Merge pull request #471 from wolfmanjm/feature/three-point-bed-levelling-strategy
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
... / ...
CommitLineData
1/*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
10
11#include <math.h>
12#include <string>
13using std::string;
14
15#include "Planner.h"
16#include "Conveyor.h"
17#include "Robot.h"
18#include "nuts_bolts.h"
19#include "Pin.h"
20#include "StepperMotor.h"
21#include "Gcode.h"
22#include "PublicDataRequest.h"
23#include "RobotPublicAccess.h"
24#include "arm_solutions/BaseSolution.h"
25#include "arm_solutions/CartesianSolution.h"
26#include "arm_solutions/RotatableCartesianSolution.h"
27#include "arm_solutions/LinearDeltaSolution.h"
28#include "arm_solutions/HBotSolution.h"
29#include "arm_solutions/MorganSCARASolution.h"
30#include "StepTicker.h"
31#include "checksumm.h"
32#include "utils.h"
33#include "ConfigValue.h"
34#include "libs/StreamOutput.h"
35#include "StreamOutputPool.h"
36
37#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
38#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
39#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
40#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
41#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
42#define arc_correction_checksum CHECKSUM("arc_correction")
43#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
44#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
45#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
46
47// arm solutions
48#define arm_solution_checksum CHECKSUM("arm_solution")
49#define cartesian_checksum CHECKSUM("cartesian")
50#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
51#define rostock_checksum CHECKSUM("rostock")
52#define linear_delta_checksum CHECKSUM("linear_delta")
53#define delta_checksum CHECKSUM("delta")
54#define hbot_checksum CHECKSUM("hbot")
55#define corexy_checksum CHECKSUM("corexy")
56#define kossel_checksum CHECKSUM("kossel")
57#define morgan_checksum CHECKSUM("morgan")
58
59// stepper motor stuff
60#define alpha_step_pin_checksum CHECKSUM("alpha_step_pin")
61#define beta_step_pin_checksum CHECKSUM("beta_step_pin")
62#define gamma_step_pin_checksum CHECKSUM("gamma_step_pin")
63#define alpha_dir_pin_checksum CHECKSUM("alpha_dir_pin")
64#define beta_dir_pin_checksum CHECKSUM("beta_dir_pin")
65#define gamma_dir_pin_checksum CHECKSUM("gamma_dir_pin")
66#define alpha_en_pin_checksum CHECKSUM("alpha_en_pin")
67#define beta_en_pin_checksum CHECKSUM("beta_en_pin")
68#define gamma_en_pin_checksum CHECKSUM("gamma_en_pin")
69
70#define alpha_steps_per_mm_checksum CHECKSUM("alpha_steps_per_mm")
71#define beta_steps_per_mm_checksum CHECKSUM("beta_steps_per_mm")
72#define gamma_steps_per_mm_checksum CHECKSUM("gamma_steps_per_mm")
73
74#define alpha_max_rate_checksum CHECKSUM("alpha_max_rate")
75#define beta_max_rate_checksum CHECKSUM("beta_max_rate")
76#define gamma_max_rate_checksum CHECKSUM("gamma_max_rate")
77
78
79// new-style actuator stuff
80#define actuator_checksum CHEKCSUM("actuator")
81
82#define step_pin_checksum CHECKSUM("step_pin")
83#define dir_pin_checksum CHEKCSUM("dir_pin")
84#define en_pin_checksum CHECKSUM("en_pin")
85
86#define steps_per_mm_checksum CHECKSUM("steps_per_mm")
87#define max_rate_checksum CHECKSUM("max_rate")
88
89#define alpha_checksum CHECKSUM("alpha")
90#define beta_checksum CHECKSUM("beta")
91#define gamma_checksum CHECKSUM("gamma")
92
93
94#define NEXT_ACTION_DEFAULT 0
95#define NEXT_ACTION_DWELL 1
96#define NEXT_ACTION_GO_HOME 2
97
98#define MOTION_MODE_SEEK 0 // G0
99#define MOTION_MODE_LINEAR 1 // G1
100#define MOTION_MODE_CW_ARC 2 // G2
101#define MOTION_MODE_CCW_ARC 3 // G3
102#define MOTION_MODE_CANCEL 4 // G80
103
104#define PATH_CONTROL_MODE_EXACT_PATH 0
105#define PATH_CONTROL_MODE_EXACT_STOP 1
106#define PATH_CONTROL_MODE_CONTINOUS 2
107
108#define PROGRAM_FLOW_RUNNING 0
109#define PROGRAM_FLOW_PAUSED 1
110#define PROGRAM_FLOW_COMPLETED 2
111
112#define SPINDLE_DIRECTION_CW 0
113#define SPINDLE_DIRECTION_CCW 1
114
115// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
116// It takes care of cutting arcs into segments, same thing for line that are too long
117#define max(a,b) (((a) > (b)) ? (a) : (b))
118
119Robot::Robot()
120{
121 this->inch_mode = false;
122 this->absolute_mode = true;
123 this->motion_mode = MOTION_MODE_SEEK;
124 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
125 clear_vector(this->last_milestone);
126 this->arm_solution = NULL;
127 seconds_per_minute = 60.0F;
128 this->clearToolOffset();
129 this->adjustZfnc= nullptr;
130}
131
132//Called when the module has just been loaded
133void Robot::on_module_loaded()
134{
135 this->register_for_event(ON_GCODE_RECEIVED);
136 this->register_for_event(ON_GET_PUBLIC_DATA);
137 this->register_for_event(ON_SET_PUBLIC_DATA);
138
139 // Configuration
140 this->on_config_reload(this);
141}
142
143void Robot::on_config_reload(void *argument)
144{
145
146 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
147 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
148 // To make adding those solution easier, they have their own, separate object.
149 // Here we read the config to find out which arm solution to use
150 if (this->arm_solution) delete this->arm_solution;
151 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
152 // Note checksums are not const expressions when in debug mode, so don't use switch
153 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
154 this->arm_solution = new HBotSolution(THEKERNEL->config);
155
156 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
157 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
158
159 } else if(solution_checksum == rotatable_cartesian_checksum) {
160 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
161
162 } else if(solution_checksum == morgan_checksum) {
163 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
164
165 } else if(solution_checksum == cartesian_checksum) {
166 this->arm_solution = new CartesianSolution(THEKERNEL->config);
167
168 } else {
169 this->arm_solution = new CartesianSolution(THEKERNEL->config);
170 }
171
172
173 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
174 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
175 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
176 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
177 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.5f)->as_number();
178 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
179
180 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
181 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
182 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
183
184 Pin alpha_step_pin;
185 Pin alpha_dir_pin;
186 Pin alpha_en_pin;
187 Pin beta_step_pin;
188 Pin beta_dir_pin;
189 Pin beta_en_pin;
190 Pin gamma_step_pin;
191 Pin gamma_dir_pin;
192 Pin gamma_en_pin;
193
194 alpha_step_pin.from_string( THEKERNEL->config->value(alpha_step_pin_checksum )->by_default("2.0" )->as_string())->as_output();
195 alpha_dir_pin.from_string( THEKERNEL->config->value(alpha_dir_pin_checksum )->by_default("0.5" )->as_string())->as_output();
196 alpha_en_pin.from_string( THEKERNEL->config->value(alpha_en_pin_checksum )->by_default("0.4" )->as_string())->as_output();
197 beta_step_pin.from_string( THEKERNEL->config->value(beta_step_pin_checksum )->by_default("2.1" )->as_string())->as_output();
198 beta_dir_pin.from_string( THEKERNEL->config->value(beta_dir_pin_checksum )->by_default("0.11" )->as_string())->as_output();
199 beta_en_pin.from_string( THEKERNEL->config->value(beta_en_pin_checksum )->by_default("0.10" )->as_string())->as_output();
200 gamma_step_pin.from_string( THEKERNEL->config->value(gamma_step_pin_checksum )->by_default("2.2" )->as_string())->as_output();
201 gamma_dir_pin.from_string( THEKERNEL->config->value(gamma_dir_pin_checksum )->by_default("0.20" )->as_string())->as_output();
202 gamma_en_pin.from_string( THEKERNEL->config->value(gamma_en_pin_checksum )->by_default("0.19" )->as_string())->as_output();
203
204 float steps_per_mm[3] = {
205 THEKERNEL->config->value(alpha_steps_per_mm_checksum)->by_default( 80.0F)->as_number(),
206 THEKERNEL->config->value(beta_steps_per_mm_checksum )->by_default( 80.0F)->as_number(),
207 THEKERNEL->config->value(gamma_steps_per_mm_checksum)->by_default(2560.0F)->as_number(),
208 };
209
210 // TODO: delete or detect old steppermotors
211 // Make our 3 StepperMotors
212 this->alpha_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(alpha_step_pin, alpha_dir_pin, alpha_en_pin) );
213 this->beta_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(beta_step_pin, beta_dir_pin, beta_en_pin ) );
214 this->gamma_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(gamma_step_pin, gamma_dir_pin, gamma_en_pin) );
215
216 alpha_stepper_motor->change_steps_per_mm(steps_per_mm[0]);
217 beta_stepper_motor->change_steps_per_mm(steps_per_mm[1]);
218 gamma_stepper_motor->change_steps_per_mm(steps_per_mm[2]);
219
220 alpha_stepper_motor->max_rate = THEKERNEL->config->value(alpha_max_rate_checksum)->by_default(30000.0F)->as_number() / 60.0F;
221 beta_stepper_motor->max_rate = THEKERNEL->config->value(beta_max_rate_checksum )->by_default(30000.0F)->as_number() / 60.0F;
222 gamma_stepper_motor->max_rate = THEKERNEL->config->value(gamma_max_rate_checksum)->by_default(30000.0F)->as_number() / 60.0F;
223 check_max_actuator_speeds(); // check the configs are sane
224
225 actuators.clear();
226 actuators.push_back(alpha_stepper_motor);
227 actuators.push_back(beta_stepper_motor);
228 actuators.push_back(gamma_stepper_motor);
229
230
231 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
232 // so the first move can be correct if homing is not performed
233 float actuator_pos[3];
234 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
235 for (int i = 0; i < 3; i++)
236 actuators[i]->change_last_milestone(actuator_pos[i]);
237
238 //this->clearToolOffset();
239}
240
241// this does a sanity check that actuator speeds do not exceed steps rate capability
242// we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
243void Robot::check_max_actuator_speeds()
244{
245 float step_freq= alpha_stepper_motor->max_rate * alpha_stepper_motor->get_steps_per_mm();
246 if(step_freq > THEKERNEL->base_stepping_frequency) {
247 alpha_stepper_motor->max_rate= floorf(THEKERNEL->base_stepping_frequency / alpha_stepper_motor->get_steps_per_mm());
248 THEKERNEL->streams->printf("WARNING: alpha_max_rate exceeds base_stepping_frequency * alpha_steps_per_mm: %f, setting to %f\n", step_freq, alpha_stepper_motor->max_rate);
249 }
250
251 step_freq= beta_stepper_motor->max_rate * beta_stepper_motor->get_steps_per_mm();
252 if(step_freq > THEKERNEL->base_stepping_frequency) {
253 beta_stepper_motor->max_rate= floorf(THEKERNEL->base_stepping_frequency / beta_stepper_motor->get_steps_per_mm());
254 THEKERNEL->streams->printf("WARNING: beta_max_rate exceeds base_stepping_frequency * beta_steps_per_mm: %f, setting to %f\n", step_freq, beta_stepper_motor->max_rate);
255 }
256
257 step_freq= gamma_stepper_motor->max_rate * gamma_stepper_motor->get_steps_per_mm();
258 if(step_freq > THEKERNEL->base_stepping_frequency) {
259 gamma_stepper_motor->max_rate= floorf(THEKERNEL->base_stepping_frequency / gamma_stepper_motor->get_steps_per_mm());
260 THEKERNEL->streams->printf("WARNING: gamma_max_rate exceeds base_stepping_frequency * gamma_steps_per_mm: %f, setting to %f\n", step_freq, gamma_stepper_motor->max_rate);
261 }
262}
263
264void Robot::on_get_public_data(void *argument)
265{
266 PublicDataRequest *pdr = static_cast<PublicDataRequest *>(argument);
267
268 if(!pdr->starts_with(robot_checksum)) return;
269
270 if(pdr->second_element_is(speed_override_percent_checksum)) {
271 static float return_data;
272 return_data = 100.0F * 60.0F / seconds_per_minute;
273 pdr->set_data_ptr(&return_data);
274 pdr->set_taken();
275
276 } else if(pdr->second_element_is(current_position_checksum)) {
277 static float return_data[3];
278 return_data[0] = from_millimeters(this->last_milestone[0]);
279 return_data[1] = from_millimeters(this->last_milestone[1]);
280 return_data[2] = from_millimeters(this->last_milestone[2]);
281
282 pdr->set_data_ptr(&return_data);
283 pdr->set_taken();
284 }
285}
286
287void Robot::on_set_public_data(void *argument)
288{
289 PublicDataRequest *pdr = static_cast<PublicDataRequest *>(argument);
290
291 if(!pdr->starts_with(robot_checksum)) return;
292
293 if(pdr->second_element_is(speed_override_percent_checksum)) {
294 // NOTE do not use this while printing!
295 float t = *static_cast<float *>(pdr->get_data_ptr());
296 // enforce minimum 10% speed
297 if (t < 10.0F) t = 10.0F;
298
299 this->seconds_per_minute = t / 0.6F; // t * 60 / 100
300 pdr->set_taken();
301 } else if(pdr->second_element_is(current_position_checksum)) {
302 float *t = static_cast<float *>(pdr->get_data_ptr());
303 for (int i = 0; i < 3; i++) {
304 this->last_milestone[i] = this->to_millimeters(t[i]);
305 }
306
307 float actuator_pos[3];
308 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
309 for (int i = 0; i < 3; i++)
310 actuators[i]->change_last_milestone(actuator_pos[i]);
311
312 pdr->set_taken();
313 }
314}
315
316//A GCode has been received
317//See if the current Gcode line has some orders for us
318void Robot::on_gcode_received(void *argument)
319{
320 Gcode *gcode = static_cast<Gcode *>(argument);
321
322 this->motion_mode = -1;
323
324 //G-letter Gcodes are mostly what the Robot module is interrested in, other modules also catch the gcode event and do stuff accordingly
325 if( gcode->has_g) {
326 switch( gcode->g ) {
327 case 0: this->motion_mode = MOTION_MODE_SEEK; gcode->mark_as_taken(); break;
328 case 1: this->motion_mode = MOTION_MODE_LINEAR; gcode->mark_as_taken(); break;
329 case 2: this->motion_mode = MOTION_MODE_CW_ARC; gcode->mark_as_taken(); break;
330 case 3: this->motion_mode = MOTION_MODE_CCW_ARC; gcode->mark_as_taken(); break;
331 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); gcode->mark_as_taken(); break;
332 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); gcode->mark_as_taken(); break;
333 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); gcode->mark_as_taken(); break;
334 case 20: this->inch_mode = true; gcode->mark_as_taken(); break;
335 case 21: this->inch_mode = false; gcode->mark_as_taken(); break;
336 case 90: this->absolute_mode = true; gcode->mark_as_taken(); break;
337 case 91: this->absolute_mode = false; gcode->mark_as_taken(); break;
338 case 92: {
339 if(gcode->get_num_args() == 0) {
340 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
341 reset_axis_position(0, i);
342 }
343
344 } else {
345 for (char letter = 'X'; letter <= 'Z'; letter++) {
346 if ( gcode->has_letter(letter) ) {
347 reset_axis_position(this->to_millimeters(gcode->get_value(letter)), letter - 'X');
348 }
349 }
350 }
351
352 gcode->mark_as_taken();
353 return;
354 }
355 }
356 } else if( gcode->has_m) {
357 switch( gcode->m ) {
358 case 92: // M92 - set steps per mm
359 if (gcode->has_letter('X'))
360 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
361 if (gcode->has_letter('Y'))
362 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
363 if (gcode->has_letter('Z'))
364 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
365 if (gcode->has_letter('F'))
366 seconds_per_minute = gcode->get_value('F');
367
368 gcode->stream->printf("X:%g Y:%g Z:%g F:%g ", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm, seconds_per_minute);
369 gcode->add_nl = true;
370 gcode->mark_as_taken();
371 check_max_actuator_speeds();
372 return;
373 case 114: {
374 char buf[32];
375 int n = snprintf(buf, sizeof(buf), "C: X:%1.3f Y:%1.3f Z:%1.3f",
376 from_millimeters(this->last_milestone[0]),
377 from_millimeters(this->last_milestone[1]),
378 from_millimeters(this->last_milestone[2]));
379 gcode->txt_after_ok.append(buf, n);
380 gcode->mark_as_taken();
381 }
382 return;
383
384 case 203: // M203 Set maximum feedrates in mm/sec
385 if (gcode->has_letter('X'))
386 this->max_speeds[X_AXIS] = gcode->get_value('X');
387 if (gcode->has_letter('Y'))
388 this->max_speeds[Y_AXIS] = gcode->get_value('Y');
389 if (gcode->has_letter('Z'))
390 this->max_speeds[Z_AXIS] = gcode->get_value('Z');
391 if (gcode->has_letter('A'))
392 alpha_stepper_motor->max_rate = gcode->get_value('A');
393 if (gcode->has_letter('B'))
394 beta_stepper_motor->max_rate = gcode->get_value('B');
395 if (gcode->has_letter('C'))
396 gamma_stepper_motor->max_rate = gcode->get_value('C');
397
398 check_max_actuator_speeds();
399
400 gcode->stream->printf("X:%g Y:%g Z:%g A:%g B:%g C:%g ",
401 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
402 alpha_stepper_motor->max_rate, beta_stepper_motor->max_rate, gamma_stepper_motor->max_rate);
403 gcode->add_nl = true;
404 gcode->mark_as_taken();
405 break;
406
407 case 204: // M204 Snnn - set acceleration to nnn, NB only Snnn is currently supported
408 gcode->mark_as_taken();
409
410 if (gcode->has_letter('S')) {
411 // TODO for safety so it applies only to following gcodes, maybe a better way to do this?
412 THEKERNEL->conveyor->wait_for_empty_queue();
413 float acc = gcode->get_value('S'); // mm/s^2
414 // enforce minimum
415 if (acc < 1.0F)
416 acc = 1.0F;
417 THEKERNEL->planner->acceleration = acc;
418 }
419 break;
420
421 case 205: // M205 Xnnn - set junction deviation Snnn - Set minimum planner speed
422 gcode->mark_as_taken();
423 if (gcode->has_letter('X')) {
424 float jd = gcode->get_value('X');
425 // enforce minimum
426 if (jd < 0.0F)
427 jd = 0.0F;
428 THEKERNEL->planner->junction_deviation = jd;
429 }
430 if (gcode->has_letter('S')) {
431 float mps = gcode->get_value('S');
432 // enforce minimum
433 if (mps < 0.0F)
434 mps = 0.0F;
435 THEKERNEL->planner->minimum_planner_speed = mps;
436 }
437 break;
438
439 case 220: // M220 - speed override percentage
440 gcode->mark_as_taken();
441 if (gcode->has_letter('S')) {
442 float factor = gcode->get_value('S');
443 // enforce minimum 10% speed
444 if (factor < 10.0F)
445 factor = 10.0F;
446 // enforce maximum 10x speed
447 if (factor > 1000.0F)
448 factor = 1000.0F;
449
450 seconds_per_minute = 6000.0F / factor;
451 }
452 break;
453
454 case 400: // wait until all moves are done up to this point
455 gcode->mark_as_taken();
456 THEKERNEL->conveyor->wait_for_empty_queue();
457 break;
458
459 case 500: // M500 saves some volatile settings to config override file
460 case 503: { // M503 just prints the settings
461 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm);
462 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f\n", THEKERNEL->planner->acceleration);
463 gcode->stream->printf(";X- Junction Deviation, S - Minimum Planner speed:\nM205 X%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->minimum_planner_speed);
464 gcode->stream->printf(";Max feedrates in mm/sec, XYZ cartesian, ABC actuator:\nM203 X%1.5f Y%1.5f Z%1.5f A%1.5f B%1.5f C%1.5f\n",
465 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
466 alpha_stepper_motor->max_rate, beta_stepper_motor->max_rate, gamma_stepper_motor->max_rate);
467
468 // get or save any arm solution specific optional values
469 BaseSolution::arm_options_t options;
470 if(arm_solution->get_optional(options) && !options.empty()) {
471 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
472 for(auto &i : options) {
473 gcode->stream->printf(" %c%1.4f", i.first, i.second);
474 }
475 gcode->stream->printf("\n");
476 }
477 gcode->mark_as_taken();
478 break;
479 }
480
481 case 665: { // M665 set optional arm solution variables based on arm solution.
482 gcode->mark_as_taken();
483 // the parameter args could be any letter except S so ask solution what options it supports
484 BaseSolution::arm_options_t options;
485 if(arm_solution->get_optional(options)) {
486 for(auto &i : options) {
487 // foreach optional value
488 char c = i.first;
489 if(gcode->has_letter(c)) { // set new value
490 i.second = gcode->get_value(c);
491 }
492 // print all current values of supported options
493 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
494 gcode->add_nl = true;
495 }
496 // set the new options
497 arm_solution->set_optional(options);
498 }
499
500 // set delta segments per second, not saved by M500
501 if(gcode->has_letter('S')) {
502 this->delta_segments_per_second = gcode->get_value('S');
503 }
504 break;
505 }
506 }
507 }
508
509 if( this->motion_mode < 0)
510 return;
511
512 //Get parameters
513 float target[3], offset[3];
514 clear_vector(offset);
515
516 memcpy(target, this->last_milestone, sizeof(target)); //default to last target
517
518 for(char letter = 'I'; letter <= 'K'; letter++) {
519 if( gcode->has_letter(letter) ) {
520 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
521 }
522 }
523 for(char letter = 'X'; letter <= 'Z'; letter++) {
524 if( gcode->has_letter(letter) ) {
525 target[letter - 'X'] = this->to_millimeters(gcode->get_value(letter)) + (this->absolute_mode ? this->toolOffset[letter - 'X'] : target[letter - 'X']);
526 }
527 }
528
529 if( gcode->has_letter('F') ) {
530 if( this->motion_mode == MOTION_MODE_SEEK )
531 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
532 else
533 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
534 }
535
536 //Perform any physical actions
537 switch(this->motion_mode) {
538 case MOTION_MODE_CANCEL: break;
539 case MOTION_MODE_SEEK : this->append_line(gcode, target, this->seek_rate / seconds_per_minute ); break;
540 case MOTION_MODE_LINEAR: this->append_line(gcode, target, this->feed_rate / seconds_per_minute ); break;
541 case MOTION_MODE_CW_ARC:
542 case MOTION_MODE_CCW_ARC: this->compute_arc(gcode, offset, target ); break;
543 }
544
545 // last_milestone was set to target in append_milestone, no need to do it again
546
547}
548
549// We received a new gcode, and one of the functions
550// determined the distance for that given gcode. So now we can attach this gcode to the right block
551// and continue
552void Robot::distance_in_gcode_is_known(Gcode *gcode)
553{
554
555 //If the queue is empty, execute immediatly, otherwise attach to the last added block
556 THEKERNEL->conveyor->append_gcode(gcode);
557}
558
559// reset the position for all axis (used in homing for delta as last_milestone may be bogus)
560void Robot::reset_axis_position(float x, float y, float z)
561{
562 this->last_milestone[X_AXIS] = x;
563 this->last_milestone[Y_AXIS] = y;
564 this->last_milestone[Z_AXIS] = z;
565
566 float actuator_pos[3];
567 arm_solution->cartesian_to_actuator(this->last_milestone, actuator_pos);
568 for (int i = 0; i < 3; i++)
569 actuators[i]->change_last_milestone(actuator_pos[i]);
570}
571
572// Reset the position for an axis (used in homing and G92)
573void Robot::reset_axis_position(float position, int axis)
574{
575 this->last_milestone[axis] = position;
576
577 float actuator_pos[3];
578 arm_solution->cartesian_to_actuator(this->last_milestone, actuator_pos);
579
580 for (int i = 0; i < 3; i++)
581 actuators[i]->change_last_milestone(actuator_pos[i]);
582}
583
584
585// Convert target from millimeters to steps, and append this to the planner
586void Robot::append_milestone( float target[], float rate_mm_s )
587{
588 float deltas[3];
589 float unit_vec[3];
590 float actuator_pos[3];
591 float adj_target[3]; // adjust target for bed leveling
592 float millimeters_of_travel;
593
594 memcpy(adj_target, target, sizeof(adj_target));
595
596 // check function pointer and call if set to adjust Z for bed leveling
597 if(adjustZfnc) {
598 adj_target[Z_AXIS] += adjustZfnc(target[X_AXIS], target[Y_AXIS]);
599 }
600
601 // find distance moved by each axis, use actual adjusted target
602 for (int axis = X_AXIS; axis <= Z_AXIS; axis++)
603 deltas[axis] = adj_target[axis] - last_milestone[axis];
604
605 // Compute how long this move moves, so we can attach it to the block for later use
606 millimeters_of_travel = sqrtf( powf( deltas[X_AXIS], 2 ) + powf( deltas[Y_AXIS], 2 ) + powf( deltas[Z_AXIS], 2 ) );
607
608 // find distance unit vector
609 for (int i = 0; i < 3; i++)
610 unit_vec[i] = deltas[i] / millimeters_of_travel;
611
612 // Do not move faster than the configured cartesian limits
613 for (int axis = X_AXIS; axis <= Z_AXIS; axis++) {
614 if ( max_speeds[axis] > 0 ) {
615 float axis_speed = fabs(unit_vec[axis] * rate_mm_s);
616
617 if (axis_speed > max_speeds[axis])
618 rate_mm_s *= ( max_speeds[axis] / axis_speed );
619 }
620 }
621
622 // find actuator position given cartesian position, use actual adjusted target
623 arm_solution->cartesian_to_actuator( adj_target, actuator_pos );
624
625 // check per-actuator speed limits
626 for (int actuator = 0; actuator <= 2; actuator++) {
627 float actuator_rate = fabs(actuator_pos[actuator] - actuators[actuator]->last_milestone_mm) * rate_mm_s / millimeters_of_travel;
628
629 if (actuator_rate > actuators[actuator]->max_rate)
630 rate_mm_s *= (actuators[actuator]->max_rate / actuator_rate);
631 }
632
633 // Append the block to the planner
634 THEKERNEL->planner->append_block( actuator_pos, rate_mm_s, millimeters_of_travel, unit_vec );
635
636 // Update the last_milestone to the current target for the next time we use last_milestone, use the requested target not the adjusted one
637 memcpy(this->last_milestone, target, sizeof(this->last_milestone)); // this->last_milestone[] = target[];
638
639}
640
641// Append a move to the queue ( cutting it into segments if needed )
642void Robot::append_line(Gcode *gcode, float target[], float rate_mm_s )
643{
644
645 // Find out the distance for this gcode
646 gcode->millimeters_of_travel = powf( target[X_AXIS] - this->last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - this->last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - this->last_milestone[Z_AXIS], 2 );
647
648 // We ignore non-moves ( for example, extruder moves are not XYZ moves )
649 if( gcode->millimeters_of_travel < 1e-8F ) {
650 return;
651 }
652
653 gcode->millimeters_of_travel = sqrtf(gcode->millimeters_of_travel);
654
655 // Mark the gcode as having a known distance
656 this->distance_in_gcode_is_known( gcode );
657
658 // We cut the line into smaller segments. This is not usefull in a cartesian robot, but necessary for robots with rotational axes.
659 // In cartesian robot, a high "mm_per_line_segment" setting will prevent waste.
660 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
661 uint16_t segments;
662
663 if(this->delta_segments_per_second > 1.0F) {
664 // enabled if set to something > 1, it is set to 0.0 by default
665 // segment based on current speed and requested segments per second
666 // the faster the travel speed the fewer segments needed
667 // NOTE rate is mm/sec and we take into account any speed override
668 float seconds = gcode->millimeters_of_travel / rate_mm_s;
669 segments = max(1, ceil(this->delta_segments_per_second * seconds));
670 // TODO if we are only moving in Z on a delta we don't really need to segment at all
671
672 } else {
673 if(this->mm_per_line_segment == 0.0F) {
674 segments = 1; // don't split it up
675 } else {
676 segments = ceil( gcode->millimeters_of_travel / this->mm_per_line_segment);
677 }
678 }
679
680 if (segments > 1) {
681 // A vector to keep track of the endpoint of each segment
682 float segment_delta[3];
683 float segment_end[3];
684
685 // How far do we move each segment?
686 for (int i = X_AXIS; i <= Z_AXIS; i++)
687 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
688
689 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
690 // We always add another point after this loop so we stop at segments-1, ie i < segments
691 for (int i = 1; i < segments; i++) {
692 for(int axis = X_AXIS; axis <= Z_AXIS; axis++ )
693 segment_end[axis] = last_milestone[axis] + segment_delta[axis];
694
695 // Append the end of this segment to the queue
696 this->append_milestone(segment_end, rate_mm_s);
697 }
698 }
699
700 // Append the end of this full move to the queue
701 this->append_milestone(target, rate_mm_s);
702
703 // if adding these blocks didn't start executing, do that now
704 THEKERNEL->conveyor->ensure_running();
705}
706
707
708// Append an arc to the queue ( cutting it into segments as needed )
709void Robot::append_arc(Gcode *gcode, float target[], float offset[], float radius, bool is_clockwise )
710{
711
712 // Scary math
713 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
714 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
715 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
716 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
717 float r_axis1 = -offset[this->plane_axis_1];
718 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
719 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
720
721 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
722 float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
723 if (angular_travel < 0) {
724 angular_travel += 2 * M_PI;
725 }
726 if (is_clockwise) {
727 angular_travel -= 2 * M_PI;
728 }
729
730 // Find the distance for this gcode
731 gcode->millimeters_of_travel = hypotf(angular_travel * radius, fabs(linear_travel));
732
733 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
734 if( gcode->millimeters_of_travel < 0.0001F ) {
735 return;
736 }
737
738 // Mark the gcode as having a known distance
739 this->distance_in_gcode_is_known( gcode );
740
741 // Figure out how many segments for this gcode
742 uint16_t segments = floor(gcode->millimeters_of_travel / this->mm_per_arc_segment);
743
744 float theta_per_segment = angular_travel / segments;
745 float linear_per_segment = linear_travel / segments;
746
747 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
748 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
749 r_T = [cos(phi) -sin(phi);
750 sin(phi) cos(phi] * r ;
751 For arc generation, the center of the circle is the axis of rotation and the radius vector is
752 defined from the circle center to the initial position. Each line segment is formed by successive
753 vector rotations. This requires only two cos() and sin() computations to form the rotation
754 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
755 all float numbers are single precision on the Arduino. (True float precision will not have
756 round off issues for CNC applications.) Single precision error can accumulate to be greater than
757 tool precision in some cases. Therefore, arc path correction is implemented.
758
759 Small angle approximation may be used to reduce computation overhead further. This approximation
760 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
761 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
762 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
763 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
764 issue for CNC machines with the single precision Arduino calculations.
765 This approximation also allows mc_arc to immediately insert a line segment into the planner
766 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
767 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
768 This is important when there are successive arc motions.
769 */
770 // Vector rotation matrix values
771 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
772 float sin_T = theta_per_segment;
773
774 float arc_target[3];
775 float sin_Ti;
776 float cos_Ti;
777 float r_axisi;
778 uint16_t i;
779 int8_t count = 0;
780
781 // Initialize the linear axis
782 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
783
784 for (i = 1; i < segments; i++) { // Increment (segments-1)
785
786 if (count < this->arc_correction ) {
787 // Apply vector rotation matrix
788 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
789 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
790 r_axis1 = r_axisi;
791 count++;
792 } else {
793 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
794 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
795 cos_Ti = cosf(i * theta_per_segment);
796 sin_Ti = sinf(i * theta_per_segment);
797 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
798 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
799 count = 0;
800 }
801
802 // Update arc_target location
803 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
804 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
805 arc_target[this->plane_axis_2] += linear_per_segment;
806
807 // Append this segment to the queue
808 this->append_milestone(arc_target, this->feed_rate / seconds_per_minute);
809
810 }
811
812 // Ensure last segment arrives at target location.
813 this->append_milestone(target, this->feed_rate / seconds_per_minute);
814}
815
816// Do the math for an arc and add it to the queue
817void Robot::compute_arc(Gcode *gcode, float offset[], float target[])
818{
819
820 // Find the radius
821 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
822
823 // Set clockwise/counter-clockwise sign for mc_arc computations
824 bool is_clockwise = false;
825 if( this->motion_mode == MOTION_MODE_CW_ARC ) {
826 is_clockwise = true;
827 }
828
829 // Append arc
830 this->append_arc(gcode, target, offset, radius, is_clockwise );
831
832}
833
834
835float Robot::theta(float x, float y)
836{
837 float t = atanf(x / fabs(y));
838 if (y > 0) {
839 return(t);
840 } else {
841 if (t > 0) {
842 return(M_PI - t);
843 } else {
844 return(-M_PI - t);
845 }
846 }
847}
848
849void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
850{
851 this->plane_axis_0 = axis_0;
852 this->plane_axis_1 = axis_1;
853 this->plane_axis_2 = axis_2;
854}
855
856void Robot::clearToolOffset()
857{
858 memset(this->toolOffset, 0, sizeof(this->toolOffset));
859}
860
861void Robot::setToolOffset(const float offset[3])
862{
863 memcpy(this->toolOffset, offset, sizeof(this->toolOffset));
864}
865