(scm_c_make_socket_address): Pass address_size pointer
[bpt/guile.git] / libguile / numbers.c
CommitLineData
7d92d3d0 1/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005 Free Software Foundation, Inc.
ba74ef4e
MV
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
f81e080b 6 *
73be1d9e
MV
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
0f2d19dd 11 *
73be1d9e
MV
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
0f2d19dd 16 *
73be1d9e
MV
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
92205699 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
73be1d9e 20 */
1bbd0b84 21
0f2d19dd 22\f
ca46fb90
RB
23/* General assumptions:
24 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
25 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
26 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
27 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
f92e85f7 28 * All objects satisfying SCM_FRACTIONP are never an integer.
ca46fb90
RB
29 */
30
31/* TODO:
32
33 - see if special casing bignums and reals in integer-exponent when
34 possible (to use mpz_pow and mpf_pow_ui) is faster.
35
36 - look in to better short-circuiting of common cases in
37 integer-expt and elsewhere.
38
39 - see if direct mpz operations can help in ash and elsewhere.
40
41 */
0f2d19dd 42
fa605590
KR
43/* tell glibc (2.3) to give prototype for C99 trunc() */
44#define _GNU_SOURCE
45
ee33d62a
RB
46#if HAVE_CONFIG_H
47# include <config.h>
48#endif
49
0f2d19dd 50#include <math.h>
3c9a524f 51#include <ctype.h>
fc194577 52#include <string.h>
f92e85f7 53
a0599745 54#include "libguile/_scm.h"
a0599745
MD
55#include "libguile/feature.h"
56#include "libguile/ports.h"
57#include "libguile/root.h"
58#include "libguile/smob.h"
59#include "libguile/strings.h"
a0599745
MD
60
61#include "libguile/validate.h"
62#include "libguile/numbers.h"
1be6b49c 63#include "libguile/deprecation.h"
f4c627b3 64
f92e85f7
MV
65#include "libguile/eq.h"
66
55f26379
MV
67#include "libguile/discouraged.h"
68
0f2d19dd 69\f
f4c627b3 70
ca46fb90
RB
71/*
72 Wonder if this might be faster for some of our code? A switch on
73 the numtag would jump directly to the right case, and the
74 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
75
76 #define SCM_I_NUMTAG_NOTNUM 0
77 #define SCM_I_NUMTAG_INUM 1
78 #define SCM_I_NUMTAG_BIG scm_tc16_big
79 #define SCM_I_NUMTAG_REAL scm_tc16_real
80 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
81 #define SCM_I_NUMTAG(x) \
e11e83f3 82 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
ca46fb90 83 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
534c55a9 84 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
ca46fb90
RB
85 : SCM_I_NUMTAG_NOTNUM)))
86*/
f92e85f7 87/* the macro above will not work as is with fractions */
f4c627b3
DH
88
89
34d19ef6 90#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
09fb7599 91
56e55ac7 92/* FLOBUFLEN is the maximum number of characters neccessary for the
3a9809df
DH
93 * printed or scm_string representation of an inexact number.
94 */
0b799eea 95#define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
3a9809df 96
7351e207
MV
97#if defined (SCO)
98#if ! defined (HAVE_ISNAN)
99#define HAVE_ISNAN
100static int
101isnan (double x)
102{
103 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
104}
0f2d19dd 105#endif
7351e207
MV
106#if ! defined (HAVE_ISINF)
107#define HAVE_ISINF
108static int
109isinf (double x)
110{
111 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
112}
0f2d19dd 113
7351e207 114#endif
e6f3ef58
MD
115#endif
116
b127c712 117
f8a8200b
KR
118/* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
119 an explicit check. In some future gmp (don't know what version number),
120 mpz_cmp_d is supposed to do this itself. */
121#if 1
b127c712
KR
122#define xmpz_cmp_d(z, d) \
123 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
124#else
125#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
126#endif
127
a98ce907
KR
128/* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
129 isinf. It does have finite and isnan though, hence the use of those.
130 fpclass would be a possibility on that system too. */
f92e85f7
MV
131static int
132xisinf (double x)
133{
134#if defined (HAVE_ISINF)
135 return isinf (x);
136#elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
137 return (! (finite (x) || isnan (x)));
138#else
139 return 0;
140#endif
141}
142
143static int
144xisnan (double x)
145{
146#if defined (HAVE_ISNAN)
147 return isnan (x);
148#else
149 return 0;
150#endif
151}
152
0f2d19dd
JB
153\f
154
713a4259 155static mpz_t z_negative_one;
ac0c002c
DH
156
157\f
158
570b6821 159SCM_C_INLINE_KEYWORD SCM
ca46fb90
RB
160scm_i_mkbig ()
161{
162 /* Return a newly created bignum. */
163 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
164 mpz_init (SCM_I_BIG_MPZ (z));
165 return z;
166}
167
c71b0706
MV
168SCM_C_INLINE_KEYWORD SCM
169scm_i_long2big (long x)
170{
171 /* Return a newly created bignum initialized to X. */
172 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
173 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
174 return z;
175}
176
177SCM_C_INLINE_KEYWORD SCM
178scm_i_ulong2big (unsigned long x)
179{
180 /* Return a newly created bignum initialized to X. */
181 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
182 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
183 return z;
184}
185
23c3b605 186SCM_C_INLINE_KEYWORD SCM
ca46fb90
RB
187scm_i_clonebig (SCM src_big, int same_sign_p)
188{
189 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
190 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
191 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
0aacf84e
MD
192 if (!same_sign_p)
193 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
ca46fb90
RB
194 return z;
195}
196
570b6821 197SCM_C_INLINE_KEYWORD int
ca46fb90
RB
198scm_i_bigcmp (SCM x, SCM y)
199{
200 /* Return neg if x < y, pos if x > y, and 0 if x == y */
201 /* presume we already know x and y are bignums */
202 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
203 scm_remember_upto_here_2 (x, y);
204 return result;
205}
206
570b6821 207SCM_C_INLINE_KEYWORD SCM
ca46fb90
RB
208scm_i_dbl2big (double d)
209{
210 /* results are only defined if d is an integer */
211 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
212 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
213 return z;
214}
215
f92e85f7
MV
216/* Convert a integer in double representation to a SCM number. */
217
218SCM_C_INLINE_KEYWORD SCM
219scm_i_dbl2num (double u)
220{
221 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
222 powers of 2, so there's no rounding when making "double" values
223 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
224 get rounded on a 64-bit machine, hence the "+1".
225
226 The use of floor() to force to an integer value ensures we get a
227 "numerically closest" value without depending on how a
228 double->long cast or how mpz_set_d will round. For reference,
229 double->long probably follows the hardware rounding mode,
230 mpz_set_d truncates towards zero. */
231
232 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
233 representable as a double? */
234
235 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
236 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
d956fa6f 237 return SCM_I_MAKINUM ((long) u);
f92e85f7
MV
238 else
239 return scm_i_dbl2big (u);
240}
241
089c9a59
KR
242/* scm_i_big2dbl() rounds to the closest representable double, in accordance
243 with R5RS exact->inexact.
244
245 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
f8a8200b
KR
246 (ie. truncate towards zero), then adjust to get the closest double by
247 examining the next lower bit and adding 1 (to the absolute value) if
248 necessary.
249
250 Bignums exactly half way between representable doubles are rounded to the
251 next higher absolute value (ie. away from zero). This seems like an
252 adequate interpretation of R5RS "numerically closest", and it's easier
253 and faster than a full "nearest-even" style.
254
255 The bit test must be done on the absolute value of the mpz_t, which means
256 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
257 negatives as twos complement.
258
259 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
260 following the hardware rounding mode, but applied to the absolute value
261 of the mpz_t operand. This is not what we want so we put the high
262 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
263 mpz_get_d is supposed to always truncate towards zero.
264
265 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
266 is a slowdown. It'd be faster to pick out the relevant high bits with
267 mpz_getlimbn if we could be bothered coding that, and if the new
268 truncating gmp doesn't come out. */
089c9a59
KR
269
270double
ca46fb90
RB
271scm_i_big2dbl (SCM b)
272{
089c9a59
KR
273 double result;
274 size_t bits;
275
276 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
277
f8a8200b 278#if 1
089c9a59 279 {
f8a8200b 280 /* Current GMP, eg. 4.1.3, force truncation towards zero */
089c9a59
KR
281 mpz_t tmp;
282 if (bits > DBL_MANT_DIG)
283 {
284 size_t shift = bits - DBL_MANT_DIG;
285 mpz_init2 (tmp, DBL_MANT_DIG);
286 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
287 result = ldexp (mpz_get_d (tmp), shift);
288 mpz_clear (tmp);
289 }
290 else
291 {
292 result = mpz_get_d (SCM_I_BIG_MPZ (b));
293 }
294 }
295#else
f8a8200b 296 /* Future GMP */
089c9a59
KR
297 result = mpz_get_d (SCM_I_BIG_MPZ (b));
298#endif
299
300 if (bits > DBL_MANT_DIG)
301 {
302 unsigned long pos = bits - DBL_MANT_DIG - 1;
303 /* test bit number "pos" in absolute value */
304 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
305 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
306 {
307 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
308 }
309 }
310
ca46fb90
RB
311 scm_remember_upto_here_1 (b);
312 return result;
313}
314
570b6821 315SCM_C_INLINE_KEYWORD SCM
ca46fb90
RB
316scm_i_normbig (SCM b)
317{
318 /* convert a big back to a fixnum if it'll fit */
319 /* presume b is a bignum */
320 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
321 {
322 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
323 if (SCM_FIXABLE (val))
d956fa6f 324 b = SCM_I_MAKINUM (val);
ca46fb90
RB
325 }
326 return b;
327}
f872b822 328
f92e85f7
MV
329static SCM_C_INLINE_KEYWORD SCM
330scm_i_mpz2num (mpz_t b)
331{
332 /* convert a mpz number to a SCM number. */
333 if (mpz_fits_slong_p (b))
334 {
335 long val = mpz_get_si (b);
336 if (SCM_FIXABLE (val))
d956fa6f 337 return SCM_I_MAKINUM (val);
f92e85f7
MV
338 }
339
340 {
341 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
342 mpz_init_set (SCM_I_BIG_MPZ (z), b);
343 return z;
344 }
345}
346
347/* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
348static SCM scm_divide2real (SCM x, SCM y);
349
cba42c93
MV
350static SCM
351scm_i_make_ratio (SCM numerator, SCM denominator)
c60e130c 352#define FUNC_NAME "make-ratio"
f92e85f7 353{
c60e130c
MV
354 /* First make sure the arguments are proper.
355 */
e11e83f3 356 if (SCM_I_INUMP (denominator))
f92e85f7 357 {
bc36d050 358 if (scm_is_eq (denominator, SCM_INUM0))
f92e85f7 359 scm_num_overflow ("make-ratio");
bc36d050 360 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
f92e85f7
MV
361 return numerator;
362 }
363 else
364 {
365 if (!(SCM_BIGP(denominator)))
366 SCM_WRONG_TYPE_ARG (2, denominator);
367 }
e11e83f3 368 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
c60e130c
MV
369 SCM_WRONG_TYPE_ARG (1, numerator);
370
371 /* Then flip signs so that the denominator is positive.
372 */
73e4de09 373 if (scm_is_true (scm_negative_p (denominator)))
c60e130c
MV
374 {
375 numerator = scm_difference (numerator, SCM_UNDEFINED);
376 denominator = scm_difference (denominator, SCM_UNDEFINED);
377 }
378
379 /* Now consider for each of the four fixnum/bignum combinations
380 whether the rational number is really an integer.
381 */
e11e83f3 382 if (SCM_I_INUMP (numerator))
f92e85f7 383 {
e11e83f3 384 long x = SCM_I_INUM (numerator);
bc36d050 385 if (scm_is_eq (numerator, SCM_INUM0))
f92e85f7 386 return SCM_INUM0;
e11e83f3 387 if (SCM_I_INUMP (denominator))
f92e85f7 388 {
dd5130ca 389 long y;
e11e83f3 390 y = SCM_I_INUM (denominator);
f92e85f7 391 if (x == y)
d956fa6f 392 return SCM_I_MAKINUM(1);
f92e85f7 393 if ((x % y) == 0)
d956fa6f 394 return SCM_I_MAKINUM (x / y);
f92e85f7 395 }
dd5130ca
KR
396 else
397 {
398 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
3271a325
KR
399 of that value for the denominator, as a bignum. Apart from
400 that case, abs(bignum) > abs(inum) so inum/bignum is not an
401 integer. */
402 if (x == SCM_MOST_NEGATIVE_FIXNUM
403 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
404 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
d956fa6f 405 return SCM_I_MAKINUM(-1);
dd5130ca 406 }
f92e85f7 407 }
c60e130c 408 else if (SCM_BIGP (numerator))
f92e85f7 409 {
e11e83f3 410 if (SCM_I_INUMP (denominator))
c60e130c 411 {
e11e83f3 412 long yy = SCM_I_INUM (denominator);
c60e130c
MV
413 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
414 return scm_divide (numerator, denominator);
415 }
416 else
f92e85f7 417 {
bc36d050 418 if (scm_is_eq (numerator, denominator))
d956fa6f 419 return SCM_I_MAKINUM(1);
c60e130c
MV
420 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
421 SCM_I_BIG_MPZ (denominator)))
422 return scm_divide(numerator, denominator);
f92e85f7 423 }
f92e85f7 424 }
c60e130c
MV
425
426 /* No, it's a proper fraction.
427 */
428 return scm_double_cell (scm_tc16_fraction,
429 SCM_UNPACK (numerator),
430 SCM_UNPACK (denominator), 0);
f92e85f7 431}
c60e130c 432#undef FUNC_NAME
f92e85f7
MV
433
434static void scm_i_fraction_reduce (SCM z)
435{
436 if (!(SCM_FRACTION_REDUCED (z)))
437 {
438 SCM divisor;
439 divisor = scm_gcd (SCM_FRACTION_NUMERATOR (z), SCM_FRACTION_DENOMINATOR (z));
bc36d050 440 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
f92e85f7
MV
441 {
442 /* is this safe? */
443 SCM_FRACTION_SET_NUMERATOR (z, scm_divide (SCM_FRACTION_NUMERATOR (z), divisor));
444 SCM_FRACTION_SET_DENOMINATOR (z, scm_divide (SCM_FRACTION_DENOMINATOR (z), divisor));
445 }
446 SCM_FRACTION_REDUCED_SET (z);
447 }
448}
449
450double
451scm_i_fraction2double (SCM z)
452{
55f26379
MV
453 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
454 SCM_FRACTION_DENOMINATOR (z)));
f92e85f7
MV
455}
456
a1ec6916 457SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
1bbd0b84 458 (SCM x),
942e5b91
MG
459 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
460 "otherwise.")
1bbd0b84 461#define FUNC_NAME s_scm_exact_p
0f2d19dd 462{
e11e83f3 463 if (SCM_I_INUMP (x))
0aacf84e
MD
464 return SCM_BOOL_T;
465 if (SCM_BIGP (x))
466 return SCM_BOOL_T;
f92e85f7
MV
467 if (SCM_FRACTIONP (x))
468 return SCM_BOOL_T;
eb927cb9
MV
469 if (SCM_NUMBERP (x))
470 return SCM_BOOL_F;
471 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 472}
1bbd0b84 473#undef FUNC_NAME
0f2d19dd 474
4219f20d 475
a1ec6916 476SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
1bbd0b84 477 (SCM n),
942e5b91
MG
478 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
479 "otherwise.")
1bbd0b84 480#define FUNC_NAME s_scm_odd_p
0f2d19dd 481{
e11e83f3 482 if (SCM_I_INUMP (n))
0aacf84e 483 {
e11e83f3 484 long val = SCM_I_INUM (n);
73e4de09 485 return scm_from_bool ((val & 1L) != 0);
0aacf84e
MD
486 }
487 else if (SCM_BIGP (n))
488 {
489 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
490 scm_remember_upto_here_1 (n);
73e4de09 491 return scm_from_bool (odd_p);
0aacf84e 492 }
73e4de09 493 else if (scm_is_true (scm_inf_p (n)))
7351e207 494 return SCM_BOOL_T;
f92e85f7
MV
495 else if (SCM_REALP (n))
496 {
497 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
498 if (rem == 1.0)
499 return SCM_BOOL_T;
500 else if (rem == 0.0)
501 return SCM_BOOL_F;
502 else
503 SCM_WRONG_TYPE_ARG (1, n);
504 }
0aacf84e 505 else
a1a33b0f 506 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 507}
1bbd0b84 508#undef FUNC_NAME
0f2d19dd 509
4219f20d 510
a1ec6916 511SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
1bbd0b84 512 (SCM n),
942e5b91
MG
513 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
514 "otherwise.")
1bbd0b84 515#define FUNC_NAME s_scm_even_p
0f2d19dd 516{
e11e83f3 517 if (SCM_I_INUMP (n))
0aacf84e 518 {
e11e83f3 519 long val = SCM_I_INUM (n);
73e4de09 520 return scm_from_bool ((val & 1L) == 0);
0aacf84e
MD
521 }
522 else if (SCM_BIGP (n))
523 {
524 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
525 scm_remember_upto_here_1 (n);
73e4de09 526 return scm_from_bool (even_p);
0aacf84e 527 }
73e4de09 528 else if (scm_is_true (scm_inf_p (n)))
7351e207 529 return SCM_BOOL_T;
f92e85f7
MV
530 else if (SCM_REALP (n))
531 {
532 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
533 if (rem == 1.0)
534 return SCM_BOOL_F;
535 else if (rem == 0.0)
536 return SCM_BOOL_T;
537 else
538 SCM_WRONG_TYPE_ARG (1, n);
539 }
0aacf84e 540 else
a1a33b0f 541 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 542}
1bbd0b84 543#undef FUNC_NAME
0f2d19dd 544
7351e207 545SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
b1092b3a
MV
546 (SCM x),
547 "Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
548 "or @samp{-inf.0}, @code{#f} otherwise.")
7351e207
MV
549#define FUNC_NAME s_scm_inf_p
550{
b1092b3a
MV
551 if (SCM_REALP (x))
552 return scm_from_bool (xisinf (SCM_REAL_VALUE (x)));
553 else if (SCM_COMPLEXP (x))
554 return scm_from_bool (xisinf (SCM_COMPLEX_REAL (x))
555 || xisinf (SCM_COMPLEX_IMAG (x)));
0aacf84e 556 else
7351e207 557 return SCM_BOOL_F;
7351e207
MV
558}
559#undef FUNC_NAME
560
561SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
562 (SCM n),
563 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
564 "otherwise.")
565#define FUNC_NAME s_scm_nan_p
566{
0aacf84e 567 if (SCM_REALP (n))
73e4de09 568 return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
0aacf84e 569 else if (SCM_COMPLEXP (n))
73e4de09 570 return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
7351e207 571 || xisnan (SCM_COMPLEX_IMAG (n)));
0aacf84e 572 else
7351e207 573 return SCM_BOOL_F;
7351e207
MV
574}
575#undef FUNC_NAME
576
577/* Guile's idea of infinity. */
578static double guile_Inf;
579
580/* Guile's idea of not a number. */
581static double guile_NaN;
582
583static void
584guile_ieee_init (void)
585{
586#if defined (HAVE_ISINF) || defined (HAVE_FINITE)
587
588/* Some version of gcc on some old version of Linux used to crash when
589 trying to make Inf and NaN. */
590
240a27d2
KR
591#ifdef INFINITY
592 /* C99 INFINITY, when available.
593 FIXME: The standard allows for INFINITY to be something that overflows
594 at compile time. We ought to have a configure test to check for that
595 before trying to use it. (But in practice we believe this is not a
596 problem on any system guile is likely to target.) */
597 guile_Inf = INFINITY;
598#elif HAVE_DINFINITY
599 /* OSF */
7351e207
MV
600 extern unsigned int DINFINITY[2];
601 guile_Inf = (*(X_CAST(double *, DINFINITY)));
602#else
603 double tmp = 1e+10;
604 guile_Inf = tmp;
605 for (;;)
606 {
607 guile_Inf *= 1e+10;
608 if (guile_Inf == tmp)
609 break;
610 tmp = guile_Inf;
611 }
612#endif
613
614#endif
615
616#if defined (HAVE_ISNAN)
617
240a27d2
KR
618#ifdef NAN
619 /* C99 NAN, when available */
620 guile_NaN = NAN;
621#elif HAVE_DQNAN
622 /* OSF */
7351e207
MV
623 extern unsigned int DQNAN[2];
624 guile_NaN = (*(X_CAST(double *, DQNAN)));
625#else
626 guile_NaN = guile_Inf / guile_Inf;
627#endif
628
629#endif
630}
631
632SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
633 (void),
634 "Return Inf.")
635#define FUNC_NAME s_scm_inf
636{
637 static int initialized = 0;
638 if (! initialized)
639 {
640 guile_ieee_init ();
641 initialized = 1;
642 }
55f26379 643 return scm_from_double (guile_Inf);
7351e207
MV
644}
645#undef FUNC_NAME
646
647SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
648 (void),
649 "Return NaN.")
650#define FUNC_NAME s_scm_nan
651{
652 static int initialized = 0;
0aacf84e 653 if (!initialized)
7351e207
MV
654 {
655 guile_ieee_init ();
656 initialized = 1;
657 }
55f26379 658 return scm_from_double (guile_NaN);
7351e207
MV
659}
660#undef FUNC_NAME
661
4219f20d 662
a48d60b1
MD
663SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
664 (SCM x),
665 "Return the absolute value of @var{x}.")
666#define FUNC_NAME
0f2d19dd 667{
e11e83f3 668 if (SCM_I_INUMP (x))
0aacf84e 669 {
e11e83f3 670 long int xx = SCM_I_INUM (x);
0aacf84e
MD
671 if (xx >= 0)
672 return x;
673 else if (SCM_POSFIXABLE (-xx))
d956fa6f 674 return SCM_I_MAKINUM (-xx);
0aacf84e
MD
675 else
676 return scm_i_long2big (-xx);
4219f20d 677 }
0aacf84e
MD
678 else if (SCM_BIGP (x))
679 {
680 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
681 if (sgn < 0)
682 return scm_i_clonebig (x, 0);
683 else
684 return x;
4219f20d 685 }
0aacf84e 686 else if (SCM_REALP (x))
ae38324d
KR
687 {
688 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
689 double xx = SCM_REAL_VALUE (x);
690 if (xx < 0.0)
55f26379 691 return scm_from_double (-xx);
ae38324d
KR
692 else
693 return x;
694 }
f92e85f7
MV
695 else if (SCM_FRACTIONP (x))
696 {
73e4de09 697 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
f92e85f7 698 return x;
cba42c93 699 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7
MV
700 SCM_FRACTION_DENOMINATOR (x));
701 }
0aacf84e 702 else
a48d60b1 703 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
0f2d19dd 704}
a48d60b1 705#undef FUNC_NAME
0f2d19dd 706
4219f20d 707
9de33deb 708SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
942e5b91
MG
709/* "Return the quotient of the numbers @var{x} and @var{y}."
710 */
0f2d19dd 711SCM
6e8d25a6 712scm_quotient (SCM x, SCM y)
0f2d19dd 713{
e11e83f3 714 if (SCM_I_INUMP (x))
0aacf84e 715 {
e11e83f3
MV
716 long xx = SCM_I_INUM (x);
717 if (SCM_I_INUMP (y))
0aacf84e 718 {
e11e83f3 719 long yy = SCM_I_INUM (y);
0aacf84e
MD
720 if (yy == 0)
721 scm_num_overflow (s_quotient);
722 else
723 {
724 long z = xx / yy;
725 if (SCM_FIXABLE (z))
d956fa6f 726 return SCM_I_MAKINUM (z);
0aacf84e
MD
727 else
728 return scm_i_long2big (z);
729 }
828865c3 730 }
0aacf84e 731 else if (SCM_BIGP (y))
ac0c002c 732 {
e11e83f3 733 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
734 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
735 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
736 {
737 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
738 scm_remember_upto_here_1 (y);
d956fa6f 739 return SCM_I_MAKINUM (-1);
4dc09ee4 740 }
0aacf84e 741 else
d956fa6f 742 return SCM_I_MAKINUM (0);
ac0c002c
DH
743 }
744 else
0aacf84e 745 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
828865c3 746 }
0aacf84e
MD
747 else if (SCM_BIGP (x))
748 {
e11e83f3 749 if (SCM_I_INUMP (y))
0aacf84e 750 {
e11e83f3 751 long yy = SCM_I_INUM (y);
0aacf84e
MD
752 if (yy == 0)
753 scm_num_overflow (s_quotient);
754 else if (yy == 1)
755 return x;
756 else
757 {
758 SCM result = scm_i_mkbig ();
759 if (yy < 0)
760 {
761 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
762 SCM_I_BIG_MPZ (x),
763 - yy);
764 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
765 }
766 else
767 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
768 scm_remember_upto_here_1 (x);
769 return scm_i_normbig (result);
770 }
771 }
772 else if (SCM_BIGP (y))
773 {
774 SCM result = scm_i_mkbig ();
775 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
776 SCM_I_BIG_MPZ (x),
777 SCM_I_BIG_MPZ (y));
778 scm_remember_upto_here_2 (x, y);
779 return scm_i_normbig (result);
780 }
781 else
782 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
f872b822 783 }
0aacf84e 784 else
89a7e495 785 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
0f2d19dd
JB
786}
787
9de33deb 788SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
942e5b91
MG
789/* "Return the remainder of the numbers @var{x} and @var{y}.\n"
790 * "@lisp\n"
791 * "(remainder 13 4) @result{} 1\n"
792 * "(remainder -13 4) @result{} -1\n"
793 * "@end lisp"
794 */
0f2d19dd 795SCM
6e8d25a6 796scm_remainder (SCM x, SCM y)
0f2d19dd 797{
e11e83f3 798 if (SCM_I_INUMP (x))
0aacf84e 799 {
e11e83f3 800 if (SCM_I_INUMP (y))
0aacf84e 801 {
e11e83f3 802 long yy = SCM_I_INUM (y);
0aacf84e
MD
803 if (yy == 0)
804 scm_num_overflow (s_remainder);
805 else
806 {
e11e83f3 807 long z = SCM_I_INUM (x) % yy;
d956fa6f 808 return SCM_I_MAKINUM (z);
0aacf84e
MD
809 }
810 }
811 else if (SCM_BIGP (y))
ac0c002c 812 {
e11e83f3 813 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
4dc09ee4
KR
814 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
815 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
816 {
817 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
818 scm_remember_upto_here_1 (y);
d956fa6f 819 return SCM_I_MAKINUM (0);
4dc09ee4 820 }
0aacf84e
MD
821 else
822 return x;
ac0c002c
DH
823 }
824 else
0aacf84e 825 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
89a7e495 826 }
0aacf84e
MD
827 else if (SCM_BIGP (x))
828 {
e11e83f3 829 if (SCM_I_INUMP (y))
0aacf84e 830 {
e11e83f3 831 long yy = SCM_I_INUM (y);
0aacf84e
MD
832 if (yy == 0)
833 scm_num_overflow (s_remainder);
834 else
835 {
836 SCM result = scm_i_mkbig ();
837 if (yy < 0)
838 yy = - yy;
839 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
840 scm_remember_upto_here_1 (x);
841 return scm_i_normbig (result);
842 }
843 }
844 else if (SCM_BIGP (y))
845 {
846 SCM result = scm_i_mkbig ();
847 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
848 SCM_I_BIG_MPZ (x),
849 SCM_I_BIG_MPZ (y));
850 scm_remember_upto_here_2 (x, y);
851 return scm_i_normbig (result);
852 }
853 else
854 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
f872b822 855 }
0aacf84e 856 else
89a7e495 857 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
0f2d19dd
JB
858}
859
89a7e495 860
9de33deb 861SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
942e5b91
MG
862/* "Return the modulo of the numbers @var{x} and @var{y}.\n"
863 * "@lisp\n"
864 * "(modulo 13 4) @result{} 1\n"
865 * "(modulo -13 4) @result{} 3\n"
866 * "@end lisp"
867 */
0f2d19dd 868SCM
6e8d25a6 869scm_modulo (SCM x, SCM y)
0f2d19dd 870{
e11e83f3 871 if (SCM_I_INUMP (x))
0aacf84e 872 {
e11e83f3
MV
873 long xx = SCM_I_INUM (x);
874 if (SCM_I_INUMP (y))
0aacf84e 875 {
e11e83f3 876 long yy = SCM_I_INUM (y);
0aacf84e
MD
877 if (yy == 0)
878 scm_num_overflow (s_modulo);
879 else
880 {
66b1c775
KR
881 /* C99 specifies that "%" is the remainder corresponding to a
882 quotient rounded towards zero, and that's also traditional
883 for machine division, so z here should be well defined. */
0aacf84e
MD
884 long z = xx % yy;
885 long result;
886
887 if (yy < 0)
888 {
889 if (z > 0)
890 result = z + yy;
891 else
892 result = z;
893 }
894 else
895 {
896 if (z < 0)
897 result = z + yy;
898 else
899 result = z;
900 }
d956fa6f 901 return SCM_I_MAKINUM (result);
0aacf84e
MD
902 }
903 }
904 else if (SCM_BIGP (y))
905 {
906 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
0aacf84e
MD
907 {
908 mpz_t z_x;
909 SCM result;
910
911 if (sgn_y < 0)
912 {
913 SCM pos_y = scm_i_clonebig (y, 0);
914 /* do this after the last scm_op */
915 mpz_init_set_si (z_x, xx);
916 result = pos_y; /* re-use this bignum */
917 mpz_mod (SCM_I_BIG_MPZ (result),
918 z_x,
919 SCM_I_BIG_MPZ (pos_y));
920 scm_remember_upto_here_1 (pos_y);
921 }
922 else
923 {
924 result = scm_i_mkbig ();
925 /* do this after the last scm_op */
926 mpz_init_set_si (z_x, xx);
927 mpz_mod (SCM_I_BIG_MPZ (result),
928 z_x,
929 SCM_I_BIG_MPZ (y));
930 scm_remember_upto_here_1 (y);
931 }
ca46fb90 932
0aacf84e
MD
933 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
934 mpz_add (SCM_I_BIG_MPZ (result),
935 SCM_I_BIG_MPZ (y),
936 SCM_I_BIG_MPZ (result));
937 scm_remember_upto_here_1 (y);
938 /* and do this before the next one */
939 mpz_clear (z_x);
940 return scm_i_normbig (result);
941 }
942 }
943 else
944 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
f872b822 945 }
0aacf84e
MD
946 else if (SCM_BIGP (x))
947 {
e11e83f3 948 if (SCM_I_INUMP (y))
0aacf84e 949 {
e11e83f3 950 long yy = SCM_I_INUM (y);
0aacf84e
MD
951 if (yy == 0)
952 scm_num_overflow (s_modulo);
953 else
954 {
955 SCM result = scm_i_mkbig ();
956 mpz_mod_ui (SCM_I_BIG_MPZ (result),
957 SCM_I_BIG_MPZ (x),
958 (yy < 0) ? - yy : yy);
959 scm_remember_upto_here_1 (x);
960 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
961 mpz_sub_ui (SCM_I_BIG_MPZ (result),
962 SCM_I_BIG_MPZ (result),
963 - yy);
964 return scm_i_normbig (result);
965 }
966 }
967 else if (SCM_BIGP (y))
968 {
0aacf84e
MD
969 {
970 SCM result = scm_i_mkbig ();
971 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
972 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
973 mpz_mod (SCM_I_BIG_MPZ (result),
974 SCM_I_BIG_MPZ (x),
975 SCM_I_BIG_MPZ (pos_y));
ca46fb90 976
0aacf84e
MD
977 scm_remember_upto_here_1 (x);
978 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
979 mpz_add (SCM_I_BIG_MPZ (result),
980 SCM_I_BIG_MPZ (y),
981 SCM_I_BIG_MPZ (result));
982 scm_remember_upto_here_2 (y, pos_y);
983 return scm_i_normbig (result);
984 }
985 }
986 else
987 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
828865c3 988 }
0aacf84e 989 else
09fb7599 990 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
0f2d19dd
JB
991}
992
9de33deb 993SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
942e5b91
MG
994/* "Return the greatest common divisor of all arguments.\n"
995 * "If called without arguments, 0 is returned."
996 */
0f2d19dd 997SCM
6e8d25a6 998scm_gcd (SCM x, SCM y)
0f2d19dd 999{
ca46fb90 1000 if (SCM_UNBNDP (y))
0aacf84e 1001 return SCM_UNBNDP (x) ? SCM_INUM0 : x;
ca46fb90 1002
e11e83f3 1003 if (SCM_I_INUMP (x))
ca46fb90 1004 {
e11e83f3 1005 if (SCM_I_INUMP (y))
ca46fb90 1006 {
e11e83f3
MV
1007 long xx = SCM_I_INUM (x);
1008 long yy = SCM_I_INUM (y);
ca46fb90
RB
1009 long u = xx < 0 ? -xx : xx;
1010 long v = yy < 0 ? -yy : yy;
1011 long result;
0aacf84e
MD
1012 if (xx == 0)
1013 result = v;
1014 else if (yy == 0)
1015 result = u;
1016 else
1017 {
1018 long k = 1;
1019 long t;
1020 /* Determine a common factor 2^k */
1021 while (!(1 & (u | v)))
1022 {
1023 k <<= 1;
1024 u >>= 1;
1025 v >>= 1;
1026 }
1027 /* Now, any factor 2^n can be eliminated */
1028 if (u & 1)
1029 t = -v;
1030 else
1031 {
1032 t = u;
1033 b3:
1034 t = SCM_SRS (t, 1);
1035 }
1036 if (!(1 & t))
1037 goto b3;
1038 if (t > 0)
1039 u = t;
1040 else
1041 v = -t;
1042 t = u - v;
1043 if (t != 0)
1044 goto b3;
1045 result = u * k;
1046 }
1047 return (SCM_POSFIXABLE (result)
d956fa6f 1048 ? SCM_I_MAKINUM (result)
0aacf84e 1049 : scm_i_long2big (result));
ca46fb90
RB
1050 }
1051 else if (SCM_BIGP (y))
1052 {
0bff4dce
KR
1053 SCM_SWAP (x, y);
1054 goto big_inum;
ca46fb90
RB
1055 }
1056 else
1057 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
f872b822 1058 }
ca46fb90
RB
1059 else if (SCM_BIGP (x))
1060 {
e11e83f3 1061 if (SCM_I_INUMP (y))
ca46fb90
RB
1062 {
1063 unsigned long result;
0bff4dce
KR
1064 long yy;
1065 big_inum:
e11e83f3 1066 yy = SCM_I_INUM (y);
8c5b0afc
KR
1067 if (yy == 0)
1068 return scm_abs (x);
0aacf84e
MD
1069 if (yy < 0)
1070 yy = -yy;
ca46fb90
RB
1071 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1072 scm_remember_upto_here_1 (x);
0aacf84e 1073 return (SCM_POSFIXABLE (result)
d956fa6f 1074 ? SCM_I_MAKINUM (result)
c71b0706 1075 : scm_from_ulong (result));
ca46fb90
RB
1076 }
1077 else if (SCM_BIGP (y))
1078 {
1079 SCM result = scm_i_mkbig ();
0aacf84e
MD
1080 mpz_gcd (SCM_I_BIG_MPZ (result),
1081 SCM_I_BIG_MPZ (x),
1082 SCM_I_BIG_MPZ (y));
1083 scm_remember_upto_here_2 (x, y);
ca46fb90
RB
1084 return scm_i_normbig (result);
1085 }
1086 else
1087 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
09fb7599 1088 }
ca46fb90 1089 else
09fb7599 1090 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
0f2d19dd
JB
1091}
1092
9de33deb 1093SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
942e5b91
MG
1094/* "Return the least common multiple of the arguments.\n"
1095 * "If called without arguments, 1 is returned."
1096 */
0f2d19dd 1097SCM
6e8d25a6 1098scm_lcm (SCM n1, SCM n2)
0f2d19dd 1099{
ca46fb90
RB
1100 if (SCM_UNBNDP (n2))
1101 {
1102 if (SCM_UNBNDP (n1))
d956fa6f
MV
1103 return SCM_I_MAKINUM (1L);
1104 n2 = SCM_I_MAKINUM (1L);
09fb7599 1105 }
09fb7599 1106
e11e83f3 1107 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
ca46fb90 1108 g_lcm, n1, n2, SCM_ARG1, s_lcm);
e11e83f3 1109 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
ca46fb90 1110 g_lcm, n1, n2, SCM_ARGn, s_lcm);
09fb7599 1111
e11e83f3 1112 if (SCM_I_INUMP (n1))
ca46fb90 1113 {
e11e83f3 1114 if (SCM_I_INUMP (n2))
ca46fb90
RB
1115 {
1116 SCM d = scm_gcd (n1, n2);
bc36d050 1117 if (scm_is_eq (d, SCM_INUM0))
ca46fb90
RB
1118 return d;
1119 else
1120 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1121 }
1122 else
1123 {
1124 /* inum n1, big n2 */
1125 inumbig:
1126 {
1127 SCM result = scm_i_mkbig ();
e11e83f3 1128 long nn1 = SCM_I_INUM (n1);
ca46fb90
RB
1129 if (nn1 == 0) return SCM_INUM0;
1130 if (nn1 < 0) nn1 = - nn1;
1131 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1132 scm_remember_upto_here_1 (n2);
1133 return result;
1134 }
1135 }
1136 }
1137 else
1138 {
1139 /* big n1 */
e11e83f3 1140 if (SCM_I_INUMP (n2))
ca46fb90
RB
1141 {
1142 SCM_SWAP (n1, n2);
1143 goto inumbig;
1144 }
1145 else
1146 {
1147 SCM result = scm_i_mkbig ();
1148 mpz_lcm(SCM_I_BIG_MPZ (result),
1149 SCM_I_BIG_MPZ (n1),
1150 SCM_I_BIG_MPZ (n2));
1151 scm_remember_upto_here_2(n1, n2);
1152 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1153 return result;
1154 }
f872b822 1155 }
0f2d19dd
JB
1156}
1157
8a525303
GB
1158/* Emulating 2's complement bignums with sign magnitude arithmetic:
1159
1160 Logand:
1161 X Y Result Method:
1162 (len)
1163 + + + x (map digit:logand X Y)
1164 + - + x (map digit:logand X (lognot (+ -1 Y)))
1165 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1166 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1167
1168 Logior:
1169 X Y Result Method:
1170
1171 + + + (map digit:logior X Y)
1172 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1173 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1174 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1175
1176 Logxor:
1177 X Y Result Method:
1178
1179 + + + (map digit:logxor X Y)
1180 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1181 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1182 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1183
1184 Logtest:
1185 X Y Result
1186
1187 + + (any digit:logand X Y)
1188 + - (any digit:logand X (lognot (+ -1 Y)))
1189 - + (any digit:logand (lognot (+ -1 X)) Y)
1190 - - #t
1191
1192*/
1193
c3ee7520 1194SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
1bbd0b84 1195 (SCM n1, SCM n2),
3c3db128
GH
1196 "Return the bitwise AND of the integer arguments.\n\n"
1197 "@lisp\n"
1198 "(logand) @result{} -1\n"
1199 "(logand 7) @result{} 7\n"
535f2a51 1200 "(logand #b111 #b011 #b001) @result{} 1\n"
3c3db128 1201 "@end lisp")
1bbd0b84 1202#define FUNC_NAME s_scm_logand
0f2d19dd 1203{
9a00c9fc
DH
1204 long int nn1;
1205
0aacf84e
MD
1206 if (SCM_UNBNDP (n2))
1207 {
1208 if (SCM_UNBNDP (n1))
d956fa6f 1209 return SCM_I_MAKINUM (-1);
0aacf84e
MD
1210 else if (!SCM_NUMBERP (n1))
1211 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1212 else if (SCM_NUMBERP (n1))
1213 return n1;
1214 else
1215 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1216 }
09fb7599 1217
e11e83f3 1218 if (SCM_I_INUMP (n1))
0aacf84e 1219 {
e11e83f3
MV
1220 nn1 = SCM_I_INUM (n1);
1221 if (SCM_I_INUMP (n2))
0aacf84e 1222 {
e11e83f3 1223 long nn2 = SCM_I_INUM (n2);
d956fa6f 1224 return SCM_I_MAKINUM (nn1 & nn2);
0aacf84e
MD
1225 }
1226 else if SCM_BIGP (n2)
1227 {
1228 intbig:
1229 if (n1 == 0)
1230 return SCM_INUM0;
1231 {
1232 SCM result_z = scm_i_mkbig ();
1233 mpz_t nn1_z;
1234 mpz_init_set_si (nn1_z, nn1);
1235 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1236 scm_remember_upto_here_1 (n2);
1237 mpz_clear (nn1_z);
1238 return scm_i_normbig (result_z);
1239 }
1240 }
1241 else
1242 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1243 }
1244 else if (SCM_BIGP (n1))
1245 {
e11e83f3 1246 if (SCM_I_INUMP (n2))
0aacf84e
MD
1247 {
1248 SCM_SWAP (n1, n2);
e11e83f3 1249 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1250 goto intbig;
1251 }
1252 else if (SCM_BIGP (n2))
1253 {
1254 SCM result_z = scm_i_mkbig ();
1255 mpz_and (SCM_I_BIG_MPZ (result_z),
1256 SCM_I_BIG_MPZ (n1),
1257 SCM_I_BIG_MPZ (n2));
1258 scm_remember_upto_here_2 (n1, n2);
1259 return scm_i_normbig (result_z);
1260 }
1261 else
1262 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1263 }
0aacf84e 1264 else
09fb7599 1265 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1266}
1bbd0b84 1267#undef FUNC_NAME
0f2d19dd 1268
09fb7599 1269
c3ee7520 1270SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
1bbd0b84 1271 (SCM n1, SCM n2),
3c3db128
GH
1272 "Return the bitwise OR of the integer arguments.\n\n"
1273 "@lisp\n"
1274 "(logior) @result{} 0\n"
1275 "(logior 7) @result{} 7\n"
1276 "(logior #b000 #b001 #b011) @result{} 3\n"
1e6808ea 1277 "@end lisp")
1bbd0b84 1278#define FUNC_NAME s_scm_logior
0f2d19dd 1279{
9a00c9fc
DH
1280 long int nn1;
1281
0aacf84e
MD
1282 if (SCM_UNBNDP (n2))
1283 {
1284 if (SCM_UNBNDP (n1))
1285 return SCM_INUM0;
1286 else if (SCM_NUMBERP (n1))
1287 return n1;
1288 else
1289 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1290 }
09fb7599 1291
e11e83f3 1292 if (SCM_I_INUMP (n1))
0aacf84e 1293 {
e11e83f3
MV
1294 nn1 = SCM_I_INUM (n1);
1295 if (SCM_I_INUMP (n2))
0aacf84e 1296 {
e11e83f3 1297 long nn2 = SCM_I_INUM (n2);
d956fa6f 1298 return SCM_I_MAKINUM (nn1 | nn2);
0aacf84e
MD
1299 }
1300 else if (SCM_BIGP (n2))
1301 {
1302 intbig:
1303 if (nn1 == 0)
1304 return n2;
1305 {
1306 SCM result_z = scm_i_mkbig ();
1307 mpz_t nn1_z;
1308 mpz_init_set_si (nn1_z, nn1);
1309 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1310 scm_remember_upto_here_1 (n2);
1311 mpz_clear (nn1_z);
9806de0d 1312 return scm_i_normbig (result_z);
0aacf84e
MD
1313 }
1314 }
1315 else
1316 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1317 }
1318 else if (SCM_BIGP (n1))
1319 {
e11e83f3 1320 if (SCM_I_INUMP (n2))
0aacf84e
MD
1321 {
1322 SCM_SWAP (n1, n2);
e11e83f3 1323 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1324 goto intbig;
1325 }
1326 else if (SCM_BIGP (n2))
1327 {
1328 SCM result_z = scm_i_mkbig ();
1329 mpz_ior (SCM_I_BIG_MPZ (result_z),
1330 SCM_I_BIG_MPZ (n1),
1331 SCM_I_BIG_MPZ (n2));
1332 scm_remember_upto_here_2 (n1, n2);
9806de0d 1333 return scm_i_normbig (result_z);
0aacf84e
MD
1334 }
1335 else
1336 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1337 }
0aacf84e 1338 else
09fb7599 1339 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1340}
1bbd0b84 1341#undef FUNC_NAME
0f2d19dd 1342
09fb7599 1343
c3ee7520 1344SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
1bbd0b84 1345 (SCM n1, SCM n2),
3c3db128
GH
1346 "Return the bitwise XOR of the integer arguments. A bit is\n"
1347 "set in the result if it is set in an odd number of arguments.\n"
1348 "@lisp\n"
1349 "(logxor) @result{} 0\n"
1350 "(logxor 7) @result{} 7\n"
1351 "(logxor #b000 #b001 #b011) @result{} 2\n"
1352 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1e6808ea 1353 "@end lisp")
1bbd0b84 1354#define FUNC_NAME s_scm_logxor
0f2d19dd 1355{
9a00c9fc
DH
1356 long int nn1;
1357
0aacf84e
MD
1358 if (SCM_UNBNDP (n2))
1359 {
1360 if (SCM_UNBNDP (n1))
1361 return SCM_INUM0;
1362 else if (SCM_NUMBERP (n1))
1363 return n1;
1364 else
1365 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
d28da049 1366 }
09fb7599 1367
e11e83f3 1368 if (SCM_I_INUMP (n1))
0aacf84e 1369 {
e11e83f3
MV
1370 nn1 = SCM_I_INUM (n1);
1371 if (SCM_I_INUMP (n2))
0aacf84e 1372 {
e11e83f3 1373 long nn2 = SCM_I_INUM (n2);
d956fa6f 1374 return SCM_I_MAKINUM (nn1 ^ nn2);
0aacf84e
MD
1375 }
1376 else if (SCM_BIGP (n2))
1377 {
1378 intbig:
1379 {
1380 SCM result_z = scm_i_mkbig ();
1381 mpz_t nn1_z;
1382 mpz_init_set_si (nn1_z, nn1);
1383 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1384 scm_remember_upto_here_1 (n2);
1385 mpz_clear (nn1_z);
1386 return scm_i_normbig (result_z);
1387 }
1388 }
1389 else
1390 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1391 }
1392 else if (SCM_BIGP (n1))
1393 {
e11e83f3 1394 if (SCM_I_INUMP (n2))
0aacf84e
MD
1395 {
1396 SCM_SWAP (n1, n2);
e11e83f3 1397 nn1 = SCM_I_INUM (n1);
0aacf84e
MD
1398 goto intbig;
1399 }
1400 else if (SCM_BIGP (n2))
1401 {
1402 SCM result_z = scm_i_mkbig ();
1403 mpz_xor (SCM_I_BIG_MPZ (result_z),
1404 SCM_I_BIG_MPZ (n1),
1405 SCM_I_BIG_MPZ (n2));
1406 scm_remember_upto_here_2 (n1, n2);
1407 return scm_i_normbig (result_z);
1408 }
1409 else
1410 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
09fb7599 1411 }
0aacf84e 1412 else
09fb7599 1413 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
0f2d19dd 1414}
1bbd0b84 1415#undef FUNC_NAME
0f2d19dd 1416
09fb7599 1417
a1ec6916 1418SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1e6808ea 1419 (SCM j, SCM k),
ba6e7231
KR
1420 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
1421 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
1422 "without actually calculating the @code{logand}, just testing\n"
1423 "for non-zero.\n"
1424 "\n"
1e6808ea 1425 "@lisp\n"
b380b885
MD
1426 "(logtest #b0100 #b1011) @result{} #f\n"
1427 "(logtest #b0100 #b0111) @result{} #t\n"
1e6808ea 1428 "@end lisp")
1bbd0b84 1429#define FUNC_NAME s_scm_logtest
0f2d19dd 1430{
1e6808ea 1431 long int nj;
9a00c9fc 1432
e11e83f3 1433 if (SCM_I_INUMP (j))
0aacf84e 1434 {
e11e83f3
MV
1435 nj = SCM_I_INUM (j);
1436 if (SCM_I_INUMP (k))
0aacf84e 1437 {
e11e83f3 1438 long nk = SCM_I_INUM (k);
73e4de09 1439 return scm_from_bool (nj & nk);
0aacf84e
MD
1440 }
1441 else if (SCM_BIGP (k))
1442 {
1443 intbig:
1444 if (nj == 0)
1445 return SCM_BOOL_F;
1446 {
1447 SCM result;
1448 mpz_t nj_z;
1449 mpz_init_set_si (nj_z, nj);
1450 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1451 scm_remember_upto_here_1 (k);
73e4de09 1452 result = scm_from_bool (mpz_sgn (nj_z) != 0);
0aacf84e
MD
1453 mpz_clear (nj_z);
1454 return result;
1455 }
1456 }
1457 else
1458 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1459 }
1460 else if (SCM_BIGP (j))
1461 {
e11e83f3 1462 if (SCM_I_INUMP (k))
0aacf84e
MD
1463 {
1464 SCM_SWAP (j, k);
e11e83f3 1465 nj = SCM_I_INUM (j);
0aacf84e
MD
1466 goto intbig;
1467 }
1468 else if (SCM_BIGP (k))
1469 {
1470 SCM result;
1471 mpz_t result_z;
1472 mpz_init (result_z);
1473 mpz_and (result_z,
1474 SCM_I_BIG_MPZ (j),
1475 SCM_I_BIG_MPZ (k));
1476 scm_remember_upto_here_2 (j, k);
73e4de09 1477 result = scm_from_bool (mpz_sgn (result_z) != 0);
0aacf84e
MD
1478 mpz_clear (result_z);
1479 return result;
1480 }
1481 else
1482 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1483 }
1484 else
1485 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
0f2d19dd 1486}
1bbd0b84 1487#undef FUNC_NAME
0f2d19dd 1488
c1bfcf60 1489
a1ec6916 1490SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
2cd04b42 1491 (SCM index, SCM j),
ba6e7231
KR
1492 "Test whether bit number @var{index} in @var{j} is set.\n"
1493 "@var{index} starts from 0 for the least significant bit.\n"
1494 "\n"
1e6808ea 1495 "@lisp\n"
b380b885
MD
1496 "(logbit? 0 #b1101) @result{} #t\n"
1497 "(logbit? 1 #b1101) @result{} #f\n"
1498 "(logbit? 2 #b1101) @result{} #t\n"
1499 "(logbit? 3 #b1101) @result{} #t\n"
1500 "(logbit? 4 #b1101) @result{} #f\n"
1e6808ea 1501 "@end lisp")
1bbd0b84 1502#define FUNC_NAME s_scm_logbit_p
0f2d19dd 1503{
78166ad5 1504 unsigned long int iindex;
5efd3c7d 1505 iindex = scm_to_ulong (index);
78166ad5 1506
e11e83f3 1507 if (SCM_I_INUMP (j))
0d75f6d8
KR
1508 {
1509 /* bits above what's in an inum follow the sign bit */
20fcc8ed 1510 iindex = min (iindex, SCM_LONG_BIT - 1);
e11e83f3 1511 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
0d75f6d8 1512 }
0aacf84e
MD
1513 else if (SCM_BIGP (j))
1514 {
1515 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1516 scm_remember_upto_here_1 (j);
73e4de09 1517 return scm_from_bool (val);
0aacf84e
MD
1518 }
1519 else
78166ad5 1520 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
0f2d19dd 1521}
1bbd0b84 1522#undef FUNC_NAME
0f2d19dd 1523
78166ad5 1524
a1ec6916 1525SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1bbd0b84 1526 (SCM n),
4d814788 1527 "Return the integer which is the ones-complement of the integer\n"
1e6808ea
MG
1528 "argument.\n"
1529 "\n"
b380b885
MD
1530 "@lisp\n"
1531 "(number->string (lognot #b10000000) 2)\n"
1532 " @result{} \"-10000001\"\n"
1533 "(number->string (lognot #b0) 2)\n"
1534 " @result{} \"-1\"\n"
1e6808ea 1535 "@end lisp")
1bbd0b84 1536#define FUNC_NAME s_scm_lognot
0f2d19dd 1537{
e11e83f3 1538 if (SCM_I_INUMP (n)) {
f9811f9f
KR
1539 /* No overflow here, just need to toggle all the bits making up the inum.
1540 Enhancement: No need to strip the tag and add it back, could just xor
1541 a block of 1 bits, if that worked with the various debug versions of
1542 the SCM typedef. */
e11e83f3 1543 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
f9811f9f
KR
1544
1545 } else if (SCM_BIGP (n)) {
1546 SCM result = scm_i_mkbig ();
1547 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1548 scm_remember_upto_here_1 (n);
1549 return result;
1550
1551 } else {
1552 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1553 }
0f2d19dd 1554}
1bbd0b84 1555#undef FUNC_NAME
0f2d19dd 1556
518b7508
KR
1557/* returns 0 if IN is not an integer. OUT must already be
1558 initialized. */
1559static int
1560coerce_to_big (SCM in, mpz_t out)
1561{
1562 if (SCM_BIGP (in))
1563 mpz_set (out, SCM_I_BIG_MPZ (in));
e11e83f3
MV
1564 else if (SCM_I_INUMP (in))
1565 mpz_set_si (out, SCM_I_INUM (in));
518b7508
KR
1566 else
1567 return 0;
1568
1569 return 1;
1570}
1571
d885e204 1572SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
518b7508
KR
1573 (SCM n, SCM k, SCM m),
1574 "Return @var{n} raised to the integer exponent\n"
1575 "@var{k}, modulo @var{m}.\n"
1576 "\n"
1577 "@lisp\n"
1578 "(modulo-expt 2 3 5)\n"
1579 " @result{} 3\n"
1580 "@end lisp")
d885e204 1581#define FUNC_NAME s_scm_modulo_expt
518b7508
KR
1582{
1583 mpz_t n_tmp;
1584 mpz_t k_tmp;
1585 mpz_t m_tmp;
1586
1587 /* There are two classes of error we might encounter --
1588 1) Math errors, which we'll report by calling scm_num_overflow,
1589 and
1590 2) wrong-type errors, which of course we'll report by calling
1591 SCM_WRONG_TYPE_ARG.
1592 We don't report those errors immediately, however; instead we do
1593 some cleanup first. These variables tell us which error (if
1594 any) we should report after cleaning up.
1595 */
1596 int report_overflow = 0;
1597
1598 int position_of_wrong_type = 0;
1599 SCM value_of_wrong_type = SCM_INUM0;
1600
1601 SCM result = SCM_UNDEFINED;
1602
1603 mpz_init (n_tmp);
1604 mpz_init (k_tmp);
1605 mpz_init (m_tmp);
1606
bc36d050 1607 if (scm_is_eq (m, SCM_INUM0))
518b7508
KR
1608 {
1609 report_overflow = 1;
1610 goto cleanup;
1611 }
1612
1613 if (!coerce_to_big (n, n_tmp))
1614 {
1615 value_of_wrong_type = n;
1616 position_of_wrong_type = 1;
1617 goto cleanup;
1618 }
1619
1620 if (!coerce_to_big (k, k_tmp))
1621 {
1622 value_of_wrong_type = k;
1623 position_of_wrong_type = 2;
1624 goto cleanup;
1625 }
1626
1627 if (!coerce_to_big (m, m_tmp))
1628 {
1629 value_of_wrong_type = m;
1630 position_of_wrong_type = 3;
1631 goto cleanup;
1632 }
1633
1634 /* if the exponent K is negative, and we simply call mpz_powm, we
1635 will get a divide-by-zero exception when an inverse 1/n mod m
1636 doesn't exist (or is not unique). Since exceptions are hard to
1637 handle, we'll attempt the inversion "by hand" -- that way, we get
1638 a simple failure code, which is easy to handle. */
1639
1640 if (-1 == mpz_sgn (k_tmp))
1641 {
1642 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1643 {
1644 report_overflow = 1;
1645 goto cleanup;
1646 }
1647 mpz_neg (k_tmp, k_tmp);
1648 }
1649
1650 result = scm_i_mkbig ();
1651 mpz_powm (SCM_I_BIG_MPZ (result),
1652 n_tmp,
1653 k_tmp,
1654 m_tmp);
b7b8c575
KR
1655
1656 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1657 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1658
518b7508
KR
1659 cleanup:
1660 mpz_clear (m_tmp);
1661 mpz_clear (k_tmp);
1662 mpz_clear (n_tmp);
1663
1664 if (report_overflow)
1665 scm_num_overflow (FUNC_NAME);
1666
1667 if (position_of_wrong_type)
1668 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1669 value_of_wrong_type);
1670
1671 return scm_i_normbig (result);
1672}
1673#undef FUNC_NAME
1674
a1ec6916 1675SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
2cd04b42 1676 (SCM n, SCM k),
ba6e7231
KR
1677 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
1678 "exact integer, @var{n} can be any number.\n"
1679 "\n"
1680 "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
1681 "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
1682 "includes @math{0^0} is 1.\n"
1e6808ea 1683 "\n"
b380b885 1684 "@lisp\n"
ba6e7231
KR
1685 "(integer-expt 2 5) @result{} 32\n"
1686 "(integer-expt -3 3) @result{} -27\n"
1687 "(integer-expt 5 -3) @result{} 1/125\n"
1688 "(integer-expt 0 0) @result{} 1\n"
b380b885 1689 "@end lisp")
1bbd0b84 1690#define FUNC_NAME s_scm_integer_expt
0f2d19dd 1691{
1c35cb19
RB
1692 long i2 = 0;
1693 SCM z_i2 = SCM_BOOL_F;
1694 int i2_is_big = 0;
d956fa6f 1695 SCM acc = SCM_I_MAKINUM (1L);
ca46fb90 1696
d57ed702 1697 /* 0^0 == 1 according to R5RS */
bc36d050 1698 if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
73e4de09 1699 return scm_is_false (scm_zero_p(k)) ? n : acc;
bc36d050 1700 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
73e4de09 1701 return scm_is_false (scm_even_p (k)) ? n : acc;
ca46fb90 1702
e11e83f3
MV
1703 if (SCM_I_INUMP (k))
1704 i2 = SCM_I_INUM (k);
ca46fb90
RB
1705 else if (SCM_BIGP (k))
1706 {
1707 z_i2 = scm_i_clonebig (k, 1);
ca46fb90
RB
1708 scm_remember_upto_here_1 (k);
1709 i2_is_big = 1;
1710 }
2830fd91 1711 else
ca46fb90
RB
1712 SCM_WRONG_TYPE_ARG (2, k);
1713
1714 if (i2_is_big)
f872b822 1715 {
ca46fb90
RB
1716 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1717 {
1718 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1719 n = scm_divide (n, SCM_UNDEFINED);
1720 }
1721 while (1)
1722 {
1723 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1724 {
ca46fb90
RB
1725 return acc;
1726 }
1727 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1728 {
ca46fb90
RB
1729 return scm_product (acc, n);
1730 }
1731 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1732 acc = scm_product (acc, n);
1733 n = scm_product (n, n);
1734 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1735 }
f872b822 1736 }
ca46fb90 1737 else
f872b822 1738 {
ca46fb90
RB
1739 if (i2 < 0)
1740 {
1741 i2 = -i2;
1742 n = scm_divide (n, SCM_UNDEFINED);
1743 }
1744 while (1)
1745 {
1746 if (0 == i2)
1747 return acc;
1748 if (1 == i2)
1749 return scm_product (acc, n);
1750 if (i2 & 1)
1751 acc = scm_product (acc, n);
1752 n = scm_product (n, n);
1753 i2 >>= 1;
1754 }
f872b822 1755 }
0f2d19dd 1756}
1bbd0b84 1757#undef FUNC_NAME
0f2d19dd 1758
a1ec6916 1759SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1bbd0b84 1760 (SCM n, SCM cnt),
32f19569
KR
1761 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1762 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1e6808ea 1763 "\n"
e7644cb2 1764 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
32f19569
KR
1765 "@var{cnt} is negative it's a division, rounded towards negative\n"
1766 "infinity. (Note that this is not the same rounding as\n"
1767 "@code{quotient} does.)\n"
1768 "\n"
1769 "With @var{n} viewed as an infinite precision twos complement,\n"
1770 "@code{ash} means a left shift introducing zero bits, or a right\n"
1771 "shift dropping bits.\n"
1e6808ea 1772 "\n"
b380b885 1773 "@lisp\n"
1e6808ea
MG
1774 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1775 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
32f19569
KR
1776 "\n"
1777 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1778 "(ash -23 -2) @result{} -6\n"
a3c8b9fc 1779 "@end lisp")
1bbd0b84 1780#define FUNC_NAME s_scm_ash
0f2d19dd 1781{
3ab9f56e 1782 long bits_to_shift;
5efd3c7d 1783 bits_to_shift = scm_to_long (cnt);
ca46fb90 1784
788aca27
KR
1785 if (SCM_I_INUMP (n))
1786 {
1787 long nn = SCM_I_INUM (n);
1788
1789 if (bits_to_shift > 0)
1790 {
1791 /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
1792 overflow a non-zero fixnum. For smaller shifts we check the
1793 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
1794 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
1795 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
1796 bits_to_shift)". */
1797
1798 if (nn == 0)
1799 return n;
1800
1801 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
1802 && ((unsigned long)
1803 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
1804 <= 1))
1805 {
1806 return SCM_I_MAKINUM (nn << bits_to_shift);
1807 }
1808 else
1809 {
1810 SCM result = scm_i_long2big (nn);
1811 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1812 bits_to_shift);
1813 return result;
1814 }
1815 }
1816 else
1817 {
1818 bits_to_shift = -bits_to_shift;
1819 if (bits_to_shift >= SCM_LONG_BIT)
1820 return (nn >= 0 ? SCM_I_MAKINUM (0) : SCM_I_MAKINUM(-1));
1821 else
1822 return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
1823 }
1824
1825 }
1826 else if (SCM_BIGP (n))
ca46fb90 1827 {
788aca27
KR
1828 SCM result;
1829
1830 if (bits_to_shift == 0)
1831 return n;
1832
1833 result = scm_i_mkbig ();
1834 if (bits_to_shift >= 0)
1835 {
1836 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1837 bits_to_shift);
1838 return result;
1839 }
ca46fb90 1840 else
788aca27
KR
1841 {
1842 /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
1843 we have to allocate a bignum even if the result is going to be a
1844 fixnum. */
1845 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1846 -bits_to_shift);
1847 return scm_i_normbig (result);
1848 }
1849
ca46fb90
RB
1850 }
1851 else
788aca27
KR
1852 {
1853 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1854 }
0f2d19dd 1855}
1bbd0b84 1856#undef FUNC_NAME
0f2d19dd 1857
3c9f20f8 1858
a1ec6916 1859SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1bbd0b84 1860 (SCM n, SCM start, SCM end),
1e6808ea
MG
1861 "Return the integer composed of the @var{start} (inclusive)\n"
1862 "through @var{end} (exclusive) bits of @var{n}. The\n"
1863 "@var{start}th bit becomes the 0-th bit in the result.\n"
1864 "\n"
b380b885
MD
1865 "@lisp\n"
1866 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1867 " @result{} \"1010\"\n"
1868 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1869 " @result{} \"10110\"\n"
1870 "@end lisp")
1bbd0b84 1871#define FUNC_NAME s_scm_bit_extract
0f2d19dd 1872{
7f848242 1873 unsigned long int istart, iend, bits;
5efd3c7d
MV
1874 istart = scm_to_ulong (start);
1875 iend = scm_to_ulong (end);
c1bfcf60 1876 SCM_ASSERT_RANGE (3, end, (iend >= istart));
78166ad5 1877
7f848242
KR
1878 /* how many bits to keep */
1879 bits = iend - istart;
1880
e11e83f3 1881 if (SCM_I_INUMP (n))
0aacf84e 1882 {
e11e83f3 1883 long int in = SCM_I_INUM (n);
7f848242
KR
1884
1885 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
d77ad560 1886 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
857ae6af 1887 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
ac0c002c 1888
0aacf84e
MD
1889 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
1890 {
1891 /* Since we emulate two's complement encoded numbers, this
1892 * special case requires us to produce a result that has
7f848242 1893 * more bits than can be stored in a fixnum.
0aacf84e 1894 */
7f848242
KR
1895 SCM result = scm_i_long2big (in);
1896 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1897 bits);
1898 return result;
0aacf84e 1899 }
ac0c002c 1900
7f848242 1901 /* mask down to requisite bits */
857ae6af 1902 bits = min (bits, SCM_I_FIXNUM_BIT);
d956fa6f 1903 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
0aacf84e
MD
1904 }
1905 else if (SCM_BIGP (n))
ac0c002c 1906 {
7f848242
KR
1907 SCM result;
1908 if (bits == 1)
1909 {
d956fa6f 1910 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
7f848242
KR
1911 }
1912 else
1913 {
1914 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
1915 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
1916 such bits into a ulong. */
1917 result = scm_i_mkbig ();
1918 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
1919 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
1920 result = scm_i_normbig (result);
1921 }
1922 scm_remember_upto_here_1 (n);
1923 return result;
ac0c002c 1924 }
0aacf84e 1925 else
78166ad5 1926 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 1927}
1bbd0b84 1928#undef FUNC_NAME
0f2d19dd 1929
7f848242 1930
e4755e5c
JB
1931static const char scm_logtab[] = {
1932 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
1933};
1cc91f1b 1934
a1ec6916 1935SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1bbd0b84 1936 (SCM n),
1e6808ea
MG
1937 "Return the number of bits in integer @var{n}. If integer is\n"
1938 "positive, the 1-bits in its binary representation are counted.\n"
1939 "If negative, the 0-bits in its two's-complement binary\n"
1940 "representation are counted. If 0, 0 is returned.\n"
1941 "\n"
b380b885
MD
1942 "@lisp\n"
1943 "(logcount #b10101010)\n"
ca46fb90
RB
1944 " @result{} 4\n"
1945 "(logcount 0)\n"
1946 " @result{} 0\n"
1947 "(logcount -2)\n"
1948 " @result{} 1\n"
1949 "@end lisp")
1950#define FUNC_NAME s_scm_logcount
1951{
e11e83f3 1952 if (SCM_I_INUMP (n))
f872b822 1953 {
ca46fb90 1954 unsigned long int c = 0;
e11e83f3 1955 long int nn = SCM_I_INUM (n);
ca46fb90
RB
1956 if (nn < 0)
1957 nn = -1 - nn;
1958 while (nn)
1959 {
1960 c += scm_logtab[15 & nn];
1961 nn >>= 4;
1962 }
d956fa6f 1963 return SCM_I_MAKINUM (c);
f872b822 1964 }
ca46fb90 1965 else if (SCM_BIGP (n))
f872b822 1966 {
ca46fb90 1967 unsigned long count;
713a4259
KR
1968 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
1969 count = mpz_popcount (SCM_I_BIG_MPZ (n));
ca46fb90 1970 else
713a4259
KR
1971 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
1972 scm_remember_upto_here_1 (n);
d956fa6f 1973 return SCM_I_MAKINUM (count);
f872b822 1974 }
ca46fb90
RB
1975 else
1976 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
0f2d19dd 1977}
ca46fb90 1978#undef FUNC_NAME
0f2d19dd
JB
1979
1980
ca46fb90
RB
1981static const char scm_ilentab[] = {
1982 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
1983};
1984
0f2d19dd 1985
ca46fb90
RB
1986SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
1987 (SCM n),
1988 "Return the number of bits necessary to represent @var{n}.\n"
1989 "\n"
1990 "@lisp\n"
1991 "(integer-length #b10101010)\n"
1992 " @result{} 8\n"
1993 "(integer-length 0)\n"
1994 " @result{} 0\n"
1995 "(integer-length #b1111)\n"
1996 " @result{} 4\n"
1997 "@end lisp")
1998#define FUNC_NAME s_scm_integer_length
1999{
e11e83f3 2000 if (SCM_I_INUMP (n))
0aacf84e
MD
2001 {
2002 unsigned long int c = 0;
2003 unsigned int l = 4;
e11e83f3 2004 long int nn = SCM_I_INUM (n);
0aacf84e
MD
2005 if (nn < 0)
2006 nn = -1 - nn;
2007 while (nn)
2008 {
2009 c += 4;
2010 l = scm_ilentab [15 & nn];
2011 nn >>= 4;
2012 }
d956fa6f 2013 return SCM_I_MAKINUM (c - 4 + l);
0aacf84e
MD
2014 }
2015 else if (SCM_BIGP (n))
2016 {
2017 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
2018 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
2019 1 too big, so check for that and adjust. */
2020 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
2021 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
2022 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
2023 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
2024 size--;
2025 scm_remember_upto_here_1 (n);
d956fa6f 2026 return SCM_I_MAKINUM (size);
0aacf84e
MD
2027 }
2028 else
ca46fb90 2029 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
ca46fb90
RB
2030}
2031#undef FUNC_NAME
0f2d19dd
JB
2032
2033/*** NUMBERS -> STRINGS ***/
0b799eea
MV
2034#define SCM_MAX_DBL_PREC 60
2035#define SCM_MAX_DBL_RADIX 36
2036
2037/* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
2038static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
2039static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
2040
2041static
2042void init_dblprec(int *prec, int radix) {
2043 /* determine floating point precision by adding successively
2044 smaller increments to 1.0 until it is considered == 1.0 */
2045 double f = ((double)1.0)/radix;
2046 double fsum = 1.0 + f;
2047
2048 *prec = 0;
2049 while (fsum != 1.0)
2050 {
2051 if (++(*prec) > SCM_MAX_DBL_PREC)
2052 fsum = 1.0;
2053 else
2054 {
2055 f /= radix;
2056 fsum = f + 1.0;
2057 }
2058 }
2059 (*prec) -= 1;
2060}
2061
2062static
2063void init_fx_radix(double *fx_list, int radix)
2064{
2065 /* initialize a per-radix list of tolerances. When added
2066 to a number < 1.0, we can determine if we should raund
2067 up and quit converting a number to a string. */
2068 int i;
2069 fx_list[0] = 0.0;
2070 fx_list[1] = 0.5;
2071 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2072 fx_list[i] = (fx_list[i-1] / radix);
2073}
2074
2075/* use this array as a way to generate a single digit */
2076static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
0f2d19dd 2077
1be6b49c 2078static size_t
0b799eea 2079idbl2str (double f, char *a, int radix)
0f2d19dd 2080{
0b799eea
MV
2081 int efmt, dpt, d, i, wp;
2082 double *fx;
2083#ifdef DBL_MIN_10_EXP
2084 double f_cpy;
2085 int exp_cpy;
2086#endif /* DBL_MIN_10_EXP */
2087 size_t ch = 0;
2088 int exp = 0;
2089
2090 if(radix < 2 ||
2091 radix > SCM_MAX_DBL_RADIX)
2092 {
2093 /* revert to existing behavior */
2094 radix = 10;
2095 }
2096
2097 wp = scm_dblprec[radix-2];
2098 fx = fx_per_radix[radix-2];
0f2d19dd 2099
f872b822 2100 if (f == 0.0)
abb7e44d
MV
2101 {
2102#ifdef HAVE_COPYSIGN
2103 double sgn = copysign (1.0, f);
2104
2105 if (sgn < 0.0)
2106 a[ch++] = '-';
2107#endif
abb7e44d
MV
2108 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2109 }
7351e207
MV
2110
2111 if (xisinf (f))
2112 {
2113 if (f < 0)
2114 strcpy (a, "-inf.0");
2115 else
2116 strcpy (a, "+inf.0");
2117 return ch+6;
2118 }
2119 else if (xisnan (f))
2120 {
2121 strcpy (a, "+nan.0");
2122 return ch+6;
2123 }
2124
f872b822
MD
2125 if (f < 0.0)
2126 {
2127 f = -f;
2128 a[ch++] = '-';
2129 }
7351e207 2130
f872b822
MD
2131#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2132 make-uniform-vector, from causing infinite loops. */
0b799eea
MV
2133 /* just do the checking...if it passes, we do the conversion for our
2134 radix again below */
2135 f_cpy = f;
2136 exp_cpy = exp;
2137
2138 while (f_cpy < 1.0)
f872b822 2139 {
0b799eea
MV
2140 f_cpy *= 10.0;
2141 if (exp_cpy-- < DBL_MIN_10_EXP)
7351e207
MV
2142 {
2143 a[ch++] = '#';
2144 a[ch++] = '.';
2145 a[ch++] = '#';
2146 return ch;
2147 }
f872b822 2148 }
0b799eea 2149 while (f_cpy > 10.0)
f872b822 2150 {
0b799eea
MV
2151 f_cpy *= 0.10;
2152 if (exp_cpy++ > DBL_MAX_10_EXP)
7351e207
MV
2153 {
2154 a[ch++] = '#';
2155 a[ch++] = '.';
2156 a[ch++] = '#';
2157 return ch;
2158 }
f872b822 2159 }
0b799eea
MV
2160#endif
2161
f872b822
MD
2162 while (f < 1.0)
2163 {
0b799eea 2164 f *= radix;
f872b822
MD
2165 exp--;
2166 }
0b799eea 2167 while (f > radix)
f872b822 2168 {
0b799eea 2169 f /= radix;
f872b822
MD
2170 exp++;
2171 }
0b799eea
MV
2172
2173 if (f + fx[wp] >= radix)
f872b822
MD
2174 {
2175 f = 1.0;
2176 exp++;
2177 }
0f2d19dd 2178 zero:
0b799eea
MV
2179#ifdef ENGNOT
2180 /* adding 9999 makes this equivalent to abs(x) % 3 */
f872b822 2181 dpt = (exp + 9999) % 3;
0f2d19dd
JB
2182 exp -= dpt++;
2183 efmt = 1;
f872b822
MD
2184#else
2185 efmt = (exp < -3) || (exp > wp + 2);
0f2d19dd 2186 if (!efmt)
cda139a7
MD
2187 {
2188 if (exp < 0)
2189 {
2190 a[ch++] = '0';
2191 a[ch++] = '.';
2192 dpt = exp;
f872b822
MD
2193 while (++dpt)
2194 a[ch++] = '0';
cda139a7
MD
2195 }
2196 else
f872b822 2197 dpt = exp + 1;
cda139a7 2198 }
0f2d19dd
JB
2199 else
2200 dpt = 1;
f872b822
MD
2201#endif
2202
2203 do
2204 {
2205 d = f;
2206 f -= d;
0b799eea 2207 a[ch++] = number_chars[d];
f872b822
MD
2208 if (f < fx[wp])
2209 break;
2210 if (f + fx[wp] >= 1.0)
2211 {
0b799eea 2212 a[ch - 1] = number_chars[d+1];
f872b822
MD
2213 break;
2214 }
0b799eea 2215 f *= radix;
f872b822
MD
2216 if (!(--dpt))
2217 a[ch++] = '.';
0f2d19dd 2218 }
f872b822 2219 while (wp--);
0f2d19dd
JB
2220
2221 if (dpt > 0)
cda139a7 2222 {
f872b822 2223#ifndef ENGNOT
cda139a7
MD
2224 if ((dpt > 4) && (exp > 6))
2225 {
f872b822 2226 d = (a[0] == '-' ? 2 : 1);
cda139a7 2227 for (i = ch++; i > d; i--)
f872b822 2228 a[i] = a[i - 1];
cda139a7
MD
2229 a[d] = '.';
2230 efmt = 1;
2231 }
2232 else
f872b822 2233#endif
cda139a7 2234 {
f872b822
MD
2235 while (--dpt)
2236 a[ch++] = '0';
cda139a7
MD
2237 a[ch++] = '.';
2238 }
2239 }
f872b822
MD
2240 if (a[ch - 1] == '.')
2241 a[ch++] = '0'; /* trailing zero */
2242 if (efmt && exp)
2243 {
2244 a[ch++] = 'e';
2245 if (exp < 0)
2246 {
2247 exp = -exp;
2248 a[ch++] = '-';
2249 }
0b799eea
MV
2250 for (i = radix; i <= exp; i *= radix);
2251 for (i /= radix; i; i /= radix)
f872b822 2252 {
0b799eea 2253 a[ch++] = number_chars[exp / i];
f872b822
MD
2254 exp %= i;
2255 }
0f2d19dd 2256 }
0f2d19dd
JB
2257 return ch;
2258}
2259
7a1aba42
MV
2260
2261static size_t
2262icmplx2str (double real, double imag, char *str, int radix)
2263{
2264 size_t i;
2265
2266 i = idbl2str (real, str, radix);
2267 if (imag != 0.0)
2268 {
2269 /* Don't output a '+' for negative numbers or for Inf and
2270 NaN. They will provide their own sign. */
2271 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
2272 str[i++] = '+';
2273 i += idbl2str (imag, &str[i], radix);
2274 str[i++] = 'i';
2275 }
2276 return i;
2277}
2278
1be6b49c 2279static size_t
0b799eea 2280iflo2str (SCM flt, char *str, int radix)
0f2d19dd 2281{
1be6b49c 2282 size_t i;
3c9a524f 2283 if (SCM_REALP (flt))
0b799eea 2284 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
0f2d19dd 2285 else
7a1aba42
MV
2286 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
2287 str, radix);
0f2d19dd
JB
2288 return i;
2289}
0f2d19dd 2290
2881e77b 2291/* convert a scm_t_intmax to a string (unterminated). returns the number of
1bbd0b84
GB
2292 characters in the result.
2293 rad is output base
2294 p is destination: worst case (base 2) is SCM_INTBUFLEN */
1be6b49c 2295size_t
2881e77b
MV
2296scm_iint2str (scm_t_intmax num, int rad, char *p)
2297{
2298 if (num < 0)
2299 {
2300 *p++ = '-';
2301 return scm_iuint2str (-num, rad, p) + 1;
2302 }
2303 else
2304 return scm_iuint2str (num, rad, p);
2305}
2306
2307/* convert a scm_t_intmax to a string (unterminated). returns the number of
2308 characters in the result.
2309 rad is output base
2310 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2311size_t
2312scm_iuint2str (scm_t_uintmax num, int rad, char *p)
0f2d19dd 2313{
1be6b49c
ML
2314 size_t j = 1;
2315 size_t i;
2881e77b 2316 scm_t_uintmax n = num;
5c11cc9d 2317
f872b822 2318 for (n /= rad; n > 0; n /= rad)
5c11cc9d
GH
2319 j++;
2320
2321 i = j;
2881e77b 2322 n = num;
f872b822
MD
2323 while (i--)
2324 {
5c11cc9d
GH
2325 int d = n % rad;
2326
f872b822
MD
2327 n /= rad;
2328 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2329 }
0f2d19dd
JB
2330 return j;
2331}
2332
a1ec6916 2333SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
bb628794
DH
2334 (SCM n, SCM radix),
2335 "Return a string holding the external representation of the\n"
942e5b91
MG
2336 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2337 "inexact, a radix of 10 will be used.")
1bbd0b84 2338#define FUNC_NAME s_scm_number_to_string
0f2d19dd 2339{
1bbd0b84 2340 int base;
98cb6e75 2341
0aacf84e 2342 if (SCM_UNBNDP (radix))
98cb6e75 2343 base = 10;
0aacf84e 2344 else
5efd3c7d 2345 base = scm_to_signed_integer (radix, 2, 36);
98cb6e75 2346
e11e83f3 2347 if (SCM_I_INUMP (n))
0aacf84e
MD
2348 {
2349 char num_buf [SCM_INTBUFLEN];
e11e83f3 2350 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
cc95e00a 2351 return scm_from_locale_stringn (num_buf, length);
0aacf84e
MD
2352 }
2353 else if (SCM_BIGP (n))
2354 {
2355 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2356 scm_remember_upto_here_1 (n);
cc95e00a 2357 return scm_take_locale_string (str);
0aacf84e 2358 }
f92e85f7
MV
2359 else if (SCM_FRACTIONP (n))
2360 {
2361 scm_i_fraction_reduce (n);
2362 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
cc95e00a 2363 scm_from_locale_string ("/"),
f92e85f7
MV
2364 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2365 }
0aacf84e
MD
2366 else if (SCM_INEXACTP (n))
2367 {
2368 char num_buf [FLOBUFLEN];
cc95e00a 2369 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
0aacf84e
MD
2370 }
2371 else
bb628794 2372 SCM_WRONG_TYPE_ARG (1, n);
0f2d19dd 2373}
1bbd0b84 2374#undef FUNC_NAME
0f2d19dd
JB
2375
2376
ca46fb90
RB
2377/* These print routines used to be stubbed here so that scm_repl.c
2378 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
1cc91f1b 2379
0f2d19dd 2380int
e81d98ec 2381scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2382{
56e55ac7 2383 char num_buf[FLOBUFLEN];
0b799eea 2384 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
0f2d19dd
JB
2385 return !0;
2386}
2387
b479fe9a
MV
2388void
2389scm_i_print_double (double val, SCM port)
2390{
2391 char num_buf[FLOBUFLEN];
2392 scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
2393}
2394
f3ae5d60 2395int
e81d98ec 2396scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
f92e85f7 2397
f3ae5d60 2398{
56e55ac7 2399 char num_buf[FLOBUFLEN];
0b799eea 2400 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
f3ae5d60
MD
2401 return !0;
2402}
1cc91f1b 2403
7a1aba42
MV
2404void
2405scm_i_print_complex (double real, double imag, SCM port)
2406{
2407 char num_buf[FLOBUFLEN];
2408 scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
2409}
2410
f92e85f7
MV
2411int
2412scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2413{
2414 SCM str;
2415 scm_i_fraction_reduce (sexp);
2416 str = scm_number_to_string (sexp, SCM_UNDEFINED);
cc95e00a 2417 scm_lfwrite (scm_i_string_chars (str), scm_i_string_length (str), port);
f92e85f7
MV
2418 scm_remember_upto_here_1 (str);
2419 return !0;
2420}
2421
0f2d19dd 2422int
e81d98ec 2423scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
0f2d19dd 2424{
ca46fb90
RB
2425 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2426 scm_remember_upto_here_1 (exp);
2427 scm_lfwrite (str, (size_t) strlen (str), port);
2428 free (str);
0f2d19dd
JB
2429 return !0;
2430}
2431/*** END nums->strs ***/
2432
3c9a524f 2433
0f2d19dd 2434/*** STRINGS -> NUMBERS ***/
2a8fecee 2435
3c9a524f
DH
2436/* The following functions implement the conversion from strings to numbers.
2437 * The implementation somehow follows the grammar for numbers as it is given
2438 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2439 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2440 * points should be noted about the implementation:
2441 * * Each function keeps a local index variable 'idx' that points at the
2442 * current position within the parsed string. The global index is only
2443 * updated if the function could parse the corresponding syntactic unit
2444 * successfully.
2445 * * Similarly, the functions keep track of indicators of inexactness ('#',
2446 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2447 * global exactness information is only updated after each part has been
2448 * successfully parsed.
2449 * * Sequences of digits are parsed into temporary variables holding fixnums.
2450 * Only if these fixnums would overflow, the result variables are updated
2451 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2452 * the temporary variables holding the fixnums are cleared, and the process
2453 * starts over again. If for example fixnums were able to store five decimal
2454 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2455 * and the result was computed as 12345 * 100000 + 67890. In other words,
2456 * only every five digits two bignum operations were performed.
2457 */
2458
2459enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2460
2461/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2462
2463/* In non ASCII-style encodings the following macro might not work. */
71df73ac
KR
2464#define XDIGIT2UINT(d) \
2465 (isdigit ((int) (unsigned char) d) \
2466 ? (d) - '0' \
2467 : tolower ((int) (unsigned char) d) - 'a' + 10)
3c9a524f 2468
2a8fecee 2469static SCM
3c9a524f
DH
2470mem2uinteger (const char* mem, size_t len, unsigned int *p_idx,
2471 unsigned int radix, enum t_exactness *p_exactness)
2a8fecee 2472{
3c9a524f
DH
2473 unsigned int idx = *p_idx;
2474 unsigned int hash_seen = 0;
2475 scm_t_bits shift = 1;
2476 scm_t_bits add = 0;
2477 unsigned int digit_value;
2478 SCM result;
2479 char c;
2480
2481 if (idx == len)
2482 return SCM_BOOL_F;
2a8fecee 2483
3c9a524f 2484 c = mem[idx];
71df73ac 2485 if (!isxdigit ((int) (unsigned char) c))
3c9a524f
DH
2486 return SCM_BOOL_F;
2487 digit_value = XDIGIT2UINT (c);
2488 if (digit_value >= radix)
2489 return SCM_BOOL_F;
2490
2491 idx++;
d956fa6f 2492 result = SCM_I_MAKINUM (digit_value);
3c9a524f 2493 while (idx != len)
f872b822 2494 {
3c9a524f 2495 char c = mem[idx];
71df73ac 2496 if (isxdigit ((int) (unsigned char) c))
f872b822 2497 {
3c9a524f 2498 if (hash_seen)
1fe5e088 2499 break;
3c9a524f
DH
2500 digit_value = XDIGIT2UINT (c);
2501 if (digit_value >= radix)
1fe5e088 2502 break;
f872b822 2503 }
3c9a524f
DH
2504 else if (c == '#')
2505 {
2506 hash_seen = 1;
2507 digit_value = 0;
2508 }
2509 else
2510 break;
2511
2512 idx++;
2513 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2514 {
d956fa6f 2515 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2516 if (add > 0)
d956fa6f 2517 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2518
2519 shift = radix;
2520 add = digit_value;
2521 }
2522 else
2523 {
2524 shift = shift * radix;
2525 add = add * radix + digit_value;
2526 }
2527 };
2528
2529 if (shift > 1)
d956fa6f 2530 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2531 if (add > 0)
d956fa6f 2532 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2533
2534 *p_idx = idx;
2535 if (hash_seen)
2536 *p_exactness = INEXACT;
2537
2538 return result;
2a8fecee
JB
2539}
2540
2541
3c9a524f
DH
2542/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2543 * covers the parts of the rules that start at a potential point. The value
2544 * of the digits up to the point have been parsed by the caller and are given
79d34f68
DH
2545 * in variable result. The content of *p_exactness indicates, whether a hash
2546 * has already been seen in the digits before the point.
3c9a524f 2547 */
1cc91f1b 2548
3c9a524f
DH
2549/* In non ASCII-style encodings the following macro might not work. */
2550#define DIGIT2UINT(d) ((d) - '0')
2551
2552static SCM
79d34f68 2553mem2decimal_from_point (SCM result, const char* mem, size_t len,
3c9a524f 2554 unsigned int *p_idx, enum t_exactness *p_exactness)
0f2d19dd 2555{
3c9a524f
DH
2556 unsigned int idx = *p_idx;
2557 enum t_exactness x = *p_exactness;
3c9a524f
DH
2558
2559 if (idx == len)
79d34f68 2560 return result;
3c9a524f
DH
2561
2562 if (mem[idx] == '.')
2563 {
2564 scm_t_bits shift = 1;
2565 scm_t_bits add = 0;
2566 unsigned int digit_value;
d956fa6f 2567 SCM big_shift = SCM_I_MAKINUM (1);
3c9a524f
DH
2568
2569 idx++;
2570 while (idx != len)
2571 {
2572 char c = mem[idx];
71df73ac 2573 if (isdigit ((int) (unsigned char) c))
3c9a524f
DH
2574 {
2575 if (x == INEXACT)
2576 return SCM_BOOL_F;
2577 else
2578 digit_value = DIGIT2UINT (c);
2579 }
2580 else if (c == '#')
2581 {
2582 x = INEXACT;
2583 digit_value = 0;
2584 }
2585 else
2586 break;
2587
2588 idx++;
2589 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2590 {
d956fa6f
MV
2591 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2592 result = scm_product (result, SCM_I_MAKINUM (shift));
3c9a524f 2593 if (add > 0)
d956fa6f 2594 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2595
2596 shift = 10;
2597 add = digit_value;
2598 }
2599 else
2600 {
2601 shift = shift * 10;
2602 add = add * 10 + digit_value;
2603 }
2604 };
2605
2606 if (add > 0)
2607 {
d956fa6f
MV
2608 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2609 result = scm_product (result, SCM_I_MAKINUM (shift));
2610 result = scm_sum (result, SCM_I_MAKINUM (add));
3c9a524f
DH
2611 }
2612
d8592269 2613 result = scm_divide (result, big_shift);
79d34f68 2614
3c9a524f
DH
2615 /* We've seen a decimal point, thus the value is implicitly inexact. */
2616 x = INEXACT;
f872b822 2617 }
3c9a524f 2618
3c9a524f 2619 if (idx != len)
f872b822 2620 {
3c9a524f
DH
2621 int sign = 1;
2622 unsigned int start;
2623 char c;
2624 int exponent;
2625 SCM e;
2626
2627 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2628
2629 switch (mem[idx])
f872b822 2630 {
3c9a524f
DH
2631 case 'd': case 'D':
2632 case 'e': case 'E':
2633 case 'f': case 'F':
2634 case 'l': case 'L':
2635 case 's': case 'S':
2636 idx++;
2637 start = idx;
2638 c = mem[idx];
2639 if (c == '-')
2640 {
2641 idx++;
2642 sign = -1;
2643 c = mem[idx];
2644 }
2645 else if (c == '+')
2646 {
2647 idx++;
2648 sign = 1;
2649 c = mem[idx];
2650 }
2651 else
2652 sign = 1;
2653
71df73ac 2654 if (!isdigit ((int) (unsigned char) c))
3c9a524f
DH
2655 return SCM_BOOL_F;
2656
2657 idx++;
2658 exponent = DIGIT2UINT (c);
2659 while (idx != len)
f872b822 2660 {
3c9a524f 2661 char c = mem[idx];
71df73ac 2662 if (isdigit ((int) (unsigned char) c))
3c9a524f
DH
2663 {
2664 idx++;
2665 if (exponent <= SCM_MAXEXP)
2666 exponent = exponent * 10 + DIGIT2UINT (c);
2667 }
2668 else
2669 break;
f872b822 2670 }
3c9a524f
DH
2671
2672 if (exponent > SCM_MAXEXP)
f872b822 2673 {
3c9a524f 2674 size_t exp_len = idx - start;
cc95e00a 2675 SCM exp_string = scm_from_locale_stringn (&mem[start], exp_len);
3c9a524f
DH
2676 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2677 scm_out_of_range ("string->number", exp_num);
f872b822 2678 }
3c9a524f 2679
d956fa6f 2680 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
3c9a524f
DH
2681 if (sign == 1)
2682 result = scm_product (result, e);
2683 else
f92e85f7 2684 result = scm_divide2real (result, e);
3c9a524f
DH
2685
2686 /* We've seen an exponent, thus the value is implicitly inexact. */
2687 x = INEXACT;
2688
f872b822 2689 break;
3c9a524f 2690
f872b822 2691 default:
3c9a524f 2692 break;
f872b822 2693 }
0f2d19dd 2694 }
3c9a524f
DH
2695
2696 *p_idx = idx;
2697 if (x == INEXACT)
2698 *p_exactness = x;
2699
2700 return result;
0f2d19dd 2701}
0f2d19dd 2702
3c9a524f
DH
2703
2704/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2705
2706static SCM
2707mem2ureal (const char* mem, size_t len, unsigned int *p_idx,
2708 unsigned int radix, enum t_exactness *p_exactness)
0f2d19dd 2709{
3c9a524f 2710 unsigned int idx = *p_idx;
164d2481 2711 SCM result;
3c9a524f
DH
2712
2713 if (idx == len)
2714 return SCM_BOOL_F;
2715
7351e207
MV
2716 if (idx+5 <= len && !strncmp (mem+idx, "inf.0", 5))
2717 {
2718 *p_idx = idx+5;
2719 return scm_inf ();
2720 }
2721
2722 if (idx+4 < len && !strncmp (mem+idx, "nan.", 4))
2723 {
2724 enum t_exactness x = EXACT;
2725
d8592269
MV
2726 /* Cobble up the fractional part. We might want to set the
2727 NaN's mantissa from it. */
7351e207
MV
2728 idx += 4;
2729 mem2uinteger (mem, len, &idx, 10, &x);
2730 *p_idx = idx;
2731 return scm_nan ();
2732 }
2733
3c9a524f
DH
2734 if (mem[idx] == '.')
2735 {
2736 if (radix != 10)
2737 return SCM_BOOL_F;
2738 else if (idx + 1 == len)
2739 return SCM_BOOL_F;
71df73ac 2740 else if (!isdigit ((int) (unsigned char) mem[idx + 1]))
3c9a524f
DH
2741 return SCM_BOOL_F;
2742 else
d956fa6f 2743 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem, len,
164d2481 2744 p_idx, p_exactness);
f872b822 2745 }
3c9a524f
DH
2746 else
2747 {
2748 enum t_exactness x = EXACT;
2749 SCM uinteger;
3c9a524f
DH
2750
2751 uinteger = mem2uinteger (mem, len, &idx, radix, &x);
73e4de09 2752 if (scm_is_false (uinteger))
3c9a524f
DH
2753 return SCM_BOOL_F;
2754
2755 if (idx == len)
2756 result = uinteger;
2757 else if (mem[idx] == '/')
f872b822 2758 {
3c9a524f
DH
2759 SCM divisor;
2760
2761 idx++;
2762
2763 divisor = mem2uinteger (mem, len, &idx, radix, &x);
73e4de09 2764 if (scm_is_false (divisor))
3c9a524f
DH
2765 return SCM_BOOL_F;
2766
f92e85f7 2767 /* both are int/big here, I assume */
cba42c93 2768 result = scm_i_make_ratio (uinteger, divisor);
f872b822 2769 }
3c9a524f
DH
2770 else if (radix == 10)
2771 {
2772 result = mem2decimal_from_point (uinteger, mem, len, &idx, &x);
73e4de09 2773 if (scm_is_false (result))
3c9a524f
DH
2774 return SCM_BOOL_F;
2775 }
2776 else
2777 result = uinteger;
2778
2779 *p_idx = idx;
2780 if (x == INEXACT)
2781 *p_exactness = x;
f872b822 2782 }
164d2481
MV
2783
2784 /* When returning an inexact zero, make sure it is represented as a
2785 floating point value so that we can change its sign.
2786 */
bc36d050 2787 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
55f26379 2788 result = scm_from_double (0.0);
164d2481
MV
2789
2790 return result;
3c9a524f 2791}
0f2d19dd 2792
0f2d19dd 2793
3c9a524f 2794/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
0f2d19dd 2795
3c9a524f
DH
2796static SCM
2797mem2complex (const char* mem, size_t len, unsigned int idx,
2798 unsigned int radix, enum t_exactness *p_exactness)
2799{
2800 char c;
2801 int sign = 0;
2802 SCM ureal;
2803
2804 if (idx == len)
2805 return SCM_BOOL_F;
2806
2807 c = mem[idx];
2808 if (c == '+')
2809 {
2810 idx++;
2811 sign = 1;
2812 }
2813 else if (c == '-')
2814 {
2815 idx++;
2816 sign = -1;
0f2d19dd 2817 }
0f2d19dd 2818
3c9a524f
DH
2819 if (idx == len)
2820 return SCM_BOOL_F;
2821
2822 ureal = mem2ureal (mem, len, &idx, radix, p_exactness);
73e4de09 2823 if (scm_is_false (ureal))
f872b822 2824 {
3c9a524f
DH
2825 /* input must be either +i or -i */
2826
2827 if (sign == 0)
2828 return SCM_BOOL_F;
2829
2830 if (mem[idx] == 'i' || mem[idx] == 'I')
f872b822 2831 {
3c9a524f
DH
2832 idx++;
2833 if (idx != len)
2834 return SCM_BOOL_F;
2835
d956fa6f 2836 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
f872b822 2837 }
3c9a524f
DH
2838 else
2839 return SCM_BOOL_F;
0f2d19dd 2840 }
3c9a524f
DH
2841 else
2842 {
73e4de09 2843 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f 2844 ureal = scm_difference (ureal, SCM_UNDEFINED);
f872b822 2845
3c9a524f
DH
2846 if (idx == len)
2847 return ureal;
2848
2849 c = mem[idx];
2850 switch (c)
f872b822 2851 {
3c9a524f
DH
2852 case 'i': case 'I':
2853 /* either +<ureal>i or -<ureal>i */
2854
2855 idx++;
2856 if (sign == 0)
2857 return SCM_BOOL_F;
2858 if (idx != len)
2859 return SCM_BOOL_F;
d956fa6f 2860 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
3c9a524f
DH
2861
2862 case '@':
2863 /* polar input: <real>@<real>. */
2864
2865 idx++;
2866 if (idx == len)
2867 return SCM_BOOL_F;
2868 else
f872b822 2869 {
3c9a524f
DH
2870 int sign;
2871 SCM angle;
2872 SCM result;
2873
2874 c = mem[idx];
2875 if (c == '+')
2876 {
2877 idx++;
2878 sign = 1;
2879 }
2880 else if (c == '-')
2881 {
2882 idx++;
2883 sign = -1;
2884 }
2885 else
2886 sign = 1;
2887
2888 angle = mem2ureal (mem, len, &idx, radix, p_exactness);
73e4de09 2889 if (scm_is_false (angle))
3c9a524f
DH
2890 return SCM_BOOL_F;
2891 if (idx != len)
2892 return SCM_BOOL_F;
2893
73e4de09 2894 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3c9a524f
DH
2895 angle = scm_difference (angle, SCM_UNDEFINED);
2896
2897 result = scm_make_polar (ureal, angle);
2898 return result;
f872b822 2899 }
3c9a524f
DH
2900 case '+':
2901 case '-':
2902 /* expecting input matching <real>[+-]<ureal>?i */
0f2d19dd 2903
3c9a524f
DH
2904 idx++;
2905 if (idx == len)
2906 return SCM_BOOL_F;
2907 else
2908 {
2909 int sign = (c == '+') ? 1 : -1;
2910 SCM imag = mem2ureal (mem, len, &idx, radix, p_exactness);
0f2d19dd 2911
73e4de09 2912 if (scm_is_false (imag))
d956fa6f 2913 imag = SCM_I_MAKINUM (sign);
73e4de09 2914 else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
1fe5e088 2915 imag = scm_difference (imag, SCM_UNDEFINED);
0f2d19dd 2916
3c9a524f
DH
2917 if (idx == len)
2918 return SCM_BOOL_F;
2919 if (mem[idx] != 'i' && mem[idx] != 'I')
2920 return SCM_BOOL_F;
0f2d19dd 2921
3c9a524f
DH
2922 idx++;
2923 if (idx != len)
2924 return SCM_BOOL_F;
0f2d19dd 2925
1fe5e088 2926 return scm_make_rectangular (ureal, imag);
3c9a524f
DH
2927 }
2928 default:
2929 return SCM_BOOL_F;
2930 }
2931 }
0f2d19dd 2932}
0f2d19dd
JB
2933
2934
3c9a524f
DH
2935/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
2936
2937enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
1cc91f1b 2938
0f2d19dd 2939SCM
3c9a524f 2940scm_i_mem2number (const char* mem, size_t len, unsigned int default_radix)
0f2d19dd 2941{
3c9a524f
DH
2942 unsigned int idx = 0;
2943 unsigned int radix = NO_RADIX;
2944 enum t_exactness forced_x = NO_EXACTNESS;
2945 enum t_exactness implicit_x = EXACT;
2946 SCM result;
2947
2948 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
2949 while (idx + 2 < len && mem[idx] == '#')
2950 {
2951 switch (mem[idx + 1])
2952 {
2953 case 'b': case 'B':
2954 if (radix != NO_RADIX)
2955 return SCM_BOOL_F;
2956 radix = DUAL;
2957 break;
2958 case 'd': case 'D':
2959 if (radix != NO_RADIX)
2960 return SCM_BOOL_F;
2961 radix = DEC;
2962 break;
2963 case 'i': case 'I':
2964 if (forced_x != NO_EXACTNESS)
2965 return SCM_BOOL_F;
2966 forced_x = INEXACT;
2967 break;
2968 case 'e': case 'E':
2969 if (forced_x != NO_EXACTNESS)
2970 return SCM_BOOL_F;
2971 forced_x = EXACT;
2972 break;
2973 case 'o': case 'O':
2974 if (radix != NO_RADIX)
2975 return SCM_BOOL_F;
2976 radix = OCT;
2977 break;
2978 case 'x': case 'X':
2979 if (radix != NO_RADIX)
2980 return SCM_BOOL_F;
2981 radix = HEX;
2982 break;
2983 default:
f872b822 2984 return SCM_BOOL_F;
3c9a524f
DH
2985 }
2986 idx += 2;
2987 }
2988
2989 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2990 if (radix == NO_RADIX)
2991 result = mem2complex (mem, len, idx, default_radix, &implicit_x);
2992 else
2993 result = mem2complex (mem, len, idx, (unsigned int) radix, &implicit_x);
2994
73e4de09 2995 if (scm_is_false (result))
3c9a524f 2996 return SCM_BOOL_F;
f872b822 2997
3c9a524f 2998 switch (forced_x)
f872b822 2999 {
3c9a524f
DH
3000 case EXACT:
3001 if (SCM_INEXACTP (result))
3c9a524f
DH
3002 return scm_inexact_to_exact (result);
3003 else
3004 return result;
3005 case INEXACT:
3006 if (SCM_INEXACTP (result))
3007 return result;
3008 else
3009 return scm_exact_to_inexact (result);
3010 case NO_EXACTNESS:
3011 default:
3012 if (implicit_x == INEXACT)
3013 {
3014 if (SCM_INEXACTP (result))
3015 return result;
3016 else
3017 return scm_exact_to_inexact (result);
3018 }
3019 else
3020 return result;
f872b822 3021 }
0f2d19dd
JB
3022}
3023
3024
a1ec6916 3025SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
bb628794 3026 (SCM string, SCM radix),
1e6808ea 3027 "Return a number of the maximally precise representation\n"
942e5b91 3028 "expressed by the given @var{string}. @var{radix} must be an\n"
5352393c
MG
3029 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
3030 "is a default radix that may be overridden by an explicit radix\n"
3031 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
3032 "supplied, then the default radix is 10. If string is not a\n"
3033 "syntactically valid notation for a number, then\n"
3034 "@code{string->number} returns @code{#f}.")
1bbd0b84 3035#define FUNC_NAME s_scm_string_to_number
0f2d19dd
JB
3036{
3037 SCM answer;
5efd3c7d 3038 unsigned int base;
a6d9e5ab 3039 SCM_VALIDATE_STRING (1, string);
5efd3c7d
MV
3040
3041 if (SCM_UNBNDP (radix))
3042 base = 10;
3043 else
3044 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
3045
cc95e00a
MV
3046 answer = scm_i_mem2number (scm_i_string_chars (string),
3047 scm_i_string_length (string),
d8592269 3048 base);
8824ac88
MV
3049 scm_remember_upto_here_1 (string);
3050 return answer;
0f2d19dd 3051}
1bbd0b84 3052#undef FUNC_NAME
3c9a524f
DH
3053
3054
0f2d19dd
JB
3055/*** END strs->nums ***/
3056
5986c47d 3057
0f2d19dd 3058SCM
1bbd0b84 3059scm_bigequal (SCM x, SCM y)
0f2d19dd 3060{
47ae1f0e 3061 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
ca46fb90 3062 scm_remember_upto_here_2 (x, y);
73e4de09 3063 return scm_from_bool (0 == result);
0f2d19dd
JB
3064}
3065
0f2d19dd 3066SCM
f3ae5d60 3067scm_real_equalp (SCM x, SCM y)
0f2d19dd 3068{
73e4de09 3069 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0f2d19dd
JB
3070}
3071
f3ae5d60
MD
3072SCM
3073scm_complex_equalp (SCM x, SCM y)
3074{
73e4de09 3075 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
f3ae5d60
MD
3076 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3077}
0f2d19dd 3078
f92e85f7
MV
3079SCM
3080scm_i_fraction_equalp (SCM x, SCM y)
3081{
3082 scm_i_fraction_reduce (x);
3083 scm_i_fraction_reduce (y);
73e4de09 3084 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
02164269 3085 SCM_FRACTION_NUMERATOR (y)))
73e4de09 3086 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
02164269
MV
3087 SCM_FRACTION_DENOMINATOR (y))))
3088 return SCM_BOOL_F;
3089 else
3090 return SCM_BOOL_T;
f92e85f7 3091}
0f2d19dd
JB
3092
3093
8507ec80
MV
3094SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3095 (SCM x),
3096 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3097 "otherwise.")
3098#define FUNC_NAME s_scm_number_p
3099{
3100 return scm_from_bool (SCM_NUMBERP (x));
3101}
3102#undef FUNC_NAME
3103
3104SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
1bbd0b84 3105 (SCM x),
942e5b91 3106 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
bb2c02f2 3107 "otherwise. Note that the sets of real, rational and integer\n"
942e5b91
MG
3108 "values form subsets of the set of complex numbers, i. e. the\n"
3109 "predicate will also be fulfilled if @var{x} is a real,\n"
3110 "rational or integer number.")
8507ec80 3111#define FUNC_NAME s_scm_complex_p
0f2d19dd 3112{
8507ec80
MV
3113 /* all numbers are complex. */
3114 return scm_number_p (x);
0f2d19dd 3115}
1bbd0b84 3116#undef FUNC_NAME
0f2d19dd 3117
f92e85f7
MV
3118SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3119 (SCM x),
3120 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3121 "otherwise. Note that the set of integer values forms a subset of\n"
3122 "the set of real numbers, i. e. the predicate will also be\n"
3123 "fulfilled if @var{x} is an integer number.")
3124#define FUNC_NAME s_scm_real_p
3125{
3126 /* we can't represent irrational numbers. */
3127 return scm_rational_p (x);
3128}
3129#undef FUNC_NAME
3130
3131SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
1bbd0b84 3132 (SCM x),
942e5b91 3133 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
bb2c02f2 3134 "otherwise. Note that the set of integer values forms a subset of\n"
942e5b91 3135 "the set of rational numbers, i. e. the predicate will also be\n"
f92e85f7
MV
3136 "fulfilled if @var{x} is an integer number.")
3137#define FUNC_NAME s_scm_rational_p
0f2d19dd 3138{
e11e83f3 3139 if (SCM_I_INUMP (x))
0f2d19dd 3140 return SCM_BOOL_T;
0aacf84e 3141 else if (SCM_IMP (x))
0f2d19dd 3142 return SCM_BOOL_F;
0aacf84e 3143 else if (SCM_BIGP (x))
0f2d19dd 3144 return SCM_BOOL_T;
f92e85f7
MV
3145 else if (SCM_FRACTIONP (x))
3146 return SCM_BOOL_T;
3147 else if (SCM_REALP (x))
3148 /* due to their limited precision, all floating point numbers are
3149 rational as well. */
3150 return SCM_BOOL_T;
0aacf84e 3151 else
bb628794 3152 return SCM_BOOL_F;
0f2d19dd 3153}
1bbd0b84 3154#undef FUNC_NAME
0f2d19dd 3155
a1ec6916 3156SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
1bbd0b84 3157 (SCM x),
942e5b91
MG
3158 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3159 "else.")
1bbd0b84 3160#define FUNC_NAME s_scm_integer_p
0f2d19dd
JB
3161{
3162 double r;
e11e83f3 3163 if (SCM_I_INUMP (x))
f872b822
MD
3164 return SCM_BOOL_T;
3165 if (SCM_IMP (x))
3166 return SCM_BOOL_F;
f872b822
MD
3167 if (SCM_BIGP (x))
3168 return SCM_BOOL_T;
3c9a524f 3169 if (!SCM_INEXACTP (x))
f872b822 3170 return SCM_BOOL_F;
3c9a524f 3171 if (SCM_COMPLEXP (x))
f872b822 3172 return SCM_BOOL_F;
5986c47d 3173 r = SCM_REAL_VALUE (x);
1e35a229 3174 /* +/-inf passes r==floor(r), making those #t */
f872b822
MD
3175 if (r == floor (r))
3176 return SCM_BOOL_T;
0f2d19dd
JB
3177 return SCM_BOOL_F;
3178}
1bbd0b84 3179#undef FUNC_NAME
0f2d19dd
JB
3180
3181
a1ec6916 3182SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
1bbd0b84 3183 (SCM x),
942e5b91
MG
3184 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3185 "else.")
1bbd0b84 3186#define FUNC_NAME s_scm_inexact_p
0f2d19dd 3187{
eb927cb9
MV
3188 if (SCM_INEXACTP (x))
3189 return SCM_BOOL_T;
3190 if (SCM_NUMBERP (x))
3191 return SCM_BOOL_F;
3192 SCM_WRONG_TYPE_ARG (1, x);
0f2d19dd 3193}
1bbd0b84 3194#undef FUNC_NAME
0f2d19dd
JB
3195
3196
152f82bf 3197SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
942e5b91 3198/* "Return @code{#t} if all parameters are numerically equal." */
0f2d19dd 3199SCM
6e8d25a6 3200scm_num_eq_p (SCM x, SCM y)
0f2d19dd 3201{
d8b95e27 3202 again:
e11e83f3 3203 if (SCM_I_INUMP (x))
0aacf84e 3204 {
e11e83f3
MV
3205 long xx = SCM_I_INUM (x);
3206 if (SCM_I_INUMP (y))
0aacf84e 3207 {
e11e83f3 3208 long yy = SCM_I_INUM (y);
73e4de09 3209 return scm_from_bool (xx == yy);
0aacf84e
MD
3210 }
3211 else if (SCM_BIGP (y))
3212 return SCM_BOOL_F;
3213 else if (SCM_REALP (y))
e8c5b1f2
KR
3214 {
3215 /* On a 32-bit system an inum fits a double, we can cast the inum
3216 to a double and compare.
3217
3218 But on a 64-bit system an inum is bigger than a double and
3219 casting it to a double (call that dxx) will round. dxx is at
3220 worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
3221 an integer and fits a long. So we cast yy to a long and
3222 compare with plain xx.
3223
3224 An alternative (for any size system actually) would be to check
3225 yy is an integer (with floor) and is in range of an inum
3226 (compare against appropriate powers of 2) then test
3227 xx==(long)yy. It's just a matter of which casts/comparisons
3228 might be fastest or easiest for the cpu. */
3229
3230 double yy = SCM_REAL_VALUE (y);
3a1b45fd
MV
3231 return scm_from_bool ((double) xx == yy
3232 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3233 || xx == (long) yy));
e8c5b1f2 3234 }
0aacf84e 3235 else if (SCM_COMPLEXP (y))
73e4de09 3236 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
0aacf84e 3237 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7
MV
3238 else if (SCM_FRACTIONP (y))
3239 return SCM_BOOL_F;
0aacf84e
MD
3240 else
3241 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f872b822 3242 }
0aacf84e
MD
3243 else if (SCM_BIGP (x))
3244 {
e11e83f3 3245 if (SCM_I_INUMP (y))
0aacf84e
MD
3246 return SCM_BOOL_F;
3247 else if (SCM_BIGP (y))
3248 {
3249 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3250 scm_remember_upto_here_2 (x, y);
73e4de09 3251 return scm_from_bool (0 == cmp);
0aacf84e
MD
3252 }
3253 else if (SCM_REALP (y))
3254 {
3255 int cmp;
3256 if (xisnan (SCM_REAL_VALUE (y)))
3257 return SCM_BOOL_F;
3258 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3259 scm_remember_upto_here_1 (x);
73e4de09 3260 return scm_from_bool (0 == cmp);
0aacf84e
MD
3261 }
3262 else if (SCM_COMPLEXP (y))
3263 {
3264 int cmp;
3265 if (0.0 != SCM_COMPLEX_IMAG (y))
3266 return SCM_BOOL_F;
3267 if (xisnan (SCM_COMPLEX_REAL (y)))
3268 return SCM_BOOL_F;
3269 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3270 scm_remember_upto_here_1 (x);
73e4de09 3271 return scm_from_bool (0 == cmp);
0aacf84e 3272 }
f92e85f7
MV
3273 else if (SCM_FRACTIONP (y))
3274 return SCM_BOOL_F;
0aacf84e
MD
3275 else
3276 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f4c627b3 3277 }
0aacf84e
MD
3278 else if (SCM_REALP (x))
3279 {
e8c5b1f2 3280 double xx = SCM_REAL_VALUE (x);
e11e83f3 3281 if (SCM_I_INUMP (y))
e8c5b1f2
KR
3282 {
3283 /* see comments with inum/real above */
3284 long yy = SCM_I_INUM (y);
3a1b45fd
MV
3285 return scm_from_bool (xx == (double) yy
3286 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3287 || (long) xx == yy));
e8c5b1f2 3288 }
0aacf84e
MD
3289 else if (SCM_BIGP (y))
3290 {
3291 int cmp;
3292 if (xisnan (SCM_REAL_VALUE (x)))
3293 return SCM_BOOL_F;
3294 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3295 scm_remember_upto_here_1 (y);
73e4de09 3296 return scm_from_bool (0 == cmp);
0aacf84e
MD
3297 }
3298 else if (SCM_REALP (y))
73e4de09 3299 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
0aacf84e 3300 else if (SCM_COMPLEXP (y))
73e4de09 3301 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3302 && (0.0 == SCM_COMPLEX_IMAG (y)));
f92e85f7 3303 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3304 {
3305 double xx = SCM_REAL_VALUE (x);
3306 if (xisnan (xx))
3307 return SCM_BOOL_F;
3308 if (xisinf (xx))
73e4de09 3309 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3310 x = scm_inexact_to_exact (x); /* with x as frac or int */
3311 goto again;
3312 }
0aacf84e
MD
3313 else
3314 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f872b822 3315 }
0aacf84e
MD
3316 else if (SCM_COMPLEXP (x))
3317 {
e11e83f3
MV
3318 if (SCM_I_INUMP (y))
3319 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
0aacf84e
MD
3320 && (SCM_COMPLEX_IMAG (x) == 0.0));
3321 else if (SCM_BIGP (y))
3322 {
3323 int cmp;
3324 if (0.0 != SCM_COMPLEX_IMAG (x))
3325 return SCM_BOOL_F;
3326 if (xisnan (SCM_COMPLEX_REAL (x)))
3327 return SCM_BOOL_F;
3328 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3329 scm_remember_upto_here_1 (y);
73e4de09 3330 return scm_from_bool (0 == cmp);
0aacf84e
MD
3331 }
3332 else if (SCM_REALP (y))
73e4de09 3333 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
0aacf84e
MD
3334 && (SCM_COMPLEX_IMAG (x) == 0.0));
3335 else if (SCM_COMPLEXP (y))
73e4de09 3336 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
0aacf84e 3337 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
f92e85f7 3338 else if (SCM_FRACTIONP (y))
d8b95e27
KR
3339 {
3340 double xx;
3341 if (SCM_COMPLEX_IMAG (x) != 0.0)
3342 return SCM_BOOL_F;
3343 xx = SCM_COMPLEX_REAL (x);
3344 if (xisnan (xx))
3345 return SCM_BOOL_F;
3346 if (xisinf (xx))
73e4de09 3347 return scm_from_bool (xx < 0.0);
d8b95e27
KR
3348 x = scm_inexact_to_exact (x); /* with x as frac or int */
3349 goto again;
3350 }
f92e85f7
MV
3351 else
3352 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3353 }
3354 else if (SCM_FRACTIONP (x))
3355 {
e11e83f3 3356 if (SCM_I_INUMP (y))
f92e85f7
MV
3357 return SCM_BOOL_F;
3358 else if (SCM_BIGP (y))
3359 return SCM_BOOL_F;
3360 else if (SCM_REALP (y))
d8b95e27
KR
3361 {
3362 double yy = SCM_REAL_VALUE (y);
3363 if (xisnan (yy))
3364 return SCM_BOOL_F;
3365 if (xisinf (yy))
73e4de09 3366 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3367 y = scm_inexact_to_exact (y); /* with y as frac or int */
3368 goto again;
3369 }
f92e85f7 3370 else if (SCM_COMPLEXP (y))
d8b95e27
KR
3371 {
3372 double yy;
3373 if (SCM_COMPLEX_IMAG (y) != 0.0)
3374 return SCM_BOOL_F;
3375 yy = SCM_COMPLEX_REAL (y);
3376 if (xisnan (yy))
3377 return SCM_BOOL_F;
3378 if (xisinf (yy))
73e4de09 3379 return scm_from_bool (0.0 < yy);
d8b95e27
KR
3380 y = scm_inexact_to_exact (y); /* with y as frac or int */
3381 goto again;
3382 }
f92e85f7
MV
3383 else if (SCM_FRACTIONP (y))
3384 return scm_i_fraction_equalp (x, y);
0aacf84e
MD
3385 else
3386 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
f4c627b3 3387 }
0aacf84e 3388 else
f4c627b3 3389 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
0f2d19dd
JB
3390}
3391
3392
a5f0b599
KR
3393/* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3394 done are good for inums, but for bignums an answer can almost always be
3395 had by just examining a few high bits of the operands, as done by GMP in
3396 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3397 of the float exponent to take into account. */
3398
152f82bf 3399SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
942e5b91
MG
3400/* "Return @code{#t} if the list of parameters is monotonically\n"
3401 * "increasing."
3402 */
0f2d19dd 3403SCM
6e8d25a6 3404scm_less_p (SCM x, SCM y)
0f2d19dd 3405{
a5f0b599 3406 again:
e11e83f3 3407 if (SCM_I_INUMP (x))
0aacf84e 3408 {
e11e83f3
MV
3409 long xx = SCM_I_INUM (x);
3410 if (SCM_I_INUMP (y))
0aacf84e 3411 {
e11e83f3 3412 long yy = SCM_I_INUM (y);
73e4de09 3413 return scm_from_bool (xx < yy);
0aacf84e
MD
3414 }
3415 else if (SCM_BIGP (y))
3416 {
3417 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3418 scm_remember_upto_here_1 (y);
73e4de09 3419 return scm_from_bool (sgn > 0);
0aacf84e
MD
3420 }
3421 else if (SCM_REALP (y))
73e4de09 3422 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
f92e85f7 3423 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3424 {
3425 /* "x < a/b" becomes "x*b < a" */
3426 int_frac:
3427 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3428 y = SCM_FRACTION_NUMERATOR (y);
3429 goto again;
3430 }
0aacf84e
MD
3431 else
3432 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
f872b822 3433 }
0aacf84e
MD
3434 else if (SCM_BIGP (x))
3435 {
e11e83f3 3436 if (SCM_I_INUMP (y))
0aacf84e
MD
3437 {
3438 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3439 scm_remember_upto_here_1 (x);
73e4de09 3440 return scm_from_bool (sgn < 0);
0aacf84e
MD
3441 }
3442 else if (SCM_BIGP (y))
3443 {
3444 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3445 scm_remember_upto_here_2 (x, y);
73e4de09 3446 return scm_from_bool (cmp < 0);
0aacf84e
MD
3447 }
3448 else if (SCM_REALP (y))
3449 {
3450 int cmp;
3451 if (xisnan (SCM_REAL_VALUE (y)))
3452 return SCM_BOOL_F;
3453 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3454 scm_remember_upto_here_1 (x);
73e4de09 3455 return scm_from_bool (cmp < 0);
0aacf84e 3456 }
f92e85f7 3457 else if (SCM_FRACTIONP (y))
a5f0b599 3458 goto int_frac;
0aacf84e
MD
3459 else
3460 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
f4c627b3 3461 }
0aacf84e
MD
3462 else if (SCM_REALP (x))
3463 {
e11e83f3
MV
3464 if (SCM_I_INUMP (y))
3465 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
0aacf84e
MD
3466 else if (SCM_BIGP (y))
3467 {
3468 int cmp;
3469 if (xisnan (SCM_REAL_VALUE (x)))
3470 return SCM_BOOL_F;
3471 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3472 scm_remember_upto_here_1 (y);
73e4de09 3473 return scm_from_bool (cmp > 0);
0aacf84e
MD
3474 }
3475 else if (SCM_REALP (y))
73e4de09 3476 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
f92e85f7 3477 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3478 {
3479 double xx = SCM_REAL_VALUE (x);
3480 if (xisnan (xx))
3481 return SCM_BOOL_F;
3482 if (xisinf (xx))
73e4de09 3483 return scm_from_bool (xx < 0.0);
a5f0b599
KR
3484 x = scm_inexact_to_exact (x); /* with x as frac or int */
3485 goto again;
3486 }
f92e85f7
MV
3487 else
3488 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3489 }
3490 else if (SCM_FRACTIONP (x))
3491 {
e11e83f3 3492 if (SCM_I_INUMP (y) || SCM_BIGP (y))
a5f0b599
KR
3493 {
3494 /* "a/b < y" becomes "a < y*b" */
3495 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3496 x = SCM_FRACTION_NUMERATOR (x);
3497 goto again;
3498 }
f92e85f7 3499 else if (SCM_REALP (y))
a5f0b599
KR
3500 {
3501 double yy = SCM_REAL_VALUE (y);
3502 if (xisnan (yy))
3503 return SCM_BOOL_F;
3504 if (xisinf (yy))
73e4de09 3505 return scm_from_bool (0.0 < yy);
a5f0b599
KR
3506 y = scm_inexact_to_exact (y); /* with y as frac or int */
3507 goto again;
3508 }
f92e85f7 3509 else if (SCM_FRACTIONP (y))
a5f0b599
KR
3510 {
3511 /* "a/b < c/d" becomes "a*d < c*b" */
3512 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3513 SCM_FRACTION_DENOMINATOR (y));
3514 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3515 SCM_FRACTION_DENOMINATOR (x));
3516 x = new_x;
3517 y = new_y;
3518 goto again;
3519 }
0aacf84e
MD
3520 else
3521 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
f872b822 3522 }
0aacf84e 3523 else
f4c627b3 3524 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
0f2d19dd
JB
3525}
3526
3527
c76b1eaf 3528SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
942e5b91
MG
3529/* "Return @code{#t} if the list of parameters is monotonically\n"
3530 * "decreasing."
c76b1eaf 3531 */
1bbd0b84 3532#define FUNC_NAME s_scm_gr_p
c76b1eaf
MD
3533SCM
3534scm_gr_p (SCM x, SCM y)
0f2d19dd 3535{
c76b1eaf
MD
3536 if (!SCM_NUMBERP (x))
3537 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
3538 else if (!SCM_NUMBERP (y))
3539 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
3540 else
3541 return scm_less_p (y, x);
0f2d19dd 3542}
1bbd0b84 3543#undef FUNC_NAME
0f2d19dd
JB
3544
3545
c76b1eaf 3546SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
942e5b91 3547/* "Return @code{#t} if the list of parameters is monotonically\n"
c76b1eaf
MD
3548 * "non-decreasing."
3549 */
1bbd0b84 3550#define FUNC_NAME s_scm_leq_p
c76b1eaf
MD
3551SCM
3552scm_leq_p (SCM x, SCM y)
0f2d19dd 3553{
c76b1eaf
MD
3554 if (!SCM_NUMBERP (x))
3555 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
3556 else if (!SCM_NUMBERP (y))
3557 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3558 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3559 return SCM_BOOL_F;
c76b1eaf 3560 else
73e4de09 3561 return scm_not (scm_less_p (y, x));
0f2d19dd 3562}
1bbd0b84 3563#undef FUNC_NAME
0f2d19dd
JB
3564
3565
c76b1eaf 3566SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
942e5b91 3567/* "Return @code{#t} if the list of parameters is monotonically\n"
c76b1eaf
MD
3568 * "non-increasing."
3569 */
1bbd0b84 3570#define FUNC_NAME s_scm_geq_p
c76b1eaf
MD
3571SCM
3572scm_geq_p (SCM x, SCM y)
0f2d19dd 3573{
c76b1eaf
MD
3574 if (!SCM_NUMBERP (x))
3575 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
3576 else if (!SCM_NUMBERP (y))
3577 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
73e4de09 3578 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
fc194577 3579 return SCM_BOOL_F;
c76b1eaf 3580 else
73e4de09 3581 return scm_not (scm_less_p (x, y));
0f2d19dd 3582}
1bbd0b84 3583#undef FUNC_NAME
0f2d19dd
JB
3584
3585
152f82bf 3586SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
942e5b91
MG
3587/* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3588 * "zero."
3589 */
0f2d19dd 3590SCM
6e8d25a6 3591scm_zero_p (SCM z)
0f2d19dd 3592{
e11e83f3 3593 if (SCM_I_INUMP (z))
bc36d050 3594 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
0aacf84e 3595 else if (SCM_BIGP (z))
c2ff8ab0 3596 return SCM_BOOL_F;
0aacf84e 3597 else if (SCM_REALP (z))
73e4de09 3598 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
0aacf84e 3599 else if (SCM_COMPLEXP (z))
73e4de09 3600 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
c2ff8ab0 3601 && SCM_COMPLEX_IMAG (z) == 0.0);
f92e85f7
MV
3602 else if (SCM_FRACTIONP (z))
3603 return SCM_BOOL_F;
0aacf84e 3604 else
c2ff8ab0 3605 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
0f2d19dd
JB
3606}
3607
3608
152f82bf 3609SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
942e5b91
MG
3610/* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3611 * "zero."
3612 */
0f2d19dd 3613SCM
6e8d25a6 3614scm_positive_p (SCM x)
0f2d19dd 3615{
e11e83f3
MV
3616 if (SCM_I_INUMP (x))
3617 return scm_from_bool (SCM_I_INUM (x) > 0);
0aacf84e
MD
3618 else if (SCM_BIGP (x))
3619 {
3620 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3621 scm_remember_upto_here_1 (x);
73e4de09 3622 return scm_from_bool (sgn > 0);
0aacf84e
MD
3623 }
3624 else if (SCM_REALP (x))
73e4de09 3625 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
f92e85f7
MV
3626 else if (SCM_FRACTIONP (x))
3627 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3628 else
c2ff8ab0 3629 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
0f2d19dd
JB
3630}
3631
3632
152f82bf 3633SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
942e5b91
MG
3634/* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3635 * "zero."
3636 */
0f2d19dd 3637SCM
6e8d25a6 3638scm_negative_p (SCM x)
0f2d19dd 3639{
e11e83f3
MV
3640 if (SCM_I_INUMP (x))
3641 return scm_from_bool (SCM_I_INUM (x) < 0);
0aacf84e
MD
3642 else if (SCM_BIGP (x))
3643 {
3644 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3645 scm_remember_upto_here_1 (x);
73e4de09 3646 return scm_from_bool (sgn < 0);
0aacf84e
MD
3647 }
3648 else if (SCM_REALP (x))
73e4de09 3649 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
f92e85f7
MV
3650 else if (SCM_FRACTIONP (x))
3651 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
0aacf84e 3652 else
c2ff8ab0 3653 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
0f2d19dd
JB
3654}
3655
3656
2a06f791
KR
3657/* scm_min and scm_max return an inexact when either argument is inexact, as
3658 required by r5rs. On that basis, for exact/inexact combinations the
3659 exact is converted to inexact to compare and possibly return. This is
3660 unlike scm_less_p above which takes some trouble to preserve all bits in
3661 its test, such trouble is not required for min and max. */
3662
9de33deb 3663SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
942e5b91
MG
3664/* "Return the maximum of all parameter values."
3665 */
0f2d19dd 3666SCM
6e8d25a6 3667scm_max (SCM x, SCM y)
0f2d19dd 3668{
0aacf84e
MD
3669 if (SCM_UNBNDP (y))
3670 {
3671 if (SCM_UNBNDP (x))
3672 SCM_WTA_DISPATCH_0 (g_max, s_max);
e11e83f3 3673 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
3674 return x;
3675 else
3676 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
f872b822 3677 }
f4c627b3 3678
e11e83f3 3679 if (SCM_I_INUMP (x))
0aacf84e 3680 {
e11e83f3
MV
3681 long xx = SCM_I_INUM (x);
3682 if (SCM_I_INUMP (y))
0aacf84e 3683 {
e11e83f3 3684 long yy = SCM_I_INUM (y);
0aacf84e
MD
3685 return (xx < yy) ? y : x;
3686 }
3687 else if (SCM_BIGP (y))
3688 {
3689 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3690 scm_remember_upto_here_1 (y);
3691 return (sgn < 0) ? x : y;
3692 }
3693 else if (SCM_REALP (y))
3694 {
3695 double z = xx;
3696 /* if y==NaN then ">" is false and we return NaN */
55f26379 3697 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 3698 }
f92e85f7
MV
3699 else if (SCM_FRACTIONP (y))
3700 {
e4bc5d6c 3701 use_less:
73e4de09 3702 return (scm_is_false (scm_less_p (x, y)) ? x : y);
f92e85f7 3703 }
0aacf84e
MD
3704 else
3705 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 3706 }
0aacf84e
MD
3707 else if (SCM_BIGP (x))
3708 {
e11e83f3 3709 if (SCM_I_INUMP (y))
0aacf84e
MD
3710 {
3711 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3712 scm_remember_upto_here_1 (x);
3713 return (sgn < 0) ? y : x;
3714 }
3715 else if (SCM_BIGP (y))
3716 {
3717 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3718 scm_remember_upto_here_2 (x, y);
3719 return (cmp > 0) ? x : y;
3720 }
3721 else if (SCM_REALP (y))
3722 {
2a06f791
KR
3723 /* if y==NaN then xx>yy is false, so we return the NaN y */
3724 double xx, yy;
3725 big_real:
3726 xx = scm_i_big2dbl (x);
3727 yy = SCM_REAL_VALUE (y);
55f26379 3728 return (xx > yy ? scm_from_double (xx) : y);
0aacf84e 3729 }
f92e85f7
MV
3730 else if (SCM_FRACTIONP (y))
3731 {
e4bc5d6c 3732 goto use_less;
f92e85f7 3733 }
0aacf84e
MD
3734 else
3735 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f4c627b3 3736 }
0aacf84e
MD
3737 else if (SCM_REALP (x))
3738 {
e11e83f3 3739 if (SCM_I_INUMP (y))
0aacf84e 3740 {
e11e83f3 3741 double z = SCM_I_INUM (y);
0aacf84e 3742 /* if x==NaN then "<" is false and we return NaN */
55f26379 3743 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
0aacf84e
MD
3744 }
3745 else if (SCM_BIGP (y))
3746 {
b6f8f763 3747 SCM_SWAP (x, y);
2a06f791 3748 goto big_real;
0aacf84e
MD
3749 }
3750 else if (SCM_REALP (y))
3751 {
3752 /* if x==NaN then our explicit check means we return NaN
3753 if y==NaN then ">" is false and we return NaN
3754 calling isnan is unavoidable, since it's the only way to know
3755 which of x or y causes any compares to be false */
3756 double xx = SCM_REAL_VALUE (x);
3757 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3758 }
f92e85f7
MV
3759 else if (SCM_FRACTIONP (y))
3760 {
3761 double yy = scm_i_fraction2double (y);
3762 double xx = SCM_REAL_VALUE (x);
55f26379 3763 return (xx < yy) ? scm_from_double (yy) : x;
f92e85f7
MV
3764 }
3765 else
3766 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3767 }
3768 else if (SCM_FRACTIONP (x))
3769 {
e11e83f3 3770 if (SCM_I_INUMP (y))
f92e85f7 3771 {
e4bc5d6c 3772 goto use_less;
f92e85f7
MV
3773 }
3774 else if (SCM_BIGP (y))
3775 {
e4bc5d6c 3776 goto use_less;
f92e85f7
MV
3777 }
3778 else if (SCM_REALP (y))
3779 {
3780 double xx = scm_i_fraction2double (x);
55f26379 3781 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
f92e85f7
MV
3782 }
3783 else if (SCM_FRACTIONP (y))
3784 {
e4bc5d6c 3785 goto use_less;
f92e85f7 3786 }
0aacf84e
MD
3787 else
3788 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
f872b822 3789 }
0aacf84e 3790 else
f4c627b3 3791 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
0f2d19dd
JB
3792}
3793
3794
9de33deb 3795SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
942e5b91
MG
3796/* "Return the minium of all parameter values."
3797 */
0f2d19dd 3798SCM
6e8d25a6 3799scm_min (SCM x, SCM y)
0f2d19dd 3800{
0aacf84e
MD
3801 if (SCM_UNBNDP (y))
3802 {
3803 if (SCM_UNBNDP (x))
3804 SCM_WTA_DISPATCH_0 (g_min, s_min);
e11e83f3 3805 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
0aacf84e
MD
3806 return x;
3807 else
3808 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
f872b822 3809 }
f4c627b3 3810
e11e83f3 3811 if (SCM_I_INUMP (x))
0aacf84e 3812 {
e11e83f3
MV
3813 long xx = SCM_I_INUM (x);
3814 if (SCM_I_INUMP (y))
0aacf84e 3815 {
e11e83f3 3816 long yy = SCM_I_INUM (y);
0aacf84e
MD
3817 return (xx < yy) ? x : y;
3818 }
3819 else if (SCM_BIGP (y))
3820 {
3821 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3822 scm_remember_upto_here_1 (y);
3823 return (sgn < 0) ? y : x;
3824 }
3825 else if (SCM_REALP (y))
3826 {
3827 double z = xx;
3828 /* if y==NaN then "<" is false and we return NaN */
55f26379 3829 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
0aacf84e 3830 }
f92e85f7
MV
3831 else if (SCM_FRACTIONP (y))
3832 {
e4bc5d6c 3833 use_less:
73e4de09 3834 return (scm_is_false (scm_less_p (x, y)) ? y : x);
f92e85f7 3835 }
0aacf84e
MD
3836 else
3837 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 3838 }
0aacf84e
MD
3839 else if (SCM_BIGP (x))
3840 {
e11e83f3 3841 if (SCM_I_INUMP (y))
0aacf84e
MD
3842 {
3843 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3844 scm_remember_upto_here_1 (x);
3845 return (sgn < 0) ? x : y;
3846 }
3847 else if (SCM_BIGP (y))
3848 {
3849 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3850 scm_remember_upto_here_2 (x, y);
3851 return (cmp > 0) ? y : x;
3852 }
3853 else if (SCM_REALP (y))
3854 {
2a06f791
KR
3855 /* if y==NaN then xx<yy is false, so we return the NaN y */
3856 double xx, yy;
3857 big_real:
3858 xx = scm_i_big2dbl (x);
3859 yy = SCM_REAL_VALUE (y);
55f26379 3860 return (xx < yy ? scm_from_double (xx) : y);
0aacf84e 3861 }
f92e85f7
MV
3862 else if (SCM_FRACTIONP (y))
3863 {
e4bc5d6c 3864 goto use_less;
f92e85f7 3865 }
0aacf84e
MD
3866 else
3867 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f4c627b3 3868 }
0aacf84e
MD
3869 else if (SCM_REALP (x))
3870 {
e11e83f3 3871 if (SCM_I_INUMP (y))
0aacf84e 3872 {
e11e83f3 3873 double z = SCM_I_INUM (y);
0aacf84e 3874 /* if x==NaN then "<" is false and we return NaN */
55f26379 3875 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
0aacf84e
MD
3876 }
3877 else if (SCM_BIGP (y))
3878 {
b6f8f763 3879 SCM_SWAP (x, y);
2a06f791 3880 goto big_real;
0aacf84e
MD
3881 }
3882 else if (SCM_REALP (y))
3883 {
3884 /* if x==NaN then our explicit check means we return NaN
3885 if y==NaN then "<" is false and we return NaN
3886 calling isnan is unavoidable, since it's the only way to know
3887 which of x or y causes any compares to be false */
3888 double xx = SCM_REAL_VALUE (x);
3889 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
3890 }
f92e85f7
MV
3891 else if (SCM_FRACTIONP (y))
3892 {
3893 double yy = scm_i_fraction2double (y);
3894 double xx = SCM_REAL_VALUE (x);
55f26379 3895 return (yy < xx) ? scm_from_double (yy) : x;
f92e85f7 3896 }
0aacf84e
MD
3897 else
3898 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
f872b822 3899 }
f92e85f7
MV
3900 else if (SCM_FRACTIONP (x))
3901 {
e11e83f3 3902 if (SCM_I_INUMP (y))
f92e85f7 3903 {
e4bc5d6c 3904 goto use_less;
f92e85f7
MV
3905 }
3906 else if (SCM_BIGP (y))
3907 {
e4bc5d6c 3908 goto use_less;
f92e85f7
MV
3909 }
3910 else if (SCM_REALP (y))
3911 {
3912 double xx = scm_i_fraction2double (x);
55f26379 3913 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
f92e85f7
MV
3914 }
3915 else if (SCM_FRACTIONP (y))
3916 {
e4bc5d6c 3917 goto use_less;
f92e85f7
MV
3918 }
3919 else
3920 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3921 }
0aacf84e 3922 else
f4c627b3 3923 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
0f2d19dd
JB
3924}
3925
3926
9de33deb 3927SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
942e5b91
MG
3928/* "Return the sum of all parameter values. Return 0 if called without\n"
3929 * "any parameters."
3930 */
0f2d19dd 3931SCM
6e8d25a6 3932scm_sum (SCM x, SCM y)
0f2d19dd 3933{
ca46fb90
RB
3934 if (SCM_UNBNDP (y))
3935 {
3936 if (SCM_NUMBERP (x)) return x;
3937 if (SCM_UNBNDP (x)) return SCM_INUM0;
98cb6e75 3938 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
f872b822 3939 }
c209c88e 3940
e11e83f3 3941 if (SCM_I_INUMP (x))
ca46fb90 3942 {
e11e83f3 3943 if (SCM_I_INUMP (y))
ca46fb90 3944 {
e11e83f3
MV
3945 long xx = SCM_I_INUM (x);
3946 long yy = SCM_I_INUM (y);
ca46fb90 3947 long int z = xx + yy;
d956fa6f 3948 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
ca46fb90
RB
3949 }
3950 else if (SCM_BIGP (y))
3951 {
3952 SCM_SWAP (x, y);
3953 goto add_big_inum;
3954 }
3955 else if (SCM_REALP (y))
3956 {
e11e83f3 3957 long int xx = SCM_I_INUM (x);
55f26379 3958 return scm_from_double (xx + SCM_REAL_VALUE (y));
ca46fb90
RB
3959 }
3960 else if (SCM_COMPLEXP (y))
3961 {
e11e83f3 3962 long int xx = SCM_I_INUM (x);
8507ec80 3963 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
ca46fb90
RB
3964 SCM_COMPLEX_IMAG (y));
3965 }
f92e85f7 3966 else if (SCM_FRACTIONP (y))
cba42c93 3967 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
3968 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3969 SCM_FRACTION_DENOMINATOR (y));
ca46fb90
RB
3970 else
3971 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0aacf84e
MD
3972 } else if (SCM_BIGP (x))
3973 {
e11e83f3 3974 if (SCM_I_INUMP (y))
0aacf84e
MD
3975 {
3976 long int inum;
3977 int bigsgn;
3978 add_big_inum:
e11e83f3 3979 inum = SCM_I_INUM (y);
0aacf84e
MD
3980 if (inum == 0)
3981 return x;
3982 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3983 if (inum < 0)
3984 {
3985 SCM result = scm_i_mkbig ();
3986 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
3987 scm_remember_upto_here_1 (x);
3988 /* we know the result will have to be a bignum */
3989 if (bigsgn == -1)
3990 return result;
3991 return scm_i_normbig (result);
3992 }
3993 else
3994 {
3995 SCM result = scm_i_mkbig ();
3996 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
3997 scm_remember_upto_here_1 (x);
3998 /* we know the result will have to be a bignum */
3999 if (bigsgn == 1)
4000 return result;
4001 return scm_i_normbig (result);
4002 }
4003 }
4004 else if (SCM_BIGP (y))
4005 {
4006 SCM result = scm_i_mkbig ();
4007 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4008 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4009 mpz_add (SCM_I_BIG_MPZ (result),
4010 SCM_I_BIG_MPZ (x),
4011 SCM_I_BIG_MPZ (y));
4012 scm_remember_upto_here_2 (x, y);
4013 /* we know the result will have to be a bignum */
4014 if (sgn_x == sgn_y)
4015 return result;
4016 return scm_i_normbig (result);
4017 }
4018 else if (SCM_REALP (y))
4019 {
4020 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
4021 scm_remember_upto_here_1 (x);
55f26379 4022 return scm_from_double (result);
0aacf84e
MD
4023 }
4024 else if (SCM_COMPLEXP (y))
4025 {
4026 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4027 + SCM_COMPLEX_REAL (y));
4028 scm_remember_upto_here_1 (x);
8507ec80 4029 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e 4030 }
f92e85f7 4031 else if (SCM_FRACTIONP (y))
cba42c93 4032 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
f92e85f7
MV
4033 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4034 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4035 else
4036 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
0f2d19dd 4037 }
0aacf84e
MD
4038 else if (SCM_REALP (x))
4039 {
e11e83f3 4040 if (SCM_I_INUMP (y))
55f26379 4041 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
0aacf84e
MD
4042 else if (SCM_BIGP (y))
4043 {
4044 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
4045 scm_remember_upto_here_1 (y);
55f26379 4046 return scm_from_double (result);
0aacf84e
MD
4047 }
4048 else if (SCM_REALP (y))
55f26379 4049 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
0aacf84e 4050 else if (SCM_COMPLEXP (y))
8507ec80 4051 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4052 SCM_COMPLEX_IMAG (y));
f92e85f7 4053 else if (SCM_FRACTIONP (y))
55f26379 4054 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
0aacf84e
MD
4055 else
4056 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
f872b822 4057 }
0aacf84e
MD
4058 else if (SCM_COMPLEXP (x))
4059 {
e11e83f3 4060 if (SCM_I_INUMP (y))
8507ec80 4061 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
0aacf84e
MD
4062 SCM_COMPLEX_IMAG (x));
4063 else if (SCM_BIGP (y))
4064 {
4065 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
4066 + SCM_COMPLEX_REAL (x));
4067 scm_remember_upto_here_1 (y);
8507ec80 4068 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4069 }
4070 else if (SCM_REALP (y))
8507ec80 4071 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
0aacf84e
MD
4072 SCM_COMPLEX_IMAG (x));
4073 else if (SCM_COMPLEXP (y))
8507ec80 4074 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
0aacf84e 4075 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
f92e85f7 4076 else if (SCM_FRACTIONP (y))
8507ec80 4077 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
f92e85f7
MV
4078 SCM_COMPLEX_IMAG (x));
4079 else
4080 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4081 }
4082 else if (SCM_FRACTIONP (x))
4083 {
e11e83f3 4084 if (SCM_I_INUMP (y))
cba42c93 4085 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4086 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4087 SCM_FRACTION_DENOMINATOR (x));
4088 else if (SCM_BIGP (y))
cba42c93 4089 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4090 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4091 SCM_FRACTION_DENOMINATOR (x));
4092 else if (SCM_REALP (y))
55f26379 4093 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
f92e85f7 4094 else if (SCM_COMPLEXP (y))
8507ec80 4095 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
f92e85f7
MV
4096 SCM_COMPLEX_IMAG (y));
4097 else if (SCM_FRACTIONP (y))
4098 /* a/b + c/d = (ad + bc) / bd */
cba42c93 4099 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4100 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4101 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4102 else
4103 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
98cb6e75 4104 }
0aacf84e 4105 else
98cb6e75 4106 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
0f2d19dd
JB
4107}
4108
4109
40882e3d
KR
4110SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
4111 (SCM x),
4112 "Return @math{@var{x}+1}.")
4113#define FUNC_NAME s_scm_oneplus
4114{
4115 return scm_sum (x, SCM_I_MAKINUM (1));
4116}
4117#undef FUNC_NAME
4118
4119
9de33deb 4120SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
609c3d30
MG
4121/* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
4122 * the sum of all but the first argument are subtracted from the first
4123 * argument. */
c05e97b7 4124#define FUNC_NAME s_difference
0f2d19dd 4125SCM
6e8d25a6 4126scm_difference (SCM x, SCM y)
0f2d19dd 4127{
ca46fb90
RB
4128 if (SCM_UNBNDP (y))
4129 {
4130 if (SCM_UNBNDP (x))
4131 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4132 else
e11e83f3 4133 if (SCM_I_INUMP (x))
ca46fb90 4134 {
e11e83f3 4135 long xx = -SCM_I_INUM (x);
ca46fb90 4136 if (SCM_FIXABLE (xx))
d956fa6f 4137 return SCM_I_MAKINUM (xx);
ca46fb90
RB
4138 else
4139 return scm_i_long2big (xx);
4140 }
4141 else if (SCM_BIGP (x))
a9ad4847
KR
4142 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4143 bignum, but negating that gives a fixnum. */
ca46fb90
RB
4144 return scm_i_normbig (scm_i_clonebig (x, 0));
4145 else if (SCM_REALP (x))
55f26379 4146 return scm_from_double (-SCM_REAL_VALUE (x));
ca46fb90 4147 else if (SCM_COMPLEXP (x))
8507ec80 4148 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
ca46fb90 4149 -SCM_COMPLEX_IMAG (x));
f92e85f7 4150 else if (SCM_FRACTIONP (x))
cba42c93 4151 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
f92e85f7 4152 SCM_FRACTION_DENOMINATOR (x));
ca46fb90
RB
4153 else
4154 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
f872b822 4155 }
ca46fb90 4156
e11e83f3 4157 if (SCM_I_INUMP (x))
0aacf84e 4158 {
e11e83f3 4159 if (SCM_I_INUMP (y))
0aacf84e 4160 {
e11e83f3
MV
4161 long int xx = SCM_I_INUM (x);
4162 long int yy = SCM_I_INUM (y);
0aacf84e
MD
4163 long int z = xx - yy;
4164 if (SCM_FIXABLE (z))
d956fa6f 4165 return SCM_I_MAKINUM (z);
0aacf84e
MD
4166 else
4167 return scm_i_long2big (z);
4168 }
4169 else if (SCM_BIGP (y))
4170 {
4171 /* inum-x - big-y */
e11e83f3 4172 long xx = SCM_I_INUM (x);
ca46fb90 4173
0aacf84e
MD
4174 if (xx == 0)
4175 return scm_i_clonebig (y, 0);
4176 else
4177 {
4178 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4179 SCM result = scm_i_mkbig ();
ca46fb90 4180
0aacf84e
MD
4181 if (xx >= 0)
4182 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4183 else
4184 {
4185 /* x - y == -(y + -x) */
4186 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4187 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4188 }
4189 scm_remember_upto_here_1 (y);
ca46fb90 4190
0aacf84e
MD
4191 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4192 /* we know the result will have to be a bignum */
4193 return result;
4194 else
4195 return scm_i_normbig (result);
4196 }
4197 }
4198 else if (SCM_REALP (y))
4199 {
e11e83f3 4200 long int xx = SCM_I_INUM (x);
55f26379 4201 return scm_from_double (xx - SCM_REAL_VALUE (y));
0aacf84e
MD
4202 }
4203 else if (SCM_COMPLEXP (y))
4204 {
e11e83f3 4205 long int xx = SCM_I_INUM (x);
8507ec80 4206 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
0aacf84e
MD
4207 - SCM_COMPLEX_IMAG (y));
4208 }
f92e85f7
MV
4209 else if (SCM_FRACTIONP (y))
4210 /* a - b/c = (ac - b) / c */
cba42c93 4211 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4212 SCM_FRACTION_NUMERATOR (y)),
4213 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4214 else
4215 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
f872b822 4216 }
0aacf84e
MD
4217 else if (SCM_BIGP (x))
4218 {
e11e83f3 4219 if (SCM_I_INUMP (y))
0aacf84e
MD
4220 {
4221 /* big-x - inum-y */
e11e83f3 4222 long yy = SCM_I_INUM (y);
0aacf84e 4223 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
ca46fb90 4224
0aacf84e
MD
4225 scm_remember_upto_here_1 (x);
4226 if (sgn_x == 0)
c71b0706
MV
4227 return (SCM_FIXABLE (-yy) ?
4228 SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
0aacf84e
MD
4229 else
4230 {
4231 SCM result = scm_i_mkbig ();
ca46fb90 4232
708f22c6
KR
4233 if (yy >= 0)
4234 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4235 else
4236 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
0aacf84e 4237 scm_remember_upto_here_1 (x);
ca46fb90 4238
0aacf84e
MD
4239 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4240 /* we know the result will have to be a bignum */
4241 return result;
4242 else
4243 return scm_i_normbig (result);
4244 }
4245 }
4246 else if (SCM_BIGP (y))
4247 {
4248 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4249 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4250 SCM result = scm_i_mkbig ();
4251 mpz_sub (SCM_I_BIG_MPZ (result),
4252 SCM_I_BIG_MPZ (x),
4253 SCM_I_BIG_MPZ (y));
4254 scm_remember_upto_here_2 (x, y);
4255 /* we know the result will have to be a bignum */
4256 if ((sgn_x == 1) && (sgn_y == -1))
4257 return result;
4258 if ((sgn_x == -1) && (sgn_y == 1))
4259 return result;
4260 return scm_i_normbig (result);
4261 }
4262 else if (SCM_REALP (y))
4263 {
4264 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4265 scm_remember_upto_here_1 (x);
55f26379 4266 return scm_from_double (result);
0aacf84e
MD
4267 }
4268 else if (SCM_COMPLEXP (y))
4269 {
4270 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4271 - SCM_COMPLEX_REAL (y));
4272 scm_remember_upto_here_1 (x);
8507ec80 4273 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
0aacf84e 4274 }
f92e85f7 4275 else if (SCM_FRACTIONP (y))
cba42c93 4276 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4277 SCM_FRACTION_NUMERATOR (y)),
4278 SCM_FRACTION_DENOMINATOR (y));
0aacf84e 4279 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
ca46fb90 4280 }
0aacf84e
MD
4281 else if (SCM_REALP (x))
4282 {
e11e83f3 4283 if (SCM_I_INUMP (y))
55f26379 4284 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
0aacf84e
MD
4285 else if (SCM_BIGP (y))
4286 {
4287 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4288 scm_remember_upto_here_1 (x);
55f26379 4289 return scm_from_double (result);
0aacf84e
MD
4290 }
4291 else if (SCM_REALP (y))
55f26379 4292 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
0aacf84e 4293 else if (SCM_COMPLEXP (y))
8507ec80 4294 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4295 -SCM_COMPLEX_IMAG (y));
f92e85f7 4296 else if (SCM_FRACTIONP (y))
55f26379 4297 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
0aacf84e
MD
4298 else
4299 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4300 }
0aacf84e
MD
4301 else if (SCM_COMPLEXP (x))
4302 {
e11e83f3 4303 if (SCM_I_INUMP (y))
8507ec80 4304 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
0aacf84e
MD
4305 SCM_COMPLEX_IMAG (x));
4306 else if (SCM_BIGP (y))
4307 {
4308 double real_part = (SCM_COMPLEX_REAL (x)
4309 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4310 scm_remember_upto_here_1 (x);
8507ec80 4311 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
0aacf84e
MD
4312 }
4313 else if (SCM_REALP (y))
8507ec80 4314 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
0aacf84e
MD
4315 SCM_COMPLEX_IMAG (x));
4316 else if (SCM_COMPLEXP (y))
8507ec80 4317 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
0aacf84e 4318 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
f92e85f7 4319 else if (SCM_FRACTIONP (y))
8507ec80 4320 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
f92e85f7
MV
4321 SCM_COMPLEX_IMAG (x));
4322 else
4323 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4324 }
4325 else if (SCM_FRACTIONP (x))
4326 {
e11e83f3 4327 if (SCM_I_INUMP (y))
f92e85f7 4328 /* a/b - c = (a - cb) / b */
cba42c93 4329 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4330 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4331 SCM_FRACTION_DENOMINATOR (x));
4332 else if (SCM_BIGP (y))
cba42c93 4333 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4334 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4335 SCM_FRACTION_DENOMINATOR (x));
4336 else if (SCM_REALP (y))
55f26379 4337 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
f92e85f7 4338 else if (SCM_COMPLEXP (y))
8507ec80 4339 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
f92e85f7
MV
4340 -SCM_COMPLEX_IMAG (y));
4341 else if (SCM_FRACTIONP (y))
4342 /* a/b - c/d = (ad - bc) / bd */
cba42c93 4343 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4344 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4345 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4346 else
4347 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
98cb6e75 4348 }
0aacf84e 4349 else
98cb6e75 4350 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
0f2d19dd 4351}
c05e97b7 4352#undef FUNC_NAME
0f2d19dd 4353
ca46fb90 4354
40882e3d
KR
4355SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
4356 (SCM x),
4357 "Return @math{@var{x}-1}.")
4358#define FUNC_NAME s_scm_oneminus
4359{
4360 return scm_difference (x, SCM_I_MAKINUM (1));
4361}
4362#undef FUNC_NAME
4363
4364
9de33deb 4365SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
942e5b91
MG
4366/* "Return the product of all arguments. If called without arguments,\n"
4367 * "1 is returned."
4368 */
0f2d19dd 4369SCM
6e8d25a6 4370scm_product (SCM x, SCM y)
0f2d19dd 4371{
0aacf84e
MD
4372 if (SCM_UNBNDP (y))
4373 {
4374 if (SCM_UNBNDP (x))
d956fa6f 4375 return SCM_I_MAKINUM (1L);
0aacf84e
MD
4376 else if (SCM_NUMBERP (x))
4377 return x;
4378 else
4379 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
f872b822 4380 }
ca46fb90 4381
e11e83f3 4382 if (SCM_I_INUMP (x))
0aacf84e
MD
4383 {
4384 long xx;
f4c627b3 4385
0aacf84e 4386 intbig:
e11e83f3 4387 xx = SCM_I_INUM (x);
f4c627b3 4388
0aacf84e
MD
4389 switch (xx)
4390 {
ca46fb90
RB
4391 case 0: return x; break;
4392 case 1: return y; break;
0aacf84e 4393 }
f4c627b3 4394
e11e83f3 4395 if (SCM_I_INUMP (y))
0aacf84e 4396 {
e11e83f3 4397 long yy = SCM_I_INUM (y);
0aacf84e 4398 long kk = xx * yy;
d956fa6f 4399 SCM k = SCM_I_MAKINUM (kk);
e11e83f3 4400 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
0aacf84e
MD
4401 return k;
4402 else
4403 {
4404 SCM result = scm_i_long2big (xx);
4405 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4406 return scm_i_normbig (result);
4407 }
4408 }
4409 else if (SCM_BIGP (y))
4410 {
4411 SCM result = scm_i_mkbig ();
4412 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4413 scm_remember_upto_here_1 (y);
4414 return result;
4415 }
4416 else if (SCM_REALP (y))
55f26379 4417 return scm_from_double (xx * SCM_REAL_VALUE (y));
0aacf84e 4418 else if (SCM_COMPLEXP (y))
8507ec80 4419 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
0aacf84e 4420 xx * SCM_COMPLEX_IMAG (y));
f92e85f7 4421 else if (SCM_FRACTIONP (y))
cba42c93 4422 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4423 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4424 else
4425 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4426 }
0aacf84e
MD
4427 else if (SCM_BIGP (x))
4428 {
e11e83f3 4429 if (SCM_I_INUMP (y))
0aacf84e
MD
4430 {
4431 SCM_SWAP (x, y);
4432 goto intbig;
4433 }
4434 else if (SCM_BIGP (y))
4435 {
4436 SCM result = scm_i_mkbig ();
4437 mpz_mul (SCM_I_BIG_MPZ (result),
4438 SCM_I_BIG_MPZ (x),
4439 SCM_I_BIG_MPZ (y));
4440 scm_remember_upto_here_2 (x, y);
4441 return result;
4442 }
4443 else if (SCM_REALP (y))
4444 {
4445 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4446 scm_remember_upto_here_1 (x);
55f26379 4447 return scm_from_double (result);
0aacf84e
MD
4448 }
4449 else if (SCM_COMPLEXP (y))
4450 {
4451 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4452 scm_remember_upto_here_1 (x);
8507ec80 4453 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
0aacf84e
MD
4454 z * SCM_COMPLEX_IMAG (y));
4455 }
f92e85f7 4456 else if (SCM_FRACTIONP (y))
cba42c93 4457 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
f92e85f7 4458 SCM_FRACTION_DENOMINATOR (y));
0aacf84e
MD
4459 else
4460 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4461 }
0aacf84e
MD
4462 else if (SCM_REALP (x))
4463 {
e11e83f3 4464 if (SCM_I_INUMP (y))
55f26379 4465 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
0aacf84e
MD
4466 else if (SCM_BIGP (y))
4467 {
4468 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4469 scm_remember_upto_here_1 (y);
55f26379 4470 return scm_from_double (result);
0aacf84e
MD
4471 }
4472 else if (SCM_REALP (y))
55f26379 4473 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
0aacf84e 4474 else if (SCM_COMPLEXP (y))
8507ec80 4475 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
0aacf84e 4476 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
f92e85f7 4477 else if (SCM_FRACTIONP (y))
55f26379 4478 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
0aacf84e
MD
4479 else
4480 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4481 }
0aacf84e
MD
4482 else if (SCM_COMPLEXP (x))
4483 {
e11e83f3 4484 if (SCM_I_INUMP (y))
8507ec80 4485 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
e11e83f3 4486 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4487 else if (SCM_BIGP (y))
4488 {
4489 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4490 scm_remember_upto_here_1 (y);
8507ec80 4491 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
76506335 4492 z * SCM_COMPLEX_IMAG (x));
0aacf84e
MD
4493 }
4494 else if (SCM_REALP (y))
8507ec80 4495 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
0aacf84e
MD
4496 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4497 else if (SCM_COMPLEXP (y))
4498 {
8507ec80 4499 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
0aacf84e
MD
4500 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4501 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4502 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4503 }
f92e85f7
MV
4504 else if (SCM_FRACTIONP (y))
4505 {
4506 double yy = scm_i_fraction2double (y);
8507ec80 4507 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
f92e85f7
MV
4508 yy * SCM_COMPLEX_IMAG (x));
4509 }
4510 else
4511 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4512 }
4513 else if (SCM_FRACTIONP (x))
4514 {
e11e83f3 4515 if (SCM_I_INUMP (y))
cba42c93 4516 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4517 SCM_FRACTION_DENOMINATOR (x));
4518 else if (SCM_BIGP (y))
cba42c93 4519 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
f92e85f7
MV
4520 SCM_FRACTION_DENOMINATOR (x));
4521 else if (SCM_REALP (y))
55f26379 4522 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
f92e85f7
MV
4523 else if (SCM_COMPLEXP (y))
4524 {
4525 double xx = scm_i_fraction2double (x);
8507ec80 4526 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
f92e85f7
MV
4527 xx * SCM_COMPLEX_IMAG (y));
4528 }
4529 else if (SCM_FRACTIONP (y))
4530 /* a/b * c/d = ac / bd */
cba42c93 4531 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4532 SCM_FRACTION_NUMERATOR (y)),
4533 scm_product (SCM_FRACTION_DENOMINATOR (x),
4534 SCM_FRACTION_DENOMINATOR (y)));
0aacf84e
MD
4535 else
4536 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
f4c627b3 4537 }
0aacf84e 4538 else
f4c627b3 4539 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
0f2d19dd
JB
4540}
4541
7351e207
MV
4542#if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4543 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4544#define ALLOW_DIVIDE_BY_ZERO
4545/* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4546#endif
0f2d19dd 4547
ba74ef4e
MV
4548/* The code below for complex division is adapted from the GNU
4549 libstdc++, which adapted it from f2c's libF77, and is subject to
4550 this copyright: */
4551
4552/****************************************************************
4553Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4554
4555Permission to use, copy, modify, and distribute this software
4556and its documentation for any purpose and without fee is hereby
4557granted, provided that the above copyright notice appear in all
4558copies and that both that the copyright notice and this
4559permission notice and warranty disclaimer appear in supporting
4560documentation, and that the names of AT&T Bell Laboratories or
4561Bellcore or any of their entities not be used in advertising or
4562publicity pertaining to distribution of the software without
4563specific, written prior permission.
4564
4565AT&T and Bellcore disclaim all warranties with regard to this
4566software, including all implied warranties of merchantability
4567and fitness. In no event shall AT&T or Bellcore be liable for
4568any special, indirect or consequential damages or any damages
4569whatsoever resulting from loss of use, data or profits, whether
4570in an action of contract, negligence or other tortious action,
4571arising out of or in connection with the use or performance of
4572this software.
4573****************************************************************/
4574
9de33deb 4575SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
609c3d30
MG
4576/* Divide the first argument by the product of the remaining
4577 arguments. If called with one argument @var{z1}, 1/@var{z1} is
4578 returned. */
c05e97b7 4579#define FUNC_NAME s_divide
f92e85f7
MV
4580static SCM
4581scm_i_divide (SCM x, SCM y, int inexact)
0f2d19dd 4582{
f8de44c1
DH
4583 double a;
4584
0aacf84e
MD
4585 if (SCM_UNBNDP (y))
4586 {
4587 if (SCM_UNBNDP (x))
4588 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
e11e83f3 4589 else if (SCM_I_INUMP (x))
0aacf84e 4590 {
e11e83f3 4591 long xx = SCM_I_INUM (x);
0aacf84e
MD
4592 if (xx == 1 || xx == -1)
4593 return x;
7351e207 4594#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4595 else if (xx == 0)
4596 scm_num_overflow (s_divide);
7351e207 4597#endif
0aacf84e 4598 else
f92e85f7
MV
4599 {
4600 if (inexact)
55f26379 4601 return scm_from_double (1.0 / (double) xx);
cba42c93 4602 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4603 }
0aacf84e
MD
4604 }
4605 else if (SCM_BIGP (x))
f92e85f7
MV
4606 {
4607 if (inexact)
55f26379 4608 return scm_from_double (1.0 / scm_i_big2dbl (x));
cba42c93 4609 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
f92e85f7 4610 }
0aacf84e
MD
4611 else if (SCM_REALP (x))
4612 {
4613 double xx = SCM_REAL_VALUE (x);
7351e207 4614#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4615 if (xx == 0.0)
4616 scm_num_overflow (s_divide);
4617 else
7351e207 4618#endif
55f26379 4619 return scm_from_double (1.0 / xx);
0aacf84e
MD
4620 }
4621 else if (SCM_COMPLEXP (x))
4622 {
4623 double r = SCM_COMPLEX_REAL (x);
4624 double i = SCM_COMPLEX_IMAG (x);
4c6e36a6 4625 if (fabs(r) <= fabs(i))
0aacf84e
MD
4626 {
4627 double t = r / i;
4628 double d = i * (1.0 + t * t);
8507ec80 4629 return scm_c_make_rectangular (t / d, -1.0 / d);
0aacf84e
MD
4630 }
4631 else
4632 {
4633 double t = i / r;
4634 double d = r * (1.0 + t * t);
8507ec80 4635 return scm_c_make_rectangular (1.0 / d, -t / d);
0aacf84e
MD
4636 }
4637 }
f92e85f7 4638 else if (SCM_FRACTIONP (x))
cba42c93 4639 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
f92e85f7 4640 SCM_FRACTION_NUMERATOR (x));
0aacf84e
MD
4641 else
4642 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
f8de44c1 4643 }
f8de44c1 4644
e11e83f3 4645 if (SCM_I_INUMP (x))
0aacf84e 4646 {
e11e83f3
MV
4647 long xx = SCM_I_INUM (x);
4648 if (SCM_I_INUMP (y))
0aacf84e 4649 {
e11e83f3 4650 long yy = SCM_I_INUM (y);
0aacf84e
MD
4651 if (yy == 0)
4652 {
7351e207 4653#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4654 scm_num_overflow (s_divide);
7351e207 4655#else
55f26379 4656 return scm_from_double ((double) xx / (double) yy);
7351e207 4657#endif
0aacf84e
MD
4658 }
4659 else if (xx % yy != 0)
f92e85f7
MV
4660 {
4661 if (inexact)
55f26379 4662 return scm_from_double ((double) xx / (double) yy);
cba42c93 4663 else return scm_i_make_ratio (x, y);
f92e85f7 4664 }
0aacf84e
MD
4665 else
4666 {
4667 long z = xx / yy;
4668 if (SCM_FIXABLE (z))
d956fa6f 4669 return SCM_I_MAKINUM (z);
0aacf84e
MD
4670 else
4671 return scm_i_long2big (z);
4672 }
f872b822 4673 }
0aacf84e 4674 else if (SCM_BIGP (y))
f92e85f7
MV
4675 {
4676 if (inexact)
55f26379 4677 return scm_from_double ((double) xx / scm_i_big2dbl (y));
cba42c93 4678 else return scm_i_make_ratio (x, y);
f92e85f7 4679 }
0aacf84e
MD
4680 else if (SCM_REALP (y))
4681 {
4682 double yy = SCM_REAL_VALUE (y);
7351e207 4683#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4684 if (yy == 0.0)
4685 scm_num_overflow (s_divide);
4686 else
7351e207 4687#endif
55f26379 4688 return scm_from_double ((double) xx / yy);
ba74ef4e 4689 }
0aacf84e
MD
4690 else if (SCM_COMPLEXP (y))
4691 {
4692 a = xx;
4693 complex_div: /* y _must_ be a complex number */
4694 {
4695 double r = SCM_COMPLEX_REAL (y);
4696 double i = SCM_COMPLEX_IMAG (y);
4c6e36a6 4697 if (fabs(r) <= fabs(i))
0aacf84e
MD
4698 {
4699 double t = r / i;
4700 double d = i * (1.0 + t * t);
8507ec80 4701 return scm_c_make_rectangular ((a * t) / d, -a / d);
0aacf84e
MD
4702 }
4703 else
4704 {
4705 double t = i / r;
4706 double d = r * (1.0 + t * t);
8507ec80 4707 return scm_c_make_rectangular (a / d, -(a * t) / d);
0aacf84e
MD
4708 }
4709 }
4710 }
f92e85f7
MV
4711 else if (SCM_FRACTIONP (y))
4712 /* a / b/c = ac / b */
cba42c93 4713 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 4714 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
4715 else
4716 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 4717 }
0aacf84e
MD
4718 else if (SCM_BIGP (x))
4719 {
e11e83f3 4720 if (SCM_I_INUMP (y))
0aacf84e 4721 {
e11e83f3 4722 long int yy = SCM_I_INUM (y);
0aacf84e
MD
4723 if (yy == 0)
4724 {
7351e207 4725#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4726 scm_num_overflow (s_divide);
7351e207 4727#else
0aacf84e
MD
4728 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4729 scm_remember_upto_here_1 (x);
4730 return (sgn == 0) ? scm_nan () : scm_inf ();
7351e207 4731#endif
0aacf84e
MD
4732 }
4733 else if (yy == 1)
4734 return x;
4735 else
4736 {
4737 /* FIXME: HMM, what are the relative performance issues here?
4738 We need to test. Is it faster on average to test
4739 divisible_p, then perform whichever operation, or is it
4740 faster to perform the integer div opportunistically and
4741 switch to real if there's a remainder? For now we take the
4742 middle ground: test, then if divisible, use the faster div
4743 func. */
4744
4745 long abs_yy = yy < 0 ? -yy : yy;
4746 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
4747
4748 if (divisible_p)
4749 {
4750 SCM result = scm_i_mkbig ();
4751 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
4752 scm_remember_upto_here_1 (x);
4753 if (yy < 0)
4754 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4755 return scm_i_normbig (result);
4756 }
4757 else
f92e85f7
MV
4758 {
4759 if (inexact)
55f26379 4760 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
cba42c93 4761 else return scm_i_make_ratio (x, y);
f92e85f7 4762 }
0aacf84e
MD
4763 }
4764 }
4765 else if (SCM_BIGP (y))
4766 {
4767 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
4768 if (y_is_zero)
4769 {
ca46fb90 4770#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e 4771 scm_num_overflow (s_divide);
f872b822 4772#else
0aacf84e
MD
4773 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4774 scm_remember_upto_here_1 (x);
4775 return (sgn == 0) ? scm_nan () : scm_inf ();
f872b822 4776#endif
0aacf84e
MD
4777 }
4778 else
4779 {
4780 /* big_x / big_y */
4781 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
4782 SCM_I_BIG_MPZ (y));
4783 if (divisible_p)
4784 {
4785 SCM result = scm_i_mkbig ();
4786 mpz_divexact (SCM_I_BIG_MPZ (result),
4787 SCM_I_BIG_MPZ (x),
4788 SCM_I_BIG_MPZ (y));
4789 scm_remember_upto_here_2 (x, y);
4790 return scm_i_normbig (result);
4791 }
4792 else
4793 {
f92e85f7
MV
4794 if (inexact)
4795 {
4796 double dbx = mpz_get_d (SCM_I_BIG_MPZ (x));
4797 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4798 scm_remember_upto_here_2 (x, y);
55f26379 4799 return scm_from_double (dbx / dby);
f92e85f7 4800 }
cba42c93 4801 else return scm_i_make_ratio (x, y);
0aacf84e
MD
4802 }
4803 }
4804 }
4805 else if (SCM_REALP (y))
4806 {
4807 double yy = SCM_REAL_VALUE (y);
7351e207 4808#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4809 if (yy == 0.0)
4810 scm_num_overflow (s_divide);
4811 else
7351e207 4812#endif
55f26379 4813 return scm_from_double (scm_i_big2dbl (x) / yy);
0aacf84e
MD
4814 }
4815 else if (SCM_COMPLEXP (y))
4816 {
4817 a = scm_i_big2dbl (x);
4818 goto complex_div;
4819 }
f92e85f7 4820 else if (SCM_FRACTIONP (y))
cba42c93 4821 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
f92e85f7 4822 SCM_FRACTION_NUMERATOR (y));
0aacf84e
MD
4823 else
4824 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 4825 }
0aacf84e
MD
4826 else if (SCM_REALP (x))
4827 {
4828 double rx = SCM_REAL_VALUE (x);
e11e83f3 4829 if (SCM_I_INUMP (y))
0aacf84e 4830 {
e11e83f3 4831 long int yy = SCM_I_INUM (y);
7351e207 4832#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4833 if (yy == 0)
4834 scm_num_overflow (s_divide);
4835 else
7351e207 4836#endif
55f26379 4837 return scm_from_double (rx / (double) yy);
0aacf84e
MD
4838 }
4839 else if (SCM_BIGP (y))
4840 {
4841 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4842 scm_remember_upto_here_1 (y);
55f26379 4843 return scm_from_double (rx / dby);
0aacf84e
MD
4844 }
4845 else if (SCM_REALP (y))
4846 {
4847 double yy = SCM_REAL_VALUE (y);
7351e207 4848#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4849 if (yy == 0.0)
4850 scm_num_overflow (s_divide);
4851 else
7351e207 4852#endif
55f26379 4853 return scm_from_double (rx / yy);
0aacf84e
MD
4854 }
4855 else if (SCM_COMPLEXP (y))
4856 {
4857 a = rx;
4858 goto complex_div;
4859 }
f92e85f7 4860 else if (SCM_FRACTIONP (y))
55f26379 4861 return scm_from_double (rx / scm_i_fraction2double (y));
0aacf84e
MD
4862 else
4863 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f872b822 4864 }
0aacf84e
MD
4865 else if (SCM_COMPLEXP (x))
4866 {
4867 double rx = SCM_COMPLEX_REAL (x);
4868 double ix = SCM_COMPLEX_IMAG (x);
e11e83f3 4869 if (SCM_I_INUMP (y))
0aacf84e 4870 {
e11e83f3 4871 long int yy = SCM_I_INUM (y);
7351e207 4872#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
0aacf84e
MD
4873 if (yy == 0)
4874 scm_num_overflow (s_divide);
4875 else
7351e207 4876#endif
0aacf84e
MD
4877 {
4878 double d = yy;
8507ec80 4879 return scm_c_make_rectangular (rx / d, ix / d);
0aacf84e
MD
4880 }
4881 }
4882 else if (SCM_BIGP (y))
4883 {
4884 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4885 scm_remember_upto_here_1 (y);
8507ec80 4886 return scm_c_make_rectangular (rx / dby, ix / dby);
0aacf84e
MD
4887 }
4888 else if (SCM_REALP (y))
4889 {
4890 double yy = SCM_REAL_VALUE (y);
7351e207 4891#ifndef ALLOW_DIVIDE_BY_ZERO
0aacf84e
MD
4892 if (yy == 0.0)
4893 scm_num_overflow (s_divide);
4894 else
7351e207 4895#endif
8507ec80 4896 return scm_c_make_rectangular (rx / yy, ix / yy);
0aacf84e
MD
4897 }
4898 else if (SCM_COMPLEXP (y))
4899 {
4900 double ry = SCM_COMPLEX_REAL (y);
4901 double iy = SCM_COMPLEX_IMAG (y);
4c6e36a6 4902 if (fabs(ry) <= fabs(iy))
0aacf84e
MD
4903 {
4904 double t = ry / iy;
4905 double d = iy * (1.0 + t * t);
8507ec80 4906 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
0aacf84e
MD
4907 }
4908 else
4909 {
4910 double t = iy / ry;
4911 double d = ry * (1.0 + t * t);
8507ec80 4912 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
0aacf84e
MD
4913 }
4914 }
f92e85f7
MV
4915 else if (SCM_FRACTIONP (y))
4916 {
4917 double yy = scm_i_fraction2double (y);
8507ec80 4918 return scm_c_make_rectangular (rx / yy, ix / yy);
f92e85f7 4919 }
0aacf84e
MD
4920 else
4921 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
f8de44c1 4922 }
f92e85f7
MV
4923 else if (SCM_FRACTIONP (x))
4924 {
e11e83f3 4925 if (SCM_I_INUMP (y))
f92e85f7 4926 {
e11e83f3 4927 long int yy = SCM_I_INUM (y);
f92e85f7
MV
4928#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4929 if (yy == 0)
4930 scm_num_overflow (s_divide);
4931 else
4932#endif
cba42c93 4933 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4934 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4935 }
4936 else if (SCM_BIGP (y))
4937 {
cba42c93 4938 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
f92e85f7
MV
4939 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4940 }
4941 else if (SCM_REALP (y))
4942 {
4943 double yy = SCM_REAL_VALUE (y);
4944#ifndef ALLOW_DIVIDE_BY_ZERO
4945 if (yy == 0.0)
4946 scm_num_overflow (s_divide);
4947 else
4948#endif
55f26379 4949 return scm_from_double (scm_i_fraction2double (x) / yy);
f92e85f7
MV
4950 }
4951 else if (SCM_COMPLEXP (y))
4952 {
4953 a = scm_i_fraction2double (x);
4954 goto complex_div;
4955 }
4956 else if (SCM_FRACTIONP (y))
cba42c93 4957 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
f92e85f7
MV
4958 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
4959 else
4960 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4961 }
0aacf84e 4962 else
f8de44c1 4963 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
0f2d19dd 4964}
f92e85f7
MV
4965
4966SCM
4967scm_divide (SCM x, SCM y)
4968{
4969 return scm_i_divide (x, y, 0);
4970}
4971
4972static SCM scm_divide2real (SCM x, SCM y)
4973{
4974 return scm_i_divide (x, y, 1);
4975}
c05e97b7 4976#undef FUNC_NAME
0f2d19dd 4977
fa605590 4978
0f2d19dd 4979double
6e8d25a6 4980scm_asinh (double x)
0f2d19dd 4981{
fa605590
KR
4982#if HAVE_ASINH
4983 return asinh (x);
4984#else
4985#define asinh scm_asinh
f872b822 4986 return log (x + sqrt (x * x + 1));
fa605590 4987#endif
0f2d19dd 4988}
fa605590
KR
4989SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_dsubr, (SCM (*)()) asinh, g_asinh);
4990/* "Return the inverse hyperbolic sine of @var{x}."
4991 */
0f2d19dd
JB
4992
4993
0f2d19dd 4994double
6e8d25a6 4995scm_acosh (double x)
0f2d19dd 4996{
fa605590
KR
4997#if HAVE_ACOSH
4998 return acosh (x);
4999#else
5000#define acosh scm_acosh
f872b822 5001 return log (x + sqrt (x * x - 1));
fa605590 5002#endif
0f2d19dd 5003}
fa605590
KR
5004SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_dsubr, (SCM (*)()) acosh, g_acosh);
5005/* "Return the inverse hyperbolic cosine of @var{x}."
5006 */
0f2d19dd
JB
5007
5008
0f2d19dd 5009double
6e8d25a6 5010scm_atanh (double x)
0f2d19dd 5011{
fa605590
KR
5012#if HAVE_ATANH
5013 return atanh (x);
5014#else
5015#define atanh scm_atanh
f872b822 5016 return 0.5 * log ((1 + x) / (1 - x));
fa605590 5017#endif
0f2d19dd 5018}
fa605590
KR
5019SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_dsubr, (SCM (*)()) atanh, g_atanh);
5020/* "Return the inverse hyperbolic tangent of @var{x}."
5021 */
0f2d19dd
JB
5022
5023
0f2d19dd 5024double
3101f40f 5025scm_c_truncate (double x)
0f2d19dd 5026{
fa605590
KR
5027#if HAVE_TRUNC
5028 return trunc (x);
5029#else
f872b822
MD
5030 if (x < 0.0)
5031 return -floor (-x);
5032 return floor (x);
fa605590 5033#endif
0f2d19dd 5034}
0f2d19dd 5035
3101f40f
MV
5036/* scm_c_round is done using floor(x+0.5) to round to nearest and with
5037 half-way case (ie. when x is an integer plus 0.5) going upwards.
5038 Then half-way cases are identified and adjusted down if the
5039 round-upwards didn't give the desired even integer.
6187f48b
KR
5040
5041 "plus_half == result" identifies a half-way case. If plus_half, which is
5042 x + 0.5, is an integer then x must be an integer plus 0.5.
5043
5044 An odd "result" value is identified with result/2 != floor(result/2).
5045 This is done with plus_half, since that value is ready for use sooner in
5046 a pipelined cpu, and we're already requiring plus_half == result.
5047
5048 Note however that we need to be careful when x is big and already an
5049 integer. In that case "x+0.5" may round to an adjacent integer, causing
5050 us to return such a value, incorrectly. For instance if the hardware is
5051 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
5052 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
5053 returned. Or if the hardware is in round-upwards mode, then other bigger
5054 values like say x == 2^128 will see x+0.5 rounding up to the next higher
5055 representable value, 2^128+2^76 (or whatever), again incorrect.
5056
5057 These bad roundings of x+0.5 are avoided by testing at the start whether
5058 x is already an integer. If it is then clearly that's the desired result
5059 already. And if it's not then the exponent must be small enough to allow
5060 an 0.5 to be represented, and hence added without a bad rounding. */
5061
0f2d19dd 5062double
3101f40f 5063scm_c_round (double x)
0f2d19dd 5064{
6187f48b
KR
5065 double plus_half, result;
5066
5067 if (x == floor (x))
5068 return x;
5069
5070 plus_half = x + 0.5;
5071 result = floor (plus_half);
3101f40f 5072 /* Adjust so that the rounding is towards even. */
0aacf84e
MD
5073 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
5074 ? result - 1
5075 : result);
0f2d19dd
JB
5076}
5077
f92e85f7
MV
5078SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
5079 (SCM x),
5080 "Round the number @var{x} towards zero.")
5081#define FUNC_NAME s_scm_truncate_number
5082{
73e4de09 5083 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5084 return scm_floor (x);
5085 else
5086 return scm_ceiling (x);
5087}
5088#undef FUNC_NAME
5089
5090static SCM exactly_one_half;
5091
5092SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5093 (SCM x),
5094 "Round the number @var{x} towards the nearest integer. "
5095 "When it is exactly halfway between two integers, "
5096 "round towards the even one.")
5097#define FUNC_NAME s_scm_round_number
5098{
e11e83f3 5099 if (SCM_I_INUMP (x) || SCM_BIGP (x))
bae30667
KR
5100 return x;
5101 else if (SCM_REALP (x))
3101f40f 5102 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
f92e85f7 5103 else
bae30667
KR
5104 {
5105 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5106 single quotient+remainder division then examining to see which way
5107 the rounding should go. */
5108 SCM plus_half = scm_sum (x, exactly_one_half);
5109 SCM result = scm_floor (plus_half);
3101f40f 5110 /* Adjust so that the rounding is towards even. */
73e4de09
MV
5111 if (scm_is_true (scm_num_eq_p (plus_half, result))
5112 && scm_is_true (scm_odd_p (result)))
d956fa6f 5113 return scm_difference (result, SCM_I_MAKINUM (1));
bae30667
KR
5114 else
5115 return result;
5116 }
f92e85f7
MV
5117}
5118#undef FUNC_NAME
5119
5120SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5121 (SCM x),
5122 "Round the number @var{x} towards minus infinity.")
5123#define FUNC_NAME s_scm_floor
5124{
e11e83f3 5125 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5126 return x;
5127 else if (SCM_REALP (x))
55f26379 5128 return scm_from_double (floor (SCM_REAL_VALUE (x)));
f92e85f7
MV
5129 else if (SCM_FRACTIONP (x))
5130 {
5131 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5132 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5133 if (scm_is_false (scm_negative_p (x)))
f92e85f7
MV
5134 {
5135 /* For positive x, rounding towards zero is correct. */
5136 return q;
5137 }
5138 else
5139 {
5140 /* For negative x, we need to return q-1 unless x is an
5141 integer. But fractions are never integer, per our
5142 assumptions. */
d956fa6f 5143 return scm_difference (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5144 }
5145 }
5146 else
5147 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5148}
5149#undef FUNC_NAME
5150
5151SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5152 (SCM x),
5153 "Round the number @var{x} towards infinity.")
5154#define FUNC_NAME s_scm_ceiling
5155{
e11e83f3 5156 if (SCM_I_INUMP (x) || SCM_BIGP (x))
f92e85f7
MV
5157 return x;
5158 else if (SCM_REALP (x))
55f26379 5159 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
f92e85f7
MV
5160 else if (SCM_FRACTIONP (x))
5161 {
5162 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5163 SCM_FRACTION_DENOMINATOR (x));
73e4de09 5164 if (scm_is_false (scm_positive_p (x)))
f92e85f7
MV
5165 {
5166 /* For negative x, rounding towards zero is correct. */
5167 return q;
5168 }
5169 else
5170 {
5171 /* For positive x, we need to return q+1 unless x is an
5172 integer. But fractions are never integer, per our
5173 assumptions. */
d956fa6f 5174 return scm_sum (q, SCM_I_MAKINUM (1));
f92e85f7
MV
5175 }
5176 }
5177 else
5178 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5179}
5180#undef FUNC_NAME
0f2d19dd 5181
14b18ed6 5182SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_dsubr, (SCM (*)()) sqrt, g_i_sqrt);
942e5b91
MG
5183/* "Return the square root of the real number @var{x}."
5184 */
14b18ed6 5185SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_dsubr, (SCM (*)()) fabs, g_i_abs);
942e5b91
MG
5186/* "Return the absolute value of the real number @var{x}."
5187 */
14b18ed6 5188SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_dsubr, (SCM (*)()) exp, g_i_exp);
942e5b91
MG
5189/* "Return the @var{x}th power of e."
5190 */
14b18ed6 5191SCM_GPROC1 (s_i_log, "$log", scm_tc7_dsubr, (SCM (*)()) log, g_i_log);
b3fcac34 5192/* "Return the natural logarithm of the real number @var{x}."
942e5b91 5193 */
14b18ed6 5194SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_dsubr, (SCM (*)()) sin, g_i_sin);
942e5b91
MG
5195/* "Return the sine of the real number @var{x}."
5196 */
14b18ed6 5197SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_dsubr, (SCM (*)()) cos, g_i_cos);
942e5b91
MG
5198/* "Return the cosine of the real number @var{x}."
5199 */
14b18ed6 5200SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_dsubr, (SCM (*)()) tan, g_i_tan);
942e5b91
MG
5201/* "Return the tangent of the real number @var{x}."
5202 */
14b18ed6 5203SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_dsubr, (SCM (*)()) asin, g_i_asin);
942e5b91
MG
5204/* "Return the arc sine of the real number @var{x}."
5205 */
14b18ed6 5206SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_dsubr, (SCM (*)()) acos, g_i_acos);
942e5b91
MG
5207/* "Return the arc cosine of the real number @var{x}."
5208 */
14b18ed6 5209SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_dsubr, (SCM (*)()) atan, g_i_atan);
942e5b91
MG
5210/* "Return the arc tangent of the real number @var{x}."
5211 */
14b18ed6 5212SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_dsubr, (SCM (*)()) sinh, g_i_sinh);
942e5b91
MG
5213/* "Return the hyperbolic sine of the real number @var{x}."
5214 */
14b18ed6 5215SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_dsubr, (SCM (*)()) cosh, g_i_cosh);
942e5b91
MG
5216/* "Return the hyperbolic cosine of the real number @var{x}."
5217 */
14b18ed6 5218SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_dsubr, (SCM (*)()) tanh, g_i_tanh);
942e5b91
MG
5219/* "Return the hyperbolic tangent of the real number @var{x}."
5220 */
f872b822
MD
5221
5222struct dpair
5223{
5224 double x, y;
5225};
5226
27c37006
NJ
5227static void scm_two_doubles (SCM x,
5228 SCM y,
3eeba8d4
JB
5229 const char *sstring,
5230 struct dpair * xy);
f872b822
MD
5231
5232static void
27c37006
NJ
5233scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
5234{
e11e83f3
MV
5235 if (SCM_I_INUMP (x))
5236 xy->x = SCM_I_INUM (x);
0aacf84e 5237 else if (SCM_BIGP (x))
1be6b49c 5238 xy->x = scm_i_big2dbl (x);
0aacf84e 5239 else if (SCM_REALP (x))
27c37006 5240 xy->x = SCM_REAL_VALUE (x);
f92e85f7
MV
5241 else if (SCM_FRACTIONP (x))
5242 xy->x = scm_i_fraction2double (x);
0aacf84e 5243 else
27c37006 5244 scm_wrong_type_arg (sstring, SCM_ARG1, x);
98cb6e75 5245
e11e83f3
MV
5246 if (SCM_I_INUMP (y))
5247 xy->y = SCM_I_INUM (y);
0aacf84e 5248 else if (SCM_BIGP (y))
1be6b49c 5249 xy->y = scm_i_big2dbl (y);
0aacf84e 5250 else if (SCM_REALP (y))
27c37006 5251 xy->y = SCM_REAL_VALUE (y);
f92e85f7
MV
5252 else if (SCM_FRACTIONP (y))
5253 xy->y = scm_i_fraction2double (y);
0aacf84e 5254 else
27c37006 5255 scm_wrong_type_arg (sstring, SCM_ARG2, y);
0f2d19dd
JB
5256}
5257
5258
a1ec6916 5259SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
27c37006
NJ
5260 (SCM x, SCM y),
5261 "Return @var{x} raised to the power of @var{y}. This\n"
0137a31b 5262 "procedure does not accept complex arguments.")
1bbd0b84 5263#define FUNC_NAME s_scm_sys_expt
0f2d19dd
JB
5264{
5265 struct dpair xy;
27c37006 5266 scm_two_doubles (x, y, FUNC_NAME, &xy);
55f26379 5267 return scm_from_double (pow (xy.x, xy.y));
0f2d19dd 5268}
1bbd0b84 5269#undef FUNC_NAME
0f2d19dd
JB
5270
5271
a1ec6916 5272SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
27c37006
NJ
5273 (SCM x, SCM y),
5274 "Return the arc tangent of the two arguments @var{x} and\n"
5275 "@var{y}. This is similar to calculating the arc tangent of\n"
5276 "@var{x} / @var{y}, except that the signs of both arguments\n"
0137a31b
MG
5277 "are used to determine the quadrant of the result. This\n"
5278 "procedure does not accept complex arguments.")
1bbd0b84 5279#define FUNC_NAME s_scm_sys_atan2
0f2d19dd
JB
5280{
5281 struct dpair xy;
27c37006 5282 scm_two_doubles (x, y, FUNC_NAME, &xy);
55f26379 5283 return scm_from_double (atan2 (xy.x, xy.y));
0f2d19dd 5284}
1bbd0b84 5285#undef FUNC_NAME
0f2d19dd 5286
8507ec80
MV
5287SCM
5288scm_c_make_rectangular (double re, double im)
5289{
5290 if (im == 0.0)
5291 return scm_from_double (re);
5292 else
5293 {
5294 SCM z;
5295 SCM_NEWSMOB (z, scm_tc16_complex, scm_gc_malloc (sizeof (scm_t_complex),
5296 "complex"));
5297 SCM_COMPLEX_REAL (z) = re;
5298 SCM_COMPLEX_IMAG (z) = im;
5299 return z;
5300 }
5301}
0f2d19dd 5302
a1ec6916 5303SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
bb628794 5304 (SCM real, SCM imaginary),
942e5b91
MG
5305 "Return a complex number constructed of the given @var{real} and\n"
5306 "@var{imaginary} parts.")
1bbd0b84 5307#define FUNC_NAME s_scm_make_rectangular
0f2d19dd
JB
5308{
5309 struct dpair xy;
bb628794 5310 scm_two_doubles (real, imaginary, FUNC_NAME, &xy);
8507ec80 5311 return scm_c_make_rectangular (xy.x, xy.y);
0f2d19dd 5312}
1bbd0b84 5313#undef FUNC_NAME
0f2d19dd 5314
8507ec80
MV
5315SCM
5316scm_c_make_polar (double mag, double ang)
5317{
5318 double s, c;
5319#if HAVE_SINCOS
5320 sincos (ang, &s, &c);
5321#else
5322 s = sin (ang);
5323 c = cos (ang);
5324#endif
5325 return scm_c_make_rectangular (mag * c, mag * s);
5326}
0f2d19dd 5327
a1ec6916 5328SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
27c37006 5329 (SCM x, SCM y),
942e5b91 5330 "Return the complex number @var{x} * e^(i * @var{y}).")
1bbd0b84 5331#define FUNC_NAME s_scm_make_polar
0f2d19dd
JB
5332{
5333 struct dpair xy;
27c37006 5334 scm_two_doubles (x, y, FUNC_NAME, &xy);
8507ec80 5335 return scm_c_make_polar (xy.x, xy.y);
0f2d19dd 5336}
1bbd0b84 5337#undef FUNC_NAME
0f2d19dd
JB
5338
5339
152f82bf 5340SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
942e5b91
MG
5341/* "Return the real part of the number @var{z}."
5342 */
0f2d19dd 5343SCM
6e8d25a6 5344scm_real_part (SCM z)
0f2d19dd 5345{
e11e83f3 5346 if (SCM_I_INUMP (z))
c2ff8ab0 5347 return z;
0aacf84e 5348 else if (SCM_BIGP (z))
c2ff8ab0 5349 return z;
0aacf84e 5350 else if (SCM_REALP (z))
c2ff8ab0 5351 return z;
0aacf84e 5352 else if (SCM_COMPLEXP (z))
55f26379 5353 return scm_from_double (SCM_COMPLEX_REAL (z));
f92e85f7 5354 else if (SCM_FRACTIONP (z))
2fa2d879 5355 return z;
0aacf84e 5356 else
c2ff8ab0 5357 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
0f2d19dd
JB
5358}
5359
5360
152f82bf 5361SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
942e5b91
MG
5362/* "Return the imaginary part of the number @var{z}."
5363 */
0f2d19dd 5364SCM
6e8d25a6 5365scm_imag_part (SCM z)
0f2d19dd 5366{
e11e83f3 5367 if (SCM_I_INUMP (z))
f872b822 5368 return SCM_INUM0;
0aacf84e 5369 else if (SCM_BIGP (z))
f872b822 5370 return SCM_INUM0;
0aacf84e 5371 else if (SCM_REALP (z))
c2ff8ab0 5372 return scm_flo0;
0aacf84e 5373 else if (SCM_COMPLEXP (z))
55f26379 5374 return scm_from_double (SCM_COMPLEX_IMAG (z));
f92e85f7
MV
5375 else if (SCM_FRACTIONP (z))
5376 return SCM_INUM0;
0aacf84e 5377 else
c2ff8ab0 5378 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
0f2d19dd
JB
5379}
5380
f92e85f7
MV
5381SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5382/* "Return the numerator of the number @var{z}."
5383 */
5384SCM
5385scm_numerator (SCM z)
5386{
e11e83f3 5387 if (SCM_I_INUMP (z))
f92e85f7
MV
5388 return z;
5389 else if (SCM_BIGP (z))
5390 return z;
5391 else if (SCM_FRACTIONP (z))
5392 {
5393 scm_i_fraction_reduce (z);
5394 return SCM_FRACTION_NUMERATOR (z);
5395 }
5396 else if (SCM_REALP (z))
5397 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5398 else
5399 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5400}
5401
5402
5403SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5404/* "Return the denominator of the number @var{z}."
5405 */
5406SCM
5407scm_denominator (SCM z)
5408{
e11e83f3 5409 if (SCM_I_INUMP (z))
d956fa6f 5410 return SCM_I_MAKINUM (1);
f92e85f7 5411 else if (SCM_BIGP (z))
d956fa6f 5412 return SCM_I_MAKINUM (1);
f92e85f7
MV
5413 else if (SCM_FRACTIONP (z))
5414 {
5415 scm_i_fraction_reduce (z);
5416 return SCM_FRACTION_DENOMINATOR (z);
5417 }
5418 else if (SCM_REALP (z))
5419 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5420 else
5421 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5422}
0f2d19dd 5423
9de33deb 5424SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
942e5b91
MG
5425/* "Return the magnitude of the number @var{z}. This is the same as\n"
5426 * "@code{abs} for real arguments, but also allows complex numbers."
5427 */
0f2d19dd 5428SCM
6e8d25a6 5429scm_magnitude (SCM z)
0f2d19dd 5430{
e11e83f3 5431 if (SCM_I_INUMP (z))
0aacf84e 5432 {
e11e83f3 5433 long int zz = SCM_I_INUM (z);
0aacf84e
MD
5434 if (zz >= 0)
5435 return z;
5436 else if (SCM_POSFIXABLE (-zz))
d956fa6f 5437 return SCM_I_MAKINUM (-zz);
0aacf84e
MD
5438 else
5439 return scm_i_long2big (-zz);
5986c47d 5440 }
0aacf84e
MD
5441 else if (SCM_BIGP (z))
5442 {
5443 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5444 scm_remember_upto_here_1 (z);
5445 if (sgn < 0)
5446 return scm_i_clonebig (z, 0);
5447 else
5448 return z;
5986c47d 5449 }
0aacf84e 5450 else if (SCM_REALP (z))
55f26379 5451 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
0aacf84e 5452 else if (SCM_COMPLEXP (z))
55f26379 5453 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
f92e85f7
MV
5454 else if (SCM_FRACTIONP (z))
5455 {
73e4de09 5456 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 5457 return z;
cba42c93 5458 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
f92e85f7
MV
5459 SCM_FRACTION_DENOMINATOR (z));
5460 }
0aacf84e 5461 else
c2ff8ab0 5462 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
0f2d19dd
JB
5463}
5464
5465
9de33deb 5466SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
942e5b91
MG
5467/* "Return the angle of the complex number @var{z}."
5468 */
0f2d19dd 5469SCM
6e8d25a6 5470scm_angle (SCM z)
0f2d19dd 5471{
c8ae173e 5472 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
55f26379 5473 scm_flo0 to save allocating a new flonum with scm_from_double each time.
c8ae173e
KR
5474 But if atan2 follows the floating point rounding mode, then the value
5475 is not a constant. Maybe it'd be close enough though. */
e11e83f3 5476 if (SCM_I_INUMP (z))
0aacf84e 5477 {
e11e83f3 5478 if (SCM_I_INUM (z) >= 0)
c8ae173e 5479 return scm_flo0;
0aacf84e 5480 else
55f26379 5481 return scm_from_double (atan2 (0.0, -1.0));
f872b822 5482 }
0aacf84e
MD
5483 else if (SCM_BIGP (z))
5484 {
5485 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5486 scm_remember_upto_here_1 (z);
5487 if (sgn < 0)
55f26379 5488 return scm_from_double (atan2 (0.0, -1.0));
0aacf84e 5489 else
c8ae173e 5490 return scm_flo0;
0f2d19dd 5491 }
0aacf84e 5492 else if (SCM_REALP (z))
c8ae173e
KR
5493 {
5494 if (SCM_REAL_VALUE (z) >= 0)
5495 return scm_flo0;
5496 else
55f26379 5497 return scm_from_double (atan2 (0.0, -1.0));
c8ae173e 5498 }
0aacf84e 5499 else if (SCM_COMPLEXP (z))
55f26379 5500 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
f92e85f7
MV
5501 else if (SCM_FRACTIONP (z))
5502 {
73e4de09 5503 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
f92e85f7 5504 return scm_flo0;
55f26379 5505 else return scm_from_double (atan2 (0.0, -1.0));
f92e85f7 5506 }
0aacf84e 5507 else
f4c627b3 5508 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
0f2d19dd
JB
5509}
5510
5511
3c9a524f
DH
5512SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5513/* Convert the number @var{x} to its inexact representation.\n"
5514 */
5515SCM
5516scm_exact_to_inexact (SCM z)
5517{
e11e83f3 5518 if (SCM_I_INUMP (z))
55f26379 5519 return scm_from_double ((double) SCM_I_INUM (z));
3c9a524f 5520 else if (SCM_BIGP (z))
55f26379 5521 return scm_from_double (scm_i_big2dbl (z));
f92e85f7 5522 else if (SCM_FRACTIONP (z))
55f26379 5523 return scm_from_double (scm_i_fraction2double (z));
3c9a524f
DH
5524 else if (SCM_INEXACTP (z))
5525 return z;
5526 else
5527 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5528}
5529
5530
a1ec6916 5531SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
1bbd0b84 5532 (SCM z),
1e6808ea 5533 "Return an exact number that is numerically closest to @var{z}.")
1bbd0b84 5534#define FUNC_NAME s_scm_inexact_to_exact
0f2d19dd 5535{
e11e83f3 5536 if (SCM_I_INUMP (z))
f872b822 5537 return z;
0aacf84e 5538 else if (SCM_BIGP (z))
f872b822 5539 return z;
0aacf84e
MD
5540 else if (SCM_REALP (z))
5541 {
f92e85f7
MV
5542 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
5543 SCM_OUT_OF_RANGE (1, z);
2be24db4 5544 else
f92e85f7
MV
5545 {
5546 mpq_t frac;
5547 SCM q;
5548
5549 mpq_init (frac);
5550 mpq_set_d (frac, SCM_REAL_VALUE (z));
cba42c93 5551 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
f92e85f7
MV
5552 scm_i_mpz2num (mpq_denref (frac)));
5553
cba42c93 5554 /* When scm_i_make_ratio throws, we leak the memory allocated
f92e85f7
MV
5555 for frac...
5556 */
5557 mpq_clear (frac);
5558 return q;
5559 }
c2ff8ab0 5560 }
f92e85f7
MV
5561 else if (SCM_FRACTIONP (z))
5562 return z;
0aacf84e 5563 else
c2ff8ab0 5564 SCM_WRONG_TYPE_ARG (1, z);
0f2d19dd 5565}
1bbd0b84 5566#undef FUNC_NAME
0f2d19dd 5567
f92e85f7
MV
5568SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
5569 (SCM x, SCM err),
5570 "Return an exact number that is within @var{err} of @var{x}.")
5571#define FUNC_NAME s_scm_rationalize
5572{
e11e83f3 5573 if (SCM_I_INUMP (x))
f92e85f7
MV
5574 return x;
5575 else if (SCM_BIGP (x))
5576 return x;
5577 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
5578 {
5579 /* Use continued fractions to find closest ratio. All
5580 arithmetic is done with exact numbers.
5581 */
5582
5583 SCM ex = scm_inexact_to_exact (x);
5584 SCM int_part = scm_floor (ex);
d956fa6f
MV
5585 SCM tt = SCM_I_MAKINUM (1);
5586 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
5587 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
f92e85f7
MV
5588 SCM rx;
5589 int i = 0;
5590
73e4de09 5591 if (scm_is_true (scm_num_eq_p (ex, int_part)))
f92e85f7
MV
5592 return ex;
5593
5594 ex = scm_difference (ex, int_part); /* x = x-int_part */
5595 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
5596
5597 /* We stop after a million iterations just to be absolutely sure
5598 that we don't go into an infinite loop. The process normally
5599 converges after less than a dozen iterations.
5600 */
5601
5602 err = scm_abs (err);
5603 while (++i < 1000000)
5604 {
5605 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
5606 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
73e4de09
MV
5607 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
5608 scm_is_false
f92e85f7
MV
5609 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
5610 err))) /* abs(x-a/b) <= err */
02164269
MV
5611 {
5612 SCM res = scm_sum (int_part, scm_divide (a, b));
73e4de09
MV
5613 if (scm_is_false (scm_exact_p (x))
5614 || scm_is_false (scm_exact_p (err)))
02164269
MV
5615 return scm_exact_to_inexact (res);
5616 else
5617 return res;
5618 }
f92e85f7
MV
5619 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
5620 SCM_UNDEFINED);
5621 tt = scm_floor (rx); /* tt = floor (rx) */
5622 a2 = a1;
5623 b2 = b1;
5624 a1 = a;
5625 b1 = b;
5626 }
5627 scm_num_overflow (s_scm_rationalize);
5628 }
5629 else
5630 SCM_WRONG_TYPE_ARG (1, x);
5631}
5632#undef FUNC_NAME
5633
73e4de09
MV
5634/* conversion functions */
5635
5636int
5637scm_is_integer (SCM val)
5638{
5639 return scm_is_true (scm_integer_p (val));
5640}
5641
5642int
5643scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
5644{
e11e83f3 5645 if (SCM_I_INUMP (val))
73e4de09 5646 {
e11e83f3 5647 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
5648 return n >= min && n <= max;
5649 }
5650 else if (SCM_BIGP (val))
5651 {
5652 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
5653 return 0;
5654 else if (min >= LONG_MIN && max <= LONG_MAX)
d956fa6f
MV
5655 {
5656 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
5657 {
5658 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
5659 return n >= min && n <= max;
5660 }
5661 else
5662 return 0;
5663 }
73e4de09
MV
5664 else
5665 {
d956fa6f
MV
5666 scm_t_intmax n;
5667 size_t count;
73e4de09 5668
d956fa6f
MV
5669 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5670 > CHAR_BIT*sizeof (scm_t_uintmax))
5671 return 0;
5672
5673 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5674 SCM_I_BIG_MPZ (val));
73e4de09 5675
d956fa6f 5676 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
73e4de09 5677 {
d956fa6f
MV
5678 if (n < 0)
5679 return 0;
73e4de09 5680 }
73e4de09
MV
5681 else
5682 {
d956fa6f
MV
5683 n = -n;
5684 if (n >= 0)
5685 return 0;
73e4de09 5686 }
d956fa6f
MV
5687
5688 return n >= min && n <= max;
73e4de09
MV
5689 }
5690 }
73e4de09
MV
5691 else
5692 return 0;
5693}
5694
5695int
5696scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
5697{
e11e83f3 5698 if (SCM_I_INUMP (val))
73e4de09 5699 {
e11e83f3 5700 scm_t_signed_bits n = SCM_I_INUM (val);
73e4de09
MV
5701 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
5702 }
5703 else if (SCM_BIGP (val))
5704 {
5705 if (max <= SCM_MOST_POSITIVE_FIXNUM)
5706 return 0;
5707 else if (max <= ULONG_MAX)
d956fa6f
MV
5708 {
5709 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
5710 {
5711 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
5712 return n >= min && n <= max;
5713 }
5714 else
5715 return 0;
5716 }
73e4de09
MV
5717 else
5718 {
d956fa6f
MV
5719 scm_t_uintmax n;
5720 size_t count;
73e4de09 5721
d956fa6f
MV
5722 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
5723 return 0;
73e4de09 5724
d956fa6f
MV
5725 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5726 > CHAR_BIT*sizeof (scm_t_uintmax))
73e4de09 5727 return 0;
d956fa6f
MV
5728
5729 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5730 SCM_I_BIG_MPZ (val));
73e4de09 5731
d956fa6f 5732 return n >= min && n <= max;
73e4de09
MV
5733 }
5734 }
73e4de09
MV
5735 else
5736 return 0;
5737}
5738
1713d319
MV
5739static void
5740scm_i_range_error (SCM bad_val, SCM min, SCM max)
5741{
5742 scm_error (scm_out_of_range_key,
5743 NULL,
5744 "Value out of range ~S to ~S: ~S",
5745 scm_list_3 (min, max, bad_val),
5746 scm_list_1 (bad_val));
5747}
5748
bfd7932e
MV
5749#define TYPE scm_t_intmax
5750#define TYPE_MIN min
5751#define TYPE_MAX max
5752#define SIZEOF_TYPE 0
5753#define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
5754#define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
5755#include "libguile/conv-integer.i.c"
5756
5757#define TYPE scm_t_uintmax
5758#define TYPE_MIN min
5759#define TYPE_MAX max
5760#define SIZEOF_TYPE 0
5761#define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
5762#define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
5763#include "libguile/conv-uinteger.i.c"
5764
5765#define TYPE scm_t_int8
5766#define TYPE_MIN SCM_T_INT8_MIN
5767#define TYPE_MAX SCM_T_INT8_MAX
5768#define SIZEOF_TYPE 1
5769#define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
5770#define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
5771#include "libguile/conv-integer.i.c"
5772
5773#define TYPE scm_t_uint8
5774#define TYPE_MIN 0
5775#define TYPE_MAX SCM_T_UINT8_MAX
5776#define SIZEOF_TYPE 1
5777#define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
5778#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
5779#include "libguile/conv-uinteger.i.c"
5780
5781#define TYPE scm_t_int16
5782#define TYPE_MIN SCM_T_INT16_MIN
5783#define TYPE_MAX SCM_T_INT16_MAX
5784#define SIZEOF_TYPE 2
5785#define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
5786#define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
5787#include "libguile/conv-integer.i.c"
5788
5789#define TYPE scm_t_uint16
5790#define TYPE_MIN 0
5791#define TYPE_MAX SCM_T_UINT16_MAX
5792#define SIZEOF_TYPE 2
5793#define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
5794#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
5795#include "libguile/conv-uinteger.i.c"
5796
5797#define TYPE scm_t_int32
5798#define TYPE_MIN SCM_T_INT32_MIN
5799#define TYPE_MAX SCM_T_INT32_MAX
5800#define SIZEOF_TYPE 4
5801#define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
5802#define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
5803#include "libguile/conv-integer.i.c"
5804
5805#define TYPE scm_t_uint32
5806#define TYPE_MIN 0
5807#define TYPE_MAX SCM_T_UINT32_MAX
5808#define SIZEOF_TYPE 4
5809#define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
5810#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
5811#include "libguile/conv-uinteger.i.c"
5812
5813#if SCM_HAVE_T_INT64
5814
5815#define TYPE scm_t_int64
5816#define TYPE_MIN SCM_T_INT64_MIN
5817#define TYPE_MAX SCM_T_INT64_MAX
5818#define SIZEOF_TYPE 8
5819#define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
5820#define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
5821#include "libguile/conv-integer.i.c"
5822
5823#define TYPE scm_t_uint64
5824#define TYPE_MIN 0
5825#define TYPE_MAX SCM_T_UINT64_MAX
5826#define SIZEOF_TYPE 8
5827#define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
5828#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
5829#include "libguile/conv-uinteger.i.c"
73e4de09 5830
bfd7932e 5831#endif
73e4de09 5832
cd036260
MV
5833void
5834scm_to_mpz (SCM val, mpz_t rop)
5835{
5836 if (SCM_I_INUMP (val))
5837 mpz_set_si (rop, SCM_I_INUM (val));
5838 else if (SCM_BIGP (val))
5839 mpz_set (rop, SCM_I_BIG_MPZ (val));
5840 else
5841 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
5842}
5843
5844SCM
5845scm_from_mpz (mpz_t val)
5846{
5847 return scm_i_mpz2num (val);
5848}
5849
73e4de09
MV
5850int
5851scm_is_real (SCM val)
5852{
5853 return scm_is_true (scm_real_p (val));
5854}
5855
55f26379
MV
5856int
5857scm_is_rational (SCM val)
5858{
5859 return scm_is_true (scm_rational_p (val));
5860}
5861
73e4de09
MV
5862double
5863scm_to_double (SCM val)
5864{
55f26379
MV
5865 if (SCM_I_INUMP (val))
5866 return SCM_I_INUM (val);
5867 else if (SCM_BIGP (val))
5868 return scm_i_big2dbl (val);
5869 else if (SCM_FRACTIONP (val))
5870 return scm_i_fraction2double (val);
5871 else if (SCM_REALP (val))
5872 return SCM_REAL_VALUE (val);
5873 else
7a1aba42 5874 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
73e4de09
MV
5875}
5876
5877SCM
5878scm_from_double (double val)
5879{
55f26379
MV
5880 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
5881 SCM_REAL_VALUE (z) = val;
5882 return z;
73e4de09
MV
5883}
5884
55f26379
MV
5885#if SCM_ENABLE_DISCOURAGED == 1
5886
5887float
5888scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
5889{
5890 if (SCM_BIGP (num))
5891 {
5892 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
5893 if (!xisinf (res))
5894 return res;
5895 else
5896 scm_out_of_range (NULL, num);
5897 }
5898 else
5899 return scm_to_double (num);
5900}
5901
5902double
5903scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
5904{
5905 if (SCM_BIGP (num))
5906 {
5907 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
5908 if (!xisinf (res))
5909 return res;
5910 else
5911 scm_out_of_range (NULL, num);
5912 }
5913 else
5914 return scm_to_double (num);
5915}
5916
5917#endif
5918
8507ec80
MV
5919int
5920scm_is_complex (SCM val)
5921{
5922 return scm_is_true (scm_complex_p (val));
5923}
5924
5925double
5926scm_c_real_part (SCM z)
5927{
5928 if (SCM_COMPLEXP (z))
5929 return SCM_COMPLEX_REAL (z);
5930 else
5931 {
5932 /* Use the scm_real_part to get proper error checking and
5933 dispatching.
5934 */
5935 return scm_to_double (scm_real_part (z));
5936 }
5937}
5938
5939double
5940scm_c_imag_part (SCM z)
5941{
5942 if (SCM_COMPLEXP (z))
5943 return SCM_COMPLEX_IMAG (z);
5944 else
5945 {
5946 /* Use the scm_imag_part to get proper error checking and
5947 dispatching. The result will almost always be 0.0, but not
5948 always.
5949 */
5950 return scm_to_double (scm_imag_part (z));
5951 }
5952}
5953
5954double
5955scm_c_magnitude (SCM z)
5956{
5957 return scm_to_double (scm_magnitude (z));
5958}
5959
5960double
5961scm_c_angle (SCM z)
5962{
5963 return scm_to_double (scm_angle (z));
5964}
5965
5966int
5967scm_is_number (SCM z)
5968{
5969 return scm_is_true (scm_number_p (z));
5970}
5971
0f2d19dd
JB
5972void
5973scm_init_numbers ()
0f2d19dd 5974{
0b799eea
MV
5975 int i;
5976
713a4259
KR
5977 mpz_init_set_si (z_negative_one, -1);
5978
a261c0e9
DH
5979 /* It may be possible to tune the performance of some algorithms by using
5980 * the following constants to avoid the creation of bignums. Please, before
5981 * using these values, remember the two rules of program optimization:
5982 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
86d31dfe 5983 scm_c_define ("most-positive-fixnum",
d956fa6f 5984 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
86d31dfe 5985 scm_c_define ("most-negative-fixnum",
d956fa6f 5986 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
a261c0e9 5987
f3ae5d60
MD
5988 scm_add_feature ("complex");
5989 scm_add_feature ("inexact");
55f26379 5990 scm_flo0 = scm_from_double (0.0);
0b799eea
MV
5991
5992 /* determine floating point precision */
55f26379 5993 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
0b799eea
MV
5994 {
5995 init_dblprec(&scm_dblprec[i-2],i);
5996 init_fx_radix(fx_per_radix[i-2],i);
5997 }
f872b822 5998#ifdef DBL_DIG
0b799eea
MV
5999 /* hard code precision for base 10 if the preprocessor tells us to... */
6000 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
6001#endif
1be6b49c 6002
d956fa6f
MV
6003 exactly_one_half = scm_permanent_object (scm_divide (SCM_I_MAKINUM (1),
6004 SCM_I_MAKINUM (2)));
a0599745 6005#include "libguile/numbers.x"
0f2d19dd 6006}
89e00824
ML
6007
6008/*
6009 Local Variables:
6010 c-file-style: "gnu"
6011 End:
6012*/