improve breaks in 8.5x11
[bpt/emacs.git] / lispref / display.texi
CommitLineData
2b71a73d 1@c -*-texinfo-*-
42b85554 2@c This is part of the GNU Emacs Lisp Reference Manual.
f0d3d9fe 3@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2000, 2001,
4e6835db 4@c 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
42b85554
RS
5@c See the file elisp.texi for copying conditions.
6@setfilename ../info/display
8346b750 7@node Display, System Interface, Processes, Top
42b85554
RS
8@chapter Emacs Display
9
10 This chapter describes a number of features related to the display
11that Emacs presents to the user.
12
13@menu
14* Refresh Screen:: Clearing the screen and redrawing everything on it.
8241495d 15* Forcing Redisplay:: Forcing redisplay.
42b85554 16* Truncation:: Folding or wrapping long text lines.
ac1d7a06 17* The Echo Area:: Displaying messages at the bottom of the screen.
8a6ca431 18* Warnings:: Displaying warning messages for the user.
22697dac
KH
19* Invisible Text:: Hiding part of the buffer text.
20* Selective Display:: Hiding part of the buffer text (the old way).
42b85554 21* Temporary Displays:: Displays that go away automatically.
02c77ee9 22* Overlays:: Use overlays to highlight parts of the buffer.
a40d4712 23* Width:: How wide a character or string is on the screen.
93449dd1 24* Line Height:: Controlling the height of lines.
02c77ee9 25* Faces:: A face defines a graphics style for text characters:
a40d4712 26 font, colors, etc.
8a6ca431 27* Fringes:: Controlling window fringes.
f6cad089 28* Scroll Bars:: Controlling vertical scroll bars.
8241495d
RS
29* Display Property:: Enabling special display features.
30* Images:: Displaying images in Emacs buffers.
02c77ee9 31* Buttons:: Adding clickable buttons to Emacs buffers.
f3dffabb 32* Abstract Display:: Emacs' Widget for Object Collections.
42b85554 33* Blinking:: How Emacs shows the matching open parenthesis.
02c77ee9
MB
34* Usual Display:: The usual conventions for displaying nonprinting chars.
35* Display Tables:: How to specify other conventions.
42b85554
RS
36* Beeping:: Audible signal to the user.
37* Window Systems:: Which window system is being used.
38@end menu
39
40@node Refresh Screen
41@section Refreshing the Screen
42
c2579664
RS
43 The function @code{redraw-frame} clears and redisplays the entire
44contents of a given frame (@pxref{Frames}). This is useful if the
45screen is corrupted.
42b85554
RS
46
47@c Emacs 19 feature
48@defun redraw-frame frame
49This function clears and redisplays frame @var{frame}.
50@end defun
51
c2579664 52 Even more powerful is @code{redraw-display}:
42b85554
RS
53
54@deffn Command redraw-display
55This function clears and redisplays all visible frames.
56@end deffn
57
c2579664
RS
58 This function calls for redisplay of certain windows, the next time
59redisplay is done, but does not clear them first.
00b3c1cd 60
c2579664 61@defun force-window-update &optional object
2735e109
KS
62This function forces some or all windows to be updated on next redisplay.
63If @var{object} is a window, it forces redisplay of that window. If
00b3c1cd 64@var{object} is a buffer or buffer name, it forces redisplay of all
c2579664
RS
65windows displaying that buffer. If @var{object} is @code{nil} (or
66omitted), it forces redisplay of all windows.
00b3c1cd
RS
67@end defun
68
bfe721d1
KH
69 Processing user input takes absolute priority over redisplay. If you
70call these functions when input is available, they do nothing
71immediately, but a full redisplay does happen eventually---after all the
72input has been processed.
73
42b85554
RS
74 Normally, suspending and resuming Emacs also refreshes the screen.
75Some terminal emulators record separate contents for display-oriented
76programs such as Emacs and for ordinary sequential display. If you are
77using such a terminal, you might want to inhibit the redisplay on
78608595 78resumption.
42b85554
RS
79
80@defvar no-redraw-on-reenter
81@cindex suspend (cf. @code{no-redraw-on-reenter})
82@cindex resume (cf. @code{no-redraw-on-reenter})
83This variable controls whether Emacs redraws the entire screen after it
f9f59935 84has been suspended and resumed. Non-@code{nil} means there is no need
969fe9b5 85to redraw, @code{nil} means redrawing is needed. The default is @code{nil}.
42b85554
RS
86@end defvar
87
8241495d
RS
88@node Forcing Redisplay
89@section Forcing Redisplay
90@cindex forcing redisplay
91
92 Emacs redisplay normally stops if input arrives, and does not happen
93at all if input is available before it starts. Most of the time, this
94is exactly what you want. However, you can prevent preemption by
95binding @code{redisplay-dont-pause} to a non-@code{nil} value.
96
a9d2c447 97@defvar redisplay-preemption-period
c7484981
RS
98This variable specifies how many seconds Emacs waits between checks
99for new input during redisplay. (The default is 0.1 seconds.) If
100input has arrived when Emacs checks, it pre-empts redisplay and
101processes the available input before trying again to redisplay.
102
103If this variable is @code{nil}, Emacs does not check for input during
104redisplay, and redisplay cannot be preempted by input.
a9d2c447 105
796660a5
KS
106This variable is only obeyed on graphical terminals. For
107text terminals, see @ref{Terminal Output}.
a9d2c447
KS
108@end defvar
109
8241495d
RS
110@defvar redisplay-dont-pause
111If this variable is non-@code{nil}, pending input does not
112prevent or halt redisplay; redisplay occurs, and finishes,
911a7105 113regardless of whether input is available.
8241495d
RS
114@end defvar
115
a4df70f7
KS
116@defun redisplay &optional force
117This function performs an immediate redisplay provided there are no
118pending input events. This is equivalent to @code{(sit-for 0)}.
119
120If the optional argument @var{force} is non-@code{nil}, it forces an
121immediate and complete redisplay even if input is available.
cccdcb11
KS
122
123Returns @code{t} if redisplay was performed, or @code{nil} otherwise.
a4df70f7 124@end defun
8241495d 125
42b85554
RS
126@node Truncation
127@section Truncation
128@cindex line wrapping
ad8d30b3 129@cindex line truncation
42b85554
RS
130@cindex continuation lines
131@cindex @samp{$} in display
132@cindex @samp{\} in display
133
b86be617
RS
134 When a line of text extends beyond the right edge of a window, Emacs
135can @dfn{continue} the line (make it ``wrap'' to the next screen
136line), or @dfn{truncate} the line (limit it to one screen line). The
137additional screen lines used to display a long text line are called
138@dfn{continuation} lines. Continuation is not the same as filling;
139continuation happens on the screen only, not in the buffer contents,
140and it breaks a line precisely at the right margin, not at a word
141boundary. @xref{Filling}.
142
143 On a graphical display, tiny arrow images in the window fringes
144indicate truncated and continued lines (@pxref{Fringes}). On a text
145terminal, a @samp{$} in the rightmost column of the window indicates
146truncation; a @samp{\} on the rightmost column indicates a line that
827b7ee7 147``wraps.'' (The display table can specify alternate characters to use
b86be617 148for this; @pxref{Display Tables}).
42b85554
RS
149
150@defopt truncate-lines
151This buffer-local variable controls how Emacs displays lines that extend
152beyond the right edge of the window. The default is @code{nil}, which
153specifies continuation. If the value is non-@code{nil}, then these
154lines are truncated.
155
156If the variable @code{truncate-partial-width-windows} is non-@code{nil},
157then truncation is always used for side-by-side windows (within one
158frame) regardless of the value of @code{truncate-lines}.
159@end defopt
160
bfe721d1 161@defopt default-truncate-lines
42b85554 162This variable is the default value for @code{truncate-lines}, for
969fe9b5 163buffers that do not have buffer-local values for it.
bfe721d1 164@end defopt
42b85554
RS
165
166@defopt truncate-partial-width-windows
167This variable controls display of lines that extend beyond the right
168edge of the window, in side-by-side windows (@pxref{Splitting Windows}).
169If it is non-@code{nil}, these lines are truncated; otherwise,
170@code{truncate-lines} says what to do with them.
171@end defopt
172
a9f0a989
RS
173 When horizontal scrolling (@pxref{Horizontal Scrolling}) is in use in
174a window, that forces truncation.
175
1911e6e5 176 If your buffer contains @emph{very} long lines, and you use
22697dac 177continuation to display them, just thinking about them can make Emacs
bfe721d1
KH
178redisplay slow. The column computation and indentation functions also
179become slow. Then you might find it advisable to set
180@code{cache-long-line-scans} to @code{t}.
22697dac
KH
181
182@defvar cache-long-line-scans
183If this variable is non-@code{nil}, various indentation and motion
bfe721d1
KH
184functions, and Emacs redisplay, cache the results of scanning the
185buffer, and consult the cache to avoid rescanning regions of the buffer
186unless they are modified.
22697dac 187
bfe721d1 188Turning on the cache slows down processing of short lines somewhat.
22697dac 189
969fe9b5 190This variable is automatically buffer-local in every buffer.
22697dac
KH
191@end defvar
192
42b85554
RS
193@node The Echo Area
194@section The Echo Area
195@cindex error display
196@cindex echo area
197
ac1d7a06 198 The @dfn{echo area} is used for displaying error messages
c2579664
RS
199(@pxref{Errors}), for messages made with the @code{message} primitive,
200and for echoing keystrokes. It is not the same as the minibuffer,
201despite the fact that the minibuffer appears (when active) in the same
202place on the screen as the echo area. The @cite{GNU Emacs Manual}
203specifies the rules for resolving conflicts between the echo area and
204the minibuffer for use of that screen space (@pxref{Minibuffer,, The
205Minibuffer, emacs, The GNU Emacs Manual}).
42b85554 206
ac1d7a06
RS
207 You can write output in the echo area by using the Lisp printing
208functions with @code{t} as the stream (@pxref{Output Functions}), or
209explicitly.
210
211@menu
212* Displaying Messages:: Explicitly displaying text in the echo area.
7abe6d7a 213* Progress:: Informing user about progress of a long operation.
ac1d7a06
RS
214* Logging Messages:: Echo area messages are logged for the user.
215* Echo Area Customization:: Controlling the echo area.
216@end menu
217
218@node Displaying Messages
219@subsection Displaying Messages in the Echo Area
ad8d30b3 220@cindex display message in echo area
ac1d7a06
RS
221
222 This section describes the functions for explicitly producing echo
223area messages. Many other Emacs features display messages there, too.
42b85554 224
1c145ce1
JL
225@defun message format-string &rest arguments
226This function displays a message in the echo area. The argument
227@var{format-string} is similar to a C language @code{printf} format
a3267c78 228string. See @code{format} in @ref{Formatting Strings}, for the details
42b85554
RS
229on the conversion specifications. @code{message} returns the
230constructed string.
231
b22f3a19
RS
232In batch mode, @code{message} prints the message text on the standard
233error stream, followed by a newline.
234
1c145ce1
JL
235If @var{format-string}, or strings among the @var{arguments}, have
236@code{face} text properties, these affect the way the message is displayed.
8241495d 237
42b85554 238@c Emacs 19 feature
1c145ce1
JL
239If @var{format-string} is @code{nil} or the empty string,
240@code{message} clears the echo area; if the echo area has been
241expanded automatically, this brings it back to its normal size.
242If the minibuffer is active, this brings the minibuffer contents back
243onto the screen immediately.
b22f3a19 244
42b85554
RS
245@example
246@group
247(message "Minibuffer depth is %d."
248 (minibuffer-depth))
249 @print{} Minibuffer depth is 0.
250@result{} "Minibuffer depth is 0."
251@end group
252
253@group
254---------- Echo Area ----------
255Minibuffer depth is 0.
256---------- Echo Area ----------
257@end group
258@end example
a43709e6
MB
259
260To automatically display a message in the echo area or in a pop-buffer,
c2579664 261depending on its size, use @code{display-message-or-buffer} (see below).
42b85554
RS
262@end defun
263
b6954afd
RS
264@defmac with-temp-message message &rest body
265This construct displays a message in the echo area temporarily, during
266the execution of @var{body}. It displays @var{message}, executes
267@var{body}, then returns the value of the last body form while restoring
268the previous echo area contents.
269@end defmac
270
1c145ce1 271@defun message-or-box format-string &rest arguments
39d6d9bd
RS
272This function displays a message like @code{message}, but may display it
273in a dialog box instead of the echo area. If this function is called in
274a command that was invoked using the mouse---more precisely, if
275@code{last-nonmenu-event} (@pxref{Command Loop Info}) is either
276@code{nil} or a list---then it uses a dialog box or pop-up menu to
277display the message. Otherwise, it uses the echo area. (This is the
278same criterion that @code{y-or-n-p} uses to make a similar decision; see
279@ref{Yes-or-No Queries}.)
280
281You can force use of the mouse or of the echo area by binding
282@code{last-nonmenu-event} to a suitable value around the call.
283@end defun
284
1c145ce1 285@defun message-box format-string &rest arguments
b9602867 286@anchor{message-box}
39d6d9bd
RS
287This function displays a message like @code{message}, but uses a dialog
288box (or a pop-up menu) whenever that is possible. If it is impossible
289to use a dialog box or pop-up menu, because the terminal does not
290support them, then @code{message-box} uses the echo area, like
291@code{message}.
292@end defun
293
a43709e6
MB
294@defun display-message-or-buffer message &optional buffer-name not-this-window frame
295This function displays the message @var{message}, which may be either a
296string or a buffer. If it is shorter than the maximum height of the
297echo area, as defined by @code{max-mini-window-height}, it is displayed
298in the echo area, using @code{message}. Otherwise,
299@code{display-buffer} is used to show it in a pop-up buffer.
300
301Returns either the string shown in the echo area, or when a pop-up
302buffer is used, the window used to display it.
303
304If @var{message} is a string, then the optional argument
305@var{buffer-name} is the name of the buffer used to display it when a
306pop-up buffer is used, defaulting to @samp{*Message*}. In the case
307where @var{message} is a string and displayed in the echo area, it is
308not specified whether the contents are inserted into the buffer anyway.
309
310The optional arguments @var{not-this-window} and @var{frame} are as for
311@code{display-buffer}, and only used if a buffer is displayed.
312@end defun
313
f9f59935
RS
314@defun current-message
315This function returns the message currently being displayed in the
316echo area, or @code{nil} if there is none.
317@end defun
318
ac1d7a06
RS
319@node Progress
320@subsection Reporting Operation Progress
321@cindex progress reporting
969fe9b5 322
ac1d7a06
RS
323 When an operation can take a while to finish, you should inform the
324user about the progress it makes. This way the user can estimate
325remaining time and clearly see that Emacs is busy working, not hung.
969fe9b5 326
ac1d7a06
RS
327 Functions listed in this section provide simple and efficient way of
328reporting operation progress. Here is a working example that does
329nothing useful:
f9f59935 330
ac1d7a06
RS
331@smallexample
332(let ((progress-reporter
333 (make-progress-reporter "Collecting mana for Emacs..."
334 0 500)))
335 (dotimes (k 500)
336 (sit-for 0.01)
337 (progress-reporter-update progress-reporter k))
338 (progress-reporter-done progress-reporter))
339@end smallexample
340
341@defun make-progress-reporter message min-value max-value &optional current-value min-change min-time
342This function creates and returns a @dfn{progress reporter}---an
343object you will use as an argument for all other functions listed
344here. The idea is to precompute as much data as possible to make
345progress reporting very fast.
346
347When this progress reporter is subsequently used, it will display
348@var{message} in the echo area, followed by progress percentage.
349@var{message} is treated as a simple string. If you need it to depend
350on a filename, for instance, use @code{format} before calling this
351function.
352
353@var{min-value} and @var{max-value} arguments stand for starting and
354final states of your operation. For instance, if you scan a buffer,
355they should be the results of @code{point-min} and @code{point-max}
356correspondingly. It is required that @var{max-value} is greater than
357@var{min-value}. If you create progress reporter when some part of
358the operation has already been completed, then specify
359@var{current-value} argument. But normally you should omit it or set
360it to @code{nil}---it will default to @var{min-value} then.
361
362Remaining arguments control the rate of echo area updates. Progress
363reporter will wait for at least @var{min-change} more percents of the
364operation to be completed before printing next message.
365@var{min-time} specifies the minimum time in seconds to pass between
366successive prints. It can be fractional. Depending on Emacs and
367system capabilities, progress reporter may or may not respect this
368last argument or do it with varying precision. Default value for
369@var{min-change} is 1 (one percent), for @var{min-time}---0.2
370(seconds.)
371
372This function calls @code{progress-reporter-update}, so the first
373message is printed immediately.
374@end defun
375
376@defun progress-reporter-update reporter value
377This function does the main work of reporting progress of your
378operation. It displays the message of @var{reporter}, followed by
379progress percentage determined by @var{value}. If percentage is zero,
380or close enough according to the @var{min-change} and @var{min-time}
381arguments, then it is omitted from the output.
382
383@var{reporter} must be the result of a call to
384@code{make-progress-reporter}. @var{value} specifies the current
385state of your operation and must be between @var{min-value} and
386@var{max-value} (inclusive) as passed to
387@code{make-progress-reporter}. For instance, if you scan a buffer,
388then @var{value} should be the result of a call to @code{point}.
389
390This function respects @var{min-change} and @var{min-time} as passed
391to @code{make-progress-reporter} and so does not output new messages
392on every invocation. It is thus very fast and normally you should not
393try to reduce the number of calls to it: resulting overhead will most
394likely negate your effort.
395@end defun
396
397@defun progress-reporter-force-update reporter value &optional new-message
398This function is similar to @code{progress-reporter-update} except
399that it prints a message in the echo area unconditionally.
400
401The first two arguments have the same meaning as for
402@code{progress-reporter-update}. Optional @var{new-message} allows
403you to change the message of the @var{reporter}. Since this functions
404always updates the echo area, such a change will be immediately
405presented to the user.
406@end defun
407
408@defun progress-reporter-done reporter
409This function should be called when the operation is finished. It
410prints the message of @var{reporter} followed by word ``done'' in the
411echo area.
412
413You should always call this function and not hope for
414@code{progress-reporter-update} to print ``100%.'' Firstly, it may
415never print it, there are many good reasons for this not to happen.
416Secondly, ``done'' is more explicit.
417@end defun
418
84ff884e 419@defmac dotimes-with-progress-reporter (var count [result]) message body@dots{}
ac1d7a06
RS
420This is a convenience macro that works the same way as @code{dotimes}
421does, but also reports loop progress using the functions described
422above. It allows you to save some typing.
423
424You can rewrite the example in the beginning of this node using
425this macro this way:
426
427@example
428(dotimes-with-progress-reporter
429 (k 500)
430 "Collecting some mana for Emacs..."
431 (sit-for 0.01))
432@end example
433@end defmac
434
435@node Logging Messages
436@subsection Logging Messages in @samp{*Messages*}
437@cindex logging echo-area messages
438
439 Almost all the messages displayed in the echo area are also recorded
440in the @samp{*Messages*} buffer so that the user can refer back to
441them. This includes all the messages that are output with
442@code{message}.
22697dac
KH
443
444@defopt message-log-max
445This variable specifies how many lines to keep in the @samp{*Messages*}
446buffer. The value @code{t} means there is no limit on how many lines to
447keep. The value @code{nil} disables message logging entirely. Here's
448how to display a message and prevent it from being logged:
449
450@example
451(let (message-log-max)
452 (message @dots{}))
453@end example
454@end defopt
455
ac1d7a06
RS
456 To make @samp{*Messages*} more convenient for the user, the logging
457facility combines successive identical messages. It also combines
458successive related messages for the sake of two cases: question
459followed by answer, and a series of progress messages.
460
461 A ``question followed by an answer'' means two messages like the
462ones produced by @code{y-or-n-p}: the first is @samp{@var{question}},
463and the second is @samp{@var{question}...@var{answer}}. The first
464message conveys no additional information beyond what's in the second,
465so logging the second message discards the first from the log.
466
467 A ``series of progress messages'' means successive messages like
468those produced by @code{make-progress-reporter}. They have the form
469@samp{@var{base}...@var{how-far}}, where @var{base} is the same each
470time, while @var{how-far} varies. Logging each message in the series
471discards the previous one, provided they are consecutive.
472
473 The functions @code{make-progress-reporter} and @code{y-or-n-p}
474don't have to do anything special to activate the message log
475combination feature. It operates whenever two consecutive messages
476are logged that share a common prefix ending in @samp{...}.
477
478@node Echo Area Customization
479@subsection Echo Area Customization
480
481 These variables control details of how the echo area works.
482
483@defvar cursor-in-echo-area
484This variable controls where the cursor appears when a message is
485displayed in the echo area. If it is non-@code{nil}, then the cursor
486appears at the end of the message. Otherwise, the cursor appears at
487point---not in the echo area at all.
488
489The value is normally @code{nil}; Lisp programs bind it to @code{t}
490for brief periods of time.
491@end defvar
492
493@defvar echo-area-clear-hook
494This normal hook is run whenever the echo area is cleared---either by
495@code{(message nil)} or for any other reason.
496@end defvar
497
bfe721d1
KH
498@defvar echo-keystrokes
499This variable determines how much time should elapse before command
65e8b582
DL
500characters echo. Its value must be an integer or floating point number,
501which specifies the
bfe721d1
KH
502number of seconds to wait before echoing. If the user types a prefix
503key (such as @kbd{C-x}) and then delays this many seconds before
a9f0a989
RS
504continuing, the prefix key is echoed in the echo area. (Once echoing
505begins in a key sequence, all subsequent characters in the same key
506sequence are echoed immediately.)
bfe721d1
KH
507
508If the value is zero, then command input is not echoed.
509@end defvar
510
ac1d7a06
RS
511@defvar message-truncate-lines
512Normally, displaying a long message resizes the echo area to display
513the entire message. But if the variable @code{message-truncate-lines}
514is non-@code{nil}, the echo area does not resize, and the message is
515truncated to fit it, as in Emacs 20 and before.
516@end defvar
517
64230f2d
RS
518 The variable @code{max-mini-window-height}, which specifies the
519maximum height for resizing minibuffer windows, also applies to the
520echo area (which is really a special use of the minibuffer window.
521@xref{Minibuffer Misc}.
522
8a6ca431
RS
523@node Warnings
524@section Reporting Warnings
525@cindex warnings
526
527 @dfn{Warnings} are a facility for a program to inform the user of a
528possible problem, but continue running.
529
530@menu
531* Warning Basics:: Warnings concepts and functions to report them.
532* Warning Variables:: Variables programs bind to customize their warnings.
533* Warning Options:: Variables users set to control display of warnings.
534@end menu
535
536@node Warning Basics
537@subsection Warning Basics
538@cindex severity level
539
540 Every warning has a textual message, which explains the problem for
541the user, and a @dfn{severity level} which is a symbol. Here are the
542possible severity levels, in order of decreasing severity, and their
543meanings:
544
545@table @code
546@item :emergency
547A problem that will seriously impair Emacs operation soon
548if you do not attend to it promptly.
549@item :error
550A report of data or circumstances that are inherently wrong.
551@item :warning
552A report of data or circumstances that are not inherently wrong, but
553raise suspicion of a possible problem.
554@item :debug
555A report of information that may be useful if you are debugging.
556@end table
557
558 When your program encounters invalid input data, it can either
559signal a Lisp error by calling @code{error} or @code{signal} or report
560a warning with severity @code{:error}. Signaling a Lisp error is the
561easiest thing to do, but it means the program cannot continue
562processing. If you want to take the trouble to implement a way to
563continue processing despite the bad data, then reporting a warning of
564severity @code{:error} is the right way to inform the user of the
565problem. For instance, the Emacs Lisp byte compiler can report an
566error that way and continue compiling other functions. (If the
567program signals a Lisp error and then handles it with
568@code{condition-case}, the user won't see the error message; it could
569show the message to the user by reporting it as a warning.)
570
c00d3ba4 571@cindex warning type
8a6ca431
RS
572 Each warning has a @dfn{warning type} to classify it. The type is a
573list of symbols. The first symbol should be the custom group that you
574use for the program's user options. For example, byte compiler
575warnings use the warning type @code{(bytecomp)}. You can also
576subcategorize the warnings, if you wish, by using more symbols in the
577list.
578
579@defun display-warning type message &optional level buffer-name
580This function reports a warning, using @var{message} as the message
581and @var{type} as the warning type. @var{level} should be the
582severity level, with @code{:warning} being the default.
583
584@var{buffer-name}, if non-@code{nil}, specifies the name of the buffer
585for logging the warning. By default, it is @samp{*Warnings*}.
586@end defun
587
588@defun lwarn type level message &rest args
589This function reports a warning using the value of @code{(format
590@var{message} @var{args}...)} as the message. In other respects it is
591equivalent to @code{display-warning}.
592@end defun
593
594@defun warn message &rest args
595This function reports a warning using the value of @code{(format
596@var{message} @var{args}...)} as the message, @code{(emacs)} as the
597type, and @code{:warning} as the severity level. It exists for
598compatibility only; we recommend not using it, because you should
599specify a specific warning type.
600@end defun
601
602@node Warning Variables
603@subsection Warning Variables
604
605 Programs can customize how their warnings appear by binding
606the variables described in this section.
607
608@defvar warning-levels
609This list defines the meaning and severity order of the warning
610severity levels. Each element defines one severity level,
611and they are arranged in order of decreasing severity.
612
613Each element has the form @code{(@var{level} @var{string}
614@var{function})}, where @var{level} is the severity level it defines.
615@var{string} specifies the textual description of this level.
616@var{string} should use @samp{%s} to specify where to put the warning
617type information, or it can omit the @samp{%s} so as not to include
618that information.
619
620The optional @var{function}, if non-@code{nil}, is a function to call
621with no arguments, to get the user's attention.
622
623Normally you should not change the value of this variable.
624@end defvar
625
626@defvar warning-prefix-function
812a2341 627If non-@code{nil}, the value is a function to generate prefix text for
8a6ca431
RS
628warnings. Programs can bind the variable to a suitable function.
629@code{display-warning} calls this function with the warnings buffer
630current, and the function can insert text in it. That text becomes
631the beginning of the warning message.
632
633The function is called with two arguments, the severity level and its
634entry in @code{warning-levels}. It should return a list to use as the
635entry (this value need not be an actual member of
812a2341 636@code{warning-levels}). By constructing this value, the function can
8a6ca431
RS
637change the severity of the warning, or specify different handling for
638a given severity level.
639
640If the variable's value is @code{nil} then there is no function
641to call.
642@end defvar
643
644@defvar warning-series
645Programs can bind this variable to @code{t} to say that the next
646warning should begin a series. When several warnings form a series,
647that means to leave point on the first warning of the series, rather
812a2341 648than keep moving it for each warning so that it appears on the last one.
8a6ca431
RS
649The series ends when the local binding is unbound and
650@code{warning-series} becomes @code{nil} again.
651
652The value can also be a symbol with a function definition. That is
653equivalent to @code{t}, except that the next warning will also call
654the function with no arguments with the warnings buffer current. The
655function can insert text which will serve as a header for the series
656of warnings.
657
658Once a series has begun, the value is a marker which points to the
659buffer position in the warnings buffer of the start of the series.
660
661The variable's normal value is @code{nil}, which means to handle
662each warning separately.
663@end defvar
664
665@defvar warning-fill-prefix
666When this variable is non-@code{nil}, it specifies a fill prefix to
667use for filling each warning's text.
668@end defvar
669
670@defvar warning-type-format
671This variable specifies the format for displaying the warning type
672in the warning message. The result of formatting the type this way
673gets included in the message under the control of the string in the
674entry in @code{warning-levels}. The default value is @code{" (%s)"}.
675If you bind it to @code{""} then the warning type won't appear at
676all.
677@end defvar
678
679@node Warning Options
680@subsection Warning Options
681
682 These variables are used by users to control what happens
683when a Lisp program reports a warning.
684
685@defopt warning-minimum-level
686This user option specifies the minimum severity level that should be
687shown immediately to the user. The default is @code{:warning}, which
688means to immediately display all warnings except @code{:debug}
689warnings.
690@end defopt
691
692@defopt warning-minimum-log-level
693This user option specifies the minimum severity level that should be
694logged in the warnings buffer. The default is @code{:warning}, which
695means to log all warnings except @code{:debug} warnings.
696@end defopt
697
698@defopt warning-suppress-types
699This list specifies which warning types should not be displayed
700immediately for the user. Each element of the list should be a list
701of symbols. If its elements match the first elements in a warning
702type, then that warning is not displayed immediately.
703@end defopt
704
705@defopt warning-suppress-log-types
706This list specifies which warning types should not be logged in the
707warnings buffer. Each element of the list should be a list of
708symbols. If it matches the first few elements in a warning type, then
709that warning is not logged.
710@end defopt
00b3c1cd 711
22697dac
KH
712@node Invisible Text
713@section Invisible Text
714
715@cindex invisible text
716You can make characters @dfn{invisible}, so that they do not appear on
717the screen, with the @code{invisible} property. This can be either a
a9f0a989 718text property (@pxref{Text Properties}) or a property of an overlay
c2579664
RS
719(@pxref{Overlays}). Cursor motion also partly ignores these
720characters; if the command loop finds point within them, it moves
721point to the other side of them.
22697dac
KH
722
723In the simplest case, any non-@code{nil} @code{invisible} property makes
724a character invisible. This is the default case---if you don't alter
725the default value of @code{buffer-invisibility-spec}, this is how the
31b0520f
RS
726@code{invisible} property works. You should normally use @code{t}
727as the value of the @code{invisible} property if you don't plan
728to set @code{buffer-invisibility-spec} yourself.
22697dac
KH
729
730More generally, you can use the variable @code{buffer-invisibility-spec}
731to control which values of the @code{invisible} property make text
732invisible. This permits you to classify the text into different subsets
733in advance, by giving them different @code{invisible} values, and
734subsequently make various subsets visible or invisible by changing the
735value of @code{buffer-invisibility-spec}.
736
737Controlling visibility with @code{buffer-invisibility-spec} is
a40d4712
PR
738especially useful in a program to display the list of entries in a
739database. It permits the implementation of convenient filtering
740commands to view just a part of the entries in the database. Setting
741this variable is very fast, much faster than scanning all the text in
742the buffer looking for properties to change.
22697dac
KH
743
744@defvar buffer-invisibility-spec
745This variable specifies which kinds of @code{invisible} properties
658f691f
RS
746actually make a character invisible. Setting this variable makes it
747buffer-local.
22697dac
KH
748
749@table @asis
750@item @code{t}
751A character is invisible if its @code{invisible} property is
752non-@code{nil}. This is the default.
753
754@item a list
969fe9b5
RS
755Each element of the list specifies a criterion for invisibility; if a
756character's @code{invisible} property fits any one of these criteria,
757the character is invisible. The list can have two kinds of elements:
22697dac
KH
758
759@table @code
760@item @var{atom}
969fe9b5 761A character is invisible if its @code{invisible} property value
22697dac
KH
762is @var{atom} or if it is a list with @var{atom} as a member.
763
764@item (@var{atom} . t)
aa5f6fc2
RS
765A character is invisible if its @code{invisible} property value is
766@var{atom} or if it is a list with @var{atom} as a member. Moreover,
767a sequence of such characters displays as an ellipsis.
22697dac
KH
768@end table
769@end table
770@end defvar
771
f9f59935
RS
772 Two functions are specifically provided for adding elements to
773@code{buffer-invisibility-spec} and removing elements from it.
774
f9f59935 775@defun add-to-invisibility-spec element
31b0520f 776This function adds the element @var{element} to
332c6d4e
RS
777@code{buffer-invisibility-spec}. If @code{buffer-invisibility-spec}
778was @code{t}, it changes to a list, @code{(t)}, so that text whose
779@code{invisible} property is @code{t} remains invisible.
f9f59935
RS
780@end defun
781
f9f59935 782@defun remove-from-invisibility-spec element
812a2341 783This removes the element @var{element} from
31b0520f
RS
784@code{buffer-invisibility-spec}. This does nothing if @var{element}
785is not in the list.
f9f59935
RS
786@end defun
787
31b0520f
RS
788 A convention for use of @code{buffer-invisibility-spec} is that a
789major mode should use the mode's own name as an element of
790@code{buffer-invisibility-spec} and as the value of the
791@code{invisible} property:
f9f59935
RS
792
793@example
969fe9b5 794;; @r{If you want to display an ellipsis:}
177c0ea7 795(add-to-invisibility-spec '(my-symbol . t))
969fe9b5 796;; @r{If you don't want ellipsis:}
177c0ea7 797(add-to-invisibility-spec 'my-symbol)
f9f59935
RS
798
799(overlay-put (make-overlay beginning end)
800 'invisible 'my-symbol)
801
969fe9b5 802;; @r{When done with the overlays:}
f9f59935 803(remove-from-invisibility-spec '(my-symbol . t))
969fe9b5 804;; @r{Or respectively:}
f9f59935
RS
805(remove-from-invisibility-spec 'my-symbol)
806@end example
807
5e8ae792 808@vindex line-move-ignore-invisible
00b3c1cd 809 Ordinarily, functions that operate on text or move point do not care
5e8ae792
RS
810whether the text is invisible. The user-level line motion commands
811explicitly ignore invisible newlines if
a93cc2b5
RS
812@code{line-move-ignore-invisible} is non-@code{nil} (the default), but
813only because they are explicitly programmed to do so.
bfe721d1 814
7cd3712b 815 However, if a command ends with point inside or immediately before
00b3c1cd
RS
816invisible text, the main editing loop moves point further forward or
817further backward (in the same direction that the command already moved
818it) until that condition is no longer true. Thus, if the command
819moved point back into an invisible range, Emacs moves point back to
7cd3712b
RS
820the beginning of that range, and then back one more character. If the
821command moved point forward into an invisible range, Emacs moves point
822forward up to the first visible character that follows the invisible
823text.
00b3c1cd 824
f9f59935
RS
825 Incremental search can make invisible overlays visible temporarily
826and/or permanently when a match includes invisible text. To enable
827this, the overlay should have a non-@code{nil}
828@code{isearch-open-invisible} property. The property value should be a
829function to be called with the overlay as an argument. This function
830should make the overlay visible permanently; it is used when the match
831overlaps the overlay on exit from the search.
832
833 During the search, such overlays are made temporarily visible by
834temporarily modifying their invisible and intangible properties. If you
ebc6903b 835want this to be done differently for a certain overlay, give it an
f9f59935
RS
836@code{isearch-open-invisible-temporary} property which is a function.
837The function is called with two arguments: the first is the overlay, and
f21b06b7 838the second is @code{nil} to make the overlay visible, or @code{t} to
a9f0a989 839make it invisible again.
f9f59935 840
42b85554
RS
841@node Selective Display
842@section Selective Display
6d0d3a2f 843@c @cindex selective display Duplicates selective-display
42b85554 844
969fe9b5
RS
845 @dfn{Selective display} refers to a pair of related features for
846hiding certain lines on the screen.
42b85554 847
c2579664
RS
848 The first variant, explicit selective display, is designed for use
849in a Lisp program: it controls which lines are hidden by altering the
850text. This kind of hiding in some ways resembles the effect of the
851@code{invisible} property (@pxref{Invisible Text}), but the two
852features are different and do not work the same way.
22697dac
KH
853
854 In the second variant, the choice of lines to hide is made
bfe721d1 855automatically based on indentation. This variant is designed to be a
22697dac 856user-level feature.
42b85554
RS
857
858 The way you control explicit selective display is by replacing a
78608595 859newline (control-j) with a carriage return (control-m). The text that
c2579664
RS
860was formerly a line following that newline is now hidden. Strictly
861speaking, it is temporarily no longer a line at all, since only
862newlines can separate lines; it is now part of the previous line.
42b85554
RS
863
864 Selective display does not directly affect editing commands. For
c2579664
RS
865example, @kbd{C-f} (@code{forward-char}) moves point unhesitatingly
866into hidden text. However, the replacement of newline characters with
867carriage return characters affects some editing commands. For
868example, @code{next-line} skips hidden lines, since it searches only
869for newlines. Modes that use selective display can also define
870commands that take account of the newlines, or that control which
871parts of the text are hidden.
42b85554
RS
872
873 When you write a selectively displayed buffer into a file, all the
874control-m's are output as newlines. This means that when you next read
c2579664 875in the file, it looks OK, with nothing hidden. The selective display
42b85554
RS
876effect is seen only within Emacs.
877
878@defvar selective-display
879This buffer-local variable enables selective display. This means that
c2579664 880lines, or portions of lines, may be made hidden.
42b85554
RS
881
882@itemize @bullet
883@item
a40d4712 884If the value of @code{selective-display} is @code{t}, then the character
c2579664 885control-m marks the start of hidden text; the control-m, and the rest
a40d4712
PR
886of the line following it, are not displayed. This is explicit selective
887display.
42b85554
RS
888
889@item
890If the value of @code{selective-display} is a positive integer, then
891lines that start with more than that many columns of indentation are not
892displayed.
893@end itemize
894
c2579664 895When some portion of a buffer is hidden, the vertical movement
42b85554 896commands operate as if that portion did not exist, allowing a single
c2579664 897@code{next-line} command to skip any number of hidden lines.
42b85554 898However, character movement commands (such as @code{forward-char}) do
c2579664
RS
899not skip the hidden portion, and it is possible (if tricky) to insert
900or delete text in an hidden portion.
42b85554
RS
901
902In the examples below, we show the @emph{display appearance} of the
903buffer @code{foo}, which changes with the value of
904@code{selective-display}. The @emph{contents} of the buffer do not
905change.
906
907@example
908@group
909(setq selective-display nil)
910 @result{} nil
911
912---------- Buffer: foo ----------
9131 on this column
914 2on this column
915 3n this column
916 3n this column
917 2on this column
9181 on this column
919---------- Buffer: foo ----------
920@end group
921
922@group
923(setq selective-display 2)
924 @result{} 2
925
926---------- Buffer: foo ----------
9271 on this column
928 2on this column
929 2on this column
9301 on this column
931---------- Buffer: foo ----------
932@end group
933@end example
934@end defvar
935
936@defvar selective-display-ellipses
937If this buffer-local variable is non-@code{nil}, then Emacs displays
c2579664 938@samp{@dots{}} at the end of a line that is followed by hidden text.
42b85554
RS
939This example is a continuation of the previous one.
940
941@example
942@group
943(setq selective-display-ellipses t)
944 @result{} t
945
946---------- Buffer: foo ----------
9471 on this column
948 2on this column ...
949 2on this column
9501 on this column
951---------- Buffer: foo ----------
952@end group
953@end example
954
955You can use a display table to substitute other text for the ellipsis
956(@samp{@dots{}}). @xref{Display Tables}.
957@end defvar
958
42b85554
RS
959@node Temporary Displays
960@section Temporary Displays
961
969fe9b5
RS
962 Temporary displays are used by Lisp programs to put output into a
963buffer and then present it to the user for perusal rather than for
964editing. Many help commands use this feature.
42b85554
RS
965
966@defspec with-output-to-temp-buffer buffer-name forms@dots{}
b6954afd
RS
967This function executes @var{forms} while arranging to insert any output
968they print into the buffer named @var{buffer-name}, which is first
969created if necessary, and put into Help mode. Finally, the buffer is
970displayed in some window, but not selected.
971
d7cd58d7
LT
972If the @var{forms} do not change the major mode in the output buffer,
973so that it is still Help mode at the end of their execution, then
b6954afd 974@code{with-output-to-temp-buffer} makes this buffer read-only at the
d7cd58d7 975end, and also scans it for function and variable names to make them
68e74f25
LT
976into clickable cross-references. @xref{Docstring hyperlinks, , Tips
977for Documentation Strings}, in particular the item on hyperlinks in
978documentation strings, for more details.
42b85554
RS
979
980The string @var{buffer-name} specifies the temporary buffer, which
981need not already exist. The argument must be a string, not a buffer.
982The buffer is erased initially (with no questions asked), and it is
983marked as unmodified after @code{with-output-to-temp-buffer} exits.
984
985@code{with-output-to-temp-buffer} binds @code{standard-output} to the
986temporary buffer, then it evaluates the forms in @var{forms}. Output
987using the Lisp output functions within @var{forms} goes by default to
988that buffer (but screen display and messages in the echo area, although
989they are ``output'' in the general sense of the word, are not affected).
990@xref{Output Functions}.
991
b6954afd
RS
992Several hooks are available for customizing the behavior
993of this construct; they are listed below.
994
42b85554
RS
995The value of the last form in @var{forms} is returned.
996
997@example
998@group
999---------- Buffer: foo ----------
1000 This is the contents of foo.
1001---------- Buffer: foo ----------
1002@end group
1003
1004@group
1005(with-output-to-temp-buffer "foo"
1006 (print 20)
1007 (print standard-output))
1008@result{} #<buffer foo>
1009
1010---------- Buffer: foo ----------
101120
1012
1013#<buffer foo>
1014
1015---------- Buffer: foo ----------
1016@end group
1017@end example
1018@end defspec
1019
1020@defvar temp-buffer-show-function
78608595 1021If this variable is non-@code{nil}, @code{with-output-to-temp-buffer}
42b85554
RS
1022calls it as a function to do the job of displaying a help buffer. The
1023function gets one argument, which is the buffer it should display.
a9f0a989
RS
1024
1025It is a good idea for this function to run @code{temp-buffer-show-hook}
1026just as @code{with-output-to-temp-buffer} normally would, inside of
b6954afd 1027@code{save-selected-window} and with the chosen window and buffer
a9f0a989
RS
1028selected.
1029@end defvar
1030
b6954afd 1031@defvar temp-buffer-setup-hook
b6954afd 1032This normal hook is run by @code{with-output-to-temp-buffer} before
13a8e917
RS
1033evaluating @var{body}. When the hook runs, the temporary buffer is
1034current. This hook is normally set up with a function to put the
1035buffer in Help mode.
b6954afd
RS
1036@end defvar
1037
a9f0a989
RS
1038@defvar temp-buffer-show-hook
1039This normal hook is run by @code{with-output-to-temp-buffer} after
13a8e917
RS
1040displaying the temporary buffer. When the hook runs, the temporary buffer
1041is current, and the window it was displayed in is selected. This hook
1042is normally set up with a function to make the buffer read only, and
1043find function names and variable names in it, provided the major mode
1044is Help mode.
42b85554
RS
1045@end defvar
1046
1047@defun momentary-string-display string position &optional char message
1048This function momentarily displays @var{string} in the current buffer at
1049@var{position}. It has no effect on the undo list or on the buffer's
1050modification status.
1051
1052The momentary display remains until the next input event. If the next
1053input event is @var{char}, @code{momentary-string-display} ignores it
1054and returns. Otherwise, that event remains buffered for subsequent use
1055as input. Thus, typing @var{char} will simply remove the string from
1056the display, while typing (say) @kbd{C-f} will remove the string from
1057the display and later (presumably) move point forward. The argument
1058@var{char} is a space by default.
1059
1060The return value of @code{momentary-string-display} is not meaningful.
1061
bfe721d1 1062If the string @var{string} does not contain control characters, you can
969fe9b5
RS
1063do the same job in a more general way by creating (and then subsequently
1064deleting) an overlay with a @code{before-string} property.
1065@xref{Overlay Properties}.
bfe721d1 1066
42b85554
RS
1067If @var{message} is non-@code{nil}, it is displayed in the echo area
1068while @var{string} is displayed in the buffer. If it is @code{nil}, a
1069default message says to type @var{char} to continue.
1070
1071In this example, point is initially located at the beginning of the
1072second line:
1073
1074@example
1075@group
1076---------- Buffer: foo ----------
1077This is the contents of foo.
1078@point{}Second line.
1079---------- Buffer: foo ----------
1080@end group
1081
1082@group
1083(momentary-string-display
1084 "**** Important Message! ****"
1085 (point) ?\r
1086 "Type RET when done reading")
1087@result{} t
1088@end group
1089
1090@group
1091---------- Buffer: foo ----------
1092This is the contents of foo.
1093**** Important Message! ****Second line.
1094---------- Buffer: foo ----------
1095
1096---------- Echo Area ----------
1097Type RET when done reading
1098---------- Echo Area ----------
1099@end group
1100@end example
1101@end defun
1102
1103@node Overlays
1104@section Overlays
1105@cindex overlays
1106
1107You can use @dfn{overlays} to alter the appearance of a buffer's text on
bfe721d1
KH
1108the screen, for the sake of presentation features. An overlay is an
1109object that belongs to a particular buffer, and has a specified
1110beginning and end. It also has properties that you can examine and set;
1111these affect the display of the text within the overlay.
42b85554 1112
7fdc81ab 1113An overlay uses markers to record its beginning and end; thus,
812a2341
RS
1114editing the text of the buffer adjusts the beginning and end of each
1115overlay so that it stays with the text. When you create the overlay,
1116you can specify whether text inserted at the beginning should be
1117inside the overlay or outside, and likewise for the end of the overlay.
1118
42b85554 1119@menu
c2579664 1120* Managing Overlays:: Creating and moving overlays.
02c77ee9 1121* Overlay Properties:: How to read and set properties.
42b85554 1122 What properties do to the screen display.
eda77a0f 1123* Finding Overlays:: Searching for overlays.
42b85554
RS
1124@end menu
1125
c2579664
RS
1126@node Managing Overlays
1127@subsection Managing Overlays
1128
1129 This section describes the functions to create, delete and move
1130overlays, and to examine their contents. Overlay changes are not
1131recorded in the buffer's undo list, since the overlays are not
1132part of the buffer's contents.
1133
1134@defun overlayp object
1135This function returns @code{t} if @var{object} is an overlay.
1136@end defun
1137
1138@defun make-overlay start end &optional buffer front-advance rear-advance
1139This function creates and returns an overlay that belongs to
1140@var{buffer} and ranges from @var{start} to @var{end}. Both @var{start}
1141and @var{end} must specify buffer positions; they may be integers or
1142markers. If @var{buffer} is omitted, the overlay is created in the
1143current buffer.
1144
1145The arguments @var{front-advance} and @var{rear-advance} specify the
f209d77d
RS
1146marker insertion type for the start of the overlay and for the end of
1147the overlay, respectively. @xref{Marker Insertion Types}. If they
1148are both @code{nil}, the default, then the overlay extends to include
1149any text inserted at the beginning, but not text inserted at the end.
1150If @var{front-advance} is non-@code{nil}, text inserted at the
1151beginning of the overlay is excluded from the overlay. If
1152@var{rear-advance} is non-@code{nil}, text inserted at the end of the
1153overlay is included in the overlay.
c2579664
RS
1154@end defun
1155
1156@defun overlay-start overlay
1157This function returns the position at which @var{overlay} starts,
1158as an integer.
1159@end defun
1160
1161@defun overlay-end overlay
1162This function returns the position at which @var{overlay} ends,
1163as an integer.
1164@end defun
1165
1166@defun overlay-buffer overlay
1167This function returns the buffer that @var{overlay} belongs to. It
1168returns @code{nil} if @var{overlay} has been deleted.
1169@end defun
1170
1171@defun delete-overlay overlay
1172This function deletes @var{overlay}. The overlay continues to exist as
1173a Lisp object, and its property list is unchanged, but it ceases to be
1174attached to the buffer it belonged to, and ceases to have any effect on
1175display.
1176
1177A deleted overlay is not permanently disconnected. You can give it a
1178position in a buffer again by calling @code{move-overlay}.
1179@end defun
1180
1181@defun move-overlay overlay start end &optional buffer
1182This function moves @var{overlay} to @var{buffer}, and places its bounds
1183at @var{start} and @var{end}. Both arguments @var{start} and @var{end}
1184must specify buffer positions; they may be integers or markers.
1185
1186If @var{buffer} is omitted, @var{overlay} stays in the same buffer it
1187was already associated with; if @var{overlay} was deleted, it goes into
1188the current buffer.
1189
1190The return value is @var{overlay}.
1191
1192This is the only valid way to change the endpoints of an overlay. Do
1193not try modifying the markers in the overlay by hand, as that fails to
1194update other vital data structures and can cause some overlays to be
827b7ee7 1195``lost.''
a93cc2b5
RS
1196@end defun
1197
1198@defun remove-overlays &optional start end name value
1199This function removes all the overlays between @var{start} and
1200@var{end} whose property @var{name} has the value @var{value}. It can
1201move the endpoints of the overlays in the region, or split them.
1202
b2c8f143 1203If @var{name} is omitted or @code{nil}, it means to delete all overlays in
a93cc2b5 1204the specified region. If @var{start} and/or @var{end} are omitted or
b2c8f143 1205@code{nil}, that means the beginning and end of the buffer respectively.
a93cc2b5
RS
1206Therefore, @code{(remove-overlays)} removes all the overlays in the
1207current buffer.
c2579664
RS
1208@end defun
1209
1210 Here are some examples:
1211
1212@example
1213;; @r{Create an overlay.}
1214(setq foo (make-overlay 1 10))
1215 @result{} #<overlay from 1 to 10 in display.texi>
1216(overlay-start foo)
1217 @result{} 1
1218(overlay-end foo)
1219 @result{} 10
1220(overlay-buffer foo)
1221 @result{} #<buffer display.texi>
1222;; @r{Give it a property we can check later.}
1223(overlay-put foo 'happy t)
1224 @result{} t
1225;; @r{Verify the property is present.}
1226(overlay-get foo 'happy)
1227 @result{} t
1228;; @r{Move the overlay.}
1229(move-overlay foo 5 20)
1230 @result{} #<overlay from 5 to 20 in display.texi>
1231(overlay-start foo)
1232 @result{} 5
1233(overlay-end foo)
1234 @result{} 20
1235;; @r{Delete the overlay.}
1236(delete-overlay foo)
1237 @result{} nil
1238;; @r{Verify it is deleted.}
1239foo
1240 @result{} #<overlay in no buffer>
1241;; @r{A deleted overlay has no position.}
1242(overlay-start foo)
1243 @result{} nil
1244(overlay-end foo)
1245 @result{} nil
1246(overlay-buffer foo)
1247 @result{} nil
1248;; @r{Undelete the overlay.}
1249(move-overlay foo 1 20)
1250 @result{} #<overlay from 1 to 20 in display.texi>
1251;; @r{Verify the results.}
1252(overlay-start foo)
1253 @result{} 1
1254(overlay-end foo)
1255 @result{} 20
1256(overlay-buffer foo)
1257 @result{} #<buffer display.texi>
1258;; @r{Moving and deleting the overlay does not change its properties.}
1259(overlay-get foo 'happy)
1260 @result{} t
1261@end example
1262
7525356b
RS
1263 Emacs stores the overlays of each buffer in two lists, divided
1264around an arbitrary ``center position.'' One list extends backwards
1265through the buffer from that center position, and the other extends
1266forwards from that center position. The center position can be anywhere
1267in the buffer.
1268
1269@defun overlay-recenter pos
1270This function recenters the overlays of the current buffer around
1271position @var{pos}. That makes overlay lookup faster for positions
1272near @var{pos}, but slower for positions far away from @var{pos}.
1273@end defun
1274
1275 A loop that scans the buffer forwards, creating overlays, can run
1276faster if you do @code{(overlay-recenter (point-max))} first.
1277
42b85554
RS
1278@node Overlay Properties
1279@subsection Overlay Properties
1280
8241495d 1281 Overlay properties are like text properties in that the properties that
a9f0a989 1282alter how a character is displayed can come from either source. But in
c2579664
RS
1283most respects they are different. @xref{Text Properties}, for comparison.
1284
1285 Text properties are considered a part of the text; overlays and
1286their properties are specifically considered not to be part of the
1287text. Thus, copying text between various buffers and strings
1288preserves text properties, but does not try to preserve overlays.
1289Changing a buffer's text properties marks the buffer as modified,
1290while moving an overlay or changing its properties does not. Unlike
1291text property changes, overlay property changes are not recorded in
1292the buffer's undo list.
1293
1294 These functions read and set the properties of an overlay:
8241495d
RS
1295
1296@defun overlay-get overlay prop
1297This function returns the value of property @var{prop} recorded in
1298@var{overlay}, if any. If @var{overlay} does not record any value for
1299that property, but it does have a @code{category} property which is a
1300symbol, that symbol's @var{prop} property is used. Otherwise, the value
1301is @code{nil}.
1302@end defun
1303
1304@defun overlay-put overlay prop value
1305This function sets the value of property @var{prop} recorded in
1306@var{overlay} to @var{value}. It returns @var{value}.
00b3c1cd
RS
1307@end defun
1308
1309@defun overlay-properties overlay
1310This returns a copy of the property list of @var{overlay}.
8241495d
RS
1311@end defun
1312
1313 See also the function @code{get-char-property} which checks both
1314overlay properties and text properties for a given character.
1315@xref{Examining Properties}.
1316
1317 Many overlay properties have special meanings; here is a table
1318of them:
1319
42b85554
RS
1320@table @code
1321@item priority
1322@kindex priority @r{(overlay property)}
f1579f52
RS
1323This property's value (which should be a nonnegative integer number)
1324determines the priority of the overlay. The priority matters when two
1325or more overlays cover the same character and both specify the same
1326property; the one whose @code{priority} value is larger takes priority
1327over the other. For the @code{face} property, the higher priority
1328value does not completely replace the other; instead, its face
1329attributes override the face attributes of the lower priority
1330@code{face} property.
42b85554
RS
1331
1332Currently, all overlays take priority over text properties. Please
1333avoid using negative priority values, as we have not yet decided just
1334what they should mean.
1335
1336@item window
1337@kindex window @r{(overlay property)}
1338If the @code{window} property is non-@code{nil}, then the overlay
1339applies only on that window.
1340
22697dac
KH
1341@item category
1342@kindex category @r{(overlay property)}
1343If an overlay has a @code{category} property, we call it the
bfe721d1 1344@dfn{category} of the overlay. It should be a symbol. The properties
22697dac
KH
1345of the symbol serve as defaults for the properties of the overlay.
1346
42b85554
RS
1347@item face
1348@kindex face @r{(overlay property)}
f9f59935 1349This property controls the way text is displayed---for example, which
8241495d 1350font and which colors. @xref{Faces}, for more information.
f9f59935 1351
8241495d 1352In the simplest case, the value is a face name. It can also be a list;
a40d4712 1353then each element can be any of these possibilities:
8241495d
RS
1354
1355@itemize @bullet
1356@item
1357A face name (a symbol or string).
1358
1359@item
911a7105
RS
1360A property list of face attributes. This has the form (@var{keyword}
1361@var{value} @dots{}), where each @var{keyword} is a face attribute
1362name and @var{value} is a meaningful value for that attribute. With
1363this feature, you do not need to create a face each time you want to
1364specify a particular attribute for certain text. @xref{Face
1365Attributes}.
8241495d
RS
1366
1367@item
cd64b8f1 1368A cons cell, either of the form @code{(foreground-color . @var{color-name})} or
8241495d
RS
1369@code{(background-color . @var{color-name})}. These elements specify
1370just the foreground color or just the background color.
1371
342fd6cd
RS
1372@code{(foreground-color . @var{color-name})} has the same effect as
1373@code{(:foreground @var{color-name})}; likewise for the background.
8241495d 1374@end itemize
42b85554
RS
1375
1376@item mouse-face
1377@kindex mouse-face @r{(overlay property)}
1378This property is used instead of @code{face} when the mouse is within
f9f59935 1379the range of the overlay.
42b85554 1380
8241495d
RS
1381@item display
1382@kindex display @r{(overlay property)}
1383This property activates various features that change the
1384way text is displayed. For example, it can make text appear taller
24eb6c0e 1385or shorter, higher or lower, wider or narrower, or replaced with an image.
8241495d
RS
1386@xref{Display Property}.
1387
1388@item help-echo
d94f2aab 1389@kindex help-echo @r{(overlay property)}
e3b9fc91
DL
1390If an overlay has a @code{help-echo} property, then when you move the
1391mouse onto the text in the overlay, Emacs displays a help string in the
1392echo area, or in the tooltip window. For details see @ref{Text
2e46cd09 1393help-echo}.
8241495d 1394
42b85554
RS
1395@item modification-hooks
1396@kindex modification-hooks @r{(overlay property)}
1397This property's value is a list of functions to be called if any
1398character within the overlay is changed or if text is inserted strictly
22697dac
KH
1399within the overlay.
1400
1401The hook functions are called both before and after each change.
1402If the functions save the information they receive, and compare notes
1403between calls, they can determine exactly what change has been made
1404in the buffer text.
1405
1406When called before a change, each function receives four arguments: the
1407overlay, @code{nil}, and the beginning and end of the text range to be
a890e1b0 1408modified.
42b85554 1409
22697dac
KH
1410When called after a change, each function receives five arguments: the
1411overlay, @code{t}, the beginning and end of the text range just
1412modified, and the length of the pre-change text replaced by that range.
1413(For an insertion, the pre-change length is zero; for a deletion, that
1414length is the number of characters deleted, and the post-change
bfe721d1 1415beginning and end are equal.)
22697dac 1416
74502fa0
RS
1417If these functions modify the buffer, they should bind
1418@code{inhibit-modification-hooks} to @code{t} around doing so, to
1419avoid confusing the internal mechanism that calls these hooks.
1420
42b85554
RS
1421@item insert-in-front-hooks
1422@kindex insert-in-front-hooks @r{(overlay property)}
22697dac
KH
1423This property's value is a list of functions to be called before and
1424after inserting text right at the beginning of the overlay. The calling
1425conventions are the same as for the @code{modification-hooks} functions.
42b85554
RS
1426
1427@item insert-behind-hooks
1428@kindex insert-behind-hooks @r{(overlay property)}
22697dac
KH
1429This property's value is a list of functions to be called before and
1430after inserting text right at the end of the overlay. The calling
1431conventions are the same as for the @code{modification-hooks} functions.
42b85554
RS
1432
1433@item invisible
1434@kindex invisible @r{(overlay property)}
22697dac
KH
1435The @code{invisible} property can make the text in the overlay
1436invisible, which means that it does not appear on the screen.
1437@xref{Invisible Text}, for details.
1438
1439@item intangible
1440@kindex intangible @r{(overlay property)}
1441The @code{intangible} property on an overlay works just like the
bfe721d1 1442@code{intangible} text property. @xref{Special Properties}, for details.
f9f59935
RS
1443
1444@item isearch-open-invisible
a9f0a989
RS
1445This property tells incremental search how to make an invisible overlay
1446visible, permanently, if the final match overlaps it. @xref{Invisible
f9f59935 1447Text}.
42b85554 1448
a9f0a989
RS
1449@item isearch-open-invisible-temporary
1450This property tells incremental search how to make an invisible overlay
1451visible, temporarily, during the search. @xref{Invisible Text}.
1452
42b85554
RS
1453@item before-string
1454@kindex before-string @r{(overlay property)}
1455This property's value is a string to add to the display at the beginning
1456of the overlay. The string does not appear in the buffer in any
a40d4712 1457sense---only on the screen.
42b85554
RS
1458
1459@item after-string
1460@kindex after-string @r{(overlay property)}
1461This property's value is a string to add to the display at the end of
1462the overlay. The string does not appear in the buffer in any
a40d4712 1463sense---only on the screen.
22697dac
KH
1464
1465@item evaporate
1466@kindex evaporate @r{(overlay property)}
1467If this property is non-@code{nil}, the overlay is deleted automatically
11cd6064
RS
1468if it becomes empty (i.e., if its length becomes zero). If you give
1469an empty overlay a non-@code{nil} @code{evaporate} property, that deletes
1470it immediately.
d2609065 1471
ce75fd23 1472@item local-map
969fe9b5 1473@cindex keymap of character (and overlays)
ce75fd23 1474@kindex local-map @r{(overlay property)}
d2609065
RS
1475If this property is non-@code{nil}, it specifies a keymap for a portion
1476of the text. The property's value replaces the buffer's local map, when
1477the character after point is within the overlay. @xref{Active Keymaps}.
62fb5c66
DL
1478
1479@item keymap
1480@kindex keymap @r{(overlay property)}
1481The @code{keymap} property is similar to @code{local-map} but overrides the
1482buffer's local map (and the map specified by the @code{local-map}
1483property) rather than replacing it.
42b85554
RS
1484@end table
1485
2468d0c0
DL
1486@node Finding Overlays
1487@subsection Searching for Overlays
1488
42b85554 1489@defun overlays-at pos
2468d0c0
DL
1490This function returns a list of all the overlays that cover the
1491character at position @var{pos} in the current buffer. The list is in
1492no particular order. An overlay contains position @var{pos} if it
1493begins at or before @var{pos}, and ends after @var{pos}.
1494
1495To illustrate usage, here is a Lisp function that returns a list of the
1496overlays that specify property @var{prop} for the character at point:
1497
1498@smallexample
1499(defun find-overlays-specifying (prop)
1500 (let ((overlays (overlays-at (point)))
1501 found)
1502 (while overlays
86b032fa 1503 (let ((overlay (car overlays)))
2468d0c0
DL
1504 (if (overlay-get overlay prop)
1505 (setq found (cons overlay found))))
1506 (setq overlays (cdr overlays)))
1507 found))
1508@end smallexample
42b85554
RS
1509@end defun
1510
f9f59935
RS
1511@defun overlays-in beg end
1512This function returns a list of the overlays that overlap the region
1513@var{beg} through @var{end}. ``Overlap'' means that at least one
1514character is contained within the overlay and also contained within the
1515specified region; however, empty overlays are included in the result if
2468d0c0 1516they are located at @var{beg}, or strictly between @var{beg} and @var{end}.
f9f59935
RS
1517@end defun
1518
42b85554
RS
1519@defun next-overlay-change pos
1520This function returns the buffer position of the next beginning or end
c2579664
RS
1521of an overlay, after @var{pos}. If there is none, it returns
1522@code{(point-max)}.
42b85554
RS
1523@end defun
1524
22697dac
KH
1525@defun previous-overlay-change pos
1526This function returns the buffer position of the previous beginning or
c2579664
RS
1527end of an overlay, before @var{pos}. If there is none, it returns
1528@code{(point-min)}.
22697dac
KH
1529@end defun
1530
3de3e773
RS
1531 As an example, here's a simplified (and inefficient) version of the
1532primitive function @code{next-single-char-property-change}
1533(@pxref{Property Search}). It searches forward from position
1534@var{pos} for the next position where the value of a given property
1535@code{prop}, as obtained from either overlays or text properties,
1536changes.
2468d0c0
DL
1537
1538@smallexample
3de3e773 1539(defun next-single-char-property-change (position prop)
2468d0c0 1540 (save-excursion
3de3e773
RS
1541 (goto-char position)
1542 (let ((propval (get-char-property (point) prop)))
1543 (while (and (not (eobp))
1544 (eq (get-char-property (point) prop) propval))
1545 (goto-char (min (next-overlay-change (point))
1546 (next-single-property-change (point) prop)))))
2468d0c0
DL
1547 (point)))
1548@end smallexample
1549
f9f59935
RS
1550@node Width
1551@section Width
1552
1553Since not all characters have the same width, these functions let you
969fe9b5
RS
1554check the width of a character. @xref{Primitive Indent}, and
1555@ref{Screen Lines}, for related functions.
f9f59935 1556
f9f59935
RS
1557@defun char-width char
1558This function returns the width in columns of the character @var{char},
1559if it were displayed in the current buffer and the selected window.
1560@end defun
1561
f9f59935
RS
1562@defun string-width string
1563This function returns the width in columns of the string @var{string},
1564if it were displayed in the current buffer and the selected window.
1565@end defun
1566
c2579664 1567@defun truncate-string-to-width string width &optional start-column padding ellipsis
f9f59935
RS
1568This function returns the part of @var{string} that fits within
1569@var{width} columns, as a new string.
1570
1571If @var{string} does not reach @var{width}, then the result ends where
1572@var{string} ends. If one multi-column character in @var{string}
1573extends across the column @var{width}, that character is not included in
1574the result. Thus, the result can fall short of @var{width} but cannot
1575go beyond it.
1576
1577The optional argument @var{start-column} specifies the starting column.
1578If this is non-@code{nil}, then the first @var{start-column} columns of
1579the string are omitted from the value. If one multi-column character in
1580@var{string} extends across the column @var{start-column}, that
1581character is not included.
1582
1583The optional argument @var{padding}, if non-@code{nil}, is a padding
1584character added at the beginning and end of the result string, to extend
1585it to exactly @var{width} columns. The padding character is used at the
1586end of the result if it falls short of @var{width}. It is also used at
1587the beginning of the result if one multi-column character in
1588@var{string} extends across the column @var{start-column}.
1589
c2579664
RS
1590If @var{ellipsis} is non-@code{nil}, it should be a string which will
1591replace the end of @var{str} (including any padding) if it extends
1592beyond @var{end-column}, unless the display width of @var{str} is
1593equal to or less than the display width of @var{ellipsis}. If
1594@var{ellipsis} is non-@code{nil} and not a string, it stands for
1595@code{"..."}.
1596
f9f59935
RS
1597@example
1598(truncate-string-to-width "\tab\t" 12 4)
1599 @result{} "ab"
6bc3abcb 1600(truncate-string-to-width "\tab\t" 12 4 ?\s)
f9f59935
RS
1601 @result{} " ab "
1602@end example
1603@end defun
1604
93449dd1
KS
1605@node Line Height
1606@section Line Height
1607@cindex line height
1608
1609 The total height of each display line consists of the height of the
6ac209a3
RS
1610contents of the line, plus optional additional vertical line spacing
1611above or below the display line.
93449dd1 1612
6ac209a3
RS
1613 The height of the line contents is the maximum height of any
1614character or image on that display line, including the final newline
1615if there is one. (A display line that is continued doesn't include a
1616final newline.) That is the default line height, if you do nothing to
1617specify a greater height. (In the most common case, this equals the
1618height of the default frame font.)
93449dd1 1619
6ac209a3
RS
1620 There are several ways to explicitly specify a larger line height,
1621either by specifying an absolute height for the display line, or by
1622specifying vertical space. However, no matter what you specify, the
1623actual line height can never be less than the default.
93449dd1
KS
1624
1625@kindex line-height @r{(text property)}
9eb8959a
RS
1626 A newline can have a @code{line-height} text or overlay property
1627that controls the total height of the display line ending in that
1225f637
KS
1628newline.
1629
6ac209a3
RS
1630 If the property value is @code{t}, the newline character has no
1631effect on the displayed height of the line---the visible contents
1632alone determine the height. This is useful for tiling small images
1633(or image slices) without adding blank areas between the images.
1225f637 1634
6ac209a3
RS
1635 If the property value is a list of the form @code{(@var{height}
1636@var{total})}, that adds extra space @emph{below} the display line.
1637First Emacs uses @var{height} as a height spec to control extra space
1638@emph{above} the line; then it adds enough space @emph{below} the line
1639to bring the total line height up to @var{total}. In this case, the
1640other ways to specify the line spacing are ignored.
93449dd1 1641
6ac209a3
RS
1642 Any other kind of property value is a height spec, which translates
1643into a number---the specified line height. There are several ways to
1644write a height spec; here's how each of them translates into a number:
93449dd1 1645
9eb8959a
RS
1646@table @code
1647@item @var{integer}
af046edf 1648If the height spec is a positive integer, the height value is that integer.
9eb8959a 1649@item @var{float}
af046edf
RS
1650If the height spec is a float, @var{float}, the numeric height value
1651is @var{float} times the frame's default line height.
1225f637 1652@item (@var{face} . @var{ratio})
af046edf
RS
1653If the height spec is a cons of the format shown, the numeric height
1654is @var{ratio} times the height of face @var{face}. @var{ratio} can
1225f637
KS
1655be any type of number, or @code{nil} which means a ratio of 1.
1656If @var{face} is @code{t}, it refers to the current face.
b2c8f143 1657@item (nil . @var{ratio})
1225f637
KS
1658If the height spec is a cons of the format shown, the numeric height
1659is @var{ratio} times the height of the contents of the line.
9eb8959a 1660@end table
93449dd1 1661
6ac209a3
RS
1662 Thus, any valid height spec determines the height in pixels, one way
1663or another. If the line contents' height is less than that, Emacs
1664adds extra vertical space above the line to achieve the specified
1665total height.
93449dd1 1666
b2c8f143 1667 If you don't specify the @code{line-height} property, the line's
9eb8959a 1668height consists of the contents' height plus the line spacing.
af046edf
RS
1669There are several ways to specify the line spacing for different
1670parts of Emacs text.
93449dd1
KS
1671
1672@vindex default-line-spacing
9eb8959a 1673 You can specify the line spacing for all lines in a frame with the
2adbd9b6 1674@code{line-spacing} frame parameter (@pxref{Layout Parameters}).
9eb8959a 1675However, if the variable @code{default-line-spacing} is
93449dd1
KS
1676non-@code{nil}, it overrides the frame's @code{line-spacing}
1677parameter. An integer value specifies the number of pixels put below
ab7c5459 1678lines on graphical displays. A floating point number specifies the
9eb8959a 1679spacing relative to the frame's default line height.
93449dd1
KS
1680
1681@vindex line-spacing
9eb8959a
RS
1682 You can specify the line spacing for all lines in a buffer via the
1683buffer-local @code{line-spacing} variable. An integer value specifies
ab7c5459 1684the number of pixels put below lines on graphical displays. A floating
9eb8959a
RS
1685point number specifies the spacing relative to the default frame line
1686height. This overrides line spacings specified for the frame.
93449dd1
KS
1687
1688@kindex line-spacing @r{(text property)}
1689 Finally, a newline can have a @code{line-spacing} text or overlay
6ac209a3
RS
1690property that overrides the default frame line spacing and the buffer
1691local @code{line-spacing} variable, for the display line ending in
1692that newline.
9eb8959a 1693
af046edf
RS
1694 One way or another, these mechanisms specify a Lisp value for the
1695spacing of each line. The value is a height spec, and it translates
1696into a Lisp value as described above. However, in this case the
1697numeric height value specifies the line spacing, rather than the line
1698height.
1699
42b85554
RS
1700@node Faces
1701@section Faces
b9bc6c81 1702@cindex faces
42b85554 1703
8241495d
RS
1704 A @dfn{face} is a named collection of graphical attributes: font
1705family, foreground color, background color, optional underlining, and
1706many others. Faces are used in Emacs to control the style of display of
9ea1d6dc
JL
1707particular parts of the text or the frame. @xref{Standard Faces,,,
1708emacs, The GNU Emacs Manual}, for the list of faces Emacs normally
1709comes with.
42b85554
RS
1710
1711@cindex face id
969fe9b5 1712Each face has its own @dfn{face number}, which distinguishes faces at
8241495d 1713low levels within Emacs. However, for most purposes, you refer to
24ee714d 1714faces in Lisp programs by the symbols that name them.
42b85554 1715
22697dac 1716@defun facep object
c3bf675d
LT
1717This function returns @code{t} if @var{object} is a face name string
1718or symbol (or if it is a vector of the kind used internally to record
1719face data). It returns @code{nil} otherwise.
22697dac
KH
1720@end defun
1721
42b85554
RS
1722Each face name is meaningful for all frames, and by default it has the
1723same meaning in all frames. But you can arrange to give a particular
1724face name a special meaning in one frame if you wish.
1725
1726@menu
969fe9b5 1727* Defining Faces:: How to define a face with @code{defface}.
8241495d 1728* Face Attributes:: What is in a face?
02c77ee9 1729* Attribute Functions:: Functions to examine and set face attributes.
6057489e 1730* Displaying Faces:: How Emacs combines the faces specified for a character.
8241495d 1731* Font Selection:: Finding the best available font for a face.
02c77ee9 1732* Face Functions:: How to define and examine faces.
8241495d
RS
1733* Auto Faces:: Hook for automatic face assignment.
1734* Font Lookup:: Looking up the names of available fonts
1735 and information about them.
1736* Fontsets:: A fontset is a collection of fonts
1737 that handle a range of character sets.
42b85554
RS
1738@end menu
1739
969fe9b5 1740@node Defining Faces
a9f0a989 1741@subsection Defining Faces
969fe9b5
RS
1742
1743 The way to define a new face is with @code{defface}. This creates a
1744kind of customization item (@pxref{Customization}) which the user can
1745customize using the Customization buffer (@pxref{Easy Customization,,,
c3bf675d 1746emacs, The GNU Emacs Manual}).
969fe9b5 1747
84ff884e 1748@defmac defface face spec doc [keyword value]@dots{}
b74f585b
RS
1749This declares @var{face} as a customizable face that defaults
1750according to @var{spec}. You should not quote the symbol @var{face},
1751and it should not end in @samp{-face} (that would be redundant). The
a40d4712 1752argument @var{doc} specifies the face documentation. The keywords you
b74f585b
RS
1753can use in @code{defface} are the same as in @code{defgroup} and
1754@code{defcustom} (@pxref{Common Keywords}).
969fe9b5
RS
1755
1756When @code{defface} executes, it defines the face according to
a9f0a989 1757@var{spec}, then uses any customizations that were read from the
a40d4712 1758init file (@pxref{Init File}) to override that specification.
969fe9b5
RS
1759
1760The purpose of @var{spec} is to specify how the face should appear on
2c705f25
RS
1761different kinds of terminals. It should be an alist whose elements
1762have the form @code{(@var{display} @var{atts})}. Each element's
1763@sc{car}, @var{display}, specifies a class of terminals. (The first
7fdc81ab 1764element, if its @sc{car} is @code{default}, is special---it specifies
2c705f25
RS
1765defaults for the remaining elements). The element's @sc{cadr},
1766@var{atts}, is a list of face attributes and their values; it
1767specifies what the face should look like on that kind of terminal.
1768The possible attributes are defined in the value of
1769@code{custom-face-attributes}.
969fe9b5
RS
1770
1771The @var{display} part of an element of @var{spec} determines which
2c705f25
RS
1772frames the element matches. If more than one element of @var{spec}
1773matches a given frame, the first element that matches is the one used
1774for that frame. There are three possibilities for @var{display}:
969fe9b5
RS
1775
1776@table @asis
2c705f25
RS
1777@item @code{default}
1778This element of @var{spec} doesn't match any frames; instead, it
1779specifies defaults that apply to all frames. This kind of element, if
1780used, must be the first element of @var{spec}. Each of the following
1781elements can override any or all of these defaults.
1782
969fe9b5
RS
1783@item @code{t}
1784This element of @var{spec} matches all frames. Therefore, any
1785subsequent elements of @var{spec} are never used. Normally
1786@code{t} is used in the last (or only) element of @var{spec}.
1787
a9f0a989 1788@item a list
1911e6e5 1789If @var{display} is a list, each element should have the form
969fe9b5
RS
1790@code{(@var{characteristic} @var{value}@dots{})}. Here
1791@var{characteristic} specifies a way of classifying frames, and the
1792@var{value}s are possible classifications which @var{display} should
1793apply to. Here are the possible values of @var{characteristic}:
1794
1795@table @code
1796@item type
9a6b7dcd
MB
1797The kind of window system the frame uses---either @code{graphic} (any
1798graphics-capable display), @code{x}, @code{pc} (for the MS-DOS console),
e1d01705
EZ
1799@code{w32} (for MS Windows 9X/NT/2K/XP), @code{mac} (for the Macintosh
1800display), or @code{tty} (a non-graphics-capable display).
1801@xref{Window Systems, window-system}.
969fe9b5
RS
1802
1803@item class
1804What kinds of colors the frame supports---either @code{color},
1805@code{grayscale}, or @code{mono}.
1806
1807@item background
1911e6e5 1808The kind of background---either @code{light} or @code{dark}.
82c3d852 1809
9fe84db6 1810@item min-colors
2c705f25
RS
1811An integer that represents the minimum number of colors the frame
1812should support. This matches a frame if its
1813@code{display-color-cells} value is at least the specified integer.
9fe84db6 1814
82c3d852 1815@item supports
95b5b933
MB
1816Whether or not the frame can display the face attributes given in
1817@var{value}@dots{} (@pxref{Face Attributes}). See the documentation
1818for the function @code{display-supports-face-attributes-p} for more
1819information on exactly how this testing is done. @xref{Display Face
1820Attribute Testing}.
969fe9b5
RS
1821@end table
1822
1823If an element of @var{display} specifies more than one @var{value} for a
1824given @var{characteristic}, any of those values is acceptable. If
1825@var{display} has more than one element, each element should specify a
1826different @var{characteristic}; then @emph{each} characteristic of the
1827frame must match one of the @var{value}s specified for it in
1828@var{display}.
1829@end table
1830@end defmac
1831
a40d4712 1832 Here's how the standard face @code{region} is defined:
969fe9b5
RS
1833
1834@example
a40d4712 1835@group
7e9fc7eb 1836(defface region
9fe84db6
EZ
1837 '((((class color) (min-colors 88) (background dark))
1838 :background "blue3")
a40d4712 1839@end group
9fe84db6
EZ
1840 (((class color) (min-colors 88) (background light))
1841 :background "lightgoldenrod2")
1842 (((class color) (min-colors 16) (background dark))
1843 :background "blue3")
1844 (((class color) (min-colors 16) (background light))
1845 :background "lightgoldenrod2")
1846 (((class color) (min-colors 8))
1847 :background "blue" :foreground "white")
a40d4712 1848 (((type tty) (class mono))
9fe84db6
EZ
1849 :inverse-video t)
1850 (t :background "gray"))
a40d4712
PR
1851@group
1852 "Basic face for highlighting the region."
1853 :group 'basic-faces)
1854@end group
969fe9b5
RS
1855@end example
1856
1857 Internally, @code{defface} uses the symbol property
1858@code{face-defface-spec} to record the face attributes specified in
1859@code{defface}, @code{saved-face} for the attributes saved by the user
188e0f50
JL
1860with the customization buffer, @code{customized-face} for the
1861attributes customized by the user for the current session, but not
1862saved, and @code{face-documentation} for the documentation string.
969fe9b5 1863
1911e6e5
RS
1864@defopt frame-background-mode
1865This option, if non-@code{nil}, specifies the background type to use for
1866interpreting face definitions. If it is @code{dark}, then Emacs treats
1867all frames as if they had a dark background, regardless of their actual
1868background colors. If it is @code{light}, then Emacs treats all frames
1869as if they had a light background.
1870@end defopt
1871
8241495d
RS
1872@node Face Attributes
1873@subsection Face Attributes
1874@cindex face attributes
42b85554 1875
8241495d
RS
1876 The effect of using a face is determined by a fixed set of @dfn{face
1877attributes}. This table lists all the face attributes, and what they
e3b4d849
RS
1878mean. You can specify more than one face for a given piece of text;
1879Emacs merges the attributes of all the faces to determine how to
1880display the text. @xref{Displaying Faces}.
42b85554 1881
911a7105
RS
1882 Any attribute in a face can have the value @code{unspecified}. This
1883means the face doesn't specify that attribute. In face merging, when
1884the first face fails to specify a particular attribute, that means the
1885next face gets a chance. However, the @code{default} face must
1886specify all attributes.
42b85554 1887
a40d4712
PR
1888 Some of these font attributes are meaningful only on certain kinds of
1889displays---if your display cannot handle a certain attribute, the
1890attribute is ignored. (The attributes @code{:family}, @code{:width},
1891@code{:height}, @code{:weight}, and @code{:slant} correspond to parts of
1892an X Logical Font Descriptor.)
42b85554 1893
8241495d
RS
1894@table @code
1895@item :family
1896Font family name, or fontset name (@pxref{Fontsets}). If you specify a
a40d4712
PR
1897font family name, the wild-card characters @samp{*} and @samp{?} are
1898allowed.
8241495d
RS
1899
1900@item :width
1901Relative proportionate width, also known as the character set width or
1902set width. This should be one of the symbols @code{ultra-condensed},
1903@code{extra-condensed}, @code{condensed}, @code{semi-condensed},
1904@code{normal}, @code{semi-expanded}, @code{expanded},
1905@code{extra-expanded}, or @code{ultra-expanded}.
177c0ea7 1906
8241495d 1907@item :height
96f71a49
MB
1908Either the font height, an integer in units of 1/10 point, a floating
1909point number specifying the amount by which to scale the height of any
1910underlying face, or a function, which is called with the old height
1911(from the underlying face), and should return the new height.
177c0ea7 1912
8241495d
RS
1913@item :weight
1914Font weight---a symbol from this series (from most dense to most faint):
1915@code{ultra-bold}, @code{extra-bold}, @code{bold}, @code{semi-bold},
1916@code{normal}, @code{semi-light}, @code{light}, @code{extra-light},
a40d4712 1917or @code{ultra-light}.
66f54605 1918
a40d4712
PR
1919On a text-only terminal, any weight greater than normal is displayed as
1920extra bright, and any weight less than normal is displayed as
1921half-bright (provided the terminal supports the feature).
1922
8241495d
RS
1923@item :slant
1924Font slant---one of the symbols @code{italic}, @code{oblique}, @code{normal},
1925@code{reverse-italic}, or @code{reverse-oblique}.
66f54605
PR
1926
1927On a text-only terminal, slanted text is displayed as half-bright, if
1928the terminal supports the feature.
1929
8241495d 1930@item :foreground
6057489e
RS
1931Foreground color, a string. The value can be a system-defined color
1932name, or a hexadecimal color specification of the form
1933@samp{#@var{rr}@var{gg}@var{bb}}. (@samp{#000000} is black,
1934@samp{#ff0000} is red, @samp{#00ff00} is green, @samp{#0000ff} is
1935blue, and @samp{#ffffff} is white.)
177c0ea7 1936
8241495d 1937@item :background
6057489e 1938Background color, a string, like the foreground color.
8241495d
RS
1939
1940@item :inverse-video
1941Whether or not characters should be displayed in inverse video. The
1942value should be @code{t} (yes) or @code{nil} (no).
1943
1944@item :stipple
a40d4712 1945The background stipple, a bitmap.
8241495d 1946
a40d4712
PR
1947The value can be a string; that should be the name of a file containing
1948external-format X bitmap data. The file is found in the directories
1949listed in the variable @code{x-bitmap-file-path}.
8241495d 1950
a3fbafe2
RS
1951Alternatively, the value can specify the bitmap directly, with a list
1952of the form @code{(@var{width} @var{height} @var{data})}. Here,
1953@var{width} and @var{height} specify the size in pixels, and
1954@var{data} is a string containing the raw bits of the bitmap, row by
1955row. Each row occupies @math{(@var{width} + 7) / 8} consecutive bytes
1956in the string (which should be a unibyte string for best results).
1957This means that each row always occupies at least one whole byte.
8241495d
RS
1958
1959If the value is @code{nil}, that means use no stipple pattern.
1960
1961Normally you do not need to set the stipple attribute, because it is
1962used automatically to handle certain shades of gray.
1963
1964@item :underline
1965Whether or not characters should be underlined, and in what color. If
1966the value is @code{t}, underlining uses the foreground color of the
1967face. If the value is a string, underlining uses that color. The
1968value @code{nil} means do not underline.
1969
1970@item :overline
1971Whether or not characters should be overlined, and in what color.
1972The value is used like that of @code{:underline}.
1973
1974@item :strike-through
1975Whether or not characters should be strike-through, and in what
1976color. The value is used like that of @code{:underline}.
1977
96f71a49
MB
1978@item :inherit
1979The name of a face from which to inherit attributes, or a list of face
1980names. Attributes from inherited faces are merged into the face like an
1981underlying face would be, with higher priority than underlying faces.
e58b3620
RS
1982If a list of faces is used, attributes from faces earlier in the list
1983override those from later faces.
96f71a49 1984
8241495d
RS
1985@item :box
1986Whether or not a box should be drawn around characters, its color, the
a40d4712 1987width of the box lines, and 3D appearance.
8241495d 1988@end table
42b85554 1989
8241495d
RS
1990 Here are the possible values of the @code{:box} attribute, and what
1991they mean:
42b85554 1992
8241495d
RS
1993@table @asis
1994@item @code{nil}
1995Don't draw a box.
bfe721d1 1996
8241495d
RS
1997@item @code{t}
1998Draw a box with lines of width 1, in the foreground color.
42b85554 1999
8241495d
RS
2000@item @var{color}
2001Draw a box with lines of width 1, in color @var{color}.
42b85554 2002
8241495d
RS
2003@item @code{(:line-width @var{width} :color @var{color} :style @var{style})}
2004This way you can explicitly specify all aspects of the box. The value
2005@var{width} specifies the width of the lines to draw; it defaults to 1.
42b85554 2006
8241495d
RS
2007The value @var{color} specifies the color to draw with. The default is
2008the foreground color of the face for simple boxes, and the background
2009color of the face for 3D boxes.
42b85554 2010
8241495d
RS
2011The value @var{style} specifies whether to draw a 3D box. If it is
2012@code{released-button}, the box looks like a 3D button that is not being
2013pressed. If it is @code{pressed-button}, the box looks like a 3D button
2014that is being pressed. If it is @code{nil} or omitted, a plain 2D box
2015is used.
2016@end table
42b85554 2017
911a7105
RS
2018 In older versions of Emacs, before @code{:family}, @code{:height},
2019@code{:width}, @code{:weight}, and @code{:slant} existed, these
2020attributes were used to specify the type face. They are now
2021semi-obsolete, but they still work:
42b85554 2022
8241495d
RS
2023@table @code
2024@item :font
a40d4712 2025This attribute specifies the font name.
42b85554 2026
8241495d
RS
2027@item :bold
2028A non-@code{nil} value specifies a bold font.
42b85554 2029
8241495d
RS
2030@item :italic
2031A non-@code{nil} value specifies an italic font.
2032@end table
42b85554 2033
827b7ee7 2034 For compatibility, you can still set these ``attributes,'' even
911a7105 2035though they are not real face attributes. Here is what that does:
42b85554 2036
8241495d
RS
2037@table @code
2038@item :font
a40d4712
PR
2039You can specify an X font name as the ``value'' of this ``attribute'';
2040that sets the @code{:family}, @code{:width}, @code{:height},
2041@code{:weight}, and @code{:slant} attributes according to the font name.
8241495d
RS
2042
2043If the value is a pattern with wildcards, the first font that matches
2044the pattern is used to set these attributes.
2045
2046@item :bold
2047A non-@code{nil} makes the face bold; @code{nil} makes it normal.
2048This actually works by setting the @code{:weight} attribute.
2049
2050@item :italic
2051A non-@code{nil} makes the face italic; @code{nil} makes it normal.
2052This actually works by setting the @code{:slant} attribute.
2053@end table
42b85554 2054
8241495d
RS
2055@defvar x-bitmap-file-path
2056This variable specifies a list of directories for searching
2057for bitmap files, for the @code{:stipple} attribute.
2058@end defvar
2059
ea7220f8 2060@defun bitmap-spec-p object
2252bdcf
RS
2061This returns @code{t} if @var{object} is a valid bitmap specification,
2062suitable for use with @code{:stipple} (see above). It returns
2063@code{nil} otherwise.
a40d4712
PR
2064@end defun
2065
8241495d
RS
2066@node Attribute Functions
2067@subsection Face Attribute Functions
42b85554 2068
47f6532e
RS
2069 This section describes the functions for accessing and modifying the
2070attributes of an existing face.
42b85554 2071
8241495d 2072@defun set-face-attribute face frame &rest arguments
e3b4d849
RS
2073This function sets one or more attributes of face @var{face} for frame
2074@var{frame}. The attributes you specify this way override whatever
2075the @code{defface} says.
8241495d
RS
2076
2077The extra arguments @var{arguments} specify the attributes to set, and
2078the values for them. They should consist of alternating attribute names
a40d4712 2079(such as @code{:family} or @code{:underline}) and corresponding values.
8241495d
RS
2080Thus,
2081
2082@example
2083(set-face-attribute 'foo nil
dbcff00c
RS
2084 :width 'extended
2085 :weight 'bold
8241495d
RS
2086 :underline "red")
2087@end example
2088
2089@noindent
2090sets the attributes @code{:width}, @code{:weight} and @code{:underline}
2091to the corresponding values.
e3b4d849 2092
47f6532e
RS
2093If @var{frame} is @code{t}, this function sets the default attributes
2094for new frames. Default attribute values specified this way override
2095the @code{defface} for newly created frames.
2096
2097If @var{frame} is @code{nil}, this function sets the attributes for
2098all existing frames, and the default for new frames.
8241495d
RS
2099@end defun
2100
35f23bbf 2101@defun face-attribute face attribute &optional frame inherit
8241495d
RS
2102This returns the value of the @var{attribute} attribute of face
2103@var{face} on @var{frame}. If @var{frame} is @code{nil},
8d82c597 2104that means the selected frame (@pxref{Input Focus}).
8241495d 2105
e3b4d849
RS
2106If @var{frame} is @code{t}, this returns whatever new-frames default
2107value you previously specified with @code{set-face-attribute} for the
2108@var{attribute} attribute of @var{face}. If you have not specified
2109one, it returns @code{nil}.
8241495d 2110
9a8dc0d3 2111If @var{inherit} is @code{nil}, only attributes directly defined by
35f23bbf 2112@var{face} are considered, so the return value may be
9a8dc0d3
RS
2113@code{unspecified}, or a relative value. If @var{inherit} is
2114non-@code{nil}, @var{face}'s definition of @var{attribute} is merged
2115with the faces specified by its @code{:inherit} attribute; however the
2116return value may still be @code{unspecified} or relative. If
2117@var{inherit} is a face or a list of faces, then the result is further
2118merged with that face (or faces), until it becomes specified and
2119absolute.
35f23bbf
MB
2120
2121To ensure that the return value is always specified and absolute, use
2122a value of @code{default} for @var{inherit}; this will resolve any
2123unspecified or relative values by merging with the @code{default} face
2124(which is always completely specified).
2125
8241495d
RS
2126For example,
2127
2128@example
2129(face-attribute 'bold :weight)
2130 @result{} bold
2131@end example
2132@end defun
2133
35f23bbf 2134@defun face-attribute-relative-p attribute value
c5a83cf9
RS
2135This function returns non-@code{nil} if @var{value}, when used as the
2136value of the face attribute @var{attribute}, is relative. This means
2137it would modify, rather than completely override, any value that comes
2138from a subsequent face in the face list or that is inherited from
2139another face.
2140
2141@code{unspecified} is a relative value for all attributes.
2142For @code{:height}, floating point values are also relative.
2143
2144For example:
2145
2146@example
2147(read-face-name "Describe face" "= `default' face" t)
2148@end example
2149
2150prompts with @samp{Describe face (default = `default' face): }.
35f23bbf
MB
2151@end defun
2152
35f23bbf
MB
2153@defun merge-face-attribute attribute value1 value2
2154If @var{value1} is a relative value for the face attribute
2155@var{attribute}, returns it merged with the underlying value
2156@var{value2}; otherwise, if @var{value1} is an absolute value for the
9ee1638e 2157face attribute @var{attribute}, returns @var{value1} unchanged.
35f23bbf
MB
2158@end defun
2159
0d93030d
RS
2160 The functions above did not exist before Emacs 21. For compatibility
2161with older Emacs versions, you can use the following functions to set
2162and examine the face attributes which existed in those versions.
47f6532e
RS
2163They use values of @code{t} and @code{nil} for @var{frame}
2164just like @code{set-face-attribute} and @code{face-attribute}.
0d93030d 2165
42b85554
RS
2166@defun set-face-foreground face color &optional frame
2167@defunx set-face-background face color &optional frame
78608595
RS
2168These functions set the foreground (or background, respectively) color
2169of face @var{face} to @var{color}. The argument @var{color} should be a
42b85554 2170string, the name of a color.
bfe721d1
KH
2171
2172Certain shades of gray are implemented by stipple patterns on
2173black-and-white screens.
2174@end defun
2175
2176@defun set-face-stipple face pattern &optional frame
2252bdcf
RS
2177This function sets the background stipple pattern of face @var{face}
2178to @var{pattern}. The argument @var{pattern} should be the name of a
2179stipple pattern defined by the X server, or actual bitmap data
2180(@pxref{Face Attributes}), or @code{nil} meaning don't use stipple.
bfe721d1
KH
2181
2182Normally there is no need to pay attention to stipple patterns, because
2183they are used automatically to handle certain shades of gray.
42b85554
RS
2184@end defun
2185
2186@defun set-face-font face font &optional frame
911a7105
RS
2187This function sets the font of face @var{face}. This actually sets
2188the attributes @code{:family}, @code{:width}, @code{:height},
2189@code{:weight}, and @code{:slant} according to the font name
2190@var{font}.
21cffb83
RS
2191@end defun
2192
f9f59935 2193@defun set-face-bold-p face bold-p &optional frame
8241495d
RS
2194This function specifies whether @var{face} should be bold. If
2195@var{bold-p} is non-@code{nil}, that means yes; @code{nil} means no.
911a7105 2196This actually sets the @code{:weight} attribute.
21cffb83
RS
2197@end defun
2198
f9f59935 2199@defun set-face-italic-p face italic-p &optional frame
8241495d
RS
2200This function specifies whether @var{face} should be italic. If
2201@var{italic-p} is non-@code{nil}, that means yes; @code{nil} means no.
911a7105 2202This actually sets the @code{:slant} attribute.
42b85554
RS
2203@end defun
2204
0ad373f2 2205@defun set-face-underline-p face underline &optional frame
969fe9b5
RS
2206This function sets the underline attribute of face @var{face}.
2207Non-@code{nil} means do underline; @code{nil} means don't.
0ad373f2 2208If @var{underline} is a string, underline with that color.
969fe9b5
RS
2209@end defun
2210
79a8defb
JL
2211@defun set-face-inverse-video-p face inverse-video-p &optional frame
2212This function sets the @code{:inverse-video} attribute of face
2213@var{face}.
2214@end defun
2215
42b85554 2216@defun invert-face face &optional frame
79a8defb
JL
2217This function swaps the foreground and background colors of face
2218@var{face}.
42b85554
RS
2219@end defun
2220
2221 These functions examine the attributes of a face. If you don't
47f6532e
RS
2222specify @var{frame}, they refer to the selected frame; @code{t} refers
2223to the default data for new frames. They return the symbol
2224@code{unspecified} if the face doesn't define any value for that
2225attribute.
42b85554 2226
69137def 2227@defun face-foreground face &optional frame inherit
79a8defb 2228@defunx face-background face &optional frame inherit
78608595
RS
2229These functions return the foreground color (or background color,
2230respectively) of face @var{face}, as a string.
69137def 2231
00991494
JH
2232If @var{inherit} is @code{nil}, only a color directly defined by the face is
2233returned. If @var{inherit} is non-@code{nil}, any faces specified by its
69137def
MB
2234@code{:inherit} attribute are considered as well, and if @var{inherit}
2235is a face or a list of faces, then they are also considered, until a
2236specified color is found. To ensure that the return value is always
2237specified, use a value of @code{default} for @var{inherit}.
42b85554
RS
2238@end defun
2239
69137def 2240@defun face-stipple face &optional frame inherit
bfe721d1
KH
2241This function returns the name of the background stipple pattern of face
2242@var{face}, or @code{nil} if it doesn't have one.
69137def 2243
9a8dc0d3
RS
2244If @var{inherit} is @code{nil}, only a stipple directly defined by the
2245face is returned. If @var{inherit} is non-@code{nil}, any faces
2246specified by its @code{:inherit} attribute are considered as well, and
2247if @var{inherit} is a face or a list of faces, then they are also
2248considered, until a specified stipple is found. To ensure that the
2249return value is always specified, use a value of @code{default} for
2250@var{inherit}.
bfe721d1
KH
2251@end defun
2252
42b85554
RS
2253@defun face-font face &optional frame
2254This function returns the name of the font of face @var{face}.
2255@end defun
2256
f9f59935 2257@defun face-bold-p face &optional frame
8241495d
RS
2258This function returns @code{t} if @var{face} is bold---that is, if it is
2259bolder than normal. It returns @code{nil} otherwise.
f9f59935
RS
2260@end defun
2261
f9f59935 2262@defun face-italic-p face &optional frame
8241495d
RS
2263This function returns @code{t} if @var{face} is italic or oblique,
2264@code{nil} otherwise.
f9f59935
RS
2265@end defun
2266
969fe9b5 2267@defun face-underline-p face &optional frame
8241495d
RS
2268This function returns the @code{:underline} attribute of face @var{face}.
2269@end defun
2270
2271@defun face-inverse-video-p face &optional frame
2272This function returns the @code{:inverse-video} attribute of face @var{face}.
2273@end defun
2274
6057489e
RS
2275@node Displaying Faces
2276@subsection Displaying Faces
8241495d
RS
2277
2278 Here are the ways to specify which faces to use for display of text:
2279
2280@itemize @bullet
2281@item
2282With defaults. The @code{default} face is used as the ultimate
2283default for all text. (In Emacs 19 and 20, the @code{default}
2284face is used only when no other face is specified.)
2285
c2579664
RS
2286@item
2287For a mode line or header line, the face @code{mode-line} or
2288@code{mode-line-inactive}, or @code{header-line}, is merged in just
2289before @code{default}.
8241495d
RS
2290
2291@item
2292With text properties. A character can have a @code{face} property; if
2293so, the faces and face attributes specified there apply. @xref{Special
2294Properties}.
2295
2296If the character has a @code{mouse-face} property, that is used instead
2297of the @code{face} property when the mouse is ``near enough'' to the
2298character.
2299
2300@item
2301With overlays. An overlay can have @code{face} and @code{mouse-face}
2302properties too; they apply to all the text covered by the overlay.
2303
2304@item
2305With a region that is active. In Transient Mark mode, the region is
9ea1d6dc
JL
2306highlighted with the face @code{region} (@pxref{Standard Faces,,,
2307emacs, The GNU Emacs Manual}).
8241495d
RS
2308
2309@item
177c0ea7 2310With special glyphs. Each glyph can specify a particular face
8241495d
RS
2311number. @xref{Glyphs}.
2312@end itemize
2313
2314 If these various sources together specify more than one face for a
2315particular character, Emacs merges the attributes of the various faces
c2579664
RS
2316specified. For each attribute, Emacs tries first the face of any
2317special glyph; then the face for region highlighting, if appropriate;
2318then the faces specified by overlays, followed by those specified by
2319text properties, then the @code{mode-line} or
2320@code{mode-line-inactive} or @code{header-line} face (if in a mode
2321line or a header line), and last the @code{default} face.
8241495d
RS
2322
2323 When multiple overlays cover one character, an overlay with higher
2324priority overrides those with lower priority. @xref{Overlays}.
2325
8241495d
RS
2326@node Font Selection
2327@subsection Font Selection
2328
2329 @dfn{Selecting a font} means mapping the specified face attributes for
2330a character to a font that is available on a particular display. The
2331face attributes, as determined by face merging, specify most of the
2332font choice, but not all. Part of the choice depends on what character
2333it is.
2334
8241495d
RS
2335 If the face specifies a fontset name, that fontset determines a
2336pattern for fonts of the given charset. If the face specifies a font
2337family, a font pattern is constructed.
2338
2339 Emacs tries to find an available font for the given face attributes
2340and character's registry and encoding. If there is a font that matches
2341exactly, it is used, of course. The hard case is when no available font
2342exactly fits the specification. Then Emacs looks for one that is
1dffc5db
RS
2343``close''---one attribute at a time. You can specify the order to
2344consider the attributes. In the case where a specified font family is
2345not available, you can specify a set of mappings for alternatives to
2346try.
8241495d
RS
2347
2348@defvar face-font-selection-order
8241495d
RS
2349This variable specifies the order of importance of the face attributes
2350@code{:width}, @code{:height}, @code{:weight}, and @code{:slant}. The
2351value should be a list containing those four symbols, in order of
2352decreasing importance.
2353
2354Font selection first finds the best available matches for the first
2355attribute listed; then, among the fonts which are best in that way, it
2356searches for the best matches in the second attribute, and so on.
2357
2358The attributes @code{:weight} and @code{:width} have symbolic values in
2359a range centered around @code{normal}. Matches that are more extreme
2360(farther from @code{normal}) are somewhat preferred to matches that are
2361less extreme (closer to @code{normal}); this is designed to ensure that
2362non-normal faces contrast with normal ones, whenever possible.
2363
2364The default is @code{(:width :height :weight :slant)}, which means first
2365find the fonts closest to the specified @code{:width}, then---among the
2366fonts with that width---find a best match for the specified font height,
2367and so on.
2368
2369One example of a case where this variable makes a difference is when the
2370default font has no italic equivalent. With the default ordering, the
2371@code{italic} face will use a non-italic font that is similar to the
2372default one. But if you put @code{:slant} before @code{:height}, the
2373@code{italic} face will use an italic font, even if its height is not
2374quite right.
2375@end defvar
2376
52d89894 2377@defvar face-font-family-alternatives
8241495d
RS
2378This variable lets you specify alternative font families to try, if a
2379given family is specified and doesn't exist. Each element should have
2380this form:
2381
2382@example
2383(@var{family} @var{alternate-families}@dots{})
2384@end example
2385
2386If @var{family} is specified but not available, Emacs will try the other
2387families given in @var{alternate-families}, one by one, until it finds a
2388family that does exist.
52d89894
GM
2389@end defvar
2390
2391@defvar face-font-registry-alternatives
52d89894
GM
2392This variable lets you specify alternative font registries to try, if a
2393given registry is specified and doesn't exist. Each element should have
2394this form:
2395
2396@example
2397(@var{registry} @var{alternate-registries}@dots{})
2398@end example
2399
2400If @var{registry} is specified but not available, Emacs will try the
2401other registries given in @var{alternate-registries}, one by one,
2402until it finds a registry that does exist.
8241495d
RS
2403@end defvar
2404
2405 Emacs can make use of scalable fonts, but by default it does not use
2406them, since the use of too many or too big scalable fonts can crash
2407XFree86 servers.
2408
2409@defvar scalable-fonts-allowed
8241495d
RS
2410This variable controls which scalable fonts to use. A value of
2411@code{nil}, the default, means do not use scalable fonts. @code{t}
2412means to use any scalable font that seems appropriate for the text.
2413
2414Otherwise, the value must be a list of regular expressions. Then a
2415scalable font is enabled for use if its name matches any regular
2416expression in the list. For example,
2417
2418@example
2419(setq scalable-fonts-allowed '("muleindian-2$"))
2420@end example
2421
2422@noindent
2423allows the use of scalable fonts with registry @code{muleindian-2}.
eda77a0f 2424@end defvar
8241495d 2425
6bc3abcb
RS
2426@defvar face-font-rescale-alist
2427This variable specifies scaling for certain faces. Its value should
2428be a list of elements of the form
2429
2430@example
2431(@var{fontname-regexp} . @var{scale-factor})
2432@end example
2433
2434If @var{fontname-regexp} matches the font name that is about to be
2435used, this says to choose a larger similar font according to the
2436factor @var{scale-factor}. You would use this feature to normalize
2437the font size if certain fonts are bigger or smaller than their
2438nominal heights and widths would suggest.
2439@end defvar
2440
8241495d
RS
2441@node Face Functions
2442@subsection Functions for Working with Faces
2443
2444 Here are additional functions for creating and working with faces.
2445
2446@defun make-face name
2447This function defines a new face named @var{name}, initially with all
2448attributes @code{nil}. It does nothing if there is already a face named
2449@var{name}.
2450@end defun
2451
2452@defun face-list
2453This function returns a list of all defined face names.
2454@end defun
2455
2456@defun copy-face old-face new-name &optional frame new-frame
c2579664 2457This function defines a face named @var{new-name} as a copy of the existing
8241495d
RS
2458face named @var{old-face}. It creates the face @var{new-name} if that
2459doesn't already exist.
2460
2461If the optional argument @var{frame} is given, this function applies
2462only to that frame. Otherwise it applies to each frame individually,
2463copying attributes from @var{old-face} in each frame to @var{new-face}
2464in the same frame.
2465
2466If the optional argument @var{new-frame} is given, then @code{copy-face}
2467copies the attributes of @var{old-face} in @var{frame} to @var{new-name}
2468in @var{new-frame}.
969fe9b5
RS
2469@end defun
2470
bfe721d1 2471@defun face-id face
969fe9b5 2472This function returns the face number of face @var{face}.
42b85554
RS
2473@end defun
2474
f9f59935
RS
2475@defun face-documentation face
2476This function returns the documentation string of face @var{face}, or
2477@code{nil} if none was specified for it.
2478@end defun
2479
42b85554
RS
2480@defun face-equal face1 face2 &optional frame
2481This returns @code{t} if the faces @var{face1} and @var{face2} have the
2482same attributes for display.
2483@end defun
2484
2485@defun face-differs-from-default-p face &optional frame
7e07a66d
MB
2486This returns non-@code{nil} if the face @var{face} displays
2487differently from the default face.
1911e6e5
RS
2488@end defun
2489
31c8b366
GM
2490@cindex face alias
2491A @dfn{face alias} provides an equivalent name for a face. You can
2492define a face alias by giving the alias symbol the @code{face-alias}
2493property, with a value of the target face name. The following example
b93e3c3b 2494makes @code{modeline} an alias for the @code{mode-line} face.
31c8b366
GM
2495
2496@example
2497(put 'modeline 'face-alias 'mode-line)
2498@end example
2499
2500
8241495d
RS
2501@node Auto Faces
2502@subsection Automatic Face Assignment
2503@cindex automatic face assignment
2504@cindex faces, automatic choice
2505
911a7105
RS
2506 This hook is used for automatically assigning faces to text in the
2507buffer. It is part of the implementation of Font-Lock mode.
8241495d 2508
8241495d
RS
2509@defvar fontification-functions
2510This variable holds a list of functions that are called by Emacs
2511redisplay as needed to assign faces automatically to text in the buffer.
2512
2513The functions are called in the order listed, with one argument, a
2514buffer position @var{pos}. Each function should attempt to assign faces
2515to the text in the current buffer starting at @var{pos}.
2516
2517Each function should record the faces they assign by setting the
2518@code{face} property. It should also add a non-@code{nil}
2519@code{fontified} property for all the text it has assigned faces to.
2520That property tells redisplay that faces have been assigned to that text
2521already.
2522
2523It is probably a good idea for each function to do nothing if the
2524character after @var{pos} already has a non-@code{nil} @code{fontified}
2525property, but this is not required. If one function overrides the
2526assignments made by a previous one, the properties as they are
2527after the last function finishes are the ones that really matter.
2528
2529For efficiency, we recommend writing these functions so that they
2530usually assign faces to around 400 to 600 characters at each call.
2531@end defvar
2532
2533@node Font Lookup
2534@subsection Looking Up Fonts
2535
2536@defun x-list-fonts pattern &optional face frame maximum
2537This function returns a list of available font names that match
2538@var{pattern}. If the optional arguments @var{face} and @var{frame} are
2539specified, then the list is limited to fonts that are the same size as
2540@var{face} currently is on @var{frame}.
2541
2542The argument @var{pattern} should be a string, perhaps with wildcard
2543characters: the @samp{*} character matches any substring, and the
2544@samp{?} character matches any single character. Pattern matching
2545of font names ignores case.
2546
2547If you specify @var{face} and @var{frame}, @var{face} should be a face name
2548(a symbol) and @var{frame} should be a frame.
2549
2550The optional argument @var{maximum} sets a limit on how many fonts to
2551return. If this is non-@code{nil}, then the return value is truncated
2552after the first @var{maximum} matching fonts. Specifying a small value
2553for @var{maximum} can make this function much faster, in cases where
2554many fonts match the pattern.
2555@end defun
2556
8241495d 2557@defun x-family-fonts &optional family frame
8241495d
RS
2558This function returns a list describing the available fonts for family
2559@var{family} on @var{frame}. If @var{family} is omitted or @code{nil},
2560this list applies to all families, and therefore, it contains all
2561available fonts. Otherwise, @var{family} must be a string; it may
2562contain the wildcards @samp{?} and @samp{*}.
2563
2564The list describes the display that @var{frame} is on; if @var{frame} is
8d82c597
EZ
2565omitted or @code{nil}, it applies to the selected frame's display
2566(@pxref{Input Focus}).
8241495d
RS
2567
2568The list contains a vector of the following form for each font:
2569
2570@example
2571[@var{family} @var{width} @var{point-size} @var{weight} @var{slant}
2572 @var{fixed-p} @var{full} @var{registry-and-encoding}]
2573@end example
2574
2575The first five elements correspond to face attributes; if you
2576specify these attributes for a face, it will use this font.
2577
2578The last three elements give additional information about the font.
9a8dc0d3
RS
2579@var{fixed-p} is non-@code{nil} if the font is fixed-pitch.
2580@var{full} is the full name of the font, and
2581@var{registry-and-encoding} is a string giving the registry and
2582encoding of the font.
8241495d
RS
2583
2584The result list is sorted according to the current face font sort order.
2585@end defun
2586
2587@defun x-font-family-list &optional frame
8241495d
RS
2588This function returns a list of the font families available for
2589@var{frame}'s display. If @var{frame} is omitted or @code{nil}, it
8d82c597 2590describes the selected frame's display (@pxref{Input Focus}).
8241495d
RS
2591
2592The value is a list of elements of this form:
2593
2594@example
2595(@var{family} . @var{fixed-p})
2596@end example
2597
2598@noindent
2599Here @var{family} is a font family, and @var{fixed-p} is
2600non-@code{nil} if fonts of that family are fixed-pitch.
2601@end defun
2602
2603@defvar font-list-limit
8241495d
RS
2604This variable specifies maximum number of fonts to consider in font
2605matching. The function @code{x-family-fonts} will not return more than
2606that many fonts, and font selection will consider only that many fonts
2607when searching a matching font for face attributes. The default is
2608currently 100.
2609@end defvar
2610
2611@node Fontsets
2612@subsection Fontsets
2613
2614 A @dfn{fontset} is a list of fonts, each assigned to a range of
2615character codes. An individual font cannot display the whole range of
2616characters that Emacs supports, but a fontset can. Fontsets have names,
2617just as fonts do, and you can use a fontset name in place of a font name
2618when you specify the ``font'' for a frame or a face. Here is
2619information about defining a fontset under Lisp program control.
2620
2621@defun create-fontset-from-fontset-spec fontset-spec &optional style-variant-p noerror
2622This function defines a new fontset according to the specification
2623string @var{fontset-spec}. The string should have this format:
2624
2625@smallexample
2626@var{fontpattern}, @r{[}@var{charsetname}:@var{fontname}@r{]@dots{}}
2627@end smallexample
2628
2629@noindent
2630Whitespace characters before and after the commas are ignored.
2631
2632The first part of the string, @var{fontpattern}, should have the form of
2633a standard X font name, except that the last two fields should be
2634@samp{fontset-@var{alias}}.
2635
2636The new fontset has two names, one long and one short. The long name is
2637@var{fontpattern} in its entirety. The short name is
2638@samp{fontset-@var{alias}}. You can refer to the fontset by either
2639name. If a fontset with the same name already exists, an error is
2640signaled, unless @var{noerror} is non-@code{nil}, in which case this
2641function does nothing.
2642
2643If optional argument @var{style-variant-p} is non-@code{nil}, that says
2644to create bold, italic and bold-italic variants of the fontset as well.
2645These variant fontsets do not have a short name, only a long one, which
2646is made by altering @var{fontpattern} to indicate the bold or italic
2647status.
2648
2649The specification string also says which fonts to use in the fontset.
2650See below for the details.
2651@end defun
2652
2653 The construct @samp{@var{charset}:@var{font}} specifies which font to
2654use (in this fontset) for one particular character set. Here,
2655@var{charset} is the name of a character set, and @var{font} is the font
2656to use for that character set. You can use this construct any number of
2657times in the specification string.
2658
2659 For the remaining character sets, those that you don't specify
2660explicitly, Emacs chooses a font based on @var{fontpattern}: it replaces
2661@samp{fontset-@var{alias}} with a value that names one character set.
ad800164 2662For the @acronym{ASCII} character set, @samp{fontset-@var{alias}} is replaced
8241495d
RS
2663with @samp{ISO8859-1}.
2664
2665 In addition, when several consecutive fields are wildcards, Emacs
2666collapses them into a single wildcard. This is to prevent use of
2667auto-scaled fonts. Fonts made by scaling larger fonts are not usable
2668for editing, and scaling a smaller font is not useful because it is
2669better to use the smaller font in its own size, which Emacs does.
2670
2671 Thus if @var{fontpattern} is this,
2672
2673@example
2674-*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24
2675@end example
2676
2677@noindent
ad800164 2678the font specification for @acronym{ASCII} characters would be this:
8241495d
RS
2679
2680@example
2681-*-fixed-medium-r-normal-*-24-*-ISO8859-1
2682@end example
2683
2684@noindent
2685and the font specification for Chinese GB2312 characters would be this:
2686
2687@example
2688-*-fixed-medium-r-normal-*-24-*-gb2312*-*
2689@end example
2690
2691 You may not have any Chinese font matching the above font
2692specification. Most X distributions include only Chinese fonts that
2693have @samp{song ti} or @samp{fangsong ti} in the @var{family} field. In
2694such a case, @samp{Fontset-@var{n}} can be specified as below:
2695
2696@smallexample
2697Emacs.Fontset-0: -*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24,\
2698 chinese-gb2312:-*-*-medium-r-normal-*-24-*-gb2312*-*
2699@end smallexample
2700
2701@noindent
2702Then, the font specifications for all but Chinese GB2312 characters have
2703@samp{fixed} in the @var{family} field, and the font specification for
2704Chinese GB2312 characters has a wild card @samp{*} in the @var{family}
2705field.
2706
885fef7c
KH
2707@defun set-fontset-font name character fontname &optional frame
2708This function modifies the existing fontset @var{name} to
2709use the font name @var{fontname} for the character @var{character}.
2710
a2296bf9 2711If @var{name} is @code{nil}, this function modifies the default
812a2341 2712fontset, whose short name is @samp{fontset-default}.
885fef7c 2713
a2296bf9
KH
2714@var{character} may be a cons; @code{(@var{from} . @var{to})}, where
2715@var{from} and @var{to} are non-generic characters. In that case, use
2716@var{fontname} for all characters in the range @var{from} and @var{to}
2717(inclusive).
885fef7c
KH
2718
2719@var{character} may be a charset. In that case, use
2720@var{fontname} for all character in the charsets.
2721
a2296bf9
KH
2722@var{fontname} may be a cons; @code{(@var{family} . @var{registry})},
2723where @var{family} is a family name of a font (possibly including a
2724foundry name at the head), @var{registry} is a registry name of a font
2725(possibly including an encoding name at the tail).
885fef7c 2726
a2296bf9
KH
2727For instance, this changes the default fontset to use a font of which
2728registry name is @samp{JISX0208.1983} for all characters belonging to
2729the charset @code{japanese-jisx0208}.
885fef7c 2730
342fd6cd 2731@smallexample
885fef7c 2732(set-fontset-font nil 'japanese-jisx0208 '(nil . "JISX0208.1983"))
342fd6cd 2733@end smallexample
885fef7c
KH
2734@end defun
2735
f6cad089
RS
2736@defun char-displayable-p char
2737This function returns @code{t} if Emacs ought to be able to display
2738@var{char}. More precisely, if the selected frame's fontset has a
2739font to display the character set that @var{char} belongs to.
2740
2741Fontsets can specify a font on a per-character basis; when the fontset
2742does that, this function's value may not be accurate.
2743@end defun
2744
8a6ca431
RS
2745@node Fringes
2746@section Fringes
6d0d3a2f 2747@cindex fringes
8a6ca431
RS
2748
2749 The @dfn{fringes} of a window are thin vertical strips down the
2750sides that are used for displaying bitmaps that indicate truncation,
c2579664
RS
2751continuation, horizontal scrolling, and the overlay arrow.
2752
2753@menu
2754* Fringe Size/Pos:: Specifying where to put the window fringes.
01bc0451
KS
2755* Fringe Indicators:: Displaying indicator icons in the window fringes.
2756* Fringe Cursors:: Displaying cursors in the right fringe.
2757* Fringe Bitmaps:: Specifying bitmaps for fringe indicators.
c2579664
RS
2758* Customizing Bitmaps:: Specifying your own bitmaps to use in the fringes.
2759* Overlay Arrow:: Display of an arrow to indicate position.
2760@end menu
2761
2762@node Fringe Size/Pos
2763@subsection Fringe Size and Position
2764
70a08278
NR
2765 The following buffer-local variables control the position and width
2766of the window fringes.
8a6ca431
RS
2767
2768@defvar fringes-outside-margins
70a08278
NR
2769The fringes normally appear between the display margins and the window
2770text. If the value is non-@code{nil}, they appear outside the display
2771margins. @xref{Display Margins}.
8a6ca431
RS
2772@end defvar
2773
2774@defvar left-fringe-width
2775This variable, if non-@code{nil}, specifies the width of the left
70a08278
NR
2776fringe in pixels. A value of @code{nil} means to use the left fringe
2777width from the window's frame.
8a6ca431
RS
2778@end defvar
2779
2780@defvar right-fringe-width
2781This variable, if non-@code{nil}, specifies the width of the right
70a08278
NR
2782fringe in pixels. A value of @code{nil} means to use the right fringe
2783width from the window's frame.
8a6ca431
RS
2784@end defvar
2785
2786 The values of these variables take effect when you display the
2787buffer in a window. If you change them while the buffer is visible,
812a2341
RS
2788you can call @code{set-window-buffer} to display it once again in the
2789same window, to make the changes take effect.
8a6ca431
RS
2790
2791@defun set-window-fringes window left &optional right outside-margins
812a2341 2792This function sets the fringe widths of window @var{window}.
479dbc9d 2793If @var{window} is @code{nil}, the selected window is used.
8a6ca431
RS
2794
2795The argument @var{left} specifies the width in pixels of the left
2796fringe, and likewise @var{right} for the right fringe. A value of
2797@code{nil} for either one stands for the default width. If
2798@var{outside-margins} is non-@code{nil}, that specifies that fringes
2799should appear outside of the display margins.
2800@end defun
2801
479dbc9d 2802@defun window-fringes &optional window
8a6ca431 2803This function returns information about the fringes of a window
479dbc9d
KS
2804@var{window}. If @var{window} is omitted or @code{nil}, the selected
2805window is used. The value has the form @code{(@var{left-width}
c2579664 2806@var{right-width} @var{outside-margins})}.
8a6ca431
RS
2807@end defun
2808
01bc0451
KS
2809
2810@node Fringe Indicators
2811@subsection Fringe Indicators
2812@cindex fringe indicators
2813@cindex indicators, fringe
2814
2815 The @dfn{fringe indicators} are tiny icons Emacs displays in the
2816window fringe (on a graphic display) to indicate truncated or
2817continued lines, buffer boundaries, overlay arrow, etc.
2818
2819@defopt indicate-empty-lines
01bc0451
KS
2820@cindex fringes, and empty line indication
2821When this is non-@code{nil}, Emacs displays a special glyph in the
2822fringe of each empty line at the end of the buffer, on graphical
2823displays. @xref{Fringes}. This variable is automatically
2824buffer-local in every buffer.
2825@end defopt
2826
2827@defvar indicate-buffer-boundaries
2828This buffer-local variable controls how the buffer boundaries and
2829window scrolling are indicated in the window fringes.
2830
2831Emacs can indicate the buffer boundaries---that is, the first and last
2832line in the buffer---with angle icons when they appear on the screen.
2833In addition, Emacs can display an up-arrow in the fringe to show
2834that there is text above the screen, and a down-arrow to show
2835there is text below the screen.
2836
ab1ea94e 2837There are three kinds of basic values:
01bc0451
KS
2838
2839@table @asis
2840@item @code{nil}
ab1ea94e 2841Don't display any of these fringe icons.
01bc0451 2842@item @code{left}
ab1ea94e 2843Display the angle icons and arrows in the left fringe.
01bc0451 2844@item @code{right}
ab1ea94e
RS
2845Display the angle icons and arrows in the right fringe.
2846@item any non-alist
2847Display the angle icons in the left fringe
2848and don't display the arrows.
01bc0451
KS
2849@end table
2850
ab1ea94e
RS
2851Otherwise the value should be an alist that specifies which fringe
2852indicators to display and where. Each element of the alist should
2853have the form @code{(@var{indicator} . @var{position})}. Here,
2854@var{indicator} is one of @code{top}, @code{bottom}, @code{up},
2855@code{down}, and @code{t} (which covers all the icons not yet
2856specified), while @var{position} is one of @code{left}, @code{right}
2857and @code{nil}.
2858
2859For example, @code{((top . left) (t . right))} places the top angle
2860bitmap in left fringe, and the bottom angle bitmap as well as both
2861arrow bitmaps in right fringe. To show the angle bitmaps in the left
2862fringe, and no arrow bitmaps, use @code{((top . left) (bottom . left))}.
01bc0451
KS
2863@end defvar
2864
2865@defvar default-indicate-buffer-boundaries
2866The value of this variable is the default value for
2867@code{indicate-buffer-boundaries} in buffers that do not override it.
2868@end defvar
2869
2870@defvar fringe-indicator-alist
2871This buffer-local variable specifies the mapping from logical fringe
2872indicators to the actual bitmaps displayed in the window fringes.
2873
2874These symbols identify the logical fringe indicators:
2875
2876@table @asis
2877@item Truncation and continuation line indicators:
2878@code{truncation}, @code{continuation}.
2879
2880@item Buffer position indicators:
2881@code{up}, @code{down},
2882@code{top}, @code{bottom},
2883@code{top-bottom}.
2884
2885@item Empty line indicator:
2886@code{empty-line}.
2887
2888@item Overlay arrow indicator:
2889@code{overlay-arrow}.
2890
2891@item Unknown bitmap indicator:
2892@code{unknown}.
2893@end table
2894
2895 The value is an alist where each element @code{(@var{indicator} . @var{bitmaps})}
2896specifies the fringe bitmaps used to display a specific logical
2897fringe indicator.
2898
2899Here, @var{indicator} specifies the logical indicator type, and
2900@var{bitmaps} is list of symbols @code{(@var{left} @var{right}
2901[@var{left1} @var{right1}])} which specifies the actual bitmap shown
2902in the left or right fringe for the logical indicator.
2903
2904The @var{left} and @var{right} symbols specify the bitmaps shown in
2905the left and/or right fringe for the specific indicator. The
2906@var{left1} or @var{right1} bitmaps are used only for the `bottom' and
2907`top-bottom indicators when the last (only) line in has no final
2908newline. Alternatively, @var{bitmaps} may be a single symbol which is
2909used in both left and right fringes.
2910
2911When @code{fringe-indicator-alist} has a buffer-local value, and there
2912is no bitmap defined for a logical indicator, or the bitmap is
2913@code{t}, the corresponding value from the (non-local)
7704f61d 2914@code{default-fringe-indicator-alist} is used.
01bc0451
KS
2915
2916To completely hide a specific indicator, set the bitmap to @code{nil}.
2917@end defvar
2918
7704f61d 2919@defvar default-fringe-indicator-alist
01bc0451
KS
2920The value of this variable is the default value for
2921@code{fringe-indicator-alist} in buffers that do not override it.
2922@end defvar
2923
42b50684
KB
2924Standard fringe bitmaps for indicators:
2925@example
2926left-arrow right-arrow up-arrow down-arrow
2927left-curly-arrow right-curly-arrow
2928left-triangle right-triangle
2929top-left-angle top-right-angle
2930bottom-left-angle bottom-right-angle
2931left-bracket right-bracket
2932filled-rectangle hollow-rectangle
2933filled-square hollow-square
2934vertical-bar horizontal-bar
2935empty-line question-mark
2936@end example
01bc0451
KS
2937
2938@node Fringe Cursors
2939@subsection Fringe Cursors
2940@cindex fringe cursors
2941@cindex cursor, fringe
2942
2943 When a line is exactly as wide as the window, Emacs displays the
2944cursor in the right fringe instead of using two lines. Different
2945bitmaps are used to represent the cursor in the fringe depending on
2946the current buffer's cursor type.
2947
2948@table @asis
2949@item Logical cursor types:
2950@code{box} , @code{hollow}, @code{bar},
2951@code{hbar}, @code{hollow-small}.
2952@end table
2953
2954The @code{hollow-small} type is used instead of @code{hollow} when the
2955normal @code{hollow-rectangle} bitmap is too tall to fit on a specific
2956display line.
2957
9b6e4bc3 2958@defvar overflow-newline-into-fringe
26b76360
RS
2959If this is non-@code{nil}, lines exactly as wide as the window (not
2960counting the final newline character) are not continued. Instead,
2961when point is at the end of the line, the cursor appears in the right
2962fringe.
9b6e4bc3
KS
2963@end defvar
2964
01bc0451
KS
2965@defvar fringe-cursor-alist
2966This variable specifies the mapping from logical cursor type to the
2967actual fringe bitmaps displayed in the right fringe. The value is an
1daf0dde 2968alist where each element @code{(@var{cursor} . @var{bitmap})} specifies
01bc0451
KS
2969the fringe bitmaps used to display a specific logical cursor type in
2970the fringe. Here, @var{cursor} specifies the logical cursor type and
2971@var{bitmap} is a symbol specifying the fringe bitmap to be displayed
2972for that logical cursor type.
2973
2974When @code{fringe-cursor-alist} has a buffer-local value, and there is
2975no bitmap defined for a cursor type, the corresponding value from the
2976(non-local) @code{default-fringes-indicator-alist} is used.
2977@end defvar
2978
2979@defvar default-fringes-cursor-alist
2980The value of this variable is the default value for
2981@code{fringe-cursor-alist} in buffers that do not override it.
2982@end defvar
2983
42b50684
KB
2984Standard bitmaps for displaying the cursor in right fringe:
2985@example
2986filled-rectangle hollow-rectangle filled-square hollow-square
2987vertical-bar horizontal-bar
2988@end example
01bc0451
KS
2989
2990
9b6e4bc3 2991@node Fringe Bitmaps
c2579664 2992@subsection Fringe Bitmaps
26b76360
RS
2993@cindex fringe bitmaps
2994@cindex bitmaps, fringe
2995
01bc0451
KS
2996 The @dfn{fringe bitmaps} are the actual bitmaps which represent the
2997logical fringe indicators for truncated or continued lines, buffer
2998boundaries, overlay arrow, etc. Fringe bitmap symbols have their own
2999name space. The fringe bitmaps are shared by all frames and windows.
3000You can redefine the built-in fringe bitmaps, and you can define new
3001fringe bitmaps.
26b76360
RS
3002
3003 The way to display a bitmap in the left or right fringes for a given
3004line in a window is by specifying the @code{display} property for one
3005of the characters that appears in it. Use a display specification of
3006the form @code{(left-fringe @var{bitmap} [@var{face}])} or
3007@code{(right-fringe @var{bitmap} [@var{face}])} (@pxref{Display
e58b3620
RS
3008Property}). Here, @var{bitmap} is a symbol identifying the bitmap you
3009want, and @var{face} (which is optional) is the name of the face whose
3010colors should be used for displaying the bitmap, instead of the
3011default @code{fringe} face. @var{face} is automatically merged with
3012the @code{fringe} face, so normally @var{face} need only specify the
3013foreground color for the bitmap.
26b76360 3014
26b76360
RS
3015@defun fringe-bitmaps-at-pos &optional pos window
3016This function returns the fringe bitmaps of the display line
3017containing position @var{pos} in window @var{window}. The return
cf6d43ae 3018value has the form @code{(@var{left} @var{right} @var{ov})}, where @var{left}
90801c68 3019is the symbol for the fringe bitmap in the left fringe (or @code{nil}
cf6d43ae
KS
3020if no bitmap), @var{right} is similar for the right fringe, and @var{ov}
3021is non-@code{nil} if there is an overlay arrow in the left fringe.
26b76360
RS
3022
3023The value is @code{nil} if @var{pos} is not visible in @var{window}.
3024If @var{window} is @code{nil}, that stands for the selected window.
3025If @var{pos} is @code{nil}, that stands for the value of point in
3026@var{window}.
3027@end defun
9b6e4bc3 3028
26b76360 3029@node Customizing Bitmaps
c2579664 3030@subsection Customizing Fringe Bitmaps
26b76360 3031
90801c68
KS
3032@defun define-fringe-bitmap bitmap bits &optional height width align
3033This function defines the symbol @var{bitmap} as a new fringe bitmap,
3034or replaces an existing bitmap with that name.
9b6e4bc3 3035
26b76360
RS
3036The argument @var{bits} specifies the image to use. It should be
3037either a string or a vector of integers, where each element (an
3038integer) corresponds to one row of the bitmap. Each bit of an integer
90801c68
KS
3039corresponds to one pixel of the bitmap, where the low bit corresponds
3040to the rightmost pixel of the bitmap.
9b6e4bc3 3041
26b76360
RS
3042The height is normally the length of @var{bits}. However, you
3043can specify a different height with non-@code{nil} @var{height}. The width
3044is normally 8, but you can specify a different width with non-@code{nil}
3045@var{width}. The width must be an integer between 1 and 16.
9b6e4bc3 3046
26b76360
RS
3047The argument @var{align} specifies the positioning of the bitmap
3048relative to the range of rows where it is used; the default is to
3049center the bitmap. The allowed values are @code{top}, @code{center},
3050or @code{bottom}.
9b6e4bc3 3051
26b76360 3052The @var{align} argument may also be a list @code{(@var{align}
17234906 3053@var{periodic})} where @var{align} is interpreted as described above.
26b76360
RS
3054If @var{periodic} is non-@code{nil}, it specifies that the rows in
3055@code{bits} should be repeated enough times to reach the specified
3056height.
9b6e4bc3
KS
3057@end defun
3058
3059@defun destroy-fringe-bitmap bitmap
26b76360
RS
3060This function destroy the fringe bitmap identified by @var{bitmap}.
3061If @var{bitmap} identifies a standard fringe bitmap, it actually
3062restores the standard definition of that bitmap, instead of
3063eliminating it entirely.
9b6e4bc3
KS
3064@end defun
3065
3066@defun set-fringe-bitmap-face bitmap &optional face
26b76360
RS
3067This sets the face for the fringe bitmap @var{bitmap} to @var{face}.
3068If @var{face} is @code{nil}, it selects the @code{fringe} face. The
3069bitmap's face controls the color to draw it in.
9b6e4bc3 3070
e58b3620
RS
3071@var{face} is merged with the @code{fringe} face, so normally
3072@var{face} should specify only the foreground color.
9b6e4bc3
KS
3073@end defun
3074
c2579664
RS
3075@node Overlay Arrow
3076@subsection The Overlay Arrow
6d0d3a2f 3077@c @cindex overlay arrow Duplicates variable names
c2579664
RS
3078
3079 The @dfn{overlay arrow} is useful for directing the user's attention
3080to a particular line in a buffer. For example, in the modes used for
3081interface to debuggers, the overlay arrow indicates the line of code
3082about to be executed. This feature has nothing to do with
3083@dfn{overlays} (@pxref{Overlays}).
3084
3085@defvar overlay-arrow-string
3086This variable holds the string to display to call attention to a
3087particular line, or @code{nil} if the arrow feature is not in use.
3088On a graphical display the contents of the string are ignored; instead a
3089glyph is displayed in the fringe area to the left of the display area.
3090@end defvar
3091
3092@defvar overlay-arrow-position
3093This variable holds a marker that indicates where to display the overlay
3094arrow. It should point at the beginning of a line. On a non-graphical
3095display the arrow text
3096appears at the beginning of that line, overlaying any text that would
3097otherwise appear. Since the arrow is usually short, and the line
3098usually begins with indentation, normally nothing significant is
3099overwritten.
3100
751fc7d9
RS
3101The overlay-arrow string is displayed in any given buffer if the value
3102of @code{overlay-arrow-position} in that buffer points into that
3103buffer. Thus, it works to can display multiple overlay arrow strings
3104by creating buffer-local bindings of @code{overlay-arrow-position}.
3105However, it is usually cleaner to use
3106@code{overlay-arrow-variable-list} to achieve this result.
c2579664
RS
3107@c !!! overlay-arrow-position: but the overlay string may remain in the display
3108@c of some other buffer until an update is required. This should be fixed
3109@c now. Is it?
3110@end defvar
3111
3112 You can do a similar job by creating an overlay with a
3113@code{before-string} property. @xref{Overlay Properties}.
3114
3115 You can define multiple overlay arrows via the variable
3116@code{overlay-arrow-variable-list}.
3117
3118@defvar overlay-arrow-variable-list
b2c8f143 3119This variable's value is a list of variables, each of which specifies
c2579664
RS
3120the position of an overlay arrow. The variable
3121@code{overlay-arrow-position} has its normal meaning because it is on
3122this list.
3123@end defvar
3124
3125Each variable on this list can have properties
3126@code{overlay-arrow-string} and @code{overlay-arrow-bitmap} that
3127specify an overlay arrow string (for text-only terminals) or fringe
3128bitmap (for graphical terminals) to display at the corresponding
3129overlay arrow position. If either property is not set, the default
1daf0dde
KS
3130@code{overlay-arrow-string} or @code{overlay-arrow} fringe indicator
3131is used.
c2579664 3132
f6cad089
RS
3133@node Scroll Bars
3134@section Scroll Bars
c115a463 3135@cindex scroll bars
f6cad089
RS
3136
3137Normally the frame parameter @code{vertical-scroll-bars} controls
e58b3620
RS
3138whether the windows in the frame have vertical scroll bars, and
3139whether they are on the left or right. The frame parameter
f6cad089 3140@code{scroll-bar-width} specifies how wide they are (@code{nil}
2adbd9b6 3141meaning the default). @xref{Layout Parameters}.
f6cad089 3142
e58b3620
RS
3143@defun frame-current-scroll-bars &optional frame
3144This function reports the scroll bar type settings for frame
3145@var{frame}. The value is a cons cell
3146@code{(@var{vertical-type} .@: @var{horizontal-type})}, where
3147@var{vertical-type} is either @code{left}, @code{right}, or @code{nil}
3148(which means no scroll bar.) @var{horizontal-type} is meant to
3149specify the horizontal scroll bar type, but since they are not
3150implemented, it is always @code{nil}.
3151@end defun
3152
93449dd1
KS
3153@vindex vertical-scroll-bar
3154 You can enable or disable scroll bars for a particular buffer,
3155by setting the variable @code{vertical-scroll-bar}. This variable
3156automatically becomes buffer-local when set. The possible values are
3157@code{left}, @code{right}, @code{t}, which means to use the
3158frame's default, and @code{nil} for no scroll bar.
3159
3160 You can also control this for individual windows. Call the function
f6cad089
RS
3161@code{set-window-scroll-bars} to specify what to do for a specific window:
3162
3163@defun set-window-scroll-bars window width &optional vertical-type horizontal-type
26b76360
RS
3164This function sets the width and type of scroll bars for window
3165@var{window}.
3166
f6cad089 3167@var{width} specifies the scroll bar width in pixels (@code{nil} means
26b76360
RS
3168use the width specified for the frame). @var{vertical-type} specifies
3169whether to have a vertical scroll bar and, if so, where. The possible
3170values are @code{left}, @code{right} and @code{nil}, just like the
3171values of the @code{vertical-scroll-bars} frame parameter.
f6cad089
RS
3172
3173The argument @var{horizontal-type} is meant to specify whether and
3174where to have horizontal scroll bars, but since they are not
26b76360
RS
3175implemented, it has no effect. If @var{window} is @code{nil}, the
3176selected window is used.
f6cad089
RS
3177@end defun
3178
3179@defun window-scroll-bars &optional window
3180Report the width and type of scroll bars specified for @var{window}.
479dbc9d
KS
3181If @var{window} is omitted or @code{nil}, the selected window is used.
3182The value is a list of the form @code{(@var{width}
f6cad089
RS
3183@var{cols} @var{vertical-type} @var{horizontal-type})}. The value
3184@var{width} is the value that was specified for the width (which may
3185be @code{nil}); @var{cols} is the number of columns that the scroll
3186bar actually occupies.
3187
3188@var{horizontal-type} is not actually meaningful.
3189@end defun
3190
3191If you don't specify these values for a window with
3192@code{set-window-scroll-bars}, the buffer-local variables
3193@code{scroll-bar-mode} and @code{scroll-bar-width} in the buffer being
3194displayed control the window's vertical scroll bars. The function
3195@code{set-window-buffer} examines these variables. If you change them
3196in a buffer that is already visible in a window, you can make the
3197window take note of the new values by calling @code{set-window-buffer}
3198specifying the same buffer that is already displayed.
3199
fe8d1469
RS
3200@defvar scroll-bar-mode
3201This variable, always local in all buffers, controls whether and where
3202to put scroll bars in windows displaying the buffer. The possible values
3203are @code{nil} for no scroll bar, @code{left} to put a scroll bar on
3204the left, and @code{right} to put a scroll bar on the right.
3205@end defvar
3206
e58b3620
RS
3207@defun window-current-scroll-bars &optional window
3208This function reports the scroll bar type for window @var{window}.
3209If @var{window} is omitted or @code{nil}, the selected window is used.
3210The value is a cons cell
3211@code{(@var{vertical-type} .@: @var{horizontal-type})}. Unlike
3212@code{window-scroll-bars}, this reports the scroll bar type actually
3213used, once frame defaults and @code{scroll-bar-mode} are taken into
3214account.
3215@end defun
3216
fe8d1469
RS
3217@defvar scroll-bar-width
3218This variable, always local in all buffers, specifies the width of the
3219buffer's scroll bars, measured in pixels. A value of @code{nil} means
3220to use the value specified by the frame.
3221@end defvar
3222
8241495d
RS
3223@node Display Property
3224@section The @code{display} Property
3225@cindex display specification
3226@kindex display @r{(text property)}
3227
a40d4712
PR
3228 The @code{display} text property (or overlay property) is used to
3229insert images into text, and also control other aspects of how text
911a7105
RS
3230displays. The value of the @code{display} property should be a
3231display specification, or a list or vector containing several display
4db6da64
RS
3232specifications.
3233
3234 Some kinds of @code{display} properties specify something to display
3235instead of the text that has the property. In this case, ``the text''
3236means all the consecutive characters that have the same Lisp object as
3237their @code{display} property; these characters are replaced as a
3238single unit. By contrast, characters that have similar but distinct
3239Lisp objects as their @code{display} properties are handled
3240separately. Here's a function that illustrates this point:
3241
342fd6cd 3242@smallexample
4db6da64
RS
3243(defun foo ()
3244 (goto-char (point-min))
3245 (dotimes (i 5)
3246 (let ((string (concat "A")))
3247 (put-text-property (point) (1+ (point)) 'display string)
3248 (forward-char 1)
3249 (put-text-property (point) (1+ (point)) 'display string)
3250 (forward-char 1))))
342fd6cd 3251@end smallexample
4db6da64
RS
3252
3253@noindent
3254It gives each of the first ten characters in the buffer string
3255@code{"A"} as the @code{display} property, but they don't all get the
3256same string. The first two characters get the same string, so they
3257together are replaced with one @samp{A}. The next two characters get
3258a second string, so they together are replaced with one @samp{A}.
3259Likewise for each following pair of characters. Thus, the ten
3260characters appear as five A's. This function would have the same
3261results:
3262
342fd6cd 3263@smallexample
4db6da64
RS
3264(defun foo ()
3265 (goto-char (point-min))
3266 (dotimes (i 5)
3267 (let ((string (concat "A")))
3268 (put-text-property (point) (2+ (point)) 'display string)
3269 (put-text-property (point) (1+ (point)) 'display string)
3270 (forward-char 2))))
342fd6cd 3271@end smallexample
4db6da64
RS
3272
3273@noindent
3274This illustrates that what matters is the property value for
3275each character. If two consecutive characters have the same
b2c8f143 3276object as the @code{display} property value, it's irrelevant
4db6da64
RS
3277whether they got this property from a single call to
3278@code{put-text-property} or from two different calls.
3279
3280 The rest of this section describes several kinds of
911a7105 3281display specifications and what they mean.
8241495d
RS
3282
3283@menu
02c77ee9 3284* Specified Space:: Displaying one space with a specified width.
9b6e4bc3 3285* Pixel Specification:: Specifying space width or height in pixels.
02c77ee9 3286* Other Display Specs:: Displaying an image; magnifying text; moving it
177c0ea7 3287 up or down on the page; adjusting the width
a40d4712
PR
3288 of spaces within text.
3289* Display Margins:: Displaying text or images to the side of the main text.
8241495d
RS
3290@end menu
3291
3292@node Specified Space
3293@subsection Specified Spaces
3294@cindex spaces, specified height or width
8241495d
RS
3295@cindex variable-width spaces
3296
3297 To display a space of specified width and/or height, use a display
a40d4712
PR
3298specification of the form @code{(space . @var{props})}, where
3299@var{props} is a property list (a list of alternating properties and
3300values). You can put this property on one or more consecutive
3301characters; a space of the specified height and width is displayed in
3302place of @emph{all} of those characters. These are the properties you
0b0e8041 3303can use in @var{props} to specify the weight of the space:
8241495d
RS
3304
3305@table @code
3306@item :width @var{width}
9b6e4bc3
KS
3307If @var{width} is an integer or floating point number, it specifies
3308that the space width should be @var{width} times the normal character
26b76360 3309width. @var{width} can also be a @dfn{pixel width} specification
9b6e4bc3 3310(@pxref{Pixel Specification}).
8241495d
RS
3311
3312@item :relative-width @var{factor}
3313Specifies that the width of the stretch should be computed from the
3314first character in the group of consecutive characters that have the
3315same @code{display} property. The space width is the width of that
3316character, multiplied by @var{factor}.
3317
3318@item :align-to @var{hpos}
9b6e4bc3 3319Specifies that the space should be wide enough to reach @var{hpos}.
26b76360
RS
3320If @var{hpos} is a number, it is measured in units of the normal
3321character width. @var{hpos} can also be a @dfn{pixel width}
3322specification (@pxref{Pixel Specification}).
8241495d
RS
3323@end table
3324
0b0e8041 3325 You should use one and only one of the above properties. You can
26b76360 3326also specify the height of the space, with these properties:
8241495d
RS
3327
3328@table @code
3329@item :height @var{height}
9b6e4bc3
KS
3330Specifies the height of the space.
3331If @var{height} is an integer or floating point number, it specifies
3332that the space height should be @var{height} times the normal character
3333height. The @var{height} may also be a @dfn{pixel height} specification
3334(@pxref{Pixel Specification}).
8241495d
RS
3335
3336@item :relative-height @var{factor}
3337Specifies the height of the space, multiplying the ordinary height
3338of the text having this display specification by @var{factor}.
3339
3340@item :ascent @var{ascent}
9b6e4bc3
KS
3341If the value of @var{ascent} is a non-negative number no greater than
3342100, it specifies that @var{ascent} percent of the height of the space
3343should be considered as the ascent of the space---that is, the part
3344above the baseline. The ascent may also be specified in pixel units
3345with a @dfn{pixel ascent} specification (@pxref{Pixel Specification}).
3346
8241495d
RS
3347@end table
3348
0b0e8041 3349 Don't use both @code{:height} and @code{:relative-height} together.
8241495d 3350
5fc1299d 3351 The @code{:width} and @code{:align-to} properties are supported on
26b76360
RS
3352non-graphic terminals, but the other space properties in this section
3353are not.
3354
9b6e4bc3
KS
3355@node Pixel Specification
3356@subsection Pixel Specification for Spaces
3357@cindex spaces, pixel specification
3358
3359 The value of the @code{:width}, @code{:align-to}, @code{:height},
26b76360
RS
3360and @code{:ascent} properties can be a special kind of expression that
3361is evaluated during redisplay. The result of the evaluation is used
3362as an absolute number of pixels.
9b6e4bc3
KS
3363
3364 The following expressions are supported:
3365
342fd6cd 3366@smallexample
9b6e4bc3 3367@group
90801c68 3368 @var{expr} ::= @var{num} | (@var{num}) | @var{unit} | @var{elem} | @var{pos} | @var{image} | @var{form}
26b76360
RS
3369 @var{num} ::= @var{integer} | @var{float} | @var{symbol}
3370 @var{unit} ::= in | mm | cm | width | height
342fd6cd
RS
3371@end group
3372@group
26b76360 3373 @var{elem} ::= left-fringe | right-fringe | left-margin | right-margin
9b6e4bc3 3374 | scroll-bar | text
26b76360
RS
3375 @var{pos} ::= left | center | right
3376 @var{form} ::= (@var{num} . @var{expr}) | (@var{op} @var{expr} ...)
3377 @var{op} ::= + | -
9b6e4bc3 3378@end group
342fd6cd 3379@end smallexample
9b6e4bc3 3380
26b76360
RS
3381 The form @var{num} specifies a fraction of the default frame font
3382height or width. The form @code{(@var{num})} specifies an absolute
3383number of pixels. If @var{num} is a symbol, @var{symbol}, its
9b6e4bc3
KS
3384buffer-local variable binding is used.
3385
26b76360
RS
3386 The @code{in}, @code{mm}, and @code{cm} units specify the number of
3387pixels per inch, millimeter, and centimeter, respectively. The
3388@code{width} and @code{height} units correspond to the default width
90801c68 3389and height of the current face. An image specification @code{image}
9b6e4bc3
KS
3390corresponds to the width or height of the image.
3391
3392 The @code{left-fringe}, @code{right-fringe}, @code{left-margin},
3393@code{right-margin}, @code{scroll-bar}, and @code{text} elements
3394specify to the width of the corresponding area of the window.
3395
3396 The @code{left}, @code{center}, and @code{right} positions can be
3397used with @code{:align-to} to specify a position relative to the left
3398edge, center, or right edge of the text area.
3399
26b76360 3400 Any of the above window elements (except @code{text}) can also be
9b6e4bc3
KS
3401used with @code{:align-to} to specify that the position is relative to
3402the left edge of the given area. Once the base offset for a relative
3403position has been set (by the first occurrence of one of these
17234906 3404symbols), further occurrences of these symbols are interpreted as the
9b6e4bc3
KS
3405width of the specified area. For example, to align to the center of
3406the left-margin, use
3407
3408@example
3409:align-to (+ left-margin (0.5 . left-margin))
3410@end example
3411
3412 If no specific base offset is set for alignment, it is always relative
3413to the left edge of the text area. For example, @samp{:align-to 0} in a
3414header-line aligns with the first text column in the text area.
3415
c2579664
RS
3416 A value of the form @code{(@var{num} . @var{expr})} stands for the
3417product of the values of @var{num} and @var{expr}. For example,
26b76360 3418@code{(2 . in)} specifies a width of 2 inches, while @code{(0.5 .
c2579664
RS
3419@var{image})} specifies half the width (or height) of the specified
3420image.
9b6e4bc3 3421
26b76360
RS
3422 The form @code{(+ @var{expr} ...)} adds up the value of the
3423expressions. The form @code{(- @var{expr} ...)} negates or subtracts
9b6e4bc3
KS
3424the value of the expressions.
3425
8241495d
RS
3426@node Other Display Specs
3427@subsection Other Display Specifications
3428
26b76360
RS
3429 Here are the other sorts of display specifications that you can use
3430in the @code{display} text property.
3431
8241495d 3432@table @code
4db6da64
RS
3433@item @var{string}
3434Display @var{string} instead of the text that has this property.
3435
215576f1
RS
3436Recursive display specifications are not supported---@var{string}'s
3437@code{display} properties, if any, are not used.
3438
0f5fe5cc 3439@item (image . @var{image-props})
342fd6cd 3440This kind of display specification is an image descriptor (@pxref{Images}).
c2579664
RS
3441When used as a display specification, it means to display the image
3442instead of the text that has the display specification.
8241495d 3443
9b6e4bc3 3444@item (slice @var{x} @var{y} @var{width} @var{height})
26b76360
RS
3445This specification together with @code{image} specifies a @dfn{slice}
3446(a partial area) of the image to display. The elements @var{y} and
3447@var{x} specify the top left corner of the slice, within the image;
3448@var{width} and @var{height} specify the width and height of the
3449slice. Integer values are numbers of pixels. A floating point number
3450in the range 0.0--1.0 stands for that fraction of the width or height
3451of the entire image.
9b6e4bc3 3452
1574933b 3453@item ((margin nil) @var{string})
1574933b
DL
3454A display specification of this form means to display @var{string}
3455instead of the text that has the display specification, at the same
215576f1
RS
3456position as that text. It is equivalent to using just @var{string},
3457but it is done as a special case of marginal display (@pxref{Display
3458Margins}).
5143d8a4 3459
8241495d 3460@item (space-width @var{factor})
a40d4712
PR
3461This display specification affects all the space characters within the
3462text that has the specification. It displays all of these spaces
3463@var{factor} times as wide as normal. The element @var{factor} should
3464be an integer or float. Characters other than spaces are not affected
3465at all; in particular, this has no effect on tab characters.
8241495d
RS
3466
3467@item (height @var{height})
3468This display specification makes the text taller or shorter.
3469Here are the possibilities for @var{height}:
3470
3471@table @asis
3472@item @code{(+ @var{n})}
3473This means to use a font that is @var{n} steps larger. A ``step'' is
a40d4712
PR
3474defined by the set of available fonts---specifically, those that match
3475what was otherwise specified for this text, in all attributes except
3476height. Each size for which a suitable font is available counts as
3477another step. @var{n} should be an integer.
8241495d
RS
3478
3479@item @code{(- @var{n})}
3480This means to use a font that is @var{n} steps smaller.
3481
3482@item a number, @var{factor}
3483A number, @var{factor}, means to use a font that is @var{factor} times
3484as tall as the default font.
3485
3486@item a symbol, @var{function}
3487A symbol is a function to compute the height. It is called with the
3488current height as argument, and should return the new height to use.
3489
3490@item anything else, @var{form}
3491If the @var{height} value doesn't fit the previous possibilities, it is
3492a form. Emacs evaluates it to get the new height, with the symbol
3493@code{height} bound to the current specified font height.
3494@end table
3495
3496@item (raise @var{factor})
3497This kind of display specification raises or lowers the text
3498it applies to, relative to the baseline of the line.
3499
3500@var{factor} must be a number, which is interpreted as a multiple of the
3501height of the affected text. If it is positive, that means to display
3502the characters raised. If it is negative, that means to display them
3503lower down.
3504
3505If the text also has a @code{height} display specification, that does
3506not affect the amount of raising or lowering, which is based on the
3507faces used for the text.
3508@end table
3509
4f815b29
TTN
3510@c We put all the `@code{(when ...)}' on one line to encourage
3511@c makeinfo's end-of-sentence heuristics to DTRT. Previously, the dot
3512@c was at eol; the info file ended up w/ two spaces rendered after it.
c2579664 3513 You can make any display specification conditional. To do that,
4f815b29
TTN
3514package it in another list of the form
3515@code{(when @var{condition} . @var{spec})}.
3516Then the specification @var{spec} applies only when
c2579664
RS
3517@var{condition} evaluates to a non-@code{nil} value. During the
3518evaluation, @code{object} is bound to the string or buffer having the
3519conditional @code{display} property. @code{position} and
3520@code{buffer-position} are bound to the position within @code{object}
3521and the buffer position where the @code{display} property was found,
3522respectively. Both positions can be different when @code{object} is a
3523string.
3524
8241495d
RS
3525@node Display Margins
3526@subsection Displaying in the Margins
3527@cindex display margins
3528@cindex margins, display
3529
3530 A buffer can have blank areas called @dfn{display margins} on the left
3531and on the right. Ordinary text never appears in these areas, but you
3532can put things into the display margins using the @code{display}
3533property.
3534
3535 To put text in the left or right display margin of the window, use a
3536display specification of the form @code{(margin right-margin)} or
3537@code{(margin left-margin)} on it. To put an image in a display margin,
3538use that display specification along with the display specification for
a8e171ce
RS
3539the image. Unfortunately, there is currently no way to make
3540text or images in the margin mouse-sensitive.
8241495d 3541
78263139
RS
3542 If you put such a display specification directly on text in the
3543buffer, the specified margin display appears @emph{instead of} that
3544buffer text itself. To put something in the margin @emph{in
3545association with} certain buffer text without preventing or altering
3546the display of that text, put a @code{before-string} property on the
3547text and put the display specification on the contents of the
3548before-string.
3549
8241495d
RS
3550 Before the display margins can display anything, you must give
3551them a nonzero width. The usual way to do that is to set these
3552variables:
3553
3554@defvar left-margin-width
8241495d
RS
3555This variable specifies the width of the left margin.
3556It is buffer-local in all buffers.
3557@end defvar
3558
3559@defvar right-margin-width
8241495d
RS
3560This variable specifies the width of the right margin.
3561It is buffer-local in all buffers.
3562@end defvar
3563
3564 Setting these variables does not immediately affect the window. These
3565variables are checked when a new buffer is displayed in the window.
3566Thus, you can make changes take effect by calling
3567@code{set-window-buffer}.
3568
3569 You can also set the margin widths immediately.
3570
5143d8a4 3571@defun set-window-margins window left &optional right
8241495d 3572This function specifies the margin widths for window @var{window}.
177c0ea7 3573The argument @var{left} controls the left margin and
5143d8a4 3574@var{right} controls the right margin (default @code{0}).
8241495d
RS
3575@end defun
3576
3577@defun window-margins &optional window
8241495d
RS
3578This function returns the left and right margins of @var{window}
3579as a cons cell of the form @code{(@var{left} . @var{right})}.
3580If @var{window} is @code{nil}, the selected window is used.
3581@end defun
3582
8241495d
RS
3583@node Images
3584@section Images
3585@cindex images in buffers
3586
3587 To display an image in an Emacs buffer, you must first create an image
3588descriptor, then use it as a display specifier in the @code{display}
911a7105 3589property of text that is displayed (@pxref{Display Property}).
8241495d 3590
bda420a3
CY
3591 Emacs is usually able to display images when it is run on a
3592graphical terminal. Images cannot be displayed in a text terminal, on
3593certain graphical terminals that lack the support for this, or if
3594Emacs is compiled without image support. You can use the function
3595@code{display-images-p} to determine if images can in principle be
3596displayed (@pxref{Display Feature Testing}).
3597
8241495d 3598 Emacs can display a number of different image formats; some of them
da4b7798 3599are supported only if particular support libraries are installed on
c2579664 3600your machine. In some environments, Emacs can load image
da4b7798
JB
3601libraries on demand; if so, the variable @code{image-library-alist}
3602can be used to modify the set of known names for these dynamic
17234906 3603libraries (though it is not possible to add new image formats).
da4b7798 3604
c2579664
RS
3605 The supported image formats include XBM, XPM (this requires the
3606libraries @code{libXpm} version 3.4k and @code{libz}), GIF (requiring
891c0674 3607@code{libungif} 4.1.0), PostScript, PBM, JPEG (requiring the
c2579664
RS
3608@code{libjpeg} library version v6a), TIFF (requiring @code{libtiff}
3609v3.4), and PNG (requiring @code{libpng} 1.0.2).
8241495d
RS
3610
3611 You specify one of these formats with an image type symbol. The image
3612type symbols are @code{xbm}, @code{xpm}, @code{gif}, @code{postscript},
3613@code{pbm}, @code{jpeg}, @code{tiff}, and @code{png}.
3614
3615@defvar image-types
3616This variable contains a list of those image type symbols that are
da4b7798
JB
3617potentially supported in the current configuration.
3618@emph{Potentially} here means that Emacs knows about the image types,
3619not necessarily that they can be loaded (they could depend on
3620unavailable dynamic libraries, for example).
3621
3622To know which image types are really available, use
3623@code{image-type-available-p}.
8241495d
RS
3624@end defvar
3625
da4b7798 3626@defvar image-library-alist
da4b7798
JB
3627This in an alist of image types vs external libraries needed to
3628display them.
3629
aa0e4da8 3630Each element is a list @code{(@var{image-type} @var{library}...)},
da4b7798
JB
3631where the car is a supported image format from @code{image-types}, and
3632the rest are strings giving alternate filenames for the corresponding
3633external libraries to load.
3634
e6263643
JB
3635Emacs tries to load the libraries in the order they appear on the
3636list; if none is loaded, the running session of Emacs won't support
3637the image type. @code{pbm} and @code{xbm} don't need to be listed;
da4b7798
JB
3638they're always supported.
3639
3640This variable is ignored if the image libraries are statically linked
3641into Emacs.
3642@end defvar
3643
3644@defun image-type-available-p type
3645@findex image-type-available-p
3646
aa0e4da8
JB
3647This function returns non-@code{nil} if image type @var{type} is
3648available, i.e., if images of this type can be loaded and displayed in
3649Emacs. @var{type} should be one of the types contained in
3650@code{image-types}.
da4b7798
JB
3651
3652For image types whose support libraries are statically linked, this
3653function always returns @code{t}; for other image types, it returns
3654@code{t} if the dynamic library could be loaded, @code{nil} otherwise.
3655@end defun
3656
8241495d 3657@menu
a40d4712
PR
3658* Image Descriptors:: How to specify an image for use in @code{:display}.
3659* XBM Images:: Special features for XBM format.
3660* XPM Images:: Special features for XPM format.
3661* GIF Images:: Special features for GIF format.
891c0674 3662* PostScript Images:: Special features for PostScript format.
a40d4712
PR
3663* Other Image Types:: Various other formats are supported.
3664* Defining Images:: Convenient ways to define an image for later use.
3665* Showing Images:: Convenient ways to display an image once it is defined.
3666* Image Cache:: Internal mechanisms of image display.
8241495d
RS
3667@end menu
3668
3669@node Image Descriptors
3670@subsection Image Descriptors
3671@cindex image descriptor
3672
0f5fe5cc
LT
3673 An image description is a list of the form @code{(image . @var{props})},
3674where @var{props} is a property list containing alternating keyword
3675symbols (symbols whose names start with a colon) and their values.
3676You can use any Lisp object as a property, but the only properties
3677that have any special meaning are certain symbols, all of them keywords.
14ac7224
GM
3678
3679 Every image descriptor must contain the property @code{:type
3680@var{type}} to specify the format of the image. The value of @var{type}
3681should be an image type symbol; for example, @code{xpm} for an image in
3682XPM format.
8241495d
RS
3683
3684 Here is a list of other properties that are meaningful for all image
3685types:
3686
3687@table @code
2cd8656e 3688@item :file @var{file}
c2579664 3689The @code{:file} property says to load the image from file
2cd8656e
RS
3690@var{file}. If @var{file} is not an absolute file name, it is expanded
3691in @code{data-directory}.
3692
3693@item :data @var{data}
c2579664 3694The @code{:data} property says the actual contents of the image.
2cd8656e
RS
3695Each image must use either @code{:data} or @code{:file}, but not both.
3696For most image types, the value of the @code{:data} property should be a
3697string containing the image data; we recommend using a unibyte string.
3698
3699Before using @code{:data}, look for further information in the section
3700below describing the specific image format. For some image types,
3701@code{:data} may not be supported; for some, it allows other data types;
3702for some, @code{:data} alone is not enough, so you need to use other
3703image properties along with @code{:data}.
3704
3705@item :margin @var{margin}
3706The @code{:margin} property specifies how many pixels to add as an
9ee1638e 3707extra margin around the image. The value, @var{margin}, must be a
2cd8656e
RS
3708non-negative number, or a pair @code{(@var{x} . @var{y})} of such
3709numbers. If it is a pair, @var{x} specifies how many pixels to add
3710horizontally, and @var{y} specifies how many pixels to add vertically.
3711If @code{:margin} is not specified, the default is zero.
3712
8241495d 3713@item :ascent @var{ascent}
04545643
GM
3714The @code{:ascent} property specifies the amount of the image's
3715height to use for its ascent---that is, the part above the baseline.
3716The value, @var{ascent}, must be a number in the range 0 to 100, or
3717the symbol @code{center}.
3718
3719If @var{ascent} is a number, that percentage of the image's height is
3720used for its ascent.
3721
3722If @var{ascent} is @code{center}, the image is vertically centered
3723around a centerline which would be the vertical centerline of text drawn
3724at the position of the image, in the manner specified by the text
3725properties and overlays that apply to the image.
3726
3727If this property is omitted, it defaults to 50.
8241495d 3728
8241495d
RS
3729@item :relief @var{relief}
3730The @code{:relief} property, if non-@code{nil}, adds a shadow rectangle
3731around the image. The value, @var{relief}, specifies the width of the
3732shadow lines, in pixels. If @var{relief} is negative, shadows are drawn
3733so that the image appears as a pressed button; otherwise, it appears as
3734an unpressed button.
3735
f864120f
GM
3736@item :conversion @var{algorithm}
3737The @code{:conversion} property, if non-@code{nil}, specifies a
8241495d
RS
3738conversion algorithm that should be applied to the image before it is
3739displayed; the value, @var{algorithm}, specifies which algorithm.
3740
62fb5c66
DL
3741@table @code
3742@item laplace
3743@itemx emboss
3744Specifies the Laplace edge detection algorithm, which blurs out small
3745differences in color while highlighting larger differences. People
3746sometimes consider this useful for displaying the image for a
3747``disabled'' button.
3748
3749@item (edge-detection :matrix @var{matrix} :color-adjust @var{adjust})
3750Specifies a general edge-detection algorithm. @var{matrix} must be
3751either a nine-element list or a nine-element vector of numbers. A pixel
3752at position @math{x/y} in the transformed image is computed from
3753original pixels around that position. @var{matrix} specifies, for each
3754pixel in the neighborhood of @math{x/y}, a factor with which that pixel
3755will influence the transformed pixel; element @math{0} specifies the
3756factor for the pixel at @math{x-1/y-1}, element @math{1} the factor for
3757the pixel at @math{x/y-1} etc., as shown below:
3758@iftex
3759@tex
3760$$\pmatrix{x-1/y-1 & x/y-1 & x+1/y-1 \cr
3761 x-1/y & x/y & x+1/y \cr
3762 x-1/y+1& x/y+1 & x+1/y+1 \cr}$$
3763@end tex
3764@end iftex
3765@ifnottex
3766@display
3767 (x-1/y-1 x/y-1 x+1/y-1
3768 x-1/y x/y x+1/y
3769 x-1/y+1 x/y+1 x+1/y+1)
3770@end display
3771@end ifnottex
3772
3773The resulting pixel is computed from the color intensity of the color
3774resulting from summing up the RGB values of surrounding pixels,
3775multiplied by the specified factors, and dividing that sum by the sum
3776of the factors' absolute values.
3777
3778Laplace edge-detection currently uses a matrix of
3779@iftex
3780@tex
3781$$\pmatrix{1 & 0 & 0 \cr
3782 0& 0 & 0 \cr
3783 9 & 9 & -1 \cr}$$
3784@end tex
3785@end iftex
3786@ifnottex
3787@display
3788 (1 0 0
3789 0 0 0
3790 9 9 -1)
3791@end display
3792@end ifnottex
3793
3794Emboss edge-detection uses a matrix of
3795@iftex
3796@tex
3797$$\pmatrix{ 2 & -1 & 0 \cr
3798 -1 & 0 & 1 \cr
3799 0 & 1 & -2 \cr}$$
3800@end tex
3801@end iftex
3802@ifnottex
3803@display
3804 ( 2 -1 0
3805 -1 0 1
3806 0 1 -2)
3807@end display
3808@end ifnottex
3809
3810@item disabled
827b7ee7 3811Specifies transforming the image so that it looks ``disabled.''
62fb5c66 3812@end table
8241495d 3813
62fb5c66
DL
3814@item :mask @var{mask}
3815If @var{mask} is @code{heuristic} or @code{(heuristic @var{bg})}, build
3816a clipping mask for the image, so that the background of a frame is
3817visible behind the image. If @var{bg} is not specified, or if @var{bg}
3818is @code{t}, determine the background color of the image by looking at
3819the four corners of the image, assuming the most frequently occurring
3820color from the corners is the background color of the image. Otherwise,
3821@var{bg} must be a list @code{(@var{red} @var{green} @var{blue})}
3822specifying the color to assume for the background of the image.
8241495d 3823
9a8dc0d3
RS
3824If @var{mask} is @code{nil}, remove a mask from the image, if it has
3825one. Images in some formats include a mask which can be removed by
3826specifying @code{:mask nil}.
9b6e4bc3
KS
3827
3828@item :pointer @var{shape}
3829This specifies the pointer shape when the mouse pointer is over this
17234906 3830image. @xref{Pointer Shape}, for available pointer shapes.
9b6e4bc3
KS
3831
3832@item :map @var{map}
3833This associates an image map of @dfn{hot spots} with this image.
3834
3835An image map is an alist where each element has the format
3836@code{(@var{area} @var{id} @var{plist})}. An @var{area} is specified
3837as either a rectangle, a circle, or a polygon.
3838
3839A rectangle is a cons
3840@code{(rect . ((@var{x0} . @var{y0}) . (@var{x1} . @var{y1})))}
3841which specifies the pixel coordinates of the upper left and bottom right
3842corners of the rectangle area.
3843
3844A circle is a cons
3845@code{(circle . ((@var{x0} . @var{y0}) . @var{r}))}
3846which specifies the center and the radius of the circle; @var{r} may
3847be a float or integer.
3848
3849A polygon is a cons
61e74968 3850@code{(poly . [@var{x0} @var{y0} @var{x1} @var{y1} ...])}
9b6e4bc3
KS
3851where each pair in the vector describes one corner in the polygon.
3852
032fd62a 3853When the mouse pointer lies on a hot-spot area of an image, the
9b6e4bc3 3854@var{plist} of that hot-spot is consulted; if it contains a @code{help-echo}
032fd62a
RS
3855property, that defines a tool-tip for the hot-spot, and if it contains
3856a @code{pointer} property, that defines the shape of the mouse cursor when
3857it is on the hot-spot.
17234906 3858@xref{Pointer Shape}, for available pointer shapes.
9b6e4bc3
KS
3859
3860When you click the mouse when the mouse pointer is over a hot-spot, an
3861event is composed by combining the @var{id} of the hot-spot with the
26b76360
RS
3862mouse event; for instance, @code{[area4 mouse-1]} if the hot-spot's
3863@var{id} is @code{area4}.
8241495d
RS
3864@end table
3865
62fb5c66 3866@defun image-mask-p spec &optional frame
62fb5c66
DL
3867This function returns @code{t} if image @var{spec} has a mask bitmap.
3868@var{frame} is the frame on which the image will be displayed.
8d82c597
EZ
3869@var{frame} @code{nil} or omitted means to use the selected frame
3870(@pxref{Input Focus}).
62fb5c66
DL
3871@end defun
3872
8241495d
RS
3873@node XBM Images
3874@subsection XBM Images
3875@cindex XBM
3876
3877 To use XBM format, specify @code{xbm} as the image type. This image
3878format doesn't require an external library, so images of this type are
3879always supported.
3880
3881 Additional image properties supported for the @code{xbm} image type are:
3882
3883@table @code
3884@item :foreground @var{foreground}
3885The value, @var{foreground}, should be a string specifying the image
0d88b7d0
GM
3886foreground color, or @code{nil} for the default color. This color is
3887used for each pixel in the XBM that is 1. The default is the frame's
3888foreground color.
8241495d
RS
3889
3890@item :background @var{background}
3891The value, @var{background}, should be a string specifying the image
0d88b7d0
GM
3892background color, or @code{nil} for the default color. This color is
3893used for each pixel in the XBM that is 0. The default is the frame's
3894background color.
8241495d
RS
3895@end table
3896
72821190 3897 If you specify an XBM image using data within Emacs instead of an
96f66dc5 3898external file, use the following three properties:
8241495d
RS
3899
3900@table @code
96f66dc5
GM
3901@item :data @var{data}
3902The value, @var{data}, specifies the contents of the image.
3903There are three formats you can use for @var{data}:
8241495d 3904
96f66dc5
GM
3905@itemize @bullet
3906@item
3907A vector of strings or bool-vectors, each specifying one line of the
3908image. Do specify @code{:height} and @code{:width}.
8241495d 3909
96f66dc5
GM
3910@item
3911A string containing the same byte sequence as an XBM file would contain.
3912You must not specify @code{:height} and @code{:width} in this case,
3913because omitting them is what indicates the data has the format of an
3914XBM file. The file contents specify the height and width of the image.
8241495d 3915
96f66dc5
GM
3916@item
3917A string or a bool-vector containing the bits of the image (plus perhaps
3918some extra bits at the end that will not be used). It should contain at
3919least @var{width} * @code{height} bits. In this case, you must specify
3920@code{:height} and @code{:width}, both to indicate that the string
3921contains just the bits rather than a whole XBM file, and to specify the
3922size of the image.
3923@end itemize
3924
3925@item :width @var{width}
3926The value, @var{width}, specifies the width of the image, in pixels.
3927
3928@item :height @var{height}
3929The value, @var{height}, specifies the height of the image, in pixels.
8241495d
RS
3930@end table
3931
3932@node XPM Images
3933@subsection XPM Images
3934@cindex XPM
3935
72821190
RS
3936 To use XPM format, specify @code{xpm} as the image type. The
3937additional image property @code{:color-symbols} is also meaningful with
3938the @code{xpm} image type:
8241495d
RS
3939
3940@table @code
3941@item :color-symbols @var{symbols}
3942The value, @var{symbols}, should be an alist whose elements have the
3943form @code{(@var{name} . @var{color})}. In each element, @var{name} is
3944the name of a color as it appears in the image file, and @var{color}
3945specifies the actual color to use for displaying that name.
8241495d
RS
3946@end table
3947
3948@node GIF Images
3949@subsection GIF Images
3950@cindex GIF
3951
c2579664 3952 For GIF images, specify image type @code{gif}.
8241495d
RS
3953
3954@table @code
3955@item :index @var{index}
3956You can use @code{:index} to specify one image from a GIF file that
3957contains more than one image. This property specifies use of image
00b3c1cd
RS
3958number @var{index} from the file. If the GIF file doesn't contain an
3959image with index @var{index}, the image displays as a hollow box.
8241495d
RS
3960@end table
3961
3962@ignore
3963This could be used to implement limited support for animated GIFs.
3964For example, the following function displays a multi-image GIF file
3965at point-min in the current buffer, switching between sub-images
3966every 0.1 seconds.
3967
3968(defun show-anim (file max)
3969 "Display multi-image GIF file FILE which contains MAX subimages."
3970 (display-anim (current-buffer) file 0 max t))
3971
3972(defun display-anim (buffer file idx max first-time)
3973 (when (= idx max)
3974 (setq idx 0))
3975 (let ((img (create-image file nil :image idx)))
3976 (save-excursion
3977 (set-buffer buffer)
3978 (goto-char (point-min))
3979 (unless first-time (delete-char 1))
3980 (insert-image img))
3981 (run-with-timer 0.1 nil 'display-anim buffer file (1+ idx) max nil)))
3982@end ignore
3983
891c0674
EZ
3984@node PostScript Images
3985@subsection PostScript Images
3986@cindex postscript images
8241495d 3987
891c0674 3988 To use PostScript for an image, specify image type @code{postscript}.
8241495d
RS
3989This works only if you have Ghostscript installed. You must always use
3990these three properties:
3991
3992@table @code
3993@item :pt-width @var{width}
3994The value, @var{width}, specifies the width of the image measured in
3995points (1/72 inch). @var{width} must be an integer.
3996
3997@item :pt-height @var{height}
3998The value, @var{height}, specifies the height of the image in points
3999(1/72 inch). @var{height} must be an integer.
4000
4001@item :bounding-box @var{box}
4002The value, @var{box}, must be a list or vector of four integers, which
891c0674
EZ
4003specifying the bounding box of the PostScript image, analogous to the
4004@samp{BoundingBox} comment found in PostScript files.
8241495d
RS
4005
4006@example
4007%%BoundingBox: 22 171 567 738
4008@end example
4009@end table
4010
891c0674 4011 Displaying PostScript images from Lisp data is not currently
72821190
RS
4012implemented, but it may be implemented by the time you read this.
4013See the @file{etc/NEWS} file to make sure.
4014
8241495d
RS
4015@node Other Image Types
4016@subsection Other Image Types
4017@cindex PBM
4018
4019 For PBM images, specify image type @code{pbm}. Color, gray-scale and
7ccd82bd
GM
4020monochromatic images are supported. For mono PBM images, two additional
4021image properties are supported.
4022
4023@table @code
4024@item :foreground @var{foreground}
4025The value, @var{foreground}, should be a string specifying the image
0d88b7d0
GM
4026foreground color, or @code{nil} for the default color. This color is
4027used for each pixel in the XBM that is 1. The default is the frame's
4028foreground color.
7ccd82bd
GM
4029
4030@item :background @var{background}
4031The value, @var{background}, should be a string specifying the image
0d88b7d0
GM
4032background color, or @code{nil} for the default color. This color is
4033used for each pixel in the XBM that is 0. The default is the frame's
4034background color.
7ccd82bd 4035@end table
8241495d 4036
72821190 4037 For JPEG images, specify image type @code{jpeg}.
8241495d
RS
4038
4039 For TIFF images, specify image type @code{tiff}.
4040
4041 For PNG images, specify image type @code{png}.
4042
4043@node Defining Images
4044@subsection Defining Images
4045
e3b9fc91
DL
4046 The functions @code{create-image}, @code{defimage} and
4047@code{find-image} provide convenient ways to create image descriptors.
8241495d 4048
5092b644 4049@defun create-image file-or-data &optional type data-p &rest props
8241495d 4050This function creates and returns an image descriptor which uses the
5092b644
RS
4051data in @var{file-or-data}. @var{file-or-data} can be a file name or
4052a string containing the image data; @var{data-p} should be @code{nil}
4053for the former case, non-@code{nil} for the latter case.
8241495d
RS
4054
4055The optional argument @var{type} is a symbol specifying the image type.
4056If @var{type} is omitted or @code{nil}, @code{create-image} tries to
4057determine the image type from the file's first few bytes, or else
4058from the file's name.
4059
4060The remaining arguments, @var{props}, specify additional image
4061properties---for example,
4062
4063@example
5092b644 4064(create-image "foo.xpm" 'xpm nil :heuristic-mask t)
8241495d
RS
4065@end example
4066
4067The function returns @code{nil} if images of this type are not
4068supported. Otherwise it returns an image descriptor.
4069@end defun
4070
11519a5e 4071@defmac defimage symbol specs &optional doc
11519a5e
EZ
4072This macro defines @var{symbol} as an image name. The arguments
4073@var{specs} is a list which specifies how to display the image.
4074The third argument, @var{doc}, is an optional documentation string.
8241495d
RS
4075
4076Each argument in @var{specs} has the form of a property list, and each
11519a5e
EZ
4077one should specify at least the @code{:type} property and either the
4078@code{:file} or the @code{:data} property. The value of @code{:type}
4079should be a symbol specifying the image type, the value of
4080@code{:file} is the file to load the image from, and the value of
4081@code{:data} is a string containing the actual image data. Here is an
4082example:
8241495d 4083
a40d4712
PR
4084@example
4085(defimage test-image
f43c34a0
RS
4086 ((:type xpm :file "~/test1.xpm")
4087 (:type xbm :file "~/test1.xbm")))
a40d4712 4088@end example
8241495d
RS
4089
4090@code{defimage} tests each argument, one by one, to see if it is
4091usable---that is, if the type is supported and the file exists. The
4092first usable argument is used to make an image descriptor which is
11519a5e 4093stored in @var{symbol}.
8241495d 4094
11519a5e 4095If none of the alternatives will work, then @var{symbol} is defined
8241495d
RS
4096as @code{nil}.
4097@end defmac
4098
e3b9fc91 4099@defun find-image specs
e3b9fc91
DL
4100This function provides a convenient way to find an image satisfying one
4101of a list of image specifications @var{specs}.
4102
4103Each specification in @var{specs} is a property list with contents
4104depending on image type. All specifications must at least contain the
4105properties @code{:type @var{type}} and either @w{@code{:file @var{file}}}
4106or @w{@code{:data @var{DATA}}}, where @var{type} is a symbol specifying
4107the image type, e.g.@: @code{xbm}, @var{file} is the file to load the
4108image from, and @var{data} is a string containing the actual image data.
4109The first specification in the list whose @var{type} is supported, and
4110@var{file} exists, is used to construct the image specification to be
4111returned. If no specification is satisfied, @code{nil} is returned.
4112
5b51c037 4113The image is looked for in @code{image-load-path}.
e3b9fc91
DL
4114@end defun
4115
5b51c037 4116@defvar image-load-path
5b51c037 4117This variable's value is a list of locations in which to search for
906320ec
CY
4118image files. If an element is a string or a variable symbol whose
4119value is a string, the string is taken to be the name of a directory
4120to search. If an element is a variable symbol whose value is a list,
4121that is taken to be a list of directory names to search.
5b51c037 4122
cc1f9806
RS
4123The default is to search in the @file{images} subdirectory of the
4124directory specified by @code{data-directory}, then the directory
4125specified by @code{data-directory}, and finally in the directories in
5b51c037
CY
4126@code{load-path}. Subdirectories are not automatically included in
4127the search, so if you put an image file in a subdirectory, you have to
cc1f9806 4128supply the subdirectory name explicitly. For example, to find the
906320ec 4129image @file{images/foo/bar.xpm} within @code{data-directory}, you
cc1f9806 4130should specify the image as follows:
5b51c037
CY
4131
4132@example
cc1f9806 4133(defimage foo-image '((:type xpm :file "foo/bar.xpm")))
5b51c037
CY
4134@end example
4135@end defvar
4136
2c676341 4137@defun image-load-path-for-library library image &optional path no-error
e8a5f60b
RS
4138This function returns a suitable search path for images used by the
4139Lisp package @var{library}.
7cd3712b 4140
cd64b8f1
KB
4141The function searches for @var{image} first using @code{image-load-path},
4142excluding @file{@code{data-directory}/images}, and then in
42b50684
KB
4143@code{load-path}, followed by a path suitable for @var{library}, which
4144includes @file{../../etc/images} and @file{../etc/images} relative to
4145the library file itself, and finally in
4146@file{@code{data-directory}/images}.
7cd3712b 4147
2e556b3f
RS
4148Then this function returns a list of directories which contains first
4149the directory in which @var{image} was found, followed by the value of
4150@code{load-path}. If @var{path} is given, it is used instead of
70949f30 4151@code{load-path}.
7cd3712b 4152
70949f30
BW
4153If @var{no-error} is non-@code{nil} and a suitable path can't be
4154found, don't signal an error. Instead, return a list of directories as
4155before, except that @code{nil} appears in place of the image directory.
2c676341
BW
4156
4157Here is an example that uses a common idiom to provide compatibility
4158with versions of Emacs that lack the variable @code{image-load-path}:
4159
4160@example
42b50684
KB
4161(defvar image-load-path) ; shush compiler
4162(let* ((load-path (image-load-path-for-library
4163 "mh-e" "mh-logo.xpm"))
874a6ef8
BW
4164 (image-load-path (cons (car load-path)
4165 (when (boundp 'image-load-path)
4166 image-load-path))))
2c676341
BW
4167 (mh-tool-bar-folder-buttons-init))
4168@end example
4169@end defun
4170
8241495d
RS
4171@node Showing Images
4172@subsection Showing Images
4173
4174 You can use an image descriptor by setting up the @code{display}
4175property yourself, but it is easier to use the functions in this
4176section.
4177
9b6e4bc3 4178@defun insert-image image &optional string area slice
8241495d
RS
4179This function inserts @var{image} in the current buffer at point. The
4180value @var{image} should be an image descriptor; it could be a value
4181returned by @code{create-image}, or the value of a symbol defined with
c2579664
RS
4182@code{defimage}. The argument @var{string} specifies the text to put
4183in the buffer to hold the image. If it is omitted or @code{nil},
4184@code{insert-image} uses @code{" "} by default.
8241495d
RS
4185
4186The argument @var{area} specifies whether to put the image in a margin.
4187If it is @code{left-margin}, the image appears in the left margin;
4188@code{right-margin} specifies the right margin. If @var{area} is
4189@code{nil} or omitted, the image is displayed at point within the
4190buffer's text.
4191
9b6e4bc3
KS
4192The argument @var{slice} specifies a slice of the image to insert. If
4193@var{slice} is @code{nil} or omitted the whole image is inserted.
26b76360
RS
4194Otherwise, @var{slice} is a list @code{(@var{x} @var{y} @var{width}
4195@var{height})} which specifies the @var{x} and @var{y} positions and
9b6e4bc3 4196@var{width} and @var{height} of the image area to insert. Integer
26b76360
RS
4197values are in units of pixels. A floating point number in the range
41980.0--1.0 stands for that fraction of the width or height of the entire
4199image.
9b6e4bc3 4200
a40d4712
PR
4201Internally, this function inserts @var{string} in the buffer, and gives
4202it a @code{display} property which specifies @var{image}. @xref{Display
8241495d
RS
4203Property}.
4204@end defun
4205
9b6e4bc3 4206@defun insert-sliced-image image &optional string area rows cols
26b76360
RS
4207This function inserts @var{image} in the current buffer at point, like
4208@code{insert-image}, but splits the image into @var{rows}x@var{cols}
4209equally sized slices.
9b6e4bc3
KS
4210@end defun
4211
bb2337f5 4212@defun put-image image pos &optional string area
8241495d
RS
4213This function puts image @var{image} in front of @var{pos} in the
4214current buffer. The argument @var{pos} should be an integer or a
4215marker. It specifies the buffer position where the image should appear.
bb2337f5
DL
4216The argument @var{string} specifies the text that should hold the image
4217as an alternative to the default.
8241495d
RS
4218
4219The argument @var{image} must be an image descriptor, perhaps returned
4220by @code{create-image} or stored by @code{defimage}.
4221
4222The argument @var{area} specifies whether to put the image in a margin.
4223If it is @code{left-margin}, the image appears in the left margin;
4224@code{right-margin} specifies the right margin. If @var{area} is
4225@code{nil} or omitted, the image is displayed at point within the
4226buffer's text.
4227
4228Internally, this function creates an overlay, and gives it a
4229@code{before-string} property containing text that has a @code{display}
4230property whose value is the image. (Whew!)
4231@end defun
4232
4233@defun remove-images start end &optional buffer
4234This function removes images in @var{buffer} between positions
4235@var{start} and @var{end}. If @var{buffer} is omitted or @code{nil},
4236images are removed from the current buffer.
4237
05aea714 4238This removes only images that were put into @var{buffer} the way
8241495d
RS
4239@code{put-image} does it, not images that were inserted with
4240@code{insert-image} or in other ways.
4241@end defun
4242
e3b9fc91 4243@defun image-size spec &optional pixels frame
e3b9fc91
DL
4244This function returns the size of an image as a pair
4245@w{@code{(@var{width} . @var{height})}}. @var{spec} is an image
9a8dc0d3
RS
4246specification. @var{pixels} non-@code{nil} means return sizes
4247measured in pixels, otherwise return sizes measured in canonical
4248character units (fractions of the width/height of the frame's default
4249font). @var{frame} is the frame on which the image will be displayed.
8d82c597
EZ
4250@var{frame} null or omitted means use the selected frame (@pxref{Input
4251Focus}).
e3b9fc91
DL
4252@end defun
4253
63ab30d0 4254@defvar max-image-size
63ab30d0 4255This variable is used to define the maximum size of image that Emacs
1ac3cfd8
KS
4256will load. Emacs will refuse to load (and display) any image that is
4257larger than this limit.
4258
4259If the value is an integer, it directly specifies the maximum
4260image height and width, measured in pixels. If it is a floating
4261point number, it specifies the maximum image height and width
4262as a ratio to the frame height and width. If the value is
4263non-numeric, there is no explicit limit on the size of images.
63ab30d0
CY
4264
4265The purpose of this variable is to prevent unreasonably large images
4266from accidentally being loaded into Emacs. It only takes effect the
4267first time an image is loaded. Once an image is placed in the image
4268cache, it can always be displayed, even if the value of
4269@var{max-image-size} is subsequently changed (@pxref{Image Cache}).
4270@end defvar
4271
8241495d
RS
4272@node Image Cache
4273@subsection Image Cache
5e472eb6 4274@cindex image cache
8241495d
RS
4275
4276 Emacs stores images in an image cache when it displays them, so it can
4277display them again more efficiently. It removes an image from the cache
4278when it hasn't been displayed for a specified period of time.
4279
3e8b2a01
GM
4280When an image is looked up in the cache, its specification is compared
4281with cached image specifications using @code{equal}. This means that
4282all images with equal specifications share the same image in the cache.
4283
8241495d 4284@defvar image-cache-eviction-delay
8241495d
RS
4285This variable specifies the number of seconds an image can remain in the
4286cache without being displayed. When an image is not displayed for this
4287length of time, Emacs removes it from the image cache.
4288
4289If the value is @code{nil}, Emacs does not remove images from the cache
4290except when you explicitly clear it. This mode can be useful for
4291debugging.
4292@end defvar
4293
4294@defun clear-image-cache &optional frame
8241495d
RS
4295This function clears the image cache. If @var{frame} is non-@code{nil},
4296only the cache for that frame is cleared. Otherwise all frames' caches
4297are cleared.
4298@end defun
a065c889 4299
02c77ee9
MB
4300@node Buttons
4301@section Buttons
4302@cindex buttons in buffers
4303@cindex clickable buttons in buffers
4304
4305 The @emph{button} package defines functions for inserting and
4306manipulating clickable (with the mouse, or via keyboard commands)
a3cb3b2e
MB
4307buttons in Emacs buffers, such as might be used for help hyper-links,
4308etc. Emacs uses buttons for the hyper-links in help text and the like.
02c77ee9 4309
c2579664
RS
4310 A button is essentially a set of properties attached (via text
4311properties or overlays) to a region of text in an Emacs buffer. These
4312properties are called @dfn{button properties}.
02c77ee9 4313
d9e8a964 4314 One of these properties (@code{action}) is a function, which will
02c77ee9
MB
4315be called when the user invokes it using the keyboard or the mouse.
4316The invoked function may then examine the button and use its other
4317properties as desired.
4318
c2579664 4319 In some ways the Emacs button package duplicates functionality offered
02c77ee9
MB
4320by the widget package (@pxref{Top, , Introduction, widget, The Emacs
4321Widget Library}), but the button package has the advantage that it is
4322much faster, much smaller, and much simpler to use (for elisp
4323programmers---for users, the result is about the same). The extra
4324speed and space savings are useful mainly if you need to create many
4325buttons in a buffer (for instance an @code{*Apropos*} buffer uses
4326buttons to make entries clickable, and may contain many thousands of
4327entries).
4328
4329@menu
4330* Button Properties:: Button properties with special meanings.
4331* Button Types:: Defining common properties for classes of buttons.
058296d3 4332* Making Buttons:: Adding buttons to Emacs buffers.
02c77ee9
MB
4333* Manipulating Buttons:: Getting and setting properties of buttons.
4334* Button Buffer Commands:: Buffer-wide commands and bindings for buttons.
02c77ee9
MB
4335@end menu
4336
4337@node Button Properties
4338@subsection Button Properties
4339@cindex button properties
4340
4341 Buttons have an associated list of properties defining their
4342appearance and behavior, and other arbitrary properties may be used
c2579664
RS
4343for application specific purposes. Some properties that have special
4344meaning to the button package include:
02c77ee9
MB
4345
4346@table @code
02c77ee9 4347@item action
a3cb3b2e 4348@kindex action @r{(button property)}
02c77ee9
MB
4349The function to call when the user invokes the button, which is passed
4350the single argument @var{button}. By default this is @code{ignore},
4351which does nothing.
4352
4353@item mouse-action
a3cb3b2e 4354@kindex mouse-action @r{(button property)}
02c77ee9
MB
4355This is similar to @code{action}, and when present, will be used
4356instead of @code{action} for button invocations resulting from
4357mouse-clicks (instead of the user hitting @key{RET}). If not
4358present, mouse-clicks use @code{action} instead.
4359
4360@item face
a3cb3b2e 4361@kindex face @r{(button property)}
058296d3 4362This is an Emacs face controlling how buttons of this type are
02c77ee9
MB
4363displayed; by default this is the @code{button} face.
4364
4365@item mouse-face
a3cb3b2e 4366@kindex mouse-face @r{(button property)}
02c77ee9
MB
4367This is an additional face which controls appearance during
4368mouse-overs (merged with the usual button face); by default this is
058296d3 4369the usual Emacs @code{highlight} face.
02c77ee9
MB
4370
4371@item keymap
a3cb3b2e 4372@kindex keymap @r{(button property)}
02c77ee9
MB
4373The button's keymap, defining bindings active within the button
4374region. By default this is the usual button region keymap, stored
51d40dab
KS
4375in the variable @code{button-map}, which defines @key{RET} and
4376@key{mouse-2} to invoke the button.
02c77ee9
MB
4377
4378@item type
a3cb3b2e 4379@kindex type @r{(button property)}
02c77ee9
MB
4380The button-type of the button. When creating a button, this is
4381usually specified using the @code{:type} keyword argument.
4382@xref{Button Types}.
4383
4384@item help-echo
a3cb3b2e 4385@kindex help-index @r{(button property)}
058296d3 4386A string displayed by the Emacs tool-tip help system; by default,
02c77ee9
MB
4387@code{"mouse-2, RET: Push this button"}.
4388
91106113
KS
4389@item follow-link
4390@kindex follow-link @r{(button property)}
51d40dab
KS
4391The follow-link property, defining how a @key{Mouse-1} click behaves
4392on this button, @xref{Links and Mouse-1}.
4393
02c77ee9 4394@item button
a3cb3b2e 4395@kindex button @r{(button property)}
02c77ee9
MB
4396All buttons have a non-@code{nil} @code{button} property, which may be useful
4397in finding regions of text that comprise buttons (which is what the
4398standard button functions do).
4399@end table
4400
c2579664 4401 There are other properties defined for the regions of text in a
02c77ee9
MB
4402button, but these are not generally interesting for typical uses.
4403
4404@node Button Types
4405@subsection Button Types
4406@cindex button types
4407
4408 Every button has a button @emph{type}, which defines default values
a3cb3b2e
MB
4409for the button's properties. Button types are arranged in a
4410hierarchy, with specialized types inheriting from more general types,
4411so that it's easy to define special-purpose types of buttons for
4412specific tasks.
02c77ee9
MB
4413
4414@defun define-button-type name &rest properties
02c77ee9
MB
4415Define a `button type' called @var{name}. The remaining arguments
4416form a sequence of @var{property value} pairs, specifying default
4417property values for buttons with this type (a button's type may be set
4418by giving it a @code{type} property when creating the button, using
4419the @code{:type} keyword argument).
4420
4421In addition, the keyword argument @code{:supertype} may be used to
4422specify a button-type from which @var{name} inherits its default
4423property values. Note that this inheritance happens only when
4424@var{name} is defined; subsequent changes to a supertype are not
4425reflected in its subtypes.
4426@end defun
4427
c2579664 4428 Using @code{define-button-type} to define default properties for
a3cb3b2e 4429buttons is not necessary---buttons without any specified type use the
c2579664 4430built-in button-type @code{button}---but it is encouraged, since
a3cb3b2e 4431doing so usually makes the resulting code clearer and more efficient.
02c77ee9 4432
a3cb3b2e
MB
4433@node Making Buttons
4434@subsection Making Buttons
02c77ee9
MB
4435@cindex making buttons
4436
4437 Buttons are associated with a region of text, using an overlay or
c2579664 4438text properties to hold button-specific information, all of which are
02c77ee9 4439initialized from the button's type (which defaults to the built-in
058296d3 4440button type @code{button}). Like all Emacs text, the appearance of
02c77ee9
MB
4441the button is governed by the @code{face} property; by default (via
4442the @code{face} property inherited from the @code{button} button-type)
4443this is a simple underline, like a typical web-page link.
4444
c2579664 4445 For convenience, there are two sorts of button-creation functions,
02c77ee9 4446those that add button properties to an existing region of a buffer,
7fdc81ab
EZ
4447called @code{make-...button}, and those that also insert the button
4448text, called @code{insert-...button}.
02c77ee9 4449
c2579664 4450 The button-creation functions all take the @code{&rest} argument
02c77ee9
MB
4451@var{properties}, which should be a sequence of @var{property value}
4452pairs, specifying properties to add to the button; see @ref{Button
4453Properties}. In addition, the keyword argument @code{:type} may be
4454used to specify a button-type from which to inherit other properties;
4455see @ref{Button Types}. Any properties not explicitly specified
4456during creation will be inherited from the button's type (if the type
4457defines such a property).
4458
c2579664 4459 The following functions add a button using an overlay
02c77ee9
MB
4460(@pxref{Overlays}) to hold the button properties:
4461
4462@defun make-button beg end &rest properties
c2579664
RS
4463This makes a button from @var{beg} to @var{end} in the
4464current buffer, and returns it.
02c77ee9
MB
4465@end defun
4466
4467@defun insert-button label &rest properties
c2579664
RS
4468This insert a button with the label @var{label} at point,
4469and returns it.
02c77ee9
MB
4470@end defun
4471
c2579664 4472 The following functions are similar, but use Emacs text properties
02c77ee9
MB
4473(@pxref{Text Properties}) to hold the button properties, making the
4474button actually part of the text instead of being a property of the
c2579664
RS
4475buffer. Buttons using text properties do not create markers into the
4476buffer, which is important for speed when you use extremely large
4477numbers of buttons. Both functions return the position of the start
4478of the new button:
02c77ee9
MB
4479
4480@defun make-text-button beg end &rest properties
c2579664
RS
4481This makes a button from @var{beg} to @var{end} in the current buffer, using
4482text properties.
02c77ee9
MB
4483@end defun
4484
4485@defun insert-text-button label &rest properties
c2579664
RS
4486This inserts a button with the label @var{label} at point, using text
4487properties.
02c77ee9
MB
4488@end defun
4489
02c77ee9
MB
4490@node Manipulating Buttons
4491@subsection Manipulating Buttons
4492@cindex manipulating buttons
4493
4494These are functions for getting and setting properties of buttons.
4495Often these are used by a button's invocation function to determine
4496what to do.
4497
4498Where a @var{button} parameter is specified, it means an object
4499referring to a specific button, either an overlay (for overlay
4500buttons), or a buffer-position or marker (for text property buttons).
4501Such an object is passed as the first argument to a button's
4502invocation function when it is invoked.
4503
4504@defun button-start button
02c77ee9
MB
4505Return the position at which @var{button} starts.
4506@end defun
4507
4508@defun button-end button
02c77ee9
MB
4509Return the position at which @var{button} ends.
4510@end defun
4511
4512@defun button-get button prop
02c77ee9
MB
4513Get the property of button @var{button} named @var{prop}.
4514@end defun
4515
4516@defun button-put button prop val
02c77ee9
MB
4517Set @var{button}'s @var{prop} property to @var{val}.
4518@end defun
4519
4520@defun button-activate button &optional use-mouse-action
02c77ee9
MB
4521Call @var{button}'s @code{action} property (i.e., invoke it). If
4522@var{use-mouse-action} is non-@code{nil}, try to invoke the button's
a3cb3b2e
MB
4523@code{mouse-action} property instead of @code{action}; if the button
4524has no @code{mouse-action} property, use @code{action} as normal.
02c77ee9
MB
4525@end defun
4526
4527@defun button-label button
02c77ee9
MB
4528Return @var{button}'s text label.
4529@end defun
4530
4531@defun button-type button
02c77ee9
MB
4532Return @var{button}'s button-type.
4533@end defun
4534
4535@defun button-has-type-p button type
02c77ee9
MB
4536Return @code{t} if @var{button} has button-type @var{type}, or one of
4537@var{type}'s subtypes.
4538@end defun
4539
4540@defun button-at pos
02c77ee9
MB
4541Return the button at position @var{pos} in the current buffer, or @code{nil}.
4542@end defun
4543
c2579664 4544@defun button-type-put type prop val
c2579664
RS
4545Set the button-type @var{type}'s @var{prop} property to @var{val}.
4546@end defun
4547
4548@defun button-type-get type prop
c2579664
RS
4549Get the property of button-type @var{type} named @var{prop}.
4550@end defun
4551
4552@defun button-type-subtype-p type supertype
c2579664
RS
4553Return @code{t} if button-type @var{type} is a subtype of @var{supertype}.
4554@end defun
4555
02c77ee9
MB
4556@node Button Buffer Commands
4557@subsection Button Buffer Commands
4558@cindex button buffer commands
4559
4560These are commands and functions for locating and operating on
058296d3 4561buttons in an Emacs buffer.
02c77ee9
MB
4562
4563@code{push-button} is the command that a user uses to actually `push'
51d40dab 4564a button, and is bound by default in the button itself to @key{RET}
eb3c144c 4565and to @key{mouse-2} using a region-specific keymap. Commands
02c77ee9
MB
4566that are useful outside the buttons itself, such as
4567@code{forward-button} and @code{backward-button} are additionally
4568available in the keymap stored in @code{button-buffer-map}; a mode
4569which uses buttons may want to use @code{button-buffer-map} as a
4570parent keymap for its keymap.
4571
51d40dab 4572If the button has a non-@code{nil} @code{follow-link} property, and
c2579664
RS
4573@var{mouse-1-click-follows-link} is set, a quick @key{Mouse-1} click
4574will also activate the @code{push-button} command.
4575@xref{Links and Mouse-1}.
51d40dab 4576
02c77ee9 4577@deffn Command push-button &optional pos use-mouse-action
02c77ee9
MB
4578Perform the action specified by a button at location @var{pos}.
4579@var{pos} may be either a buffer position or a mouse-event. If
a3cb3b2e
MB
4580@var{use-mouse-action} is non-@code{nil}, or @var{pos} is a
4581mouse-event (@pxref{Mouse Events}), try to invoke the button's
4582@code{mouse-action} property instead of @code{action}; if the button
4583has no @code{mouse-action} property, use @code{action} as normal.
4584@var{pos} defaults to point, except when @code{push-button} is invoked
4585interactively as the result of a mouse-event, in which case, the mouse
4586event's position is used. If there's no button at @var{pos}, do
02c77ee9
MB
4587nothing and return @code{nil}, otherwise return @code{t}.
4588@end deffn
4589
4590@deffn Command forward-button n &optional wrap display-message
02c77ee9
MB
4591Move to the @var{n}th next button, or @var{n}th previous button if
4592@var{n} is negative. If @var{n} is zero, move to the start of any
4593button at point. If @var{wrap} is non-@code{nil}, moving past either
4594end of the buffer continues from the other end. If
4595@var{display-message} is non-@code{nil}, the button's help-echo string
a3cb3b2e
MB
4596is displayed. Any button with a non-@code{nil} @code{skip} property
4597is skipped over. Returns the button found.
02c77ee9
MB
4598@end deffn
4599
4600@deffn Command backward-button n &optional wrap display-message
02c77ee9
MB
4601Move to the @var{n}th previous button, or @var{n}th next button if
4602@var{n} is negative. If @var{n} is zero, move to the start of any
4603button at point. If @var{wrap} is non-@code{nil}, moving past either
4604end of the buffer continues from the other end. If
4605@var{display-message} is non-@code{nil}, the button's help-echo string
a3cb3b2e
MB
4606is displayed. Any button with a non-@code{nil} @code{skip} property
4607is skipped over. Returns the button found.
02c77ee9
MB
4608@end deffn
4609
4610@defun next-button pos &optional count-current
522a9103
KB
4611@defunx previous-button pos &optional count-current
4612Return the next button after (for @code{next-button} or before (for
4613@code{previous-button}) position @var{pos} in the current buffer. If
4614@var{count-current} is non-@code{nil}, count any button at @var{pos}
4615in the search, instead of starting at the next button.
02c77ee9
MB
4616@end defun
4617
f3dffabb
TTN
4618@node Abstract Display
4619@section Abstract Display
4620@cindex ewoc
4621@cindex display, abstract
4622@cindex display, arbitrary objects
4623@cindex model/view/controller
4624@cindex view part, model/view/controller
4625
4626 The Ewoc package constructs buffer text that represents a structure
4627of Lisp objects, and updates the text to follow changes in that
71ee3e04 4628structure. This is like the ``view'' component in the
f3dffabb
TTN
4629``model/view/controller'' design paradigm.
4630
4631 An @dfn{ewoc} is a structure that organizes information required to
4632construct buffer text that represents certain Lisp data. The buffer
4633text of the ewoc has three parts, in order: first, fixed @dfn{header}
4634text; next, textual descriptions of a series of data elements (Lisp
4635objects that you specify); and last, fixed @dfn{footer} text.
4636Specifically, an ewoc contains information on:
4637
4638@itemize @bullet
4639@item
4640The buffer which its text is generated in.
4641
4642@item
4643The text's start position in the buffer.
4644
4645@item
4646The header and footer strings.
4647
4648@item
4649A doubly-linked chain of @dfn{nodes}, each of which contains:
4650
4651@itemize
4652@item
4653A @dfn{data element}, a single Lisp object.
4654
4655@item
4656Links to the preceding and following nodes in the chain.
4657@end itemize
4658
4659@item
4660A @dfn{pretty-printer} function which is responsible for
4661inserting the textual representation of a data
4662element value into the current buffer.
4663@end itemize
4664
4665 Typically, you define an ewoc with @code{ewoc-create}, and then pass
4666the resulting ewoc structure to other functions in the Ewoc package to
4667build nodes within it, and display it in the buffer. Once it is
4668displayed in the buffer, other functions determine the correspondance
4669between buffer positions and nodes, move point from one node's textual
4670representation to another, and so forth. @xref{Abstract Display
4671Functions}.
4672
4673 A node @dfn{encapsulates} a data element much the way a variable
4674holds a value. Normally, encapsulation occurs as a part of adding a
4675node to the ewoc. You can retrieve the data element value and place a
4676new value in its place, like so:
4677
4678@lisp
4679(ewoc-data @var{node})
4680@result{} value
4681
4682(ewoc-set-data @var{node} @var{new-value})
4683@result{} @var{new-value}
4684@end lisp
4685
4686@noindent
4687You can also use, as the data element value, a Lisp object (list or
4688vector) that is a container for the ``real'' value, or an index into
4689some other structure. The example (@pxref{Abstract Display Example})
4690uses the latter approach.
4691
4692 When the data changes, you will want to update the text in the
4693buffer. You can update all nodes by calling @code{ewoc-refresh}, or
4694just specific nodes using @code{ewoc-invalidate}, or all nodes
4695satisfying a predicate using @code{ewoc-map}. Alternatively, you can
4696delete invalid nodes using @code{ewoc-delete} or @code{ewoc-filter},
4697and add new nodes in their place. Deleting a node from an ewoc deletes
4698its associated textual description from buffer, as well.
4699
4700@menu
4701* Abstract Display Functions::
4702* Abstract Display Example::
4703@end menu
4704
4705@node Abstract Display Functions
4706@subsection Abstract Display Functions
4707
4708 In this subsection, @var{ewoc} and @var{node} stand for the
4709structures described above (@pxref{Abstract Display}), while
4710@var{data} stands for an arbitrary Lisp object used as a data element.
4711
4712@defun ewoc-create pretty-printer &optional header footer nosep
4713This constructs and returns a new ewoc, with no nodes (and thus no data
4714elements). @var{pretty-printer} should be a function that takes one
4715argument, a data element of the sort you plan to use in this ewoc, and
4716inserts its textual description at point using @code{insert} (and never
4717@code{insert-before-markers}, because that would interfere with the
4718Ewoc package's internal mechanisms).
4719
4720Normally, a newline is automatically inserted after the header,
4721the footer and every node's textual description. If @var{nosep}
4722is non-@code{nil}, no newline is inserted. This may be useful for
4723displaying an entire ewoc on a single line, for example, or for
4724making nodes ``invisible'' by arranging for @var{pretty-printer}
4725to do nothing for those nodes.
4726
4727An ewoc maintains its text in the buffer that is current when
4728you create it, so switch to the intended buffer before calling
4729@code{ewoc-create}.
4730@end defun
4731
4732@defun ewoc-buffer ewoc
4733This returns the buffer where @var{ewoc} maintains its text.
4734@end defun
4735
4736@defun ewoc-get-hf ewoc
4737This returns a cons cell @code{(@var{header} . @var{footer})}
4738made from @var{ewoc}'s header and footer.
4739@end defun
4740
4741@defun ewoc-set-hf ewoc header footer
4742This sets the header and footer of @var{ewoc} to the strings
4743@var{header} and @var{footer}, respectively.
4744@end defun
4745
4746@defun ewoc-enter-first ewoc data
4747@defunx ewoc-enter-last ewoc data
4748These add a new node encapsulating @var{data}, putting it, respectively,
4749at the beginning or end of @var{ewoc}'s chain of nodes.
4750@end defun
4751
4752@defun ewoc-enter-before ewoc node data
4753@defunx ewoc-enter-after ewoc node data
4754These add a new node encapsulating @var{data}, adding it to
4755@var{ewoc} before or after @var{node}, respectively.
4756@end defun
4757
4758@defun ewoc-prev ewoc node
4759@defunx ewoc-next ewoc node
4760These return, respectively, the previous node and the next node of @var{node}
4761in @var{ewoc}.
4762@end defun
4763
4764@defun ewoc-nth ewoc n
4765This returns the node in @var{ewoc} found at zero-based index @var{n}.
4766A negative @var{n} means count from the end. @code{ewoc-nth} returns
4767@code{nil} if @var{n} is out of range.
4768@end defun
4769
4770@defun ewoc-data node
4771This extracts the data encapsulated by @var{node} and returns it.
4772@end defun
4773
4774@defun ewoc-set-data node data
4775This sets the data encapsulated by @var{node} to @var{data}.
4776@end defun
4777
4778@defun ewoc-locate ewoc &optional pos guess
4779This determines the node in @var{ewoc} which contains point (or
4780@var{pos} if specified), and returns that node. If @var{ewoc} has no
4781nodes, it returns @code{nil}. If @var{pos} is before the first node,
4782it returns the first node; if @var{pos} is after the last node, it returns
4783the last node. The optional third arg @var{guess}
4784should be a node that is likely to be near @var{pos}; this doesn't
4785alter the result, but makes the function run faster.
4786@end defun
4787
4788@defun ewoc-location node
4789This returns the start position of @var{node}.
4790@end defun
4791
4792@defun ewoc-goto-prev ewoc arg
4793@defunx ewoc-goto-next ewoc arg
4794These move point to the previous or next, respectively, @var{arg}th node
4795in @var{ewoc}. @code{ewoc-goto-prev} does not move if it is already at
4796the first node or if @var{ewoc} is empty, whereas @code{ewoc-goto-next}
4797moves past the last node, returning @code{nil}. Excepting this special
4798case, these functions return the node moved to.
4799@end defun
4800
4801@defun ewoc-goto-node ewoc node
4802This moves point to the start of @var{node} in @var{ewoc}.
4803@end defun
4804
4805@defun ewoc-refresh ewoc
4806This function regenerates the text of @var{ewoc}. It works by
4807deleting the text between the header and the footer, i.e., all the
4808data elements' representations, and then calling the pretty-printer
4809function for each node, one by one, in order.
4810@end defun
4811
4812@defun ewoc-invalidate ewoc &rest nodes
4813This is similar to @code{ewoc-refresh}, except that only @var{nodes} in
4814@var{ewoc} are updated instead of the entire set.
4815@end defun
4816
4817@defun ewoc-delete ewoc &rest nodes
4818This deletes each node in @var{nodes} from @var{ewoc}.
4819@end defun
4820
4821@defun ewoc-filter ewoc predicate &rest args
4822This calls @var{predicate} for each data element in @var{ewoc} and
4823deletes those nodes for which @var{predicate} returns @code{nil}.
4824Any @var{args} are passed to @var{predicate}.
4825@end defun
4826
4827@defun ewoc-collect ewoc predicate &rest args
4828This calls @var{predicate} for each data element in @var{ewoc}
4829and returns a list of those elements for which @var{predicate}
4830returns non-@code{nil}. The elements in the list are ordered
4831as in the buffer. Any @var{args} are passed to @var{predicate}.
4832@end defun
4833
4834@defun ewoc-map map-function ewoc &rest args
4835This calls @var{map-function} for each data element in @var{ewoc} and
4836updates those nodes for which @var{map-function} returns non-@code{nil}.
4837Any @var{args} are passed to @var{map-function}.
4838@end defun
4839
4840@node Abstract Display Example
4841@subsection Abstract Display Example
4842
4843 Here is a simple example using functions of the ewoc package to
827b7ee7 4844implement a ``color components display,'' an area in a buffer that
f3dffabb
TTN
4845represents a vector of three integers (itself representing a 24-bit RGB
4846value) in various ways.
4847
4848@example
4849(setq colorcomp-ewoc nil
4850 colorcomp-data nil
4851 colorcomp-mode-map nil
4852 colorcomp-labels ["Red" "Green" "Blue"])
4853
4854(defun colorcomp-pp (data)
4855 (if data
4856 (let ((comp (aref colorcomp-data data)))
4857 (insert (aref colorcomp-labels data) "\t: #x"
4858 (format "%02X" comp) " "
4859 (make-string (ash comp -2) ?#) "\n"))
4860 (let ((cstr (format "#%02X%02X%02X"
4861 (aref colorcomp-data 0)
4862 (aref colorcomp-data 1)
4863 (aref colorcomp-data 2)))
4864 (samp " (sample text) "))
4865 (insert "Color\t: "
4866 (propertize samp 'face `(foreground-color . ,cstr))
4867 (propertize samp 'face `(background-color . ,cstr))
4868 "\n"))))
4869
4870(defun colorcomp (color)
4871 "Allow fiddling with COLOR in a new buffer.
4872The buffer is in Color Components mode."
4873 (interactive "sColor (name or #RGB or #RRGGBB): ")
4874 (when (string= "" color)
4875 (setq color "green"))
4876 (unless (color-values color)
4877 (error "No such color: %S" color))
4878 (switch-to-buffer
4879 (generate-new-buffer (format "originally: %s" color)))
4880 (kill-all-local-variables)
4881 (setq major-mode 'colorcomp-mode
4882 mode-name "Color Components")
4883 (use-local-map colorcomp-mode-map)
4884 (erase-buffer)
4885 (buffer-disable-undo)
4886 (let ((data (apply 'vector (mapcar (lambda (n) (ash n -8))
4887 (color-values color))))
4888 (ewoc (ewoc-create 'colorcomp-pp
4889 "\nColor Components\n\n"
4890 (substitute-command-keys
4891 "\n\\@{colorcomp-mode-map@}"))))
4892 (set (make-local-variable 'colorcomp-data) data)
4893 (set (make-local-variable 'colorcomp-ewoc) ewoc)
4894 (ewoc-enter-last ewoc 0)
4895 (ewoc-enter-last ewoc 1)
4896 (ewoc-enter-last ewoc 2)
4897 (ewoc-enter-last ewoc nil)))
4898@end example
4899
4900@cindex controller part, model/view/controller
4901 This example can be extended to be a ``color selection widget'' (in
4902other words, the controller part of the ``model/view/controller''
4903design paradigm) by defining commands to modify @code{colorcomp-data}
4904and to ``finish'' the selection process, and a keymap to tie it all
4905together conveniently.
4906
42b50684 4907@smallexample
f3dffabb
TTN
4908(defun colorcomp-mod (index limit delta)
4909 (let ((cur (aref colorcomp-data index)))
4910 (unless (= limit cur)
4911 (aset colorcomp-data index (+ cur delta)))
4912 (ewoc-invalidate
4913 colorcomp-ewoc
4914 (ewoc-nth colorcomp-ewoc index)
4915 (ewoc-nth colorcomp-ewoc -1))))
4916
4917(defun colorcomp-R-more () (interactive) (colorcomp-mod 0 255 1))
4918(defun colorcomp-G-more () (interactive) (colorcomp-mod 1 255 1))
4919(defun colorcomp-B-more () (interactive) (colorcomp-mod 2 255 1))
4920(defun colorcomp-R-less () (interactive) (colorcomp-mod 0 0 -1))
4921(defun colorcomp-G-less () (interactive) (colorcomp-mod 1 0 -1))
4922(defun colorcomp-B-less () (interactive) (colorcomp-mod 2 0 -1))
4923
4924(defun colorcomp-copy-as-kill-and-exit ()
4925 "Copy the color components into the kill ring and kill the buffer.
4926The string is formatted #RRGGBB (hash followed by six hex digits)."
4927 (interactive)
4928 (kill-new (format "#%02X%02X%02X"
4929 (aref colorcomp-data 0)
4930 (aref colorcomp-data 1)
4931 (aref colorcomp-data 2)))
4932 (kill-buffer nil))
4933
4934(setq colorcomp-mode-map
4935 (let ((m (make-sparse-keymap)))
4936 (suppress-keymap m)
4937 (define-key m "i" 'colorcomp-R-less)
4938 (define-key m "o" 'colorcomp-R-more)
4939 (define-key m "k" 'colorcomp-G-less)
4940 (define-key m "l" 'colorcomp-G-more)
4941 (define-key m "," 'colorcomp-B-less)
4942 (define-key m "." 'colorcomp-B-more)
4943 (define-key m " " 'colorcomp-copy-as-kill-and-exit)
4944 m))
42b50684 4945@end smallexample
f3dffabb
TTN
4946
4947Note that we never modify the data in each node, which is fixed when the
4948ewoc is created to be either @code{nil} or an index into the vector
4949@code{colorcomp-data}, the actual color components.
4950
42b85554
RS
4951@node Blinking
4952@section Blinking Parentheses
4953@cindex parenthesis matching
6d0d3a2f 4954@cindex blinking parentheses
42b85554 4955@cindex balancing parentheses
42b85554
RS
4956
4957 This section describes the mechanism by which Emacs shows a matching
4958open parenthesis when the user inserts a close parenthesis.
4959
42b85554
RS
4960@defvar blink-paren-function
4961The value of this variable should be a function (of no arguments) to
4962be called whenever a character with close parenthesis syntax is inserted.
4963The value of @code{blink-paren-function} may be @code{nil}, in which
4964case nothing is done.
42b85554
RS
4965@end defvar
4966
1911e6e5 4967@defopt blink-matching-paren
42b85554
RS
4968If this variable is @code{nil}, then @code{blink-matching-open} does
4969nothing.
1911e6e5 4970@end defopt
42b85554 4971
1911e6e5 4972@defopt blink-matching-paren-distance
42b85554
RS
4973This variable specifies the maximum distance to scan for a matching
4974parenthesis before giving up.
1911e6e5 4975@end defopt
42b85554 4976
1911e6e5 4977@defopt blink-matching-delay
bfe721d1
KH
4978This variable specifies the number of seconds for the cursor to remain
4979at the matching parenthesis. A fraction of a second often gives
4980good results, but the default is 1, which works on all systems.
1911e6e5 4981@end defopt
bfe721d1 4982
1911e6e5 4983@deffn Command blink-matching-open
42b85554
RS
4984This function is the default value of @code{blink-paren-function}. It
4985assumes that point follows a character with close parenthesis syntax and
4986moves the cursor momentarily to the matching opening character. If that
4987character is not already on the screen, it displays the character's
4988context in the echo area. To avoid long delays, this function does not
4989search farther than @code{blink-matching-paren-distance} characters.
4990
4991Here is an example of calling this function explicitly.
4992
4993@smallexample
4994@group
4995(defun interactive-blink-matching-open ()
4996@c Do not break this line! -- rms.
4997@c The first line of a doc string
4998@c must stand alone.
4999 "Indicate momentarily the start of sexp before point."
5000 (interactive)
5001@end group
5002@group
5003 (let ((blink-matching-paren-distance
5004 (buffer-size))
5005 (blink-matching-paren t))
5006 (blink-matching-open)))
5007@end group
5008@end smallexample
1911e6e5 5009@end deffn
42b85554 5010
42b85554
RS
5011@node Usual Display
5012@section Usual Display Conventions
5013
5014 The usual display conventions define how to display each character
5015code. You can override these conventions by setting up a display table
5016(@pxref{Display Tables}). Here are the usual display conventions:
5017
5018@itemize @bullet
5019@item
5020Character codes 32 through 126 map to glyph codes 32 through 126.
5021Normally this means they display as themselves.
5022
5023@item
5024Character code 9 is a horizontal tab. It displays as whitespace
5025up to a position determined by @code{tab-width}.
5026
5027@item
5028Character code 10 is a newline.
5029
5030@item
5031All other codes in the range 0 through 31, and code 127, display in one
78608595 5032of two ways according to the value of @code{ctl-arrow}. If it is
42b85554 5033non-@code{nil}, these codes map to sequences of two glyphs, where the
ad800164 5034first glyph is the @acronym{ASCII} code for @samp{^}. (A display table can
42b85554
RS
5035specify a glyph to use instead of @samp{^}.) Otherwise, these codes map
5036just like the codes in the range 128 to 255.
5037
8241495d
RS
5038On MS-DOS terminals, Emacs arranges by default for the character code
5039127 to be mapped to the glyph code 127, which normally displays as an
ad800164 5040empty polygon. This glyph is used to display non-@acronym{ASCII} characters
8241495d
RS
5041that the MS-DOS terminal doesn't support. @xref{MS-DOS and MULE,,,
5042emacs, The GNU Emacs Manual}.
5043
42b85554
RS
5044@item
5045Character codes 128 through 255 map to sequences of four glyphs, where
ad800164 5046the first glyph is the @acronym{ASCII} code for @samp{\}, and the others are
a9f0a989 5047digit characters representing the character code in octal. (A display
969fe9b5
RS
5048table can specify a glyph to use instead of @samp{\}.)
5049
5050@item
5051Multibyte character codes above 256 are displayed as themselves, or as a
5052question mark or empty box if the terminal cannot display that
5053character.
42b85554
RS
5054@end itemize
5055
5056 The usual display conventions apply even when there is a display
5057table, for any character whose entry in the active display table is
5058@code{nil}. Thus, when you set up a display table, you need only
969fe9b5 5059specify the characters for which you want special behavior.
42b85554 5060
b6954afd
RS
5061 These display rules apply to carriage return (character code 13), when
5062it appears in the buffer. But that character may not appear in the
5063buffer where you expect it, if it was eliminated as part of end-of-line
15da7853 5064conversion (@pxref{Coding System Basics}).
b6954afd 5065
42b85554
RS
5066 These variables affect the way certain characters are displayed on the
5067screen. Since they change the number of columns the characters occupy,
f9f59935
RS
5068they also affect the indentation functions. These variables also affect
5069how the mode line is displayed; if you want to force redisplay of the
5070mode line using the new values, call the function
5071@code{force-mode-line-update} (@pxref{Mode Line Format}).
42b85554
RS
5072
5073@defopt ctl-arrow
5074@cindex control characters in display
5075This buffer-local variable controls how control characters are
5076displayed. If it is non-@code{nil}, they are displayed as a caret
5077followed by the character: @samp{^A}. If it is @code{nil}, they are
5078displayed as a backslash followed by three octal digits: @samp{\001}.
5079@end defopt
5080
5081@c Following may have overfull hbox.
5082@defvar default-ctl-arrow
5083The value of this variable is the default value for @code{ctl-arrow} in
5084buffers that do not override it. @xref{Default Value}.
5085@end defvar
5086
fe8d1469 5087@defopt tab-width
475aab0d
CY
5088The value of this buffer-local variable is the spacing between tab
5089stops used for displaying tab characters in Emacs buffers. The value
5090is in units of columns, and the default is 8. Note that this feature
5091is completely independent of the user-settable tab stops used by the
5092command @code{tab-to-tab-stop}. @xref{Indent Tabs}.
fe8d1469
RS
5093@end defopt
5094
42b85554
RS
5095@node Display Tables
5096@section Display Tables
5097
5098@cindex display table
969fe9b5
RS
5099You can use the @dfn{display table} feature to control how all possible
5100character codes display on the screen. This is useful for displaying
ad800164 5101European languages that have letters not in the @acronym{ASCII} character
969fe9b5 5102set.
42b85554
RS
5103
5104The display table maps each character code into a sequence of
8241495d 5105@dfn{glyphs}, each glyph being a graphic that takes up one character
42b85554
RS
5106position on the screen. You can also define how to display each glyph
5107on your terminal, using the @dfn{glyph table}.
5108
f9f59935
RS
5109Display tables affect how the mode line is displayed; if you want to
5110force redisplay of the mode line using a new display table, call
5111@code{force-mode-line-update} (@pxref{Mode Line Format}).
5112
42b85554 5113@menu
02c77ee9
MB
5114* Display Table Format:: What a display table consists of.
5115* Active Display Table:: How Emacs selects a display table to use.
5116* Glyphs:: How to define a glyph, and what glyphs mean.
42b85554
RS
5117@end menu
5118
5119@node Display Table Format
5120@subsection Display Table Format
5121
a9f0a989
RS
5122 A display table is actually a char-table (@pxref{Char-Tables}) with
5123@code{display-table} as its subtype.
42b85554
RS
5124
5125@defun make-display-table
5126This creates and returns a display table. The table initially has
5127@code{nil} in all elements.
5128@end defun
5129
f9f59935
RS
5130 The ordinary elements of the display table are indexed by character
5131codes; the element at index @var{c} says how to display the character
8b170b82
RS
5132code @var{c}. The value should be @code{nil} or a vector of the
5133glyphs to be output (@pxref{Glyphs}). @code{nil} says to display the
5134character @var{c} according to the usual display conventions
f9f59935 5135(@pxref{Usual Display}).
22697dac 5136
8b170b82
RS
5137 @strong{Warning:} if you use the display table to change the display
5138of newline characters, the whole buffer will be displayed as one long
5139``line.''
42b85554 5140
f9f59935 5141 The display table also has six ``extra slots'' which serve special
969fe9b5
RS
5142purposes. Here is a table of their meanings; @code{nil} in any slot
5143means to use the default for that slot, as stated below.
42b85554
RS
5144
5145@table @asis
f9f59935 5146@item 0
42b85554 5147The glyph for the end of a truncated screen line (the default for this
c2579664
RS
5148is @samp{$}). @xref{Glyphs}. On graphical terminals, Emacs uses
5149arrows in the fringes to indicate truncation, so the display table has
5150no effect.
5151
f9f59935 5152@item 1
42b85554 5153The glyph for the end of a continued line (the default is @samp{\}).
c2579664
RS
5154On graphical terminals, Emacs uses curved arrows in the fringes to
5155indicate continuation, so the display table has no effect.
5156
f9f59935 5157@item 2
42b85554
RS
5158The glyph for indicating a character displayed as an octal character
5159code (the default is @samp{\}).
c2579664 5160
f9f59935 5161@item 3
42b85554 5162The glyph for indicating a control character (the default is @samp{^}).
c2579664 5163
f9f59935 5164@item 4
42b85554
RS
5165A vector of glyphs for indicating the presence of invisible lines (the
5166default is @samp{...}). @xref{Selective Display}.
c2579664 5167
f9f59935 5168@item 5
50b04c36 5169The glyph used to draw the border between side-by-side windows (the
8241495d
RS
5170default is @samp{|}). @xref{Splitting Windows}. This takes effect only
5171when there are no scroll bars; if scroll bars are supported and in use,
5172a scroll bar separates the two windows.
42b85554
RS
5173@end table
5174
5175 For example, here is how to construct a display table that mimics the
5176effect of setting @code{ctl-arrow} to a non-@code{nil} value:
5177
5178@example
5179(setq disptab (make-display-table))
5180(let ((i 0))
5181 (while (< i 32)
5182 (or (= i ?\t) (= i ?\n)
5183 (aset disptab i (vector ?^ (+ i 64))))
5184 (setq i (1+ i)))
5185 (aset disptab 127 (vector ?^ ??)))
5186@end example
5187
f9f59935
RS
5188@defun display-table-slot display-table slot
5189This function returns the value of the extra slot @var{slot} of
5190@var{display-table}. The argument @var{slot} may be a number from 0 to
51915 inclusive, or a slot name (symbol). Valid symbols are
5192@code{truncation}, @code{wrap}, @code{escape}, @code{control},
5193@code{selective-display}, and @code{vertical-border}.
5194@end defun
5195
f9f59935
RS
5196@defun set-display-table-slot display-table slot value
5197This function stores @var{value} in the extra slot @var{slot} of
5198@var{display-table}. The argument @var{slot} may be a number from 0 to
51995 inclusive, or a slot name (symbol). Valid symbols are
5200@code{truncation}, @code{wrap}, @code{escape}, @code{control},
5201@code{selective-display}, and @code{vertical-border}.
5202@end defun
5203
8241495d 5204@defun describe-display-table display-table
8241495d
RS
5205This function displays a description of the display table
5206@var{display-table} in a help buffer.
5207@end defun
5208
5209@deffn Command describe-current-display-table
8241495d
RS
5210This command displays a description of the current display table in a
5211help buffer.
5212@end deffn
5213
42b85554
RS
5214@node Active Display Table
5215@subsection Active Display Table
5216@cindex active display table
5217
5218 Each window can specify a display table, and so can each buffer. When
5219a buffer @var{b} is displayed in window @var{w}, display uses the
5220display table for window @var{w} if it has one; otherwise, the display
5221table for buffer @var{b} if it has one; otherwise, the standard display
5222table if any. The display table chosen is called the @dfn{active}
5223display table.
5224
c2579664 5225@defun window-display-table &optional window
42b85554 5226This function returns @var{window}'s display table, or @code{nil}
c2579664
RS
5227if @var{window} does not have an assigned display table. The default
5228for @var{window} is the selected window.
42b85554
RS
5229@end defun
5230
5231@defun set-window-display-table window table
5232This function sets the display table of @var{window} to @var{table}.
5233The argument @var{table} should be either a display table or
5234@code{nil}.
5235@end defun
5236
5237@defvar buffer-display-table
969fe9b5
RS
5238This variable is automatically buffer-local in all buffers; its value in
5239a particular buffer specifies the display table for that buffer. If it
5240is @code{nil}, that means the buffer does not have an assigned display
5241table.
42b85554
RS
5242@end defvar
5243
5244@defvar standard-display-table
5245This variable's value is the default display table, used whenever a
5246window has no display table and neither does the buffer displayed in
5247that window. This variable is @code{nil} by default.
5248@end defvar
5249
5250 If there is no display table to use for a particular window---that is,
f9f59935
RS
5251if the window specifies none, its buffer specifies none, and
5252@code{standard-display-table} is @code{nil}---then Emacs uses the usual
42b85554
RS
5253display conventions for all character codes in that window. @xref{Usual
5254Display}.
5255
8241495d
RS
5256A number of functions for changing the standard display table
5257are defined in the library @file{disp-table}.
5258
42b85554
RS
5259@node Glyphs
5260@subsection Glyphs
5261
5262@cindex glyph
5263 A @dfn{glyph} is a generalization of a character; it stands for an
663320a4 5264image that takes up a single character position on the screen. Normally
38966db7 5265glyphs come from vectors in the display table (@pxref{Display Tables}).
c5b0bab9 5266
663320a4
KS
5267 A glyph is represented in Lisp as a @dfn{glyph code}. A glyph code
5268can be @dfn{simple} or it can be defined by the @dfn{glyph table}. A
5269simple glyph code is just a way of specifying a character and a face
5270to output it in. @xref{Faces}.
5271
5272 The following functions are used to manipulate simple glyph codes:
5273
5274@defun make-glyph-code char &optional face
5275This function returns a simple glyph code representing char @var{char}
5276with face @var{face}.
5277@end defun
5278
5279@defun glyph-char glyph
5280This function returns the character of simple glyph code @var{glyph}.
5281@end defun
5282
5283@defun glyph-face glyph
5284This function returns face of simple glyph code @var{glyph}, or
5285@code{nil} if @var{glyph} has the default face (face-id 0).
5286@end defun
42b85554 5287
bbf77fe8 5288 On character terminals, you can set up a @dfn{glyph table} to define
663320a4 5289the meaning of glyph codes (represented as small integers).
42b85554
RS
5290
5291@defvar glyph-table
c5b0bab9
RS
5292The value of this variable is the current glyph table. It should be
5293@code{nil} or a vector whose @var{g}th element defines glyph code
5294@var{g}.
bbf77fe8
RS
5295
5296If a glyph code is greater than or equal to the length of the glyph
c5b0bab9
RS
5297table, that code is automatically simple. If @code{glyph-table} is
5298@code{nil} then all glyph codes are simple.
5299
5300The glyph table is used only on character terminals. On graphical
5301displays, all glyph codes are simple.
42b85554
RS
5302@end defvar
5303
c5b0bab9 5304 Here are the meaningful types of elements in the glyph table:
42b85554 5305
1911e6e5
RS
5306@table @asis
5307@item @var{string}
42b85554 5308Send the characters in @var{string} to the terminal to output
c5b0bab9 5309this glyph code.
42b85554 5310
663320a4
KS
5311@item @var{code}
5312Define this glyph code as an alias for glyph code @var{code} created
5313by @code{make-glyph-code}. You can use such an alias to define a
5314small-numbered glyph code which specifies a character with a face.
42b85554
RS
5315
5316@item @code{nil}
c5b0bab9 5317This glyph code is simple.
42b85554
RS
5318@end table
5319
8241495d 5320@defun create-glyph string
8241495d
RS
5321This function returns a newly-allocated glyph code which is set up to
5322display by sending @var{string} to the terminal.
5323@end defun
5324
42b85554
RS
5325@node Beeping
5326@section Beeping
6d0d3a2f 5327@c @cindex beeping "beep" is adjacent
42b85554
RS
5328@cindex bell
5329
f9f59935
RS
5330 This section describes how to make Emacs ring the bell (or blink the
5331screen) to attract the user's attention. Be conservative about how
5332often you do this; frequent bells can become irritating. Also be
5333careful not to use just beeping when signaling an error is more
cf6e4adc 5334appropriate. (@xref{Errors}.)
42b85554 5335
a9f0a989 5336@defun ding &optional do-not-terminate
42b85554
RS
5337@cindex keyboard macro termination
5338This function beeps, or flashes the screen (see @code{visible-bell} below).
5339It also terminates any keyboard macro currently executing unless
a9f0a989 5340@var{do-not-terminate} is non-@code{nil}.
42b85554
RS
5341@end defun
5342
a9f0a989 5343@defun beep &optional do-not-terminate
42b85554
RS
5344This is a synonym for @code{ding}.
5345@end defun
5346
1911e6e5 5347@defopt visible-bell
42b85554
RS
5348This variable determines whether Emacs should flash the screen to
5349represent a bell. Non-@code{nil} means yes, @code{nil} means no. This
ab7c5459 5350is effective on graphical displays, and on text-only terminals
969fe9b5
RS
5351provided the terminal's Termcap entry defines the visible bell
5352capability (@samp{vb}).
1911e6e5 5353@end defopt
42b85554 5354
f9f59935
RS
5355@defvar ring-bell-function
5356If this is non-@code{nil}, it specifies how Emacs should ``ring the
a40d4712
PR
5357bell.'' Its value should be a function of no arguments. If this is
5358non-@code{nil}, it takes precedence over the @code{visible-bell}
5359variable.
f9f59935
RS
5360@end defvar
5361
42b85554
RS
5362@node Window Systems
5363@section Window Systems
5364
5365 Emacs works with several window systems, most notably the X Window
827b7ee7 5366System. Both Emacs and X use the term ``window,'' but use it
42b85554
RS
5367differently. An Emacs frame is a single window as far as X is
5368concerned; the individual Emacs windows are not known to X at all.
5369
5370@defvar window-system
42b85554 5371This variable tells Lisp programs what window system Emacs is running
1911e6e5
RS
5372under. The possible values are
5373
5374@table @code
5375@item x
5376@cindex X Window System
5377Emacs is displaying using X.
5378@item pc
8241495d 5379Emacs is displaying using MS-DOS.
1911e6e5 5380@item w32
05aea714 5381Emacs is displaying using Windows.
8241495d
RS
5382@item mac
5383Emacs is displaying using a Macintosh.
1911e6e5
RS
5384@item nil
5385Emacs is using a character-based terminal.
5386@end table
42b85554
RS
5387@end defvar
5388
42b85554 5389@defvar window-setup-hook
f9f59935
RS
5390This variable is a normal hook which Emacs runs after handling the
5391initialization files. Emacs runs this hook after it has completed
a40d4712 5392loading your init file, the default initialization file (if
a9f0a989 5393any), and the terminal-specific Lisp code, and running the hook
42b85554
RS
5394@code{term-setup-hook}.
5395
5396This hook is used for internal purposes: setting up communication with
5397the window system, and creating the initial window. Users should not
5398interfere with it.
5399@end defvar
ab5796a9
MB
5400
5401@ignore
5402 arch-tag: ffdf5714-7ecf-415b-9023-fbc6b409c2c6
5403@end ignore