Import documentation for the R6RS bytevector and port APIs.
[bpt/guile.git] / doc / ref / api-data.texi
CommitLineData
07d83abe
MV
1@c -*-texinfo-*-
2@c This is part of the GNU Guile Reference Manual.
b242715b 3@c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009
07d83abe
MV
4@c Free Software Foundation, Inc.
5@c See the file guile.texi for copying conditions.
6
7@page
8@node Simple Data Types
9@section Simple Generic Data Types
10
11This chapter describes those of Guile's simple data types which are
12primarily used for their role as items of generic data. By
13@dfn{simple} we mean data types that are not primarily used as
14containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
15For the documentation of such @dfn{compound} data types, see
16@ref{Compound Data Types}.
17
18@c One of the great strengths of Scheme is that there is no straightforward
19@c distinction between ``data'' and ``functionality''. For example,
20@c Guile's support for dynamic linking could be described:
21
22@c @itemize @bullet
23@c @item
24@c either in a ``data-centric'' way, as the behaviour and properties of the
25@c ``dynamically linked object'' data type, and the operations that may be
26@c applied to instances of this type
27
28@c @item
29@c or in a ``functionality-centric'' way, as the set of procedures that
30@c constitute Guile's support for dynamic linking, in the context of the
31@c module system.
32@c @end itemize
33
34@c The contents of this chapter are, therefore, a matter of judgment. By
35@c @dfn{generic}, we mean to select those data types whose typical use as
36@c @emph{data} in a wide variety of programming contexts is more important
37@c than their use in the implementation of a particular piece of
38@c @emph{functionality}. The last section of this chapter provides
39@c references for all the data types that are documented not here but in a
40@c ``functionality-centric'' way elsewhere in the manual.
41
42@menu
43* Booleans:: True/false values.
44* Numbers:: Numerical data types.
050ab45f
MV
45* Characters:: Single characters.
46* Character Sets:: Sets of characters.
47* Strings:: Sequences of characters.
b242715b 48* Bytevectors:: Sequences of bytes.
07d83abe
MV
49* Regular Expressions:: Pattern matching and substitution.
50* Symbols:: Symbols.
51* Keywords:: Self-quoting, customizable display keywords.
52* Other Types:: "Functionality-centric" data types.
53@end menu
54
55
56@node Booleans
57@subsection Booleans
58@tpindex Booleans
59
60The two boolean values are @code{#t} for true and @code{#f} for false.
61
62Boolean values are returned by predicate procedures, such as the general
63equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
64(@pxref{Equality}) and numerical and string comparison operators like
65@code{string=?} (@pxref{String Comparison}) and @code{<=}
66(@pxref{Comparison}).
67
68@lisp
69(<= 3 8)
70@result{} #t
71
72(<= 3 -3)
73@result{} #f
74
75(equal? "house" "houses")
76@result{} #f
77
78(eq? #f #f)
79@result{}
80#t
81@end lisp
82
83In test condition contexts like @code{if} and @code{cond} (@pxref{if
84cond case}), where a group of subexpressions will be evaluated only if a
85@var{condition} expression evaluates to ``true'', ``true'' means any
86value at all except @code{#f}.
87
88@lisp
89(if #t "yes" "no")
90@result{} "yes"
91
92(if 0 "yes" "no")
93@result{} "yes"
94
95(if #f "yes" "no")
96@result{} "no"
97@end lisp
98
99A result of this asymmetry is that typical Scheme source code more often
100uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
101represent an @code{if} or @code{cond} false value, whereas @code{#t} is
102not necessary to represent an @code{if} or @code{cond} true value.
103
104It is important to note that @code{#f} is @strong{not} equivalent to any
105other Scheme value. In particular, @code{#f} is not the same as the
106number 0 (like in C and C++), and not the same as the ``empty list''
107(like in some Lisp dialects).
108
109In C, the two Scheme boolean values are available as the two constants
110@code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
111Care must be taken with the false value @code{SCM_BOOL_F}: it is not
112false when used in C conditionals. In order to test for it, use
113@code{scm_is_false} or @code{scm_is_true}.
114
115@rnindex not
116@deffn {Scheme Procedure} not x
117@deffnx {C Function} scm_not (x)
118Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
119@end deffn
120
121@rnindex boolean?
122@deffn {Scheme Procedure} boolean? obj
123@deffnx {C Function} scm_boolean_p (obj)
124Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
125return @code{#f}.
126@end deffn
127
128@deftypevr {C Macro} SCM SCM_BOOL_T
129The @code{SCM} representation of the Scheme object @code{#t}.
130@end deftypevr
131
132@deftypevr {C Macro} SCM SCM_BOOL_F
133The @code{SCM} representation of the Scheme object @code{#f}.
134@end deftypevr
135
136@deftypefn {C Function} int scm_is_true (SCM obj)
137Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
138@end deftypefn
139
140@deftypefn {C Function} int scm_is_false (SCM obj)
141Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
142@end deftypefn
143
144@deftypefn {C Function} int scm_is_bool (SCM obj)
145Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
146return @code{0}.
147@end deftypefn
148
149@deftypefn {C Function} SCM scm_from_bool (int val)
150Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
151@end deftypefn
152
153@deftypefn {C Function} int scm_to_bool (SCM val)
154Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
155when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
156
157You should probably use @code{scm_is_true} instead of this function
158when you just want to test a @code{SCM} value for trueness.
159@end deftypefn
160
161@node Numbers
162@subsection Numerical data types
163@tpindex Numbers
164
165Guile supports a rich ``tower'' of numerical types --- integer,
166rational, real and complex --- and provides an extensive set of
167mathematical and scientific functions for operating on numerical
168data. This section of the manual documents those types and functions.
169
170You may also find it illuminating to read R5RS's presentation of numbers
171in Scheme, which is particularly clear and accessible: see
172@ref{Numbers,,,r5rs,R5RS}.
173
174@menu
175* Numerical Tower:: Scheme's numerical "tower".
176* Integers:: Whole numbers.
177* Reals and Rationals:: Real and rational numbers.
178* Complex Numbers:: Complex numbers.
179* Exactness:: Exactness and inexactness.
180* Number Syntax:: Read syntax for numerical data.
181* Integer Operations:: Operations on integer values.
182* Comparison:: Comparison predicates.
183* Conversion:: Converting numbers to and from strings.
184* Complex:: Complex number operations.
185* Arithmetic:: Arithmetic functions.
186* Scientific:: Scientific functions.
187* Primitive Numerics:: Primitive numeric functions.
188* Bitwise Operations:: Logical AND, OR, NOT, and so on.
189* Random:: Random number generation.
190@end menu
191
192
193@node Numerical Tower
194@subsubsection Scheme's Numerical ``Tower''
195@rnindex number?
196
197Scheme's numerical ``tower'' consists of the following categories of
198numbers:
199
200@table @dfn
201@item integers
202Whole numbers, positive or negative; e.g.@: --5, 0, 18.
203
204@item rationals
205The set of numbers that can be expressed as @math{@var{p}/@var{q}}
206where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
207pi (an irrational number) doesn't. These include integers
208(@math{@var{n}/1}).
209
210@item real numbers
211The set of numbers that describes all possible positions along a
212one-dimensional line. This includes rationals as well as irrational
213numbers.
214
215@item complex numbers
216The set of numbers that describes all possible positions in a two
217dimensional space. This includes real as well as imaginary numbers
218(@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
219@var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
220@minus{}1.)
221@end table
222
223It is called a tower because each category ``sits on'' the one that
224follows it, in the sense that every integer is also a rational, every
225rational is also real, and every real number is also a complex number
226(but with zero imaginary part).
227
228In addition to the classification into integers, rationals, reals and
229complex numbers, Scheme also distinguishes between whether a number is
230represented exactly or not. For example, the result of
9f1ba6a9
NJ
231@m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
232can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
07d83abe
MV
233Instead, it stores an inexact approximation, using the C type
234@code{double}.
235
236Guile can represent exact rationals of any magnitude, inexact
237rationals that fit into a C @code{double}, and inexact complex numbers
238with @code{double} real and imaginary parts.
239
240The @code{number?} predicate may be applied to any Scheme value to
241discover whether the value is any of the supported numerical types.
242
243@deffn {Scheme Procedure} number? obj
244@deffnx {C Function} scm_number_p (obj)
245Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
246@end deffn
247
248For example:
249
250@lisp
251(number? 3)
252@result{} #t
253
254(number? "hello there!")
255@result{} #f
256
257(define pi 3.141592654)
258(number? pi)
259@result{} #t
260@end lisp
261
5615f696
MV
262@deftypefn {C Function} int scm_is_number (SCM obj)
263This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
264@end deftypefn
265
07d83abe
MV
266The next few subsections document each of Guile's numerical data types
267in detail.
268
269@node Integers
270@subsubsection Integers
271
272@tpindex Integer numbers
273
274@rnindex integer?
275
276Integers are whole numbers, that is numbers with no fractional part,
277such as 2, 83, and @minus{}3789.
278
279Integers in Guile can be arbitrarily big, as shown by the following
280example.
281
282@lisp
283(define (factorial n)
284 (let loop ((n n) (product 1))
285 (if (= n 0)
286 product
287 (loop (- n 1) (* product n)))))
288
289(factorial 3)
290@result{} 6
291
292(factorial 20)
293@result{} 2432902008176640000
294
295(- (factorial 45))
296@result{} -119622220865480194561963161495657715064383733760000000000
297@end lisp
298
299Readers whose background is in programming languages where integers are
300limited by the need to fit into just 4 or 8 bytes of memory may find
301this surprising, or suspect that Guile's representation of integers is
302inefficient. In fact, Guile achieves a near optimal balance of
303convenience and efficiency by using the host computer's native
304representation of integers where possible, and a more general
305representation where the required number does not fit in the native
306form. Conversion between these two representations is automatic and
307completely invisible to the Scheme level programmer.
308
309The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
310inexact integers. They are explained in detail in the next section,
311together with reals and rationals.
312
313C has a host of different integer types, and Guile offers a host of
314functions to convert between them and the @code{SCM} representation.
315For example, a C @code{int} can be handled with @code{scm_to_int} and
316@code{scm_from_int}. Guile also defines a few C integer types of its
317own, to help with differences between systems.
318
319C integer types that are not covered can be handled with the generic
320@code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
321signed types, or with @code{scm_to_unsigned_integer} and
322@code{scm_from_unsigned_integer} for unsigned types.
323
324Scheme integers can be exact and inexact. For example, a number
325written as @code{3.0} with an explicit decimal-point is inexact, but
326it is also an integer. The functions @code{integer?} and
327@code{scm_is_integer} report true for such a number, but the functions
328@code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
329allow exact integers and thus report false. Likewise, the conversion
330functions like @code{scm_to_signed_integer} only accept exact
331integers.
332
333The motivation for this behavior is that the inexactness of a number
334should not be lost silently. If you want to allow inexact integers,
877f06c3 335you can explicitly insert a call to @code{inexact->exact} or to its C
07d83abe
MV
336equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
337be converted by this call into exact integers; inexact non-integers
338will become exact fractions.)
339
340@deffn {Scheme Procedure} integer? x
341@deffnx {C Function} scm_integer_p (x)
909fcc97 342Return @code{#t} if @var{x} is an exact or inexact integer number, else
07d83abe
MV
343@code{#f}.
344
345@lisp
346(integer? 487)
347@result{} #t
348
349(integer? 3.0)
350@result{} #t
351
352(integer? -3.4)
353@result{} #f
354
355(integer? +inf.0)
356@result{} #t
357@end lisp
358@end deffn
359
360@deftypefn {C Function} int scm_is_integer (SCM x)
361This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
362@end deftypefn
363
364@defvr {C Type} scm_t_int8
365@defvrx {C Type} scm_t_uint8
366@defvrx {C Type} scm_t_int16
367@defvrx {C Type} scm_t_uint16
368@defvrx {C Type} scm_t_int32
369@defvrx {C Type} scm_t_uint32
370@defvrx {C Type} scm_t_int64
371@defvrx {C Type} scm_t_uint64
372@defvrx {C Type} scm_t_intmax
373@defvrx {C Type} scm_t_uintmax
374The C types are equivalent to the corresponding ISO C types but are
375defined on all platforms, with the exception of @code{scm_t_int64} and
376@code{scm_t_uint64}, which are only defined when a 64-bit type is
377available. For example, @code{scm_t_int8} is equivalent to
378@code{int8_t}.
379
380You can regard these definitions as a stop-gap measure until all
381platforms provide these types. If you know that all the platforms
382that you are interested in already provide these types, it is better
383to use them directly instead of the types provided by Guile.
384@end defvr
385
386@deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
387@deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
388Return @code{1} when @var{x} represents an exact integer that is
389between @var{min} and @var{max}, inclusive.
390
391These functions can be used to check whether a @code{SCM} value will
392fit into a given range, such as the range of a given C integer type.
393If you just want to convert a @code{SCM} value to a given C integer
394type, use one of the conversion functions directly.
395@end deftypefn
396
397@deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
398@deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
399When @var{x} represents an exact integer that is between @var{min} and
400@var{max} inclusive, return that integer. Else signal an error,
401either a `wrong-type' error when @var{x} is not an exact integer, or
402an `out-of-range' error when it doesn't fit the given range.
403@end deftypefn
404
405@deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
406@deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
407Return the @code{SCM} value that represents the integer @var{x}. This
408function will always succeed and will always return an exact number.
409@end deftypefn
410
411@deftypefn {C Function} char scm_to_char (SCM x)
412@deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
413@deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
414@deftypefnx {C Function} short scm_to_short (SCM x)
415@deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
416@deftypefnx {C Function} int scm_to_int (SCM x)
417@deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
418@deftypefnx {C Function} long scm_to_long (SCM x)
419@deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
420@deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
421@deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
422@deftypefnx {C Function} size_t scm_to_size_t (SCM x)
423@deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
424@deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
425@deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
426@deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
427@deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
428@deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
429@deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
430@deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
431@deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
432@deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
433@deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
434When @var{x} represents an exact integer that fits into the indicated
435C type, return that integer. Else signal an error, either a
436`wrong-type' error when @var{x} is not an exact integer, or an
437`out-of-range' error when it doesn't fit the given range.
438
439The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
440@code{scm_to_int64}, and @code{scm_to_uint64} are only available when
441the corresponding types are.
442@end deftypefn
443
444@deftypefn {C Function} SCM scm_from_char (char x)
445@deftypefnx {C Function} SCM scm_from_schar (signed char x)
446@deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
447@deftypefnx {C Function} SCM scm_from_short (short x)
448@deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
449@deftypefnx {C Function} SCM scm_from_int (int x)
450@deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
451@deftypefnx {C Function} SCM scm_from_long (long x)
452@deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
453@deftypefnx {C Function} SCM scm_from_long_long (long long x)
454@deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
455@deftypefnx {C Function} SCM scm_from_size_t (size_t x)
456@deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
457@deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
458@deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
459@deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
460@deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
461@deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
462@deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
463@deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
464@deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
465@deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
466@deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
467Return the @code{SCM} value that represents the integer @var{x}.
468These functions will always succeed and will always return an exact
469number.
470@end deftypefn
471
08962922
MV
472@deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
473Assign @var{val} to the multiple precision integer @var{rop}.
474@var{val} must be an exact integer, otherwise an error will be
475signalled. @var{rop} must have been initialized with @code{mpz_init}
476before this function is called. When @var{rop} is no longer needed
477the occupied space must be freed with @code{mpz_clear}.
478@xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
479@end deftypefn
480
9f1ba6a9 481@deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
08962922
MV
482Return the @code{SCM} value that represents @var{val}.
483@end deftypefn
484
07d83abe
MV
485@node Reals and Rationals
486@subsubsection Real and Rational Numbers
487@tpindex Real numbers
488@tpindex Rational numbers
489
490@rnindex real?
491@rnindex rational?
492
493Mathematically, the real numbers are the set of numbers that describe
494all possible points along a continuous, infinite, one-dimensional line.
495The rational numbers are the set of all numbers that can be written as
496fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
497All rational numbers are also real, but there are real numbers that
34942993
KR
498are not rational, for example @m{\sqrt2, the square root of 2}, and
499@m{\pi,pi}.
07d83abe
MV
500
501Guile can represent both exact and inexact rational numbers, but it
502can not represent irrational numbers. Exact rationals are represented
503by storing the numerator and denominator as two exact integers.
504Inexact rationals are stored as floating point numbers using the C
505type @code{double}.
506
507Exact rationals are written as a fraction of integers. There must be
508no whitespace around the slash:
509
510@lisp
5111/2
512-22/7
513@end lisp
514
515Even though the actual encoding of inexact rationals is in binary, it
516may be helpful to think of it as a decimal number with a limited
517number of significant figures and a decimal point somewhere, since
518this corresponds to the standard notation for non-whole numbers. For
519example:
520
521@lisp
5220.34
523-0.00000142857931198
524-5648394822220000000000.0
5254.0
526@end lisp
527
528The limited precision of Guile's encoding means that any ``real'' number
529in Guile can be written in a rational form, by multiplying and then dividing
530by sufficient powers of 10 (or in fact, 2). For example,
531@samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
532100000000000000000. In Guile's current incarnation, therefore, the
533@code{rational?} and @code{real?} predicates are equivalent.
534
535
536Dividing by an exact zero leads to a error message, as one might
537expect. However, dividing by an inexact zero does not produce an
538error. Instead, the result of the division is either plus or minus
539infinity, depending on the sign of the divided number.
540
541The infinities are written @samp{+inf.0} and @samp{-inf.0},
542respectivly. This syntax is also recognized by @code{read} as an
543extension to the usual Scheme syntax.
544
545Dividing zero by zero yields something that is not a number at all:
546@samp{+nan.0}. This is the special `not a number' value.
547
548On platforms that follow @acronym{IEEE} 754 for their floating point
549arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
550are implemented using the corresponding @acronym{IEEE} 754 values.
551They behave in arithmetic operations like @acronym{IEEE} 754 describes
552it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
553
554The infinities are inexact integers and are considered to be both even
555and odd. While @samp{+nan.0} is not @code{=} to itself, it is
556@code{eqv?} to itself.
557
558To test for the special values, use the functions @code{inf?} and
559@code{nan?}.
560
561@deffn {Scheme Procedure} real? obj
562@deffnx {C Function} scm_real_p (obj)
563Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
564that the sets of integer and rational values form subsets of the set
565of real numbers, so the predicate will also be fulfilled if @var{obj}
566is an integer number or a rational number.
567@end deffn
568
569@deffn {Scheme Procedure} rational? x
570@deffnx {C Function} scm_rational_p (x)
571Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
572Note that the set of integer values forms a subset of the set of
573rational numbers, i. e. the predicate will also be fulfilled if
574@var{x} is an integer number.
575
576Since Guile can not represent irrational numbers, every number
577satisfying @code{real?} also satisfies @code{rational?} in Guile.
578@end deffn
579
580@deffn {Scheme Procedure} rationalize x eps
581@deffnx {C Function} scm_rationalize (x, eps)
582Returns the @emph{simplest} rational number differing
583from @var{x} by no more than @var{eps}.
584
585As required by @acronym{R5RS}, @code{rationalize} only returns an
586exact result when both its arguments are exact. Thus, you might need
587to use @code{inexact->exact} on the arguments.
588
589@lisp
590(rationalize (inexact->exact 1.2) 1/100)
591@result{} 6/5
592@end lisp
593
594@end deffn
595
d3df9759
MV
596@deffn {Scheme Procedure} inf? x
597@deffnx {C Function} scm_inf_p (x)
07d83abe
MV
598Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
599@code{#f} otherwise.
600@end deffn
601
602@deffn {Scheme Procedure} nan? x
d3df9759 603@deffnx {C Function} scm_nan_p (x)
07d83abe
MV
604Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
605@end deffn
606
cdf1ad3b
MV
607@deffn {Scheme Procedure} nan
608@deffnx {C Function} scm_nan ()
609Return NaN.
610@end deffn
611
612@deffn {Scheme Procedure} inf
613@deffnx {C Function} scm_inf ()
614Return Inf.
615@end deffn
616
d3df9759
MV
617@deffn {Scheme Procedure} numerator x
618@deffnx {C Function} scm_numerator (x)
619Return the numerator of the rational number @var{x}.
620@end deffn
621
622@deffn {Scheme Procedure} denominator x
623@deffnx {C Function} scm_denominator (x)
624Return the denominator of the rational number @var{x}.
625@end deffn
626
627@deftypefn {C Function} int scm_is_real (SCM val)
628@deftypefnx {C Function} int scm_is_rational (SCM val)
629Equivalent to @code{scm_is_true (scm_real_p (val))} and
630@code{scm_is_true (scm_rational_p (val))}, respectively.
631@end deftypefn
632
633@deftypefn {C Function} double scm_to_double (SCM val)
634Returns the number closest to @var{val} that is representable as a
635@code{double}. Returns infinity for a @var{val} that is too large in
636magnitude. The argument @var{val} must be a real number.
637@end deftypefn
638
639@deftypefn {C Function} SCM scm_from_double (double val)
640Return the @code{SCM} value that representats @var{val}. The returned
641value is inexact according to the predicate @code{inexact?}, but it
642will be exactly equal to @var{val}.
643@end deftypefn
644
07d83abe
MV
645@node Complex Numbers
646@subsubsection Complex Numbers
647@tpindex Complex numbers
648
649@rnindex complex?
650
651Complex numbers are the set of numbers that describe all possible points
652in a two-dimensional space. The two coordinates of a particular point
653in this space are known as the @dfn{real} and @dfn{imaginary} parts of
654the complex number that describes that point.
655
656In Guile, complex numbers are written in rectangular form as the sum of
657their real and imaginary parts, using the symbol @code{i} to indicate
658the imaginary part.
659
660@lisp
6613+4i
662@result{}
6633.0+4.0i
664
665(* 3-8i 2.3+0.3i)
666@result{}
6679.3-17.5i
668@end lisp
669
34942993
KR
670@cindex polar form
671@noindent
672Polar form can also be used, with an @samp{@@} between magnitude and
673angle,
674
675@lisp
6761@@3.141592 @result{} -1.0 (approx)
677-1@@1.57079 @result{} 0.0-1.0i (approx)
678@end lisp
679
07d83abe
MV
680Guile represents a complex number with a non-zero imaginary part as a
681pair of inexact rationals, so the real and imaginary parts of a
682complex number have the same properties of inexactness and limited
683precision as single inexact rational numbers. Guile can not represent
684exact complex numbers with non-zero imaginary parts.
685
5615f696
MV
686@deffn {Scheme Procedure} complex? z
687@deffnx {C Function} scm_complex_p (z)
07d83abe
MV
688Return @code{#t} if @var{x} is a complex number, @code{#f}
689otherwise. Note that the sets of real, rational and integer
690values form subsets of the set of complex numbers, i. e. the
691predicate will also be fulfilled if @var{x} is a real,
692rational or integer number.
693@end deffn
694
c9dc8c6c
MV
695@deftypefn {C Function} int scm_is_complex (SCM val)
696Equivalent to @code{scm_is_true (scm_complex_p (val))}.
697@end deftypefn
698
07d83abe
MV
699@node Exactness
700@subsubsection Exact and Inexact Numbers
701@tpindex Exact numbers
702@tpindex Inexact numbers
703
704@rnindex exact?
705@rnindex inexact?
706@rnindex exact->inexact
707@rnindex inexact->exact
708
709R5RS requires that a calculation involving inexact numbers always
710produces an inexact result. To meet this requirement, Guile
711distinguishes between an exact integer value such as @samp{5} and the
712corresponding inexact real value which, to the limited precision
713available, has no fractional part, and is printed as @samp{5.0}. Guile
714will only convert the latter value to the former when forced to do so by
715an invocation of the @code{inexact->exact} procedure.
716
717@deffn {Scheme Procedure} exact? z
718@deffnx {C Function} scm_exact_p (z)
719Return @code{#t} if the number @var{z} is exact, @code{#f}
720otherwise.
721
722@lisp
723(exact? 2)
724@result{} #t
725
726(exact? 0.5)
727@result{} #f
728
729(exact? (/ 2))
730@result{} #t
731@end lisp
732
733@end deffn
734
735@deffn {Scheme Procedure} inexact? z
736@deffnx {C Function} scm_inexact_p (z)
737Return @code{#t} if the number @var{z} is inexact, @code{#f}
738else.
739@end deffn
740
741@deffn {Scheme Procedure} inexact->exact z
742@deffnx {C Function} scm_inexact_to_exact (z)
743Return an exact number that is numerically closest to @var{z}, when
744there is one. For inexact rationals, Guile returns the exact rational
745that is numerically equal to the inexact rational. Inexact complex
746numbers with a non-zero imaginary part can not be made exact.
747
748@lisp
749(inexact->exact 0.5)
750@result{} 1/2
751@end lisp
752
753The following happens because 12/10 is not exactly representable as a
754@code{double} (on most platforms). However, when reading a decimal
755number that has been marked exact with the ``#e'' prefix, Guile is
756able to represent it correctly.
757
758@lisp
759(inexact->exact 1.2)
760@result{} 5404319552844595/4503599627370496
761
762#e1.2
763@result{} 6/5
764@end lisp
765
766@end deffn
767
768@c begin (texi-doc-string "guile" "exact->inexact")
769@deffn {Scheme Procedure} exact->inexact z
770@deffnx {C Function} scm_exact_to_inexact (z)
771Convert the number @var{z} to its inexact representation.
772@end deffn
773
774
775@node Number Syntax
776@subsubsection Read Syntax for Numerical Data
777
778The read syntax for integers is a string of digits, optionally
779preceded by a minus or plus character, a code indicating the
780base in which the integer is encoded, and a code indicating whether
781the number is exact or inexact. The supported base codes are:
782
783@table @code
784@item #b
785@itemx #B
786the integer is written in binary (base 2)
787
788@item #o
789@itemx #O
790the integer is written in octal (base 8)
791
792@item #d
793@itemx #D
794the integer is written in decimal (base 10)
795
796@item #x
797@itemx #X
798the integer is written in hexadecimal (base 16)
799@end table
800
801If the base code is omitted, the integer is assumed to be decimal. The
802following examples show how these base codes are used.
803
804@lisp
805-13
806@result{} -13
807
808#d-13
809@result{} -13
810
811#x-13
812@result{} -19
813
814#b+1101
815@result{} 13
816
817#o377
818@result{} 255
819@end lisp
820
821The codes for indicating exactness (which can, incidentally, be applied
822to all numerical values) are:
823
824@table @code
825@item #e
826@itemx #E
827the number is exact
828
829@item #i
830@itemx #I
831the number is inexact.
832@end table
833
834If the exactness indicator is omitted, the number is exact unless it
835contains a radix point. Since Guile can not represent exact complex
836numbers, an error is signalled when asking for them.
837
838@lisp
839(exact? 1.2)
840@result{} #f
841
842(exact? #e1.2)
843@result{} #t
844
845(exact? #e+1i)
846ERROR: Wrong type argument
847@end lisp
848
849Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
850plus and minus infinity, respectively. The value must be written
851exactly as shown, that is, they always must have a sign and exactly
852one zero digit after the decimal point. It also understands
853@samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
854The sign is ignored for `not-a-number' and the value is always printed
855as @samp{+nan.0}.
856
857@node Integer Operations
858@subsubsection Operations on Integer Values
859@rnindex odd?
860@rnindex even?
861@rnindex quotient
862@rnindex remainder
863@rnindex modulo
864@rnindex gcd
865@rnindex lcm
866
867@deffn {Scheme Procedure} odd? n
868@deffnx {C Function} scm_odd_p (n)
869Return @code{#t} if @var{n} is an odd number, @code{#f}
870otherwise.
871@end deffn
872
873@deffn {Scheme Procedure} even? n
874@deffnx {C Function} scm_even_p (n)
875Return @code{#t} if @var{n} is an even number, @code{#f}
876otherwise.
877@end deffn
878
879@c begin (texi-doc-string "guile" "quotient")
880@c begin (texi-doc-string "guile" "remainder")
881@deffn {Scheme Procedure} quotient n d
882@deffnx {Scheme Procedure} remainder n d
883@deffnx {C Function} scm_quotient (n, d)
884@deffnx {C Function} scm_remainder (n, d)
885Return the quotient or remainder from @var{n} divided by @var{d}. The
886quotient is rounded towards zero, and the remainder will have the same
887sign as @var{n}. In all cases quotient and remainder satisfy
888@math{@var{n} = @var{q}*@var{d} + @var{r}}.
889
890@lisp
891(remainder 13 4) @result{} 1
892(remainder -13 4) @result{} -1
893@end lisp
894@end deffn
895
896@c begin (texi-doc-string "guile" "modulo")
897@deffn {Scheme Procedure} modulo n d
898@deffnx {C Function} scm_modulo (n, d)
899Return the remainder from @var{n} divided by @var{d}, with the same
900sign as @var{d}.
901
902@lisp
903(modulo 13 4) @result{} 1
904(modulo -13 4) @result{} 3
905(modulo 13 -4) @result{} -3
906(modulo -13 -4) @result{} -1
907@end lisp
908@end deffn
909
910@c begin (texi-doc-string "guile" "gcd")
fd8a1df5 911@deffn {Scheme Procedure} gcd x@dots{}
07d83abe
MV
912@deffnx {C Function} scm_gcd (x, y)
913Return the greatest common divisor of all arguments.
914If called without arguments, 0 is returned.
915
916The C function @code{scm_gcd} always takes two arguments, while the
917Scheme function can take an arbitrary number.
918@end deffn
919
920@c begin (texi-doc-string "guile" "lcm")
fd8a1df5 921@deffn {Scheme Procedure} lcm x@dots{}
07d83abe
MV
922@deffnx {C Function} scm_lcm (x, y)
923Return the least common multiple of the arguments.
924If called without arguments, 1 is returned.
925
926The C function @code{scm_lcm} always takes two arguments, while the
927Scheme function can take an arbitrary number.
928@end deffn
929
cdf1ad3b
MV
930@deffn {Scheme Procedure} modulo-expt n k m
931@deffnx {C Function} scm_modulo_expt (n, k, m)
932Return @var{n} raised to the integer exponent
933@var{k}, modulo @var{m}.
934
935@lisp
936(modulo-expt 2 3 5)
937 @result{} 3
938@end lisp
939@end deffn
07d83abe
MV
940
941@node Comparison
942@subsubsection Comparison Predicates
943@rnindex zero?
944@rnindex positive?
945@rnindex negative?
946
947The C comparison functions below always takes two arguments, while the
948Scheme functions can take an arbitrary number. Also keep in mind that
949the C functions return one of the Scheme boolean values
950@code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
951is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
952y))} when testing the two Scheme numbers @code{x} and @code{y} for
953equality, for example.
954
955@c begin (texi-doc-string "guile" "=")
956@deffn {Scheme Procedure} =
957@deffnx {C Function} scm_num_eq_p (x, y)
958Return @code{#t} if all parameters are numerically equal.
959@end deffn
960
961@c begin (texi-doc-string "guile" "<")
962@deffn {Scheme Procedure} <
963@deffnx {C Function} scm_less_p (x, y)
964Return @code{#t} if the list of parameters is monotonically
965increasing.
966@end deffn
967
968@c begin (texi-doc-string "guile" ">")
969@deffn {Scheme Procedure} >
970@deffnx {C Function} scm_gr_p (x, y)
971Return @code{#t} if the list of parameters is monotonically
972decreasing.
973@end deffn
974
975@c begin (texi-doc-string "guile" "<=")
976@deffn {Scheme Procedure} <=
977@deffnx {C Function} scm_leq_p (x, y)
978Return @code{#t} if the list of parameters is monotonically
979non-decreasing.
980@end deffn
981
982@c begin (texi-doc-string "guile" ">=")
983@deffn {Scheme Procedure} >=
984@deffnx {C Function} scm_geq_p (x, y)
985Return @code{#t} if the list of parameters is monotonically
986non-increasing.
987@end deffn
988
989@c begin (texi-doc-string "guile" "zero?")
990@deffn {Scheme Procedure} zero? z
991@deffnx {C Function} scm_zero_p (z)
992Return @code{#t} if @var{z} is an exact or inexact number equal to
993zero.
994@end deffn
995
996@c begin (texi-doc-string "guile" "positive?")
997@deffn {Scheme Procedure} positive? x
998@deffnx {C Function} scm_positive_p (x)
999Return @code{#t} if @var{x} is an exact or inexact number greater than
1000zero.
1001@end deffn
1002
1003@c begin (texi-doc-string "guile" "negative?")
1004@deffn {Scheme Procedure} negative? x
1005@deffnx {C Function} scm_negative_p (x)
1006Return @code{#t} if @var{x} is an exact or inexact number less than
1007zero.
1008@end deffn
1009
1010
1011@node Conversion
1012@subsubsection Converting Numbers To and From Strings
1013@rnindex number->string
1014@rnindex string->number
1015
b89c4943
LC
1016The following procedures read and write numbers according to their
1017external representation as defined by R5RS (@pxref{Lexical structure,
1018R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
a2f00b9b 1019Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
b89c4943
LC
1020i18n)} module}, for locale-dependent number parsing.
1021
07d83abe
MV
1022@deffn {Scheme Procedure} number->string n [radix]
1023@deffnx {C Function} scm_number_to_string (n, radix)
1024Return a string holding the external representation of the
1025number @var{n} in the given @var{radix}. If @var{n} is
1026inexact, a radix of 10 will be used.
1027@end deffn
1028
1029@deffn {Scheme Procedure} string->number string [radix]
1030@deffnx {C Function} scm_string_to_number (string, radix)
1031Return a number of the maximally precise representation
1032expressed by the given @var{string}. @var{radix} must be an
1033exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1034is a default radix that may be overridden by an explicit radix
1035prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
1036supplied, then the default radix is 10. If string is not a
1037syntactically valid notation for a number, then
1038@code{string->number} returns @code{#f}.
1039@end deffn
1040
1b09b607
KR
1041@deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1042As per @code{string->number} above, but taking a C string, as pointer
1043and length. The string characters should be in the current locale
1044encoding (@code{locale} in the name refers only to that, there's no
1045locale-dependent parsing).
1046@end deftypefn
1047
07d83abe
MV
1048
1049@node Complex
1050@subsubsection Complex Number Operations
1051@rnindex make-rectangular
1052@rnindex make-polar
1053@rnindex real-part
1054@rnindex imag-part
1055@rnindex magnitude
1056@rnindex angle
1057
1058@deffn {Scheme Procedure} make-rectangular real imaginary
1059@deffnx {C Function} scm_make_rectangular (real, imaginary)
1060Return a complex number constructed of the given @var{real} and
1061@var{imaginary} parts.
1062@end deffn
1063
1064@deffn {Scheme Procedure} make-polar x y
1065@deffnx {C Function} scm_make_polar (x, y)
34942993 1066@cindex polar form
07d83abe
MV
1067Return the complex number @var{x} * e^(i * @var{y}).
1068@end deffn
1069
1070@c begin (texi-doc-string "guile" "real-part")
1071@deffn {Scheme Procedure} real-part z
1072@deffnx {C Function} scm_real_part (z)
1073Return the real part of the number @var{z}.
1074@end deffn
1075
1076@c begin (texi-doc-string "guile" "imag-part")
1077@deffn {Scheme Procedure} imag-part z
1078@deffnx {C Function} scm_imag_part (z)
1079Return the imaginary part of the number @var{z}.
1080@end deffn
1081
1082@c begin (texi-doc-string "guile" "magnitude")
1083@deffn {Scheme Procedure} magnitude z
1084@deffnx {C Function} scm_magnitude (z)
1085Return the magnitude of the number @var{z}. This is the same as
1086@code{abs} for real arguments, but also allows complex numbers.
1087@end deffn
1088
1089@c begin (texi-doc-string "guile" "angle")
1090@deffn {Scheme Procedure} angle z
1091@deffnx {C Function} scm_angle (z)
1092Return the angle of the complex number @var{z}.
1093@end deffn
1094
5615f696
MV
1095@deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1096@deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1097Like @code{scm_make_rectangular} or @code{scm_make_polar},
1098respectively, but these functions take @code{double}s as their
1099arguments.
1100@end deftypefn
1101
1102@deftypefn {C Function} double scm_c_real_part (z)
1103@deftypefnx {C Function} double scm_c_imag_part (z)
1104Returns the real or imaginary part of @var{z} as a @code{double}.
1105@end deftypefn
1106
1107@deftypefn {C Function} double scm_c_magnitude (z)
1108@deftypefnx {C Function} double scm_c_angle (z)
1109Returns the magnitude or angle of @var{z} as a @code{double}.
1110@end deftypefn
1111
07d83abe
MV
1112
1113@node Arithmetic
1114@subsubsection Arithmetic Functions
1115@rnindex max
1116@rnindex min
1117@rnindex +
1118@rnindex *
1119@rnindex -
1120@rnindex /
b1f57ea4
LC
1121@findex 1+
1122@findex 1-
07d83abe
MV
1123@rnindex abs
1124@rnindex floor
1125@rnindex ceiling
1126@rnindex truncate
1127@rnindex round
1128
1129The C arithmetic functions below always takes two arguments, while the
1130Scheme functions can take an arbitrary number. When you need to
1131invoke them with just one argument, for example to compute the
1132equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1133one: @code{scm_difference (x, SCM_UNDEFINED)}.
1134
1135@c begin (texi-doc-string "guile" "+")
1136@deffn {Scheme Procedure} + z1 @dots{}
1137@deffnx {C Function} scm_sum (z1, z2)
1138Return the sum of all parameter values. Return 0 if called without any
1139parameters.
1140@end deffn
1141
1142@c begin (texi-doc-string "guile" "-")
1143@deffn {Scheme Procedure} - z1 z2 @dots{}
1144@deffnx {C Function} scm_difference (z1, z2)
1145If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1146the sum of all but the first argument are subtracted from the first
1147argument.
1148@end deffn
1149
1150@c begin (texi-doc-string "guile" "*")
1151@deffn {Scheme Procedure} * z1 @dots{}
1152@deffnx {C Function} scm_product (z1, z2)
1153Return the product of all arguments. If called without arguments, 1 is
1154returned.
1155@end deffn
1156
1157@c begin (texi-doc-string "guile" "/")
1158@deffn {Scheme Procedure} / z1 z2 @dots{}
1159@deffnx {C Function} scm_divide (z1, z2)
1160Divide the first argument by the product of the remaining arguments. If
1161called with one argument @var{z1}, 1/@var{z1} is returned.
1162@end deffn
1163
b1f57ea4
LC
1164@deffn {Scheme Procedure} 1+ z
1165@deffnx {C Function} scm_oneplus (z)
1166Return @math{@var{z} + 1}.
1167@end deffn
1168
1169@deffn {Scheme Procedure} 1- z
1170@deffnx {C function} scm_oneminus (z)
1171Return @math{@var{z} - 1}.
1172@end deffn
1173
07d83abe
MV
1174@c begin (texi-doc-string "guile" "abs")
1175@deffn {Scheme Procedure} abs x
1176@deffnx {C Function} scm_abs (x)
1177Return the absolute value of @var{x}.
1178
1179@var{x} must be a number with zero imaginary part. To calculate the
1180magnitude of a complex number, use @code{magnitude} instead.
1181@end deffn
1182
1183@c begin (texi-doc-string "guile" "max")
1184@deffn {Scheme Procedure} max x1 x2 @dots{}
1185@deffnx {C Function} scm_max (x1, x2)
1186Return the maximum of all parameter values.
1187@end deffn
1188
1189@c begin (texi-doc-string "guile" "min")
1190@deffn {Scheme Procedure} min x1 x2 @dots{}
1191@deffnx {C Function} scm_min (x1, x2)
1192Return the minimum of all parameter values.
1193@end deffn
1194
1195@c begin (texi-doc-string "guile" "truncate")
fd8a1df5 1196@deffn {Scheme Procedure} truncate x
07d83abe
MV
1197@deffnx {C Function} scm_truncate_number (x)
1198Round the inexact number @var{x} towards zero.
1199@end deffn
1200
1201@c begin (texi-doc-string "guile" "round")
1202@deffn {Scheme Procedure} round x
1203@deffnx {C Function} scm_round_number (x)
1204Round the inexact number @var{x} to the nearest integer. When exactly
1205halfway between two integers, round to the even one.
1206@end deffn
1207
1208@c begin (texi-doc-string "guile" "floor")
1209@deffn {Scheme Procedure} floor x
1210@deffnx {C Function} scm_floor (x)
1211Round the number @var{x} towards minus infinity.
1212@end deffn
1213
1214@c begin (texi-doc-string "guile" "ceiling")
1215@deffn {Scheme Procedure} ceiling x
1216@deffnx {C Function} scm_ceiling (x)
1217Round the number @var{x} towards infinity.
1218@end deffn
1219
35da08ee
MV
1220@deftypefn {C Function} double scm_c_truncate (double x)
1221@deftypefnx {C Function} double scm_c_round (double x)
1222Like @code{scm_truncate_number} or @code{scm_round_number},
1223respectively, but these functions take and return @code{double}
1224values.
1225@end deftypefn
07d83abe
MV
1226
1227@node Scientific
1228@subsubsection Scientific Functions
1229
1230The following procedures accept any kind of number as arguments,
1231including complex numbers.
1232
1233@rnindex sqrt
1234@c begin (texi-doc-string "guile" "sqrt")
1235@deffn {Scheme Procedure} sqrt z
40296bab
KR
1236Return the square root of @var{z}. Of the two possible roots
1237(positive and negative), the one with the a positive real part is
1238returned, or if that's zero then a positive imaginary part. Thus,
1239
1240@example
1241(sqrt 9.0) @result{} 3.0
1242(sqrt -9.0) @result{} 0.0+3.0i
1243(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1244(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1245@end example
07d83abe
MV
1246@end deffn
1247
1248@rnindex expt
1249@c begin (texi-doc-string "guile" "expt")
1250@deffn {Scheme Procedure} expt z1 z2
1251Return @var{z1} raised to the power of @var{z2}.
1252@end deffn
1253
1254@rnindex sin
1255@c begin (texi-doc-string "guile" "sin")
1256@deffn {Scheme Procedure} sin z
1257Return the sine of @var{z}.
1258@end deffn
1259
1260@rnindex cos
1261@c begin (texi-doc-string "guile" "cos")
1262@deffn {Scheme Procedure} cos z
1263Return the cosine of @var{z}.
1264@end deffn
1265
1266@rnindex tan
1267@c begin (texi-doc-string "guile" "tan")
1268@deffn {Scheme Procedure} tan z
1269Return the tangent of @var{z}.
1270@end deffn
1271
1272@rnindex asin
1273@c begin (texi-doc-string "guile" "asin")
1274@deffn {Scheme Procedure} asin z
1275Return the arcsine of @var{z}.
1276@end deffn
1277
1278@rnindex acos
1279@c begin (texi-doc-string "guile" "acos")
1280@deffn {Scheme Procedure} acos z
1281Return the arccosine of @var{z}.
1282@end deffn
1283
1284@rnindex atan
1285@c begin (texi-doc-string "guile" "atan")
1286@deffn {Scheme Procedure} atan z
1287@deffnx {Scheme Procedure} atan y x
1288Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1289@end deffn
1290
1291@rnindex exp
1292@c begin (texi-doc-string "guile" "exp")
1293@deffn {Scheme Procedure} exp z
1294Return e to the power of @var{z}, where e is the base of natural
1295logarithms (2.71828@dots{}).
1296@end deffn
1297
1298@rnindex log
1299@c begin (texi-doc-string "guile" "log")
1300@deffn {Scheme Procedure} log z
1301Return the natural logarithm of @var{z}.
1302@end deffn
1303
1304@c begin (texi-doc-string "guile" "log10")
1305@deffn {Scheme Procedure} log10 z
1306Return the base 10 logarithm of @var{z}.
1307@end deffn
1308
1309@c begin (texi-doc-string "guile" "sinh")
1310@deffn {Scheme Procedure} sinh z
1311Return the hyperbolic sine of @var{z}.
1312@end deffn
1313
1314@c begin (texi-doc-string "guile" "cosh")
1315@deffn {Scheme Procedure} cosh z
1316Return the hyperbolic cosine of @var{z}.
1317@end deffn
1318
1319@c begin (texi-doc-string "guile" "tanh")
1320@deffn {Scheme Procedure} tanh z
1321Return the hyperbolic tangent of @var{z}.
1322@end deffn
1323
1324@c begin (texi-doc-string "guile" "asinh")
1325@deffn {Scheme Procedure} asinh z
1326Return the hyperbolic arcsine of @var{z}.
1327@end deffn
1328
1329@c begin (texi-doc-string "guile" "acosh")
1330@deffn {Scheme Procedure} acosh z
1331Return the hyperbolic arccosine of @var{z}.
1332@end deffn
1333
1334@c begin (texi-doc-string "guile" "atanh")
1335@deffn {Scheme Procedure} atanh z
1336Return the hyperbolic arctangent of @var{z}.
1337@end deffn
1338
1339
1340@node Primitive Numerics
1341@subsubsection Primitive Numeric Functions
1342
1343Many of Guile's numeric procedures which accept any kind of numbers as
1344arguments, including complex numbers, are implemented as Scheme
1345procedures that use the following real number-based primitives. These
1346primitives signal an error if they are called with complex arguments.
1347
1348@c begin (texi-doc-string "guile" "$abs")
1349@deffn {Scheme Procedure} $abs x
1350Return the absolute value of @var{x}.
1351@end deffn
1352
1353@c begin (texi-doc-string "guile" "$sqrt")
1354@deffn {Scheme Procedure} $sqrt x
1355Return the square root of @var{x}.
1356@end deffn
1357
1358@deffn {Scheme Procedure} $expt x y
1359@deffnx {C Function} scm_sys_expt (x, y)
1360Return @var{x} raised to the power of @var{y}. This
1361procedure does not accept complex arguments.
1362@end deffn
1363
1364@c begin (texi-doc-string "guile" "$sin")
1365@deffn {Scheme Procedure} $sin x
1366Return the sine of @var{x}.
1367@end deffn
1368
1369@c begin (texi-doc-string "guile" "$cos")
1370@deffn {Scheme Procedure} $cos x
1371Return the cosine of @var{x}.
1372@end deffn
1373
1374@c begin (texi-doc-string "guile" "$tan")
1375@deffn {Scheme Procedure} $tan x
1376Return the tangent of @var{x}.
1377@end deffn
1378
1379@c begin (texi-doc-string "guile" "$asin")
1380@deffn {Scheme Procedure} $asin x
1381Return the arcsine of @var{x}.
1382@end deffn
1383
1384@c begin (texi-doc-string "guile" "$acos")
1385@deffn {Scheme Procedure} $acos x
1386Return the arccosine of @var{x}.
1387@end deffn
1388
1389@c begin (texi-doc-string "guile" "$atan")
1390@deffn {Scheme Procedure} $atan x
1391Return the arctangent of @var{x} in the range @minus{}@math{PI/2} to
1392@math{PI/2}.
1393@end deffn
1394
1395@deffn {Scheme Procedure} $atan2 x y
1396@deffnx {C Function} scm_sys_atan2 (x, y)
1397Return the arc tangent of the two arguments @var{x} and
1398@var{y}. This is similar to calculating the arc tangent of
1399@var{x} / @var{y}, except that the signs of both arguments
1400are used to determine the quadrant of the result. This
1401procedure does not accept complex arguments.
1402@end deffn
1403
1404@c begin (texi-doc-string "guile" "$exp")
1405@deffn {Scheme Procedure} $exp x
1406Return e to the power of @var{x}, where e is the base of natural
1407logarithms (2.71828@dots{}).
1408@end deffn
1409
1410@c begin (texi-doc-string "guile" "$log")
1411@deffn {Scheme Procedure} $log x
1412Return the natural logarithm of @var{x}.
1413@end deffn
1414
1415@c begin (texi-doc-string "guile" "$sinh")
1416@deffn {Scheme Procedure} $sinh x
1417Return the hyperbolic sine of @var{x}.
1418@end deffn
1419
1420@c begin (texi-doc-string "guile" "$cosh")
1421@deffn {Scheme Procedure} $cosh x
1422Return the hyperbolic cosine of @var{x}.
1423@end deffn
1424
1425@c begin (texi-doc-string "guile" "$tanh")
1426@deffn {Scheme Procedure} $tanh x
1427Return the hyperbolic tangent of @var{x}.
1428@end deffn
1429
1430@c begin (texi-doc-string "guile" "$asinh")
1431@deffn {Scheme Procedure} $asinh x
1432Return the hyperbolic arcsine of @var{x}.
1433@end deffn
1434
1435@c begin (texi-doc-string "guile" "$acosh")
1436@deffn {Scheme Procedure} $acosh x
1437Return the hyperbolic arccosine of @var{x}.
1438@end deffn
1439
1440@c begin (texi-doc-string "guile" "$atanh")
1441@deffn {Scheme Procedure} $atanh x
1442Return the hyperbolic arctangent of @var{x}.
1443@end deffn
1444
1445C functions for the above are provided by the standard mathematics
1446library. Naturally these expect and return @code{double} arguments
1447(@pxref{Mathematics,,, libc, GNU C Library Reference Manual}).
1448
1449@multitable {xx} {Scheme Procedure} {C Function}
1450@item @tab Scheme Procedure @tab C Function
1451
1452@item @tab @code{$abs} @tab @code{fabs}
1453@item @tab @code{$sqrt} @tab @code{sqrt}
1454@item @tab @code{$sin} @tab @code{sin}
1455@item @tab @code{$cos} @tab @code{cos}
1456@item @tab @code{$tan} @tab @code{tan}
1457@item @tab @code{$asin} @tab @code{asin}
1458@item @tab @code{$acos} @tab @code{acos}
1459@item @tab @code{$atan} @tab @code{atan}
1460@item @tab @code{$atan2} @tab @code{atan2}
1461@item @tab @code{$exp} @tab @code{exp}
1462@item @tab @code{$expt} @tab @code{pow}
1463@item @tab @code{$log} @tab @code{log}
1464@item @tab @code{$sinh} @tab @code{sinh}
1465@item @tab @code{$cosh} @tab @code{cosh}
1466@item @tab @code{$tanh} @tab @code{tanh}
1467@item @tab @code{$asinh} @tab @code{asinh}
1468@item @tab @code{$acosh} @tab @code{acosh}
1469@item @tab @code{$atanh} @tab @code{atanh}
1470@end multitable
1471
1472@code{asinh}, @code{acosh} and @code{atanh} are C99 standard but might
1473not be available on older systems. Guile provides the following
1474equivalents (on all systems).
1475
1476@deftypefn {C Function} double scm_asinh (double x)
1477@deftypefnx {C Function} double scm_acosh (double x)
1478@deftypefnx {C Function} double scm_atanh (double x)
1479Return the hyperbolic arcsine, arccosine or arctangent of @var{x}
1480respectively.
1481@end deftypefn
1482
1483
1484@node Bitwise Operations
1485@subsubsection Bitwise Operations
1486
1487For the following bitwise functions, negative numbers are treated as
1488infinite precision twos-complements. For instance @math{-6} is bits
1489@math{@dots{}111010}, with infinitely many ones on the left. It can
1490be seen that adding 6 (binary 110) to such a bit pattern gives all
1491zeros.
1492
1493@deffn {Scheme Procedure} logand n1 n2 @dots{}
1494@deffnx {C Function} scm_logand (n1, n2)
1495Return the bitwise @sc{and} of the integer arguments.
1496
1497@lisp
1498(logand) @result{} -1
1499(logand 7) @result{} 7
1500(logand #b111 #b011 #b001) @result{} 1
1501@end lisp
1502@end deffn
1503
1504@deffn {Scheme Procedure} logior n1 n2 @dots{}
1505@deffnx {C Function} scm_logior (n1, n2)
1506Return the bitwise @sc{or} of the integer arguments.
1507
1508@lisp
1509(logior) @result{} 0
1510(logior 7) @result{} 7
1511(logior #b000 #b001 #b011) @result{} 3
1512@end lisp
1513@end deffn
1514
1515@deffn {Scheme Procedure} logxor n1 n2 @dots{}
1516@deffnx {C Function} scm_loxor (n1, n2)
1517Return the bitwise @sc{xor} of the integer arguments. A bit is
1518set in the result if it is set in an odd number of arguments.
1519
1520@lisp
1521(logxor) @result{} 0
1522(logxor 7) @result{} 7
1523(logxor #b000 #b001 #b011) @result{} 2
1524(logxor #b000 #b001 #b011 #b011) @result{} 1
1525@end lisp
1526@end deffn
1527
1528@deffn {Scheme Procedure} lognot n
1529@deffnx {C Function} scm_lognot (n)
1530Return the integer which is the ones-complement of the integer
1531argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1532
1533@lisp
1534(number->string (lognot #b10000000) 2)
1535 @result{} "-10000001"
1536(number->string (lognot #b0) 2)
1537 @result{} "-1"
1538@end lisp
1539@end deffn
1540
1541@deffn {Scheme Procedure} logtest j k
1542@deffnx {C Function} scm_logtest (j, k)
a46648ac
KR
1543Test whether @var{j} and @var{k} have any 1 bits in common. This is
1544equivalent to @code{(not (zero? (logand j k)))}, but without actually
1545calculating the @code{logand}, just testing for non-zero.
07d83abe 1546
a46648ac 1547@lisp
07d83abe
MV
1548(logtest #b0100 #b1011) @result{} #f
1549(logtest #b0100 #b0111) @result{} #t
1550@end lisp
1551@end deffn
1552
1553@deffn {Scheme Procedure} logbit? index j
1554@deffnx {C Function} scm_logbit_p (index, j)
a46648ac
KR
1555Test whether bit number @var{index} in @var{j} is set. @var{index}
1556starts from 0 for the least significant bit.
07d83abe 1557
a46648ac 1558@lisp
07d83abe
MV
1559(logbit? 0 #b1101) @result{} #t
1560(logbit? 1 #b1101) @result{} #f
1561(logbit? 2 #b1101) @result{} #t
1562(logbit? 3 #b1101) @result{} #t
1563(logbit? 4 #b1101) @result{} #f
1564@end lisp
1565@end deffn
1566
1567@deffn {Scheme Procedure} ash n cnt
1568@deffnx {C Function} scm_ash (n, cnt)
1569Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1570@var{cnt} is negative. This is an ``arithmetic'' shift.
1571
1572This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1573when @var{cnt} is negative it's a division, rounded towards negative
1574infinity. (Note that this is not the same rounding as @code{quotient}
1575does.)
1576
1577With @var{n} viewed as an infinite precision twos complement,
1578@code{ash} means a left shift introducing zero bits, or a right shift
1579dropping bits.
1580
1581@lisp
1582(number->string (ash #b1 3) 2) @result{} "1000"
1583(number->string (ash #b1010 -1) 2) @result{} "101"
1584
1585;; -23 is bits ...11101001, -6 is bits ...111010
1586(ash -23 -2) @result{} -6
1587@end lisp
1588@end deffn
1589
1590@deffn {Scheme Procedure} logcount n
1591@deffnx {C Function} scm_logcount (n)
a46648ac 1592Return the number of bits in integer @var{n}. If @var{n} is
07d83abe
MV
1593positive, the 1-bits in its binary representation are counted.
1594If negative, the 0-bits in its two's-complement binary
a46648ac 1595representation are counted. If zero, 0 is returned.
07d83abe
MV
1596
1597@lisp
1598(logcount #b10101010)
1599 @result{} 4
1600(logcount 0)
1601 @result{} 0
1602(logcount -2)
1603 @result{} 1
1604@end lisp
1605@end deffn
1606
1607@deffn {Scheme Procedure} integer-length n
1608@deffnx {C Function} scm_integer_length (n)
1609Return the number of bits necessary to represent @var{n}.
1610
1611For positive @var{n} this is how many bits to the most significant one
1612bit. For negative @var{n} it's how many bits to the most significant
1613zero bit in twos complement form.
1614
1615@lisp
1616(integer-length #b10101010) @result{} 8
1617(integer-length #b1111) @result{} 4
1618(integer-length 0) @result{} 0
1619(integer-length -1) @result{} 0
1620(integer-length -256) @result{} 8
1621(integer-length -257) @result{} 9
1622@end lisp
1623@end deffn
1624
1625@deffn {Scheme Procedure} integer-expt n k
1626@deffnx {C Function} scm_integer_expt (n, k)
a46648ac
KR
1627Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1628integer, @var{n} can be any number.
1629
1630Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1631in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1632@math{0^0} is 1.
07d83abe
MV
1633
1634@lisp
a46648ac
KR
1635(integer-expt 2 5) @result{} 32
1636(integer-expt -3 3) @result{} -27
1637(integer-expt 5 -3) @result{} 1/125
1638(integer-expt 0 0) @result{} 1
07d83abe
MV
1639@end lisp
1640@end deffn
1641
1642@deffn {Scheme Procedure} bit-extract n start end
1643@deffnx {C Function} scm_bit_extract (n, start, end)
1644Return the integer composed of the @var{start} (inclusive)
1645through @var{end} (exclusive) bits of @var{n}. The
1646@var{start}th bit becomes the 0-th bit in the result.
1647
1648@lisp
1649(number->string (bit-extract #b1101101010 0 4) 2)
1650 @result{} "1010"
1651(number->string (bit-extract #b1101101010 4 9) 2)
1652 @result{} "10110"
1653@end lisp
1654@end deffn
1655
1656
1657@node Random
1658@subsubsection Random Number Generation
1659
1660Pseudo-random numbers are generated from a random state object, which
1661can be created with @code{seed->random-state}. The @var{state}
1662parameter to the various functions below is optional, it defaults to
1663the state object in the @code{*random-state*} variable.
1664
1665@deffn {Scheme Procedure} copy-random-state [state]
1666@deffnx {C Function} scm_copy_random_state (state)
1667Return a copy of the random state @var{state}.
1668@end deffn
1669
1670@deffn {Scheme Procedure} random n [state]
1671@deffnx {C Function} scm_random (n, state)
1672Return a number in [0, @var{n}).
1673
1674Accepts a positive integer or real n and returns a
1675number of the same type between zero (inclusive) and
1676@var{n} (exclusive). The values returned have a uniform
1677distribution.
1678@end deffn
1679
1680@deffn {Scheme Procedure} random:exp [state]
1681@deffnx {C Function} scm_random_exp (state)
1682Return an inexact real in an exponential distribution with mean
16831. For an exponential distribution with mean @var{u} use @code{(*
1684@var{u} (random:exp))}.
1685@end deffn
1686
1687@deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1688@deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1689Fills @var{vect} with inexact real random numbers the sum of whose
1690squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1691space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1692the coordinates are uniformly distributed over the surface of the unit
1693n-sphere.
1694@end deffn
1695
1696@deffn {Scheme Procedure} random:normal [state]
1697@deffnx {C Function} scm_random_normal (state)
1698Return an inexact real in a normal distribution. The distribution
1699used has mean 0 and standard deviation 1. For a normal distribution
1700with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1701(* @var{d} (random:normal)))}.
1702@end deffn
1703
1704@deffn {Scheme Procedure} random:normal-vector! vect [state]
1705@deffnx {C Function} scm_random_normal_vector_x (vect, state)
1706Fills @var{vect} with inexact real random numbers that are
1707independent and standard normally distributed
1708(i.e., with mean 0 and variance 1).
1709@end deffn
1710
1711@deffn {Scheme Procedure} random:solid-sphere! vect [state]
1712@deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1713Fills @var{vect} with inexact real random numbers the sum of whose
1714squares is less than 1.0. Thinking of @var{vect} as coordinates in
1715space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1716the coordinates are uniformly distributed within the unit
4497bd2f 1717@var{n}-sphere.
07d83abe
MV
1718@c FIXME: What does this mean, particularly the n-sphere part?
1719@end deffn
1720
1721@deffn {Scheme Procedure} random:uniform [state]
1722@deffnx {C Function} scm_random_uniform (state)
1723Return a uniformly distributed inexact real random number in
1724[0,1).
1725@end deffn
1726
1727@deffn {Scheme Procedure} seed->random-state seed
1728@deffnx {C Function} scm_seed_to_random_state (seed)
1729Return a new random state using @var{seed}.
1730@end deffn
1731
1732@defvar *random-state*
1733The global random state used by the above functions when the
1734@var{state} parameter is not given.
1735@end defvar
1736
8c726cf0
NJ
1737Note that the initial value of @code{*random-state*} is the same every
1738time Guile starts up. Therefore, if you don't pass a @var{state}
1739parameter to the above procedures, and you don't set
1740@code{*random-state*} to @code{(seed->random-state your-seed)}, where
1741@code{your-seed} is something that @emph{isn't} the same every time,
1742you'll get the same sequence of ``random'' numbers on every run.
1743
1744For example, unless the relevant source code has changed, @code{(map
1745random (cdr (iota 30)))}, if the first use of random numbers since
1746Guile started up, will always give:
1747
1748@lisp
1749(map random (cdr (iota 19)))
1750@result{}
1751(0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1752@end lisp
1753
1754To use the time of day as the random seed, you can use code like this:
1755
1756@lisp
1757(let ((time (gettimeofday)))
1758 (set! *random-state*
1759 (seed->random-state (+ (car time)
1760 (cdr time)))))
1761@end lisp
1762
1763@noindent
1764And then (depending on the time of day, of course):
1765
1766@lisp
1767(map random (cdr (iota 19)))
1768@result{}
1769(0 0 1 0 2 4 5 4 5 5 9 3 10 1 8 3 14 17)
1770@end lisp
1771
1772For security applications, such as password generation, you should use
1773more bits of seed. Otherwise an open source password generator could
1774be attacked by guessing the seed@dots{} but that's a subject for
1775another manual.
1776
07d83abe
MV
1777
1778@node Characters
1779@subsection Characters
1780@tpindex Characters
1781
050ab45f
MV
1782In Scheme, a character literal is written as @code{#\@var{name}} where
1783@var{name} is the name of the character that you want. Printable
1784characters have their usual single character name; for example,
1785@code{#\a} is a lower case @code{a}.
07d83abe
MV
1786
1787Most of the ``control characters'' (those below codepoint 32) in the
1788@acronym{ASCII} character set, as well as the space, may be referred
050ab45f
MV
1789to by longer names: for example, @code{#\tab}, @code{#\esc},
1790@code{#\stx}, and so on. The following table describes the
1791@acronym{ASCII} names for each character.
07d83abe
MV
1792
1793@multitable @columnfractions .25 .25 .25 .25
1794@item 0 = @code{#\nul}
1795 @tab 1 = @code{#\soh}
1796 @tab 2 = @code{#\stx}
1797 @tab 3 = @code{#\etx}
1798@item 4 = @code{#\eot}
1799 @tab 5 = @code{#\enq}
1800 @tab 6 = @code{#\ack}
1801 @tab 7 = @code{#\bel}
1802@item 8 = @code{#\bs}
1803 @tab 9 = @code{#\ht}
1804 @tab 10 = @code{#\nl}
1805 @tab 11 = @code{#\vt}
1806@item 12 = @code{#\np}
1807 @tab 13 = @code{#\cr}
1808 @tab 14 = @code{#\so}
1809 @tab 15 = @code{#\si}
1810@item 16 = @code{#\dle}
1811 @tab 17 = @code{#\dc1}
1812 @tab 18 = @code{#\dc2}
1813 @tab 19 = @code{#\dc3}
1814@item 20 = @code{#\dc4}
1815 @tab 21 = @code{#\nak}
1816 @tab 22 = @code{#\syn}
1817 @tab 23 = @code{#\etb}
1818@item 24 = @code{#\can}
1819 @tab 25 = @code{#\em}
1820 @tab 26 = @code{#\sub}
1821 @tab 27 = @code{#\esc}
1822@item 28 = @code{#\fs}
1823 @tab 29 = @code{#\gs}
1824 @tab 30 = @code{#\rs}
1825 @tab 31 = @code{#\us}
1826@item 32 = @code{#\sp}
1827@end multitable
1828
1829The ``delete'' character (octal 177) may be referred to with the name
1830@code{#\del}.
1831
1832Several characters have more than one name:
1833
1834@multitable {@code{#\backspace}} {Original}
1835@item Alias @tab Original
1836@item @code{#\space} @tab @code{#\sp}
1837@item @code{#\newline} @tab @code{#\nl}
1838@item @code{#\tab} @tab @code{#\ht}
1839@item @code{#\backspace} @tab @code{#\bs}
1840@item @code{#\return} @tab @code{#\cr}
1841@item @code{#\page} @tab @code{#\np}
1842@item @code{#\null} @tab @code{#\nul}
1843@end multitable
1844
1845@rnindex char?
1846@deffn {Scheme Procedure} char? x
1847@deffnx {C Function} scm_char_p (x)
1848Return @code{#t} iff @var{x} is a character, else @code{#f}.
1849@end deffn
1850
1851@rnindex char=?
1852@deffn {Scheme Procedure} char=? x y
1853Return @code{#t} iff @var{x} is the same character as @var{y}, else @code{#f}.
1854@end deffn
1855
1856@rnindex char<?
1857@deffn {Scheme Procedure} char<? x y
1858Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence,
1859else @code{#f}.
1860@end deffn
1861
1862@rnindex char<=?
1863@deffn {Scheme Procedure} char<=? x y
1864Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1865@acronym{ASCII} sequence, else @code{#f}.
1866@end deffn
1867
1868@rnindex char>?
1869@deffn {Scheme Procedure} char>? x y
1870Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1871sequence, else @code{#f}.
1872@end deffn
1873
1874@rnindex char>=?
1875@deffn {Scheme Procedure} char>=? x y
1876Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1877@acronym{ASCII} sequence, else @code{#f}.
1878@end deffn
1879
1880@rnindex char-ci=?
1881@deffn {Scheme Procedure} char-ci=? x y
1882Return @code{#t} iff @var{x} is the same character as @var{y} ignoring
1883case, else @code{#f}.
1884@end deffn
1885
1886@rnindex char-ci<?
1887@deffn {Scheme Procedure} char-ci<? x y
1888Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence
1889ignoring case, else @code{#f}.
1890@end deffn
1891
1892@rnindex char-ci<=?
1893@deffn {Scheme Procedure} char-ci<=? x y
1894Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1895@acronym{ASCII} sequence ignoring case, else @code{#f}.
1896@end deffn
1897
1898@rnindex char-ci>?
1899@deffn {Scheme Procedure} char-ci>? x y
1900Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1901sequence ignoring case, else @code{#f}.
1902@end deffn
1903
1904@rnindex char-ci>=?
1905@deffn {Scheme Procedure} char-ci>=? x y
1906Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1907@acronym{ASCII} sequence ignoring case, else @code{#f}.
1908@end deffn
1909
1910@rnindex char-alphabetic?
1911@deffn {Scheme Procedure} char-alphabetic? chr
1912@deffnx {C Function} scm_char_alphabetic_p (chr)
1913Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
07d83abe
MV
1914@end deffn
1915
1916@rnindex char-numeric?
1917@deffn {Scheme Procedure} char-numeric? chr
1918@deffnx {C Function} scm_char_numeric_p (chr)
1919Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
07d83abe
MV
1920@end deffn
1921
1922@rnindex char-whitespace?
1923@deffn {Scheme Procedure} char-whitespace? chr
1924@deffnx {C Function} scm_char_whitespace_p (chr)
1925Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
07d83abe
MV
1926@end deffn
1927
1928@rnindex char-upper-case?
1929@deffn {Scheme Procedure} char-upper-case? chr
1930@deffnx {C Function} scm_char_upper_case_p (chr)
1931Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
07d83abe
MV
1932@end deffn
1933
1934@rnindex char-lower-case?
1935@deffn {Scheme Procedure} char-lower-case? chr
1936@deffnx {C Function} scm_char_lower_case_p (chr)
1937Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
07d83abe
MV
1938@end deffn
1939
1940@deffn {Scheme Procedure} char-is-both? chr
1941@deffnx {C Function} scm_char_is_both_p (chr)
1942Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
5676b4fa 1943@code{#f}.
07d83abe
MV
1944@end deffn
1945
1946@rnindex char->integer
1947@deffn {Scheme Procedure} char->integer chr
1948@deffnx {C Function} scm_char_to_integer (chr)
1949Return the number corresponding to ordinal position of @var{chr} in the
1950@acronym{ASCII} sequence.
1951@end deffn
1952
1953@rnindex integer->char
1954@deffn {Scheme Procedure} integer->char n
1955@deffnx {C Function} scm_integer_to_char (n)
1956Return the character at position @var{n} in the @acronym{ASCII} sequence.
1957@end deffn
1958
1959@rnindex char-upcase
1960@deffn {Scheme Procedure} char-upcase chr
1961@deffnx {C Function} scm_char_upcase (chr)
1962Return the uppercase character version of @var{chr}.
1963@end deffn
1964
1965@rnindex char-downcase
1966@deffn {Scheme Procedure} char-downcase chr
1967@deffnx {C Function} scm_char_downcase (chr)
1968Return the lowercase character version of @var{chr}.
1969@end deffn
1970
050ab45f
MV
1971@node Character Sets
1972@subsection Character Sets
07d83abe 1973
050ab45f
MV
1974The features described in this section correspond directly to SRFI-14.
1975
1976The data type @dfn{charset} implements sets of characters
1977(@pxref{Characters}). Because the internal representation of
1978character sets is not visible to the user, a lot of procedures for
1979handling them are provided.
1980
1981Character sets can be created, extended, tested for the membership of a
1982characters and be compared to other character sets.
1983
1984The Guile implementation of character sets currently deals only with
19858-bit characters. In the future, when Guile gets support for
1986international character sets, this will change, but the functions
1987provided here will always then be able to efficiently cope with very
1988large character sets.
1989
1990@menu
1991* Character Set Predicates/Comparison::
1992* Iterating Over Character Sets:: Enumerate charset elements.
1993* Creating Character Sets:: Making new charsets.
1994* Querying Character Sets:: Test charsets for membership etc.
1995* Character-Set Algebra:: Calculating new charsets.
1996* Standard Character Sets:: Variables containing predefined charsets.
1997@end menu
1998
1999@node Character Set Predicates/Comparison
2000@subsubsection Character Set Predicates/Comparison
2001
2002Use these procedures for testing whether an object is a character set,
2003or whether several character sets are equal or subsets of each other.
2004@code{char-set-hash} can be used for calculating a hash value, maybe for
2005usage in fast lookup procedures.
2006
2007@deffn {Scheme Procedure} char-set? obj
2008@deffnx {C Function} scm_char_set_p (obj)
2009Return @code{#t} if @var{obj} is a character set, @code{#f}
2010otherwise.
2011@end deffn
2012
2013@deffn {Scheme Procedure} char-set= . char_sets
2014@deffnx {C Function} scm_char_set_eq (char_sets)
2015Return @code{#t} if all given character sets are equal.
2016@end deffn
2017
2018@deffn {Scheme Procedure} char-set<= . char_sets
2019@deffnx {C Function} scm_char_set_leq (char_sets)
2020Return @code{#t} if every character set @var{cs}i is a subset
2021of character set @var{cs}i+1.
2022@end deffn
2023
2024@deffn {Scheme Procedure} char-set-hash cs [bound]
2025@deffnx {C Function} scm_char_set_hash (cs, bound)
2026Compute a hash value for the character set @var{cs}. If
2027@var{bound} is given and non-zero, it restricts the
2028returned value to the range 0 @dots{} @var{bound - 1}.
2029@end deffn
2030
2031@c ===================================================================
2032
2033@node Iterating Over Character Sets
2034@subsubsection Iterating Over Character Sets
2035
2036Character set cursors are a means for iterating over the members of a
2037character sets. After creating a character set cursor with
2038@code{char-set-cursor}, a cursor can be dereferenced with
2039@code{char-set-ref}, advanced to the next member with
2040@code{char-set-cursor-next}. Whether a cursor has passed past the last
2041element of the set can be checked with @code{end-of-char-set?}.
2042
2043Additionally, mapping and (un-)folding procedures for character sets are
2044provided.
2045
2046@deffn {Scheme Procedure} char-set-cursor cs
2047@deffnx {C Function} scm_char_set_cursor (cs)
2048Return a cursor into the character set @var{cs}.
2049@end deffn
2050
2051@deffn {Scheme Procedure} char-set-ref cs cursor
2052@deffnx {C Function} scm_char_set_ref (cs, cursor)
2053Return the character at the current cursor position
2054@var{cursor} in the character set @var{cs}. It is an error to
2055pass a cursor for which @code{end-of-char-set?} returns true.
2056@end deffn
2057
2058@deffn {Scheme Procedure} char-set-cursor-next cs cursor
2059@deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2060Advance the character set cursor @var{cursor} to the next
2061character in the character set @var{cs}. It is an error if the
2062cursor given satisfies @code{end-of-char-set?}.
2063@end deffn
2064
2065@deffn {Scheme Procedure} end-of-char-set? cursor
2066@deffnx {C Function} scm_end_of_char_set_p (cursor)
2067Return @code{#t} if @var{cursor} has reached the end of a
2068character set, @code{#f} otherwise.
2069@end deffn
2070
2071@deffn {Scheme Procedure} char-set-fold kons knil cs
2072@deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2073Fold the procedure @var{kons} over the character set @var{cs},
2074initializing it with @var{knil}.
2075@end deffn
2076
2077@deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2078@deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2079This is a fundamental constructor for character sets.
2080@itemize @bullet
2081@item @var{g} is used to generate a series of ``seed'' values
2082from the initial seed: @var{seed}, (@var{g} @var{seed}),
2083(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2084@item @var{p} tells us when to stop -- when it returns true
2085when applied to one of the seed values.
2086@item @var{f} maps each seed value to a character. These
2087characters are added to the base character set @var{base_cs} to
2088form the result; @var{base_cs} defaults to the empty set.
2089@end itemize
2090@end deffn
2091
2092@deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2093@deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2094This is a fundamental constructor for character sets.
2095@itemize @bullet
2096@item @var{g} is used to generate a series of ``seed'' values
2097from the initial seed: @var{seed}, (@var{g} @var{seed}),
2098(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2099@item @var{p} tells us when to stop -- when it returns true
2100when applied to one of the seed values.
2101@item @var{f} maps each seed value to a character. These
2102characters are added to the base character set @var{base_cs} to
2103form the result; @var{base_cs} defaults to the empty set.
2104@end itemize
2105@end deffn
2106
2107@deffn {Scheme Procedure} char-set-for-each proc cs
2108@deffnx {C Function} scm_char_set_for_each (proc, cs)
2109Apply @var{proc} to every character in the character set
2110@var{cs}. The return value is not specified.
2111@end deffn
2112
2113@deffn {Scheme Procedure} char-set-map proc cs
2114@deffnx {C Function} scm_char_set_map (proc, cs)
2115Map the procedure @var{proc} over every character in @var{cs}.
2116@var{proc} must be a character -> character procedure.
2117@end deffn
2118
2119@c ===================================================================
2120
2121@node Creating Character Sets
2122@subsubsection Creating Character Sets
2123
2124New character sets are produced with these procedures.
2125
2126@deffn {Scheme Procedure} char-set-copy cs
2127@deffnx {C Function} scm_char_set_copy (cs)
2128Return a newly allocated character set containing all
2129characters in @var{cs}.
2130@end deffn
2131
2132@deffn {Scheme Procedure} char-set . rest
2133@deffnx {C Function} scm_char_set (rest)
2134Return a character set containing all given characters.
2135@end deffn
2136
2137@deffn {Scheme Procedure} list->char-set list [base_cs]
2138@deffnx {C Function} scm_list_to_char_set (list, base_cs)
2139Convert the character list @var{list} to a character set. If
2140the character set @var{base_cs} is given, the character in this
2141set are also included in the result.
2142@end deffn
2143
2144@deffn {Scheme Procedure} list->char-set! list base_cs
2145@deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2146Convert the character list @var{list} to a character set. The
2147characters are added to @var{base_cs} and @var{base_cs} is
2148returned.
2149@end deffn
2150
2151@deffn {Scheme Procedure} string->char-set str [base_cs]
2152@deffnx {C Function} scm_string_to_char_set (str, base_cs)
2153Convert the string @var{str} to a character set. If the
2154character set @var{base_cs} is given, the characters in this
2155set are also included in the result.
2156@end deffn
2157
2158@deffn {Scheme Procedure} string->char-set! str base_cs
2159@deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2160Convert the string @var{str} to a character set. The
2161characters from the string are added to @var{base_cs}, and
2162@var{base_cs} is returned.
2163@end deffn
2164
2165@deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2166@deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2167Return a character set containing every character from @var{cs}
2168so that it satisfies @var{pred}. If provided, the characters
2169from @var{base_cs} are added to the result.
2170@end deffn
2171
2172@deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2173@deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2174Return a character set containing every character from @var{cs}
2175so that it satisfies @var{pred}. The characters are added to
2176@var{base_cs} and @var{base_cs} is returned.
2177@end deffn
2178
2179@deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2180@deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2181Return a character set containing all characters whose
2182character codes lie in the half-open range
2183[@var{lower},@var{upper}).
2184
2185If @var{error} is a true value, an error is signalled if the
2186specified range contains characters which are not contained in
2187the implemented character range. If @var{error} is @code{#f},
2188these characters are silently left out of the resultung
2189character set.
2190
2191The characters in @var{base_cs} are added to the result, if
2192given.
2193@end deffn
2194
2195@deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2196@deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2197Return a character set containing all characters whose
2198character codes lie in the half-open range
2199[@var{lower},@var{upper}).
2200
2201If @var{error} is a true value, an error is signalled if the
2202specified range contains characters which are not contained in
2203the implemented character range. If @var{error} is @code{#f},
2204these characters are silently left out of the resultung
2205character set.
2206
2207The characters are added to @var{base_cs} and @var{base_cs} is
2208returned.
2209@end deffn
2210
2211@deffn {Scheme Procedure} ->char-set x
2212@deffnx {C Function} scm_to_char_set (x)
2213Coerces x into a char-set. @var{x} may be a string, character or char-set. A string is converted to the set of its constituent characters; a character is converted to a singleton set; a char-set is returned as-is.
2214@end deffn
2215
2216@c ===================================================================
2217
2218@node Querying Character Sets
2219@subsubsection Querying Character Sets
2220
2221Access the elements and other information of a character set with these
2222procedures.
2223
2224@deffn {Scheme Procedure} char-set-size cs
2225@deffnx {C Function} scm_char_set_size (cs)
2226Return the number of elements in character set @var{cs}.
2227@end deffn
2228
2229@deffn {Scheme Procedure} char-set-count pred cs
2230@deffnx {C Function} scm_char_set_count (pred, cs)
2231Return the number of the elements int the character set
2232@var{cs} which satisfy the predicate @var{pred}.
2233@end deffn
2234
2235@deffn {Scheme Procedure} char-set->list cs
2236@deffnx {C Function} scm_char_set_to_list (cs)
2237Return a list containing the elements of the character set
2238@var{cs}.
2239@end deffn
2240
2241@deffn {Scheme Procedure} char-set->string cs
2242@deffnx {C Function} scm_char_set_to_string (cs)
2243Return a string containing the elements of the character set
2244@var{cs}. The order in which the characters are placed in the
2245string is not defined.
2246@end deffn
2247
2248@deffn {Scheme Procedure} char-set-contains? cs ch
2249@deffnx {C Function} scm_char_set_contains_p (cs, ch)
2250Return @code{#t} iff the character @var{ch} is contained in the
2251character set @var{cs}.
2252@end deffn
2253
2254@deffn {Scheme Procedure} char-set-every pred cs
2255@deffnx {C Function} scm_char_set_every (pred, cs)
2256Return a true value if every character in the character set
2257@var{cs} satisfies the predicate @var{pred}.
2258@end deffn
2259
2260@deffn {Scheme Procedure} char-set-any pred cs
2261@deffnx {C Function} scm_char_set_any (pred, cs)
2262Return a true value if any character in the character set
2263@var{cs} satisfies the predicate @var{pred}.
2264@end deffn
2265
2266@c ===================================================================
2267
2268@node Character-Set Algebra
2269@subsubsection Character-Set Algebra
2270
2271Character sets can be manipulated with the common set algebra operation,
2272such as union, complement, intersection etc. All of these procedures
2273provide side-effecting variants, which modify their character set
2274argument(s).
2275
2276@deffn {Scheme Procedure} char-set-adjoin cs . rest
2277@deffnx {C Function} scm_char_set_adjoin (cs, rest)
2278Add all character arguments to the first argument, which must
2279be a character set.
2280@end deffn
2281
2282@deffn {Scheme Procedure} char-set-delete cs . rest
2283@deffnx {C Function} scm_char_set_delete (cs, rest)
2284Delete all character arguments from the first argument, which
2285must be a character set.
2286@end deffn
2287
2288@deffn {Scheme Procedure} char-set-adjoin! cs . rest
2289@deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
2290Add all character arguments to the first argument, which must
2291be a character set.
2292@end deffn
2293
2294@deffn {Scheme Procedure} char-set-delete! cs . rest
2295@deffnx {C Function} scm_char_set_delete_x (cs, rest)
2296Delete all character arguments from the first argument, which
2297must be a character set.
2298@end deffn
2299
2300@deffn {Scheme Procedure} char-set-complement cs
2301@deffnx {C Function} scm_char_set_complement (cs)
2302Return the complement of the character set @var{cs}.
2303@end deffn
2304
2305@deffn {Scheme Procedure} char-set-union . rest
2306@deffnx {C Function} scm_char_set_union (rest)
2307Return the union of all argument character sets.
2308@end deffn
2309
2310@deffn {Scheme Procedure} char-set-intersection . rest
2311@deffnx {C Function} scm_char_set_intersection (rest)
2312Return the intersection of all argument character sets.
2313@end deffn
2314
2315@deffn {Scheme Procedure} char-set-difference cs1 . rest
2316@deffnx {C Function} scm_char_set_difference (cs1, rest)
2317Return the difference of all argument character sets.
2318@end deffn
2319
2320@deffn {Scheme Procedure} char-set-xor . rest
2321@deffnx {C Function} scm_char_set_xor (rest)
2322Return the exclusive-or of all argument character sets.
2323@end deffn
2324
2325@deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
2326@deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
2327Return the difference and the intersection of all argument
2328character sets.
2329@end deffn
2330
2331@deffn {Scheme Procedure} char-set-complement! cs
2332@deffnx {C Function} scm_char_set_complement_x (cs)
2333Return the complement of the character set @var{cs}.
2334@end deffn
2335
2336@deffn {Scheme Procedure} char-set-union! cs1 . rest
2337@deffnx {C Function} scm_char_set_union_x (cs1, rest)
2338Return the union of all argument character sets.
2339@end deffn
2340
2341@deffn {Scheme Procedure} char-set-intersection! cs1 . rest
2342@deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
2343Return the intersection of all argument character sets.
2344@end deffn
2345
2346@deffn {Scheme Procedure} char-set-difference! cs1 . rest
2347@deffnx {C Function} scm_char_set_difference_x (cs1, rest)
2348Return the difference of all argument character sets.
2349@end deffn
2350
2351@deffn {Scheme Procedure} char-set-xor! cs1 . rest
2352@deffnx {C Function} scm_char_set_xor_x (cs1, rest)
2353Return the exclusive-or of all argument character sets.
2354@end deffn
2355
2356@deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
2357@deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
2358Return the difference and the intersection of all argument
2359character sets.
2360@end deffn
2361
2362@c ===================================================================
2363
2364@node Standard Character Sets
2365@subsubsection Standard Character Sets
2366
2367In order to make the use of the character set data type and procedures
2368useful, several predefined character set variables exist.
2369
49dec04b
LC
2370@cindex codeset
2371@cindex charset
2372@cindex locale
2373
2374Currently, the contents of these character sets are recomputed upon a
2375successful @code{setlocale} call (@pxref{Locales}) in order to reflect
2376the characters available in the current locale's codeset. For
2377instance, @code{char-set:letter} contains 52 characters under an ASCII
2378locale (e.g., the default @code{C} locale) and 117 characters under an
2379ISO-8859-1 (``Latin-1'') locale.
2380
c9dc8c6c
MV
2381@defvr {Scheme Variable} char-set:lower-case
2382@defvrx {C Variable} scm_char_set_lower_case
050ab45f 2383All lower-case characters.
c9dc8c6c 2384@end defvr
050ab45f 2385
c9dc8c6c
MV
2386@defvr {Scheme Variable} char-set:upper-case
2387@defvrx {C Variable} scm_char_set_upper_case
050ab45f 2388All upper-case characters.
c9dc8c6c 2389@end defvr
050ab45f 2390
c9dc8c6c
MV
2391@defvr {Scheme Variable} char-set:title-case
2392@defvrx {C Variable} scm_char_set_title_case
050ab45f 2393This is empty, because ASCII has no titlecase characters.
c9dc8c6c 2394@end defvr
050ab45f 2395
c9dc8c6c
MV
2396@defvr {Scheme Variable} char-set:letter
2397@defvrx {C Variable} scm_char_set_letter
050ab45f
MV
2398All letters, e.g. the union of @code{char-set:lower-case} and
2399@code{char-set:upper-case}.
c9dc8c6c 2400@end defvr
050ab45f 2401
c9dc8c6c
MV
2402@defvr {Scheme Variable} char-set:digit
2403@defvrx {C Variable} scm_char_set_digit
050ab45f 2404All digits.
c9dc8c6c 2405@end defvr
050ab45f 2406
c9dc8c6c
MV
2407@defvr {Scheme Variable} char-set:letter+digit
2408@defvrx {C Variable} scm_char_set_letter_and_digit
050ab45f 2409The union of @code{char-set:letter} and @code{char-set:digit}.
c9dc8c6c 2410@end defvr
050ab45f 2411
c9dc8c6c
MV
2412@defvr {Scheme Variable} char-set:graphic
2413@defvrx {C Variable} scm_char_set_graphic
050ab45f 2414All characters which would put ink on the paper.
c9dc8c6c 2415@end defvr
050ab45f 2416
c9dc8c6c
MV
2417@defvr {Scheme Variable} char-set:printing
2418@defvrx {C Variable} scm_char_set_printing
050ab45f 2419The union of @code{char-set:graphic} and @code{char-set:whitespace}.
c9dc8c6c 2420@end defvr
050ab45f 2421
c9dc8c6c
MV
2422@defvr {Scheme Variable} char-set:whitespace
2423@defvrx {C Variable} scm_char_set_whitespace
050ab45f 2424All whitespace characters.
c9dc8c6c 2425@end defvr
050ab45f 2426
c9dc8c6c
MV
2427@defvr {Scheme Variable} char-set:blank
2428@defvrx {C Variable} scm_char_set_blank
050ab45f
MV
2429All horizontal whitespace characters, that is @code{#\space} and
2430@code{#\tab}.
c9dc8c6c 2431@end defvr
050ab45f 2432
c9dc8c6c
MV
2433@defvr {Scheme Variable} char-set:iso-control
2434@defvrx {C Variable} scm_char_set_iso_control
050ab45f 2435The ISO control characters with the codes 0--31 and 127.
c9dc8c6c 2436@end defvr
050ab45f 2437
c9dc8c6c
MV
2438@defvr {Scheme Variable} char-set:punctuation
2439@defvrx {C Variable} scm_char_set_punctuation
050ab45f 2440The characters @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
c9dc8c6c 2441@end defvr
050ab45f 2442
c9dc8c6c
MV
2443@defvr {Scheme Variable} char-set:symbol
2444@defvrx {C Variable} scm_char_set_symbol
050ab45f 2445The characters @code{$+<=>^`|~}.
c9dc8c6c 2446@end defvr
050ab45f 2447
c9dc8c6c
MV
2448@defvr {Scheme Variable} char-set:hex-digit
2449@defvrx {C Variable} scm_char_set_hex_digit
050ab45f 2450The hexadecimal digits @code{0123456789abcdefABCDEF}.
c9dc8c6c 2451@end defvr
050ab45f 2452
c9dc8c6c
MV
2453@defvr {Scheme Variable} char-set:ascii
2454@defvrx {C Variable} scm_char_set_ascii
050ab45f 2455All ASCII characters.
c9dc8c6c 2456@end defvr
050ab45f 2457
c9dc8c6c
MV
2458@defvr {Scheme Variable} char-set:empty
2459@defvrx {C Variable} scm_char_set_empty
050ab45f 2460The empty character set.
c9dc8c6c 2461@end defvr
050ab45f 2462
c9dc8c6c
MV
2463@defvr {Scheme Variable} char-set:full
2464@defvrx {C Variable} scm_char_set_full
050ab45f 2465This character set contains all possible characters.
c9dc8c6c 2466@end defvr
07d83abe
MV
2467
2468@node Strings
2469@subsection Strings
2470@tpindex Strings
2471
2472Strings are fixed-length sequences of characters. They can be created
2473by calling constructor procedures, but they can also literally get
2474entered at the @acronym{REPL} or in Scheme source files.
2475
2476@c Guile provides a rich set of string processing procedures, because text
2477@c handling is very important when Guile is used as a scripting language.
2478
2479Strings always carry the information about how many characters they are
2480composed of with them, so there is no special end-of-string character,
2481like in C. That means that Scheme strings can contain any character,
c48c62d0
MV
2482even the @samp{#\nul} character @samp{\0}.
2483
2484To use strings efficiently, you need to know a bit about how Guile
2485implements them. In Guile, a string consists of two parts, a head and
2486the actual memory where the characters are stored. When a string (or
2487a substring of it) is copied, only a new head gets created, the memory
2488is usually not copied. The two heads start out pointing to the same
2489memory.
2490
2491When one of these two strings is modified, as with @code{string-set!},
2492their common memory does get copied so that each string has its own
2493memory and modifying one does not accidently modify the other as well.
2494Thus, Guile's strings are `copy on write'; the actual copying of their
2495memory is delayed until one string is written to.
2496
2497This implementation makes functions like @code{substring} very
2498efficient in the common case that no modifications are done to the
2499involved strings.
2500
2501If you do know that your strings are getting modified right away, you
2502can use @code{substring/copy} instead of @code{substring}. This
2503function performs the copy immediately at the time of creation. This
2504is more efficient, especially in a multi-threaded program. Also,
2505@code{substring/copy} can avoid the problem that a short substring
2506holds on to the memory of a very large original string that could
2507otherwise be recycled.
2508
2509If you want to avoid the copy altogether, so that modifications of one
2510string show up in the other, you can use @code{substring/shared}. The
2511strings created by this procedure are called @dfn{mutation sharing
2512substrings} since the substring and the original string share
2513modifications to each other.
07d83abe 2514
05256760
MV
2515If you want to prevent modifications, use @code{substring/read-only}.
2516
c9dc8c6c
MV
2517Guile provides all procedures of SRFI-13 and a few more.
2518
07d83abe 2519@menu
5676b4fa
MV
2520* String Syntax:: Read syntax for strings.
2521* String Predicates:: Testing strings for certain properties.
2522* String Constructors:: Creating new string objects.
2523* List/String Conversion:: Converting from/to lists of characters.
2524* String Selection:: Select portions from strings.
2525* String Modification:: Modify parts or whole strings.
2526* String Comparison:: Lexicographic ordering predicates.
2527* String Searching:: Searching in strings.
2528* Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2529* Reversing and Appending Strings:: Appending strings to form a new string.
2530* Mapping Folding and Unfolding:: Iterating over strings.
2531* Miscellaneous String Operations:: Replicating, insertion, parsing, ...
91210d62 2532* Conversion to/from C::
07d83abe
MV
2533@end menu
2534
2535@node String Syntax
2536@subsubsection String Read Syntax
2537
2538@c In the following @code is used to get a good font in TeX etc, but
2539@c is omitted for Info format, so as not to risk any confusion over
2540@c whether surrounding ` ' quotes are part of the escape or are
2541@c special in a string (they're not).
2542
2543The read syntax for strings is an arbitrarily long sequence of
c48c62d0 2544characters enclosed in double quotes (@nicode{"}).
07d83abe
MV
2545
2546Backslash is an escape character and can be used to insert the
2547following special characters. @nicode{\"} and @nicode{\\} are R5RS
2548standard, the rest are Guile extensions, notice they follow C string
2549syntax.
2550
2551@table @asis
2552@item @nicode{\\}
2553Backslash character.
2554
2555@item @nicode{\"}
2556Double quote character (an unescaped @nicode{"} is otherwise the end
2557of the string).
2558
2559@item @nicode{\0}
2560NUL character (ASCII 0).
2561
2562@item @nicode{\a}
2563Bell character (ASCII 7).
2564
2565@item @nicode{\f}
2566Formfeed character (ASCII 12).
2567
2568@item @nicode{\n}
2569Newline character (ASCII 10).
2570
2571@item @nicode{\r}
2572Carriage return character (ASCII 13).
2573
2574@item @nicode{\t}
2575Tab character (ASCII 9).
2576
2577@item @nicode{\v}
2578Vertical tab character (ASCII 11).
2579
2580@item @nicode{\xHH}
2581Character code given by two hexadecimal digits. For example
2582@nicode{\x7f} for an ASCII DEL (127).
2583@end table
2584
2585@noindent
2586The following are examples of string literals:
2587
2588@lisp
2589"foo"
2590"bar plonk"
2591"Hello World"
2592"\"Hi\", he said."
2593@end lisp
2594
2595
2596@node String Predicates
2597@subsubsection String Predicates
2598
2599The following procedures can be used to check whether a given string
2600fulfills some specified property.
2601
2602@rnindex string?
2603@deffn {Scheme Procedure} string? obj
2604@deffnx {C Function} scm_string_p (obj)
2605Return @code{#t} if @var{obj} is a string, else @code{#f}.
2606@end deffn
2607
91210d62
MV
2608@deftypefn {C Function} int scm_is_string (SCM obj)
2609Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
2610@end deftypefn
2611
07d83abe
MV
2612@deffn {Scheme Procedure} string-null? str
2613@deffnx {C Function} scm_string_null_p (str)
2614Return @code{#t} if @var{str}'s length is zero, and
2615@code{#f} otherwise.
2616@lisp
2617(string-null? "") @result{} #t
2618y @result{} "foo"
2619(string-null? y) @result{} #f
2620@end lisp
2621@end deffn
2622
5676b4fa
MV
2623@deffn {Scheme Procedure} string-any char_pred s [start [end]]
2624@deffnx {C Function} scm_string_any (char_pred, s, start, end)
c100a12c 2625Check if @var{char_pred} is true for any character in string @var{s}.
5676b4fa 2626
c100a12c
KR
2627@var{char_pred} can be a character to check for any equal to that, or
2628a character set (@pxref{Character Sets}) to check for any in that set,
2629or a predicate procedure to call.
5676b4fa 2630
c100a12c
KR
2631For a procedure, calls @code{(@var{char_pred} c)} are made
2632successively on the characters from @var{start} to @var{end}. If
2633@var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
2634stops and that return value is the return from @code{string-any}. The
2635call on the last character (ie.@: at @math{@var{end}-1}), if that
2636point is reached, is a tail call.
2637
2638If there are no characters in @var{s} (ie.@: @var{start} equals
2639@var{end}) then the return is @code{#f}.
5676b4fa
MV
2640@end deffn
2641
2642@deffn {Scheme Procedure} string-every char_pred s [start [end]]
2643@deffnx {C Function} scm_string_every (char_pred, s, start, end)
c100a12c
KR
2644Check if @var{char_pred} is true for every character in string
2645@var{s}.
5676b4fa 2646
c100a12c
KR
2647@var{char_pred} can be a character to check for every character equal
2648to that, or a character set (@pxref{Character Sets}) to check for
2649every character being in that set, or a predicate procedure to call.
2650
2651For a procedure, calls @code{(@var{char_pred} c)} are made
2652successively on the characters from @var{start} to @var{end}. If
2653@var{char_pred} returns @code{#f}, @code{string-every} stops and
2654returns @code{#f}. The call on the last character (ie.@: at
2655@math{@var{end}-1}), if that point is reached, is a tail call and the
2656return from that call is the return from @code{string-every}.
5676b4fa
MV
2657
2658If there are no characters in @var{s} (ie.@: @var{start} equals
2659@var{end}) then the return is @code{#t}.
5676b4fa
MV
2660@end deffn
2661
07d83abe
MV
2662@node String Constructors
2663@subsubsection String Constructors
2664
2665The string constructor procedures create new string objects, possibly
c48c62d0
MV
2666initializing them with some specified character data. See also
2667@xref{String Selection}, for ways to create strings from existing
2668strings.
07d83abe
MV
2669
2670@c FIXME::martin: list->string belongs into `List/String Conversion'
2671
bba26c32 2672@deffn {Scheme Procedure} string char@dots{}
07d83abe 2673@rnindex string
bba26c32
KR
2674Return a newly allocated string made from the given character
2675arguments.
2676
2677@example
2678(string #\x #\y #\z) @result{} "xyz"
2679(string) @result{} ""
2680@end example
2681@end deffn
2682
2683@deffn {Scheme Procedure} list->string lst
2684@deffnx {C Function} scm_string (lst)
07d83abe 2685@rnindex list->string
bba26c32
KR
2686Return a newly allocated string made from a list of characters.
2687
2688@example
2689(list->string '(#\a #\b #\c)) @result{} "abc"
2690@end example
2691@end deffn
2692
2693@deffn {Scheme Procedure} reverse-list->string lst
2694@deffnx {C Function} scm_reverse_list_to_string (lst)
2695Return a newly allocated string made from a list of characters, in
2696reverse order.
2697
2698@example
2699(reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
2700@end example
07d83abe
MV
2701@end deffn
2702
2703@rnindex make-string
2704@deffn {Scheme Procedure} make-string k [chr]
2705@deffnx {C Function} scm_make_string (k, chr)
2706Return a newly allocated string of
2707length @var{k}. If @var{chr} is given, then all elements of
2708the string are initialized to @var{chr}, otherwise the contents
2709of the @var{string} are unspecified.
2710@end deffn
2711
c48c62d0
MV
2712@deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
2713Like @code{scm_make_string}, but expects the length as a
2714@code{size_t}.
2715@end deftypefn
2716
5676b4fa
MV
2717@deffn {Scheme Procedure} string-tabulate proc len
2718@deffnx {C Function} scm_string_tabulate (proc, len)
2719@var{proc} is an integer->char procedure. Construct a string
2720of size @var{len} by applying @var{proc} to each index to
2721produce the corresponding string element. The order in which
2722@var{proc} is applied to the indices is not specified.
2723@end deffn
2724
5676b4fa
MV
2725@deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
2726@deffnx {C Function} scm_string_join (ls, delimiter, grammar)
2727Append the string in the string list @var{ls}, using the string
2728@var{delim} as a delimiter between the elements of @var{ls}.
2729@var{grammar} is a symbol which specifies how the delimiter is
2730placed between the strings, and defaults to the symbol
2731@code{infix}.
2732
2733@table @code
2734@item infix
2735Insert the separator between list elements. An empty string
2736will produce an empty list.
2737@item string-infix
2738Like @code{infix}, but will raise an error if given the empty
2739list.
2740@item suffix
2741Insert the separator after every list element.
2742@item prefix
2743Insert the separator before each list element.
2744@end table
2745@end deffn
2746
07d83abe
MV
2747@node List/String Conversion
2748@subsubsection List/String conversion
2749
2750When processing strings, it is often convenient to first convert them
2751into a list representation by using the procedure @code{string->list},
2752work with the resulting list, and then convert it back into a string.
2753These procedures are useful for similar tasks.
2754
2755@rnindex string->list
5676b4fa
MV
2756@deffn {Scheme Procedure} string->list str [start [end]]
2757@deffnx {C Function} scm_substring_to_list (str, start, end)
07d83abe 2758@deffnx {C Function} scm_string_to_list (str)
5676b4fa 2759Convert the string @var{str} into a list of characters.
07d83abe
MV
2760@end deffn
2761
2762@deffn {Scheme Procedure} string-split str chr
2763@deffnx {C Function} scm_string_split (str, chr)
2764Split the string @var{str} into the a list of the substrings delimited
2765by appearances of the character @var{chr}. Note that an empty substring
2766between separator characters will result in an empty string in the
2767result list.
2768
2769@lisp
2770(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
2771@result{}
2772("root" "x" "0" "0" "root" "/root" "/bin/bash")
2773
2774(string-split "::" #\:)
2775@result{}
2776("" "" "")
2777
2778(string-split "" #\:)
2779@result{}
2780("")
2781@end lisp
2782@end deffn
2783
2784
2785@node String Selection
2786@subsubsection String Selection
2787
2788Portions of strings can be extracted by these procedures.
2789@code{string-ref} delivers individual characters whereas
2790@code{substring} can be used to extract substrings from longer strings.
2791
2792@rnindex string-length
2793@deffn {Scheme Procedure} string-length string
2794@deffnx {C Function} scm_string_length (string)
2795Return the number of characters in @var{string}.
2796@end deffn
2797
c48c62d0
MV
2798@deftypefn {C Function} size_t scm_c_string_length (SCM str)
2799Return the number of characters in @var{str} as a @code{size_t}.
2800@end deftypefn
2801
07d83abe
MV
2802@rnindex string-ref
2803@deffn {Scheme Procedure} string-ref str k
2804@deffnx {C Function} scm_string_ref (str, k)
2805Return character @var{k} of @var{str} using zero-origin
2806indexing. @var{k} must be a valid index of @var{str}.
2807@end deffn
2808
c48c62d0
MV
2809@deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
2810Return character @var{k} of @var{str} using zero-origin
2811indexing. @var{k} must be a valid index of @var{str}.
2812@end deftypefn
2813
07d83abe 2814@rnindex string-copy
5676b4fa
MV
2815@deffn {Scheme Procedure} string-copy str [start [end]]
2816@deffnx {C Function} scm_substring_copy (str, start, end)
07d83abe 2817@deffnx {C Function} scm_string_copy (str)
5676b4fa 2818Return a copy of the given string @var{str}.
c48c62d0
MV
2819
2820The returned string shares storage with @var{str} initially, but it is
2821copied as soon as one of the two strings is modified.
07d83abe
MV
2822@end deffn
2823
2824@rnindex substring
2825@deffn {Scheme Procedure} substring str start [end]
2826@deffnx {C Function} scm_substring (str, start, end)
c48c62d0 2827Return a new string formed from the characters
07d83abe
MV
2828of @var{str} beginning with index @var{start} (inclusive) and
2829ending with index @var{end} (exclusive).
2830@var{str} must be a string, @var{start} and @var{end} must be
2831exact integers satisfying:
2832
28330 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
c48c62d0
MV
2834
2835The returned string shares storage with @var{str} initially, but it is
2836copied as soon as one of the two strings is modified.
2837@end deffn
2838
2839@deffn {Scheme Procedure} substring/shared str start [end]
2840@deffnx {C Function} scm_substring_shared (str, start, end)
2841Like @code{substring}, but the strings continue to share their storage
2842even if they are modified. Thus, modifications to @var{str} show up
2843in the new string, and vice versa.
2844@end deffn
2845
2846@deffn {Scheme Procedure} substring/copy str start [end]
2847@deffnx {C Function} scm_substring_copy (str, start, end)
2848Like @code{substring}, but the storage for the new string is copied
2849immediately.
07d83abe
MV
2850@end deffn
2851
05256760
MV
2852@deffn {Scheme Procedure} substring/read-only str start [end]
2853@deffnx {C Function} scm_substring_read_only (str, start, end)
2854Like @code{substring}, but the resulting string can not be modified.
2855@end deffn
2856
c48c62d0
MV
2857@deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
2858@deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
2859@deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
05256760 2860@deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
c48c62d0
MV
2861Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
2862@end deftypefn
2863
5676b4fa
MV
2864@deffn {Scheme Procedure} string-take s n
2865@deffnx {C Function} scm_string_take (s, n)
2866Return the @var{n} first characters of @var{s}.
2867@end deffn
2868
2869@deffn {Scheme Procedure} string-drop s n
2870@deffnx {C Function} scm_string_drop (s, n)
2871Return all but the first @var{n} characters of @var{s}.
2872@end deffn
2873
2874@deffn {Scheme Procedure} string-take-right s n
2875@deffnx {C Function} scm_string_take_right (s, n)
2876Return the @var{n} last characters of @var{s}.
2877@end deffn
2878
2879@deffn {Scheme Procedure} string-drop-right s n
2880@deffnx {C Function} scm_string_drop_right (s, n)
2881Return all but the last @var{n} characters of @var{s}.
2882@end deffn
2883
2884@deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
6337e7fb 2885@deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
5676b4fa 2886@deffnx {C Function} scm_string_pad (s, len, chr, start, end)
5676b4fa 2887@deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
6337e7fb
KR
2888Take characters @var{start} to @var{end} from the string @var{s} and
2889either pad with @var{char} or truncate them to give @var{len}
2890characters.
2891
2892@code{string-pad} pads or truncates on the left, so for example
2893
2894@example
2895(string-pad "x" 3) @result{} " x"
2896(string-pad "abcde" 3) @result{} "cde"
2897@end example
2898
2899@code{string-pad-right} pads or truncates on the right, so for example
2900
2901@example
2902(string-pad-right "x" 3) @result{} "x "
2903(string-pad-right "abcde" 3) @result{} "abc"
2904@end example
5676b4fa
MV
2905@end deffn
2906
2907@deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
dc297bb7
KR
2908@deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
2909@deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
5676b4fa 2910@deffnx {C Function} scm_string_trim (s, char_pred, start, end)
5676b4fa 2911@deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
5676b4fa 2912@deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
dc297bb7 2913Trim occurrances of @var{char_pred} from the ends of @var{s}.
5676b4fa 2914
dc297bb7
KR
2915@code{string-trim} trims @var{char_pred} characters from the left
2916(start) of the string, @code{string-trim-right} trims them from the
2917right (end) of the string, @code{string-trim-both} trims from both
2918ends.
5676b4fa 2919
dc297bb7
KR
2920@var{char_pred} can be a character, a character set, or a predicate
2921procedure to call on each character. If @var{char_pred} is not given
2922the default is whitespace as per @code{char-set:whitespace}
2923(@pxref{Standard Character Sets}).
5676b4fa 2924
dc297bb7
KR
2925@example
2926(string-trim " x ") @result{} "x "
2927(string-trim-right "banana" #\a) @result{} "banan"
2928(string-trim-both ".,xy:;" char-set:punctuation)
2929 @result{} "xy"
2930(string-trim-both "xyzzy" (lambda (c)
2931 (or (eqv? c #\x)
2932 (eqv? c #\y))))
2933 @result{} "zz"
2934@end example
5676b4fa
MV
2935@end deffn
2936
07d83abe
MV
2937@node String Modification
2938@subsubsection String Modification
2939
2940These procedures are for modifying strings in-place. This means that the
2941result of the operation is not a new string; instead, the original string's
2942memory representation is modified.
2943
2944@rnindex string-set!
2945@deffn {Scheme Procedure} string-set! str k chr
2946@deffnx {C Function} scm_string_set_x (str, k, chr)
2947Store @var{chr} in element @var{k} of @var{str} and return
2948an unspecified value. @var{k} must be a valid index of
2949@var{str}.
2950@end deffn
2951
c48c62d0
MV
2952@deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
2953Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
2954@end deftypefn
2955
07d83abe 2956@rnindex string-fill!
5676b4fa
MV
2957@deffn {Scheme Procedure} string-fill! str chr [start [end]]
2958@deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
07d83abe 2959@deffnx {C Function} scm_string_fill_x (str, chr)
5676b4fa
MV
2960Stores @var{chr} in every element of the given @var{str} and
2961returns an unspecified value.
07d83abe
MV
2962@end deffn
2963
2964@deffn {Scheme Procedure} substring-fill! str start end fill
2965@deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
2966Change every character in @var{str} between @var{start} and
2967@var{end} to @var{fill}.
2968
2969@lisp
2970(define y "abcdefg")
2971(substring-fill! y 1 3 #\r)
2972y
2973@result{} "arrdefg"
2974@end lisp
2975@end deffn
2976
2977@deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
2978@deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
2979Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
2980into @var{str2} beginning at position @var{start2}.
2981@var{str1} and @var{str2} can be the same string.
2982@end deffn
2983
5676b4fa
MV
2984@deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
2985@deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
2986Copy the sequence of characters from index range [@var{start},
2987@var{end}) in string @var{s} to string @var{target}, beginning
2988at index @var{tstart}. The characters are copied left-to-right
2989or right-to-left as needed -- the copy is guaranteed to work,
2990even if @var{target} and @var{s} are the same string. It is an
2991error if the copy operation runs off the end of the target
2992string.
2993@end deffn
2994
07d83abe
MV
2995
2996@node String Comparison
2997@subsubsection String Comparison
2998
2999The procedures in this section are similar to the character ordering
3000predicates (@pxref{Characters}), but are defined on character sequences.
07d83abe 3001
5676b4fa
MV
3002The first set is specified in R5RS and has names that end in @code{?}.
3003The second set is specified in SRFI-13 and the names have no ending
3004@code{?}. The predicates ending in @code{-ci} ignore the character case
a2f00b9b 3005when comparing strings. @xref{Text Collation, the @code{(ice-9
b89c4943 3006i18n)} module}, for locale-dependent string comparison.
07d83abe
MV
3007
3008@rnindex string=?
3009@deffn {Scheme Procedure} string=? s1 s2
3010Lexicographic equality predicate; return @code{#t} if the two
3011strings are the same length and contain the same characters in
3012the same positions, otherwise return @code{#f}.
3013
3014The procedure @code{string-ci=?} treats upper and lower case
3015letters as though they were the same character, but
3016@code{string=?} treats upper and lower case as distinct
3017characters.
3018@end deffn
3019
3020@rnindex string<?
3021@deffn {Scheme Procedure} string<? s1 s2
3022Lexicographic ordering predicate; return @code{#t} if @var{s1}
3023is lexicographically less than @var{s2}.
3024@end deffn
3025
3026@rnindex string<=?
3027@deffn {Scheme Procedure} string<=? s1 s2
3028Lexicographic ordering predicate; return @code{#t} if @var{s1}
3029is lexicographically less than or equal to @var{s2}.
3030@end deffn
3031
3032@rnindex string>?
3033@deffn {Scheme Procedure} string>? s1 s2
3034Lexicographic ordering predicate; return @code{#t} if @var{s1}
3035is lexicographically greater than @var{s2}.
3036@end deffn
3037
3038@rnindex string>=?
3039@deffn {Scheme Procedure} string>=? s1 s2
3040Lexicographic ordering predicate; return @code{#t} if @var{s1}
3041is lexicographically greater than or equal to @var{s2}.
3042@end deffn
3043
3044@rnindex string-ci=?
3045@deffn {Scheme Procedure} string-ci=? s1 s2
3046Case-insensitive string equality predicate; return @code{#t} if
3047the two strings are the same length and their component
3048characters match (ignoring case) at each position; otherwise
3049return @code{#f}.
3050@end deffn
3051
5676b4fa 3052@rnindex string-ci<?
07d83abe
MV
3053@deffn {Scheme Procedure} string-ci<? s1 s2
3054Case insensitive lexicographic ordering predicate; return
3055@code{#t} if @var{s1} is lexicographically less than @var{s2}
3056regardless of case.
3057@end deffn
3058
3059@rnindex string<=?
3060@deffn {Scheme Procedure} string-ci<=? s1 s2
3061Case insensitive lexicographic ordering predicate; return
3062@code{#t} if @var{s1} is lexicographically less than or equal
3063to @var{s2} regardless of case.
3064@end deffn
3065
3066@rnindex string-ci>?
3067@deffn {Scheme Procedure} string-ci>? s1 s2
3068Case insensitive lexicographic ordering predicate; return
3069@code{#t} if @var{s1} is lexicographically greater than
3070@var{s2} regardless of case.
3071@end deffn
3072
3073@rnindex string-ci>=?
3074@deffn {Scheme Procedure} string-ci>=? s1 s2
3075Case insensitive lexicographic ordering predicate; return
3076@code{#t} if @var{s1} is lexicographically greater than or
3077equal to @var{s2} regardless of case.
3078@end deffn
3079
5676b4fa
MV
3080@deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3081@deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3082Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3083mismatch index, depending upon whether @var{s1} is less than,
3084equal to, or greater than @var{s2}. The mismatch index is the
3085largest index @var{i} such that for every 0 <= @var{j} <
3086@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3087@var{i} is the first position that does not match.
3088@end deffn
3089
3090@deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3091@deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3092Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3093mismatch index, depending upon whether @var{s1} is less than,
3094equal to, or greater than @var{s2}. The mismatch index is the
3095largest index @var{i} such that for every 0 <= @var{j} <
3096@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3097@var{i} is the first position that does not match. The
3098character comparison is done case-insensitively.
3099@end deffn
3100
3101@deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3102@deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3103Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3104value otherwise.
3105@end deffn
3106
3107@deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3108@deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3109Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3110value otherwise.
3111@end deffn
3112
3113@deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3114@deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3115Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3116true value otherwise.
3117@end deffn
3118
3119@deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3120@deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3121Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3122true value otherwise.
3123@end deffn
3124
3125@deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3126@deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3127Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3128value otherwise.
3129@end deffn
3130
3131@deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3132@deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3133Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3134otherwise.
3135@end deffn
3136
3137@deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3138@deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3139Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3140value otherwise. The character comparison is done
3141case-insensitively.
3142@end deffn
3143
3144@deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3145@deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3146Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3147value otherwise. The character comparison is done
3148case-insensitively.
3149@end deffn
3150
3151@deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3152@deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3153Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3154true value otherwise. The character comparison is done
3155case-insensitively.
3156@end deffn
3157
3158@deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3159@deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3160Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3161true value otherwise. The character comparison is done
3162case-insensitively.
3163@end deffn
3164
3165@deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3166@deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3167Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3168value otherwise. The character comparison is done
3169case-insensitively.
3170@end deffn
3171
3172@deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3173@deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3174Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3175otherwise. The character comparison is done
3176case-insensitively.
3177@end deffn
3178
3179@deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3180@deffnx {C Function} scm_substring_hash (s, bound, start, end)
3181Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3182@end deffn
3183
3184@deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3185@deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3186Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3187@end deffn
07d83abe
MV
3188
3189@node String Searching
3190@subsubsection String Searching
3191
5676b4fa
MV
3192@deffn {Scheme Procedure} string-index s char_pred [start [end]]
3193@deffnx {C Function} scm_string_index (s, char_pred, start, end)
3194Search through the string @var{s} from left to right, returning
3195the index of the first occurence of a character which
07d83abe 3196
5676b4fa
MV
3197@itemize @bullet
3198@item
3199equals @var{char_pred}, if it is character,
07d83abe 3200
5676b4fa
MV
3201@item
3202satisifies the predicate @var{char_pred}, if it is a procedure,
07d83abe 3203
5676b4fa
MV
3204@item
3205is in the set @var{char_pred}, if it is a character set.
3206@end itemize
3207@end deffn
07d83abe 3208
5676b4fa
MV
3209@deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3210@deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3211Search through the string @var{s} from right to left, returning
3212the index of the last occurence of a character which
3213
3214@itemize @bullet
3215@item
3216equals @var{char_pred}, if it is character,
3217
3218@item
3219satisifies the predicate @var{char_pred}, if it is a procedure,
3220
3221@item
3222is in the set if @var{char_pred} is a character set.
3223@end itemize
07d83abe
MV
3224@end deffn
3225
5676b4fa
MV
3226@deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3227@deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3228Return the length of the longest common prefix of the two
3229strings.
3230@end deffn
07d83abe 3231
5676b4fa
MV
3232@deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3233@deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3234Return the length of the longest common prefix of the two
3235strings, ignoring character case.
3236@end deffn
07d83abe 3237
5676b4fa
MV
3238@deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3239@deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3240Return the length of the longest common suffix of the two
3241strings.
3242@end deffn
07d83abe 3243
5676b4fa
MV
3244@deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3245@deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3246Return the length of the longest common suffix of the two
3247strings, ignoring character case.
3248@end deffn
3249
3250@deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3251@deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3252Is @var{s1} a prefix of @var{s2}?
3253@end deffn
3254
3255@deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3256@deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3257Is @var{s1} a prefix of @var{s2}, ignoring character case?
3258@end deffn
3259
3260@deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3261@deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3262Is @var{s1} a suffix of @var{s2}?
3263@end deffn
3264
3265@deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3266@deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3267Is @var{s1} a suffix of @var{s2}, ignoring character case?
3268@end deffn
3269
3270@deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3271@deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3272Search through the string @var{s} from right to left, returning
3273the index of the last occurence of a character which
3274
3275@itemize @bullet
3276@item
3277equals @var{char_pred}, if it is character,
3278
3279@item
3280satisifies the predicate @var{char_pred}, if it is a procedure,
3281
3282@item
3283is in the set if @var{char_pred} is a character set.
3284@end itemize
3285@end deffn
3286
3287@deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3288@deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3289Search through the string @var{s} from left to right, returning
3290the index of the first occurence of a character which
3291
3292@itemize @bullet
3293@item
3294does not equal @var{char_pred}, if it is character,
3295
3296@item
3297does not satisify the predicate @var{char_pred}, if it is a
3298procedure,
3299
3300@item
3301is not in the set if @var{char_pred} is a character set.
3302@end itemize
3303@end deffn
3304
3305@deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3306@deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3307Search through the string @var{s} from right to left, returning
3308the index of the last occurence of a character which
3309
3310@itemize @bullet
3311@item
3312does not equal @var{char_pred}, if it is character,
3313
3314@item
3315does not satisfy the predicate @var{char_pred}, if it is a
3316procedure,
3317
3318@item
3319is not in the set if @var{char_pred} is a character set.
3320@end itemize
3321@end deffn
3322
3323@deffn {Scheme Procedure} string-count s char_pred [start [end]]
3324@deffnx {C Function} scm_string_count (s, char_pred, start, end)
3325Return the count of the number of characters in the string
3326@var{s} which
3327
3328@itemize @bullet
3329@item
3330equals @var{char_pred}, if it is character,
3331
3332@item
3333satisifies the predicate @var{char_pred}, if it is a procedure.
3334
3335@item
3336is in the set @var{char_pred}, if it is a character set.
3337@end itemize
3338@end deffn
3339
3340@deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3341@deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3342Does string @var{s1} contain string @var{s2}? Return the index
3343in @var{s1} where @var{s2} occurs as a substring, or false.
3344The optional start/end indices restrict the operation to the
3345indicated substrings.
3346@end deffn
3347
3348@deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3349@deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3350Does string @var{s1} contain string @var{s2}? Return the index
3351in @var{s1} where @var{s2} occurs as a substring, or false.
3352The optional start/end indices restrict the operation to the
3353indicated substrings. Character comparison is done
3354case-insensitively.
07d83abe
MV
3355@end deffn
3356
3357@node Alphabetic Case Mapping
3358@subsubsection Alphabetic Case Mapping
3359
3360These are procedures for mapping strings to their upper- or lower-case
3361equivalents, respectively, or for capitalizing strings.
3362
5676b4fa
MV
3363@deffn {Scheme Procedure} string-upcase str [start [end]]
3364@deffnx {C Function} scm_substring_upcase (str, start, end)
07d83abe 3365@deffnx {C Function} scm_string_upcase (str)
5676b4fa 3366Upcase every character in @code{str}.
07d83abe
MV
3367@end deffn
3368
5676b4fa
MV
3369@deffn {Scheme Procedure} string-upcase! str [start [end]]
3370@deffnx {C Function} scm_substring_upcase_x (str, start, end)
07d83abe 3371@deffnx {C Function} scm_string_upcase_x (str)
5676b4fa
MV
3372Destructively upcase every character in @code{str}.
3373
07d83abe 3374@lisp
5676b4fa
MV
3375(string-upcase! y)
3376@result{} "ARRDEFG"
3377y
3378@result{} "ARRDEFG"
07d83abe
MV
3379@end lisp
3380@end deffn
3381
5676b4fa
MV
3382@deffn {Scheme Procedure} string-downcase str [start [end]]
3383@deffnx {C Function} scm_substring_downcase (str, start, end)
07d83abe 3384@deffnx {C Function} scm_string_downcase (str)
5676b4fa 3385Downcase every character in @var{str}.
07d83abe
MV
3386@end deffn
3387
5676b4fa
MV
3388@deffn {Scheme Procedure} string-downcase! str [start [end]]
3389@deffnx {C Function} scm_substring_downcase_x (str, start, end)
07d83abe 3390@deffnx {C Function} scm_string_downcase_x (str)
5676b4fa
MV
3391Destructively downcase every character in @var{str}.
3392
07d83abe 3393@lisp
5676b4fa
MV
3394y
3395@result{} "ARRDEFG"
3396(string-downcase! y)
3397@result{} "arrdefg"
3398y
3399@result{} "arrdefg"
07d83abe
MV
3400@end lisp
3401@end deffn
3402
3403@deffn {Scheme Procedure} string-capitalize str
3404@deffnx {C Function} scm_string_capitalize (str)
3405Return a freshly allocated string with the characters in
3406@var{str}, where the first character of every word is
3407capitalized.
3408@end deffn
3409
3410@deffn {Scheme Procedure} string-capitalize! str
3411@deffnx {C Function} scm_string_capitalize_x (str)
3412Upcase the first character of every word in @var{str}
3413destructively and return @var{str}.
3414
3415@lisp
3416y @result{} "hello world"
3417(string-capitalize! y) @result{} "Hello World"
3418y @result{} "Hello World"
3419@end lisp
3420@end deffn
3421
5676b4fa
MV
3422@deffn {Scheme Procedure} string-titlecase str [start [end]]
3423@deffnx {C Function} scm_string_titlecase (str, start, end)
3424Titlecase every first character in a word in @var{str}.
3425@end deffn
07d83abe 3426
5676b4fa
MV
3427@deffn {Scheme Procedure} string-titlecase! str [start [end]]
3428@deffnx {C Function} scm_string_titlecase_x (str, start, end)
3429Destructively titlecase every first character in a word in
3430@var{str}.
3431@end deffn
3432
3433@node Reversing and Appending Strings
3434@subsubsection Reversing and Appending Strings
07d83abe 3435
5676b4fa
MV
3436@deffn {Scheme Procedure} string-reverse str [start [end]]
3437@deffnx {C Function} scm_string_reverse (str, start, end)
3438Reverse the string @var{str}. The optional arguments
3439@var{start} and @var{end} delimit the region of @var{str} to
3440operate on.
3441@end deffn
3442
3443@deffn {Scheme Procedure} string-reverse! str [start [end]]
3444@deffnx {C Function} scm_string_reverse_x (str, start, end)
3445Reverse the string @var{str} in-place. The optional arguments
3446@var{start} and @var{end} delimit the region of @var{str} to
3447operate on. The return value is unspecified.
3448@end deffn
07d83abe
MV
3449
3450@rnindex string-append
3451@deffn {Scheme Procedure} string-append . args
3452@deffnx {C Function} scm_string_append (args)
3453Return a newly allocated string whose characters form the
3454concatenation of the given strings, @var{args}.
3455
3456@example
3457(let ((h "hello "))
3458 (string-append h "world"))
3459@result{} "hello world"
3460@end example
3461@end deffn
3462
5676b4fa
MV
3463@deffn {Scheme Procedure} string-append/shared . ls
3464@deffnx {C Function} scm_string_append_shared (ls)
3465Like @code{string-append}, but the result may share memory
3466with the argument strings.
3467@end deffn
3468
3469@deffn {Scheme Procedure} string-concatenate ls
3470@deffnx {C Function} scm_string_concatenate (ls)
3471Append the elements of @var{ls} (which must be strings)
3472together into a single string. Guaranteed to return a freshly
3473allocated string.
3474@end deffn
3475
3476@deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3477@deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3478Without optional arguments, this procedure is equivalent to
3479
3480@smalllisp
3481(string-concatenate (reverse ls))
3482@end smalllisp
3483
3484If the optional argument @var{final_string} is specified, it is
3485consed onto the beginning to @var{ls} before performing the
3486list-reverse and string-concatenate operations. If @var{end}
3487is given, only the characters of @var{final_string} up to index
3488@var{end} are used.
3489
3490Guaranteed to return a freshly allocated string.
3491@end deffn
3492
3493@deffn {Scheme Procedure} string-concatenate/shared ls
3494@deffnx {C Function} scm_string_concatenate_shared (ls)
3495Like @code{string-concatenate}, but the result may share memory
3496with the strings in the list @var{ls}.
3497@end deffn
3498
3499@deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3500@deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3501Like @code{string-concatenate-reverse}, but the result may
3502share memory with the the strings in the @var{ls} arguments.
3503@end deffn
3504
3505@node Mapping Folding and Unfolding
3506@subsubsection Mapping, Folding, and Unfolding
3507
3508@deffn {Scheme Procedure} string-map proc s [start [end]]
3509@deffnx {C Function} scm_string_map (proc, s, start, end)
3510@var{proc} is a char->char procedure, it is mapped over
3511@var{s}. The order in which the procedure is applied to the
3512string elements is not specified.
3513@end deffn
3514
3515@deffn {Scheme Procedure} string-map! proc s [start [end]]
3516@deffnx {C Function} scm_string_map_x (proc, s, start, end)
3517@var{proc} is a char->char procedure, it is mapped over
3518@var{s}. The order in which the procedure is applied to the
3519string elements is not specified. The string @var{s} is
3520modified in-place, the return value is not specified.
3521@end deffn
3522
3523@deffn {Scheme Procedure} string-for-each proc s [start [end]]
3524@deffnx {C Function} scm_string_for_each (proc, s, start, end)
3525@var{proc} is mapped over @var{s} in left-to-right order. The
3526return value is not specified.
3527@end deffn
3528
3529@deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
3530@deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
2a7820f2
KR
3531Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
3532right.
3533
3534For example, to change characters to alternately upper and lower case,
3535
3536@example
3537(define str (string-copy "studly"))
3538(string-for-each-index (lambda (i)
3539 (string-set! str i
3540 ((if (even? i) char-upcase char-downcase)
3541 (string-ref str i))))
3542 str)
3543str @result{} "StUdLy"
3544@end example
5676b4fa
MV
3545@end deffn
3546
3547@deffn {Scheme Procedure} string-fold kons knil s [start [end]]
3548@deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
3549Fold @var{kons} over the characters of @var{s}, with @var{knil}
3550as the terminating element, from left to right. @var{kons}
3551must expect two arguments: The actual character and the last
3552result of @var{kons}' application.
3553@end deffn
3554
3555@deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
3556@deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
3557Fold @var{kons} over the characters of @var{s}, with @var{knil}
3558as the terminating element, from right to left. @var{kons}
3559must expect two arguments: The actual character and the last
3560result of @var{kons}' application.
3561@end deffn
3562
3563@deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
3564@deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
3565@itemize @bullet
3566@item @var{g} is used to generate a series of @emph{seed}
3567values from the initial @var{seed}: @var{seed}, (@var{g}
3568@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3569@dots{}
3570@item @var{p} tells us when to stop -- when it returns true
3571when applied to one of these seed values.
3572@item @var{f} maps each seed value to the corresponding
3573character in the result string. These chars are assembled
3574into the string in a left-to-right order.
3575@item @var{base} is the optional initial/leftmost portion
3576of the constructed string; it default to the empty
3577string.
3578@item @var{make_final} is applied to the terminal seed
3579value (on which @var{p} returns true) to produce
3580the final/rightmost portion of the constructed string.
9a18d8d4 3581The default is nothing extra.
5676b4fa
MV
3582@end itemize
3583@end deffn
3584
3585@deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
3586@deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
3587@itemize @bullet
3588@item @var{g} is used to generate a series of @emph{seed}
3589values from the initial @var{seed}: @var{seed}, (@var{g}
3590@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3591@dots{}
3592@item @var{p} tells us when to stop -- when it returns true
3593when applied to one of these seed values.
3594@item @var{f} maps each seed value to the corresponding
3595character in the result string. These chars are assembled
3596into the string in a right-to-left order.
3597@item @var{base} is the optional initial/rightmost portion
3598of the constructed string; it default to the empty
3599string.
3600@item @var{make_final} is applied to the terminal seed
3601value (on which @var{p} returns true) to produce
3602the final/leftmost portion of the constructed string.
3603It defaults to @code{(lambda (x) )}.
3604@end itemize
3605@end deffn
3606
3607@node Miscellaneous String Operations
3608@subsubsection Miscellaneous String Operations
3609
3610@deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
3611@deffnx {C Function} scm_xsubstring (s, from, to, start, end)
3612This is the @emph{extended substring} procedure that implements
3613replicated copying of a substring of some string.
3614
3615@var{s} is a string, @var{start} and @var{end} are optional
3616arguments that demarcate a substring of @var{s}, defaulting to
36170 and the length of @var{s}. Replicate this substring up and
3618down index space, in both the positive and negative directions.
3619@code{xsubstring} returns the substring of this string
3620beginning at index @var{from}, and ending at @var{to}, which
3621defaults to @var{from} + (@var{end} - @var{start}).
3622@end deffn
3623
3624@deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
3625@deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
3626Exactly the same as @code{xsubstring}, but the extracted text
3627is written into the string @var{target} starting at index
3628@var{tstart}. The operation is not defined if @code{(eq?
3629@var{target} @var{s})} or these arguments share storage -- you
3630cannot copy a string on top of itself.
3631@end deffn
3632
3633@deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
3634@deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
3635Return the string @var{s1}, but with the characters
3636@var{start1} @dots{} @var{end1} replaced by the characters
3637@var{start2} @dots{} @var{end2} from @var{s2}.
3638@end deffn
3639
3640@deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
3641@deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
3642Split the string @var{s} into a list of substrings, where each
3643substring is a maximal non-empty contiguous sequence of
3644characters from the character set @var{token_set}, which
3645defaults to @code{char-set:graphic}.
3646If @var{start} or @var{end} indices are provided, they restrict
3647@code{string-tokenize} to operating on the indicated substring
3648of @var{s}.
3649@end deffn
3650
3651@deffn {Scheme Procedure} string-filter s char_pred [start [end]]
3652@deffnx {C Function} scm_string_filter (s, char_pred, start, end)
08de3e24 3653Filter the string @var{s}, retaining only those characters which
a88e2a96 3654satisfy @var{char_pred}.
08de3e24
KR
3655
3656If @var{char_pred} is a procedure, it is applied to each character as
3657a predicate, if it is a character, it is tested for equality and if it
3658is a character set, it is tested for membership.
5676b4fa
MV
3659@end deffn
3660
3661@deffn {Scheme Procedure} string-delete s char_pred [start [end]]
3662@deffnx {C Function} scm_string_delete (s, char_pred, start, end)
a88e2a96 3663Delete characters satisfying @var{char_pred} from @var{s}.
08de3e24
KR
3664
3665If @var{char_pred} is a procedure, it is applied to each character as
3666a predicate, if it is a character, it is tested for equality and if it
3667is a character set, it is tested for membership.
5676b4fa
MV
3668@end deffn
3669
91210d62
MV
3670@node Conversion to/from C
3671@subsubsection Conversion to/from C
3672
3673When creating a Scheme string from a C string or when converting a
3674Scheme string to a C string, the concept of character encoding becomes
3675important.
3676
3677In C, a string is just a sequence of bytes, and the character encoding
3678describes the relation between these bytes and the actual characters
c88453e8
MV
3679that make up the string. For Scheme strings, character encoding is
3680not an issue (most of the time), since in Scheme you never get to see
3681the bytes, only the characters.
91210d62
MV
3682
3683Well, ideally, anyway. Right now, Guile simply equates Scheme
3684characters and bytes, ignoring the possibility of multi-byte encodings
3685completely. This will change in the future, where Guile will use
c48c62d0
MV
3686Unicode codepoints as its characters and UTF-8 or some other encoding
3687as its internal encoding. When you exclusively use the functions
3688listed in this section, you are `future-proof'.
91210d62 3689
c88453e8
MV
3690Converting a Scheme string to a C string will often allocate fresh
3691memory to hold the result. You must take care that this memory is
3692properly freed eventually. In many cases, this can be achieved by
661ae7ab
MV
3693using @code{scm_dynwind_free} inside an appropriate dynwind context,
3694@xref{Dynamic Wind}.
91210d62
MV
3695
3696@deftypefn {C Function} SCM scm_from_locale_string (const char *str)
3697@deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
3698Creates a new Scheme string that has the same contents as @var{str}
3699when interpreted in the current locale character encoding.
3700
3701For @code{scm_from_locale_string}, @var{str} must be null-terminated.
3702
3703For @code{scm_from_locale_stringn}, @var{len} specifies the length of
3704@var{str} in bytes, and @var{str} does not need to be null-terminated.
3705If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
3706null-terminated and the real length will be found with @code{strlen}.
3707@end deftypefn
3708
3709@deftypefn {C Function} SCM scm_take_locale_string (char *str)
3710@deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
3711Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
3712respectively, but also frees @var{str} with @code{free} eventually.
3713Thus, you can use this function when you would free @var{str} anyway
3714immediately after creating the Scheme string. In certain cases, Guile
3715can then use @var{str} directly as its internal representation.
3716@end deftypefn
3717
4846ae2c
KR
3718@deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
3719@deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
91210d62
MV
3720Returns a C string in the current locale encoding with the same
3721contents as @var{str}. The C string must be freed with @code{free}
661ae7ab
MV
3722eventually, maybe by using @code{scm_dynwind_free}, @xref{Dynamic
3723Wind}.
91210d62
MV
3724
3725For @code{scm_to_locale_string}, the returned string is
3726null-terminated and an error is signalled when @var{str} contains
3727@code{#\nul} characters.
3728
3729For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
3730@var{str} might contain @code{#\nul} characters and the length of the
3731returned string in bytes is stored in @code{*@var{lenp}}. The
3732returned string will not be null-terminated in this case. If
3733@var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
3734@code{scm_to_locale_string}.
3735@end deftypefn
3736
3737@deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
3738Puts @var{str} as a C string in the current locale encoding into the
3739memory pointed to by @var{buf}. The buffer at @var{buf} has room for
3740@var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
3741more than that. No terminating @code{'\0'} will be stored.
3742
3743The return value of @code{scm_to_locale_stringbuf} is the number of
3744bytes that are needed for all of @var{str}, regardless of whether
3745@var{buf} was large enough to hold them. Thus, when the return value
3746is larger than @var{max_len}, only @var{max_len} bytes have been
3747stored and you probably need to try again with a larger buffer.
3748@end deftypefn
07d83abe 3749
b242715b
LC
3750@node Bytevectors
3751@subsection Bytevectors
3752
3753@cindex bytevector
3754@cindex R6RS
3755
3756A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevector)}
3757module provides the programming interface specified by the
3758@uref{http://www.r6rs.org/, Revised Report^6 on the Algorithmic Language
3759Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
3760interpret their contents in a number of ways: bytevector contents can be
3761accessed as signed or unsigned integer of various sizes and endianness,
3762as IEEE-754 floating point numbers, or as strings. It is a useful tool
3763to encode and decode binary data.
3764
3765The R6RS (Section 4.3.4) specifies an external representation for
3766bytevectors, whereby the octets (integers in the range 0--255) contained
3767in the bytevector are represented as a list prefixed by @code{#vu8}:
3768
3769@lisp
3770#vu8(1 53 204)
3771@end lisp
3772
3773denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
3774string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
3775they do not need to be quoted:
3776
3777@lisp
3778#vu8(1 53 204)
3779@result{} #vu8(1 53 204)
3780@end lisp
3781
3782Bytevectors can be used with the binary input/output primitives of the
3783R6RS (@pxref{R6RS I/O Ports}).
3784
3785@menu
3786* Bytevector Endianness:: Dealing with byte order.
3787* Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
3788* Bytevectors as Integers:: Interpreting bytes as integers.
3789* Bytevectors and Integer Lists:: Converting to/from an integer list.
3790* Bytevectors as Floats:: Interpreting bytes as real numbers.
3791* Bytevectors as Strings:: Interpreting bytes as Unicode strings.
3792@end menu
3793
3794@node Bytevector Endianness
3795@subsubsection Endianness
3796
3797@cindex endianness
3798@cindex byte order
3799@cindex word order
3800
3801Some of the following procedures take an @var{endianness} parameter.
3802The @dfn{endianness} is defined is defined as the order of bytes in
3803multi-byte numbers: numbers encoded in @dfn{big endian} have their most
3804significant bytes written first, whereas numbers encoded in @dfn{little
3805endian} have their least significant bytes first@footnote{Big and little
3806endian are the most common ``endiannesses'' but others exist. For
3807instance, the GNU MP library allows @dfn{word order} to be specified
3808independently of @dfn{byte order} (@pxref{Integer Import and Export,,,
3809gmp, The GNU Multiple Precision Arithmetic Library Manual}).} Little
3810endian is the native endianness of the IA32 architecture and its
3811derivatives, while big endian is native to SPARC and PowerPC, among
3812others. The @code{native-endianness} procedure returns the native
3813endianness of the machine it runs on.
3814
3815@deffn {Scheme Procedure} native-endianness
3816@deffnx {C Function} scm_native_endianness ()
3817Return a value denoting the native endianness of the host machine.
3818@end deffn
3819
3820@deffn {Scheme Macro} endianness symbol
3821Return an object denoting the endianness specified by @var{symbol}. If
3822@var{symbol} is neither @code{big} nor @code{little} then a compile-time
3823error is raised.
3824@end deffn
3825
3826@defvr {C Variable} scm_endianness_big
3827@defvrx {C Variable} scm_endianness_little
3828The objects denoting big (resp. little) endianness.
3829@end defvr
3830
3831
3832@node Bytevector Manipulation
3833@subsubsection Manipulating Bytevectors
3834
3835Bytevectors can be created, copied, and analyzed with the following
3836procedures.
3837
3838@deffn {Scheme Procedure} make-bytevector len [fill]
3839@deffnx {C Function} scm_make_bytevector (len, fill)
3840@deffnx {C Function} scm_c_make_bytevector (unsigned len)
3841Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
3842is given, fill it with @var{fill}; @var{fill} must be an 8-bit signed
3843integer, i.e., in the range [-128,127].
3844@end deffn
3845
3846@deffn {Scheme Procedure} bytevector? obj
3847@deffnx {C Function} scm_bytevector_p (obj)
3848Return true if @var{obj} is a bytevector.
3849@end deffn
3850
3851@deffn {Scheme Procedure} bytevector-length bv
3852@deffnx {C Function} scm_bytevector_length (bv)
3853Return the length in bytes of bytevector @var{bv}.
3854@end deffn
3855
3856@deffn {Scheme Procedure} bytevector=? bv1 bv2
3857@deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
3858Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
3859length and contents.
3860@end deffn
3861
3862@deffn {Scheme Procedure} bytevector-fill! bv fill
3863@deffnx {C Function} scm_bytevector_fill_x (bv, fill)
3864Fill bytevector @var{bv} with @var{fill}, a byte.
3865@end deffn
3866
3867@deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
3868@deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
3869Copy @var{len} bytes from @var{source} into @var{target}, starting
3870reading from @var{source-start} (a positive index within @var{source})
3871and start writing at @var{target-start}.
3872@end deffn
3873
3874@deffn {Scheme Procedure} bytevector-copy bv
3875@deffnx {C Function} scm_bytevector_copy (bv)
3876Return a newly allocated copy of @var{bv}.
3877@end deffn
3878
3879Low-level C macros are available. They do not perform any
3880type-checking; as such they should be used with care.
3881
3882@deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
3883Return the length in bytes of bytevector @var{bv}.
3884@end deftypefn
3885
3886@deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
3887Return a pointer to the contents of bytevector @var{bv}.
3888@end deftypefn
3889
3890
3891@node Bytevectors as Integers
3892@subsubsection Interpreting Bytevector Contents as Integers
3893
3894The contents of a bytevector can be interpreted as a sequence of
3895integers of any given size, sign, and endianness.
3896
3897@lisp
3898(let ((bv (make-bytevector 4)))
3899 (bytevector-u8-set! bv 0 #x12)
3900 (bytevector-u8-set! bv 1 #x34)
3901 (bytevector-u8-set! bv 2 #x56)
3902 (bytevector-u8-set! bv 3 #x78)
3903
3904 (map (lambda (number)
3905 (number->string number 16))
3906 (list (bytevector-u8-ref bv 0)
3907 (bytevector-u16-ref bv 0 (endianness big))
3908 (bytevector-u32-ref bv 0 (endianness little)))))
3909
3910@result{} ("12" "1234" "78563412")
3911@end lisp
3912
3913The most generic procedures to interpret bytevector contents as integers
3914are described below.
3915
3916@deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
3917@deffnx {Scheme Procedure} bytevector-sint-ref bv index endianness size
3918@deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
3919@deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
3920Return the @var{size}-byte long unsigned (resp. signed) integer at
3921index @var{index} in @var{bv}, decoded according to @var{endianness}.
3922@end deffn
3923
3924@deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
3925@deffnx {Scheme Procedure} bytevector-sint-set! bv index value endianness size
3926@deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
3927@deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
3928Set the @var{size}-byte long unsigned (resp. signed) integer at
3929@var{index} to @var{value}, encoded according to @var{endianness}.
3930@end deffn
3931
3932The following procedures are similar to the ones above, but specialized
3933to a given integer size:
3934
3935@deffn {Scheme Procedure} bytevector-u8-ref bv index
3936@deffnx {Scheme Procedure} bytevector-s8-ref bv index
3937@deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
3938@deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
3939@deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
3940@deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
3941@deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
3942@deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
3943@deffnx {C Function} scm_bytevector_u8_ref (bv, index)
3944@deffnx {C Function} scm_bytevector_s8_ref (bv, index)
3945@deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
3946@deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
3947@deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
3948@deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
3949@deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
3950@deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
3951Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
395216, 32 or 64) from @var{bv} at @var{index}, decoded according to
3953@var{endianness}.
3954@end deffn
3955
3956@deffn {Scheme Procedure} bytevector-u8-set! bv index value
3957@deffnx {Scheme Procedure} bytevector-s8-set! bv index value
3958@deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
3959@deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
3960@deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
3961@deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
3962@deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
3963@deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
3964@deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
3965@deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
3966@deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
3967@deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
3968@deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
3969@deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
3970@deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
3971@deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
3972Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
39738, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
3974@var{endianness}.
3975@end deffn
3976
3977Finally, a variant specialized for the host's endianness is available
3978for each of these functions (with the exception of the @code{u8}
3979accessors, for obvious reasons):
3980
3981@deffn {Scheme Procedure} bytevector-u16-native-ref bv index
3982@deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
3983@deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
3984@deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
3985@deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
3986@deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
3987@deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
3988@deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
3989@deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
3990@deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
3991@deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
3992@deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
3993Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
399416, 32 or 64) from @var{bv} at @var{index}, decoded according to the
3995host's native endianness.
3996@end deffn
3997
3998@deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
3999@deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4000@deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4001@deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4002@deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4003@deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4004@deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4005@deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4006@deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4007@deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4008@deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4009@deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4010Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
40118, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4012host's native endianness.
4013@end deffn
4014
4015
4016@node Bytevectors and Integer Lists
4017@subsubsection Converting Bytevectors to/from Integer Lists
4018
4019Bytevector contents can readily be converted to/from lists of signed or
4020unsigned integers:
4021
4022@lisp
4023(bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4024 (endianness little) 2)
4025@result{} (-1 -1)
4026@end lisp
4027
4028@deffn {Scheme Procedure} bytevector->u8-list bv
4029@deffnx {C Function} scm_bytevector_to_u8_list (bv)
4030Return a newly allocated list of unsigned 8-bit integers from the
4031contents of @var{bv}.
4032@end deffn
4033
4034@deffn {Scheme Procedure} u8-list->bytevector lst
4035@deffnx {C Function} scm_u8_list_to_bytevector (lst)
4036Return a newly allocated bytevector consisting of the unsigned 8-bit
4037integers listed in @var{lst}.
4038@end deffn
4039
4040@deffn {Scheme Procedure} bytevector->uint-list bv endianness size
4041@deffnx {Scheme Procedure} bytevector->sint-list bv endianness size
4042@deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4043@deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4044Return a list of unsigned (resp. signed) integers of @var{size} bytes
4045representing the contents of @var{bv}, decoded according to
4046@var{endianness}.
4047@end deffn
4048
4049@deffn {Scheme Procedure} uint-list->bytevector lst endianness size
4050@deffnx {Scheme Procedure} sint-list->bytevector lst endianness size
4051@deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4052@deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4053Return a new bytevector containing the unsigned (resp. signed) integers
4054listed in @var{lst} and encoded on @var{size} bytes according to
4055@var{endianness}.
4056@end deffn
4057
4058@node Bytevectors as Floats
4059@subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4060
4061@cindex IEEE-754 floating point numbers
4062
4063Bytevector contents can also be accessed as IEEE-754 single- or
4064double-precision floating point numbers (respectively 32 and 64-bit
4065long) using the procedures described here.
4066
4067@deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4068@deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4069@deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4070@deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4071Return the IEEE-754 single-precision floating point number from @var{bv}
4072at @var{index} according to @var{endianness}.
4073@end deffn
4074
4075@deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4076@deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4077@deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4078@deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4079Store real number @var{value} in @var{bv} at @var{index} according to
4080@var{endianness}.
4081@end deffn
4082
4083Specialized procedures are also available:
4084
4085@deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4086@deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4087@deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4088@deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4089Return the IEEE-754 single-precision floating point number from @var{bv}
4090at @var{index} according to the host's native endianness.
4091@end deffn
4092
4093@deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4094@deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4095@deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4096@deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4097Store real number @var{value} in @var{bv} at @var{index} according to
4098the host's native endianness.
4099@end deffn
4100
4101
4102@node Bytevectors as Strings
4103@subsubsection Interpreting Bytevector Contents as Unicode Strings
4104
4105@cindex Unicode string encoding
4106
4107Bytevector contents can also be interpreted as Unicode strings encoded
4108in one of the most commonly available encoding formats@footnote{Guile
41091.8 does @emph{not} support Unicode strings. Therefore, the procedures
4110described here assume that Guile strings are internally encoded
4111according to the current locale. For instance, if @code{$LC_CTYPE} is
4112@code{fr_FR.ISO-8859-1}, then @code{string->utf-8} @i{et al.} will
4113assume that Guile strings are Latin-1-encoded.}.
4114
4115@lisp
4116(utf8->string (u8-list->bytevector '(99 97 102 101)))
4117@result{} "cafe"
4118
4119(string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4120@result{} #vu8(99 97 102 195 169)
4121@end lisp
4122
4123@deffn {Scheme Procedure} string->utf8 str
4124@deffnx {Scheme Procedure} string->utf16 str
4125@deffnx {Scheme Procedure} string->utf32 str
4126@deffnx {C Function} scm_string_to_utf8 (str)
4127@deffnx {C Function} scm_string_to_utf16 (str)
4128@deffnx {C Function} scm_string_to_utf32 (str)
4129Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
4130UTF-32 (aka. UCS-4) encoding of @var{str}.
4131@end deffn
4132
4133@deffn {Scheme Procedure} utf8->string utf
4134@deffnx {Scheme Procedure} utf16->string utf
4135@deffnx {Scheme Procedure} utf32->string utf
4136@deffnx {C Function} scm_utf8_to_string (utf)
4137@deffnx {C Function} scm_utf16_to_string (utf)
4138@deffnx {C Function} scm_utf32_to_string (utf)
4139Return a newly allocated string that contains from the UTF-8-, UTF-16-,
4140or UTF-32-decoded contents of bytevector @var{utf}.
4141@end deffn
4142
4143
07d83abe
MV
4144@node Regular Expressions
4145@subsection Regular Expressions
4146@tpindex Regular expressions
4147
4148@cindex regular expressions
4149@cindex regex
4150@cindex emacs regexp
4151
4152A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
4153describes a whole class of strings. A full description of regular
4154expressions and their syntax is beyond the scope of this manual;
4155an introduction can be found in the Emacs manual (@pxref{Regexps,
4156, Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
4157in many general Unix reference books.
4158
4159If your system does not include a POSIX regular expression library,
4160and you have not linked Guile with a third-party regexp library such
4161as Rx, these functions will not be available. You can tell whether
4162your Guile installation includes regular expression support by
4163checking whether @code{(provided? 'regex)} returns true.
4164
4165The following regexp and string matching features are provided by the
4166@code{(ice-9 regex)} module. Before using the described functions,
4167you should load this module by executing @code{(use-modules (ice-9
4168regex))}.
4169
4170@menu
4171* Regexp Functions:: Functions that create and match regexps.
4172* Match Structures:: Finding what was matched by a regexp.
4173* Backslash Escapes:: Removing the special meaning of regexp
4174 meta-characters.
4175@end menu
4176
4177
4178@node Regexp Functions
4179@subsubsection Regexp Functions
4180
4181By default, Guile supports POSIX extended regular expressions.
4182That means that the characters @samp{(}, @samp{)}, @samp{+} and
4183@samp{?} are special, and must be escaped if you wish to match the
4184literal characters.
4185
4186This regular expression interface was modeled after that
4187implemented by SCSH, the Scheme Shell. It is intended to be
4188upwardly compatible with SCSH regular expressions.
4189
083f9d74
KR
4190Zero bytes (@code{#\nul}) cannot be used in regex patterns or input
4191strings, since the underlying C functions treat that as the end of
4192string. If there's a zero byte an error is thrown.
4193
4194Patterns and input strings are treated as being in the locale
4195character set if @code{setlocale} has been called (@pxref{Locales}),
4196and in a multibyte locale this includes treating multi-byte sequences
4197as a single character. (Guile strings are currently merely bytes,
4198though this may change in the future, @xref{Conversion to/from C}.)
4199
07d83abe
MV
4200@deffn {Scheme Procedure} string-match pattern str [start]
4201Compile the string @var{pattern} into a regular expression and compare
4202it with @var{str}. The optional numeric argument @var{start} specifies
4203the position of @var{str} at which to begin matching.
4204
4205@code{string-match} returns a @dfn{match structure} which
4206describes what, if anything, was matched by the regular
4207expression. @xref{Match Structures}. If @var{str} does not match
4208@var{pattern} at all, @code{string-match} returns @code{#f}.
4209@end deffn
4210
4211Two examples of a match follow. In the first example, the pattern
4212matches the four digits in the match string. In the second, the pattern
4213matches nothing.
4214
4215@example
4216(string-match "[0-9][0-9][0-9][0-9]" "blah2002")
4217@result{} #("blah2002" (4 . 8))
4218
4219(string-match "[A-Za-z]" "123456")
4220@result{} #f
4221@end example
4222
4223Each time @code{string-match} is called, it must compile its
4224@var{pattern} argument into a regular expression structure. This
4225operation is expensive, which makes @code{string-match} inefficient if
4226the same regular expression is used several times (for example, in a
4227loop). For better performance, you can compile a regular expression in
4228advance and then match strings against the compiled regexp.
4229
4230@deffn {Scheme Procedure} make-regexp pat flag@dots{}
4231@deffnx {C Function} scm_make_regexp (pat, flaglst)
4232Compile the regular expression described by @var{pat}, and
4233return the compiled regexp structure. If @var{pat} does not
4234describe a legal regular expression, @code{make-regexp} throws
4235a @code{regular-expression-syntax} error.
4236
4237The @var{flag} arguments change the behavior of the compiled
4238regular expression. The following values may be supplied:
4239
4240@defvar regexp/icase
4241Consider uppercase and lowercase letters to be the same when
4242matching.
4243@end defvar
4244
4245@defvar regexp/newline
4246If a newline appears in the target string, then permit the
4247@samp{^} and @samp{$} operators to match immediately after or
4248immediately before the newline, respectively. Also, the
4249@samp{.} and @samp{[^...]} operators will never match a newline
4250character. The intent of this flag is to treat the target
4251string as a buffer containing many lines of text, and the
4252regular expression as a pattern that may match a single one of
4253those lines.
4254@end defvar
4255
4256@defvar regexp/basic
4257Compile a basic (``obsolete'') regexp instead of the extended
4258(``modern'') regexps that are the default. Basic regexps do
4259not consider @samp{|}, @samp{+} or @samp{?} to be special
4260characters, and require the @samp{@{...@}} and @samp{(...)}
4261metacharacters to be backslash-escaped (@pxref{Backslash
4262Escapes}). There are several other differences between basic
4263and extended regular expressions, but these are the most
4264significant.
4265@end defvar
4266
4267@defvar regexp/extended
4268Compile an extended regular expression rather than a basic
4269regexp. This is the default behavior; this flag will not
4270usually be needed. If a call to @code{make-regexp} includes
4271both @code{regexp/basic} and @code{regexp/extended} flags, the
4272one which comes last will override the earlier one.
4273@end defvar
4274@end deffn
4275
4276@deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
4277@deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
4278Match the compiled regular expression @var{rx} against
4279@code{str}. If the optional integer @var{start} argument is
4280provided, begin matching from that position in the string.
4281Return a match structure describing the results of the match,
4282or @code{#f} if no match could be found.
4283
36c7474e
KR
4284The @var{flags} argument changes the matching behavior. The following
4285flag values may be supplied, use @code{logior} (@pxref{Bitwise
4286Operations}) to combine them,
07d83abe
MV
4287
4288@defvar regexp/notbol
36c7474e
KR
4289Consider that the @var{start} offset into @var{str} is not the
4290beginning of a line and should not match operator @samp{^}.
4291
4292If @var{rx} was created with the @code{regexp/newline} option above,
4293@samp{^} will still match after a newline in @var{str}.
07d83abe
MV
4294@end defvar
4295
4296@defvar regexp/noteol
36c7474e
KR
4297Consider that the end of @var{str} is not the end of a line and should
4298not match operator @samp{$}.
4299
4300If @var{rx} was created with the @code{regexp/newline} option above,
4301@samp{$} will still match before a newline in @var{str}.
07d83abe
MV
4302@end defvar
4303@end deffn
4304
4305@lisp
4306;; Regexp to match uppercase letters
4307(define r (make-regexp "[A-Z]*"))
4308
4309;; Regexp to match letters, ignoring case
4310(define ri (make-regexp "[A-Z]*" regexp/icase))
4311
4312;; Search for bob using regexp r
4313(match:substring (regexp-exec r "bob"))
4314@result{} "" ; no match
4315
4316;; Search for bob using regexp ri
4317(match:substring (regexp-exec ri "Bob"))
4318@result{} "Bob" ; matched case insensitive
4319@end lisp
4320
4321@deffn {Scheme Procedure} regexp? obj
4322@deffnx {C Function} scm_regexp_p (obj)
4323Return @code{#t} if @var{obj} is a compiled regular expression,
4324or @code{#f} otherwise.
4325@end deffn
4326
a285fb86
KR
4327@sp 1
4328@deffn {Scheme Procedure} list-matches regexp str [flags]
4329Return a list of match structures which are the non-overlapping
4330matches of @var{regexp} in @var{str}. @var{regexp} can be either a
4331pattern string or a compiled regexp. The @var{flags} argument is as
4332per @code{regexp-exec} above.
4333
4334@example
4335(map match:substring (list-matches "[a-z]+" "abc 42 def 78"))
4336@result{} ("abc" "def")
4337@end example
4338@end deffn
4339
4340@deffn {Scheme Procedure} fold-matches regexp str init proc [flags]
4341Apply @var{proc} to the non-overlapping matches of @var{regexp} in
4342@var{str}, to build a result. @var{regexp} can be either a pattern
4343string or a compiled regexp. The @var{flags} argument is as per
4344@code{regexp-exec} above.
4345
4346@var{proc} is called as @code{(@var{proc} match prev)} where
4347@var{match} is a match structure and @var{prev} is the previous return
4348from @var{proc}. For the first call @var{prev} is the given
4349@var{init} parameter. @code{fold-matches} returns the final value
4350from @var{proc}.
4351
4352For example to count matches,
4353
4354@example
4355(fold-matches "[a-z][0-9]" "abc x1 def y2" 0
4356 (lambda (match count)
4357 (1+ count)))
4358@result{} 2
4359@end example
4360@end deffn
4361
a13befdc
KR
4362@sp 1
4363Regular expressions are commonly used to find patterns in one string
4364and replace them with the contents of another string. The following
4365functions are convenient ways to do this.
07d83abe
MV
4366
4367@c begin (scm-doc-string "regex.scm" "regexp-substitute")
4368@deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
a13befdc
KR
4369Write to @var{port} selected parts of the match structure @var{match}.
4370Or if @var{port} is @code{#f} then form a string from those parts and
4371return that.
4372
4373Each @var{item} specifies a part to be written, and may be one of the
4374following,
07d83abe
MV
4375
4376@itemize @bullet
4377@item
4378A string. String arguments are written out verbatim.
4379
4380@item
a13befdc
KR
4381An integer. The submatch with that number is written
4382(@code{match:substring}). Zero is the entire match.
07d83abe
MV
4383
4384@item
4385The symbol @samp{pre}. The portion of the matched string preceding
a13befdc 4386the regexp match is written (@code{match:prefix}).
07d83abe
MV
4387
4388@item
4389The symbol @samp{post}. The portion of the matched string following
a13befdc 4390the regexp match is written (@code{match:suffix}).
07d83abe
MV
4391@end itemize
4392
a13befdc
KR
4393For example, changing a match and retaining the text before and after,
4394
4395@example
4396(regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
4397 'pre "37" 'post)
4398@result{} "number 37 is good"
4399@end example
07d83abe 4400
a13befdc
KR
4401Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
4402re-ordering and hyphenating the fields.
07d83abe
MV
4403
4404@lisp
4405(define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
4406(define s "Date 20020429 12am.")
a13befdc
KR
4407(regexp-substitute #f (string-match date-regex s)
4408 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
07d83abe
MV
4409@result{} "Date 04-29-2002 12am. (20020429)"
4410@end lisp
a13befdc
KR
4411@end deffn
4412
07d83abe
MV
4413
4414@c begin (scm-doc-string "regex.scm" "regexp-substitute")
4415@deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
a13befdc
KR
4416@cindex search and replace
4417Write to @var{port} selected parts of matches of @var{regexp} in
4418@var{target}. If @var{port} is @code{#f} then form a string from
4419those parts and return that. @var{regexp} can be a string or a
4420compiled regex.
07d83abe 4421
a13befdc
KR
4422This is similar to @code{regexp-substitute}, but allows global
4423substitutions on @var{target}. Each @var{item} behaves as per
4424@code{regexp-substitute}, with the following differences,
07d83abe
MV
4425
4426@itemize @bullet
4427@item
a13befdc
KR
4428A function. Called as @code{(@var{item} match)} with the match
4429structure for the @var{regexp} match, it should return a string to be
4430written to @var{port}.
07d83abe
MV
4431
4432@item
a13befdc
KR
4433The symbol @samp{post}. This doesn't output anything, but instead
4434causes @code{regexp-substitute/global} to recurse on the unmatched
4435portion of @var{target}.
4436
4437This @emph{must} be supplied to perform a global search and replace on
4438@var{target}; without it @code{regexp-substitute/global} returns after
4439a single match and output.
07d83abe 4440@end itemize
07d83abe 4441
a13befdc
KR
4442For example, to collapse runs of tabs and spaces to a single hyphen
4443each,
4444
4445@example
4446(regexp-substitute/global #f "[ \t]+" "this is the text"
4447 'pre "-" 'post)
4448@result{} "this-is-the-text"
4449@end example
4450
4451Or using a function to reverse the letters in each word,
4452
4453@example
4454(regexp-substitute/global #f "[a-z]+" "to do and not-do"
4455 'pre (lambda (m) (string-reverse (match:substring m))) 'post)
4456@result{} "ot od dna ton-od"
4457@end example
4458
4459Without the @code{post} symbol, just one regexp match is made. For
4460example the following is the date example from
4461@code{regexp-substitute} above, without the need for the separate
4462@code{string-match} call.
07d83abe
MV
4463
4464@lisp
4465(define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
4466(define s "Date 20020429 12am.")
4467(regexp-substitute/global #f date-regex s
a13befdc
KR
4468 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
4469
07d83abe
MV
4470@result{} "Date 04-29-2002 12am. (20020429)"
4471@end lisp
a13befdc 4472@end deffn
07d83abe
MV
4473
4474
4475@node Match Structures
4476@subsubsection Match Structures
4477
4478@cindex match structures
4479
4480A @dfn{match structure} is the object returned by @code{string-match} and
4481@code{regexp-exec}. It describes which portion of a string, if any,
4482matched the given regular expression. Match structures include: a
4483reference to the string that was checked for matches; the starting and
4484ending positions of the regexp match; and, if the regexp included any
4485parenthesized subexpressions, the starting and ending positions of each
4486submatch.
4487
4488In each of the regexp match functions described below, the @code{match}
4489argument must be a match structure returned by a previous call to
4490@code{string-match} or @code{regexp-exec}. Most of these functions
4491return some information about the original target string that was
4492matched against a regular expression; we will call that string
4493@var{target} for easy reference.
4494
4495@c begin (scm-doc-string "regex.scm" "regexp-match?")
4496@deffn {Scheme Procedure} regexp-match? obj
4497Return @code{#t} if @var{obj} is a match structure returned by a
4498previous call to @code{regexp-exec}, or @code{#f} otherwise.
4499@end deffn
4500
4501@c begin (scm-doc-string "regex.scm" "match:substring")
4502@deffn {Scheme Procedure} match:substring match [n]
4503Return the portion of @var{target} matched by subexpression number
4504@var{n}. Submatch 0 (the default) represents the entire regexp match.
4505If the regular expression as a whole matched, but the subexpression
4506number @var{n} did not match, return @code{#f}.
4507@end deffn
4508
4509@lisp
4510(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4511(match:substring s)
4512@result{} "2002"
4513
4514;; match starting at offset 6 in the string
4515(match:substring
4516 (string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
4517@result{} "7654"
4518@end lisp
4519
4520@c begin (scm-doc-string "regex.scm" "match:start")
4521@deffn {Scheme Procedure} match:start match [n]
4522Return the starting position of submatch number @var{n}.
4523@end deffn
4524
4525In the following example, the result is 4, since the match starts at
4526character index 4:
4527
4528@lisp
4529(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4530(match:start s)
4531@result{} 4
4532@end lisp
4533
4534@c begin (scm-doc-string "regex.scm" "match:end")
4535@deffn {Scheme Procedure} match:end match [n]
4536Return the ending position of submatch number @var{n}.
4537@end deffn
4538
4539In the following example, the result is 8, since the match runs between
4540characters 4 and 8 (i.e. the ``2002'').
4541
4542@lisp
4543(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4544(match:end s)
4545@result{} 8
4546@end lisp
4547
4548@c begin (scm-doc-string "regex.scm" "match:prefix")
4549@deffn {Scheme Procedure} match:prefix match
4550Return the unmatched portion of @var{target} preceding the regexp match.
4551
4552@lisp
4553(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4554(match:prefix s)
4555@result{} "blah"
4556@end lisp
4557@end deffn
4558
4559@c begin (scm-doc-string "regex.scm" "match:suffix")
4560@deffn {Scheme Procedure} match:suffix match
4561Return the unmatched portion of @var{target} following the regexp match.
4562@end deffn
4563
4564@lisp
4565(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4566(match:suffix s)
4567@result{} "foo"
4568@end lisp
4569
4570@c begin (scm-doc-string "regex.scm" "match:count")
4571@deffn {Scheme Procedure} match:count match
4572Return the number of parenthesized subexpressions from @var{match}.
4573Note that the entire regular expression match itself counts as a
4574subexpression, and failed submatches are included in the count.
4575@end deffn
4576
4577@c begin (scm-doc-string "regex.scm" "match:string")
4578@deffn {Scheme Procedure} match:string match
4579Return the original @var{target} string.
4580@end deffn
4581
4582@lisp
4583(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4584(match:string s)
4585@result{} "blah2002foo"
4586@end lisp
4587
4588
4589@node Backslash Escapes
4590@subsubsection Backslash Escapes
4591
4592Sometimes you will want a regexp to match characters like @samp{*} or
4593@samp{$} exactly. For example, to check whether a particular string
4594represents a menu entry from an Info node, it would be useful to match
4595it against a regexp like @samp{^* [^:]*::}. However, this won't work;
4596because the asterisk is a metacharacter, it won't match the @samp{*} at
4597the beginning of the string. In this case, we want to make the first
4598asterisk un-magic.
4599
4600You can do this by preceding the metacharacter with a backslash
4601character @samp{\}. (This is also called @dfn{quoting} the
4602metacharacter, and is known as a @dfn{backslash escape}.) When Guile
4603sees a backslash in a regular expression, it considers the following
4604glyph to be an ordinary character, no matter what special meaning it
4605would ordinarily have. Therefore, we can make the above example work by
4606changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
4607the regular expression engine to match only a single asterisk in the
4608target string.
4609
4610Since the backslash is itself a metacharacter, you may force a regexp to
4611match a backslash in the target string by preceding the backslash with
4612itself. For example, to find variable references in a @TeX{} program,
4613you might want to find occurrences of the string @samp{\let\} followed
4614by any number of alphabetic characters. The regular expression
4615@samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
4616regexp each match a single backslash in the target string.
4617
4618@c begin (scm-doc-string "regex.scm" "regexp-quote")
4619@deffn {Scheme Procedure} regexp-quote str
4620Quote each special character found in @var{str} with a backslash, and
4621return the resulting string.
4622@end deffn
4623
4624@strong{Very important:} Using backslash escapes in Guile source code
4625(as in Emacs Lisp or C) can be tricky, because the backslash character
4626has special meaning for the Guile reader. For example, if Guile
4627encounters the character sequence @samp{\n} in the middle of a string
4628while processing Scheme code, it replaces those characters with a
4629newline character. Similarly, the character sequence @samp{\t} is
4630replaced by a horizontal tab. Several of these @dfn{escape sequences}
4631are processed by the Guile reader before your code is executed.
4632Unrecognized escape sequences are ignored: if the characters @samp{\*}
4633appear in a string, they will be translated to the single character
4634@samp{*}.
4635
4636This translation is obviously undesirable for regular expressions, since
4637we want to be able to include backslashes in a string in order to
4638escape regexp metacharacters. Therefore, to make sure that a backslash
4639is preserved in a string in your Guile program, you must use @emph{two}
4640consecutive backslashes:
4641
4642@lisp
4643(define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
4644@end lisp
4645
4646The string in this example is preprocessed by the Guile reader before
4647any code is executed. The resulting argument to @code{make-regexp} is
4648the string @samp{^\* [^:]*}, which is what we really want.
4649
4650This also means that in order to write a regular expression that matches
4651a single backslash character, the regular expression string in the
4652source code must include @emph{four} backslashes. Each consecutive pair
4653of backslashes gets translated by the Guile reader to a single
4654backslash, and the resulting double-backslash is interpreted by the
4655regexp engine as matching a single backslash character. Hence:
4656
4657@lisp
4658(define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
4659@end lisp
4660
4661The reason for the unwieldiness of this syntax is historical. Both
4662regular expression pattern matchers and Unix string processing systems
4663have traditionally used backslashes with the special meanings
4664described above. The POSIX regular expression specification and ANSI C
4665standard both require these semantics. Attempting to abandon either
4666convention would cause other kinds of compatibility problems, possibly
4667more severe ones. Therefore, without extending the Scheme reader to
4668support strings with different quoting conventions (an ungainly and
4669confusing extension when implemented in other languages), we must adhere
4670to this cumbersome escape syntax.
4671
4672
4673@node Symbols
4674@subsection Symbols
4675@tpindex Symbols
4676
4677Symbols in Scheme are widely used in three ways: as items of discrete
4678data, as lookup keys for alists and hash tables, and to denote variable
4679references.
4680
4681A @dfn{symbol} is similar to a string in that it is defined by a
4682sequence of characters. The sequence of characters is known as the
4683symbol's @dfn{name}. In the usual case --- that is, where the symbol's
4684name doesn't include any characters that could be confused with other
4685elements of Scheme syntax --- a symbol is written in a Scheme program by
4686writing the sequence of characters that make up the name, @emph{without}
4687any quotation marks or other special syntax. For example, the symbol
4688whose name is ``multiply-by-2'' is written, simply:
4689
4690@lisp
4691multiply-by-2
4692@end lisp
4693
4694Notice how this differs from a @emph{string} with contents
4695``multiply-by-2'', which is written with double quotation marks, like
4696this:
4697
4698@lisp
4699"multiply-by-2"
4700@end lisp
4701
4702Looking beyond how they are written, symbols are different from strings
4703in two important respects.
4704
4705The first important difference is uniqueness. If the same-looking
4706string is read twice from two different places in a program, the result
4707is two @emph{different} string objects whose contents just happen to be
4708the same. If, on the other hand, the same-looking symbol is read twice
4709from two different places in a program, the result is the @emph{same}
4710symbol object both times.
4711
4712Given two read symbols, you can use @code{eq?} to test whether they are
4713the same (that is, have the same name). @code{eq?} is the most
4714efficient comparison operator in Scheme, and comparing two symbols like
4715this is as fast as comparing, for example, two numbers. Given two
4716strings, on the other hand, you must use @code{equal?} or
4717@code{string=?}, which are much slower comparison operators, to
4718determine whether the strings have the same contents.
4719
4720@lisp
4721(define sym1 (quote hello))
4722(define sym2 (quote hello))
4723(eq? sym1 sym2) @result{} #t
4724
4725(define str1 "hello")
4726(define str2 "hello")
4727(eq? str1 str2) @result{} #f
4728(equal? str1 str2) @result{} #t
4729@end lisp
4730
4731The second important difference is that symbols, unlike strings, are not
4732self-evaluating. This is why we need the @code{(quote @dots{})}s in the
4733example above: @code{(quote hello)} evaluates to the symbol named
4734"hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
4735symbol named "hello" and evaluated as a variable reference @dots{} about
4736which more below (@pxref{Symbol Variables}).
4737
4738@menu
4739* Symbol Data:: Symbols as discrete data.
4740* Symbol Keys:: Symbols as lookup keys.
4741* Symbol Variables:: Symbols as denoting variables.
4742* Symbol Primitives:: Operations related to symbols.
4743* Symbol Props:: Function slots and property lists.
4744* Symbol Read Syntax:: Extended read syntax for symbols.
4745* Symbol Uninterned:: Uninterned symbols.
4746@end menu
4747
4748
4749@node Symbol Data
4750@subsubsection Symbols as Discrete Data
4751
4752Numbers and symbols are similar to the extent that they both lend
4753themselves to @code{eq?} comparison. But symbols are more descriptive
4754than numbers, because a symbol's name can be used directly to describe
4755the concept for which that symbol stands.
4756
4757For example, imagine that you need to represent some colours in a
4758computer program. Using numbers, you would have to choose arbitrarily
4759some mapping between numbers and colours, and then take care to use that
4760mapping consistently:
4761
4762@lisp
4763;; 1=red, 2=green, 3=purple
4764
4765(if (eq? (colour-of car) 1)
4766 ...)
4767@end lisp
4768
4769@noindent
4770You can make the mapping more explicit and the code more readable by
4771defining constants:
4772
4773@lisp
4774(define red 1)
4775(define green 2)
4776(define purple 3)
4777
4778(if (eq? (colour-of car) red)
4779 ...)
4780@end lisp
4781
4782@noindent
4783But the simplest and clearest approach is not to use numbers at all, but
4784symbols whose names specify the colours that they refer to:
4785
4786@lisp
4787(if (eq? (colour-of car) 'red)
4788 ...)
4789@end lisp
4790
4791The descriptive advantages of symbols over numbers increase as the set
4792of concepts that you want to describe grows. Suppose that a car object
4793can have other properties as well, such as whether it has or uses:
4794
4795@itemize @bullet
4796@item
4797automatic or manual transmission
4798@item
4799leaded or unleaded fuel
4800@item
4801power steering (or not).
4802@end itemize
4803
4804@noindent
4805Then a car's combined property set could be naturally represented and
4806manipulated as a list of symbols:
4807
4808@lisp
4809(properties-of car1)
4810@result{}
4811(red manual unleaded power-steering)
4812
4813(if (memq 'power-steering (properties-of car1))
4814 (display "Unfit people can drive this car.\n")
4815 (display "You'll need strong arms to drive this car!\n"))
4816@print{}
4817Unfit people can drive this car.
4818@end lisp
4819
4820Remember, the fundamental property of symbols that we are relying on
4821here is that an occurrence of @code{'red} in one part of a program is an
4822@emph{indistinguishable} symbol from an occurrence of @code{'red} in
4823another part of a program; this means that symbols can usefully be
4824compared using @code{eq?}. At the same time, symbols have naturally
4825descriptive names. This combination of efficiency and descriptive power
4826makes them ideal for use as discrete data.
4827
4828
4829@node Symbol Keys
4830@subsubsection Symbols as Lookup Keys
4831
4832Given their efficiency and descriptive power, it is natural to use
4833symbols as the keys in an association list or hash table.
4834
4835To illustrate this, consider a more structured representation of the car
4836properties example from the preceding subsection. Rather than
4837mixing all the properties up together in a flat list, we could use an
4838association list like this:
4839
4840@lisp
4841(define car1-properties '((colour . red)
4842 (transmission . manual)
4843 (fuel . unleaded)
4844 (steering . power-assisted)))
4845@end lisp
4846
4847Notice how this structure is more explicit and extensible than the flat
4848list. For example it makes clear that @code{manual} refers to the
4849transmission rather than, say, the windows or the locking of the car.
4850It also allows further properties to use the same symbols among their
4851possible values without becoming ambiguous:
4852
4853@lisp
4854(define car1-properties '((colour . red)
4855 (transmission . manual)
4856 (fuel . unleaded)
4857 (steering . power-assisted)
4858 (seat-colour . red)
4859 (locking . manual)))
4860@end lisp
4861
4862With a representation like this, it is easy to use the efficient
4863@code{assq-XXX} family of procedures (@pxref{Association Lists}) to
4864extract or change individual pieces of information:
4865
4866@lisp
4867(assq-ref car1-properties 'fuel) @result{} unleaded
4868(assq-ref car1-properties 'transmission) @result{} manual
4869
4870(assq-set! car1-properties 'seat-colour 'black)
4871@result{}
4872((colour . red)
4873 (transmission . manual)
4874 (fuel . unleaded)
4875 (steering . power-assisted)
4876 (seat-colour . black)
4877 (locking . manual)))
4878@end lisp
4879
4880Hash tables also have keys, and exactly the same arguments apply to the
4881use of symbols in hash tables as in association lists. The hash value
4882that Guile uses to decide where to add a symbol-keyed entry to a hash
4883table can be obtained by calling the @code{symbol-hash} procedure:
4884
4885@deffn {Scheme Procedure} symbol-hash symbol
4886@deffnx {C Function} scm_symbol_hash (symbol)
4887Return a hash value for @var{symbol}.
4888@end deffn
4889
4890See @ref{Hash Tables} for information about hash tables in general, and
4891for why you might choose to use a hash table rather than an association
4892list.
4893
4894
4895@node Symbol Variables
4896@subsubsection Symbols as Denoting Variables
4897
4898When an unquoted symbol in a Scheme program is evaluated, it is
4899interpreted as a variable reference, and the result of the evaluation is
4900the appropriate variable's value.
4901
4902For example, when the expression @code{(string-length "abcd")} is read
4903and evaluated, the sequence of characters @code{string-length} is read
4904as the symbol whose name is "string-length". This symbol is associated
4905with a variable whose value is the procedure that implements string
4906length calculation. Therefore evaluation of the @code{string-length}
4907symbol results in that procedure.
4908
4909The details of the connection between an unquoted symbol and the
4910variable to which it refers are explained elsewhere. See @ref{Binding
4911Constructs}, for how associations between symbols and variables are
4912created, and @ref{Modules}, for how those associations are affected by
4913Guile's module system.
4914
4915
4916@node Symbol Primitives
4917@subsubsection Operations Related to Symbols
4918
4919Given any Scheme value, you can determine whether it is a symbol using
4920the @code{symbol?} primitive:
4921
4922@rnindex symbol?
4923@deffn {Scheme Procedure} symbol? obj
4924@deffnx {C Function} scm_symbol_p (obj)
4925Return @code{#t} if @var{obj} is a symbol, otherwise return
4926@code{#f}.
4927@end deffn
4928
c9dc8c6c
MV
4929@deftypefn {C Function} int scm_is_symbol (SCM val)
4930Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
4931@end deftypefn
4932
07d83abe
MV
4933Once you know that you have a symbol, you can obtain its name as a
4934string by calling @code{symbol->string}. Note that Guile differs by
4935default from R5RS on the details of @code{symbol->string} as regards
4936case-sensitivity:
4937
4938@rnindex symbol->string
4939@deffn {Scheme Procedure} symbol->string s
4940@deffnx {C Function} scm_symbol_to_string (s)
4941Return the name of symbol @var{s} as a string. By default, Guile reads
4942symbols case-sensitively, so the string returned will have the same case
4943variation as the sequence of characters that caused @var{s} to be
4944created.
4945
4946If Guile is set to read symbols case-insensitively (as specified by
4947R5RS), and @var{s} comes into being as part of a literal expression
4948(@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
4949by a call to the @code{read} or @code{string-ci->symbol} procedures,
4950Guile converts any alphabetic characters in the symbol's name to
4951lower case before creating the symbol object, so the string returned
4952here will be in lower case.
4953
4954If @var{s} was created by @code{string->symbol}, the case of characters
4955in the string returned will be the same as that in the string that was
4956passed to @code{string->symbol}, regardless of Guile's case-sensitivity
4957setting at the time @var{s} was created.
4958
4959It is an error to apply mutation procedures like @code{string-set!} to
4960strings returned by this procedure.
4961@end deffn
4962
4963Most symbols are created by writing them literally in code. However it
4964is also possible to create symbols programmatically using the following
4965@code{string->symbol} and @code{string-ci->symbol} procedures:
4966
4967@rnindex string->symbol
4968@deffn {Scheme Procedure} string->symbol string
4969@deffnx {C Function} scm_string_to_symbol (string)
4970Return the symbol whose name is @var{string}. This procedure can create
4971symbols with names containing special characters or letters in the
4972non-standard case, but it is usually a bad idea to create such symbols
4973because in some implementations of Scheme they cannot be read as
4974themselves.
4975@end deffn
4976
4977@deffn {Scheme Procedure} string-ci->symbol str
4978@deffnx {C Function} scm_string_ci_to_symbol (str)
4979Return the symbol whose name is @var{str}. If Guile is currently
4980reading symbols case-insensitively, @var{str} is converted to lowercase
4981before the returned symbol is looked up or created.
4982@end deffn
4983
4984The following examples illustrate Guile's detailed behaviour as regards
4985the case-sensitivity of symbols:
4986
4987@lisp
4988(read-enable 'case-insensitive) ; R5RS compliant behaviour
4989
4990(symbol->string 'flying-fish) @result{} "flying-fish"
4991(symbol->string 'Martin) @result{} "martin"
4992(symbol->string
4993 (string->symbol "Malvina")) @result{} "Malvina"
4994
4995(eq? 'mISSISSIppi 'mississippi) @result{} #t
4996(string->symbol "mISSISSIppi") @result{} mISSISSIppi
4997(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
4998(eq? 'LolliPop
4999 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5000(string=? "K. Harper, M.D."
5001 (symbol->string
5002 (string->symbol "K. Harper, M.D."))) @result{} #t
5003
5004(read-disable 'case-insensitive) ; Guile default behaviour
5005
5006(symbol->string 'flying-fish) @result{} "flying-fish"
5007(symbol->string 'Martin) @result{} "Martin"
5008(symbol->string
5009 (string->symbol "Malvina")) @result{} "Malvina"
5010
5011(eq? 'mISSISSIppi 'mississippi) @result{} #f
5012(string->symbol "mISSISSIppi") @result{} mISSISSIppi
5013(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5014(eq? 'LolliPop
5015 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5016(string=? "K. Harper, M.D."
5017 (symbol->string
5018 (string->symbol "K. Harper, M.D."))) @result{} #t
5019@end lisp
5020
5021From C, there are lower level functions that construct a Scheme symbol
c48c62d0
MV
5022from a C string in the current locale encoding.
5023
5024When you want to do more from C, you should convert between symbols
5025and strings using @code{scm_symbol_to_string} and
5026@code{scm_string_to_symbol} and work with the strings.
07d83abe 5027
c48c62d0
MV
5028@deffn {C Function} scm_from_locale_symbol (const char *name)
5029@deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
07d83abe 5030Construct and return a Scheme symbol whose name is specified by
c48c62d0
MV
5031@var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5032terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
07d83abe
MV
5033specified explicitly by @var{len}.
5034@end deffn
5035
fd0a5bbc
HWN
5036@deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5037@deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5038Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5039respectively, but also frees @var{str} with @code{free} eventually.
5040Thus, you can use this function when you would free @var{str} anyway
5041immediately after creating the Scheme string. In certain cases, Guile
5042can then use @var{str} directly as its internal representation.
5043@end deftypefn
5044
071bb6a8
LC
5045The size of a symbol can also be obtained from C:
5046
5047@deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5048Return the number of characters in @var{sym}.
5049@end deftypefn
fd0a5bbc 5050
07d83abe
MV
5051Finally, some applications, especially those that generate new Scheme
5052code dynamically, need to generate symbols for use in the generated
5053code. The @code{gensym} primitive meets this need:
5054
5055@deffn {Scheme Procedure} gensym [prefix]
5056@deffnx {C Function} scm_gensym (prefix)
5057Create a new symbol with a name constructed from a prefix and a counter
5058value. The string @var{prefix} can be specified as an optional
5059argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5060at each call. There is no provision for resetting the counter.
5061@end deffn
5062
5063The symbols generated by @code{gensym} are @emph{likely} to be unique,
5064since their names begin with a space and it is only otherwise possible
5065to generate such symbols if a programmer goes out of their way to do
5066so. Uniqueness can be guaranteed by instead using uninterned symbols
5067(@pxref{Symbol Uninterned}), though they can't be usefully written out
5068and read back in.
5069
5070
5071@node Symbol Props
5072@subsubsection Function Slots and Property Lists
5073
5074In traditional Lisp dialects, symbols are often understood as having
5075three kinds of value at once:
5076
5077@itemize @bullet
5078@item
5079a @dfn{variable} value, which is used when the symbol appears in
5080code in a variable reference context
5081
5082@item
5083a @dfn{function} value, which is used when the symbol appears in
5084code in a function name position (i.e. as the first element in an
5085unquoted list)
5086
5087@item
5088a @dfn{property list} value, which is used when the symbol is given as
5089the first argument to Lisp's @code{put} or @code{get} functions.
5090@end itemize
5091
5092Although Scheme (as one of its simplifications with respect to Lisp)
5093does away with the distinction between variable and function namespaces,
5094Guile currently retains some elements of the traditional structure in
5095case they turn out to be useful when implementing translators for other
5096languages, in particular Emacs Lisp.
5097
5098Specifically, Guile symbols have two extra slots. for a symbol's
5099property list, and for its ``function value.'' The following procedures
5100are provided to access these slots.
5101
5102@deffn {Scheme Procedure} symbol-fref symbol
5103@deffnx {C Function} scm_symbol_fref (symbol)
5104Return the contents of @var{symbol}'s @dfn{function slot}.
5105@end deffn
5106
5107@deffn {Scheme Procedure} symbol-fset! symbol value
5108@deffnx {C Function} scm_symbol_fset_x (symbol, value)
5109Set the contents of @var{symbol}'s function slot to @var{value}.
5110@end deffn
5111
5112@deffn {Scheme Procedure} symbol-pref symbol
5113@deffnx {C Function} scm_symbol_pref (symbol)
5114Return the @dfn{property list} currently associated with @var{symbol}.
5115@end deffn
5116
5117@deffn {Scheme Procedure} symbol-pset! symbol value
5118@deffnx {C Function} scm_symbol_pset_x (symbol, value)
5119Set @var{symbol}'s property list to @var{value}.
5120@end deffn
5121
5122@deffn {Scheme Procedure} symbol-property sym prop
5123From @var{sym}'s property list, return the value for property
5124@var{prop}. The assumption is that @var{sym}'s property list is an
5125association list whose keys are distinguished from each other using
5126@code{equal?}; @var{prop} should be one of the keys in that list. If
5127the property list has no entry for @var{prop}, @code{symbol-property}
5128returns @code{#f}.
5129@end deffn
5130
5131@deffn {Scheme Procedure} set-symbol-property! sym prop val
5132In @var{sym}'s property list, set the value for property @var{prop} to
5133@var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5134none already exists. For the structure of the property list, see
5135@code{symbol-property}.
5136@end deffn
5137
5138@deffn {Scheme Procedure} symbol-property-remove! sym prop
5139From @var{sym}'s property list, remove the entry for property
5140@var{prop}, if there is one. For the structure of the property list,
5141see @code{symbol-property}.
5142@end deffn
5143
5144Support for these extra slots may be removed in a future release, and it
4695789c
NJ
5145is probably better to avoid using them. For a more modern and Schemely
5146approach to properties, see @ref{Object Properties}.
07d83abe
MV
5147
5148
5149@node Symbol Read Syntax
5150@subsubsection Extended Read Syntax for Symbols
5151
5152The read syntax for a symbol is a sequence of letters, digits, and
5153@dfn{extended alphabetic characters}, beginning with a character that
5154cannot begin a number. In addition, the special cases of @code{+},
5155@code{-}, and @code{...} are read as symbols even though numbers can
5156begin with @code{+}, @code{-} or @code{.}.
5157
5158Extended alphabetic characters may be used within identifiers as if
5159they were letters. The set of extended alphabetic characters is:
5160
5161@example
5162! $ % & * + - . / : < = > ? @@ ^ _ ~
5163@end example
5164
5165In addition to the standard read syntax defined above (which is taken
5166from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5167Scheme})), Guile provides an extended symbol read syntax that allows the
5168inclusion of unusual characters such as space characters, newlines and
5169parentheses. If (for whatever reason) you need to write a symbol
5170containing characters not mentioned above, you can do so as follows.
5171
5172@itemize @bullet
5173@item
5174Begin the symbol with the characters @code{#@{},
5175
5176@item
5177write the characters of the symbol and
5178
5179@item
5180finish the symbol with the characters @code{@}#}.
5181@end itemize
5182
5183Here are a few examples of this form of read syntax. The first symbol
5184needs to use extended syntax because it contains a space character, the
5185second because it contains a line break, and the last because it looks
5186like a number.
5187
5188@lisp
5189#@{foo bar@}#
5190
5191#@{what
5192ever@}#
5193
5194#@{4242@}#
5195@end lisp
5196
5197Although Guile provides this extended read syntax for symbols,
5198widespread usage of it is discouraged because it is not portable and not
5199very readable.
5200
5201
5202@node Symbol Uninterned
5203@subsubsection Uninterned Symbols
5204
5205What makes symbols useful is that they are automatically kept unique.
5206There are no two symbols that are distinct objects but have the same
5207name. But of course, there is no rule without exception. In addition
5208to the normal symbols that have been discussed up to now, you can also
5209create special @dfn{uninterned} symbols that behave slightly
5210differently.
5211
5212To understand what is different about them and why they might be useful,
5213we look at how normal symbols are actually kept unique.
5214
5215Whenever Guile wants to find the symbol with a specific name, for
5216example during @code{read} or when executing @code{string->symbol}, it
5217first looks into a table of all existing symbols to find out whether a
5218symbol with the given name already exists. When this is the case, Guile
5219just returns that symbol. When not, a new symbol with the name is
5220created and entered into the table so that it can be found later.
5221
5222Sometimes you might want to create a symbol that is guaranteed `fresh',
5223i.e. a symbol that did not exist previously. You might also want to
5224somehow guarantee that no one else will ever unintentionally stumble
5225across your symbol in the future. These properties of a symbol are
5226often needed when generating code during macro expansion. When
5227introducing new temporary variables, you want to guarantee that they
5228don't conflict with variables in other people's code.
5229
5230The simplest way to arrange for this is to create a new symbol but
5231not enter it into the global table of all symbols. That way, no one
5232will ever get access to your symbol by chance. Symbols that are not in
5233the table are called @dfn{uninterned}. Of course, symbols that
5234@emph{are} in the table are called @dfn{interned}.
5235
5236You create new uninterned symbols with the function @code{make-symbol}.
5237You can test whether a symbol is interned or not with
5238@code{symbol-interned?}.
5239
5240Uninterned symbols break the rule that the name of a symbol uniquely
5241identifies the symbol object. Because of this, they can not be written
5242out and read back in like interned symbols. Currently, Guile has no
5243support for reading uninterned symbols. Note that the function
5244@code{gensym} does not return uninterned symbols for this reason.
5245
5246@deffn {Scheme Procedure} make-symbol name
5247@deffnx {C Function} scm_make_symbol (name)
5248Return a new uninterned symbol with the name @var{name}. The returned
5249symbol is guaranteed to be unique and future calls to
5250@code{string->symbol} will not return it.
5251@end deffn
5252
5253@deffn {Scheme Procedure} symbol-interned? symbol
5254@deffnx {C Function} scm_symbol_interned_p (symbol)
5255Return @code{#t} if @var{symbol} is interned, otherwise return
5256@code{#f}.
5257@end deffn
5258
5259For example:
5260
5261@lisp
5262(define foo-1 (string->symbol "foo"))
5263(define foo-2 (string->symbol "foo"))
5264(define foo-3 (make-symbol "foo"))
5265(define foo-4 (make-symbol "foo"))
5266
5267(eq? foo-1 foo-2)
5268@result{} #t
5269; Two interned symbols with the same name are the same object,
5270
5271(eq? foo-1 foo-3)
5272@result{} #f
5273; but a call to make-symbol with the same name returns a
5274; distinct object.
5275
5276(eq? foo-3 foo-4)
5277@result{} #f
5278; A call to make-symbol always returns a new object, even for
5279; the same name.
5280
5281foo-3
5282@result{} #<uninterned-symbol foo 8085290>
5283; Uninterned symbols print differently from interned symbols,
5284
5285(symbol? foo-3)
5286@result{} #t
5287; but they are still symbols,
5288
5289(symbol-interned? foo-3)
5290@result{} #f
5291; just not interned.
5292@end lisp
5293
5294
5295@node Keywords
5296@subsection Keywords
5297@tpindex Keywords
5298
5299Keywords are self-evaluating objects with a convenient read syntax that
5300makes them easy to type.
5301
5302Guile's keyword support conforms to R5RS, and adds a (switchable) read
5303syntax extension to permit keywords to begin with @code{:} as well as
ef4cbc08 5304@code{#:}, or to end with @code{:}.
07d83abe
MV
5305
5306@menu
5307* Why Use Keywords?:: Motivation for keyword usage.
5308* Coding With Keywords:: How to use keywords.
5309* Keyword Read Syntax:: Read syntax for keywords.
5310* Keyword Procedures:: Procedures for dealing with keywords.
07d83abe
MV
5311@end menu
5312
5313@node Why Use Keywords?
5314@subsubsection Why Use Keywords?
5315
5316Keywords are useful in contexts where a program or procedure wants to be
5317able to accept a large number of optional arguments without making its
5318interface unmanageable.
5319
5320To illustrate this, consider a hypothetical @code{make-window}
5321procedure, which creates a new window on the screen for drawing into
5322using some graphical toolkit. There are many parameters that the caller
5323might like to specify, but which could also be sensibly defaulted, for
5324example:
5325
5326@itemize @bullet
5327@item
5328color depth -- Default: the color depth for the screen
5329
5330@item
5331background color -- Default: white
5332
5333@item
5334width -- Default: 600
5335
5336@item
5337height -- Default: 400
5338@end itemize
5339
5340If @code{make-window} did not use keywords, the caller would have to
5341pass in a value for each possible argument, remembering the correct
5342argument order and using a special value to indicate the default value
5343for that argument:
5344
5345@lisp
5346(make-window 'default ;; Color depth
5347 'default ;; Background color
5348 800 ;; Width
5349 100 ;; Height
5350 @dots{}) ;; More make-window arguments
5351@end lisp
5352
5353With keywords, on the other hand, defaulted arguments are omitted, and
5354non-default arguments are clearly tagged by the appropriate keyword. As
5355a result, the invocation becomes much clearer:
5356
5357@lisp
5358(make-window #:width 800 #:height 100)
5359@end lisp
5360
5361On the other hand, for a simpler procedure with few arguments, the use
5362of keywords would be a hindrance rather than a help. The primitive
5363procedure @code{cons}, for example, would not be improved if it had to
5364be invoked as
5365
5366@lisp
5367(cons #:car x #:cdr y)
5368@end lisp
5369
5370So the decision whether to use keywords or not is purely pragmatic: use
5371them if they will clarify the procedure invocation at point of call.
5372
5373@node Coding With Keywords
5374@subsubsection Coding With Keywords
5375
5376If a procedure wants to support keywords, it should take a rest argument
5377and then use whatever means is convenient to extract keywords and their
5378corresponding arguments from the contents of that rest argument.
5379
5380The following example illustrates the principle: the code for
5381@code{make-window} uses a helper procedure called
5382@code{get-keyword-value} to extract individual keyword arguments from
5383the rest argument.
5384
5385@lisp
5386(define (get-keyword-value args keyword default)
5387 (let ((kv (memq keyword args)))
5388 (if (and kv (>= (length kv) 2))
5389 (cadr kv)
5390 default)))
5391
5392(define (make-window . args)
5393 (let ((depth (get-keyword-value args #:depth screen-depth))
5394 (bg (get-keyword-value args #:bg "white"))
5395 (width (get-keyword-value args #:width 800))
5396 (height (get-keyword-value args #:height 100))
5397 @dots{})
5398 @dots{}))
5399@end lisp
5400
5401But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5402optargs)} module provides a set of powerful macros that you can use to
5403implement keyword-supporting procedures like this:
5404
5405@lisp
5406(use-modules (ice-9 optargs))
5407
5408(define (make-window . args)
5409 (let-keywords args #f ((depth screen-depth)
5410 (bg "white")
5411 (width 800)
5412 (height 100))
5413 ...))
5414@end lisp
5415
5416@noindent
5417Or, even more economically, like this:
5418
5419@lisp
5420(use-modules (ice-9 optargs))
5421
5422(define* (make-window #:key (depth screen-depth)
5423 (bg "white")
5424 (width 800)
5425 (height 100))
5426 ...)
5427@end lisp
5428
5429For further details on @code{let-keywords}, @code{define*} and other
5430facilities provided by the @code{(ice-9 optargs)} module, see
5431@ref{Optional Arguments}.
5432
5433
5434@node Keyword Read Syntax
5435@subsubsection Keyword Read Syntax
5436
7719ef22
MV
5437Guile, by default, only recognizes a keyword syntax that is compatible
5438with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5439same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5440external representation of the keyword named @code{NAME}. Keyword
5441objects print using this syntax as well, so values containing keyword
5442objects can be read back into Guile. When used in an expression,
5443keywords are self-quoting objects.
07d83abe
MV
5444
5445If the @code{keyword} read option is set to @code{'prefix}, Guile also
5446recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5447of the form @code{:NAME} are read as symbols, as required by R5RS.
5448
ef4cbc08
LC
5449@cindex SRFI-88 keyword syntax
5450
5451If the @code{keyword} read option is set to @code{'postfix}, Guile
189681f5
LC
5452recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5453Otherwise, tokens of this form are read as symbols.
ef4cbc08 5454
07d83abe
MV
5455To enable and disable the alternative non-R5RS keyword syntax, you use
5456the @code{read-set!} procedure documented in @ref{User level options
ef4cbc08
LC
5457interfaces} and @ref{Reader options}. Note that the @code{prefix} and
5458@code{postfix} syntax are mutually exclusive.
07d83abe
MV
5459
5460@smalllisp
5461(read-set! keywords 'prefix)
5462
5463#:type
5464@result{}
5465#:type
5466
5467:type
5468@result{}
5469#:type
5470
ef4cbc08
LC
5471(read-set! keywords 'postfix)
5472
5473type:
5474@result{}
5475#:type
5476
5477:type
5478@result{}
5479:type
5480
07d83abe
MV
5481(read-set! keywords #f)
5482
5483#:type
5484@result{}
5485#:type
5486
5487:type
5488@print{}
5489ERROR: In expression :type:
5490ERROR: Unbound variable: :type
5491ABORT: (unbound-variable)
5492@end smalllisp
5493
5494@node Keyword Procedures
5495@subsubsection Keyword Procedures
5496
07d83abe
MV
5497@deffn {Scheme Procedure} keyword? obj
5498@deffnx {C Function} scm_keyword_p (obj)
5499Return @code{#t} if the argument @var{obj} is a keyword, else
5500@code{#f}.
5501@end deffn
5502
7719ef22
MV
5503@deffn {Scheme Procedure} keyword->symbol keyword
5504@deffnx {C Function} scm_keyword_to_symbol (keyword)
5505Return the symbol with the same name as @var{keyword}.
07d83abe
MV
5506@end deffn
5507
7719ef22
MV
5508@deffn {Scheme Procedure} symbol->keyword symbol
5509@deffnx {C Function} scm_symbol_to_keyword (symbol)
5510Return the keyword with the same name as @var{symbol}.
5511@end deffn
07d83abe 5512
7719ef22
MV
5513@deftypefn {C Function} int scm_is_keyword (SCM obj)
5514Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
07d83abe
MV
5515@end deftypefn
5516
7719ef22
MV
5517@deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
5518@deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
5519Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5520(@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5521(@var{str}, @var{len}))}, respectively.
5522@end deftypefn
07d83abe
MV
5523
5524@node Other Types
5525@subsection ``Functionality-Centric'' Data Types
5526
5527Procedures and macros are documented in their own chapter: see
5528@ref{Procedures and Macros}.
5529
5530Variable objects are documented as part of the description of Guile's
5531module system: see @ref{Variables}.
5532
5533Asyncs, dynamic roots and fluids are described in the chapter on
5534scheduling: see @ref{Scheduling}.
5535
5536Hooks are documented in the chapter on general utility functions: see
5537@ref{Hooks}.
5538
5539Ports are described in the chapter on I/O: see @ref{Input and Output}.
5540
5541
5542@c Local Variables:
5543@c TeX-master: "guile.texi"
5544@c End: