Don't declare `scm_i_locale_mutex' as `SCM_INTERNAL'.
[bpt/guile.git] / doc / ref / api-data.texi
CommitLineData
07d83abe
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
b226295a 3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008
07d83abe
MV
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
7@page
8@node Simple Data Types
9@section Simple Generic Data Types
10
11This chapter describes those of Guile's simple data types which are
12primarily used for their role as items of generic data. By
13@dfn{simple} we mean data types that are not primarily used as
14containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
15For the documentation of such @dfn{compound} data types, see
16@ref{Compound Data Types}.
17
18@c One of the great strengths of Scheme is that there is no straightforward
19@c distinction between ``data'' and ``functionality''. For example,
20@c Guile's support for dynamic linking could be described:
21
22@c @itemize @bullet
23@c @item
24@c either in a ``data-centric'' way, as the behaviour and properties of the
25@c ``dynamically linked object'' data type, and the operations that may be
26@c applied to instances of this type
27
28@c @item
29@c or in a ``functionality-centric'' way, as the set of procedures that
30@c constitute Guile's support for dynamic linking, in the context of the
31@c module system.
32@c @end itemize
33
34@c The contents of this chapter are, therefore, a matter of judgment. By
35@c @dfn{generic}, we mean to select those data types whose typical use as
36@c @emph{data} in a wide variety of programming contexts is more important
37@c than their use in the implementation of a particular piece of
38@c @emph{functionality}. The last section of this chapter provides
39@c references for all the data types that are documented not here but in a
40@c ``functionality-centric'' way elsewhere in the manual.
41
42@menu
43* Booleans:: True/false values.
44* Numbers:: Numerical data types.
050ab45f
MV
45* Characters:: Single characters.
46* Character Sets:: Sets of characters.
47* Strings:: Sequences of characters.
07d83abe
MV
48* Regular Expressions:: Pattern matching and substitution.
49* Symbols:: Symbols.
50* Keywords:: Self-quoting, customizable display keywords.
51* Other Types:: "Functionality-centric" data types.
52@end menu
53
54
55@node Booleans
56@subsection Booleans
57@tpindex Booleans
58
59The two boolean values are @code{#t} for true and @code{#f} for false.
60
61Boolean values are returned by predicate procedures, such as the general
62equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
63(@pxref{Equality}) and numerical and string comparison operators like
64@code{string=?} (@pxref{String Comparison}) and @code{<=}
65(@pxref{Comparison}).
66
67@lisp
68(<= 3 8)
69@result{} #t
70
71(<= 3 -3)
72@result{} #f
73
74(equal? "house" "houses")
75@result{} #f
76
77(eq? #f #f)
78@result{}
79#t
80@end lisp
81
82In test condition contexts like @code{if} and @code{cond} (@pxref{if
83cond case}), where a group of subexpressions will be evaluated only if a
84@var{condition} expression evaluates to ``true'', ``true'' means any
85value at all except @code{#f}.
86
87@lisp
88(if #t "yes" "no")
89@result{} "yes"
90
91(if 0 "yes" "no")
92@result{} "yes"
93
94(if #f "yes" "no")
95@result{} "no"
96@end lisp
97
98A result of this asymmetry is that typical Scheme source code more often
99uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
100represent an @code{if} or @code{cond} false value, whereas @code{#t} is
101not necessary to represent an @code{if} or @code{cond} true value.
102
103It is important to note that @code{#f} is @strong{not} equivalent to any
104other Scheme value. In particular, @code{#f} is not the same as the
105number 0 (like in C and C++), and not the same as the ``empty list''
106(like in some Lisp dialects).
107
108In C, the two Scheme boolean values are available as the two constants
109@code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
110Care must be taken with the false value @code{SCM_BOOL_F}: it is not
111false when used in C conditionals. In order to test for it, use
112@code{scm_is_false} or @code{scm_is_true}.
113
114@rnindex not
115@deffn {Scheme Procedure} not x
116@deffnx {C Function} scm_not (x)
117Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
118@end deffn
119
120@rnindex boolean?
121@deffn {Scheme Procedure} boolean? obj
122@deffnx {C Function} scm_boolean_p (obj)
123Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
124return @code{#f}.
125@end deffn
126
127@deftypevr {C Macro} SCM SCM_BOOL_T
128The @code{SCM} representation of the Scheme object @code{#t}.
129@end deftypevr
130
131@deftypevr {C Macro} SCM SCM_BOOL_F
132The @code{SCM} representation of the Scheme object @code{#f}.
133@end deftypevr
134
135@deftypefn {C Function} int scm_is_true (SCM obj)
136Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
137@end deftypefn
138
139@deftypefn {C Function} int scm_is_false (SCM obj)
140Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
141@end deftypefn
142
143@deftypefn {C Function} int scm_is_bool (SCM obj)
144Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
145return @code{0}.
146@end deftypefn
147
148@deftypefn {C Function} SCM scm_from_bool (int val)
149Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
150@end deftypefn
151
152@deftypefn {C Function} int scm_to_bool (SCM val)
153Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
154when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
155
156You should probably use @code{scm_is_true} instead of this function
157when you just want to test a @code{SCM} value for trueness.
158@end deftypefn
159
160@node Numbers
161@subsection Numerical data types
162@tpindex Numbers
163
164Guile supports a rich ``tower'' of numerical types --- integer,
165rational, real and complex --- and provides an extensive set of
166mathematical and scientific functions for operating on numerical
167data. This section of the manual documents those types and functions.
168
169You may also find it illuminating to read R5RS's presentation of numbers
170in Scheme, which is particularly clear and accessible: see
171@ref{Numbers,,,r5rs,R5RS}.
172
173@menu
174* Numerical Tower:: Scheme's numerical "tower".
175* Integers:: Whole numbers.
176* Reals and Rationals:: Real and rational numbers.
177* Complex Numbers:: Complex numbers.
178* Exactness:: Exactness and inexactness.
179* Number Syntax:: Read syntax for numerical data.
180* Integer Operations:: Operations on integer values.
181* Comparison:: Comparison predicates.
182* Conversion:: Converting numbers to and from strings.
183* Complex:: Complex number operations.
184* Arithmetic:: Arithmetic functions.
185* Scientific:: Scientific functions.
186* Primitive Numerics:: Primitive numeric functions.
187* Bitwise Operations:: Logical AND, OR, NOT, and so on.
188* Random:: Random number generation.
189@end menu
190
191
192@node Numerical Tower
193@subsubsection Scheme's Numerical ``Tower''
194@rnindex number?
195
196Scheme's numerical ``tower'' consists of the following categories of
197numbers:
198
199@table @dfn
200@item integers
201Whole numbers, positive or negative; e.g.@: --5, 0, 18.
202
203@item rationals
204The set of numbers that can be expressed as @math{@var{p}/@var{q}}
205where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
206pi (an irrational number) doesn't. These include integers
207(@math{@var{n}/1}).
208
209@item real numbers
210The set of numbers that describes all possible positions along a
211one-dimensional line. This includes rationals as well as irrational
212numbers.
213
214@item complex numbers
215The set of numbers that describes all possible positions in a two
216dimensional space. This includes real as well as imaginary numbers
217(@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
218@var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
219@minus{}1.)
220@end table
221
222It is called a tower because each category ``sits on'' the one that
223follows it, in the sense that every integer is also a rational, every
224rational is also real, and every real number is also a complex number
225(but with zero imaginary part).
226
227In addition to the classification into integers, rationals, reals and
228complex numbers, Scheme also distinguishes between whether a number is
229represented exactly or not. For example, the result of
9f1ba6a9
NJ
230@m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
231can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
07d83abe
MV
232Instead, it stores an inexact approximation, using the C type
233@code{double}.
234
235Guile can represent exact rationals of any magnitude, inexact
236rationals that fit into a C @code{double}, and inexact complex numbers
237with @code{double} real and imaginary parts.
238
239The @code{number?} predicate may be applied to any Scheme value to
240discover whether the value is any of the supported numerical types.
241
242@deffn {Scheme Procedure} number? obj
243@deffnx {C Function} scm_number_p (obj)
244Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
245@end deffn
246
247For example:
248
249@lisp
250(number? 3)
251@result{} #t
252
253(number? "hello there!")
254@result{} #f
255
256(define pi 3.141592654)
257(number? pi)
258@result{} #t
259@end lisp
260
5615f696
MV
261@deftypefn {C Function} int scm_is_number (SCM obj)
262This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
263@end deftypefn
264
07d83abe
MV
265The next few subsections document each of Guile's numerical data types
266in detail.
267
268@node Integers
269@subsubsection Integers
270
271@tpindex Integer numbers
272
273@rnindex integer?
274
275Integers are whole numbers, that is numbers with no fractional part,
276such as 2, 83, and @minus{}3789.
277
278Integers in Guile can be arbitrarily big, as shown by the following
279example.
280
281@lisp
282(define (factorial n)
283 (let loop ((n n) (product 1))
284 (if (= n 0)
285 product
286 (loop (- n 1) (* product n)))))
287
288(factorial 3)
289@result{} 6
290
291(factorial 20)
292@result{} 2432902008176640000
293
294(- (factorial 45))
295@result{} -119622220865480194561963161495657715064383733760000000000
296@end lisp
297
298Readers whose background is in programming languages where integers are
299limited by the need to fit into just 4 or 8 bytes of memory may find
300this surprising, or suspect that Guile's representation of integers is
301inefficient. In fact, Guile achieves a near optimal balance of
302convenience and efficiency by using the host computer's native
303representation of integers where possible, and a more general
304representation where the required number does not fit in the native
305form. Conversion between these two representations is automatic and
306completely invisible to the Scheme level programmer.
307
308The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
309inexact integers. They are explained in detail in the next section,
310together with reals and rationals.
311
312C has a host of different integer types, and Guile offers a host of
313functions to convert between them and the @code{SCM} representation.
314For example, a C @code{int} can be handled with @code{scm_to_int} and
315@code{scm_from_int}. Guile also defines a few C integer types of its
316own, to help with differences between systems.
317
318C integer types that are not covered can be handled with the generic
319@code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
320signed types, or with @code{scm_to_unsigned_integer} and
321@code{scm_from_unsigned_integer} for unsigned types.
322
323Scheme integers can be exact and inexact. For example, a number
324written as @code{3.0} with an explicit decimal-point is inexact, but
325it is also an integer. The functions @code{integer?} and
326@code{scm_is_integer} report true for such a number, but the functions
327@code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
328allow exact integers and thus report false. Likewise, the conversion
329functions like @code{scm_to_signed_integer} only accept exact
330integers.
331
332The motivation for this behavior is that the inexactness of a number
333should not be lost silently. If you want to allow inexact integers,
334you can explicitely insert a call to @code{inexact->exact} or to its C
335equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
336be converted by this call into exact integers; inexact non-integers
337will become exact fractions.)
338
339@deffn {Scheme Procedure} integer? x
340@deffnx {C Function} scm_integer_p (x)
909fcc97 341Return @code{#t} if @var{x} is an exact or inexact integer number, else
07d83abe
MV
342@code{#f}.
343
344@lisp
345(integer? 487)
346@result{} #t
347
348(integer? 3.0)
349@result{} #t
350
351(integer? -3.4)
352@result{} #f
353
354(integer? +inf.0)
355@result{} #t
356@end lisp
357@end deffn
358
359@deftypefn {C Function} int scm_is_integer (SCM x)
360This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
361@end deftypefn
362
363@defvr {C Type} scm_t_int8
364@defvrx {C Type} scm_t_uint8
365@defvrx {C Type} scm_t_int16
366@defvrx {C Type} scm_t_uint16
367@defvrx {C Type} scm_t_int32
368@defvrx {C Type} scm_t_uint32
369@defvrx {C Type} scm_t_int64
370@defvrx {C Type} scm_t_uint64
371@defvrx {C Type} scm_t_intmax
372@defvrx {C Type} scm_t_uintmax
373The C types are equivalent to the corresponding ISO C types but are
374defined on all platforms, with the exception of @code{scm_t_int64} and
375@code{scm_t_uint64}, which are only defined when a 64-bit type is
376available. For example, @code{scm_t_int8} is equivalent to
377@code{int8_t}.
378
379You can regard these definitions as a stop-gap measure until all
380platforms provide these types. If you know that all the platforms
381that you are interested in already provide these types, it is better
382to use them directly instead of the types provided by Guile.
383@end defvr
384
385@deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
386@deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
387Return @code{1} when @var{x} represents an exact integer that is
388between @var{min} and @var{max}, inclusive.
389
390These functions can be used to check whether a @code{SCM} value will
391fit into a given range, such as the range of a given C integer type.
392If you just want to convert a @code{SCM} value to a given C integer
393type, use one of the conversion functions directly.
394@end deftypefn
395
396@deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
397@deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
398When @var{x} represents an exact integer that is between @var{min} and
399@var{max} inclusive, return that integer. Else signal an error,
400either a `wrong-type' error when @var{x} is not an exact integer, or
401an `out-of-range' error when it doesn't fit the given range.
402@end deftypefn
403
404@deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
405@deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
406Return the @code{SCM} value that represents the integer @var{x}. This
407function will always succeed and will always return an exact number.
408@end deftypefn
409
410@deftypefn {C Function} char scm_to_char (SCM x)
411@deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
412@deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
413@deftypefnx {C Function} short scm_to_short (SCM x)
414@deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
415@deftypefnx {C Function} int scm_to_int (SCM x)
416@deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
417@deftypefnx {C Function} long scm_to_long (SCM x)
418@deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
419@deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
420@deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
421@deftypefnx {C Function} size_t scm_to_size_t (SCM x)
422@deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
423@deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
424@deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
425@deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
426@deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
427@deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
428@deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
429@deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
430@deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
431@deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
432@deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
433When @var{x} represents an exact integer that fits into the indicated
434C type, return that integer. Else signal an error, either a
435`wrong-type' error when @var{x} is not an exact integer, or an
436`out-of-range' error when it doesn't fit the given range.
437
438The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
439@code{scm_to_int64}, and @code{scm_to_uint64} are only available when
440the corresponding types are.
441@end deftypefn
442
443@deftypefn {C Function} SCM scm_from_char (char x)
444@deftypefnx {C Function} SCM scm_from_schar (signed char x)
445@deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
446@deftypefnx {C Function} SCM scm_from_short (short x)
447@deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
448@deftypefnx {C Function} SCM scm_from_int (int x)
449@deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
450@deftypefnx {C Function} SCM scm_from_long (long x)
451@deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
452@deftypefnx {C Function} SCM scm_from_long_long (long long x)
453@deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
454@deftypefnx {C Function} SCM scm_from_size_t (size_t x)
455@deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
456@deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
457@deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
458@deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
459@deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
460@deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
461@deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
462@deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
463@deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
464@deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
465@deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
466Return the @code{SCM} value that represents the integer @var{x}.
467These functions will always succeed and will always return an exact
468number.
469@end deftypefn
470
08962922
MV
471@deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
472Assign @var{val} to the multiple precision integer @var{rop}.
473@var{val} must be an exact integer, otherwise an error will be
474signalled. @var{rop} must have been initialized with @code{mpz_init}
475before this function is called. When @var{rop} is no longer needed
476the occupied space must be freed with @code{mpz_clear}.
477@xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
478@end deftypefn
479
9f1ba6a9 480@deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
08962922
MV
481Return the @code{SCM} value that represents @var{val}.
482@end deftypefn
483
07d83abe
MV
484@node Reals and Rationals
485@subsubsection Real and Rational Numbers
486@tpindex Real numbers
487@tpindex Rational numbers
488
489@rnindex real?
490@rnindex rational?
491
492Mathematically, the real numbers are the set of numbers that describe
493all possible points along a continuous, infinite, one-dimensional line.
494The rational numbers are the set of all numbers that can be written as
495fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
496All rational numbers are also real, but there are real numbers that
34942993
KR
497are not rational, for example @m{\sqrt2, the square root of 2}, and
498@m{\pi,pi}.
07d83abe
MV
499
500Guile can represent both exact and inexact rational numbers, but it
501can not represent irrational numbers. Exact rationals are represented
502by storing the numerator and denominator as two exact integers.
503Inexact rationals are stored as floating point numbers using the C
504type @code{double}.
505
506Exact rationals are written as a fraction of integers. There must be
507no whitespace around the slash:
508
509@lisp
5101/2
511-22/7
512@end lisp
513
514Even though the actual encoding of inexact rationals is in binary, it
515may be helpful to think of it as a decimal number with a limited
516number of significant figures and a decimal point somewhere, since
517this corresponds to the standard notation for non-whole numbers. For
518example:
519
520@lisp
5210.34
522-0.00000142857931198
523-5648394822220000000000.0
5244.0
525@end lisp
526
527The limited precision of Guile's encoding means that any ``real'' number
528in Guile can be written in a rational form, by multiplying and then dividing
529by sufficient powers of 10 (or in fact, 2). For example,
530@samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
531100000000000000000. In Guile's current incarnation, therefore, the
532@code{rational?} and @code{real?} predicates are equivalent.
533
534
535Dividing by an exact zero leads to a error message, as one might
536expect. However, dividing by an inexact zero does not produce an
537error. Instead, the result of the division is either plus or minus
538infinity, depending on the sign of the divided number.
539
540The infinities are written @samp{+inf.0} and @samp{-inf.0},
541respectivly. This syntax is also recognized by @code{read} as an
542extension to the usual Scheme syntax.
543
544Dividing zero by zero yields something that is not a number at all:
545@samp{+nan.0}. This is the special `not a number' value.
546
547On platforms that follow @acronym{IEEE} 754 for their floating point
548arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
549are implemented using the corresponding @acronym{IEEE} 754 values.
550They behave in arithmetic operations like @acronym{IEEE} 754 describes
551it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
552
553The infinities are inexact integers and are considered to be both even
554and odd. While @samp{+nan.0} is not @code{=} to itself, it is
555@code{eqv?} to itself.
556
557To test for the special values, use the functions @code{inf?} and
558@code{nan?}.
559
560@deffn {Scheme Procedure} real? obj
561@deffnx {C Function} scm_real_p (obj)
562Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
563that the sets of integer and rational values form subsets of the set
564of real numbers, so the predicate will also be fulfilled if @var{obj}
565is an integer number or a rational number.
566@end deffn
567
568@deffn {Scheme Procedure} rational? x
569@deffnx {C Function} scm_rational_p (x)
570Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
571Note that the set of integer values forms a subset of the set of
572rational numbers, i. e. the predicate will also be fulfilled if
573@var{x} is an integer number.
574
575Since Guile can not represent irrational numbers, every number
576satisfying @code{real?} also satisfies @code{rational?} in Guile.
577@end deffn
578
579@deffn {Scheme Procedure} rationalize x eps
580@deffnx {C Function} scm_rationalize (x, eps)
581Returns the @emph{simplest} rational number differing
582from @var{x} by no more than @var{eps}.
583
584As required by @acronym{R5RS}, @code{rationalize} only returns an
585exact result when both its arguments are exact. Thus, you might need
586to use @code{inexact->exact} on the arguments.
587
588@lisp
589(rationalize (inexact->exact 1.2) 1/100)
590@result{} 6/5
591@end lisp
592
593@end deffn
594
d3df9759
MV
595@deffn {Scheme Procedure} inf? x
596@deffnx {C Function} scm_inf_p (x)
07d83abe
MV
597Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
598@code{#f} otherwise.
599@end deffn
600
601@deffn {Scheme Procedure} nan? x
d3df9759 602@deffnx {C Function} scm_nan_p (x)
07d83abe
MV
603Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
604@end deffn
605
cdf1ad3b
MV
606@deffn {Scheme Procedure} nan
607@deffnx {C Function} scm_nan ()
608Return NaN.
609@end deffn
610
611@deffn {Scheme Procedure} inf
612@deffnx {C Function} scm_inf ()
613Return Inf.
614@end deffn
615
d3df9759
MV
616@deffn {Scheme Procedure} numerator x
617@deffnx {C Function} scm_numerator (x)
618Return the numerator of the rational number @var{x}.
619@end deffn
620
621@deffn {Scheme Procedure} denominator x
622@deffnx {C Function} scm_denominator (x)
623Return the denominator of the rational number @var{x}.
624@end deffn
625
626@deftypefn {C Function} int scm_is_real (SCM val)
627@deftypefnx {C Function} int scm_is_rational (SCM val)
628Equivalent to @code{scm_is_true (scm_real_p (val))} and
629@code{scm_is_true (scm_rational_p (val))}, respectively.
630@end deftypefn
631
632@deftypefn {C Function} double scm_to_double (SCM val)
633Returns the number closest to @var{val} that is representable as a
634@code{double}. Returns infinity for a @var{val} that is too large in
635magnitude. The argument @var{val} must be a real number.
636@end deftypefn
637
638@deftypefn {C Function} SCM scm_from_double (double val)
639Return the @code{SCM} value that representats @var{val}. The returned
640value is inexact according to the predicate @code{inexact?}, but it
641will be exactly equal to @var{val}.
642@end deftypefn
643
07d83abe
MV
644@node Complex Numbers
645@subsubsection Complex Numbers
646@tpindex Complex numbers
647
648@rnindex complex?
649
650Complex numbers are the set of numbers that describe all possible points
651in a two-dimensional space. The two coordinates of a particular point
652in this space are known as the @dfn{real} and @dfn{imaginary} parts of
653the complex number that describes that point.
654
655In Guile, complex numbers are written in rectangular form as the sum of
656their real and imaginary parts, using the symbol @code{i} to indicate
657the imaginary part.
658
659@lisp
6603+4i
661@result{}
6623.0+4.0i
663
664(* 3-8i 2.3+0.3i)
665@result{}
6669.3-17.5i
667@end lisp
668
34942993
KR
669@cindex polar form
670@noindent
671Polar form can also be used, with an @samp{@@} between magnitude and
672angle,
673
674@lisp
6751@@3.141592 @result{} -1.0 (approx)
676-1@@1.57079 @result{} 0.0-1.0i (approx)
677@end lisp
678
07d83abe
MV
679Guile represents a complex number with a non-zero imaginary part as a
680pair of inexact rationals, so the real and imaginary parts of a
681complex number have the same properties of inexactness and limited
682precision as single inexact rational numbers. Guile can not represent
683exact complex numbers with non-zero imaginary parts.
684
5615f696
MV
685@deffn {Scheme Procedure} complex? z
686@deffnx {C Function} scm_complex_p (z)
07d83abe
MV
687Return @code{#t} if @var{x} is a complex number, @code{#f}
688otherwise. Note that the sets of real, rational and integer
689values form subsets of the set of complex numbers, i. e. the
690predicate will also be fulfilled if @var{x} is a real,
691rational or integer number.
692@end deffn
693
c9dc8c6c
MV
694@deftypefn {C Function} int scm_is_complex (SCM val)
695Equivalent to @code{scm_is_true (scm_complex_p (val))}.
696@end deftypefn
697
07d83abe
MV
698@node Exactness
699@subsubsection Exact and Inexact Numbers
700@tpindex Exact numbers
701@tpindex Inexact numbers
702
703@rnindex exact?
704@rnindex inexact?
705@rnindex exact->inexact
706@rnindex inexact->exact
707
708R5RS requires that a calculation involving inexact numbers always
709produces an inexact result. To meet this requirement, Guile
710distinguishes between an exact integer value such as @samp{5} and the
711corresponding inexact real value which, to the limited precision
712available, has no fractional part, and is printed as @samp{5.0}. Guile
713will only convert the latter value to the former when forced to do so by
714an invocation of the @code{inexact->exact} procedure.
715
716@deffn {Scheme Procedure} exact? z
717@deffnx {C Function} scm_exact_p (z)
718Return @code{#t} if the number @var{z} is exact, @code{#f}
719otherwise.
720
721@lisp
722(exact? 2)
723@result{} #t
724
725(exact? 0.5)
726@result{} #f
727
728(exact? (/ 2))
729@result{} #t
730@end lisp
731
732@end deffn
733
734@deffn {Scheme Procedure} inexact? z
735@deffnx {C Function} scm_inexact_p (z)
736Return @code{#t} if the number @var{z} is inexact, @code{#f}
737else.
738@end deffn
739
740@deffn {Scheme Procedure} inexact->exact z
741@deffnx {C Function} scm_inexact_to_exact (z)
742Return an exact number that is numerically closest to @var{z}, when
743there is one. For inexact rationals, Guile returns the exact rational
744that is numerically equal to the inexact rational. Inexact complex
745numbers with a non-zero imaginary part can not be made exact.
746
747@lisp
748(inexact->exact 0.5)
749@result{} 1/2
750@end lisp
751
752The following happens because 12/10 is not exactly representable as a
753@code{double} (on most platforms). However, when reading a decimal
754number that has been marked exact with the ``#e'' prefix, Guile is
755able to represent it correctly.
756
757@lisp
758(inexact->exact 1.2)
759@result{} 5404319552844595/4503599627370496
760
761#e1.2
762@result{} 6/5
763@end lisp
764
765@end deffn
766
767@c begin (texi-doc-string "guile" "exact->inexact")
768@deffn {Scheme Procedure} exact->inexact z
769@deffnx {C Function} scm_exact_to_inexact (z)
770Convert the number @var{z} to its inexact representation.
771@end deffn
772
773
774@node Number Syntax
775@subsubsection Read Syntax for Numerical Data
776
777The read syntax for integers is a string of digits, optionally
778preceded by a minus or plus character, a code indicating the
779base in which the integer is encoded, and a code indicating whether
780the number is exact or inexact. The supported base codes are:
781
782@table @code
783@item #b
784@itemx #B
785the integer is written in binary (base 2)
786
787@item #o
788@itemx #O
789the integer is written in octal (base 8)
790
791@item #d
792@itemx #D
793the integer is written in decimal (base 10)
794
795@item #x
796@itemx #X
797the integer is written in hexadecimal (base 16)
798@end table
799
800If the base code is omitted, the integer is assumed to be decimal. The
801following examples show how these base codes are used.
802
803@lisp
804-13
805@result{} -13
806
807#d-13
808@result{} -13
809
810#x-13
811@result{} -19
812
813#b+1101
814@result{} 13
815
816#o377
817@result{} 255
818@end lisp
819
820The codes for indicating exactness (which can, incidentally, be applied
821to all numerical values) are:
822
823@table @code
824@item #e
825@itemx #E
826the number is exact
827
828@item #i
829@itemx #I
830the number is inexact.
831@end table
832
833If the exactness indicator is omitted, the number is exact unless it
834contains a radix point. Since Guile can not represent exact complex
835numbers, an error is signalled when asking for them.
836
837@lisp
838(exact? 1.2)
839@result{} #f
840
841(exact? #e1.2)
842@result{} #t
843
844(exact? #e+1i)
845ERROR: Wrong type argument
846@end lisp
847
848Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
849plus and minus infinity, respectively. The value must be written
850exactly as shown, that is, they always must have a sign and exactly
851one zero digit after the decimal point. It also understands
852@samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
853The sign is ignored for `not-a-number' and the value is always printed
854as @samp{+nan.0}.
855
856@node Integer Operations
857@subsubsection Operations on Integer Values
858@rnindex odd?
859@rnindex even?
860@rnindex quotient
861@rnindex remainder
862@rnindex modulo
863@rnindex gcd
864@rnindex lcm
865
866@deffn {Scheme Procedure} odd? n
867@deffnx {C Function} scm_odd_p (n)
868Return @code{#t} if @var{n} is an odd number, @code{#f}
869otherwise.
870@end deffn
871
872@deffn {Scheme Procedure} even? n
873@deffnx {C Function} scm_even_p (n)
874Return @code{#t} if @var{n} is an even number, @code{#f}
875otherwise.
876@end deffn
877
878@c begin (texi-doc-string "guile" "quotient")
879@c begin (texi-doc-string "guile" "remainder")
880@deffn {Scheme Procedure} quotient n d
881@deffnx {Scheme Procedure} remainder n d
882@deffnx {C Function} scm_quotient (n, d)
883@deffnx {C Function} scm_remainder (n, d)
884Return the quotient or remainder from @var{n} divided by @var{d}. The
885quotient is rounded towards zero, and the remainder will have the same
886sign as @var{n}. In all cases quotient and remainder satisfy
887@math{@var{n} = @var{q}*@var{d} + @var{r}}.
888
889@lisp
890(remainder 13 4) @result{} 1
891(remainder -13 4) @result{} -1
892@end lisp
893@end deffn
894
895@c begin (texi-doc-string "guile" "modulo")
896@deffn {Scheme Procedure} modulo n d
897@deffnx {C Function} scm_modulo (n, d)
898Return the remainder from @var{n} divided by @var{d}, with the same
899sign as @var{d}.
900
901@lisp
902(modulo 13 4) @result{} 1
903(modulo -13 4) @result{} 3
904(modulo 13 -4) @result{} -3
905(modulo -13 -4) @result{} -1
906@end lisp
907@end deffn
908
909@c begin (texi-doc-string "guile" "gcd")
fd8a1df5 910@deffn {Scheme Procedure} gcd x@dots{}
07d83abe
MV
911@deffnx {C Function} scm_gcd (x, y)
912Return the greatest common divisor of all arguments.
913If called without arguments, 0 is returned.
914
915The C function @code{scm_gcd} always takes two arguments, while the
916Scheme function can take an arbitrary number.
917@end deffn
918
919@c begin (texi-doc-string "guile" "lcm")
fd8a1df5 920@deffn {Scheme Procedure} lcm x@dots{}
07d83abe
MV
921@deffnx {C Function} scm_lcm (x, y)
922Return the least common multiple of the arguments.
923If called without arguments, 1 is returned.
924
925The C function @code{scm_lcm} always takes two arguments, while the
926Scheme function can take an arbitrary number.
927@end deffn
928
cdf1ad3b
MV
929@deffn {Scheme Procedure} modulo-expt n k m
930@deffnx {C Function} scm_modulo_expt (n, k, m)
931Return @var{n} raised to the integer exponent
932@var{k}, modulo @var{m}.
933
934@lisp
935(modulo-expt 2 3 5)
936 @result{} 3
937@end lisp
938@end deffn
07d83abe
MV
939
940@node Comparison
941@subsubsection Comparison Predicates
942@rnindex zero?
943@rnindex positive?
944@rnindex negative?
945
946The C comparison functions below always takes two arguments, while the
947Scheme functions can take an arbitrary number. Also keep in mind that
948the C functions return one of the Scheme boolean values
949@code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
950is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
951y))} when testing the two Scheme numbers @code{x} and @code{y} for
952equality, for example.
953
954@c begin (texi-doc-string "guile" "=")
955@deffn {Scheme Procedure} =
956@deffnx {C Function} scm_num_eq_p (x, y)
957Return @code{#t} if all parameters are numerically equal.
958@end deffn
959
960@c begin (texi-doc-string "guile" "<")
961@deffn {Scheme Procedure} <
962@deffnx {C Function} scm_less_p (x, y)
963Return @code{#t} if the list of parameters is monotonically
964increasing.
965@end deffn
966
967@c begin (texi-doc-string "guile" ">")
968@deffn {Scheme Procedure} >
969@deffnx {C Function} scm_gr_p (x, y)
970Return @code{#t} if the list of parameters is monotonically
971decreasing.
972@end deffn
973
974@c begin (texi-doc-string "guile" "<=")
975@deffn {Scheme Procedure} <=
976@deffnx {C Function} scm_leq_p (x, y)
977Return @code{#t} if the list of parameters is monotonically
978non-decreasing.
979@end deffn
980
981@c begin (texi-doc-string "guile" ">=")
982@deffn {Scheme Procedure} >=
983@deffnx {C Function} scm_geq_p (x, y)
984Return @code{#t} if the list of parameters is monotonically
985non-increasing.
986@end deffn
987
988@c begin (texi-doc-string "guile" "zero?")
989@deffn {Scheme Procedure} zero? z
990@deffnx {C Function} scm_zero_p (z)
991Return @code{#t} if @var{z} is an exact or inexact number equal to
992zero.
993@end deffn
994
995@c begin (texi-doc-string "guile" "positive?")
996@deffn {Scheme Procedure} positive? x
997@deffnx {C Function} scm_positive_p (x)
998Return @code{#t} if @var{x} is an exact or inexact number greater than
999zero.
1000@end deffn
1001
1002@c begin (texi-doc-string "guile" "negative?")
1003@deffn {Scheme Procedure} negative? x
1004@deffnx {C Function} scm_negative_p (x)
1005Return @code{#t} if @var{x} is an exact or inexact number less than
1006zero.
1007@end deffn
1008
1009
1010@node Conversion
1011@subsubsection Converting Numbers To and From Strings
1012@rnindex number->string
1013@rnindex string->number
1014
b89c4943
LC
1015The following procedures read and write numbers according to their
1016external representation as defined by R5RS (@pxref{Lexical structure,
1017R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
a2f00b9b 1018Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
b89c4943
LC
1019i18n)} module}, for locale-dependent number parsing.
1020
07d83abe
MV
1021@deffn {Scheme Procedure} number->string n [radix]
1022@deffnx {C Function} scm_number_to_string (n, radix)
1023Return a string holding the external representation of the
1024number @var{n} in the given @var{radix}. If @var{n} is
1025inexact, a radix of 10 will be used.
1026@end deffn
1027
1028@deffn {Scheme Procedure} string->number string [radix]
1029@deffnx {C Function} scm_string_to_number (string, radix)
1030Return a number of the maximally precise representation
1031expressed by the given @var{string}. @var{radix} must be an
1032exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1033is a default radix that may be overridden by an explicit radix
1034prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
1035supplied, then the default radix is 10. If string is not a
1036syntactically valid notation for a number, then
1037@code{string->number} returns @code{#f}.
1038@end deffn
1039
1b09b607
KR
1040@deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1041As per @code{string->number} above, but taking a C string, as pointer
1042and length. The string characters should be in the current locale
1043encoding (@code{locale} in the name refers only to that, there's no
1044locale-dependent parsing).
1045@end deftypefn
1046
07d83abe
MV
1047
1048@node Complex
1049@subsubsection Complex Number Operations
1050@rnindex make-rectangular
1051@rnindex make-polar
1052@rnindex real-part
1053@rnindex imag-part
1054@rnindex magnitude
1055@rnindex angle
1056
1057@deffn {Scheme Procedure} make-rectangular real imaginary
1058@deffnx {C Function} scm_make_rectangular (real, imaginary)
1059Return a complex number constructed of the given @var{real} and
1060@var{imaginary} parts.
1061@end deffn
1062
1063@deffn {Scheme Procedure} make-polar x y
1064@deffnx {C Function} scm_make_polar (x, y)
34942993 1065@cindex polar form
07d83abe
MV
1066Return the complex number @var{x} * e^(i * @var{y}).
1067@end deffn
1068
1069@c begin (texi-doc-string "guile" "real-part")
1070@deffn {Scheme Procedure} real-part z
1071@deffnx {C Function} scm_real_part (z)
1072Return the real part of the number @var{z}.
1073@end deffn
1074
1075@c begin (texi-doc-string "guile" "imag-part")
1076@deffn {Scheme Procedure} imag-part z
1077@deffnx {C Function} scm_imag_part (z)
1078Return the imaginary part of the number @var{z}.
1079@end deffn
1080
1081@c begin (texi-doc-string "guile" "magnitude")
1082@deffn {Scheme Procedure} magnitude z
1083@deffnx {C Function} scm_magnitude (z)
1084Return the magnitude of the number @var{z}. This is the same as
1085@code{abs} for real arguments, but also allows complex numbers.
1086@end deffn
1087
1088@c begin (texi-doc-string "guile" "angle")
1089@deffn {Scheme Procedure} angle z
1090@deffnx {C Function} scm_angle (z)
1091Return the angle of the complex number @var{z}.
1092@end deffn
1093
5615f696
MV
1094@deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1095@deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1096Like @code{scm_make_rectangular} or @code{scm_make_polar},
1097respectively, but these functions take @code{double}s as their
1098arguments.
1099@end deftypefn
1100
1101@deftypefn {C Function} double scm_c_real_part (z)
1102@deftypefnx {C Function} double scm_c_imag_part (z)
1103Returns the real or imaginary part of @var{z} as a @code{double}.
1104@end deftypefn
1105
1106@deftypefn {C Function} double scm_c_magnitude (z)
1107@deftypefnx {C Function} double scm_c_angle (z)
1108Returns the magnitude or angle of @var{z} as a @code{double}.
1109@end deftypefn
1110
07d83abe
MV
1111
1112@node Arithmetic
1113@subsubsection Arithmetic Functions
1114@rnindex max
1115@rnindex min
1116@rnindex +
1117@rnindex *
1118@rnindex -
1119@rnindex /
b1f57ea4
LC
1120@findex 1+
1121@findex 1-
07d83abe
MV
1122@rnindex abs
1123@rnindex floor
1124@rnindex ceiling
1125@rnindex truncate
1126@rnindex round
1127
1128The C arithmetic functions below always takes two arguments, while the
1129Scheme functions can take an arbitrary number. When you need to
1130invoke them with just one argument, for example to compute the
1131equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1132one: @code{scm_difference (x, SCM_UNDEFINED)}.
1133
1134@c begin (texi-doc-string "guile" "+")
1135@deffn {Scheme Procedure} + z1 @dots{}
1136@deffnx {C Function} scm_sum (z1, z2)
1137Return the sum of all parameter values. Return 0 if called without any
1138parameters.
1139@end deffn
1140
1141@c begin (texi-doc-string "guile" "-")
1142@deffn {Scheme Procedure} - z1 z2 @dots{}
1143@deffnx {C Function} scm_difference (z1, z2)
1144If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1145the sum of all but the first argument are subtracted from the first
1146argument.
1147@end deffn
1148
1149@c begin (texi-doc-string "guile" "*")
1150@deffn {Scheme Procedure} * z1 @dots{}
1151@deffnx {C Function} scm_product (z1, z2)
1152Return the product of all arguments. If called without arguments, 1 is
1153returned.
1154@end deffn
1155
1156@c begin (texi-doc-string "guile" "/")
1157@deffn {Scheme Procedure} / z1 z2 @dots{}
1158@deffnx {C Function} scm_divide (z1, z2)
1159Divide the first argument by the product of the remaining arguments. If
1160called with one argument @var{z1}, 1/@var{z1} is returned.
1161@end deffn
1162
b1f57ea4
LC
1163@deffn {Scheme Procedure} 1+ z
1164@deffnx {C Function} scm_oneplus (z)
1165Return @math{@var{z} + 1}.
1166@end deffn
1167
1168@deffn {Scheme Procedure} 1- z
1169@deffnx {C function} scm_oneminus (z)
1170Return @math{@var{z} - 1}.
1171@end deffn
1172
07d83abe
MV
1173@c begin (texi-doc-string "guile" "abs")
1174@deffn {Scheme Procedure} abs x
1175@deffnx {C Function} scm_abs (x)
1176Return the absolute value of @var{x}.
1177
1178@var{x} must be a number with zero imaginary part. To calculate the
1179magnitude of a complex number, use @code{magnitude} instead.
1180@end deffn
1181
1182@c begin (texi-doc-string "guile" "max")
1183@deffn {Scheme Procedure} max x1 x2 @dots{}
1184@deffnx {C Function} scm_max (x1, x2)
1185Return the maximum of all parameter values.
1186@end deffn
1187
1188@c begin (texi-doc-string "guile" "min")
1189@deffn {Scheme Procedure} min x1 x2 @dots{}
1190@deffnx {C Function} scm_min (x1, x2)
1191Return the minimum of all parameter values.
1192@end deffn
1193
1194@c begin (texi-doc-string "guile" "truncate")
fd8a1df5 1195@deffn {Scheme Procedure} truncate x
07d83abe
MV
1196@deffnx {C Function} scm_truncate_number (x)
1197Round the inexact number @var{x} towards zero.
1198@end deffn
1199
1200@c begin (texi-doc-string "guile" "round")
1201@deffn {Scheme Procedure} round x
1202@deffnx {C Function} scm_round_number (x)
1203Round the inexact number @var{x} to the nearest integer. When exactly
1204halfway between two integers, round to the even one.
1205@end deffn
1206
1207@c begin (texi-doc-string "guile" "floor")
1208@deffn {Scheme Procedure} floor x
1209@deffnx {C Function} scm_floor (x)
1210Round the number @var{x} towards minus infinity.
1211@end deffn
1212
1213@c begin (texi-doc-string "guile" "ceiling")
1214@deffn {Scheme Procedure} ceiling x
1215@deffnx {C Function} scm_ceiling (x)
1216Round the number @var{x} towards infinity.
1217@end deffn
1218
35da08ee
MV
1219@deftypefn {C Function} double scm_c_truncate (double x)
1220@deftypefnx {C Function} double scm_c_round (double x)
1221Like @code{scm_truncate_number} or @code{scm_round_number},
1222respectively, but these functions take and return @code{double}
1223values.
1224@end deftypefn
07d83abe
MV
1225
1226@node Scientific
1227@subsubsection Scientific Functions
1228
1229The following procedures accept any kind of number as arguments,
1230including complex numbers.
1231
1232@rnindex sqrt
1233@c begin (texi-doc-string "guile" "sqrt")
1234@deffn {Scheme Procedure} sqrt z
40296bab
KR
1235Return the square root of @var{z}. Of the two possible roots
1236(positive and negative), the one with the a positive real part is
1237returned, or if that's zero then a positive imaginary part. Thus,
1238
1239@example
1240(sqrt 9.0) @result{} 3.0
1241(sqrt -9.0) @result{} 0.0+3.0i
1242(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1243(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1244@end example
07d83abe
MV
1245@end deffn
1246
1247@rnindex expt
1248@c begin (texi-doc-string "guile" "expt")
1249@deffn {Scheme Procedure} expt z1 z2
1250Return @var{z1} raised to the power of @var{z2}.
1251@end deffn
1252
1253@rnindex sin
1254@c begin (texi-doc-string "guile" "sin")
1255@deffn {Scheme Procedure} sin z
1256Return the sine of @var{z}.
1257@end deffn
1258
1259@rnindex cos
1260@c begin (texi-doc-string "guile" "cos")
1261@deffn {Scheme Procedure} cos z
1262Return the cosine of @var{z}.
1263@end deffn
1264
1265@rnindex tan
1266@c begin (texi-doc-string "guile" "tan")
1267@deffn {Scheme Procedure} tan z
1268Return the tangent of @var{z}.
1269@end deffn
1270
1271@rnindex asin
1272@c begin (texi-doc-string "guile" "asin")
1273@deffn {Scheme Procedure} asin z
1274Return the arcsine of @var{z}.
1275@end deffn
1276
1277@rnindex acos
1278@c begin (texi-doc-string "guile" "acos")
1279@deffn {Scheme Procedure} acos z
1280Return the arccosine of @var{z}.
1281@end deffn
1282
1283@rnindex atan
1284@c begin (texi-doc-string "guile" "atan")
1285@deffn {Scheme Procedure} atan z
1286@deffnx {Scheme Procedure} atan y x
1287Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1288@end deffn
1289
1290@rnindex exp
1291@c begin (texi-doc-string "guile" "exp")
1292@deffn {Scheme Procedure} exp z
1293Return e to the power of @var{z}, where e is the base of natural
1294logarithms (2.71828@dots{}).
1295@end deffn
1296
1297@rnindex log
1298@c begin (texi-doc-string "guile" "log")
1299@deffn {Scheme Procedure} log z
1300Return the natural logarithm of @var{z}.
1301@end deffn
1302
1303@c begin (texi-doc-string "guile" "log10")
1304@deffn {Scheme Procedure} log10 z
1305Return the base 10 logarithm of @var{z}.
1306@end deffn
1307
1308@c begin (texi-doc-string "guile" "sinh")
1309@deffn {Scheme Procedure} sinh z
1310Return the hyperbolic sine of @var{z}.
1311@end deffn
1312
1313@c begin (texi-doc-string "guile" "cosh")
1314@deffn {Scheme Procedure} cosh z
1315Return the hyperbolic cosine of @var{z}.
1316@end deffn
1317
1318@c begin (texi-doc-string "guile" "tanh")
1319@deffn {Scheme Procedure} tanh z
1320Return the hyperbolic tangent of @var{z}.
1321@end deffn
1322
1323@c begin (texi-doc-string "guile" "asinh")
1324@deffn {Scheme Procedure} asinh z
1325Return the hyperbolic arcsine of @var{z}.
1326@end deffn
1327
1328@c begin (texi-doc-string "guile" "acosh")
1329@deffn {Scheme Procedure} acosh z
1330Return the hyperbolic arccosine of @var{z}.
1331@end deffn
1332
1333@c begin (texi-doc-string "guile" "atanh")
1334@deffn {Scheme Procedure} atanh z
1335Return the hyperbolic arctangent of @var{z}.
1336@end deffn
1337
1338
1339@node Primitive Numerics
1340@subsubsection Primitive Numeric Functions
1341
1342Many of Guile's numeric procedures which accept any kind of numbers as
1343arguments, including complex numbers, are implemented as Scheme
1344procedures that use the following real number-based primitives. These
1345primitives signal an error if they are called with complex arguments.
1346
1347@c begin (texi-doc-string "guile" "$abs")
1348@deffn {Scheme Procedure} $abs x
1349Return the absolute value of @var{x}.
1350@end deffn
1351
1352@c begin (texi-doc-string "guile" "$sqrt")
1353@deffn {Scheme Procedure} $sqrt x
1354Return the square root of @var{x}.
1355@end deffn
1356
1357@deffn {Scheme Procedure} $expt x y
1358@deffnx {C Function} scm_sys_expt (x, y)
1359Return @var{x} raised to the power of @var{y}. This
1360procedure does not accept complex arguments.
1361@end deffn
1362
1363@c begin (texi-doc-string "guile" "$sin")
1364@deffn {Scheme Procedure} $sin x
1365Return the sine of @var{x}.
1366@end deffn
1367
1368@c begin (texi-doc-string "guile" "$cos")
1369@deffn {Scheme Procedure} $cos x
1370Return the cosine of @var{x}.
1371@end deffn
1372
1373@c begin (texi-doc-string "guile" "$tan")
1374@deffn {Scheme Procedure} $tan x
1375Return the tangent of @var{x}.
1376@end deffn
1377
1378@c begin (texi-doc-string "guile" "$asin")
1379@deffn {Scheme Procedure} $asin x
1380Return the arcsine of @var{x}.
1381@end deffn
1382
1383@c begin (texi-doc-string "guile" "$acos")
1384@deffn {Scheme Procedure} $acos x
1385Return the arccosine of @var{x}.
1386@end deffn
1387
1388@c begin (texi-doc-string "guile" "$atan")
1389@deffn {Scheme Procedure} $atan x
1390Return the arctangent of @var{x} in the range @minus{}@math{PI/2} to
1391@math{PI/2}.
1392@end deffn
1393
1394@deffn {Scheme Procedure} $atan2 x y
1395@deffnx {C Function} scm_sys_atan2 (x, y)
1396Return the arc tangent of the two arguments @var{x} and
1397@var{y}. This is similar to calculating the arc tangent of
1398@var{x} / @var{y}, except that the signs of both arguments
1399are used to determine the quadrant of the result. This
1400procedure does not accept complex arguments.
1401@end deffn
1402
1403@c begin (texi-doc-string "guile" "$exp")
1404@deffn {Scheme Procedure} $exp x
1405Return e to the power of @var{x}, where e is the base of natural
1406logarithms (2.71828@dots{}).
1407@end deffn
1408
1409@c begin (texi-doc-string "guile" "$log")
1410@deffn {Scheme Procedure} $log x
1411Return the natural logarithm of @var{x}.
1412@end deffn
1413
1414@c begin (texi-doc-string "guile" "$sinh")
1415@deffn {Scheme Procedure} $sinh x
1416Return the hyperbolic sine of @var{x}.
1417@end deffn
1418
1419@c begin (texi-doc-string "guile" "$cosh")
1420@deffn {Scheme Procedure} $cosh x
1421Return the hyperbolic cosine of @var{x}.
1422@end deffn
1423
1424@c begin (texi-doc-string "guile" "$tanh")
1425@deffn {Scheme Procedure} $tanh x
1426Return the hyperbolic tangent of @var{x}.
1427@end deffn
1428
1429@c begin (texi-doc-string "guile" "$asinh")
1430@deffn {Scheme Procedure} $asinh x
1431Return the hyperbolic arcsine of @var{x}.
1432@end deffn
1433
1434@c begin (texi-doc-string "guile" "$acosh")
1435@deffn {Scheme Procedure} $acosh x
1436Return the hyperbolic arccosine of @var{x}.
1437@end deffn
1438
1439@c begin (texi-doc-string "guile" "$atanh")
1440@deffn {Scheme Procedure} $atanh x
1441Return the hyperbolic arctangent of @var{x}.
1442@end deffn
1443
1444C functions for the above are provided by the standard mathematics
1445library. Naturally these expect and return @code{double} arguments
1446(@pxref{Mathematics,,, libc, GNU C Library Reference Manual}).
1447
1448@multitable {xx} {Scheme Procedure} {C Function}
1449@item @tab Scheme Procedure @tab C Function
1450
1451@item @tab @code{$abs} @tab @code{fabs}
1452@item @tab @code{$sqrt} @tab @code{sqrt}
1453@item @tab @code{$sin} @tab @code{sin}
1454@item @tab @code{$cos} @tab @code{cos}
1455@item @tab @code{$tan} @tab @code{tan}
1456@item @tab @code{$asin} @tab @code{asin}
1457@item @tab @code{$acos} @tab @code{acos}
1458@item @tab @code{$atan} @tab @code{atan}
1459@item @tab @code{$atan2} @tab @code{atan2}
1460@item @tab @code{$exp} @tab @code{exp}
1461@item @tab @code{$expt} @tab @code{pow}
1462@item @tab @code{$log} @tab @code{log}
1463@item @tab @code{$sinh} @tab @code{sinh}
1464@item @tab @code{$cosh} @tab @code{cosh}
1465@item @tab @code{$tanh} @tab @code{tanh}
1466@item @tab @code{$asinh} @tab @code{asinh}
1467@item @tab @code{$acosh} @tab @code{acosh}
1468@item @tab @code{$atanh} @tab @code{atanh}
1469@end multitable
1470
1471@code{asinh}, @code{acosh} and @code{atanh} are C99 standard but might
1472not be available on older systems. Guile provides the following
1473equivalents (on all systems).
1474
1475@deftypefn {C Function} double scm_asinh (double x)
1476@deftypefnx {C Function} double scm_acosh (double x)
1477@deftypefnx {C Function} double scm_atanh (double x)
1478Return the hyperbolic arcsine, arccosine or arctangent of @var{x}
1479respectively.
1480@end deftypefn
1481
1482
1483@node Bitwise Operations
1484@subsubsection Bitwise Operations
1485
1486For the following bitwise functions, negative numbers are treated as
1487infinite precision twos-complements. For instance @math{-6} is bits
1488@math{@dots{}111010}, with infinitely many ones on the left. It can
1489be seen that adding 6 (binary 110) to such a bit pattern gives all
1490zeros.
1491
1492@deffn {Scheme Procedure} logand n1 n2 @dots{}
1493@deffnx {C Function} scm_logand (n1, n2)
1494Return the bitwise @sc{and} of the integer arguments.
1495
1496@lisp
1497(logand) @result{} -1
1498(logand 7) @result{} 7
1499(logand #b111 #b011 #b001) @result{} 1
1500@end lisp
1501@end deffn
1502
1503@deffn {Scheme Procedure} logior n1 n2 @dots{}
1504@deffnx {C Function} scm_logior (n1, n2)
1505Return the bitwise @sc{or} of the integer arguments.
1506
1507@lisp
1508(logior) @result{} 0
1509(logior 7) @result{} 7
1510(logior #b000 #b001 #b011) @result{} 3
1511@end lisp
1512@end deffn
1513
1514@deffn {Scheme Procedure} logxor n1 n2 @dots{}
1515@deffnx {C Function} scm_loxor (n1, n2)
1516Return the bitwise @sc{xor} of the integer arguments. A bit is
1517set in the result if it is set in an odd number of arguments.
1518
1519@lisp
1520(logxor) @result{} 0
1521(logxor 7) @result{} 7
1522(logxor #b000 #b001 #b011) @result{} 2
1523(logxor #b000 #b001 #b011 #b011) @result{} 1
1524@end lisp
1525@end deffn
1526
1527@deffn {Scheme Procedure} lognot n
1528@deffnx {C Function} scm_lognot (n)
1529Return the integer which is the ones-complement of the integer
1530argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1531
1532@lisp
1533(number->string (lognot #b10000000) 2)
1534 @result{} "-10000001"
1535(number->string (lognot #b0) 2)
1536 @result{} "-1"
1537@end lisp
1538@end deffn
1539
1540@deffn {Scheme Procedure} logtest j k
1541@deffnx {C Function} scm_logtest (j, k)
a46648ac
KR
1542Test whether @var{j} and @var{k} have any 1 bits in common. This is
1543equivalent to @code{(not (zero? (logand j k)))}, but without actually
1544calculating the @code{logand}, just testing for non-zero.
07d83abe 1545
a46648ac 1546@lisp
07d83abe
MV
1547(logtest #b0100 #b1011) @result{} #f
1548(logtest #b0100 #b0111) @result{} #t
1549@end lisp
1550@end deffn
1551
1552@deffn {Scheme Procedure} logbit? index j
1553@deffnx {C Function} scm_logbit_p (index, j)
a46648ac
KR
1554Test whether bit number @var{index} in @var{j} is set. @var{index}
1555starts from 0 for the least significant bit.
07d83abe 1556
a46648ac 1557@lisp
07d83abe
MV
1558(logbit? 0 #b1101) @result{} #t
1559(logbit? 1 #b1101) @result{} #f
1560(logbit? 2 #b1101) @result{} #t
1561(logbit? 3 #b1101) @result{} #t
1562(logbit? 4 #b1101) @result{} #f
1563@end lisp
1564@end deffn
1565
1566@deffn {Scheme Procedure} ash n cnt
1567@deffnx {C Function} scm_ash (n, cnt)
1568Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1569@var{cnt} is negative. This is an ``arithmetic'' shift.
1570
1571This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1572when @var{cnt} is negative it's a division, rounded towards negative
1573infinity. (Note that this is not the same rounding as @code{quotient}
1574does.)
1575
1576With @var{n} viewed as an infinite precision twos complement,
1577@code{ash} means a left shift introducing zero bits, or a right shift
1578dropping bits.
1579
1580@lisp
1581(number->string (ash #b1 3) 2) @result{} "1000"
1582(number->string (ash #b1010 -1) 2) @result{} "101"
1583
1584;; -23 is bits ...11101001, -6 is bits ...111010
1585(ash -23 -2) @result{} -6
1586@end lisp
1587@end deffn
1588
1589@deffn {Scheme Procedure} logcount n
1590@deffnx {C Function} scm_logcount (n)
a46648ac 1591Return the number of bits in integer @var{n}. If @var{n} is
07d83abe
MV
1592positive, the 1-bits in its binary representation are counted.
1593If negative, the 0-bits in its two's-complement binary
a46648ac 1594representation are counted. If zero, 0 is returned.
07d83abe
MV
1595
1596@lisp
1597(logcount #b10101010)
1598 @result{} 4
1599(logcount 0)
1600 @result{} 0
1601(logcount -2)
1602 @result{} 1
1603@end lisp
1604@end deffn
1605
1606@deffn {Scheme Procedure} integer-length n
1607@deffnx {C Function} scm_integer_length (n)
1608Return the number of bits necessary to represent @var{n}.
1609
1610For positive @var{n} this is how many bits to the most significant one
1611bit. For negative @var{n} it's how many bits to the most significant
1612zero bit in twos complement form.
1613
1614@lisp
1615(integer-length #b10101010) @result{} 8
1616(integer-length #b1111) @result{} 4
1617(integer-length 0) @result{} 0
1618(integer-length -1) @result{} 0
1619(integer-length -256) @result{} 8
1620(integer-length -257) @result{} 9
1621@end lisp
1622@end deffn
1623
1624@deffn {Scheme Procedure} integer-expt n k
1625@deffnx {C Function} scm_integer_expt (n, k)
a46648ac
KR
1626Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1627integer, @var{n} can be any number.
1628
1629Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1630in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1631@math{0^0} is 1.
07d83abe
MV
1632
1633@lisp
a46648ac
KR
1634(integer-expt 2 5) @result{} 32
1635(integer-expt -3 3) @result{} -27
1636(integer-expt 5 -3) @result{} 1/125
1637(integer-expt 0 0) @result{} 1
07d83abe
MV
1638@end lisp
1639@end deffn
1640
1641@deffn {Scheme Procedure} bit-extract n start end
1642@deffnx {C Function} scm_bit_extract (n, start, end)
1643Return the integer composed of the @var{start} (inclusive)
1644through @var{end} (exclusive) bits of @var{n}. The
1645@var{start}th bit becomes the 0-th bit in the result.
1646
1647@lisp
1648(number->string (bit-extract #b1101101010 0 4) 2)
1649 @result{} "1010"
1650(number->string (bit-extract #b1101101010 4 9) 2)
1651 @result{} "10110"
1652@end lisp
1653@end deffn
1654
1655
1656@node Random
1657@subsubsection Random Number Generation
1658
1659Pseudo-random numbers are generated from a random state object, which
1660can be created with @code{seed->random-state}. The @var{state}
1661parameter to the various functions below is optional, it defaults to
1662the state object in the @code{*random-state*} variable.
1663
1664@deffn {Scheme Procedure} copy-random-state [state]
1665@deffnx {C Function} scm_copy_random_state (state)
1666Return a copy of the random state @var{state}.
1667@end deffn
1668
1669@deffn {Scheme Procedure} random n [state]
1670@deffnx {C Function} scm_random (n, state)
1671Return a number in [0, @var{n}).
1672
1673Accepts a positive integer or real n and returns a
1674number of the same type between zero (inclusive) and
1675@var{n} (exclusive). The values returned have a uniform
1676distribution.
1677@end deffn
1678
1679@deffn {Scheme Procedure} random:exp [state]
1680@deffnx {C Function} scm_random_exp (state)
1681Return an inexact real in an exponential distribution with mean
16821. For an exponential distribution with mean @var{u} use @code{(*
1683@var{u} (random:exp))}.
1684@end deffn
1685
1686@deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1687@deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1688Fills @var{vect} with inexact real random numbers the sum of whose
1689squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1690space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1691the coordinates are uniformly distributed over the surface of the unit
1692n-sphere.
1693@end deffn
1694
1695@deffn {Scheme Procedure} random:normal [state]
1696@deffnx {C Function} scm_random_normal (state)
1697Return an inexact real in a normal distribution. The distribution
1698used has mean 0 and standard deviation 1. For a normal distribution
1699with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1700(* @var{d} (random:normal)))}.
1701@end deffn
1702
1703@deffn {Scheme Procedure} random:normal-vector! vect [state]
1704@deffnx {C Function} scm_random_normal_vector_x (vect, state)
1705Fills @var{vect} with inexact real random numbers that are
1706independent and standard normally distributed
1707(i.e., with mean 0 and variance 1).
1708@end deffn
1709
1710@deffn {Scheme Procedure} random:solid-sphere! vect [state]
1711@deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1712Fills @var{vect} with inexact real random numbers the sum of whose
1713squares is less than 1.0. Thinking of @var{vect} as coordinates in
1714space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1715the coordinates are uniformly distributed within the unit
4497bd2f 1716@var{n}-sphere.
07d83abe
MV
1717@c FIXME: What does this mean, particularly the n-sphere part?
1718@end deffn
1719
1720@deffn {Scheme Procedure} random:uniform [state]
1721@deffnx {C Function} scm_random_uniform (state)
1722Return a uniformly distributed inexact real random number in
1723[0,1).
1724@end deffn
1725
1726@deffn {Scheme Procedure} seed->random-state seed
1727@deffnx {C Function} scm_seed_to_random_state (seed)
1728Return a new random state using @var{seed}.
1729@end deffn
1730
1731@defvar *random-state*
1732The global random state used by the above functions when the
1733@var{state} parameter is not given.
1734@end defvar
1735
8c726cf0
NJ
1736Note that the initial value of @code{*random-state*} is the same every
1737time Guile starts up. Therefore, if you don't pass a @var{state}
1738parameter to the above procedures, and you don't set
1739@code{*random-state*} to @code{(seed->random-state your-seed)}, where
1740@code{your-seed} is something that @emph{isn't} the same every time,
1741you'll get the same sequence of ``random'' numbers on every run.
1742
1743For example, unless the relevant source code has changed, @code{(map
1744random (cdr (iota 30)))}, if the first use of random numbers since
1745Guile started up, will always give:
1746
1747@lisp
1748(map random (cdr (iota 19)))
1749@result{}
1750(0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1751@end lisp
1752
1753To use the time of day as the random seed, you can use code like this:
1754
1755@lisp
1756(let ((time (gettimeofday)))
1757 (set! *random-state*
1758 (seed->random-state (+ (car time)
1759 (cdr time)))))
1760@end lisp
1761
1762@noindent
1763And then (depending on the time of day, of course):
1764
1765@lisp
1766(map random (cdr (iota 19)))
1767@result{}
1768(0 0 1 0 2 4 5 4 5 5 9 3 10 1 8 3 14 17)
1769@end lisp
1770
1771For security applications, such as password generation, you should use
1772more bits of seed. Otherwise an open source password generator could
1773be attacked by guessing the seed@dots{} but that's a subject for
1774another manual.
1775
07d83abe
MV
1776
1777@node Characters
1778@subsection Characters
1779@tpindex Characters
1780
050ab45f
MV
1781In Scheme, a character literal is written as @code{#\@var{name}} where
1782@var{name} is the name of the character that you want. Printable
1783characters have their usual single character name; for example,
1784@code{#\a} is a lower case @code{a}.
07d83abe
MV
1785
1786Most of the ``control characters'' (those below codepoint 32) in the
1787@acronym{ASCII} character set, as well as the space, may be referred
050ab45f
MV
1788to by longer names: for example, @code{#\tab}, @code{#\esc},
1789@code{#\stx}, and so on. The following table describes the
1790@acronym{ASCII} names for each character.
07d83abe
MV
1791
1792@multitable @columnfractions .25 .25 .25 .25
1793@item 0 = @code{#\nul}
1794 @tab 1 = @code{#\soh}
1795 @tab 2 = @code{#\stx}
1796 @tab 3 = @code{#\etx}
1797@item 4 = @code{#\eot}
1798 @tab 5 = @code{#\enq}
1799 @tab 6 = @code{#\ack}
1800 @tab 7 = @code{#\bel}
1801@item 8 = @code{#\bs}
1802 @tab 9 = @code{#\ht}
1803 @tab 10 = @code{#\nl}
1804 @tab 11 = @code{#\vt}
1805@item 12 = @code{#\np}
1806 @tab 13 = @code{#\cr}
1807 @tab 14 = @code{#\so}
1808 @tab 15 = @code{#\si}
1809@item 16 = @code{#\dle}
1810 @tab 17 = @code{#\dc1}
1811 @tab 18 = @code{#\dc2}
1812 @tab 19 = @code{#\dc3}
1813@item 20 = @code{#\dc4}
1814 @tab 21 = @code{#\nak}
1815 @tab 22 = @code{#\syn}
1816 @tab 23 = @code{#\etb}
1817@item 24 = @code{#\can}
1818 @tab 25 = @code{#\em}
1819 @tab 26 = @code{#\sub}
1820 @tab 27 = @code{#\esc}
1821@item 28 = @code{#\fs}
1822 @tab 29 = @code{#\gs}
1823 @tab 30 = @code{#\rs}
1824 @tab 31 = @code{#\us}
1825@item 32 = @code{#\sp}
1826@end multitable
1827
1828The ``delete'' character (octal 177) may be referred to with the name
1829@code{#\del}.
1830
1831Several characters have more than one name:
1832
1833@multitable {@code{#\backspace}} {Original}
1834@item Alias @tab Original
1835@item @code{#\space} @tab @code{#\sp}
1836@item @code{#\newline} @tab @code{#\nl}
1837@item @code{#\tab} @tab @code{#\ht}
1838@item @code{#\backspace} @tab @code{#\bs}
1839@item @code{#\return} @tab @code{#\cr}
1840@item @code{#\page} @tab @code{#\np}
1841@item @code{#\null} @tab @code{#\nul}
1842@end multitable
1843
1844@rnindex char?
1845@deffn {Scheme Procedure} char? x
1846@deffnx {C Function} scm_char_p (x)
1847Return @code{#t} iff @var{x} is a character, else @code{#f}.
1848@end deffn
1849
1850@rnindex char=?
1851@deffn {Scheme Procedure} char=? x y
1852Return @code{#t} iff @var{x} is the same character as @var{y}, else @code{#f}.
1853@end deffn
1854
1855@rnindex char<?
1856@deffn {Scheme Procedure} char<? x y
1857Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence,
1858else @code{#f}.
1859@end deffn
1860
1861@rnindex char<=?
1862@deffn {Scheme Procedure} char<=? x y
1863Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1864@acronym{ASCII} sequence, else @code{#f}.
1865@end deffn
1866
1867@rnindex char>?
1868@deffn {Scheme Procedure} char>? x y
1869Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1870sequence, else @code{#f}.
1871@end deffn
1872
1873@rnindex char>=?
1874@deffn {Scheme Procedure} char>=? x y
1875Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1876@acronym{ASCII} sequence, else @code{#f}.
1877@end deffn
1878
1879@rnindex char-ci=?
1880@deffn {Scheme Procedure} char-ci=? x y
1881Return @code{#t} iff @var{x} is the same character as @var{y} ignoring
1882case, else @code{#f}.
1883@end deffn
1884
1885@rnindex char-ci<?
1886@deffn {Scheme Procedure} char-ci<? x y
1887Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence
1888ignoring case, else @code{#f}.
1889@end deffn
1890
1891@rnindex char-ci<=?
1892@deffn {Scheme Procedure} char-ci<=? x y
1893Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1894@acronym{ASCII} sequence ignoring case, else @code{#f}.
1895@end deffn
1896
1897@rnindex char-ci>?
1898@deffn {Scheme Procedure} char-ci>? x y
1899Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1900sequence ignoring case, else @code{#f}.
1901@end deffn
1902
1903@rnindex char-ci>=?
1904@deffn {Scheme Procedure} char-ci>=? x y
1905Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1906@acronym{ASCII} sequence ignoring case, else @code{#f}.
1907@end deffn
1908
1909@rnindex char-alphabetic?
1910@deffn {Scheme Procedure} char-alphabetic? chr
1911@deffnx {C Function} scm_char_alphabetic_p (chr)
1912Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
07d83abe
MV
1913@end deffn
1914
1915@rnindex char-numeric?
1916@deffn {Scheme Procedure} char-numeric? chr
1917@deffnx {C Function} scm_char_numeric_p (chr)
1918Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
07d83abe
MV
1919@end deffn
1920
1921@rnindex char-whitespace?
1922@deffn {Scheme Procedure} char-whitespace? chr
1923@deffnx {C Function} scm_char_whitespace_p (chr)
1924Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
07d83abe
MV
1925@end deffn
1926
1927@rnindex char-upper-case?
1928@deffn {Scheme Procedure} char-upper-case? chr
1929@deffnx {C Function} scm_char_upper_case_p (chr)
1930Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
07d83abe
MV
1931@end deffn
1932
1933@rnindex char-lower-case?
1934@deffn {Scheme Procedure} char-lower-case? chr
1935@deffnx {C Function} scm_char_lower_case_p (chr)
1936Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
07d83abe
MV
1937@end deffn
1938
1939@deffn {Scheme Procedure} char-is-both? chr
1940@deffnx {C Function} scm_char_is_both_p (chr)
1941Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
5676b4fa 1942@code{#f}.
07d83abe
MV
1943@end deffn
1944
1945@rnindex char->integer
1946@deffn {Scheme Procedure} char->integer chr
1947@deffnx {C Function} scm_char_to_integer (chr)
1948Return the number corresponding to ordinal position of @var{chr} in the
1949@acronym{ASCII} sequence.
1950@end deffn
1951
1952@rnindex integer->char
1953@deffn {Scheme Procedure} integer->char n
1954@deffnx {C Function} scm_integer_to_char (n)
1955Return the character at position @var{n} in the @acronym{ASCII} sequence.
1956@end deffn
1957
1958@rnindex char-upcase
1959@deffn {Scheme Procedure} char-upcase chr
1960@deffnx {C Function} scm_char_upcase (chr)
1961Return the uppercase character version of @var{chr}.
1962@end deffn
1963
1964@rnindex char-downcase
1965@deffn {Scheme Procedure} char-downcase chr
1966@deffnx {C Function} scm_char_downcase (chr)
1967Return the lowercase character version of @var{chr}.
1968@end deffn
1969
050ab45f
MV
1970@node Character Sets
1971@subsection Character Sets
07d83abe 1972
050ab45f
MV
1973The features described in this section correspond directly to SRFI-14.
1974
1975The data type @dfn{charset} implements sets of characters
1976(@pxref{Characters}). Because the internal representation of
1977character sets is not visible to the user, a lot of procedures for
1978handling them are provided.
1979
1980Character sets can be created, extended, tested for the membership of a
1981characters and be compared to other character sets.
1982
1983The Guile implementation of character sets currently deals only with
19848-bit characters. In the future, when Guile gets support for
1985international character sets, this will change, but the functions
1986provided here will always then be able to efficiently cope with very
1987large character sets.
1988
1989@menu
1990* Character Set Predicates/Comparison::
1991* Iterating Over Character Sets:: Enumerate charset elements.
1992* Creating Character Sets:: Making new charsets.
1993* Querying Character Sets:: Test charsets for membership etc.
1994* Character-Set Algebra:: Calculating new charsets.
1995* Standard Character Sets:: Variables containing predefined charsets.
1996@end menu
1997
1998@node Character Set Predicates/Comparison
1999@subsubsection Character Set Predicates/Comparison
2000
2001Use these procedures for testing whether an object is a character set,
2002or whether several character sets are equal or subsets of each other.
2003@code{char-set-hash} can be used for calculating a hash value, maybe for
2004usage in fast lookup procedures.
2005
2006@deffn {Scheme Procedure} char-set? obj
2007@deffnx {C Function} scm_char_set_p (obj)
2008Return @code{#t} if @var{obj} is a character set, @code{#f}
2009otherwise.
2010@end deffn
2011
2012@deffn {Scheme Procedure} char-set= . char_sets
2013@deffnx {C Function} scm_char_set_eq (char_sets)
2014Return @code{#t} if all given character sets are equal.
2015@end deffn
2016
2017@deffn {Scheme Procedure} char-set<= . char_sets
2018@deffnx {C Function} scm_char_set_leq (char_sets)
2019Return @code{#t} if every character set @var{cs}i is a subset
2020of character set @var{cs}i+1.
2021@end deffn
2022
2023@deffn {Scheme Procedure} char-set-hash cs [bound]
2024@deffnx {C Function} scm_char_set_hash (cs, bound)
2025Compute a hash value for the character set @var{cs}. If
2026@var{bound} is given and non-zero, it restricts the
2027returned value to the range 0 @dots{} @var{bound - 1}.
2028@end deffn
2029
2030@c ===================================================================
2031
2032@node Iterating Over Character Sets
2033@subsubsection Iterating Over Character Sets
2034
2035Character set cursors are a means for iterating over the members of a
2036character sets. After creating a character set cursor with
2037@code{char-set-cursor}, a cursor can be dereferenced with
2038@code{char-set-ref}, advanced to the next member with
2039@code{char-set-cursor-next}. Whether a cursor has passed past the last
2040element of the set can be checked with @code{end-of-char-set?}.
2041
2042Additionally, mapping and (un-)folding procedures for character sets are
2043provided.
2044
2045@deffn {Scheme Procedure} char-set-cursor cs
2046@deffnx {C Function} scm_char_set_cursor (cs)
2047Return a cursor into the character set @var{cs}.
2048@end deffn
2049
2050@deffn {Scheme Procedure} char-set-ref cs cursor
2051@deffnx {C Function} scm_char_set_ref (cs, cursor)
2052Return the character at the current cursor position
2053@var{cursor} in the character set @var{cs}. It is an error to
2054pass a cursor for which @code{end-of-char-set?} returns true.
2055@end deffn
2056
2057@deffn {Scheme Procedure} char-set-cursor-next cs cursor
2058@deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2059Advance the character set cursor @var{cursor} to the next
2060character in the character set @var{cs}. It is an error if the
2061cursor given satisfies @code{end-of-char-set?}.
2062@end deffn
2063
2064@deffn {Scheme Procedure} end-of-char-set? cursor
2065@deffnx {C Function} scm_end_of_char_set_p (cursor)
2066Return @code{#t} if @var{cursor} has reached the end of a
2067character set, @code{#f} otherwise.
2068@end deffn
2069
2070@deffn {Scheme Procedure} char-set-fold kons knil cs
2071@deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2072Fold the procedure @var{kons} over the character set @var{cs},
2073initializing it with @var{knil}.
2074@end deffn
2075
2076@deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2077@deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2078This is a fundamental constructor for character sets.
2079@itemize @bullet
2080@item @var{g} is used to generate a series of ``seed'' values
2081from the initial seed: @var{seed}, (@var{g} @var{seed}),
2082(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2083@item @var{p} tells us when to stop -- when it returns true
2084when applied to one of the seed values.
2085@item @var{f} maps each seed value to a character. These
2086characters are added to the base character set @var{base_cs} to
2087form the result; @var{base_cs} defaults to the empty set.
2088@end itemize
2089@end deffn
2090
2091@deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2092@deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2093This is a fundamental constructor for character sets.
2094@itemize @bullet
2095@item @var{g} is used to generate a series of ``seed'' values
2096from the initial seed: @var{seed}, (@var{g} @var{seed}),
2097(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2098@item @var{p} tells us when to stop -- when it returns true
2099when applied to one of the seed values.
2100@item @var{f} maps each seed value to a character. These
2101characters are added to the base character set @var{base_cs} to
2102form the result; @var{base_cs} defaults to the empty set.
2103@end itemize
2104@end deffn
2105
2106@deffn {Scheme Procedure} char-set-for-each proc cs
2107@deffnx {C Function} scm_char_set_for_each (proc, cs)
2108Apply @var{proc} to every character in the character set
2109@var{cs}. The return value is not specified.
2110@end deffn
2111
2112@deffn {Scheme Procedure} char-set-map proc cs
2113@deffnx {C Function} scm_char_set_map (proc, cs)
2114Map the procedure @var{proc} over every character in @var{cs}.
2115@var{proc} must be a character -> character procedure.
2116@end deffn
2117
2118@c ===================================================================
2119
2120@node Creating Character Sets
2121@subsubsection Creating Character Sets
2122
2123New character sets are produced with these procedures.
2124
2125@deffn {Scheme Procedure} char-set-copy cs
2126@deffnx {C Function} scm_char_set_copy (cs)
2127Return a newly allocated character set containing all
2128characters in @var{cs}.
2129@end deffn
2130
2131@deffn {Scheme Procedure} char-set . rest
2132@deffnx {C Function} scm_char_set (rest)
2133Return a character set containing all given characters.
2134@end deffn
2135
2136@deffn {Scheme Procedure} list->char-set list [base_cs]
2137@deffnx {C Function} scm_list_to_char_set (list, base_cs)
2138Convert the character list @var{list} to a character set. If
2139the character set @var{base_cs} is given, the character in this
2140set are also included in the result.
2141@end deffn
2142
2143@deffn {Scheme Procedure} list->char-set! list base_cs
2144@deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2145Convert the character list @var{list} to a character set. The
2146characters are added to @var{base_cs} and @var{base_cs} is
2147returned.
2148@end deffn
2149
2150@deffn {Scheme Procedure} string->char-set str [base_cs]
2151@deffnx {C Function} scm_string_to_char_set (str, base_cs)
2152Convert the string @var{str} to a character set. If the
2153character set @var{base_cs} is given, the characters in this
2154set are also included in the result.
2155@end deffn
2156
2157@deffn {Scheme Procedure} string->char-set! str base_cs
2158@deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2159Convert the string @var{str} to a character set. The
2160characters from the string are added to @var{base_cs}, and
2161@var{base_cs} is returned.
2162@end deffn
2163
2164@deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2165@deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2166Return a character set containing every character from @var{cs}
2167so that it satisfies @var{pred}. If provided, the characters
2168from @var{base_cs} are added to the result.
2169@end deffn
2170
2171@deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2172@deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2173Return a character set containing every character from @var{cs}
2174so that it satisfies @var{pred}. The characters are added to
2175@var{base_cs} and @var{base_cs} is returned.
2176@end deffn
2177
2178@deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2179@deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2180Return a character set containing all characters whose
2181character codes lie in the half-open range
2182[@var{lower},@var{upper}).
2183
2184If @var{error} is a true value, an error is signalled if the
2185specified range contains characters which are not contained in
2186the implemented character range. If @var{error} is @code{#f},
2187these characters are silently left out of the resultung
2188character set.
2189
2190The characters in @var{base_cs} are added to the result, if
2191given.
2192@end deffn
2193
2194@deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2195@deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2196Return a character set containing all characters whose
2197character codes lie in the half-open range
2198[@var{lower},@var{upper}).
2199
2200If @var{error} is a true value, an error is signalled if the
2201specified range contains characters which are not contained in
2202the implemented character range. If @var{error} is @code{#f},
2203these characters are silently left out of the resultung
2204character set.
2205
2206The characters are added to @var{base_cs} and @var{base_cs} is
2207returned.
2208@end deffn
2209
2210@deffn {Scheme Procedure} ->char-set x
2211@deffnx {C Function} scm_to_char_set (x)
2212Coerces x into a char-set. @var{x} may be a string, character or char-set. A string is converted to the set of its constituent characters; a character is converted to a singleton set; a char-set is returned as-is.
2213@end deffn
2214
2215@c ===================================================================
2216
2217@node Querying Character Sets
2218@subsubsection Querying Character Sets
2219
2220Access the elements and other information of a character set with these
2221procedures.
2222
2223@deffn {Scheme Procedure} char-set-size cs
2224@deffnx {C Function} scm_char_set_size (cs)
2225Return the number of elements in character set @var{cs}.
2226@end deffn
2227
2228@deffn {Scheme Procedure} char-set-count pred cs
2229@deffnx {C Function} scm_char_set_count (pred, cs)
2230Return the number of the elements int the character set
2231@var{cs} which satisfy the predicate @var{pred}.
2232@end deffn
2233
2234@deffn {Scheme Procedure} char-set->list cs
2235@deffnx {C Function} scm_char_set_to_list (cs)
2236Return a list containing the elements of the character set
2237@var{cs}.
2238@end deffn
2239
2240@deffn {Scheme Procedure} char-set->string cs
2241@deffnx {C Function} scm_char_set_to_string (cs)
2242Return a string containing the elements of the character set
2243@var{cs}. The order in which the characters are placed in the
2244string is not defined.
2245@end deffn
2246
2247@deffn {Scheme Procedure} char-set-contains? cs ch
2248@deffnx {C Function} scm_char_set_contains_p (cs, ch)
2249Return @code{#t} iff the character @var{ch} is contained in the
2250character set @var{cs}.
2251@end deffn
2252
2253@deffn {Scheme Procedure} char-set-every pred cs
2254@deffnx {C Function} scm_char_set_every (pred, cs)
2255Return a true value if every character in the character set
2256@var{cs} satisfies the predicate @var{pred}.
2257@end deffn
2258
2259@deffn {Scheme Procedure} char-set-any pred cs
2260@deffnx {C Function} scm_char_set_any (pred, cs)
2261Return a true value if any character in the character set
2262@var{cs} satisfies the predicate @var{pred}.
2263@end deffn
2264
2265@c ===================================================================
2266
2267@node Character-Set Algebra
2268@subsubsection Character-Set Algebra
2269
2270Character sets can be manipulated with the common set algebra operation,
2271such as union, complement, intersection etc. All of these procedures
2272provide side-effecting variants, which modify their character set
2273argument(s).
2274
2275@deffn {Scheme Procedure} char-set-adjoin cs . rest
2276@deffnx {C Function} scm_char_set_adjoin (cs, rest)
2277Add all character arguments to the first argument, which must
2278be a character set.
2279@end deffn
2280
2281@deffn {Scheme Procedure} char-set-delete cs . rest
2282@deffnx {C Function} scm_char_set_delete (cs, rest)
2283Delete all character arguments from the first argument, which
2284must be a character set.
2285@end deffn
2286
2287@deffn {Scheme Procedure} char-set-adjoin! cs . rest
2288@deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
2289Add all character arguments to the first argument, which must
2290be a character set.
2291@end deffn
2292
2293@deffn {Scheme Procedure} char-set-delete! cs . rest
2294@deffnx {C Function} scm_char_set_delete_x (cs, rest)
2295Delete all character arguments from the first argument, which
2296must be a character set.
2297@end deffn
2298
2299@deffn {Scheme Procedure} char-set-complement cs
2300@deffnx {C Function} scm_char_set_complement (cs)
2301Return the complement of the character set @var{cs}.
2302@end deffn
2303
2304@deffn {Scheme Procedure} char-set-union . rest
2305@deffnx {C Function} scm_char_set_union (rest)
2306Return the union of all argument character sets.
2307@end deffn
2308
2309@deffn {Scheme Procedure} char-set-intersection . rest
2310@deffnx {C Function} scm_char_set_intersection (rest)
2311Return the intersection of all argument character sets.
2312@end deffn
2313
2314@deffn {Scheme Procedure} char-set-difference cs1 . rest
2315@deffnx {C Function} scm_char_set_difference (cs1, rest)
2316Return the difference of all argument character sets.
2317@end deffn
2318
2319@deffn {Scheme Procedure} char-set-xor . rest
2320@deffnx {C Function} scm_char_set_xor (rest)
2321Return the exclusive-or of all argument character sets.
2322@end deffn
2323
2324@deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
2325@deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
2326Return the difference and the intersection of all argument
2327character sets.
2328@end deffn
2329
2330@deffn {Scheme Procedure} char-set-complement! cs
2331@deffnx {C Function} scm_char_set_complement_x (cs)
2332Return the complement of the character set @var{cs}.
2333@end deffn
2334
2335@deffn {Scheme Procedure} char-set-union! cs1 . rest
2336@deffnx {C Function} scm_char_set_union_x (cs1, rest)
2337Return the union of all argument character sets.
2338@end deffn
2339
2340@deffn {Scheme Procedure} char-set-intersection! cs1 . rest
2341@deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
2342Return the intersection of all argument character sets.
2343@end deffn
2344
2345@deffn {Scheme Procedure} char-set-difference! cs1 . rest
2346@deffnx {C Function} scm_char_set_difference_x (cs1, rest)
2347Return the difference of all argument character sets.
2348@end deffn
2349
2350@deffn {Scheme Procedure} char-set-xor! cs1 . rest
2351@deffnx {C Function} scm_char_set_xor_x (cs1, rest)
2352Return the exclusive-or of all argument character sets.
2353@end deffn
2354
2355@deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
2356@deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
2357Return the difference and the intersection of all argument
2358character sets.
2359@end deffn
2360
2361@c ===================================================================
2362
2363@node Standard Character Sets
2364@subsubsection Standard Character Sets
2365
2366In order to make the use of the character set data type and procedures
2367useful, several predefined character set variables exist.
2368
49dec04b
LC
2369@cindex codeset
2370@cindex charset
2371@cindex locale
2372
2373Currently, the contents of these character sets are recomputed upon a
2374successful @code{setlocale} call (@pxref{Locales}) in order to reflect
2375the characters available in the current locale's codeset. For
2376instance, @code{char-set:letter} contains 52 characters under an ASCII
2377locale (e.g., the default @code{C} locale) and 117 characters under an
2378ISO-8859-1 (``Latin-1'') locale.
2379
c9dc8c6c
MV
2380@defvr {Scheme Variable} char-set:lower-case
2381@defvrx {C Variable} scm_char_set_lower_case
050ab45f 2382All lower-case characters.
c9dc8c6c 2383@end defvr
050ab45f 2384
c9dc8c6c
MV
2385@defvr {Scheme Variable} char-set:upper-case
2386@defvrx {C Variable} scm_char_set_upper_case
050ab45f 2387All upper-case characters.
c9dc8c6c 2388@end defvr
050ab45f 2389
c9dc8c6c
MV
2390@defvr {Scheme Variable} char-set:title-case
2391@defvrx {C Variable} scm_char_set_title_case
050ab45f 2392This is empty, because ASCII has no titlecase characters.
c9dc8c6c 2393@end defvr
050ab45f 2394
c9dc8c6c
MV
2395@defvr {Scheme Variable} char-set:letter
2396@defvrx {C Variable} scm_char_set_letter
050ab45f
MV
2397All letters, e.g. the union of @code{char-set:lower-case} and
2398@code{char-set:upper-case}.
c9dc8c6c 2399@end defvr
050ab45f 2400
c9dc8c6c
MV
2401@defvr {Scheme Variable} char-set:digit
2402@defvrx {C Variable} scm_char_set_digit
050ab45f 2403All digits.
c9dc8c6c 2404@end defvr
050ab45f 2405
c9dc8c6c
MV
2406@defvr {Scheme Variable} char-set:letter+digit
2407@defvrx {C Variable} scm_char_set_letter_and_digit
050ab45f 2408The union of @code{char-set:letter} and @code{char-set:digit}.
c9dc8c6c 2409@end defvr
050ab45f 2410
c9dc8c6c
MV
2411@defvr {Scheme Variable} char-set:graphic
2412@defvrx {C Variable} scm_char_set_graphic
050ab45f 2413All characters which would put ink on the paper.
c9dc8c6c 2414@end defvr
050ab45f 2415
c9dc8c6c
MV
2416@defvr {Scheme Variable} char-set:printing
2417@defvrx {C Variable} scm_char_set_printing
050ab45f 2418The union of @code{char-set:graphic} and @code{char-set:whitespace}.
c9dc8c6c 2419@end defvr
050ab45f 2420
c9dc8c6c
MV
2421@defvr {Scheme Variable} char-set:whitespace
2422@defvrx {C Variable} scm_char_set_whitespace
050ab45f 2423All whitespace characters.
c9dc8c6c 2424@end defvr
050ab45f 2425
c9dc8c6c
MV
2426@defvr {Scheme Variable} char-set:blank
2427@defvrx {C Variable} scm_char_set_blank
050ab45f
MV
2428All horizontal whitespace characters, that is @code{#\space} and
2429@code{#\tab}.
c9dc8c6c 2430@end defvr
050ab45f 2431
c9dc8c6c
MV
2432@defvr {Scheme Variable} char-set:iso-control
2433@defvrx {C Variable} scm_char_set_iso_control
050ab45f 2434The ISO control characters with the codes 0--31 and 127.
c9dc8c6c 2435@end defvr
050ab45f 2436
c9dc8c6c
MV
2437@defvr {Scheme Variable} char-set:punctuation
2438@defvrx {C Variable} scm_char_set_punctuation
050ab45f 2439The characters @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
c9dc8c6c 2440@end defvr
050ab45f 2441
c9dc8c6c
MV
2442@defvr {Scheme Variable} char-set:symbol
2443@defvrx {C Variable} scm_char_set_symbol
050ab45f 2444The characters @code{$+<=>^`|~}.
c9dc8c6c 2445@end defvr
050ab45f 2446
c9dc8c6c
MV
2447@defvr {Scheme Variable} char-set:hex-digit
2448@defvrx {C Variable} scm_char_set_hex_digit
050ab45f 2449The hexadecimal digits @code{0123456789abcdefABCDEF}.
c9dc8c6c 2450@end defvr
050ab45f 2451
c9dc8c6c
MV
2452@defvr {Scheme Variable} char-set:ascii
2453@defvrx {C Variable} scm_char_set_ascii
050ab45f 2454All ASCII characters.
c9dc8c6c 2455@end defvr
050ab45f 2456
c9dc8c6c
MV
2457@defvr {Scheme Variable} char-set:empty
2458@defvrx {C Variable} scm_char_set_empty
050ab45f 2459The empty character set.
c9dc8c6c 2460@end defvr
050ab45f 2461
c9dc8c6c
MV
2462@defvr {Scheme Variable} char-set:full
2463@defvrx {C Variable} scm_char_set_full
050ab45f 2464This character set contains all possible characters.
c9dc8c6c 2465@end defvr
07d83abe
MV
2466
2467@node Strings
2468@subsection Strings
2469@tpindex Strings
2470
2471Strings are fixed-length sequences of characters. They can be created
2472by calling constructor procedures, but they can also literally get
2473entered at the @acronym{REPL} or in Scheme source files.
2474
2475@c Guile provides a rich set of string processing procedures, because text
2476@c handling is very important when Guile is used as a scripting language.
2477
2478Strings always carry the information about how many characters they are
2479composed of with them, so there is no special end-of-string character,
2480like in C. That means that Scheme strings can contain any character,
c48c62d0
MV
2481even the @samp{#\nul} character @samp{\0}.
2482
2483To use strings efficiently, you need to know a bit about how Guile
2484implements them. In Guile, a string consists of two parts, a head and
2485the actual memory where the characters are stored. When a string (or
2486a substring of it) is copied, only a new head gets created, the memory
2487is usually not copied. The two heads start out pointing to the same
2488memory.
2489
2490When one of these two strings is modified, as with @code{string-set!},
2491their common memory does get copied so that each string has its own
2492memory and modifying one does not accidently modify the other as well.
2493Thus, Guile's strings are `copy on write'; the actual copying of their
2494memory is delayed until one string is written to.
2495
2496This implementation makes functions like @code{substring} very
2497efficient in the common case that no modifications are done to the
2498involved strings.
2499
2500If you do know that your strings are getting modified right away, you
2501can use @code{substring/copy} instead of @code{substring}. This
2502function performs the copy immediately at the time of creation. This
2503is more efficient, especially in a multi-threaded program. Also,
2504@code{substring/copy} can avoid the problem that a short substring
2505holds on to the memory of a very large original string that could
2506otherwise be recycled.
2507
2508If you want to avoid the copy altogether, so that modifications of one
2509string show up in the other, you can use @code{substring/shared}. The
2510strings created by this procedure are called @dfn{mutation sharing
2511substrings} since the substring and the original string share
2512modifications to each other.
07d83abe 2513
05256760
MV
2514If you want to prevent modifications, use @code{substring/read-only}.
2515
c9dc8c6c
MV
2516Guile provides all procedures of SRFI-13 and a few more.
2517
07d83abe 2518@menu
5676b4fa
MV
2519* String Syntax:: Read syntax for strings.
2520* String Predicates:: Testing strings for certain properties.
2521* String Constructors:: Creating new string objects.
2522* List/String Conversion:: Converting from/to lists of characters.
2523* String Selection:: Select portions from strings.
2524* String Modification:: Modify parts or whole strings.
2525* String Comparison:: Lexicographic ordering predicates.
2526* String Searching:: Searching in strings.
2527* Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2528* Reversing and Appending Strings:: Appending strings to form a new string.
2529* Mapping Folding and Unfolding:: Iterating over strings.
2530* Miscellaneous String Operations:: Replicating, insertion, parsing, ...
91210d62 2531* Conversion to/from C::
07d83abe
MV
2532@end menu
2533
2534@node String Syntax
2535@subsubsection String Read Syntax
2536
2537@c In the following @code is used to get a good font in TeX etc, but
2538@c is omitted for Info format, so as not to risk any confusion over
2539@c whether surrounding ` ' quotes are part of the escape or are
2540@c special in a string (they're not).
2541
2542The read syntax for strings is an arbitrarily long sequence of
c48c62d0 2543characters enclosed in double quotes (@nicode{"}).
07d83abe
MV
2544
2545Backslash is an escape character and can be used to insert the
2546following special characters. @nicode{\"} and @nicode{\\} are R5RS
2547standard, the rest are Guile extensions, notice they follow C string
2548syntax.
2549
2550@table @asis
2551@item @nicode{\\}
2552Backslash character.
2553
2554@item @nicode{\"}
2555Double quote character (an unescaped @nicode{"} is otherwise the end
2556of the string).
2557
2558@item @nicode{\0}
2559NUL character (ASCII 0).
2560
2561@item @nicode{\a}
2562Bell character (ASCII 7).
2563
2564@item @nicode{\f}
2565Formfeed character (ASCII 12).
2566
2567@item @nicode{\n}
2568Newline character (ASCII 10).
2569
2570@item @nicode{\r}
2571Carriage return character (ASCII 13).
2572
2573@item @nicode{\t}
2574Tab character (ASCII 9).
2575
2576@item @nicode{\v}
2577Vertical tab character (ASCII 11).
2578
2579@item @nicode{\xHH}
2580Character code given by two hexadecimal digits. For example
2581@nicode{\x7f} for an ASCII DEL (127).
2582@end table
2583
2584@noindent
2585The following are examples of string literals:
2586
2587@lisp
2588"foo"
2589"bar plonk"
2590"Hello World"
2591"\"Hi\", he said."
2592@end lisp
2593
2594
2595@node String Predicates
2596@subsubsection String Predicates
2597
2598The following procedures can be used to check whether a given string
2599fulfills some specified property.
2600
2601@rnindex string?
2602@deffn {Scheme Procedure} string? obj
2603@deffnx {C Function} scm_string_p (obj)
2604Return @code{#t} if @var{obj} is a string, else @code{#f}.
2605@end deffn
2606
91210d62
MV
2607@deftypefn {C Function} int scm_is_string (SCM obj)
2608Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
2609@end deftypefn
2610
07d83abe
MV
2611@deffn {Scheme Procedure} string-null? str
2612@deffnx {C Function} scm_string_null_p (str)
2613Return @code{#t} if @var{str}'s length is zero, and
2614@code{#f} otherwise.
2615@lisp
2616(string-null? "") @result{} #t
2617y @result{} "foo"
2618(string-null? y) @result{} #f
2619@end lisp
2620@end deffn
2621
5676b4fa
MV
2622@deffn {Scheme Procedure} string-any char_pred s [start [end]]
2623@deffnx {C Function} scm_string_any (char_pred, s, start, end)
c100a12c 2624Check if @var{char_pred} is true for any character in string @var{s}.
5676b4fa 2625
c100a12c
KR
2626@var{char_pred} can be a character to check for any equal to that, or
2627a character set (@pxref{Character Sets}) to check for any in that set,
2628or a predicate procedure to call.
5676b4fa 2629
c100a12c
KR
2630For a procedure, calls @code{(@var{char_pred} c)} are made
2631successively on the characters from @var{start} to @var{end}. If
2632@var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
2633stops and that return value is the return from @code{string-any}. The
2634call on the last character (ie.@: at @math{@var{end}-1}), if that
2635point is reached, is a tail call.
2636
2637If there are no characters in @var{s} (ie.@: @var{start} equals
2638@var{end}) then the return is @code{#f}.
5676b4fa
MV
2639@end deffn
2640
2641@deffn {Scheme Procedure} string-every char_pred s [start [end]]
2642@deffnx {C Function} scm_string_every (char_pred, s, start, end)
c100a12c
KR
2643Check if @var{char_pred} is true for every character in string
2644@var{s}.
5676b4fa 2645
c100a12c
KR
2646@var{char_pred} can be a character to check for every character equal
2647to that, or a character set (@pxref{Character Sets}) to check for
2648every character being in that set, or a predicate procedure to call.
2649
2650For a procedure, calls @code{(@var{char_pred} c)} are made
2651successively on the characters from @var{start} to @var{end}. If
2652@var{char_pred} returns @code{#f}, @code{string-every} stops and
2653returns @code{#f}. The call on the last character (ie.@: at
2654@math{@var{end}-1}), if that point is reached, is a tail call and the
2655return from that call is the return from @code{string-every}.
5676b4fa
MV
2656
2657If there are no characters in @var{s} (ie.@: @var{start} equals
2658@var{end}) then the return is @code{#t}.
5676b4fa
MV
2659@end deffn
2660
07d83abe
MV
2661@node String Constructors
2662@subsubsection String Constructors
2663
2664The string constructor procedures create new string objects, possibly
c48c62d0
MV
2665initializing them with some specified character data. See also
2666@xref{String Selection}, for ways to create strings from existing
2667strings.
07d83abe
MV
2668
2669@c FIXME::martin: list->string belongs into `List/String Conversion'
2670
bba26c32 2671@deffn {Scheme Procedure} string char@dots{}
07d83abe 2672@rnindex string
bba26c32
KR
2673Return a newly allocated string made from the given character
2674arguments.
2675
2676@example
2677(string #\x #\y #\z) @result{} "xyz"
2678(string) @result{} ""
2679@end example
2680@end deffn
2681
2682@deffn {Scheme Procedure} list->string lst
2683@deffnx {C Function} scm_string (lst)
07d83abe 2684@rnindex list->string
bba26c32
KR
2685Return a newly allocated string made from a list of characters.
2686
2687@example
2688(list->string '(#\a #\b #\c)) @result{} "abc"
2689@end example
2690@end deffn
2691
2692@deffn {Scheme Procedure} reverse-list->string lst
2693@deffnx {C Function} scm_reverse_list_to_string (lst)
2694Return a newly allocated string made from a list of characters, in
2695reverse order.
2696
2697@example
2698(reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
2699@end example
07d83abe
MV
2700@end deffn
2701
2702@rnindex make-string
2703@deffn {Scheme Procedure} make-string k [chr]
2704@deffnx {C Function} scm_make_string (k, chr)
2705Return a newly allocated string of
2706length @var{k}. If @var{chr} is given, then all elements of
2707the string are initialized to @var{chr}, otherwise the contents
2708of the @var{string} are unspecified.
2709@end deffn
2710
c48c62d0
MV
2711@deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
2712Like @code{scm_make_string}, but expects the length as a
2713@code{size_t}.
2714@end deftypefn
2715
5676b4fa
MV
2716@deffn {Scheme Procedure} string-tabulate proc len
2717@deffnx {C Function} scm_string_tabulate (proc, len)
2718@var{proc} is an integer->char procedure. Construct a string
2719of size @var{len} by applying @var{proc} to each index to
2720produce the corresponding string element. The order in which
2721@var{proc} is applied to the indices is not specified.
2722@end deffn
2723
5676b4fa
MV
2724@deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
2725@deffnx {C Function} scm_string_join (ls, delimiter, grammar)
2726Append the string in the string list @var{ls}, using the string
2727@var{delim} as a delimiter between the elements of @var{ls}.
2728@var{grammar} is a symbol which specifies how the delimiter is
2729placed between the strings, and defaults to the symbol
2730@code{infix}.
2731
2732@table @code
2733@item infix
2734Insert the separator between list elements. An empty string
2735will produce an empty list.
2736@item string-infix
2737Like @code{infix}, but will raise an error if given the empty
2738list.
2739@item suffix
2740Insert the separator after every list element.
2741@item prefix
2742Insert the separator before each list element.
2743@end table
2744@end deffn
2745
07d83abe
MV
2746@node List/String Conversion
2747@subsubsection List/String conversion
2748
2749When processing strings, it is often convenient to first convert them
2750into a list representation by using the procedure @code{string->list},
2751work with the resulting list, and then convert it back into a string.
2752These procedures are useful for similar tasks.
2753
2754@rnindex string->list
5676b4fa
MV
2755@deffn {Scheme Procedure} string->list str [start [end]]
2756@deffnx {C Function} scm_substring_to_list (str, start, end)
07d83abe 2757@deffnx {C Function} scm_string_to_list (str)
5676b4fa 2758Convert the string @var{str} into a list of characters.
07d83abe
MV
2759@end deffn
2760
2761@deffn {Scheme Procedure} string-split str chr
2762@deffnx {C Function} scm_string_split (str, chr)
2763Split the string @var{str} into the a list of the substrings delimited
2764by appearances of the character @var{chr}. Note that an empty substring
2765between separator characters will result in an empty string in the
2766result list.
2767
2768@lisp
2769(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
2770@result{}
2771("root" "x" "0" "0" "root" "/root" "/bin/bash")
2772
2773(string-split "::" #\:)
2774@result{}
2775("" "" "")
2776
2777(string-split "" #\:)
2778@result{}
2779("")
2780@end lisp
2781@end deffn
2782
2783
2784@node String Selection
2785@subsubsection String Selection
2786
2787Portions of strings can be extracted by these procedures.
2788@code{string-ref} delivers individual characters whereas
2789@code{substring} can be used to extract substrings from longer strings.
2790
2791@rnindex string-length
2792@deffn {Scheme Procedure} string-length string
2793@deffnx {C Function} scm_string_length (string)
2794Return the number of characters in @var{string}.
2795@end deffn
2796
c48c62d0
MV
2797@deftypefn {C Function} size_t scm_c_string_length (SCM str)
2798Return the number of characters in @var{str} as a @code{size_t}.
2799@end deftypefn
2800
07d83abe
MV
2801@rnindex string-ref
2802@deffn {Scheme Procedure} string-ref str k
2803@deffnx {C Function} scm_string_ref (str, k)
2804Return character @var{k} of @var{str} using zero-origin
2805indexing. @var{k} must be a valid index of @var{str}.
2806@end deffn
2807
c48c62d0
MV
2808@deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
2809Return character @var{k} of @var{str} using zero-origin
2810indexing. @var{k} must be a valid index of @var{str}.
2811@end deftypefn
2812
07d83abe 2813@rnindex string-copy
5676b4fa
MV
2814@deffn {Scheme Procedure} string-copy str [start [end]]
2815@deffnx {C Function} scm_substring_copy (str, start, end)
07d83abe 2816@deffnx {C Function} scm_string_copy (str)
5676b4fa 2817Return a copy of the given string @var{str}.
c48c62d0
MV
2818
2819The returned string shares storage with @var{str} initially, but it is
2820copied as soon as one of the two strings is modified.
07d83abe
MV
2821@end deffn
2822
2823@rnindex substring
2824@deffn {Scheme Procedure} substring str start [end]
2825@deffnx {C Function} scm_substring (str, start, end)
c48c62d0 2826Return a new string formed from the characters
07d83abe
MV
2827of @var{str} beginning with index @var{start} (inclusive) and
2828ending with index @var{end} (exclusive).
2829@var{str} must be a string, @var{start} and @var{end} must be
2830exact integers satisfying:
2831
28320 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
c48c62d0
MV
2833
2834The returned string shares storage with @var{str} initially, but it is
2835copied as soon as one of the two strings is modified.
2836@end deffn
2837
2838@deffn {Scheme Procedure} substring/shared str start [end]
2839@deffnx {C Function} scm_substring_shared (str, start, end)
2840Like @code{substring}, but the strings continue to share their storage
2841even if they are modified. Thus, modifications to @var{str} show up
2842in the new string, and vice versa.
2843@end deffn
2844
2845@deffn {Scheme Procedure} substring/copy str start [end]
2846@deffnx {C Function} scm_substring_copy (str, start, end)
2847Like @code{substring}, but the storage for the new string is copied
2848immediately.
07d83abe
MV
2849@end deffn
2850
05256760
MV
2851@deffn {Scheme Procedure} substring/read-only str start [end]
2852@deffnx {C Function} scm_substring_read_only (str, start, end)
2853Like @code{substring}, but the resulting string can not be modified.
2854@end deffn
2855
c48c62d0
MV
2856@deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
2857@deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
2858@deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
05256760 2859@deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
c48c62d0
MV
2860Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
2861@end deftypefn
2862
5676b4fa
MV
2863@deffn {Scheme Procedure} string-take s n
2864@deffnx {C Function} scm_string_take (s, n)
2865Return the @var{n} first characters of @var{s}.
2866@end deffn
2867
2868@deffn {Scheme Procedure} string-drop s n
2869@deffnx {C Function} scm_string_drop (s, n)
2870Return all but the first @var{n} characters of @var{s}.
2871@end deffn
2872
2873@deffn {Scheme Procedure} string-take-right s n
2874@deffnx {C Function} scm_string_take_right (s, n)
2875Return the @var{n} last characters of @var{s}.
2876@end deffn
2877
2878@deffn {Scheme Procedure} string-drop-right s n
2879@deffnx {C Function} scm_string_drop_right (s, n)
2880Return all but the last @var{n} characters of @var{s}.
2881@end deffn
2882
2883@deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
6337e7fb 2884@deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
5676b4fa 2885@deffnx {C Function} scm_string_pad (s, len, chr, start, end)
5676b4fa 2886@deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
6337e7fb
KR
2887Take characters @var{start} to @var{end} from the string @var{s} and
2888either pad with @var{char} or truncate them to give @var{len}
2889characters.
2890
2891@code{string-pad} pads or truncates on the left, so for example
2892
2893@example
2894(string-pad "x" 3) @result{} " x"
2895(string-pad "abcde" 3) @result{} "cde"
2896@end example
2897
2898@code{string-pad-right} pads or truncates on the right, so for example
2899
2900@example
2901(string-pad-right "x" 3) @result{} "x "
2902(string-pad-right "abcde" 3) @result{} "abc"
2903@end example
5676b4fa
MV
2904@end deffn
2905
2906@deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
dc297bb7
KR
2907@deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
2908@deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
5676b4fa 2909@deffnx {C Function} scm_string_trim (s, char_pred, start, end)
5676b4fa 2910@deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
5676b4fa 2911@deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
dc297bb7 2912Trim occurrances of @var{char_pred} from the ends of @var{s}.
5676b4fa 2913
dc297bb7
KR
2914@code{string-trim} trims @var{char_pred} characters from the left
2915(start) of the string, @code{string-trim-right} trims them from the
2916right (end) of the string, @code{string-trim-both} trims from both
2917ends.
5676b4fa 2918
dc297bb7
KR
2919@var{char_pred} can be a character, a character set, or a predicate
2920procedure to call on each character. If @var{char_pred} is not given
2921the default is whitespace as per @code{char-set:whitespace}
2922(@pxref{Standard Character Sets}).
5676b4fa 2923
dc297bb7
KR
2924@example
2925(string-trim " x ") @result{} "x "
2926(string-trim-right "banana" #\a) @result{} "banan"
2927(string-trim-both ".,xy:;" char-set:punctuation)
2928 @result{} "xy"
2929(string-trim-both "xyzzy" (lambda (c)
2930 (or (eqv? c #\x)
2931 (eqv? c #\y))))
2932 @result{} "zz"
2933@end example
5676b4fa
MV
2934@end deffn
2935
07d83abe
MV
2936@node String Modification
2937@subsubsection String Modification
2938
2939These procedures are for modifying strings in-place. This means that the
2940result of the operation is not a new string; instead, the original string's
2941memory representation is modified.
2942
2943@rnindex string-set!
2944@deffn {Scheme Procedure} string-set! str k chr
2945@deffnx {C Function} scm_string_set_x (str, k, chr)
2946Store @var{chr} in element @var{k} of @var{str} and return
2947an unspecified value. @var{k} must be a valid index of
2948@var{str}.
2949@end deffn
2950
c48c62d0
MV
2951@deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
2952Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
2953@end deftypefn
2954
07d83abe 2955@rnindex string-fill!
5676b4fa
MV
2956@deffn {Scheme Procedure} string-fill! str chr [start [end]]
2957@deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
07d83abe 2958@deffnx {C Function} scm_string_fill_x (str, chr)
5676b4fa
MV
2959Stores @var{chr} in every element of the given @var{str} and
2960returns an unspecified value.
07d83abe
MV
2961@end deffn
2962
2963@deffn {Scheme Procedure} substring-fill! str start end fill
2964@deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
2965Change every character in @var{str} between @var{start} and
2966@var{end} to @var{fill}.
2967
2968@lisp
2969(define y "abcdefg")
2970(substring-fill! y 1 3 #\r)
2971y
2972@result{} "arrdefg"
2973@end lisp
2974@end deffn
2975
2976@deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
2977@deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
2978Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
2979into @var{str2} beginning at position @var{start2}.
2980@var{str1} and @var{str2} can be the same string.
2981@end deffn
2982
5676b4fa
MV
2983@deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
2984@deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
2985Copy the sequence of characters from index range [@var{start},
2986@var{end}) in string @var{s} to string @var{target}, beginning
2987at index @var{tstart}. The characters are copied left-to-right
2988or right-to-left as needed -- the copy is guaranteed to work,
2989even if @var{target} and @var{s} are the same string. It is an
2990error if the copy operation runs off the end of the target
2991string.
2992@end deffn
2993
07d83abe
MV
2994
2995@node String Comparison
2996@subsubsection String Comparison
2997
2998The procedures in this section are similar to the character ordering
2999predicates (@pxref{Characters}), but are defined on character sequences.
07d83abe 3000
5676b4fa
MV
3001The first set is specified in R5RS and has names that end in @code{?}.
3002The second set is specified in SRFI-13 and the names have no ending
3003@code{?}. The predicates ending in @code{-ci} ignore the character case
a2f00b9b 3004when comparing strings. @xref{Text Collation, the @code{(ice-9
b89c4943 3005i18n)} module}, for locale-dependent string comparison.
07d83abe
MV
3006
3007@rnindex string=?
3008@deffn {Scheme Procedure} string=? s1 s2
3009Lexicographic equality predicate; return @code{#t} if the two
3010strings are the same length and contain the same characters in
3011the same positions, otherwise return @code{#f}.
3012
3013The procedure @code{string-ci=?} treats upper and lower case
3014letters as though they were the same character, but
3015@code{string=?} treats upper and lower case as distinct
3016characters.
3017@end deffn
3018
3019@rnindex string<?
3020@deffn {Scheme Procedure} string<? s1 s2
3021Lexicographic ordering predicate; return @code{#t} if @var{s1}
3022is lexicographically less than @var{s2}.
3023@end deffn
3024
3025@rnindex string<=?
3026@deffn {Scheme Procedure} string<=? s1 s2
3027Lexicographic ordering predicate; return @code{#t} if @var{s1}
3028is lexicographically less than or equal to @var{s2}.
3029@end deffn
3030
3031@rnindex string>?
3032@deffn {Scheme Procedure} string>? s1 s2
3033Lexicographic ordering predicate; return @code{#t} if @var{s1}
3034is lexicographically greater than @var{s2}.
3035@end deffn
3036
3037@rnindex string>=?
3038@deffn {Scheme Procedure} string>=? s1 s2
3039Lexicographic ordering predicate; return @code{#t} if @var{s1}
3040is lexicographically greater than or equal to @var{s2}.
3041@end deffn
3042
3043@rnindex string-ci=?
3044@deffn {Scheme Procedure} string-ci=? s1 s2
3045Case-insensitive string equality predicate; return @code{#t} if
3046the two strings are the same length and their component
3047characters match (ignoring case) at each position; otherwise
3048return @code{#f}.
3049@end deffn
3050
5676b4fa 3051@rnindex string-ci<?
07d83abe
MV
3052@deffn {Scheme Procedure} string-ci<? s1 s2
3053Case insensitive lexicographic ordering predicate; return
3054@code{#t} if @var{s1} is lexicographically less than @var{s2}
3055regardless of case.
3056@end deffn
3057
3058@rnindex string<=?
3059@deffn {Scheme Procedure} string-ci<=? s1 s2
3060Case insensitive lexicographic ordering predicate; return
3061@code{#t} if @var{s1} is lexicographically less than or equal
3062to @var{s2} regardless of case.
3063@end deffn
3064
3065@rnindex string-ci>?
3066@deffn {Scheme Procedure} string-ci>? s1 s2
3067Case insensitive lexicographic ordering predicate; return
3068@code{#t} if @var{s1} is lexicographically greater than
3069@var{s2} regardless of case.
3070@end deffn
3071
3072@rnindex string-ci>=?
3073@deffn {Scheme Procedure} string-ci>=? s1 s2
3074Case insensitive lexicographic ordering predicate; return
3075@code{#t} if @var{s1} is lexicographically greater than or
3076equal to @var{s2} regardless of case.
3077@end deffn
3078
5676b4fa
MV
3079@deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3080@deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3081Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3082mismatch index, depending upon whether @var{s1} is less than,
3083equal to, or greater than @var{s2}. The mismatch index is the
3084largest index @var{i} such that for every 0 <= @var{j} <
3085@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3086@var{i} is the first position that does not match.
3087@end deffn
3088
3089@deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3090@deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3091Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3092mismatch index, depending upon whether @var{s1} is less than,
3093equal to, or greater than @var{s2}. The mismatch index is the
3094largest index @var{i} such that for every 0 <= @var{j} <
3095@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3096@var{i} is the first position that does not match. The
3097character comparison is done case-insensitively.
3098@end deffn
3099
3100@deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3101@deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3102Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3103value otherwise.
3104@end deffn
3105
3106@deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3107@deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3108Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3109value otherwise.
3110@end deffn
3111
3112@deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3113@deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3114Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3115true value otherwise.
3116@end deffn
3117
3118@deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3119@deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3120Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3121true value otherwise.
3122@end deffn
3123
3124@deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3125@deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3126Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3127value otherwise.
3128@end deffn
3129
3130@deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3131@deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3132Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3133otherwise.
3134@end deffn
3135
3136@deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3137@deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3138Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3139value otherwise. The character comparison is done
3140case-insensitively.
3141@end deffn
3142
3143@deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3144@deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3145Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3146value otherwise. The character comparison is done
3147case-insensitively.
3148@end deffn
3149
3150@deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3151@deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3152Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3153true value otherwise. The character comparison is done
3154case-insensitively.
3155@end deffn
3156
3157@deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3158@deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3159Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3160true value otherwise. The character comparison is done
3161case-insensitively.
3162@end deffn
3163
3164@deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3165@deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3166Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3167value otherwise. The character comparison is done
3168case-insensitively.
3169@end deffn
3170
3171@deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3172@deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3173Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3174otherwise. The character comparison is done
3175case-insensitively.
3176@end deffn
3177
3178@deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3179@deffnx {C Function} scm_substring_hash (s, bound, start, end)
3180Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3181@end deffn
3182
3183@deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3184@deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3185Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3186@end deffn
07d83abe
MV
3187
3188@node String Searching
3189@subsubsection String Searching
3190
5676b4fa
MV
3191@deffn {Scheme Procedure} string-index s char_pred [start [end]]
3192@deffnx {C Function} scm_string_index (s, char_pred, start, end)
3193Search through the string @var{s} from left to right, returning
3194the index of the first occurence of a character which
07d83abe 3195
5676b4fa
MV
3196@itemize @bullet
3197@item
3198equals @var{char_pred}, if it is character,
07d83abe 3199
5676b4fa
MV
3200@item
3201satisifies the predicate @var{char_pred}, if it is a procedure,
07d83abe 3202
5676b4fa
MV
3203@item
3204is in the set @var{char_pred}, if it is a character set.
3205@end itemize
3206@end deffn
07d83abe 3207
5676b4fa
MV
3208@deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3209@deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3210Search through the string @var{s} from right to left, returning
3211the index of the last occurence of a character which
3212
3213@itemize @bullet
3214@item
3215equals @var{char_pred}, if it is character,
3216
3217@item
3218satisifies the predicate @var{char_pred}, if it is a procedure,
3219
3220@item
3221is in the set if @var{char_pred} is a character set.
3222@end itemize
07d83abe
MV
3223@end deffn
3224
5676b4fa
MV
3225@deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3226@deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3227Return the length of the longest common prefix of the two
3228strings.
3229@end deffn
07d83abe 3230
5676b4fa
MV
3231@deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3232@deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3233Return the length of the longest common prefix of the two
3234strings, ignoring character case.
3235@end deffn
07d83abe 3236
5676b4fa
MV
3237@deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3238@deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3239Return the length of the longest common suffix of the two
3240strings.
3241@end deffn
07d83abe 3242
5676b4fa
MV
3243@deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3244@deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3245Return the length of the longest common suffix of the two
3246strings, ignoring character case.
3247@end deffn
3248
3249@deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3250@deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3251Is @var{s1} a prefix of @var{s2}?
3252@end deffn
3253
3254@deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3255@deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3256Is @var{s1} a prefix of @var{s2}, ignoring character case?
3257@end deffn
3258
3259@deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3260@deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3261Is @var{s1} a suffix of @var{s2}?
3262@end deffn
3263
3264@deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3265@deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3266Is @var{s1} a suffix of @var{s2}, ignoring character case?
3267@end deffn
3268
3269@deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3270@deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3271Search through the string @var{s} from right to left, returning
3272the index of the last occurence of a character which
3273
3274@itemize @bullet
3275@item
3276equals @var{char_pred}, if it is character,
3277
3278@item
3279satisifies the predicate @var{char_pred}, if it is a procedure,
3280
3281@item
3282is in the set if @var{char_pred} is a character set.
3283@end itemize
3284@end deffn
3285
3286@deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3287@deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3288Search through the string @var{s} from left to right, returning
3289the index of the first occurence of a character which
3290
3291@itemize @bullet
3292@item
3293does not equal @var{char_pred}, if it is character,
3294
3295@item
3296does not satisify the predicate @var{char_pred}, if it is a
3297procedure,
3298
3299@item
3300is not in the set if @var{char_pred} is a character set.
3301@end itemize
3302@end deffn
3303
3304@deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3305@deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3306Search through the string @var{s} from right to left, returning
3307the index of the last occurence of a character which
3308
3309@itemize @bullet
3310@item
3311does not equal @var{char_pred}, if it is character,
3312
3313@item
3314does not satisfy the predicate @var{char_pred}, if it is a
3315procedure,
3316
3317@item
3318is not in the set if @var{char_pred} is a character set.
3319@end itemize
3320@end deffn
3321
3322@deffn {Scheme Procedure} string-count s char_pred [start [end]]
3323@deffnx {C Function} scm_string_count (s, char_pred, start, end)
3324Return the count of the number of characters in the string
3325@var{s} which
3326
3327@itemize @bullet
3328@item
3329equals @var{char_pred}, if it is character,
3330
3331@item
3332satisifies the predicate @var{char_pred}, if it is a procedure.
3333
3334@item
3335is in the set @var{char_pred}, if it is a character set.
3336@end itemize
3337@end deffn
3338
3339@deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3340@deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3341Does string @var{s1} contain string @var{s2}? Return the index
3342in @var{s1} where @var{s2} occurs as a substring, or false.
3343The optional start/end indices restrict the operation to the
3344indicated substrings.
3345@end deffn
3346
3347@deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3348@deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3349Does string @var{s1} contain string @var{s2}? Return the index
3350in @var{s1} where @var{s2} occurs as a substring, or false.
3351The optional start/end indices restrict the operation to the
3352indicated substrings. Character comparison is done
3353case-insensitively.
07d83abe
MV
3354@end deffn
3355
3356@node Alphabetic Case Mapping
3357@subsubsection Alphabetic Case Mapping
3358
3359These are procedures for mapping strings to their upper- or lower-case
3360equivalents, respectively, or for capitalizing strings.
3361
5676b4fa
MV
3362@deffn {Scheme Procedure} string-upcase str [start [end]]
3363@deffnx {C Function} scm_substring_upcase (str, start, end)
07d83abe 3364@deffnx {C Function} scm_string_upcase (str)
5676b4fa 3365Upcase every character in @code{str}.
07d83abe
MV
3366@end deffn
3367
5676b4fa
MV
3368@deffn {Scheme Procedure} string-upcase! str [start [end]]
3369@deffnx {C Function} scm_substring_upcase_x (str, start, end)
07d83abe 3370@deffnx {C Function} scm_string_upcase_x (str)
5676b4fa
MV
3371Destructively upcase every character in @code{str}.
3372
07d83abe 3373@lisp
5676b4fa
MV
3374(string-upcase! y)
3375@result{} "ARRDEFG"
3376y
3377@result{} "ARRDEFG"
07d83abe
MV
3378@end lisp
3379@end deffn
3380
5676b4fa
MV
3381@deffn {Scheme Procedure} string-downcase str [start [end]]
3382@deffnx {C Function} scm_substring_downcase (str, start, end)
07d83abe 3383@deffnx {C Function} scm_string_downcase (str)
5676b4fa 3384Downcase every character in @var{str}.
07d83abe
MV
3385@end deffn
3386
5676b4fa
MV
3387@deffn {Scheme Procedure} string-downcase! str [start [end]]
3388@deffnx {C Function} scm_substring_downcase_x (str, start, end)
07d83abe 3389@deffnx {C Function} scm_string_downcase_x (str)
5676b4fa
MV
3390Destructively downcase every character in @var{str}.
3391
07d83abe 3392@lisp
5676b4fa
MV
3393y
3394@result{} "ARRDEFG"
3395(string-downcase! y)
3396@result{} "arrdefg"
3397y
3398@result{} "arrdefg"
07d83abe
MV
3399@end lisp
3400@end deffn
3401
3402@deffn {Scheme Procedure} string-capitalize str
3403@deffnx {C Function} scm_string_capitalize (str)
3404Return a freshly allocated string with the characters in
3405@var{str}, where the first character of every word is
3406capitalized.
3407@end deffn
3408
3409@deffn {Scheme Procedure} string-capitalize! str
3410@deffnx {C Function} scm_string_capitalize_x (str)
3411Upcase the first character of every word in @var{str}
3412destructively and return @var{str}.
3413
3414@lisp
3415y @result{} "hello world"
3416(string-capitalize! y) @result{} "Hello World"
3417y @result{} "Hello World"
3418@end lisp
3419@end deffn
3420
5676b4fa
MV
3421@deffn {Scheme Procedure} string-titlecase str [start [end]]
3422@deffnx {C Function} scm_string_titlecase (str, start, end)
3423Titlecase every first character in a word in @var{str}.
3424@end deffn
07d83abe 3425
5676b4fa
MV
3426@deffn {Scheme Procedure} string-titlecase! str [start [end]]
3427@deffnx {C Function} scm_string_titlecase_x (str, start, end)
3428Destructively titlecase every first character in a word in
3429@var{str}.
3430@end deffn
3431
3432@node Reversing and Appending Strings
3433@subsubsection Reversing and Appending Strings
07d83abe 3434
5676b4fa
MV
3435@deffn {Scheme Procedure} string-reverse str [start [end]]
3436@deffnx {C Function} scm_string_reverse (str, start, end)
3437Reverse the string @var{str}. The optional arguments
3438@var{start} and @var{end} delimit the region of @var{str} to
3439operate on.
3440@end deffn
3441
3442@deffn {Scheme Procedure} string-reverse! str [start [end]]
3443@deffnx {C Function} scm_string_reverse_x (str, start, end)
3444Reverse the string @var{str} in-place. The optional arguments
3445@var{start} and @var{end} delimit the region of @var{str} to
3446operate on. The return value is unspecified.
3447@end deffn
07d83abe
MV
3448
3449@rnindex string-append
3450@deffn {Scheme Procedure} string-append . args
3451@deffnx {C Function} scm_string_append (args)
3452Return a newly allocated string whose characters form the
3453concatenation of the given strings, @var{args}.
3454
3455@example
3456(let ((h "hello "))
3457 (string-append h "world"))
3458@result{} "hello world"
3459@end example
3460@end deffn
3461
5676b4fa
MV
3462@deffn {Scheme Procedure} string-append/shared . ls
3463@deffnx {C Function} scm_string_append_shared (ls)
3464Like @code{string-append}, but the result may share memory
3465with the argument strings.
3466@end deffn
3467
3468@deffn {Scheme Procedure} string-concatenate ls
3469@deffnx {C Function} scm_string_concatenate (ls)
3470Append the elements of @var{ls} (which must be strings)
3471together into a single string. Guaranteed to return a freshly
3472allocated string.
3473@end deffn
3474
3475@deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3476@deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3477Without optional arguments, this procedure is equivalent to
3478
3479@smalllisp
3480(string-concatenate (reverse ls))
3481@end smalllisp
3482
3483If the optional argument @var{final_string} is specified, it is
3484consed onto the beginning to @var{ls} before performing the
3485list-reverse and string-concatenate operations. If @var{end}
3486is given, only the characters of @var{final_string} up to index
3487@var{end} are used.
3488
3489Guaranteed to return a freshly allocated string.
3490@end deffn
3491
3492@deffn {Scheme Procedure} string-concatenate/shared ls
3493@deffnx {C Function} scm_string_concatenate_shared (ls)
3494Like @code{string-concatenate}, but the result may share memory
3495with the strings in the list @var{ls}.
3496@end deffn
3497
3498@deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3499@deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3500Like @code{string-concatenate-reverse}, but the result may
3501share memory with the the strings in the @var{ls} arguments.
3502@end deffn
3503
3504@node Mapping Folding and Unfolding
3505@subsubsection Mapping, Folding, and Unfolding
3506
3507@deffn {Scheme Procedure} string-map proc s [start [end]]
3508@deffnx {C Function} scm_string_map (proc, s, start, end)
3509@var{proc} is a char->char procedure, it is mapped over
3510@var{s}. The order in which the procedure is applied to the
3511string elements is not specified.
3512@end deffn
3513
3514@deffn {Scheme Procedure} string-map! proc s [start [end]]
3515@deffnx {C Function} scm_string_map_x (proc, s, start, end)
3516@var{proc} is a char->char procedure, it is mapped over
3517@var{s}. The order in which the procedure is applied to the
3518string elements is not specified. The string @var{s} is
3519modified in-place, the return value is not specified.
3520@end deffn
3521
3522@deffn {Scheme Procedure} string-for-each proc s [start [end]]
3523@deffnx {C Function} scm_string_for_each (proc, s, start, end)
3524@var{proc} is mapped over @var{s} in left-to-right order. The
3525return value is not specified.
3526@end deffn
3527
3528@deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
3529@deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
2a7820f2
KR
3530Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
3531right.
3532
3533For example, to change characters to alternately upper and lower case,
3534
3535@example
3536(define str (string-copy "studly"))
3537(string-for-each-index (lambda (i)
3538 (string-set! str i
3539 ((if (even? i) char-upcase char-downcase)
3540 (string-ref str i))))
3541 str)
3542str @result{} "StUdLy"
3543@end example
5676b4fa
MV
3544@end deffn
3545
3546@deffn {Scheme Procedure} string-fold kons knil s [start [end]]
3547@deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
3548Fold @var{kons} over the characters of @var{s}, with @var{knil}
3549as the terminating element, from left to right. @var{kons}
3550must expect two arguments: The actual character and the last
3551result of @var{kons}' application.
3552@end deffn
3553
3554@deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
3555@deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
3556Fold @var{kons} over the characters of @var{s}, with @var{knil}
3557as the terminating element, from right to left. @var{kons}
3558must expect two arguments: The actual character and the last
3559result of @var{kons}' application.
3560@end deffn
3561
3562@deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
3563@deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
3564@itemize @bullet
3565@item @var{g} is used to generate a series of @emph{seed}
3566values from the initial @var{seed}: @var{seed}, (@var{g}
3567@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3568@dots{}
3569@item @var{p} tells us when to stop -- when it returns true
3570when applied to one of these seed values.
3571@item @var{f} maps each seed value to the corresponding
3572character in the result string. These chars are assembled
3573into the string in a left-to-right order.
3574@item @var{base} is the optional initial/leftmost portion
3575of the constructed string; it default to the empty
3576string.
3577@item @var{make_final} is applied to the terminal seed
3578value (on which @var{p} returns true) to produce
3579the final/rightmost portion of the constructed string.
9a18d8d4 3580The default is nothing extra.
5676b4fa
MV
3581@end itemize
3582@end deffn
3583
3584@deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
3585@deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
3586@itemize @bullet
3587@item @var{g} is used to generate a series of @emph{seed}
3588values from the initial @var{seed}: @var{seed}, (@var{g}
3589@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3590@dots{}
3591@item @var{p} tells us when to stop -- when it returns true
3592when applied to one of these seed values.
3593@item @var{f} maps each seed value to the corresponding
3594character in the result string. These chars are assembled
3595into the string in a right-to-left order.
3596@item @var{base} is the optional initial/rightmost portion
3597of the constructed string; it default to the empty
3598string.
3599@item @var{make_final} is applied to the terminal seed
3600value (on which @var{p} returns true) to produce
3601the final/leftmost portion of the constructed string.
3602It defaults to @code{(lambda (x) )}.
3603@end itemize
3604@end deffn
3605
3606@node Miscellaneous String Operations
3607@subsubsection Miscellaneous String Operations
3608
3609@deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
3610@deffnx {C Function} scm_xsubstring (s, from, to, start, end)
3611This is the @emph{extended substring} procedure that implements
3612replicated copying of a substring of some string.
3613
3614@var{s} is a string, @var{start} and @var{end} are optional
3615arguments that demarcate a substring of @var{s}, defaulting to
36160 and the length of @var{s}. Replicate this substring up and
3617down index space, in both the positive and negative directions.
3618@code{xsubstring} returns the substring of this string
3619beginning at index @var{from}, and ending at @var{to}, which
3620defaults to @var{from} + (@var{end} - @var{start}).
3621@end deffn
3622
3623@deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
3624@deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
3625Exactly the same as @code{xsubstring}, but the extracted text
3626is written into the string @var{target} starting at index
3627@var{tstart}. The operation is not defined if @code{(eq?
3628@var{target} @var{s})} or these arguments share storage -- you
3629cannot copy a string on top of itself.
3630@end deffn
3631
3632@deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
3633@deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
3634Return the string @var{s1}, but with the characters
3635@var{start1} @dots{} @var{end1} replaced by the characters
3636@var{start2} @dots{} @var{end2} from @var{s2}.
3637@end deffn
3638
3639@deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
3640@deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
3641Split the string @var{s} into a list of substrings, where each
3642substring is a maximal non-empty contiguous sequence of
3643characters from the character set @var{token_set}, which
3644defaults to @code{char-set:graphic}.
3645If @var{start} or @var{end} indices are provided, they restrict
3646@code{string-tokenize} to operating on the indicated substring
3647of @var{s}.
3648@end deffn
3649
3650@deffn {Scheme Procedure} string-filter s char_pred [start [end]]
3651@deffnx {C Function} scm_string_filter (s, char_pred, start, end)
08de3e24 3652Filter the string @var{s}, retaining only those characters which
a88e2a96 3653satisfy @var{char_pred}.
08de3e24
KR
3654
3655If @var{char_pred} is a procedure, it is applied to each character as
3656a predicate, if it is a character, it is tested for equality and if it
3657is a character set, it is tested for membership.
5676b4fa
MV
3658@end deffn
3659
3660@deffn {Scheme Procedure} string-delete s char_pred [start [end]]
3661@deffnx {C Function} scm_string_delete (s, char_pred, start, end)
a88e2a96 3662Delete characters satisfying @var{char_pred} from @var{s}.
08de3e24
KR
3663
3664If @var{char_pred} is a procedure, it is applied to each character as
3665a predicate, if it is a character, it is tested for equality and if it
3666is a character set, it is tested for membership.
5676b4fa
MV
3667@end deffn
3668
91210d62
MV
3669@node Conversion to/from C
3670@subsubsection Conversion to/from C
3671
3672When creating a Scheme string from a C string or when converting a
3673Scheme string to a C string, the concept of character encoding becomes
3674important.
3675
3676In C, a string is just a sequence of bytes, and the character encoding
3677describes the relation between these bytes and the actual characters
c88453e8
MV
3678that make up the string. For Scheme strings, character encoding is
3679not an issue (most of the time), since in Scheme you never get to see
3680the bytes, only the characters.
91210d62
MV
3681
3682Well, ideally, anyway. Right now, Guile simply equates Scheme
3683characters and bytes, ignoring the possibility of multi-byte encodings
3684completely. This will change in the future, where Guile will use
c48c62d0
MV
3685Unicode codepoints as its characters and UTF-8 or some other encoding
3686as its internal encoding. When you exclusively use the functions
3687listed in this section, you are `future-proof'.
91210d62 3688
c88453e8
MV
3689Converting a Scheme string to a C string will often allocate fresh
3690memory to hold the result. You must take care that this memory is
3691properly freed eventually. In many cases, this can be achieved by
661ae7ab
MV
3692using @code{scm_dynwind_free} inside an appropriate dynwind context,
3693@xref{Dynamic Wind}.
91210d62
MV
3694
3695@deftypefn {C Function} SCM scm_from_locale_string (const char *str)
3696@deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
3697Creates a new Scheme string that has the same contents as @var{str}
3698when interpreted in the current locale character encoding.
3699
3700For @code{scm_from_locale_string}, @var{str} must be null-terminated.
3701
3702For @code{scm_from_locale_stringn}, @var{len} specifies the length of
3703@var{str} in bytes, and @var{str} does not need to be null-terminated.
3704If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
3705null-terminated and the real length will be found with @code{strlen}.
3706@end deftypefn
3707
3708@deftypefn {C Function} SCM scm_take_locale_string (char *str)
3709@deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
3710Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
3711respectively, but also frees @var{str} with @code{free} eventually.
3712Thus, you can use this function when you would free @var{str} anyway
3713immediately after creating the Scheme string. In certain cases, Guile
3714can then use @var{str} directly as its internal representation.
3715@end deftypefn
3716
4846ae2c
KR
3717@deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
3718@deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
91210d62
MV
3719Returns a C string in the current locale encoding with the same
3720contents as @var{str}. The C string must be freed with @code{free}
661ae7ab
MV
3721eventually, maybe by using @code{scm_dynwind_free}, @xref{Dynamic
3722Wind}.
91210d62
MV
3723
3724For @code{scm_to_locale_string}, the returned string is
3725null-terminated and an error is signalled when @var{str} contains
3726@code{#\nul} characters.
3727
3728For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
3729@var{str} might contain @code{#\nul} characters and the length of the
3730returned string in bytes is stored in @code{*@var{lenp}}. The
3731returned string will not be null-terminated in this case. If
3732@var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
3733@code{scm_to_locale_string}.
3734@end deftypefn
3735
3736@deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
3737Puts @var{str} as a C string in the current locale encoding into the
3738memory pointed to by @var{buf}. The buffer at @var{buf} has room for
3739@var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
3740more than that. No terminating @code{'\0'} will be stored.
3741
3742The return value of @code{scm_to_locale_stringbuf} is the number of
3743bytes that are needed for all of @var{str}, regardless of whether
3744@var{buf} was large enough to hold them. Thus, when the return value
3745is larger than @var{max_len}, only @var{max_len} bytes have been
3746stored and you probably need to try again with a larger buffer.
3747@end deftypefn
07d83abe
MV
3748
3749@node Regular Expressions
3750@subsection Regular Expressions
3751@tpindex Regular expressions
3752
3753@cindex regular expressions
3754@cindex regex
3755@cindex emacs regexp
3756
3757A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
3758describes a whole class of strings. A full description of regular
3759expressions and their syntax is beyond the scope of this manual;
3760an introduction can be found in the Emacs manual (@pxref{Regexps,
3761, Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
3762in many general Unix reference books.
3763
3764If your system does not include a POSIX regular expression library,
3765and you have not linked Guile with a third-party regexp library such
3766as Rx, these functions will not be available. You can tell whether
3767your Guile installation includes regular expression support by
3768checking whether @code{(provided? 'regex)} returns true.
3769
3770The following regexp and string matching features are provided by the
3771@code{(ice-9 regex)} module. Before using the described functions,
3772you should load this module by executing @code{(use-modules (ice-9
3773regex))}.
3774
3775@menu
3776* Regexp Functions:: Functions that create and match regexps.
3777* Match Structures:: Finding what was matched by a regexp.
3778* Backslash Escapes:: Removing the special meaning of regexp
3779 meta-characters.
3780@end menu
3781
3782
3783@node Regexp Functions
3784@subsubsection Regexp Functions
3785
3786By default, Guile supports POSIX extended regular expressions.
3787That means that the characters @samp{(}, @samp{)}, @samp{+} and
3788@samp{?} are special, and must be escaped if you wish to match the
3789literal characters.
3790
3791This regular expression interface was modeled after that
3792implemented by SCSH, the Scheme Shell. It is intended to be
3793upwardly compatible with SCSH regular expressions.
3794
083f9d74
KR
3795Zero bytes (@code{#\nul}) cannot be used in regex patterns or input
3796strings, since the underlying C functions treat that as the end of
3797string. If there's a zero byte an error is thrown.
3798
3799Patterns and input strings are treated as being in the locale
3800character set if @code{setlocale} has been called (@pxref{Locales}),
3801and in a multibyte locale this includes treating multi-byte sequences
3802as a single character. (Guile strings are currently merely bytes,
3803though this may change in the future, @xref{Conversion to/from C}.)
3804
07d83abe
MV
3805@deffn {Scheme Procedure} string-match pattern str [start]
3806Compile the string @var{pattern} into a regular expression and compare
3807it with @var{str}. The optional numeric argument @var{start} specifies
3808the position of @var{str} at which to begin matching.
3809
3810@code{string-match} returns a @dfn{match structure} which
3811describes what, if anything, was matched by the regular
3812expression. @xref{Match Structures}. If @var{str} does not match
3813@var{pattern} at all, @code{string-match} returns @code{#f}.
3814@end deffn
3815
3816Two examples of a match follow. In the first example, the pattern
3817matches the four digits in the match string. In the second, the pattern
3818matches nothing.
3819
3820@example
3821(string-match "[0-9][0-9][0-9][0-9]" "blah2002")
3822@result{} #("blah2002" (4 . 8))
3823
3824(string-match "[A-Za-z]" "123456")
3825@result{} #f
3826@end example
3827
3828Each time @code{string-match} is called, it must compile its
3829@var{pattern} argument into a regular expression structure. This
3830operation is expensive, which makes @code{string-match} inefficient if
3831the same regular expression is used several times (for example, in a
3832loop). For better performance, you can compile a regular expression in
3833advance and then match strings against the compiled regexp.
3834
3835@deffn {Scheme Procedure} make-regexp pat flag@dots{}
3836@deffnx {C Function} scm_make_regexp (pat, flaglst)
3837Compile the regular expression described by @var{pat}, and
3838return the compiled regexp structure. If @var{pat} does not
3839describe a legal regular expression, @code{make-regexp} throws
3840a @code{regular-expression-syntax} error.
3841
3842The @var{flag} arguments change the behavior of the compiled
3843regular expression. The following values may be supplied:
3844
3845@defvar regexp/icase
3846Consider uppercase and lowercase letters to be the same when
3847matching.
3848@end defvar
3849
3850@defvar regexp/newline
3851If a newline appears in the target string, then permit the
3852@samp{^} and @samp{$} operators to match immediately after or
3853immediately before the newline, respectively. Also, the
3854@samp{.} and @samp{[^...]} operators will never match a newline
3855character. The intent of this flag is to treat the target
3856string as a buffer containing many lines of text, and the
3857regular expression as a pattern that may match a single one of
3858those lines.
3859@end defvar
3860
3861@defvar regexp/basic
3862Compile a basic (``obsolete'') regexp instead of the extended
3863(``modern'') regexps that are the default. Basic regexps do
3864not consider @samp{|}, @samp{+} or @samp{?} to be special
3865characters, and require the @samp{@{...@}} and @samp{(...)}
3866metacharacters to be backslash-escaped (@pxref{Backslash
3867Escapes}). There are several other differences between basic
3868and extended regular expressions, but these are the most
3869significant.
3870@end defvar
3871
3872@defvar regexp/extended
3873Compile an extended regular expression rather than a basic
3874regexp. This is the default behavior; this flag will not
3875usually be needed. If a call to @code{make-regexp} includes
3876both @code{regexp/basic} and @code{regexp/extended} flags, the
3877one which comes last will override the earlier one.
3878@end defvar
3879@end deffn
3880
3881@deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
3882@deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
3883Match the compiled regular expression @var{rx} against
3884@code{str}. If the optional integer @var{start} argument is
3885provided, begin matching from that position in the string.
3886Return a match structure describing the results of the match,
3887or @code{#f} if no match could be found.
3888
36c7474e
KR
3889The @var{flags} argument changes the matching behavior. The following
3890flag values may be supplied, use @code{logior} (@pxref{Bitwise
3891Operations}) to combine them,
07d83abe
MV
3892
3893@defvar regexp/notbol
36c7474e
KR
3894Consider that the @var{start} offset into @var{str} is not the
3895beginning of a line and should not match operator @samp{^}.
3896
3897If @var{rx} was created with the @code{regexp/newline} option above,
3898@samp{^} will still match after a newline in @var{str}.
07d83abe
MV
3899@end defvar
3900
3901@defvar regexp/noteol
36c7474e
KR
3902Consider that the end of @var{str} is not the end of a line and should
3903not match operator @samp{$}.
3904
3905If @var{rx} was created with the @code{regexp/newline} option above,
3906@samp{$} will still match before a newline in @var{str}.
07d83abe
MV
3907@end defvar
3908@end deffn
3909
3910@lisp
3911;; Regexp to match uppercase letters
3912(define r (make-regexp "[A-Z]*"))
3913
3914;; Regexp to match letters, ignoring case
3915(define ri (make-regexp "[A-Z]*" regexp/icase))
3916
3917;; Search for bob using regexp r
3918(match:substring (regexp-exec r "bob"))
3919@result{} "" ; no match
3920
3921;; Search for bob using regexp ri
3922(match:substring (regexp-exec ri "Bob"))
3923@result{} "Bob" ; matched case insensitive
3924@end lisp
3925
3926@deffn {Scheme Procedure} regexp? obj
3927@deffnx {C Function} scm_regexp_p (obj)
3928Return @code{#t} if @var{obj} is a compiled regular expression,
3929or @code{#f} otherwise.
3930@end deffn
3931
a285fb86
KR
3932@sp 1
3933@deffn {Scheme Procedure} list-matches regexp str [flags]
3934Return a list of match structures which are the non-overlapping
3935matches of @var{regexp} in @var{str}. @var{regexp} can be either a
3936pattern string or a compiled regexp. The @var{flags} argument is as
3937per @code{regexp-exec} above.
3938
3939@example
3940(map match:substring (list-matches "[a-z]+" "abc 42 def 78"))
3941@result{} ("abc" "def")
3942@end example
3943@end deffn
3944
3945@deffn {Scheme Procedure} fold-matches regexp str init proc [flags]
3946Apply @var{proc} to the non-overlapping matches of @var{regexp} in
3947@var{str}, to build a result. @var{regexp} can be either a pattern
3948string or a compiled regexp. The @var{flags} argument is as per
3949@code{regexp-exec} above.
3950
3951@var{proc} is called as @code{(@var{proc} match prev)} where
3952@var{match} is a match structure and @var{prev} is the previous return
3953from @var{proc}. For the first call @var{prev} is the given
3954@var{init} parameter. @code{fold-matches} returns the final value
3955from @var{proc}.
3956
3957For example to count matches,
3958
3959@example
3960(fold-matches "[a-z][0-9]" "abc x1 def y2" 0
3961 (lambda (match count)
3962 (1+ count)))
3963@result{} 2
3964@end example
3965@end deffn
3966
a13befdc
KR
3967@sp 1
3968Regular expressions are commonly used to find patterns in one string
3969and replace them with the contents of another string. The following
3970functions are convenient ways to do this.
07d83abe
MV
3971
3972@c begin (scm-doc-string "regex.scm" "regexp-substitute")
3973@deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
a13befdc
KR
3974Write to @var{port} selected parts of the match structure @var{match}.
3975Or if @var{port} is @code{#f} then form a string from those parts and
3976return that.
3977
3978Each @var{item} specifies a part to be written, and may be one of the
3979following,
07d83abe
MV
3980
3981@itemize @bullet
3982@item
3983A string. String arguments are written out verbatim.
3984
3985@item
a13befdc
KR
3986An integer. The submatch with that number is written
3987(@code{match:substring}). Zero is the entire match.
07d83abe
MV
3988
3989@item
3990The symbol @samp{pre}. The portion of the matched string preceding
a13befdc 3991the regexp match is written (@code{match:prefix}).
07d83abe
MV
3992
3993@item
3994The symbol @samp{post}. The portion of the matched string following
a13befdc 3995the regexp match is written (@code{match:suffix}).
07d83abe
MV
3996@end itemize
3997
a13befdc
KR
3998For example, changing a match and retaining the text before and after,
3999
4000@example
4001(regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
4002 'pre "37" 'post)
4003@result{} "number 37 is good"
4004@end example
07d83abe 4005
a13befdc
KR
4006Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
4007re-ordering and hyphenating the fields.
07d83abe
MV
4008
4009@lisp
4010(define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
4011(define s "Date 20020429 12am.")
a13befdc
KR
4012(regexp-substitute #f (string-match date-regex s)
4013 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
07d83abe
MV
4014@result{} "Date 04-29-2002 12am. (20020429)"
4015@end lisp
a13befdc
KR
4016@end deffn
4017
07d83abe
MV
4018
4019@c begin (scm-doc-string "regex.scm" "regexp-substitute")
4020@deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
a13befdc
KR
4021@cindex search and replace
4022Write to @var{port} selected parts of matches of @var{regexp} in
4023@var{target}. If @var{port} is @code{#f} then form a string from
4024those parts and return that. @var{regexp} can be a string or a
4025compiled regex.
07d83abe 4026
a13befdc
KR
4027This is similar to @code{regexp-substitute}, but allows global
4028substitutions on @var{target}. Each @var{item} behaves as per
4029@code{regexp-substitute}, with the following differences,
07d83abe
MV
4030
4031@itemize @bullet
4032@item
a13befdc
KR
4033A function. Called as @code{(@var{item} match)} with the match
4034structure for the @var{regexp} match, it should return a string to be
4035written to @var{port}.
07d83abe
MV
4036
4037@item
a13befdc
KR
4038The symbol @samp{post}. This doesn't output anything, but instead
4039causes @code{regexp-substitute/global} to recurse on the unmatched
4040portion of @var{target}.
4041
4042This @emph{must} be supplied to perform a global search and replace on
4043@var{target}; without it @code{regexp-substitute/global} returns after
4044a single match and output.
07d83abe 4045@end itemize
07d83abe 4046
a13befdc
KR
4047For example, to collapse runs of tabs and spaces to a single hyphen
4048each,
4049
4050@example
4051(regexp-substitute/global #f "[ \t]+" "this is the text"
4052 'pre "-" 'post)
4053@result{} "this-is-the-text"
4054@end example
4055
4056Or using a function to reverse the letters in each word,
4057
4058@example
4059(regexp-substitute/global #f "[a-z]+" "to do and not-do"
4060 'pre (lambda (m) (string-reverse (match:substring m))) 'post)
4061@result{} "ot od dna ton-od"
4062@end example
4063
4064Without the @code{post} symbol, just one regexp match is made. For
4065example the following is the date example from
4066@code{regexp-substitute} above, without the need for the separate
4067@code{string-match} call.
07d83abe
MV
4068
4069@lisp
4070(define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
4071(define s "Date 20020429 12am.")
4072(regexp-substitute/global #f date-regex s
a13befdc
KR
4073 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
4074
07d83abe
MV
4075@result{} "Date 04-29-2002 12am. (20020429)"
4076@end lisp
a13befdc 4077@end deffn
07d83abe
MV
4078
4079
4080@node Match Structures
4081@subsubsection Match Structures
4082
4083@cindex match structures
4084
4085A @dfn{match structure} is the object returned by @code{string-match} and
4086@code{regexp-exec}. It describes which portion of a string, if any,
4087matched the given regular expression. Match structures include: a
4088reference to the string that was checked for matches; the starting and
4089ending positions of the regexp match; and, if the regexp included any
4090parenthesized subexpressions, the starting and ending positions of each
4091submatch.
4092
4093In each of the regexp match functions described below, the @code{match}
4094argument must be a match structure returned by a previous call to
4095@code{string-match} or @code{regexp-exec}. Most of these functions
4096return some information about the original target string that was
4097matched against a regular expression; we will call that string
4098@var{target} for easy reference.
4099
4100@c begin (scm-doc-string "regex.scm" "regexp-match?")
4101@deffn {Scheme Procedure} regexp-match? obj
4102Return @code{#t} if @var{obj} is a match structure returned by a
4103previous call to @code{regexp-exec}, or @code{#f} otherwise.
4104@end deffn
4105
4106@c begin (scm-doc-string "regex.scm" "match:substring")
4107@deffn {Scheme Procedure} match:substring match [n]
4108Return the portion of @var{target} matched by subexpression number
4109@var{n}. Submatch 0 (the default) represents the entire regexp match.
4110If the regular expression as a whole matched, but the subexpression
4111number @var{n} did not match, return @code{#f}.
4112@end deffn
4113
4114@lisp
4115(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4116(match:substring s)
4117@result{} "2002"
4118
4119;; match starting at offset 6 in the string
4120(match:substring
4121 (string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
4122@result{} "7654"
4123@end lisp
4124
4125@c begin (scm-doc-string "regex.scm" "match:start")
4126@deffn {Scheme Procedure} match:start match [n]
4127Return the starting position of submatch number @var{n}.
4128@end deffn
4129
4130In the following example, the result is 4, since the match starts at
4131character index 4:
4132
4133@lisp
4134(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4135(match:start s)
4136@result{} 4
4137@end lisp
4138
4139@c begin (scm-doc-string "regex.scm" "match:end")
4140@deffn {Scheme Procedure} match:end match [n]
4141Return the ending position of submatch number @var{n}.
4142@end deffn
4143
4144In the following example, the result is 8, since the match runs between
4145characters 4 and 8 (i.e. the ``2002'').
4146
4147@lisp
4148(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4149(match:end s)
4150@result{} 8
4151@end lisp
4152
4153@c begin (scm-doc-string "regex.scm" "match:prefix")
4154@deffn {Scheme Procedure} match:prefix match
4155Return the unmatched portion of @var{target} preceding the regexp match.
4156
4157@lisp
4158(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4159(match:prefix s)
4160@result{} "blah"
4161@end lisp
4162@end deffn
4163
4164@c begin (scm-doc-string "regex.scm" "match:suffix")
4165@deffn {Scheme Procedure} match:suffix match
4166Return the unmatched portion of @var{target} following the regexp match.
4167@end deffn
4168
4169@lisp
4170(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4171(match:suffix s)
4172@result{} "foo"
4173@end lisp
4174
4175@c begin (scm-doc-string "regex.scm" "match:count")
4176@deffn {Scheme Procedure} match:count match
4177Return the number of parenthesized subexpressions from @var{match}.
4178Note that the entire regular expression match itself counts as a
4179subexpression, and failed submatches are included in the count.
4180@end deffn
4181
4182@c begin (scm-doc-string "regex.scm" "match:string")
4183@deffn {Scheme Procedure} match:string match
4184Return the original @var{target} string.
4185@end deffn
4186
4187@lisp
4188(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4189(match:string s)
4190@result{} "blah2002foo"
4191@end lisp
4192
4193
4194@node Backslash Escapes
4195@subsubsection Backslash Escapes
4196
4197Sometimes you will want a regexp to match characters like @samp{*} or
4198@samp{$} exactly. For example, to check whether a particular string
4199represents a menu entry from an Info node, it would be useful to match
4200it against a regexp like @samp{^* [^:]*::}. However, this won't work;
4201because the asterisk is a metacharacter, it won't match the @samp{*} at
4202the beginning of the string. In this case, we want to make the first
4203asterisk un-magic.
4204
4205You can do this by preceding the metacharacter with a backslash
4206character @samp{\}. (This is also called @dfn{quoting} the
4207metacharacter, and is known as a @dfn{backslash escape}.) When Guile
4208sees a backslash in a regular expression, it considers the following
4209glyph to be an ordinary character, no matter what special meaning it
4210would ordinarily have. Therefore, we can make the above example work by
4211changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
4212the regular expression engine to match only a single asterisk in the
4213target string.
4214
4215Since the backslash is itself a metacharacter, you may force a regexp to
4216match a backslash in the target string by preceding the backslash with
4217itself. For example, to find variable references in a @TeX{} program,
4218you might want to find occurrences of the string @samp{\let\} followed
4219by any number of alphabetic characters. The regular expression
4220@samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
4221regexp each match a single backslash in the target string.
4222
4223@c begin (scm-doc-string "regex.scm" "regexp-quote")
4224@deffn {Scheme Procedure} regexp-quote str
4225Quote each special character found in @var{str} with a backslash, and
4226return the resulting string.
4227@end deffn
4228
4229@strong{Very important:} Using backslash escapes in Guile source code
4230(as in Emacs Lisp or C) can be tricky, because the backslash character
4231has special meaning for the Guile reader. For example, if Guile
4232encounters the character sequence @samp{\n} in the middle of a string
4233while processing Scheme code, it replaces those characters with a
4234newline character. Similarly, the character sequence @samp{\t} is
4235replaced by a horizontal tab. Several of these @dfn{escape sequences}
4236are processed by the Guile reader before your code is executed.
4237Unrecognized escape sequences are ignored: if the characters @samp{\*}
4238appear in a string, they will be translated to the single character
4239@samp{*}.
4240
4241This translation is obviously undesirable for regular expressions, since
4242we want to be able to include backslashes in a string in order to
4243escape regexp metacharacters. Therefore, to make sure that a backslash
4244is preserved in a string in your Guile program, you must use @emph{two}
4245consecutive backslashes:
4246
4247@lisp
4248(define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
4249@end lisp
4250
4251The string in this example is preprocessed by the Guile reader before
4252any code is executed. The resulting argument to @code{make-regexp} is
4253the string @samp{^\* [^:]*}, which is what we really want.
4254
4255This also means that in order to write a regular expression that matches
4256a single backslash character, the regular expression string in the
4257source code must include @emph{four} backslashes. Each consecutive pair
4258of backslashes gets translated by the Guile reader to a single
4259backslash, and the resulting double-backslash is interpreted by the
4260regexp engine as matching a single backslash character. Hence:
4261
4262@lisp
4263(define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
4264@end lisp
4265
4266The reason for the unwieldiness of this syntax is historical. Both
4267regular expression pattern matchers and Unix string processing systems
4268have traditionally used backslashes with the special meanings
4269described above. The POSIX regular expression specification and ANSI C
4270standard both require these semantics. Attempting to abandon either
4271convention would cause other kinds of compatibility problems, possibly
4272more severe ones. Therefore, without extending the Scheme reader to
4273support strings with different quoting conventions (an ungainly and
4274confusing extension when implemented in other languages), we must adhere
4275to this cumbersome escape syntax.
4276
4277
4278@node Symbols
4279@subsection Symbols
4280@tpindex Symbols
4281
4282Symbols in Scheme are widely used in three ways: as items of discrete
4283data, as lookup keys for alists and hash tables, and to denote variable
4284references.
4285
4286A @dfn{symbol} is similar to a string in that it is defined by a
4287sequence of characters. The sequence of characters is known as the
4288symbol's @dfn{name}. In the usual case --- that is, where the symbol's
4289name doesn't include any characters that could be confused with other
4290elements of Scheme syntax --- a symbol is written in a Scheme program by
4291writing the sequence of characters that make up the name, @emph{without}
4292any quotation marks or other special syntax. For example, the symbol
4293whose name is ``multiply-by-2'' is written, simply:
4294
4295@lisp
4296multiply-by-2
4297@end lisp
4298
4299Notice how this differs from a @emph{string} with contents
4300``multiply-by-2'', which is written with double quotation marks, like
4301this:
4302
4303@lisp
4304"multiply-by-2"
4305@end lisp
4306
4307Looking beyond how they are written, symbols are different from strings
4308in two important respects.
4309
4310The first important difference is uniqueness. If the same-looking
4311string is read twice from two different places in a program, the result
4312is two @emph{different} string objects whose contents just happen to be
4313the same. If, on the other hand, the same-looking symbol is read twice
4314from two different places in a program, the result is the @emph{same}
4315symbol object both times.
4316
4317Given two read symbols, you can use @code{eq?} to test whether they are
4318the same (that is, have the same name). @code{eq?} is the most
4319efficient comparison operator in Scheme, and comparing two symbols like
4320this is as fast as comparing, for example, two numbers. Given two
4321strings, on the other hand, you must use @code{equal?} or
4322@code{string=?}, which are much slower comparison operators, to
4323determine whether the strings have the same contents.
4324
4325@lisp
4326(define sym1 (quote hello))
4327(define sym2 (quote hello))
4328(eq? sym1 sym2) @result{} #t
4329
4330(define str1 "hello")
4331(define str2 "hello")
4332(eq? str1 str2) @result{} #f
4333(equal? str1 str2) @result{} #t
4334@end lisp
4335
4336The second important difference is that symbols, unlike strings, are not
4337self-evaluating. This is why we need the @code{(quote @dots{})}s in the
4338example above: @code{(quote hello)} evaluates to the symbol named
4339"hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
4340symbol named "hello" and evaluated as a variable reference @dots{} about
4341which more below (@pxref{Symbol Variables}).
4342
4343@menu
4344* Symbol Data:: Symbols as discrete data.
4345* Symbol Keys:: Symbols as lookup keys.
4346* Symbol Variables:: Symbols as denoting variables.
4347* Symbol Primitives:: Operations related to symbols.
4348* Symbol Props:: Function slots and property lists.
4349* Symbol Read Syntax:: Extended read syntax for symbols.
4350* Symbol Uninterned:: Uninterned symbols.
4351@end menu
4352
4353
4354@node Symbol Data
4355@subsubsection Symbols as Discrete Data
4356
4357Numbers and symbols are similar to the extent that they both lend
4358themselves to @code{eq?} comparison. But symbols are more descriptive
4359than numbers, because a symbol's name can be used directly to describe
4360the concept for which that symbol stands.
4361
4362For example, imagine that you need to represent some colours in a
4363computer program. Using numbers, you would have to choose arbitrarily
4364some mapping between numbers and colours, and then take care to use that
4365mapping consistently:
4366
4367@lisp
4368;; 1=red, 2=green, 3=purple
4369
4370(if (eq? (colour-of car) 1)
4371 ...)
4372@end lisp
4373
4374@noindent
4375You can make the mapping more explicit and the code more readable by
4376defining constants:
4377
4378@lisp
4379(define red 1)
4380(define green 2)
4381(define purple 3)
4382
4383(if (eq? (colour-of car) red)
4384 ...)
4385@end lisp
4386
4387@noindent
4388But the simplest and clearest approach is not to use numbers at all, but
4389symbols whose names specify the colours that they refer to:
4390
4391@lisp
4392(if (eq? (colour-of car) 'red)
4393 ...)
4394@end lisp
4395
4396The descriptive advantages of symbols over numbers increase as the set
4397of concepts that you want to describe grows. Suppose that a car object
4398can have other properties as well, such as whether it has or uses:
4399
4400@itemize @bullet
4401@item
4402automatic or manual transmission
4403@item
4404leaded or unleaded fuel
4405@item
4406power steering (or not).
4407@end itemize
4408
4409@noindent
4410Then a car's combined property set could be naturally represented and
4411manipulated as a list of symbols:
4412
4413@lisp
4414(properties-of car1)
4415@result{}
4416(red manual unleaded power-steering)
4417
4418(if (memq 'power-steering (properties-of car1))
4419 (display "Unfit people can drive this car.\n")
4420 (display "You'll need strong arms to drive this car!\n"))
4421@print{}
4422Unfit people can drive this car.
4423@end lisp
4424
4425Remember, the fundamental property of symbols that we are relying on
4426here is that an occurrence of @code{'red} in one part of a program is an
4427@emph{indistinguishable} symbol from an occurrence of @code{'red} in
4428another part of a program; this means that symbols can usefully be
4429compared using @code{eq?}. At the same time, symbols have naturally
4430descriptive names. This combination of efficiency and descriptive power
4431makes them ideal for use as discrete data.
4432
4433
4434@node Symbol Keys
4435@subsubsection Symbols as Lookup Keys
4436
4437Given their efficiency and descriptive power, it is natural to use
4438symbols as the keys in an association list or hash table.
4439
4440To illustrate this, consider a more structured representation of the car
4441properties example from the preceding subsection. Rather than
4442mixing all the properties up together in a flat list, we could use an
4443association list like this:
4444
4445@lisp
4446(define car1-properties '((colour . red)
4447 (transmission . manual)
4448 (fuel . unleaded)
4449 (steering . power-assisted)))
4450@end lisp
4451
4452Notice how this structure is more explicit and extensible than the flat
4453list. For example it makes clear that @code{manual} refers to the
4454transmission rather than, say, the windows or the locking of the car.
4455It also allows further properties to use the same symbols among their
4456possible values without becoming ambiguous:
4457
4458@lisp
4459(define car1-properties '((colour . red)
4460 (transmission . manual)
4461 (fuel . unleaded)
4462 (steering . power-assisted)
4463 (seat-colour . red)
4464 (locking . manual)))
4465@end lisp
4466
4467With a representation like this, it is easy to use the efficient
4468@code{assq-XXX} family of procedures (@pxref{Association Lists}) to
4469extract or change individual pieces of information:
4470
4471@lisp
4472(assq-ref car1-properties 'fuel) @result{} unleaded
4473(assq-ref car1-properties 'transmission) @result{} manual
4474
4475(assq-set! car1-properties 'seat-colour 'black)
4476@result{}
4477((colour . red)
4478 (transmission . manual)
4479 (fuel . unleaded)
4480 (steering . power-assisted)
4481 (seat-colour . black)
4482 (locking . manual)))
4483@end lisp
4484
4485Hash tables also have keys, and exactly the same arguments apply to the
4486use of symbols in hash tables as in association lists. The hash value
4487that Guile uses to decide where to add a symbol-keyed entry to a hash
4488table can be obtained by calling the @code{symbol-hash} procedure:
4489
4490@deffn {Scheme Procedure} symbol-hash symbol
4491@deffnx {C Function} scm_symbol_hash (symbol)
4492Return a hash value for @var{symbol}.
4493@end deffn
4494
4495See @ref{Hash Tables} for information about hash tables in general, and
4496for why you might choose to use a hash table rather than an association
4497list.
4498
4499
4500@node Symbol Variables
4501@subsubsection Symbols as Denoting Variables
4502
4503When an unquoted symbol in a Scheme program is evaluated, it is
4504interpreted as a variable reference, and the result of the evaluation is
4505the appropriate variable's value.
4506
4507For example, when the expression @code{(string-length "abcd")} is read
4508and evaluated, the sequence of characters @code{string-length} is read
4509as the symbol whose name is "string-length". This symbol is associated
4510with a variable whose value is the procedure that implements string
4511length calculation. Therefore evaluation of the @code{string-length}
4512symbol results in that procedure.
4513
4514The details of the connection between an unquoted symbol and the
4515variable to which it refers are explained elsewhere. See @ref{Binding
4516Constructs}, for how associations between symbols and variables are
4517created, and @ref{Modules}, for how those associations are affected by
4518Guile's module system.
4519
4520
4521@node Symbol Primitives
4522@subsubsection Operations Related to Symbols
4523
4524Given any Scheme value, you can determine whether it is a symbol using
4525the @code{symbol?} primitive:
4526
4527@rnindex symbol?
4528@deffn {Scheme Procedure} symbol? obj
4529@deffnx {C Function} scm_symbol_p (obj)
4530Return @code{#t} if @var{obj} is a symbol, otherwise return
4531@code{#f}.
4532@end deffn
4533
c9dc8c6c
MV
4534@deftypefn {C Function} int scm_is_symbol (SCM val)
4535Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
4536@end deftypefn
4537
07d83abe
MV
4538Once you know that you have a symbol, you can obtain its name as a
4539string by calling @code{symbol->string}. Note that Guile differs by
4540default from R5RS on the details of @code{symbol->string} as regards
4541case-sensitivity:
4542
4543@rnindex symbol->string
4544@deffn {Scheme Procedure} symbol->string s
4545@deffnx {C Function} scm_symbol_to_string (s)
4546Return the name of symbol @var{s} as a string. By default, Guile reads
4547symbols case-sensitively, so the string returned will have the same case
4548variation as the sequence of characters that caused @var{s} to be
4549created.
4550
4551If Guile is set to read symbols case-insensitively (as specified by
4552R5RS), and @var{s} comes into being as part of a literal expression
4553(@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
4554by a call to the @code{read} or @code{string-ci->symbol} procedures,
4555Guile converts any alphabetic characters in the symbol's name to
4556lower case before creating the symbol object, so the string returned
4557here will be in lower case.
4558
4559If @var{s} was created by @code{string->symbol}, the case of characters
4560in the string returned will be the same as that in the string that was
4561passed to @code{string->symbol}, regardless of Guile's case-sensitivity
4562setting at the time @var{s} was created.
4563
4564It is an error to apply mutation procedures like @code{string-set!} to
4565strings returned by this procedure.
4566@end deffn
4567
4568Most symbols are created by writing them literally in code. However it
4569is also possible to create symbols programmatically using the following
4570@code{string->symbol} and @code{string-ci->symbol} procedures:
4571
4572@rnindex string->symbol
4573@deffn {Scheme Procedure} string->symbol string
4574@deffnx {C Function} scm_string_to_symbol (string)
4575Return the symbol whose name is @var{string}. This procedure can create
4576symbols with names containing special characters or letters in the
4577non-standard case, but it is usually a bad idea to create such symbols
4578because in some implementations of Scheme they cannot be read as
4579themselves.
4580@end deffn
4581
4582@deffn {Scheme Procedure} string-ci->symbol str
4583@deffnx {C Function} scm_string_ci_to_symbol (str)
4584Return the symbol whose name is @var{str}. If Guile is currently
4585reading symbols case-insensitively, @var{str} is converted to lowercase
4586before the returned symbol is looked up or created.
4587@end deffn
4588
4589The following examples illustrate Guile's detailed behaviour as regards
4590the case-sensitivity of symbols:
4591
4592@lisp
4593(read-enable 'case-insensitive) ; R5RS compliant behaviour
4594
4595(symbol->string 'flying-fish) @result{} "flying-fish"
4596(symbol->string 'Martin) @result{} "martin"
4597(symbol->string
4598 (string->symbol "Malvina")) @result{} "Malvina"
4599
4600(eq? 'mISSISSIppi 'mississippi) @result{} #t
4601(string->symbol "mISSISSIppi") @result{} mISSISSIppi
4602(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
4603(eq? 'LolliPop
4604 (string->symbol (symbol->string 'LolliPop))) @result{} #t
4605(string=? "K. Harper, M.D."
4606 (symbol->string
4607 (string->symbol "K. Harper, M.D."))) @result{} #t
4608
4609(read-disable 'case-insensitive) ; Guile default behaviour
4610
4611(symbol->string 'flying-fish) @result{} "flying-fish"
4612(symbol->string 'Martin) @result{} "Martin"
4613(symbol->string
4614 (string->symbol "Malvina")) @result{} "Malvina"
4615
4616(eq? 'mISSISSIppi 'mississippi) @result{} #f
4617(string->symbol "mISSISSIppi") @result{} mISSISSIppi
4618(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
4619(eq? 'LolliPop
4620 (string->symbol (symbol->string 'LolliPop))) @result{} #t
4621(string=? "K. Harper, M.D."
4622 (symbol->string
4623 (string->symbol "K. Harper, M.D."))) @result{} #t
4624@end lisp
4625
4626From C, there are lower level functions that construct a Scheme symbol
c48c62d0
MV
4627from a C string in the current locale encoding.
4628
4629When you want to do more from C, you should convert between symbols
4630and strings using @code{scm_symbol_to_string} and
4631@code{scm_string_to_symbol} and work with the strings.
07d83abe 4632
c48c62d0
MV
4633@deffn {C Function} scm_from_locale_symbol (const char *name)
4634@deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
07d83abe 4635Construct and return a Scheme symbol whose name is specified by
c48c62d0
MV
4636@var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
4637terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
07d83abe
MV
4638specified explicitly by @var{len}.
4639@end deffn
4640
fd0a5bbc
HWN
4641@deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
4642@deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
4643Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
4644respectively, but also frees @var{str} with @code{free} eventually.
4645Thus, you can use this function when you would free @var{str} anyway
4646immediately after creating the Scheme string. In certain cases, Guile
4647can then use @var{str} directly as its internal representation.
4648@end deftypefn
4649
4650
07d83abe
MV
4651Finally, some applications, especially those that generate new Scheme
4652code dynamically, need to generate symbols for use in the generated
4653code. The @code{gensym} primitive meets this need:
4654
4655@deffn {Scheme Procedure} gensym [prefix]
4656@deffnx {C Function} scm_gensym (prefix)
4657Create a new symbol with a name constructed from a prefix and a counter
4658value. The string @var{prefix} can be specified as an optional
4659argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
4660at each call. There is no provision for resetting the counter.
4661@end deffn
4662
4663The symbols generated by @code{gensym} are @emph{likely} to be unique,
4664since their names begin with a space and it is only otherwise possible
4665to generate such symbols if a programmer goes out of their way to do
4666so. Uniqueness can be guaranteed by instead using uninterned symbols
4667(@pxref{Symbol Uninterned}), though they can't be usefully written out
4668and read back in.
4669
4670
4671@node Symbol Props
4672@subsubsection Function Slots and Property Lists
4673
4674In traditional Lisp dialects, symbols are often understood as having
4675three kinds of value at once:
4676
4677@itemize @bullet
4678@item
4679a @dfn{variable} value, which is used when the symbol appears in
4680code in a variable reference context
4681
4682@item
4683a @dfn{function} value, which is used when the symbol appears in
4684code in a function name position (i.e. as the first element in an
4685unquoted list)
4686
4687@item
4688a @dfn{property list} value, which is used when the symbol is given as
4689the first argument to Lisp's @code{put} or @code{get} functions.
4690@end itemize
4691
4692Although Scheme (as one of its simplifications with respect to Lisp)
4693does away with the distinction between variable and function namespaces,
4694Guile currently retains some elements of the traditional structure in
4695case they turn out to be useful when implementing translators for other
4696languages, in particular Emacs Lisp.
4697
4698Specifically, Guile symbols have two extra slots. for a symbol's
4699property list, and for its ``function value.'' The following procedures
4700are provided to access these slots.
4701
4702@deffn {Scheme Procedure} symbol-fref symbol
4703@deffnx {C Function} scm_symbol_fref (symbol)
4704Return the contents of @var{symbol}'s @dfn{function slot}.
4705@end deffn
4706
4707@deffn {Scheme Procedure} symbol-fset! symbol value
4708@deffnx {C Function} scm_symbol_fset_x (symbol, value)
4709Set the contents of @var{symbol}'s function slot to @var{value}.
4710@end deffn
4711
4712@deffn {Scheme Procedure} symbol-pref symbol
4713@deffnx {C Function} scm_symbol_pref (symbol)
4714Return the @dfn{property list} currently associated with @var{symbol}.
4715@end deffn
4716
4717@deffn {Scheme Procedure} symbol-pset! symbol value
4718@deffnx {C Function} scm_symbol_pset_x (symbol, value)
4719Set @var{symbol}'s property list to @var{value}.
4720@end deffn
4721
4722@deffn {Scheme Procedure} symbol-property sym prop
4723From @var{sym}'s property list, return the value for property
4724@var{prop}. The assumption is that @var{sym}'s property list is an
4725association list whose keys are distinguished from each other using
4726@code{equal?}; @var{prop} should be one of the keys in that list. If
4727the property list has no entry for @var{prop}, @code{symbol-property}
4728returns @code{#f}.
4729@end deffn
4730
4731@deffn {Scheme Procedure} set-symbol-property! sym prop val
4732In @var{sym}'s property list, set the value for property @var{prop} to
4733@var{val}, or add a new entry for @var{prop}, with value @var{val}, if
4734none already exists. For the structure of the property list, see
4735@code{symbol-property}.
4736@end deffn
4737
4738@deffn {Scheme Procedure} symbol-property-remove! sym prop
4739From @var{sym}'s property list, remove the entry for property
4740@var{prop}, if there is one. For the structure of the property list,
4741see @code{symbol-property}.
4742@end deffn
4743
4744Support for these extra slots may be removed in a future release, and it
4695789c
NJ
4745is probably better to avoid using them. For a more modern and Schemely
4746approach to properties, see @ref{Object Properties}.
07d83abe
MV
4747
4748
4749@node Symbol Read Syntax
4750@subsubsection Extended Read Syntax for Symbols
4751
4752The read syntax for a symbol is a sequence of letters, digits, and
4753@dfn{extended alphabetic characters}, beginning with a character that
4754cannot begin a number. In addition, the special cases of @code{+},
4755@code{-}, and @code{...} are read as symbols even though numbers can
4756begin with @code{+}, @code{-} or @code{.}.
4757
4758Extended alphabetic characters may be used within identifiers as if
4759they were letters. The set of extended alphabetic characters is:
4760
4761@example
4762! $ % & * + - . / : < = > ? @@ ^ _ ~
4763@end example
4764
4765In addition to the standard read syntax defined above (which is taken
4766from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
4767Scheme})), Guile provides an extended symbol read syntax that allows the
4768inclusion of unusual characters such as space characters, newlines and
4769parentheses. If (for whatever reason) you need to write a symbol
4770containing characters not mentioned above, you can do so as follows.
4771
4772@itemize @bullet
4773@item
4774Begin the symbol with the characters @code{#@{},
4775
4776@item
4777write the characters of the symbol and
4778
4779@item
4780finish the symbol with the characters @code{@}#}.
4781@end itemize
4782
4783Here are a few examples of this form of read syntax. The first symbol
4784needs to use extended syntax because it contains a space character, the
4785second because it contains a line break, and the last because it looks
4786like a number.
4787
4788@lisp
4789#@{foo bar@}#
4790
4791#@{what
4792ever@}#
4793
4794#@{4242@}#
4795@end lisp
4796
4797Although Guile provides this extended read syntax for symbols,
4798widespread usage of it is discouraged because it is not portable and not
4799very readable.
4800
4801
4802@node Symbol Uninterned
4803@subsubsection Uninterned Symbols
4804
4805What makes symbols useful is that they are automatically kept unique.
4806There are no two symbols that are distinct objects but have the same
4807name. But of course, there is no rule without exception. In addition
4808to the normal symbols that have been discussed up to now, you can also
4809create special @dfn{uninterned} symbols that behave slightly
4810differently.
4811
4812To understand what is different about them and why they might be useful,
4813we look at how normal symbols are actually kept unique.
4814
4815Whenever Guile wants to find the symbol with a specific name, for
4816example during @code{read} or when executing @code{string->symbol}, it
4817first looks into a table of all existing symbols to find out whether a
4818symbol with the given name already exists. When this is the case, Guile
4819just returns that symbol. When not, a new symbol with the name is
4820created and entered into the table so that it can be found later.
4821
4822Sometimes you might want to create a symbol that is guaranteed `fresh',
4823i.e. a symbol that did not exist previously. You might also want to
4824somehow guarantee that no one else will ever unintentionally stumble
4825across your symbol in the future. These properties of a symbol are
4826often needed when generating code during macro expansion. When
4827introducing new temporary variables, you want to guarantee that they
4828don't conflict with variables in other people's code.
4829
4830The simplest way to arrange for this is to create a new symbol but
4831not enter it into the global table of all symbols. That way, no one
4832will ever get access to your symbol by chance. Symbols that are not in
4833the table are called @dfn{uninterned}. Of course, symbols that
4834@emph{are} in the table are called @dfn{interned}.
4835
4836You create new uninterned symbols with the function @code{make-symbol}.
4837You can test whether a symbol is interned or not with
4838@code{symbol-interned?}.
4839
4840Uninterned symbols break the rule that the name of a symbol uniquely
4841identifies the symbol object. Because of this, they can not be written
4842out and read back in like interned symbols. Currently, Guile has no
4843support for reading uninterned symbols. Note that the function
4844@code{gensym} does not return uninterned symbols for this reason.
4845
4846@deffn {Scheme Procedure} make-symbol name
4847@deffnx {C Function} scm_make_symbol (name)
4848Return a new uninterned symbol with the name @var{name}. The returned
4849symbol is guaranteed to be unique and future calls to
4850@code{string->symbol} will not return it.
4851@end deffn
4852
4853@deffn {Scheme Procedure} symbol-interned? symbol
4854@deffnx {C Function} scm_symbol_interned_p (symbol)
4855Return @code{#t} if @var{symbol} is interned, otherwise return
4856@code{#f}.
4857@end deffn
4858
4859For example:
4860
4861@lisp
4862(define foo-1 (string->symbol "foo"))
4863(define foo-2 (string->symbol "foo"))
4864(define foo-3 (make-symbol "foo"))
4865(define foo-4 (make-symbol "foo"))
4866
4867(eq? foo-1 foo-2)
4868@result{} #t
4869; Two interned symbols with the same name are the same object,
4870
4871(eq? foo-1 foo-3)
4872@result{} #f
4873; but a call to make-symbol with the same name returns a
4874; distinct object.
4875
4876(eq? foo-3 foo-4)
4877@result{} #f
4878; A call to make-symbol always returns a new object, even for
4879; the same name.
4880
4881foo-3
4882@result{} #<uninterned-symbol foo 8085290>
4883; Uninterned symbols print differently from interned symbols,
4884
4885(symbol? foo-3)
4886@result{} #t
4887; but they are still symbols,
4888
4889(symbol-interned? foo-3)
4890@result{} #f
4891; just not interned.
4892@end lisp
4893
4894
4895@node Keywords
4896@subsection Keywords
4897@tpindex Keywords
4898
4899Keywords are self-evaluating objects with a convenient read syntax that
4900makes them easy to type.
4901
4902Guile's keyword support conforms to R5RS, and adds a (switchable) read
4903syntax extension to permit keywords to begin with @code{:} as well as
ef4cbc08 4904@code{#:}, or to end with @code{:}.
07d83abe
MV
4905
4906@menu
4907* Why Use Keywords?:: Motivation for keyword usage.
4908* Coding With Keywords:: How to use keywords.
4909* Keyword Read Syntax:: Read syntax for keywords.
4910* Keyword Procedures:: Procedures for dealing with keywords.
07d83abe
MV
4911@end menu
4912
4913@node Why Use Keywords?
4914@subsubsection Why Use Keywords?
4915
4916Keywords are useful in contexts where a program or procedure wants to be
4917able to accept a large number of optional arguments without making its
4918interface unmanageable.
4919
4920To illustrate this, consider a hypothetical @code{make-window}
4921procedure, which creates a new window on the screen for drawing into
4922using some graphical toolkit. There are many parameters that the caller
4923might like to specify, but which could also be sensibly defaulted, for
4924example:
4925
4926@itemize @bullet
4927@item
4928color depth -- Default: the color depth for the screen
4929
4930@item
4931background color -- Default: white
4932
4933@item
4934width -- Default: 600
4935
4936@item
4937height -- Default: 400
4938@end itemize
4939
4940If @code{make-window} did not use keywords, the caller would have to
4941pass in a value for each possible argument, remembering the correct
4942argument order and using a special value to indicate the default value
4943for that argument:
4944
4945@lisp
4946(make-window 'default ;; Color depth
4947 'default ;; Background color
4948 800 ;; Width
4949 100 ;; Height
4950 @dots{}) ;; More make-window arguments
4951@end lisp
4952
4953With keywords, on the other hand, defaulted arguments are omitted, and
4954non-default arguments are clearly tagged by the appropriate keyword. As
4955a result, the invocation becomes much clearer:
4956
4957@lisp
4958(make-window #:width 800 #:height 100)
4959@end lisp
4960
4961On the other hand, for a simpler procedure with few arguments, the use
4962of keywords would be a hindrance rather than a help. The primitive
4963procedure @code{cons}, for example, would not be improved if it had to
4964be invoked as
4965
4966@lisp
4967(cons #:car x #:cdr y)
4968@end lisp
4969
4970So the decision whether to use keywords or not is purely pragmatic: use
4971them if they will clarify the procedure invocation at point of call.
4972
4973@node Coding With Keywords
4974@subsubsection Coding With Keywords
4975
4976If a procedure wants to support keywords, it should take a rest argument
4977and then use whatever means is convenient to extract keywords and their
4978corresponding arguments from the contents of that rest argument.
4979
4980The following example illustrates the principle: the code for
4981@code{make-window} uses a helper procedure called
4982@code{get-keyword-value} to extract individual keyword arguments from
4983the rest argument.
4984
4985@lisp
4986(define (get-keyword-value args keyword default)
4987 (let ((kv (memq keyword args)))
4988 (if (and kv (>= (length kv) 2))
4989 (cadr kv)
4990 default)))
4991
4992(define (make-window . args)
4993 (let ((depth (get-keyword-value args #:depth screen-depth))
4994 (bg (get-keyword-value args #:bg "white"))
4995 (width (get-keyword-value args #:width 800))
4996 (height (get-keyword-value args #:height 100))
4997 @dots{})
4998 @dots{}))
4999@end lisp
5000
5001But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5002optargs)} module provides a set of powerful macros that you can use to
5003implement keyword-supporting procedures like this:
5004
5005@lisp
5006(use-modules (ice-9 optargs))
5007
5008(define (make-window . args)
5009 (let-keywords args #f ((depth screen-depth)
5010 (bg "white")
5011 (width 800)
5012 (height 100))
5013 ...))
5014@end lisp
5015
5016@noindent
5017Or, even more economically, like this:
5018
5019@lisp
5020(use-modules (ice-9 optargs))
5021
5022(define* (make-window #:key (depth screen-depth)
5023 (bg "white")
5024 (width 800)
5025 (height 100))
5026 ...)
5027@end lisp
5028
5029For further details on @code{let-keywords}, @code{define*} and other
5030facilities provided by the @code{(ice-9 optargs)} module, see
5031@ref{Optional Arguments}.
5032
5033
5034@node Keyword Read Syntax
5035@subsubsection Keyword Read Syntax
5036
7719ef22
MV
5037Guile, by default, only recognizes a keyword syntax that is compatible
5038with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5039same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5040external representation of the keyword named @code{NAME}. Keyword
5041objects print using this syntax as well, so values containing keyword
5042objects can be read back into Guile. When used in an expression,
5043keywords are self-quoting objects.
07d83abe
MV
5044
5045If the @code{keyword} read option is set to @code{'prefix}, Guile also
5046recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5047of the form @code{:NAME} are read as symbols, as required by R5RS.
5048
ef4cbc08
LC
5049@cindex SRFI-88 keyword syntax
5050
5051If the @code{keyword} read option is set to @code{'postfix}, Guile
189681f5
LC
5052recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5053Otherwise, tokens of this form are read as symbols.
ef4cbc08 5054
07d83abe
MV
5055To enable and disable the alternative non-R5RS keyword syntax, you use
5056the @code{read-set!} procedure documented in @ref{User level options
ef4cbc08
LC
5057interfaces} and @ref{Reader options}. Note that the @code{prefix} and
5058@code{postfix} syntax are mutually exclusive.
07d83abe
MV
5059
5060@smalllisp
5061(read-set! keywords 'prefix)
5062
5063#:type
5064@result{}
5065#:type
5066
5067:type
5068@result{}
5069#:type
5070
ef4cbc08
LC
5071(read-set! keywords 'postfix)
5072
5073type:
5074@result{}
5075#:type
5076
5077:type
5078@result{}
5079:type
5080
07d83abe
MV
5081(read-set! keywords #f)
5082
5083#:type
5084@result{}
5085#:type
5086
5087:type
5088@print{}
5089ERROR: In expression :type:
5090ERROR: Unbound variable: :type
5091ABORT: (unbound-variable)
5092@end smalllisp
5093
5094@node Keyword Procedures
5095@subsubsection Keyword Procedures
5096
07d83abe
MV
5097@deffn {Scheme Procedure} keyword? obj
5098@deffnx {C Function} scm_keyword_p (obj)
5099Return @code{#t} if the argument @var{obj} is a keyword, else
5100@code{#f}.
5101@end deffn
5102
7719ef22
MV
5103@deffn {Scheme Procedure} keyword->symbol keyword
5104@deffnx {C Function} scm_keyword_to_symbol (keyword)
5105Return the symbol with the same name as @var{keyword}.
07d83abe
MV
5106@end deffn
5107
7719ef22
MV
5108@deffn {Scheme Procedure} symbol->keyword symbol
5109@deffnx {C Function} scm_symbol_to_keyword (symbol)
5110Return the keyword with the same name as @var{symbol}.
5111@end deffn
07d83abe 5112
7719ef22
MV
5113@deftypefn {C Function} int scm_is_keyword (SCM obj)
5114Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
07d83abe
MV
5115@end deftypefn
5116
7719ef22
MV
5117@deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
5118@deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
5119Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5120(@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5121(@var{str}, @var{len}))}, respectively.
5122@end deftypefn
07d83abe
MV
5123
5124@node Other Types
5125@subsection ``Functionality-Centric'' Data Types
5126
5127Procedures and macros are documented in their own chapter: see
5128@ref{Procedures and Macros}.
5129
5130Variable objects are documented as part of the description of Guile's
5131module system: see @ref{Variables}.
5132
5133Asyncs, dynamic roots and fluids are described in the chapter on
5134scheduling: see @ref{Scheduling}.
5135
5136Hooks are documented in the chapter on general utility functions: see
5137@ref{Hooks}.
5138
5139Ports are described in the chapter on I/O: see @ref{Input and Output}.
5140
5141
5142@c Local Variables:
5143@c TeX-master: "guile.texi"
5144@c End: