Revert "Preserve keyword identifier in 'syntax-rules' and 'define-syntax-rule'"
[bpt/guile.git] / doc / ref / api-data.texi
CommitLineData
07d83abe
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
9accf3d9 3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009, 2010, 2011, 2012
07d83abe
MV
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
07d83abe
MV
7@node Simple Data Types
8@section Simple Generic Data Types
9
10This chapter describes those of Guile's simple data types which are
11primarily used for their role as items of generic data. By
12@dfn{simple} we mean data types that are not primarily used as
13containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
14For the documentation of such @dfn{compound} data types, see
15@ref{Compound Data Types}.
16
17@c One of the great strengths of Scheme is that there is no straightforward
18@c distinction between ``data'' and ``functionality''. For example,
19@c Guile's support for dynamic linking could be described:
20
21@c @itemize @bullet
22@c @item
23@c either in a ``data-centric'' way, as the behaviour and properties of the
24@c ``dynamically linked object'' data type, and the operations that may be
25@c applied to instances of this type
26
27@c @item
28@c or in a ``functionality-centric'' way, as the set of procedures that
29@c constitute Guile's support for dynamic linking, in the context of the
30@c module system.
31@c @end itemize
32
33@c The contents of this chapter are, therefore, a matter of judgment. By
34@c @dfn{generic}, we mean to select those data types whose typical use as
35@c @emph{data} in a wide variety of programming contexts is more important
36@c than their use in the implementation of a particular piece of
37@c @emph{functionality}. The last section of this chapter provides
38@c references for all the data types that are documented not here but in a
39@c ``functionality-centric'' way elsewhere in the manual.
40
41@menu
42* Booleans:: True/false values.
43* Numbers:: Numerical data types.
050ab45f
MV
44* Characters:: Single characters.
45* Character Sets:: Sets of characters.
46* Strings:: Sequences of characters.
b242715b 47* Bytevectors:: Sequences of bytes.
07d83abe
MV
48* Symbols:: Symbols.
49* Keywords:: Self-quoting, customizable display keywords.
50* Other Types:: "Functionality-centric" data types.
51@end menu
52
53
54@node Booleans
55@subsection Booleans
56@tpindex Booleans
57
58The two boolean values are @code{#t} for true and @code{#f} for false.
59
60Boolean values are returned by predicate procedures, such as the general
61equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
62(@pxref{Equality}) and numerical and string comparison operators like
63@code{string=?} (@pxref{String Comparison}) and @code{<=}
64(@pxref{Comparison}).
65
66@lisp
67(<= 3 8)
68@result{} #t
69
70(<= 3 -3)
71@result{} #f
72
73(equal? "house" "houses")
74@result{} #f
75
76(eq? #f #f)
77@result{}
78#t
79@end lisp
80
9accf3d9
AW
81In test condition contexts like @code{if} and @code{cond}
82(@pxref{Conditionals}), where a group of subexpressions will be
83evaluated only if a @var{condition} expression evaluates to ``true'',
84``true'' means any value at all except @code{#f}.
07d83abe
MV
85
86@lisp
87(if #t "yes" "no")
88@result{} "yes"
89
90(if 0 "yes" "no")
91@result{} "yes"
92
93(if #f "yes" "no")
94@result{} "no"
95@end lisp
96
97A result of this asymmetry is that typical Scheme source code more often
98uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
99represent an @code{if} or @code{cond} false value, whereas @code{#t} is
100not necessary to represent an @code{if} or @code{cond} true value.
101
102It is important to note that @code{#f} is @strong{not} equivalent to any
103other Scheme value. In particular, @code{#f} is not the same as the
104number 0 (like in C and C++), and not the same as the ``empty list''
105(like in some Lisp dialects).
106
107In C, the two Scheme boolean values are available as the two constants
108@code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
109Care must be taken with the false value @code{SCM_BOOL_F}: it is not
110false when used in C conditionals. In order to test for it, use
111@code{scm_is_false} or @code{scm_is_true}.
112
113@rnindex not
114@deffn {Scheme Procedure} not x
115@deffnx {C Function} scm_not (x)
116Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
117@end deffn
118
119@rnindex boolean?
120@deffn {Scheme Procedure} boolean? obj
121@deffnx {C Function} scm_boolean_p (obj)
122Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
123return @code{#f}.
124@end deffn
125
126@deftypevr {C Macro} SCM SCM_BOOL_T
127The @code{SCM} representation of the Scheme object @code{#t}.
128@end deftypevr
129
130@deftypevr {C Macro} SCM SCM_BOOL_F
131The @code{SCM} representation of the Scheme object @code{#f}.
132@end deftypevr
133
134@deftypefn {C Function} int scm_is_true (SCM obj)
135Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
136@end deftypefn
137
138@deftypefn {C Function} int scm_is_false (SCM obj)
139Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
140@end deftypefn
141
142@deftypefn {C Function} int scm_is_bool (SCM obj)
143Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
144return @code{0}.
145@end deftypefn
146
147@deftypefn {C Function} SCM scm_from_bool (int val)
148Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
149@end deftypefn
150
151@deftypefn {C Function} int scm_to_bool (SCM val)
152Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
153when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
154
155You should probably use @code{scm_is_true} instead of this function
156when you just want to test a @code{SCM} value for trueness.
157@end deftypefn
158
159@node Numbers
160@subsection Numerical data types
161@tpindex Numbers
162
163Guile supports a rich ``tower'' of numerical types --- integer,
164rational, real and complex --- and provides an extensive set of
165mathematical and scientific functions for operating on numerical
166data. This section of the manual documents those types and functions.
167
168You may also find it illuminating to read R5RS's presentation of numbers
169in Scheme, which is particularly clear and accessible: see
170@ref{Numbers,,,r5rs,R5RS}.
171
172@menu
173* Numerical Tower:: Scheme's numerical "tower".
174* Integers:: Whole numbers.
175* Reals and Rationals:: Real and rational numbers.
176* Complex Numbers:: Complex numbers.
177* Exactness:: Exactness and inexactness.
178* Number Syntax:: Read syntax for numerical data.
179* Integer Operations:: Operations on integer values.
180* Comparison:: Comparison predicates.
181* Conversion:: Converting numbers to and from strings.
182* Complex:: Complex number operations.
183* Arithmetic:: Arithmetic functions.
184* Scientific:: Scientific functions.
07d83abe
MV
185* Bitwise Operations:: Logical AND, OR, NOT, and so on.
186* Random:: Random number generation.
187@end menu
188
189
190@node Numerical Tower
191@subsubsection Scheme's Numerical ``Tower''
192@rnindex number?
193
194Scheme's numerical ``tower'' consists of the following categories of
195numbers:
196
197@table @dfn
198@item integers
199Whole numbers, positive or negative; e.g.@: --5, 0, 18.
200
201@item rationals
202The set of numbers that can be expressed as @math{@var{p}/@var{q}}
203where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
204pi (an irrational number) doesn't. These include integers
205(@math{@var{n}/1}).
206
207@item real numbers
208The set of numbers that describes all possible positions along a
209one-dimensional line. This includes rationals as well as irrational
210numbers.
211
212@item complex numbers
213The set of numbers that describes all possible positions in a two
214dimensional space. This includes real as well as imaginary numbers
215(@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
216@var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
217@minus{}1.)
218@end table
219
220It is called a tower because each category ``sits on'' the one that
221follows it, in the sense that every integer is also a rational, every
222rational is also real, and every real number is also a complex number
223(but with zero imaginary part).
224
225In addition to the classification into integers, rationals, reals and
226complex numbers, Scheme also distinguishes between whether a number is
227represented exactly or not. For example, the result of
9f1ba6a9
NJ
228@m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
229can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
07d83abe
MV
230Instead, it stores an inexact approximation, using the C type
231@code{double}.
232
233Guile can represent exact rationals of any magnitude, inexact
234rationals that fit into a C @code{double}, and inexact complex numbers
235with @code{double} real and imaginary parts.
236
237The @code{number?} predicate may be applied to any Scheme value to
238discover whether the value is any of the supported numerical types.
239
240@deffn {Scheme Procedure} number? obj
241@deffnx {C Function} scm_number_p (obj)
242Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
243@end deffn
244
245For example:
246
247@lisp
248(number? 3)
249@result{} #t
250
251(number? "hello there!")
252@result{} #f
253
254(define pi 3.141592654)
255(number? pi)
256@result{} #t
257@end lisp
258
5615f696
MV
259@deftypefn {C Function} int scm_is_number (SCM obj)
260This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
261@end deftypefn
262
07d83abe
MV
263The next few subsections document each of Guile's numerical data types
264in detail.
265
266@node Integers
267@subsubsection Integers
268
269@tpindex Integer numbers
270
271@rnindex integer?
272
273Integers are whole numbers, that is numbers with no fractional part,
274such as 2, 83, and @minus{}3789.
275
276Integers in Guile can be arbitrarily big, as shown by the following
277example.
278
279@lisp
280(define (factorial n)
281 (let loop ((n n) (product 1))
282 (if (= n 0)
283 product
284 (loop (- n 1) (* product n)))))
285
286(factorial 3)
287@result{} 6
288
289(factorial 20)
290@result{} 2432902008176640000
291
292(- (factorial 45))
293@result{} -119622220865480194561963161495657715064383733760000000000
294@end lisp
295
296Readers whose background is in programming languages where integers are
297limited by the need to fit into just 4 or 8 bytes of memory may find
298this surprising, or suspect that Guile's representation of integers is
299inefficient. In fact, Guile achieves a near optimal balance of
300convenience and efficiency by using the host computer's native
301representation of integers where possible, and a more general
302representation where the required number does not fit in the native
303form. Conversion between these two representations is automatic and
304completely invisible to the Scheme level programmer.
305
07d83abe
MV
306C has a host of different integer types, and Guile offers a host of
307functions to convert between them and the @code{SCM} representation.
308For example, a C @code{int} can be handled with @code{scm_to_int} and
309@code{scm_from_int}. Guile also defines a few C integer types of its
310own, to help with differences between systems.
311
312C integer types that are not covered can be handled with the generic
313@code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
314signed types, or with @code{scm_to_unsigned_integer} and
315@code{scm_from_unsigned_integer} for unsigned types.
316
317Scheme integers can be exact and inexact. For example, a number
318written as @code{3.0} with an explicit decimal-point is inexact, but
319it is also an integer. The functions @code{integer?} and
320@code{scm_is_integer} report true for such a number, but the functions
321@code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
322allow exact integers and thus report false. Likewise, the conversion
323functions like @code{scm_to_signed_integer} only accept exact
324integers.
325
326The motivation for this behavior is that the inexactness of a number
327should not be lost silently. If you want to allow inexact integers,
877f06c3 328you can explicitly insert a call to @code{inexact->exact} or to its C
07d83abe
MV
329equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
330be converted by this call into exact integers; inexact non-integers
331will become exact fractions.)
332
333@deffn {Scheme Procedure} integer? x
334@deffnx {C Function} scm_integer_p (x)
909fcc97 335Return @code{#t} if @var{x} is an exact or inexact integer number, else
07d83abe
MV
336@code{#f}.
337
338@lisp
339(integer? 487)
340@result{} #t
341
342(integer? 3.0)
343@result{} #t
344
345(integer? -3.4)
346@result{} #f
347
348(integer? +inf.0)
349@result{} #t
350@end lisp
351@end deffn
352
353@deftypefn {C Function} int scm_is_integer (SCM x)
354This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
355@end deftypefn
356
357@defvr {C Type} scm_t_int8
358@defvrx {C Type} scm_t_uint8
359@defvrx {C Type} scm_t_int16
360@defvrx {C Type} scm_t_uint16
361@defvrx {C Type} scm_t_int32
362@defvrx {C Type} scm_t_uint32
363@defvrx {C Type} scm_t_int64
364@defvrx {C Type} scm_t_uint64
365@defvrx {C Type} scm_t_intmax
366@defvrx {C Type} scm_t_uintmax
367The C types are equivalent to the corresponding ISO C types but are
368defined on all platforms, with the exception of @code{scm_t_int64} and
369@code{scm_t_uint64}, which are only defined when a 64-bit type is
370available. For example, @code{scm_t_int8} is equivalent to
371@code{int8_t}.
372
373You can regard these definitions as a stop-gap measure until all
374platforms provide these types. If you know that all the platforms
375that you are interested in already provide these types, it is better
376to use them directly instead of the types provided by Guile.
377@end defvr
378
379@deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
380@deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
381Return @code{1} when @var{x} represents an exact integer that is
382between @var{min} and @var{max}, inclusive.
383
384These functions can be used to check whether a @code{SCM} value will
385fit into a given range, such as the range of a given C integer type.
386If you just want to convert a @code{SCM} value to a given C integer
387type, use one of the conversion functions directly.
388@end deftypefn
389
390@deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
391@deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
392When @var{x} represents an exact integer that is between @var{min} and
393@var{max} inclusive, return that integer. Else signal an error,
394either a `wrong-type' error when @var{x} is not an exact integer, or
395an `out-of-range' error when it doesn't fit the given range.
396@end deftypefn
397
398@deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
399@deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
400Return the @code{SCM} value that represents the integer @var{x}. This
401function will always succeed and will always return an exact number.
402@end deftypefn
403
404@deftypefn {C Function} char scm_to_char (SCM x)
405@deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
406@deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
407@deftypefnx {C Function} short scm_to_short (SCM x)
408@deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
409@deftypefnx {C Function} int scm_to_int (SCM x)
410@deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
411@deftypefnx {C Function} long scm_to_long (SCM x)
412@deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
413@deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
414@deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
415@deftypefnx {C Function} size_t scm_to_size_t (SCM x)
416@deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
417@deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
418@deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
419@deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
420@deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
421@deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
422@deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
423@deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
424@deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
425@deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
426@deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
427When @var{x} represents an exact integer that fits into the indicated
428C type, return that integer. Else signal an error, either a
429`wrong-type' error when @var{x} is not an exact integer, or an
430`out-of-range' error when it doesn't fit the given range.
431
432The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
433@code{scm_to_int64}, and @code{scm_to_uint64} are only available when
434the corresponding types are.
435@end deftypefn
436
437@deftypefn {C Function} SCM scm_from_char (char x)
438@deftypefnx {C Function} SCM scm_from_schar (signed char x)
439@deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
440@deftypefnx {C Function} SCM scm_from_short (short x)
441@deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
442@deftypefnx {C Function} SCM scm_from_int (int x)
443@deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
444@deftypefnx {C Function} SCM scm_from_long (long x)
445@deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
446@deftypefnx {C Function} SCM scm_from_long_long (long long x)
447@deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
448@deftypefnx {C Function} SCM scm_from_size_t (size_t x)
449@deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
450@deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
451@deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
452@deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
453@deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
454@deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
455@deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
456@deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
457@deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
458@deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
459@deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
460Return the @code{SCM} value that represents the integer @var{x}.
461These functions will always succeed and will always return an exact
462number.
463@end deftypefn
464
08962922
MV
465@deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
466Assign @var{val} to the multiple precision integer @var{rop}.
467@var{val} must be an exact integer, otherwise an error will be
468signalled. @var{rop} must have been initialized with @code{mpz_init}
469before this function is called. When @var{rop} is no longer needed
470the occupied space must be freed with @code{mpz_clear}.
471@xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
472@end deftypefn
473
9f1ba6a9 474@deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
08962922
MV
475Return the @code{SCM} value that represents @var{val}.
476@end deftypefn
477
07d83abe
MV
478@node Reals and Rationals
479@subsubsection Real and Rational Numbers
480@tpindex Real numbers
481@tpindex Rational numbers
482
483@rnindex real?
484@rnindex rational?
485
486Mathematically, the real numbers are the set of numbers that describe
487all possible points along a continuous, infinite, one-dimensional line.
488The rational numbers are the set of all numbers that can be written as
489fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
490All rational numbers are also real, but there are real numbers that
995953e5 491are not rational, for example @m{\sqrt{2}, the square root of 2}, and
34942993 492@m{\pi,pi}.
07d83abe
MV
493
494Guile can represent both exact and inexact rational numbers, but it
c960e556
MW
495cannot represent precise finite irrational numbers. Exact rationals are
496represented by storing the numerator and denominator as two exact
497integers. Inexact rationals are stored as floating point numbers using
498the C type @code{double}.
07d83abe
MV
499
500Exact rationals are written as a fraction of integers. There must be
501no whitespace around the slash:
502
503@lisp
5041/2
505-22/7
506@end lisp
507
508Even though the actual encoding of inexact rationals is in binary, it
509may be helpful to think of it as a decimal number with a limited
510number of significant figures and a decimal point somewhere, since
511this corresponds to the standard notation for non-whole numbers. For
512example:
513
514@lisp
5150.34
516-0.00000142857931198
517-5648394822220000000000.0
5184.0
519@end lisp
520
c960e556
MW
521The limited precision of Guile's encoding means that any finite ``real''
522number in Guile can be written in a rational form, by multiplying and
523then dividing by sufficient powers of 10 (or in fact, 2). For example,
524@samp{-0.00000142857931198} is the same as @minus{}142857931198 divided
525by 100000000000000000. In Guile's current incarnation, therefore, the
526@code{rational?} and @code{real?} predicates are equivalent for finite
527numbers.
07d83abe 528
07d83abe 529
c960e556
MW
530Dividing by an exact zero leads to a error message, as one might expect.
531However, dividing by an inexact zero does not produce an error.
532Instead, the result of the division is either plus or minus infinity,
533depending on the sign of the divided number and the sign of the zero
534divisor (some platforms support signed zeroes @samp{-0.0} and
535@samp{+0.0}; @samp{0.0} is the same as @samp{+0.0}).
536
537Dividing zero by an inexact zero yields a @acronym{NaN} (`not a number')
538value, although they are actually considered numbers by Scheme.
539Attempts to compare a @acronym{NaN} value with any number (including
540itself) using @code{=}, @code{<}, @code{>}, @code{<=} or @code{>=}
541always returns @code{#f}. Although a @acronym{NaN} value is not
542@code{=} to itself, it is both @code{eqv?} and @code{equal?} to itself
543and other @acronym{NaN} values. However, the preferred way to test for
544them is by using @code{nan?}.
545
546The real @acronym{NaN} values and infinities are written @samp{+nan.0},
547@samp{+inf.0} and @samp{-inf.0}. This syntax is also recognized by
548@code{read} as an extension to the usual Scheme syntax. These special
549values are considered by Scheme to be inexact real numbers but not
550rational. Note that non-real complex numbers may also contain
551infinities or @acronym{NaN} values in their real or imaginary parts. To
552test a real number to see if it is infinite, a @acronym{NaN} value, or
553neither, use @code{inf?}, @code{nan?}, or @code{finite?}, respectively.
554Every real number in Scheme belongs to precisely one of those three
555classes.
07d83abe
MV
556
557On platforms that follow @acronym{IEEE} 754 for their floating point
558arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
559are implemented using the corresponding @acronym{IEEE} 754 values.
560They behave in arithmetic operations like @acronym{IEEE} 754 describes
561it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
562
07d83abe
MV
563@deffn {Scheme Procedure} real? obj
564@deffnx {C Function} scm_real_p (obj)
565Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
566that the sets of integer and rational values form subsets of the set
567of real numbers, so the predicate will also be fulfilled if @var{obj}
568is an integer number or a rational number.
569@end deffn
570
571@deffn {Scheme Procedure} rational? x
572@deffnx {C Function} scm_rational_p (x)
573Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
574Note that the set of integer values forms a subset of the set of
995953e5 575rational numbers, i.e.@: the predicate will also be fulfilled if
07d83abe 576@var{x} is an integer number.
07d83abe
MV
577@end deffn
578
579@deffn {Scheme Procedure} rationalize x eps
580@deffnx {C Function} scm_rationalize (x, eps)
581Returns the @emph{simplest} rational number differing
582from @var{x} by no more than @var{eps}.
583
584As required by @acronym{R5RS}, @code{rationalize} only returns an
585exact result when both its arguments are exact. Thus, you might need
586to use @code{inexact->exact} on the arguments.
587
588@lisp
589(rationalize (inexact->exact 1.2) 1/100)
590@result{} 6/5
591@end lisp
592
593@end deffn
594
d3df9759
MV
595@deffn {Scheme Procedure} inf? x
596@deffnx {C Function} scm_inf_p (x)
10391e06
AW
597Return @code{#t} if the real number @var{x} is @samp{+inf.0} or
598@samp{-inf.0}. Otherwise return @code{#f}.
07d83abe
MV
599@end deffn
600
601@deffn {Scheme Procedure} nan? x
d3df9759 602@deffnx {C Function} scm_nan_p (x)
10391e06
AW
603Return @code{#t} if the real number @var{x} is @samp{+nan.0}, or
604@code{#f} otherwise.
07d83abe
MV
605@end deffn
606
7112615f
MW
607@deffn {Scheme Procedure} finite? x
608@deffnx {C Function} scm_finite_p (x)
10391e06
AW
609Return @code{#t} if the real number @var{x} is neither infinite nor a
610NaN, @code{#f} otherwise.
7112615f
MW
611@end deffn
612
cdf1ad3b
MV
613@deffn {Scheme Procedure} nan
614@deffnx {C Function} scm_nan ()
c960e556 615Return @samp{+nan.0}, a @acronym{NaN} value.
cdf1ad3b
MV
616@end deffn
617
618@deffn {Scheme Procedure} inf
619@deffnx {C Function} scm_inf ()
c960e556 620Return @samp{+inf.0}, positive infinity.
cdf1ad3b
MV
621@end deffn
622
d3df9759
MV
623@deffn {Scheme Procedure} numerator x
624@deffnx {C Function} scm_numerator (x)
625Return the numerator of the rational number @var{x}.
626@end deffn
627
628@deffn {Scheme Procedure} denominator x
629@deffnx {C Function} scm_denominator (x)
630Return the denominator of the rational number @var{x}.
631@end deffn
632
633@deftypefn {C Function} int scm_is_real (SCM val)
634@deftypefnx {C Function} int scm_is_rational (SCM val)
635Equivalent to @code{scm_is_true (scm_real_p (val))} and
636@code{scm_is_true (scm_rational_p (val))}, respectively.
637@end deftypefn
638
639@deftypefn {C Function} double scm_to_double (SCM val)
640Returns the number closest to @var{val} that is representable as a
641@code{double}. Returns infinity for a @var{val} that is too large in
642magnitude. The argument @var{val} must be a real number.
643@end deftypefn
644
645@deftypefn {C Function} SCM scm_from_double (double val)
be3eb25c 646Return the @code{SCM} value that represents @var{val}. The returned
d3df9759
MV
647value is inexact according to the predicate @code{inexact?}, but it
648will be exactly equal to @var{val}.
649@end deftypefn
650
07d83abe
MV
651@node Complex Numbers
652@subsubsection Complex Numbers
653@tpindex Complex numbers
654
655@rnindex complex?
656
657Complex numbers are the set of numbers that describe all possible points
658in a two-dimensional space. The two coordinates of a particular point
659in this space are known as the @dfn{real} and @dfn{imaginary} parts of
660the complex number that describes that point.
661
662In Guile, complex numbers are written in rectangular form as the sum of
663their real and imaginary parts, using the symbol @code{i} to indicate
664the imaginary part.
665
666@lisp
6673+4i
668@result{}
6693.0+4.0i
670
671(* 3-8i 2.3+0.3i)
672@result{}
6739.3-17.5i
674@end lisp
675
34942993
KR
676@cindex polar form
677@noindent
678Polar form can also be used, with an @samp{@@} between magnitude and
679angle,
680
681@lisp
6821@@3.141592 @result{} -1.0 (approx)
683-1@@1.57079 @result{} 0.0-1.0i (approx)
684@end lisp
685
c7218482
MW
686Guile represents a complex number as a pair of inexact reals, so the
687real and imaginary parts of a complex number have the same properties of
688inexactness and limited precision as single inexact real numbers.
689
690Note that each part of a complex number may contain any inexact real
691value, including the special values @samp{+nan.0}, @samp{+inf.0} and
692@samp{-inf.0}, as well as either of the signed zeroes @samp{0.0} or
693@samp{-0.0}.
694
07d83abe 695
5615f696
MV
696@deffn {Scheme Procedure} complex? z
697@deffnx {C Function} scm_complex_p (z)
64de6db5 698Return @code{#t} if @var{z} is a complex number, @code{#f}
07d83abe 699otherwise. Note that the sets of real, rational and integer
679cceed 700values form subsets of the set of complex numbers, i.e.@: the
64de6db5 701predicate will also be fulfilled if @var{z} is a real,
07d83abe
MV
702rational or integer number.
703@end deffn
704
c9dc8c6c
MV
705@deftypefn {C Function} int scm_is_complex (SCM val)
706Equivalent to @code{scm_is_true (scm_complex_p (val))}.
707@end deftypefn
708
07d83abe
MV
709@node Exactness
710@subsubsection Exact and Inexact Numbers
711@tpindex Exact numbers
712@tpindex Inexact numbers
713
714@rnindex exact?
715@rnindex inexact?
716@rnindex exact->inexact
717@rnindex inexact->exact
718
654b2823
MW
719R5RS requires that, with few exceptions, a calculation involving inexact
720numbers always produces an inexact result. To meet this requirement,
721Guile distinguishes between an exact integer value such as @samp{5} and
722the corresponding inexact integer value which, to the limited precision
07d83abe
MV
723available, has no fractional part, and is printed as @samp{5.0}. Guile
724will only convert the latter value to the former when forced to do so by
725an invocation of the @code{inexact->exact} procedure.
726
654b2823
MW
727The only exception to the above requirement is when the values of the
728inexact numbers do not affect the result. For example @code{(expt n 0)}
729is @samp{1} for any value of @code{n}, therefore @code{(expt 5.0 0)} is
730permitted to return an exact @samp{1}.
731
07d83abe
MV
732@deffn {Scheme Procedure} exact? z
733@deffnx {C Function} scm_exact_p (z)
734Return @code{#t} if the number @var{z} is exact, @code{#f}
735otherwise.
736
737@lisp
738(exact? 2)
739@result{} #t
740
741(exact? 0.5)
742@result{} #f
743
744(exact? (/ 2))
745@result{} #t
746@end lisp
747
748@end deffn
749
022dda69
MG
750@deftypefn {C Function} int scm_is_exact (SCM z)
751Return a @code{1} if the number @var{z} is exact, and @code{0}
752otherwise. This is equivalent to @code{scm_is_true (scm_exact_p (z))}.
753
754An alternate approch to testing the exactness of a number is to
755use @code{scm_is_signed_integer} or @code{scm_is_unsigned_integer}.
756@end deftypefn
757
07d83abe
MV
758@deffn {Scheme Procedure} inexact? z
759@deffnx {C Function} scm_inexact_p (z)
760Return @code{#t} if the number @var{z} is inexact, @code{#f}
761else.
762@end deffn
763
022dda69
MG
764@deftypefn {C Function} int scm_is_inexact (SCM z)
765Return a @code{1} if the number @var{z} is inexact, and @code{0}
766otherwise. This is equivalent to @code{scm_is_true (scm_inexact_p (z))}.
767@end deftypefn
768
07d83abe
MV
769@deffn {Scheme Procedure} inexact->exact z
770@deffnx {C Function} scm_inexact_to_exact (z)
771Return an exact number that is numerically closest to @var{z}, when
772there is one. For inexact rationals, Guile returns the exact rational
773that is numerically equal to the inexact rational. Inexact complex
774numbers with a non-zero imaginary part can not be made exact.
775
776@lisp
777(inexact->exact 0.5)
778@result{} 1/2
779@end lisp
780
781The following happens because 12/10 is not exactly representable as a
782@code{double} (on most platforms). However, when reading a decimal
783number that has been marked exact with the ``#e'' prefix, Guile is
784able to represent it correctly.
785
786@lisp
787(inexact->exact 1.2)
788@result{} 5404319552844595/4503599627370496
789
790#e1.2
791@result{} 6/5
792@end lisp
793
794@end deffn
795
796@c begin (texi-doc-string "guile" "exact->inexact")
797@deffn {Scheme Procedure} exact->inexact z
798@deffnx {C Function} scm_exact_to_inexact (z)
799Convert the number @var{z} to its inexact representation.
800@end deffn
801
802
803@node Number Syntax
804@subsubsection Read Syntax for Numerical Data
805
806The read syntax for integers is a string of digits, optionally
807preceded by a minus or plus character, a code indicating the
808base in which the integer is encoded, and a code indicating whether
809the number is exact or inexact. The supported base codes are:
810
811@table @code
812@item #b
813@itemx #B
814the integer is written in binary (base 2)
815
816@item #o
817@itemx #O
818the integer is written in octal (base 8)
819
820@item #d
821@itemx #D
822the integer is written in decimal (base 10)
823
824@item #x
825@itemx #X
826the integer is written in hexadecimal (base 16)
827@end table
828
829If the base code is omitted, the integer is assumed to be decimal. The
830following examples show how these base codes are used.
831
832@lisp
833-13
834@result{} -13
835
836#d-13
837@result{} -13
838
839#x-13
840@result{} -19
841
842#b+1101
843@result{} 13
844
845#o377
846@result{} 255
847@end lisp
848
849The codes for indicating exactness (which can, incidentally, be applied
850to all numerical values) are:
851
852@table @code
853@item #e
854@itemx #E
855the number is exact
856
857@item #i
858@itemx #I
859the number is inexact.
860@end table
861
862If the exactness indicator is omitted, the number is exact unless it
863contains a radix point. Since Guile can not represent exact complex
864numbers, an error is signalled when asking for them.
865
866@lisp
867(exact? 1.2)
868@result{} #f
869
870(exact? #e1.2)
871@result{} #t
872
873(exact? #e+1i)
874ERROR: Wrong type argument
875@end lisp
876
877Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
878plus and minus infinity, respectively. The value must be written
879exactly as shown, that is, they always must have a sign and exactly
880one zero digit after the decimal point. It also understands
881@samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
882The sign is ignored for `not-a-number' and the value is always printed
883as @samp{+nan.0}.
884
885@node Integer Operations
886@subsubsection Operations on Integer Values
887@rnindex odd?
888@rnindex even?
889@rnindex quotient
890@rnindex remainder
891@rnindex modulo
892@rnindex gcd
893@rnindex lcm
894
895@deffn {Scheme Procedure} odd? n
896@deffnx {C Function} scm_odd_p (n)
897Return @code{#t} if @var{n} is an odd number, @code{#f}
898otherwise.
899@end deffn
900
901@deffn {Scheme Procedure} even? n
902@deffnx {C Function} scm_even_p (n)
903Return @code{#t} if @var{n} is an even number, @code{#f}
904otherwise.
905@end deffn
906
907@c begin (texi-doc-string "guile" "quotient")
908@c begin (texi-doc-string "guile" "remainder")
909@deffn {Scheme Procedure} quotient n d
910@deffnx {Scheme Procedure} remainder n d
911@deffnx {C Function} scm_quotient (n, d)
912@deffnx {C Function} scm_remainder (n, d)
913Return the quotient or remainder from @var{n} divided by @var{d}. The
914quotient is rounded towards zero, and the remainder will have the same
915sign as @var{n}. In all cases quotient and remainder satisfy
916@math{@var{n} = @var{q}*@var{d} + @var{r}}.
917
918@lisp
919(remainder 13 4) @result{} 1
920(remainder -13 4) @result{} -1
921@end lisp
ff62c168 922
8f9da340 923See also @code{truncate-quotient}, @code{truncate-remainder} and
ff62c168 924related operations in @ref{Arithmetic}.
07d83abe
MV
925@end deffn
926
927@c begin (texi-doc-string "guile" "modulo")
928@deffn {Scheme Procedure} modulo n d
929@deffnx {C Function} scm_modulo (n, d)
930Return the remainder from @var{n} divided by @var{d}, with the same
931sign as @var{d}.
932
933@lisp
934(modulo 13 4) @result{} 1
935(modulo -13 4) @result{} 3
936(modulo 13 -4) @result{} -3
937(modulo -13 -4) @result{} -1
938@end lisp
ff62c168 939
8f9da340 940See also @code{floor-quotient}, @code{floor-remainder} and
ff62c168 941related operations in @ref{Arithmetic}.
07d83abe
MV
942@end deffn
943
944@c begin (texi-doc-string "guile" "gcd")
fd8a1df5 945@deffn {Scheme Procedure} gcd x@dots{}
07d83abe
MV
946@deffnx {C Function} scm_gcd (x, y)
947Return the greatest common divisor of all arguments.
948If called without arguments, 0 is returned.
949
950The C function @code{scm_gcd} always takes two arguments, while the
951Scheme function can take an arbitrary number.
952@end deffn
953
954@c begin (texi-doc-string "guile" "lcm")
fd8a1df5 955@deffn {Scheme Procedure} lcm x@dots{}
07d83abe
MV
956@deffnx {C Function} scm_lcm (x, y)
957Return the least common multiple of the arguments.
958If called without arguments, 1 is returned.
959
960The C function @code{scm_lcm} always takes two arguments, while the
961Scheme function can take an arbitrary number.
962@end deffn
963
cdf1ad3b
MV
964@deffn {Scheme Procedure} modulo-expt n k m
965@deffnx {C Function} scm_modulo_expt (n, k, m)
966Return @var{n} raised to the integer exponent
967@var{k}, modulo @var{m}.
968
969@lisp
970(modulo-expt 2 3 5)
971 @result{} 3
972@end lisp
973@end deffn
07d83abe 974
882c8963
MW
975@deftypefn {Scheme Procedure} {} exact-integer-sqrt @var{k}
976@deftypefnx {C Function} void scm_exact_integer_sqrt (SCM @var{k}, SCM *@var{s}, SCM *@var{r})
977Return two exact non-negative integers @var{s} and @var{r}
978such that @math{@var{k} = @var{s}^2 + @var{r}} and
979@math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.
980An error is raised if @var{k} is not an exact non-negative integer.
981
982@lisp
983(exact-integer-sqrt 10) @result{} 3 and 1
984@end lisp
985@end deftypefn
986
07d83abe
MV
987@node Comparison
988@subsubsection Comparison Predicates
989@rnindex zero?
990@rnindex positive?
991@rnindex negative?
992
993The C comparison functions below always takes two arguments, while the
994Scheme functions can take an arbitrary number. Also keep in mind that
995the C functions return one of the Scheme boolean values
996@code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
997is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
998y))} when testing the two Scheme numbers @code{x} and @code{y} for
999equality, for example.
1000
1001@c begin (texi-doc-string "guile" "=")
1002@deffn {Scheme Procedure} =
1003@deffnx {C Function} scm_num_eq_p (x, y)
1004Return @code{#t} if all parameters are numerically equal.
1005@end deffn
1006
1007@c begin (texi-doc-string "guile" "<")
1008@deffn {Scheme Procedure} <
1009@deffnx {C Function} scm_less_p (x, y)
1010Return @code{#t} if the list of parameters is monotonically
1011increasing.
1012@end deffn
1013
1014@c begin (texi-doc-string "guile" ">")
1015@deffn {Scheme Procedure} >
1016@deffnx {C Function} scm_gr_p (x, y)
1017Return @code{#t} if the list of parameters is monotonically
1018decreasing.
1019@end deffn
1020
1021@c begin (texi-doc-string "guile" "<=")
1022@deffn {Scheme Procedure} <=
1023@deffnx {C Function} scm_leq_p (x, y)
1024Return @code{#t} if the list of parameters is monotonically
1025non-decreasing.
1026@end deffn
1027
1028@c begin (texi-doc-string "guile" ">=")
1029@deffn {Scheme Procedure} >=
1030@deffnx {C Function} scm_geq_p (x, y)
1031Return @code{#t} if the list of parameters is monotonically
1032non-increasing.
1033@end deffn
1034
1035@c begin (texi-doc-string "guile" "zero?")
1036@deffn {Scheme Procedure} zero? z
1037@deffnx {C Function} scm_zero_p (z)
1038Return @code{#t} if @var{z} is an exact or inexact number equal to
1039zero.
1040@end deffn
1041
1042@c begin (texi-doc-string "guile" "positive?")
1043@deffn {Scheme Procedure} positive? x
1044@deffnx {C Function} scm_positive_p (x)
1045Return @code{#t} if @var{x} is an exact or inexact number greater than
1046zero.
1047@end deffn
1048
1049@c begin (texi-doc-string "guile" "negative?")
1050@deffn {Scheme Procedure} negative? x
1051@deffnx {C Function} scm_negative_p (x)
1052Return @code{#t} if @var{x} is an exact or inexact number less than
1053zero.
1054@end deffn
1055
1056
1057@node Conversion
1058@subsubsection Converting Numbers To and From Strings
1059@rnindex number->string
1060@rnindex string->number
1061
b89c4943
LC
1062The following procedures read and write numbers according to their
1063external representation as defined by R5RS (@pxref{Lexical structure,
1064R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
a2f00b9b 1065Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
b89c4943
LC
1066i18n)} module}, for locale-dependent number parsing.
1067
07d83abe
MV
1068@deffn {Scheme Procedure} number->string n [radix]
1069@deffnx {C Function} scm_number_to_string (n, radix)
1070Return a string holding the external representation of the
1071number @var{n} in the given @var{radix}. If @var{n} is
1072inexact, a radix of 10 will be used.
1073@end deffn
1074
1075@deffn {Scheme Procedure} string->number string [radix]
1076@deffnx {C Function} scm_string_to_number (string, radix)
1077Return a number of the maximally precise representation
1078expressed by the given @var{string}. @var{radix} must be an
1079exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1080is a default radix that may be overridden by an explicit radix
679cceed 1081prefix in @var{string} (e.g.@: "#o177"). If @var{radix} is not
07d83abe
MV
1082supplied, then the default radix is 10. If string is not a
1083syntactically valid notation for a number, then
1084@code{string->number} returns @code{#f}.
1085@end deffn
1086
1b09b607
KR
1087@deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1088As per @code{string->number} above, but taking a C string, as pointer
1089and length. The string characters should be in the current locale
1090encoding (@code{locale} in the name refers only to that, there's no
1091locale-dependent parsing).
1092@end deftypefn
1093
07d83abe
MV
1094
1095@node Complex
1096@subsubsection Complex Number Operations
1097@rnindex make-rectangular
1098@rnindex make-polar
1099@rnindex real-part
1100@rnindex imag-part
1101@rnindex magnitude
1102@rnindex angle
1103
3323ec06
NJ
1104@deffn {Scheme Procedure} make-rectangular real_part imaginary_part
1105@deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
1106Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
07d83abe
MV
1107@end deffn
1108
c7218482
MW
1109@deffn {Scheme Procedure} make-polar mag ang
1110@deffnx {C Function} scm_make_polar (mag, ang)
34942993 1111@cindex polar form
c7218482 1112Return the complex number @var{mag} * e^(i * @var{ang}).
07d83abe
MV
1113@end deffn
1114
1115@c begin (texi-doc-string "guile" "real-part")
1116@deffn {Scheme Procedure} real-part z
1117@deffnx {C Function} scm_real_part (z)
1118Return the real part of the number @var{z}.
1119@end deffn
1120
1121@c begin (texi-doc-string "guile" "imag-part")
1122@deffn {Scheme Procedure} imag-part z
1123@deffnx {C Function} scm_imag_part (z)
1124Return the imaginary part of the number @var{z}.
1125@end deffn
1126
1127@c begin (texi-doc-string "guile" "magnitude")
1128@deffn {Scheme Procedure} magnitude z
1129@deffnx {C Function} scm_magnitude (z)
1130Return the magnitude of the number @var{z}. This is the same as
1131@code{abs} for real arguments, but also allows complex numbers.
1132@end deffn
1133
1134@c begin (texi-doc-string "guile" "angle")
1135@deffn {Scheme Procedure} angle z
1136@deffnx {C Function} scm_angle (z)
1137Return the angle of the complex number @var{z}.
1138@end deffn
1139
5615f696
MV
1140@deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1141@deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1142Like @code{scm_make_rectangular} or @code{scm_make_polar},
1143respectively, but these functions take @code{double}s as their
1144arguments.
1145@end deftypefn
1146
1147@deftypefn {C Function} double scm_c_real_part (z)
1148@deftypefnx {C Function} double scm_c_imag_part (z)
1149Returns the real or imaginary part of @var{z} as a @code{double}.
1150@end deftypefn
1151
1152@deftypefn {C Function} double scm_c_magnitude (z)
1153@deftypefnx {C Function} double scm_c_angle (z)
1154Returns the magnitude or angle of @var{z} as a @code{double}.
1155@end deftypefn
1156
07d83abe
MV
1157
1158@node Arithmetic
1159@subsubsection Arithmetic Functions
1160@rnindex max
1161@rnindex min
1162@rnindex +
1163@rnindex *
1164@rnindex -
1165@rnindex /
b1f57ea4
LC
1166@findex 1+
1167@findex 1-
07d83abe
MV
1168@rnindex abs
1169@rnindex floor
1170@rnindex ceiling
1171@rnindex truncate
1172@rnindex round
ff62c168
MW
1173@rnindex euclidean/
1174@rnindex euclidean-quotient
1175@rnindex euclidean-remainder
8f9da340
MW
1176@rnindex floor/
1177@rnindex floor-quotient
1178@rnindex floor-remainder
1179@rnindex ceiling/
1180@rnindex ceiling-quotient
1181@rnindex ceiling-remainder
1182@rnindex truncate/
1183@rnindex truncate-quotient
1184@rnindex truncate-remainder
ff62c168
MW
1185@rnindex centered/
1186@rnindex centered-quotient
1187@rnindex centered-remainder
8f9da340
MW
1188@rnindex round/
1189@rnindex round-quotient
1190@rnindex round-remainder
07d83abe
MV
1191
1192The C arithmetic functions below always takes two arguments, while the
1193Scheme functions can take an arbitrary number. When you need to
1194invoke them with just one argument, for example to compute the
ecb87335 1195equivalent of @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
07d83abe
MV
1196one: @code{scm_difference (x, SCM_UNDEFINED)}.
1197
1198@c begin (texi-doc-string "guile" "+")
1199@deffn {Scheme Procedure} + z1 @dots{}
1200@deffnx {C Function} scm_sum (z1, z2)
1201Return the sum of all parameter values. Return 0 if called without any
1202parameters.
1203@end deffn
1204
1205@c begin (texi-doc-string "guile" "-")
1206@deffn {Scheme Procedure} - z1 z2 @dots{}
1207@deffnx {C Function} scm_difference (z1, z2)
1208If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1209the sum of all but the first argument are subtracted from the first
1210argument.
1211@end deffn
1212
1213@c begin (texi-doc-string "guile" "*")
1214@deffn {Scheme Procedure} * z1 @dots{}
1215@deffnx {C Function} scm_product (z1, z2)
1216Return the product of all arguments. If called without arguments, 1 is
1217returned.
1218@end deffn
1219
1220@c begin (texi-doc-string "guile" "/")
1221@deffn {Scheme Procedure} / z1 z2 @dots{}
1222@deffnx {C Function} scm_divide (z1, z2)
1223Divide the first argument by the product of the remaining arguments. If
1224called with one argument @var{z1}, 1/@var{z1} is returned.
1225@end deffn
1226
b1f57ea4
LC
1227@deffn {Scheme Procedure} 1+ z
1228@deffnx {C Function} scm_oneplus (z)
1229Return @math{@var{z} + 1}.
1230@end deffn
1231
1232@deffn {Scheme Procedure} 1- z
1233@deffnx {C function} scm_oneminus (z)
1234Return @math{@var{z} - 1}.
1235@end deffn
1236
07d83abe
MV
1237@c begin (texi-doc-string "guile" "abs")
1238@deffn {Scheme Procedure} abs x
1239@deffnx {C Function} scm_abs (x)
1240Return the absolute value of @var{x}.
1241
1242@var{x} must be a number with zero imaginary part. To calculate the
1243magnitude of a complex number, use @code{magnitude} instead.
1244@end deffn
1245
1246@c begin (texi-doc-string "guile" "max")
1247@deffn {Scheme Procedure} max x1 x2 @dots{}
1248@deffnx {C Function} scm_max (x1, x2)
1249Return the maximum of all parameter values.
1250@end deffn
1251
1252@c begin (texi-doc-string "guile" "min")
1253@deffn {Scheme Procedure} min x1 x2 @dots{}
1254@deffnx {C Function} scm_min (x1, x2)
1255Return the minimum of all parameter values.
1256@end deffn
1257
1258@c begin (texi-doc-string "guile" "truncate")
fd8a1df5 1259@deffn {Scheme Procedure} truncate x
07d83abe
MV
1260@deffnx {C Function} scm_truncate_number (x)
1261Round the inexact number @var{x} towards zero.
1262@end deffn
1263
1264@c begin (texi-doc-string "guile" "round")
1265@deffn {Scheme Procedure} round x
1266@deffnx {C Function} scm_round_number (x)
1267Round the inexact number @var{x} to the nearest integer. When exactly
1268halfway between two integers, round to the even one.
1269@end deffn
1270
1271@c begin (texi-doc-string "guile" "floor")
1272@deffn {Scheme Procedure} floor x
1273@deffnx {C Function} scm_floor (x)
1274Round the number @var{x} towards minus infinity.
1275@end deffn
1276
1277@c begin (texi-doc-string "guile" "ceiling")
1278@deffn {Scheme Procedure} ceiling x
1279@deffnx {C Function} scm_ceiling (x)
1280Round the number @var{x} towards infinity.
1281@end deffn
1282
35da08ee
MV
1283@deftypefn {C Function} double scm_c_truncate (double x)
1284@deftypefnx {C Function} double scm_c_round (double x)
1285Like @code{scm_truncate_number} or @code{scm_round_number},
1286respectively, but these functions take and return @code{double}
1287values.
1288@end deftypefn
07d83abe 1289
5fbf680b
MW
1290@deftypefn {Scheme Procedure} {} euclidean/ @var{x} @var{y}
1291@deftypefnx {Scheme Procedure} {} euclidean-quotient @var{x} @var{y}
1292@deftypefnx {Scheme Procedure} {} euclidean-remainder @var{x} @var{y}
1293@deftypefnx {C Function} void scm_euclidean_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1294@deftypefnx {C Function} SCM scm_euclidean_quotient (SCM @var{x}, SCM @var{y})
1295@deftypefnx {C Function} SCM scm_euclidean_remainder (SCM @var{x}, SCM @var{y})
ff62c168
MW
1296These procedures accept two real numbers @var{x} and @var{y}, where the
1297divisor @var{y} must be non-zero. @code{euclidean-quotient} returns the
1298integer @var{q} and @code{euclidean-remainder} returns the real number
1299@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
5fbf680b 1300@math{0 <= @var{r} < |@var{y}|}. @code{euclidean/} returns both @var{q} and
ff62c168
MW
1301@var{r}, and is more efficient than computing each separately. Note
1302that when @math{@var{y} > 0}, @code{euclidean-quotient} returns
1303@math{floor(@var{x}/@var{y})}, otherwise it returns
1304@math{ceiling(@var{x}/@var{y})}.
1305
1306Note that these operators are equivalent to the R6RS operators
1307@code{div}, @code{mod}, and @code{div-and-mod}.
1308
1309@lisp
1310(euclidean-quotient 123 10) @result{} 12
1311(euclidean-remainder 123 10) @result{} 3
1312(euclidean/ 123 10) @result{} 12 and 3
1313(euclidean/ 123 -10) @result{} -12 and 3
1314(euclidean/ -123 10) @result{} -13 and 7
1315(euclidean/ -123 -10) @result{} 13 and 7
1316(euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8
1317(euclidean/ 16/3 -10/7) @result{} -3 and 22/21
1318@end lisp
5fbf680b 1319@end deftypefn
ff62c168 1320
8f9da340
MW
1321@deftypefn {Scheme Procedure} {} floor/ @var{x} @var{y}
1322@deftypefnx {Scheme Procedure} {} floor-quotient @var{x} @var{y}
1323@deftypefnx {Scheme Procedure} {} floor-remainder @var{x} @var{y}
1324@deftypefnx {C Function} void scm_floor_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1325@deftypefnx {C Function} SCM scm_floor_quotient (@var{x}, @var{y})
1326@deftypefnx {C Function} SCM scm_floor_remainder (@var{x}, @var{y})
1327These procedures accept two real numbers @var{x} and @var{y}, where the
1328divisor @var{y} must be non-zero. @code{floor-quotient} returns the
1329integer @var{q} and @code{floor-remainder} returns the real number
1330@var{r} such that @math{@var{q} = floor(@var{x}/@var{y})} and
1331@math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{floor/} returns
1332both @var{q} and @var{r}, and is more efficient than computing each
1333separately. Note that @var{r}, if non-zero, will have the same sign
1334as @var{y}.
1335
ce606606 1336When @var{x} and @var{y} are integers, @code{floor-remainder} is
8f9da340
MW
1337equivalent to the R5RS integer-only operator @code{modulo}.
1338
1339@lisp
1340(floor-quotient 123 10) @result{} 12
1341(floor-remainder 123 10) @result{} 3
1342(floor/ 123 10) @result{} 12 and 3
1343(floor/ 123 -10) @result{} -13 and -7
1344(floor/ -123 10) @result{} -13 and 7
1345(floor/ -123 -10) @result{} 12 and -3
1346(floor/ -123.2 -63.5) @result{} 1.0 and -59.7
1347(floor/ 16/3 -10/7) @result{} -4 and -8/21
1348@end lisp
1349@end deftypefn
1350
1351@deftypefn {Scheme Procedure} {} ceiling/ @var{x} @var{y}
1352@deftypefnx {Scheme Procedure} {} ceiling-quotient @var{x} @var{y}
1353@deftypefnx {Scheme Procedure} {} ceiling-remainder @var{x} @var{y}
1354@deftypefnx {C Function} void scm_ceiling_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1355@deftypefnx {C Function} SCM scm_ceiling_quotient (@var{x}, @var{y})
1356@deftypefnx {C Function} SCM scm_ceiling_remainder (@var{x}, @var{y})
1357These procedures accept two real numbers @var{x} and @var{y}, where the
1358divisor @var{y} must be non-zero. @code{ceiling-quotient} returns the
1359integer @var{q} and @code{ceiling-remainder} returns the real number
1360@var{r} such that @math{@var{q} = ceiling(@var{x}/@var{y})} and
1361@math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{ceiling/} returns
1362both @var{q} and @var{r}, and is more efficient than computing each
1363separately. Note that @var{r}, if non-zero, will have the opposite sign
1364of @var{y}.
1365
1366@lisp
1367(ceiling-quotient 123 10) @result{} 13
1368(ceiling-remainder 123 10) @result{} -7
1369(ceiling/ 123 10) @result{} 13 and -7
1370(ceiling/ 123 -10) @result{} -12 and 3
1371(ceiling/ -123 10) @result{} -12 and -3
1372(ceiling/ -123 -10) @result{} 13 and 7
1373(ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8
1374(ceiling/ 16/3 -10/7) @result{} -3 and 22/21
1375@end lisp
1376@end deftypefn
1377
1378@deftypefn {Scheme Procedure} {} truncate/ @var{x} @var{y}
1379@deftypefnx {Scheme Procedure} {} truncate-quotient @var{x} @var{y}
1380@deftypefnx {Scheme Procedure} {} truncate-remainder @var{x} @var{y}
1381@deftypefnx {C Function} void scm_truncate_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1382@deftypefnx {C Function} SCM scm_truncate_quotient (@var{x}, @var{y})
1383@deftypefnx {C Function} SCM scm_truncate_remainder (@var{x}, @var{y})
1384These procedures accept two real numbers @var{x} and @var{y}, where the
1385divisor @var{y} must be non-zero. @code{truncate-quotient} returns the
1386integer @var{q} and @code{truncate-remainder} returns the real number
1387@var{r} such that @var{q} is @math{@var{x}/@var{y}} rounded toward zero,
1388and @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{truncate/} returns
1389both @var{q} and @var{r}, and is more efficient than computing each
1390separately. Note that @var{r}, if non-zero, will have the same sign
1391as @var{x}.
1392
ce606606 1393When @var{x} and @var{y} are integers, these operators are
a6b087be
MW
1394equivalent to the R5RS integer-only operators @code{quotient} and
1395@code{remainder}.
8f9da340
MW
1396
1397@lisp
1398(truncate-quotient 123 10) @result{} 12
1399(truncate-remainder 123 10) @result{} 3
1400(truncate/ 123 10) @result{} 12 and 3
1401(truncate/ 123 -10) @result{} -12 and 3
1402(truncate/ -123 10) @result{} -12 and -3
1403(truncate/ -123 -10) @result{} 12 and -3
1404(truncate/ -123.2 -63.5) @result{} 1.0 and -59.7
1405(truncate/ 16/3 -10/7) @result{} -3 and 22/21
1406@end lisp
1407@end deftypefn
1408
5fbf680b
MW
1409@deftypefn {Scheme Procedure} {} centered/ @var{x} @var{y}
1410@deftypefnx {Scheme Procedure} {} centered-quotient @var{x} @var{y}
1411@deftypefnx {Scheme Procedure} {} centered-remainder @var{x} @var{y}
1412@deftypefnx {C Function} void scm_centered_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1413@deftypefnx {C Function} SCM scm_centered_quotient (SCM @var{x}, SCM @var{y})
1414@deftypefnx {C Function} SCM scm_centered_remainder (SCM @var{x}, SCM @var{y})
ff62c168
MW
1415These procedures accept two real numbers @var{x} and @var{y}, where the
1416divisor @var{y} must be non-zero. @code{centered-quotient} returns the
1417integer @var{q} and @code{centered-remainder} returns the real number
1418@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
5fbf680b 1419@math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}. @code{centered/}
ff62c168
MW
1420returns both @var{q} and @var{r}, and is more efficient than computing
1421each separately.
1422
1423Note that @code{centered-quotient} returns @math{@var{x}/@var{y}}
1424rounded to the nearest integer. When @math{@var{x}/@var{y}} lies
1425exactly half-way between two integers, the tie is broken according to
1426the sign of @var{y}. If @math{@var{y} > 0}, ties are rounded toward
1427positive infinity, otherwise they are rounded toward negative infinity.
5fbf680b
MW
1428This is a consequence of the requirement that
1429@math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}.
ff62c168
MW
1430
1431Note that these operators are equivalent to the R6RS operators
1432@code{div0}, @code{mod0}, and @code{div0-and-mod0}.
1433
1434@lisp
1435(centered-quotient 123 10) @result{} 12
1436(centered-remainder 123 10) @result{} 3
1437(centered/ 123 10) @result{} 12 and 3
1438(centered/ 123 -10) @result{} -12 and 3
1439(centered/ -123 10) @result{} -12 and -3
1440(centered/ -123 -10) @result{} 12 and -3
8f9da340
MW
1441(centered/ 125 10) @result{} 13 and -5
1442(centered/ 127 10) @result{} 13 and -3
1443(centered/ 135 10) @result{} 14 and -5
ff62c168
MW
1444(centered/ -123.2 -63.5) @result{} 2.0 and 3.8
1445(centered/ 16/3 -10/7) @result{} -4 and -8/21
1446@end lisp
5fbf680b 1447@end deftypefn
ff62c168 1448
8f9da340
MW
1449@deftypefn {Scheme Procedure} {} round/ @var{x} @var{y}
1450@deftypefnx {Scheme Procedure} {} round-quotient @var{x} @var{y}
1451@deftypefnx {Scheme Procedure} {} round-remainder @var{x} @var{y}
1452@deftypefnx {C Function} void scm_round_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1453@deftypefnx {C Function} SCM scm_round_quotient (@var{x}, @var{y})
1454@deftypefnx {C Function} SCM scm_round_remainder (@var{x}, @var{y})
1455These procedures accept two real numbers @var{x} and @var{y}, where the
1456divisor @var{y} must be non-zero. @code{round-quotient} returns the
1457integer @var{q} and @code{round-remainder} returns the real number
1458@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1459@var{q} is @math{@var{x}/@var{y}} rounded to the nearest integer,
1460with ties going to the nearest even integer. @code{round/}
1461returns both @var{q} and @var{r}, and is more efficient than computing
1462each separately.
1463
1464Note that @code{round/} and @code{centered/} are almost equivalent, but
1465their behavior differs when @math{@var{x}/@var{y}} lies exactly half-way
1466between two integers. In this case, @code{round/} chooses the nearest
1467even integer, whereas @code{centered/} chooses in such a way to satisfy
1468the constraint @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}, which
1469is stronger than the corresponding constraint for @code{round/},
1470@math{-|@var{y}/2| <= @var{r} <= |@var{y}/2|}. In particular,
1471when @var{x} and @var{y} are integers, the number of possible remainders
1472returned by @code{centered/} is @math{|@var{y}|}, whereas the number of
1473possible remainders returned by @code{round/} is @math{|@var{y}|+1} when
1474@var{y} is even.
1475
1476@lisp
1477(round-quotient 123 10) @result{} 12
1478(round-remainder 123 10) @result{} 3
1479(round/ 123 10) @result{} 12 and 3
1480(round/ 123 -10) @result{} -12 and 3
1481(round/ -123 10) @result{} -12 and -3
1482(round/ -123 -10) @result{} 12 and -3
1483(round/ 125 10) @result{} 12 and 5
1484(round/ 127 10) @result{} 13 and -3
1485(round/ 135 10) @result{} 14 and -5
1486(round/ -123.2 -63.5) @result{} 2.0 and 3.8
1487(round/ 16/3 -10/7) @result{} -4 and -8/21
1488@end lisp
1489@end deftypefn
1490
07d83abe
MV
1491@node Scientific
1492@subsubsection Scientific Functions
1493
1494The following procedures accept any kind of number as arguments,
1495including complex numbers.
1496
1497@rnindex sqrt
1498@c begin (texi-doc-string "guile" "sqrt")
1499@deffn {Scheme Procedure} sqrt z
40296bab 1500Return the square root of @var{z}. Of the two possible roots
ecb87335 1501(positive and negative), the one with a positive real part is
40296bab
KR
1502returned, or if that's zero then a positive imaginary part. Thus,
1503
1504@example
1505(sqrt 9.0) @result{} 3.0
1506(sqrt -9.0) @result{} 0.0+3.0i
1507(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1508(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1509@end example
07d83abe
MV
1510@end deffn
1511
1512@rnindex expt
1513@c begin (texi-doc-string "guile" "expt")
1514@deffn {Scheme Procedure} expt z1 z2
1515Return @var{z1} raised to the power of @var{z2}.
1516@end deffn
1517
1518@rnindex sin
1519@c begin (texi-doc-string "guile" "sin")
1520@deffn {Scheme Procedure} sin z
1521Return the sine of @var{z}.
1522@end deffn
1523
1524@rnindex cos
1525@c begin (texi-doc-string "guile" "cos")
1526@deffn {Scheme Procedure} cos z
1527Return the cosine of @var{z}.
1528@end deffn
1529
1530@rnindex tan
1531@c begin (texi-doc-string "guile" "tan")
1532@deffn {Scheme Procedure} tan z
1533Return the tangent of @var{z}.
1534@end deffn
1535
1536@rnindex asin
1537@c begin (texi-doc-string "guile" "asin")
1538@deffn {Scheme Procedure} asin z
1539Return the arcsine of @var{z}.
1540@end deffn
1541
1542@rnindex acos
1543@c begin (texi-doc-string "guile" "acos")
1544@deffn {Scheme Procedure} acos z
1545Return the arccosine of @var{z}.
1546@end deffn
1547
1548@rnindex atan
1549@c begin (texi-doc-string "guile" "atan")
1550@deffn {Scheme Procedure} atan z
1551@deffnx {Scheme Procedure} atan y x
1552Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1553@end deffn
1554
1555@rnindex exp
1556@c begin (texi-doc-string "guile" "exp")
1557@deffn {Scheme Procedure} exp z
1558Return e to the power of @var{z}, where e is the base of natural
1559logarithms (2.71828@dots{}).
1560@end deffn
1561
1562@rnindex log
1563@c begin (texi-doc-string "guile" "log")
1564@deffn {Scheme Procedure} log z
1565Return the natural logarithm of @var{z}.
1566@end deffn
1567
1568@c begin (texi-doc-string "guile" "log10")
1569@deffn {Scheme Procedure} log10 z
1570Return the base 10 logarithm of @var{z}.
1571@end deffn
1572
1573@c begin (texi-doc-string "guile" "sinh")
1574@deffn {Scheme Procedure} sinh z
1575Return the hyperbolic sine of @var{z}.
1576@end deffn
1577
1578@c begin (texi-doc-string "guile" "cosh")
1579@deffn {Scheme Procedure} cosh z
1580Return the hyperbolic cosine of @var{z}.
1581@end deffn
1582
1583@c begin (texi-doc-string "guile" "tanh")
1584@deffn {Scheme Procedure} tanh z
1585Return the hyperbolic tangent of @var{z}.
1586@end deffn
1587
1588@c begin (texi-doc-string "guile" "asinh")
1589@deffn {Scheme Procedure} asinh z
1590Return the hyperbolic arcsine of @var{z}.
1591@end deffn
1592
1593@c begin (texi-doc-string "guile" "acosh")
1594@deffn {Scheme Procedure} acosh z
1595Return the hyperbolic arccosine of @var{z}.
1596@end deffn
1597
1598@c begin (texi-doc-string "guile" "atanh")
1599@deffn {Scheme Procedure} atanh z
1600Return the hyperbolic arctangent of @var{z}.
1601@end deffn
1602
1603
07d83abe
MV
1604@node Bitwise Operations
1605@subsubsection Bitwise Operations
1606
1607For the following bitwise functions, negative numbers are treated as
1608infinite precision twos-complements. For instance @math{-6} is bits
1609@math{@dots{}111010}, with infinitely many ones on the left. It can
1610be seen that adding 6 (binary 110) to such a bit pattern gives all
1611zeros.
1612
1613@deffn {Scheme Procedure} logand n1 n2 @dots{}
1614@deffnx {C Function} scm_logand (n1, n2)
1615Return the bitwise @sc{and} of the integer arguments.
1616
1617@lisp
1618(logand) @result{} -1
1619(logand 7) @result{} 7
1620(logand #b111 #b011 #b001) @result{} 1
1621@end lisp
1622@end deffn
1623
1624@deffn {Scheme Procedure} logior n1 n2 @dots{}
1625@deffnx {C Function} scm_logior (n1, n2)
1626Return the bitwise @sc{or} of the integer arguments.
1627
1628@lisp
1629(logior) @result{} 0
1630(logior 7) @result{} 7
1631(logior #b000 #b001 #b011) @result{} 3
1632@end lisp
1633@end deffn
1634
1635@deffn {Scheme Procedure} logxor n1 n2 @dots{}
1636@deffnx {C Function} scm_loxor (n1, n2)
1637Return the bitwise @sc{xor} of the integer arguments. A bit is
1638set in the result if it is set in an odd number of arguments.
1639
1640@lisp
1641(logxor) @result{} 0
1642(logxor 7) @result{} 7
1643(logxor #b000 #b001 #b011) @result{} 2
1644(logxor #b000 #b001 #b011 #b011) @result{} 1
1645@end lisp
1646@end deffn
1647
1648@deffn {Scheme Procedure} lognot n
1649@deffnx {C Function} scm_lognot (n)
1650Return the integer which is the ones-complement of the integer
1651argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1652
1653@lisp
1654(number->string (lognot #b10000000) 2)
1655 @result{} "-10000001"
1656(number->string (lognot #b0) 2)
1657 @result{} "-1"
1658@end lisp
1659@end deffn
1660
1661@deffn {Scheme Procedure} logtest j k
1662@deffnx {C Function} scm_logtest (j, k)
a46648ac
KR
1663Test whether @var{j} and @var{k} have any 1 bits in common. This is
1664equivalent to @code{(not (zero? (logand j k)))}, but without actually
1665calculating the @code{logand}, just testing for non-zero.
07d83abe 1666
a46648ac 1667@lisp
07d83abe
MV
1668(logtest #b0100 #b1011) @result{} #f
1669(logtest #b0100 #b0111) @result{} #t
1670@end lisp
1671@end deffn
1672
1673@deffn {Scheme Procedure} logbit? index j
1674@deffnx {C Function} scm_logbit_p (index, j)
a46648ac
KR
1675Test whether bit number @var{index} in @var{j} is set. @var{index}
1676starts from 0 for the least significant bit.
07d83abe 1677
a46648ac 1678@lisp
07d83abe
MV
1679(logbit? 0 #b1101) @result{} #t
1680(logbit? 1 #b1101) @result{} #f
1681(logbit? 2 #b1101) @result{} #t
1682(logbit? 3 #b1101) @result{} #t
1683(logbit? 4 #b1101) @result{} #f
1684@end lisp
1685@end deffn
1686
1687@deffn {Scheme Procedure} ash n cnt
1688@deffnx {C Function} scm_ash (n, cnt)
1689Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1690@var{cnt} is negative. This is an ``arithmetic'' shift.
1691
1692This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1693when @var{cnt} is negative it's a division, rounded towards negative
1694infinity. (Note that this is not the same rounding as @code{quotient}
1695does.)
1696
1697With @var{n} viewed as an infinite precision twos complement,
1698@code{ash} means a left shift introducing zero bits, or a right shift
1699dropping bits.
1700
1701@lisp
1702(number->string (ash #b1 3) 2) @result{} "1000"
1703(number->string (ash #b1010 -1) 2) @result{} "101"
1704
1705;; -23 is bits ...11101001, -6 is bits ...111010
1706(ash -23 -2) @result{} -6
1707@end lisp
1708@end deffn
1709
1710@deffn {Scheme Procedure} logcount n
1711@deffnx {C Function} scm_logcount (n)
a46648ac 1712Return the number of bits in integer @var{n}. If @var{n} is
07d83abe
MV
1713positive, the 1-bits in its binary representation are counted.
1714If negative, the 0-bits in its two's-complement binary
a46648ac 1715representation are counted. If zero, 0 is returned.
07d83abe
MV
1716
1717@lisp
1718(logcount #b10101010)
1719 @result{} 4
1720(logcount 0)
1721 @result{} 0
1722(logcount -2)
1723 @result{} 1
1724@end lisp
1725@end deffn
1726
1727@deffn {Scheme Procedure} integer-length n
1728@deffnx {C Function} scm_integer_length (n)
1729Return the number of bits necessary to represent @var{n}.
1730
1731For positive @var{n} this is how many bits to the most significant one
1732bit. For negative @var{n} it's how many bits to the most significant
1733zero bit in twos complement form.
1734
1735@lisp
1736(integer-length #b10101010) @result{} 8
1737(integer-length #b1111) @result{} 4
1738(integer-length 0) @result{} 0
1739(integer-length -1) @result{} 0
1740(integer-length -256) @result{} 8
1741(integer-length -257) @result{} 9
1742@end lisp
1743@end deffn
1744
1745@deffn {Scheme Procedure} integer-expt n k
1746@deffnx {C Function} scm_integer_expt (n, k)
a46648ac
KR
1747Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1748integer, @var{n} can be any number.
1749
1750Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1751in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1752@math{0^0} is 1.
07d83abe
MV
1753
1754@lisp
a46648ac
KR
1755(integer-expt 2 5) @result{} 32
1756(integer-expt -3 3) @result{} -27
1757(integer-expt 5 -3) @result{} 1/125
1758(integer-expt 0 0) @result{} 1
07d83abe
MV
1759@end lisp
1760@end deffn
1761
1762@deffn {Scheme Procedure} bit-extract n start end
1763@deffnx {C Function} scm_bit_extract (n, start, end)
1764Return the integer composed of the @var{start} (inclusive)
1765through @var{end} (exclusive) bits of @var{n}. The
1766@var{start}th bit becomes the 0-th bit in the result.
1767
1768@lisp
1769(number->string (bit-extract #b1101101010 0 4) 2)
1770 @result{} "1010"
1771(number->string (bit-extract #b1101101010 4 9) 2)
1772 @result{} "10110"
1773@end lisp
1774@end deffn
1775
1776
1777@node Random
1778@subsubsection Random Number Generation
1779
1780Pseudo-random numbers are generated from a random state object, which
77b13912 1781can be created with @code{seed->random-state} or
679cceed 1782@code{datum->random-state}. An external representation (i.e.@: one
77b13912
AR
1783which can written with @code{write} and read with @code{read}) of a
1784random state object can be obtained via
1d454874 1785@code{random-state->datum}. The @var{state} parameter to the
77b13912
AR
1786various functions below is optional, it defaults to the state object
1787in the @code{*random-state*} variable.
07d83abe
MV
1788
1789@deffn {Scheme Procedure} copy-random-state [state]
1790@deffnx {C Function} scm_copy_random_state (state)
1791Return a copy of the random state @var{state}.
1792@end deffn
1793
1794@deffn {Scheme Procedure} random n [state]
1795@deffnx {C Function} scm_random (n, state)
1796Return a number in [0, @var{n}).
1797
1798Accepts a positive integer or real n and returns a
1799number of the same type between zero (inclusive) and
1800@var{n} (exclusive). The values returned have a uniform
1801distribution.
1802@end deffn
1803
1804@deffn {Scheme Procedure} random:exp [state]
1805@deffnx {C Function} scm_random_exp (state)
1806Return an inexact real in an exponential distribution with mean
18071. For an exponential distribution with mean @var{u} use @code{(*
1808@var{u} (random:exp))}.
1809@end deffn
1810
1811@deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1812@deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1813Fills @var{vect} with inexact real random numbers the sum of whose
1814squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1815space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1816the coordinates are uniformly distributed over the surface of the unit
1817n-sphere.
1818@end deffn
1819
1820@deffn {Scheme Procedure} random:normal [state]
1821@deffnx {C Function} scm_random_normal (state)
1822Return an inexact real in a normal distribution. The distribution
1823used has mean 0 and standard deviation 1. For a normal distribution
1824with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1825(* @var{d} (random:normal)))}.
1826@end deffn
1827
1828@deffn {Scheme Procedure} random:normal-vector! vect [state]
1829@deffnx {C Function} scm_random_normal_vector_x (vect, state)
1830Fills @var{vect} with inexact real random numbers that are
1831independent and standard normally distributed
1832(i.e., with mean 0 and variance 1).
1833@end deffn
1834
1835@deffn {Scheme Procedure} random:solid-sphere! vect [state]
1836@deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1837Fills @var{vect} with inexact real random numbers the sum of whose
1838squares is less than 1.0. Thinking of @var{vect} as coordinates in
1839space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1840the coordinates are uniformly distributed within the unit
4497bd2f 1841@var{n}-sphere.
07d83abe
MV
1842@c FIXME: What does this mean, particularly the n-sphere part?
1843@end deffn
1844
1845@deffn {Scheme Procedure} random:uniform [state]
1846@deffnx {C Function} scm_random_uniform (state)
1847Return a uniformly distributed inexact real random number in
1848[0,1).
1849@end deffn
1850
1851@deffn {Scheme Procedure} seed->random-state seed
1852@deffnx {C Function} scm_seed_to_random_state (seed)
1853Return a new random state using @var{seed}.
1854@end deffn
1855
1d454874
AW
1856@deffn {Scheme Procedure} datum->random-state datum
1857@deffnx {C Function} scm_datum_to_random_state (datum)
1858Return a new random state from @var{datum}, which should have been
1859obtained by @code{random-state->datum}.
77b13912
AR
1860@end deffn
1861
1d454874
AW
1862@deffn {Scheme Procedure} random-state->datum state
1863@deffnx {C Function} scm_random_state_to_datum (state)
1864Return a datum representation of @var{state} that may be written out and
1865read back with the Scheme reader.
77b13912
AR
1866@end deffn
1867
d47db067
MW
1868@deffn {Scheme Procedure} random-state-from-platform
1869@deffnx {C Function} scm_random_state_from_platform ()
1870Construct a new random state seeded from a platform-specific source of
1871entropy, appropriate for use in non-security-critical applications.
1872Currently @file{/dev/urandom} is tried first, or else the seed is based
1873on the time, date, process ID, an address from a freshly allocated heap
1874cell, an address from the local stack frame, and a high-resolution timer
1875if available.
1876@end deffn
1877
07d83abe
MV
1878@defvar *random-state*
1879The global random state used by the above functions when the
1880@var{state} parameter is not given.
1881@end defvar
1882
8c726cf0
NJ
1883Note that the initial value of @code{*random-state*} is the same every
1884time Guile starts up. Therefore, if you don't pass a @var{state}
1885parameter to the above procedures, and you don't set
1886@code{*random-state*} to @code{(seed->random-state your-seed)}, where
1887@code{your-seed} is something that @emph{isn't} the same every time,
1888you'll get the same sequence of ``random'' numbers on every run.
1889
1890For example, unless the relevant source code has changed, @code{(map
1891random (cdr (iota 30)))}, if the first use of random numbers since
1892Guile started up, will always give:
1893
1894@lisp
1895(map random (cdr (iota 19)))
1896@result{}
1897(0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1898@end lisp
1899
d47db067
MW
1900To seed the random state in a sensible way for non-security-critical
1901applications, do this during initialization of your program:
8c726cf0
NJ
1902
1903@lisp
d47db067 1904(set! *random-state* (random-state-from-platform))
8c726cf0
NJ
1905@end lisp
1906
07d83abe
MV
1907
1908@node Characters
1909@subsection Characters
1910@tpindex Characters
1911
3f12aedb
MG
1912In Scheme, there is a data type to describe a single character.
1913
1914Defining what exactly a character @emph{is} can be more complicated
bb15a36c
MG
1915than it seems. Guile follows the advice of R6RS and uses The Unicode
1916Standard to help define what a character is. So, for Guile, a
1917character is anything in the Unicode Character Database.
1918
1919@cindex code point
1920@cindex Unicode code point
1921
1922The Unicode Character Database is basically a table of characters
1923indexed using integers called 'code points'. Valid code points are in
1924the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1925@code{#x10FFFF} inclusive, which is about 1.1 million code points.
1926
1927@cindex designated code point
1928@cindex code point, designated
1929
1930Any code point that has been assigned to a character or that has
1931otherwise been given a meaning by Unicode is called a 'designated code
1932point'. Most of the designated code points, about 200,000 of them,
1933indicate characters, accents or other combining marks that modify
1934other characters, symbols, whitespace, and control characters. Some
1935are not characters but indicators that suggest how to format or
1936display neighboring characters.
1937
1938@cindex reserved code point
1939@cindex code point, reserved
1940
1941If a code point is not a designated code point -- if it has not been
1942assigned to a character by The Unicode Standard -- it is a 'reserved
1943code point', meaning that they are reserved for future use. Most of
1944the code points, about 800,000, are 'reserved code points'.
1945
1946By convention, a Unicode code point is written as
1947``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1948this convenient notation is not valid code. Guile does not interpret
1949``U+XXXX'' as a character.
3f12aedb 1950
050ab45f
MV
1951In Scheme, a character literal is written as @code{#\@var{name}} where
1952@var{name} is the name of the character that you want. Printable
1953characters have their usual single character name; for example,
bb15a36c
MG
1954@code{#\a} is a lower case @code{a}.
1955
1956Some of the code points are 'combining characters' that are not meant
1957to be printed by themselves but are instead meant to modify the
1958appearance of the previous character. For combining characters, an
1959alternate form of the character literal is @code{#\} followed by
1960U+25CC (a small, dotted circle), followed by the combining character.
1961This allows the combining character to be drawn on the circle, not on
1962the backslash of @code{#\}.
1963
1964Many of the non-printing characters, such as whitespace characters and
1965control characters, also have names.
07d83abe 1966
15b6a6b2
MG
1967The most commonly used non-printing characters have long character
1968names, described in the table below.
1969
1970@multitable {@code{#\backspace}} {Preferred}
1971@item Character Name @tab Codepoint
1972@item @code{#\nul} @tab U+0000
1973@item @code{#\alarm} @tab u+0007
1974@item @code{#\backspace} @tab U+0008
1975@item @code{#\tab} @tab U+0009
1976@item @code{#\linefeed} @tab U+000A
1977@item @code{#\newline} @tab U+000A
1978@item @code{#\vtab} @tab U+000B
1979@item @code{#\page} @tab U+000C
1980@item @code{#\return} @tab U+000D
1981@item @code{#\esc} @tab U+001B
1982@item @code{#\space} @tab U+0020
1983@item @code{#\delete} @tab U+007F
1984@end multitable
1985
1986There are also short names for all of the ``C0 control characters''
1987(those with code points below 32). The following table lists the short
1988name for each character.
07d83abe
MV
1989
1990@multitable @columnfractions .25 .25 .25 .25
1991@item 0 = @code{#\nul}
1992 @tab 1 = @code{#\soh}
1993 @tab 2 = @code{#\stx}
1994 @tab 3 = @code{#\etx}
1995@item 4 = @code{#\eot}
1996 @tab 5 = @code{#\enq}
1997 @tab 6 = @code{#\ack}
1998 @tab 7 = @code{#\bel}
1999@item 8 = @code{#\bs}
2000 @tab 9 = @code{#\ht}
6ea30487 2001 @tab 10 = @code{#\lf}
07d83abe 2002 @tab 11 = @code{#\vt}
3f12aedb 2003@item 12 = @code{#\ff}
07d83abe
MV
2004 @tab 13 = @code{#\cr}
2005 @tab 14 = @code{#\so}
2006 @tab 15 = @code{#\si}
2007@item 16 = @code{#\dle}
2008 @tab 17 = @code{#\dc1}
2009 @tab 18 = @code{#\dc2}
2010 @tab 19 = @code{#\dc3}
2011@item 20 = @code{#\dc4}
2012 @tab 21 = @code{#\nak}
2013 @tab 22 = @code{#\syn}
2014 @tab 23 = @code{#\etb}
2015@item 24 = @code{#\can}
2016 @tab 25 = @code{#\em}
2017 @tab 26 = @code{#\sub}
2018 @tab 27 = @code{#\esc}
2019@item 28 = @code{#\fs}
2020 @tab 29 = @code{#\gs}
2021 @tab 30 = @code{#\rs}
2022 @tab 31 = @code{#\us}
2023@item 32 = @code{#\sp}
2024@end multitable
2025
15b6a6b2
MG
2026The short name for the ``delete'' character (code point U+007F) is
2027@code{#\del}.
07d83abe 2028
15b6a6b2
MG
2029There are also a few alternative names left over for compatibility with
2030previous versions of Guile.
07d83abe 2031
3f12aedb
MG
2032@multitable {@code{#\backspace}} {Preferred}
2033@item Alternate @tab Standard
3f12aedb 2034@item @code{#\nl} @tab @code{#\newline}
15b6a6b2 2035@item @code{#\np} @tab @code{#\page}
07d83abe
MV
2036@item @code{#\null} @tab @code{#\nul}
2037@end multitable
2038
bb15a36c
MG
2039Characters may also be written using their code point values. They can
2040be written with as an octal number, such as @code{#\10} for
2041@code{#\bs} or @code{#\177} for @code{#\del}.
3f12aedb 2042
0f3a70cf
MG
2043If one prefers hex to octal, there is an additional syntax for character
2044escapes: @code{#\xHHHH} -- the letter 'x' followed by a hexadecimal
2045number of one to eight digits.
6ea30487 2046
07d83abe
MV
2047@rnindex char?
2048@deffn {Scheme Procedure} char? x
2049@deffnx {C Function} scm_char_p (x)
2050Return @code{#t} iff @var{x} is a character, else @code{#f}.
2051@end deffn
2052
bb15a36c 2053Fundamentally, the character comparison operations below are
3f12aedb
MG
2054numeric comparisons of the character's code points.
2055
07d83abe
MV
2056@rnindex char=?
2057@deffn {Scheme Procedure} char=? x y
3f12aedb
MG
2058Return @code{#t} iff code point of @var{x} is equal to the code point
2059of @var{y}, else @code{#f}.
07d83abe
MV
2060@end deffn
2061
2062@rnindex char<?
2063@deffn {Scheme Procedure} char<? x y
3f12aedb
MG
2064Return @code{#t} iff the code point of @var{x} is less than the code
2065point of @var{y}, else @code{#f}.
07d83abe
MV
2066@end deffn
2067
2068@rnindex char<=?
2069@deffn {Scheme Procedure} char<=? x y
3f12aedb
MG
2070Return @code{#t} iff the code point of @var{x} is less than or equal
2071to the code point of @var{y}, else @code{#f}.
07d83abe
MV
2072@end deffn
2073
2074@rnindex char>?
2075@deffn {Scheme Procedure} char>? x y
3f12aedb
MG
2076Return @code{#t} iff the code point of @var{x} is greater than the
2077code point of @var{y}, else @code{#f}.
07d83abe
MV
2078@end deffn
2079
2080@rnindex char>=?
2081@deffn {Scheme Procedure} char>=? x y
3f12aedb
MG
2082Return @code{#t} iff the code point of @var{x} is greater than or
2083equal to the code point of @var{y}, else @code{#f}.
07d83abe
MV
2084@end deffn
2085
bb15a36c
MG
2086@cindex case folding
2087
2088Case-insensitive character comparisons use @emph{Unicode case
2089folding}. In case folding comparisons, if a character is lowercase
2090and has an uppercase form that can be expressed as a single character,
2091it is converted to uppercase before comparison. All other characters
2092undergo no conversion before the comparison occurs. This includes the
2093German sharp S (Eszett) which is not uppercased before conversion
2094because its uppercase form has two characters. Unicode case folding
2095is language independent: it uses rules that are generally true, but,
2096it cannot cover all cases for all languages.
3f12aedb 2097
07d83abe
MV
2098@rnindex char-ci=?
2099@deffn {Scheme Procedure} char-ci=? x y
3f12aedb
MG
2100Return @code{#t} iff the case-folded code point of @var{x} is the same
2101as the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
2102@end deffn
2103
2104@rnindex char-ci<?
2105@deffn {Scheme Procedure} char-ci<? x y
3f12aedb
MG
2106Return @code{#t} iff the case-folded code point of @var{x} is less
2107than the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
2108@end deffn
2109
2110@rnindex char-ci<=?
2111@deffn {Scheme Procedure} char-ci<=? x y
3f12aedb
MG
2112Return @code{#t} iff the case-folded code point of @var{x} is less
2113than or equal to the case-folded code point of @var{y}, else
2114@code{#f}.
07d83abe
MV
2115@end deffn
2116
2117@rnindex char-ci>?
2118@deffn {Scheme Procedure} char-ci>? x y
3f12aedb
MG
2119Return @code{#t} iff the case-folded code point of @var{x} is greater
2120than the case-folded code point of @var{y}, else @code{#f}.
07d83abe
MV
2121@end deffn
2122
2123@rnindex char-ci>=?
2124@deffn {Scheme Procedure} char-ci>=? x y
3f12aedb
MG
2125Return @code{#t} iff the case-folded code point of @var{x} is greater
2126than or equal to the case-folded code point of @var{y}, else
2127@code{#f}.
07d83abe
MV
2128@end deffn
2129
2130@rnindex char-alphabetic?
2131@deffn {Scheme Procedure} char-alphabetic? chr
2132@deffnx {C Function} scm_char_alphabetic_p (chr)
2133Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
07d83abe
MV
2134@end deffn
2135
2136@rnindex char-numeric?
2137@deffn {Scheme Procedure} char-numeric? chr
2138@deffnx {C Function} scm_char_numeric_p (chr)
2139Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
07d83abe
MV
2140@end deffn
2141
2142@rnindex char-whitespace?
2143@deffn {Scheme Procedure} char-whitespace? chr
2144@deffnx {C Function} scm_char_whitespace_p (chr)
2145Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
07d83abe
MV
2146@end deffn
2147
2148@rnindex char-upper-case?
2149@deffn {Scheme Procedure} char-upper-case? chr
2150@deffnx {C Function} scm_char_upper_case_p (chr)
2151Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
07d83abe
MV
2152@end deffn
2153
2154@rnindex char-lower-case?
2155@deffn {Scheme Procedure} char-lower-case? chr
2156@deffnx {C Function} scm_char_lower_case_p (chr)
2157Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
07d83abe
MV
2158@end deffn
2159
2160@deffn {Scheme Procedure} char-is-both? chr
2161@deffnx {C Function} scm_char_is_both_p (chr)
2162Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
5676b4fa 2163@code{#f}.
07d83abe
MV
2164@end deffn
2165
0ca3a342
JG
2166@deffn {Scheme Procedure} char-general-category chr
2167@deffnx {C Function} scm_char_general_category (chr)
2168Return a symbol giving the two-letter name of the Unicode general
2169category assigned to @var{chr} or @code{#f} if no named category is
2170assigned. The following table provides a list of category names along
2171with their meanings.
2172
2173@multitable @columnfractions .1 .4 .1 .4
2174@item Lu
2175 @tab Uppercase letter
2176 @tab Pf
2177 @tab Final quote punctuation
2178@item Ll
2179 @tab Lowercase letter
2180 @tab Po
2181 @tab Other punctuation
2182@item Lt
2183 @tab Titlecase letter
2184 @tab Sm
2185 @tab Math symbol
2186@item Lm
2187 @tab Modifier letter
2188 @tab Sc
2189 @tab Currency symbol
2190@item Lo
2191 @tab Other letter
2192 @tab Sk
2193 @tab Modifier symbol
2194@item Mn
2195 @tab Non-spacing mark
2196 @tab So
2197 @tab Other symbol
2198@item Mc
2199 @tab Combining spacing mark
2200 @tab Zs
2201 @tab Space separator
2202@item Me
2203 @tab Enclosing mark
2204 @tab Zl
2205 @tab Line separator
2206@item Nd
2207 @tab Decimal digit number
2208 @tab Zp
2209 @tab Paragraph separator
2210@item Nl
2211 @tab Letter number
2212 @tab Cc
2213 @tab Control
2214@item No
2215 @tab Other number
2216 @tab Cf
2217 @tab Format
2218@item Pc
2219 @tab Connector punctuation
2220 @tab Cs
2221 @tab Surrogate
2222@item Pd
2223 @tab Dash punctuation
2224 @tab Co
2225 @tab Private use
2226@item Ps
2227 @tab Open punctuation
2228 @tab Cn
2229 @tab Unassigned
2230@item Pe
2231 @tab Close punctuation
2232 @tab
2233 @tab
2234@item Pi
2235 @tab Initial quote punctuation
2236 @tab
2237 @tab
2238@end multitable
2239@end deffn
2240
07d83abe
MV
2241@rnindex char->integer
2242@deffn {Scheme Procedure} char->integer chr
2243@deffnx {C Function} scm_char_to_integer (chr)
3f12aedb 2244Return the code point of @var{chr}.
07d83abe
MV
2245@end deffn
2246
2247@rnindex integer->char
2248@deffn {Scheme Procedure} integer->char n
2249@deffnx {C Function} scm_integer_to_char (n)
3f12aedb
MG
2250Return the character that has code point @var{n}. The integer @var{n}
2251must be a valid code point. Valid code points are in the ranges 0 to
2252@code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
07d83abe
MV
2253@end deffn
2254
2255@rnindex char-upcase
2256@deffn {Scheme Procedure} char-upcase chr
2257@deffnx {C Function} scm_char_upcase (chr)
2258Return the uppercase character version of @var{chr}.
2259@end deffn
2260
2261@rnindex char-downcase
2262@deffn {Scheme Procedure} char-downcase chr
2263@deffnx {C Function} scm_char_downcase (chr)
2264Return the lowercase character version of @var{chr}.
2265@end deffn
2266
820f33aa
JG
2267@rnindex char-titlecase
2268@deffn {Scheme Procedure} char-titlecase chr
2269@deffnx {C Function} scm_char_titlecase (chr)
2270Return the titlecase character version of @var{chr} if one exists;
2271otherwise return the uppercase version.
2272
2273For most characters these will be the same, but the Unicode Standard
2274includes certain digraph compatibility characters, such as @code{U+01F3}
2275``dz'', for which the uppercase and titlecase characters are different
2276(@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
2277respectively).
2278@end deffn
2279
a1dcb961
MG
2280@tindex scm_t_wchar
2281@deftypefn {C Function} scm_t_wchar scm_c_upcase (scm_t_wchar @var{c})
2282@deftypefnx {C Function} scm_t_wchar scm_c_downcase (scm_t_wchar @var{c})
2283@deftypefnx {C Function} scm_t_wchar scm_c_titlecase (scm_t_wchar @var{c})
2284
2285These C functions take an integer representation of a Unicode
2286codepoint and return the codepoint corresponding to its uppercase,
2287lowercase, and titlecase forms respectively. The type
2288@code{scm_t_wchar} is a signed, 32-bit integer.
2289@end deftypefn
2290
050ab45f
MV
2291@node Character Sets
2292@subsection Character Sets
07d83abe 2293
050ab45f
MV
2294The features described in this section correspond directly to SRFI-14.
2295
2296The data type @dfn{charset} implements sets of characters
2297(@pxref{Characters}). Because the internal representation of
2298character sets is not visible to the user, a lot of procedures for
2299handling them are provided.
2300
2301Character sets can be created, extended, tested for the membership of a
2302characters and be compared to other character sets.
2303
050ab45f
MV
2304@menu
2305* Character Set Predicates/Comparison::
2306* Iterating Over Character Sets:: Enumerate charset elements.
2307* Creating Character Sets:: Making new charsets.
2308* Querying Character Sets:: Test charsets for membership etc.
2309* Character-Set Algebra:: Calculating new charsets.
2310* Standard Character Sets:: Variables containing predefined charsets.
2311@end menu
2312
2313@node Character Set Predicates/Comparison
2314@subsubsection Character Set Predicates/Comparison
2315
2316Use these procedures for testing whether an object is a character set,
2317or whether several character sets are equal or subsets of each other.
2318@code{char-set-hash} can be used for calculating a hash value, maybe for
2319usage in fast lookup procedures.
2320
2321@deffn {Scheme Procedure} char-set? obj
2322@deffnx {C Function} scm_char_set_p (obj)
2323Return @code{#t} if @var{obj} is a character set, @code{#f}
2324otherwise.
2325@end deffn
2326
df0a1002 2327@deffn {Scheme Procedure} char-set= char_set @dots{}
050ab45f
MV
2328@deffnx {C Function} scm_char_set_eq (char_sets)
2329Return @code{#t} if all given character sets are equal.
2330@end deffn
2331
df0a1002 2332@deffn {Scheme Procedure} char-set<= char_set @dots{}
050ab45f 2333@deffnx {C Function} scm_char_set_leq (char_sets)
64de6db5
BT
2334Return @code{#t} if every character set @var{char_set}i is a subset
2335of character set @var{char_set}i+1.
050ab45f
MV
2336@end deffn
2337
2338@deffn {Scheme Procedure} char-set-hash cs [bound]
2339@deffnx {C Function} scm_char_set_hash (cs, bound)
2340Compute a hash value for the character set @var{cs}. If
2341@var{bound} is given and non-zero, it restricts the
df0a1002 2342returned value to the range 0 @dots{} @var{bound} - 1.
050ab45f
MV
2343@end deffn
2344
2345@c ===================================================================
2346
2347@node Iterating Over Character Sets
2348@subsubsection Iterating Over Character Sets
2349
2350Character set cursors are a means for iterating over the members of a
2351character sets. After creating a character set cursor with
2352@code{char-set-cursor}, a cursor can be dereferenced with
2353@code{char-set-ref}, advanced to the next member with
2354@code{char-set-cursor-next}. Whether a cursor has passed past the last
2355element of the set can be checked with @code{end-of-char-set?}.
2356
2357Additionally, mapping and (un-)folding procedures for character sets are
2358provided.
2359
2360@deffn {Scheme Procedure} char-set-cursor cs
2361@deffnx {C Function} scm_char_set_cursor (cs)
2362Return a cursor into the character set @var{cs}.
2363@end deffn
2364
2365@deffn {Scheme Procedure} char-set-ref cs cursor
2366@deffnx {C Function} scm_char_set_ref (cs, cursor)
2367Return the character at the current cursor position
2368@var{cursor} in the character set @var{cs}. It is an error to
2369pass a cursor for which @code{end-of-char-set?} returns true.
2370@end deffn
2371
2372@deffn {Scheme Procedure} char-set-cursor-next cs cursor
2373@deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2374Advance the character set cursor @var{cursor} to the next
2375character in the character set @var{cs}. It is an error if the
2376cursor given satisfies @code{end-of-char-set?}.
2377@end deffn
2378
2379@deffn {Scheme Procedure} end-of-char-set? cursor
2380@deffnx {C Function} scm_end_of_char_set_p (cursor)
2381Return @code{#t} if @var{cursor} has reached the end of a
2382character set, @code{#f} otherwise.
2383@end deffn
2384
2385@deffn {Scheme Procedure} char-set-fold kons knil cs
2386@deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2387Fold the procedure @var{kons} over the character set @var{cs},
2388initializing it with @var{knil}.
2389@end deffn
2390
2391@deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2392@deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2393This is a fundamental constructor for character sets.
2394@itemize @bullet
2395@item @var{g} is used to generate a series of ``seed'' values
2396from the initial seed: @var{seed}, (@var{g} @var{seed}),
2397(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2398@item @var{p} tells us when to stop -- when it returns true
2399when applied to one of the seed values.
2400@item @var{f} maps each seed value to a character. These
2401characters are added to the base character set @var{base_cs} to
2402form the result; @var{base_cs} defaults to the empty set.
2403@end itemize
2404@end deffn
2405
2406@deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2407@deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2408This is a fundamental constructor for character sets.
2409@itemize @bullet
2410@item @var{g} is used to generate a series of ``seed'' values
2411from the initial seed: @var{seed}, (@var{g} @var{seed}),
2412(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2413@item @var{p} tells us when to stop -- when it returns true
2414when applied to one of the seed values.
2415@item @var{f} maps each seed value to a character. These
2416characters are added to the base character set @var{base_cs} to
2417form the result; @var{base_cs} defaults to the empty set.
2418@end itemize
2419@end deffn
2420
2421@deffn {Scheme Procedure} char-set-for-each proc cs
2422@deffnx {C Function} scm_char_set_for_each (proc, cs)
2423Apply @var{proc} to every character in the character set
2424@var{cs}. The return value is not specified.
2425@end deffn
2426
2427@deffn {Scheme Procedure} char-set-map proc cs
2428@deffnx {C Function} scm_char_set_map (proc, cs)
2429Map the procedure @var{proc} over every character in @var{cs}.
2430@var{proc} must be a character -> character procedure.
2431@end deffn
2432
2433@c ===================================================================
2434
2435@node Creating Character Sets
2436@subsubsection Creating Character Sets
2437
2438New character sets are produced with these procedures.
2439
2440@deffn {Scheme Procedure} char-set-copy cs
2441@deffnx {C Function} scm_char_set_copy (cs)
2442Return a newly allocated character set containing all
2443characters in @var{cs}.
2444@end deffn
2445
df0a1002
BT
2446@deffn {Scheme Procedure} char-set chr @dots{}
2447@deffnx {C Function} scm_char_set (chrs)
050ab45f
MV
2448Return a character set containing all given characters.
2449@end deffn
2450
2451@deffn {Scheme Procedure} list->char-set list [base_cs]
2452@deffnx {C Function} scm_list_to_char_set (list, base_cs)
2453Convert the character list @var{list} to a character set. If
2454the character set @var{base_cs} is given, the character in this
2455set are also included in the result.
2456@end deffn
2457
2458@deffn {Scheme Procedure} list->char-set! list base_cs
2459@deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2460Convert the character list @var{list} to a character set. The
2461characters are added to @var{base_cs} and @var{base_cs} is
2462returned.
2463@end deffn
2464
2465@deffn {Scheme Procedure} string->char-set str [base_cs]
2466@deffnx {C Function} scm_string_to_char_set (str, base_cs)
2467Convert the string @var{str} to a character set. If the
2468character set @var{base_cs} is given, the characters in this
2469set are also included in the result.
2470@end deffn
2471
2472@deffn {Scheme Procedure} string->char-set! str base_cs
2473@deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2474Convert the string @var{str} to a character set. The
2475characters from the string are added to @var{base_cs}, and
2476@var{base_cs} is returned.
2477@end deffn
2478
2479@deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2480@deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2481Return a character set containing every character from @var{cs}
2482so that it satisfies @var{pred}. If provided, the characters
2483from @var{base_cs} are added to the result.
2484@end deffn
2485
2486@deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2487@deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2488Return a character set containing every character from @var{cs}
2489so that it satisfies @var{pred}. The characters are added to
2490@var{base_cs} and @var{base_cs} is returned.
2491@end deffn
2492
2493@deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2494@deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2495Return a character set containing all characters whose
2496character codes lie in the half-open range
2497[@var{lower},@var{upper}).
2498
2499If @var{error} is a true value, an error is signalled if the
2500specified range contains characters which are not contained in
2501the implemented character range. If @var{error} is @code{#f},
be3eb25c 2502these characters are silently left out of the resulting
050ab45f
MV
2503character set.
2504
2505The characters in @var{base_cs} are added to the result, if
2506given.
2507@end deffn
2508
2509@deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2510@deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2511Return a character set containing all characters whose
2512character codes lie in the half-open range
2513[@var{lower},@var{upper}).
2514
2515If @var{error} is a true value, an error is signalled if the
2516specified range contains characters which are not contained in
2517the implemented character range. If @var{error} is @code{#f},
be3eb25c 2518these characters are silently left out of the resulting
050ab45f
MV
2519character set.
2520
2521The characters are added to @var{base_cs} and @var{base_cs} is
2522returned.
2523@end deffn
2524
2525@deffn {Scheme Procedure} ->char-set x
2526@deffnx {C Function} scm_to_char_set (x)
be3eb25c
MG
2527Coerces x into a char-set. @var{x} may be a string, character or
2528char-set. A string is converted to the set of its constituent
2529characters; a character is converted to a singleton set; a char-set is
2530returned as-is.
050ab45f
MV
2531@end deffn
2532
2533@c ===================================================================
2534
2535@node Querying Character Sets
2536@subsubsection Querying Character Sets
2537
2538Access the elements and other information of a character set with these
2539procedures.
2540
be3eb25c
MG
2541@deffn {Scheme Procedure} %char-set-dump cs
2542Returns an association list containing debugging information
2543for @var{cs}. The association list has the following entries.
2544@table @code
2545@item char-set
2546The char-set itself
2547@item len
2548The number of groups of contiguous code points the char-set
2549contains
2550@item ranges
2551A list of lists where each sublist is a range of code points
2552and their associated characters
2553@end table
2554The return value of this function cannot be relied upon to be
2555consistent between versions of Guile and should not be used in code.
2556@end deffn
2557
050ab45f
MV
2558@deffn {Scheme Procedure} char-set-size cs
2559@deffnx {C Function} scm_char_set_size (cs)
2560Return the number of elements in character set @var{cs}.
2561@end deffn
2562
2563@deffn {Scheme Procedure} char-set-count pred cs
2564@deffnx {C Function} scm_char_set_count (pred, cs)
2565Return the number of the elements int the character set
2566@var{cs} which satisfy the predicate @var{pred}.
2567@end deffn
2568
2569@deffn {Scheme Procedure} char-set->list cs
2570@deffnx {C Function} scm_char_set_to_list (cs)
2571Return a list containing the elements of the character set
2572@var{cs}.
2573@end deffn
2574
2575@deffn {Scheme Procedure} char-set->string cs
2576@deffnx {C Function} scm_char_set_to_string (cs)
2577Return a string containing the elements of the character set
2578@var{cs}. The order in which the characters are placed in the
2579string is not defined.
2580@end deffn
2581
2582@deffn {Scheme Procedure} char-set-contains? cs ch
2583@deffnx {C Function} scm_char_set_contains_p (cs, ch)
2584Return @code{#t} iff the character @var{ch} is contained in the
2585character set @var{cs}.
2586@end deffn
2587
2588@deffn {Scheme Procedure} char-set-every pred cs
2589@deffnx {C Function} scm_char_set_every (pred, cs)
2590Return a true value if every character in the character set
2591@var{cs} satisfies the predicate @var{pred}.
2592@end deffn
2593
2594@deffn {Scheme Procedure} char-set-any pred cs
2595@deffnx {C Function} scm_char_set_any (pred, cs)
2596Return a true value if any character in the character set
2597@var{cs} satisfies the predicate @var{pred}.
2598@end deffn
2599
2600@c ===================================================================
2601
2602@node Character-Set Algebra
2603@subsubsection Character-Set Algebra
2604
2605Character sets can be manipulated with the common set algebra operation,
2606such as union, complement, intersection etc. All of these procedures
2607provide side-effecting variants, which modify their character set
2608argument(s).
2609
df0a1002
BT
2610@deffn {Scheme Procedure} char-set-adjoin cs chr @dots{}
2611@deffnx {C Function} scm_char_set_adjoin (cs, chrs)
050ab45f
MV
2612Add all character arguments to the first argument, which must
2613be a character set.
2614@end deffn
2615
df0a1002
BT
2616@deffn {Scheme Procedure} char-set-delete cs chr @dots{}
2617@deffnx {C Function} scm_char_set_delete (cs, chrs)
050ab45f
MV
2618Delete all character arguments from the first argument, which
2619must be a character set.
2620@end deffn
2621
df0a1002
BT
2622@deffn {Scheme Procedure} char-set-adjoin! cs chr @dots{}
2623@deffnx {C Function} scm_char_set_adjoin_x (cs, chrs)
050ab45f
MV
2624Add all character arguments to the first argument, which must
2625be a character set.
2626@end deffn
2627
df0a1002
BT
2628@deffn {Scheme Procedure} char-set-delete! cs chr @dots{}
2629@deffnx {C Function} scm_char_set_delete_x (cs, chrs)
050ab45f
MV
2630Delete all character arguments from the first argument, which
2631must be a character set.
2632@end deffn
2633
2634@deffn {Scheme Procedure} char-set-complement cs
2635@deffnx {C Function} scm_char_set_complement (cs)
2636Return the complement of the character set @var{cs}.
2637@end deffn
2638
be3eb25c
MG
2639Note that the complement of a character set is likely to contain many
2640reserved code points (code points that are not associated with
2641characters). It may be helpful to modify the output of
2642@code{char-set-complement} by computing its intersection with the set
2643of designated code points, @code{char-set:designated}.
2644
df0a1002
BT
2645@deffn {Scheme Procedure} char-set-union cs @dots{}
2646@deffnx {C Function} scm_char_set_union (char_sets)
050ab45f
MV
2647Return the union of all argument character sets.
2648@end deffn
2649
df0a1002
BT
2650@deffn {Scheme Procedure} char-set-intersection cs @dots{}
2651@deffnx {C Function} scm_char_set_intersection (char_sets)
050ab45f
MV
2652Return the intersection of all argument character sets.
2653@end deffn
2654
df0a1002
BT
2655@deffn {Scheme Procedure} char-set-difference cs1 cs @dots{}
2656@deffnx {C Function} scm_char_set_difference (cs1, char_sets)
050ab45f
MV
2657Return the difference of all argument character sets.
2658@end deffn
2659
df0a1002
BT
2660@deffn {Scheme Procedure} char-set-xor cs @dots{}
2661@deffnx {C Function} scm_char_set_xor (char_sets)
050ab45f
MV
2662Return the exclusive-or of all argument character sets.
2663@end deffn
2664
df0a1002
BT
2665@deffn {Scheme Procedure} char-set-diff+intersection cs1 cs @dots{}
2666@deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, char_sets)
050ab45f
MV
2667Return the difference and the intersection of all argument
2668character sets.
2669@end deffn
2670
2671@deffn {Scheme Procedure} char-set-complement! cs
2672@deffnx {C Function} scm_char_set_complement_x (cs)
2673Return the complement of the character set @var{cs}.
2674@end deffn
2675
df0a1002
BT
2676@deffn {Scheme Procedure} char-set-union! cs1 cs @dots{}
2677@deffnx {C Function} scm_char_set_union_x (cs1, char_sets)
050ab45f
MV
2678Return the union of all argument character sets.
2679@end deffn
2680
df0a1002
BT
2681@deffn {Scheme Procedure} char-set-intersection! cs1 cs @dots{}
2682@deffnx {C Function} scm_char_set_intersection_x (cs1, char_sets)
050ab45f
MV
2683Return the intersection of all argument character sets.
2684@end deffn
2685
df0a1002
BT
2686@deffn {Scheme Procedure} char-set-difference! cs1 cs @dots{}
2687@deffnx {C Function} scm_char_set_difference_x (cs1, char_sets)
050ab45f
MV
2688Return the difference of all argument character sets.
2689@end deffn
2690
df0a1002
BT
2691@deffn {Scheme Procedure} char-set-xor! cs1 cs @dots{}
2692@deffnx {C Function} scm_char_set_xor_x (cs1, char_sets)
050ab45f
MV
2693Return the exclusive-or of all argument character sets.
2694@end deffn
2695
df0a1002
BT
2696@deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 cs @dots{}
2697@deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, char_sets)
050ab45f
MV
2698Return the difference and the intersection of all argument
2699character sets.
2700@end deffn
2701
2702@c ===================================================================
2703
2704@node Standard Character Sets
2705@subsubsection Standard Character Sets
2706
2707In order to make the use of the character set data type and procedures
2708useful, several predefined character set variables exist.
2709
49dec04b
LC
2710@cindex codeset
2711@cindex charset
2712@cindex locale
2713
be3eb25c
MG
2714These character sets are locale independent and are not recomputed
2715upon a @code{setlocale} call. They contain characters from the whole
2716range of Unicode code points. For instance, @code{char-set:letter}
bf8d8454 2717contains about 100,000 characters.
49dec04b 2718
c9dc8c6c
MV
2719@defvr {Scheme Variable} char-set:lower-case
2720@defvrx {C Variable} scm_char_set_lower_case
050ab45f 2721All lower-case characters.
c9dc8c6c 2722@end defvr
050ab45f 2723
c9dc8c6c
MV
2724@defvr {Scheme Variable} char-set:upper-case
2725@defvrx {C Variable} scm_char_set_upper_case
050ab45f 2726All upper-case characters.
c9dc8c6c 2727@end defvr
050ab45f 2728
c9dc8c6c
MV
2729@defvr {Scheme Variable} char-set:title-case
2730@defvrx {C Variable} scm_char_set_title_case
be3eb25c
MG
2731All single characters that function as if they were an upper-case
2732letter followed by a lower-case letter.
c9dc8c6c 2733@end defvr
050ab45f 2734
c9dc8c6c
MV
2735@defvr {Scheme Variable} char-set:letter
2736@defvrx {C Variable} scm_char_set_letter
be3eb25c
MG
2737All letters. This includes @code{char-set:lower-case},
2738@code{char-set:upper-case}, @code{char-set:title-case}, and many
2739letters that have no case at all. For example, Chinese and Japanese
2740characters typically have no concept of case.
c9dc8c6c 2741@end defvr
050ab45f 2742
c9dc8c6c
MV
2743@defvr {Scheme Variable} char-set:digit
2744@defvrx {C Variable} scm_char_set_digit
050ab45f 2745All digits.
c9dc8c6c 2746@end defvr
050ab45f 2747
c9dc8c6c
MV
2748@defvr {Scheme Variable} char-set:letter+digit
2749@defvrx {C Variable} scm_char_set_letter_and_digit
050ab45f 2750The union of @code{char-set:letter} and @code{char-set:digit}.
c9dc8c6c 2751@end defvr
050ab45f 2752
c9dc8c6c
MV
2753@defvr {Scheme Variable} char-set:graphic
2754@defvrx {C Variable} scm_char_set_graphic
050ab45f 2755All characters which would put ink on the paper.
c9dc8c6c 2756@end defvr
050ab45f 2757
c9dc8c6c
MV
2758@defvr {Scheme Variable} char-set:printing
2759@defvrx {C Variable} scm_char_set_printing
050ab45f 2760The union of @code{char-set:graphic} and @code{char-set:whitespace}.
c9dc8c6c 2761@end defvr
050ab45f 2762
c9dc8c6c
MV
2763@defvr {Scheme Variable} char-set:whitespace
2764@defvrx {C Variable} scm_char_set_whitespace
050ab45f 2765All whitespace characters.
c9dc8c6c 2766@end defvr
050ab45f 2767
c9dc8c6c
MV
2768@defvr {Scheme Variable} char-set:blank
2769@defvrx {C Variable} scm_char_set_blank
be3eb25c
MG
2770All horizontal whitespace characters, which notably includes
2771@code{#\space} and @code{#\tab}.
c9dc8c6c 2772@end defvr
050ab45f 2773
c9dc8c6c
MV
2774@defvr {Scheme Variable} char-set:iso-control
2775@defvrx {C Variable} scm_char_set_iso_control
be3eb25c
MG
2776The ISO control characters are the C0 control characters (U+0000 to
2777U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2778U+009F).
c9dc8c6c 2779@end defvr
050ab45f 2780
c9dc8c6c
MV
2781@defvr {Scheme Variable} char-set:punctuation
2782@defvrx {C Variable} scm_char_set_punctuation
be3eb25c
MG
2783All punctuation characters, such as the characters
2784@code{!"#%&'()*,-./:;?@@[\\]_@{@}}
c9dc8c6c 2785@end defvr
050ab45f 2786
c9dc8c6c
MV
2787@defvr {Scheme Variable} char-set:symbol
2788@defvrx {C Variable} scm_char_set_symbol
be3eb25c 2789All symbol characters, such as the characters @code{$+<=>^`|~}.
c9dc8c6c 2790@end defvr
050ab45f 2791
c9dc8c6c
MV
2792@defvr {Scheme Variable} char-set:hex-digit
2793@defvrx {C Variable} scm_char_set_hex_digit
050ab45f 2794The hexadecimal digits @code{0123456789abcdefABCDEF}.
c9dc8c6c 2795@end defvr
050ab45f 2796
c9dc8c6c
MV
2797@defvr {Scheme Variable} char-set:ascii
2798@defvrx {C Variable} scm_char_set_ascii
050ab45f 2799All ASCII characters.
c9dc8c6c 2800@end defvr
050ab45f 2801
c9dc8c6c
MV
2802@defvr {Scheme Variable} char-set:empty
2803@defvrx {C Variable} scm_char_set_empty
050ab45f 2804The empty character set.
c9dc8c6c 2805@end defvr
050ab45f 2806
be3eb25c
MG
2807@defvr {Scheme Variable} char-set:designated
2808@defvrx {C Variable} scm_char_set_designated
2809This character set contains all designated code points. This includes
2810all the code points to which Unicode has assigned a character or other
2811meaning.
2812@end defvr
2813
c9dc8c6c
MV
2814@defvr {Scheme Variable} char-set:full
2815@defvrx {C Variable} scm_char_set_full
be3eb25c
MG
2816This character set contains all possible code points. This includes
2817both designated and reserved code points.
c9dc8c6c 2818@end defvr
07d83abe
MV
2819
2820@node Strings
2821@subsection Strings
2822@tpindex Strings
2823
2824Strings are fixed-length sequences of characters. They can be created
2825by calling constructor procedures, but they can also literally get
2826entered at the @acronym{REPL} or in Scheme source files.
2827
2828@c Guile provides a rich set of string processing procedures, because text
2829@c handling is very important when Guile is used as a scripting language.
2830
2831Strings always carry the information about how many characters they are
2832composed of with them, so there is no special end-of-string character,
2833like in C. That means that Scheme strings can contain any character,
c48c62d0
MV
2834even the @samp{#\nul} character @samp{\0}.
2835
2836To use strings efficiently, you need to know a bit about how Guile
2837implements them. In Guile, a string consists of two parts, a head and
2838the actual memory where the characters are stored. When a string (or
2839a substring of it) is copied, only a new head gets created, the memory
2840is usually not copied. The two heads start out pointing to the same
2841memory.
2842
2843When one of these two strings is modified, as with @code{string-set!},
2844their common memory does get copied so that each string has its own
be3eb25c 2845memory and modifying one does not accidentally modify the other as well.
c48c62d0
MV
2846Thus, Guile's strings are `copy on write'; the actual copying of their
2847memory is delayed until one string is written to.
2848
2849This implementation makes functions like @code{substring} very
2850efficient in the common case that no modifications are done to the
2851involved strings.
2852
2853If you do know that your strings are getting modified right away, you
2854can use @code{substring/copy} instead of @code{substring}. This
2855function performs the copy immediately at the time of creation. This
2856is more efficient, especially in a multi-threaded program. Also,
2857@code{substring/copy} can avoid the problem that a short substring
2858holds on to the memory of a very large original string that could
2859otherwise be recycled.
2860
2861If you want to avoid the copy altogether, so that modifications of one
2862string show up in the other, you can use @code{substring/shared}. The
2863strings created by this procedure are called @dfn{mutation sharing
2864substrings} since the substring and the original string share
2865modifications to each other.
07d83abe 2866
05256760
MV
2867If you want to prevent modifications, use @code{substring/read-only}.
2868
c9dc8c6c
MV
2869Guile provides all procedures of SRFI-13 and a few more.
2870
07d83abe 2871@menu
5676b4fa
MV
2872* String Syntax:: Read syntax for strings.
2873* String Predicates:: Testing strings for certain properties.
2874* String Constructors:: Creating new string objects.
2875* List/String Conversion:: Converting from/to lists of characters.
2876* String Selection:: Select portions from strings.
2877* String Modification:: Modify parts or whole strings.
2878* String Comparison:: Lexicographic ordering predicates.
2879* String Searching:: Searching in strings.
2880* Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2881* Reversing and Appending Strings:: Appending strings to form a new string.
2882* Mapping Folding and Unfolding:: Iterating over strings.
2883* Miscellaneous String Operations:: Replicating, insertion, parsing, ...
67af975c 2884* Conversion to/from C::
5b6b22e8 2885* String Internals:: The storage strategy for strings.
07d83abe
MV
2886@end menu
2887
2888@node String Syntax
2889@subsubsection String Read Syntax
2890
2891@c In the following @code is used to get a good font in TeX etc, but
2892@c is omitted for Info format, so as not to risk any confusion over
2893@c whether surrounding ` ' quotes are part of the escape or are
2894@c special in a string (they're not).
2895
2896The read syntax for strings is an arbitrarily long sequence of
c48c62d0 2897characters enclosed in double quotes (@nicode{"}).
07d83abe 2898
67af975c
MG
2899Backslash is an escape character and can be used to insert the following
2900special characters. @nicode{\"} and @nicode{\\} are R5RS standard, the
2901next seven are R6RS standard --- notice they follow C syntax --- and the
2902remaining four are Guile extensions.
07d83abe
MV
2903
2904@table @asis
2905@item @nicode{\\}
2906Backslash character.
2907
2908@item @nicode{\"}
2909Double quote character (an unescaped @nicode{"} is otherwise the end
2910of the string).
2911
07d83abe
MV
2912@item @nicode{\a}
2913Bell character (ASCII 7).
2914
2915@item @nicode{\f}
2916Formfeed character (ASCII 12).
2917
2918@item @nicode{\n}
2919Newline character (ASCII 10).
2920
2921@item @nicode{\r}
2922Carriage return character (ASCII 13).
2923
2924@item @nicode{\t}
2925Tab character (ASCII 9).
2926
2927@item @nicode{\v}
2928Vertical tab character (ASCII 11).
2929
67a4a16d
MG
2930@item @nicode{\b}
2931Backspace character (ASCII 8).
2932
67af975c
MG
2933@item @nicode{\0}
2934NUL character (ASCII 0).
2935
c869f0c1
AW
2936@item @nicode{\} followed by newline (ASCII 10)
2937Nothing. This way if @nicode{\} is the last character in a line, the
2938string will continue with the first character from the next line,
2939without a line break.
2940
2941If the @code{hungry-eol-escapes} reader option is enabled, which is not
2942the case by default, leading whitespace on the next line is discarded.
2943
2944@lisp
2945"foo\
2946 bar"
2947@result{} "foo bar"
2948(read-enable 'hungry-eol-escapes)
2949"foo\
2950 bar"
2951@result{} "foobar"
2952@end lisp
07d83abe
MV
2953@item @nicode{\xHH}
2954Character code given by two hexadecimal digits. For example
2955@nicode{\x7f} for an ASCII DEL (127).
28cc8dac
MG
2956
2957@item @nicode{\uHHHH}
2958Character code given by four hexadecimal digits. For example
2959@nicode{\u0100} for a capital A with macron (U+0100).
2960
2961@item @nicode{\UHHHHHH}
2962Character code given by six hexadecimal digits. For example
2963@nicode{\U010402}.
07d83abe
MV
2964@end table
2965
2966@noindent
2967The following are examples of string literals:
2968
2969@lisp
2970"foo"
2971"bar plonk"
2972"Hello World"
2973"\"Hi\", he said."
2974@end lisp
2975
6ea30487
MG
2976The three escape sequences @code{\xHH}, @code{\uHHHH} and @code{\UHHHHHH} were
2977chosen to not break compatibility with code written for previous versions of
2978Guile. The R6RS specification suggests a different, incompatible syntax for hex
2979escapes: @code{\xHHHH;} -- a character code followed by one to eight hexadecimal
2980digits terminated with a semicolon. If this escape format is desired instead,
2981it can be enabled with the reader option @code{r6rs-hex-escapes}.
2982
2983@lisp
2984(read-enable 'r6rs-hex-escapes)
2985@end lisp
2986
1518f649 2987For more on reader options, @xref{Scheme Read}.
07d83abe
MV
2988
2989@node String Predicates
2990@subsubsection String Predicates
2991
2992The following procedures can be used to check whether a given string
2993fulfills some specified property.
2994
2995@rnindex string?
2996@deffn {Scheme Procedure} string? obj
2997@deffnx {C Function} scm_string_p (obj)
2998Return @code{#t} if @var{obj} is a string, else @code{#f}.
2999@end deffn
3000
91210d62
MV
3001@deftypefn {C Function} int scm_is_string (SCM obj)
3002Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
3003@end deftypefn
3004
07d83abe
MV
3005@deffn {Scheme Procedure} string-null? str
3006@deffnx {C Function} scm_string_null_p (str)
3007Return @code{#t} if @var{str}'s length is zero, and
3008@code{#f} otherwise.
3009@lisp
3010(string-null? "") @result{} #t
3011y @result{} "foo"
3012(string-null? y) @result{} #f
3013@end lisp
3014@end deffn
3015
5676b4fa
MV
3016@deffn {Scheme Procedure} string-any char_pred s [start [end]]
3017@deffnx {C Function} scm_string_any (char_pred, s, start, end)
c100a12c 3018Check if @var{char_pred} is true for any character in string @var{s}.
5676b4fa 3019
c100a12c
KR
3020@var{char_pred} can be a character to check for any equal to that, or
3021a character set (@pxref{Character Sets}) to check for any in that set,
3022or a predicate procedure to call.
5676b4fa 3023
c100a12c
KR
3024For a procedure, calls @code{(@var{char_pred} c)} are made
3025successively on the characters from @var{start} to @var{end}. If
3026@var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
3027stops and that return value is the return from @code{string-any}. The
3028call on the last character (ie.@: at @math{@var{end}-1}), if that
3029point is reached, is a tail call.
3030
3031If there are no characters in @var{s} (ie.@: @var{start} equals
3032@var{end}) then the return is @code{#f}.
5676b4fa
MV
3033@end deffn
3034
3035@deffn {Scheme Procedure} string-every char_pred s [start [end]]
3036@deffnx {C Function} scm_string_every (char_pred, s, start, end)
c100a12c
KR
3037Check if @var{char_pred} is true for every character in string
3038@var{s}.
5676b4fa 3039
c100a12c
KR
3040@var{char_pred} can be a character to check for every character equal
3041to that, or a character set (@pxref{Character Sets}) to check for
3042every character being in that set, or a predicate procedure to call.
3043
3044For a procedure, calls @code{(@var{char_pred} c)} are made
3045successively on the characters from @var{start} to @var{end}. If
3046@var{char_pred} returns @code{#f}, @code{string-every} stops and
3047returns @code{#f}. The call on the last character (ie.@: at
3048@math{@var{end}-1}), if that point is reached, is a tail call and the
3049return from that call is the return from @code{string-every}.
5676b4fa
MV
3050
3051If there are no characters in @var{s} (ie.@: @var{start} equals
3052@var{end}) then the return is @code{#t}.
5676b4fa
MV
3053@end deffn
3054
07d83abe
MV
3055@node String Constructors
3056@subsubsection String Constructors
3057
3058The string constructor procedures create new string objects, possibly
c48c62d0
MV
3059initializing them with some specified character data. See also
3060@xref{String Selection}, for ways to create strings from existing
3061strings.
07d83abe
MV
3062
3063@c FIXME::martin: list->string belongs into `List/String Conversion'
3064
bba26c32 3065@deffn {Scheme Procedure} string char@dots{}
07d83abe 3066@rnindex string
bba26c32
KR
3067Return a newly allocated string made from the given character
3068arguments.
3069
3070@example
3071(string #\x #\y #\z) @result{} "xyz"
3072(string) @result{} ""
3073@end example
3074@end deffn
3075
3076@deffn {Scheme Procedure} list->string lst
3077@deffnx {C Function} scm_string (lst)
07d83abe 3078@rnindex list->string
bba26c32
KR
3079Return a newly allocated string made from a list of characters.
3080
3081@example
3082(list->string '(#\a #\b #\c)) @result{} "abc"
3083@end example
3084@end deffn
3085
3086@deffn {Scheme Procedure} reverse-list->string lst
3087@deffnx {C Function} scm_reverse_list_to_string (lst)
3088Return a newly allocated string made from a list of characters, in
3089reverse order.
3090
3091@example
3092(reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
3093@end example
07d83abe
MV
3094@end deffn
3095
3096@rnindex make-string
3097@deffn {Scheme Procedure} make-string k [chr]
3098@deffnx {C Function} scm_make_string (k, chr)
3099Return a newly allocated string of
3100length @var{k}. If @var{chr} is given, then all elements of
3101the string are initialized to @var{chr}, otherwise the contents
64de6db5 3102of the string are unspecified.
07d83abe
MV
3103@end deffn
3104
c48c62d0
MV
3105@deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
3106Like @code{scm_make_string}, but expects the length as a
3107@code{size_t}.
3108@end deftypefn
3109
5676b4fa
MV
3110@deffn {Scheme Procedure} string-tabulate proc len
3111@deffnx {C Function} scm_string_tabulate (proc, len)
3112@var{proc} is an integer->char procedure. Construct a string
3113of size @var{len} by applying @var{proc} to each index to
3114produce the corresponding string element. The order in which
3115@var{proc} is applied to the indices is not specified.
3116@end deffn
3117
5676b4fa
MV
3118@deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
3119@deffnx {C Function} scm_string_join (ls, delimiter, grammar)
3120Append the string in the string list @var{ls}, using the string
64de6db5 3121@var{delimiter} as a delimiter between the elements of @var{ls}.
5676b4fa
MV
3122@var{grammar} is a symbol which specifies how the delimiter is
3123placed between the strings, and defaults to the symbol
3124@code{infix}.
3125
3126@table @code
3127@item infix
3128Insert the separator between list elements. An empty string
3129will produce an empty list.
3130@item string-infix
3131Like @code{infix}, but will raise an error if given the empty
3132list.
3133@item suffix
3134Insert the separator after every list element.
3135@item prefix
3136Insert the separator before each list element.
3137@end table
3138@end deffn
3139
07d83abe
MV
3140@node List/String Conversion
3141@subsubsection List/String conversion
3142
3143When processing strings, it is often convenient to first convert them
3144into a list representation by using the procedure @code{string->list},
3145work with the resulting list, and then convert it back into a string.
3146These procedures are useful for similar tasks.
3147
3148@rnindex string->list
5676b4fa
MV
3149@deffn {Scheme Procedure} string->list str [start [end]]
3150@deffnx {C Function} scm_substring_to_list (str, start, end)
07d83abe 3151@deffnx {C Function} scm_string_to_list (str)
5676b4fa 3152Convert the string @var{str} into a list of characters.
07d83abe
MV
3153@end deffn
3154
3155@deffn {Scheme Procedure} string-split str chr
3156@deffnx {C Function} scm_string_split (str, chr)
ecb87335 3157Split the string @var{str} into a list of substrings delimited
07d83abe
MV
3158by appearances of the character @var{chr}. Note that an empty substring
3159between separator characters will result in an empty string in the
3160result list.
3161
3162@lisp
3163(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
3164@result{}
3165("root" "x" "0" "0" "root" "/root" "/bin/bash")
3166
3167(string-split "::" #\:)
3168@result{}
3169("" "" "")
3170
3171(string-split "" #\:)
3172@result{}
3173("")
3174@end lisp
3175@end deffn
3176
3177
3178@node String Selection
3179@subsubsection String Selection
3180
3181Portions of strings can be extracted by these procedures.
3182@code{string-ref} delivers individual characters whereas
3183@code{substring} can be used to extract substrings from longer strings.
3184
3185@rnindex string-length
3186@deffn {Scheme Procedure} string-length string
3187@deffnx {C Function} scm_string_length (string)
3188Return the number of characters in @var{string}.
3189@end deffn
3190
c48c62d0
MV
3191@deftypefn {C Function} size_t scm_c_string_length (SCM str)
3192Return the number of characters in @var{str} as a @code{size_t}.
3193@end deftypefn
3194
07d83abe
MV
3195@rnindex string-ref
3196@deffn {Scheme Procedure} string-ref str k
3197@deffnx {C Function} scm_string_ref (str, k)
3198Return character @var{k} of @var{str} using zero-origin
3199indexing. @var{k} must be a valid index of @var{str}.
3200@end deffn
3201
c48c62d0
MV
3202@deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
3203Return character @var{k} of @var{str} using zero-origin
3204indexing. @var{k} must be a valid index of @var{str}.
3205@end deftypefn
3206
07d83abe 3207@rnindex string-copy
5676b4fa
MV
3208@deffn {Scheme Procedure} string-copy str [start [end]]
3209@deffnx {C Function} scm_substring_copy (str, start, end)
07d83abe 3210@deffnx {C Function} scm_string_copy (str)
5676b4fa 3211Return a copy of the given string @var{str}.
c48c62d0
MV
3212
3213The returned string shares storage with @var{str} initially, but it is
3214copied as soon as one of the two strings is modified.
07d83abe
MV
3215@end deffn
3216
3217@rnindex substring
3218@deffn {Scheme Procedure} substring str start [end]
3219@deffnx {C Function} scm_substring (str, start, end)
c48c62d0 3220Return a new string formed from the characters
07d83abe
MV
3221of @var{str} beginning with index @var{start} (inclusive) and
3222ending with index @var{end} (exclusive).
3223@var{str} must be a string, @var{start} and @var{end} must be
3224exact integers satisfying:
3225
32260 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
c48c62d0
MV
3227
3228The returned string shares storage with @var{str} initially, but it is
3229copied as soon as one of the two strings is modified.
3230@end deffn
3231
3232@deffn {Scheme Procedure} substring/shared str start [end]
3233@deffnx {C Function} scm_substring_shared (str, start, end)
3234Like @code{substring}, but the strings continue to share their storage
3235even if they are modified. Thus, modifications to @var{str} show up
3236in the new string, and vice versa.
3237@end deffn
3238
3239@deffn {Scheme Procedure} substring/copy str start [end]
3240@deffnx {C Function} scm_substring_copy (str, start, end)
3241Like @code{substring}, but the storage for the new string is copied
3242immediately.
07d83abe
MV
3243@end deffn
3244
05256760
MV
3245@deffn {Scheme Procedure} substring/read-only str start [end]
3246@deffnx {C Function} scm_substring_read_only (str, start, end)
3247Like @code{substring}, but the resulting string can not be modified.
3248@end deffn
3249
c48c62d0
MV
3250@deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
3251@deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
3252@deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
05256760 3253@deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
c48c62d0
MV
3254Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
3255@end deftypefn
3256
5676b4fa
MV
3257@deffn {Scheme Procedure} string-take s n
3258@deffnx {C Function} scm_string_take (s, n)
3259Return the @var{n} first characters of @var{s}.
3260@end deffn
3261
3262@deffn {Scheme Procedure} string-drop s n
3263@deffnx {C Function} scm_string_drop (s, n)
3264Return all but the first @var{n} characters of @var{s}.
3265@end deffn
3266
3267@deffn {Scheme Procedure} string-take-right s n
3268@deffnx {C Function} scm_string_take_right (s, n)
3269Return the @var{n} last characters of @var{s}.
3270@end deffn
3271
3272@deffn {Scheme Procedure} string-drop-right s n
3273@deffnx {C Function} scm_string_drop_right (s, n)
3274Return all but the last @var{n} characters of @var{s}.
3275@end deffn
3276
3277@deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
6337e7fb 3278@deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
5676b4fa 3279@deffnx {C Function} scm_string_pad (s, len, chr, start, end)
5676b4fa 3280@deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
6337e7fb 3281Take characters @var{start} to @var{end} from the string @var{s} and
64de6db5 3282either pad with @var{chr} or truncate them to give @var{len}
6337e7fb
KR
3283characters.
3284
3285@code{string-pad} pads or truncates on the left, so for example
3286
3287@example
3288(string-pad "x" 3) @result{} " x"
3289(string-pad "abcde" 3) @result{} "cde"
3290@end example
3291
3292@code{string-pad-right} pads or truncates on the right, so for example
3293
3294@example
3295(string-pad-right "x" 3) @result{} "x "
3296(string-pad-right "abcde" 3) @result{} "abc"
3297@end example
5676b4fa
MV
3298@end deffn
3299
3300@deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
dc297bb7
KR
3301@deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
3302@deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
5676b4fa 3303@deffnx {C Function} scm_string_trim (s, char_pred, start, end)
5676b4fa 3304@deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
5676b4fa 3305@deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
be3eb25c 3306Trim occurrences of @var{char_pred} from the ends of @var{s}.
5676b4fa 3307
dc297bb7
KR
3308@code{string-trim} trims @var{char_pred} characters from the left
3309(start) of the string, @code{string-trim-right} trims them from the
3310right (end) of the string, @code{string-trim-both} trims from both
3311ends.
5676b4fa 3312
dc297bb7
KR
3313@var{char_pred} can be a character, a character set, or a predicate
3314procedure to call on each character. If @var{char_pred} is not given
3315the default is whitespace as per @code{char-set:whitespace}
3316(@pxref{Standard Character Sets}).
5676b4fa 3317
dc297bb7
KR
3318@example
3319(string-trim " x ") @result{} "x "
3320(string-trim-right "banana" #\a) @result{} "banan"
3321(string-trim-both ".,xy:;" char-set:punctuation)
3322 @result{} "xy"
3323(string-trim-both "xyzzy" (lambda (c)
3324 (or (eqv? c #\x)
3325 (eqv? c #\y))))
3326 @result{} "zz"
3327@end example
5676b4fa
MV
3328@end deffn
3329
07d83abe
MV
3330@node String Modification
3331@subsubsection String Modification
3332
3333These procedures are for modifying strings in-place. This means that the
3334result of the operation is not a new string; instead, the original string's
3335memory representation is modified.
3336
3337@rnindex string-set!
3338@deffn {Scheme Procedure} string-set! str k chr
3339@deffnx {C Function} scm_string_set_x (str, k, chr)
3340Store @var{chr} in element @var{k} of @var{str} and return
3341an unspecified value. @var{k} must be a valid index of
3342@var{str}.
3343@end deffn
3344
c48c62d0
MV
3345@deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
3346Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
3347@end deftypefn
3348
07d83abe 3349@rnindex string-fill!
5676b4fa
MV
3350@deffn {Scheme Procedure} string-fill! str chr [start [end]]
3351@deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
07d83abe 3352@deffnx {C Function} scm_string_fill_x (str, chr)
5676b4fa
MV
3353Stores @var{chr} in every element of the given @var{str} and
3354returns an unspecified value.
07d83abe
MV
3355@end deffn
3356
3357@deffn {Scheme Procedure} substring-fill! str start end fill
3358@deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
3359Change every character in @var{str} between @var{start} and
3360@var{end} to @var{fill}.
3361
3362@lisp
4dbd29a9 3363(define y (string-copy "abcdefg"))
07d83abe
MV
3364(substring-fill! y 1 3 #\r)
3365y
3366@result{} "arrdefg"
3367@end lisp
3368@end deffn
3369
3370@deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
3371@deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
3372Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
3373into @var{str2} beginning at position @var{start2}.
3374@var{str1} and @var{str2} can be the same string.
3375@end deffn
3376
5676b4fa
MV
3377@deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
3378@deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
3379Copy the sequence of characters from index range [@var{start},
3380@var{end}) in string @var{s} to string @var{target}, beginning
3381at index @var{tstart}. The characters are copied left-to-right
3382or right-to-left as needed -- the copy is guaranteed to work,
3383even if @var{target} and @var{s} are the same string. It is an
3384error if the copy operation runs off the end of the target
3385string.
3386@end deffn
3387
07d83abe
MV
3388
3389@node String Comparison
3390@subsubsection String Comparison
3391
3392The procedures in this section are similar to the character ordering
3393predicates (@pxref{Characters}), but are defined on character sequences.
07d83abe 3394
5676b4fa 3395The first set is specified in R5RS and has names that end in @code{?}.
28cc8dac 3396The second set is specified in SRFI-13 and the names have not ending
67af975c 3397@code{?}.
28cc8dac
MG
3398
3399The predicates ending in @code{-ci} ignore the character case
3400when comparing strings. For now, case-insensitive comparison is done
3401using the R5RS rules, where every lower-case character that has a
3402single character upper-case form is converted to uppercase before
3403comparison. See @xref{Text Collation, the @code{(ice-9
b89c4943 3404i18n)} module}, for locale-dependent string comparison.
07d83abe
MV
3405
3406@rnindex string=?
df0a1002 3407@deffn {Scheme Procedure} string=? s1 s2 s3 @dots{}
df0a1002
BT
3408Lexicographic equality predicate; return @code{#t} if all strings are
3409the same length and contain the same characters in the same positions,
3410otherwise return @code{#f}.
07d83abe
MV
3411
3412The procedure @code{string-ci=?} treats upper and lower case
3413letters as though they were the same character, but
3414@code{string=?} treats upper and lower case as distinct
3415characters.
3416@end deffn
3417
3418@rnindex string<?
df0a1002 3419@deffn {Scheme Procedure} string<? s1 s2 s3 @dots{}
df0a1002
BT
3420Lexicographic ordering predicate; return @code{#t} if, for every pair of
3421consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3422lexicographically less than @var{str_i+1}.
07d83abe
MV
3423@end deffn
3424
3425@rnindex string<=?
df0a1002 3426@deffn {Scheme Procedure} string<=? s1 s2 s3 @dots{}
df0a1002
BT
3427Lexicographic ordering predicate; return @code{#t} if, for every pair of
3428consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3429lexicographically less than or equal to @var{str_i+1}.
07d83abe
MV
3430@end deffn
3431
3432@rnindex string>?
df0a1002 3433@deffn {Scheme Procedure} string>? s1 s2 s3 @dots{}
df0a1002
BT
3434Lexicographic ordering predicate; return @code{#t} if, for every pair of
3435consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3436lexicographically greater than @var{str_i+1}.
07d83abe
MV
3437@end deffn
3438
3439@rnindex string>=?
df0a1002 3440@deffn {Scheme Procedure} string>=? s1 s2 s3 @dots{}
df0a1002
BT
3441Lexicographic ordering predicate; return @code{#t} if, for every pair of
3442consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3443lexicographically greater than or equal to @var{str_i+1}.
07d83abe
MV
3444@end deffn
3445
3446@rnindex string-ci=?
df0a1002 3447@deffn {Scheme Procedure} string-ci=? s1 s2 s3 @dots{}
07d83abe 3448Case-insensitive string equality predicate; return @code{#t} if
df0a1002 3449all strings are the same length and their component
07d83abe
MV
3450characters match (ignoring case) at each position; otherwise
3451return @code{#f}.
3452@end deffn
3453
5676b4fa 3454@rnindex string-ci<?
df0a1002 3455@deffn {Scheme Procedure} string-ci<? s1 s2 s3 @dots{}
df0a1002
BT
3456Case insensitive lexicographic ordering predicate; return @code{#t} if,
3457for every pair of consecutive string arguments @var{str_i} and
3458@var{str_i+1}, @var{str_i} is lexicographically less than @var{str_i+1}
07d83abe
MV
3459regardless of case.
3460@end deffn
3461
3462@rnindex string<=?
df0a1002 3463@deffn {Scheme Procedure} string-ci<=? s1 s2 s3 @dots{}
df0a1002
BT
3464Case insensitive lexicographic ordering predicate; return @code{#t} if,
3465for every pair of consecutive string arguments @var{str_i} and
3466@var{str_i+1}, @var{str_i} is lexicographically less than or equal to
3467@var{str_i+1} regardless of case.
07d83abe
MV
3468@end deffn
3469
3470@rnindex string-ci>?
df0a1002 3471@deffn {Scheme Procedure} string-ci>? s1 s2 s3 @dots{}
df0a1002
BT
3472Case insensitive lexicographic ordering predicate; return @code{#t} if,
3473for every pair of consecutive string arguments @var{str_i} and
3474@var{str_i+1}, @var{str_i} is lexicographically greater than
3475@var{str_i+1} regardless of case.
07d83abe
MV
3476@end deffn
3477
3478@rnindex string-ci>=?
df0a1002 3479@deffn {Scheme Procedure} string-ci>=? s1 s2 s3 @dots{}
df0a1002
BT
3480Case insensitive lexicographic ordering predicate; return @code{#t} if,
3481for every pair of consecutive string arguments @var{str_i} and
3482@var{str_i+1}, @var{str_i} is lexicographically greater than or equal to
3483@var{str_i+1} regardless of case.
07d83abe
MV
3484@end deffn
3485
5676b4fa
MV
3486@deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3487@deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3488Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3489mismatch index, depending upon whether @var{s1} is less than,
3490equal to, or greater than @var{s2}. The mismatch index is the
3491largest index @var{i} such that for every 0 <= @var{j} <
3492@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3493@var{i} is the first position that does not match.
3494@end deffn
3495
3496@deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3497@deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3498Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3499mismatch index, depending upon whether @var{s1} is less than,
3500equal to, or greater than @var{s2}. The mismatch index is the
3501largest index @var{i} such that for every 0 <= @var{j} <
3502@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3323ec06
NJ
3503@var{i} is the first position where the lowercased letters
3504do not match.
3505
5676b4fa
MV
3506@end deffn
3507
3508@deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3509@deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3510Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3511value otherwise.
3512@end deffn
3513
3514@deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3515@deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3516Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3517value otherwise.
3518@end deffn
3519
3520@deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3521@deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3522Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3523true value otherwise.
3524@end deffn
3525
3526@deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3527@deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3528Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3529true value otherwise.
3530@end deffn
3531
3532@deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3533@deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3534Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3535value otherwise.
3536@end deffn
3537
3538@deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3539@deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3540Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3541otherwise.
3542@end deffn
3543
3544@deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3545@deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3546Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3547value otherwise. The character comparison is done
3548case-insensitively.
3549@end deffn
3550
3551@deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3552@deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3553Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3554value otherwise. The character comparison is done
3555case-insensitively.
3556@end deffn
3557
3558@deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3559@deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3560Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3561true value otherwise. The character comparison is done
3562case-insensitively.
3563@end deffn
3564
3565@deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3566@deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3567Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3568true value otherwise. The character comparison is done
3569case-insensitively.
3570@end deffn
3571
3572@deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3573@deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3574Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3575value otherwise. The character comparison is done
3576case-insensitively.
3577@end deffn
3578
3579@deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3580@deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3581Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3582otherwise. The character comparison is done
3583case-insensitively.
3584@end deffn
3585
3586@deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3587@deffnx {C Function} scm_substring_hash (s, bound, start, end)
64de6db5 3588Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
5676b4fa
MV
3589@end deffn
3590
3591@deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3592@deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
64de6db5 3593Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
5676b4fa 3594@end deffn
07d83abe 3595
edb7bb47
JG
3596Because the same visual appearance of an abstract Unicode character can
3597be obtained via multiple sequences of Unicode characters, even the
3598case-insensitive string comparison functions described above may return
3599@code{#f} when presented with strings containing different
3600representations of the same character. For example, the Unicode
3601character ``LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE'' can be
3602represented with a single character (U+1E69) or by the character ``LATIN
3603SMALL LETTER S'' (U+0073) followed by the combining marks ``COMBINING
3604DOT BELOW'' (U+0323) and ``COMBINING DOT ABOVE'' (U+0307).
3605
3606For this reason, it is often desirable to ensure that the strings
3607to be compared are using a mutually consistent representation for every
3608character. The Unicode standard defines two methods of normalizing the
3609contents of strings: Decomposition, which breaks composite characters
3610into a set of constituent characters with an ordering defined by the
3611Unicode Standard; and composition, which performs the converse.
3612
3613There are two decomposition operations. ``Canonical decomposition''
3614produces character sequences that share the same visual appearance as
ecb87335 3615the original characters, while ``compatibility decomposition'' produces
edb7bb47
JG
3616ones whose visual appearances may differ from the originals but which
3617represent the same abstract character.
3618
3619These operations are encapsulated in the following set of normalization
3620forms:
3621
3622@table @dfn
3623@item NFD
3624Characters are decomposed to their canonical forms.
3625
3626@item NFKD
3627Characters are decomposed to their compatibility forms.
3628
3629@item NFC
3630Characters are decomposed to their canonical forms, then composed.
3631
3632@item NFKC
3633Characters are decomposed to their compatibility forms, then composed.
3634
3635@end table
3636
3637The functions below put their arguments into one of the forms described
3638above.
3639
3640@deffn {Scheme Procedure} string-normalize-nfd s
3641@deffnx {C Function} scm_string_normalize_nfd (s)
3642Return the @code{NFD} normalized form of @var{s}.
3643@end deffn
3644
3645@deffn {Scheme Procedure} string-normalize-nfkd s
3646@deffnx {C Function} scm_string_normalize_nfkd (s)
3647Return the @code{NFKD} normalized form of @var{s}.
3648@end deffn
3649
3650@deffn {Scheme Procedure} string-normalize-nfc s
3651@deffnx {C Function} scm_string_normalize_nfc (s)
3652Return the @code{NFC} normalized form of @var{s}.
3653@end deffn
3654
3655@deffn {Scheme Procedure} string-normalize-nfkc s
3656@deffnx {C Function} scm_string_normalize_nfkc (s)
3657Return the @code{NFKC} normalized form of @var{s}.
3658@end deffn
3659
07d83abe
MV
3660@node String Searching
3661@subsubsection String Searching
3662
5676b4fa
MV
3663@deffn {Scheme Procedure} string-index s char_pred [start [end]]
3664@deffnx {C Function} scm_string_index (s, char_pred, start, end)
3665Search through the string @var{s} from left to right, returning
be3eb25c 3666the index of the first occurrence of a character which
07d83abe 3667
5676b4fa
MV
3668@itemize @bullet
3669@item
3670equals @var{char_pred}, if it is character,
07d83abe 3671
5676b4fa 3672@item
be3eb25c 3673satisfies the predicate @var{char_pred}, if it is a procedure,
07d83abe 3674
5676b4fa
MV
3675@item
3676is in the set @var{char_pred}, if it is a character set.
3677@end itemize
bf7c2e96
LC
3678
3679Return @code{#f} if no match is found.
5676b4fa 3680@end deffn
07d83abe 3681
5676b4fa
MV
3682@deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3683@deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3684Search through the string @var{s} from right to left, returning
be3eb25c 3685the index of the last occurrence of a character which
5676b4fa
MV
3686
3687@itemize @bullet
3688@item
3689equals @var{char_pred}, if it is character,
3690
3691@item
be3eb25c 3692satisfies the predicate @var{char_pred}, if it is a procedure,
5676b4fa
MV
3693
3694@item
3695is in the set if @var{char_pred} is a character set.
3696@end itemize
bf7c2e96
LC
3697
3698Return @code{#f} if no match is found.
07d83abe
MV
3699@end deffn
3700
5676b4fa
MV
3701@deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3702@deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3703Return the length of the longest common prefix of the two
3704strings.
3705@end deffn
07d83abe 3706
5676b4fa
MV
3707@deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3708@deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3709Return the length of the longest common prefix of the two
3710strings, ignoring character case.
3711@end deffn
07d83abe 3712
5676b4fa
MV
3713@deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3714@deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3715Return the length of the longest common suffix of the two
3716strings.
3717@end deffn
07d83abe 3718
5676b4fa
MV
3719@deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3720@deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3721Return the length of the longest common suffix of the two
3722strings, ignoring character case.
3723@end deffn
3724
3725@deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3726@deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3727Is @var{s1} a prefix of @var{s2}?
3728@end deffn
3729
3730@deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3731@deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3732Is @var{s1} a prefix of @var{s2}, ignoring character case?
3733@end deffn
3734
3735@deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3736@deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3737Is @var{s1} a suffix of @var{s2}?
3738@end deffn
3739
3740@deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3741@deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3742Is @var{s1} a suffix of @var{s2}, ignoring character case?
3743@end deffn
3744
3745@deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3746@deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3747Search through the string @var{s} from right to left, returning
be3eb25c 3748the index of the last occurrence of a character which
5676b4fa
MV
3749
3750@itemize @bullet
3751@item
3752equals @var{char_pred}, if it is character,
3753
3754@item
be3eb25c 3755satisfies the predicate @var{char_pred}, if it is a procedure,
5676b4fa
MV
3756
3757@item
3758is in the set if @var{char_pred} is a character set.
3759@end itemize
bf7c2e96
LC
3760
3761Return @code{#f} if no match is found.
5676b4fa
MV
3762@end deffn
3763
3764@deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3765@deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3766Search through the string @var{s} from left to right, returning
be3eb25c 3767the index of the first occurrence of a character which
5676b4fa
MV
3768
3769@itemize @bullet
3770@item
3771does not equal @var{char_pred}, if it is character,
3772
3773@item
be3eb25c 3774does not satisfy the predicate @var{char_pred}, if it is a
5676b4fa
MV
3775procedure,
3776
3777@item
3778is not in the set if @var{char_pred} is a character set.
3779@end itemize
3780@end deffn
3781
3782@deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3783@deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3784Search through the string @var{s} from right to left, returning
be3eb25c 3785the index of the last occurrence of a character which
5676b4fa
MV
3786
3787@itemize @bullet
3788@item
3789does not equal @var{char_pred}, if it is character,
3790
3791@item
3792does not satisfy the predicate @var{char_pred}, if it is a
3793procedure,
3794
3795@item
3796is not in the set if @var{char_pred} is a character set.
3797@end itemize
3798@end deffn
3799
3800@deffn {Scheme Procedure} string-count s char_pred [start [end]]
3801@deffnx {C Function} scm_string_count (s, char_pred, start, end)
3802Return the count of the number of characters in the string
3803@var{s} which
3804
3805@itemize @bullet
3806@item
3807equals @var{char_pred}, if it is character,
3808
3809@item
be3eb25c 3810satisfies the predicate @var{char_pred}, if it is a procedure.
5676b4fa
MV
3811
3812@item
3813is in the set @var{char_pred}, if it is a character set.
3814@end itemize
3815@end deffn
3816
3817@deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3818@deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3819Does string @var{s1} contain string @var{s2}? Return the index
3820in @var{s1} where @var{s2} occurs as a substring, or false.
3821The optional start/end indices restrict the operation to the
3822indicated substrings.
3823@end deffn
3824
3825@deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3826@deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3827Does string @var{s1} contain string @var{s2}? Return the index
3828in @var{s1} where @var{s2} occurs as a substring, or false.
3829The optional start/end indices restrict the operation to the
3830indicated substrings. Character comparison is done
3831case-insensitively.
07d83abe
MV
3832@end deffn
3833
3834@node Alphabetic Case Mapping
3835@subsubsection Alphabetic Case Mapping
3836
3837These are procedures for mapping strings to their upper- or lower-case
3838equivalents, respectively, or for capitalizing strings.
3839
67af975c
MG
3840They use the basic case mapping rules for Unicode characters. No
3841special language or context rules are considered. The resulting strings
3842are guaranteed to be the same length as the input strings.
3843
3844@xref{Character Case Mapping, the @code{(ice-9
3845i18n)} module}, for locale-dependent case conversions.
3846
5676b4fa
MV
3847@deffn {Scheme Procedure} string-upcase str [start [end]]
3848@deffnx {C Function} scm_substring_upcase (str, start, end)
07d83abe 3849@deffnx {C Function} scm_string_upcase (str)
5676b4fa 3850Upcase every character in @code{str}.
07d83abe
MV
3851@end deffn
3852
5676b4fa
MV
3853@deffn {Scheme Procedure} string-upcase! str [start [end]]
3854@deffnx {C Function} scm_substring_upcase_x (str, start, end)
07d83abe 3855@deffnx {C Function} scm_string_upcase_x (str)
5676b4fa
MV
3856Destructively upcase every character in @code{str}.
3857
07d83abe 3858@lisp
5676b4fa
MV
3859(string-upcase! y)
3860@result{} "ARRDEFG"
3861y
3862@result{} "ARRDEFG"
07d83abe
MV
3863@end lisp
3864@end deffn
3865
5676b4fa
MV
3866@deffn {Scheme Procedure} string-downcase str [start [end]]
3867@deffnx {C Function} scm_substring_downcase (str, start, end)
07d83abe 3868@deffnx {C Function} scm_string_downcase (str)
5676b4fa 3869Downcase every character in @var{str}.
07d83abe
MV
3870@end deffn
3871
5676b4fa
MV
3872@deffn {Scheme Procedure} string-downcase! str [start [end]]
3873@deffnx {C Function} scm_substring_downcase_x (str, start, end)
07d83abe 3874@deffnx {C Function} scm_string_downcase_x (str)
5676b4fa
MV
3875Destructively downcase every character in @var{str}.
3876
07d83abe 3877@lisp
5676b4fa
MV
3878y
3879@result{} "ARRDEFG"
3880(string-downcase! y)
3881@result{} "arrdefg"
3882y
3883@result{} "arrdefg"
07d83abe
MV
3884@end lisp
3885@end deffn
3886
3887@deffn {Scheme Procedure} string-capitalize str
3888@deffnx {C Function} scm_string_capitalize (str)
3889Return a freshly allocated string with the characters in
3890@var{str}, where the first character of every word is
3891capitalized.
3892@end deffn
3893
3894@deffn {Scheme Procedure} string-capitalize! str
3895@deffnx {C Function} scm_string_capitalize_x (str)
3896Upcase the first character of every word in @var{str}
3897destructively and return @var{str}.
3898
3899@lisp
3900y @result{} "hello world"
3901(string-capitalize! y) @result{} "Hello World"
3902y @result{} "Hello World"
3903@end lisp
3904@end deffn
3905
5676b4fa
MV
3906@deffn {Scheme Procedure} string-titlecase str [start [end]]
3907@deffnx {C Function} scm_string_titlecase (str, start, end)
3908Titlecase every first character in a word in @var{str}.
3909@end deffn
07d83abe 3910
5676b4fa
MV
3911@deffn {Scheme Procedure} string-titlecase! str [start [end]]
3912@deffnx {C Function} scm_string_titlecase_x (str, start, end)
3913Destructively titlecase every first character in a word in
3914@var{str}.
3915@end deffn
3916
3917@node Reversing and Appending Strings
3918@subsubsection Reversing and Appending Strings
07d83abe 3919
5676b4fa
MV
3920@deffn {Scheme Procedure} string-reverse str [start [end]]
3921@deffnx {C Function} scm_string_reverse (str, start, end)
3922Reverse the string @var{str}. The optional arguments
3923@var{start} and @var{end} delimit the region of @var{str} to
3924operate on.
3925@end deffn
3926
3927@deffn {Scheme Procedure} string-reverse! str [start [end]]
3928@deffnx {C Function} scm_string_reverse_x (str, start, end)
3929Reverse the string @var{str} in-place. The optional arguments
3930@var{start} and @var{end} delimit the region of @var{str} to
3931operate on. The return value is unspecified.
3932@end deffn
07d83abe
MV
3933
3934@rnindex string-append
df0a1002 3935@deffn {Scheme Procedure} string-append arg @dots{}
07d83abe
MV
3936@deffnx {C Function} scm_string_append (args)
3937Return a newly allocated string whose characters form the
df0a1002 3938concatenation of the given strings, @var{arg} @enddots{}.
07d83abe
MV
3939
3940@example
3941(let ((h "hello "))
3942 (string-append h "world"))
3943@result{} "hello world"
3944@end example
3945@end deffn
3946
df0a1002
BT
3947@deffn {Scheme Procedure} string-append/shared arg @dots{}
3948@deffnx {C Function} scm_string_append_shared (args)
5676b4fa
MV
3949Like @code{string-append}, but the result may share memory
3950with the argument strings.
3951@end deffn
3952
3953@deffn {Scheme Procedure} string-concatenate ls
3954@deffnx {C Function} scm_string_concatenate (ls)
df0a1002
BT
3955Append the elements (which must be strings) of @var{ls} together into a
3956single string. Guaranteed to return a freshly allocated string.
5676b4fa
MV
3957@end deffn
3958
3959@deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3960@deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3961Without optional arguments, this procedure is equivalent to
3962
aba0dff5 3963@lisp
5676b4fa 3964(string-concatenate (reverse ls))
aba0dff5 3965@end lisp
5676b4fa
MV
3966
3967If the optional argument @var{final_string} is specified, it is
3968consed onto the beginning to @var{ls} before performing the
3969list-reverse and string-concatenate operations. If @var{end}
3970is given, only the characters of @var{final_string} up to index
3971@var{end} are used.
3972
3973Guaranteed to return a freshly allocated string.
3974@end deffn
3975
3976@deffn {Scheme Procedure} string-concatenate/shared ls
3977@deffnx {C Function} scm_string_concatenate_shared (ls)
3978Like @code{string-concatenate}, but the result may share memory
3979with the strings in the list @var{ls}.
3980@end deffn
3981
3982@deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3983@deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3984Like @code{string-concatenate-reverse}, but the result may
72b3aa56 3985share memory with the strings in the @var{ls} arguments.
5676b4fa
MV
3986@end deffn
3987
3988@node Mapping Folding and Unfolding
3989@subsubsection Mapping, Folding, and Unfolding
3990
3991@deffn {Scheme Procedure} string-map proc s [start [end]]
3992@deffnx {C Function} scm_string_map (proc, s, start, end)
3993@var{proc} is a char->char procedure, it is mapped over
3994@var{s}. The order in which the procedure is applied to the
3995string elements is not specified.
3996@end deffn
3997
3998@deffn {Scheme Procedure} string-map! proc s [start [end]]
3999@deffnx {C Function} scm_string_map_x (proc, s, start, end)
4000@var{proc} is a char->char procedure, it is mapped over
4001@var{s}. The order in which the procedure is applied to the
4002string elements is not specified. The string @var{s} is
4003modified in-place, the return value is not specified.
4004@end deffn
4005
4006@deffn {Scheme Procedure} string-for-each proc s [start [end]]
4007@deffnx {C Function} scm_string_for_each (proc, s, start, end)
4008@var{proc} is mapped over @var{s} in left-to-right order. The
4009return value is not specified.
4010@end deffn
4011
4012@deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
4013@deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
2a7820f2
KR
4014Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
4015right.
4016
4017For example, to change characters to alternately upper and lower case,
4018
4019@example
4020(define str (string-copy "studly"))
45867c2a
NJ
4021(string-for-each-index
4022 (lambda (i)
4023 (string-set! str i
4024 ((if (even? i) char-upcase char-downcase)
4025 (string-ref str i))))
4026 str)
2a7820f2
KR
4027str @result{} "StUdLy"
4028@end example
5676b4fa
MV
4029@end deffn
4030
4031@deffn {Scheme Procedure} string-fold kons knil s [start [end]]
4032@deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
4033Fold @var{kons} over the characters of @var{s}, with @var{knil}
4034as the terminating element, from left to right. @var{kons}
4035must expect two arguments: The actual character and the last
4036result of @var{kons}' application.
4037@end deffn
4038
4039@deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
4040@deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
4041Fold @var{kons} over the characters of @var{s}, with @var{knil}
4042as the terminating element, from right to left. @var{kons}
4043must expect two arguments: The actual character and the last
4044result of @var{kons}' application.
4045@end deffn
4046
4047@deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
4048@deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
4049@itemize @bullet
4050@item @var{g} is used to generate a series of @emph{seed}
4051values from the initial @var{seed}: @var{seed}, (@var{g}
4052@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4053@dots{}
4054@item @var{p} tells us when to stop -- when it returns true
4055when applied to one of these seed values.
4056@item @var{f} maps each seed value to the corresponding
4057character in the result string. These chars are assembled
4058into the string in a left-to-right order.
4059@item @var{base} is the optional initial/leftmost portion
4060of the constructed string; it default to the empty
4061string.
4062@item @var{make_final} is applied to the terminal seed
4063value (on which @var{p} returns true) to produce
4064the final/rightmost portion of the constructed string.
9a18d8d4 4065The default is nothing extra.
5676b4fa
MV
4066@end itemize
4067@end deffn
4068
4069@deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
4070@deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
4071@itemize @bullet
4072@item @var{g} is used to generate a series of @emph{seed}
4073values from the initial @var{seed}: @var{seed}, (@var{g}
4074@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4075@dots{}
4076@item @var{p} tells us when to stop -- when it returns true
4077when applied to one of these seed values.
4078@item @var{f} maps each seed value to the corresponding
4079character in the result string. These chars are assembled
4080into the string in a right-to-left order.
4081@item @var{base} is the optional initial/rightmost portion
4082of the constructed string; it default to the empty
4083string.
4084@item @var{make_final} is applied to the terminal seed
4085value (on which @var{p} returns true) to produce
4086the final/leftmost portion of the constructed string.
4087It defaults to @code{(lambda (x) )}.
4088@end itemize
4089@end deffn
4090
4091@node Miscellaneous String Operations
4092@subsubsection Miscellaneous String Operations
4093
4094@deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
4095@deffnx {C Function} scm_xsubstring (s, from, to, start, end)
4096This is the @emph{extended substring} procedure that implements
4097replicated copying of a substring of some string.
4098
4099@var{s} is a string, @var{start} and @var{end} are optional
4100arguments that demarcate a substring of @var{s}, defaulting to
41010 and the length of @var{s}. Replicate this substring up and
4102down index space, in both the positive and negative directions.
4103@code{xsubstring} returns the substring of this string
4104beginning at index @var{from}, and ending at @var{to}, which
4105defaults to @var{from} + (@var{end} - @var{start}).
4106@end deffn
4107
4108@deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
4109@deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
4110Exactly the same as @code{xsubstring}, but the extracted text
4111is written into the string @var{target} starting at index
4112@var{tstart}. The operation is not defined if @code{(eq?
4113@var{target} @var{s})} or these arguments share storage -- you
4114cannot copy a string on top of itself.
4115@end deffn
4116
4117@deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
4118@deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
4119Return the string @var{s1}, but with the characters
4120@var{start1} @dots{} @var{end1} replaced by the characters
4121@var{start2} @dots{} @var{end2} from @var{s2}.
4122@end deffn
4123
4124@deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
4125@deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
4126Split the string @var{s} into a list of substrings, where each
4127substring is a maximal non-empty contiguous sequence of
4128characters from the character set @var{token_set}, which
4129defaults to @code{char-set:graphic}.
4130If @var{start} or @var{end} indices are provided, they restrict
4131@code{string-tokenize} to operating on the indicated substring
4132of @var{s}.
4133@end deffn
4134
9fe717e2
AW
4135@deffn {Scheme Procedure} string-filter char_pred s [start [end]]
4136@deffnx {C Function} scm_string_filter (char_pred, s, start, end)
08de3e24 4137Filter the string @var{s}, retaining only those characters which
a88e2a96 4138satisfy @var{char_pred}.
08de3e24
KR
4139
4140If @var{char_pred} is a procedure, it is applied to each character as
4141a predicate, if it is a character, it is tested for equality and if it
4142is a character set, it is tested for membership.
5676b4fa
MV
4143@end deffn
4144
9fe717e2
AW
4145@deffn {Scheme Procedure} string-delete char_pred s [start [end]]
4146@deffnx {C Function} scm_string_delete (char_pred, s, start, end)
a88e2a96 4147Delete characters satisfying @var{char_pred} from @var{s}.
08de3e24
KR
4148
4149If @var{char_pred} is a procedure, it is applied to each character as
4150a predicate, if it is a character, it is tested for equality and if it
4151is a character set, it is tested for membership.
5676b4fa
MV
4152@end deffn
4153
91210d62
MV
4154@node Conversion to/from C
4155@subsubsection Conversion to/from C
4156
4157When creating a Scheme string from a C string or when converting a
4158Scheme string to a C string, the concept of character encoding becomes
4159important.
4160
4161In C, a string is just a sequence of bytes, and the character encoding
4162describes the relation between these bytes and the actual characters
c88453e8
MV
4163that make up the string. For Scheme strings, character encoding is
4164not an issue (most of the time), since in Scheme you never get to see
4165the bytes, only the characters.
91210d62 4166
67af975c
MG
4167Converting to C and converting from C each have their own challenges.
4168
4169When converting from C to Scheme, it is important that the sequence of
4170bytes in the C string be valid with respect to its encoding. ASCII
4171strings, for example, can't have any bytes greater than 127. An ASCII
4172byte greater than 127 is considered @emph{ill-formed} and cannot be
4173converted into a Scheme character.
4174
4175Problems can occur in the reverse operation as well. Not all character
4176encodings can hold all possible Scheme characters. Some encodings, like
4177ASCII for example, can only describe a small subset of all possible
4178characters. So, when converting to C, one must first decide what to do
4179with Scheme characters that can't be represented in the C string.
91210d62 4180
c88453e8
MV
4181Converting a Scheme string to a C string will often allocate fresh
4182memory to hold the result. You must take care that this memory is
4183properly freed eventually. In many cases, this can be achieved by
661ae7ab
MV
4184using @code{scm_dynwind_free} inside an appropriate dynwind context,
4185@xref{Dynamic Wind}.
91210d62
MV
4186
4187@deftypefn {C Function} SCM scm_from_locale_string (const char *str)
4188@deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
67af975c 4189Creates a new Scheme string that has the same contents as @var{str} when
95f5e303 4190interpreted in the character encoding of the current locale.
91210d62
MV
4191
4192For @code{scm_from_locale_string}, @var{str} must be null-terminated.
4193
4194For @code{scm_from_locale_stringn}, @var{len} specifies the length of
4195@var{str} in bytes, and @var{str} does not need to be null-terminated.
4196If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
4197null-terminated and the real length will be found with @code{strlen}.
67af975c
MG
4198
4199If the C string is ill-formed, an error will be raised.
ce3ce21c
MW
4200
4201Note that these functions should @emph{not} be used to convert C string
4202constants, because there is no guarantee that the current locale will
4203match that of the source code. To convert C string constants, use
4204@code{scm_from_latin1_string}, @code{scm_from_utf8_string} or
4205@code{scm_from_utf32_string}.
91210d62
MV
4206@end deftypefn
4207
4208@deftypefn {C Function} SCM scm_take_locale_string (char *str)
4209@deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
4210Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
4211respectively, but also frees @var{str} with @code{free} eventually.
4212Thus, you can use this function when you would free @var{str} anyway
4213immediately after creating the Scheme string. In certain cases, Guile
4214can then use @var{str} directly as its internal representation.
4215@end deftypefn
4216
4846ae2c
KR
4217@deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
4218@deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
95f5e303
AW
4219Returns a C string with the same contents as @var{str} in the character
4220encoding of the current locale. The C string must be freed with
4221@code{free} eventually, maybe by using @code{scm_dynwind_free},
67af975c 4222@xref{Dynamic Wind}.
91210d62
MV
4223
4224For @code{scm_to_locale_string}, the returned string is
4225null-terminated and an error is signalled when @var{str} contains
4226@code{#\nul} characters.
4227
4228For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
4229@var{str} might contain @code{#\nul} characters and the length of the
4230returned string in bytes is stored in @code{*@var{lenp}}. The
4231returned string will not be null-terminated in this case. If
4232@var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
4233@code{scm_to_locale_string}.
67af975c 4234
95f5e303
AW
4235If a character in @var{str} cannot be represented in the character
4236encoding of the current locale, the default port conversion strategy is
4237used. @xref{Ports}, for more on conversion strategies.
4238
4239If the conversion strategy is @code{error}, an error will be raised. If
4240it is @code{substitute}, a replacement character, such as a question
4241mark, will be inserted in its place. If it is @code{escape}, a hex
4242escape will be inserted in its place.
91210d62
MV
4243@end deftypefn
4244
4245@deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
4246Puts @var{str} as a C string in the current locale encoding into the
4247memory pointed to by @var{buf}. The buffer at @var{buf} has room for
4248@var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
4249more than that. No terminating @code{'\0'} will be stored.
4250
4251The return value of @code{scm_to_locale_stringbuf} is the number of
4252bytes that are needed for all of @var{str}, regardless of whether
4253@var{buf} was large enough to hold them. Thus, when the return value
4254is larger than @var{max_len}, only @var{max_len} bytes have been
4255stored and you probably need to try again with a larger buffer.
4256@end deftypefn
cf313a94
MG
4257
4258For most situations, string conversion should occur using the current
4259locale, such as with the functions above. But there may be cases where
4260one wants to convert strings from a character encoding other than the
4261locale's character encoding. For these cases, the lower-level functions
4262@code{scm_to_stringn} and @code{scm_from_stringn} are provided. These
4263functions should seldom be necessary if one is properly using locales.
4264
4265@deftp {C Type} scm_t_string_failed_conversion_handler
4266This is an enumerated type that can take one of three values:
4267@code{SCM_FAILED_CONVERSION_ERROR},
4268@code{SCM_FAILED_CONVERSION_QUESTION_MARK}, and
4269@code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}. They are used to indicate
4270a strategy for handling characters that cannot be converted to or from a
4271given character encoding. @code{SCM_FAILED_CONVERSION_ERROR} indicates
4272that a conversion should throw an error if some characters cannot be
4273converted. @code{SCM_FAILED_CONVERSION_QUESTION_MARK} indicates that a
4274conversion should replace unconvertable characters with the question
4275mark character. And, @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}
4276requests that a conversion should replace an unconvertable character
4277with an escape sequence.
4278
4279While all three strategies apply when converting Scheme strings to C,
4280only @code{SCM_FAILED_CONVERSION_ERROR} and
4281@code{SCM_FAILED_CONVERSION_QUESTION_MARK} can be used when converting C
4282strings to Scheme.
4283@end deftp
4284
4285@deftypefn {C Function} char *scm_to_stringn (SCM str, size_t *lenp, const char *encoding, scm_t_string_failed_conversion_handler handler)
4286This function returns a newly allocated C string from the Guile string
68a78738
MW
4287@var{str}. The length of the returned string in bytes will be returned in
4288@var{lenp}. The character encoding of the C string is passed as the ASCII,
cf313a94
MG
4289null-terminated C string @var{encoding}. The @var{handler} parameter
4290gives a strategy for dealing with characters that cannot be converted
4291into @var{encoding}.
4292
68a78738 4293If @var{lenp} is @code{NULL}, this function will return a null-terminated C
cf313a94
MG
4294string. It will throw an error if the string contains a null
4295character.
4296@end deftypefn
4297
4298@deftypefn {C Function} SCM scm_from_stringn (const char *str, size_t len, const char *encoding, scm_t_string_failed_conversion_handler handler)
4299This function returns a scheme string from the C string @var{str}. The
c3d8450c 4300length in bytes of the C string is input as @var{len}. The encoding of the C
cf313a94
MG
4301string is passed as the ASCII, null-terminated C string @code{encoding}.
4302The @var{handler} parameters suggests a strategy for dealing with
4303unconvertable characters.
4304@end deftypefn
4305
ce3ce21c
MW
4306The following conversion functions are provided as a convenience for the
4307most commonly used encodings.
4308
4309@deftypefn {C Function} SCM scm_from_latin1_string (const char *str)
4310@deftypefnx {C Function} SCM scm_from_utf8_string (const char *str)
4311@deftypefnx {C Function} SCM scm_from_utf32_string (const scm_t_wchar *str)
4312Return a scheme string from the null-terminated C string @var{str},
4313which is ISO-8859-1-, UTF-8-, or UTF-32-encoded. These functions should
4314be used to convert hard-coded C string constants into Scheme strings.
4315@end deftypefn
cf313a94
MG
4316
4317@deftypefn {C Function} SCM scm_from_latin1_stringn (const char *str, size_t len)
647dc1ac
LC
4318@deftypefnx {C Function} SCM scm_from_utf8_stringn (const char *str, size_t len)
4319@deftypefnx {C Function} SCM scm_from_utf32_stringn (const scm_t_wchar *str, size_t len)
4320Return a scheme string from C string @var{str}, which is ISO-8859-1-,
4321UTF-8-, or UTF-32-encoded, of length @var{len}. @var{len} is the number
4322of bytes pointed to by @var{str} for @code{scm_from_latin1_stringn} and
4323@code{scm_from_utf8_stringn}; it is the number of elements (code points)
4324in @var{str} in the case of @code{scm_from_utf32_stringn}.
cf313a94
MG
4325@end deftypefn
4326
647dc1ac
LC
4327@deftypefn {C function} char *scm_to_latin1_stringn (SCM str, size_t *lenp)
4328@deftypefnx {C function} char *scm_to_utf8_stringn (SCM str, size_t *lenp)
4329@deftypefnx {C function} scm_t_wchar *scm_to_utf32_stringn (SCM str, size_t *lenp)
4330Return a newly allocated, ISO-8859-1-, UTF-8-, or UTF-32-encoded C string
4331from Scheme string @var{str}. An error is thrown when @var{str}
68a78738 4332cannot be converted to the specified encoding. If @var{lenp} is
cf313a94
MG
4333@code{NULL}, the returned C string will be null terminated, and an error
4334will be thrown if the C string would otherwise contain null
68a78738
MW
4335characters. If @var{lenp} is not @code{NULL}, the string is not null terminated,
4336and the length of the returned string is returned in @var{lenp}. The length
4337returned is the number of bytes for @code{scm_to_latin1_stringn} and
4338@code{scm_to_utf8_stringn}; it is the number of elements (code points)
4339for @code{scm_to_utf32_stringn}.
cf313a94 4340@end deftypefn
07d83abe 4341
5b6b22e8
MG
4342@node String Internals
4343@subsubsection String Internals
4344
4345Guile stores each string in memory as a contiguous array of Unicode code
4346points along with an associated set of attributes. If all of the code
4347points of a string have an integer range between 0 and 255 inclusive,
4348the code point array is stored as one byte per code point: it is stored
4349as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the
4350string has an integer value greater that 255, the code point array is
4351stored as four bytes per code point: it is stored as a UTF-32 string.
4352
4353Conversion between the one-byte-per-code-point and
4354four-bytes-per-code-point representations happens automatically as
4355necessary.
4356
4357No API is provided to set the internal representation of strings;
4358however, there are pair of procedures available to query it. These are
4359debugging procedures. Using them in production code is discouraged,
4360since the details of Guile's internal representation of strings may
4361change from release to release.
4362
4363@deffn {Scheme Procedure} string-bytes-per-char str
4364@deffnx {C Function} scm_string_bytes_per_char (str)
4365Return the number of bytes used to encode a Unicode code point in string
4366@var{str}. The result is one or four.
4367@end deffn
4368
4369@deffn {Scheme Procedure} %string-dump str
4370@deffnx {C Function} scm_sys_string_dump (str)
4371Returns an association list containing debugging information for
4372@var{str}. The association list has the following entries.
4373@table @code
4374
4375@item string
4376The string itself.
4377
4378@item start
4379The start index of the string into its stringbuf
4380
4381@item length
4382The length of the string
4383
4384@item shared
4385If this string is a substring, it returns its
4386parent string. Otherwise, it returns @code{#f}
4387
4388@item read-only
4389@code{#t} if the string is read-only
4390
4391@item stringbuf-chars
4392A new string containing this string's stringbuf's characters
4393
4394@item stringbuf-length
4395The number of characters in this stringbuf
4396
4397@item stringbuf-shared
4398@code{#t} if this stringbuf is shared
4399
4400@item stringbuf-wide
4401@code{#t} if this stringbuf's characters are stored in a 32-bit buffer,
4402or @code{#f} if they are stored in an 8-bit buffer
4403@end table
4404@end deffn
4405
4406
b242715b
LC
4407@node Bytevectors
4408@subsection Bytevectors
4409
4410@cindex bytevector
4411@cindex R6RS
4412
07d22c02 4413A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevectors)}
b242715b 4414module provides the programming interface specified by the
5fa2deb3 4415@uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
b242715b
LC
4416Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
4417interpret their contents in a number of ways: bytevector contents can be
4418accessed as signed or unsigned integer of various sizes and endianness,
4419as IEEE-754 floating point numbers, or as strings. It is a useful tool
4420to encode and decode binary data.
4421
4422The R6RS (Section 4.3.4) specifies an external representation for
4423bytevectors, whereby the octets (integers in the range 0--255) contained
4424in the bytevector are represented as a list prefixed by @code{#vu8}:
4425
4426@lisp
4427#vu8(1 53 204)
4428@end lisp
4429
4430denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
4431string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
4432they do not need to be quoted:
4433
4434@lisp
4435#vu8(1 53 204)
4436@result{} #vu8(1 53 204)
4437@end lisp
4438
4439Bytevectors can be used with the binary input/output primitives of the
4440R6RS (@pxref{R6RS I/O Ports}).
4441
4442@menu
4443* Bytevector Endianness:: Dealing with byte order.
4444* Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
4445* Bytevectors as Integers:: Interpreting bytes as integers.
4446* Bytevectors and Integer Lists:: Converting to/from an integer list.
4447* Bytevectors as Floats:: Interpreting bytes as real numbers.
4448* Bytevectors as Strings:: Interpreting bytes as Unicode strings.
438974d0 4449* Bytevectors as Generalized Vectors:: Guile extension to the bytevector API.
27219b32 4450* Bytevectors as Uniform Vectors:: Bytevectors and SRFI-4.
b242715b
LC
4451@end menu
4452
4453@node Bytevector Endianness
4454@subsubsection Endianness
4455
4456@cindex endianness
4457@cindex byte order
4458@cindex word order
4459
4460Some of the following procedures take an @var{endianness} parameter.
5fa2deb3
AW
4461The @dfn{endianness} is defined as the order of bytes in multi-byte
4462numbers: numbers encoded in @dfn{big endian} have their most
4463significant bytes written first, whereas numbers encoded in
4464@dfn{little endian} have their least significant bytes
4465first@footnote{Big-endian and little-endian are the most common
4466``endiannesses'', but others do exist. For instance, the GNU MP
4467library allows @dfn{word order} to be specified independently of
4468@dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
4469Multiple Precision Arithmetic Library Manual}).}.
4470
4471Little-endian is the native endianness of the IA32 architecture and
4472its derivatives, while big-endian is native to SPARC and PowerPC,
4473among others. The @code{native-endianness} procedure returns the
4474native endianness of the machine it runs on.
b242715b
LC
4475
4476@deffn {Scheme Procedure} native-endianness
4477@deffnx {C Function} scm_native_endianness ()
4478Return a value denoting the native endianness of the host machine.
4479@end deffn
4480
4481@deffn {Scheme Macro} endianness symbol
4482Return an object denoting the endianness specified by @var{symbol}. If
5fa2deb3
AW
4483@var{symbol} is neither @code{big} nor @code{little} then an error is
4484raised at expand-time.
b242715b
LC
4485@end deffn
4486
4487@defvr {C Variable} scm_endianness_big
4488@defvrx {C Variable} scm_endianness_little
5fa2deb3 4489The objects denoting big- and little-endianness, respectively.
b242715b
LC
4490@end defvr
4491
4492
4493@node Bytevector Manipulation
4494@subsubsection Manipulating Bytevectors
4495
4496Bytevectors can be created, copied, and analyzed with the following
404bb5f8 4497procedures and C functions.
b242715b
LC
4498
4499@deffn {Scheme Procedure} make-bytevector len [fill]
4500@deffnx {C Function} scm_make_bytevector (len, fill)
2d34e924 4501@deffnx {C Function} scm_c_make_bytevector (size_t len)
b242715b 4502Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
d64fc8b0
LC
4503is given, fill it with @var{fill}; @var{fill} must be in the range
4504[-128,255].
b242715b
LC
4505@end deffn
4506
4507@deffn {Scheme Procedure} bytevector? obj
4508@deffnx {C Function} scm_bytevector_p (obj)
4509Return true if @var{obj} is a bytevector.
4510@end deffn
4511
404bb5f8
LC
4512@deftypefn {C Function} int scm_is_bytevector (SCM obj)
4513Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
4514@end deftypefn
4515
b242715b
LC
4516@deffn {Scheme Procedure} bytevector-length bv
4517@deffnx {C Function} scm_bytevector_length (bv)
4518Return the length in bytes of bytevector @var{bv}.
4519@end deffn
4520
404bb5f8
LC
4521@deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
4522Likewise, return the length in bytes of bytevector @var{bv}.
4523@end deftypefn
4524
b242715b
LC
4525@deffn {Scheme Procedure} bytevector=? bv1 bv2
4526@deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
4527Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
4528length and contents.
4529@end deffn
4530
4531@deffn {Scheme Procedure} bytevector-fill! bv fill
4532@deffnx {C Function} scm_bytevector_fill_x (bv, fill)
4533Fill bytevector @var{bv} with @var{fill}, a byte.
4534@end deffn
4535
4536@deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
4537@deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
4538Copy @var{len} bytes from @var{source} into @var{target}, starting
4539reading from @var{source-start} (a positive index within @var{source})
80719649
LC
4540and start writing at @var{target-start}. It is permitted for the
4541@var{source} and @var{target} regions to overlap.
b242715b
LC
4542@end deffn
4543
4544@deffn {Scheme Procedure} bytevector-copy bv
4545@deffnx {C Function} scm_bytevector_copy (bv)
4546Return a newly allocated copy of @var{bv}.
4547@end deffn
4548
404bb5f8
LC
4549@deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
4550Return the byte at @var{index} in bytevector @var{bv}.
4551@end deftypefn
4552
4553@deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
4554Set the byte at @var{index} in @var{bv} to @var{value}.
4555@end deftypefn
4556
b242715b
LC
4557Low-level C macros are available. They do not perform any
4558type-checking; as such they should be used with care.
4559
4560@deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
4561Return the length in bytes of bytevector @var{bv}.
4562@end deftypefn
4563
4564@deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
4565Return a pointer to the contents of bytevector @var{bv}.
4566@end deftypefn
4567
4568
4569@node Bytevectors as Integers
4570@subsubsection Interpreting Bytevector Contents as Integers
4571
4572The contents of a bytevector can be interpreted as a sequence of
4573integers of any given size, sign, and endianness.
4574
4575@lisp
4576(let ((bv (make-bytevector 4)))
4577 (bytevector-u8-set! bv 0 #x12)
4578 (bytevector-u8-set! bv 1 #x34)
4579 (bytevector-u8-set! bv 2 #x56)
4580 (bytevector-u8-set! bv 3 #x78)
4581
4582 (map (lambda (number)
4583 (number->string number 16))
4584 (list (bytevector-u8-ref bv 0)
4585 (bytevector-u16-ref bv 0 (endianness big))
4586 (bytevector-u32-ref bv 0 (endianness little)))))
4587
4588@result{} ("12" "1234" "78563412")
4589@end lisp
4590
4591The most generic procedures to interpret bytevector contents as integers
4592are described below.
4593
4594@deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
b242715b 4595@deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
4827afeb
NJ
4596Return the @var{size}-byte long unsigned integer at index @var{index} in
4597@var{bv}, decoded according to @var{endianness}.
4598@end deffn
4599
4600@deffn {Scheme Procedure} bytevector-sint-ref bv index endianness size
b242715b 4601@deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
4827afeb
NJ
4602Return the @var{size}-byte long signed integer at index @var{index} in
4603@var{bv}, decoded according to @var{endianness}.
b242715b
LC
4604@end deffn
4605
4606@deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
b242715b 4607@deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
4827afeb
NJ
4608Set the @var{size}-byte long unsigned integer at @var{index} to
4609@var{value}, encoded according to @var{endianness}.
4610@end deffn
4611
4612@deffn {Scheme Procedure} bytevector-sint-set! bv index value endianness size
b242715b 4613@deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
4827afeb
NJ
4614Set the @var{size}-byte long signed integer at @var{index} to
4615@var{value}, encoded according to @var{endianness}.
b242715b
LC
4616@end deffn
4617
4618The following procedures are similar to the ones above, but specialized
4619to a given integer size:
4620
4621@deffn {Scheme Procedure} bytevector-u8-ref bv index
4622@deffnx {Scheme Procedure} bytevector-s8-ref bv index
4623@deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
4624@deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
4625@deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
4626@deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
4627@deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
4628@deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
4629@deffnx {C Function} scm_bytevector_u8_ref (bv, index)
4630@deffnx {C Function} scm_bytevector_s8_ref (bv, index)
4631@deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
4632@deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
4633@deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
4634@deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
4635@deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
4636@deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
4637Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
463816, 32 or 64) from @var{bv} at @var{index}, decoded according to
4639@var{endianness}.
4640@end deffn
4641
4642@deffn {Scheme Procedure} bytevector-u8-set! bv index value
4643@deffnx {Scheme Procedure} bytevector-s8-set! bv index value
4644@deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
4645@deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
4646@deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
4647@deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
4648@deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
4649@deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
4650@deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
4651@deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
4652@deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
4653@deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
4654@deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
4655@deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
4656@deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
4657@deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
4658Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
46598, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
4660@var{endianness}.
4661@end deffn
4662
4663Finally, a variant specialized for the host's endianness is available
4664for each of these functions (with the exception of the @code{u8}
4665accessors, for obvious reasons):
4666
4667@deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4668@deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4669@deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4670@deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4671@deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4672@deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4673@deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4674@deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4675@deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4676@deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4677@deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4678@deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4679Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
468016, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4681host's native endianness.
4682@end deffn
4683
4684@deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4685@deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4686@deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4687@deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4688@deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4689@deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4690@deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4691@deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4692@deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4693@deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4694@deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4695@deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4696Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
46978, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4698host's native endianness.
4699@end deffn
4700
4701
4702@node Bytevectors and Integer Lists
4703@subsubsection Converting Bytevectors to/from Integer Lists
4704
4705Bytevector contents can readily be converted to/from lists of signed or
4706unsigned integers:
4707
4708@lisp
4709(bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4710 (endianness little) 2)
4711@result{} (-1 -1)
4712@end lisp
4713
4714@deffn {Scheme Procedure} bytevector->u8-list bv
4715@deffnx {C Function} scm_bytevector_to_u8_list (bv)
4716Return a newly allocated list of unsigned 8-bit integers from the
4717contents of @var{bv}.
4718@end deffn
4719
4720@deffn {Scheme Procedure} u8-list->bytevector lst
4721@deffnx {C Function} scm_u8_list_to_bytevector (lst)
4722Return a newly allocated bytevector consisting of the unsigned 8-bit
4723integers listed in @var{lst}.
4724@end deffn
4725
4726@deffn {Scheme Procedure} bytevector->uint-list bv endianness size
b242715b 4727@deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4827afeb
NJ
4728Return a list of unsigned integers of @var{size} bytes representing the
4729contents of @var{bv}, decoded according to @var{endianness}.
4730@end deffn
4731
4732@deffn {Scheme Procedure} bytevector->sint-list bv endianness size
b242715b 4733@deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4827afeb
NJ
4734Return a list of signed integers of @var{size} bytes representing the
4735contents of @var{bv}, decoded according to @var{endianness}.
b242715b
LC
4736@end deffn
4737
4738@deffn {Scheme Procedure} uint-list->bytevector lst endianness size
b242715b 4739@deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4827afeb
NJ
4740Return a new bytevector containing the unsigned integers listed in
4741@var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4742@end deffn
4743
4744@deffn {Scheme Procedure} sint-list->bytevector lst endianness size
b242715b 4745@deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4827afeb
NJ
4746Return a new bytevector containing the signed integers listed in
4747@var{lst} and encoded on @var{size} bytes according to @var{endianness}.
b242715b
LC
4748@end deffn
4749
4750@node Bytevectors as Floats
4751@subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4752
4753@cindex IEEE-754 floating point numbers
4754
4755Bytevector contents can also be accessed as IEEE-754 single- or
4756double-precision floating point numbers (respectively 32 and 64-bit
4757long) using the procedures described here.
4758
4759@deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4760@deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4761@deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4762@deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4763Return the IEEE-754 single-precision floating point number from @var{bv}
4764at @var{index} according to @var{endianness}.
4765@end deffn
4766
4767@deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4768@deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4769@deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4770@deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4771Store real number @var{value} in @var{bv} at @var{index} according to
4772@var{endianness}.
4773@end deffn
4774
4775Specialized procedures are also available:
4776
4777@deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4778@deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4779@deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4780@deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4781Return the IEEE-754 single-precision floating point number from @var{bv}
4782at @var{index} according to the host's native endianness.
4783@end deffn
4784
4785@deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4786@deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4787@deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4788@deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4789Store real number @var{value} in @var{bv} at @var{index} according to
4790the host's native endianness.
4791@end deffn
4792
4793
4794@node Bytevectors as Strings
4795@subsubsection Interpreting Bytevector Contents as Unicode Strings
4796
4797@cindex Unicode string encoding
4798
4799Bytevector contents can also be interpreted as Unicode strings encoded
d3b5628c 4800in one of the most commonly available encoding formats.
b242715b
LC
4801
4802@lisp
4803(utf8->string (u8-list->bytevector '(99 97 102 101)))
4804@result{} "cafe"
4805
4806(string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4807@result{} #vu8(99 97 102 195 169)
4808@end lisp
4809
4810@deffn {Scheme Procedure} string->utf8 str
524aa8ae
LC
4811@deffnx {Scheme Procedure} string->utf16 str [endianness]
4812@deffnx {Scheme Procedure} string->utf32 str [endianness]
b242715b 4813@deffnx {C Function} scm_string_to_utf8 (str)
524aa8ae
LC
4814@deffnx {C Function} scm_string_to_utf16 (str, endianness)
4815@deffnx {C Function} scm_string_to_utf32 (str, endianness)
b242715b 4816Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
524aa8ae
LC
4817UTF-32 (aka. UCS-4) encoding of @var{str}. For UTF-16 and UTF-32,
4818@var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4819it defaults to big endian.
b242715b
LC
4820@end deffn
4821
4822@deffn {Scheme Procedure} utf8->string utf
524aa8ae
LC
4823@deffnx {Scheme Procedure} utf16->string utf [endianness]
4824@deffnx {Scheme Procedure} utf32->string utf [endianness]
b242715b 4825@deffnx {C Function} scm_utf8_to_string (utf)
524aa8ae
LC
4826@deffnx {C Function} scm_utf16_to_string (utf, endianness)
4827@deffnx {C Function} scm_utf32_to_string (utf, endianness)
b242715b 4828Return a newly allocated string that contains from the UTF-8-, UTF-16-,
524aa8ae
LC
4829or UTF-32-decoded contents of bytevector @var{utf}. For UTF-16 and UTF-32,
4830@var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4831it defaults to big endian.
b242715b
LC
4832@end deffn
4833
438974d0
LC
4834@node Bytevectors as Generalized Vectors
4835@subsubsection Accessing Bytevectors with the Generalized Vector API
4836
4837As an extension to the R6RS, Guile allows bytevectors to be manipulated
4838with the @dfn{generalized vector} procedures (@pxref{Generalized
4839Vectors}). This also allows bytevectors to be accessed using the
4840generic @dfn{array} procedures (@pxref{Array Procedures}). When using
4841these APIs, bytes are accessed one at a time as 8-bit unsigned integers:
4842
4843@example
4844(define bv #vu8(0 1 2 3))
4845
4846(generalized-vector? bv)
4847@result{} #t
4848
4849(generalized-vector-ref bv 2)
4850@result{} 2
4851
4852(generalized-vector-set! bv 2 77)
4853(array-ref bv 2)
4854@result{} 77
4855
4856(array-type bv)
4857@result{} vu8
4858@end example
4859
b242715b 4860
27219b32
AW
4861@node Bytevectors as Uniform Vectors
4862@subsubsection Accessing Bytevectors with the SRFI-4 API
4863
4864Bytevectors may also be accessed with the SRFI-4 API. @xref{SRFI-4 and
4865Bytevectors}, for more information.
4866
4867
07d83abe
MV
4868@node Symbols
4869@subsection Symbols
4870@tpindex Symbols
4871
4872Symbols in Scheme are widely used in three ways: as items of discrete
4873data, as lookup keys for alists and hash tables, and to denote variable
4874references.
4875
4876A @dfn{symbol} is similar to a string in that it is defined by a
4877sequence of characters. The sequence of characters is known as the
4878symbol's @dfn{name}. In the usual case --- that is, where the symbol's
4879name doesn't include any characters that could be confused with other
4880elements of Scheme syntax --- a symbol is written in a Scheme program by
4881writing the sequence of characters that make up the name, @emph{without}
4882any quotation marks or other special syntax. For example, the symbol
4883whose name is ``multiply-by-2'' is written, simply:
4884
4885@lisp
4886multiply-by-2
4887@end lisp
4888
4889Notice how this differs from a @emph{string} with contents
4890``multiply-by-2'', which is written with double quotation marks, like
4891this:
4892
4893@lisp
4894"multiply-by-2"
4895@end lisp
4896
4897Looking beyond how they are written, symbols are different from strings
4898in two important respects.
4899
4900The first important difference is uniqueness. If the same-looking
4901string is read twice from two different places in a program, the result
4902is two @emph{different} string objects whose contents just happen to be
4903the same. If, on the other hand, the same-looking symbol is read twice
4904from two different places in a program, the result is the @emph{same}
4905symbol object both times.
4906
4907Given two read symbols, you can use @code{eq?} to test whether they are
4908the same (that is, have the same name). @code{eq?} is the most
4909efficient comparison operator in Scheme, and comparing two symbols like
4910this is as fast as comparing, for example, two numbers. Given two
4911strings, on the other hand, you must use @code{equal?} or
4912@code{string=?}, which are much slower comparison operators, to
4913determine whether the strings have the same contents.
4914
4915@lisp
4916(define sym1 (quote hello))
4917(define sym2 (quote hello))
4918(eq? sym1 sym2) @result{} #t
4919
4920(define str1 "hello")
4921(define str2 "hello")
4922(eq? str1 str2) @result{} #f
4923(equal? str1 str2) @result{} #t
4924@end lisp
4925
4926The second important difference is that symbols, unlike strings, are not
4927self-evaluating. This is why we need the @code{(quote @dots{})}s in the
4928example above: @code{(quote hello)} evaluates to the symbol named
4929"hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
4930symbol named "hello" and evaluated as a variable reference @dots{} about
4931which more below (@pxref{Symbol Variables}).
4932
4933@menu
4934* Symbol Data:: Symbols as discrete data.
4935* Symbol Keys:: Symbols as lookup keys.
4936* Symbol Variables:: Symbols as denoting variables.
4937* Symbol Primitives:: Operations related to symbols.
4938* Symbol Props:: Function slots and property lists.
4939* Symbol Read Syntax:: Extended read syntax for symbols.
4940* Symbol Uninterned:: Uninterned symbols.
4941@end menu
4942
4943
4944@node Symbol Data
4945@subsubsection Symbols as Discrete Data
4946
4947Numbers and symbols are similar to the extent that they both lend
4948themselves to @code{eq?} comparison. But symbols are more descriptive
4949than numbers, because a symbol's name can be used directly to describe
4950the concept for which that symbol stands.
4951
4952For example, imagine that you need to represent some colours in a
4953computer program. Using numbers, you would have to choose arbitrarily
4954some mapping between numbers and colours, and then take care to use that
4955mapping consistently:
4956
4957@lisp
4958;; 1=red, 2=green, 3=purple
4959
4960(if (eq? (colour-of car) 1)
4961 ...)
4962@end lisp
4963
4964@noindent
4965You can make the mapping more explicit and the code more readable by
4966defining constants:
4967
4968@lisp
4969(define red 1)
4970(define green 2)
4971(define purple 3)
4972
4973(if (eq? (colour-of car) red)
4974 ...)
4975@end lisp
4976
4977@noindent
4978But the simplest and clearest approach is not to use numbers at all, but
4979symbols whose names specify the colours that they refer to:
4980
4981@lisp
4982(if (eq? (colour-of car) 'red)
4983 ...)
4984@end lisp
4985
4986The descriptive advantages of symbols over numbers increase as the set
4987of concepts that you want to describe grows. Suppose that a car object
4988can have other properties as well, such as whether it has or uses:
4989
4990@itemize @bullet
4991@item
4992automatic or manual transmission
4993@item
4994leaded or unleaded fuel
4995@item
4996power steering (or not).
4997@end itemize
4998
4999@noindent
5000Then a car's combined property set could be naturally represented and
5001manipulated as a list of symbols:
5002
5003@lisp
5004(properties-of car1)
5005@result{}
5006(red manual unleaded power-steering)
5007
5008(if (memq 'power-steering (properties-of car1))
5009 (display "Unfit people can drive this car.\n")
5010 (display "You'll need strong arms to drive this car!\n"))
5011@print{}
5012Unfit people can drive this car.
5013@end lisp
5014
5015Remember, the fundamental property of symbols that we are relying on
5016here is that an occurrence of @code{'red} in one part of a program is an
5017@emph{indistinguishable} symbol from an occurrence of @code{'red} in
5018another part of a program; this means that symbols can usefully be
5019compared using @code{eq?}. At the same time, symbols have naturally
5020descriptive names. This combination of efficiency and descriptive power
5021makes them ideal for use as discrete data.
5022
5023
5024@node Symbol Keys
5025@subsubsection Symbols as Lookup Keys
5026
5027Given their efficiency and descriptive power, it is natural to use
5028symbols as the keys in an association list or hash table.
5029
5030To illustrate this, consider a more structured representation of the car
5031properties example from the preceding subsection. Rather than
5032mixing all the properties up together in a flat list, we could use an
5033association list like this:
5034
5035@lisp
5036(define car1-properties '((colour . red)
5037 (transmission . manual)
5038 (fuel . unleaded)
5039 (steering . power-assisted)))
5040@end lisp
5041
5042Notice how this structure is more explicit and extensible than the flat
5043list. For example it makes clear that @code{manual} refers to the
5044transmission rather than, say, the windows or the locking of the car.
5045It also allows further properties to use the same symbols among their
5046possible values without becoming ambiguous:
5047
5048@lisp
5049(define car1-properties '((colour . red)
5050 (transmission . manual)
5051 (fuel . unleaded)
5052 (steering . power-assisted)
5053 (seat-colour . red)
5054 (locking . manual)))
5055@end lisp
5056
5057With a representation like this, it is easy to use the efficient
5058@code{assq-XXX} family of procedures (@pxref{Association Lists}) to
5059extract or change individual pieces of information:
5060
5061@lisp
5062(assq-ref car1-properties 'fuel) @result{} unleaded
5063(assq-ref car1-properties 'transmission) @result{} manual
5064
5065(assq-set! car1-properties 'seat-colour 'black)
5066@result{}
5067((colour . red)
5068 (transmission . manual)
5069 (fuel . unleaded)
5070 (steering . power-assisted)
5071 (seat-colour . black)
5072 (locking . manual)))
5073@end lisp
5074
5075Hash tables also have keys, and exactly the same arguments apply to the
5076use of symbols in hash tables as in association lists. The hash value
5077that Guile uses to decide where to add a symbol-keyed entry to a hash
5078table can be obtained by calling the @code{symbol-hash} procedure:
5079
5080@deffn {Scheme Procedure} symbol-hash symbol
5081@deffnx {C Function} scm_symbol_hash (symbol)
5082Return a hash value for @var{symbol}.
5083@end deffn
5084
5085See @ref{Hash Tables} for information about hash tables in general, and
5086for why you might choose to use a hash table rather than an association
5087list.
5088
5089
5090@node Symbol Variables
5091@subsubsection Symbols as Denoting Variables
5092
5093When an unquoted symbol in a Scheme program is evaluated, it is
5094interpreted as a variable reference, and the result of the evaluation is
5095the appropriate variable's value.
5096
5097For example, when the expression @code{(string-length "abcd")} is read
5098and evaluated, the sequence of characters @code{string-length} is read
5099as the symbol whose name is "string-length". This symbol is associated
5100with a variable whose value is the procedure that implements string
5101length calculation. Therefore evaluation of the @code{string-length}
5102symbol results in that procedure.
5103
5104The details of the connection between an unquoted symbol and the
5105variable to which it refers are explained elsewhere. See @ref{Binding
5106Constructs}, for how associations between symbols and variables are
5107created, and @ref{Modules}, for how those associations are affected by
5108Guile's module system.
5109
5110
5111@node Symbol Primitives
5112@subsubsection Operations Related to Symbols
5113
5114Given any Scheme value, you can determine whether it is a symbol using
5115the @code{symbol?} primitive:
5116
5117@rnindex symbol?
5118@deffn {Scheme Procedure} symbol? obj
5119@deffnx {C Function} scm_symbol_p (obj)
5120Return @code{#t} if @var{obj} is a symbol, otherwise return
5121@code{#f}.
5122@end deffn
5123
c9dc8c6c
MV
5124@deftypefn {C Function} int scm_is_symbol (SCM val)
5125Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
5126@end deftypefn
5127
07d83abe
MV
5128Once you know that you have a symbol, you can obtain its name as a
5129string by calling @code{symbol->string}. Note that Guile differs by
5130default from R5RS on the details of @code{symbol->string} as regards
5131case-sensitivity:
5132
5133@rnindex symbol->string
5134@deffn {Scheme Procedure} symbol->string s
5135@deffnx {C Function} scm_symbol_to_string (s)
5136Return the name of symbol @var{s} as a string. By default, Guile reads
5137symbols case-sensitively, so the string returned will have the same case
5138variation as the sequence of characters that caused @var{s} to be
5139created.
5140
5141If Guile is set to read symbols case-insensitively (as specified by
5142R5RS), and @var{s} comes into being as part of a literal expression
5143(@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
5144by a call to the @code{read} or @code{string-ci->symbol} procedures,
5145Guile converts any alphabetic characters in the symbol's name to
5146lower case before creating the symbol object, so the string returned
5147here will be in lower case.
5148
5149If @var{s} was created by @code{string->symbol}, the case of characters
5150in the string returned will be the same as that in the string that was
5151passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5152setting at the time @var{s} was created.
5153
5154It is an error to apply mutation procedures like @code{string-set!} to
5155strings returned by this procedure.
5156@end deffn
5157
5158Most symbols are created by writing them literally in code. However it
5159is also possible to create symbols programmatically using the following
c5fc8f8c
JG
5160procedures:
5161
5162@deffn {Scheme Procedure} symbol char@dots{}
5163@rnindex symbol
5164Return a newly allocated symbol made from the given character arguments.
5165
5166@example
5167(symbol #\x #\y #\z) @result{} xyz
5168@end example
5169@end deffn
5170
5171@deffn {Scheme Procedure} list->symbol lst
5172@rnindex list->symbol
5173Return a newly allocated symbol made from a list of characters.
5174
5175@example
5176(list->symbol '(#\a #\b #\c)) @result{} abc
5177@end example
5178@end deffn
5179
5180@rnindex symbol-append
df0a1002 5181@deffn {Scheme Procedure} symbol-append arg @dots{}
c5fc8f8c 5182Return a newly allocated symbol whose characters form the
df0a1002 5183concatenation of the given symbols, @var{arg} @enddots{}.
c5fc8f8c
JG
5184
5185@example
5186(let ((h 'hello))
5187 (symbol-append h 'world))
5188@result{} helloworld
5189@end example
5190@end deffn
07d83abe
MV
5191
5192@rnindex string->symbol
5193@deffn {Scheme Procedure} string->symbol string
5194@deffnx {C Function} scm_string_to_symbol (string)
5195Return the symbol whose name is @var{string}. This procedure can create
5196symbols with names containing special characters or letters in the
5197non-standard case, but it is usually a bad idea to create such symbols
5198because in some implementations of Scheme they cannot be read as
5199themselves.
5200@end deffn
5201
5202@deffn {Scheme Procedure} string-ci->symbol str
5203@deffnx {C Function} scm_string_ci_to_symbol (str)
5204Return the symbol whose name is @var{str}. If Guile is currently
5205reading symbols case-insensitively, @var{str} is converted to lowercase
5206before the returned symbol is looked up or created.
5207@end deffn
5208
5209The following examples illustrate Guile's detailed behaviour as regards
5210the case-sensitivity of symbols:
5211
5212@lisp
5213(read-enable 'case-insensitive) ; R5RS compliant behaviour
5214
5215(symbol->string 'flying-fish) @result{} "flying-fish"
5216(symbol->string 'Martin) @result{} "martin"
5217(symbol->string
5218 (string->symbol "Malvina")) @result{} "Malvina"
5219
5220(eq? 'mISSISSIppi 'mississippi) @result{} #t
5221(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5222(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5223(eq? 'LolliPop
5224 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5225(string=? "K. Harper, M.D."
5226 (symbol->string
5227 (string->symbol "K. Harper, M.D."))) @result{} #t
5228
5229(read-disable 'case-insensitive) ; Guile default behaviour
5230
5231(symbol->string 'flying-fish) @result{} "flying-fish"
5232(symbol->string 'Martin) @result{} "Martin"
5233(symbol->string
5234 (string->symbol "Malvina")) @result{} "Malvina"
5235
5236(eq? 'mISSISSIppi 'mississippi) @result{} #f
5237(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5238(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5239(eq? 'LolliPop
5240 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5241(string=? "K. Harper, M.D."
5242 (symbol->string
5243 (string->symbol "K. Harper, M.D."))) @result{} #t
5244@end lisp
5245
5246From C, there are lower level functions that construct a Scheme symbol
c48c62d0
MV
5247from a C string in the current locale encoding.
5248
5249When you want to do more from C, you should convert between symbols
5250and strings using @code{scm_symbol_to_string} and
5251@code{scm_string_to_symbol} and work with the strings.
07d83abe 5252
5f6ffd66
BT
5253@deftypefn {C Function} scm_from_latin1_symbol (const char *name)
5254@deftypefnx {C Function} scm_from_utf8_symbol (const char *name)
ce3ce21c
MW
5255Construct and return a Scheme symbol whose name is specified by the
5256null-terminated C string @var{name}. These are appropriate when
5257the C string is hard-coded in the source code.
5f6ffd66 5258@end deftypefn
ce3ce21c 5259
5f6ffd66
BT
5260@deftypefn {C Function} scm_from_locale_symbol (const char *name)
5261@deftypefnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
07d83abe 5262Construct and return a Scheme symbol whose name is specified by
c48c62d0
MV
5263@var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5264terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
07d83abe 5265specified explicitly by @var{len}.
ce3ce21c
MW
5266
5267Note that these functions should @emph{not} be used when @var{name} is a
5268C string constant, because there is no guarantee that the current locale
5269will match that of the source code. In such cases, use
5270@code{scm_from_latin1_symbol} or @code{scm_from_utf8_symbol}.
5f6ffd66 5271@end deftypefn
07d83abe 5272
fd0a5bbc
HWN
5273@deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5274@deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5275Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5276respectively, but also frees @var{str} with @code{free} eventually.
5277Thus, you can use this function when you would free @var{str} anyway
5278immediately after creating the Scheme string. In certain cases, Guile
5279can then use @var{str} directly as its internal representation.
5280@end deftypefn
5281
071bb6a8
LC
5282The size of a symbol can also be obtained from C:
5283
5284@deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5285Return the number of characters in @var{sym}.
5286@end deftypefn
fd0a5bbc 5287
07d83abe
MV
5288Finally, some applications, especially those that generate new Scheme
5289code dynamically, need to generate symbols for use in the generated
5290code. The @code{gensym} primitive meets this need:
5291
5292@deffn {Scheme Procedure} gensym [prefix]
5293@deffnx {C Function} scm_gensym (prefix)
5294Create a new symbol with a name constructed from a prefix and a counter
5295value. The string @var{prefix} can be specified as an optional
5296argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5297at each call. There is no provision for resetting the counter.
5298@end deffn
5299
5300The symbols generated by @code{gensym} are @emph{likely} to be unique,
5301since their names begin with a space and it is only otherwise possible
5302to generate such symbols if a programmer goes out of their way to do
5303so. Uniqueness can be guaranteed by instead using uninterned symbols
5304(@pxref{Symbol Uninterned}), though they can't be usefully written out
5305and read back in.
5306
5307
5308@node Symbol Props
5309@subsubsection Function Slots and Property Lists
5310
5311In traditional Lisp dialects, symbols are often understood as having
5312three kinds of value at once:
5313
5314@itemize @bullet
5315@item
5316a @dfn{variable} value, which is used when the symbol appears in
5317code in a variable reference context
5318
5319@item
5320a @dfn{function} value, which is used when the symbol appears in
679cceed 5321code in a function name position (i.e.@: as the first element in an
07d83abe
MV
5322unquoted list)
5323
5324@item
5325a @dfn{property list} value, which is used when the symbol is given as
5326the first argument to Lisp's @code{put} or @code{get} functions.
5327@end itemize
5328
5329Although Scheme (as one of its simplifications with respect to Lisp)
5330does away with the distinction between variable and function namespaces,
5331Guile currently retains some elements of the traditional structure in
5332case they turn out to be useful when implementing translators for other
5333languages, in particular Emacs Lisp.
5334
ecb87335
RW
5335Specifically, Guile symbols have two extra slots, one for a symbol's
5336property list, and one for its ``function value.'' The following procedures
07d83abe
MV
5337are provided to access these slots.
5338
5339@deffn {Scheme Procedure} symbol-fref symbol
5340@deffnx {C Function} scm_symbol_fref (symbol)
5341Return the contents of @var{symbol}'s @dfn{function slot}.
5342@end deffn
5343
5344@deffn {Scheme Procedure} symbol-fset! symbol value
5345@deffnx {C Function} scm_symbol_fset_x (symbol, value)
5346Set the contents of @var{symbol}'s function slot to @var{value}.
5347@end deffn
5348
5349@deffn {Scheme Procedure} symbol-pref symbol
5350@deffnx {C Function} scm_symbol_pref (symbol)
5351Return the @dfn{property list} currently associated with @var{symbol}.
5352@end deffn
5353
5354@deffn {Scheme Procedure} symbol-pset! symbol value
5355@deffnx {C Function} scm_symbol_pset_x (symbol, value)
5356Set @var{symbol}'s property list to @var{value}.
5357@end deffn
5358
5359@deffn {Scheme Procedure} symbol-property sym prop
5360From @var{sym}'s property list, return the value for property
5361@var{prop}. The assumption is that @var{sym}'s property list is an
5362association list whose keys are distinguished from each other using
5363@code{equal?}; @var{prop} should be one of the keys in that list. If
5364the property list has no entry for @var{prop}, @code{symbol-property}
5365returns @code{#f}.
5366@end deffn
5367
5368@deffn {Scheme Procedure} set-symbol-property! sym prop val
5369In @var{sym}'s property list, set the value for property @var{prop} to
5370@var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5371none already exists. For the structure of the property list, see
5372@code{symbol-property}.
5373@end deffn
5374
5375@deffn {Scheme Procedure} symbol-property-remove! sym prop
5376From @var{sym}'s property list, remove the entry for property
5377@var{prop}, if there is one. For the structure of the property list,
5378see @code{symbol-property}.
5379@end deffn
5380
5381Support for these extra slots may be removed in a future release, and it
4695789c
NJ
5382is probably better to avoid using them. For a more modern and Schemely
5383approach to properties, see @ref{Object Properties}.
07d83abe
MV
5384
5385
5386@node Symbol Read Syntax
5387@subsubsection Extended Read Syntax for Symbols
5388
5389The read syntax for a symbol is a sequence of letters, digits, and
5390@dfn{extended alphabetic characters}, beginning with a character that
5391cannot begin a number. In addition, the special cases of @code{+},
5392@code{-}, and @code{...} are read as symbols even though numbers can
5393begin with @code{+}, @code{-} or @code{.}.
5394
5395Extended alphabetic characters may be used within identifiers as if
5396they were letters. The set of extended alphabetic characters is:
5397
5398@example
5399! $ % & * + - . / : < = > ? @@ ^ _ ~
5400@end example
5401
5402In addition to the standard read syntax defined above (which is taken
5403from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5404Scheme})), Guile provides an extended symbol read syntax that allows the
5405inclusion of unusual characters such as space characters, newlines and
5406parentheses. If (for whatever reason) you need to write a symbol
5407containing characters not mentioned above, you can do so as follows.
5408
5409@itemize @bullet
5410@item
5411Begin the symbol with the characters @code{#@{},
5412
5413@item
5414write the characters of the symbol and
5415
5416@item
5417finish the symbol with the characters @code{@}#}.
5418@end itemize
5419
5420Here are a few examples of this form of read syntax. The first symbol
5421needs to use extended syntax because it contains a space character, the
5422second because it contains a line break, and the last because it looks
5423like a number.
5424
5425@lisp
5426#@{foo bar@}#
5427
5428#@{what
5429ever@}#
5430
5431#@{4242@}#
5432@end lisp
5433
5434Although Guile provides this extended read syntax for symbols,
5435widespread usage of it is discouraged because it is not portable and not
5436very readable.
5437
5438
5439@node Symbol Uninterned
5440@subsubsection Uninterned Symbols
5441
5442What makes symbols useful is that they are automatically kept unique.
5443There are no two symbols that are distinct objects but have the same
5444name. But of course, there is no rule without exception. In addition
5445to the normal symbols that have been discussed up to now, you can also
5446create special @dfn{uninterned} symbols that behave slightly
5447differently.
5448
5449To understand what is different about them and why they might be useful,
5450we look at how normal symbols are actually kept unique.
5451
5452Whenever Guile wants to find the symbol with a specific name, for
5453example during @code{read} or when executing @code{string->symbol}, it
5454first looks into a table of all existing symbols to find out whether a
5455symbol with the given name already exists. When this is the case, Guile
5456just returns that symbol. When not, a new symbol with the name is
5457created and entered into the table so that it can be found later.
5458
5459Sometimes you might want to create a symbol that is guaranteed `fresh',
679cceed 5460i.e.@: a symbol that did not exist previously. You might also want to
07d83abe
MV
5461somehow guarantee that no one else will ever unintentionally stumble
5462across your symbol in the future. These properties of a symbol are
5463often needed when generating code during macro expansion. When
5464introducing new temporary variables, you want to guarantee that they
5465don't conflict with variables in other people's code.
5466
5467The simplest way to arrange for this is to create a new symbol but
5468not enter it into the global table of all symbols. That way, no one
5469will ever get access to your symbol by chance. Symbols that are not in
5470the table are called @dfn{uninterned}. Of course, symbols that
5471@emph{are} in the table are called @dfn{interned}.
5472
5473You create new uninterned symbols with the function @code{make-symbol}.
5474You can test whether a symbol is interned or not with
5475@code{symbol-interned?}.
5476
5477Uninterned symbols break the rule that the name of a symbol uniquely
5478identifies the symbol object. Because of this, they can not be written
5479out and read back in like interned symbols. Currently, Guile has no
5480support for reading uninterned symbols. Note that the function
5481@code{gensym} does not return uninterned symbols for this reason.
5482
5483@deffn {Scheme Procedure} make-symbol name
5484@deffnx {C Function} scm_make_symbol (name)
5485Return a new uninterned symbol with the name @var{name}. The returned
5486symbol is guaranteed to be unique and future calls to
5487@code{string->symbol} will not return it.
5488@end deffn
5489
5490@deffn {Scheme Procedure} symbol-interned? symbol
5491@deffnx {C Function} scm_symbol_interned_p (symbol)
5492Return @code{#t} if @var{symbol} is interned, otherwise return
5493@code{#f}.
5494@end deffn
5495
5496For example:
5497
5498@lisp
5499(define foo-1 (string->symbol "foo"))
5500(define foo-2 (string->symbol "foo"))
5501(define foo-3 (make-symbol "foo"))
5502(define foo-4 (make-symbol "foo"))
5503
5504(eq? foo-1 foo-2)
5505@result{} #t
5506; Two interned symbols with the same name are the same object,
5507
5508(eq? foo-1 foo-3)
5509@result{} #f
5510; but a call to make-symbol with the same name returns a
5511; distinct object.
5512
5513(eq? foo-3 foo-4)
5514@result{} #f
5515; A call to make-symbol always returns a new object, even for
5516; the same name.
5517
5518foo-3
5519@result{} #<uninterned-symbol foo 8085290>
5520; Uninterned symbols print differently from interned symbols,
5521
5522(symbol? foo-3)
5523@result{} #t
5524; but they are still symbols,
5525
5526(symbol-interned? foo-3)
5527@result{} #f
5528; just not interned.
5529@end lisp
5530
5531
5532@node Keywords
5533@subsection Keywords
5534@tpindex Keywords
5535
5536Keywords are self-evaluating objects with a convenient read syntax that
5537makes them easy to type.
5538
5539Guile's keyword support conforms to R5RS, and adds a (switchable) read
5540syntax extension to permit keywords to begin with @code{:} as well as
ef4cbc08 5541@code{#:}, or to end with @code{:}.
07d83abe
MV
5542
5543@menu
5544* Why Use Keywords?:: Motivation for keyword usage.
5545* Coding With Keywords:: How to use keywords.
5546* Keyword Read Syntax:: Read syntax for keywords.
5547* Keyword Procedures:: Procedures for dealing with keywords.
07d83abe
MV
5548@end menu
5549
5550@node Why Use Keywords?
5551@subsubsection Why Use Keywords?
5552
5553Keywords are useful in contexts where a program or procedure wants to be
5554able to accept a large number of optional arguments without making its
5555interface unmanageable.
5556
5557To illustrate this, consider a hypothetical @code{make-window}
5558procedure, which creates a new window on the screen for drawing into
5559using some graphical toolkit. There are many parameters that the caller
5560might like to specify, but which could also be sensibly defaulted, for
5561example:
5562
5563@itemize @bullet
5564@item
5565color depth -- Default: the color depth for the screen
5566
5567@item
5568background color -- Default: white
5569
5570@item
5571width -- Default: 600
5572
5573@item
5574height -- Default: 400
5575@end itemize
5576
5577If @code{make-window} did not use keywords, the caller would have to
5578pass in a value for each possible argument, remembering the correct
5579argument order and using a special value to indicate the default value
5580for that argument:
5581
5582@lisp
5583(make-window 'default ;; Color depth
5584 'default ;; Background color
5585 800 ;; Width
5586 100 ;; Height
5587 @dots{}) ;; More make-window arguments
5588@end lisp
5589
5590With keywords, on the other hand, defaulted arguments are omitted, and
5591non-default arguments are clearly tagged by the appropriate keyword. As
5592a result, the invocation becomes much clearer:
5593
5594@lisp
5595(make-window #:width 800 #:height 100)
5596@end lisp
5597
5598On the other hand, for a simpler procedure with few arguments, the use
5599of keywords would be a hindrance rather than a help. The primitive
5600procedure @code{cons}, for example, would not be improved if it had to
5601be invoked as
5602
5603@lisp
5604(cons #:car x #:cdr y)
5605@end lisp
5606
5607So the decision whether to use keywords or not is purely pragmatic: use
5608them if they will clarify the procedure invocation at point of call.
5609
5610@node Coding With Keywords
5611@subsubsection Coding With Keywords
5612
5613If a procedure wants to support keywords, it should take a rest argument
5614and then use whatever means is convenient to extract keywords and their
5615corresponding arguments from the contents of that rest argument.
5616
5617The following example illustrates the principle: the code for
5618@code{make-window} uses a helper procedure called
5619@code{get-keyword-value} to extract individual keyword arguments from
5620the rest argument.
5621
5622@lisp
5623(define (get-keyword-value args keyword default)
5624 (let ((kv (memq keyword args)))
5625 (if (and kv (>= (length kv) 2))
5626 (cadr kv)
5627 default)))
5628
5629(define (make-window . args)
5630 (let ((depth (get-keyword-value args #:depth screen-depth))
5631 (bg (get-keyword-value args #:bg "white"))
5632 (width (get-keyword-value args #:width 800))
5633 (height (get-keyword-value args #:height 100))
5634 @dots{})
5635 @dots{}))
5636@end lisp
5637
5638But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5639optargs)} module provides a set of powerful macros that you can use to
5640implement keyword-supporting procedures like this:
5641
5642@lisp
5643(use-modules (ice-9 optargs))
5644
5645(define (make-window . args)
5646 (let-keywords args #f ((depth screen-depth)
5647 (bg "white")
5648 (width 800)
5649 (height 100))
5650 ...))
5651@end lisp
5652
5653@noindent
5654Or, even more economically, like this:
5655
5656@lisp
5657(use-modules (ice-9 optargs))
5658
5659(define* (make-window #:key (depth screen-depth)
5660 (bg "white")
5661 (width 800)
5662 (height 100))
5663 ...)
5664@end lisp
5665
5666For further details on @code{let-keywords}, @code{define*} and other
5667facilities provided by the @code{(ice-9 optargs)} module, see
5668@ref{Optional Arguments}.
5669
5670
5671@node Keyword Read Syntax
5672@subsubsection Keyword Read Syntax
5673
7719ef22
MV
5674Guile, by default, only recognizes a keyword syntax that is compatible
5675with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5676same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5677external representation of the keyword named @code{NAME}. Keyword
5678objects print using this syntax as well, so values containing keyword
5679objects can be read back into Guile. When used in an expression,
5680keywords are self-quoting objects.
07d83abe
MV
5681
5682If the @code{keyword} read option is set to @code{'prefix}, Guile also
5683recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5684of the form @code{:NAME} are read as symbols, as required by R5RS.
5685
ef4cbc08
LC
5686@cindex SRFI-88 keyword syntax
5687
5688If the @code{keyword} read option is set to @code{'postfix}, Guile
189681f5
LC
5689recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5690Otherwise, tokens of this form are read as symbols.
ef4cbc08 5691
07d83abe 5692To enable and disable the alternative non-R5RS keyword syntax, you use
1518f649
AW
5693the @code{read-set!} procedure documented @ref{Scheme Read}. Note that
5694the @code{prefix} and @code{postfix} syntax are mutually exclusive.
07d83abe 5695
aba0dff5 5696@lisp
07d83abe
MV
5697(read-set! keywords 'prefix)
5698
5699#:type
5700@result{}
5701#:type
5702
5703:type
5704@result{}
5705#:type
5706
ef4cbc08
LC
5707(read-set! keywords 'postfix)
5708
5709type:
5710@result{}
5711#:type
5712
5713:type
5714@result{}
5715:type
5716
07d83abe
MV
5717(read-set! keywords #f)
5718
5719#:type
5720@result{}
5721#:type
5722
5723:type
5724@print{}
5725ERROR: In expression :type:
5726ERROR: Unbound variable: :type
5727ABORT: (unbound-variable)
aba0dff5 5728@end lisp
07d83abe
MV
5729
5730@node Keyword Procedures
5731@subsubsection Keyword Procedures
5732
07d83abe
MV
5733@deffn {Scheme Procedure} keyword? obj
5734@deffnx {C Function} scm_keyword_p (obj)
5735Return @code{#t} if the argument @var{obj} is a keyword, else
5736@code{#f}.
5737@end deffn
5738
7719ef22
MV
5739@deffn {Scheme Procedure} keyword->symbol keyword
5740@deffnx {C Function} scm_keyword_to_symbol (keyword)
5741Return the symbol with the same name as @var{keyword}.
07d83abe
MV
5742@end deffn
5743
7719ef22
MV
5744@deffn {Scheme Procedure} symbol->keyword symbol
5745@deffnx {C Function} scm_symbol_to_keyword (symbol)
5746Return the keyword with the same name as @var{symbol}.
5747@end deffn
07d83abe 5748
7719ef22
MV
5749@deftypefn {C Function} int scm_is_keyword (SCM obj)
5750Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
07d83abe
MV
5751@end deftypefn
5752
c428e586
MW
5753@deftypefn {C Function} SCM scm_from_locale_keyword (const char *name)
5754@deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *name, size_t len)
7719ef22 5755Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
c428e586
MW
5756(@var{name}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5757(@var{name}, @var{len}))}, respectively.
5758
5759Note that these functions should @emph{not} be used when @var{name} is a
5760C string constant, because there is no guarantee that the current locale
5761will match that of the source code. In such cases, use
5762@code{scm_from_latin1_keyword} or @code{scm_from_utf8_keyword}.
5763@end deftypefn
5764
5765@deftypefn {C Function} SCM scm_from_latin1_keyword (const char *name)
5766@deftypefnx {C Function} SCM scm_from_utf8_keyword (const char *name)
5767Equivalent to @code{scm_symbol_to_keyword (scm_from_latin1_symbol
5768(@var{name}))} and @code{scm_symbol_to_keyword (scm_from_utf8_symbol
5769(@var{name}))}, respectively.
7719ef22 5770@end deftypefn
07d83abe
MV
5771
5772@node Other Types
5773@subsection ``Functionality-Centric'' Data Types
5774
a136ada6 5775Procedures and macros are documented in their own sections: see
e4955559 5776@ref{Procedures} and @ref{Macros}.
07d83abe
MV
5777
5778Variable objects are documented as part of the description of Guile's
5779module system: see @ref{Variables}.
5780
a136ada6 5781Asyncs, dynamic roots and fluids are described in the section on
07d83abe
MV
5782scheduling: see @ref{Scheduling}.
5783
a136ada6 5784Hooks are documented in the section on general utility functions: see
07d83abe
MV
5785@ref{Hooks}.
5786
a136ada6 5787Ports are described in the section on I/O: see @ref{Input and Output}.
07d83abe 5788
a136ada6
NJ
5789Regular expressions are described in their own section: see @ref{Regular
5790Expressions}.
07d83abe
MV
5791
5792@c Local Variables:
5793@c TeX-master: "guile.texi"
5794@c End: