(String Selection): In string-pad and
[bpt/guile.git] / doc / ref / api-data.texi
CommitLineData
07d83abe
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
7@page
8@node Simple Data Types
9@section Simple Generic Data Types
10
11This chapter describes those of Guile's simple data types which are
12primarily used for their role as items of generic data. By
13@dfn{simple} we mean data types that are not primarily used as
14containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
15For the documentation of such @dfn{compound} data types, see
16@ref{Compound Data Types}.
17
18@c One of the great strengths of Scheme is that there is no straightforward
19@c distinction between ``data'' and ``functionality''. For example,
20@c Guile's support for dynamic linking could be described:
21
22@c @itemize @bullet
23@c @item
24@c either in a ``data-centric'' way, as the behaviour and properties of the
25@c ``dynamically linked object'' data type, and the operations that may be
26@c applied to instances of this type
27
28@c @item
29@c or in a ``functionality-centric'' way, as the set of procedures that
30@c constitute Guile's support for dynamic linking, in the context of the
31@c module system.
32@c @end itemize
33
34@c The contents of this chapter are, therefore, a matter of judgment. By
35@c @dfn{generic}, we mean to select those data types whose typical use as
36@c @emph{data} in a wide variety of programming contexts is more important
37@c than their use in the implementation of a particular piece of
38@c @emph{functionality}. The last section of this chapter provides
39@c references for all the data types that are documented not here but in a
40@c ``functionality-centric'' way elsewhere in the manual.
41
42@menu
43* Booleans:: True/false values.
44* Numbers:: Numerical data types.
050ab45f
MV
45* Characters:: Single characters.
46* Character Sets:: Sets of characters.
47* Strings:: Sequences of characters.
07d83abe
MV
48* Regular Expressions:: Pattern matching and substitution.
49* Symbols:: Symbols.
50* Keywords:: Self-quoting, customizable display keywords.
51* Other Types:: "Functionality-centric" data types.
52@end menu
53
54
55@node Booleans
56@subsection Booleans
57@tpindex Booleans
58
59The two boolean values are @code{#t} for true and @code{#f} for false.
60
61Boolean values are returned by predicate procedures, such as the general
62equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
63(@pxref{Equality}) and numerical and string comparison operators like
64@code{string=?} (@pxref{String Comparison}) and @code{<=}
65(@pxref{Comparison}).
66
67@lisp
68(<= 3 8)
69@result{} #t
70
71(<= 3 -3)
72@result{} #f
73
74(equal? "house" "houses")
75@result{} #f
76
77(eq? #f #f)
78@result{}
79#t
80@end lisp
81
82In test condition contexts like @code{if} and @code{cond} (@pxref{if
83cond case}), where a group of subexpressions will be evaluated only if a
84@var{condition} expression evaluates to ``true'', ``true'' means any
85value at all except @code{#f}.
86
87@lisp
88(if #t "yes" "no")
89@result{} "yes"
90
91(if 0 "yes" "no")
92@result{} "yes"
93
94(if #f "yes" "no")
95@result{} "no"
96@end lisp
97
98A result of this asymmetry is that typical Scheme source code more often
99uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
100represent an @code{if} or @code{cond} false value, whereas @code{#t} is
101not necessary to represent an @code{if} or @code{cond} true value.
102
103It is important to note that @code{#f} is @strong{not} equivalent to any
104other Scheme value. In particular, @code{#f} is not the same as the
105number 0 (like in C and C++), and not the same as the ``empty list''
106(like in some Lisp dialects).
107
108In C, the two Scheme boolean values are available as the two constants
109@code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
110Care must be taken with the false value @code{SCM_BOOL_F}: it is not
111false when used in C conditionals. In order to test for it, use
112@code{scm_is_false} or @code{scm_is_true}.
113
114@rnindex not
115@deffn {Scheme Procedure} not x
116@deffnx {C Function} scm_not (x)
117Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
118@end deffn
119
120@rnindex boolean?
121@deffn {Scheme Procedure} boolean? obj
122@deffnx {C Function} scm_boolean_p (obj)
123Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
124return @code{#f}.
125@end deffn
126
127@deftypevr {C Macro} SCM SCM_BOOL_T
128The @code{SCM} representation of the Scheme object @code{#t}.
129@end deftypevr
130
131@deftypevr {C Macro} SCM SCM_BOOL_F
132The @code{SCM} representation of the Scheme object @code{#f}.
133@end deftypevr
134
135@deftypefn {C Function} int scm_is_true (SCM obj)
136Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
137@end deftypefn
138
139@deftypefn {C Function} int scm_is_false (SCM obj)
140Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
141@end deftypefn
142
143@deftypefn {C Function} int scm_is_bool (SCM obj)
144Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
145return @code{0}.
146@end deftypefn
147
148@deftypefn {C Function} SCM scm_from_bool (int val)
149Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
150@end deftypefn
151
152@deftypefn {C Function} int scm_to_bool (SCM val)
153Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
154when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
155
156You should probably use @code{scm_is_true} instead of this function
157when you just want to test a @code{SCM} value for trueness.
158@end deftypefn
159
160@node Numbers
161@subsection Numerical data types
162@tpindex Numbers
163
164Guile supports a rich ``tower'' of numerical types --- integer,
165rational, real and complex --- and provides an extensive set of
166mathematical and scientific functions for operating on numerical
167data. This section of the manual documents those types and functions.
168
169You may also find it illuminating to read R5RS's presentation of numbers
170in Scheme, which is particularly clear and accessible: see
171@ref{Numbers,,,r5rs,R5RS}.
172
173@menu
174* Numerical Tower:: Scheme's numerical "tower".
175* Integers:: Whole numbers.
176* Reals and Rationals:: Real and rational numbers.
177* Complex Numbers:: Complex numbers.
178* Exactness:: Exactness and inexactness.
179* Number Syntax:: Read syntax for numerical data.
180* Integer Operations:: Operations on integer values.
181* Comparison:: Comparison predicates.
182* Conversion:: Converting numbers to and from strings.
183* Complex:: Complex number operations.
184* Arithmetic:: Arithmetic functions.
185* Scientific:: Scientific functions.
186* Primitive Numerics:: Primitive numeric functions.
187* Bitwise Operations:: Logical AND, OR, NOT, and so on.
188* Random:: Random number generation.
189@end menu
190
191
192@node Numerical Tower
193@subsubsection Scheme's Numerical ``Tower''
194@rnindex number?
195
196Scheme's numerical ``tower'' consists of the following categories of
197numbers:
198
199@table @dfn
200@item integers
201Whole numbers, positive or negative; e.g.@: --5, 0, 18.
202
203@item rationals
204The set of numbers that can be expressed as @math{@var{p}/@var{q}}
205where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
206pi (an irrational number) doesn't. These include integers
207(@math{@var{n}/1}).
208
209@item real numbers
210The set of numbers that describes all possible positions along a
211one-dimensional line. This includes rationals as well as irrational
212numbers.
213
214@item complex numbers
215The set of numbers that describes all possible positions in a two
216dimensional space. This includes real as well as imaginary numbers
217(@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
218@var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
219@minus{}1.)
220@end table
221
222It is called a tower because each category ``sits on'' the one that
223follows it, in the sense that every integer is also a rational, every
224rational is also real, and every real number is also a complex number
225(but with zero imaginary part).
226
227In addition to the classification into integers, rationals, reals and
228complex numbers, Scheme also distinguishes between whether a number is
229represented exactly or not. For example, the result of
230@m{2\sin(\pi/4),sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)} but Guile
231can neither represent @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
232Instead, it stores an inexact approximation, using the C type
233@code{double}.
234
235Guile can represent exact rationals of any magnitude, inexact
236rationals that fit into a C @code{double}, and inexact complex numbers
237with @code{double} real and imaginary parts.
238
239The @code{number?} predicate may be applied to any Scheme value to
240discover whether the value is any of the supported numerical types.
241
242@deffn {Scheme Procedure} number? obj
243@deffnx {C Function} scm_number_p (obj)
244Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
245@end deffn
246
247For example:
248
249@lisp
250(number? 3)
251@result{} #t
252
253(number? "hello there!")
254@result{} #f
255
256(define pi 3.141592654)
257(number? pi)
258@result{} #t
259@end lisp
260
5615f696
MV
261@deftypefn {C Function} int scm_is_number (SCM obj)
262This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
263@end deftypefn
264
07d83abe
MV
265The next few subsections document each of Guile's numerical data types
266in detail.
267
268@node Integers
269@subsubsection Integers
270
271@tpindex Integer numbers
272
273@rnindex integer?
274
275Integers are whole numbers, that is numbers with no fractional part,
276such as 2, 83, and @minus{}3789.
277
278Integers in Guile can be arbitrarily big, as shown by the following
279example.
280
281@lisp
282(define (factorial n)
283 (let loop ((n n) (product 1))
284 (if (= n 0)
285 product
286 (loop (- n 1) (* product n)))))
287
288(factorial 3)
289@result{} 6
290
291(factorial 20)
292@result{} 2432902008176640000
293
294(- (factorial 45))
295@result{} -119622220865480194561963161495657715064383733760000000000
296@end lisp
297
298Readers whose background is in programming languages where integers are
299limited by the need to fit into just 4 or 8 bytes of memory may find
300this surprising, or suspect that Guile's representation of integers is
301inefficient. In fact, Guile achieves a near optimal balance of
302convenience and efficiency by using the host computer's native
303representation of integers where possible, and a more general
304representation where the required number does not fit in the native
305form. Conversion between these two representations is automatic and
306completely invisible to the Scheme level programmer.
307
308The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
309inexact integers. They are explained in detail in the next section,
310together with reals and rationals.
311
312C has a host of different integer types, and Guile offers a host of
313functions to convert between them and the @code{SCM} representation.
314For example, a C @code{int} can be handled with @code{scm_to_int} and
315@code{scm_from_int}. Guile also defines a few C integer types of its
316own, to help with differences between systems.
317
318C integer types that are not covered can be handled with the generic
319@code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
320signed types, or with @code{scm_to_unsigned_integer} and
321@code{scm_from_unsigned_integer} for unsigned types.
322
323Scheme integers can be exact and inexact. For example, a number
324written as @code{3.0} with an explicit decimal-point is inexact, but
325it is also an integer. The functions @code{integer?} and
326@code{scm_is_integer} report true for such a number, but the functions
327@code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
328allow exact integers and thus report false. Likewise, the conversion
329functions like @code{scm_to_signed_integer} only accept exact
330integers.
331
332The motivation for this behavior is that the inexactness of a number
333should not be lost silently. If you want to allow inexact integers,
334you can explicitely insert a call to @code{inexact->exact} or to its C
335equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
336be converted by this call into exact integers; inexact non-integers
337will become exact fractions.)
338
339@deffn {Scheme Procedure} integer? x
340@deffnx {C Function} scm_integer_p (x)
909fcc97 341Return @code{#t} if @var{x} is an exact or inexact integer number, else
07d83abe
MV
342@code{#f}.
343
344@lisp
345(integer? 487)
346@result{} #t
347
348(integer? 3.0)
349@result{} #t
350
351(integer? -3.4)
352@result{} #f
353
354(integer? +inf.0)
355@result{} #t
356@end lisp
357@end deffn
358
359@deftypefn {C Function} int scm_is_integer (SCM x)
360This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
361@end deftypefn
362
363@defvr {C Type} scm_t_int8
364@defvrx {C Type} scm_t_uint8
365@defvrx {C Type} scm_t_int16
366@defvrx {C Type} scm_t_uint16
367@defvrx {C Type} scm_t_int32
368@defvrx {C Type} scm_t_uint32
369@defvrx {C Type} scm_t_int64
370@defvrx {C Type} scm_t_uint64
371@defvrx {C Type} scm_t_intmax
372@defvrx {C Type} scm_t_uintmax
373The C types are equivalent to the corresponding ISO C types but are
374defined on all platforms, with the exception of @code{scm_t_int64} and
375@code{scm_t_uint64}, which are only defined when a 64-bit type is
376available. For example, @code{scm_t_int8} is equivalent to
377@code{int8_t}.
378
379You can regard these definitions as a stop-gap measure until all
380platforms provide these types. If you know that all the platforms
381that you are interested in already provide these types, it is better
382to use them directly instead of the types provided by Guile.
383@end defvr
384
385@deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
386@deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
387Return @code{1} when @var{x} represents an exact integer that is
388between @var{min} and @var{max}, inclusive.
389
390These functions can be used to check whether a @code{SCM} value will
391fit into a given range, such as the range of a given C integer type.
392If you just want to convert a @code{SCM} value to a given C integer
393type, use one of the conversion functions directly.
394@end deftypefn
395
396@deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
397@deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
398When @var{x} represents an exact integer that is between @var{min} and
399@var{max} inclusive, return that integer. Else signal an error,
400either a `wrong-type' error when @var{x} is not an exact integer, or
401an `out-of-range' error when it doesn't fit the given range.
402@end deftypefn
403
404@deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
405@deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
406Return the @code{SCM} value that represents the integer @var{x}. This
407function will always succeed and will always return an exact number.
408@end deftypefn
409
410@deftypefn {C Function} char scm_to_char (SCM x)
411@deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
412@deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
413@deftypefnx {C Function} short scm_to_short (SCM x)
414@deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
415@deftypefnx {C Function} int scm_to_int (SCM x)
416@deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
417@deftypefnx {C Function} long scm_to_long (SCM x)
418@deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
419@deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
420@deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
421@deftypefnx {C Function} size_t scm_to_size_t (SCM x)
422@deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
423@deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
424@deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
425@deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
426@deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
427@deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
428@deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
429@deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
430@deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
431@deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
432@deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
433When @var{x} represents an exact integer that fits into the indicated
434C type, return that integer. Else signal an error, either a
435`wrong-type' error when @var{x} is not an exact integer, or an
436`out-of-range' error when it doesn't fit the given range.
437
438The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
439@code{scm_to_int64}, and @code{scm_to_uint64} are only available when
440the corresponding types are.
441@end deftypefn
442
443@deftypefn {C Function} SCM scm_from_char (char x)
444@deftypefnx {C Function} SCM scm_from_schar (signed char x)
445@deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
446@deftypefnx {C Function} SCM scm_from_short (short x)
447@deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
448@deftypefnx {C Function} SCM scm_from_int (int x)
449@deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
450@deftypefnx {C Function} SCM scm_from_long (long x)
451@deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
452@deftypefnx {C Function} SCM scm_from_long_long (long long x)
453@deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
454@deftypefnx {C Function} SCM scm_from_size_t (size_t x)
455@deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
456@deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
457@deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
458@deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
459@deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
460@deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
461@deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
462@deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
463@deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
464@deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
465@deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
466Return the @code{SCM} value that represents the integer @var{x}.
467These functions will always succeed and will always return an exact
468number.
469@end deftypefn
470
08962922
MV
471@deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
472Assign @var{val} to the multiple precision integer @var{rop}.
473@var{val} must be an exact integer, otherwise an error will be
474signalled. @var{rop} must have been initialized with @code{mpz_init}
475before this function is called. When @var{rop} is no longer needed
476the occupied space must be freed with @code{mpz_clear}.
477@xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
478@end deftypefn
479
480@deftypefn {C Function} SCM scm_from_mpz_t (mpz_t val)
481Return the @code{SCM} value that represents @var{val}.
482@end deftypefn
483
07d83abe
MV
484@node Reals and Rationals
485@subsubsection Real and Rational Numbers
486@tpindex Real numbers
487@tpindex Rational numbers
488
489@rnindex real?
490@rnindex rational?
491
492Mathematically, the real numbers are the set of numbers that describe
493all possible points along a continuous, infinite, one-dimensional line.
494The rational numbers are the set of all numbers that can be written as
495fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
496All rational numbers are also real, but there are real numbers that
497are not rational, for example the square root of 2, and pi.
498
499Guile can represent both exact and inexact rational numbers, but it
500can not represent irrational numbers. Exact rationals are represented
501by storing the numerator and denominator as two exact integers.
502Inexact rationals are stored as floating point numbers using the C
503type @code{double}.
504
505Exact rationals are written as a fraction of integers. There must be
506no whitespace around the slash:
507
508@lisp
5091/2
510-22/7
511@end lisp
512
513Even though the actual encoding of inexact rationals is in binary, it
514may be helpful to think of it as a decimal number with a limited
515number of significant figures and a decimal point somewhere, since
516this corresponds to the standard notation for non-whole numbers. For
517example:
518
519@lisp
5200.34
521-0.00000142857931198
522-5648394822220000000000.0
5234.0
524@end lisp
525
526The limited precision of Guile's encoding means that any ``real'' number
527in Guile can be written in a rational form, by multiplying and then dividing
528by sufficient powers of 10 (or in fact, 2). For example,
529@samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
530100000000000000000. In Guile's current incarnation, therefore, the
531@code{rational?} and @code{real?} predicates are equivalent.
532
533
534Dividing by an exact zero leads to a error message, as one might
535expect. However, dividing by an inexact zero does not produce an
536error. Instead, the result of the division is either plus or minus
537infinity, depending on the sign of the divided number.
538
539The infinities are written @samp{+inf.0} and @samp{-inf.0},
540respectivly. This syntax is also recognized by @code{read} as an
541extension to the usual Scheme syntax.
542
543Dividing zero by zero yields something that is not a number at all:
544@samp{+nan.0}. This is the special `not a number' value.
545
546On platforms that follow @acronym{IEEE} 754 for their floating point
547arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
548are implemented using the corresponding @acronym{IEEE} 754 values.
549They behave in arithmetic operations like @acronym{IEEE} 754 describes
550it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
551
552The infinities are inexact integers and are considered to be both even
553and odd. While @samp{+nan.0} is not @code{=} to itself, it is
554@code{eqv?} to itself.
555
556To test for the special values, use the functions @code{inf?} and
557@code{nan?}.
558
559@deffn {Scheme Procedure} real? obj
560@deffnx {C Function} scm_real_p (obj)
561Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
562that the sets of integer and rational values form subsets of the set
563of real numbers, so the predicate will also be fulfilled if @var{obj}
564is an integer number or a rational number.
565@end deffn
566
567@deffn {Scheme Procedure} rational? x
568@deffnx {C Function} scm_rational_p (x)
569Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
570Note that the set of integer values forms a subset of the set of
571rational numbers, i. e. the predicate will also be fulfilled if
572@var{x} is an integer number.
573
574Since Guile can not represent irrational numbers, every number
575satisfying @code{real?} also satisfies @code{rational?} in Guile.
576@end deffn
577
578@deffn {Scheme Procedure} rationalize x eps
579@deffnx {C Function} scm_rationalize (x, eps)
580Returns the @emph{simplest} rational number differing
581from @var{x} by no more than @var{eps}.
582
583As required by @acronym{R5RS}, @code{rationalize} only returns an
584exact result when both its arguments are exact. Thus, you might need
585to use @code{inexact->exact} on the arguments.
586
587@lisp
588(rationalize (inexact->exact 1.2) 1/100)
589@result{} 6/5
590@end lisp
591
592@end deffn
593
d3df9759
MV
594@deffn {Scheme Procedure} inf? x
595@deffnx {C Function} scm_inf_p (x)
07d83abe
MV
596Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
597@code{#f} otherwise.
598@end deffn
599
600@deffn {Scheme Procedure} nan? x
d3df9759 601@deffnx {C Function} scm_nan_p (x)
07d83abe
MV
602Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
603@end deffn
604
cdf1ad3b
MV
605@deffn {Scheme Procedure} nan
606@deffnx {C Function} scm_nan ()
607Return NaN.
608@end deffn
609
610@deffn {Scheme Procedure} inf
611@deffnx {C Function} scm_inf ()
612Return Inf.
613@end deffn
614
d3df9759
MV
615@deffn {Scheme Procedure} numerator x
616@deffnx {C Function} scm_numerator (x)
617Return the numerator of the rational number @var{x}.
618@end deffn
619
620@deffn {Scheme Procedure} denominator x
621@deffnx {C Function} scm_denominator (x)
622Return the denominator of the rational number @var{x}.
623@end deffn
624
625@deftypefn {C Function} int scm_is_real (SCM val)
626@deftypefnx {C Function} int scm_is_rational (SCM val)
627Equivalent to @code{scm_is_true (scm_real_p (val))} and
628@code{scm_is_true (scm_rational_p (val))}, respectively.
629@end deftypefn
630
631@deftypefn {C Function} double scm_to_double (SCM val)
632Returns the number closest to @var{val} that is representable as a
633@code{double}. Returns infinity for a @var{val} that is too large in
634magnitude. The argument @var{val} must be a real number.
635@end deftypefn
636
637@deftypefn {C Function} SCM scm_from_double (double val)
638Return the @code{SCM} value that representats @var{val}. The returned
639value is inexact according to the predicate @code{inexact?}, but it
640will be exactly equal to @var{val}.
641@end deftypefn
642
07d83abe
MV
643@node Complex Numbers
644@subsubsection Complex Numbers
645@tpindex Complex numbers
646
647@rnindex complex?
648
649Complex numbers are the set of numbers that describe all possible points
650in a two-dimensional space. The two coordinates of a particular point
651in this space are known as the @dfn{real} and @dfn{imaginary} parts of
652the complex number that describes that point.
653
654In Guile, complex numbers are written in rectangular form as the sum of
655their real and imaginary parts, using the symbol @code{i} to indicate
656the imaginary part.
657
658@lisp
6593+4i
660@result{}
6613.0+4.0i
662
663(* 3-8i 2.3+0.3i)
664@result{}
6659.3-17.5i
666@end lisp
667
668Guile represents a complex number with a non-zero imaginary part as a
669pair of inexact rationals, so the real and imaginary parts of a
670complex number have the same properties of inexactness and limited
671precision as single inexact rational numbers. Guile can not represent
672exact complex numbers with non-zero imaginary parts.
673
5615f696
MV
674@deffn {Scheme Procedure} complex? z
675@deffnx {C Function} scm_complex_p (z)
07d83abe
MV
676Return @code{#t} if @var{x} is a complex number, @code{#f}
677otherwise. Note that the sets of real, rational and integer
678values form subsets of the set of complex numbers, i. e. the
679predicate will also be fulfilled if @var{x} is a real,
680rational or integer number.
681@end deffn
682
c9dc8c6c
MV
683@deftypefn {C Function} int scm_is_complex (SCM val)
684Equivalent to @code{scm_is_true (scm_complex_p (val))}.
685@end deftypefn
686
07d83abe
MV
687@node Exactness
688@subsubsection Exact and Inexact Numbers
689@tpindex Exact numbers
690@tpindex Inexact numbers
691
692@rnindex exact?
693@rnindex inexact?
694@rnindex exact->inexact
695@rnindex inexact->exact
696
697R5RS requires that a calculation involving inexact numbers always
698produces an inexact result. To meet this requirement, Guile
699distinguishes between an exact integer value such as @samp{5} and the
700corresponding inexact real value which, to the limited precision
701available, has no fractional part, and is printed as @samp{5.0}. Guile
702will only convert the latter value to the former when forced to do so by
703an invocation of the @code{inexact->exact} procedure.
704
705@deffn {Scheme Procedure} exact? z
706@deffnx {C Function} scm_exact_p (z)
707Return @code{#t} if the number @var{z} is exact, @code{#f}
708otherwise.
709
710@lisp
711(exact? 2)
712@result{} #t
713
714(exact? 0.5)
715@result{} #f
716
717(exact? (/ 2))
718@result{} #t
719@end lisp
720
721@end deffn
722
723@deffn {Scheme Procedure} inexact? z
724@deffnx {C Function} scm_inexact_p (z)
725Return @code{#t} if the number @var{z} is inexact, @code{#f}
726else.
727@end deffn
728
729@deffn {Scheme Procedure} inexact->exact z
730@deffnx {C Function} scm_inexact_to_exact (z)
731Return an exact number that is numerically closest to @var{z}, when
732there is one. For inexact rationals, Guile returns the exact rational
733that is numerically equal to the inexact rational. Inexact complex
734numbers with a non-zero imaginary part can not be made exact.
735
736@lisp
737(inexact->exact 0.5)
738@result{} 1/2
739@end lisp
740
741The following happens because 12/10 is not exactly representable as a
742@code{double} (on most platforms). However, when reading a decimal
743number that has been marked exact with the ``#e'' prefix, Guile is
744able to represent it correctly.
745
746@lisp
747(inexact->exact 1.2)
748@result{} 5404319552844595/4503599627370496
749
750#e1.2
751@result{} 6/5
752@end lisp
753
754@end deffn
755
756@c begin (texi-doc-string "guile" "exact->inexact")
757@deffn {Scheme Procedure} exact->inexact z
758@deffnx {C Function} scm_exact_to_inexact (z)
759Convert the number @var{z} to its inexact representation.
760@end deffn
761
762
763@node Number Syntax
764@subsubsection Read Syntax for Numerical Data
765
766The read syntax for integers is a string of digits, optionally
767preceded by a minus or plus character, a code indicating the
768base in which the integer is encoded, and a code indicating whether
769the number is exact or inexact. The supported base codes are:
770
771@table @code
772@item #b
773@itemx #B
774the integer is written in binary (base 2)
775
776@item #o
777@itemx #O
778the integer is written in octal (base 8)
779
780@item #d
781@itemx #D
782the integer is written in decimal (base 10)
783
784@item #x
785@itemx #X
786the integer is written in hexadecimal (base 16)
787@end table
788
789If the base code is omitted, the integer is assumed to be decimal. The
790following examples show how these base codes are used.
791
792@lisp
793-13
794@result{} -13
795
796#d-13
797@result{} -13
798
799#x-13
800@result{} -19
801
802#b+1101
803@result{} 13
804
805#o377
806@result{} 255
807@end lisp
808
809The codes for indicating exactness (which can, incidentally, be applied
810to all numerical values) are:
811
812@table @code
813@item #e
814@itemx #E
815the number is exact
816
817@item #i
818@itemx #I
819the number is inexact.
820@end table
821
822If the exactness indicator is omitted, the number is exact unless it
823contains a radix point. Since Guile can not represent exact complex
824numbers, an error is signalled when asking for them.
825
826@lisp
827(exact? 1.2)
828@result{} #f
829
830(exact? #e1.2)
831@result{} #t
832
833(exact? #e+1i)
834ERROR: Wrong type argument
835@end lisp
836
837Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
838plus and minus infinity, respectively. The value must be written
839exactly as shown, that is, they always must have a sign and exactly
840one zero digit after the decimal point. It also understands
841@samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
842The sign is ignored for `not-a-number' and the value is always printed
843as @samp{+nan.0}.
844
845@node Integer Operations
846@subsubsection Operations on Integer Values
847@rnindex odd?
848@rnindex even?
849@rnindex quotient
850@rnindex remainder
851@rnindex modulo
852@rnindex gcd
853@rnindex lcm
854
855@deffn {Scheme Procedure} odd? n
856@deffnx {C Function} scm_odd_p (n)
857Return @code{#t} if @var{n} is an odd number, @code{#f}
858otherwise.
859@end deffn
860
861@deffn {Scheme Procedure} even? n
862@deffnx {C Function} scm_even_p (n)
863Return @code{#t} if @var{n} is an even number, @code{#f}
864otherwise.
865@end deffn
866
867@c begin (texi-doc-string "guile" "quotient")
868@c begin (texi-doc-string "guile" "remainder")
869@deffn {Scheme Procedure} quotient n d
870@deffnx {Scheme Procedure} remainder n d
871@deffnx {C Function} scm_quotient (n, d)
872@deffnx {C Function} scm_remainder (n, d)
873Return the quotient or remainder from @var{n} divided by @var{d}. The
874quotient is rounded towards zero, and the remainder will have the same
875sign as @var{n}. In all cases quotient and remainder satisfy
876@math{@var{n} = @var{q}*@var{d} + @var{r}}.
877
878@lisp
879(remainder 13 4) @result{} 1
880(remainder -13 4) @result{} -1
881@end lisp
882@end deffn
883
884@c begin (texi-doc-string "guile" "modulo")
885@deffn {Scheme Procedure} modulo n d
886@deffnx {C Function} scm_modulo (n, d)
887Return the remainder from @var{n} divided by @var{d}, with the same
888sign as @var{d}.
889
890@lisp
891(modulo 13 4) @result{} 1
892(modulo -13 4) @result{} 3
893(modulo 13 -4) @result{} -3
894(modulo -13 -4) @result{} -1
895@end lisp
896@end deffn
897
898@c begin (texi-doc-string "guile" "gcd")
899@deffn {Scheme Procedure} gcd
900@deffnx {C Function} scm_gcd (x, y)
901Return the greatest common divisor of all arguments.
902If called without arguments, 0 is returned.
903
904The C function @code{scm_gcd} always takes two arguments, while the
905Scheme function can take an arbitrary number.
906@end deffn
907
908@c begin (texi-doc-string "guile" "lcm")
909@deffn {Scheme Procedure} lcm
910@deffnx {C Function} scm_lcm (x, y)
911Return the least common multiple of the arguments.
912If called without arguments, 1 is returned.
913
914The C function @code{scm_lcm} always takes two arguments, while the
915Scheme function can take an arbitrary number.
916@end deffn
917
cdf1ad3b
MV
918@deffn {Scheme Procedure} modulo-expt n k m
919@deffnx {C Function} scm_modulo_expt (n, k, m)
920Return @var{n} raised to the integer exponent
921@var{k}, modulo @var{m}.
922
923@lisp
924(modulo-expt 2 3 5)
925 @result{} 3
926@end lisp
927@end deffn
07d83abe
MV
928
929@node Comparison
930@subsubsection Comparison Predicates
931@rnindex zero?
932@rnindex positive?
933@rnindex negative?
934
935The C comparison functions below always takes two arguments, while the
936Scheme functions can take an arbitrary number. Also keep in mind that
937the C functions return one of the Scheme boolean values
938@code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
939is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
940y))} when testing the two Scheme numbers @code{x} and @code{y} for
941equality, for example.
942
943@c begin (texi-doc-string "guile" "=")
944@deffn {Scheme Procedure} =
945@deffnx {C Function} scm_num_eq_p (x, y)
946Return @code{#t} if all parameters are numerically equal.
947@end deffn
948
949@c begin (texi-doc-string "guile" "<")
950@deffn {Scheme Procedure} <
951@deffnx {C Function} scm_less_p (x, y)
952Return @code{#t} if the list of parameters is monotonically
953increasing.
954@end deffn
955
956@c begin (texi-doc-string "guile" ">")
957@deffn {Scheme Procedure} >
958@deffnx {C Function} scm_gr_p (x, y)
959Return @code{#t} if the list of parameters is monotonically
960decreasing.
961@end deffn
962
963@c begin (texi-doc-string "guile" "<=")
964@deffn {Scheme Procedure} <=
965@deffnx {C Function} scm_leq_p (x, y)
966Return @code{#t} if the list of parameters is monotonically
967non-decreasing.
968@end deffn
969
970@c begin (texi-doc-string "guile" ">=")
971@deffn {Scheme Procedure} >=
972@deffnx {C Function} scm_geq_p (x, y)
973Return @code{#t} if the list of parameters is monotonically
974non-increasing.
975@end deffn
976
977@c begin (texi-doc-string "guile" "zero?")
978@deffn {Scheme Procedure} zero? z
979@deffnx {C Function} scm_zero_p (z)
980Return @code{#t} if @var{z} is an exact or inexact number equal to
981zero.
982@end deffn
983
984@c begin (texi-doc-string "guile" "positive?")
985@deffn {Scheme Procedure} positive? x
986@deffnx {C Function} scm_positive_p (x)
987Return @code{#t} if @var{x} is an exact or inexact number greater than
988zero.
989@end deffn
990
991@c begin (texi-doc-string "guile" "negative?")
992@deffn {Scheme Procedure} negative? x
993@deffnx {C Function} scm_negative_p (x)
994Return @code{#t} if @var{x} is an exact or inexact number less than
995zero.
996@end deffn
997
998
999@node Conversion
1000@subsubsection Converting Numbers To and From Strings
1001@rnindex number->string
1002@rnindex string->number
1003
1004@deffn {Scheme Procedure} number->string n [radix]
1005@deffnx {C Function} scm_number_to_string (n, radix)
1006Return a string holding the external representation of the
1007number @var{n} in the given @var{radix}. If @var{n} is
1008inexact, a radix of 10 will be used.
1009@end deffn
1010
1011@deffn {Scheme Procedure} string->number string [radix]
1012@deffnx {C Function} scm_string_to_number (string, radix)
1013Return a number of the maximally precise representation
1014expressed by the given @var{string}. @var{radix} must be an
1015exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1016is a default radix that may be overridden by an explicit radix
1017prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
1018supplied, then the default radix is 10. If string is not a
1019syntactically valid notation for a number, then
1020@code{string->number} returns @code{#f}.
1021@end deffn
1022
1023
1024@node Complex
1025@subsubsection Complex Number Operations
1026@rnindex make-rectangular
1027@rnindex make-polar
1028@rnindex real-part
1029@rnindex imag-part
1030@rnindex magnitude
1031@rnindex angle
1032
1033@deffn {Scheme Procedure} make-rectangular real imaginary
1034@deffnx {C Function} scm_make_rectangular (real, imaginary)
1035Return a complex number constructed of the given @var{real} and
1036@var{imaginary} parts.
1037@end deffn
1038
1039@deffn {Scheme Procedure} make-polar x y
1040@deffnx {C Function} scm_make_polar (x, y)
1041Return the complex number @var{x} * e^(i * @var{y}).
1042@end deffn
1043
1044@c begin (texi-doc-string "guile" "real-part")
1045@deffn {Scheme Procedure} real-part z
1046@deffnx {C Function} scm_real_part (z)
1047Return the real part of the number @var{z}.
1048@end deffn
1049
1050@c begin (texi-doc-string "guile" "imag-part")
1051@deffn {Scheme Procedure} imag-part z
1052@deffnx {C Function} scm_imag_part (z)
1053Return the imaginary part of the number @var{z}.
1054@end deffn
1055
1056@c begin (texi-doc-string "guile" "magnitude")
1057@deffn {Scheme Procedure} magnitude z
1058@deffnx {C Function} scm_magnitude (z)
1059Return the magnitude of the number @var{z}. This is the same as
1060@code{abs} for real arguments, but also allows complex numbers.
1061@end deffn
1062
1063@c begin (texi-doc-string "guile" "angle")
1064@deffn {Scheme Procedure} angle z
1065@deffnx {C Function} scm_angle (z)
1066Return the angle of the complex number @var{z}.
1067@end deffn
1068
5615f696
MV
1069@deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1070@deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1071Like @code{scm_make_rectangular} or @code{scm_make_polar},
1072respectively, but these functions take @code{double}s as their
1073arguments.
1074@end deftypefn
1075
1076@deftypefn {C Function} double scm_c_real_part (z)
1077@deftypefnx {C Function} double scm_c_imag_part (z)
1078Returns the real or imaginary part of @var{z} as a @code{double}.
1079@end deftypefn
1080
1081@deftypefn {C Function} double scm_c_magnitude (z)
1082@deftypefnx {C Function} double scm_c_angle (z)
1083Returns the magnitude or angle of @var{z} as a @code{double}.
1084@end deftypefn
1085
07d83abe
MV
1086
1087@node Arithmetic
1088@subsubsection Arithmetic Functions
1089@rnindex max
1090@rnindex min
1091@rnindex +
1092@rnindex *
1093@rnindex -
1094@rnindex /
1095@rnindex abs
1096@rnindex floor
1097@rnindex ceiling
1098@rnindex truncate
1099@rnindex round
1100
1101The C arithmetic functions below always takes two arguments, while the
1102Scheme functions can take an arbitrary number. When you need to
1103invoke them with just one argument, for example to compute the
1104equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1105one: @code{scm_difference (x, SCM_UNDEFINED)}.
1106
1107@c begin (texi-doc-string "guile" "+")
1108@deffn {Scheme Procedure} + z1 @dots{}
1109@deffnx {C Function} scm_sum (z1, z2)
1110Return the sum of all parameter values. Return 0 if called without any
1111parameters.
1112@end deffn
1113
1114@c begin (texi-doc-string "guile" "-")
1115@deffn {Scheme Procedure} - z1 z2 @dots{}
1116@deffnx {C Function} scm_difference (z1, z2)
1117If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1118the sum of all but the first argument are subtracted from the first
1119argument.
1120@end deffn
1121
1122@c begin (texi-doc-string "guile" "*")
1123@deffn {Scheme Procedure} * z1 @dots{}
1124@deffnx {C Function} scm_product (z1, z2)
1125Return the product of all arguments. If called without arguments, 1 is
1126returned.
1127@end deffn
1128
1129@c begin (texi-doc-string "guile" "/")
1130@deffn {Scheme Procedure} / z1 z2 @dots{}
1131@deffnx {C Function} scm_divide (z1, z2)
1132Divide the first argument by the product of the remaining arguments. If
1133called with one argument @var{z1}, 1/@var{z1} is returned.
1134@end deffn
1135
1136@c begin (texi-doc-string "guile" "abs")
1137@deffn {Scheme Procedure} abs x
1138@deffnx {C Function} scm_abs (x)
1139Return the absolute value of @var{x}.
1140
1141@var{x} must be a number with zero imaginary part. To calculate the
1142magnitude of a complex number, use @code{magnitude} instead.
1143@end deffn
1144
1145@c begin (texi-doc-string "guile" "max")
1146@deffn {Scheme Procedure} max x1 x2 @dots{}
1147@deffnx {C Function} scm_max (x1, x2)
1148Return the maximum of all parameter values.
1149@end deffn
1150
1151@c begin (texi-doc-string "guile" "min")
1152@deffn {Scheme Procedure} min x1 x2 @dots{}
1153@deffnx {C Function} scm_min (x1, x2)
1154Return the minimum of all parameter values.
1155@end deffn
1156
1157@c begin (texi-doc-string "guile" "truncate")
1158@deffn {Scheme Procedure} truncate
1159@deffnx {C Function} scm_truncate_number (x)
1160Round the inexact number @var{x} towards zero.
1161@end deffn
1162
1163@c begin (texi-doc-string "guile" "round")
1164@deffn {Scheme Procedure} round x
1165@deffnx {C Function} scm_round_number (x)
1166Round the inexact number @var{x} to the nearest integer. When exactly
1167halfway between two integers, round to the even one.
1168@end deffn
1169
1170@c begin (texi-doc-string "guile" "floor")
1171@deffn {Scheme Procedure} floor x
1172@deffnx {C Function} scm_floor (x)
1173Round the number @var{x} towards minus infinity.
1174@end deffn
1175
1176@c begin (texi-doc-string "guile" "ceiling")
1177@deffn {Scheme Procedure} ceiling x
1178@deffnx {C Function} scm_ceiling (x)
1179Round the number @var{x} towards infinity.
1180@end deffn
1181
35da08ee
MV
1182@deftypefn {C Function} double scm_c_truncate (double x)
1183@deftypefnx {C Function} double scm_c_round (double x)
1184Like @code{scm_truncate_number} or @code{scm_round_number},
1185respectively, but these functions take and return @code{double}
1186values.
1187@end deftypefn
07d83abe
MV
1188
1189@node Scientific
1190@subsubsection Scientific Functions
1191
1192The following procedures accept any kind of number as arguments,
1193including complex numbers.
1194
1195@rnindex sqrt
1196@c begin (texi-doc-string "guile" "sqrt")
1197@deffn {Scheme Procedure} sqrt z
1198Return the square root of @var{z}.
1199@end deffn
1200
1201@rnindex expt
1202@c begin (texi-doc-string "guile" "expt")
1203@deffn {Scheme Procedure} expt z1 z2
1204Return @var{z1} raised to the power of @var{z2}.
1205@end deffn
1206
1207@rnindex sin
1208@c begin (texi-doc-string "guile" "sin")
1209@deffn {Scheme Procedure} sin z
1210Return the sine of @var{z}.
1211@end deffn
1212
1213@rnindex cos
1214@c begin (texi-doc-string "guile" "cos")
1215@deffn {Scheme Procedure} cos z
1216Return the cosine of @var{z}.
1217@end deffn
1218
1219@rnindex tan
1220@c begin (texi-doc-string "guile" "tan")
1221@deffn {Scheme Procedure} tan z
1222Return the tangent of @var{z}.
1223@end deffn
1224
1225@rnindex asin
1226@c begin (texi-doc-string "guile" "asin")
1227@deffn {Scheme Procedure} asin z
1228Return the arcsine of @var{z}.
1229@end deffn
1230
1231@rnindex acos
1232@c begin (texi-doc-string "guile" "acos")
1233@deffn {Scheme Procedure} acos z
1234Return the arccosine of @var{z}.
1235@end deffn
1236
1237@rnindex atan
1238@c begin (texi-doc-string "guile" "atan")
1239@deffn {Scheme Procedure} atan z
1240@deffnx {Scheme Procedure} atan y x
1241Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1242@end deffn
1243
1244@rnindex exp
1245@c begin (texi-doc-string "guile" "exp")
1246@deffn {Scheme Procedure} exp z
1247Return e to the power of @var{z}, where e is the base of natural
1248logarithms (2.71828@dots{}).
1249@end deffn
1250
1251@rnindex log
1252@c begin (texi-doc-string "guile" "log")
1253@deffn {Scheme Procedure} log z
1254Return the natural logarithm of @var{z}.
1255@end deffn
1256
1257@c begin (texi-doc-string "guile" "log10")
1258@deffn {Scheme Procedure} log10 z
1259Return the base 10 logarithm of @var{z}.
1260@end deffn
1261
1262@c begin (texi-doc-string "guile" "sinh")
1263@deffn {Scheme Procedure} sinh z
1264Return the hyperbolic sine of @var{z}.
1265@end deffn
1266
1267@c begin (texi-doc-string "guile" "cosh")
1268@deffn {Scheme Procedure} cosh z
1269Return the hyperbolic cosine of @var{z}.
1270@end deffn
1271
1272@c begin (texi-doc-string "guile" "tanh")
1273@deffn {Scheme Procedure} tanh z
1274Return the hyperbolic tangent of @var{z}.
1275@end deffn
1276
1277@c begin (texi-doc-string "guile" "asinh")
1278@deffn {Scheme Procedure} asinh z
1279Return the hyperbolic arcsine of @var{z}.
1280@end deffn
1281
1282@c begin (texi-doc-string "guile" "acosh")
1283@deffn {Scheme Procedure} acosh z
1284Return the hyperbolic arccosine of @var{z}.
1285@end deffn
1286
1287@c begin (texi-doc-string "guile" "atanh")
1288@deffn {Scheme Procedure} atanh z
1289Return the hyperbolic arctangent of @var{z}.
1290@end deffn
1291
1292
1293@node Primitive Numerics
1294@subsubsection Primitive Numeric Functions
1295
1296Many of Guile's numeric procedures which accept any kind of numbers as
1297arguments, including complex numbers, are implemented as Scheme
1298procedures that use the following real number-based primitives. These
1299primitives signal an error if they are called with complex arguments.
1300
1301@c begin (texi-doc-string "guile" "$abs")
1302@deffn {Scheme Procedure} $abs x
1303Return the absolute value of @var{x}.
1304@end deffn
1305
1306@c begin (texi-doc-string "guile" "$sqrt")
1307@deffn {Scheme Procedure} $sqrt x
1308Return the square root of @var{x}.
1309@end deffn
1310
1311@deffn {Scheme Procedure} $expt x y
1312@deffnx {C Function} scm_sys_expt (x, y)
1313Return @var{x} raised to the power of @var{y}. This
1314procedure does not accept complex arguments.
1315@end deffn
1316
1317@c begin (texi-doc-string "guile" "$sin")
1318@deffn {Scheme Procedure} $sin x
1319Return the sine of @var{x}.
1320@end deffn
1321
1322@c begin (texi-doc-string "guile" "$cos")
1323@deffn {Scheme Procedure} $cos x
1324Return the cosine of @var{x}.
1325@end deffn
1326
1327@c begin (texi-doc-string "guile" "$tan")
1328@deffn {Scheme Procedure} $tan x
1329Return the tangent of @var{x}.
1330@end deffn
1331
1332@c begin (texi-doc-string "guile" "$asin")
1333@deffn {Scheme Procedure} $asin x
1334Return the arcsine of @var{x}.
1335@end deffn
1336
1337@c begin (texi-doc-string "guile" "$acos")
1338@deffn {Scheme Procedure} $acos x
1339Return the arccosine of @var{x}.
1340@end deffn
1341
1342@c begin (texi-doc-string "guile" "$atan")
1343@deffn {Scheme Procedure} $atan x
1344Return the arctangent of @var{x} in the range @minus{}@math{PI/2} to
1345@math{PI/2}.
1346@end deffn
1347
1348@deffn {Scheme Procedure} $atan2 x y
1349@deffnx {C Function} scm_sys_atan2 (x, y)
1350Return the arc tangent of the two arguments @var{x} and
1351@var{y}. This is similar to calculating the arc tangent of
1352@var{x} / @var{y}, except that the signs of both arguments
1353are used to determine the quadrant of the result. This
1354procedure does not accept complex arguments.
1355@end deffn
1356
1357@c begin (texi-doc-string "guile" "$exp")
1358@deffn {Scheme Procedure} $exp x
1359Return e to the power of @var{x}, where e is the base of natural
1360logarithms (2.71828@dots{}).
1361@end deffn
1362
1363@c begin (texi-doc-string "guile" "$log")
1364@deffn {Scheme Procedure} $log x
1365Return the natural logarithm of @var{x}.
1366@end deffn
1367
1368@c begin (texi-doc-string "guile" "$sinh")
1369@deffn {Scheme Procedure} $sinh x
1370Return the hyperbolic sine of @var{x}.
1371@end deffn
1372
1373@c begin (texi-doc-string "guile" "$cosh")
1374@deffn {Scheme Procedure} $cosh x
1375Return the hyperbolic cosine of @var{x}.
1376@end deffn
1377
1378@c begin (texi-doc-string "guile" "$tanh")
1379@deffn {Scheme Procedure} $tanh x
1380Return the hyperbolic tangent of @var{x}.
1381@end deffn
1382
1383@c begin (texi-doc-string "guile" "$asinh")
1384@deffn {Scheme Procedure} $asinh x
1385Return the hyperbolic arcsine of @var{x}.
1386@end deffn
1387
1388@c begin (texi-doc-string "guile" "$acosh")
1389@deffn {Scheme Procedure} $acosh x
1390Return the hyperbolic arccosine of @var{x}.
1391@end deffn
1392
1393@c begin (texi-doc-string "guile" "$atanh")
1394@deffn {Scheme Procedure} $atanh x
1395Return the hyperbolic arctangent of @var{x}.
1396@end deffn
1397
1398C functions for the above are provided by the standard mathematics
1399library. Naturally these expect and return @code{double} arguments
1400(@pxref{Mathematics,,, libc, GNU C Library Reference Manual}).
1401
1402@multitable {xx} {Scheme Procedure} {C Function}
1403@item @tab Scheme Procedure @tab C Function
1404
1405@item @tab @code{$abs} @tab @code{fabs}
1406@item @tab @code{$sqrt} @tab @code{sqrt}
1407@item @tab @code{$sin} @tab @code{sin}
1408@item @tab @code{$cos} @tab @code{cos}
1409@item @tab @code{$tan} @tab @code{tan}
1410@item @tab @code{$asin} @tab @code{asin}
1411@item @tab @code{$acos} @tab @code{acos}
1412@item @tab @code{$atan} @tab @code{atan}
1413@item @tab @code{$atan2} @tab @code{atan2}
1414@item @tab @code{$exp} @tab @code{exp}
1415@item @tab @code{$expt} @tab @code{pow}
1416@item @tab @code{$log} @tab @code{log}
1417@item @tab @code{$sinh} @tab @code{sinh}
1418@item @tab @code{$cosh} @tab @code{cosh}
1419@item @tab @code{$tanh} @tab @code{tanh}
1420@item @tab @code{$asinh} @tab @code{asinh}
1421@item @tab @code{$acosh} @tab @code{acosh}
1422@item @tab @code{$atanh} @tab @code{atanh}
1423@end multitable
1424
1425@code{asinh}, @code{acosh} and @code{atanh} are C99 standard but might
1426not be available on older systems. Guile provides the following
1427equivalents (on all systems).
1428
1429@deftypefn {C Function} double scm_asinh (double x)
1430@deftypefnx {C Function} double scm_acosh (double x)
1431@deftypefnx {C Function} double scm_atanh (double x)
1432Return the hyperbolic arcsine, arccosine or arctangent of @var{x}
1433respectively.
1434@end deftypefn
1435
1436
1437@node Bitwise Operations
1438@subsubsection Bitwise Operations
1439
1440For the following bitwise functions, negative numbers are treated as
1441infinite precision twos-complements. For instance @math{-6} is bits
1442@math{@dots{}111010}, with infinitely many ones on the left. It can
1443be seen that adding 6 (binary 110) to such a bit pattern gives all
1444zeros.
1445
1446@deffn {Scheme Procedure} logand n1 n2 @dots{}
1447@deffnx {C Function} scm_logand (n1, n2)
1448Return the bitwise @sc{and} of the integer arguments.
1449
1450@lisp
1451(logand) @result{} -1
1452(logand 7) @result{} 7
1453(logand #b111 #b011 #b001) @result{} 1
1454@end lisp
1455@end deffn
1456
1457@deffn {Scheme Procedure} logior n1 n2 @dots{}
1458@deffnx {C Function} scm_logior (n1, n2)
1459Return the bitwise @sc{or} of the integer arguments.
1460
1461@lisp
1462(logior) @result{} 0
1463(logior 7) @result{} 7
1464(logior #b000 #b001 #b011) @result{} 3
1465@end lisp
1466@end deffn
1467
1468@deffn {Scheme Procedure} logxor n1 n2 @dots{}
1469@deffnx {C Function} scm_loxor (n1, n2)
1470Return the bitwise @sc{xor} of the integer arguments. A bit is
1471set in the result if it is set in an odd number of arguments.
1472
1473@lisp
1474(logxor) @result{} 0
1475(logxor 7) @result{} 7
1476(logxor #b000 #b001 #b011) @result{} 2
1477(logxor #b000 #b001 #b011 #b011) @result{} 1
1478@end lisp
1479@end deffn
1480
1481@deffn {Scheme Procedure} lognot n
1482@deffnx {C Function} scm_lognot (n)
1483Return the integer which is the ones-complement of the integer
1484argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1485
1486@lisp
1487(number->string (lognot #b10000000) 2)
1488 @result{} "-10000001"
1489(number->string (lognot #b0) 2)
1490 @result{} "-1"
1491@end lisp
1492@end deffn
1493
1494@deffn {Scheme Procedure} logtest j k
1495@deffnx {C Function} scm_logtest (j, k)
a46648ac
KR
1496Test whether @var{j} and @var{k} have any 1 bits in common. This is
1497equivalent to @code{(not (zero? (logand j k)))}, but without actually
1498calculating the @code{logand}, just testing for non-zero.
07d83abe 1499
a46648ac 1500@lisp
07d83abe
MV
1501(logtest #b0100 #b1011) @result{} #f
1502(logtest #b0100 #b0111) @result{} #t
1503@end lisp
1504@end deffn
1505
1506@deffn {Scheme Procedure} logbit? index j
1507@deffnx {C Function} scm_logbit_p (index, j)
a46648ac
KR
1508Test whether bit number @var{index} in @var{j} is set. @var{index}
1509starts from 0 for the least significant bit.
07d83abe 1510
a46648ac 1511@lisp
07d83abe
MV
1512(logbit? 0 #b1101) @result{} #t
1513(logbit? 1 #b1101) @result{} #f
1514(logbit? 2 #b1101) @result{} #t
1515(logbit? 3 #b1101) @result{} #t
1516(logbit? 4 #b1101) @result{} #f
1517@end lisp
1518@end deffn
1519
1520@deffn {Scheme Procedure} ash n cnt
1521@deffnx {C Function} scm_ash (n, cnt)
1522Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1523@var{cnt} is negative. This is an ``arithmetic'' shift.
1524
1525This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1526when @var{cnt} is negative it's a division, rounded towards negative
1527infinity. (Note that this is not the same rounding as @code{quotient}
1528does.)
1529
1530With @var{n} viewed as an infinite precision twos complement,
1531@code{ash} means a left shift introducing zero bits, or a right shift
1532dropping bits.
1533
1534@lisp
1535(number->string (ash #b1 3) 2) @result{} "1000"
1536(number->string (ash #b1010 -1) 2) @result{} "101"
1537
1538;; -23 is bits ...11101001, -6 is bits ...111010
1539(ash -23 -2) @result{} -6
1540@end lisp
1541@end deffn
1542
1543@deffn {Scheme Procedure} logcount n
1544@deffnx {C Function} scm_logcount (n)
a46648ac 1545Return the number of bits in integer @var{n}. If @var{n} is
07d83abe
MV
1546positive, the 1-bits in its binary representation are counted.
1547If negative, the 0-bits in its two's-complement binary
a46648ac 1548representation are counted. If zero, 0 is returned.
07d83abe
MV
1549
1550@lisp
1551(logcount #b10101010)
1552 @result{} 4
1553(logcount 0)
1554 @result{} 0
1555(logcount -2)
1556 @result{} 1
1557@end lisp
1558@end deffn
1559
1560@deffn {Scheme Procedure} integer-length n
1561@deffnx {C Function} scm_integer_length (n)
1562Return the number of bits necessary to represent @var{n}.
1563
1564For positive @var{n} this is how many bits to the most significant one
1565bit. For negative @var{n} it's how many bits to the most significant
1566zero bit in twos complement form.
1567
1568@lisp
1569(integer-length #b10101010) @result{} 8
1570(integer-length #b1111) @result{} 4
1571(integer-length 0) @result{} 0
1572(integer-length -1) @result{} 0
1573(integer-length -256) @result{} 8
1574(integer-length -257) @result{} 9
1575@end lisp
1576@end deffn
1577
1578@deffn {Scheme Procedure} integer-expt n k
1579@deffnx {C Function} scm_integer_expt (n, k)
a46648ac
KR
1580Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1581integer, @var{n} can be any number.
1582
1583Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1584in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1585@math{0^0} is 1.
07d83abe
MV
1586
1587@lisp
a46648ac
KR
1588(integer-expt 2 5) @result{} 32
1589(integer-expt -3 3) @result{} -27
1590(integer-expt 5 -3) @result{} 1/125
1591(integer-expt 0 0) @result{} 1
07d83abe
MV
1592@end lisp
1593@end deffn
1594
1595@deffn {Scheme Procedure} bit-extract n start end
1596@deffnx {C Function} scm_bit_extract (n, start, end)
1597Return the integer composed of the @var{start} (inclusive)
1598through @var{end} (exclusive) bits of @var{n}. The
1599@var{start}th bit becomes the 0-th bit in the result.
1600
1601@lisp
1602(number->string (bit-extract #b1101101010 0 4) 2)
1603 @result{} "1010"
1604(number->string (bit-extract #b1101101010 4 9) 2)
1605 @result{} "10110"
1606@end lisp
1607@end deffn
1608
1609
1610@node Random
1611@subsubsection Random Number Generation
1612
1613Pseudo-random numbers are generated from a random state object, which
1614can be created with @code{seed->random-state}. The @var{state}
1615parameter to the various functions below is optional, it defaults to
1616the state object in the @code{*random-state*} variable.
1617
1618@deffn {Scheme Procedure} copy-random-state [state]
1619@deffnx {C Function} scm_copy_random_state (state)
1620Return a copy of the random state @var{state}.
1621@end deffn
1622
1623@deffn {Scheme Procedure} random n [state]
1624@deffnx {C Function} scm_random (n, state)
1625Return a number in [0, @var{n}).
1626
1627Accepts a positive integer or real n and returns a
1628number of the same type between zero (inclusive) and
1629@var{n} (exclusive). The values returned have a uniform
1630distribution.
1631@end deffn
1632
1633@deffn {Scheme Procedure} random:exp [state]
1634@deffnx {C Function} scm_random_exp (state)
1635Return an inexact real in an exponential distribution with mean
16361. For an exponential distribution with mean @var{u} use @code{(*
1637@var{u} (random:exp))}.
1638@end deffn
1639
1640@deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1641@deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1642Fills @var{vect} with inexact real random numbers the sum of whose
1643squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1644space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1645the coordinates are uniformly distributed over the surface of the unit
1646n-sphere.
1647@end deffn
1648
1649@deffn {Scheme Procedure} random:normal [state]
1650@deffnx {C Function} scm_random_normal (state)
1651Return an inexact real in a normal distribution. The distribution
1652used has mean 0 and standard deviation 1. For a normal distribution
1653with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1654(* @var{d} (random:normal)))}.
1655@end deffn
1656
1657@deffn {Scheme Procedure} random:normal-vector! vect [state]
1658@deffnx {C Function} scm_random_normal_vector_x (vect, state)
1659Fills @var{vect} with inexact real random numbers that are
1660independent and standard normally distributed
1661(i.e., with mean 0 and variance 1).
1662@end deffn
1663
1664@deffn {Scheme Procedure} random:solid-sphere! vect [state]
1665@deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1666Fills @var{vect} with inexact real random numbers the sum of whose
1667squares is less than 1.0. Thinking of @var{vect} as coordinates in
1668space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1669the coordinates are uniformly distributed within the unit
4497bd2f 1670@var{n}-sphere.
07d83abe
MV
1671@c FIXME: What does this mean, particularly the n-sphere part?
1672@end deffn
1673
1674@deffn {Scheme Procedure} random:uniform [state]
1675@deffnx {C Function} scm_random_uniform (state)
1676Return a uniformly distributed inexact real random number in
1677[0,1).
1678@end deffn
1679
1680@deffn {Scheme Procedure} seed->random-state seed
1681@deffnx {C Function} scm_seed_to_random_state (seed)
1682Return a new random state using @var{seed}.
1683@end deffn
1684
1685@defvar *random-state*
1686The global random state used by the above functions when the
1687@var{state} parameter is not given.
1688@end defvar
1689
1690
1691@node Characters
1692@subsection Characters
1693@tpindex Characters
1694
050ab45f
MV
1695In Scheme, a character literal is written as @code{#\@var{name}} where
1696@var{name} is the name of the character that you want. Printable
1697characters have their usual single character name; for example,
1698@code{#\a} is a lower case @code{a}.
07d83abe
MV
1699
1700Most of the ``control characters'' (those below codepoint 32) in the
1701@acronym{ASCII} character set, as well as the space, may be referred
050ab45f
MV
1702to by longer names: for example, @code{#\tab}, @code{#\esc},
1703@code{#\stx}, and so on. The following table describes the
1704@acronym{ASCII} names for each character.
07d83abe
MV
1705
1706@multitable @columnfractions .25 .25 .25 .25
1707@item 0 = @code{#\nul}
1708 @tab 1 = @code{#\soh}
1709 @tab 2 = @code{#\stx}
1710 @tab 3 = @code{#\etx}
1711@item 4 = @code{#\eot}
1712 @tab 5 = @code{#\enq}
1713 @tab 6 = @code{#\ack}
1714 @tab 7 = @code{#\bel}
1715@item 8 = @code{#\bs}
1716 @tab 9 = @code{#\ht}
1717 @tab 10 = @code{#\nl}
1718 @tab 11 = @code{#\vt}
1719@item 12 = @code{#\np}
1720 @tab 13 = @code{#\cr}
1721 @tab 14 = @code{#\so}
1722 @tab 15 = @code{#\si}
1723@item 16 = @code{#\dle}
1724 @tab 17 = @code{#\dc1}
1725 @tab 18 = @code{#\dc2}
1726 @tab 19 = @code{#\dc3}
1727@item 20 = @code{#\dc4}
1728 @tab 21 = @code{#\nak}
1729 @tab 22 = @code{#\syn}
1730 @tab 23 = @code{#\etb}
1731@item 24 = @code{#\can}
1732 @tab 25 = @code{#\em}
1733 @tab 26 = @code{#\sub}
1734 @tab 27 = @code{#\esc}
1735@item 28 = @code{#\fs}
1736 @tab 29 = @code{#\gs}
1737 @tab 30 = @code{#\rs}
1738 @tab 31 = @code{#\us}
1739@item 32 = @code{#\sp}
1740@end multitable
1741
1742The ``delete'' character (octal 177) may be referred to with the name
1743@code{#\del}.
1744
1745Several characters have more than one name:
1746
1747@multitable {@code{#\backspace}} {Original}
1748@item Alias @tab Original
1749@item @code{#\space} @tab @code{#\sp}
1750@item @code{#\newline} @tab @code{#\nl}
1751@item @code{#\tab} @tab @code{#\ht}
1752@item @code{#\backspace} @tab @code{#\bs}
1753@item @code{#\return} @tab @code{#\cr}
1754@item @code{#\page} @tab @code{#\np}
1755@item @code{#\null} @tab @code{#\nul}
1756@end multitable
1757
1758@rnindex char?
1759@deffn {Scheme Procedure} char? x
1760@deffnx {C Function} scm_char_p (x)
1761Return @code{#t} iff @var{x} is a character, else @code{#f}.
1762@end deffn
1763
1764@rnindex char=?
1765@deffn {Scheme Procedure} char=? x y
1766Return @code{#t} iff @var{x} is the same character as @var{y}, else @code{#f}.
1767@end deffn
1768
1769@rnindex char<?
1770@deffn {Scheme Procedure} char<? x y
1771Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence,
1772else @code{#f}.
1773@end deffn
1774
1775@rnindex char<=?
1776@deffn {Scheme Procedure} char<=? x y
1777Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1778@acronym{ASCII} sequence, else @code{#f}.
1779@end deffn
1780
1781@rnindex char>?
1782@deffn {Scheme Procedure} char>? x y
1783Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1784sequence, else @code{#f}.
1785@end deffn
1786
1787@rnindex char>=?
1788@deffn {Scheme Procedure} char>=? x y
1789Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1790@acronym{ASCII} sequence, else @code{#f}.
1791@end deffn
1792
1793@rnindex char-ci=?
1794@deffn {Scheme Procedure} char-ci=? x y
1795Return @code{#t} iff @var{x} is the same character as @var{y} ignoring
1796case, else @code{#f}.
1797@end deffn
1798
1799@rnindex char-ci<?
1800@deffn {Scheme Procedure} char-ci<? x y
1801Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence
1802ignoring case, else @code{#f}.
1803@end deffn
1804
1805@rnindex char-ci<=?
1806@deffn {Scheme Procedure} char-ci<=? x y
1807Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1808@acronym{ASCII} sequence ignoring case, else @code{#f}.
1809@end deffn
1810
1811@rnindex char-ci>?
1812@deffn {Scheme Procedure} char-ci>? x y
1813Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1814sequence ignoring case, else @code{#f}.
1815@end deffn
1816
1817@rnindex char-ci>=?
1818@deffn {Scheme Procedure} char-ci>=? x y
1819Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1820@acronym{ASCII} sequence ignoring case, else @code{#f}.
1821@end deffn
1822
1823@rnindex char-alphabetic?
1824@deffn {Scheme Procedure} char-alphabetic? chr
1825@deffnx {C Function} scm_char_alphabetic_p (chr)
1826Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
07d83abe
MV
1827@end deffn
1828
1829@rnindex char-numeric?
1830@deffn {Scheme Procedure} char-numeric? chr
1831@deffnx {C Function} scm_char_numeric_p (chr)
1832Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
07d83abe
MV
1833@end deffn
1834
1835@rnindex char-whitespace?
1836@deffn {Scheme Procedure} char-whitespace? chr
1837@deffnx {C Function} scm_char_whitespace_p (chr)
1838Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
07d83abe
MV
1839@end deffn
1840
1841@rnindex char-upper-case?
1842@deffn {Scheme Procedure} char-upper-case? chr
1843@deffnx {C Function} scm_char_upper_case_p (chr)
1844Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
07d83abe
MV
1845@end deffn
1846
1847@rnindex char-lower-case?
1848@deffn {Scheme Procedure} char-lower-case? chr
1849@deffnx {C Function} scm_char_lower_case_p (chr)
1850Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
07d83abe
MV
1851@end deffn
1852
1853@deffn {Scheme Procedure} char-is-both? chr
1854@deffnx {C Function} scm_char_is_both_p (chr)
1855Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
5676b4fa 1856@code{#f}.
07d83abe
MV
1857@end deffn
1858
1859@rnindex char->integer
1860@deffn {Scheme Procedure} char->integer chr
1861@deffnx {C Function} scm_char_to_integer (chr)
1862Return the number corresponding to ordinal position of @var{chr} in the
1863@acronym{ASCII} sequence.
1864@end deffn
1865
1866@rnindex integer->char
1867@deffn {Scheme Procedure} integer->char n
1868@deffnx {C Function} scm_integer_to_char (n)
1869Return the character at position @var{n} in the @acronym{ASCII} sequence.
1870@end deffn
1871
1872@rnindex char-upcase
1873@deffn {Scheme Procedure} char-upcase chr
1874@deffnx {C Function} scm_char_upcase (chr)
1875Return the uppercase character version of @var{chr}.
1876@end deffn
1877
1878@rnindex char-downcase
1879@deffn {Scheme Procedure} char-downcase chr
1880@deffnx {C Function} scm_char_downcase (chr)
1881Return the lowercase character version of @var{chr}.
1882@end deffn
1883
050ab45f
MV
1884@node Character Sets
1885@subsection Character Sets
07d83abe 1886
050ab45f
MV
1887The features described in this section correspond directly to SRFI-14.
1888
1889The data type @dfn{charset} implements sets of characters
1890(@pxref{Characters}). Because the internal representation of
1891character sets is not visible to the user, a lot of procedures for
1892handling them are provided.
1893
1894Character sets can be created, extended, tested for the membership of a
1895characters and be compared to other character sets.
1896
1897The Guile implementation of character sets currently deals only with
18988-bit characters. In the future, when Guile gets support for
1899international character sets, this will change, but the functions
1900provided here will always then be able to efficiently cope with very
1901large character sets.
1902
1903@menu
1904* Character Set Predicates/Comparison::
1905* Iterating Over Character Sets:: Enumerate charset elements.
1906* Creating Character Sets:: Making new charsets.
1907* Querying Character Sets:: Test charsets for membership etc.
1908* Character-Set Algebra:: Calculating new charsets.
1909* Standard Character Sets:: Variables containing predefined charsets.
1910@end menu
1911
1912@node Character Set Predicates/Comparison
1913@subsubsection Character Set Predicates/Comparison
1914
1915Use these procedures for testing whether an object is a character set,
1916or whether several character sets are equal or subsets of each other.
1917@code{char-set-hash} can be used for calculating a hash value, maybe for
1918usage in fast lookup procedures.
1919
1920@deffn {Scheme Procedure} char-set? obj
1921@deffnx {C Function} scm_char_set_p (obj)
1922Return @code{#t} if @var{obj} is a character set, @code{#f}
1923otherwise.
1924@end deffn
1925
1926@deffn {Scheme Procedure} char-set= . char_sets
1927@deffnx {C Function} scm_char_set_eq (char_sets)
1928Return @code{#t} if all given character sets are equal.
1929@end deffn
1930
1931@deffn {Scheme Procedure} char-set<= . char_sets
1932@deffnx {C Function} scm_char_set_leq (char_sets)
1933Return @code{#t} if every character set @var{cs}i is a subset
1934of character set @var{cs}i+1.
1935@end deffn
1936
1937@deffn {Scheme Procedure} char-set-hash cs [bound]
1938@deffnx {C Function} scm_char_set_hash (cs, bound)
1939Compute a hash value for the character set @var{cs}. If
1940@var{bound} is given and non-zero, it restricts the
1941returned value to the range 0 @dots{} @var{bound - 1}.
1942@end deffn
1943
1944@c ===================================================================
1945
1946@node Iterating Over Character Sets
1947@subsubsection Iterating Over Character Sets
1948
1949Character set cursors are a means for iterating over the members of a
1950character sets. After creating a character set cursor with
1951@code{char-set-cursor}, a cursor can be dereferenced with
1952@code{char-set-ref}, advanced to the next member with
1953@code{char-set-cursor-next}. Whether a cursor has passed past the last
1954element of the set can be checked with @code{end-of-char-set?}.
1955
1956Additionally, mapping and (un-)folding procedures for character sets are
1957provided.
1958
1959@deffn {Scheme Procedure} char-set-cursor cs
1960@deffnx {C Function} scm_char_set_cursor (cs)
1961Return a cursor into the character set @var{cs}.
1962@end deffn
1963
1964@deffn {Scheme Procedure} char-set-ref cs cursor
1965@deffnx {C Function} scm_char_set_ref (cs, cursor)
1966Return the character at the current cursor position
1967@var{cursor} in the character set @var{cs}. It is an error to
1968pass a cursor for which @code{end-of-char-set?} returns true.
1969@end deffn
1970
1971@deffn {Scheme Procedure} char-set-cursor-next cs cursor
1972@deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
1973Advance the character set cursor @var{cursor} to the next
1974character in the character set @var{cs}. It is an error if the
1975cursor given satisfies @code{end-of-char-set?}.
1976@end deffn
1977
1978@deffn {Scheme Procedure} end-of-char-set? cursor
1979@deffnx {C Function} scm_end_of_char_set_p (cursor)
1980Return @code{#t} if @var{cursor} has reached the end of a
1981character set, @code{#f} otherwise.
1982@end deffn
1983
1984@deffn {Scheme Procedure} char-set-fold kons knil cs
1985@deffnx {C Function} scm_char_set_fold (kons, knil, cs)
1986Fold the procedure @var{kons} over the character set @var{cs},
1987initializing it with @var{knil}.
1988@end deffn
1989
1990@deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
1991@deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
1992This is a fundamental constructor for character sets.
1993@itemize @bullet
1994@item @var{g} is used to generate a series of ``seed'' values
1995from the initial seed: @var{seed}, (@var{g} @var{seed}),
1996(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
1997@item @var{p} tells us when to stop -- when it returns true
1998when applied to one of the seed values.
1999@item @var{f} maps each seed value to a character. These
2000characters are added to the base character set @var{base_cs} to
2001form the result; @var{base_cs} defaults to the empty set.
2002@end itemize
2003@end deffn
2004
2005@deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2006@deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2007This is a fundamental constructor for character sets.
2008@itemize @bullet
2009@item @var{g} is used to generate a series of ``seed'' values
2010from the initial seed: @var{seed}, (@var{g} @var{seed}),
2011(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2012@item @var{p} tells us when to stop -- when it returns true
2013when applied to one of the seed values.
2014@item @var{f} maps each seed value to a character. These
2015characters are added to the base character set @var{base_cs} to
2016form the result; @var{base_cs} defaults to the empty set.
2017@end itemize
2018@end deffn
2019
2020@deffn {Scheme Procedure} char-set-for-each proc cs
2021@deffnx {C Function} scm_char_set_for_each (proc, cs)
2022Apply @var{proc} to every character in the character set
2023@var{cs}. The return value is not specified.
2024@end deffn
2025
2026@deffn {Scheme Procedure} char-set-map proc cs
2027@deffnx {C Function} scm_char_set_map (proc, cs)
2028Map the procedure @var{proc} over every character in @var{cs}.
2029@var{proc} must be a character -> character procedure.
2030@end deffn
2031
2032@c ===================================================================
2033
2034@node Creating Character Sets
2035@subsubsection Creating Character Sets
2036
2037New character sets are produced with these procedures.
2038
2039@deffn {Scheme Procedure} char-set-copy cs
2040@deffnx {C Function} scm_char_set_copy (cs)
2041Return a newly allocated character set containing all
2042characters in @var{cs}.
2043@end deffn
2044
2045@deffn {Scheme Procedure} char-set . rest
2046@deffnx {C Function} scm_char_set (rest)
2047Return a character set containing all given characters.
2048@end deffn
2049
2050@deffn {Scheme Procedure} list->char-set list [base_cs]
2051@deffnx {C Function} scm_list_to_char_set (list, base_cs)
2052Convert the character list @var{list} to a character set. If
2053the character set @var{base_cs} is given, the character in this
2054set are also included in the result.
2055@end deffn
2056
2057@deffn {Scheme Procedure} list->char-set! list base_cs
2058@deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2059Convert the character list @var{list} to a character set. The
2060characters are added to @var{base_cs} and @var{base_cs} is
2061returned.
2062@end deffn
2063
2064@deffn {Scheme Procedure} string->char-set str [base_cs]
2065@deffnx {C Function} scm_string_to_char_set (str, base_cs)
2066Convert the string @var{str} to a character set. If the
2067character set @var{base_cs} is given, the characters in this
2068set are also included in the result.
2069@end deffn
2070
2071@deffn {Scheme Procedure} string->char-set! str base_cs
2072@deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2073Convert the string @var{str} to a character set. The
2074characters from the string are added to @var{base_cs}, and
2075@var{base_cs} is returned.
2076@end deffn
2077
2078@deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2079@deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2080Return a character set containing every character from @var{cs}
2081so that it satisfies @var{pred}. If provided, the characters
2082from @var{base_cs} are added to the result.
2083@end deffn
2084
2085@deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2086@deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2087Return a character set containing every character from @var{cs}
2088so that it satisfies @var{pred}. The characters are added to
2089@var{base_cs} and @var{base_cs} is returned.
2090@end deffn
2091
2092@deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2093@deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2094Return a character set containing all characters whose
2095character codes lie in the half-open range
2096[@var{lower},@var{upper}).
2097
2098If @var{error} is a true value, an error is signalled if the
2099specified range contains characters which are not contained in
2100the implemented character range. If @var{error} is @code{#f},
2101these characters are silently left out of the resultung
2102character set.
2103
2104The characters in @var{base_cs} are added to the result, if
2105given.
2106@end deffn
2107
2108@deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2109@deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2110Return a character set containing all characters whose
2111character codes lie in the half-open range
2112[@var{lower},@var{upper}).
2113
2114If @var{error} is a true value, an error is signalled if the
2115specified range contains characters which are not contained in
2116the implemented character range. If @var{error} is @code{#f},
2117these characters are silently left out of the resultung
2118character set.
2119
2120The characters are added to @var{base_cs} and @var{base_cs} is
2121returned.
2122@end deffn
2123
2124@deffn {Scheme Procedure} ->char-set x
2125@deffnx {C Function} scm_to_char_set (x)
2126Coerces x into a char-set. @var{x} may be a string, character or char-set. A string is converted to the set of its constituent characters; a character is converted to a singleton set; a char-set is returned as-is.
2127@end deffn
2128
2129@c ===================================================================
2130
2131@node Querying Character Sets
2132@subsubsection Querying Character Sets
2133
2134Access the elements and other information of a character set with these
2135procedures.
2136
2137@deffn {Scheme Procedure} char-set-size cs
2138@deffnx {C Function} scm_char_set_size (cs)
2139Return the number of elements in character set @var{cs}.
2140@end deffn
2141
2142@deffn {Scheme Procedure} char-set-count pred cs
2143@deffnx {C Function} scm_char_set_count (pred, cs)
2144Return the number of the elements int the character set
2145@var{cs} which satisfy the predicate @var{pred}.
2146@end deffn
2147
2148@deffn {Scheme Procedure} char-set->list cs
2149@deffnx {C Function} scm_char_set_to_list (cs)
2150Return a list containing the elements of the character set
2151@var{cs}.
2152@end deffn
2153
2154@deffn {Scheme Procedure} char-set->string cs
2155@deffnx {C Function} scm_char_set_to_string (cs)
2156Return a string containing the elements of the character set
2157@var{cs}. The order in which the characters are placed in the
2158string is not defined.
2159@end deffn
2160
2161@deffn {Scheme Procedure} char-set-contains? cs ch
2162@deffnx {C Function} scm_char_set_contains_p (cs, ch)
2163Return @code{#t} iff the character @var{ch} is contained in the
2164character set @var{cs}.
2165@end deffn
2166
2167@deffn {Scheme Procedure} char-set-every pred cs
2168@deffnx {C Function} scm_char_set_every (pred, cs)
2169Return a true value if every character in the character set
2170@var{cs} satisfies the predicate @var{pred}.
2171@end deffn
2172
2173@deffn {Scheme Procedure} char-set-any pred cs
2174@deffnx {C Function} scm_char_set_any (pred, cs)
2175Return a true value if any character in the character set
2176@var{cs} satisfies the predicate @var{pred}.
2177@end deffn
2178
2179@c ===================================================================
2180
2181@node Character-Set Algebra
2182@subsubsection Character-Set Algebra
2183
2184Character sets can be manipulated with the common set algebra operation,
2185such as union, complement, intersection etc. All of these procedures
2186provide side-effecting variants, which modify their character set
2187argument(s).
2188
2189@deffn {Scheme Procedure} char-set-adjoin cs . rest
2190@deffnx {C Function} scm_char_set_adjoin (cs, rest)
2191Add all character arguments to the first argument, which must
2192be a character set.
2193@end deffn
2194
2195@deffn {Scheme Procedure} char-set-delete cs . rest
2196@deffnx {C Function} scm_char_set_delete (cs, rest)
2197Delete all character arguments from the first argument, which
2198must be a character set.
2199@end deffn
2200
2201@deffn {Scheme Procedure} char-set-adjoin! cs . rest
2202@deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
2203Add all character arguments to the first argument, which must
2204be a character set.
2205@end deffn
2206
2207@deffn {Scheme Procedure} char-set-delete! cs . rest
2208@deffnx {C Function} scm_char_set_delete_x (cs, rest)
2209Delete all character arguments from the first argument, which
2210must be a character set.
2211@end deffn
2212
2213@deffn {Scheme Procedure} char-set-complement cs
2214@deffnx {C Function} scm_char_set_complement (cs)
2215Return the complement of the character set @var{cs}.
2216@end deffn
2217
2218@deffn {Scheme Procedure} char-set-union . rest
2219@deffnx {C Function} scm_char_set_union (rest)
2220Return the union of all argument character sets.
2221@end deffn
2222
2223@deffn {Scheme Procedure} char-set-intersection . rest
2224@deffnx {C Function} scm_char_set_intersection (rest)
2225Return the intersection of all argument character sets.
2226@end deffn
2227
2228@deffn {Scheme Procedure} char-set-difference cs1 . rest
2229@deffnx {C Function} scm_char_set_difference (cs1, rest)
2230Return the difference of all argument character sets.
2231@end deffn
2232
2233@deffn {Scheme Procedure} char-set-xor . rest
2234@deffnx {C Function} scm_char_set_xor (rest)
2235Return the exclusive-or of all argument character sets.
2236@end deffn
2237
2238@deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
2239@deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
2240Return the difference and the intersection of all argument
2241character sets.
2242@end deffn
2243
2244@deffn {Scheme Procedure} char-set-complement! cs
2245@deffnx {C Function} scm_char_set_complement_x (cs)
2246Return the complement of the character set @var{cs}.
2247@end deffn
2248
2249@deffn {Scheme Procedure} char-set-union! cs1 . rest
2250@deffnx {C Function} scm_char_set_union_x (cs1, rest)
2251Return the union of all argument character sets.
2252@end deffn
2253
2254@deffn {Scheme Procedure} char-set-intersection! cs1 . rest
2255@deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
2256Return the intersection of all argument character sets.
2257@end deffn
2258
2259@deffn {Scheme Procedure} char-set-difference! cs1 . rest
2260@deffnx {C Function} scm_char_set_difference_x (cs1, rest)
2261Return the difference of all argument character sets.
2262@end deffn
2263
2264@deffn {Scheme Procedure} char-set-xor! cs1 . rest
2265@deffnx {C Function} scm_char_set_xor_x (cs1, rest)
2266Return the exclusive-or of all argument character sets.
2267@end deffn
2268
2269@deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
2270@deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
2271Return the difference and the intersection of all argument
2272character sets.
2273@end deffn
2274
2275@c ===================================================================
2276
2277@node Standard Character Sets
2278@subsubsection Standard Character Sets
2279
2280In order to make the use of the character set data type and procedures
2281useful, several predefined character set variables exist.
2282
c9dc8c6c
MV
2283@defvr {Scheme Variable} char-set:lower-case
2284@defvrx {C Variable} scm_char_set_lower_case
050ab45f 2285All lower-case characters.
c9dc8c6c 2286@end defvr
050ab45f 2287
c9dc8c6c
MV
2288@defvr {Scheme Variable} char-set:upper-case
2289@defvrx {C Variable} scm_char_set_upper_case
050ab45f 2290All upper-case characters.
c9dc8c6c 2291@end defvr
050ab45f 2292
c9dc8c6c
MV
2293@defvr {Scheme Variable} char-set:title-case
2294@defvrx {C Variable} scm_char_set_title_case
050ab45f 2295This is empty, because ASCII has no titlecase characters.
c9dc8c6c 2296@end defvr
050ab45f 2297
c9dc8c6c
MV
2298@defvr {Scheme Variable} char-set:letter
2299@defvrx {C Variable} scm_char_set_letter
050ab45f
MV
2300All letters, e.g. the union of @code{char-set:lower-case} and
2301@code{char-set:upper-case}.
c9dc8c6c 2302@end defvr
050ab45f 2303
c9dc8c6c
MV
2304@defvr {Scheme Variable} char-set:digit
2305@defvrx {C Variable} scm_char_set_digit
050ab45f 2306All digits.
c9dc8c6c 2307@end defvr
050ab45f 2308
c9dc8c6c
MV
2309@defvr {Scheme Variable} char-set:letter+digit
2310@defvrx {C Variable} scm_char_set_letter_and_digit
050ab45f 2311The union of @code{char-set:letter} and @code{char-set:digit}.
c9dc8c6c 2312@end defvr
050ab45f 2313
c9dc8c6c
MV
2314@defvr {Scheme Variable} char-set:graphic
2315@defvrx {C Variable} scm_char_set_graphic
050ab45f 2316All characters which would put ink on the paper.
c9dc8c6c 2317@end defvr
050ab45f 2318
c9dc8c6c
MV
2319@defvr {Scheme Variable} char-set:printing
2320@defvrx {C Variable} scm_char_set_printing
050ab45f 2321The union of @code{char-set:graphic} and @code{char-set:whitespace}.
c9dc8c6c 2322@end defvr
050ab45f 2323
c9dc8c6c
MV
2324@defvr {Scheme Variable} char-set:whitespace
2325@defvrx {C Variable} scm_char_set_whitespace
050ab45f 2326All whitespace characters.
c9dc8c6c 2327@end defvr
050ab45f 2328
c9dc8c6c
MV
2329@defvr {Scheme Variable} char-set:blank
2330@defvrx {C Variable} scm_char_set_blank
050ab45f
MV
2331All horizontal whitespace characters, that is @code{#\space} and
2332@code{#\tab}.
c9dc8c6c 2333@end defvr
050ab45f 2334
c9dc8c6c
MV
2335@defvr {Scheme Variable} char-set:iso-control
2336@defvrx {C Variable} scm_char_set_iso_control
050ab45f 2337The ISO control characters with the codes 0--31 and 127.
c9dc8c6c 2338@end defvr
050ab45f 2339
c9dc8c6c
MV
2340@defvr {Scheme Variable} char-set:punctuation
2341@defvrx {C Variable} scm_char_set_punctuation
050ab45f 2342The characters @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
c9dc8c6c 2343@end defvr
050ab45f 2344
c9dc8c6c
MV
2345@defvr {Scheme Variable} char-set:symbol
2346@defvrx {C Variable} scm_char_set_symbol
050ab45f 2347The characters @code{$+<=>^`|~}.
c9dc8c6c 2348@end defvr
050ab45f 2349
c9dc8c6c
MV
2350@defvr {Scheme Variable} char-set:hex-digit
2351@defvrx {C Variable} scm_char_set_hex_digit
050ab45f 2352The hexadecimal digits @code{0123456789abcdefABCDEF}.
c9dc8c6c 2353@end defvr
050ab45f 2354
c9dc8c6c
MV
2355@defvr {Scheme Variable} char-set:ascii
2356@defvrx {C Variable} scm_char_set_ascii
050ab45f 2357All ASCII characters.
c9dc8c6c 2358@end defvr
050ab45f 2359
c9dc8c6c
MV
2360@defvr {Scheme Variable} char-set:empty
2361@defvrx {C Variable} scm_char_set_empty
050ab45f 2362The empty character set.
c9dc8c6c 2363@end defvr
050ab45f 2364
c9dc8c6c
MV
2365@defvr {Scheme Variable} char-set:full
2366@defvrx {C Variable} scm_char_set_full
050ab45f 2367This character set contains all possible characters.
c9dc8c6c 2368@end defvr
07d83abe
MV
2369
2370@node Strings
2371@subsection Strings
2372@tpindex Strings
2373
2374Strings are fixed-length sequences of characters. They can be created
2375by calling constructor procedures, but they can also literally get
2376entered at the @acronym{REPL} or in Scheme source files.
2377
2378@c Guile provides a rich set of string processing procedures, because text
2379@c handling is very important when Guile is used as a scripting language.
2380
2381Strings always carry the information about how many characters they are
2382composed of with them, so there is no special end-of-string character,
2383like in C. That means that Scheme strings can contain any character,
c48c62d0
MV
2384even the @samp{#\nul} character @samp{\0}.
2385
2386To use strings efficiently, you need to know a bit about how Guile
2387implements them. In Guile, a string consists of two parts, a head and
2388the actual memory where the characters are stored. When a string (or
2389a substring of it) is copied, only a new head gets created, the memory
2390is usually not copied. The two heads start out pointing to the same
2391memory.
2392
2393When one of these two strings is modified, as with @code{string-set!},
2394their common memory does get copied so that each string has its own
2395memory and modifying one does not accidently modify the other as well.
2396Thus, Guile's strings are `copy on write'; the actual copying of their
2397memory is delayed until one string is written to.
2398
2399This implementation makes functions like @code{substring} very
2400efficient in the common case that no modifications are done to the
2401involved strings.
2402
2403If you do know that your strings are getting modified right away, you
2404can use @code{substring/copy} instead of @code{substring}. This
2405function performs the copy immediately at the time of creation. This
2406is more efficient, especially in a multi-threaded program. Also,
2407@code{substring/copy} can avoid the problem that a short substring
2408holds on to the memory of a very large original string that could
2409otherwise be recycled.
2410
2411If you want to avoid the copy altogether, so that modifications of one
2412string show up in the other, you can use @code{substring/shared}. The
2413strings created by this procedure are called @dfn{mutation sharing
2414substrings} since the substring and the original string share
2415modifications to each other.
07d83abe 2416
05256760
MV
2417If you want to prevent modifications, use @code{substring/read-only}.
2418
c9dc8c6c
MV
2419Guile provides all procedures of SRFI-13 and a few more.
2420
07d83abe 2421@menu
5676b4fa
MV
2422* String Syntax:: Read syntax for strings.
2423* String Predicates:: Testing strings for certain properties.
2424* String Constructors:: Creating new string objects.
2425* List/String Conversion:: Converting from/to lists of characters.
2426* String Selection:: Select portions from strings.
2427* String Modification:: Modify parts or whole strings.
2428* String Comparison:: Lexicographic ordering predicates.
2429* String Searching:: Searching in strings.
2430* Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2431* Reversing and Appending Strings:: Appending strings to form a new string.
2432* Mapping Folding and Unfolding:: Iterating over strings.
2433* Miscellaneous String Operations:: Replicating, insertion, parsing, ...
91210d62 2434* Conversion to/from C::
07d83abe
MV
2435@end menu
2436
2437@node String Syntax
2438@subsubsection String Read Syntax
2439
2440@c In the following @code is used to get a good font in TeX etc, but
2441@c is omitted for Info format, so as not to risk any confusion over
2442@c whether surrounding ` ' quotes are part of the escape or are
2443@c special in a string (they're not).
2444
2445The read syntax for strings is an arbitrarily long sequence of
c48c62d0 2446characters enclosed in double quotes (@nicode{"}).
07d83abe
MV
2447
2448Backslash is an escape character and can be used to insert the
2449following special characters. @nicode{\"} and @nicode{\\} are R5RS
2450standard, the rest are Guile extensions, notice they follow C string
2451syntax.
2452
2453@table @asis
2454@item @nicode{\\}
2455Backslash character.
2456
2457@item @nicode{\"}
2458Double quote character (an unescaped @nicode{"} is otherwise the end
2459of the string).
2460
2461@item @nicode{\0}
2462NUL character (ASCII 0).
2463
2464@item @nicode{\a}
2465Bell character (ASCII 7).
2466
2467@item @nicode{\f}
2468Formfeed character (ASCII 12).
2469
2470@item @nicode{\n}
2471Newline character (ASCII 10).
2472
2473@item @nicode{\r}
2474Carriage return character (ASCII 13).
2475
2476@item @nicode{\t}
2477Tab character (ASCII 9).
2478
2479@item @nicode{\v}
2480Vertical tab character (ASCII 11).
2481
2482@item @nicode{\xHH}
2483Character code given by two hexadecimal digits. For example
2484@nicode{\x7f} for an ASCII DEL (127).
2485@end table
2486
2487@noindent
2488The following are examples of string literals:
2489
2490@lisp
2491"foo"
2492"bar plonk"
2493"Hello World"
2494"\"Hi\", he said."
2495@end lisp
2496
2497
2498@node String Predicates
2499@subsubsection String Predicates
2500
2501The following procedures can be used to check whether a given string
2502fulfills some specified property.
2503
2504@rnindex string?
2505@deffn {Scheme Procedure} string? obj
2506@deffnx {C Function} scm_string_p (obj)
2507Return @code{#t} if @var{obj} is a string, else @code{#f}.
2508@end deffn
2509
91210d62
MV
2510@deftypefn {C Function} int scm_is_string (SCM obj)
2511Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
2512@end deftypefn
2513
07d83abe
MV
2514@deffn {Scheme Procedure} string-null? str
2515@deffnx {C Function} scm_string_null_p (str)
2516Return @code{#t} if @var{str}'s length is zero, and
2517@code{#f} otherwise.
2518@lisp
2519(string-null? "") @result{} #t
2520y @result{} "foo"
2521(string-null? y) @result{} #f
2522@end lisp
2523@end deffn
2524
5676b4fa
MV
2525@deffn {Scheme Procedure} string-any char_pred s [start [end]]
2526@deffnx {C Function} scm_string_any (char_pred, s, start, end)
c100a12c 2527Check if @var{char_pred} is true for any character in string @var{s}.
5676b4fa 2528
c100a12c
KR
2529@var{char_pred} can be a character to check for any equal to that, or
2530a character set (@pxref{Character Sets}) to check for any in that set,
2531or a predicate procedure to call.
5676b4fa 2532
c100a12c
KR
2533For a procedure, calls @code{(@var{char_pred} c)} are made
2534successively on the characters from @var{start} to @var{end}. If
2535@var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
2536stops and that return value is the return from @code{string-any}. The
2537call on the last character (ie.@: at @math{@var{end}-1}), if that
2538point is reached, is a tail call.
2539
2540If there are no characters in @var{s} (ie.@: @var{start} equals
2541@var{end}) then the return is @code{#f}.
5676b4fa
MV
2542@end deffn
2543
2544@deffn {Scheme Procedure} string-every char_pred s [start [end]]
2545@deffnx {C Function} scm_string_every (char_pred, s, start, end)
c100a12c
KR
2546Check if @var{char_pred} is true for every character in string
2547@var{s}.
5676b4fa 2548
c100a12c
KR
2549@var{char_pred} can be a character to check for every character equal
2550to that, or a character set (@pxref{Character Sets}) to check for
2551every character being in that set, or a predicate procedure to call.
2552
2553For a procedure, calls @code{(@var{char_pred} c)} are made
2554successively on the characters from @var{start} to @var{end}. If
2555@var{char_pred} returns @code{#f}, @code{string-every} stops and
2556returns @code{#f}. The call on the last character (ie.@: at
2557@math{@var{end}-1}), if that point is reached, is a tail call and the
2558return from that call is the return from @code{string-every}.
5676b4fa
MV
2559
2560If there are no characters in @var{s} (ie.@: @var{start} equals
2561@var{end}) then the return is @code{#t}.
5676b4fa
MV
2562@end deffn
2563
07d83abe
MV
2564@node String Constructors
2565@subsubsection String Constructors
2566
2567The string constructor procedures create new string objects, possibly
c48c62d0
MV
2568initializing them with some specified character data. See also
2569@xref{String Selection}, for ways to create strings from existing
2570strings.
07d83abe
MV
2571
2572@c FIXME::martin: list->string belongs into `List/String Conversion'
2573
2574@rnindex string
2575@rnindex list->string
2576@deffn {Scheme Procedure} string . chrs
2577@deffnx {Scheme Procedure} list->string chrs
2578@deffnx {C Function} scm_string (chrs)
2579Return a newly allocated string composed of the arguments,
2580@var{chrs}.
2581@end deffn
2582
2583@rnindex make-string
2584@deffn {Scheme Procedure} make-string k [chr]
2585@deffnx {C Function} scm_make_string (k, chr)
2586Return a newly allocated string of
2587length @var{k}. If @var{chr} is given, then all elements of
2588the string are initialized to @var{chr}, otherwise the contents
2589of the @var{string} are unspecified.
2590@end deffn
2591
c48c62d0
MV
2592@deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
2593Like @code{scm_make_string}, but expects the length as a
2594@code{size_t}.
2595@end deftypefn
2596
5676b4fa
MV
2597@deffn {Scheme Procedure} string-tabulate proc len
2598@deffnx {C Function} scm_string_tabulate (proc, len)
2599@var{proc} is an integer->char procedure. Construct a string
2600of size @var{len} by applying @var{proc} to each index to
2601produce the corresponding string element. The order in which
2602@var{proc} is applied to the indices is not specified.
2603@end deffn
2604
2605@deffn {Scheme Procedure} reverse-list->string chrs
2606@deffnx {C Function} scm_reverse_list_to_string (chrs)
2607An efficient implementation of @code{(compose string->list
2608reverse)}:
2609
2610@smalllisp
2611(reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
2612@end smalllisp
2613@end deffn
2614
2615@deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
2616@deffnx {C Function} scm_string_join (ls, delimiter, grammar)
2617Append the string in the string list @var{ls}, using the string
2618@var{delim} as a delimiter between the elements of @var{ls}.
2619@var{grammar} is a symbol which specifies how the delimiter is
2620placed between the strings, and defaults to the symbol
2621@code{infix}.
2622
2623@table @code
2624@item infix
2625Insert the separator between list elements. An empty string
2626will produce an empty list.
2627@item string-infix
2628Like @code{infix}, but will raise an error if given the empty
2629list.
2630@item suffix
2631Insert the separator after every list element.
2632@item prefix
2633Insert the separator before each list element.
2634@end table
2635@end deffn
2636
07d83abe
MV
2637@node List/String Conversion
2638@subsubsection List/String conversion
2639
2640When processing strings, it is often convenient to first convert them
2641into a list representation by using the procedure @code{string->list},
2642work with the resulting list, and then convert it back into a string.
2643These procedures are useful for similar tasks.
2644
2645@rnindex string->list
5676b4fa
MV
2646@deffn {Scheme Procedure} string->list str [start [end]]
2647@deffnx {C Function} scm_substring_to_list (str, start, end)
07d83abe 2648@deffnx {C Function} scm_string_to_list (str)
5676b4fa 2649Convert the string @var{str} into a list of characters.
07d83abe
MV
2650@end deffn
2651
2652@deffn {Scheme Procedure} string-split str chr
2653@deffnx {C Function} scm_string_split (str, chr)
2654Split the string @var{str} into the a list of the substrings delimited
2655by appearances of the character @var{chr}. Note that an empty substring
2656between separator characters will result in an empty string in the
2657result list.
2658
2659@lisp
2660(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
2661@result{}
2662("root" "x" "0" "0" "root" "/root" "/bin/bash")
2663
2664(string-split "::" #\:)
2665@result{}
2666("" "" "")
2667
2668(string-split "" #\:)
2669@result{}
2670("")
2671@end lisp
2672@end deffn
2673
2674
2675@node String Selection
2676@subsubsection String Selection
2677
2678Portions of strings can be extracted by these procedures.
2679@code{string-ref} delivers individual characters whereas
2680@code{substring} can be used to extract substrings from longer strings.
2681
2682@rnindex string-length
2683@deffn {Scheme Procedure} string-length string
2684@deffnx {C Function} scm_string_length (string)
2685Return the number of characters in @var{string}.
2686@end deffn
2687
c48c62d0
MV
2688@deftypefn {C Function} size_t scm_c_string_length (SCM str)
2689Return the number of characters in @var{str} as a @code{size_t}.
2690@end deftypefn
2691
07d83abe
MV
2692@rnindex string-ref
2693@deffn {Scheme Procedure} string-ref str k
2694@deffnx {C Function} scm_string_ref (str, k)
2695Return character @var{k} of @var{str} using zero-origin
2696indexing. @var{k} must be a valid index of @var{str}.
2697@end deffn
2698
c48c62d0
MV
2699@deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
2700Return character @var{k} of @var{str} using zero-origin
2701indexing. @var{k} must be a valid index of @var{str}.
2702@end deftypefn
2703
07d83abe 2704@rnindex string-copy
5676b4fa
MV
2705@deffn {Scheme Procedure} string-copy str [start [end]]
2706@deffnx {C Function} scm_substring_copy (str, start, end)
07d83abe 2707@deffnx {C Function} scm_string_copy (str)
5676b4fa 2708Return a copy of the given string @var{str}.
c48c62d0
MV
2709
2710The returned string shares storage with @var{str} initially, but it is
2711copied as soon as one of the two strings is modified.
07d83abe
MV
2712@end deffn
2713
2714@rnindex substring
2715@deffn {Scheme Procedure} substring str start [end]
2716@deffnx {C Function} scm_substring (str, start, end)
c48c62d0 2717Return a new string formed from the characters
07d83abe
MV
2718of @var{str} beginning with index @var{start} (inclusive) and
2719ending with index @var{end} (exclusive).
2720@var{str} must be a string, @var{start} and @var{end} must be
2721exact integers satisfying:
2722
27230 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
c48c62d0
MV
2724
2725The returned string shares storage with @var{str} initially, but it is
2726copied as soon as one of the two strings is modified.
2727@end deffn
2728
2729@deffn {Scheme Procedure} substring/shared str start [end]
2730@deffnx {C Function} scm_substring_shared (str, start, end)
2731Like @code{substring}, but the strings continue to share their storage
2732even if they are modified. Thus, modifications to @var{str} show up
2733in the new string, and vice versa.
2734@end deffn
2735
2736@deffn {Scheme Procedure} substring/copy str start [end]
2737@deffnx {C Function} scm_substring_copy (str, start, end)
2738Like @code{substring}, but the storage for the new string is copied
2739immediately.
07d83abe
MV
2740@end deffn
2741
05256760
MV
2742@deffn {Scheme Procedure} substring/read-only str start [end]
2743@deffnx {C Function} scm_substring_read_only (str, start, end)
2744Like @code{substring}, but the resulting string can not be modified.
2745@end deffn
2746
c48c62d0
MV
2747@deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
2748@deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
2749@deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
05256760 2750@deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
c48c62d0
MV
2751Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
2752@end deftypefn
2753
5676b4fa
MV
2754@deffn {Scheme Procedure} string-take s n
2755@deffnx {C Function} scm_string_take (s, n)
2756Return the @var{n} first characters of @var{s}.
2757@end deffn
2758
2759@deffn {Scheme Procedure} string-drop s n
2760@deffnx {C Function} scm_string_drop (s, n)
2761Return all but the first @var{n} characters of @var{s}.
2762@end deffn
2763
2764@deffn {Scheme Procedure} string-take-right s n
2765@deffnx {C Function} scm_string_take_right (s, n)
2766Return the @var{n} last characters of @var{s}.
2767@end deffn
2768
2769@deffn {Scheme Procedure} string-drop-right s n
2770@deffnx {C Function} scm_string_drop_right (s, n)
2771Return all but the last @var{n} characters of @var{s}.
2772@end deffn
2773
2774@deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
6337e7fb 2775@deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
5676b4fa 2776@deffnx {C Function} scm_string_pad (s, len, chr, start, end)
5676b4fa 2777@deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
6337e7fb
KR
2778Take characters @var{start} to @var{end} from the string @var{s} and
2779either pad with @var{char} or truncate them to give @var{len}
2780characters.
2781
2782@code{string-pad} pads or truncates on the left, so for example
2783
2784@example
2785(string-pad "x" 3) @result{} " x"
2786(string-pad "abcde" 3) @result{} "cde"
2787@end example
2788
2789@code{string-pad-right} pads or truncates on the right, so for example
2790
2791@example
2792(string-pad-right "x" 3) @result{} "x "
2793(string-pad-right "abcde" 3) @result{} "abc"
2794@end example
2795
2796The return string may share storage with @var{s}, or it can be @var{s}
2797itself (if @var{start} to @var{end} is the whole string and it's
2798already @var{len} characters).
5676b4fa
MV
2799@end deffn
2800
2801@deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
2802@deffnx {C Function} scm_string_trim (s, char_pred, start, end)
2803Trim @var{s} by skipping over all characters on the left
2804that satisfy the parameter @var{char_pred}:
2805
2806@itemize @bullet
2807@item
2808if it is the character @var{ch}, characters equal to
2809@var{ch} are trimmed,
2810
2811@item
2812if it is a procedure @var{pred} characters that
2813satisfy @var{pred} are trimmed,
2814
2815@item
2816if it is a character set, characters in that set are trimmed.
2817@end itemize
2818
2819If called without a @var{char_pred} argument, all whitespace is
2820trimmed.
2821@end deffn
2822
2823@deffn {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
2824@deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
2825Trim @var{s} by skipping over all characters on the rightt
2826that satisfy the parameter @var{char_pred}:
2827
2828@itemize @bullet
2829@item
2830if it is the character @var{ch}, characters equal to @var{ch}
2831are trimmed,
2832
2833@item
2834if it is a procedure @var{pred} characters that satisfy
2835@var{pred} are trimmed,
2836
2837@item
2838if it is a character sets, all characters in that set are
2839trimmed.
2840@end itemize
2841
2842If called without a @var{char_pred} argument, all whitespace is
2843trimmed.
2844@end deffn
2845
2846@deffn {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
2847@deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
2848Trim @var{s} by skipping over all characters on both sides of
2849the string that satisfy the parameter @var{char_pred}:
2850
2851@itemize @bullet
2852@item
2853if it is the character @var{ch}, characters equal to @var{ch}
2854are trimmed,
2855
2856@item
2857if it is a procedure @var{pred} characters that satisfy
2858@var{pred} are trimmed,
2859
2860@item
2861if it is a character set, the characters in the set are
2862trimmed.
2863@end itemize
2864
2865If called without a @var{char_pred} argument, all whitespace is
2866trimmed.
2867@end deffn
2868
07d83abe
MV
2869@node String Modification
2870@subsubsection String Modification
2871
2872These procedures are for modifying strings in-place. This means that the
2873result of the operation is not a new string; instead, the original string's
2874memory representation is modified.
2875
2876@rnindex string-set!
2877@deffn {Scheme Procedure} string-set! str k chr
2878@deffnx {C Function} scm_string_set_x (str, k, chr)
2879Store @var{chr} in element @var{k} of @var{str} and return
2880an unspecified value. @var{k} must be a valid index of
2881@var{str}.
2882@end deffn
2883
c48c62d0
MV
2884@deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
2885Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
2886@end deftypefn
2887
07d83abe 2888@rnindex string-fill!
5676b4fa
MV
2889@deffn {Scheme Procedure} string-fill! str chr [start [end]]
2890@deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
07d83abe 2891@deffnx {C Function} scm_string_fill_x (str, chr)
5676b4fa
MV
2892Stores @var{chr} in every element of the given @var{str} and
2893returns an unspecified value.
07d83abe
MV
2894@end deffn
2895
2896@deffn {Scheme Procedure} substring-fill! str start end fill
2897@deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
2898Change every character in @var{str} between @var{start} and
2899@var{end} to @var{fill}.
2900
2901@lisp
2902(define y "abcdefg")
2903(substring-fill! y 1 3 #\r)
2904y
2905@result{} "arrdefg"
2906@end lisp
2907@end deffn
2908
2909@deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
2910@deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
2911Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
2912into @var{str2} beginning at position @var{start2}.
2913@var{str1} and @var{str2} can be the same string.
2914@end deffn
2915
5676b4fa
MV
2916@deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
2917@deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
2918Copy the sequence of characters from index range [@var{start},
2919@var{end}) in string @var{s} to string @var{target}, beginning
2920at index @var{tstart}. The characters are copied left-to-right
2921or right-to-left as needed -- the copy is guaranteed to work,
2922even if @var{target} and @var{s} are the same string. It is an
2923error if the copy operation runs off the end of the target
2924string.
2925@end deffn
2926
07d83abe
MV
2927
2928@node String Comparison
2929@subsubsection String Comparison
2930
2931The procedures in this section are similar to the character ordering
2932predicates (@pxref{Characters}), but are defined on character sequences.
07d83abe 2933
5676b4fa
MV
2934The first set is specified in R5RS and has names that end in @code{?}.
2935The second set is specified in SRFI-13 and the names have no ending
2936@code{?}. The predicates ending in @code{-ci} ignore the character case
2937when comparing strings.
07d83abe
MV
2938
2939@rnindex string=?
2940@deffn {Scheme Procedure} string=? s1 s2
2941Lexicographic equality predicate; return @code{#t} if the two
2942strings are the same length and contain the same characters in
2943the same positions, otherwise return @code{#f}.
2944
2945The procedure @code{string-ci=?} treats upper and lower case
2946letters as though they were the same character, but
2947@code{string=?} treats upper and lower case as distinct
2948characters.
2949@end deffn
2950
2951@rnindex string<?
2952@deffn {Scheme Procedure} string<? s1 s2
2953Lexicographic ordering predicate; return @code{#t} if @var{s1}
2954is lexicographically less than @var{s2}.
2955@end deffn
2956
2957@rnindex string<=?
2958@deffn {Scheme Procedure} string<=? s1 s2
2959Lexicographic ordering predicate; return @code{#t} if @var{s1}
2960is lexicographically less than or equal to @var{s2}.
2961@end deffn
2962
2963@rnindex string>?
2964@deffn {Scheme Procedure} string>? s1 s2
2965Lexicographic ordering predicate; return @code{#t} if @var{s1}
2966is lexicographically greater than @var{s2}.
2967@end deffn
2968
2969@rnindex string>=?
2970@deffn {Scheme Procedure} string>=? s1 s2
2971Lexicographic ordering predicate; return @code{#t} if @var{s1}
2972is lexicographically greater than or equal to @var{s2}.
2973@end deffn
2974
2975@rnindex string-ci=?
2976@deffn {Scheme Procedure} string-ci=? s1 s2
2977Case-insensitive string equality predicate; return @code{#t} if
2978the two strings are the same length and their component
2979characters match (ignoring case) at each position; otherwise
2980return @code{#f}.
2981@end deffn
2982
5676b4fa 2983@rnindex string-ci<?
07d83abe
MV
2984@deffn {Scheme Procedure} string-ci<? s1 s2
2985Case insensitive lexicographic ordering predicate; return
2986@code{#t} if @var{s1} is lexicographically less than @var{s2}
2987regardless of case.
2988@end deffn
2989
2990@rnindex string<=?
2991@deffn {Scheme Procedure} string-ci<=? s1 s2
2992Case insensitive lexicographic ordering predicate; return
2993@code{#t} if @var{s1} is lexicographically less than or equal
2994to @var{s2} regardless of case.
2995@end deffn
2996
2997@rnindex string-ci>?
2998@deffn {Scheme Procedure} string-ci>? s1 s2
2999Case insensitive lexicographic ordering predicate; return
3000@code{#t} if @var{s1} is lexicographically greater than
3001@var{s2} regardless of case.
3002@end deffn
3003
3004@rnindex string-ci>=?
3005@deffn {Scheme Procedure} string-ci>=? s1 s2
3006Case insensitive lexicographic ordering predicate; return
3007@code{#t} if @var{s1} is lexicographically greater than or
3008equal to @var{s2} regardless of case.
3009@end deffn
3010
5676b4fa
MV
3011@deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3012@deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3013Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3014mismatch index, depending upon whether @var{s1} is less than,
3015equal to, or greater than @var{s2}. The mismatch index is the
3016largest index @var{i} such that for every 0 <= @var{j} <
3017@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3018@var{i} is the first position that does not match.
3019@end deffn
3020
3021@deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3022@deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3023Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3024mismatch index, depending upon whether @var{s1} is less than,
3025equal to, or greater than @var{s2}. The mismatch index is the
3026largest index @var{i} such that for every 0 <= @var{j} <
3027@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3028@var{i} is the first position that does not match. The
3029character comparison is done case-insensitively.
3030@end deffn
3031
3032@deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3033@deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3034Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3035value otherwise.
3036@end deffn
3037
3038@deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3039@deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3040Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3041value otherwise.
3042@end deffn
3043
3044@deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3045@deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3046Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3047true value otherwise.
3048@end deffn
3049
3050@deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3051@deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3052Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3053true value otherwise.
3054@end deffn
3055
3056@deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3057@deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3058Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3059value otherwise.
3060@end deffn
3061
3062@deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3063@deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3064Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3065otherwise.
3066@end deffn
3067
3068@deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3069@deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3070Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3071value otherwise. The character comparison is done
3072case-insensitively.
3073@end deffn
3074
3075@deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3076@deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3077Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3078value otherwise. The character comparison is done
3079case-insensitively.
3080@end deffn
3081
3082@deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3083@deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3084Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3085true value otherwise. The character comparison is done
3086case-insensitively.
3087@end deffn
3088
3089@deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3090@deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3091Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3092true value otherwise. The character comparison is done
3093case-insensitively.
3094@end deffn
3095
3096@deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3097@deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3098Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3099value otherwise. The character comparison is done
3100case-insensitively.
3101@end deffn
3102
3103@deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3104@deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3105Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3106otherwise. The character comparison is done
3107case-insensitively.
3108@end deffn
3109
3110@deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3111@deffnx {C Function} scm_substring_hash (s, bound, start, end)
3112Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3113@end deffn
3114
3115@deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3116@deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3117Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3118@end deffn
07d83abe
MV
3119
3120@node String Searching
3121@subsubsection String Searching
3122
5676b4fa
MV
3123@deffn {Scheme Procedure} string-index s char_pred [start [end]]
3124@deffnx {C Function} scm_string_index (s, char_pred, start, end)
3125Search through the string @var{s} from left to right, returning
3126the index of the first occurence of a character which
07d83abe 3127
5676b4fa
MV
3128@itemize @bullet
3129@item
3130equals @var{char_pred}, if it is character,
07d83abe 3131
5676b4fa
MV
3132@item
3133satisifies the predicate @var{char_pred}, if it is a procedure,
07d83abe 3134
5676b4fa
MV
3135@item
3136is in the set @var{char_pred}, if it is a character set.
3137@end itemize
3138@end deffn
07d83abe 3139
5676b4fa
MV
3140@deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3141@deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3142Search through the string @var{s} from right to left, returning
3143the index of the last occurence of a character which
3144
3145@itemize @bullet
3146@item
3147equals @var{char_pred}, if it is character,
3148
3149@item
3150satisifies the predicate @var{char_pred}, if it is a procedure,
3151
3152@item
3153is in the set if @var{char_pred} is a character set.
3154@end itemize
07d83abe
MV
3155@end deffn
3156
5676b4fa
MV
3157@deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3158@deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3159Return the length of the longest common prefix of the two
3160strings.
3161@end deffn
07d83abe 3162
5676b4fa
MV
3163@deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3164@deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3165Return the length of the longest common prefix of the two
3166strings, ignoring character case.
3167@end deffn
07d83abe 3168
5676b4fa
MV
3169@deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3170@deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3171Return the length of the longest common suffix of the two
3172strings.
3173@end deffn
07d83abe 3174
5676b4fa
MV
3175@deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3176@deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3177Return the length of the longest common suffix of the two
3178strings, ignoring character case.
3179@end deffn
3180
3181@deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3182@deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3183Is @var{s1} a prefix of @var{s2}?
3184@end deffn
3185
3186@deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3187@deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3188Is @var{s1} a prefix of @var{s2}, ignoring character case?
3189@end deffn
3190
3191@deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3192@deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3193Is @var{s1} a suffix of @var{s2}?
3194@end deffn
3195
3196@deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3197@deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3198Is @var{s1} a suffix of @var{s2}, ignoring character case?
3199@end deffn
3200
3201@deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3202@deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3203Search through the string @var{s} from right to left, returning
3204the index of the last occurence of a character which
3205
3206@itemize @bullet
3207@item
3208equals @var{char_pred}, if it is character,
3209
3210@item
3211satisifies the predicate @var{char_pred}, if it is a procedure,
3212
3213@item
3214is in the set if @var{char_pred} is a character set.
3215@end itemize
3216@end deffn
3217
3218@deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3219@deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3220Search through the string @var{s} from left to right, returning
3221the index of the first occurence of a character which
3222
3223@itemize @bullet
3224@item
3225does not equal @var{char_pred}, if it is character,
3226
3227@item
3228does not satisify the predicate @var{char_pred}, if it is a
3229procedure,
3230
3231@item
3232is not in the set if @var{char_pred} is a character set.
3233@end itemize
3234@end deffn
3235
3236@deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3237@deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3238Search through the string @var{s} from right to left, returning
3239the index of the last occurence of a character which
3240
3241@itemize @bullet
3242@item
3243does not equal @var{char_pred}, if it is character,
3244
3245@item
3246does not satisfy the predicate @var{char_pred}, if it is a
3247procedure,
3248
3249@item
3250is not in the set if @var{char_pred} is a character set.
3251@end itemize
3252@end deffn
3253
3254@deffn {Scheme Procedure} string-count s char_pred [start [end]]
3255@deffnx {C Function} scm_string_count (s, char_pred, start, end)
3256Return the count of the number of characters in the string
3257@var{s} which
3258
3259@itemize @bullet
3260@item
3261equals @var{char_pred}, if it is character,
3262
3263@item
3264satisifies the predicate @var{char_pred}, if it is a procedure.
3265
3266@item
3267is in the set @var{char_pred}, if it is a character set.
3268@end itemize
3269@end deffn
3270
3271@deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3272@deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3273Does string @var{s1} contain string @var{s2}? Return the index
3274in @var{s1} where @var{s2} occurs as a substring, or false.
3275The optional start/end indices restrict the operation to the
3276indicated substrings.
3277@end deffn
3278
3279@deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3280@deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3281Does string @var{s1} contain string @var{s2}? Return the index
3282in @var{s1} where @var{s2} occurs as a substring, or false.
3283The optional start/end indices restrict the operation to the
3284indicated substrings. Character comparison is done
3285case-insensitively.
07d83abe
MV
3286@end deffn
3287
3288@node Alphabetic Case Mapping
3289@subsubsection Alphabetic Case Mapping
3290
3291These are procedures for mapping strings to their upper- or lower-case
3292equivalents, respectively, or for capitalizing strings.
3293
5676b4fa
MV
3294@deffn {Scheme Procedure} string-upcase str [start [end]]
3295@deffnx {C Function} scm_substring_upcase (str, start, end)
07d83abe 3296@deffnx {C Function} scm_string_upcase (str)
5676b4fa 3297Upcase every character in @code{str}.
07d83abe
MV
3298@end deffn
3299
5676b4fa
MV
3300@deffn {Scheme Procedure} string-upcase! str [start [end]]
3301@deffnx {C Function} scm_substring_upcase_x (str, start, end)
07d83abe 3302@deffnx {C Function} scm_string_upcase_x (str)
5676b4fa
MV
3303Destructively upcase every character in @code{str}.
3304
07d83abe 3305@lisp
5676b4fa
MV
3306(string-upcase! y)
3307@result{} "ARRDEFG"
3308y
3309@result{} "ARRDEFG"
07d83abe
MV
3310@end lisp
3311@end deffn
3312
5676b4fa
MV
3313@deffn {Scheme Procedure} string-downcase str [start [end]]
3314@deffnx {C Function} scm_substring_downcase (str, start, end)
07d83abe 3315@deffnx {C Function} scm_string_downcase (str)
5676b4fa 3316Downcase every character in @var{str}.
07d83abe
MV
3317@end deffn
3318
5676b4fa
MV
3319@deffn {Scheme Procedure} string-downcase! str [start [end]]
3320@deffnx {C Function} scm_substring_downcase_x (str, start, end)
07d83abe 3321@deffnx {C Function} scm_string_downcase_x (str)
5676b4fa
MV
3322Destructively downcase every character in @var{str}.
3323
07d83abe 3324@lisp
5676b4fa
MV
3325y
3326@result{} "ARRDEFG"
3327(string-downcase! y)
3328@result{} "arrdefg"
3329y
3330@result{} "arrdefg"
07d83abe
MV
3331@end lisp
3332@end deffn
3333
3334@deffn {Scheme Procedure} string-capitalize str
3335@deffnx {C Function} scm_string_capitalize (str)
3336Return a freshly allocated string with the characters in
3337@var{str}, where the first character of every word is
3338capitalized.
3339@end deffn
3340
3341@deffn {Scheme Procedure} string-capitalize! str
3342@deffnx {C Function} scm_string_capitalize_x (str)
3343Upcase the first character of every word in @var{str}
3344destructively and return @var{str}.
3345
3346@lisp
3347y @result{} "hello world"
3348(string-capitalize! y) @result{} "Hello World"
3349y @result{} "Hello World"
3350@end lisp
3351@end deffn
3352
5676b4fa
MV
3353@deffn {Scheme Procedure} string-titlecase str [start [end]]
3354@deffnx {C Function} scm_string_titlecase (str, start, end)
3355Titlecase every first character in a word in @var{str}.
3356@end deffn
07d83abe 3357
5676b4fa
MV
3358@deffn {Scheme Procedure} string-titlecase! str [start [end]]
3359@deffnx {C Function} scm_string_titlecase_x (str, start, end)
3360Destructively titlecase every first character in a word in
3361@var{str}.
3362@end deffn
3363
3364@node Reversing and Appending Strings
3365@subsubsection Reversing and Appending Strings
07d83abe 3366
5676b4fa
MV
3367@deffn {Scheme Procedure} string-reverse str [start [end]]
3368@deffnx {C Function} scm_string_reverse (str, start, end)
3369Reverse the string @var{str}. The optional arguments
3370@var{start} and @var{end} delimit the region of @var{str} to
3371operate on.
3372@end deffn
3373
3374@deffn {Scheme Procedure} string-reverse! str [start [end]]
3375@deffnx {C Function} scm_string_reverse_x (str, start, end)
3376Reverse the string @var{str} in-place. The optional arguments
3377@var{start} and @var{end} delimit the region of @var{str} to
3378operate on. The return value is unspecified.
3379@end deffn
07d83abe
MV
3380
3381@rnindex string-append
3382@deffn {Scheme Procedure} string-append . args
3383@deffnx {C Function} scm_string_append (args)
3384Return a newly allocated string whose characters form the
3385concatenation of the given strings, @var{args}.
3386
3387@example
3388(let ((h "hello "))
3389 (string-append h "world"))
3390@result{} "hello world"
3391@end example
3392@end deffn
3393
5676b4fa
MV
3394@deffn {Scheme Procedure} string-append/shared . ls
3395@deffnx {C Function} scm_string_append_shared (ls)
3396Like @code{string-append}, but the result may share memory
3397with the argument strings.
3398@end deffn
3399
3400@deffn {Scheme Procedure} string-concatenate ls
3401@deffnx {C Function} scm_string_concatenate (ls)
3402Append the elements of @var{ls} (which must be strings)
3403together into a single string. Guaranteed to return a freshly
3404allocated string.
3405@end deffn
3406
3407@deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3408@deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3409Without optional arguments, this procedure is equivalent to
3410
3411@smalllisp
3412(string-concatenate (reverse ls))
3413@end smalllisp
3414
3415If the optional argument @var{final_string} is specified, it is
3416consed onto the beginning to @var{ls} before performing the
3417list-reverse and string-concatenate operations. If @var{end}
3418is given, only the characters of @var{final_string} up to index
3419@var{end} are used.
3420
3421Guaranteed to return a freshly allocated string.
3422@end deffn
3423
3424@deffn {Scheme Procedure} string-concatenate/shared ls
3425@deffnx {C Function} scm_string_concatenate_shared (ls)
3426Like @code{string-concatenate}, but the result may share memory
3427with the strings in the list @var{ls}.
3428@end deffn
3429
3430@deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3431@deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3432Like @code{string-concatenate-reverse}, but the result may
3433share memory with the the strings in the @var{ls} arguments.
3434@end deffn
3435
3436@node Mapping Folding and Unfolding
3437@subsubsection Mapping, Folding, and Unfolding
3438
3439@deffn {Scheme Procedure} string-map proc s [start [end]]
3440@deffnx {C Function} scm_string_map (proc, s, start, end)
3441@var{proc} is a char->char procedure, it is mapped over
3442@var{s}. The order in which the procedure is applied to the
3443string elements is not specified.
3444@end deffn
3445
3446@deffn {Scheme Procedure} string-map! proc s [start [end]]
3447@deffnx {C Function} scm_string_map_x (proc, s, start, end)
3448@var{proc} is a char->char procedure, it is mapped over
3449@var{s}. The order in which the procedure is applied to the
3450string elements is not specified. The string @var{s} is
3451modified in-place, the return value is not specified.
3452@end deffn
3453
3454@deffn {Scheme Procedure} string-for-each proc s [start [end]]
3455@deffnx {C Function} scm_string_for_each (proc, s, start, end)
3456@var{proc} is mapped over @var{s} in left-to-right order. The
3457return value is not specified.
3458@end deffn
3459
3460@deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
3461@deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
2a7820f2
KR
3462Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
3463right.
3464
3465For example, to change characters to alternately upper and lower case,
3466
3467@example
3468(define str (string-copy "studly"))
3469(string-for-each-index (lambda (i)
3470 (string-set! str i
3471 ((if (even? i) char-upcase char-downcase)
3472 (string-ref str i))))
3473 str)
3474str @result{} "StUdLy"
3475@end example
5676b4fa
MV
3476@end deffn
3477
3478@deffn {Scheme Procedure} string-fold kons knil s [start [end]]
3479@deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
3480Fold @var{kons} over the characters of @var{s}, with @var{knil}
3481as the terminating element, from left to right. @var{kons}
3482must expect two arguments: The actual character and the last
3483result of @var{kons}' application.
3484@end deffn
3485
3486@deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
3487@deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
3488Fold @var{kons} over the characters of @var{s}, with @var{knil}
3489as the terminating element, from right to left. @var{kons}
3490must expect two arguments: The actual character and the last
3491result of @var{kons}' application.
3492@end deffn
3493
3494@deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
3495@deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
3496@itemize @bullet
3497@item @var{g} is used to generate a series of @emph{seed}
3498values from the initial @var{seed}: @var{seed}, (@var{g}
3499@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3500@dots{}
3501@item @var{p} tells us when to stop -- when it returns true
3502when applied to one of these seed values.
3503@item @var{f} maps each seed value to the corresponding
3504character in the result string. These chars are assembled
3505into the string in a left-to-right order.
3506@item @var{base} is the optional initial/leftmost portion
3507of the constructed string; it default to the empty
3508string.
3509@item @var{make_final} is applied to the terminal seed
3510value (on which @var{p} returns true) to produce
3511the final/rightmost portion of the constructed string.
3512It defaults to @code{(lambda (x) )}.
3513@end itemize
3514@end deffn
3515
3516@deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
3517@deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
3518@itemize @bullet
3519@item @var{g} is used to generate a series of @emph{seed}
3520values from the initial @var{seed}: @var{seed}, (@var{g}
3521@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3522@dots{}
3523@item @var{p} tells us when to stop -- when it returns true
3524when applied to one of these seed values.
3525@item @var{f} maps each seed value to the corresponding
3526character in the result string. These chars are assembled
3527into the string in a right-to-left order.
3528@item @var{base} is the optional initial/rightmost portion
3529of the constructed string; it default to the empty
3530string.
3531@item @var{make_final} is applied to the terminal seed
3532value (on which @var{p} returns true) to produce
3533the final/leftmost portion of the constructed string.
3534It defaults to @code{(lambda (x) )}.
3535@end itemize
3536@end deffn
3537
3538@node Miscellaneous String Operations
3539@subsubsection Miscellaneous String Operations
3540
3541@deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
3542@deffnx {C Function} scm_xsubstring (s, from, to, start, end)
3543This is the @emph{extended substring} procedure that implements
3544replicated copying of a substring of some string.
3545
3546@var{s} is a string, @var{start} and @var{end} are optional
3547arguments that demarcate a substring of @var{s}, defaulting to
35480 and the length of @var{s}. Replicate this substring up and
3549down index space, in both the positive and negative directions.
3550@code{xsubstring} returns the substring of this string
3551beginning at index @var{from}, and ending at @var{to}, which
3552defaults to @var{from} + (@var{end} - @var{start}).
3553@end deffn
3554
3555@deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
3556@deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
3557Exactly the same as @code{xsubstring}, but the extracted text
3558is written into the string @var{target} starting at index
3559@var{tstart}. The operation is not defined if @code{(eq?
3560@var{target} @var{s})} or these arguments share storage -- you
3561cannot copy a string on top of itself.
3562@end deffn
3563
3564@deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
3565@deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
3566Return the string @var{s1}, but with the characters
3567@var{start1} @dots{} @var{end1} replaced by the characters
3568@var{start2} @dots{} @var{end2} from @var{s2}.
3569@end deffn
3570
3571@deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
3572@deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
3573Split the string @var{s} into a list of substrings, where each
3574substring is a maximal non-empty contiguous sequence of
3575characters from the character set @var{token_set}, which
3576defaults to @code{char-set:graphic}.
3577If @var{start} or @var{end} indices are provided, they restrict
3578@code{string-tokenize} to operating on the indicated substring
3579of @var{s}.
3580@end deffn
3581
3582@deffn {Scheme Procedure} string-filter s char_pred [start [end]]
3583@deffnx {C Function} scm_string_filter (s, char_pred, start, end)
3584Filter the string @var{s}, retaining only those characters that
3585satisfy the @var{char_pred} argument. If the argument is a
3586procedure, it is applied to each character as a predicate, if
3587it is a character, it is tested for equality and if it is a
3588character set, it is tested for membership.
3589@end deffn
3590
3591@deffn {Scheme Procedure} string-delete s char_pred [start [end]]
3592@deffnx {C Function} scm_string_delete (s, char_pred, start, end)
3593Filter the string @var{s}, retaining only those characters that
3594do not satisfy the @var{char_pred} argument. If the argument
3595is a procedure, it is applied to each character as a predicate,
3596if it is a character, it is tested for equality and if it is a
3597character set, it is tested for membership.
3598@end deffn
3599
91210d62
MV
3600@node Conversion to/from C
3601@subsubsection Conversion to/from C
3602
3603When creating a Scheme string from a C string or when converting a
3604Scheme string to a C string, the concept of character encoding becomes
3605important.
3606
3607In C, a string is just a sequence of bytes, and the character encoding
3608describes the relation between these bytes and the actual characters
c88453e8
MV
3609that make up the string. For Scheme strings, character encoding is
3610not an issue (most of the time), since in Scheme you never get to see
3611the bytes, only the characters.
91210d62
MV
3612
3613Well, ideally, anyway. Right now, Guile simply equates Scheme
3614characters and bytes, ignoring the possibility of multi-byte encodings
3615completely. This will change in the future, where Guile will use
c48c62d0
MV
3616Unicode codepoints as its characters and UTF-8 or some other encoding
3617as its internal encoding. When you exclusively use the functions
3618listed in this section, you are `future-proof'.
91210d62 3619
c88453e8
MV
3620Converting a Scheme string to a C string will often allocate fresh
3621memory to hold the result. You must take care that this memory is
3622properly freed eventually. In many cases, this can be achieved by
3623using @code{scm_frame_free} inside an appropriate frame,
3624@xref{Frames}.
91210d62
MV
3625
3626@deftypefn {C Function} SCM scm_from_locale_string (const char *str)
3627@deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
3628Creates a new Scheme string that has the same contents as @var{str}
3629when interpreted in the current locale character encoding.
3630
3631For @code{scm_from_locale_string}, @var{str} must be null-terminated.
3632
3633For @code{scm_from_locale_stringn}, @var{len} specifies the length of
3634@var{str} in bytes, and @var{str} does not need to be null-terminated.
3635If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
3636null-terminated and the real length will be found with @code{strlen}.
3637@end deftypefn
3638
3639@deftypefn {C Function} SCM scm_take_locale_string (char *str)
3640@deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
3641Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
3642respectively, but also frees @var{str} with @code{free} eventually.
3643Thus, you can use this function when you would free @var{str} anyway
3644immediately after creating the Scheme string. In certain cases, Guile
3645can then use @var{str} directly as its internal representation.
3646@end deftypefn
3647
4846ae2c
KR
3648@deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
3649@deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
91210d62
MV
3650Returns a C string in the current locale encoding with the same
3651contents as @var{str}. The C string must be freed with @code{free}
3652eventually, maybe by using @code{scm_frame_free}, @xref{Frames}.
3653
3654For @code{scm_to_locale_string}, the returned string is
3655null-terminated and an error is signalled when @var{str} contains
3656@code{#\nul} characters.
3657
3658For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
3659@var{str} might contain @code{#\nul} characters and the length of the
3660returned string in bytes is stored in @code{*@var{lenp}}. The
3661returned string will not be null-terminated in this case. If
3662@var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
3663@code{scm_to_locale_string}.
3664@end deftypefn
3665
3666@deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
3667Puts @var{str} as a C string in the current locale encoding into the
3668memory pointed to by @var{buf}. The buffer at @var{buf} has room for
3669@var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
3670more than that. No terminating @code{'\0'} will be stored.
3671
3672The return value of @code{scm_to_locale_stringbuf} is the number of
3673bytes that are needed for all of @var{str}, regardless of whether
3674@var{buf} was large enough to hold them. Thus, when the return value
3675is larger than @var{max_len}, only @var{max_len} bytes have been
3676stored and you probably need to try again with a larger buffer.
3677@end deftypefn
07d83abe
MV
3678
3679@node Regular Expressions
3680@subsection Regular Expressions
3681@tpindex Regular expressions
3682
3683@cindex regular expressions
3684@cindex regex
3685@cindex emacs regexp
3686
3687A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
3688describes a whole class of strings. A full description of regular
3689expressions and their syntax is beyond the scope of this manual;
3690an introduction can be found in the Emacs manual (@pxref{Regexps,
3691, Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
3692in many general Unix reference books.
3693
3694If your system does not include a POSIX regular expression library,
3695and you have not linked Guile with a third-party regexp library such
3696as Rx, these functions will not be available. You can tell whether
3697your Guile installation includes regular expression support by
3698checking whether @code{(provided? 'regex)} returns true.
3699
3700The following regexp and string matching features are provided by the
3701@code{(ice-9 regex)} module. Before using the described functions,
3702you should load this module by executing @code{(use-modules (ice-9
3703regex))}.
3704
3705@menu
3706* Regexp Functions:: Functions that create and match regexps.
3707* Match Structures:: Finding what was matched by a regexp.
3708* Backslash Escapes:: Removing the special meaning of regexp
3709 meta-characters.
3710@end menu
3711
3712
3713@node Regexp Functions
3714@subsubsection Regexp Functions
3715
3716By default, Guile supports POSIX extended regular expressions.
3717That means that the characters @samp{(}, @samp{)}, @samp{+} and
3718@samp{?} are special, and must be escaped if you wish to match the
3719literal characters.
3720
3721This regular expression interface was modeled after that
3722implemented by SCSH, the Scheme Shell. It is intended to be
3723upwardly compatible with SCSH regular expressions.
3724
3725@deffn {Scheme Procedure} string-match pattern str [start]
3726Compile the string @var{pattern} into a regular expression and compare
3727it with @var{str}. The optional numeric argument @var{start} specifies
3728the position of @var{str} at which to begin matching.
3729
3730@code{string-match} returns a @dfn{match structure} which
3731describes what, if anything, was matched by the regular
3732expression. @xref{Match Structures}. If @var{str} does not match
3733@var{pattern} at all, @code{string-match} returns @code{#f}.
3734@end deffn
3735
3736Two examples of a match follow. In the first example, the pattern
3737matches the four digits in the match string. In the second, the pattern
3738matches nothing.
3739
3740@example
3741(string-match "[0-9][0-9][0-9][0-9]" "blah2002")
3742@result{} #("blah2002" (4 . 8))
3743
3744(string-match "[A-Za-z]" "123456")
3745@result{} #f
3746@end example
3747
3748Each time @code{string-match} is called, it must compile its
3749@var{pattern} argument into a regular expression structure. This
3750operation is expensive, which makes @code{string-match} inefficient if
3751the same regular expression is used several times (for example, in a
3752loop). For better performance, you can compile a regular expression in
3753advance and then match strings against the compiled regexp.
3754
3755@deffn {Scheme Procedure} make-regexp pat flag@dots{}
3756@deffnx {C Function} scm_make_regexp (pat, flaglst)
3757Compile the regular expression described by @var{pat}, and
3758return the compiled regexp structure. If @var{pat} does not
3759describe a legal regular expression, @code{make-regexp} throws
3760a @code{regular-expression-syntax} error.
3761
3762The @var{flag} arguments change the behavior of the compiled
3763regular expression. The following values may be supplied:
3764
3765@defvar regexp/icase
3766Consider uppercase and lowercase letters to be the same when
3767matching.
3768@end defvar
3769
3770@defvar regexp/newline
3771If a newline appears in the target string, then permit the
3772@samp{^} and @samp{$} operators to match immediately after or
3773immediately before the newline, respectively. Also, the
3774@samp{.} and @samp{[^...]} operators will never match a newline
3775character. The intent of this flag is to treat the target
3776string as a buffer containing many lines of text, and the
3777regular expression as a pattern that may match a single one of
3778those lines.
3779@end defvar
3780
3781@defvar regexp/basic
3782Compile a basic (``obsolete'') regexp instead of the extended
3783(``modern'') regexps that are the default. Basic regexps do
3784not consider @samp{|}, @samp{+} or @samp{?} to be special
3785characters, and require the @samp{@{...@}} and @samp{(...)}
3786metacharacters to be backslash-escaped (@pxref{Backslash
3787Escapes}). There are several other differences between basic
3788and extended regular expressions, but these are the most
3789significant.
3790@end defvar
3791
3792@defvar regexp/extended
3793Compile an extended regular expression rather than a basic
3794regexp. This is the default behavior; this flag will not
3795usually be needed. If a call to @code{make-regexp} includes
3796both @code{regexp/basic} and @code{regexp/extended} flags, the
3797one which comes last will override the earlier one.
3798@end defvar
3799@end deffn
3800
3801@deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
3802@deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
3803Match the compiled regular expression @var{rx} against
3804@code{str}. If the optional integer @var{start} argument is
3805provided, begin matching from that position in the string.
3806Return a match structure describing the results of the match,
3807or @code{#f} if no match could be found.
3808
3809The @var{flags} arguments change the matching behavior.
3810The following flags may be supplied:
3811
3812@defvar regexp/notbol
3813Operator @samp{^} always fails (unless @code{regexp/newline}
3814is used). Use this when the beginning of the string should
3815not be considered the beginning of a line.
3816@end defvar
3817
3818@defvar regexp/noteol
3819Operator @samp{$} always fails (unless @code{regexp/newline}
3820is used). Use this when the end of the string should not be
3821considered the end of a line.
3822@end defvar
3823@end deffn
3824
3825@lisp
3826;; Regexp to match uppercase letters
3827(define r (make-regexp "[A-Z]*"))
3828
3829;; Regexp to match letters, ignoring case
3830(define ri (make-regexp "[A-Z]*" regexp/icase))
3831
3832;; Search for bob using regexp r
3833(match:substring (regexp-exec r "bob"))
3834@result{} "" ; no match
3835
3836;; Search for bob using regexp ri
3837(match:substring (regexp-exec ri "Bob"))
3838@result{} "Bob" ; matched case insensitive
3839@end lisp
3840
3841@deffn {Scheme Procedure} regexp? obj
3842@deffnx {C Function} scm_regexp_p (obj)
3843Return @code{#t} if @var{obj} is a compiled regular expression,
3844or @code{#f} otherwise.
3845@end deffn
3846
a13befdc
KR
3847@sp 1
3848Regular expressions are commonly used to find patterns in one string
3849and replace them with the contents of another string. The following
3850functions are convenient ways to do this.
07d83abe
MV
3851
3852@c begin (scm-doc-string "regex.scm" "regexp-substitute")
3853@deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
a13befdc
KR
3854Write to @var{port} selected parts of the match structure @var{match}.
3855Or if @var{port} is @code{#f} then form a string from those parts and
3856return that.
3857
3858Each @var{item} specifies a part to be written, and may be one of the
3859following,
07d83abe
MV
3860
3861@itemize @bullet
3862@item
3863A string. String arguments are written out verbatim.
3864
3865@item
a13befdc
KR
3866An integer. The submatch with that number is written
3867(@code{match:substring}). Zero is the entire match.
07d83abe
MV
3868
3869@item
3870The symbol @samp{pre}. The portion of the matched string preceding
a13befdc 3871the regexp match is written (@code{match:prefix}).
07d83abe
MV
3872
3873@item
3874The symbol @samp{post}. The portion of the matched string following
a13befdc 3875the regexp match is written (@code{match:suffix}).
07d83abe
MV
3876@end itemize
3877
a13befdc
KR
3878For example, changing a match and retaining the text before and after,
3879
3880@example
3881(regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
3882 'pre "37" 'post)
3883@result{} "number 37 is good"
3884@end example
07d83abe 3885
a13befdc
KR
3886Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
3887re-ordering and hyphenating the fields.
07d83abe
MV
3888
3889@lisp
3890(define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
3891(define s "Date 20020429 12am.")
a13befdc
KR
3892(regexp-substitute #f (string-match date-regex s)
3893 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
07d83abe
MV
3894@result{} "Date 04-29-2002 12am. (20020429)"
3895@end lisp
a13befdc
KR
3896@end deffn
3897
07d83abe
MV
3898
3899@c begin (scm-doc-string "regex.scm" "regexp-substitute")
3900@deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
a13befdc
KR
3901@cindex search and replace
3902Write to @var{port} selected parts of matches of @var{regexp} in
3903@var{target}. If @var{port} is @code{#f} then form a string from
3904those parts and return that. @var{regexp} can be a string or a
3905compiled regex.
07d83abe 3906
a13befdc
KR
3907This is similar to @code{regexp-substitute}, but allows global
3908substitutions on @var{target}. Each @var{item} behaves as per
3909@code{regexp-substitute}, with the following differences,
07d83abe
MV
3910
3911@itemize @bullet
3912@item
a13befdc
KR
3913A function. Called as @code{(@var{item} match)} with the match
3914structure for the @var{regexp} match, it should return a string to be
3915written to @var{port}.
07d83abe
MV
3916
3917@item
a13befdc
KR
3918The symbol @samp{post}. This doesn't output anything, but instead
3919causes @code{regexp-substitute/global} to recurse on the unmatched
3920portion of @var{target}.
3921
3922This @emph{must} be supplied to perform a global search and replace on
3923@var{target}; without it @code{regexp-substitute/global} returns after
3924a single match and output.
07d83abe 3925@end itemize
07d83abe 3926
a13befdc
KR
3927For example, to collapse runs of tabs and spaces to a single hyphen
3928each,
3929
3930@example
3931(regexp-substitute/global #f "[ \t]+" "this is the text"
3932 'pre "-" 'post)
3933@result{} "this-is-the-text"
3934@end example
3935
3936Or using a function to reverse the letters in each word,
3937
3938@example
3939(regexp-substitute/global #f "[a-z]+" "to do and not-do"
3940 'pre (lambda (m) (string-reverse (match:substring m))) 'post)
3941@result{} "ot od dna ton-od"
3942@end example
3943
3944Without the @code{post} symbol, just one regexp match is made. For
3945example the following is the date example from
3946@code{regexp-substitute} above, without the need for the separate
3947@code{string-match} call.
07d83abe
MV
3948
3949@lisp
3950(define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
3951(define s "Date 20020429 12am.")
3952(regexp-substitute/global #f date-regex s
a13befdc
KR
3953 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
3954
07d83abe
MV
3955@result{} "Date 04-29-2002 12am. (20020429)"
3956@end lisp
a13befdc 3957@end deffn
07d83abe
MV
3958
3959
3960@node Match Structures
3961@subsubsection Match Structures
3962
3963@cindex match structures
3964
3965A @dfn{match structure} is the object returned by @code{string-match} and
3966@code{regexp-exec}. It describes which portion of a string, if any,
3967matched the given regular expression. Match structures include: a
3968reference to the string that was checked for matches; the starting and
3969ending positions of the regexp match; and, if the regexp included any
3970parenthesized subexpressions, the starting and ending positions of each
3971submatch.
3972
3973In each of the regexp match functions described below, the @code{match}
3974argument must be a match structure returned by a previous call to
3975@code{string-match} or @code{regexp-exec}. Most of these functions
3976return some information about the original target string that was
3977matched against a regular expression; we will call that string
3978@var{target} for easy reference.
3979
3980@c begin (scm-doc-string "regex.scm" "regexp-match?")
3981@deffn {Scheme Procedure} regexp-match? obj
3982Return @code{#t} if @var{obj} is a match structure returned by a
3983previous call to @code{regexp-exec}, or @code{#f} otherwise.
3984@end deffn
3985
3986@c begin (scm-doc-string "regex.scm" "match:substring")
3987@deffn {Scheme Procedure} match:substring match [n]
3988Return the portion of @var{target} matched by subexpression number
3989@var{n}. Submatch 0 (the default) represents the entire regexp match.
3990If the regular expression as a whole matched, but the subexpression
3991number @var{n} did not match, return @code{#f}.
3992@end deffn
3993
3994@lisp
3995(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
3996(match:substring s)
3997@result{} "2002"
3998
3999;; match starting at offset 6 in the string
4000(match:substring
4001 (string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
4002@result{} "7654"
4003@end lisp
4004
4005@c begin (scm-doc-string "regex.scm" "match:start")
4006@deffn {Scheme Procedure} match:start match [n]
4007Return the starting position of submatch number @var{n}.
4008@end deffn
4009
4010In the following example, the result is 4, since the match starts at
4011character index 4:
4012
4013@lisp
4014(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4015(match:start s)
4016@result{} 4
4017@end lisp
4018
4019@c begin (scm-doc-string "regex.scm" "match:end")
4020@deffn {Scheme Procedure} match:end match [n]
4021Return the ending position of submatch number @var{n}.
4022@end deffn
4023
4024In the following example, the result is 8, since the match runs between
4025characters 4 and 8 (i.e. the ``2002'').
4026
4027@lisp
4028(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4029(match:end s)
4030@result{} 8
4031@end lisp
4032
4033@c begin (scm-doc-string "regex.scm" "match:prefix")
4034@deffn {Scheme Procedure} match:prefix match
4035Return the unmatched portion of @var{target} preceding the regexp match.
4036
4037@lisp
4038(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4039(match:prefix s)
4040@result{} "blah"
4041@end lisp
4042@end deffn
4043
4044@c begin (scm-doc-string "regex.scm" "match:suffix")
4045@deffn {Scheme Procedure} match:suffix match
4046Return the unmatched portion of @var{target} following the regexp match.
4047@end deffn
4048
4049@lisp
4050(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4051(match:suffix s)
4052@result{} "foo"
4053@end lisp
4054
4055@c begin (scm-doc-string "regex.scm" "match:count")
4056@deffn {Scheme Procedure} match:count match
4057Return the number of parenthesized subexpressions from @var{match}.
4058Note that the entire regular expression match itself counts as a
4059subexpression, and failed submatches are included in the count.
4060@end deffn
4061
4062@c begin (scm-doc-string "regex.scm" "match:string")
4063@deffn {Scheme Procedure} match:string match
4064Return the original @var{target} string.
4065@end deffn
4066
4067@lisp
4068(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4069(match:string s)
4070@result{} "blah2002foo"
4071@end lisp
4072
4073
4074@node Backslash Escapes
4075@subsubsection Backslash Escapes
4076
4077Sometimes you will want a regexp to match characters like @samp{*} or
4078@samp{$} exactly. For example, to check whether a particular string
4079represents a menu entry from an Info node, it would be useful to match
4080it against a regexp like @samp{^* [^:]*::}. However, this won't work;
4081because the asterisk is a metacharacter, it won't match the @samp{*} at
4082the beginning of the string. In this case, we want to make the first
4083asterisk un-magic.
4084
4085You can do this by preceding the metacharacter with a backslash
4086character @samp{\}. (This is also called @dfn{quoting} the
4087metacharacter, and is known as a @dfn{backslash escape}.) When Guile
4088sees a backslash in a regular expression, it considers the following
4089glyph to be an ordinary character, no matter what special meaning it
4090would ordinarily have. Therefore, we can make the above example work by
4091changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
4092the regular expression engine to match only a single asterisk in the
4093target string.
4094
4095Since the backslash is itself a metacharacter, you may force a regexp to
4096match a backslash in the target string by preceding the backslash with
4097itself. For example, to find variable references in a @TeX{} program,
4098you might want to find occurrences of the string @samp{\let\} followed
4099by any number of alphabetic characters. The regular expression
4100@samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
4101regexp each match a single backslash in the target string.
4102
4103@c begin (scm-doc-string "regex.scm" "regexp-quote")
4104@deffn {Scheme Procedure} regexp-quote str
4105Quote each special character found in @var{str} with a backslash, and
4106return the resulting string.
4107@end deffn
4108
4109@strong{Very important:} Using backslash escapes in Guile source code
4110(as in Emacs Lisp or C) can be tricky, because the backslash character
4111has special meaning for the Guile reader. For example, if Guile
4112encounters the character sequence @samp{\n} in the middle of a string
4113while processing Scheme code, it replaces those characters with a
4114newline character. Similarly, the character sequence @samp{\t} is
4115replaced by a horizontal tab. Several of these @dfn{escape sequences}
4116are processed by the Guile reader before your code is executed.
4117Unrecognized escape sequences are ignored: if the characters @samp{\*}
4118appear in a string, they will be translated to the single character
4119@samp{*}.
4120
4121This translation is obviously undesirable for regular expressions, since
4122we want to be able to include backslashes in a string in order to
4123escape regexp metacharacters. Therefore, to make sure that a backslash
4124is preserved in a string in your Guile program, you must use @emph{two}
4125consecutive backslashes:
4126
4127@lisp
4128(define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
4129@end lisp
4130
4131The string in this example is preprocessed by the Guile reader before
4132any code is executed. The resulting argument to @code{make-regexp} is
4133the string @samp{^\* [^:]*}, which is what we really want.
4134
4135This also means that in order to write a regular expression that matches
4136a single backslash character, the regular expression string in the
4137source code must include @emph{four} backslashes. Each consecutive pair
4138of backslashes gets translated by the Guile reader to a single
4139backslash, and the resulting double-backslash is interpreted by the
4140regexp engine as matching a single backslash character. Hence:
4141
4142@lisp
4143(define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
4144@end lisp
4145
4146The reason for the unwieldiness of this syntax is historical. Both
4147regular expression pattern matchers and Unix string processing systems
4148have traditionally used backslashes with the special meanings
4149described above. The POSIX regular expression specification and ANSI C
4150standard both require these semantics. Attempting to abandon either
4151convention would cause other kinds of compatibility problems, possibly
4152more severe ones. Therefore, without extending the Scheme reader to
4153support strings with different quoting conventions (an ungainly and
4154confusing extension when implemented in other languages), we must adhere
4155to this cumbersome escape syntax.
4156
4157
4158@node Symbols
4159@subsection Symbols
4160@tpindex Symbols
4161
4162Symbols in Scheme are widely used in three ways: as items of discrete
4163data, as lookup keys for alists and hash tables, and to denote variable
4164references.
4165
4166A @dfn{symbol} is similar to a string in that it is defined by a
4167sequence of characters. The sequence of characters is known as the
4168symbol's @dfn{name}. In the usual case --- that is, where the symbol's
4169name doesn't include any characters that could be confused with other
4170elements of Scheme syntax --- a symbol is written in a Scheme program by
4171writing the sequence of characters that make up the name, @emph{without}
4172any quotation marks or other special syntax. For example, the symbol
4173whose name is ``multiply-by-2'' is written, simply:
4174
4175@lisp
4176multiply-by-2
4177@end lisp
4178
4179Notice how this differs from a @emph{string} with contents
4180``multiply-by-2'', which is written with double quotation marks, like
4181this:
4182
4183@lisp
4184"multiply-by-2"
4185@end lisp
4186
4187Looking beyond how they are written, symbols are different from strings
4188in two important respects.
4189
4190The first important difference is uniqueness. If the same-looking
4191string is read twice from two different places in a program, the result
4192is two @emph{different} string objects whose contents just happen to be
4193the same. If, on the other hand, the same-looking symbol is read twice
4194from two different places in a program, the result is the @emph{same}
4195symbol object both times.
4196
4197Given two read symbols, you can use @code{eq?} to test whether they are
4198the same (that is, have the same name). @code{eq?} is the most
4199efficient comparison operator in Scheme, and comparing two symbols like
4200this is as fast as comparing, for example, two numbers. Given two
4201strings, on the other hand, you must use @code{equal?} or
4202@code{string=?}, which are much slower comparison operators, to
4203determine whether the strings have the same contents.
4204
4205@lisp
4206(define sym1 (quote hello))
4207(define sym2 (quote hello))
4208(eq? sym1 sym2) @result{} #t
4209
4210(define str1 "hello")
4211(define str2 "hello")
4212(eq? str1 str2) @result{} #f
4213(equal? str1 str2) @result{} #t
4214@end lisp
4215
4216The second important difference is that symbols, unlike strings, are not
4217self-evaluating. This is why we need the @code{(quote @dots{})}s in the
4218example above: @code{(quote hello)} evaluates to the symbol named
4219"hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
4220symbol named "hello" and evaluated as a variable reference @dots{} about
4221which more below (@pxref{Symbol Variables}).
4222
4223@menu
4224* Symbol Data:: Symbols as discrete data.
4225* Symbol Keys:: Symbols as lookup keys.
4226* Symbol Variables:: Symbols as denoting variables.
4227* Symbol Primitives:: Operations related to symbols.
4228* Symbol Props:: Function slots and property lists.
4229* Symbol Read Syntax:: Extended read syntax for symbols.
4230* Symbol Uninterned:: Uninterned symbols.
4231@end menu
4232
4233
4234@node Symbol Data
4235@subsubsection Symbols as Discrete Data
4236
4237Numbers and symbols are similar to the extent that they both lend
4238themselves to @code{eq?} comparison. But symbols are more descriptive
4239than numbers, because a symbol's name can be used directly to describe
4240the concept for which that symbol stands.
4241
4242For example, imagine that you need to represent some colours in a
4243computer program. Using numbers, you would have to choose arbitrarily
4244some mapping between numbers and colours, and then take care to use that
4245mapping consistently:
4246
4247@lisp
4248;; 1=red, 2=green, 3=purple
4249
4250(if (eq? (colour-of car) 1)
4251 ...)
4252@end lisp
4253
4254@noindent
4255You can make the mapping more explicit and the code more readable by
4256defining constants:
4257
4258@lisp
4259(define red 1)
4260(define green 2)
4261(define purple 3)
4262
4263(if (eq? (colour-of car) red)
4264 ...)
4265@end lisp
4266
4267@noindent
4268But the simplest and clearest approach is not to use numbers at all, but
4269symbols whose names specify the colours that they refer to:
4270
4271@lisp
4272(if (eq? (colour-of car) 'red)
4273 ...)
4274@end lisp
4275
4276The descriptive advantages of symbols over numbers increase as the set
4277of concepts that you want to describe grows. Suppose that a car object
4278can have other properties as well, such as whether it has or uses:
4279
4280@itemize @bullet
4281@item
4282automatic or manual transmission
4283@item
4284leaded or unleaded fuel
4285@item
4286power steering (or not).
4287@end itemize
4288
4289@noindent
4290Then a car's combined property set could be naturally represented and
4291manipulated as a list of symbols:
4292
4293@lisp
4294(properties-of car1)
4295@result{}
4296(red manual unleaded power-steering)
4297
4298(if (memq 'power-steering (properties-of car1))
4299 (display "Unfit people can drive this car.\n")
4300 (display "You'll need strong arms to drive this car!\n"))
4301@print{}
4302Unfit people can drive this car.
4303@end lisp
4304
4305Remember, the fundamental property of symbols that we are relying on
4306here is that an occurrence of @code{'red} in one part of a program is an
4307@emph{indistinguishable} symbol from an occurrence of @code{'red} in
4308another part of a program; this means that symbols can usefully be
4309compared using @code{eq?}. At the same time, symbols have naturally
4310descriptive names. This combination of efficiency and descriptive power
4311makes them ideal for use as discrete data.
4312
4313
4314@node Symbol Keys
4315@subsubsection Symbols as Lookup Keys
4316
4317Given their efficiency and descriptive power, it is natural to use
4318symbols as the keys in an association list or hash table.
4319
4320To illustrate this, consider a more structured representation of the car
4321properties example from the preceding subsection. Rather than
4322mixing all the properties up together in a flat list, we could use an
4323association list like this:
4324
4325@lisp
4326(define car1-properties '((colour . red)
4327 (transmission . manual)
4328 (fuel . unleaded)
4329 (steering . power-assisted)))
4330@end lisp
4331
4332Notice how this structure is more explicit and extensible than the flat
4333list. For example it makes clear that @code{manual} refers to the
4334transmission rather than, say, the windows or the locking of the car.
4335It also allows further properties to use the same symbols among their
4336possible values without becoming ambiguous:
4337
4338@lisp
4339(define car1-properties '((colour . red)
4340 (transmission . manual)
4341 (fuel . unleaded)
4342 (steering . power-assisted)
4343 (seat-colour . red)
4344 (locking . manual)))
4345@end lisp
4346
4347With a representation like this, it is easy to use the efficient
4348@code{assq-XXX} family of procedures (@pxref{Association Lists}) to
4349extract or change individual pieces of information:
4350
4351@lisp
4352(assq-ref car1-properties 'fuel) @result{} unleaded
4353(assq-ref car1-properties 'transmission) @result{} manual
4354
4355(assq-set! car1-properties 'seat-colour 'black)
4356@result{}
4357((colour . red)
4358 (transmission . manual)
4359 (fuel . unleaded)
4360 (steering . power-assisted)
4361 (seat-colour . black)
4362 (locking . manual)))
4363@end lisp
4364
4365Hash tables also have keys, and exactly the same arguments apply to the
4366use of symbols in hash tables as in association lists. The hash value
4367that Guile uses to decide where to add a symbol-keyed entry to a hash
4368table can be obtained by calling the @code{symbol-hash} procedure:
4369
4370@deffn {Scheme Procedure} symbol-hash symbol
4371@deffnx {C Function} scm_symbol_hash (symbol)
4372Return a hash value for @var{symbol}.
4373@end deffn
4374
4375See @ref{Hash Tables} for information about hash tables in general, and
4376for why you might choose to use a hash table rather than an association
4377list.
4378
4379
4380@node Symbol Variables
4381@subsubsection Symbols as Denoting Variables
4382
4383When an unquoted symbol in a Scheme program is evaluated, it is
4384interpreted as a variable reference, and the result of the evaluation is
4385the appropriate variable's value.
4386
4387For example, when the expression @code{(string-length "abcd")} is read
4388and evaluated, the sequence of characters @code{string-length} is read
4389as the symbol whose name is "string-length". This symbol is associated
4390with a variable whose value is the procedure that implements string
4391length calculation. Therefore evaluation of the @code{string-length}
4392symbol results in that procedure.
4393
4394The details of the connection between an unquoted symbol and the
4395variable to which it refers are explained elsewhere. See @ref{Binding
4396Constructs}, for how associations between symbols and variables are
4397created, and @ref{Modules}, for how those associations are affected by
4398Guile's module system.
4399
4400
4401@node Symbol Primitives
4402@subsubsection Operations Related to Symbols
4403
4404Given any Scheme value, you can determine whether it is a symbol using
4405the @code{symbol?} primitive:
4406
4407@rnindex symbol?
4408@deffn {Scheme Procedure} symbol? obj
4409@deffnx {C Function} scm_symbol_p (obj)
4410Return @code{#t} if @var{obj} is a symbol, otherwise return
4411@code{#f}.
4412@end deffn
4413
c9dc8c6c
MV
4414@deftypefn {C Function} int scm_is_symbol (SCM val)
4415Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
4416@end deftypefn
4417
07d83abe
MV
4418Once you know that you have a symbol, you can obtain its name as a
4419string by calling @code{symbol->string}. Note that Guile differs by
4420default from R5RS on the details of @code{symbol->string} as regards
4421case-sensitivity:
4422
4423@rnindex symbol->string
4424@deffn {Scheme Procedure} symbol->string s
4425@deffnx {C Function} scm_symbol_to_string (s)
4426Return the name of symbol @var{s} as a string. By default, Guile reads
4427symbols case-sensitively, so the string returned will have the same case
4428variation as the sequence of characters that caused @var{s} to be
4429created.
4430
4431If Guile is set to read symbols case-insensitively (as specified by
4432R5RS), and @var{s} comes into being as part of a literal expression
4433(@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
4434by a call to the @code{read} or @code{string-ci->symbol} procedures,
4435Guile converts any alphabetic characters in the symbol's name to
4436lower case before creating the symbol object, so the string returned
4437here will be in lower case.
4438
4439If @var{s} was created by @code{string->symbol}, the case of characters
4440in the string returned will be the same as that in the string that was
4441passed to @code{string->symbol}, regardless of Guile's case-sensitivity
4442setting at the time @var{s} was created.
4443
4444It is an error to apply mutation procedures like @code{string-set!} to
4445strings returned by this procedure.
4446@end deffn
4447
4448Most symbols are created by writing them literally in code. However it
4449is also possible to create symbols programmatically using the following
4450@code{string->symbol} and @code{string-ci->symbol} procedures:
4451
4452@rnindex string->symbol
4453@deffn {Scheme Procedure} string->symbol string
4454@deffnx {C Function} scm_string_to_symbol (string)
4455Return the symbol whose name is @var{string}. This procedure can create
4456symbols with names containing special characters or letters in the
4457non-standard case, but it is usually a bad idea to create such symbols
4458because in some implementations of Scheme they cannot be read as
4459themselves.
4460@end deffn
4461
4462@deffn {Scheme Procedure} string-ci->symbol str
4463@deffnx {C Function} scm_string_ci_to_symbol (str)
4464Return the symbol whose name is @var{str}. If Guile is currently
4465reading symbols case-insensitively, @var{str} is converted to lowercase
4466before the returned symbol is looked up or created.
4467@end deffn
4468
4469The following examples illustrate Guile's detailed behaviour as regards
4470the case-sensitivity of symbols:
4471
4472@lisp
4473(read-enable 'case-insensitive) ; R5RS compliant behaviour
4474
4475(symbol->string 'flying-fish) @result{} "flying-fish"
4476(symbol->string 'Martin) @result{} "martin"
4477(symbol->string
4478 (string->symbol "Malvina")) @result{} "Malvina"
4479
4480(eq? 'mISSISSIppi 'mississippi) @result{} #t
4481(string->symbol "mISSISSIppi") @result{} mISSISSIppi
4482(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
4483(eq? 'LolliPop
4484 (string->symbol (symbol->string 'LolliPop))) @result{} #t
4485(string=? "K. Harper, M.D."
4486 (symbol->string
4487 (string->symbol "K. Harper, M.D."))) @result{} #t
4488
4489(read-disable 'case-insensitive) ; Guile default behaviour
4490
4491(symbol->string 'flying-fish) @result{} "flying-fish"
4492(symbol->string 'Martin) @result{} "Martin"
4493(symbol->string
4494 (string->symbol "Malvina")) @result{} "Malvina"
4495
4496(eq? 'mISSISSIppi 'mississippi) @result{} #f
4497(string->symbol "mISSISSIppi") @result{} mISSISSIppi
4498(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
4499(eq? 'LolliPop
4500 (string->symbol (symbol->string 'LolliPop))) @result{} #t
4501(string=? "K. Harper, M.D."
4502 (symbol->string
4503 (string->symbol "K. Harper, M.D."))) @result{} #t
4504@end lisp
4505
4506From C, there are lower level functions that construct a Scheme symbol
c48c62d0
MV
4507from a C string in the current locale encoding.
4508
4509When you want to do more from C, you should convert between symbols
4510and strings using @code{scm_symbol_to_string} and
4511@code{scm_string_to_symbol} and work with the strings.
07d83abe 4512
c48c62d0
MV
4513@deffn {C Function} scm_from_locale_symbol (const char *name)
4514@deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
07d83abe 4515Construct and return a Scheme symbol whose name is specified by
c48c62d0
MV
4516@var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
4517terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
07d83abe
MV
4518specified explicitly by @var{len}.
4519@end deffn
4520
4521Finally, some applications, especially those that generate new Scheme
4522code dynamically, need to generate symbols for use in the generated
4523code. The @code{gensym} primitive meets this need:
4524
4525@deffn {Scheme Procedure} gensym [prefix]
4526@deffnx {C Function} scm_gensym (prefix)
4527Create a new symbol with a name constructed from a prefix and a counter
4528value. The string @var{prefix} can be specified as an optional
4529argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
4530at each call. There is no provision for resetting the counter.
4531@end deffn
4532
4533The symbols generated by @code{gensym} are @emph{likely} to be unique,
4534since their names begin with a space and it is only otherwise possible
4535to generate such symbols if a programmer goes out of their way to do
4536so. Uniqueness can be guaranteed by instead using uninterned symbols
4537(@pxref{Symbol Uninterned}), though they can't be usefully written out
4538and read back in.
4539
4540
4541@node Symbol Props
4542@subsubsection Function Slots and Property Lists
4543
4544In traditional Lisp dialects, symbols are often understood as having
4545three kinds of value at once:
4546
4547@itemize @bullet
4548@item
4549a @dfn{variable} value, which is used when the symbol appears in
4550code in a variable reference context
4551
4552@item
4553a @dfn{function} value, which is used when the symbol appears in
4554code in a function name position (i.e. as the first element in an
4555unquoted list)
4556
4557@item
4558a @dfn{property list} value, which is used when the symbol is given as
4559the first argument to Lisp's @code{put} or @code{get} functions.
4560@end itemize
4561
4562Although Scheme (as one of its simplifications with respect to Lisp)
4563does away with the distinction between variable and function namespaces,
4564Guile currently retains some elements of the traditional structure in
4565case they turn out to be useful when implementing translators for other
4566languages, in particular Emacs Lisp.
4567
4568Specifically, Guile symbols have two extra slots. for a symbol's
4569property list, and for its ``function value.'' The following procedures
4570are provided to access these slots.
4571
4572@deffn {Scheme Procedure} symbol-fref symbol
4573@deffnx {C Function} scm_symbol_fref (symbol)
4574Return the contents of @var{symbol}'s @dfn{function slot}.
4575@end deffn
4576
4577@deffn {Scheme Procedure} symbol-fset! symbol value
4578@deffnx {C Function} scm_symbol_fset_x (symbol, value)
4579Set the contents of @var{symbol}'s function slot to @var{value}.
4580@end deffn
4581
4582@deffn {Scheme Procedure} symbol-pref symbol
4583@deffnx {C Function} scm_symbol_pref (symbol)
4584Return the @dfn{property list} currently associated with @var{symbol}.
4585@end deffn
4586
4587@deffn {Scheme Procedure} symbol-pset! symbol value
4588@deffnx {C Function} scm_symbol_pset_x (symbol, value)
4589Set @var{symbol}'s property list to @var{value}.
4590@end deffn
4591
4592@deffn {Scheme Procedure} symbol-property sym prop
4593From @var{sym}'s property list, return the value for property
4594@var{prop}. The assumption is that @var{sym}'s property list is an
4595association list whose keys are distinguished from each other using
4596@code{equal?}; @var{prop} should be one of the keys in that list. If
4597the property list has no entry for @var{prop}, @code{symbol-property}
4598returns @code{#f}.
4599@end deffn
4600
4601@deffn {Scheme Procedure} set-symbol-property! sym prop val
4602In @var{sym}'s property list, set the value for property @var{prop} to
4603@var{val}, or add a new entry for @var{prop}, with value @var{val}, if
4604none already exists. For the structure of the property list, see
4605@code{symbol-property}.
4606@end deffn
4607
4608@deffn {Scheme Procedure} symbol-property-remove! sym prop
4609From @var{sym}'s property list, remove the entry for property
4610@var{prop}, if there is one. For the structure of the property list,
4611see @code{symbol-property}.
4612@end deffn
4613
4614Support for these extra slots may be removed in a future release, and it
4615is probably better to avoid using them. (In release 1.6, Guile itself
4616uses the property list slot sparingly, and the function slot not at
4617all.) For a more modern and Schemely approach to properties, see
4618@ref{Object Properties}.
4619
4620
4621@node Symbol Read Syntax
4622@subsubsection Extended Read Syntax for Symbols
4623
4624The read syntax for a symbol is a sequence of letters, digits, and
4625@dfn{extended alphabetic characters}, beginning with a character that
4626cannot begin a number. In addition, the special cases of @code{+},
4627@code{-}, and @code{...} are read as symbols even though numbers can
4628begin with @code{+}, @code{-} or @code{.}.
4629
4630Extended alphabetic characters may be used within identifiers as if
4631they were letters. The set of extended alphabetic characters is:
4632
4633@example
4634! $ % & * + - . / : < = > ? @@ ^ _ ~
4635@end example
4636
4637In addition to the standard read syntax defined above (which is taken
4638from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
4639Scheme})), Guile provides an extended symbol read syntax that allows the
4640inclusion of unusual characters such as space characters, newlines and
4641parentheses. If (for whatever reason) you need to write a symbol
4642containing characters not mentioned above, you can do so as follows.
4643
4644@itemize @bullet
4645@item
4646Begin the symbol with the characters @code{#@{},
4647
4648@item
4649write the characters of the symbol and
4650
4651@item
4652finish the symbol with the characters @code{@}#}.
4653@end itemize
4654
4655Here are a few examples of this form of read syntax. The first symbol
4656needs to use extended syntax because it contains a space character, the
4657second because it contains a line break, and the last because it looks
4658like a number.
4659
4660@lisp
4661#@{foo bar@}#
4662
4663#@{what
4664ever@}#
4665
4666#@{4242@}#
4667@end lisp
4668
4669Although Guile provides this extended read syntax for symbols,
4670widespread usage of it is discouraged because it is not portable and not
4671very readable.
4672
4673
4674@node Symbol Uninterned
4675@subsubsection Uninterned Symbols
4676
4677What makes symbols useful is that they are automatically kept unique.
4678There are no two symbols that are distinct objects but have the same
4679name. But of course, there is no rule without exception. In addition
4680to the normal symbols that have been discussed up to now, you can also
4681create special @dfn{uninterned} symbols that behave slightly
4682differently.
4683
4684To understand what is different about them and why they might be useful,
4685we look at how normal symbols are actually kept unique.
4686
4687Whenever Guile wants to find the symbol with a specific name, for
4688example during @code{read} or when executing @code{string->symbol}, it
4689first looks into a table of all existing symbols to find out whether a
4690symbol with the given name already exists. When this is the case, Guile
4691just returns that symbol. When not, a new symbol with the name is
4692created and entered into the table so that it can be found later.
4693
4694Sometimes you might want to create a symbol that is guaranteed `fresh',
4695i.e. a symbol that did not exist previously. You might also want to
4696somehow guarantee that no one else will ever unintentionally stumble
4697across your symbol in the future. These properties of a symbol are
4698often needed when generating code during macro expansion. When
4699introducing new temporary variables, you want to guarantee that they
4700don't conflict with variables in other people's code.
4701
4702The simplest way to arrange for this is to create a new symbol but
4703not enter it into the global table of all symbols. That way, no one
4704will ever get access to your symbol by chance. Symbols that are not in
4705the table are called @dfn{uninterned}. Of course, symbols that
4706@emph{are} in the table are called @dfn{interned}.
4707
4708You create new uninterned symbols with the function @code{make-symbol}.
4709You can test whether a symbol is interned or not with
4710@code{symbol-interned?}.
4711
4712Uninterned symbols break the rule that the name of a symbol uniquely
4713identifies the symbol object. Because of this, they can not be written
4714out and read back in like interned symbols. Currently, Guile has no
4715support for reading uninterned symbols. Note that the function
4716@code{gensym} does not return uninterned symbols for this reason.
4717
4718@deffn {Scheme Procedure} make-symbol name
4719@deffnx {C Function} scm_make_symbol (name)
4720Return a new uninterned symbol with the name @var{name}. The returned
4721symbol is guaranteed to be unique and future calls to
4722@code{string->symbol} will not return it.
4723@end deffn
4724
4725@deffn {Scheme Procedure} symbol-interned? symbol
4726@deffnx {C Function} scm_symbol_interned_p (symbol)
4727Return @code{#t} if @var{symbol} is interned, otherwise return
4728@code{#f}.
4729@end deffn
4730
4731For example:
4732
4733@lisp
4734(define foo-1 (string->symbol "foo"))
4735(define foo-2 (string->symbol "foo"))
4736(define foo-3 (make-symbol "foo"))
4737(define foo-4 (make-symbol "foo"))
4738
4739(eq? foo-1 foo-2)
4740@result{} #t
4741; Two interned symbols with the same name are the same object,
4742
4743(eq? foo-1 foo-3)
4744@result{} #f
4745; but a call to make-symbol with the same name returns a
4746; distinct object.
4747
4748(eq? foo-3 foo-4)
4749@result{} #f
4750; A call to make-symbol always returns a new object, even for
4751; the same name.
4752
4753foo-3
4754@result{} #<uninterned-symbol foo 8085290>
4755; Uninterned symbols print differently from interned symbols,
4756
4757(symbol? foo-3)
4758@result{} #t
4759; but they are still symbols,
4760
4761(symbol-interned? foo-3)
4762@result{} #f
4763; just not interned.
4764@end lisp
4765
4766
4767@node Keywords
4768@subsection Keywords
4769@tpindex Keywords
4770
4771Keywords are self-evaluating objects with a convenient read syntax that
4772makes them easy to type.
4773
4774Guile's keyword support conforms to R5RS, and adds a (switchable) read
4775syntax extension to permit keywords to begin with @code{:} as well as
4776@code{#:}.
4777
4778@menu
4779* Why Use Keywords?:: Motivation for keyword usage.
4780* Coding With Keywords:: How to use keywords.
4781* Keyword Read Syntax:: Read syntax for keywords.
4782* Keyword Procedures:: Procedures for dealing with keywords.
07d83abe
MV
4783@end menu
4784
4785@node Why Use Keywords?
4786@subsubsection Why Use Keywords?
4787
4788Keywords are useful in contexts where a program or procedure wants to be
4789able to accept a large number of optional arguments without making its
4790interface unmanageable.
4791
4792To illustrate this, consider a hypothetical @code{make-window}
4793procedure, which creates a new window on the screen for drawing into
4794using some graphical toolkit. There are many parameters that the caller
4795might like to specify, but which could also be sensibly defaulted, for
4796example:
4797
4798@itemize @bullet
4799@item
4800color depth -- Default: the color depth for the screen
4801
4802@item
4803background color -- Default: white
4804
4805@item
4806width -- Default: 600
4807
4808@item
4809height -- Default: 400
4810@end itemize
4811
4812If @code{make-window} did not use keywords, the caller would have to
4813pass in a value for each possible argument, remembering the correct
4814argument order and using a special value to indicate the default value
4815for that argument:
4816
4817@lisp
4818(make-window 'default ;; Color depth
4819 'default ;; Background color
4820 800 ;; Width
4821 100 ;; Height
4822 @dots{}) ;; More make-window arguments
4823@end lisp
4824
4825With keywords, on the other hand, defaulted arguments are omitted, and
4826non-default arguments are clearly tagged by the appropriate keyword. As
4827a result, the invocation becomes much clearer:
4828
4829@lisp
4830(make-window #:width 800 #:height 100)
4831@end lisp
4832
4833On the other hand, for a simpler procedure with few arguments, the use
4834of keywords would be a hindrance rather than a help. The primitive
4835procedure @code{cons}, for example, would not be improved if it had to
4836be invoked as
4837
4838@lisp
4839(cons #:car x #:cdr y)
4840@end lisp
4841
4842So the decision whether to use keywords or not is purely pragmatic: use
4843them if they will clarify the procedure invocation at point of call.
4844
4845@node Coding With Keywords
4846@subsubsection Coding With Keywords
4847
4848If a procedure wants to support keywords, it should take a rest argument
4849and then use whatever means is convenient to extract keywords and their
4850corresponding arguments from the contents of that rest argument.
4851
4852The following example illustrates the principle: the code for
4853@code{make-window} uses a helper procedure called
4854@code{get-keyword-value} to extract individual keyword arguments from
4855the rest argument.
4856
4857@lisp
4858(define (get-keyword-value args keyword default)
4859 (let ((kv (memq keyword args)))
4860 (if (and kv (>= (length kv) 2))
4861 (cadr kv)
4862 default)))
4863
4864(define (make-window . args)
4865 (let ((depth (get-keyword-value args #:depth screen-depth))
4866 (bg (get-keyword-value args #:bg "white"))
4867 (width (get-keyword-value args #:width 800))
4868 (height (get-keyword-value args #:height 100))
4869 @dots{})
4870 @dots{}))
4871@end lisp
4872
4873But you don't need to write @code{get-keyword-value}. The @code{(ice-9
4874optargs)} module provides a set of powerful macros that you can use to
4875implement keyword-supporting procedures like this:
4876
4877@lisp
4878(use-modules (ice-9 optargs))
4879
4880(define (make-window . args)
4881 (let-keywords args #f ((depth screen-depth)
4882 (bg "white")
4883 (width 800)
4884 (height 100))
4885 ...))
4886@end lisp
4887
4888@noindent
4889Or, even more economically, like this:
4890
4891@lisp
4892(use-modules (ice-9 optargs))
4893
4894(define* (make-window #:key (depth screen-depth)
4895 (bg "white")
4896 (width 800)
4897 (height 100))
4898 ...)
4899@end lisp
4900
4901For further details on @code{let-keywords}, @code{define*} and other
4902facilities provided by the @code{(ice-9 optargs)} module, see
4903@ref{Optional Arguments}.
4904
4905
4906@node Keyword Read Syntax
4907@subsubsection Keyword Read Syntax
4908
7719ef22
MV
4909Guile, by default, only recognizes a keyword syntax that is compatible
4910with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
4911same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
4912external representation of the keyword named @code{NAME}. Keyword
4913objects print using this syntax as well, so values containing keyword
4914objects can be read back into Guile. When used in an expression,
4915keywords are self-quoting objects.
07d83abe
MV
4916
4917If the @code{keyword} read option is set to @code{'prefix}, Guile also
4918recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
4919of the form @code{:NAME} are read as symbols, as required by R5RS.
4920
4921To enable and disable the alternative non-R5RS keyword syntax, you use
4922the @code{read-set!} procedure documented in @ref{User level options
4923interfaces} and @ref{Reader options}.
4924
4925@smalllisp
4926(read-set! keywords 'prefix)
4927
4928#:type
4929@result{}
4930#:type
4931
4932:type
4933@result{}
4934#:type
4935
4936(read-set! keywords #f)
4937
4938#:type
4939@result{}
4940#:type
4941
4942:type
4943@print{}
4944ERROR: In expression :type:
4945ERROR: Unbound variable: :type
4946ABORT: (unbound-variable)
4947@end smalllisp
4948
4949@node Keyword Procedures
4950@subsubsection Keyword Procedures
4951
07d83abe
MV
4952@deffn {Scheme Procedure} keyword? obj
4953@deffnx {C Function} scm_keyword_p (obj)
4954Return @code{#t} if the argument @var{obj} is a keyword, else
4955@code{#f}.
4956@end deffn
4957
7719ef22
MV
4958@deffn {Scheme Procedure} keyword->symbol keyword
4959@deffnx {C Function} scm_keyword_to_symbol (keyword)
4960Return the symbol with the same name as @var{keyword}.
07d83abe
MV
4961@end deffn
4962
7719ef22
MV
4963@deffn {Scheme Procedure} symbol->keyword symbol
4964@deffnx {C Function} scm_symbol_to_keyword (symbol)
4965Return the keyword with the same name as @var{symbol}.
4966@end deffn
07d83abe 4967
7719ef22
MV
4968@deftypefn {C Function} int scm_is_keyword (SCM obj)
4969Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
07d83abe
MV
4970@end deftypefn
4971
7719ef22
MV
4972@deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
4973@deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
4974Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
4975(@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
4976(@var{str}, @var{len}))}, respectively.
4977@end deftypefn
07d83abe
MV
4978
4979@node Other Types
4980@subsection ``Functionality-Centric'' Data Types
4981
4982Procedures and macros are documented in their own chapter: see
4983@ref{Procedures and Macros}.
4984
4985Variable objects are documented as part of the description of Guile's
4986module system: see @ref{Variables}.
4987
4988Asyncs, dynamic roots and fluids are described in the chapter on
4989scheduling: see @ref{Scheduling}.
4990
4991Hooks are documented in the chapter on general utility functions: see
4992@ref{Hooks}.
4993
4994Ports are described in the chapter on I/O: see @ref{Input and Output}.
4995
4996
4997@c Local Variables:
4998@c TeX-master: "guile.texi"
4999@c End: