hash tables for translation. */
69Lisp_Object Vtranslation_hash_table_vector;
70
71/* Return a hash table of id number ID. */
72#define GET_HASH_TABLE(id) \
73 (XHASH_TABLE (XCDR(XVECTOR(Vtranslation_hash_table_vector)->contents[(id)])))
d80dc57e 74
d325055a
DL
75extern int charset_unicode;
76
4ed46869
KH
77/* CCL (Code Conversion Language) is a simple language which has
78 operations on one input buffer, one output buffer, and 7 registers.
79 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
80 `ccl-compile' compiles a CCL program and produces a CCL code which
81 is a vector of integers. The structure of this vector is as
82 follows: The 1st element: buffer-magnification, a factor for the
83 size of output buffer compared with the size of input buffer. The
84 2nd element: address of CCL code to be executed when encountered
85 with end of input stream. The 3rd and the remaining elements: CCL
86 codes. */
87
88/* Header of CCL compiled code */
89#define CCL_HEADER_BUF_MAG 0
90#define CCL_HEADER_EOF 1
91#define CCL_HEADER_MAIN 2
92
93/* CCL code is a sequence of 28-bit non-negative integers (i.e. the
94 MSB is always 0), each contains CCL command and/or arguments in the
95 following format:
96
97 |----------------- integer (28-bit) ------------------|
98 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
99 |--constant argument--|-register-|-register-|-command-|
100 ccccccccccccccccc RRR rrr XXXXX
101 or
102 |------- relative address -------|-register-|-command-|
103 cccccccccccccccccccc rrr XXXXX
104 or
105 |------------- constant or other args ----------------|
106 cccccccccccccccccccccccccccc
107
108 where, `cc...c' is a non-negative integer indicating constant value
109 (the left most `c' is always 0) or an absolute jump address, `RRR'
110 and `rrr' are CCL register number, `XXXXX' is one of the following
111 CCL commands. */
112
113/* CCL commands
114
115 Each comment fields shows one or more lines for command syntax and
116 the following lines for semantics of the command. In semantics, IC
117 stands for Instruction Counter. */
118
119#define CCL_SetRegister 0x00 /* Set register a register value:
120 1:00000000000000000RRRrrrXXXXX
121 ------------------------------
122 reg[rrr] = reg[RRR];
123 */
124
125#define CCL_SetShortConst 0x01 /* Set register a short constant value:
126 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
127 ------------------------------
128 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
129 */
130
131#define CCL_SetConst 0x02 /* Set register a constant value:
132 1:00000000000000000000rrrXXXXX
133 2:CONSTANT
134 ------------------------------
135 reg[rrr] = CONSTANT;
136 IC++;
137 */
138
139#define CCL_SetArray 0x03 /* Set register an element of array:
140 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
141 2:ELEMENT[0]
142 3:ELEMENT[1]
143 ...
144 ------------------------------
145 if (0 <= reg[RRR] < CC..C)
146 reg[rrr] = ELEMENT[reg[RRR]];
147 IC += CC..C;
148 */
149
150#define CCL_Jump 0x04 /* Jump:
151 1:A--D--D--R--E--S--S-000XXXXX
152 ------------------------------
153 IC += ADDRESS;
154 */
155
156/* Note: If CC..C is greater than 0, the second code is omitted. */
157
158#define CCL_JumpCond 0x05 /* Jump conditional:
159 1:A--D--D--R--E--S--S-rrrXXXXX
160 ------------------------------
161 if (!reg[rrr])
162 IC += ADDRESS;
163 */
164
165
166#define CCL_WriteRegisterJump 0x06 /* Write register and jump:
167 1:A--D--D--R--E--S--S-rrrXXXXX
168 ------------------------------
169 write (reg[rrr]);
170 IC += ADDRESS;
171 */
172
173#define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
174 1:A--D--D--R--E--S--S-rrrXXXXX
175 2:A--D--D--R--E--S--S-rrrYYYYY
176 -----------------------------
177 write (reg[rrr]);
178 IC++;
179 read (reg[rrr]);
180 IC += ADDRESS;
181 */
182/* Note: If read is suspended, the resumed execution starts from the
183 second code (YYYYY == CCL_ReadJump). */
184
185#define CCL_WriteConstJump 0x08 /* Write constant and jump:
186 1:A--D--D--R--E--S--S-000XXXXX
187 2:CONST
188 ------------------------------
189 write (CONST);
190 IC += ADDRESS;
191 */
192
193#define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
194 1:A--D--D--R--E--S--S-rrrXXXXX
195 2:CONST
196 3:A--D--D--R--E--S--S-rrrYYYYY
197 -----------------------------
198 write (CONST);
199 IC += 2;
200 read (reg[rrr]);
201 IC += ADDRESS;
202 */
203/* Note: If read is suspended, the resumed execution starts from the
204 second code (YYYYY == CCL_ReadJump). */
205
206#define CCL_WriteStringJump 0x0A /* Write string and jump:
207 1:A--D--D--R--E--S--S-000XXXXX
208 2:LENGTH
c6589bbd 209 3:000MSTRIN[0]STRIN[1]STRIN[2]
4ed46869
KH
210 ...
211 ------------------------------
c6589bbd
KH
212 if (M)
213 write_multibyte_string (STRING, LENGTH);
214 else
215 write_string (STRING, LENGTH);
4ed46869
KH
216 IC += ADDRESS;
217 */
218
219#define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
220 1:A--D--D--R--E--S--S-rrrXXXXX
221 2:LENGTH
222 3:ELEMENET[0]
223 4:ELEMENET[1]
224 ...
225 N:A--D--D--R--E--S--S-rrrYYYYY
226 ------------------------------
227 if (0 <= reg[rrr] < LENGTH)
228 write (ELEMENT[reg[rrr]]);
229 IC += LENGTH + 2; (... pointing at N+1)
230 read (reg[rrr]);
231 IC += ADDRESS;
232 */
233/* Note: If read is suspended, the resumed execution starts from the
887bfbd7 234 Nth code (YYYYY == CCL_ReadJump). */
4ed46869
KH
235
236#define CCL_ReadJump 0x0C /* Read and jump:
237 1:A--D--D--R--E--S--S-rrrYYYYY
238 -----------------------------
239 read (reg[rrr]);
240 IC += ADDRESS;
241 */
242
243#define CCL_Branch 0x0D /* Jump by branch table:
244 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
245 2:A--D--D--R--E-S-S[0]000XXXXX
246 3:A--D--D--R--E-S-S[1]000XXXXX
247 ...
248 ------------------------------
249 if (0 <= reg[rrr] < CC..C)
250 IC += ADDRESS[reg[rrr]];
251 else
252 IC += ADDRESS[CC..C];
253 */
254
255#define CCL_ReadRegister 0x0E /* Read bytes into registers:
256 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
257 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
258 ...
259 ------------------------------
260 while (CCC--)
261 read (reg[rrr]);
262 */
263
264#define CCL_WriteExprConst 0x0F /* write result of expression:
265 1:00000OPERATION000RRR000XXXXX
266 2:CONSTANT
267 ------------------------------
268 write (reg[RRR] OPERATION CONSTANT);
269 IC++;
270 */
271
272/* Note: If the Nth read is suspended, the resumed execution starts
273 from the Nth code. */
274
275#define CCL_ReadBranch 0x10 /* Read one byte into a register,
276 and jump by branch table:
277 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
278 2:A--D--D--R--E-S-S[0]000XXXXX
279 3:A--D--D--R--E-S-S[1]000XXXXX
280 ...
281 ------------------------------
282 read (read[rrr]);
283 if (0 <= reg[rrr] < CC..C)
284 IC += ADDRESS[reg[rrr]];
285 else
286 IC += ADDRESS[CC..C];
287 */
288
289#define CCL_WriteRegister 0x11 /* Write registers:
290 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
291 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
292 ...
293 ------------------------------
294 while (CCC--)
295 write (reg[rrr]);
296 ...
297 */
298
299/* Note: If the Nth write is suspended, the resumed execution
300 starts from the Nth code. */
301
302#define CCL_WriteExprRegister 0x12 /* Write result of expression
303 1:00000OPERATIONRrrRRR000XXXXX
304 ------------------------------
305 write (reg[RRR] OPERATION reg[Rrr]);
306 */
307
e34b1164 308#define CCL_Call 0x13 /* Call the CCL program whose ID is
5232fa7b
KH
309 CC..C or cc..c.
310 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
311 [2:00000000cccccccccccccccccccc]
4ed46869 312 ------------------------------
5232fa7b
KH
313 if (FFF)
314 call (cc..c)
315 IC++;
316 else
317 call (CC..C)
4ed46869
KH
318 */
319
320#define CCL_WriteConstString 0x14 /* Write a constant or a string:
321 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
c6589bbd 322 [2:000MSTRIN[0]STRIN[1]STRIN[2]]
4ed46869
KH
323 [...]
324 -----------------------------
325 if (!rrr)
326 write (CC..C)
327 else
c6589bbd
KH
328 if (M)
329 write_multibyte_string (STRING, CC..C);
330 else
331 write_string (STRING, CC..C);
4ed46869
KH
332 IC += (CC..C + 2) / 3;
333 */
334
335#define CCL_WriteArray 0x15 /* Write an element of array:
336 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
337 2:ELEMENT[0]
338 3:ELEMENT[1]
339 ...
340 ------------------------------
341 if (0 <= reg[rrr] < CC..C)
342 write (ELEMENT[reg[rrr]]);
343 IC += CC..C;
344 */
345
346#define CCL_End 0x16 /* Terminate:
347 1:00000000000000000000000XXXXX
348 ------------------------------
349 terminate ();
350 */
351
352/* The following two codes execute an assignment arithmetic/logical
353 operation. The form of the operation is like REG OP= OPERAND. */
354
355#define CCL_ExprSelfConst 0x17 /* REG OP= constant:
356 1:00000OPERATION000000rrrXXXXX
357 2:CONSTANT
358 ------------------------------
359 reg[rrr] OPERATION= CONSTANT;
360 */
361
362#define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
363 1:00000OPERATION000RRRrrrXXXXX
364 ------------------------------
365 reg[rrr] OPERATION= reg[RRR];
366 */
367
368/* The following codes execute an arithmetic/logical operation. The
369 form of the operation is like REG_X = REG_Y OP OPERAND2. */
370
371#define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
372 1:00000OPERATION000RRRrrrXXXXX
373 2:CONSTANT
374 ------------------------------
375 reg[rrr] = reg[RRR] OPERATION CONSTANT;
376 IC++;
377 */
378
379#define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
380 1:00000OPERATIONRrrRRRrrrXXXXX
381 ------------------------------
382 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
383 */
384
385#define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
386 an operation on constant:
387 1:A--D--D--R--E--S--S-rrrXXXXX
388 2:OPERATION
389 3:CONSTANT
390 -----------------------------
391 reg[7] = reg[rrr] OPERATION CONSTANT;
392 if (!(reg[7]))
393 IC += ADDRESS;
394 else
395 IC += 2
396 */
397
398#define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
399 an operation on register:
400 1:A--D--D--R--E--S--S-rrrXXXXX
401 2:OPERATION
402 3:RRR
403 -----------------------------
404 reg[7] = reg[rrr] OPERATION reg[RRR];
405 if (!reg[7])
406 IC += ADDRESS;
407 else
408 IC += 2;
409 */
410
411#define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
412 to an operation on constant:
413 1:A--D--D--R--E--S--S-rrrXXXXX
414 2:OPERATION
415 3:CONSTANT
416 -----------------------------
417 read (reg[rrr]);
418 reg[7] = reg[rrr] OPERATION CONSTANT;
419 if (!reg[7])
420 IC += ADDRESS;
421 else
422 IC += 2;
423 */
424
425#define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
426 to an operation on register:
427 1:A--D--D--R--E--S--S-rrrXXXXX
428 2:OPERATION
429 3:RRR
430 -----------------------------
431 read (reg[rrr]);
432 reg[7] = reg[rrr] OPERATION reg[RRR];
433 if (!reg[7])
434 IC += ADDRESS;
435 else
436 IC += 2;
437 */
438
450ed226 439#define CCL_Extension 0x1F /* Extended CCL code
4ed46869
KH
440 1:ExtendedCOMMNDRrrRRRrrrXXXXX
441 2:ARGUEMENT
442 3:...
443 ------------------------------
444 extended_command (rrr,RRR,Rrr,ARGS)
445 */
446
177c0ea7 447/*
6ae21908 448 Here after, Extended CCL Instructions.
e34b1164 449 Bit length of extended command is 14.
6ae21908 450 Therefore, the instruction code range is 0..16384(0x3fff).
e34b1164
KH
451 */
452
51e4f4a8 453/* Read a multibyte character.
6ae21908
KH
454 A code point is stored into reg[rrr]. A charset ID is stored into
455 reg[RRR]. */
456
457#define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
458 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
459
460/* Write a multibyte character.
461 Write a character whose code point is reg[rrr] and the charset ID
462 is reg[RRR]. */
463
464#define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
465 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
466
8146262a 467/* Translate a character whose code point is reg[rrr] and the charset
f967223b 468 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
6ae21908 469
8146262a 470 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
471 (charset ID). */
472
8146262a 473#define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
6ae21908
KH
474 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
475
8146262a 476/* Translate a character whose code point is reg[rrr] and the charset
f967223b 477 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
6ae21908 478
8146262a 479 A translated character is set in reg[rrr] (code point) and reg[RRR]
6ae21908
KH
480 (charset ID). */
481
8146262a
KH
482#define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
483 1:ExtendedCOMMNDRrrRRRrrrXXXXX
484 2:ARGUMENT(Translation Table ID)
485 */
6ae21908 486
8146262a
KH
487/* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
488 reg[RRR]) MAP until some value is found.
6ae21908 489
8146262a 490 Each MAP is a Lisp vector whose element is number, nil, t, or
6ae21908 491 lambda.
8146262a 492 If the element is nil, ignore the map and proceed to the next map.
6ae21908
KH
493 If the element is t or lambda, finish without changing reg[rrr].
494 If the element is a number, set reg[rrr] to the number and finish.
495
8146262a
KH
496 Detail of the map structure is descibed in the comment for
497 CCL_MapMultiple below. */
6ae21908 498
8146262a 499#define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
6ae21908 500 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a
KH
501 2:NUMBER of MAPs
502 3:MAP-ID1
503 4:MAP-ID2
6ae21908 504 ...
177c0ea7 505 */
6ae21908 506
8146262a
KH
507/* Map the code in reg[rrr] by MAPs starting from the Nth (N =
508 reg[RRR]) map.
6ae21908 509
9b27b20d 510 MAPs are supplied in the succeeding CCL codes as follows:
6ae21908 511
8146262a
KH
512 When CCL program gives this nested structure of map to this command:
513 ((MAP-ID11
514 MAP-ID12
515 (MAP-ID121 MAP-ID122 MAP-ID123)
516 MAP-ID13)
517 (MAP-ID21
518 (MAP-ID211 (MAP-ID2111) MAP-ID212)
519 MAP-ID22)),
6ae21908 520 the compiled CCL codes has this sequence:
8146262a 521 CCL_MapMultiple (CCL code of this command)
9b27b20d
KH
522 16 (total number of MAPs and SEPARATORs)
523 -7 (1st SEPARATOR)
8146262a
KH
524 MAP-ID11
525 MAP-ID12
9b27b20d 526 -3 (2nd SEPARATOR)
8146262a
KH
527 MAP-ID121
528 MAP-ID122
529 MAP-ID123
530 MAP-ID13
9b27b20d 531 -7 (3rd SEPARATOR)
8146262a 532 MAP-ID21
9b27b20d 533 -4 (4th SEPARATOR)
8146262a 534 MAP-ID211
9b27b20d 535 -1 (5th SEPARATOR)
8146262a
KH
536 MAP_ID2111
537 MAP-ID212
538 MAP-ID22
6ae21908 539
9b27b20d 540 A value of each SEPARATOR follows this rule:
8146262a
KH
541 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
542 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
6ae21908 543
8146262a 544 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
6ae21908 545
8146262a
KH
546 When some map fails to map (i.e. it doesn't have a value for
547 reg[rrr]), the mapping is treated as identity.
6ae21908 548
8146262a 549 The mapping is iterated for all maps in each map set (set of maps
9b27b20d
KH
550 separated by SEPARATOR) except in the case that lambda is
551 encountered. More precisely, the mapping proceeds as below:
552
553 At first, VAL0 is set to reg[rrr], and it is translated by the
554 first map to VAL1. Then, VAL1 is translated by the next map to
555 VAL2. This mapping is iterated until the last map is used. The
54fa5bc1
KH
556 result of the mapping is the last value of VAL?. When the mapping
557 process reached to the end of the map set, it moves to the next
558 map set. If the next does not exit, the mapping process terminates,
559 and regard the last value as a result.
9b27b20d
KH
560
561 But, when VALm is mapped to VALn and VALn is not a number, the
562 mapping proceed as below:
563
564 If VALn is nil, the lastest map is ignored and the mapping of VALm
565 proceed to the next map.
566
567 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
568 proceed to the next map.
569
54fa5bc1
KH
570 If VALn is lambda, move to the next map set like reaching to the
571 end of the current map set.
572
573 If VALn is a symbol, call the CCL program refered by it.
574 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
575 Such special values are regarded as nil, t, and lambda respectively.
6ae21908 576
8146262a 577 Each map is a Lisp vector of the following format (a) or (b):
6ae21908
KH
578 (a)......[STARTPOINT VAL1 VAL2 ...]
579 (b)......[t VAL STARTPOINT ENDPOINT],
580 where
8146262a 581 STARTPOINT is an offset to be used for indexing a map,
9b27b20d 582 ENDPOINT is a maximum index number of a map,
177c0ea7 583 VAL and VALn is a number, nil, t, or lambda.
6ae21908 584
8146262a
KH
585 Valid index range of a map of type (a) is:
586 STARTPOINT <= index < STARTPOINT + map_size - 1
587 Valid index range of a map of type (b) is:
9b27b20d 588 STARTPOINT <= index < ENDPOINT */
6ae21908 589
8146262a 590#define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
6ae21908
KH
591 1:ExtendedCOMMNDXXXRRRrrrXXXXX
592 2:N-2
593 3:SEPARATOR_1 (< 0)
8146262a
KH
594 4:MAP-ID_1
595 5:MAP-ID_2
6ae21908
KH
596 ...
597 M:SEPARATOR_x (< 0)
8146262a 598 M+1:MAP-ID_y
6ae21908
KH
599 ...
600 N:SEPARATOR_z (< 0)
601 */
602
54fa5bc1 603#define MAX_MAP_SET_LEVEL 30
6ae21908
KH
604
605typedef struct
606{
607 int rest_length;
608 int orig_val;
609} tr_stack;
610
8146262a
KH
611static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
612static tr_stack *mapping_stack_pointer;
6ae21908 613
54fa5bc1
KH
614/* If this variable is non-zero, it indicates the stack_idx
615 of immediately called by CCL_MapMultiple. */
be57900b 616static int stack_idx_of_map_multiple;
54fa5bc1
KH
617
618#define PUSH_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
619do \
620 { \
54fa5bc1
KH
621 mapping_stack_pointer->rest_length = (restlen); \
622 mapping_stack_pointer->orig_val = (orig); \
623 mapping_stack_pointer++; \
a89f435d
PJ
624 } \
625while (0)
54fa5bc1
KH
626
627#define POP_MAPPING_STACK(restlen, orig) \
a89f435d
PJ
628do \
629 { \
54fa5bc1
KH
630 mapping_stack_pointer--; \
631 (restlen) = mapping_stack_pointer->rest_length; \
632 (orig) = mapping_stack_pointer->orig_val; \
a89f435d
PJ
633 } \
634while (0)
6ae21908 635
54fa5bc1 636#define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
a89f435d 637do \
0ee1088b 638 { \
54fa5bc1
KH
639 struct ccl_program called_ccl; \
640 if (stack_idx >= 256 \
641 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
642 { \
643 if (stack_idx > 0) \
644 { \
645 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
646 ic = ccl_prog_stack_struct[0].ic; \
9eaa8e65 647 eof_ic = ccl_prog_stack_struct[0].eof_ic; \
54fa5bc1
KH
648 } \
649 CCL_INVALID_CMD; \
650 } \
651 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
652 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
9eaa8e65 653 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \
54fa5bc1
KH
654 stack_idx++; \
655 ccl_prog = called_ccl.prog; \
656 ic = CCL_HEADER_MAIN; \
9eaa8e65 657 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]); \
54fa5bc1 658 goto ccl_repeat; \
0ee1088b 659 } \
a89f435d 660while (0)
6ae21908 661
8146262a 662#define CCL_MapSingle 0x12 /* Map by single code conversion map
6ae21908 663 1:ExtendedCOMMNDXXXRRRrrrXXXXX
8146262a 664 2:MAP-ID
6ae21908 665 ------------------------------
8146262a
KH
666 Map reg[rrr] by MAP-ID.
667 If some valid mapping is found,
6ae21908
KH
668 set reg[rrr] to the result,
669 else
670 set reg[RRR] to -1.
671 */
4ed46869 672
d80dc57e
DL
673#define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
674 integer key. Afterwards R7 set
e0f24100 675 to 1 if lookup succeeded.
d80dc57e
DL
676 1:ExtendedCOMMNDRrrRRRXXXXXXXX
677 2:ARGUMENT(Hash table ID) */
678
679#define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
680 character key. Afterwards R7 set
e0f24100 681 to 1 if lookup succeeded.
d80dc57e
DL
682 1:ExtendedCOMMNDRrrRRRrrrXXXXX
683 2:ARGUMENT(Hash table ID) */
684
4ed46869
KH
685/* CCL arithmetic/logical operators. */
686#define CCL_PLUS 0x00 /* X = Y + Z */
687#define CCL_MINUS 0x01 /* X = Y - Z */
688#define CCL_MUL 0x02 /* X = Y * Z */
689#define CCL_DIV 0x03 /* X = Y / Z */
690#define CCL_MOD 0x04 /* X = Y % Z */
691#define CCL_AND 0x05 /* X = Y & Z */
692#define CCL_OR 0x06 /* X = Y | Z */
693#define CCL_XOR 0x07 /* X = Y ^ Z */
694#define CCL_LSH 0x08 /* X = Y << Z */
695#define CCL_RSH 0x09 /* X = Y >> Z */
696#define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
697#define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
698#define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
699#define CCL_LS 0x10 /* X = (X < Y) */
700#define CCL_GT 0x11 /* X = (X > Y) */
701#define CCL_EQ 0x12 /* X = (X == Y) */
702#define CCL_LE 0x13 /* X = (X <= Y) */
703#define CCL_GE 0x14 /* X = (X >= Y) */
704#define CCL_NE 0x15 /* X = (X != Y) */
705
51520e8a 706#define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
4ed46869 707 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
51520e8a
KH
708#define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
709 r[7] = LOWER_BYTE (SJIS (Y, Z) */
4ed46869 710
4ed46869 711/* Terminate CCL program successfully. */
0ee1088b 712#define CCL_SUCCESS \
a89f435d 713do \
0ee1088b 714 { \
4ed46869 715 ccl->status = CCL_STAT_SUCCESS; \
0ee1088b
KH
716 goto ccl_finish; \
717 } \
a89f435d 718while(0)
4ed46869
KH
719
720/* Suspend CCL program because of reading from empty input buffer or
721 writing to full output buffer. When this program is resumed, the
722 same I/O command is executed. */
e34b1164 723#define CCL_SUSPEND(stat) \
a89f435d 724do \
0ee1088b 725 { \
e34b1164
KH
726 ic--; \
727 ccl->status = stat; \
728 goto ccl_finish; \
0ee1088b 729 } \
a89f435d 730while (0)
4ed46869
KH
731
732/* Terminate CCL program because of invalid command. Should not occur
733 in the normal case. */
9eaa8e65
KH
734#ifndef CCL_DEBUG
735
4ed46869 736#define CCL_INVALID_CMD \
a89f435d 737do \
0ee1088b 738 { \
4ed46869
KH
739 ccl->status = CCL_STAT_INVALID_CMD; \
740 goto ccl_error_handler; \
0ee1088b 741 } \
a89f435d 742while(0)
4ed46869 743
9eaa8e65
KH
744#else
745
4ed46869 746#define CCL_INVALID_CMD \
a89f435d 747do \
0ee1088b 748 { \
9eaa8e65 749 ccl_debug_hook (this_ic); \
4ed46869
KH
750 ccl->status = CCL_STAT_INVALID_CMD; \
751 goto ccl_error_handler; \
0ee1088b 752 } \
a89f435d 753while(0)
4ed46869 754
9eaa8e65
KH
755#endif
756
4ed46869 757/* Encode one character CH to multibyte form and write to the current
887bfbd7 758 output buffer. If CH is less than 256, CH is written as is. */
c10842ea
KH
759#define CCL_WRITE_CHAR(ch) \
760 do { \
761 if (! dst) \
762 CCL_INVALID_CMD; \
763 else if (dst < dst_end) \
764 *dst++ = (ch); \
765 else \
766 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
a8302ba3
KH
767 } while (0)
768
4ed46869
KH
769/* Write a string at ccl_prog[IC] of length LEN to the current output
770 buffer. */
c6589bbd
KH
771#define CCL_WRITE_STRING(len) \
772 do { \
773 int i; \
774 if (!dst) \
775 CCL_INVALID_CMD; \
776 else if (dst + len <= dst_end) \
777 { \
778 if (XFASTINT (ccl_prog[ic]) & 0x1000000) \
779 for (i = 0; i < len; i++) \
780 *dst++ = XFASTINT (ccl_prog[ic + i]) & 0xFFFFFF; \
781 else \
782 for (i = 0; i < len; i++) \
783 *dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
784 >> ((2 - (i % 3)) * 8)) & 0xFF; \
785 } \
786 else \
787 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
4ed46869
KH
788 } while (0)
789
c10842ea
KH
790/* Read one byte from the current input buffer into Rth register. */
791#define CCL_READ_CHAR(r) \
792 do { \
793 if (! src) \
794 CCL_INVALID_CMD; \
795 else if (src < src_end) \
796 r = *src++; \
797 else if (ccl->last_block) \
798 { \
327719ee 799 r = -1; \
c10842ea
KH
800 ic = ccl->eof_ic; \
801 goto ccl_repeat; \
802 } \
803 else \
804 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
805 } while (0)
806
bda731af
KH
807/* Decode CODE by a charset whose id is ID. If ID is 0, return CODE
808 as is for backward compatibility. Assume that we can use the
809 variable `charset'. */
810
811#define CCL_DECODE_CHAR(id, code) \
812 ((id) == 0 ? (code) \
813 : (charset = CHARSET_FROM_ID ((id)), DECODE_CHAR (charset, (code))))
814
bda731af
KH
815/* Encode character C by some of charsets in CHARSET_LIST. Set ID to
816 the id of the used charset, ENCODED to the resulf of encoding.
817 Assume that we can use the variable `charset'. */
818
8f924df7 819#define CCL_ENCODE_CHAR(c, charset_list, id, encoded) \
4ffd4870 820 do { \
8f924df7 821 unsigned code; \
4ffd4870 822 \
8f924df7
KH
823 charset = char_charset ((c), (charset_list), &code); \
824 if (! charset && ! NILP (charset_list)) \
825 charset = char_charset ((c), Qnil, &code); \
826 if (charset) \
827 { \
828 (id) = CHARSET_ID (charset); \
829 (encoded) = code; \
4ffd4870 830 } \
8f924df7 831 } while (0)
4ffd4870 832
c10842ea
KH
833/* Execute CCL code on characters at SOURCE (length SRC_SIZE). The
834 resulting text goes to a place pointed by DESTINATION, the length
835 of which should not exceed DST_SIZE. As a side effect, how many
836 characters are consumed and produced are recorded in CCL->consumed
837 and CCL->produced, and the contents of CCL registers are updated.
838 If SOURCE or DESTINATION is NULL, only operations on registers are
839 permitted. */
4ed46869
KH
840
841#ifdef CCL_DEBUG
842#define CCL_DEBUG_BACKTRACE_LEN 256
f9bd23fd 843int ccl_backtrace_table[CCL_DEBUG_BACKTRACE_LEN];
4ed46869 844int ccl_backtrace_idx;
9eaa8e65
KH
845
846int
847ccl_debug_hook (int ic)
848{
849 return ic;
850}
851
4ed46869
KH
852#endif
853
854struct ccl_prog_stack
855 {
a9f1cc19 856 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
4ed46869 857 int ic; /* Instruction Counter. */
9eaa8e65 858 int eof_ic; /* Instruction Counter to jump on EOF. */
4ed46869
KH
859 };
860
177c0ea7 861/* For the moment, we only support depth 256 of stack. */
c13362d8
KH
862static struct ccl_prog_stack ccl_prog_stack_struct[256];
863
c10842ea 864void
bda731af 865ccl_driver (ccl, source, destination, src_size, dst_size, charset_list)
4ed46869 866 struct ccl_program *ccl;
c10842ea
KH
867 int *source, *destination;
868 int src_size, dst_size;
bda731af 869 Lisp_Object charset_list;
4ed46869
KH
870{
871 register int *reg = ccl->reg;
872 register int ic = ccl->ic;
8a1ae4dd 873 register int code = 0, field1, field2;
e995085f 874 register Lisp_Object *ccl_prog = ccl->prog;
c10842ea
KH
875 int *src = source, *src_end = src + src_size;
876 int *dst = destination, *dst_end = dst + dst_size;
4ed46869 877 int jump_address;
8a1ae4dd 878 int i = 0, j, op;
c13362d8 879 int stack_idx = ccl->stack_idx;
519bf146 880 /* Instruction counter of the current CCL code. */
8a1ae4dd 881 int this_ic = 0;
c10842ea 882 struct charset *charset;
9eaa8e65
KH
883 int eof_ic = ccl->eof_ic;
884 int eof_hit = 0;
4ed46869 885
c10842ea 886 if (ccl->buf_magnification == 0) /* We can't read/produce any bytes. */
12abd7d1
KH
887 dst = NULL;
888
54fa5bc1
KH
889 /* Set mapping stack pointer. */
890 mapping_stack_pointer = mapping_stack;
891
4ed46869
KH
892#ifdef CCL_DEBUG
893 ccl_backtrace_idx = 0;
894#endif
895
896 for (;;)
897 {
4ccd0d4a 898 ccl_repeat:
4ed46869
KH
899#ifdef CCL_DEBUG
900 ccl_backtrace_table[ccl_backtrace_idx++] = ic;
901 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
902 ccl_backtrace_idx = 0;
903 ccl_backtrace_table[ccl_backtrace_idx] = 0;
904#endif
905
906 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
907 {
908 /* We can't just signal Qquit, instead break the loop as if
909 the whole data is processed. Don't reset Vquit_flag, it
910 must be handled later at a safer place. */
c10842ea
KH
911 if (src)
912 src = source + src_size;
4ed46869
KH
913 ccl->status = CCL_STAT_QUIT;
914 break;
915 }
916
519bf146 917 this_ic = ic;
4ed46869
KH
918 code = XINT (ccl_prog[ic]); ic++;
919 field1 = code >> 8;
920 field2 = (code & 0xFF) >> 5;
921
922#define rrr field2
923#define RRR (field1 & 7)
924#define Rrr ((field1 >> 3) & 7)
925#define ADDR field1
e34b1164 926#define EXCMD (field1 >> 6)
4ed46869
KH
927
928 switch (code & 0x1F)
929 {
930 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
931 reg[rrr] = reg[RRR];
932 break;
933
934 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
935 reg[rrr] = field1;
936 break;
937
938 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
939 reg[rrr] = XINT (ccl_prog[ic]);
940 ic++;
941 break;
942
943 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
944 i = reg[RRR];
945 j = field1 >> 3;
946 if ((unsigned int) i < j)
947 reg[rrr] = XINT (ccl_prog[ic + i]);
948 ic += j;
949 break;
950
951 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
952 ic += ADDR;
953 break;
954
955 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
956 if (!reg[rrr])
957 ic += ADDR;
958 break;
959
960 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
961 i = reg[rrr];
962 CCL_WRITE_CHAR (i);
963 ic += ADDR;
964 break;
965
966 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
967 i = reg[rrr];
968 CCL_WRITE_CHAR (i);
969 ic++;
970 CCL_READ_CHAR (reg[rrr]);
971 ic += ADDR - 1;
972 break;
973
974 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
975 i = XINT (ccl_prog[ic]);
976 CCL_WRITE_CHAR (i);
977 ic += ADDR;
978 break;
979
980 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
981 i = XINT (ccl_prog[ic]);
982 CCL_WRITE_CHAR (i);
983 ic++;
984 CCL_READ_CHAR (reg[rrr]);
985 ic += ADDR - 1;
986 break;
987
988 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
989 j = XINT (ccl_prog[ic]);
990 ic++;
991 CCL_WRITE_STRING (j);
992 ic += ADDR - 1;
993 break;
994
995 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
996 i = reg[rrr];
2e34157c 997 j = XINT (ccl_prog[ic]);
4ed46869
KH
998 if ((unsigned int) i < j)
999 {
887bfbd7 1000 i = XINT (ccl_prog[ic + 1 + i]);
4ed46869
KH
1001 CCL_WRITE_CHAR (i);
1002 }
887bfbd7 1003 ic += j + 2;
4ed46869
KH
1004 CCL_READ_CHAR (reg[rrr]);
1005 ic += ADDR - (j + 2);
1006 break;
1007
1008 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
1009 CCL_READ_CHAR (reg[rrr]);
1010 ic += ADDR;
1011 break;
1012
1013 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1014 CCL_READ_CHAR (reg[rrr]);
1015 /* fall through ... */
1016 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1017 if ((unsigned int) reg[rrr] < field1)
1018 ic += XINT (ccl_prog[ic + reg[rrr]]);
1019 else
1020 ic += XINT (ccl_prog[ic + field1]);
1021 break;
1022
1023 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1024 while (1)
1025 {
1026 CCL_READ_CHAR (reg[rrr]);
1027 if (!field1) break;
1028 code = XINT (ccl_prog[ic]); ic++;
1029 field1 = code >> 8;
1030 field2 = (code & 0xFF) >> 5;
1031 }
1032 break;
1033
1034 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
1035 rrr = 7;
1036 i = reg[RRR];
1037 j = XINT (ccl_prog[ic]);
1038 op = field1 >> 6;
25660570 1039 jump_address = ic + 1;
4ed46869
KH
1040 goto ccl_set_expr;
1041
1042 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1043 while (1)
1044 {
1045 i = reg[rrr];
1046 CCL_WRITE_CHAR (i);
1047 if (!field1) break;
1048 code = XINT (ccl_prog[ic]); ic++;
1049 field1 = code >> 8;
1050 field2 = (code & 0xFF) >> 5;
1051 }
1052 break;
1053
1054 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
1055 rrr = 7;
1056 i = reg[RRR];
1057 j = reg[Rrr];
1058 op = field1 >> 6;
25660570 1059 jump_address = ic;
4ed46869
KH
1060 goto ccl_set_expr;
1061
5232fa7b 1062 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
4ed46869
KH
1063 {
1064 Lisp_Object slot;
5232fa7b
KH
1065 int prog_id;
1066
1067 /* If FFF is nonzero, the CCL program ID is in the
1068 following code. */
1069 if (rrr)
1070 {
1071 prog_id = XINT (ccl_prog[ic]);
1072 ic++;
1073 }
1074 else
1075 prog_id = field1;
4ed46869
KH
1076
1077 if (stack_idx >= 256
5232fa7b 1078 || prog_id < 0
64ef2921
SM
1079 || prog_id >= ASIZE (Vccl_program_table)
1080 || (slot = AREF (Vccl_program_table, prog_id), !VECTORP (slot))
1081 || !VECTORP (AREF (slot, 1)))
4ed46869
KH
1082 {
1083 if (stack_idx > 0)
1084 {
1085 ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
1086 ic = ccl_prog_stack_struct[0].ic;
9eaa8e65 1087 eof_ic = ccl_prog_stack_struct[0].eof_ic;
4ed46869
KH
1088 }
1089 CCL_INVALID_CMD;
1090 }
177c0ea7 1091
4ed46869
KH
1092 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
1093 ccl_prog_stack_struct[stack_idx].ic = ic;
9eaa8e65 1094 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic;
4ed46869 1095 stack_idx++;
64ef2921 1096 ccl_prog = XVECTOR (AREF (slot, 1))->contents;
4ed46869 1097 ic = CCL_HEADER_MAIN;
9eaa8e65 1098 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]);
4ed46869
KH
1099 }
1100 break;
1101
1102 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1103 if (!rrr)
1104 CCL_WRITE_CHAR (field1);
1105 else
1106 {
1107 CCL_WRITE_STRING (field1);
1108 ic += (field1 + 2) / 3;
1109 }
1110 break;
1111
1112 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1113 i = reg[rrr];
1114 if ((unsigned int) i < field1)
1115 {
1116 j = XINT (ccl_prog[ic + i]);
1117 CCL_WRITE_CHAR (j);
1118 }
1119 ic += field1;
1120 break;
1121
1122 case CCL_End: /* 0000000000000000000000XXXXX */
d3a478e2 1123 if (stack_idx > 0)
4ed46869 1124 {
d3a478e2 1125 stack_idx--;
4ed46869
KH
1126 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
1127 ic = ccl_prog_stack_struct[stack_idx].ic;
9eaa8e65
KH
1128 eof_ic = ccl_prog_stack_struct[stack_idx].eof_ic;
1129 if (eof_hit)
1130 ic = eof_ic;
4ed46869
KH
1131 break;
1132 }
ad3d1b1d
KH
1133 if (src)
1134 src = src_end;
1135 /* ccl->ic should points to this command code again to
1136 suppress further processing. */
1137 ic--;
4ed46869
KH
1138 CCL_SUCCESS;
1139
1140 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
1141 i = XINT (ccl_prog[ic]);
1142 ic++;
1143 op = field1 >> 6;
1144 goto ccl_expr_self;
1145
1146 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
1147 i = reg[RRR];
1148 op = field1 >> 6;
1149
1150 ccl_expr_self:
1151 switch (op)
1152 {
1153 case CCL_PLUS: reg[rrr] += i; break;
1154 case CCL_MINUS: reg[rrr] -= i; break;
1155 case CCL_MUL: reg[rrr] *= i; break;
1156 case CCL_DIV: reg[rrr] /= i; break;
1157 case CCL_MOD: reg[rrr] %= i; break;
1158 case CCL_AND: reg[rrr] &= i; break;
1159 case CCL_OR: reg[rrr] |= i; break;
1160 case CCL_XOR: reg[rrr] ^= i; break;
1161 case CCL_LSH: reg[rrr] <<= i; break;
1162 case CCL_RSH: reg[rrr] >>= i; break;
1163 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
1164 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
1165 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
1166 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
1167 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
1168 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
1169 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
1170 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
1171 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
1172 default: CCL_INVALID_CMD;
1173 }
1174 break;
1175
1176 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
1177 i = reg[RRR];
1178 j = XINT (ccl_prog[ic]);
1179 op = field1 >> 6;
1180 jump_address = ++ic;
1181 goto ccl_set_expr;
1182
1183 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
1184 i = reg[RRR];
1185 j = reg[Rrr];
1186 op = field1 >> 6;
1187 jump_address = ic;
1188 goto ccl_set_expr;
1189
1190 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1191 CCL_READ_CHAR (reg[rrr]);
1192 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1193 i = reg[rrr];
1194 op = XINT (ccl_prog[ic]);
1195 jump_address = ic++ + ADDR;
1196 j = XINT (ccl_prog[ic]);
1197 ic++;
1198 rrr = 7;
1199 goto ccl_set_expr;
1200
1201 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
1202 CCL_READ_CHAR (reg[rrr]);
1203 case CCL_JumpCondExprReg:
1204 i = reg[rrr];
1205 op = XINT (ccl_prog[ic]);
1206 jump_address = ic++ + ADDR;
1207 j = reg[XINT (ccl_prog[ic])];
1208 ic++;
1209 rrr = 7;
1210
1211 ccl_set_expr:
1212 switch (op)
1213 {
1214 case CCL_PLUS: reg[rrr] = i + j; break;
1215 case CCL_MINUS: reg[rrr] = i - j; break;
1216 case CCL_MUL: reg[rrr] = i * j; break;
1217 case CCL_DIV: reg[rrr] = i / j; break;
1218 case CCL_MOD: reg[rrr] = i % j; break;
1219 case CCL_AND: reg[rrr] = i & j; break;
1220 case CCL_OR: reg[rrr] = i | j; break;
3b8c0c70 1221 case CCL_XOR: reg[rrr] = i ^ j; break;
4ed46869
KH
1222 case CCL_LSH: reg[rrr] = i << j; break;
1223 case CCL_RSH: reg[rrr] = i >> j; break;
1224 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
1225 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
1226 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
1227 case CCL_LS: reg[rrr] = i < j; break;
1228 case CCL_GT: reg[rrr] = i > j; break;
1229 case CCL_EQ: reg[rrr] = i == j; break;
1230 case CCL_LE: reg[rrr] = i <= j; break;
1231 case CCL_GE: reg[rrr] = i >= j; break;
1232 case CCL_NE: reg[rrr] = i != j; break;
c10842ea
KH
1233 case CCL_DECODE_SJIS:
1234 {
1235 i = (i << 8) | j;
1236 SJIS_TO_JIS (i);
1237 reg[rrr] = i >> 8;
1238 reg[7] = i & 0xFF;
1239 break;
1240 }
1241 case CCL_ENCODE_SJIS:
1242 {
1243 i = (i << 8) | j;
1244 JIS_TO_SJIS (i);
1245 reg[rrr] = i >> 8;
1246 reg[7] = i & 0xFF;
1247 break;
1248 }
4ed46869
KH
1249 default: CCL_INVALID_CMD;
1250 }
1251 code &= 0x1F;
1252 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
1253 {
1254 i = reg[rrr];
1255 CCL_WRITE_CHAR (i);
25660570 1256 ic = jump_address;
4ed46869
KH
1257 }
1258 else if (!reg[rrr])
1259 ic = jump_address;
1260 break;
1261
450ed226 1262 case CCL_Extension:
e34b1164
KH
1263 switch (EXCMD)
1264 {
6ae21908 1265 case CCL_ReadMultibyteChar2:
e34b1164
KH
1266 if (!src)
1267 CCL_INVALID_CMD;
c10842ea 1268 CCL_READ_CHAR (i);
bda731af 1269 CCL_ENCODE_CHAR (i, charset_list, reg[RRR], reg[rrr]);
e34b1164
KH
1270 break;
1271
6ae21908 1272 case CCL_WriteMultibyteChar2:
c10842ea
KH
1273 if (! dst)
1274 CCL_INVALID_CMD;
bda731af 1275 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
c10842ea 1276 CCL_WRITE_CHAR (i);
e34b1164
KH
1277 break;
1278
8146262a 1279 case CCL_TranslateCharacter:
bda731af 1280 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
c10842ea 1281 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), i);
bda731af 1282 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
e34b1164
KH
1283 break;
1284
8146262a 1285 case CCL_TranslateCharacterConstTbl:
e34b1164
KH
1286 op = XINT (ccl_prog[ic]); /* table */
1287 ic++;
bda731af 1288 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
c10842ea 1289 op = translate_char (GET_TRANSLATION_TABLE (op), i);
bda731af 1290 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
e34b1164
KH
1291 break;
1292
d80dc57e
DL
1293 case CCL_LookupIntConstTbl:
1294 op = XINT (ccl_prog[ic]); /* table */
1295 ic++;
177c0ea7 1296 {
d80dc57e
DL
1297 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
1298
1299 op = hash_lookup (h, make_number (reg[RRR]), NULL);
1300 if (op >= 0)
1301 {
f9bd23fd
DL
1302 Lisp_Object opl;
1303 opl = HASH_VALUE (h, op);
0bc6bafd 1304 if (! CHARACTERP (opl))
d80dc57e 1305 CCL_INVALID_CMD;
bda731af
KH
1306 reg[RRR] = charset_unicode;
1307 reg[rrr] = op;
d80dc57e
DL
1308 reg[7] = 1; /* r7 true for success */
1309 }
1310 else
1311 reg[7] = 0;
1312 }
1313 break;
1314
1315 case CCL_LookupCharConstTbl:
1316 op = XINT (ccl_prog[ic]); /* table */
1317 ic++;
bda731af 1318 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
177c0ea7 1319 {
d80dc57e
DL
1320 struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
1321
1322 op = hash_lookup (h, make_number (i), NULL);
1323 if (op >= 0)
1324 {
f9bd23fd
DL
1325 Lisp_Object opl;
1326 opl = HASH_VALUE (h, op);
1327 if (!INTEGERP (opl))
d80dc57e 1328 CCL_INVALID_CMD;
f9bd23fd 1329 reg[RRR] = XINT (opl);
d80dc57e
DL
1330 reg[7] = 1; /* r7 true for success */
1331 }
1332 else
1333 reg[7] = 0;
1334 }
1335 break;
1336
e34b1164
KH
1337 case CCL_IterateMultipleMap:
1338 {
8146262a 1339 Lisp_Object map, content, attrib, value;
e34b1164
KH
1340 int point, size, fin_ic;
1341
8146262a 1342 j = XINT (ccl_prog[ic++]); /* number of maps. */
e34b1164
KH
1343 fin_ic = ic + j;
1344 op = reg[rrr];
1345 if ((j > reg[RRR]) && (j >= 0))
1346 {
1347 ic += reg[RRR];
1348 i = reg[RRR];
1349 }
1350 else
1351 {
1352 reg[RRR] = -1;
1353 ic = fin_ic;
1354 break;
1355 }
1356
1357 for (;i < j;i++)
1358 {
1359
64ef2921 1360 size = ASIZE (Vcode_conversion_map_vector);
d387866a 1361 point = XINT (ccl_prog[ic++]);
e34b1164 1362 if (point >= size) continue;
64ef2921 1363 map = AREF (Vcode_conversion_map_vector, point);
8146262a 1364
78edd3b7 1365 /* Check map validity. */
8146262a 1366 if (!CONSP (map)) continue;
03699b14 1367 map = XCDR (map);
8146262a 1368 if (!VECTORP (map)) continue;
64ef2921 1369 size = ASIZE (map);
e34b1164 1370 if (size <= 1) continue;
6ae21908 1371
64ef2921 1372 content = AREF (map, 0);
6ae21908 1373
8146262a 1374 /* check map type,
6ae21908 1375 [STARTPOINT VAL1 VAL2 ...] or
78edd3b7 1376 [t ELEMENT STARTPOINT ENDPOINT] */
6ae21908
KH
1377 if (NUMBERP (content))
1378 {
1379 point = XUINT (content);
1380 point = op - point + 1;
1381 if (!((point >= 1) && (point < size))) continue;
64ef2921 1382 content = AREF (map, point);
6ae21908
KH
1383 }
1384 else if (EQ (content, Qt))
1385 {
1386 if (size != 4) continue;
64ef2921
SM
1387 if ((op >= XUINT (AREF (map, 2)))
1388 && (op < XUINT (AREF (map, 3))))
1389 content = AREF (map, 1);
6ae21908
KH
1390 else
1391 continue;
1392 }
177c0ea7 1393 else
6ae21908 1394 continue;
e34b1164
KH
1395
1396 if (NILP (content))
1397 continue;
1398 else if (NUMBERP (content))
1399 {
1400 reg[RRR] = i;
6ae21908 1401 reg[rrr] = XINT(content);
e34b1164
KH
1402 break;
1403 }
1404 else if (EQ (content, Qt) || EQ (content, Qlambda))
1405 {
1406 reg[RRR] = i;
1407 break;
1408 }
1409 else if (CONSP (content))
1410 {
03699b14
KR
1411 attrib = XCAR (content);
1412 value = XCDR (content);
e34b1164
KH
1413 if (!NUMBERP (attrib) || !NUMBERP (value))
1414 continue;
1415 reg[RRR] = i;
6ae21908 1416 reg[rrr] = XUINT (value);
e34b1164
KH
1417 break;
1418 }
54fa5bc1
KH
1419 else if (SYMBOLP (content))
1420 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
1421 else
1422 CCL_INVALID_CMD;
e34b1164
KH
1423 }
1424 if (i == j)
1425 reg[RRR] = -1;
1426 ic = fin_ic;
1427 }
1428 break;
177c0ea7 1429
8146262a 1430 case CCL_MapMultiple:
e34b1164 1431 {
8146262a
KH
1432 Lisp_Object map, content, attrib, value;
1433 int point, size, map_vector_size;
1434 int map_set_rest_length, fin_ic;
54fa5bc1
KH
1435 int current_ic = this_ic;
1436
1437 /* inhibit recursive call on MapMultiple. */
1438 if (stack_idx_of_map_multiple > 0)
1439 {
1440 if (stack_idx_of_map_multiple <= stack_idx)
1441 {
1442 stack_idx_of_map_multiple = 0;
1443 mapping_stack_pointer = mapping_stack;
1444 CCL_INVALID_CMD;
1445 }
1446 }
1447 else
1448 mapping_stack_pointer = mapping_stack;
1449 stack_idx_of_map_multiple = 0;
8146262a
KH
1450
1451 map_set_rest_length =
1452 XINT (ccl_prog[ic++]); /* number of maps and separators. */
1453 fin_ic = ic + map_set_rest_length;
54fa5bc1
KH
1454 op = reg[rrr];
1455
8146262a 1456 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
e34b1164
KH
1457 {
1458 ic += reg[RRR];
1459 i = reg[RRR];
8146262a 1460 map_set_rest_length -= i;
e34b1164
KH
1461 }
1462 else
1463 {
1464 ic = fin_ic;
1465 reg[RRR] = -1;
54fa5bc1 1466 mapping_stack_pointer = mapping_stack;
e34b1164
KH
1467 break;
1468 }
6ae21908 1469
54fa5bc1
KH
1470 if (mapping_stack_pointer <= (mapping_stack + 1))
1471 {
1472 /* Set up initial state. */
1473 mapping_stack_pointer = mapping_stack;
1474 PUSH_MAPPING_STACK (0, op);
1475 reg[RRR] = -1;
1476 }
1477 else
1478 {
1479 /* Recover after calling other ccl program. */
1480 int orig_op;
e34b1164 1481
54fa5bc1
KH
1482 POP_MAPPING_STACK (map_set_rest_length, orig_op);
1483 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1484 switch (op)
e34b1164 1485 {
54fa5bc1
KH
1486 case -1:
1487 /* Regard it as Qnil. */
1488 op = orig_op;
1489 i++;
1490 ic++;
1491 map_set_rest_length--;
1492 break;
1493 case -2:
1494 /* Regard it as Qt. */
e34b1164 1495 op = reg[rrr];
54fa5bc1
KH
1496 i++;
1497 ic++;
1498 map_set_rest_length--;
1499 break;
1500 case -3:
1501 /* Regard it as Qlambda. */
1502 op = orig_op;
1503 i += map_set_rest_length;
1504 ic += map_set_rest_length;
1505 map_set_rest_length = 0;
1506 break;
1507 default:
1508 /* Regard it as normal mapping. */
8146262a 1509 i += map_set_rest_length;
54fa5bc1 1510 ic += map_set_rest_length;
8146262a 1511 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
6ae21908
KH
1512 break;
1513 }
e34b1164 1514 }
64ef2921 1515 map_vector_size = ASIZE (Vcode_conversion_map_vector);
177c0ea7 1516
54fa5bc1
KH
1517 do {
1518 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
1519 {
1520 point = XINT(ccl_prog[ic]);
1521 if (point < 0)
1522 {
1523 /* +1 is for including separator. */
1524 point = -point + 1;
1525 if (mapping_stack_pointer
1526 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1527 CCL_INVALID_CMD;
1528 PUSH_MAPPING_STACK (map_set_rest_length - point,
1529 reg[rrr]);
1530 map_set_rest_length = point;
1531 reg[rrr] = op;
1532 continue;
1533 }
1534
1535 if (point >= map_vector_size) continue;
64ef2921 1536 map = AREF (Vcode_conversion_map_vector, point);
54fa5bc1 1537
78edd3b7 1538 /* Check map validity. */
54fa5bc1
KH
1539 if (!CONSP (map)) continue;
1540 map = XCDR (map);
1541 if (!VECTORP (map)) continue;
64ef2921 1542 size = ASIZE (map);
54fa5bc1
KH
1543 if (size <= 1) continue;
1544
64ef2921 1545 content = AREF (map, 0);
54fa5bc1
KH
1546
1547 /* check map type,
1548 [STARTPOINT VAL1 VAL2 ...] or
1549 [t ELEMENT STARTPOINT ENDPOINT] */
1550 if (NUMBERP (content))
1551 {
1552 point = XUINT (content);
1553 point = op - point + 1;
1554 if (!((point >= 1) && (point < size))) continue;
64ef2921 1555 content = AREF (map, point);
54fa5bc1
KH
1556 }
1557 else if (EQ (content, Qt))
1558 {
1559 if (size != 4) continue;
64ef2921
SM
1560 if ((op >= XUINT (AREF (map, 2))) &&
1561 (op < XUINT (AREF (map, 3))))
1562 content = AREF (map, 1);
54fa5bc1
KH
1563 else
1564 continue;
1565 }
177c0ea7 1566 else
54fa5bc1
KH
1567 continue;
1568
1569 if (NILP (content))
1570 continue;
1571
1572 reg[RRR] = i;
1573 if (NUMBERP (content))
1574 {
1575 op = XINT (content);
1576 i += map_set_rest_length - 1;
1577 ic += map_set_rest_length - 1;
1578 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1579 map_set_rest_length++;
1580 }
1581 else if (CONSP (content))
1582 {
1583 attrib = XCAR (content);
1584 value = XCDR (content);
1585 if (!NUMBERP (attrib) || !NUMBERP (value))
1586 continue;
1587 op = XUINT (value);
1588 i += map_set_rest_length - 1;
1589 ic += map_set_rest_length - 1;
1590 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1591 map_set_rest_length++;
1592 }
1593 else if (EQ (content, Qt))
1594 {
1595 op = reg[rrr];
1596 }
1597 else if (EQ (content, Qlambda))
1598 {
1599 i += map_set_rest_length;
1600 ic += map_set_rest_length;
1601 break;
1602 }
1603 else if (SYMBOLP (content))
1604 {
1605 if (mapping_stack_pointer
1606 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1607 CCL_INVALID_CMD;
1608 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1609 PUSH_MAPPING_STACK (map_set_rest_length, op);
1610 stack_idx_of_map_multiple = stack_idx + 1;
1611 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
1612 }
1613 else
1614 CCL_INVALID_CMD;
1615 }
1616 if (mapping_stack_pointer <= (mapping_stack + 1))
1617 break;
1618 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1619 i += map_set_rest_length;
1620 ic += map_set_rest_length;
1621 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1622 } while (1);
1623
e34b1164
KH
1624 ic = fin_ic;
1625 }
1626 reg[rrr] = op;
1627 break;
1628
8146262a 1629 case CCL_MapSingle:
e34b1164 1630 {
8146262a 1631 Lisp_Object map, attrib, value, content;
e34b1164 1632 int size, point;
8146262a 1633 j = XINT (ccl_prog[ic++]); /* map_id */
e34b1164 1634 op = reg[rrr];
64ef2921 1635 if (j >= ASIZE (Vcode_conversion_map_vector))
e34b1164
KH
1636 {
1637 reg[RRR] = -1;
1638 break;
1639 }
64ef2921 1640 map = AREF (Vcode_conversion_map_vector, j);
8146262a 1641 if (!CONSP (map))
e34b1164
KH
1642 {
1643 reg[RRR] = -1;
1644 break;
1645 }
03699b14 1646 map = XCDR (map);
8146262a 1647 if (!VECTORP (map))
e34b1164
KH
1648 {
1649 reg[RRR] = -1;
1650 break;
1651 }
64ef2921
SM
1652 size = ASIZE (map);
1653 point = XUINT (AREF (map, 0));
e34b1164
KH
1654 point = op - point + 1;
1655 reg[RRR] = 0;
1656 if ((size <= 1) ||
1657 (!((point >= 1) && (point < size))))
1658 reg[RRR] = -1;
1659 else
1660 {
b1cab202 1661 reg[RRR] = 0;
64ef2921 1662 content = AREF (map, point);
e34b1164
KH
1663 if (NILP (content))
1664 reg[RRR] = -1;
1665 else if (NUMBERP (content))
6ae21908 1666 reg[rrr] = XINT (content);
b1cab202 1667 else if (EQ (content, Qt));
e34b1164
KH
1668 else if (CONSP (content))
1669 {
03699b14
KR
1670 attrib = XCAR (content);
1671 value = XCDR (content);
e34b1164
KH
1672 if (!NUMBERP (attrib) || !NUMBERP (value))
1673 continue;
1674 reg[rrr] = XUINT(value);
1675 break;
1676 }
54fa5bc1
KH
1677 else if (SYMBOLP (content))
1678 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
e34b1164
KH
1679 else
1680 reg[RRR] = -1;
1681 }
1682 }
1683 break;
177c0ea7 1684
e34b1164
KH
1685 default:
1686 CCL_INVALID_CMD;
1687 }
1688 break;
1689
4ed46869
KH
1690 default:
1691 CCL_INVALID_CMD;
1692 }
1693 }
1694
1695 ccl_error_handler:
0fb94c7f
EZ
1696 /* The suppress_error member is set when e.g. a CCL-based coding
1697 system is used for terminal output. */
1698 if (!ccl->suppress_error && destination)
4ed46869
KH
1699 {
1700 /* We can insert an error message only if DESTINATION is
1701 specified and we still have a room to store the message
1702 there. */
1703 char msg[256];
1704 int msglen;
1705
12abd7d1
KH
1706 if (!dst)
1707 dst = destination;
1708
4ed46869
KH
1709 switch (ccl->status)
1710 {
1711 case CCL_STAT_INVALID_CMD:
1712 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
519bf146 1713 code & 0x1F, code, this_ic);
4ed46869
KH
1714#ifdef CCL_DEBUG
1715 {
1716 int i = ccl_backtrace_idx - 1;
1717 int j;
1718
1719 msglen = strlen (msg);
12abd7d1 1720 if (dst + msglen <= (dst_bytes ? dst_end : src))
4ed46869
KH
1721 {
1722 bcopy (msg, dst, msglen);
1723 dst += msglen;
1724 }
1725
1726 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
1727 {
1728 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
1729 if (ccl_backtrace_table[i] == 0)
1730 break;
1731 sprintf(msg, " %d", ccl_backtrace_table[i]);
1732 msglen = strlen (msg);
12abd7d1 1733 if (dst + msglen > (dst_bytes ? dst_end : src))
4ed46869
KH
1734 break;
1735 bcopy (msg, dst, msglen);
1736 dst += msglen;
1737 }
12abd7d1 1738 goto ccl_finish;
4ed46869 1739 }
4ed46869 1740#endif
12abd7d1 1741 break;
4ed46869
KH
1742
1743 case CCL_STAT_QUIT:
74215b55
KH
1744 if (! ccl->quit_silently)
1745 sprintf(msg, "\nCCL: Quited.");
4ed46869
KH
1746 break;
1747
1748 default:
6b61353c 1749 sprintf(msg, "\nCCL: Unknown error type (%d)", ccl->status);
4ed46869
KH
1750 }
1751
1752 msglen = strlen (msg);
c10842ea 1753 if (dst + msglen <= dst_end)
4ed46869 1754 {
c10842ea
KH
1755 for (i = 0; i < msglen; i++)
1756 *dst++ = msg[i];
4ed46869 1757 }
177c0ea7 1758
31165028
KH
1759 if (ccl->status == CCL_STAT_INVALID_CMD)
1760 {
8a1ae4dd
GM
1761#if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1762 results in an invalid multibyte sequence. */
1763
31165028
KH
1764 /* Copy the remaining source data. */
1765 int i = src_end - src;
1766 if (dst_bytes && (dst_end - dst) < i)
1767 i = dst_end - dst;
1768 bcopy (src, dst, i);
1769 src += i;
1770 dst += i;
8a1ae4dd
GM
1771#else
1772 /* Signal that we've consumed everything. */
1773 src = src_end;
1774#endif
31165028 1775 }
4ed46869
KH
1776 }
1777
1778 ccl_finish:
1779 ccl->ic = ic;
c13362d8
KH
1780 ccl->stack_idx = stack_idx;
1781 ccl->prog = ccl_prog;
c10842ea 1782 ccl->consumed = src - source;
4e3bb4f3
KH
1783 if (dst != NULL)
1784 ccl->produced = dst - destination;
1785 else
1786 ccl->produced = 0;
4ed46869
KH
1787}
1788
5232fa7b
KH
1789/* Resolve symbols in the specified CCL code (Lisp vector). This
1790 function converts symbols of code conversion maps and character
1791 translation tables embeded in the CCL code into their ID numbers.
1792
1793 The return value is a vector (CCL itself or a new vector in which
1794 all symbols are resolved), Qt if resolving of some symbol failed,
1795 or nil if CCL contains invalid data. */
1796
1797static Lisp_Object
1798resolve_symbol_ccl_program (ccl)
1799 Lisp_Object ccl;
1800{
1801 int i, veclen, unresolved = 0;
1802 Lisp_Object result, contents, val;
1803
1804 result = ccl;
64ef2921 1805 veclen = ASIZE (result);
5232fa7b
KH
1806
1807 for (i = 0; i < veclen; i++)
1808 {
64ef2921 1809 contents = AREF (result, i);
5232fa7b
KH
1810 if (INTEGERP (contents))
1811 continue;
1812 else if (CONSP (contents)
03699b14
KR
1813 && SYMBOLP (XCAR (contents))
1814 && SYMBOLP (XCDR (contents)))
5232fa7b
KH
1815 {
1816 /* This is the new style for embedding symbols. The form is
1817 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1818 an index number. */
1819
1820 if (EQ (result, ccl))
1821 result = Fcopy_sequence (ccl);
1822
03699b14 1823 val = Fget (XCAR (contents), XCDR (contents));
5232fa7b 1824 if (NATNUMP (val))
3ae565b3 1825 ASET (result, i, val);
5232fa7b
KH
1826 else
1827 unresolved = 1;
1828 continue;
1829 }
1830 else if (SYMBOLP (contents))
1831 {
1832 /* This is the old style for embedding symbols. This style
1833 may lead to a bug if, for instance, a translation table
1834 and a code conversion map have the same name. */
1835 if (EQ (result, ccl))
1836 result = Fcopy_sequence (ccl);
1837
1838 val = Fget (contents, Qtranslation_table_id);
1839 if (NATNUMP (val))
3ae565b3 1840 ASET (result, i, val);
5232fa7b
KH
1841 else
1842 {
1843 val = Fget (contents, Qcode_conversion_map_id);
1844 if (NATNUMP (val))
3ae565b3 1845 ASET (result, i, val);
5232fa7b
KH
1846 else
1847 {
1848 val = Fget (contents, Qccl_program_idx);
1849 if (NATNUMP (val))
3ae565b3 1850 ASET (result, i, val);
5232fa7b
KH
1851 else
1852 unresolved = 1;
1853 }
1854 }
1855 continue;
1856 }
1857 return Qnil;
1858 }
1859
1860 return (unresolved ? Qt : result);
1861}
1862
1863/* Return the compiled code (vector) of CCL program CCL_PROG.
1864 CCL_PROG is a name (symbol) of the program or already compiled
1865 code. If necessary, resolve symbols in the compiled code to index
1866 numbers. If we failed to get the compiled code or to resolve
1867 symbols, return Qnil. */
1868
1869static Lisp_Object
2a69c66e 1870ccl_get_compiled_code (ccl_prog, idx)
5232fa7b 1871 Lisp_Object ccl_prog;
2a69c66e 1872 int *idx;
5232fa7b
KH
1873{
1874 Lisp_Object val, slot;
1875
1876 if (VECTORP (ccl_prog))
1877 {
1878 val = resolve_symbol_ccl_program (ccl_prog);
2a69c66e 1879 *idx = -1;
5232fa7b
KH
1880 return (VECTORP (val) ? val : Qnil);
1881 }
1882 if (!SYMBOLP (ccl_prog))
1883 return Qnil;
1884
1885 val = Fget (ccl_prog, Qccl_program_idx);
1886 if (! NATNUMP (val)
64ef2921 1887 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 1888 return Qnil;
64ef2921 1889 slot = AREF (Vccl_program_table, XINT (val));
5232fa7b 1890 if (! VECTORP (slot)
2a69c66e 1891 || ASIZE (slot) != 4
64ef2921 1892 || ! VECTORP (AREF (slot, 1)))
5232fa7b 1893 return Qnil;
2a69c66e 1894 *idx = XINT (val);
64ef2921 1895 if (NILP (AREF (slot, 2)))
5232fa7b 1896 {
64ef2921 1897 val = resolve_symbol_ccl_program (AREF (slot, 1));
5232fa7b
KH
1898 if (! VECTORP (val))
1899 return Qnil;
3ae565b3
SM
1900 ASET (slot, 1, val);
1901 ASET (slot, 2, Qt);
5232fa7b 1902 }
64ef2921 1903 return AREF (slot, 1);
5232fa7b
KH
1904}
1905
4ed46869 1906/* Setup fields of the structure pointed by CCL appropriately for the
5232fa7b
KH
1907 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
1908 of the CCL program or the already compiled code (vector).
1909 Return 0 if we succeed this setup, else return -1.
1910
1911 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
1912int
1913setup_ccl_program (ccl, ccl_prog)
4ed46869 1914 struct ccl_program *ccl;
5232fa7b 1915 Lisp_Object ccl_prog;
4ed46869
KH
1916{
1917 int i;
1918
5232fa7b 1919 if (! NILP (ccl_prog))
ad3d1b1d 1920 {
5232fa7b 1921 struct Lisp_Vector *vp;
ad3d1b1d 1922
2a69c66e 1923 ccl_prog = ccl_get_compiled_code (ccl_prog, &ccl->idx);
5232fa7b
KH
1924 if (! VECTORP (ccl_prog))
1925 return -1;
1926 vp = XVECTOR (ccl_prog);
ad3d1b1d
KH
1927 ccl->size = vp->size;
1928 ccl->prog = vp->contents;
1929 ccl->eof_ic = XINT (vp->contents[CCL_HEADER_EOF]);
1930 ccl->buf_magnification = XINT (vp->contents[CCL_HEADER_BUF_MAG]);
2a69c66e
KH
1931 if (ccl->idx >= 0)
1932 {
1933 Lisp_Object slot;
1934
1935 slot = AREF (Vccl_program_table, ccl->idx);
1936 ASET (slot, 3, Qnil);
1937 }
ad3d1b1d 1938 }
4ed46869 1939 ccl->ic = CCL_HEADER_MAIN;
4ed46869
KH
1940 for (i = 0; i < 8; i++)
1941 ccl->reg[i] = 0;
1942 ccl->last_block = 0;
e34b1164 1943 ccl->private_state = 0;
4ed46869 1944 ccl->status = 0;
c13362d8 1945 ccl->stack_idx = 0;
ae08ba36 1946 ccl->suppress_error = 0;
fd40a25f 1947 ccl->eight_bit_control = 0;
74215b55 1948 ccl->quit_silently = 0;
5232fa7b 1949 return 0;
4ed46869
KH
1950}
1951
2a69c66e
KH
1952
1953/* Check if CCL is updated or not. If not, re-setup members of CCL. */
1954
1955int
1956check_ccl_update (ccl)
1957 struct ccl_program *ccl;
1958{
2a69c66e
KH
1959 Lisp_Object slot, ccl_prog;
1960
1961 if (ccl->idx < 0)
1962 return 0;
1963 slot = AREF (Vccl_program_table, ccl->idx);
1964 if (NILP (AREF (slot, 3)))
1965 return 0;
1966 ccl_prog = ccl_get_compiled_code (AREF (slot, 0), &ccl->idx);
1967 if (! VECTORP (ccl_prog))
1968 return -1;
1969 ccl->size = ASIZE (ccl_prog);
1970 ccl->prog = XVECTOR (ccl_prog)->contents;
1971 ccl->eof_ic = XINT (AREF (ccl_prog, CCL_HEADER_EOF));
1972 ccl->buf_magnification = XINT (AREF (ccl_prog, CCL_HEADER_BUF_MAG));
1973 ASET (slot, 3, Qnil);
1974 return 0;
1975}
1976
1977
5232fa7b 1978DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
fdb82f93 1979 doc: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
78edd3b7 1980See the documentation of `define-ccl-program' for the detail of CCL program. */)
fdb82f93 1981 (object)
5232fa7b 1982 Lisp_Object object;
6ae21908 1983{
5232fa7b 1984 Lisp_Object val;
6ae21908 1985
5232fa7b 1986 if (VECTORP (object))
6ae21908 1987 {
5232fa7b
KH
1988 val = resolve_symbol_ccl_program (object);
1989 return (VECTORP (val) ? Qt : Qnil);
6ae21908 1990 }
5232fa7b
KH
1991 if (!SYMBOLP (object))
1992 return Qnil;
6ae21908 1993
5232fa7b
KH
1994 val = Fget (object, Qccl_program_idx);
1995 return ((! NATNUMP (val)
64ef2921 1996 || XINT (val) >= ASIZE (Vccl_program_table))
5232fa7b 1997 ? Qnil : Qt);
6ae21908
KH
1998}
1999
4ed46869 2000DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
fdb82f93
PJ
2001 doc: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
2002
2003CCL-PROGRAM is a CCL program name (symbol)
2004or compiled code generated by `ccl-compile' (for backward compatibility.
2005In the latter case, the execution overhead is bigger than in the former).
2006No I/O commands should appear in CCL-PROGRAM.
2007
2008REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
2009for the Nth register.
2010
2011As side effect, each element of REGISTERS holds the value of
2012the corresponding register after the execution.
2013
2014See the documentation of `define-ccl-program' for a definition of CCL
2015programs. */)
2016 (ccl_prog, reg)
4ed46869
KH
2017 Lisp_Object ccl_prog, reg;
2018{
2019 struct ccl_program ccl;
2020 int i;
2021
5232fa7b
KH
2022 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2023 error ("Invalid CCL program");
6ae21908 2024
b7826503 2025 CHECK_VECTOR (reg);
64ef2921 2026 if (ASIZE (reg) != 8)
d7e1fe1f 2027 error ("Length of vector REGISTERS is not 8");
4ed46869 2028
4ed46869 2029 for (i = 0; i < 8; i++)
64ef2921
SM
2030 ccl.reg[i] = (INTEGERP (AREF (reg, i))
2031 ? XINT (AREF (reg, i))
4ed46869
KH
2032 : 0);
2033
bda731af 2034 ccl_driver (&ccl, NULL, NULL, 0, 0, Qnil);
4ed46869
KH
2035 QUIT;
2036 if (ccl.status != CCL_STAT_SUCCESS)
2037 error ("Error in CCL program at %dth code", ccl.ic);
2038
2039 for (i = 0; i < 8; i++)
3ae565b3 2040 ASET (reg, i, make_number (ccl.reg[i]));
4ed46869
KH
2041 return Qnil;
2042}
2043
2044DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
39a68837 2045 3, 5, 0,
fdb82f93
PJ
2046 doc: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2047
2a0bd758 2048CCL-PROGRAM is a symbol registered by `register-ccl-program',
fdb82f93
PJ
2049or a compiled code generated by `ccl-compile' (for backward compatibility,
2050in this case, the execution is slower).
2051
2052Read buffer is set to STRING, and write buffer is allocated automatically.
2053
2054STATUS is a vector of [R0 R1 ... R7 IC], where
2055 R0..R7 are initial values of corresponding registers,
2056 IC is the instruction counter specifying from where to start the program.
2057If R0..R7 are nil, they are initialized to 0.
2058If IC is nil, it is initialized to head of the CCL program.
2059
2060If optional 4th arg CONTINUE is non-nil, keep IC on read operation
51e4f4a8 2061when read buffer is exhausted, else, IC is always set to the end of
fdb82f93
PJ
2062CCL-PROGRAM on exit.
2063
2064It returns the contents of write buffer as a string,
2065 and as side effect, STATUS is updated.
2066If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2067is a unibyte string. By default it is a multibyte string.
2068
2a0bd758
JB
2069See the documentation of `define-ccl-program' for the detail of CCL program.
2070usage: (ccl-execute-on-string CCL-PROGRAM STATUS STRING &optional CONTINUE UNIBYTE-P) */)
fdb82f93 2071 (ccl_prog, status, str, contin, unibyte_p)
39a68837 2072 Lisp_Object ccl_prog, status, str, contin, unibyte_p;
4ed46869
KH
2073{
2074 Lisp_Object val;
2075 struct ccl_program ccl;
c10842ea 2076 int i;
4ed46869 2077 int outbufsize;
c10842ea
KH
2078 unsigned char *outbuf, *outp;
2079 int str_chars, str_bytes;
2080#define CCL_EXECUTE_BUF_SIZE 1024
2081 int source[CCL_EXECUTE_BUF_SIZE], destination[CCL_EXECUTE_BUF_SIZE];
2082 int consumed_chars, consumed_bytes, produced_chars;
6ae21908 2083
5232fa7b
KH
2084 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2085 error ("Invalid CCL program");
4ed46869 2086
b7826503 2087 CHECK_VECTOR (status);
64ef2921 2088 if (ASIZE (status) != 9)
5232fa7b 2089 error ("Length of vector STATUS is not 9");
b7826503 2090 CHECK_STRING (str);
4ed46869 2091
8f924df7
KH
2092 str_chars = SCHARS (str);
2093 str_bytes = SBYTES (str);
5232fa7b 2094
4ed46869
KH
2095 for (i = 0; i < 8; i++)
2096 {
64ef2921 2097 if (NILP (AREF (status, i)))
3ae565b3 2098 ASET (status, i, make_number (0));
64ef2921
SM
2099 if (INTEGERP (AREF (status, i)))
2100 ccl.reg[i] = XINT (AREF (status, i));
4ed46869 2101 }
64ef2921 2102 if (INTEGERP (AREF (status, i)))
4ed46869 2103 {
64ef2921 2104 i = XFASTINT (AREF (status, 8));
4ed46869
KH
2105 if (ccl.ic < i && i < ccl.size)
2106 ccl.ic = i;
2107 }
4ed46869 2108
c10842ea
KH
2109 outbufsize = (ccl.buf_magnification
2110 ? str_bytes * ccl.buf_magnification + 256
2111 : str_bytes + 256);
2112 outp = outbuf = (unsigned char *) xmalloc (outbufsize);
2113
2114 consumed_chars = consumed_bytes = 0;
2115 produced_chars = 0;
99e293b5 2116 while (1)
a3d8fcf2 2117 {
8f924df7
KH
2118 const unsigned char *p = SDATA (str) + consumed_bytes;
2119 const unsigned char *endp = SDATA (str) + str_bytes;
c10842ea
KH
2120 int i = 0;
2121 int *src, src_size;
2122
2123 if (endp - p == str_chars - consumed_chars)
2124 while (i < CCL_EXECUTE_BUF_SIZE && p < endp)
2125 source[i++] = *p++;
2126 else
2127 while (i < CCL_EXECUTE_BUF_SIZE && p < endp)
2128 source[i++] = STRING_CHAR_ADVANCE (p);
2129 consumed_chars += i;
8f924df7 2130 consumed_bytes = p - SDATA (str);
c10842ea
KH
2131
2132 if (consumed_bytes == str_bytes)
2133 ccl.last_block = NILP (contin);
2134 src = source;
2135 src_size = i;
2136 while (1)
2137 {
bda731af
KH
2138 ccl_driver (&ccl, src, destination, src_size, CCL_EXECUTE_BUF_SIZE,
2139 Qnil);
c10842ea
KH
2140 produced_chars += ccl.produced;
2141 if (NILP (unibyte_p))
2142 {
2143 if (outp - outbuf + MAX_MULTIBYTE_LENGTH * ccl.produced
2144 > outbufsize)
2145 {
2146 int offset = outp - outbuf;
2147 outbufsize += MAX_MULTIBYTE_LENGTH * ccl.produced;
2148 outbuf = (unsigned char *) xrealloc (outbuf, outbufsize);
2149 outp = outbuf + offset;
2150 }
2151 for (i = 0; i < ccl.produced; i++)
2152 CHAR_STRING_ADVANCE (destination[i], outp);
2153 }
2154 else
2155 {
2156 if (outp - outbuf + ccl.produced > outbufsize)
2157 {
2158 int offset = outp - outbuf;
2159 outbufsize += ccl.produced;
2160 outbuf = (unsigned char *) xrealloc (outbuf, outbufsize);
2161 outp = outbuf + offset;
2162 }
2163 for (i = 0; i < ccl.produced; i++)
2164 *outp++ = destination[i];
2165 }
2166 src += ccl.consumed;
2167 src_size -= ccl.consumed;
99e293b5
KH
2168 if (ccl.status != CCL_STAT_SUSPEND_BY_DST)
2169 break;
c10842ea 2170 }
a3d8fcf2 2171
edeef421
KH
2172 if (ccl.status != CCL_STAT_SUSPEND_BY_SRC
2173 || str_chars == consumed_chars)
c10842ea 2174 break;
a3d8fcf2 2175 }
a3d8fcf2 2176
edeef421 2177 if (ccl.status == CCL_STAT_INVALID_CMD)
4ed46869 2178 error ("Error in CCL program at %dth code", ccl.ic);
edeef421
KH
2179 if (ccl.status == CCL_STAT_QUIT)
2180 error ("CCL program interrupted at %dth code", ccl.ic);
4ed46869 2181
c10842ea 2182 for (i = 0; i < 8; i++)
c6589bbd
KH
2183 ASET (status, i, make_number (ccl.reg[i]));
2184 ASET (status, 8, make_number (ccl.ic));
c10842ea
KH
2185
2186 if (NILP (unibyte_p))
2187 val = make_multibyte_string ((char *) outbuf, produced_chars,
2188 outp - outbuf);
2189 else
2190 val = make_unibyte_string ((char *) outbuf, produced_chars);
2191 xfree (outbuf);
4ed46869
KH
2192
2193 return val;
2194}
2195
2196DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
2197 2, 2, 0,
2a0bd758
JB
2198 doc: /* Register CCL program CCL-PROG as NAME in `ccl-program-table'.
2199CCL-PROG should be a compiled CCL program (vector), or nil.
fdb82f93
PJ
2200If it is nil, just reserve NAME as a CCL program name.
2201Return index number of the registered CCL program. */)
2202 (name, ccl_prog)
4ed46869
KH
2203 Lisp_Object name, ccl_prog;
2204{
64ef2921 2205 int len = ASIZE (Vccl_program_table);
5232fa7b
KH
2206 int idx;
2207 Lisp_Object resolved;
4ed46869 2208
b7826503 2209 CHECK_SYMBOL (name);
5232fa7b 2210 resolved = Qnil;
4ed46869 2211 if (!NILP (ccl_prog))
6ae21908 2212 {
b7826503 2213 CHECK_VECTOR (ccl_prog);
5232fa7b 2214 resolved = resolve_symbol_ccl_program (ccl_prog);
4d247a1f
KH
2215 if (NILP (resolved))
2216 error ("Error in CCL program");
2217 if (VECTORP (resolved))
5232fa7b
KH
2218 {
2219 ccl_prog = resolved;
2220 resolved = Qt;
2221 }
4d247a1f
KH
2222 else
2223 resolved = Qnil;
6ae21908 2224 }
5232fa7b
KH
2225
2226 for (idx = 0; idx < len; idx++)
4ed46869 2227 {
5232fa7b 2228 Lisp_Object slot;
4ed46869 2229
64ef2921 2230 slot = AREF (Vccl_program_table, idx);
5232fa7b 2231 if (!VECTORP (slot))
78edd3b7 2232 /* This is the first unused slot. Register NAME here. */
4ed46869
KH
2233 break;
2234
64ef2921 2235 if (EQ (name, AREF (slot, 0)))
4ed46869 2236 {
5232fa7b 2237 /* Update this slot. */
2a69c66e
KH
2238 ASET (slot, 1, ccl_prog);
2239 ASET (slot, 2, resolved);
2240 ASET (slot, 3, Qt);
5232fa7b 2241 return make_number (idx);
4ed46869
KH
2242 }
2243 }
2244
5232fa7b 2245 if (idx == len)
1d153206
EZ
2246 /* Extend the table. */
2247 Vccl_program_table = larger_vector (Vccl_program_table, len * 2, Qnil);
4ed46869 2248
5232fa7b
KH
2249 {
2250 Lisp_Object elt;
2251
2a69c66e
KH
2252 elt = Fmake_vector (make_number (4), Qnil);
2253 ASET (elt, 0, name);
2254 ASET (elt, 1, ccl_prog);
2255 ASET (elt, 2, resolved);
2256 ASET (elt, 3, Qt);
2257 ASET (Vccl_program_table, idx, elt);
5232fa7b
KH
2258 }
2259
2260 Fput (name, Qccl_program_idx, make_number (idx));
2261 return make_number (idx);
4ed46869
KH
2262}
2263
8146262a
KH
2264/* Register code conversion map.
2265 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
d617f6df
DL
2266 The first element is the start code point.
2267 The other elements are mapped numbers.
8146262a
KH
2268 Symbol t means to map to an original number before mapping.
2269 Symbol nil means that the corresponding element is empty.
d617f6df 2270 Symbol lambda means to terminate mapping here.
e34b1164
KH
2271*/
2272
8146262a
KH
2273DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
2274 Sregister_code_conversion_map,
e34b1164 2275 2, 2, 0,
fdb82f93
PJ
2276 doc: /* Register SYMBOL as code conversion map MAP.
2277Return index number of the registered map. */)
2278 (symbol, map)
8146262a 2279 Lisp_Object symbol, map;
e34b1164 2280{
64ef2921 2281 int len = ASIZE (Vcode_conversion_map_vector);
e34b1164
KH
2282 int i;
2283 Lisp_Object index;
2284
b7826503
PJ
2285 CHECK_SYMBOL (symbol);
2286 CHECK_VECTOR (map);
177c0ea7 2287
e34b1164
KH
2288 for (i = 0; i < len; i++)
2289 {
64ef2921 2290 Lisp_Object slot = AREF (Vcode_conversion_map_vector, i);
e34b1164
KH
2291
2292 if (!CONSP (slot))
2293 break;
2294
03699b14 2295 if (EQ (symbol, XCAR (slot)))
e34b1164
KH
2296 {
2297 index = make_number (i);
f3fbd155 2298 XSETCDR (slot, map);
8146262a
KH
2299 Fput (symbol, Qcode_conversion_map, map);
2300 Fput (symbol, Qcode_conversion_map_id, index);
e34b1164
KH
2301 return index;
2302 }
2303 }
2304
2305 if (i == len)
2a1aad57
EZ
2306 Vcode_conversion_map_vector = larger_vector (Vcode_conversion_map_vector,
2307 len * 2, Qnil);
e34b1164
KH
2308
2309 index = make_number (i);
8146262a
KH
2310 Fput (symbol, Qcode_conversion_map, map);
2311 Fput (symbol, Qcode_conversion_map_id, index);
3ae565b3 2312 ASET (Vcode_conversion_map_vector, i, Fcons (symbol, map));
e34b1164
KH
2313 return index;
2314}
2315
2316
dfcf069d 2317void
4ed46869
KH
2318syms_of_ccl ()
2319{
2320 staticpro (&Vccl_program_table);
6703ac4f 2321 Vccl_program_table = Fmake_vector (make_number (32), Qnil);
4ed46869 2322
d67b4f80 2323 Qccl = intern_c_string ("ccl");
c10842ea
KH
2324 staticpro (&Qccl);
2325
d67b4f80 2326 Qcclp = intern_c_string ("cclp");
c10842ea
KH
2327 staticpro (&Qcclp);
2328
d67b4f80 2329 Qccl_program = intern_c_string ("ccl-program");
6ae21908
KH
2330 staticpro (&Qccl_program);
2331
d67b4f80 2332 Qccl_program_idx = intern_c_string ("ccl-program-idx");
6ae21908 2333 staticpro (&Qccl_program_idx);
e34b1164 2334
d67b4f80 2335 Qcode_conversion_map = intern_c_string ("code-conversion-map");
8146262a 2336 staticpro (&Qcode_conversion_map);
6ae21908 2337
d67b4f80 2338 Qcode_conversion_map_id = intern_c_string ("code-conversion-map-id");
8146262a 2339 staticpro (&Qcode_conversion_map_id);
6ae21908 2340
8146262a 2341 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector,
fdb82f93 2342 doc: /* Vector of code conversion maps. */);
8146262a 2343 Vcode_conversion_map_vector = Fmake_vector (make_number (16), Qnil);
e34b1164 2344
4ed46869 2345 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist,
fdb82f93
PJ
2346 doc: /* Alist of fontname patterns vs corresponding CCL program.
2347Each element looks like (REGEXP . CCL-CODE),
2348 where CCL-CODE is a compiled CCL program.
2349When a font whose name matches REGEXP is used for displaying a character,
2350 CCL-CODE is executed to calculate the code point in the font
2351 from the charset number and position code(s) of the character which are set
2352 in CCL registers R0, R1, and R2 before the execution.
2353The code point in the font is set in CCL registers R1 and R2
2354 when the execution terminated.
2355 If the font is single-byte font, the register R2 is not used. */);
4ed46869
KH
2356 Vfont_ccl_encoder_alist = Qnil;
2357
d80dc57e
DL
2358 DEFVAR_LISP ("translation-hash-table-vector", &Vtranslation_hash_table_vector,
2359 doc: /* Vector containing all translation hash tables ever defined.
2360Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
2361to `define-translation-hash-table'. The vector is indexed by the table id
2362used by CCL. */);
2363 Vtranslation_hash_table_vector = Qnil;
2364
5232fa7b 2365 defsubr (&Sccl_program_p);
4ed46869
KH
2366 defsubr (&Sccl_execute);
2367 defsubr (&Sccl_execute_on_string);
2368 defsubr (&Sregister_ccl_program);
8146262a 2369 defsubr (&Sregister_code_conversion_map);
4ed46869 2370}
6b61353c
KH
2371
2372/* arch-tag: bb9a37be-68ce-4576-8d3d-15d750e4a860
2373 (do not change this comment) */