Use @result{} instead of -->
[bpt/guile.git] / doc / ref / api-data.texi
CommitLineData
07d83abe
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
b242715b 3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009
07d83abe
MV
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
7@page
8@node Simple Data Types
9@section Simple Generic Data Types
10
11This chapter describes those of Guile's simple data types which are
12primarily used for their role as items of generic data. By
13@dfn{simple} we mean data types that are not primarily used as
14containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
15For the documentation of such @dfn{compound} data types, see
16@ref{Compound Data Types}.
17
18@c One of the great strengths of Scheme is that there is no straightforward
19@c distinction between ``data'' and ``functionality''. For example,
20@c Guile's support for dynamic linking could be described:
21
22@c @itemize @bullet
23@c @item
24@c either in a ``data-centric'' way, as the behaviour and properties of the
25@c ``dynamically linked object'' data type, and the operations that may be
26@c applied to instances of this type
27
28@c @item
29@c or in a ``functionality-centric'' way, as the set of procedures that
30@c constitute Guile's support for dynamic linking, in the context of the
31@c module system.
32@c @end itemize
33
34@c The contents of this chapter are, therefore, a matter of judgment. By
35@c @dfn{generic}, we mean to select those data types whose typical use as
36@c @emph{data} in a wide variety of programming contexts is more important
37@c than their use in the implementation of a particular piece of
38@c @emph{functionality}. The last section of this chapter provides
39@c references for all the data types that are documented not here but in a
40@c ``functionality-centric'' way elsewhere in the manual.
41
42@menu
43* Booleans:: True/false values.
44* Numbers:: Numerical data types.
050ab45f
MV
45* Characters:: Single characters.
46* Character Sets:: Sets of characters.
47* Strings:: Sequences of characters.
b242715b 48* Bytevectors:: Sequences of bytes.
07d83abe
MV
49* Regular Expressions:: Pattern matching and substitution.
50* Symbols:: Symbols.
51* Keywords:: Self-quoting, customizable display keywords.
52* Other Types:: "Functionality-centric" data types.
53@end menu
54
55
56@node Booleans
57@subsection Booleans
58@tpindex Booleans
59
60The two boolean values are @code{#t} for true and @code{#f} for false.
61
62Boolean values are returned by predicate procedures, such as the general
63equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
64(@pxref{Equality}) and numerical and string comparison operators like
65@code{string=?} (@pxref{String Comparison}) and @code{<=}
66(@pxref{Comparison}).
67
68@lisp
69(<= 3 8)
70@result{} #t
71
72(<= 3 -3)
73@result{} #f
74
75(equal? "house" "houses")
76@result{} #f
77
78(eq? #f #f)
79@result{}
80#t
81@end lisp
82
83In test condition contexts like @code{if} and @code{cond} (@pxref{if
84cond case}), where a group of subexpressions will be evaluated only if a
85@var{condition} expression evaluates to ``true'', ``true'' means any
86value at all except @code{#f}.
87
88@lisp
89(if #t "yes" "no")
90@result{} "yes"
91
92(if 0 "yes" "no")
93@result{} "yes"
94
95(if #f "yes" "no")
96@result{} "no"
97@end lisp
98
99A result of this asymmetry is that typical Scheme source code more often
100uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
101represent an @code{if} or @code{cond} false value, whereas @code{#t} is
102not necessary to represent an @code{if} or @code{cond} true value.
103
104It is important to note that @code{#f} is @strong{not} equivalent to any
105other Scheme value. In particular, @code{#f} is not the same as the
106number 0 (like in C and C++), and not the same as the ``empty list''
107(like in some Lisp dialects).
108
109In C, the two Scheme boolean values are available as the two constants
110@code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
111Care must be taken with the false value @code{SCM_BOOL_F}: it is not
112false when used in C conditionals. In order to test for it, use
113@code{scm_is_false} or @code{scm_is_true}.
114
115@rnindex not
116@deffn {Scheme Procedure} not x
117@deffnx {C Function} scm_not (x)
118Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
119@end deffn
120
121@rnindex boolean?
122@deffn {Scheme Procedure} boolean? obj
123@deffnx {C Function} scm_boolean_p (obj)
124Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
125return @code{#f}.
126@end deffn
127
128@deftypevr {C Macro} SCM SCM_BOOL_T
129The @code{SCM} representation of the Scheme object @code{#t}.
130@end deftypevr
131
132@deftypevr {C Macro} SCM SCM_BOOL_F
133The @code{SCM} representation of the Scheme object @code{#f}.
134@end deftypevr
135
136@deftypefn {C Function} int scm_is_true (SCM obj)
137Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
138@end deftypefn
139
140@deftypefn {C Function} int scm_is_false (SCM obj)
141Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
142@end deftypefn
143
144@deftypefn {C Function} int scm_is_bool (SCM obj)
145Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
146return @code{0}.
147@end deftypefn
148
149@deftypefn {C Function} SCM scm_from_bool (int val)
150Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
151@end deftypefn
152
153@deftypefn {C Function} int scm_to_bool (SCM val)
154Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
155when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
156
157You should probably use @code{scm_is_true} instead of this function
158when you just want to test a @code{SCM} value for trueness.
159@end deftypefn
160
161@node Numbers
162@subsection Numerical data types
163@tpindex Numbers
164
165Guile supports a rich ``tower'' of numerical types --- integer,
166rational, real and complex --- and provides an extensive set of
167mathematical and scientific functions for operating on numerical
168data. This section of the manual documents those types and functions.
169
170You may also find it illuminating to read R5RS's presentation of numbers
171in Scheme, which is particularly clear and accessible: see
172@ref{Numbers,,,r5rs,R5RS}.
173
174@menu
175* Numerical Tower:: Scheme's numerical "tower".
176* Integers:: Whole numbers.
177* Reals and Rationals:: Real and rational numbers.
178* Complex Numbers:: Complex numbers.
179* Exactness:: Exactness and inexactness.
180* Number Syntax:: Read syntax for numerical data.
181* Integer Operations:: Operations on integer values.
182* Comparison:: Comparison predicates.
183* Conversion:: Converting numbers to and from strings.
184* Complex:: Complex number operations.
185* Arithmetic:: Arithmetic functions.
186* Scientific:: Scientific functions.
187* Primitive Numerics:: Primitive numeric functions.
188* Bitwise Operations:: Logical AND, OR, NOT, and so on.
189* Random:: Random number generation.
190@end menu
191
192
193@node Numerical Tower
194@subsubsection Scheme's Numerical ``Tower''
195@rnindex number?
196
197Scheme's numerical ``tower'' consists of the following categories of
198numbers:
199
200@table @dfn
201@item integers
202Whole numbers, positive or negative; e.g.@: --5, 0, 18.
203
204@item rationals
205The set of numbers that can be expressed as @math{@var{p}/@var{q}}
206where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
207pi (an irrational number) doesn't. These include integers
208(@math{@var{n}/1}).
209
210@item real numbers
211The set of numbers that describes all possible positions along a
212one-dimensional line. This includes rationals as well as irrational
213numbers.
214
215@item complex numbers
216The set of numbers that describes all possible positions in a two
217dimensional space. This includes real as well as imaginary numbers
218(@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
219@var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
220@minus{}1.)
221@end table
222
223It is called a tower because each category ``sits on'' the one that
224follows it, in the sense that every integer is also a rational, every
225rational is also real, and every real number is also a complex number
226(but with zero imaginary part).
227
228In addition to the classification into integers, rationals, reals and
229complex numbers, Scheme also distinguishes between whether a number is
230represented exactly or not. For example, the result of
9f1ba6a9
NJ
231@m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
232can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
07d83abe
MV
233Instead, it stores an inexact approximation, using the C type
234@code{double}.
235
236Guile can represent exact rationals of any magnitude, inexact
237rationals that fit into a C @code{double}, and inexact complex numbers
238with @code{double} real and imaginary parts.
239
240The @code{number?} predicate may be applied to any Scheme value to
241discover whether the value is any of the supported numerical types.
242
243@deffn {Scheme Procedure} number? obj
244@deffnx {C Function} scm_number_p (obj)
245Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
246@end deffn
247
248For example:
249
250@lisp
251(number? 3)
252@result{} #t
253
254(number? "hello there!")
255@result{} #f
256
257(define pi 3.141592654)
258(number? pi)
259@result{} #t
260@end lisp
261
5615f696
MV
262@deftypefn {C Function} int scm_is_number (SCM obj)
263This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
264@end deftypefn
265
07d83abe
MV
266The next few subsections document each of Guile's numerical data types
267in detail.
268
269@node Integers
270@subsubsection Integers
271
272@tpindex Integer numbers
273
274@rnindex integer?
275
276Integers are whole numbers, that is numbers with no fractional part,
277such as 2, 83, and @minus{}3789.
278
279Integers in Guile can be arbitrarily big, as shown by the following
280example.
281
282@lisp
283(define (factorial n)
284 (let loop ((n n) (product 1))
285 (if (= n 0)
286 product
287 (loop (- n 1) (* product n)))))
288
289(factorial 3)
290@result{} 6
291
292(factorial 20)
293@result{} 2432902008176640000
294
295(- (factorial 45))
296@result{} -119622220865480194561963161495657715064383733760000000000
297@end lisp
298
299Readers whose background is in programming languages where integers are
300limited by the need to fit into just 4 or 8 bytes of memory may find
301this surprising, or suspect that Guile's representation of integers is
302inefficient. In fact, Guile achieves a near optimal balance of
303convenience and efficiency by using the host computer's native
304representation of integers where possible, and a more general
305representation where the required number does not fit in the native
306form. Conversion between these two representations is automatic and
307completely invisible to the Scheme level programmer.
308
309The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
310inexact integers. They are explained in detail in the next section,
311together with reals and rationals.
312
313C has a host of different integer types, and Guile offers a host of
314functions to convert between them and the @code{SCM} representation.
315For example, a C @code{int} can be handled with @code{scm_to_int} and
316@code{scm_from_int}. Guile also defines a few C integer types of its
317own, to help with differences between systems.
318
319C integer types that are not covered can be handled with the generic
320@code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
321signed types, or with @code{scm_to_unsigned_integer} and
322@code{scm_from_unsigned_integer} for unsigned types.
323
324Scheme integers can be exact and inexact. For example, a number
325written as @code{3.0} with an explicit decimal-point is inexact, but
326it is also an integer. The functions @code{integer?} and
327@code{scm_is_integer} report true for such a number, but the functions
328@code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
329allow exact integers and thus report false. Likewise, the conversion
330functions like @code{scm_to_signed_integer} only accept exact
331integers.
332
333The motivation for this behavior is that the inexactness of a number
334should not be lost silently. If you want to allow inexact integers,
877f06c3 335you can explicitly insert a call to @code{inexact->exact} or to its C
07d83abe
MV
336equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
337be converted by this call into exact integers; inexact non-integers
338will become exact fractions.)
339
340@deffn {Scheme Procedure} integer? x
341@deffnx {C Function} scm_integer_p (x)
909fcc97 342Return @code{#t} if @var{x} is an exact or inexact integer number, else
07d83abe
MV
343@code{#f}.
344
345@lisp
346(integer? 487)
347@result{} #t
348
349(integer? 3.0)
350@result{} #t
351
352(integer? -3.4)
353@result{} #f
354
355(integer? +inf.0)
356@result{} #t
357@end lisp
358@end deffn
359
360@deftypefn {C Function} int scm_is_integer (SCM x)
361This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
362@end deftypefn
363
364@defvr {C Type} scm_t_int8
365@defvrx {C Type} scm_t_uint8
366@defvrx {C Type} scm_t_int16
367@defvrx {C Type} scm_t_uint16
368@defvrx {C Type} scm_t_int32
369@defvrx {C Type} scm_t_uint32
370@defvrx {C Type} scm_t_int64
371@defvrx {C Type} scm_t_uint64
372@defvrx {C Type} scm_t_intmax
373@defvrx {C Type} scm_t_uintmax
374The C types are equivalent to the corresponding ISO C types but are
375defined on all platforms, with the exception of @code{scm_t_int64} and
376@code{scm_t_uint64}, which are only defined when a 64-bit type is
377available. For example, @code{scm_t_int8} is equivalent to
378@code{int8_t}.
379
380You can regard these definitions as a stop-gap measure until all
381platforms provide these types. If you know that all the platforms
382that you are interested in already provide these types, it is better
383to use them directly instead of the types provided by Guile.
384@end defvr
385
386@deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
387@deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
388Return @code{1} when @var{x} represents an exact integer that is
389between @var{min} and @var{max}, inclusive.
390
391These functions can be used to check whether a @code{SCM} value will
392fit into a given range, such as the range of a given C integer type.
393If you just want to convert a @code{SCM} value to a given C integer
394type, use one of the conversion functions directly.
395@end deftypefn
396
397@deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
398@deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
399When @var{x} represents an exact integer that is between @var{min} and
400@var{max} inclusive, return that integer. Else signal an error,
401either a `wrong-type' error when @var{x} is not an exact integer, or
402an `out-of-range' error when it doesn't fit the given range.
403@end deftypefn
404
405@deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
406@deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
407Return the @code{SCM} value that represents the integer @var{x}. This
408function will always succeed and will always return an exact number.
409@end deftypefn
410
411@deftypefn {C Function} char scm_to_char (SCM x)
412@deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
413@deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
414@deftypefnx {C Function} short scm_to_short (SCM x)
415@deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
416@deftypefnx {C Function} int scm_to_int (SCM x)
417@deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
418@deftypefnx {C Function} long scm_to_long (SCM x)
419@deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
420@deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
421@deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
422@deftypefnx {C Function} size_t scm_to_size_t (SCM x)
423@deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
424@deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
425@deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
426@deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
427@deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
428@deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
429@deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
430@deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
431@deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
432@deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
433@deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
434When @var{x} represents an exact integer that fits into the indicated
435C type, return that integer. Else signal an error, either a
436`wrong-type' error when @var{x} is not an exact integer, or an
437`out-of-range' error when it doesn't fit the given range.
438
439The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
440@code{scm_to_int64}, and @code{scm_to_uint64} are only available when
441the corresponding types are.
442@end deftypefn
443
444@deftypefn {C Function} SCM scm_from_char (char x)
445@deftypefnx {C Function} SCM scm_from_schar (signed char x)
446@deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
447@deftypefnx {C Function} SCM scm_from_short (short x)
448@deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
449@deftypefnx {C Function} SCM scm_from_int (int x)
450@deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
451@deftypefnx {C Function} SCM scm_from_long (long x)
452@deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
453@deftypefnx {C Function} SCM scm_from_long_long (long long x)
454@deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
455@deftypefnx {C Function} SCM scm_from_size_t (size_t x)
456@deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
457@deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
458@deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
459@deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
460@deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
461@deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
462@deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
463@deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
464@deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
465@deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
466@deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
467Return the @code{SCM} value that represents the integer @var{x}.
468These functions will always succeed and will always return an exact
469number.
470@end deftypefn
471
08962922
MV
472@deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
473Assign @var{val} to the multiple precision integer @var{rop}.
474@var{val} must be an exact integer, otherwise an error will be
475signalled. @var{rop} must have been initialized with @code{mpz_init}
476before this function is called. When @var{rop} is no longer needed
477the occupied space must be freed with @code{mpz_clear}.
478@xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
479@end deftypefn
480
9f1ba6a9 481@deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
08962922
MV
482Return the @code{SCM} value that represents @var{val}.
483@end deftypefn
484
07d83abe
MV
485@node Reals and Rationals
486@subsubsection Real and Rational Numbers
487@tpindex Real numbers
488@tpindex Rational numbers
489
490@rnindex real?
491@rnindex rational?
492
493Mathematically, the real numbers are the set of numbers that describe
494all possible points along a continuous, infinite, one-dimensional line.
495The rational numbers are the set of all numbers that can be written as
496fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
497All rational numbers are also real, but there are real numbers that
34942993
KR
498are not rational, for example @m{\sqrt2, the square root of 2}, and
499@m{\pi,pi}.
07d83abe
MV
500
501Guile can represent both exact and inexact rational numbers, but it
502can not represent irrational numbers. Exact rationals are represented
503by storing the numerator and denominator as two exact integers.
504Inexact rationals are stored as floating point numbers using the C
505type @code{double}.
506
507Exact rationals are written as a fraction of integers. There must be
508no whitespace around the slash:
509
510@lisp
5111/2
512-22/7
513@end lisp
514
515Even though the actual encoding of inexact rationals is in binary, it
516may be helpful to think of it as a decimal number with a limited
517number of significant figures and a decimal point somewhere, since
518this corresponds to the standard notation for non-whole numbers. For
519example:
520
521@lisp
5220.34
523-0.00000142857931198
524-5648394822220000000000.0
5254.0
526@end lisp
527
528The limited precision of Guile's encoding means that any ``real'' number
529in Guile can be written in a rational form, by multiplying and then dividing
530by sufficient powers of 10 (or in fact, 2). For example,
531@samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
532100000000000000000. In Guile's current incarnation, therefore, the
533@code{rational?} and @code{real?} predicates are equivalent.
534
535
536Dividing by an exact zero leads to a error message, as one might
537expect. However, dividing by an inexact zero does not produce an
538error. Instead, the result of the division is either plus or minus
539infinity, depending on the sign of the divided number.
540
541The infinities are written @samp{+inf.0} and @samp{-inf.0},
542respectivly. This syntax is also recognized by @code{read} as an
543extension to the usual Scheme syntax.
544
545Dividing zero by zero yields something that is not a number at all:
546@samp{+nan.0}. This is the special `not a number' value.
547
548On platforms that follow @acronym{IEEE} 754 for their floating point
549arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
550are implemented using the corresponding @acronym{IEEE} 754 values.
551They behave in arithmetic operations like @acronym{IEEE} 754 describes
552it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
553
554The infinities are inexact integers and are considered to be both even
555and odd. While @samp{+nan.0} is not @code{=} to itself, it is
556@code{eqv?} to itself.
557
558To test for the special values, use the functions @code{inf?} and
559@code{nan?}.
560
561@deffn {Scheme Procedure} real? obj
562@deffnx {C Function} scm_real_p (obj)
563Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
564that the sets of integer and rational values form subsets of the set
565of real numbers, so the predicate will also be fulfilled if @var{obj}
566is an integer number or a rational number.
567@end deffn
568
569@deffn {Scheme Procedure} rational? x
570@deffnx {C Function} scm_rational_p (x)
571Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
572Note that the set of integer values forms a subset of the set of
573rational numbers, i. e. the predicate will also be fulfilled if
574@var{x} is an integer number.
575
576Since Guile can not represent irrational numbers, every number
577satisfying @code{real?} also satisfies @code{rational?} in Guile.
578@end deffn
579
580@deffn {Scheme Procedure} rationalize x eps
581@deffnx {C Function} scm_rationalize (x, eps)
582Returns the @emph{simplest} rational number differing
583from @var{x} by no more than @var{eps}.
584
585As required by @acronym{R5RS}, @code{rationalize} only returns an
586exact result when both its arguments are exact. Thus, you might need
587to use @code{inexact->exact} on the arguments.
588
589@lisp
590(rationalize (inexact->exact 1.2) 1/100)
591@result{} 6/5
592@end lisp
593
594@end deffn
595
d3df9759
MV
596@deffn {Scheme Procedure} inf? x
597@deffnx {C Function} scm_inf_p (x)
07d83abe
MV
598Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
599@code{#f} otherwise.
600@end deffn
601
602@deffn {Scheme Procedure} nan? x
d3df9759 603@deffnx {C Function} scm_nan_p (x)
07d83abe
MV
604Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
605@end deffn
606
cdf1ad3b
MV
607@deffn {Scheme Procedure} nan
608@deffnx {C Function} scm_nan ()
609Return NaN.
610@end deffn
611
612@deffn {Scheme Procedure} inf
613@deffnx {C Function} scm_inf ()
614Return Inf.
615@end deffn
616
d3df9759
MV
617@deffn {Scheme Procedure} numerator x
618@deffnx {C Function} scm_numerator (x)
619Return the numerator of the rational number @var{x}.
620@end deffn
621
622@deffn {Scheme Procedure} denominator x
623@deffnx {C Function} scm_denominator (x)
624Return the denominator of the rational number @var{x}.
625@end deffn
626
627@deftypefn {C Function} int scm_is_real (SCM val)
628@deftypefnx {C Function} int scm_is_rational (SCM val)
629Equivalent to @code{scm_is_true (scm_real_p (val))} and
630@code{scm_is_true (scm_rational_p (val))}, respectively.
631@end deftypefn
632
633@deftypefn {C Function} double scm_to_double (SCM val)
634Returns the number closest to @var{val} that is representable as a
635@code{double}. Returns infinity for a @var{val} that is too large in
636magnitude. The argument @var{val} must be a real number.
637@end deftypefn
638
639@deftypefn {C Function} SCM scm_from_double (double val)
640Return the @code{SCM} value that representats @var{val}. The returned
641value is inexact according to the predicate @code{inexact?}, but it
642will be exactly equal to @var{val}.
643@end deftypefn
644
07d83abe
MV
645@node Complex Numbers
646@subsubsection Complex Numbers
647@tpindex Complex numbers
648
649@rnindex complex?
650
651Complex numbers are the set of numbers that describe all possible points
652in a two-dimensional space. The two coordinates of a particular point
653in this space are known as the @dfn{real} and @dfn{imaginary} parts of
654the complex number that describes that point.
655
656In Guile, complex numbers are written in rectangular form as the sum of
657their real and imaginary parts, using the symbol @code{i} to indicate
658the imaginary part.
659
660@lisp
6613+4i
662@result{}
6633.0+4.0i
664
665(* 3-8i 2.3+0.3i)
666@result{}
6679.3-17.5i
668@end lisp
669
34942993
KR
670@cindex polar form
671@noindent
672Polar form can also be used, with an @samp{@@} between magnitude and
673angle,
674
675@lisp
6761@@3.141592 @result{} -1.0 (approx)
677-1@@1.57079 @result{} 0.0-1.0i (approx)
678@end lisp
679
07d83abe
MV
680Guile represents a complex number with a non-zero imaginary part as a
681pair of inexact rationals, so the real and imaginary parts of a
682complex number have the same properties of inexactness and limited
683precision as single inexact rational numbers. Guile can not represent
684exact complex numbers with non-zero imaginary parts.
685
5615f696
MV
686@deffn {Scheme Procedure} complex? z
687@deffnx {C Function} scm_complex_p (z)
07d83abe
MV
688Return @code{#t} if @var{x} is a complex number, @code{#f}
689otherwise. Note that the sets of real, rational and integer
690values form subsets of the set of complex numbers, i. e. the
691predicate will also be fulfilled if @var{x} is a real,
692rational or integer number.
693@end deffn
694
c9dc8c6c
MV
695@deftypefn {C Function} int scm_is_complex (SCM val)
696Equivalent to @code{scm_is_true (scm_complex_p (val))}.
697@end deftypefn
698
07d83abe
MV
699@node Exactness
700@subsubsection Exact and Inexact Numbers
701@tpindex Exact numbers
702@tpindex Inexact numbers
703
704@rnindex exact?
705@rnindex inexact?
706@rnindex exact->inexact
707@rnindex inexact->exact
708
709R5RS requires that a calculation involving inexact numbers always
710produces an inexact result. To meet this requirement, Guile
711distinguishes between an exact integer value such as @samp{5} and the
712corresponding inexact real value which, to the limited precision
713available, has no fractional part, and is printed as @samp{5.0}. Guile
714will only convert the latter value to the former when forced to do so by
715an invocation of the @code{inexact->exact} procedure.
716
717@deffn {Scheme Procedure} exact? z
718@deffnx {C Function} scm_exact_p (z)
719Return @code{#t} if the number @var{z} is exact, @code{#f}
720otherwise.
721
722@lisp
723(exact? 2)
724@result{} #t
725
726(exact? 0.5)
727@result{} #f
728
729(exact? (/ 2))
730@result{} #t
731@end lisp
732
733@end deffn
734
735@deffn {Scheme Procedure} inexact? z
736@deffnx {C Function} scm_inexact_p (z)
737Return @code{#t} if the number @var{z} is inexact, @code{#f}
738else.
739@end deffn
740
741@deffn {Scheme Procedure} inexact->exact z
742@deffnx {C Function} scm_inexact_to_exact (z)
743Return an exact number that is numerically closest to @var{z}, when
744there is one. For inexact rationals, Guile returns the exact rational
745that is numerically equal to the inexact rational. Inexact complex
746numbers with a non-zero imaginary part can not be made exact.
747
748@lisp
749(inexact->exact 0.5)
750@result{} 1/2
751@end lisp
752
753The following happens because 12/10 is not exactly representable as a
754@code{double} (on most platforms). However, when reading a decimal
755number that has been marked exact with the ``#e'' prefix, Guile is
756able to represent it correctly.
757
758@lisp
759(inexact->exact 1.2)
760@result{} 5404319552844595/4503599627370496
761
762#e1.2
763@result{} 6/5
764@end lisp
765
766@end deffn
767
768@c begin (texi-doc-string "guile" "exact->inexact")
769@deffn {Scheme Procedure} exact->inexact z
770@deffnx {C Function} scm_exact_to_inexact (z)
771Convert the number @var{z} to its inexact representation.
772@end deffn
773
774
775@node Number Syntax
776@subsubsection Read Syntax for Numerical Data
777
778The read syntax for integers is a string of digits, optionally
779preceded by a minus or plus character, a code indicating the
780base in which the integer is encoded, and a code indicating whether
781the number is exact or inexact. The supported base codes are:
782
783@table @code
784@item #b
785@itemx #B
786the integer is written in binary (base 2)
787
788@item #o
789@itemx #O
790the integer is written in octal (base 8)
791
792@item #d
793@itemx #D
794the integer is written in decimal (base 10)
795
796@item #x
797@itemx #X
798the integer is written in hexadecimal (base 16)
799@end table
800
801If the base code is omitted, the integer is assumed to be decimal. The
802following examples show how these base codes are used.
803
804@lisp
805-13
806@result{} -13
807
808#d-13
809@result{} -13
810
811#x-13
812@result{} -19
813
814#b+1101
815@result{} 13
816
817#o377
818@result{} 255
819@end lisp
820
821The codes for indicating exactness (which can, incidentally, be applied
822to all numerical values) are:
823
824@table @code
825@item #e
826@itemx #E
827the number is exact
828
829@item #i
830@itemx #I
831the number is inexact.
832@end table
833
834If the exactness indicator is omitted, the number is exact unless it
835contains a radix point. Since Guile can not represent exact complex
836numbers, an error is signalled when asking for them.
837
838@lisp
839(exact? 1.2)
840@result{} #f
841
842(exact? #e1.2)
843@result{} #t
844
845(exact? #e+1i)
846ERROR: Wrong type argument
847@end lisp
848
849Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
850plus and minus infinity, respectively. The value must be written
851exactly as shown, that is, they always must have a sign and exactly
852one zero digit after the decimal point. It also understands
853@samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
854The sign is ignored for `not-a-number' and the value is always printed
855as @samp{+nan.0}.
856
857@node Integer Operations
858@subsubsection Operations on Integer Values
859@rnindex odd?
860@rnindex even?
861@rnindex quotient
862@rnindex remainder
863@rnindex modulo
864@rnindex gcd
865@rnindex lcm
866
867@deffn {Scheme Procedure} odd? n
868@deffnx {C Function} scm_odd_p (n)
869Return @code{#t} if @var{n} is an odd number, @code{#f}
870otherwise.
871@end deffn
872
873@deffn {Scheme Procedure} even? n
874@deffnx {C Function} scm_even_p (n)
875Return @code{#t} if @var{n} is an even number, @code{#f}
876otherwise.
877@end deffn
878
879@c begin (texi-doc-string "guile" "quotient")
880@c begin (texi-doc-string "guile" "remainder")
881@deffn {Scheme Procedure} quotient n d
882@deffnx {Scheme Procedure} remainder n d
883@deffnx {C Function} scm_quotient (n, d)
884@deffnx {C Function} scm_remainder (n, d)
885Return the quotient or remainder from @var{n} divided by @var{d}. The
886quotient is rounded towards zero, and the remainder will have the same
887sign as @var{n}. In all cases quotient and remainder satisfy
888@math{@var{n} = @var{q}*@var{d} + @var{r}}.
889
890@lisp
891(remainder 13 4) @result{} 1
892(remainder -13 4) @result{} -1
893@end lisp
894@end deffn
895
896@c begin (texi-doc-string "guile" "modulo")
897@deffn {Scheme Procedure} modulo n d
898@deffnx {C Function} scm_modulo (n, d)
899Return the remainder from @var{n} divided by @var{d}, with the same
900sign as @var{d}.
901
902@lisp
903(modulo 13 4) @result{} 1
904(modulo -13 4) @result{} 3
905(modulo 13 -4) @result{} -3
906(modulo -13 -4) @result{} -1
907@end lisp
908@end deffn
909
910@c begin (texi-doc-string "guile" "gcd")
fd8a1df5 911@deffn {Scheme Procedure} gcd x@dots{}
07d83abe
MV
912@deffnx {C Function} scm_gcd (x, y)
913Return the greatest common divisor of all arguments.
914If called without arguments, 0 is returned.
915
916The C function @code{scm_gcd} always takes two arguments, while the
917Scheme function can take an arbitrary number.
918@end deffn
919
920@c begin (texi-doc-string "guile" "lcm")
fd8a1df5 921@deffn {Scheme Procedure} lcm x@dots{}
07d83abe
MV
922@deffnx {C Function} scm_lcm (x, y)
923Return the least common multiple of the arguments.
924If called without arguments, 1 is returned.
925
926The C function @code{scm_lcm} always takes two arguments, while the
927Scheme function can take an arbitrary number.
928@end deffn
929
cdf1ad3b
MV
930@deffn {Scheme Procedure} modulo-expt n k m
931@deffnx {C Function} scm_modulo_expt (n, k, m)
932Return @var{n} raised to the integer exponent
933@var{k}, modulo @var{m}.
934
935@lisp
936(modulo-expt 2 3 5)
937 @result{} 3
938@end lisp
939@end deffn
07d83abe
MV
940
941@node Comparison
942@subsubsection Comparison Predicates
943@rnindex zero?
944@rnindex positive?
945@rnindex negative?
946
947The C comparison functions below always takes two arguments, while the
948Scheme functions can take an arbitrary number. Also keep in mind that
949the C functions return one of the Scheme boolean values
950@code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
951is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
952y))} when testing the two Scheme numbers @code{x} and @code{y} for
953equality, for example.
954
955@c begin (texi-doc-string "guile" "=")
956@deffn {Scheme Procedure} =
957@deffnx {C Function} scm_num_eq_p (x, y)
958Return @code{#t} if all parameters are numerically equal.
959@end deffn
960
961@c begin (texi-doc-string "guile" "<")
962@deffn {Scheme Procedure} <
963@deffnx {C Function} scm_less_p (x, y)
964Return @code{#t} if the list of parameters is monotonically
965increasing.
966@end deffn
967
968@c begin (texi-doc-string "guile" ">")
969@deffn {Scheme Procedure} >
970@deffnx {C Function} scm_gr_p (x, y)
971Return @code{#t} if the list of parameters is monotonically
972decreasing.
973@end deffn
974
975@c begin (texi-doc-string "guile" "<=")
976@deffn {Scheme Procedure} <=
977@deffnx {C Function} scm_leq_p (x, y)
978Return @code{#t} if the list of parameters is monotonically
979non-decreasing.
980@end deffn
981
982@c begin (texi-doc-string "guile" ">=")
983@deffn {Scheme Procedure} >=
984@deffnx {C Function} scm_geq_p (x, y)
985Return @code{#t} if the list of parameters is monotonically
986non-increasing.
987@end deffn
988
989@c begin (texi-doc-string "guile" "zero?")
990@deffn {Scheme Procedure} zero? z
991@deffnx {C Function} scm_zero_p (z)
992Return @code{#t} if @var{z} is an exact or inexact number equal to
993zero.
994@end deffn
995
996@c begin (texi-doc-string "guile" "positive?")
997@deffn {Scheme Procedure} positive? x
998@deffnx {C Function} scm_positive_p (x)
999Return @code{#t} if @var{x} is an exact or inexact number greater than
1000zero.
1001@end deffn
1002
1003@c begin (texi-doc-string "guile" "negative?")
1004@deffn {Scheme Procedure} negative? x
1005@deffnx {C Function} scm_negative_p (x)
1006Return @code{#t} if @var{x} is an exact or inexact number less than
1007zero.
1008@end deffn
1009
1010
1011@node Conversion
1012@subsubsection Converting Numbers To and From Strings
1013@rnindex number->string
1014@rnindex string->number
1015
b89c4943
LC
1016The following procedures read and write numbers according to their
1017external representation as defined by R5RS (@pxref{Lexical structure,
1018R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
a2f00b9b 1019Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
b89c4943
LC
1020i18n)} module}, for locale-dependent number parsing.
1021
07d83abe
MV
1022@deffn {Scheme Procedure} number->string n [radix]
1023@deffnx {C Function} scm_number_to_string (n, radix)
1024Return a string holding the external representation of the
1025number @var{n} in the given @var{radix}. If @var{n} is
1026inexact, a radix of 10 will be used.
1027@end deffn
1028
1029@deffn {Scheme Procedure} string->number string [radix]
1030@deffnx {C Function} scm_string_to_number (string, radix)
1031Return a number of the maximally precise representation
1032expressed by the given @var{string}. @var{radix} must be an
1033exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1034is a default radix that may be overridden by an explicit radix
1035prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
1036supplied, then the default radix is 10. If string is not a
1037syntactically valid notation for a number, then
1038@code{string->number} returns @code{#f}.
1039@end deffn
1040
1b09b607
KR
1041@deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1042As per @code{string->number} above, but taking a C string, as pointer
1043and length. The string characters should be in the current locale
1044encoding (@code{locale} in the name refers only to that, there's no
1045locale-dependent parsing).
1046@end deftypefn
1047
07d83abe
MV
1048
1049@node Complex
1050@subsubsection Complex Number Operations
1051@rnindex make-rectangular
1052@rnindex make-polar
1053@rnindex real-part
1054@rnindex imag-part
1055@rnindex magnitude
1056@rnindex angle
1057
1058@deffn {Scheme Procedure} make-rectangular real imaginary
1059@deffnx {C Function} scm_make_rectangular (real, imaginary)
1060Return a complex number constructed of the given @var{real} and
1061@var{imaginary} parts.
1062@end deffn
1063
1064@deffn {Scheme Procedure} make-polar x y
1065@deffnx {C Function} scm_make_polar (x, y)
34942993 1066@cindex polar form
07d83abe
MV
1067Return the complex number @var{x} * e^(i * @var{y}).
1068@end deffn
1069
1070@c begin (texi-doc-string "guile" "real-part")
1071@deffn {Scheme Procedure} real-part z
1072@deffnx {C Function} scm_real_part (z)
1073Return the real part of the number @var{z}.
1074@end deffn
1075
1076@c begin (texi-doc-string "guile" "imag-part")
1077@deffn {Scheme Procedure} imag-part z
1078@deffnx {C Function} scm_imag_part (z)
1079Return the imaginary part of the number @var{z}.
1080@end deffn
1081
1082@c begin (texi-doc-string "guile" "magnitude")
1083@deffn {Scheme Procedure} magnitude z
1084@deffnx {C Function} scm_magnitude (z)
1085Return the magnitude of the number @var{z}. This is the same as
1086@code{abs} for real arguments, but also allows complex numbers.
1087@end deffn
1088
1089@c begin (texi-doc-string "guile" "angle")
1090@deffn {Scheme Procedure} angle z
1091@deffnx {C Function} scm_angle (z)
1092Return the angle of the complex number @var{z}.
1093@end deffn
1094
5615f696
MV
1095@deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1096@deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1097Like @code{scm_make_rectangular} or @code{scm_make_polar},
1098respectively, but these functions take @code{double}s as their
1099arguments.
1100@end deftypefn
1101
1102@deftypefn {C Function} double scm_c_real_part (z)
1103@deftypefnx {C Function} double scm_c_imag_part (z)
1104Returns the real or imaginary part of @var{z} as a @code{double}.
1105@end deftypefn
1106
1107@deftypefn {C Function} double scm_c_magnitude (z)
1108@deftypefnx {C Function} double scm_c_angle (z)
1109Returns the magnitude or angle of @var{z} as a @code{double}.
1110@end deftypefn
1111
07d83abe
MV
1112
1113@node Arithmetic
1114@subsubsection Arithmetic Functions
1115@rnindex max
1116@rnindex min
1117@rnindex +
1118@rnindex *
1119@rnindex -
1120@rnindex /
b1f57ea4
LC
1121@findex 1+
1122@findex 1-
07d83abe
MV
1123@rnindex abs
1124@rnindex floor
1125@rnindex ceiling
1126@rnindex truncate
1127@rnindex round
1128
1129The C arithmetic functions below always takes two arguments, while the
1130Scheme functions can take an arbitrary number. When you need to
1131invoke them with just one argument, for example to compute the
1132equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1133one: @code{scm_difference (x, SCM_UNDEFINED)}.
1134
1135@c begin (texi-doc-string "guile" "+")
1136@deffn {Scheme Procedure} + z1 @dots{}
1137@deffnx {C Function} scm_sum (z1, z2)
1138Return the sum of all parameter values. Return 0 if called without any
1139parameters.
1140@end deffn
1141
1142@c begin (texi-doc-string "guile" "-")
1143@deffn {Scheme Procedure} - z1 z2 @dots{}
1144@deffnx {C Function} scm_difference (z1, z2)
1145If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1146the sum of all but the first argument are subtracted from the first
1147argument.
1148@end deffn
1149
1150@c begin (texi-doc-string "guile" "*")
1151@deffn {Scheme Procedure} * z1 @dots{}
1152@deffnx {C Function} scm_product (z1, z2)
1153Return the product of all arguments. If called without arguments, 1 is
1154returned.
1155@end deffn
1156
1157@c begin (texi-doc-string "guile" "/")
1158@deffn {Scheme Procedure} / z1 z2 @dots{}
1159@deffnx {C Function} scm_divide (z1, z2)
1160Divide the first argument by the product of the remaining arguments. If
1161called with one argument @var{z1}, 1/@var{z1} is returned.
1162@end deffn
1163
b1f57ea4
LC
1164@deffn {Scheme Procedure} 1+ z
1165@deffnx {C Function} scm_oneplus (z)
1166Return @math{@var{z} + 1}.
1167@end deffn
1168
1169@deffn {Scheme Procedure} 1- z
1170@deffnx {C function} scm_oneminus (z)
1171Return @math{@var{z} - 1}.
1172@end deffn
1173
07d83abe
MV
1174@c begin (texi-doc-string "guile" "abs")
1175@deffn {Scheme Procedure} abs x
1176@deffnx {C Function} scm_abs (x)
1177Return the absolute value of @var{x}.
1178
1179@var{x} must be a number with zero imaginary part. To calculate the
1180magnitude of a complex number, use @code{magnitude} instead.
1181@end deffn
1182
1183@c begin (texi-doc-string "guile" "max")
1184@deffn {Scheme Procedure} max x1 x2 @dots{}
1185@deffnx {C Function} scm_max (x1, x2)
1186Return the maximum of all parameter values.
1187@end deffn
1188
1189@c begin (texi-doc-string "guile" "min")
1190@deffn {Scheme Procedure} min x1 x2 @dots{}
1191@deffnx {C Function} scm_min (x1, x2)
1192Return the minimum of all parameter values.
1193@end deffn
1194
1195@c begin (texi-doc-string "guile" "truncate")
fd8a1df5 1196@deffn {Scheme Procedure} truncate x
07d83abe
MV
1197@deffnx {C Function} scm_truncate_number (x)
1198Round the inexact number @var{x} towards zero.
1199@end deffn
1200
1201@c begin (texi-doc-string "guile" "round")
1202@deffn {Scheme Procedure} round x
1203@deffnx {C Function} scm_round_number (x)
1204Round the inexact number @var{x} to the nearest integer. When exactly
1205halfway between two integers, round to the even one.
1206@end deffn
1207
1208@c begin (texi-doc-string "guile" "floor")
1209@deffn {Scheme Procedure} floor x
1210@deffnx {C Function} scm_floor (x)
1211Round the number @var{x} towards minus infinity.
1212@end deffn
1213
1214@c begin (texi-doc-string "guile" "ceiling")
1215@deffn {Scheme Procedure} ceiling x
1216@deffnx {C Function} scm_ceiling (x)
1217Round the number @var{x} towards infinity.
1218@end deffn
1219
35da08ee
MV
1220@deftypefn {C Function} double scm_c_truncate (double x)
1221@deftypefnx {C Function} double scm_c_round (double x)
1222Like @code{scm_truncate_number} or @code{scm_round_number},
1223respectively, but these functions take and return @code{double}
1224values.
1225@end deftypefn
07d83abe
MV
1226
1227@node Scientific
1228@subsubsection Scientific Functions
1229
1230The following procedures accept any kind of number as arguments,
1231including complex numbers.
1232
1233@rnindex sqrt
1234@c begin (texi-doc-string "guile" "sqrt")
1235@deffn {Scheme Procedure} sqrt z
40296bab
KR
1236Return the square root of @var{z}. Of the two possible roots
1237(positive and negative), the one with the a positive real part is
1238returned, or if that's zero then a positive imaginary part. Thus,
1239
1240@example
1241(sqrt 9.0) @result{} 3.0
1242(sqrt -9.0) @result{} 0.0+3.0i
1243(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1244(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1245@end example
07d83abe
MV
1246@end deffn
1247
1248@rnindex expt
1249@c begin (texi-doc-string "guile" "expt")
1250@deffn {Scheme Procedure} expt z1 z2
1251Return @var{z1} raised to the power of @var{z2}.
1252@end deffn
1253
1254@rnindex sin
1255@c begin (texi-doc-string "guile" "sin")
1256@deffn {Scheme Procedure} sin z
1257Return the sine of @var{z}.
1258@end deffn
1259
1260@rnindex cos
1261@c begin (texi-doc-string "guile" "cos")
1262@deffn {Scheme Procedure} cos z
1263Return the cosine of @var{z}.
1264@end deffn
1265
1266@rnindex tan
1267@c begin (texi-doc-string "guile" "tan")
1268@deffn {Scheme Procedure} tan z
1269Return the tangent of @var{z}.
1270@end deffn
1271
1272@rnindex asin
1273@c begin (texi-doc-string "guile" "asin")
1274@deffn {Scheme Procedure} asin z
1275Return the arcsine of @var{z}.
1276@end deffn
1277
1278@rnindex acos
1279@c begin (texi-doc-string "guile" "acos")
1280@deffn {Scheme Procedure} acos z
1281Return the arccosine of @var{z}.
1282@end deffn
1283
1284@rnindex atan
1285@c begin (texi-doc-string "guile" "atan")
1286@deffn {Scheme Procedure} atan z
1287@deffnx {Scheme Procedure} atan y x
1288Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1289@end deffn
1290
1291@rnindex exp
1292@c begin (texi-doc-string "guile" "exp")
1293@deffn {Scheme Procedure} exp z
1294Return e to the power of @var{z}, where e is the base of natural
1295logarithms (2.71828@dots{}).
1296@end deffn
1297
1298@rnindex log
1299@c begin (texi-doc-string "guile" "log")
1300@deffn {Scheme Procedure} log z
1301Return the natural logarithm of @var{z}.
1302@end deffn
1303
1304@c begin (texi-doc-string "guile" "log10")
1305@deffn {Scheme Procedure} log10 z
1306Return the base 10 logarithm of @var{z}.
1307@end deffn
1308
1309@c begin (texi-doc-string "guile" "sinh")
1310@deffn {Scheme Procedure} sinh z
1311Return the hyperbolic sine of @var{z}.
1312@end deffn
1313
1314@c begin (texi-doc-string "guile" "cosh")
1315@deffn {Scheme Procedure} cosh z
1316Return the hyperbolic cosine of @var{z}.
1317@end deffn
1318
1319@c begin (texi-doc-string "guile" "tanh")
1320@deffn {Scheme Procedure} tanh z
1321Return the hyperbolic tangent of @var{z}.
1322@end deffn
1323
1324@c begin (texi-doc-string "guile" "asinh")
1325@deffn {Scheme Procedure} asinh z
1326Return the hyperbolic arcsine of @var{z}.
1327@end deffn
1328
1329@c begin (texi-doc-string "guile" "acosh")
1330@deffn {Scheme Procedure} acosh z
1331Return the hyperbolic arccosine of @var{z}.
1332@end deffn
1333
1334@c begin (texi-doc-string "guile" "atanh")
1335@deffn {Scheme Procedure} atanh z
1336Return the hyperbolic arctangent of @var{z}.
1337@end deffn
1338
1339
1340@node Primitive Numerics
1341@subsubsection Primitive Numeric Functions
1342
1343Many of Guile's numeric procedures which accept any kind of numbers as
1344arguments, including complex numbers, are implemented as Scheme
1345procedures that use the following real number-based primitives. These
1346primitives signal an error if they are called with complex arguments.
1347
1348@c begin (texi-doc-string "guile" "$abs")
1349@deffn {Scheme Procedure} $abs x
1350Return the absolute value of @var{x}.
1351@end deffn
1352
1353@c begin (texi-doc-string "guile" "$sqrt")
1354@deffn {Scheme Procedure} $sqrt x
1355Return the square root of @var{x}.
1356@end deffn
1357
1358@deffn {Scheme Procedure} $expt x y
1359@deffnx {C Function} scm_sys_expt (x, y)
1360Return @var{x} raised to the power of @var{y}. This
1361procedure does not accept complex arguments.
1362@end deffn
1363
1364@c begin (texi-doc-string "guile" "$sin")
1365@deffn {Scheme Procedure} $sin x
1366Return the sine of @var{x}.
1367@end deffn
1368
1369@c begin (texi-doc-string "guile" "$cos")
1370@deffn {Scheme Procedure} $cos x
1371Return the cosine of @var{x}.
1372@end deffn
1373
1374@c begin (texi-doc-string "guile" "$tan")
1375@deffn {Scheme Procedure} $tan x
1376Return the tangent of @var{x}.
1377@end deffn
1378
1379@c begin (texi-doc-string "guile" "$asin")
1380@deffn {Scheme Procedure} $asin x
1381Return the arcsine of @var{x}.
1382@end deffn
1383
1384@c begin (texi-doc-string "guile" "$acos")
1385@deffn {Scheme Procedure} $acos x
1386Return the arccosine of @var{x}.
1387@end deffn
1388
1389@c begin (texi-doc-string "guile" "$atan")
1390@deffn {Scheme Procedure} $atan x
1391Return the arctangent of @var{x} in the range @minus{}@math{PI/2} to
1392@math{PI/2}.
1393@end deffn
1394
1395@deffn {Scheme Procedure} $atan2 x y
1396@deffnx {C Function} scm_sys_atan2 (x, y)
1397Return the arc tangent of the two arguments @var{x} and
1398@var{y}. This is similar to calculating the arc tangent of
1399@var{x} / @var{y}, except that the signs of both arguments
1400are used to determine the quadrant of the result. This
1401procedure does not accept complex arguments.
1402@end deffn
1403
1404@c begin (texi-doc-string "guile" "$exp")
1405@deffn {Scheme Procedure} $exp x
1406Return e to the power of @var{x}, where e is the base of natural
1407logarithms (2.71828@dots{}).
1408@end deffn
1409
1410@c begin (texi-doc-string "guile" "$log")
1411@deffn {Scheme Procedure} $log x
1412Return the natural logarithm of @var{x}.
1413@end deffn
1414
1415@c begin (texi-doc-string "guile" "$sinh")
1416@deffn {Scheme Procedure} $sinh x
1417Return the hyperbolic sine of @var{x}.
1418@end deffn
1419
1420@c begin (texi-doc-string "guile" "$cosh")
1421@deffn {Scheme Procedure} $cosh x
1422Return the hyperbolic cosine of @var{x}.
1423@end deffn
1424
1425@c begin (texi-doc-string "guile" "$tanh")
1426@deffn {Scheme Procedure} $tanh x
1427Return the hyperbolic tangent of @var{x}.
1428@end deffn
1429
1430@c begin (texi-doc-string "guile" "$asinh")
1431@deffn {Scheme Procedure} $asinh x
1432Return the hyperbolic arcsine of @var{x}.
1433@end deffn
1434
1435@c begin (texi-doc-string "guile" "$acosh")
1436@deffn {Scheme Procedure} $acosh x
1437Return the hyperbolic arccosine of @var{x}.
1438@end deffn
1439
1440@c begin (texi-doc-string "guile" "$atanh")
1441@deffn {Scheme Procedure} $atanh x
1442Return the hyperbolic arctangent of @var{x}.
1443@end deffn
1444
1445C functions for the above are provided by the standard mathematics
1446library. Naturally these expect and return @code{double} arguments
1447(@pxref{Mathematics,,, libc, GNU C Library Reference Manual}).
1448
1449@multitable {xx} {Scheme Procedure} {C Function}
1450@item @tab Scheme Procedure @tab C Function
1451
1452@item @tab @code{$abs} @tab @code{fabs}
1453@item @tab @code{$sqrt} @tab @code{sqrt}
1454@item @tab @code{$sin} @tab @code{sin}
1455@item @tab @code{$cos} @tab @code{cos}
1456@item @tab @code{$tan} @tab @code{tan}
1457@item @tab @code{$asin} @tab @code{asin}
1458@item @tab @code{$acos} @tab @code{acos}
1459@item @tab @code{$atan} @tab @code{atan}
1460@item @tab @code{$atan2} @tab @code{atan2}
1461@item @tab @code{$exp} @tab @code{exp}
1462@item @tab @code{$expt} @tab @code{pow}
1463@item @tab @code{$log} @tab @code{log}
1464@item @tab @code{$sinh} @tab @code{sinh}
1465@item @tab @code{$cosh} @tab @code{cosh}
1466@item @tab @code{$tanh} @tab @code{tanh}
1467@item @tab @code{$asinh} @tab @code{asinh}
1468@item @tab @code{$acosh} @tab @code{acosh}
1469@item @tab @code{$atanh} @tab @code{atanh}
1470@end multitable
1471
1472@code{asinh}, @code{acosh} and @code{atanh} are C99 standard but might
1473not be available on older systems. Guile provides the following
1474equivalents (on all systems).
1475
1476@deftypefn {C Function} double scm_asinh (double x)
1477@deftypefnx {C Function} double scm_acosh (double x)
1478@deftypefnx {C Function} double scm_atanh (double x)
1479Return the hyperbolic arcsine, arccosine or arctangent of @var{x}
1480respectively.
1481@end deftypefn
1482
1483
1484@node Bitwise Operations
1485@subsubsection Bitwise Operations
1486
1487For the following bitwise functions, negative numbers are treated as
1488infinite precision twos-complements. For instance @math{-6} is bits
1489@math{@dots{}111010}, with infinitely many ones on the left. It can
1490be seen that adding 6 (binary 110) to such a bit pattern gives all
1491zeros.
1492
1493@deffn {Scheme Procedure} logand n1 n2 @dots{}
1494@deffnx {C Function} scm_logand (n1, n2)
1495Return the bitwise @sc{and} of the integer arguments.
1496
1497@lisp
1498(logand) @result{} -1
1499(logand 7) @result{} 7
1500(logand #b111 #b011 #b001) @result{} 1
1501@end lisp
1502@end deffn
1503
1504@deffn {Scheme Procedure} logior n1 n2 @dots{}
1505@deffnx {C Function} scm_logior (n1, n2)
1506Return the bitwise @sc{or} of the integer arguments.
1507
1508@lisp
1509(logior) @result{} 0
1510(logior 7) @result{} 7
1511(logior #b000 #b001 #b011) @result{} 3
1512@end lisp
1513@end deffn
1514
1515@deffn {Scheme Procedure} logxor n1 n2 @dots{}
1516@deffnx {C Function} scm_loxor (n1, n2)
1517Return the bitwise @sc{xor} of the integer arguments. A bit is
1518set in the result if it is set in an odd number of arguments.
1519
1520@lisp
1521(logxor) @result{} 0
1522(logxor 7) @result{} 7
1523(logxor #b000 #b001 #b011) @result{} 2
1524(logxor #b000 #b001 #b011 #b011) @result{} 1
1525@end lisp
1526@end deffn
1527
1528@deffn {Scheme Procedure} lognot n
1529@deffnx {C Function} scm_lognot (n)
1530Return the integer which is the ones-complement of the integer
1531argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1532
1533@lisp
1534(number->string (lognot #b10000000) 2)
1535 @result{} "-10000001"
1536(number->string (lognot #b0) 2)
1537 @result{} "-1"
1538@end lisp
1539@end deffn
1540
1541@deffn {Scheme Procedure} logtest j k
1542@deffnx {C Function} scm_logtest (j, k)
a46648ac
KR
1543Test whether @var{j} and @var{k} have any 1 bits in common. This is
1544equivalent to @code{(not (zero? (logand j k)))}, but without actually
1545calculating the @code{logand}, just testing for non-zero.
07d83abe 1546
a46648ac 1547@lisp
07d83abe
MV
1548(logtest #b0100 #b1011) @result{} #f
1549(logtest #b0100 #b0111) @result{} #t
1550@end lisp
1551@end deffn
1552
1553@deffn {Scheme Procedure} logbit? index j
1554@deffnx {C Function} scm_logbit_p (index, j)
a46648ac
KR
1555Test whether bit number @var{index} in @var{j} is set. @var{index}
1556starts from 0 for the least significant bit.
07d83abe 1557
a46648ac 1558@lisp
07d83abe
MV
1559(logbit? 0 #b1101) @result{} #t
1560(logbit? 1 #b1101) @result{} #f
1561(logbit? 2 #b1101) @result{} #t
1562(logbit? 3 #b1101) @result{} #t
1563(logbit? 4 #b1101) @result{} #f
1564@end lisp
1565@end deffn
1566
1567@deffn {Scheme Procedure} ash n cnt
1568@deffnx {C Function} scm_ash (n, cnt)
1569Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1570@var{cnt} is negative. This is an ``arithmetic'' shift.
1571
1572This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1573when @var{cnt} is negative it's a division, rounded towards negative
1574infinity. (Note that this is not the same rounding as @code{quotient}
1575does.)
1576
1577With @var{n} viewed as an infinite precision twos complement,
1578@code{ash} means a left shift introducing zero bits, or a right shift
1579dropping bits.
1580
1581@lisp
1582(number->string (ash #b1 3) 2) @result{} "1000"
1583(number->string (ash #b1010 -1) 2) @result{} "101"
1584
1585;; -23 is bits ...11101001, -6 is bits ...111010
1586(ash -23 -2) @result{} -6
1587@end lisp
1588@end deffn
1589
1590@deffn {Scheme Procedure} logcount n
1591@deffnx {C Function} scm_logcount (n)
a46648ac 1592Return the number of bits in integer @var{n}. If @var{n} is
07d83abe
MV
1593positive, the 1-bits in its binary representation are counted.
1594If negative, the 0-bits in its two's-complement binary
a46648ac 1595representation are counted. If zero, 0 is returned.
07d83abe
MV
1596
1597@lisp
1598(logcount #b10101010)
1599 @result{} 4
1600(logcount 0)
1601 @result{} 0
1602(logcount -2)
1603 @result{} 1
1604@end lisp
1605@end deffn
1606
1607@deffn {Scheme Procedure} integer-length n
1608@deffnx {C Function} scm_integer_length (n)
1609Return the number of bits necessary to represent @var{n}.
1610
1611For positive @var{n} this is how many bits to the most significant one
1612bit. For negative @var{n} it's how many bits to the most significant
1613zero bit in twos complement form.
1614
1615@lisp
1616(integer-length #b10101010) @result{} 8
1617(integer-length #b1111) @result{} 4
1618(integer-length 0) @result{} 0
1619(integer-length -1) @result{} 0
1620(integer-length -256) @result{} 8
1621(integer-length -257) @result{} 9
1622@end lisp
1623@end deffn
1624
1625@deffn {Scheme Procedure} integer-expt n k
1626@deffnx {C Function} scm_integer_expt (n, k)
a46648ac
KR
1627Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1628integer, @var{n} can be any number.
1629
1630Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1631in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1632@math{0^0} is 1.
07d83abe
MV
1633
1634@lisp
a46648ac
KR
1635(integer-expt 2 5) @result{} 32
1636(integer-expt -3 3) @result{} -27
1637(integer-expt 5 -3) @result{} 1/125
1638(integer-expt 0 0) @result{} 1
07d83abe
MV
1639@end lisp
1640@end deffn
1641
1642@deffn {Scheme Procedure} bit-extract n start end
1643@deffnx {C Function} scm_bit_extract (n, start, end)
1644Return the integer composed of the @var{start} (inclusive)
1645through @var{end} (exclusive) bits of @var{n}. The
1646@var{start}th bit becomes the 0-th bit in the result.
1647
1648@lisp
1649(number->string (bit-extract #b1101101010 0 4) 2)
1650 @result{} "1010"
1651(number->string (bit-extract #b1101101010 4 9) 2)
1652 @result{} "10110"
1653@end lisp
1654@end deffn
1655
1656
1657@node Random
1658@subsubsection Random Number Generation
1659
1660Pseudo-random numbers are generated from a random state object, which
1661can be created with @code{seed->random-state}. The @var{state}
1662parameter to the various functions below is optional, it defaults to
1663the state object in the @code{*random-state*} variable.
1664
1665@deffn {Scheme Procedure} copy-random-state [state]
1666@deffnx {C Function} scm_copy_random_state (state)
1667Return a copy of the random state @var{state}.
1668@end deffn
1669
1670@deffn {Scheme Procedure} random n [state]
1671@deffnx {C Function} scm_random (n, state)
1672Return a number in [0, @var{n}).
1673
1674Accepts a positive integer or real n and returns a
1675number of the same type between zero (inclusive) and
1676@var{n} (exclusive). The values returned have a uniform
1677distribution.
1678@end deffn
1679
1680@deffn {Scheme Procedure} random:exp [state]
1681@deffnx {C Function} scm_random_exp (state)
1682Return an inexact real in an exponential distribution with mean
16831. For an exponential distribution with mean @var{u} use @code{(*
1684@var{u} (random:exp))}.
1685@end deffn
1686
1687@deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1688@deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1689Fills @var{vect} with inexact real random numbers the sum of whose
1690squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1691space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1692the coordinates are uniformly distributed over the surface of the unit
1693n-sphere.
1694@end deffn
1695
1696@deffn {Scheme Procedure} random:normal [state]
1697@deffnx {C Function} scm_random_normal (state)
1698Return an inexact real in a normal distribution. The distribution
1699used has mean 0 and standard deviation 1. For a normal distribution
1700with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1701(* @var{d} (random:normal)))}.
1702@end deffn
1703
1704@deffn {Scheme Procedure} random:normal-vector! vect [state]
1705@deffnx {C Function} scm_random_normal_vector_x (vect, state)
1706Fills @var{vect} with inexact real random numbers that are
1707independent and standard normally distributed
1708(i.e., with mean 0 and variance 1).
1709@end deffn
1710
1711@deffn {Scheme Procedure} random:solid-sphere! vect [state]
1712@deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1713Fills @var{vect} with inexact real random numbers the sum of whose
1714squares is less than 1.0. Thinking of @var{vect} as coordinates in
1715space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1716the coordinates are uniformly distributed within the unit
4497bd2f 1717@var{n}-sphere.
07d83abe
MV
1718@c FIXME: What does this mean, particularly the n-sphere part?
1719@end deffn
1720
1721@deffn {Scheme Procedure} random:uniform [state]
1722@deffnx {C Function} scm_random_uniform (state)
1723Return a uniformly distributed inexact real random number in
1724[0,1).
1725@end deffn
1726
1727@deffn {Scheme Procedure} seed->random-state seed
1728@deffnx {C Function} scm_seed_to_random_state (seed)
1729Return a new random state using @var{seed}.
1730@end deffn
1731
1732@defvar *random-state*
1733The global random state used by the above functions when the
1734@var{state} parameter is not given.
1735@end defvar
1736
8c726cf0
NJ
1737Note that the initial value of @code{*random-state*} is the same every
1738time Guile starts up. Therefore, if you don't pass a @var{state}
1739parameter to the above procedures, and you don't set
1740@code{*random-state*} to @code{(seed->random-state your-seed)}, where
1741@code{your-seed} is something that @emph{isn't} the same every time,
1742you'll get the same sequence of ``random'' numbers on every run.
1743
1744For example, unless the relevant source code has changed, @code{(map
1745random (cdr (iota 30)))}, if the first use of random numbers since
1746Guile started up, will always give:
1747
1748@lisp
1749(map random (cdr (iota 19)))
1750@result{}
1751(0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1752@end lisp
1753
1754To use the time of day as the random seed, you can use code like this:
1755
1756@lisp
1757(let ((time (gettimeofday)))
1758 (set! *random-state*
1759 (seed->random-state (+ (car time)
1760 (cdr time)))))
1761@end lisp
1762
1763@noindent
1764And then (depending on the time of day, of course):
1765
1766@lisp
1767(map random (cdr (iota 19)))
1768@result{}
1769(0 0 1 0 2 4 5 4 5 5 9 3 10 1 8 3 14 17)
1770@end lisp
1771
1772For security applications, such as password generation, you should use
1773more bits of seed. Otherwise an open source password generator could
1774be attacked by guessing the seed@dots{} but that's a subject for
1775another manual.
1776
07d83abe
MV
1777
1778@node Characters
1779@subsection Characters
1780@tpindex Characters
1781
050ab45f
MV
1782In Scheme, a character literal is written as @code{#\@var{name}} where
1783@var{name} is the name of the character that you want. Printable
1784characters have their usual single character name; for example,
1785@code{#\a} is a lower case @code{a}.
07d83abe
MV
1786
1787Most of the ``control characters'' (those below codepoint 32) in the
1788@acronym{ASCII} character set, as well as the space, may be referred
050ab45f
MV
1789to by longer names: for example, @code{#\tab}, @code{#\esc},
1790@code{#\stx}, and so on. The following table describes the
1791@acronym{ASCII} names for each character.
07d83abe
MV
1792
1793@multitable @columnfractions .25 .25 .25 .25
1794@item 0 = @code{#\nul}
1795 @tab 1 = @code{#\soh}
1796 @tab 2 = @code{#\stx}
1797 @tab 3 = @code{#\etx}
1798@item 4 = @code{#\eot}
1799 @tab 5 = @code{#\enq}
1800 @tab 6 = @code{#\ack}
1801 @tab 7 = @code{#\bel}
1802@item 8 = @code{#\bs}
1803 @tab 9 = @code{#\ht}
1804 @tab 10 = @code{#\nl}
1805 @tab 11 = @code{#\vt}
1806@item 12 = @code{#\np}
1807 @tab 13 = @code{#\cr}
1808 @tab 14 = @code{#\so}
1809 @tab 15 = @code{#\si}
1810@item 16 = @code{#\dle}
1811 @tab 17 = @code{#\dc1}
1812 @tab 18 = @code{#\dc2}
1813 @tab 19 = @code{#\dc3}
1814@item 20 = @code{#\dc4}
1815 @tab 21 = @code{#\nak}
1816 @tab 22 = @code{#\syn}
1817 @tab 23 = @code{#\etb}
1818@item 24 = @code{#\can}
1819 @tab 25 = @code{#\em}
1820 @tab 26 = @code{#\sub}
1821 @tab 27 = @code{#\esc}
1822@item 28 = @code{#\fs}
1823 @tab 29 = @code{#\gs}
1824 @tab 30 = @code{#\rs}
1825 @tab 31 = @code{#\us}
1826@item 32 = @code{#\sp}
1827@end multitable
1828
1829The ``delete'' character (octal 177) may be referred to with the name
1830@code{#\del}.
1831
1832Several characters have more than one name:
1833
1834@multitable {@code{#\backspace}} {Original}
1835@item Alias @tab Original
1836@item @code{#\space} @tab @code{#\sp}
1837@item @code{#\newline} @tab @code{#\nl}
1838@item @code{#\tab} @tab @code{#\ht}
1839@item @code{#\backspace} @tab @code{#\bs}
1840@item @code{#\return} @tab @code{#\cr}
1841@item @code{#\page} @tab @code{#\np}
1842@item @code{#\null} @tab @code{#\nul}
1843@end multitable
1844
1845@rnindex char?
1846@deffn {Scheme Procedure} char? x
1847@deffnx {C Function} scm_char_p (x)
1848Return @code{#t} iff @var{x} is a character, else @code{#f}.
1849@end deffn
1850
1851@rnindex char=?
1852@deffn {Scheme Procedure} char=? x y
1853Return @code{#t} iff @var{x} is the same character as @var{y}, else @code{#f}.
1854@end deffn
1855
1856@rnindex char<?
1857@deffn {Scheme Procedure} char<? x y
1858Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence,
1859else @code{#f}.
1860@end deffn
1861
1862@rnindex char<=?
1863@deffn {Scheme Procedure} char<=? x y
1864Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1865@acronym{ASCII} sequence, else @code{#f}.
1866@end deffn
1867
1868@rnindex char>?
1869@deffn {Scheme Procedure} char>? x y
1870Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1871sequence, else @code{#f}.
1872@end deffn
1873
1874@rnindex char>=?
1875@deffn {Scheme Procedure} char>=? x y
1876Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1877@acronym{ASCII} sequence, else @code{#f}.
1878@end deffn
1879
1880@rnindex char-ci=?
1881@deffn {Scheme Procedure} char-ci=? x y
1882Return @code{#t} iff @var{x} is the same character as @var{y} ignoring
1883case, else @code{#f}.
1884@end deffn
1885
1886@rnindex char-ci<?
1887@deffn {Scheme Procedure} char-ci<? x y
1888Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence
1889ignoring case, else @code{#f}.
1890@end deffn
1891
1892@rnindex char-ci<=?
1893@deffn {Scheme Procedure} char-ci<=? x y
1894Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1895@acronym{ASCII} sequence ignoring case, else @code{#f}.
1896@end deffn
1897
1898@rnindex char-ci>?
1899@deffn {Scheme Procedure} char-ci>? x y
1900Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1901sequence ignoring case, else @code{#f}.
1902@end deffn
1903
1904@rnindex char-ci>=?
1905@deffn {Scheme Procedure} char-ci>=? x y
1906Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1907@acronym{ASCII} sequence ignoring case, else @code{#f}.
1908@end deffn
1909
1910@rnindex char-alphabetic?
1911@deffn {Scheme Procedure} char-alphabetic? chr
1912@deffnx {C Function} scm_char_alphabetic_p (chr)
1913Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
07d83abe
MV
1914@end deffn
1915
1916@rnindex char-numeric?
1917@deffn {Scheme Procedure} char-numeric? chr
1918@deffnx {C Function} scm_char_numeric_p (chr)
1919Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
07d83abe
MV
1920@end deffn
1921
1922@rnindex char-whitespace?
1923@deffn {Scheme Procedure} char-whitespace? chr
1924@deffnx {C Function} scm_char_whitespace_p (chr)
1925Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
07d83abe
MV
1926@end deffn
1927
1928@rnindex char-upper-case?
1929@deffn {Scheme Procedure} char-upper-case? chr
1930@deffnx {C Function} scm_char_upper_case_p (chr)
1931Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
07d83abe
MV
1932@end deffn
1933
1934@rnindex char-lower-case?
1935@deffn {Scheme Procedure} char-lower-case? chr
1936@deffnx {C Function} scm_char_lower_case_p (chr)
1937Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
07d83abe
MV
1938@end deffn
1939
1940@deffn {Scheme Procedure} char-is-both? chr
1941@deffnx {C Function} scm_char_is_both_p (chr)
1942Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
5676b4fa 1943@code{#f}.
07d83abe
MV
1944@end deffn
1945
1946@rnindex char->integer
1947@deffn {Scheme Procedure} char->integer chr
1948@deffnx {C Function} scm_char_to_integer (chr)
1949Return the number corresponding to ordinal position of @var{chr} in the
1950@acronym{ASCII} sequence.
1951@end deffn
1952
1953@rnindex integer->char
1954@deffn {Scheme Procedure} integer->char n
1955@deffnx {C Function} scm_integer_to_char (n)
1956Return the character at position @var{n} in the @acronym{ASCII} sequence.
1957@end deffn
1958
1959@rnindex char-upcase
1960@deffn {Scheme Procedure} char-upcase chr
1961@deffnx {C Function} scm_char_upcase (chr)
1962Return the uppercase character version of @var{chr}.
1963@end deffn
1964
1965@rnindex char-downcase
1966@deffn {Scheme Procedure} char-downcase chr
1967@deffnx {C Function} scm_char_downcase (chr)
1968Return the lowercase character version of @var{chr}.
1969@end deffn
1970
050ab45f
MV
1971@node Character Sets
1972@subsection Character Sets
07d83abe 1973
050ab45f
MV
1974The features described in this section correspond directly to SRFI-14.
1975
1976The data type @dfn{charset} implements sets of characters
1977(@pxref{Characters}). Because the internal representation of
1978character sets is not visible to the user, a lot of procedures for
1979handling them are provided.
1980
1981Character sets can be created, extended, tested for the membership of a
1982characters and be compared to other character sets.
1983
1984The Guile implementation of character sets currently deals only with
19858-bit characters. In the future, when Guile gets support for
1986international character sets, this will change, but the functions
1987provided here will always then be able to efficiently cope with very
1988large character sets.
1989
1990@menu
1991* Character Set Predicates/Comparison::
1992* Iterating Over Character Sets:: Enumerate charset elements.
1993* Creating Character Sets:: Making new charsets.
1994* Querying Character Sets:: Test charsets for membership etc.
1995* Character-Set Algebra:: Calculating new charsets.
1996* Standard Character Sets:: Variables containing predefined charsets.
1997@end menu
1998
1999@node Character Set Predicates/Comparison
2000@subsubsection Character Set Predicates/Comparison
2001
2002Use these procedures for testing whether an object is a character set,
2003or whether several character sets are equal or subsets of each other.
2004@code{char-set-hash} can be used for calculating a hash value, maybe for
2005usage in fast lookup procedures.
2006
2007@deffn {Scheme Procedure} char-set? obj
2008@deffnx {C Function} scm_char_set_p (obj)
2009Return @code{#t} if @var{obj} is a character set, @code{#f}
2010otherwise.
2011@end deffn
2012
2013@deffn {Scheme Procedure} char-set= . char_sets
2014@deffnx {C Function} scm_char_set_eq (char_sets)
2015Return @code{#t} if all given character sets are equal.
2016@end deffn
2017
2018@deffn {Scheme Procedure} char-set<= . char_sets
2019@deffnx {C Function} scm_char_set_leq (char_sets)
2020Return @code{#t} if every character set @var{cs}i is a subset
2021of character set @var{cs}i+1.
2022@end deffn
2023
2024@deffn {Scheme Procedure} char-set-hash cs [bound]
2025@deffnx {C Function} scm_char_set_hash (cs, bound)
2026Compute a hash value for the character set @var{cs}. If
2027@var{bound} is given and non-zero, it restricts the
2028returned value to the range 0 @dots{} @var{bound - 1}.
2029@end deffn
2030
2031@c ===================================================================
2032
2033@node Iterating Over Character Sets
2034@subsubsection Iterating Over Character Sets
2035
2036Character set cursors are a means for iterating over the members of a
2037character sets. After creating a character set cursor with
2038@code{char-set-cursor}, a cursor can be dereferenced with
2039@code{char-set-ref}, advanced to the next member with
2040@code{char-set-cursor-next}. Whether a cursor has passed past the last
2041element of the set can be checked with @code{end-of-char-set?}.
2042
2043Additionally, mapping and (un-)folding procedures for character sets are
2044provided.
2045
2046@deffn {Scheme Procedure} char-set-cursor cs
2047@deffnx {C Function} scm_char_set_cursor (cs)
2048Return a cursor into the character set @var{cs}.
2049@end deffn
2050
2051@deffn {Scheme Procedure} char-set-ref cs cursor
2052@deffnx {C Function} scm_char_set_ref (cs, cursor)
2053Return the character at the current cursor position
2054@var{cursor} in the character set @var{cs}. It is an error to
2055pass a cursor for which @code{end-of-char-set?} returns true.
2056@end deffn
2057
2058@deffn {Scheme Procedure} char-set-cursor-next cs cursor
2059@deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2060Advance the character set cursor @var{cursor} to the next
2061character in the character set @var{cs}. It is an error if the
2062cursor given satisfies @code{end-of-char-set?}.
2063@end deffn
2064
2065@deffn {Scheme Procedure} end-of-char-set? cursor
2066@deffnx {C Function} scm_end_of_char_set_p (cursor)
2067Return @code{#t} if @var{cursor} has reached the end of a
2068character set, @code{#f} otherwise.
2069@end deffn
2070
2071@deffn {Scheme Procedure} char-set-fold kons knil cs
2072@deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2073Fold the procedure @var{kons} over the character set @var{cs},
2074initializing it with @var{knil}.
2075@end deffn
2076
2077@deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2078@deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2079This is a fundamental constructor for character sets.
2080@itemize @bullet
2081@item @var{g} is used to generate a series of ``seed'' values
2082from the initial seed: @var{seed}, (@var{g} @var{seed}),
2083(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2084@item @var{p} tells us when to stop -- when it returns true
2085when applied to one of the seed values.
2086@item @var{f} maps each seed value to a character. These
2087characters are added to the base character set @var{base_cs} to
2088form the result; @var{base_cs} defaults to the empty set.
2089@end itemize
2090@end deffn
2091
2092@deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2093@deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2094This is a fundamental constructor for character sets.
2095@itemize @bullet
2096@item @var{g} is used to generate a series of ``seed'' values
2097from the initial seed: @var{seed}, (@var{g} @var{seed}),
2098(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2099@item @var{p} tells us when to stop -- when it returns true
2100when applied to one of the seed values.
2101@item @var{f} maps each seed value to a character. These
2102characters are added to the base character set @var{base_cs} to
2103form the result; @var{base_cs} defaults to the empty set.
2104@end itemize
2105@end deffn
2106
2107@deffn {Scheme Procedure} char-set-for-each proc cs
2108@deffnx {C Function} scm_char_set_for_each (proc, cs)
2109Apply @var{proc} to every character in the character set
2110@var{cs}. The return value is not specified.
2111@end deffn
2112
2113@deffn {Scheme Procedure} char-set-map proc cs
2114@deffnx {C Function} scm_char_set_map (proc, cs)
2115Map the procedure @var{proc} over every character in @var{cs}.
2116@var{proc} must be a character -> character procedure.
2117@end deffn
2118
2119@c ===================================================================
2120
2121@node Creating Character Sets
2122@subsubsection Creating Character Sets
2123
2124New character sets are produced with these procedures.
2125
2126@deffn {Scheme Procedure} char-set-copy cs
2127@deffnx {C Function} scm_char_set_copy (cs)
2128Return a newly allocated character set containing all
2129characters in @var{cs}.
2130@end deffn
2131
2132@deffn {Scheme Procedure} char-set . rest
2133@deffnx {C Function} scm_char_set (rest)
2134Return a character set containing all given characters.
2135@end deffn
2136
2137@deffn {Scheme Procedure} list->char-set list [base_cs]
2138@deffnx {C Function} scm_list_to_char_set (list, base_cs)
2139Convert the character list @var{list} to a character set. If
2140the character set @var{base_cs} is given, the character in this
2141set are also included in the result.
2142@end deffn
2143
2144@deffn {Scheme Procedure} list->char-set! list base_cs
2145@deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2146Convert the character list @var{list} to a character set. The
2147characters are added to @var{base_cs} and @var{base_cs} is
2148returned.
2149@end deffn
2150
2151@deffn {Scheme Procedure} string->char-set str [base_cs]
2152@deffnx {C Function} scm_string_to_char_set (str, base_cs)
2153Convert the string @var{str} to a character set. If the
2154character set @var{base_cs} is given, the characters in this
2155set are also included in the result.
2156@end deffn
2157
2158@deffn {Scheme Procedure} string->char-set! str base_cs
2159@deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2160Convert the string @var{str} to a character set. The
2161characters from the string are added to @var{base_cs}, and
2162@var{base_cs} is returned.
2163@end deffn
2164
2165@deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2166@deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2167Return a character set containing every character from @var{cs}
2168so that it satisfies @var{pred}. If provided, the characters
2169from @var{base_cs} are added to the result.
2170@end deffn
2171
2172@deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2173@deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2174Return a character set containing every character from @var{cs}
2175so that it satisfies @var{pred}. The characters are added to
2176@var{base_cs} and @var{base_cs} is returned.
2177@end deffn
2178
2179@deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2180@deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2181Return a character set containing all characters whose
2182character codes lie in the half-open range
2183[@var{lower},@var{upper}).
2184
2185If @var{error} is a true value, an error is signalled if the
2186specified range contains characters which are not contained in
2187the implemented character range. If @var{error} is @code{#f},
2188these characters are silently left out of the resultung
2189character set.
2190
2191The characters in @var{base_cs} are added to the result, if
2192given.
2193@end deffn
2194
2195@deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2196@deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2197Return a character set containing all characters whose
2198character codes lie in the half-open range
2199[@var{lower},@var{upper}).
2200
2201If @var{error} is a true value, an error is signalled if the
2202specified range contains characters which are not contained in
2203the implemented character range. If @var{error} is @code{#f},
2204these characters are silently left out of the resultung
2205character set.
2206
2207The characters are added to @var{base_cs} and @var{base_cs} is
2208returned.
2209@end deffn
2210
2211@deffn {Scheme Procedure} ->char-set x
2212@deffnx {C Function} scm_to_char_set (x)
2213Coerces x into a char-set. @var{x} may be a string, character or char-set. A string is converted to the set of its constituent characters; a character is converted to a singleton set; a char-set is returned as-is.
2214@end deffn
2215
2216@c ===================================================================
2217
2218@node Querying Character Sets
2219@subsubsection Querying Character Sets
2220
2221Access the elements and other information of a character set with these
2222procedures.
2223
2224@deffn {Scheme Procedure} char-set-size cs
2225@deffnx {C Function} scm_char_set_size (cs)
2226Return the number of elements in character set @var{cs}.
2227@end deffn
2228
2229@deffn {Scheme Procedure} char-set-count pred cs
2230@deffnx {C Function} scm_char_set_count (pred, cs)
2231Return the number of the elements int the character set
2232@var{cs} which satisfy the predicate @var{pred}.
2233@end deffn
2234
2235@deffn {Scheme Procedure} char-set->list cs
2236@deffnx {C Function} scm_char_set_to_list (cs)
2237Return a list containing the elements of the character set
2238@var{cs}.
2239@end deffn
2240
2241@deffn {Scheme Procedure} char-set->string cs
2242@deffnx {C Function} scm_char_set_to_string (cs)
2243Return a string containing the elements of the character set
2244@var{cs}. The order in which the characters are placed in the
2245string is not defined.
2246@end deffn
2247
2248@deffn {Scheme Procedure} char-set-contains? cs ch
2249@deffnx {C Function} scm_char_set_contains_p (cs, ch)
2250Return @code{#t} iff the character @var{ch} is contained in the
2251character set @var{cs}.
2252@end deffn
2253
2254@deffn {Scheme Procedure} char-set-every pred cs
2255@deffnx {C Function} scm_char_set_every (pred, cs)
2256Return a true value if every character in the character set
2257@var{cs} satisfies the predicate @var{pred}.
2258@end deffn
2259
2260@deffn {Scheme Procedure} char-set-any pred cs
2261@deffnx {C Function} scm_char_set_any (pred, cs)
2262Return a true value if any character in the character set
2263@var{cs} satisfies the predicate @var{pred}.
2264@end deffn
2265
2266@c ===================================================================
2267
2268@node Character-Set Algebra
2269@subsubsection Character-Set Algebra
2270
2271Character sets can be manipulated with the common set algebra operation,
2272such as union, complement, intersection etc. All of these procedures
2273provide side-effecting variants, which modify their character set
2274argument(s).
2275
2276@deffn {Scheme Procedure} char-set-adjoin cs . rest
2277@deffnx {C Function} scm_char_set_adjoin (cs, rest)
2278Add all character arguments to the first argument, which must
2279be a character set.
2280@end deffn
2281
2282@deffn {Scheme Procedure} char-set-delete cs . rest
2283@deffnx {C Function} scm_char_set_delete (cs, rest)
2284Delete all character arguments from the first argument, which
2285must be a character set.
2286@end deffn
2287
2288@deffn {Scheme Procedure} char-set-adjoin! cs . rest
2289@deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
2290Add all character arguments to the first argument, which must
2291be a character set.
2292@end deffn
2293
2294@deffn {Scheme Procedure} char-set-delete! cs . rest
2295@deffnx {C Function} scm_char_set_delete_x (cs, rest)
2296Delete all character arguments from the first argument, which
2297must be a character set.
2298@end deffn
2299
2300@deffn {Scheme Procedure} char-set-complement cs
2301@deffnx {C Function} scm_char_set_complement (cs)
2302Return the complement of the character set @var{cs}.
2303@end deffn
2304
2305@deffn {Scheme Procedure} char-set-union . rest
2306@deffnx {C Function} scm_char_set_union (rest)
2307Return the union of all argument character sets.
2308@end deffn
2309
2310@deffn {Scheme Procedure} char-set-intersection . rest
2311@deffnx {C Function} scm_char_set_intersection (rest)
2312Return the intersection of all argument character sets.
2313@end deffn
2314
2315@deffn {Scheme Procedure} char-set-difference cs1 . rest
2316@deffnx {C Function} scm_char_set_difference (cs1, rest)
2317Return the difference of all argument character sets.
2318@end deffn
2319
2320@deffn {Scheme Procedure} char-set-xor . rest
2321@deffnx {C Function} scm_char_set_xor (rest)
2322Return the exclusive-or of all argument character sets.
2323@end deffn
2324
2325@deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
2326@deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
2327Return the difference and the intersection of all argument
2328character sets.
2329@end deffn
2330
2331@deffn {Scheme Procedure} char-set-complement! cs
2332@deffnx {C Function} scm_char_set_complement_x (cs)
2333Return the complement of the character set @var{cs}.
2334@end deffn
2335
2336@deffn {Scheme Procedure} char-set-union! cs1 . rest
2337@deffnx {C Function} scm_char_set_union_x (cs1, rest)
2338Return the union of all argument character sets.
2339@end deffn
2340
2341@deffn {Scheme Procedure} char-set-intersection! cs1 . rest
2342@deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
2343Return the intersection of all argument character sets.
2344@end deffn
2345
2346@deffn {Scheme Procedure} char-set-difference! cs1 . rest
2347@deffnx {C Function} scm_char_set_difference_x (cs1, rest)
2348Return the difference of all argument character sets.
2349@end deffn
2350
2351@deffn {Scheme Procedure} char-set-xor! cs1 . rest
2352@deffnx {C Function} scm_char_set_xor_x (cs1, rest)
2353Return the exclusive-or of all argument character sets.
2354@end deffn
2355
2356@deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
2357@deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
2358Return the difference and the intersection of all argument
2359character sets.
2360@end deffn
2361
2362@c ===================================================================
2363
2364@node Standard Character Sets
2365@subsubsection Standard Character Sets
2366
2367In order to make the use of the character set data type and procedures
2368useful, several predefined character set variables exist.
2369
49dec04b
LC
2370@cindex codeset
2371@cindex charset
2372@cindex locale
2373
2374Currently, the contents of these character sets are recomputed upon a
2375successful @code{setlocale} call (@pxref{Locales}) in order to reflect
2376the characters available in the current locale's codeset. For
2377instance, @code{char-set:letter} contains 52 characters under an ASCII
2378locale (e.g., the default @code{C} locale) and 117 characters under an
2379ISO-8859-1 (``Latin-1'') locale.
2380
c9dc8c6c
MV
2381@defvr {Scheme Variable} char-set:lower-case
2382@defvrx {C Variable} scm_char_set_lower_case
050ab45f 2383All lower-case characters.
c9dc8c6c 2384@end defvr
050ab45f 2385
c9dc8c6c
MV
2386@defvr {Scheme Variable} char-set:upper-case
2387@defvrx {C Variable} scm_char_set_upper_case
050ab45f 2388All upper-case characters.
c9dc8c6c 2389@end defvr
050ab45f 2390
c9dc8c6c
MV
2391@defvr {Scheme Variable} char-set:title-case
2392@defvrx {C Variable} scm_char_set_title_case
050ab45f 2393This is empty, because ASCII has no titlecase characters.
c9dc8c6c 2394@end defvr
050ab45f 2395
c9dc8c6c
MV
2396@defvr {Scheme Variable} char-set:letter
2397@defvrx {C Variable} scm_char_set_letter
050ab45f
MV
2398All letters, e.g. the union of @code{char-set:lower-case} and
2399@code{char-set:upper-case}.
c9dc8c6c 2400@end defvr
050ab45f 2401
c9dc8c6c
MV
2402@defvr {Scheme Variable} char-set:digit
2403@defvrx {C Variable} scm_char_set_digit
050ab45f 2404All digits.
c9dc8c6c 2405@end defvr
050ab45f 2406
c9dc8c6c
MV
2407@defvr {Scheme Variable} char-set:letter+digit
2408@defvrx {C Variable} scm_char_set_letter_and_digit
050ab45f 2409The union of @code{char-set:letter} and @code{char-set:digit}.
c9dc8c6c 2410@end defvr
050ab45f 2411
c9dc8c6c
MV
2412@defvr {Scheme Variable} char-set:graphic
2413@defvrx {C Variable} scm_char_set_graphic
050ab45f 2414All characters which would put ink on the paper.
c9dc8c6c 2415@end defvr
050ab45f 2416
c9dc8c6c
MV
2417@defvr {Scheme Variable} char-set:printing
2418@defvrx {C Variable} scm_char_set_printing
050ab45f 2419The union of @code{char-set:graphic} and @code{char-set:whitespace}.
c9dc8c6c 2420@end defvr
050ab45f 2421
c9dc8c6c
MV
2422@defvr {Scheme Variable} char-set:whitespace
2423@defvrx {C Variable} scm_char_set_whitespace
050ab45f 2424All whitespace characters.
c9dc8c6c 2425@end defvr
050ab45f 2426
c9dc8c6c
MV
2427@defvr {Scheme Variable} char-set:blank
2428@defvrx {C Variable} scm_char_set_blank
050ab45f
MV
2429All horizontal whitespace characters, that is @code{#\space} and
2430@code{#\tab}.
c9dc8c6c 2431@end defvr
050ab45f 2432
c9dc8c6c
MV
2433@defvr {Scheme Variable} char-set:iso-control
2434@defvrx {C Variable} scm_char_set_iso_control
050ab45f 2435The ISO control characters with the codes 0--31 and 127.
c9dc8c6c 2436@end defvr
050ab45f 2437
c9dc8c6c
MV
2438@defvr {Scheme Variable} char-set:punctuation
2439@defvrx {C Variable} scm_char_set_punctuation
050ab45f 2440The characters @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
c9dc8c6c 2441@end defvr
050ab45f 2442
c9dc8c6c
MV
2443@defvr {Scheme Variable} char-set:symbol
2444@defvrx {C Variable} scm_char_set_symbol
050ab45f 2445The characters @code{$+<=>^`|~}.
c9dc8c6c 2446@end defvr
050ab45f 2447
c9dc8c6c
MV
2448@defvr {Scheme Variable} char-set:hex-digit
2449@defvrx {C Variable} scm_char_set_hex_digit
050ab45f 2450The hexadecimal digits @code{0123456789abcdefABCDEF}.
c9dc8c6c 2451@end defvr
050ab45f 2452
c9dc8c6c
MV
2453@defvr {Scheme Variable} char-set:ascii
2454@defvrx {C Variable} scm_char_set_ascii
050ab45f 2455All ASCII characters.
c9dc8c6c 2456@end defvr
050ab45f 2457
c9dc8c6c
MV
2458@defvr {Scheme Variable} char-set:empty
2459@defvrx {C Variable} scm_char_set_empty
050ab45f 2460The empty character set.
c9dc8c6c 2461@end defvr
050ab45f 2462
c9dc8c6c
MV
2463@defvr {Scheme Variable} char-set:full
2464@defvrx {C Variable} scm_char_set_full
050ab45f 2465This character set contains all possible characters.
c9dc8c6c 2466@end defvr
07d83abe
MV
2467
2468@node Strings
2469@subsection Strings
2470@tpindex Strings
2471
2472Strings are fixed-length sequences of characters. They can be created
2473by calling constructor procedures, but they can also literally get
2474entered at the @acronym{REPL} or in Scheme source files.
2475
2476@c Guile provides a rich set of string processing procedures, because text
2477@c handling is very important when Guile is used as a scripting language.
2478
2479Strings always carry the information about how many characters they are
2480composed of with them, so there is no special end-of-string character,
2481like in C. That means that Scheme strings can contain any character,
c48c62d0
MV
2482even the @samp{#\nul} character @samp{\0}.
2483
2484To use strings efficiently, you need to know a bit about how Guile
2485implements them. In Guile, a string consists of two parts, a head and
2486the actual memory where the characters are stored. When a string (or
2487a substring of it) is copied, only a new head gets created, the memory
2488is usually not copied. The two heads start out pointing to the same
2489memory.
2490
2491When one of these two strings is modified, as with @code{string-set!},
2492their common memory does get copied so that each string has its own
2493memory and modifying one does not accidently modify the other as well.
2494Thus, Guile's strings are `copy on write'; the actual copying of their
2495memory is delayed until one string is written to.
2496
2497This implementation makes functions like @code{substring} very
2498efficient in the common case that no modifications are done to the
2499involved strings.
2500
2501If you do know that your strings are getting modified right away, you
2502can use @code{substring/copy} instead of @code{substring}. This
2503function performs the copy immediately at the time of creation. This
2504is more efficient, especially in a multi-threaded program. Also,
2505@code{substring/copy} can avoid the problem that a short substring
2506holds on to the memory of a very large original string that could
2507otherwise be recycled.
2508
2509If you want to avoid the copy altogether, so that modifications of one
2510string show up in the other, you can use @code{substring/shared}. The
2511strings created by this procedure are called @dfn{mutation sharing
2512substrings} since the substring and the original string share
2513modifications to each other.
07d83abe 2514
05256760
MV
2515If you want to prevent modifications, use @code{substring/read-only}.
2516
c9dc8c6c
MV
2517Guile provides all procedures of SRFI-13 and a few more.
2518
07d83abe 2519@menu
5676b4fa
MV
2520* String Syntax:: Read syntax for strings.
2521* String Predicates:: Testing strings for certain properties.
2522* String Constructors:: Creating new string objects.
2523* List/String Conversion:: Converting from/to lists of characters.
2524* String Selection:: Select portions from strings.
2525* String Modification:: Modify parts or whole strings.
2526* String Comparison:: Lexicographic ordering predicates.
2527* String Searching:: Searching in strings.
2528* Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2529* Reversing and Appending Strings:: Appending strings to form a new string.
2530* Mapping Folding and Unfolding:: Iterating over strings.
2531* Miscellaneous String Operations:: Replicating, insertion, parsing, ...
91210d62 2532* Conversion to/from C::
07d83abe
MV
2533@end menu
2534
2535@node String Syntax
2536@subsubsection String Read Syntax
2537
2538@c In the following @code is used to get a good font in TeX etc, but
2539@c is omitted for Info format, so as not to risk any confusion over
2540@c whether surrounding ` ' quotes are part of the escape or are
2541@c special in a string (they're not).
2542
2543The read syntax for strings is an arbitrarily long sequence of
c48c62d0 2544characters enclosed in double quotes (@nicode{"}).
07d83abe
MV
2545
2546Backslash is an escape character and can be used to insert the
2547following special characters. @nicode{\"} and @nicode{\\} are R5RS
2548standard, the rest are Guile extensions, notice they follow C string
2549syntax.
2550
2551@table @asis
2552@item @nicode{\\}
2553Backslash character.
2554
2555@item @nicode{\"}
2556Double quote character (an unescaped @nicode{"} is otherwise the end
2557of the string).
2558
2559@item @nicode{\0}
2560NUL character (ASCII 0).
2561
2562@item @nicode{\a}
2563Bell character (ASCII 7).
2564
2565@item @nicode{\f}
2566Formfeed character (ASCII 12).
2567
2568@item @nicode{\n}
2569Newline character (ASCII 10).
2570
2571@item @nicode{\r}
2572Carriage return character (ASCII 13).
2573
2574@item @nicode{\t}
2575Tab character (ASCII 9).
2576
2577@item @nicode{\v}
2578Vertical tab character (ASCII 11).
2579
2580@item @nicode{\xHH}
2581Character code given by two hexadecimal digits. For example
2582@nicode{\x7f} for an ASCII DEL (127).
2583@end table
2584
2585@noindent
2586The following are examples of string literals:
2587
2588@lisp
2589"foo"
2590"bar plonk"
2591"Hello World"
2592"\"Hi\", he said."
2593@end lisp
2594
2595
2596@node String Predicates
2597@subsubsection String Predicates
2598
2599The following procedures can be used to check whether a given string
2600fulfills some specified property.
2601
2602@rnindex string?
2603@deffn {Scheme Procedure} string? obj
2604@deffnx {C Function} scm_string_p (obj)
2605Return @code{#t} if @var{obj} is a string, else @code{#f}.
2606@end deffn
2607
91210d62
MV
2608@deftypefn {C Function} int scm_is_string (SCM obj)
2609Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
2610@end deftypefn
2611
07d83abe
MV
2612@deffn {Scheme Procedure} string-null? str
2613@deffnx {C Function} scm_string_null_p (str)
2614Return @code{#t} if @var{str}'s length is zero, and
2615@code{#f} otherwise.
2616@lisp
2617(string-null? "") @result{} #t
2618y @result{} "foo"
2619(string-null? y) @result{} #f
2620@end lisp
2621@end deffn
2622
5676b4fa
MV
2623@deffn {Scheme Procedure} string-any char_pred s [start [end]]
2624@deffnx {C Function} scm_string_any (char_pred, s, start, end)
c100a12c 2625Check if @var{char_pred} is true for any character in string @var{s}.
5676b4fa 2626
c100a12c
KR
2627@var{char_pred} can be a character to check for any equal to that, or
2628a character set (@pxref{Character Sets}) to check for any in that set,
2629or a predicate procedure to call.
5676b4fa 2630
c100a12c
KR
2631For a procedure, calls @code{(@var{char_pred} c)} are made
2632successively on the characters from @var{start} to @var{end}. If
2633@var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
2634stops and that return value is the return from @code{string-any}. The
2635call on the last character (ie.@: at @math{@var{end}-1}), if that
2636point is reached, is a tail call.
2637
2638If there are no characters in @var{s} (ie.@: @var{start} equals
2639@var{end}) then the return is @code{#f}.
5676b4fa
MV
2640@end deffn
2641
2642@deffn {Scheme Procedure} string-every char_pred s [start [end]]
2643@deffnx {C Function} scm_string_every (char_pred, s, start, end)
c100a12c
KR
2644Check if @var{char_pred} is true for every character in string
2645@var{s}.
5676b4fa 2646
c100a12c
KR
2647@var{char_pred} can be a character to check for every character equal
2648to that, or a character set (@pxref{Character Sets}) to check for
2649every character being in that set, or a predicate procedure to call.
2650
2651For a procedure, calls @code{(@var{char_pred} c)} are made
2652successively on the characters from @var{start} to @var{end}. If
2653@var{char_pred} returns @code{#f}, @code{string-every} stops and
2654returns @code{#f}. The call on the last character (ie.@: at
2655@math{@var{end}-1}), if that point is reached, is a tail call and the
2656return from that call is the return from @code{string-every}.
5676b4fa
MV
2657
2658If there are no characters in @var{s} (ie.@: @var{start} equals
2659@var{end}) then the return is @code{#t}.
5676b4fa
MV
2660@end deffn
2661
07d83abe
MV
2662@node String Constructors
2663@subsubsection String Constructors
2664
2665The string constructor procedures create new string objects, possibly
c48c62d0
MV
2666initializing them with some specified character data. See also
2667@xref{String Selection}, for ways to create strings from existing
2668strings.
07d83abe
MV
2669
2670@c FIXME::martin: list->string belongs into `List/String Conversion'
2671
bba26c32 2672@deffn {Scheme Procedure} string char@dots{}
07d83abe 2673@rnindex string
bba26c32
KR
2674Return a newly allocated string made from the given character
2675arguments.
2676
2677@example
2678(string #\x #\y #\z) @result{} "xyz"
2679(string) @result{} ""
2680@end example
2681@end deffn
2682
2683@deffn {Scheme Procedure} list->string lst
2684@deffnx {C Function} scm_string (lst)
07d83abe 2685@rnindex list->string
bba26c32
KR
2686Return a newly allocated string made from a list of characters.
2687
2688@example
2689(list->string '(#\a #\b #\c)) @result{} "abc"
2690@end example
2691@end deffn
2692
2693@deffn {Scheme Procedure} reverse-list->string lst
2694@deffnx {C Function} scm_reverse_list_to_string (lst)
2695Return a newly allocated string made from a list of characters, in
2696reverse order.
2697
2698@example
2699(reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
2700@end example
07d83abe
MV
2701@end deffn
2702
2703@rnindex make-string
2704@deffn {Scheme Procedure} make-string k [chr]
2705@deffnx {C Function} scm_make_string (k, chr)
2706Return a newly allocated string of
2707length @var{k}. If @var{chr} is given, then all elements of
2708the string are initialized to @var{chr}, otherwise the contents
2709of the @var{string} are unspecified.
2710@end deffn
2711
c48c62d0
MV
2712@deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
2713Like @code{scm_make_string}, but expects the length as a
2714@code{size_t}.
2715@end deftypefn
2716
5676b4fa
MV
2717@deffn {Scheme Procedure} string-tabulate proc len
2718@deffnx {C Function} scm_string_tabulate (proc, len)
2719@var{proc} is an integer->char procedure. Construct a string
2720of size @var{len} by applying @var{proc} to each index to
2721produce the corresponding string element. The order in which
2722@var{proc} is applied to the indices is not specified.
2723@end deffn
2724
5676b4fa
MV
2725@deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
2726@deffnx {C Function} scm_string_join (ls, delimiter, grammar)
2727Append the string in the string list @var{ls}, using the string
2728@var{delim} as a delimiter between the elements of @var{ls}.
2729@var{grammar} is a symbol which specifies how the delimiter is
2730placed between the strings, and defaults to the symbol
2731@code{infix}.
2732
2733@table @code
2734@item infix
2735Insert the separator between list elements. An empty string
2736will produce an empty list.
2737@item string-infix
2738Like @code{infix}, but will raise an error if given the empty
2739list.
2740@item suffix
2741Insert the separator after every list element.
2742@item prefix
2743Insert the separator before each list element.
2744@end table
2745@end deffn
2746
07d83abe
MV
2747@node List/String Conversion
2748@subsubsection List/String conversion
2749
2750When processing strings, it is often convenient to first convert them
2751into a list representation by using the procedure @code{string->list},
2752work with the resulting list, and then convert it back into a string.
2753These procedures are useful for similar tasks.
2754
2755@rnindex string->list
5676b4fa
MV
2756@deffn {Scheme Procedure} string->list str [start [end]]
2757@deffnx {C Function} scm_substring_to_list (str, start, end)
07d83abe 2758@deffnx {C Function} scm_string_to_list (str)
5676b4fa 2759Convert the string @var{str} into a list of characters.
07d83abe
MV
2760@end deffn
2761
2762@deffn {Scheme Procedure} string-split str chr
2763@deffnx {C Function} scm_string_split (str, chr)
2764Split the string @var{str} into the a list of the substrings delimited
2765by appearances of the character @var{chr}. Note that an empty substring
2766between separator characters will result in an empty string in the
2767result list.
2768
2769@lisp
2770(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
2771@result{}
2772("root" "x" "0" "0" "root" "/root" "/bin/bash")
2773
2774(string-split "::" #\:)
2775@result{}
2776("" "" "")
2777
2778(string-split "" #\:)
2779@result{}
2780("")
2781@end lisp
2782@end deffn
2783
2784
2785@node String Selection
2786@subsubsection String Selection
2787
2788Portions of strings can be extracted by these procedures.
2789@code{string-ref} delivers individual characters whereas
2790@code{substring} can be used to extract substrings from longer strings.
2791
2792@rnindex string-length
2793@deffn {Scheme Procedure} string-length string
2794@deffnx {C Function} scm_string_length (string)
2795Return the number of characters in @var{string}.
2796@end deffn
2797
c48c62d0
MV
2798@deftypefn {C Function} size_t scm_c_string_length (SCM str)
2799Return the number of characters in @var{str} as a @code{size_t}.
2800@end deftypefn
2801
07d83abe
MV
2802@rnindex string-ref
2803@deffn {Scheme Procedure} string-ref str k
2804@deffnx {C Function} scm_string_ref (str, k)
2805Return character @var{k} of @var{str} using zero-origin
2806indexing. @var{k} must be a valid index of @var{str}.
2807@end deffn
2808
c48c62d0
MV
2809@deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
2810Return character @var{k} of @var{str} using zero-origin
2811indexing. @var{k} must be a valid index of @var{str}.
2812@end deftypefn
2813
07d83abe 2814@rnindex string-copy
5676b4fa
MV
2815@deffn {Scheme Procedure} string-copy str [start [end]]
2816@deffnx {C Function} scm_substring_copy (str, start, end)
07d83abe 2817@deffnx {C Function} scm_string_copy (str)
5676b4fa 2818Return a copy of the given string @var{str}.
c48c62d0
MV
2819
2820The returned string shares storage with @var{str} initially, but it is
2821copied as soon as one of the two strings is modified.
07d83abe
MV
2822@end deffn
2823
2824@rnindex substring
2825@deffn {Scheme Procedure} substring str start [end]
2826@deffnx {C Function} scm_substring (str, start, end)
c48c62d0 2827Return a new string formed from the characters
07d83abe
MV
2828of @var{str} beginning with index @var{start} (inclusive) and
2829ending with index @var{end} (exclusive).
2830@var{str} must be a string, @var{start} and @var{end} must be
2831exact integers satisfying:
2832
28330 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
c48c62d0
MV
2834
2835The returned string shares storage with @var{str} initially, but it is
2836copied as soon as one of the two strings is modified.
2837@end deffn
2838
2839@deffn {Scheme Procedure} substring/shared str start [end]
2840@deffnx {C Function} scm_substring_shared (str, start, end)
2841Like @code{substring}, but the strings continue to share their storage
2842even if they are modified. Thus, modifications to @var{str} show up
2843in the new string, and vice versa.
2844@end deffn
2845
2846@deffn {Scheme Procedure} substring/copy str start [end]
2847@deffnx {C Function} scm_substring_copy (str, start, end)
2848Like @code{substring}, but the storage for the new string is copied
2849immediately.
07d83abe
MV
2850@end deffn
2851
05256760
MV
2852@deffn {Scheme Procedure} substring/read-only str start [end]
2853@deffnx {C Function} scm_substring_read_only (str, start, end)
2854Like @code{substring}, but the resulting string can not be modified.
2855@end deffn
2856
c48c62d0
MV
2857@deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
2858@deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
2859@deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
05256760 2860@deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
c48c62d0
MV
2861Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
2862@end deftypefn
2863
5676b4fa
MV
2864@deffn {Scheme Procedure} string-take s n
2865@deffnx {C Function} scm_string_take (s, n)
2866Return the @var{n} first characters of @var{s}.
2867@end deffn
2868
2869@deffn {Scheme Procedure} string-drop s n
2870@deffnx {C Function} scm_string_drop (s, n)
2871Return all but the first @var{n} characters of @var{s}.
2872@end deffn
2873
2874@deffn {Scheme Procedure} string-take-right s n
2875@deffnx {C Function} scm_string_take_right (s, n)
2876Return the @var{n} last characters of @var{s}.
2877@end deffn
2878
2879@deffn {Scheme Procedure} string-drop-right s n
2880@deffnx {C Function} scm_string_drop_right (s, n)
2881Return all but the last @var{n} characters of @var{s}.
2882@end deffn
2883
2884@deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
6337e7fb 2885@deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
5676b4fa 2886@deffnx {C Function} scm_string_pad (s, len, chr, start, end)
5676b4fa 2887@deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
6337e7fb
KR
2888Take characters @var{start} to @var{end} from the string @var{s} and
2889either pad with @var{char} or truncate them to give @var{len}
2890characters.
2891
2892@code{string-pad} pads or truncates on the left, so for example
2893
2894@example
2895(string-pad "x" 3) @result{} " x"
2896(string-pad "abcde" 3) @result{} "cde"
2897@end example
2898
2899@code{string-pad-right} pads or truncates on the right, so for example
2900
2901@example
2902(string-pad-right "x" 3) @result{} "x "
2903(string-pad-right "abcde" 3) @result{} "abc"
2904@end example
5676b4fa
MV
2905@end deffn
2906
2907@deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
dc297bb7
KR
2908@deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
2909@deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
5676b4fa 2910@deffnx {C Function} scm_string_trim (s, char_pred, start, end)
5676b4fa 2911@deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
5676b4fa 2912@deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
dc297bb7 2913Trim occurrances of @var{char_pred} from the ends of @var{s}.
5676b4fa 2914
dc297bb7
KR
2915@code{string-trim} trims @var{char_pred} characters from the left
2916(start) of the string, @code{string-trim-right} trims them from the
2917right (end) of the string, @code{string-trim-both} trims from both
2918ends.
5676b4fa 2919
dc297bb7
KR
2920@var{char_pred} can be a character, a character set, or a predicate
2921procedure to call on each character. If @var{char_pred} is not given
2922the default is whitespace as per @code{char-set:whitespace}
2923(@pxref{Standard Character Sets}).
5676b4fa 2924
dc297bb7
KR
2925@example
2926(string-trim " x ") @result{} "x "
2927(string-trim-right "banana" #\a) @result{} "banan"
2928(string-trim-both ".,xy:;" char-set:punctuation)
2929 @result{} "xy"
2930(string-trim-both "xyzzy" (lambda (c)
2931 (or (eqv? c #\x)
2932 (eqv? c #\y))))
2933 @result{} "zz"
2934@end example
5676b4fa
MV
2935@end deffn
2936
07d83abe
MV
2937@node String Modification
2938@subsubsection String Modification
2939
2940These procedures are for modifying strings in-place. This means that the
2941result of the operation is not a new string; instead, the original string's
2942memory representation is modified.
2943
2944@rnindex string-set!
2945@deffn {Scheme Procedure} string-set! str k chr
2946@deffnx {C Function} scm_string_set_x (str, k, chr)
2947Store @var{chr} in element @var{k} of @var{str} and return
2948an unspecified value. @var{k} must be a valid index of
2949@var{str}.
2950@end deffn
2951
c48c62d0
MV
2952@deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
2953Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
2954@end deftypefn
2955
07d83abe 2956@rnindex string-fill!
5676b4fa
MV
2957@deffn {Scheme Procedure} string-fill! str chr [start [end]]
2958@deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
07d83abe 2959@deffnx {C Function} scm_string_fill_x (str, chr)
5676b4fa
MV
2960Stores @var{chr} in every element of the given @var{str} and
2961returns an unspecified value.
07d83abe
MV
2962@end deffn
2963
2964@deffn {Scheme Procedure} substring-fill! str start end fill
2965@deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
2966Change every character in @var{str} between @var{start} and
2967@var{end} to @var{fill}.
2968
2969@lisp
2970(define y "abcdefg")
2971(substring-fill! y 1 3 #\r)
2972y
2973@result{} "arrdefg"
2974@end lisp
2975@end deffn
2976
2977@deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
2978@deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
2979Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
2980into @var{str2} beginning at position @var{start2}.
2981@var{str1} and @var{str2} can be the same string.
2982@end deffn
2983
5676b4fa
MV
2984@deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
2985@deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
2986Copy the sequence of characters from index range [@var{start},
2987@var{end}) in string @var{s} to string @var{target}, beginning
2988at index @var{tstart}. The characters are copied left-to-right
2989or right-to-left as needed -- the copy is guaranteed to work,
2990even if @var{target} and @var{s} are the same string. It is an
2991error if the copy operation runs off the end of the target
2992string.
2993@end deffn
2994
07d83abe
MV
2995
2996@node String Comparison
2997@subsubsection String Comparison
2998
2999The procedures in this section are similar to the character ordering
3000predicates (@pxref{Characters}), but are defined on character sequences.
07d83abe 3001
5676b4fa
MV
3002The first set is specified in R5RS and has names that end in @code{?}.
3003The second set is specified in SRFI-13 and the names have no ending
3004@code{?}. The predicates ending in @code{-ci} ignore the character case
a2f00b9b 3005when comparing strings. @xref{Text Collation, the @code{(ice-9
b89c4943 3006i18n)} module}, for locale-dependent string comparison.
07d83abe
MV
3007
3008@rnindex string=?
3009@deffn {Scheme Procedure} string=? s1 s2
3010Lexicographic equality predicate; return @code{#t} if the two
3011strings are the same length and contain the same characters in
3012the same positions, otherwise return @code{#f}.
3013
3014The procedure @code{string-ci=?} treats upper and lower case
3015letters as though they were the same character, but
3016@code{string=?} treats upper and lower case as distinct
3017characters.
3018@end deffn
3019
3020@rnindex string<?
3021@deffn {Scheme Procedure} string<? s1 s2
3022Lexicographic ordering predicate; return @code{#t} if @var{s1}
3023is lexicographically less than @var{s2}.
3024@end deffn
3025
3026@rnindex string<=?
3027@deffn {Scheme Procedure} string<=? s1 s2
3028Lexicographic ordering predicate; return @code{#t} if @var{s1}
3029is lexicographically less than or equal to @var{s2}.
3030@end deffn
3031
3032@rnindex string>?
3033@deffn {Scheme Procedure} string>? s1 s2
3034Lexicographic ordering predicate; return @code{#t} if @var{s1}
3035is lexicographically greater than @var{s2}.
3036@end deffn
3037
3038@rnindex string>=?
3039@deffn {Scheme Procedure} string>=? s1 s2
3040Lexicographic ordering predicate; return @code{#t} if @var{s1}
3041is lexicographically greater than or equal to @var{s2}.
3042@end deffn
3043
3044@rnindex string-ci=?
3045@deffn {Scheme Procedure} string-ci=? s1 s2
3046Case-insensitive string equality predicate; return @code{#t} if
3047the two strings are the same length and their component
3048characters match (ignoring case) at each position; otherwise
3049return @code{#f}.
3050@end deffn
3051
5676b4fa 3052@rnindex string-ci<?
07d83abe
MV
3053@deffn {Scheme Procedure} string-ci<? s1 s2
3054Case insensitive lexicographic ordering predicate; return
3055@code{#t} if @var{s1} is lexicographically less than @var{s2}
3056regardless of case.
3057@end deffn
3058
3059@rnindex string<=?
3060@deffn {Scheme Procedure} string-ci<=? s1 s2
3061Case insensitive lexicographic ordering predicate; return
3062@code{#t} if @var{s1} is lexicographically less than or equal
3063to @var{s2} regardless of case.
3064@end deffn
3065
3066@rnindex string-ci>?
3067@deffn {Scheme Procedure} string-ci>? s1 s2
3068Case insensitive lexicographic ordering predicate; return
3069@code{#t} if @var{s1} is lexicographically greater than
3070@var{s2} regardless of case.
3071@end deffn
3072
3073@rnindex string-ci>=?
3074@deffn {Scheme Procedure} string-ci>=? s1 s2
3075Case insensitive lexicographic ordering predicate; return
3076@code{#t} if @var{s1} is lexicographically greater than or
3077equal to @var{s2} regardless of case.
3078@end deffn
3079
5676b4fa
MV
3080@deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3081@deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3082Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3083mismatch index, depending upon whether @var{s1} is less than,
3084equal to, or greater than @var{s2}. The mismatch index is the
3085largest index @var{i} such that for every 0 <= @var{j} <
3086@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3087@var{i} is the first position that does not match.
3088@end deffn
3089
3090@deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3091@deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3092Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3093mismatch index, depending upon whether @var{s1} is less than,
3094equal to, or greater than @var{s2}. The mismatch index is the
3095largest index @var{i} such that for every 0 <= @var{j} <
3096@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3097@var{i} is the first position that does not match. The
3098character comparison is done case-insensitively.
3099@end deffn
3100
3101@deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3102@deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3103Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3104value otherwise.
3105@end deffn
3106
3107@deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3108@deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3109Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3110value otherwise.
3111@end deffn
3112
3113@deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3114@deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3115Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3116true value otherwise.
3117@end deffn
3118
3119@deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3120@deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3121Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3122true value otherwise.
3123@end deffn
3124
3125@deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3126@deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3127Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3128value otherwise.
3129@end deffn
3130
3131@deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3132@deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3133Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3134otherwise.
3135@end deffn
3136
3137@deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3138@deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3139Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3140value otherwise. The character comparison is done
3141case-insensitively.
3142@end deffn
3143
3144@deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3145@deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3146Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3147value otherwise. The character comparison is done
3148case-insensitively.
3149@end deffn
3150
3151@deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3152@deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3153Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3154true value otherwise. The character comparison is done
3155case-insensitively.
3156@end deffn
3157
3158@deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3159@deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3160Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3161true value otherwise. The character comparison is done
3162case-insensitively.
3163@end deffn
3164
3165@deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3166@deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3167Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3168value otherwise. The character comparison is done
3169case-insensitively.
3170@end deffn
3171
3172@deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3173@deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3174Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3175otherwise. The character comparison is done
3176case-insensitively.
3177@end deffn
3178
3179@deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3180@deffnx {C Function} scm_substring_hash (s, bound, start, end)
3181Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3182@end deffn
3183
3184@deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3185@deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3186Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3187@end deffn
07d83abe
MV
3188
3189@node String Searching
3190@subsubsection String Searching
3191
5676b4fa
MV
3192@deffn {Scheme Procedure} string-index s char_pred [start [end]]
3193@deffnx {C Function} scm_string_index (s, char_pred, start, end)
3194Search through the string @var{s} from left to right, returning
3195the index of the first occurence of a character which
07d83abe 3196
5676b4fa
MV
3197@itemize @bullet
3198@item
3199equals @var{char_pred}, if it is character,
07d83abe 3200
5676b4fa
MV
3201@item
3202satisifies the predicate @var{char_pred}, if it is a procedure,
07d83abe 3203
5676b4fa
MV
3204@item
3205is in the set @var{char_pred}, if it is a character set.
3206@end itemize
3207@end deffn
07d83abe 3208
5676b4fa
MV
3209@deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3210@deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3211Search through the string @var{s} from right to left, returning
3212the index of the last occurence of a character which
3213
3214@itemize @bullet
3215@item
3216equals @var{char_pred}, if it is character,
3217
3218@item
3219satisifies the predicate @var{char_pred}, if it is a procedure,
3220
3221@item
3222is in the set if @var{char_pred} is a character set.
3223@end itemize
07d83abe
MV
3224@end deffn
3225
5676b4fa
MV
3226@deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3227@deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3228Return the length of the longest common prefix of the two
3229strings.
3230@end deffn
07d83abe 3231
5676b4fa
MV
3232@deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3233@deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3234Return the length of the longest common prefix of the two
3235strings, ignoring character case.
3236@end deffn
07d83abe 3237
5676b4fa
MV
3238@deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3239@deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3240Return the length of the longest common suffix of the two
3241strings.
3242@end deffn
07d83abe 3243
5676b4fa
MV
3244@deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3245@deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3246Return the length of the longest common suffix of the two
3247strings, ignoring character case.
3248@end deffn
3249
3250@deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3251@deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3252Is @var{s1} a prefix of @var{s2}?
3253@end deffn
3254
3255@deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3256@deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3257Is @var{s1} a prefix of @var{s2}, ignoring character case?
3258@end deffn
3259
3260@deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3261@deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3262Is @var{s1} a suffix of @var{s2}?
3263@end deffn
3264
3265@deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3266@deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3267Is @var{s1} a suffix of @var{s2}, ignoring character case?
3268@end deffn
3269
3270@deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3271@deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3272Search through the string @var{s} from right to left, returning
3273the index of the last occurence of a character which
3274
3275@itemize @bullet
3276@item
3277equals @var{char_pred}, if it is character,
3278
3279@item
3280satisifies the predicate @var{char_pred}, if it is a procedure,
3281
3282@item
3283is in the set if @var{char_pred} is a character set.
3284@end itemize
3285@end deffn
3286
3287@deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3288@deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3289Search through the string @var{s} from left to right, returning
3290the index of the first occurence of a character which
3291
3292@itemize @bullet
3293@item
3294does not equal @var{char_pred}, if it is character,
3295
3296@item
3297does not satisify the predicate @var{char_pred}, if it is a
3298procedure,
3299
3300@item
3301is not in the set if @var{char_pred} is a character set.
3302@end itemize
3303@end deffn
3304
3305@deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3306@deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3307Search through the string @var{s} from right to left, returning
3308the index of the last occurence of a character which
3309
3310@itemize @bullet
3311@item
3312does not equal @var{char_pred}, if it is character,
3313
3314@item
3315does not satisfy the predicate @var{char_pred}, if it is a
3316procedure,
3317
3318@item
3319is not in the set if @var{char_pred} is a character set.
3320@end itemize
3321@end deffn
3322
3323@deffn {Scheme Procedure} string-count s char_pred [start [end]]
3324@deffnx {C Function} scm_string_count (s, char_pred, start, end)
3325Return the count of the number of characters in the string
3326@var{s} which
3327
3328@itemize @bullet
3329@item
3330equals @var{char_pred}, if it is character,
3331
3332@item
3333satisifies the predicate @var{char_pred}, if it is a procedure.
3334
3335@item
3336is in the set @var{char_pred}, if it is a character set.
3337@end itemize
3338@end deffn
3339
3340@deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3341@deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3342Does string @var{s1} contain string @var{s2}? Return the index
3343in @var{s1} where @var{s2} occurs as a substring, or false.
3344The optional start/end indices restrict the operation to the
3345indicated substrings.
3346@end deffn
3347
3348@deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3349@deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3350Does string @var{s1} contain string @var{s2}? Return the index
3351in @var{s1} where @var{s2} occurs as a substring, or false.
3352The optional start/end indices restrict the operation to the
3353indicated substrings. Character comparison is done
3354case-insensitively.
07d83abe
MV
3355@end deffn
3356
3357@node Alphabetic Case Mapping
3358@subsubsection Alphabetic Case Mapping
3359
3360These are procedures for mapping strings to their upper- or lower-case
3361equivalents, respectively, or for capitalizing strings.
3362
5676b4fa
MV
3363@deffn {Scheme Procedure} string-upcase str [start [end]]
3364@deffnx {C Function} scm_substring_upcase (str, start, end)
07d83abe 3365@deffnx {C Function} scm_string_upcase (str)
5676b4fa 3366Upcase every character in @code{str}.
07d83abe
MV
3367@end deffn
3368
5676b4fa
MV
3369@deffn {Scheme Procedure} string-upcase! str [start [end]]
3370@deffnx {C Function} scm_substring_upcase_x (str, start, end)
07d83abe 3371@deffnx {C Function} scm_string_upcase_x (str)
5676b4fa
MV
3372Destructively upcase every character in @code{str}.
3373
07d83abe 3374@lisp
5676b4fa
MV
3375(string-upcase! y)
3376@result{} "ARRDEFG"
3377y
3378@result{} "ARRDEFG"
07d83abe
MV
3379@end lisp
3380@end deffn
3381
5676b4fa
MV
3382@deffn {Scheme Procedure} string-downcase str [start [end]]
3383@deffnx {C Function} scm_substring_downcase (str, start, end)
07d83abe 3384@deffnx {C Function} scm_string_downcase (str)
5676b4fa 3385Downcase every character in @var{str}.
07d83abe
MV
3386@end deffn
3387
5676b4fa
MV
3388@deffn {Scheme Procedure} string-downcase! str [start [end]]
3389@deffnx {C Function} scm_substring_downcase_x (str, start, end)
07d83abe 3390@deffnx {C Function} scm_string_downcase_x (str)
5676b4fa
MV
3391Destructively downcase every character in @var{str}.
3392
07d83abe 3393@lisp
5676b4fa
MV
3394y
3395@result{} "ARRDEFG"
3396(string-downcase! y)
3397@result{} "arrdefg"
3398y
3399@result{} "arrdefg"
07d83abe
MV
3400@end lisp
3401@end deffn
3402
3403@deffn {Scheme Procedure} string-capitalize str
3404@deffnx {C Function} scm_string_capitalize (str)
3405Return a freshly allocated string with the characters in
3406@var{str}, where the first character of every word is
3407capitalized.
3408@end deffn
3409
3410@deffn {Scheme Procedure} string-capitalize! str
3411@deffnx {C Function} scm_string_capitalize_x (str)
3412Upcase the first character of every word in @var{str}
3413destructively and return @var{str}.
3414
3415@lisp
3416y @result{} "hello world"
3417(string-capitalize! y) @result{} "Hello World"
3418y @result{} "Hello World"
3419@end lisp
3420@end deffn
3421
5676b4fa
MV
3422@deffn {Scheme Procedure} string-titlecase str [start [end]]
3423@deffnx {C Function} scm_string_titlecase (str, start, end)
3424Titlecase every first character in a word in @var{str}.
3425@end deffn
07d83abe 3426
5676b4fa
MV
3427@deffn {Scheme Procedure} string-titlecase! str [start [end]]
3428@deffnx {C Function} scm_string_titlecase_x (str, start, end)
3429Destructively titlecase every first character in a word in
3430@var{str}.
3431@end deffn
3432
3433@node Reversing and Appending Strings
3434@subsubsection Reversing and Appending Strings
07d83abe 3435
5676b4fa
MV
3436@deffn {Scheme Procedure} string-reverse str [start [end]]
3437@deffnx {C Function} scm_string_reverse (str, start, end)
3438Reverse the string @var{str}. The optional arguments
3439@var{start} and @var{end} delimit the region of @var{str} to
3440operate on.
3441@end deffn
3442
3443@deffn {Scheme Procedure} string-reverse! str [start [end]]
3444@deffnx {C Function} scm_string_reverse_x (str, start, end)
3445Reverse the string @var{str} in-place. The optional arguments
3446@var{start} and @var{end} delimit the region of @var{str} to
3447operate on. The return value is unspecified.
3448@end deffn
07d83abe
MV
3449
3450@rnindex string-append
3451@deffn {Scheme Procedure} string-append . args
3452@deffnx {C Function} scm_string_append (args)
3453Return a newly allocated string whose characters form the
3454concatenation of the given strings, @var{args}.
3455
3456@example
3457(let ((h "hello "))
3458 (string-append h "world"))
3459@result{} "hello world"
3460@end example
3461@end deffn
3462
5676b4fa
MV
3463@deffn {Scheme Procedure} string-append/shared . ls
3464@deffnx {C Function} scm_string_append_shared (ls)
3465Like @code{string-append}, but the result may share memory
3466with the argument strings.
3467@end deffn
3468
3469@deffn {Scheme Procedure} string-concatenate ls
3470@deffnx {C Function} scm_string_concatenate (ls)
3471Append the elements of @var{ls} (which must be strings)
3472together into a single string. Guaranteed to return a freshly
3473allocated string.
3474@end deffn
3475
3476@deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3477@deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3478Without optional arguments, this procedure is equivalent to
3479
3480@smalllisp
3481(string-concatenate (reverse ls))
3482@end smalllisp
3483
3484If the optional argument @var{final_string} is specified, it is
3485consed onto the beginning to @var{ls} before performing the
3486list-reverse and string-concatenate operations. If @var{end}
3487is given, only the characters of @var{final_string} up to index
3488@var{end} are used.
3489
3490Guaranteed to return a freshly allocated string.
3491@end deffn
3492
3493@deffn {Scheme Procedure} string-concatenate/shared ls
3494@deffnx {C Function} scm_string_concatenate_shared (ls)
3495Like @code{string-concatenate}, but the result may share memory
3496with the strings in the list @var{ls}.
3497@end deffn
3498
3499@deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3500@deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3501Like @code{string-concatenate-reverse}, but the result may
3502share memory with the the strings in the @var{ls} arguments.
3503@end deffn
3504
3505@node Mapping Folding and Unfolding
3506@subsubsection Mapping, Folding, and Unfolding
3507
3508@deffn {Scheme Procedure} string-map proc s [start [end]]
3509@deffnx {C Function} scm_string_map (proc, s, start, end)
3510@var{proc} is a char->char procedure, it is mapped over
3511@var{s}. The order in which the procedure is applied to the
3512string elements is not specified.
3513@end deffn
3514
3515@deffn {Scheme Procedure} string-map! proc s [start [end]]
3516@deffnx {C Function} scm_string_map_x (proc, s, start, end)
3517@var{proc} is a char->char procedure, it is mapped over
3518@var{s}. The order in which the procedure is applied to the
3519string elements is not specified. The string @var{s} is
3520modified in-place, the return value is not specified.
3521@end deffn
3522
3523@deffn {Scheme Procedure} string-for-each proc s [start [end]]
3524@deffnx {C Function} scm_string_for_each (proc, s, start, end)
3525@var{proc} is mapped over @var{s} in left-to-right order. The
3526return value is not specified.
3527@end deffn
3528
3529@deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
3530@deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
2a7820f2
KR
3531Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
3532right.
3533
3534For example, to change characters to alternately upper and lower case,
3535
3536@example
3537(define str (string-copy "studly"))
45867c2a
NJ
3538(string-for-each-index
3539 (lambda (i)
3540 (string-set! str i
3541 ((if (even? i) char-upcase char-downcase)
3542 (string-ref str i))))
3543 str)
2a7820f2
KR
3544str @result{} "StUdLy"
3545@end example
5676b4fa
MV
3546@end deffn
3547
3548@deffn {Scheme Procedure} string-fold kons knil s [start [end]]
3549@deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
3550Fold @var{kons} over the characters of @var{s}, with @var{knil}
3551as the terminating element, from left to right. @var{kons}
3552must expect two arguments: The actual character and the last
3553result of @var{kons}' application.
3554@end deffn
3555
3556@deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
3557@deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
3558Fold @var{kons} over the characters of @var{s}, with @var{knil}
3559as the terminating element, from right to left. @var{kons}
3560must expect two arguments: The actual character and the last
3561result of @var{kons}' application.
3562@end deffn
3563
3564@deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
3565@deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
3566@itemize @bullet
3567@item @var{g} is used to generate a series of @emph{seed}
3568values from the initial @var{seed}: @var{seed}, (@var{g}
3569@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3570@dots{}
3571@item @var{p} tells us when to stop -- when it returns true
3572when applied to one of these seed values.
3573@item @var{f} maps each seed value to the corresponding
3574character in the result string. These chars are assembled
3575into the string in a left-to-right order.
3576@item @var{base} is the optional initial/leftmost portion
3577of the constructed string; it default to the empty
3578string.
3579@item @var{make_final} is applied to the terminal seed
3580value (on which @var{p} returns true) to produce
3581the final/rightmost portion of the constructed string.
9a18d8d4 3582The default is nothing extra.
5676b4fa
MV
3583@end itemize
3584@end deffn
3585
3586@deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
3587@deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
3588@itemize @bullet
3589@item @var{g} is used to generate a series of @emph{seed}
3590values from the initial @var{seed}: @var{seed}, (@var{g}
3591@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3592@dots{}
3593@item @var{p} tells us when to stop -- when it returns true
3594when applied to one of these seed values.
3595@item @var{f} maps each seed value to the corresponding
3596character in the result string. These chars are assembled
3597into the string in a right-to-left order.
3598@item @var{base} is the optional initial/rightmost portion
3599of the constructed string; it default to the empty
3600string.
3601@item @var{make_final} is applied to the terminal seed
3602value (on which @var{p} returns true) to produce
3603the final/leftmost portion of the constructed string.
3604It defaults to @code{(lambda (x) )}.
3605@end itemize
3606@end deffn
3607
3608@node Miscellaneous String Operations
3609@subsubsection Miscellaneous String Operations
3610
3611@deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
3612@deffnx {C Function} scm_xsubstring (s, from, to, start, end)
3613This is the @emph{extended substring} procedure that implements
3614replicated copying of a substring of some string.
3615
3616@var{s} is a string, @var{start} and @var{end} are optional
3617arguments that demarcate a substring of @var{s}, defaulting to
36180 and the length of @var{s}. Replicate this substring up and
3619down index space, in both the positive and negative directions.
3620@code{xsubstring} returns the substring of this string
3621beginning at index @var{from}, and ending at @var{to}, which
3622defaults to @var{from} + (@var{end} - @var{start}).
3623@end deffn
3624
3625@deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
3626@deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
3627Exactly the same as @code{xsubstring}, but the extracted text
3628is written into the string @var{target} starting at index
3629@var{tstart}. The operation is not defined if @code{(eq?
3630@var{target} @var{s})} or these arguments share storage -- you
3631cannot copy a string on top of itself.
3632@end deffn
3633
3634@deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
3635@deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
3636Return the string @var{s1}, but with the characters
3637@var{start1} @dots{} @var{end1} replaced by the characters
3638@var{start2} @dots{} @var{end2} from @var{s2}.
3639@end deffn
3640
3641@deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
3642@deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
3643Split the string @var{s} into a list of substrings, where each
3644substring is a maximal non-empty contiguous sequence of
3645characters from the character set @var{token_set}, which
3646defaults to @code{char-set:graphic}.
3647If @var{start} or @var{end} indices are provided, they restrict
3648@code{string-tokenize} to operating on the indicated substring
3649of @var{s}.
3650@end deffn
3651
3652@deffn {Scheme Procedure} string-filter s char_pred [start [end]]
3653@deffnx {C Function} scm_string_filter (s, char_pred, start, end)
08de3e24 3654Filter the string @var{s}, retaining only those characters which
a88e2a96 3655satisfy @var{char_pred}.
08de3e24
KR
3656
3657If @var{char_pred} is a procedure, it is applied to each character as
3658a predicate, if it is a character, it is tested for equality and if it
3659is a character set, it is tested for membership.
5676b4fa
MV
3660@end deffn
3661
3662@deffn {Scheme Procedure} string-delete s char_pred [start [end]]
3663@deffnx {C Function} scm_string_delete (s, char_pred, start, end)
a88e2a96 3664Delete characters satisfying @var{char_pred} from @var{s}.
08de3e24
KR
3665
3666If @var{char_pred} is a procedure, it is applied to each character as
3667a predicate, if it is a character, it is tested for equality and if it
3668is a character set, it is tested for membership.
5676b4fa
MV
3669@end deffn
3670
91210d62
MV
3671@node Conversion to/from C
3672@subsubsection Conversion to/from C
3673
3674When creating a Scheme string from a C string or when converting a
3675Scheme string to a C string, the concept of character encoding becomes
3676important.
3677
3678In C, a string is just a sequence of bytes, and the character encoding
3679describes the relation between these bytes and the actual characters
c88453e8
MV
3680that make up the string. For Scheme strings, character encoding is
3681not an issue (most of the time), since in Scheme you never get to see
3682the bytes, only the characters.
91210d62
MV
3683
3684Well, ideally, anyway. Right now, Guile simply equates Scheme
3685characters and bytes, ignoring the possibility of multi-byte encodings
3686completely. This will change in the future, where Guile will use
c48c62d0
MV
3687Unicode codepoints as its characters and UTF-8 or some other encoding
3688as its internal encoding. When you exclusively use the functions
3689listed in this section, you are `future-proof'.
91210d62 3690
c88453e8
MV
3691Converting a Scheme string to a C string will often allocate fresh
3692memory to hold the result. You must take care that this memory is
3693properly freed eventually. In many cases, this can be achieved by
661ae7ab
MV
3694using @code{scm_dynwind_free} inside an appropriate dynwind context,
3695@xref{Dynamic Wind}.
91210d62
MV
3696
3697@deftypefn {C Function} SCM scm_from_locale_string (const char *str)
3698@deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
3699Creates a new Scheme string that has the same contents as @var{str}
3700when interpreted in the current locale character encoding.
3701
3702For @code{scm_from_locale_string}, @var{str} must be null-terminated.
3703
3704For @code{scm_from_locale_stringn}, @var{len} specifies the length of
3705@var{str} in bytes, and @var{str} does not need to be null-terminated.
3706If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
3707null-terminated and the real length will be found with @code{strlen}.
3708@end deftypefn
3709
3710@deftypefn {C Function} SCM scm_take_locale_string (char *str)
3711@deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
3712Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
3713respectively, but also frees @var{str} with @code{free} eventually.
3714Thus, you can use this function when you would free @var{str} anyway
3715immediately after creating the Scheme string. In certain cases, Guile
3716can then use @var{str} directly as its internal representation.
3717@end deftypefn
3718
4846ae2c
KR
3719@deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
3720@deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
91210d62
MV
3721Returns a C string in the current locale encoding with the same
3722contents as @var{str}. The C string must be freed with @code{free}
661ae7ab
MV
3723eventually, maybe by using @code{scm_dynwind_free}, @xref{Dynamic
3724Wind}.
91210d62
MV
3725
3726For @code{scm_to_locale_string}, the returned string is
3727null-terminated and an error is signalled when @var{str} contains
3728@code{#\nul} characters.
3729
3730For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
3731@var{str} might contain @code{#\nul} characters and the length of the
3732returned string in bytes is stored in @code{*@var{lenp}}. The
3733returned string will not be null-terminated in this case. If
3734@var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
3735@code{scm_to_locale_string}.
3736@end deftypefn
3737
3738@deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
3739Puts @var{str} as a C string in the current locale encoding into the
3740memory pointed to by @var{buf}. The buffer at @var{buf} has room for
3741@var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
3742more than that. No terminating @code{'\0'} will be stored.
3743
3744The return value of @code{scm_to_locale_stringbuf} is the number of
3745bytes that are needed for all of @var{str}, regardless of whether
3746@var{buf} was large enough to hold them. Thus, when the return value
3747is larger than @var{max_len}, only @var{max_len} bytes have been
3748stored and you probably need to try again with a larger buffer.
3749@end deftypefn
07d83abe 3750
b242715b
LC
3751@node Bytevectors
3752@subsection Bytevectors
3753
3754@cindex bytevector
3755@cindex R6RS
3756
3757A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevector)}
3758module provides the programming interface specified by the
5fa2deb3 3759@uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
b242715b
LC
3760Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
3761interpret their contents in a number of ways: bytevector contents can be
3762accessed as signed or unsigned integer of various sizes and endianness,
3763as IEEE-754 floating point numbers, or as strings. It is a useful tool
3764to encode and decode binary data.
3765
3766The R6RS (Section 4.3.4) specifies an external representation for
3767bytevectors, whereby the octets (integers in the range 0--255) contained
3768in the bytevector are represented as a list prefixed by @code{#vu8}:
3769
3770@lisp
3771#vu8(1 53 204)
3772@end lisp
3773
3774denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
3775string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
3776they do not need to be quoted:
3777
3778@lisp
3779#vu8(1 53 204)
3780@result{} #vu8(1 53 204)
3781@end lisp
3782
3783Bytevectors can be used with the binary input/output primitives of the
3784R6RS (@pxref{R6RS I/O Ports}).
3785
3786@menu
3787* Bytevector Endianness:: Dealing with byte order.
3788* Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
3789* Bytevectors as Integers:: Interpreting bytes as integers.
3790* Bytevectors and Integer Lists:: Converting to/from an integer list.
3791* Bytevectors as Floats:: Interpreting bytes as real numbers.
3792* Bytevectors as Strings:: Interpreting bytes as Unicode strings.
438974d0 3793* Bytevectors as Generalized Vectors:: Guile extension to the bytevector API.
b242715b
LC
3794@end menu
3795
3796@node Bytevector Endianness
3797@subsubsection Endianness
3798
3799@cindex endianness
3800@cindex byte order
3801@cindex word order
3802
3803Some of the following procedures take an @var{endianness} parameter.
5fa2deb3
AW
3804The @dfn{endianness} is defined as the order of bytes in multi-byte
3805numbers: numbers encoded in @dfn{big endian} have their most
3806significant bytes written first, whereas numbers encoded in
3807@dfn{little endian} have their least significant bytes
3808first@footnote{Big-endian and little-endian are the most common
3809``endiannesses'', but others do exist. For instance, the GNU MP
3810library allows @dfn{word order} to be specified independently of
3811@dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
3812Multiple Precision Arithmetic Library Manual}).}.
3813
3814Little-endian is the native endianness of the IA32 architecture and
3815its derivatives, while big-endian is native to SPARC and PowerPC,
3816among others. The @code{native-endianness} procedure returns the
3817native endianness of the machine it runs on.
b242715b
LC
3818
3819@deffn {Scheme Procedure} native-endianness
3820@deffnx {C Function} scm_native_endianness ()
3821Return a value denoting the native endianness of the host machine.
3822@end deffn
3823
3824@deffn {Scheme Macro} endianness symbol
3825Return an object denoting the endianness specified by @var{symbol}. If
5fa2deb3
AW
3826@var{symbol} is neither @code{big} nor @code{little} then an error is
3827raised at expand-time.
b242715b
LC
3828@end deffn
3829
3830@defvr {C Variable} scm_endianness_big
3831@defvrx {C Variable} scm_endianness_little
5fa2deb3 3832The objects denoting big- and little-endianness, respectively.
b242715b
LC
3833@end defvr
3834
3835
3836@node Bytevector Manipulation
3837@subsubsection Manipulating Bytevectors
3838
3839Bytevectors can be created, copied, and analyzed with the following
404bb5f8 3840procedures and C functions.
b242715b
LC
3841
3842@deffn {Scheme Procedure} make-bytevector len [fill]
3843@deffnx {C Function} scm_make_bytevector (len, fill)
2d34e924 3844@deffnx {C Function} scm_c_make_bytevector (size_t len)
b242715b 3845Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
d64fc8b0
LC
3846is given, fill it with @var{fill}; @var{fill} must be in the range
3847[-128,255].
b242715b
LC
3848@end deffn
3849
3850@deffn {Scheme Procedure} bytevector? obj
3851@deffnx {C Function} scm_bytevector_p (obj)
3852Return true if @var{obj} is a bytevector.
3853@end deffn
3854
404bb5f8
LC
3855@deftypefn {C Function} int scm_is_bytevector (SCM obj)
3856Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
3857@end deftypefn
3858
b242715b
LC
3859@deffn {Scheme Procedure} bytevector-length bv
3860@deffnx {C Function} scm_bytevector_length (bv)
3861Return the length in bytes of bytevector @var{bv}.
3862@end deffn
3863
404bb5f8
LC
3864@deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
3865Likewise, return the length in bytes of bytevector @var{bv}.
3866@end deftypefn
3867
b242715b
LC
3868@deffn {Scheme Procedure} bytevector=? bv1 bv2
3869@deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
3870Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
3871length and contents.
3872@end deffn
3873
3874@deffn {Scheme Procedure} bytevector-fill! bv fill
3875@deffnx {C Function} scm_bytevector_fill_x (bv, fill)
3876Fill bytevector @var{bv} with @var{fill}, a byte.
3877@end deffn
3878
3879@deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
3880@deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
3881Copy @var{len} bytes from @var{source} into @var{target}, starting
3882reading from @var{source-start} (a positive index within @var{source})
3883and start writing at @var{target-start}.
3884@end deffn
3885
3886@deffn {Scheme Procedure} bytevector-copy bv
3887@deffnx {C Function} scm_bytevector_copy (bv)
3888Return a newly allocated copy of @var{bv}.
3889@end deffn
3890
404bb5f8
LC
3891@deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
3892Return the byte at @var{index} in bytevector @var{bv}.
3893@end deftypefn
3894
3895@deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
3896Set the byte at @var{index} in @var{bv} to @var{value}.
3897@end deftypefn
3898
b242715b
LC
3899Low-level C macros are available. They do not perform any
3900type-checking; as such they should be used with care.
3901
3902@deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
3903Return the length in bytes of bytevector @var{bv}.
3904@end deftypefn
3905
3906@deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
3907Return a pointer to the contents of bytevector @var{bv}.
3908@end deftypefn
3909
3910
3911@node Bytevectors as Integers
3912@subsubsection Interpreting Bytevector Contents as Integers
3913
3914The contents of a bytevector can be interpreted as a sequence of
3915integers of any given size, sign, and endianness.
3916
3917@lisp
3918(let ((bv (make-bytevector 4)))
3919 (bytevector-u8-set! bv 0 #x12)
3920 (bytevector-u8-set! bv 1 #x34)
3921 (bytevector-u8-set! bv 2 #x56)
3922 (bytevector-u8-set! bv 3 #x78)
3923
3924 (map (lambda (number)
3925 (number->string number 16))
3926 (list (bytevector-u8-ref bv 0)
3927 (bytevector-u16-ref bv 0 (endianness big))
3928 (bytevector-u32-ref bv 0 (endianness little)))))
3929
3930@result{} ("12" "1234" "78563412")
3931@end lisp
3932
3933The most generic procedures to interpret bytevector contents as integers
3934are described below.
3935
3936@deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
3937@deffnx {Scheme Procedure} bytevector-sint-ref bv index endianness size
3938@deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
3939@deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
3940Return the @var{size}-byte long unsigned (resp. signed) integer at
3941index @var{index} in @var{bv}, decoded according to @var{endianness}.
3942@end deffn
3943
3944@deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
3945@deffnx {Scheme Procedure} bytevector-sint-set! bv index value endianness size
3946@deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
3947@deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
3948Set the @var{size}-byte long unsigned (resp. signed) integer at
3949@var{index} to @var{value}, encoded according to @var{endianness}.
3950@end deffn
3951
3952The following procedures are similar to the ones above, but specialized
3953to a given integer size:
3954
3955@deffn {Scheme Procedure} bytevector-u8-ref bv index
3956@deffnx {Scheme Procedure} bytevector-s8-ref bv index
3957@deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
3958@deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
3959@deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
3960@deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
3961@deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
3962@deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
3963@deffnx {C Function} scm_bytevector_u8_ref (bv, index)
3964@deffnx {C Function} scm_bytevector_s8_ref (bv, index)
3965@deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
3966@deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
3967@deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
3968@deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
3969@deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
3970@deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
3971Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
397216, 32 or 64) from @var{bv} at @var{index}, decoded according to
3973@var{endianness}.
3974@end deffn
3975
3976@deffn {Scheme Procedure} bytevector-u8-set! bv index value
3977@deffnx {Scheme Procedure} bytevector-s8-set! bv index value
3978@deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
3979@deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
3980@deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
3981@deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
3982@deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
3983@deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
3984@deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
3985@deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
3986@deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
3987@deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
3988@deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
3989@deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
3990@deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
3991@deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
3992Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
39938, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
3994@var{endianness}.
3995@end deffn
3996
3997Finally, a variant specialized for the host's endianness is available
3998for each of these functions (with the exception of the @code{u8}
3999accessors, for obvious reasons):
4000
4001@deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4002@deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4003@deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4004@deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4005@deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4006@deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4007@deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4008@deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4009@deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4010@deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4011@deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4012@deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4013Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
401416, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4015host's native endianness.
4016@end deffn
4017
4018@deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4019@deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4020@deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4021@deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4022@deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4023@deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4024@deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4025@deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4026@deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4027@deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4028@deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4029@deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4030Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
40318, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4032host's native endianness.
4033@end deffn
4034
4035
4036@node Bytevectors and Integer Lists
4037@subsubsection Converting Bytevectors to/from Integer Lists
4038
4039Bytevector contents can readily be converted to/from lists of signed or
4040unsigned integers:
4041
4042@lisp
4043(bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4044 (endianness little) 2)
4045@result{} (-1 -1)
4046@end lisp
4047
4048@deffn {Scheme Procedure} bytevector->u8-list bv
4049@deffnx {C Function} scm_bytevector_to_u8_list (bv)
4050Return a newly allocated list of unsigned 8-bit integers from the
4051contents of @var{bv}.
4052@end deffn
4053
4054@deffn {Scheme Procedure} u8-list->bytevector lst
4055@deffnx {C Function} scm_u8_list_to_bytevector (lst)
4056Return a newly allocated bytevector consisting of the unsigned 8-bit
4057integers listed in @var{lst}.
4058@end deffn
4059
4060@deffn {Scheme Procedure} bytevector->uint-list bv endianness size
4061@deffnx {Scheme Procedure} bytevector->sint-list bv endianness size
4062@deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4063@deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4064Return a list of unsigned (resp. signed) integers of @var{size} bytes
4065representing the contents of @var{bv}, decoded according to
4066@var{endianness}.
4067@end deffn
4068
4069@deffn {Scheme Procedure} uint-list->bytevector lst endianness size
4070@deffnx {Scheme Procedure} sint-list->bytevector lst endianness size
4071@deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4072@deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4073Return a new bytevector containing the unsigned (resp. signed) integers
4074listed in @var{lst} and encoded on @var{size} bytes according to
4075@var{endianness}.
4076@end deffn
4077
4078@node Bytevectors as Floats
4079@subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4080
4081@cindex IEEE-754 floating point numbers
4082
4083Bytevector contents can also be accessed as IEEE-754 single- or
4084double-precision floating point numbers (respectively 32 and 64-bit
4085long) using the procedures described here.
4086
4087@deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4088@deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4089@deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4090@deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4091Return the IEEE-754 single-precision floating point number from @var{bv}
4092at @var{index} according to @var{endianness}.
4093@end deffn
4094
4095@deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4096@deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4097@deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4098@deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4099Store real number @var{value} in @var{bv} at @var{index} according to
4100@var{endianness}.
4101@end deffn
4102
4103Specialized procedures are also available:
4104
4105@deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4106@deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4107@deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4108@deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4109Return the IEEE-754 single-precision floating point number from @var{bv}
4110at @var{index} according to the host's native endianness.
4111@end deffn
4112
4113@deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4114@deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4115@deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4116@deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4117Store real number @var{value} in @var{bv} at @var{index} according to
4118the host's native endianness.
4119@end deffn
4120
4121
4122@node Bytevectors as Strings
4123@subsubsection Interpreting Bytevector Contents as Unicode Strings
4124
4125@cindex Unicode string encoding
4126
4127Bytevector contents can also be interpreted as Unicode strings encoded
4128in one of the most commonly available encoding formats@footnote{Guile
41291.8 does @emph{not} support Unicode strings. Therefore, the procedures
4130described here assume that Guile strings are internally encoded
4131according to the current locale. For instance, if @code{$LC_CTYPE} is
4132@code{fr_FR.ISO-8859-1}, then @code{string->utf-8} @i{et al.} will
4133assume that Guile strings are Latin-1-encoded.}.
4134
4135@lisp
4136(utf8->string (u8-list->bytevector '(99 97 102 101)))
4137@result{} "cafe"
4138
4139(string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4140@result{} #vu8(99 97 102 195 169)
4141@end lisp
4142
4143@deffn {Scheme Procedure} string->utf8 str
4144@deffnx {Scheme Procedure} string->utf16 str
4145@deffnx {Scheme Procedure} string->utf32 str
4146@deffnx {C Function} scm_string_to_utf8 (str)
4147@deffnx {C Function} scm_string_to_utf16 (str)
4148@deffnx {C Function} scm_string_to_utf32 (str)
4149Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
4150UTF-32 (aka. UCS-4) encoding of @var{str}.
4151@end deffn
4152
4153@deffn {Scheme Procedure} utf8->string utf
4154@deffnx {Scheme Procedure} utf16->string utf
4155@deffnx {Scheme Procedure} utf32->string utf
4156@deffnx {C Function} scm_utf8_to_string (utf)
4157@deffnx {C Function} scm_utf16_to_string (utf)
4158@deffnx {C Function} scm_utf32_to_string (utf)
4159Return a newly allocated string that contains from the UTF-8-, UTF-16-,
4160or UTF-32-decoded contents of bytevector @var{utf}.
4161@end deffn
4162
438974d0
LC
4163@node Bytevectors as Generalized Vectors
4164@subsubsection Accessing Bytevectors with the Generalized Vector API
4165
4166As an extension to the R6RS, Guile allows bytevectors to be manipulated
4167with the @dfn{generalized vector} procedures (@pxref{Generalized
4168Vectors}). This also allows bytevectors to be accessed using the
4169generic @dfn{array} procedures (@pxref{Array Procedures}). When using
4170these APIs, bytes are accessed one at a time as 8-bit unsigned integers:
4171
4172@example
4173(define bv #vu8(0 1 2 3))
4174
4175(generalized-vector? bv)
4176@result{} #t
4177
4178(generalized-vector-ref bv 2)
4179@result{} 2
4180
4181(generalized-vector-set! bv 2 77)
4182(array-ref bv 2)
4183@result{} 77
4184
4185(array-type bv)
4186@result{} vu8
4187@end example
4188
b242715b 4189
07d83abe
MV
4190@node Regular Expressions
4191@subsection Regular Expressions
4192@tpindex Regular expressions
4193
4194@cindex regular expressions
4195@cindex regex
4196@cindex emacs regexp
4197
4198A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
4199describes a whole class of strings. A full description of regular
4200expressions and their syntax is beyond the scope of this manual;
4201an introduction can be found in the Emacs manual (@pxref{Regexps,
4202, Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
4203in many general Unix reference books.
4204
4205If your system does not include a POSIX regular expression library,
4206and you have not linked Guile with a third-party regexp library such
4207as Rx, these functions will not be available. You can tell whether
4208your Guile installation includes regular expression support by
4209checking whether @code{(provided? 'regex)} returns true.
4210
4211The following regexp and string matching features are provided by the
4212@code{(ice-9 regex)} module. Before using the described functions,
4213you should load this module by executing @code{(use-modules (ice-9
4214regex))}.
4215
4216@menu
4217* Regexp Functions:: Functions that create and match regexps.
4218* Match Structures:: Finding what was matched by a regexp.
4219* Backslash Escapes:: Removing the special meaning of regexp
4220 meta-characters.
4221@end menu
4222
4223
4224@node Regexp Functions
4225@subsubsection Regexp Functions
4226
4227By default, Guile supports POSIX extended regular expressions.
4228That means that the characters @samp{(}, @samp{)}, @samp{+} and
4229@samp{?} are special, and must be escaped if you wish to match the
4230literal characters.
4231
4232This regular expression interface was modeled after that
4233implemented by SCSH, the Scheme Shell. It is intended to be
4234upwardly compatible with SCSH regular expressions.
4235
083f9d74
KR
4236Zero bytes (@code{#\nul}) cannot be used in regex patterns or input
4237strings, since the underlying C functions treat that as the end of
4238string. If there's a zero byte an error is thrown.
4239
4240Patterns and input strings are treated as being in the locale
4241character set if @code{setlocale} has been called (@pxref{Locales}),
4242and in a multibyte locale this includes treating multi-byte sequences
4243as a single character. (Guile strings are currently merely bytes,
4244though this may change in the future, @xref{Conversion to/from C}.)
4245
07d83abe
MV
4246@deffn {Scheme Procedure} string-match pattern str [start]
4247Compile the string @var{pattern} into a regular expression and compare
4248it with @var{str}. The optional numeric argument @var{start} specifies
4249the position of @var{str} at which to begin matching.
4250
4251@code{string-match} returns a @dfn{match structure} which
4252describes what, if anything, was matched by the regular
4253expression. @xref{Match Structures}. If @var{str} does not match
4254@var{pattern} at all, @code{string-match} returns @code{#f}.
4255@end deffn
4256
4257Two examples of a match follow. In the first example, the pattern
4258matches the four digits in the match string. In the second, the pattern
4259matches nothing.
4260
4261@example
4262(string-match "[0-9][0-9][0-9][0-9]" "blah2002")
4263@result{} #("blah2002" (4 . 8))
4264
4265(string-match "[A-Za-z]" "123456")
4266@result{} #f
4267@end example
4268
4269Each time @code{string-match} is called, it must compile its
4270@var{pattern} argument into a regular expression structure. This
4271operation is expensive, which makes @code{string-match} inefficient if
4272the same regular expression is used several times (for example, in a
4273loop). For better performance, you can compile a regular expression in
4274advance and then match strings against the compiled regexp.
4275
4276@deffn {Scheme Procedure} make-regexp pat flag@dots{}
4277@deffnx {C Function} scm_make_regexp (pat, flaglst)
4278Compile the regular expression described by @var{pat}, and
4279return the compiled regexp structure. If @var{pat} does not
4280describe a legal regular expression, @code{make-regexp} throws
4281a @code{regular-expression-syntax} error.
4282
4283The @var{flag} arguments change the behavior of the compiled
4284regular expression. The following values may be supplied:
4285
4286@defvar regexp/icase
4287Consider uppercase and lowercase letters to be the same when
4288matching.
4289@end defvar
4290
4291@defvar regexp/newline
4292If a newline appears in the target string, then permit the
4293@samp{^} and @samp{$} operators to match immediately after or
4294immediately before the newline, respectively. Also, the
4295@samp{.} and @samp{[^...]} operators will never match a newline
4296character. The intent of this flag is to treat the target
4297string as a buffer containing many lines of text, and the
4298regular expression as a pattern that may match a single one of
4299those lines.
4300@end defvar
4301
4302@defvar regexp/basic
4303Compile a basic (``obsolete'') regexp instead of the extended
4304(``modern'') regexps that are the default. Basic regexps do
4305not consider @samp{|}, @samp{+} or @samp{?} to be special
4306characters, and require the @samp{@{...@}} and @samp{(...)}
4307metacharacters to be backslash-escaped (@pxref{Backslash
4308Escapes}). There are several other differences between basic
4309and extended regular expressions, but these are the most
4310significant.
4311@end defvar
4312
4313@defvar regexp/extended
4314Compile an extended regular expression rather than a basic
4315regexp. This is the default behavior; this flag will not
4316usually be needed. If a call to @code{make-regexp} includes
4317both @code{regexp/basic} and @code{regexp/extended} flags, the
4318one which comes last will override the earlier one.
4319@end defvar
4320@end deffn
4321
4322@deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
4323@deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
4324Match the compiled regular expression @var{rx} against
4325@code{str}. If the optional integer @var{start} argument is
4326provided, begin matching from that position in the string.
4327Return a match structure describing the results of the match,
4328or @code{#f} if no match could be found.
4329
36c7474e
KR
4330The @var{flags} argument changes the matching behavior. The following
4331flag values may be supplied, use @code{logior} (@pxref{Bitwise
4332Operations}) to combine them,
07d83abe
MV
4333
4334@defvar regexp/notbol
36c7474e
KR
4335Consider that the @var{start} offset into @var{str} is not the
4336beginning of a line and should not match operator @samp{^}.
4337
4338If @var{rx} was created with the @code{regexp/newline} option above,
4339@samp{^} will still match after a newline in @var{str}.
07d83abe
MV
4340@end defvar
4341
4342@defvar regexp/noteol
36c7474e
KR
4343Consider that the end of @var{str} is not the end of a line and should
4344not match operator @samp{$}.
4345
4346If @var{rx} was created with the @code{regexp/newline} option above,
4347@samp{$} will still match before a newline in @var{str}.
07d83abe
MV
4348@end defvar
4349@end deffn
4350
4351@lisp
4352;; Regexp to match uppercase letters
4353(define r (make-regexp "[A-Z]*"))
4354
4355;; Regexp to match letters, ignoring case
4356(define ri (make-regexp "[A-Z]*" regexp/icase))
4357
4358;; Search for bob using regexp r
4359(match:substring (regexp-exec r "bob"))
4360@result{} "" ; no match
4361
4362;; Search for bob using regexp ri
4363(match:substring (regexp-exec ri "Bob"))
4364@result{} "Bob" ; matched case insensitive
4365@end lisp
4366
4367@deffn {Scheme Procedure} regexp? obj
4368@deffnx {C Function} scm_regexp_p (obj)
4369Return @code{#t} if @var{obj} is a compiled regular expression,
4370or @code{#f} otherwise.
4371@end deffn
4372
a285fb86
KR
4373@sp 1
4374@deffn {Scheme Procedure} list-matches regexp str [flags]
4375Return a list of match structures which are the non-overlapping
4376matches of @var{regexp} in @var{str}. @var{regexp} can be either a
4377pattern string or a compiled regexp. The @var{flags} argument is as
4378per @code{regexp-exec} above.
4379
4380@example
4381(map match:substring (list-matches "[a-z]+" "abc 42 def 78"))
4382@result{} ("abc" "def")
4383@end example
4384@end deffn
4385
4386@deffn {Scheme Procedure} fold-matches regexp str init proc [flags]
4387Apply @var{proc} to the non-overlapping matches of @var{regexp} in
4388@var{str}, to build a result. @var{regexp} can be either a pattern
4389string or a compiled regexp. The @var{flags} argument is as per
4390@code{regexp-exec} above.
4391
4392@var{proc} is called as @code{(@var{proc} match prev)} where
4393@var{match} is a match structure and @var{prev} is the previous return
4394from @var{proc}. For the first call @var{prev} is the given
4395@var{init} parameter. @code{fold-matches} returns the final value
4396from @var{proc}.
4397
4398For example to count matches,
4399
4400@example
4401(fold-matches "[a-z][0-9]" "abc x1 def y2" 0
4402 (lambda (match count)
4403 (1+ count)))
4404@result{} 2
4405@end example
4406@end deffn
4407
a13befdc
KR
4408@sp 1
4409Regular expressions are commonly used to find patterns in one string
4410and replace them with the contents of another string. The following
4411functions are convenient ways to do this.
07d83abe
MV
4412
4413@c begin (scm-doc-string "regex.scm" "regexp-substitute")
4414@deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
a13befdc
KR
4415Write to @var{port} selected parts of the match structure @var{match}.
4416Or if @var{port} is @code{#f} then form a string from those parts and
4417return that.
4418
4419Each @var{item} specifies a part to be written, and may be one of the
4420following,
07d83abe
MV
4421
4422@itemize @bullet
4423@item
4424A string. String arguments are written out verbatim.
4425
4426@item
a13befdc
KR
4427An integer. The submatch with that number is written
4428(@code{match:substring}). Zero is the entire match.
07d83abe
MV
4429
4430@item
4431The symbol @samp{pre}. The portion of the matched string preceding
a13befdc 4432the regexp match is written (@code{match:prefix}).
07d83abe
MV
4433
4434@item
4435The symbol @samp{post}. The portion of the matched string following
a13befdc 4436the regexp match is written (@code{match:suffix}).
07d83abe
MV
4437@end itemize
4438
a13befdc
KR
4439For example, changing a match and retaining the text before and after,
4440
4441@example
4442(regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
4443 'pre "37" 'post)
4444@result{} "number 37 is good"
4445@end example
07d83abe 4446
a13befdc
KR
4447Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
4448re-ordering and hyphenating the fields.
07d83abe
MV
4449
4450@lisp
45867c2a
NJ
4451(define date-regex
4452 "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
07d83abe 4453(define s "Date 20020429 12am.")
a13befdc
KR
4454(regexp-substitute #f (string-match date-regex s)
4455 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
07d83abe
MV
4456@result{} "Date 04-29-2002 12am. (20020429)"
4457@end lisp
a13befdc
KR
4458@end deffn
4459
07d83abe
MV
4460
4461@c begin (scm-doc-string "regex.scm" "regexp-substitute")
4462@deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
a13befdc
KR
4463@cindex search and replace
4464Write to @var{port} selected parts of matches of @var{regexp} in
4465@var{target}. If @var{port} is @code{#f} then form a string from
4466those parts and return that. @var{regexp} can be a string or a
4467compiled regex.
07d83abe 4468
a13befdc
KR
4469This is similar to @code{regexp-substitute}, but allows global
4470substitutions on @var{target}. Each @var{item} behaves as per
4471@code{regexp-substitute}, with the following differences,
07d83abe
MV
4472
4473@itemize @bullet
4474@item
a13befdc
KR
4475A function. Called as @code{(@var{item} match)} with the match
4476structure for the @var{regexp} match, it should return a string to be
4477written to @var{port}.
07d83abe
MV
4478
4479@item
a13befdc
KR
4480The symbol @samp{post}. This doesn't output anything, but instead
4481causes @code{regexp-substitute/global} to recurse on the unmatched
4482portion of @var{target}.
4483
4484This @emph{must} be supplied to perform a global search and replace on
4485@var{target}; without it @code{regexp-substitute/global} returns after
4486a single match and output.
07d83abe 4487@end itemize
07d83abe 4488
a13befdc
KR
4489For example, to collapse runs of tabs and spaces to a single hyphen
4490each,
4491
4492@example
4493(regexp-substitute/global #f "[ \t]+" "this is the text"
4494 'pre "-" 'post)
4495@result{} "this-is-the-text"
4496@end example
4497
4498Or using a function to reverse the letters in each word,
4499
4500@example
4501(regexp-substitute/global #f "[a-z]+" "to do and not-do"
4502 'pre (lambda (m) (string-reverse (match:substring m))) 'post)
4503@result{} "ot od dna ton-od"
4504@end example
4505
4506Without the @code{post} symbol, just one regexp match is made. For
4507example the following is the date example from
4508@code{regexp-substitute} above, without the need for the separate
4509@code{string-match} call.
07d83abe
MV
4510
4511@lisp
45867c2a
NJ
4512(define date-regex
4513 "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
07d83abe
MV
4514(define s "Date 20020429 12am.")
4515(regexp-substitute/global #f date-regex s
a13befdc
KR
4516 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
4517
07d83abe
MV
4518@result{} "Date 04-29-2002 12am. (20020429)"
4519@end lisp
a13befdc 4520@end deffn
07d83abe
MV
4521
4522
4523@node Match Structures
4524@subsubsection Match Structures
4525
4526@cindex match structures
4527
4528A @dfn{match structure} is the object returned by @code{string-match} and
4529@code{regexp-exec}. It describes which portion of a string, if any,
4530matched the given regular expression. Match structures include: a
4531reference to the string that was checked for matches; the starting and
4532ending positions of the regexp match; and, if the regexp included any
4533parenthesized subexpressions, the starting and ending positions of each
4534submatch.
4535
4536In each of the regexp match functions described below, the @code{match}
4537argument must be a match structure returned by a previous call to
4538@code{string-match} or @code{regexp-exec}. Most of these functions
4539return some information about the original target string that was
4540matched against a regular expression; we will call that string
4541@var{target} for easy reference.
4542
4543@c begin (scm-doc-string "regex.scm" "regexp-match?")
4544@deffn {Scheme Procedure} regexp-match? obj
4545Return @code{#t} if @var{obj} is a match structure returned by a
4546previous call to @code{regexp-exec}, or @code{#f} otherwise.
4547@end deffn
4548
4549@c begin (scm-doc-string "regex.scm" "match:substring")
4550@deffn {Scheme Procedure} match:substring match [n]
4551Return the portion of @var{target} matched by subexpression number
4552@var{n}. Submatch 0 (the default) represents the entire regexp match.
4553If the regular expression as a whole matched, but the subexpression
4554number @var{n} did not match, return @code{#f}.
4555@end deffn
4556
4557@lisp
4558(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4559(match:substring s)
4560@result{} "2002"
4561
4562;; match starting at offset 6 in the string
4563(match:substring
4564 (string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
4565@result{} "7654"
4566@end lisp
4567
4568@c begin (scm-doc-string "regex.scm" "match:start")
4569@deffn {Scheme Procedure} match:start match [n]
4570Return the starting position of submatch number @var{n}.
4571@end deffn
4572
4573In the following example, the result is 4, since the match starts at
4574character index 4:
4575
4576@lisp
4577(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4578(match:start s)
4579@result{} 4
4580@end lisp
4581
4582@c begin (scm-doc-string "regex.scm" "match:end")
4583@deffn {Scheme Procedure} match:end match [n]
4584Return the ending position of submatch number @var{n}.
4585@end deffn
4586
4587In the following example, the result is 8, since the match runs between
4588characters 4 and 8 (i.e. the ``2002'').
4589
4590@lisp
4591(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4592(match:end s)
4593@result{} 8
4594@end lisp
4595
4596@c begin (scm-doc-string "regex.scm" "match:prefix")
4597@deffn {Scheme Procedure} match:prefix match
4598Return the unmatched portion of @var{target} preceding the regexp match.
4599
4600@lisp
4601(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4602(match:prefix s)
4603@result{} "blah"
4604@end lisp
4605@end deffn
4606
4607@c begin (scm-doc-string "regex.scm" "match:suffix")
4608@deffn {Scheme Procedure} match:suffix match
4609Return the unmatched portion of @var{target} following the regexp match.
4610@end deffn
4611
4612@lisp
4613(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4614(match:suffix s)
4615@result{} "foo"
4616@end lisp
4617
4618@c begin (scm-doc-string "regex.scm" "match:count")
4619@deffn {Scheme Procedure} match:count match
4620Return the number of parenthesized subexpressions from @var{match}.
4621Note that the entire regular expression match itself counts as a
4622subexpression, and failed submatches are included in the count.
4623@end deffn
4624
4625@c begin (scm-doc-string "regex.scm" "match:string")
4626@deffn {Scheme Procedure} match:string match
4627Return the original @var{target} string.
4628@end deffn
4629
4630@lisp
4631(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4632(match:string s)
4633@result{} "blah2002foo"
4634@end lisp
4635
4636
4637@node Backslash Escapes
4638@subsubsection Backslash Escapes
4639
4640Sometimes you will want a regexp to match characters like @samp{*} or
4641@samp{$} exactly. For example, to check whether a particular string
4642represents a menu entry from an Info node, it would be useful to match
4643it against a regexp like @samp{^* [^:]*::}. However, this won't work;
4644because the asterisk is a metacharacter, it won't match the @samp{*} at
4645the beginning of the string. In this case, we want to make the first
4646asterisk un-magic.
4647
4648You can do this by preceding the metacharacter with a backslash
4649character @samp{\}. (This is also called @dfn{quoting} the
4650metacharacter, and is known as a @dfn{backslash escape}.) When Guile
4651sees a backslash in a regular expression, it considers the following
4652glyph to be an ordinary character, no matter what special meaning it
4653would ordinarily have. Therefore, we can make the above example work by
4654changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
4655the regular expression engine to match only a single asterisk in the
4656target string.
4657
4658Since the backslash is itself a metacharacter, you may force a regexp to
4659match a backslash in the target string by preceding the backslash with
4660itself. For example, to find variable references in a @TeX{} program,
4661you might want to find occurrences of the string @samp{\let\} followed
4662by any number of alphabetic characters. The regular expression
4663@samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
4664regexp each match a single backslash in the target string.
4665
4666@c begin (scm-doc-string "regex.scm" "regexp-quote")
4667@deffn {Scheme Procedure} regexp-quote str
4668Quote each special character found in @var{str} with a backslash, and
4669return the resulting string.
4670@end deffn
4671
4672@strong{Very important:} Using backslash escapes in Guile source code
4673(as in Emacs Lisp or C) can be tricky, because the backslash character
4674has special meaning for the Guile reader. For example, if Guile
4675encounters the character sequence @samp{\n} in the middle of a string
4676while processing Scheme code, it replaces those characters with a
4677newline character. Similarly, the character sequence @samp{\t} is
4678replaced by a horizontal tab. Several of these @dfn{escape sequences}
4679are processed by the Guile reader before your code is executed.
4680Unrecognized escape sequences are ignored: if the characters @samp{\*}
4681appear in a string, they will be translated to the single character
4682@samp{*}.
4683
4684This translation is obviously undesirable for regular expressions, since
4685we want to be able to include backslashes in a string in order to
4686escape regexp metacharacters. Therefore, to make sure that a backslash
4687is preserved in a string in your Guile program, you must use @emph{two}
4688consecutive backslashes:
4689
4690@lisp
4691(define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
4692@end lisp
4693
4694The string in this example is preprocessed by the Guile reader before
4695any code is executed. The resulting argument to @code{make-regexp} is
4696the string @samp{^\* [^:]*}, which is what we really want.
4697
4698This also means that in order to write a regular expression that matches
4699a single backslash character, the regular expression string in the
4700source code must include @emph{four} backslashes. Each consecutive pair
4701of backslashes gets translated by the Guile reader to a single
4702backslash, and the resulting double-backslash is interpreted by the
4703regexp engine as matching a single backslash character. Hence:
4704
4705@lisp
4706(define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
4707@end lisp
4708
4709The reason for the unwieldiness of this syntax is historical. Both
4710regular expression pattern matchers and Unix string processing systems
4711have traditionally used backslashes with the special meanings
4712described above. The POSIX regular expression specification and ANSI C
4713standard both require these semantics. Attempting to abandon either
4714convention would cause other kinds of compatibility problems, possibly
4715more severe ones. Therefore, without extending the Scheme reader to
4716support strings with different quoting conventions (an ungainly and
4717confusing extension when implemented in other languages), we must adhere
4718to this cumbersome escape syntax.
4719
4720
4721@node Symbols
4722@subsection Symbols
4723@tpindex Symbols
4724
4725Symbols in Scheme are widely used in three ways: as items of discrete
4726data, as lookup keys for alists and hash tables, and to denote variable
4727references.
4728
4729A @dfn{symbol} is similar to a string in that it is defined by a
4730sequence of characters. The sequence of characters is known as the
4731symbol's @dfn{name}. In the usual case --- that is, where the symbol's
4732name doesn't include any characters that could be confused with other
4733elements of Scheme syntax --- a symbol is written in a Scheme program by
4734writing the sequence of characters that make up the name, @emph{without}
4735any quotation marks or other special syntax. For example, the symbol
4736whose name is ``multiply-by-2'' is written, simply:
4737
4738@lisp
4739multiply-by-2
4740@end lisp
4741
4742Notice how this differs from a @emph{string} with contents
4743``multiply-by-2'', which is written with double quotation marks, like
4744this:
4745
4746@lisp
4747"multiply-by-2"
4748@end lisp
4749
4750Looking beyond how they are written, symbols are different from strings
4751in two important respects.
4752
4753The first important difference is uniqueness. If the same-looking
4754string is read twice from two different places in a program, the result
4755is two @emph{different} string objects whose contents just happen to be
4756the same. If, on the other hand, the same-looking symbol is read twice
4757from two different places in a program, the result is the @emph{same}
4758symbol object both times.
4759
4760Given two read symbols, you can use @code{eq?} to test whether they are
4761the same (that is, have the same name). @code{eq?} is the most
4762efficient comparison operator in Scheme, and comparing two symbols like
4763this is as fast as comparing, for example, two numbers. Given two
4764strings, on the other hand, you must use @code{equal?} or
4765@code{string=?}, which are much slower comparison operators, to
4766determine whether the strings have the same contents.
4767
4768@lisp
4769(define sym1 (quote hello))
4770(define sym2 (quote hello))
4771(eq? sym1 sym2) @result{} #t
4772
4773(define str1 "hello")
4774(define str2 "hello")
4775(eq? str1 str2) @result{} #f
4776(equal? str1 str2) @result{} #t
4777@end lisp
4778
4779The second important difference is that symbols, unlike strings, are not
4780self-evaluating. This is why we need the @code{(quote @dots{})}s in the
4781example above: @code{(quote hello)} evaluates to the symbol named
4782"hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
4783symbol named "hello" and evaluated as a variable reference @dots{} about
4784which more below (@pxref{Symbol Variables}).
4785
4786@menu
4787* Symbol Data:: Symbols as discrete data.
4788* Symbol Keys:: Symbols as lookup keys.
4789* Symbol Variables:: Symbols as denoting variables.
4790* Symbol Primitives:: Operations related to symbols.
4791* Symbol Props:: Function slots and property lists.
4792* Symbol Read Syntax:: Extended read syntax for symbols.
4793* Symbol Uninterned:: Uninterned symbols.
4794@end menu
4795
4796
4797@node Symbol Data
4798@subsubsection Symbols as Discrete Data
4799
4800Numbers and symbols are similar to the extent that they both lend
4801themselves to @code{eq?} comparison. But symbols are more descriptive
4802than numbers, because a symbol's name can be used directly to describe
4803the concept for which that symbol stands.
4804
4805For example, imagine that you need to represent some colours in a
4806computer program. Using numbers, you would have to choose arbitrarily
4807some mapping between numbers and colours, and then take care to use that
4808mapping consistently:
4809
4810@lisp
4811;; 1=red, 2=green, 3=purple
4812
4813(if (eq? (colour-of car) 1)
4814 ...)
4815@end lisp
4816
4817@noindent
4818You can make the mapping more explicit and the code more readable by
4819defining constants:
4820
4821@lisp
4822(define red 1)
4823(define green 2)
4824(define purple 3)
4825
4826(if (eq? (colour-of car) red)
4827 ...)
4828@end lisp
4829
4830@noindent
4831But the simplest and clearest approach is not to use numbers at all, but
4832symbols whose names specify the colours that they refer to:
4833
4834@lisp
4835(if (eq? (colour-of car) 'red)
4836 ...)
4837@end lisp
4838
4839The descriptive advantages of symbols over numbers increase as the set
4840of concepts that you want to describe grows. Suppose that a car object
4841can have other properties as well, such as whether it has or uses:
4842
4843@itemize @bullet
4844@item
4845automatic or manual transmission
4846@item
4847leaded or unleaded fuel
4848@item
4849power steering (or not).
4850@end itemize
4851
4852@noindent
4853Then a car's combined property set could be naturally represented and
4854manipulated as a list of symbols:
4855
4856@lisp
4857(properties-of car1)
4858@result{}
4859(red manual unleaded power-steering)
4860
4861(if (memq 'power-steering (properties-of car1))
4862 (display "Unfit people can drive this car.\n")
4863 (display "You'll need strong arms to drive this car!\n"))
4864@print{}
4865Unfit people can drive this car.
4866@end lisp
4867
4868Remember, the fundamental property of symbols that we are relying on
4869here is that an occurrence of @code{'red} in one part of a program is an
4870@emph{indistinguishable} symbol from an occurrence of @code{'red} in
4871another part of a program; this means that symbols can usefully be
4872compared using @code{eq?}. At the same time, symbols have naturally
4873descriptive names. This combination of efficiency and descriptive power
4874makes them ideal for use as discrete data.
4875
4876
4877@node Symbol Keys
4878@subsubsection Symbols as Lookup Keys
4879
4880Given their efficiency and descriptive power, it is natural to use
4881symbols as the keys in an association list or hash table.
4882
4883To illustrate this, consider a more structured representation of the car
4884properties example from the preceding subsection. Rather than
4885mixing all the properties up together in a flat list, we could use an
4886association list like this:
4887
4888@lisp
4889(define car1-properties '((colour . red)
4890 (transmission . manual)
4891 (fuel . unleaded)
4892 (steering . power-assisted)))
4893@end lisp
4894
4895Notice how this structure is more explicit and extensible than the flat
4896list. For example it makes clear that @code{manual} refers to the
4897transmission rather than, say, the windows or the locking of the car.
4898It also allows further properties to use the same symbols among their
4899possible values without becoming ambiguous:
4900
4901@lisp
4902(define car1-properties '((colour . red)
4903 (transmission . manual)
4904 (fuel . unleaded)
4905 (steering . power-assisted)
4906 (seat-colour . red)
4907 (locking . manual)))
4908@end lisp
4909
4910With a representation like this, it is easy to use the efficient
4911@code{assq-XXX} family of procedures (@pxref{Association Lists}) to
4912extract or change individual pieces of information:
4913
4914@lisp
4915(assq-ref car1-properties 'fuel) @result{} unleaded
4916(assq-ref car1-properties 'transmission) @result{} manual
4917
4918(assq-set! car1-properties 'seat-colour 'black)
4919@result{}
4920((colour . red)
4921 (transmission . manual)
4922 (fuel . unleaded)
4923 (steering . power-assisted)
4924 (seat-colour . black)
4925 (locking . manual)))
4926@end lisp
4927
4928Hash tables also have keys, and exactly the same arguments apply to the
4929use of symbols in hash tables as in association lists. The hash value
4930that Guile uses to decide where to add a symbol-keyed entry to a hash
4931table can be obtained by calling the @code{symbol-hash} procedure:
4932
4933@deffn {Scheme Procedure} symbol-hash symbol
4934@deffnx {C Function} scm_symbol_hash (symbol)
4935Return a hash value for @var{symbol}.
4936@end deffn
4937
4938See @ref{Hash Tables} for information about hash tables in general, and
4939for why you might choose to use a hash table rather than an association
4940list.
4941
4942
4943@node Symbol Variables
4944@subsubsection Symbols as Denoting Variables
4945
4946When an unquoted symbol in a Scheme program is evaluated, it is
4947interpreted as a variable reference, and the result of the evaluation is
4948the appropriate variable's value.
4949
4950For example, when the expression @code{(string-length "abcd")} is read
4951and evaluated, the sequence of characters @code{string-length} is read
4952as the symbol whose name is "string-length". This symbol is associated
4953with a variable whose value is the procedure that implements string
4954length calculation. Therefore evaluation of the @code{string-length}
4955symbol results in that procedure.
4956
4957The details of the connection between an unquoted symbol and the
4958variable to which it refers are explained elsewhere. See @ref{Binding
4959Constructs}, for how associations between symbols and variables are
4960created, and @ref{Modules}, for how those associations are affected by
4961Guile's module system.
4962
4963
4964@node Symbol Primitives
4965@subsubsection Operations Related to Symbols
4966
4967Given any Scheme value, you can determine whether it is a symbol using
4968the @code{symbol?} primitive:
4969
4970@rnindex symbol?
4971@deffn {Scheme Procedure} symbol? obj
4972@deffnx {C Function} scm_symbol_p (obj)
4973Return @code{#t} if @var{obj} is a symbol, otherwise return
4974@code{#f}.
4975@end deffn
4976
c9dc8c6c
MV
4977@deftypefn {C Function} int scm_is_symbol (SCM val)
4978Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
4979@end deftypefn
4980
07d83abe
MV
4981Once you know that you have a symbol, you can obtain its name as a
4982string by calling @code{symbol->string}. Note that Guile differs by
4983default from R5RS on the details of @code{symbol->string} as regards
4984case-sensitivity:
4985
4986@rnindex symbol->string
4987@deffn {Scheme Procedure} symbol->string s
4988@deffnx {C Function} scm_symbol_to_string (s)
4989Return the name of symbol @var{s} as a string. By default, Guile reads
4990symbols case-sensitively, so the string returned will have the same case
4991variation as the sequence of characters that caused @var{s} to be
4992created.
4993
4994If Guile is set to read symbols case-insensitively (as specified by
4995R5RS), and @var{s} comes into being as part of a literal expression
4996(@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
4997by a call to the @code{read} or @code{string-ci->symbol} procedures,
4998Guile converts any alphabetic characters in the symbol's name to
4999lower case before creating the symbol object, so the string returned
5000here will be in lower case.
5001
5002If @var{s} was created by @code{string->symbol}, the case of characters
5003in the string returned will be the same as that in the string that was
5004passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5005setting at the time @var{s} was created.
5006
5007It is an error to apply mutation procedures like @code{string-set!} to
5008strings returned by this procedure.
5009@end deffn
5010
5011Most symbols are created by writing them literally in code. However it
5012is also possible to create symbols programmatically using the following
5013@code{string->symbol} and @code{string-ci->symbol} procedures:
5014
5015@rnindex string->symbol
5016@deffn {Scheme Procedure} string->symbol string
5017@deffnx {C Function} scm_string_to_symbol (string)
5018Return the symbol whose name is @var{string}. This procedure can create
5019symbols with names containing special characters or letters in the
5020non-standard case, but it is usually a bad idea to create such symbols
5021because in some implementations of Scheme they cannot be read as
5022themselves.
5023@end deffn
5024
5025@deffn {Scheme Procedure} string-ci->symbol str
5026@deffnx {C Function} scm_string_ci_to_symbol (str)
5027Return the symbol whose name is @var{str}. If Guile is currently
5028reading symbols case-insensitively, @var{str} is converted to lowercase
5029before the returned symbol is looked up or created.
5030@end deffn
5031
5032The following examples illustrate Guile's detailed behaviour as regards
5033the case-sensitivity of symbols:
5034
5035@lisp
5036(read-enable 'case-insensitive) ; R5RS compliant behaviour
5037
5038(symbol->string 'flying-fish) @result{} "flying-fish"
5039(symbol->string 'Martin) @result{} "martin"
5040(symbol->string
5041 (string->symbol "Malvina")) @result{} "Malvina"
5042
5043(eq? 'mISSISSIppi 'mississippi) @result{} #t
5044(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5045(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5046(eq? 'LolliPop
5047 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5048(string=? "K. Harper, M.D."
5049 (symbol->string
5050 (string->symbol "K. Harper, M.D."))) @result{} #t
5051
5052(read-disable 'case-insensitive) ; Guile default behaviour
5053
5054(symbol->string 'flying-fish) @result{} "flying-fish"
5055(symbol->string 'Martin) @result{} "Martin"
5056(symbol->string
5057 (string->symbol "Malvina")) @result{} "Malvina"
5058
5059(eq? 'mISSISSIppi 'mississippi) @result{} #f
5060(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5061(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5062(eq? 'LolliPop
5063 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5064(string=? "K. Harper, M.D."
5065 (symbol->string
5066 (string->symbol "K. Harper, M.D."))) @result{} #t
5067@end lisp
5068
5069From C, there are lower level functions that construct a Scheme symbol
c48c62d0
MV
5070from a C string in the current locale encoding.
5071
5072When you want to do more from C, you should convert between symbols
5073and strings using @code{scm_symbol_to_string} and
5074@code{scm_string_to_symbol} and work with the strings.
07d83abe 5075
c48c62d0
MV
5076@deffn {C Function} scm_from_locale_symbol (const char *name)
5077@deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
07d83abe 5078Construct and return a Scheme symbol whose name is specified by
c48c62d0
MV
5079@var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5080terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
07d83abe
MV
5081specified explicitly by @var{len}.
5082@end deffn
5083
fd0a5bbc
HWN
5084@deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5085@deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5086Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5087respectively, but also frees @var{str} with @code{free} eventually.
5088Thus, you can use this function when you would free @var{str} anyway
5089immediately after creating the Scheme string. In certain cases, Guile
5090can then use @var{str} directly as its internal representation.
5091@end deftypefn
5092
071bb6a8
LC
5093The size of a symbol can also be obtained from C:
5094
5095@deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5096Return the number of characters in @var{sym}.
5097@end deftypefn
fd0a5bbc 5098
07d83abe
MV
5099Finally, some applications, especially those that generate new Scheme
5100code dynamically, need to generate symbols for use in the generated
5101code. The @code{gensym} primitive meets this need:
5102
5103@deffn {Scheme Procedure} gensym [prefix]
5104@deffnx {C Function} scm_gensym (prefix)
5105Create a new symbol with a name constructed from a prefix and a counter
5106value. The string @var{prefix} can be specified as an optional
5107argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5108at each call. There is no provision for resetting the counter.
5109@end deffn
5110
5111The symbols generated by @code{gensym} are @emph{likely} to be unique,
5112since their names begin with a space and it is only otherwise possible
5113to generate such symbols if a programmer goes out of their way to do
5114so. Uniqueness can be guaranteed by instead using uninterned symbols
5115(@pxref{Symbol Uninterned}), though they can't be usefully written out
5116and read back in.
5117
5118
5119@node Symbol Props
5120@subsubsection Function Slots and Property Lists
5121
5122In traditional Lisp dialects, symbols are often understood as having
5123three kinds of value at once:
5124
5125@itemize @bullet
5126@item
5127a @dfn{variable} value, which is used when the symbol appears in
5128code in a variable reference context
5129
5130@item
5131a @dfn{function} value, which is used when the symbol appears in
5132code in a function name position (i.e. as the first element in an
5133unquoted list)
5134
5135@item
5136a @dfn{property list} value, which is used when the symbol is given as
5137the first argument to Lisp's @code{put} or @code{get} functions.
5138@end itemize
5139
5140Although Scheme (as one of its simplifications with respect to Lisp)
5141does away with the distinction between variable and function namespaces,
5142Guile currently retains some elements of the traditional structure in
5143case they turn out to be useful when implementing translators for other
5144languages, in particular Emacs Lisp.
5145
5146Specifically, Guile symbols have two extra slots. for a symbol's
5147property list, and for its ``function value.'' The following procedures
5148are provided to access these slots.
5149
5150@deffn {Scheme Procedure} symbol-fref symbol
5151@deffnx {C Function} scm_symbol_fref (symbol)
5152Return the contents of @var{symbol}'s @dfn{function slot}.
5153@end deffn
5154
5155@deffn {Scheme Procedure} symbol-fset! symbol value
5156@deffnx {C Function} scm_symbol_fset_x (symbol, value)
5157Set the contents of @var{symbol}'s function slot to @var{value}.
5158@end deffn
5159
5160@deffn {Scheme Procedure} symbol-pref symbol
5161@deffnx {C Function} scm_symbol_pref (symbol)
5162Return the @dfn{property list} currently associated with @var{symbol}.
5163@end deffn
5164
5165@deffn {Scheme Procedure} symbol-pset! symbol value
5166@deffnx {C Function} scm_symbol_pset_x (symbol, value)
5167Set @var{symbol}'s property list to @var{value}.
5168@end deffn
5169
5170@deffn {Scheme Procedure} symbol-property sym prop
5171From @var{sym}'s property list, return the value for property
5172@var{prop}. The assumption is that @var{sym}'s property list is an
5173association list whose keys are distinguished from each other using
5174@code{equal?}; @var{prop} should be one of the keys in that list. If
5175the property list has no entry for @var{prop}, @code{symbol-property}
5176returns @code{#f}.
5177@end deffn
5178
5179@deffn {Scheme Procedure} set-symbol-property! sym prop val
5180In @var{sym}'s property list, set the value for property @var{prop} to
5181@var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5182none already exists. For the structure of the property list, see
5183@code{symbol-property}.
5184@end deffn
5185
5186@deffn {Scheme Procedure} symbol-property-remove! sym prop
5187From @var{sym}'s property list, remove the entry for property
5188@var{prop}, if there is one. For the structure of the property list,
5189see @code{symbol-property}.
5190@end deffn
5191
5192Support for these extra slots may be removed in a future release, and it
4695789c
NJ
5193is probably better to avoid using them. For a more modern and Schemely
5194approach to properties, see @ref{Object Properties}.
07d83abe
MV
5195
5196
5197@node Symbol Read Syntax
5198@subsubsection Extended Read Syntax for Symbols
5199
5200The read syntax for a symbol is a sequence of letters, digits, and
5201@dfn{extended alphabetic characters}, beginning with a character that
5202cannot begin a number. In addition, the special cases of @code{+},
5203@code{-}, and @code{...} are read as symbols even though numbers can
5204begin with @code{+}, @code{-} or @code{.}.
5205
5206Extended alphabetic characters may be used within identifiers as if
5207they were letters. The set of extended alphabetic characters is:
5208
5209@example
5210! $ % & * + - . / : < = > ? @@ ^ _ ~
5211@end example
5212
5213In addition to the standard read syntax defined above (which is taken
5214from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5215Scheme})), Guile provides an extended symbol read syntax that allows the
5216inclusion of unusual characters such as space characters, newlines and
5217parentheses. If (for whatever reason) you need to write a symbol
5218containing characters not mentioned above, you can do so as follows.
5219
5220@itemize @bullet
5221@item
5222Begin the symbol with the characters @code{#@{},
5223
5224@item
5225write the characters of the symbol and
5226
5227@item
5228finish the symbol with the characters @code{@}#}.
5229@end itemize
5230
5231Here are a few examples of this form of read syntax. The first symbol
5232needs to use extended syntax because it contains a space character, the
5233second because it contains a line break, and the last because it looks
5234like a number.
5235
5236@lisp
5237#@{foo bar@}#
5238
5239#@{what
5240ever@}#
5241
5242#@{4242@}#
5243@end lisp
5244
5245Although Guile provides this extended read syntax for symbols,
5246widespread usage of it is discouraged because it is not portable and not
5247very readable.
5248
5249
5250@node Symbol Uninterned
5251@subsubsection Uninterned Symbols
5252
5253What makes symbols useful is that they are automatically kept unique.
5254There are no two symbols that are distinct objects but have the same
5255name. But of course, there is no rule without exception. In addition
5256to the normal symbols that have been discussed up to now, you can also
5257create special @dfn{uninterned} symbols that behave slightly
5258differently.
5259
5260To understand what is different about them and why they might be useful,
5261we look at how normal symbols are actually kept unique.
5262
5263Whenever Guile wants to find the symbol with a specific name, for
5264example during @code{read} or when executing @code{string->symbol}, it
5265first looks into a table of all existing symbols to find out whether a
5266symbol with the given name already exists. When this is the case, Guile
5267just returns that symbol. When not, a new symbol with the name is
5268created and entered into the table so that it can be found later.
5269
5270Sometimes you might want to create a symbol that is guaranteed `fresh',
5271i.e. a symbol that did not exist previously. You might also want to
5272somehow guarantee that no one else will ever unintentionally stumble
5273across your symbol in the future. These properties of a symbol are
5274often needed when generating code during macro expansion. When
5275introducing new temporary variables, you want to guarantee that they
5276don't conflict with variables in other people's code.
5277
5278The simplest way to arrange for this is to create a new symbol but
5279not enter it into the global table of all symbols. That way, no one
5280will ever get access to your symbol by chance. Symbols that are not in
5281the table are called @dfn{uninterned}. Of course, symbols that
5282@emph{are} in the table are called @dfn{interned}.
5283
5284You create new uninterned symbols with the function @code{make-symbol}.
5285You can test whether a symbol is interned or not with
5286@code{symbol-interned?}.
5287
5288Uninterned symbols break the rule that the name of a symbol uniquely
5289identifies the symbol object. Because of this, they can not be written
5290out and read back in like interned symbols. Currently, Guile has no
5291support for reading uninterned symbols. Note that the function
5292@code{gensym} does not return uninterned symbols for this reason.
5293
5294@deffn {Scheme Procedure} make-symbol name
5295@deffnx {C Function} scm_make_symbol (name)
5296Return a new uninterned symbol with the name @var{name}. The returned
5297symbol is guaranteed to be unique and future calls to
5298@code{string->symbol} will not return it.
5299@end deffn
5300
5301@deffn {Scheme Procedure} symbol-interned? symbol
5302@deffnx {C Function} scm_symbol_interned_p (symbol)
5303Return @code{#t} if @var{symbol} is interned, otherwise return
5304@code{#f}.
5305@end deffn
5306
5307For example:
5308
5309@lisp
5310(define foo-1 (string->symbol "foo"))
5311(define foo-2 (string->symbol "foo"))
5312(define foo-3 (make-symbol "foo"))
5313(define foo-4 (make-symbol "foo"))
5314
5315(eq? foo-1 foo-2)
5316@result{} #t
5317; Two interned symbols with the same name are the same object,
5318
5319(eq? foo-1 foo-3)
5320@result{} #f
5321; but a call to make-symbol with the same name returns a
5322; distinct object.
5323
5324(eq? foo-3 foo-4)
5325@result{} #f
5326; A call to make-symbol always returns a new object, even for
5327; the same name.
5328
5329foo-3
5330@result{} #<uninterned-symbol foo 8085290>
5331; Uninterned symbols print differently from interned symbols,
5332
5333(symbol? foo-3)
5334@result{} #t
5335; but they are still symbols,
5336
5337(symbol-interned? foo-3)
5338@result{} #f
5339; just not interned.
5340@end lisp
5341
5342
5343@node Keywords
5344@subsection Keywords
5345@tpindex Keywords
5346
5347Keywords are self-evaluating objects with a convenient read syntax that
5348makes them easy to type.
5349
5350Guile's keyword support conforms to R5RS, and adds a (switchable) read
5351syntax extension to permit keywords to begin with @code{:} as well as
ef4cbc08 5352@code{#:}, or to end with @code{:}.
07d83abe
MV
5353
5354@menu
5355* Why Use Keywords?:: Motivation for keyword usage.
5356* Coding With Keywords:: How to use keywords.
5357* Keyword Read Syntax:: Read syntax for keywords.
5358* Keyword Procedures:: Procedures for dealing with keywords.
07d83abe
MV
5359@end menu
5360
5361@node Why Use Keywords?
5362@subsubsection Why Use Keywords?
5363
5364Keywords are useful in contexts where a program or procedure wants to be
5365able to accept a large number of optional arguments without making its
5366interface unmanageable.
5367
5368To illustrate this, consider a hypothetical @code{make-window}
5369procedure, which creates a new window on the screen for drawing into
5370using some graphical toolkit. There are many parameters that the caller
5371might like to specify, but which could also be sensibly defaulted, for
5372example:
5373
5374@itemize @bullet
5375@item
5376color depth -- Default: the color depth for the screen
5377
5378@item
5379background color -- Default: white
5380
5381@item
5382width -- Default: 600
5383
5384@item
5385height -- Default: 400
5386@end itemize
5387
5388If @code{make-window} did not use keywords, the caller would have to
5389pass in a value for each possible argument, remembering the correct
5390argument order and using a special value to indicate the default value
5391for that argument:
5392
5393@lisp
5394(make-window 'default ;; Color depth
5395 'default ;; Background color
5396 800 ;; Width
5397 100 ;; Height
5398 @dots{}) ;; More make-window arguments
5399@end lisp
5400
5401With keywords, on the other hand, defaulted arguments are omitted, and
5402non-default arguments are clearly tagged by the appropriate keyword. As
5403a result, the invocation becomes much clearer:
5404
5405@lisp
5406(make-window #:width 800 #:height 100)
5407@end lisp
5408
5409On the other hand, for a simpler procedure with few arguments, the use
5410of keywords would be a hindrance rather than a help. The primitive
5411procedure @code{cons}, for example, would not be improved if it had to
5412be invoked as
5413
5414@lisp
5415(cons #:car x #:cdr y)
5416@end lisp
5417
5418So the decision whether to use keywords or not is purely pragmatic: use
5419them if they will clarify the procedure invocation at point of call.
5420
5421@node Coding With Keywords
5422@subsubsection Coding With Keywords
5423
5424If a procedure wants to support keywords, it should take a rest argument
5425and then use whatever means is convenient to extract keywords and their
5426corresponding arguments from the contents of that rest argument.
5427
5428The following example illustrates the principle: the code for
5429@code{make-window} uses a helper procedure called
5430@code{get-keyword-value} to extract individual keyword arguments from
5431the rest argument.
5432
5433@lisp
5434(define (get-keyword-value args keyword default)
5435 (let ((kv (memq keyword args)))
5436 (if (and kv (>= (length kv) 2))
5437 (cadr kv)
5438 default)))
5439
5440(define (make-window . args)
5441 (let ((depth (get-keyword-value args #:depth screen-depth))
5442 (bg (get-keyword-value args #:bg "white"))
5443 (width (get-keyword-value args #:width 800))
5444 (height (get-keyword-value args #:height 100))
5445 @dots{})
5446 @dots{}))
5447@end lisp
5448
5449But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5450optargs)} module provides a set of powerful macros that you can use to
5451implement keyword-supporting procedures like this:
5452
5453@lisp
5454(use-modules (ice-9 optargs))
5455
5456(define (make-window . args)
5457 (let-keywords args #f ((depth screen-depth)
5458 (bg "white")
5459 (width 800)
5460 (height 100))
5461 ...))
5462@end lisp
5463
5464@noindent
5465Or, even more economically, like this:
5466
5467@lisp
5468(use-modules (ice-9 optargs))
5469
5470(define* (make-window #:key (depth screen-depth)
5471 (bg "white")
5472 (width 800)
5473 (height 100))
5474 ...)
5475@end lisp
5476
5477For further details on @code{let-keywords}, @code{define*} and other
5478facilities provided by the @code{(ice-9 optargs)} module, see
5479@ref{Optional Arguments}.
5480
5481
5482@node Keyword Read Syntax
5483@subsubsection Keyword Read Syntax
5484
7719ef22
MV
5485Guile, by default, only recognizes a keyword syntax that is compatible
5486with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5487same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5488external representation of the keyword named @code{NAME}. Keyword
5489objects print using this syntax as well, so values containing keyword
5490objects can be read back into Guile. When used in an expression,
5491keywords are self-quoting objects.
07d83abe
MV
5492
5493If the @code{keyword} read option is set to @code{'prefix}, Guile also
5494recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5495of the form @code{:NAME} are read as symbols, as required by R5RS.
5496
ef4cbc08
LC
5497@cindex SRFI-88 keyword syntax
5498
5499If the @code{keyword} read option is set to @code{'postfix}, Guile
189681f5
LC
5500recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5501Otherwise, tokens of this form are read as symbols.
ef4cbc08 5502
07d83abe
MV
5503To enable and disable the alternative non-R5RS keyword syntax, you use
5504the @code{read-set!} procedure documented in @ref{User level options
ef4cbc08
LC
5505interfaces} and @ref{Reader options}. Note that the @code{prefix} and
5506@code{postfix} syntax are mutually exclusive.
07d83abe
MV
5507
5508@smalllisp
5509(read-set! keywords 'prefix)
5510
5511#:type
5512@result{}
5513#:type
5514
5515:type
5516@result{}
5517#:type
5518
ef4cbc08
LC
5519(read-set! keywords 'postfix)
5520
5521type:
5522@result{}
5523#:type
5524
5525:type
5526@result{}
5527:type
5528
07d83abe
MV
5529(read-set! keywords #f)
5530
5531#:type
5532@result{}
5533#:type
5534
5535:type
5536@print{}
5537ERROR: In expression :type:
5538ERROR: Unbound variable: :type
5539ABORT: (unbound-variable)
5540@end smalllisp
5541
5542@node Keyword Procedures
5543@subsubsection Keyword Procedures
5544
07d83abe
MV
5545@deffn {Scheme Procedure} keyword? obj
5546@deffnx {C Function} scm_keyword_p (obj)
5547Return @code{#t} if the argument @var{obj} is a keyword, else
5548@code{#f}.
5549@end deffn
5550
7719ef22
MV
5551@deffn {Scheme Procedure} keyword->symbol keyword
5552@deffnx {C Function} scm_keyword_to_symbol (keyword)
5553Return the symbol with the same name as @var{keyword}.
07d83abe
MV
5554@end deffn
5555
7719ef22
MV
5556@deffn {Scheme Procedure} symbol->keyword symbol
5557@deffnx {C Function} scm_symbol_to_keyword (symbol)
5558Return the keyword with the same name as @var{symbol}.
5559@end deffn
07d83abe 5560
7719ef22
MV
5561@deftypefn {C Function} int scm_is_keyword (SCM obj)
5562Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
07d83abe
MV
5563@end deftypefn
5564
7719ef22
MV
5565@deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
5566@deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
5567Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5568(@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5569(@var{str}, @var{len}))}, respectively.
5570@end deftypefn
07d83abe
MV
5571
5572@node Other Types
5573@subsection ``Functionality-Centric'' Data Types
5574
5575Procedures and macros are documented in their own chapter: see
5576@ref{Procedures and Macros}.
5577
5578Variable objects are documented as part of the description of Guile's
5579module system: see @ref{Variables}.
5580
5581Asyncs, dynamic roots and fluids are described in the chapter on
5582scheduling: see @ref{Scheduling}.
5583
5584Hooks are documented in the chapter on general utility functions: see
5585@ref{Hooks}.
5586
5587Ports are described in the chapter on I/O: see @ref{Input and Output}.
5588
5589
5590@c Local Variables:
5591@c TeX-master: "guile.texi"
5592@c End: